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Abstract: This paper covers the estimation of the water levels of Beysehir Lake, located in 
middle of Turkey, using the artificial intelligence (AI) such as the neural networks (NN) and 
the fuzzy logic (FL). The study considers the detailed investigation of the effect of the long-
term estimate duration on the lake water level estimation. The analysed estimate ranges 
were 1 day, 30 days, 60 days and 90 days. The lake parameters such as the shortwave 
radiation, the lake total inflow rate, the lake total outflow rate and the past lake water levels 
constituted the input layer of the AI configurations. This study clearly showed that the 
estimate performance of the AI methods decreases with the increasing estimate range. It is 
also seen that the best estimate performance criteria are obtained by different AI methods for 
different estimate ranges. It is seen that the Generalized Regression Neural Network 
(GRNN) showed relatively superior performance compared with the other two artificial neural 
networks, i.e. the Radial Basis Function (RBF) and the Feed Forward Back Propagation 
method (FFBP), and the Adaptive Neuro-Fuzzy Inference System (ANFIS) method, for the 
long estimation ranges such as 60 and 90 days. The second overall best performance was 
obtained by FFBP. 
Key words: Water level forecasting; Long term forecasting; artificial neural networks; ANFIS  
  

Dugoročno predviđanje vodostaja jezera metodama 
umjetne inteligencije  
 
Sažetak: Ovaj rad obuhvaća predviđanje vodostaja jezera Beysehir, smještenog u središtu 
Turske, pomoću umjetne inteligencije (AI) poput neuronskih mreža (NN) i neizrazite logike 
(FL). Studija razmatra detaljno istraživanje utjecaja trajanja dugoročnog predviđanja na 
predviđanje vodostaja jezera. Analizirana razdoblja predviđanja su bila 1 dan, 30 dana, 60 
dana i 90 dana. Parametri jezera poput kratkovalnog zračenja, ukupne brzine dotjecanja u 
jezero, ukupne brzine otjecanja iz jezera i ranijih vodostaja jezera činili su ulazni sloj AI 
konfiguracija. Ova studija je jasno pokazala da se uspješnost predviđanja AI metodama 
smanjuje s povećanjem razdoblja predviđanja. Također se vidi da se najbolji kriteriji za 
uspješnost predviđanja dobivaju različitim AI metodama za različita razdoblja predviđanja. 
Vidljivo je da je generalizirana regresijska neuronska mreža (GRNN) pokazala relativno bolje 
rezultate u usporedbi s druge dvije umjetne neuronske mreže, tj. radijalnom baznom 
funkcijom (RBF) i metodom proslijeđivanja prema naprijed s povratnim rasprostiranjem 
pogreške (FFBP), te metodom prilagodljivog sustava neuro-neizrazitog zaključivanja 
(ANFIS), za duga razdoblja predviđanja, kao što su 60 i 90 dana. Drugu ukupnu najbolju 
uspješnost postigla je FFBP. 
Ključne riječi: predviđanje vodostaja; dugoročno predviđanje; umjetne neuronske mreže; 
ANFIS 
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1. INTRODUCTION    
 
The forecasting of a hydrologic variable is one of the main issues on hydrology for the 
management and planning of reservoir, watershed, and land. The application of the physics-
based process computer software programs necessitates detailed spatial and temporal 
environmental data which is not often available. Therefore, the artificial intelligence 
techniques (AI) like the artificial neural networks (ANN), the fuzzy logic (FL) and the genetic 
algorithm (GA) are frequently used in the literature to forecast the hydrological 
events/parameters. Artificial neural network (ANN) and fuzzy logic (FL) are non-linear models 
and can be used to identify this relation. ANN and FL are increasingly being used in the 
diverse engineering applications. This is due to the ability of ANN and FL to solve the non-
linear problems successfully. This feature is highly important aspect of the neural computing 
and the linguistic computing, as it can be used to model a function where one has a little 
information or incomplete understanding.  

ANN approach is extensively used in the water resources literature in the field of 
prediction and forecasting [1-20]. ANN applications for forecasting and prediction of several 
hydrological variables are detailed and reviewed of the papers [21-25]. Some studies are 
presented to improve the estimation performance of the ANNs.  

Although ANNs have successful applications on many hydrological variables, the 
accuracy of the model predictions is very subjective and highly dependent on the user’s 
ability, knowledge and understanding of the model [26]. However, one of the major criticisms 
of ANN hydrologic models is that they do not explain the underlying physical processes in a 
watershed, resulting in them being labelled as black-box models. In the recent years studies 
about the physics involved in the ANNs have been published. Jain et al. investigated the 
physics embedded within the correlation weights of the ANNs [27]. Sudheer and Jain tried to 
explain the internal behaviour of artificial neural network river flow models [28]. Sudheer 
studied the knowledge extraction from trained neural network river flow models [29]. 

The number of fuzzy logic applications in hydrology is increasing rapidly [2-3, 9, 30-31]. 
It seems that the number of usages will increase in science in the form of hybrid models.  

The researches about forecasting the water level (WL) of various water bodies in 
hydrology are changing with the forecasting range from 1 hour to 30 months (Table 1). The 
water level is forecasted in the ocean or the sea [1, 14, 17], the reservoir or the lake [12, 31], 
the river [2-3, 9-10] and the groundwater [4, 8, 11, 16, 20, 32]. The forecasting ranges for 
groundwater level estimation are longer compared with the others, because the groundwater 
velocities are quite slow and the conditions are almost stable. In the groundwater systems 
variations can be observed on the monthly basis. The duration of forecasting water level 
during the flood event is shorter because the system is dynamic and its properties are 
changing on the minute time increment. 

In the presented study the water levels of Beysehir Lake, located in middle of Turkey are 
investigated. The Lake has freshwater and the surrounding area has karstic structure [33]. 
The importance of Beysehir Lake for the economy is mainly due to the agriculture, fishery 
and discharge of wastewater in the surrounding region. The small changes in the elevation of 
the large lake surfaces can lead to enormous changes in the amount of land surface. When 
the lake level decreases/increases in one centimetre, the averaged lake volume changes in 
seven million cubic meter for Lake Beysehir.       

The aim of the presented research is to employ the AI methods to forecast the daily lake 
water level (WL) for long time ranges. The work comprised four studies, i.e., 1 day-ahead 
estimation, 30 days-ahead estimation, 60 days-ahead estimation and 90 days-ahead 
estimation. Three type of ANN and one Adaptive Neuro-Fuzzy Inference System (ANFIS) are 
used to determine the best model for long term forecasting.   
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Table 1. The literature review for water level (WL) estimation in various water bodies. 
(ANFIS: Adaptive Neuro-Fuzzy Inference System, ARIMA: Autoregressive Integrated Moving 
Average, ARMA: Autoregressive Moving Average, ARMAX: Autoregressive Moving Average 
with Exogenous Input, ARX: Autoregressive Exogenous, GA: Genetic Algorithm, NN: Neural 
Networks, FFBP: Feedforward Back Propagation, FFBP-LM: Feedforward Back Propagation 
with Levenberg-Marquardt, RBF: Radial Basis function, MLP NN: Multilayer perceptron 
neural networks, MLR: Multilinear regression). 
 

Reference WL from Used Methods 
The best 

performance 
(Method Name) 

Time 
Range 

# of 
inputs 

# of 
outputs 

Forecasting 
Range 

[9] 
River at flood 

events 
Fuzzy (2 types) and 

NN 
Fuzzy hourly 4,  16 1 

1,3,6,9,12 
hours 

[11] Groundwater NN (3 types) 
FFBP "no one-size-

fits all approach" 
weekly 3 1 

1, 2, 3, 4 
weeks 

[3] River at flood 
NN (1 type), ANFIS, 

ARMA, ARX 
FFBP hourly 2 1 

15 min, 2,5,10 
hours 

[31] 
Reservoir at 

typhoon 
ANFIS ANFIS hourly 17, 18 1 1,2,3  hours 

[4] Groundwater NN (1 type) FFBP daily 25 12 1 to 71 days 

[32] Groundwater NN (1 type) FFBP daily 7 1 30 days 

[8] Groundwater NN (7 types) 
RBF (training), 

FFBP-LM (testing) 
monthly 20 1 

1, 6, 12, 18 
months 

[14] Ocean 
NN (1 type), NN 

ensemble, classical 
harmonic analysis 

FFBP hourly 1, 2, 3 1 4, 13, 25 hours

[12] Lake MLP NN MLP NN monthly
8,12,14
, 16, 20

4 4 months 

[2] River at flood 
NN, Fuzzy with GA, 

ARMA 
Fuzzy with GA hourly 1 to 37 1 6 hours 

[17] Sea NN (3 types), MLR FFBP, RBF daily 12 1 1 day 

[20] Groundwater NN (1 type) FFBP-LM monthly
12,15,1

6, 29 
5,8,9,22 1 month 

[16] Groundwater NN (1 type) FFBP-LM monthly 4, 5 1 1 to 30 months

[1] Sea 
NN (1 type) and 

ARIMA 
FFBP monthly 13 1 1 month 

 
 
2. ARTIFICIAL INTELLIGENCE METHODS 
 
In this study three artificial neural networks methods and adaptive network based fuzzy 
method are used to forecast the water level of Lake Beysehir.   
 
 
2.1 ANN Methods  
 
2.1.1 FFBP 
 
The FFBP is the most popular ANN training method in the water resources literature. A FFBP 
distinguishes itself by the presence of one or more hidden layers, whose computation nodes 
are correspondingly called hidden neurons of hidden units (Figure 1). The function of hidden 
neurons is to intervene between the external input and the network output in some useful 
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manner. By adding one or more hidden layers, the network is enabled to extract higher order 
statistics. If a training set of input-output data is given, the most common learning rule for 
multilayer perceptron is the back-propagation algorithm. The back propagation involves two 
phases; a feed forward phase in which the external input information at the input nodes is 
propagated forward to compute the output information signal at the output unit, and a 
backward phase in which modifications to the connection strengths are made based on the 
differences between the computed and observed information signals at the output units. 
Different type of activation functions can be employed for the computation of the input layer 
and output layer outputs. In this study the “tangent sigmoid” function and the “logsig” function 
are used and the corresponding estimation performances are compared. 

 

 
 

Figure 1. The FFBP network 
 
2.1.2 GRNN  
 
The GRNN consists of four layers; the input layer, the pattern layer, the summation layer and 
the output layer [34]. In the first layer, there are input parameters and they are completely 
connected to the second layer, i.e. the pattern layer (Figure 2). Each pattern layer unit is 
connected to the two neurons in the summation layer. The optimal value of spread (s) is 
often determined experimentally [7]. The larger that spread is the smoother the function 
approximation will be. The GRNN approximates any arbitrary function between input and 
output vectors, drawing the function estimate directly from the training data. Furthermore, it is 
consistent; that is, as the training set size becomes large, the estimation error approaches 
zero, with only mild restrictions on the function. The GRNN is used for the estimation of the 
continuous variables, as in the standard regression techniques. It is related to the radial 
basis function network and is based on a standard statistical technique called kernel 
regression. 

 

 
 

 
Figure 2. The GRNN network 
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2.1.3 RBF 
 
RBF networks were introduced into the neural network literature by Broomhead and Lowe 
[35]. The RBF network model is motivated by the locally turned response observed in 
biological neurons (Figure 3). The theoretical basis of the RBF approach lies in the field of 
interpolation of multivariate functions [26]. The solution of the exact interpolating RBF 
mapping passes through every data point. Different spread constants were tried in the study.    

 

 
 

 
Figure 3. The RBF networks 

 
 

2.2 ANFIS Method 
 
Fuzzy algorithms for complex systems and decision processes are presented by Lotfi Asker 
Zadeh in 1973 [36].  ANFIS based on fuzzy algorithms was proposed in 1993 by Jyh-Shing 
Roger Jang as allowing the fuzzy systems to learn [37]. It has an input-output mapping 
based on both human knowledge and stipulated input-output data pairs so it has ability to 
deal with nonlinear and complex mathematics problem (Figure 4). ANFIS is mostly used in 
the hydrological applications for modelling and prediction. Some researchers used ANFIS to 
forecast the water level [2-3, 9, 31]. In this study ANFIS is employed for the lake water level 
estimation after long time ranges. 
 

 
 

 
Figure 4. The ANFIS network 
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3. DATA DESCRIPTION 
 
3.1 Study Area  
 
Lake Beysehir is at the north of Konya-Beysehir, south of Isparta-Sarkikaraagac and in the 
tectonic pit between mountains of Sultan and Anamas, is the largest freshwater lake in 
Turkey. It has 700 km2 surface area. The deepest location has an approximate depth of 11 
m, and the average depth is 6 m. The lake has an important role for irrigation and supplying 
drinking water for middle Anatolia. The location of Lake Beysehir is showed at Figure 5. 

 

 
 

Figure 5. The location of Lake Beysehir 
 

 
The lake and the surrounding area are under protection since they are National Park, 

Protection Area of Drinking and Irrigation Reservoir; in group “A” inland water with 
international importance and they have historical and cultural significance. The lake has a 
special importance among all of other lakes because of the wildlife and the outstanding 
nature. Lake Beysehir is an attractive lake in Turkey with islands having different sizes, 
sandy beach, karstic caves and flora. But the lake faces lots of problems such as the 
decrease on the lake water level, incorrect water using policy, uncontrolled fishery, 
urbanization and excessive lake use. It has socio-economic importance for fishery, irrigation, 
bird life. 

The climatic and hydrological daily data (1991-2001) used in this study are provided by 
State Meteorological Service of Turkey (DMI) and State Water Works of Turkey (DSI). The 
lake parameters considered in this study are the shortwave radiation, the total outflow, the 
total inflow and the water level. The daily mean data belongs to Beysehir Lake in the central 
part of Turkey (Figure 5). And the lake level values for the time period 1971-2001 are plotted 
at Figure 6. 

Significant tributaries inflowing to the lake are; Celtek, Ozan, Cavus, Ebulvefa, Eflatun, 
Karadiken, Ustunler, Soguksu, Kurucuova, Hizar (Figure 5). The only outflow is Beysehir 
channel. In addition, water is drawn for irrigation at Yenisarbademli, Kireli and Sarkikaraagac 
regions. The daily total inflow and outflow are the sum of the inflow rates of all incoming 
rivers in a day and the sum of all drawn outflows in a day, respectively.  
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Figure 6. Absolute elevations of Lake Beysehir to sea level 
 
 
The common data period for all lake parameters covers the time period starting from 1st 

of September 1991 to 2nd of July 2001 (Figure 6). The data in this time period is divided into 
two time periods as training and testing. The testing data covers the last 20% of all daily 
values (Table 2).     

 
Table 2. The selection of two independent subsets 

 
Type of Data Number of data The range of date 

Training 2850 01.10.1991-20.07.1999 

Testing 713 21.07.1999-02.07.2001 

Whole data 3563 01.10.1991-02.07.2001 
 
 

3.2 Statistics of the Lake Parameters  
 
The basic descriptive statistics such as the maximum (Xmax), the minimum (Xmin), the mean 
(Xmean), the standard deviation (sx) and the skewness (csx) are computed for the training, the 
testing and the whole data period (Table 3).   

Although the skewness variation range for all time periods for the lake water level (0.06-
0.14) is close to zero, the corresponding range for the total inflows is the opposite (2.66-5.07, 
Table 3). Similar to the lake water level also the shortwave variation demonstrates a 
skewness variation range (-0.06-0.004) quite close to zero. The total outflow skewness, on 
the other hand, varies between 0.30 and 0.97 (Table 3). It can be concluded that the 
shortwave radiation and the WL illustrate symmetrical marginal probability distribution 
(Normal Distribution) whereas the total inflow and the total outflow deviate from Normal 
Distribution with positive skewness. Except the total inflow the testing and the training 
maximum values are close to each other (Table 3). 
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Table 3. The basic statistics of all lake parameter series for the training, testing and the 
whole time period 

 
Name of 

Data 
Type of data xmax xmin xmean sx csx 

Total Inflows 

Whole data 177.21 1.21 12.38 13.51 2.91 

Training 177.21 1.21 13.69 14.39 2.66 

Testing 96.34 1.85 7.13 7.10 5.07 

Shortwave 
Radiation 

Whole data 8186.7 237.1 4291.7 2039.1 -0.06 

Training 8186.7 237.1 4279.6 2050.6 -0.08 

Testing 8135.3 378.3 4339.9 1993.0 0.004 

Total 
Outflows 

Whole data 38.00 0.00 9.18 9.10 0.50 

Training 30.00 0.00 8.97 8.81 0.30 

Testing 38.00 0.00 10.02 10.13 0.97 

Water Level 

Whole data 1123.1 1121.1 1122.1 0.43 0.14 

Training 1123.1 1121.1 1122.2 0.44 0.11 

Testing 1122.9 1121.5 1122.1 0.38 0.06 
 
 
The autocorrelations for the water level are given at Figure 7. The autocorrelation 

variation range is 0.58-1 for the first 100 lags, i.e.100 days. The cross-correlations between 
the lake parameters show that the water level (WLt) has the lowest correlation with the 
outflow (r=0.01, Table 4). The water level-shortwave radiation and the water level-the total 
inflow correlations are equal to 0.30 (Table 4). The auto-correlations for the water level time 
series are also provided in Table 4. Accordingly, the lag_1 autocorrelation (between WLt and 
WLt+1), the lag_30 autocorrelation (between WLt and WLt+30), the lag_60 autocorrelation 
(between WLt and WLt+60), and the lag_90 autocorrelation (between WLt and WLt+90) values 
are found as 1.00, 0.94, 0.81 and 0.64, respectively (Table 4).   

 

 
 

Figure 7. Autocorrelations for the water level 
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Table 4. The Cross Correlations on data set 
 

Parameter WLt (m) WLt+1 (m) WLt+30 (m) WLt+60 (m) WLt+90 (m) 
Shortwave (cal/cm2-day) 0.30 0.29 0.08 -0.14 -0.32 

Total Inflows (m3/s) 0.30 0.31 0.45 0.47 0.40 
Total Outflows (m3/s) 0.01 0.01 0.01 0.01 0.00 

WLt (m) 1.00 1.00 0.94 0.81 0.64 
WLt+1 (m) 1.00 0.95 0.81 0.65 
WLt+30 (m) 1.00 0.94 0.81 
WLt+60 (m) 1.00 0.94 
WLt+90 (m) 1.00 

 
 
4. RESULTS 
 
In the study 3 different ANN methods, FFBP, GRNN, RBF with Levenberg-Marquardt 
learning algorithm [25], and ANFIS method [37] are employed for each selected long-term 
estimation case. Hence each method is trained and tested for four different WL estimation 
ranges, i.e., 1 day, 30 days, 60 days, and 90 days. In total, 16 different simulations are 
accomplished. As there are 4 different single output cases (WLt+1, WLt+30, WLt+60, WLt+90) the 
input structure consists always of the total inflow, the total outflow, the shortwave radiation 
and WLt. The model’s parameters are summarized at Table 5. The estimation study results 
for four different time ranges are summarized in the following section. 

 
Table 5.  ANN and ANFIS model parameters which provided the best testing performances 

 

Estimation 
Range (days) 

METHODS 

FFBP GRNN RBF ANFIS 

1 
FFBP(4, 4,1), 1000 

iterations, tansig-logsig 
4,s=0.8,1 

RBF(4,s=0.67,1), 
100 neurons, 

# of MFs 7, 
gaussmf 

30 
FFBP(4, 4,1), 1000 

iterations, tansig-logsig 
4,s=0.10,1 

RBF(4,s=0.28,1), 
100 neurons, 

# of MFs 7, 
gaussmf 

60 
FFBP(4, 4,1), 1000 

iterations, tansig-logsig 
4,s=0.10,1 

RBF(4,s=0.22,1), 
100 neurons, 

# of MFs 7, 
gaussmf 

90 
FFBP(4, 4,1), 1000 

iterations, tansig-logsig 
4,s=0.10,1 

RBF(4,s=0.20,1), 
100 neurons, 

# of MFs 7, 
gaussmf 

 
 
All three ANN methods, FFBP, GRNN, and RBF, and the ANFIS method are trained with 

an input layer having 4 inputs, i.e., the total inflow, the outflow, the shortwave radiation, and 
the WL, all measured at time “t”. The unique output represented the water level at time “t+1”, 
“t+30”, “t+60”, or “t+90”. The training and the testing time periods of the ANN models are as 
presented in Table 2. The related ANN and ANFIS model parameters and the model 
configurations which provided the best testing performances are provided in Table 5. 
According to this table FFBP (4,4,1) represents a FFBP configuration with an input layer of 4 
neurons, a hidden layer having 4 neurons and an output layer with a unique node (Table 5, 
second column). The training iteration number for FFBP is found as 1000. The best 
activation functions are found as tangent sigmoid between input layer and hidden layer and 
as logarithmic sigmoid between the hidden layer and the output layer.  



e-Zbornik      20/2020. 

 
 
Akyuz, D. E., Cigizoglu, H. K. 
Long range lake water level estimation using artificial intelligence methods  

 

 

 

                        
10 

 

The testing stage performance evaluation criteria such as the root mean square error 
(RMSE) and the determination coefficient (R2) obtained for the testing period are listed in 
Tables 6 and 7 for each AI method. 

The performance evaluation criterion RMSE is formulated as below: 
 

))((
1

2 NYYRMSE
N

i ii predictedobserved 


                                             (1) 
 
The second performance evaluation criterion i.e. the determination coefficient (R2) is 

computed as presented below: 
 

))(())((1
1

2

1

22  


N

i i

N

i ii meanobservedpredictedobserved
YYYYR

                 (2) 
 
 

4.1. 1 day Ahead Estimation (WLt+1) 
 
The GRNN and RBF had the spread values equal to 0.8 and 0.67, respectively (Table 5, 
third row). The RMSE and R2 values for 1 day ahead estimation for WLt+1, are given in Tables 
6 and 7 under the heading “t+1”. The lowest RMSE is obtained with ANFIS (0.007, 0.006) for 
the training, testing data and the whole data (Table 6). Except GRNN, all other three 
methods provided RMSE values either equal or less than 0.010. The best RMSE values are 
shown in bold font and underlined (Table 6). 

 
Table 6. The comparison of RMSE for all kinds of models 

 

Method Data 
Estimation Range (days) 

t+1 t+30 t+60 t+90 

GRNN 
 

Whole data 0.039 0.082 0.123 0.15 
Training 0.018 0.059 0.069 0.087 
Testing 0.079 0.139 0.238 0.286 

FFBP 
 

Whole data 0.009 0.087 0.151 0.22 
Training 0.009 0.089 0.151 0.201 
Testing 0.008 0.081 0.154 0.285 

RBF 
 

Whole data 0.009 0.083 0.148 0.19 
Training 0.008 0.077 0.122 0.16 
Testing 0.01 0.104 0.225 0.279 

ANFIS 
 

Whole data 0.007 0.099 0.186 0.246 
Training 0.007 0.101 0.189 0.245 
Testing 0.006 0.093 0.173 0.249 

Lowest 
RMSE 

Whole data 0.007(ANFIS) 0.082(GRNN) 0.123(GRNN) 0.15(GRNN) 
Training 0.007(ANFIS) 0.059(GRNN) 0.069(GRNN) 0.087(GRNN)
Testing 0.006(ANFIS) 0.081(FFBP) 0.154(FFBP) 0.249(ANFIS)

 
 
All of the R2 values obtained by 4 are methods are equal to 1.00 showing quite high 

performance for training, testing and the whole series for the estimation range 1 day (Table 
7). The WL plots in the form of the water level hydrograph and scatter plot are illustrated in 
Figure 8 and Figure 9 for all artificial intelligence methods. Except GRNN the model 
estimations and the observed values are nearly indistinguishable (Figure 8 and 9). For 
GRNN, however, deviations from the observed values can be noticed (Figure 8b and 9b).    
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Table 7. The R2 of all kinds of models 
 

Methods Data 
Estimation Range (days) 

t+1 t+30 t+60 t+90 

GRNN 
 

Whole data 1.000 0.992 0.966 0.926 
Training 1.000 0.998 0.982 0.976 
Testing 1.000 0.960 0.895 0.746 

FFBP 
 

Whole data 1.000 1.000 0.961 0.887 
Training 1.000 1.000 0.961 0.886 
Testing 1.000 1.000 0.964 0.895 

RBF 
 

Whole data 1.000 0.964 0.887 0.823 
Training 1.000 0.970 0.925 0.871 
Testing 0.999 0.931 0.726 0.651 

ANFIS 
 

Whole data 1.000 0.948 0.824 0.703 
Training 1.000 0.949 0.821 0.697 
Testing 1.000 0.944 0.837 0.723 

Highest 
R2 

Whole data 1.000 (All Methods) 1.000(FFBP) 0.966(GRNN) 0.926(GRNN)
Training 1.000(All Methods) 1.000(FFBP) 0.982(GRNN) 0.976(GRNN)

Testing 
1.000(GRNN, 
FFBP, ANFIS) 

1.000(FFBP) 0.964(FFBP) 0.895(FFBP) 

 
 

 
 

Figure 8. Scatter plot for the testing data at 1 day ahead estimation case for (a) FFBP, 
(b) GRNN, (c) RBF, and (d) ANFIS 

 
 

 
 
Figure 9. Water level hydrograph for the testing data at 1 day ahead estimation case for 

(a) FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 
 
 
4.2. 30 days Ahead Estimation (WLt+30) 
 
The next step of the study was extending the estimation range from 1 day to 30 days (1 
month). The estimation results are defined again in terms of RMSE and R2 (Tables 6 and 7) 
and the water level hydrographs and the scatter plots are illustrated in Figure 10 and 11. The 
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ANN and ANFIS configurations with best performances are presented in Table 5. The FFBP 
method provided the best RMSE performance for testing series (Table 6). The GRNN 
method had the lowest RMSE for the whole and training series. The FFBP had the best 
performance again in terms of R2 (Table 7). The R2 values vary between 0.931 and 1.000 
pointing that all methods have high performance for 30 days ahead estimation (Table 7).  
The WL plots in the form of the water level hydrograph and scatter plot show that the lake 
level estimation for the testing stage are quite close to the observed values with acceptable 
deviations from the trend line (Figures 10 and Figure 11).  
 

 
 

Figure 10. Scatter plot for the testing data at 30 days ahead estimation case for (a) 
FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 

 
 

 
 

Figure 11. Water level hydrograph for the testing data at 30 days ahead estimation case 
for (a) FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 

 
 

4.3. 60 days Ahead Estimation (WLt+60) 
 
In this part of the estimation work the estimation range is extended to 60 days (2 months). It 
is seen that the GRNN method dominated the estimation study with best RMSE and R2 

performances for the training data and the whole series (Tables 6 and 7). The FFBP method 
had the second-best performance.  

 
 

 
 

Figure 12. Scatter plot for the testing data at 60 days ahead estimation case for (a) 
FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 
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The RMSE and R2 values for 60 days ahead estimations for WLt+60, are given in Tables 
6 and 7 under the heading “t+60”. The lowest RMSE is obtained with GRNN (0.123) with 
RBF having the second-best performance (0.148) for the whole series (Table 6). The highest 
R2 value is obtained with GRNN (0.966) with FFBP having the second-best performance 
(0.961) again if whole series is considered (Table 7). The water level hydrographs and the 
scatter plots show that the estimates deviate from the observed values staying however 
within the acceptable error range (Figures 12 and 13). 

 
 

 
 
Figure 13. Water level hydrograph for the testing data at 60 days ahead estimation case 

for (a) FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 
 
 

4.4. 90 days Ahead Estimation (WLt+90) 
 
The final part of the estimation analysis comprised the 90 days (3 months) ahead estimation. 
The RMSE and R2 values for 90 days ahead estimation for WLt+90, are given in Tables 6 and 
7 under the heading “t+90”. The lowest RMSE is obtained with GRNN (0.150) with RBF 
having the second-best performance (0.190) for the whole series (Table 6). GRNN had again 
the highest R2 (0.926) followed by FFBP (0.887) for the whole data (Table 7). The 
performance of the ANFIS method was relatively inferior compared to other three ANN 
methods in terms of these two performance evaluation criteria except the testing case 
(Tables 6 and 7). ANFIS demonstrate lower deviations for the testing stage (Figures 14 and 
15). 
 

 

 
 

Figure 14. Scatter plot for the testing data at 90 days ahead estimation case for (a) 
FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 
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Figure 15. Water level hydrograph for the testing data at 90 days ahead estimation case 
for (a) FFBP, (b) GRNN, (c) RBF, and (d) ANFIS 

 
 
5. CONCLUSIONS 
 
The RMSE performances of models for all estimation ranges are given Table 6. All of the AI 
methods provided satisfactory estimation performances to predict the lake water level for 
estimation ranges varying between 1 day and 90 days. It is seen that the GRNN method had 
the best performance evaluation criteria values for the estimation ranges higher than 1 day. It 
can be deduced that the estimation performance of the GRNN dominates the other AI 
methods as the estimation range increases. The GRNN approach does not require an 
iterative training procedure differing from FFBP and ANFIS. It approximates any arbitrary 
function between input and output vectors, drawing the function estimate directly from the 
training data [34]. Although the performance of GRNN was also found superior to FFBP in 
previous studies [38-39] its performance in long term estimation of a hydrological variable, 
i.e. lake water level, was investigated for the first time in the presented study.  

The performance of the ANFIS method was relatively inferior to other three ANN 
methods in terms of these two performance evaluation criteria for the estimation range 
(Tables 6 and 7). ANFIS demonstrates lower deviations from the observed values for the 
estimation range 90 days and the testing stage (Figures 14 and Figure 15). On the test data, 
FFBP seems to be superior to other three AI methods (Tables 6 and 7). For the testing data, 
ANFIS provides a linear increase of the RMSE with the increasing estimation range. In 
contrast, the other methods show different trends on the RMSE line between consecutive 
estimation ranges. The reason of the relatively inferior performance of the GRNN on the 
testing data might be the high skewness coefficient of the inflow and the outflow testing data 
(Table 3). The testing flow skewness is noticeably higher than the training value (Table 3). 
The spread parameter of the GRNN is completely dependent on the skewness of the 
considered time series [34]. Since both for the training and the testing the same spread is 
employed the performance of GRNN for the training was quite good but for the testing the 
estimation performance relatively decreased owing to the nearly doubled flow skewness 
values (Table 3).      

The accurate estimation of long-term lake water levels is quite important both for the 
ecological activities within the lake and the human made projects depending on the water 
levels and the water budget on the lake. With the help of the close estimations for the long-
time ranges covering several months, decisions about the future of the water resources 
projects can be taken previously providing sufficient time for the related local people involved 
or affected by these projects.     

The lake water level represents the lake depth and hence the lake water volume. So, if 
the water level increases the water volume will have a parallel increase as well. The water 
volume has a dominant role on the stability of the lake. Even 1 cm lake water level variation 
can cause high lake water volume change for the lakes with the big surface area. A lake with 
a low water level is more sensitive to the external effects compared with the high-water 
volume case. The heat quantity to the increase the temperature of a deep lake is higher than 
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a shallow lake. Therefore, the quantity of the energy and the duration for the temperature 
change required for the warming or cooling of the lake depends on the lake water level. This 
will directly affect the microorganisms, the chemical activities and the 
stratifications/circulations pattern. Subsequently, these parameters will have effect on the 
organisms (such as fish, phytoplankton). For example, if the mixture will be high then the 
stratification will decrease. So, the numbers of the microorganisms increase and then 
decrease on the water quality. For the opposite situation, i.e., in case of the high 
stratification, the hypolimnion layer (the bottom of lake) has nutrients but oxygen, the 
epilimnion layer (the top of lake) has oxygen but nutrients. So as the microorganism number 
decreases the water quality improves [40].     

Briefly, several ecological activities within the lake are related to the water depth either 
directly or indirectly. This shows how the long-term estimation of the lake water level is 
significant for the lake management plans considering that the biological and chemical 
activities are influenced by the lake water volume either positively or negatively. Under the 
normal conditions the lake water level has a cycle and this cycle has a different structure if 
various time intervals are examined. On the hourly basis, during a sunny day in a lake where 
evaporation is dominant the water level is high in the morning and low in the evening hours. 
For the rainy days, however, the water level is low before the rainfall and high following the 
rain. On the monthly basis, the WL is high on the rainy seasons (winter/spring) and low on 
the dry season (summer). If the time interval is year, the WL is high in a rainy year and the 
opposite in a dry year. Short duration cycles can be comprehended better. But since the 
observed values are limited and the affecting parameter number is high the water level 
character is more complex and the variation alternatives are a lot for the long term cycles. 
This study however confirmed the successful employment of AI methods for this purpose.           

The long-term estimation performance of the AI methods should also be tested for the 
other hydro-meteorological variables such as the river flow discharge, the precipitation, the 
suspended sediment, the temperature etc. Since most of these variables have lower 
autocorrelations compared with the lake water level it would be quite challenging to analyse 
the estimation performances of the AI methods for these variables. 
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