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Abstract. In this paper, we continue to investigate common proper-
ties of the products ac and bd in various categories under the assumption
acd = dbd and dba = aca. These properties include generalized strongly
Drazin invertibility and generalized Hirano invertibility in rings, abstract
index of Fredholm elements and B-Fredholm elements in the Banach alge-
bra context, complementability of kernels and ranges for bounded linear
operators on Banach spaces.

1. Introduction

Throughout this paper, R denotes an associative ring with unit 1. The
classical Jacobson’s lemma asserts that

(1.1) 1− ab is invertible if and only if 1− ba is invertible

for any a, b ∈ R. In the last two decades, suitable analogues of Jacobson’s
lemma for Drazin inverse and generalized Drazin inverse have been found by
many researchers around the world (see [6, 8, 14, 16, 17, 24]). Corach et al.
in [7] generalized (1.1) and many of its relatives to the case that

(1.2) aba = aca,

see also [20, 21, 22, 23]. Recently, it has been realized that there are proper
counterparts of Jacobson’s lemma for Drazin inverse and generalized Drazin
inverse under the new condition

(1.3)

{

acd = dbd,

dba = aca,
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see [15, 18]. Obviously, the case “a = d” in (1.3) gives (1.2), the case “b = c”
in (1.2) results in aca = aca.

This paper is a continuation of [15, 18]. In the presence of (1.3), common
properties of the products ac and bd are further studied in various categories.

• In section 2, Jacobson’s lemma for two new generalized inverses (i.e.,
generalized strong Drazin inverse and generalized Hirano inverse) are estab-
lished in rings.

• In section 3, we derive the abstract index equality of Fredholm elements
and B-Fredholm elements in the Banach algebra context.

• In section 4, we investigate the common complementability of kernels
and ranges for bounded linear operators on Banach spaces.

2. Generalized inverses related to generalized Drazin inverse

For a ∈ R, the commutant and double commutant of a are defined by
comm(a) = {x ∈ R : ax = xa} and comm2(a) = {x ∈ R : xy = yx, for all y ∈
comm(a)}, respectively. We shall write R−1 and Rnil for the sets of all
invertible and nilpotent elements of R, respectively. An element a ∈ R is
quasinilpotent ([12]) if 1 + ax ∈ R−1 for all x ∈ comm(a). The set of all
quasinilpotent elements of R will be denoted by Rqnil. Recall that a ∈ R is
generalized Drazin invertible ([13]) if there exists b ∈ R such that

b ∈ comm2(a), bab = b and a− aba ∈ Rqnil.

If such b exists, it is unique, and it is called the generalized Drazin inverse
of a, denoted by agD. The set composed of generalized Drazin invertible
elements in R will be denoted by RgD. In [18], the authors obtained the
following analogue of Jacobson’s lemma for generalized Drazin inverse under
the assumption (1.3), which gives an affirmative answer to a conjecture of
[15].

Lemma 2.1. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca.
Then β = 1 − ac ∈ RgD if and only if α = 1 − bd ∈ RgD. In this case, we

have

βgD = (1− dαπ [1− απα(1 + bd)]−1bac)(1 + ac) + dαgDbac

and

αgD = (1 − bacβπ[1− βπβ(1 + ac)]−1d)(1 + bd) + bacβgDd,

where απ = 1− ααgD, βπ = 1− ββgD.

If we replace the condition a−aba ∈ Rqnil in the definition of generalized
Drazin inverse with a − ab ∈ Rqnil, then a is said to be generalized strongly
Drazin invertible and b is called the generalized strong Drazin inverse of a,
denoted by agsD (see [11]). The set composed of generalized strongly Drazin
invertible elements in R will be denoted by RgsD. According to [11, Corollary
3.3], RgsD ⊆ RgD.
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Theorem 2.2. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba =
aca. Then β = 1− ac ∈ RgsD if and only if α = 1− bd ∈ RgsD. In this case,

we have

βgsD = (1− dαπ [1− απα(1 + bd)]−1bac)(1 + ac) + dαgsDbac

and

αgsD = (1 − bacβπ[1− βπβ(1 + ac)]−1d)(1 + bd) + bacβgsDd,

where απ = 1− ααgsD, βπ = 1− ββgsD .

Proof. Write p = απ , v = [1 − pα(1 + bd)]−1 and y = (1 − dpvbac)(1 +
ac) + dαgsDbac. By Lemma 2.1, y is a generalized Drazin inverse of β. To
show y ∈ RgsD, we only need to show that β − βy ∈ Rqnil. Noting p =
p(bd)2v = pv(bd)2, we deduce that α − ααgsD = p − bd = (pvbdb − b)d.
From the proof of [18, Theorem 3.3], we get βy = 1−dpvbac. Hence β−βy =
1−ac−(1−dpvbac) = dpvbac−ac = (dpvba−a)c. Now we put a′ = dpvba−a
and b′ = pvbdb − b. Then a direct calculation shows that a′cd = db′d and
db′a′ = a′ca′. Since b′d = α − ααgsD ∈ Rqnil, by [19, Lemma 2.6], we
conclude that β − βy = a′c ∈ Rqnil, as required.

Conversely, set q = βπ, u = [1− qβ(1 + ac)]−1 and x = (1− bacqud)(1 +
bd) + bacβgsDd. By Lemma 2.1, it remains to prove that α − αx ∈ Rqnil.
Noting q = q(ac)2u = qu(ac)2, we get β − ββgsD = q − ac = (quaca − a)c.
Also, we obtain

αx = (1− bd)[(1 − bacqud)(1 + bd) + bacβgsDd]

= 1− (bd)2 − (1− bd)bacqud(1 + bd) + (1− bd)bacβgsDd

= 1− [bacd− bac(1− ac)βgsDd]− (1− bd)bacqud(1 + bd)

= 1− bacqd− bac(1− ac)qud(1 + bd)

= 1− bacqd− bacqu(1− ac)(1 + ac)d

= 1− bacqd− bacqu[1− (ac)2]d

= 1− bacqud,

whence α−αx = bacqud−bd = (bacqu−b)d. Now we write a′ = quaca−a and
b′ = bacqu− b, a direct calculation shows that a′cd = db′d and db′a′ = a′ca′.
Since a′c = β − ββgsD ∈ Rqnil, the desired conclusion α − αx = b′d ∈ Rqnil

then follows by [19, Lemma 2.6].

Recently, Abdolyousefi and Chen ([1]) introduced another subclass of gen-
eralized Drazin inverse, by replacing a − aba ∈ Rqnil with a2 − ab ∈ Rqnil

in the definition of generalized Drazin inverse. In this case, we say that a
is generalized Hirano invertible and b is the generalized Hirano inverse of a,
denoted by agH . We use RgH to denote the set of all generalized Hirono
invertible elements in R. By [1, Theorem 2.2], RgH ⊆ RgD.
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Theorem 2.3. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba =
aca. Then β = 1− ac ∈ RgH if and only if α = 1 − bd ∈ RgH . In this case,

we have

βgH = (1− dαπ [1− απα(1 + bd)]−1bac)(1 + ac) + dαgHbac

and

αgH = (1 − bacβπ[1− βπβ(1 + ac)]−1d)(1 + bd) + bacβgHd,

where απ = 1− ααgH , βπ = 1− ββgH .

Proof. Write p = απ , v = [1 − pα(1 + bd)]−1 and y = (1 − dpvbac)(1 +
ac)+dαgHbac. By Lemma 2.1, y is a generalized Drazin inverse of β. To show
y ∈ RgH , we only need to show that β2 − βy ∈ Rqnil. Noting p = p(bd)2v =
pv(bd)2, we deduce that α2 − ααgsD = p− 2bd+ bdbd = (pvbdb− 2b+ bdb)d.
From the proof of [18, Theorem 3.3], we get βy = 1−dpvbac. Hence β2−βy =
(1−ac)2− (1−dpvbac) = dpvbac−2ac+acac = (dpvba−2a+aca)c. Now we
put a′ = dpvba−2a+aca and b′ = pvbdb−2b+ bdb. Then a direct calculation
shows that a′cd = db′d and db′a′ = a′ca′. Since b′d = α2 −ααgsD ∈ Rqnil, by
[19, Lemma 2.6], we conclude that β2 − βy = a′c ∈ Rqnil, as required.

Conversely, put q = βπ, u = [1− qβ(1 + ac)]−1 and x = (1− bacqud)(1 +
bd) + bacβgsDd. According to Lemma 2.1, it remains to show that α2 −αx ∈
Rqnil. Since q = q(ac)2u = qu(ac)2, β2 − ββgsD = q− 2ac+ acac = (quaca−
2a+ aca)c ∈ Rqnil. As in the proof of Theorem 2.2, we get αx = 1− bacqud,
hence α2 − αx = bacqud − 2bd + bdbd = (bacqu − 2b + bdb)d. Now we set
a′ = quaca − 2a + aca and b′ = bacqu − 2b + bdb, it is easy to verify that
a′cd = db′d and db′a′ = a′ca′. Applying [19, Lemma 2.6], again, we get
α2 − αx = b′d ∈ Rqnil as required.

3. Abstract index of Fredholm and B-Fredholm elements

Following [9], an element a ∈ R is said to be Drazin invertible if there
exist b ∈ R and k ∈ N such that

b ∈ comm(a), bab = b and akba = ak.

The element b above is unique if it exists. It is called the Drazin inverse of
a and is denoted by aD. The smallest k for which akba = ak is called the
Drazin index of a, and is denoted by i(a). If i(a) ≤ 1, then a is called group
invertible. An element a ∈ R is invertible precisely when a is Drazin invertible
with i(a) = 0. We use RD and R♯ to denote all Drazin invertible elements
and group invertible elements in R, respectively. According to [15, Theorem
2.4], (see also [18, Theorem 3.1]), in the presence of (1.3), we have

(3.1) 1− ac is Drazin invertible ⇐⇒ 1− bd is Drazin invertible,

(3.2) 1− ac is group invertible ⇐⇒ 1− bd is group invertible
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and

(3.3) 1− ac is invertible ⇐⇒ 1− bd is invertible.

Let I be an ideal of R and π the canonical homomorphism from R to
R/I. Following [3] (resp., [4]), an element r ∈ R is called a Fredholm element
(resp., generalized Fredholm element, B-Fredholm element) relative to I if
π(r) ∈ (R/I)−1 (resp., π(r) ∈ (R/I)♯, π(r) ∈ (R/I)D). The set of all
Fredholm elements, generalized Fredholm elements and B-Fredholm elements
relative to I will be denoted by Φ(R, I), gΦ(R, I) and BΦ(R, I), respectively.
Applying (3.1), (3.2) and (3.3) respectively to R/I, we get

(3.4) 1− ac ∈ BΦ(R, I) ⇐⇒ 1− bd ∈ BΦ(R, I),

(3.5) 1− ac ∈ gΦ(R, I) ⇐⇒ 1− bd ∈ gΦ(R, I)

and

(3.6) 1− ac ∈ Φ(R, I) ⇐⇒ 1− bd ∈ Φ(R, I),

provided that (1.3) holds.
Recall that a Banach algebra A is called semisimple if the radical Rad(A)

of A is equal to {0}, and A is said to be primitive if {0} is a primitive
ideal of A. Primitive Banach algebras are semisimple. Let A be a complex
semisimple Banach algebra with unit 1 and let I be a trace ideal (i.e., an
ideal on which a trace τ : I −→ C is defined, see [10, 5] for details) of A.
Following [10] (resp., [5]), the index of a Fredholm element (resp., B-Fredholm
element) a ∈ A relative to trace ideal I is defined with the aid of the trace as
ι(a) := τ(aa0−a0a), where π(a0) is an inverse (resp., a Drazin inverse) of π(a)
in A/I. The socle soc(A) of A is defined to be the sum of minimal ideals,
and the set kh(soc(A)) is defined by kh(soc(A)):= {a ∈ A : a + soc(A) ∈
Rad(A/soc(A))}. In the following two results, we obtain the abstract index
equality of Fredholm elements and B-Fredholm elements respectively in the
Banach algebra context.

Theorem 3.1. Let A be a unital semisimple Banach algebra and let I be

a trace ideal of A such that soc(A) ⊆ I ⊆ kh(soc(A)). If a, b, c, d ∈ A satisfy

acd = dbd and dba = aca and 1− ac is a Fredholm element relative to I, then
ι(1 − ac) = ι(1 − bd).

Proof. By [10, Proposition 3.10 and Theorem 3.11], there exist idem-
potents p, q in soc(A) and x ∈ A such that p(1 − ac) = 0, (1 − ac)q = 0,
(1− ac)x = 1− p, x(1− ac) = 1− q and ι(1− ac) = τ(q)− τ(p). Now we take
y = 1+ bd+ bacxd. A direct calculation shows that (1− bd)y = 1− bacpd and
y(1− bd) = 1− bacqd, which implies that

ι(1 − bd) = τ((1 − bd)y − y(1− bd)) = τ(bacqd− bacpd).



272 Q. ZENG, K. YAN AND Z. WU

Since p(1 − ac) = 0, τ(bacpd) = τ(pdbac) = τ(pacac) = τ(pac) = τ(p).
Analogously, τ(bacqd) = τ(q). Therefore, ι(1− bd) = τ(q)− τ(p) = ι(1− ac).

Theorem 3.2. Let A be a unital primitive Banach algebra and suppose

that a, b, c, d ∈ A satisfy acd = dbd and dba = aca.

(1) If 1− ac is a B-Fredholm element relative to soc(A), then ι(1− ac) =
ι(1− bd).

(2) If ac is a B-Fredholm element relative to soc(A), then ι(ac) = ι(bd).

Proof. (1) By the punctured neighborhood theorem for the index of B-
Fredholm element (see [5, Theorem 3.1]), for nonzero λ with |λ| small enough,
we have

1− ac− λ ∈ Φ(A, soc(A)), 1− ba− λ ∈ Φ(A, soc(A))

and
ι(1 − ac) = ι(1− ac− λ), ι(1− ba) = ι(1 − ba− λ).

Hence, the desired result follows by Theorem 3.1.
(2) The proof is analogous to that above.

4. Complementability of kernels and ranges

Let B(X,Y ) denote the set of all bounded linear operators from Banach
space X to Banach space Y . For T ∈ B(X) := B(X,X), let N (T ) denote its
kernel andR(T ) its range. In this section, we discuss the complementability of
kernels and ranges of I−AC and I−BD under the assumption ACD = DBD
and DBA = ACA. Recall that a closed subspace M of a Banach space
X is complemented if there exists a (closed) subspace N of X such that
X = M

⊕

N . Equivalently, M is complemented in X if and only if there is a
bounded projection P such that R(P ) = M .

Theorem 4.1. Suppose that A,D ∈ B(X,Y ) and B,C ∈ B(Y,X) satisfy
ACD = DBD and DBA = ACA. Then N (I −AC) is complemented in Y if

and only if N (I −BD) is complemented in X.

Proof. Assume that P is the projection onto N (I − AC). Then (I −
AC)P = 0, that is, P = ACP . Put Q = BPACD. From the fact DBP =
DBACP = ACACP = ACP = P , it follows that

Q2 = (BPACD)(BPACD) = BPACPACD = BPACD = Q.

Noting that

(I −BD)Q = (I −BD)(BPACD) = BPACD −BDBPACD = 0,

we have R(Q) ⊆ N (I − BD). Let x ∈ N (I − BD). Then Dx = DBDx =
ACDx, whence Dx ∈ N (I −AC) = R(P ). Thus PDx = Dx, and hence

Qx = BPACDx = BPACPDx = BPDx = BDx = x,
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which implies that N (I − BD) ⊆ R(Q). Consequently, Q is the projection
onto N (I −BD).

Conversely, assume that U is the projection onto N (I − BD). Set V =
ACDUBACAC. Noting that BDU = U , it follows

V 2 = (ACDUBACAC)(ACDUBACAC)

= ACDUBDBDBDBDUBACAC

= ACDUBACAC

= V.

Since

(I −AC)V = (I −AC)(ACDUBACAC)

= ACDUBACAC −ACACDUBACAC

= ACDUBACAC −ACDBDUBACAC

= ACDUBACAC −ACDUBACAC

= 0,

R(V ) ⊆ N (I − AC). Let x ∈ N (I − AC). Then x = ACx. Since BACx =
BACACx = BDBACx, BACx ∈ N (I−BD) = R(U), and hence UBACx =
BACx. Thus,

V x = ACDUBACACx = ACDUBACx

= ACDBACx = ACACACx = x,

which implies that N (I − AC) ⊆ R(V ). Consequently, V is the projection
onto N (I −AC).

Theorem 4.2. Suppose that A,D ∈ B(X,Y ) and B,C ∈ B(Y,X) satisfy
ACD = DBD and DBA = ACA. Then R(I −AC) is complemented in Y if

and only if R(I −BD) is complemented in X.

Proof. Assume that P is the projection onto R(I − AC). Set Q =
I−BAC(I−P )D. Since (I−P )(I−AC) = 0, (I−P )AC = I−P . It follows
that

[BAC(I − P )D][BAC(I − P )D] = BAC(I − P )ACAC(I − P )D

= BAC(I − P )D,

and hence Q2 = Q. Since R(P ) = R(I −AC),

R(BACPD) ⊆ R(BAC(I −AC)) = R((I −BD)BAC) ⊆ R(I −BD).

Noting that

Q = I −BAC(I − P )D = I −BACD +BACPD

= I −BDBD +BACPD = (I −BD)(I +BD) +BACPD,
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we get R(Q) ⊆ R(I−BD). Let x ∈ R(I−BD). Then there is an x1 ∈ X such
that x = (I −BD)x1. Since Dx = D(I −BD)x1 = (I −AC)Dx1 ∈ R(P ),

Qx = [I −BAC(I − P )D]x = x,

which deduces that R(I − BD) ⊆ R(Q). Therefore, R(I − BD) is comple-
mented in X .

Conversely, suppose that U is the projection onto R(I −BD) and put

V = I −ACD(I − U)BAC.

Next we will show that V is the associated projection onto R(I −AC). Since
(I − U)(I −BD) = 0, (I − U)BD = I − U , and hence

[ACD(I − U)BAC]2 = ACD(I − U)BDBDBD(I − U)BAC

= ACD(I − U)BAC,

which implies that V 2 = V . Noting that

V = I −ACD(I − U)BAC = I −ACDBAC +ACDUBAC

= I −ACACAC +ACDUBAC,

it follows

R(V ) ⊆ R(I −ACACAC +ACDUBAC)

⊆ R[(I −AC)(I +AC +ACAC)] +R[ACD(I −BD)]

⊆ R(I −AC) +R[(I −AC)ACD]

⊆ R(I −AC).

For any y ∈ R(I − AC), there exists an element y1 ∈ Y such that y =
(I − AC)y1. Thus BACy = BAC(I − AC)y1 = (I − BD)BACy1 ∈ R(U),
and so

V y = [I −ACD(I − U)BAC]y = y.

Hence R(I −AC) ⊆ R(V ). Consequently, R(I −AC) is complemented in Y .

In the following we give an application of Theorem 4.1 and Theorem 4.2.
Recall that an operator T ∈ B(X) is said to be relatively regular if there
exists an operator S ∈ B(X) for which TST = T and STS = S. Relatively
regular operator plays a significant role in operator theory. We refer the
reader to [2] for more details. It is known that T ∈ B(X) is relatively regular
if and only if N (T ) and R(T ) are complemented ([2, Theorem 3.88]). Thus
it is easy to obtain the following conclusion about relatively regular operators
from Theorem 4.1 and Theorem 4.2.

Corollary 4.3. Suppose that A,D ∈ B(X,Y ) and B,C ∈ B(Y,X) sat-
isfy ACD = DBD and DBA = ACA. Then I − AC is relatively regular if

and only if I −BD is relatively regular.



COMMON PROPERTIES OF ac AND bd 275

Acknowledgements.

The authors wish to thank the referees for their careful reading and
valuable comments on the original draft. This work has been supported
by National Natural Science Foundation of China (Grant Nos. 11971108
and 11901099), Natural Science Foundation of Fujian Province (Grant
Nos. 2018J05004 and 2020J01569), the Educational Commission of Fu-
jian Province (Grant No. JAT190070) and the Science and Technology
Innovation Fund of Fujian Agriculture and Forestry University (Grant
No. CXZX2018036).

References

[1] H.Y. Chen and M. Sheibani, Generalized Hirano inverses in rings, Comm. Algebra 47

(2019), 2967–2978.
[2] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer

Academic Publishers, Dordrecht, 2004.
[3] B.A. Barnes, The Fredholm elements of a ring, Canadian J. Math. 21 (1969), 84–95.
[4] M. Berkani, B-Fredholm elements in rings and algebras, Publ. Math. Debrecen 92

(2018), 171–181.
[5] M. Berkani, A trace formula for the index of B-Fredholm operators, Proc. Edinb.

Math. Soc. (2) 61 (2018), 1063–1068.
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