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Abstract. Mathematical modelling, and integer programming generally, has many practical applica-
tions in different areas of human life. Effective and fast solving approaches for various optimization
problems play an important role in the decision-making process and therefore, big attention is paid
to the development of many exact and approximate algorithms. This paper deals only with a special
class of location problems in which given number of facilities are to be chosen to minimize the objective
function value. Since the exact methods are not suitable for their unpredictable computational time or
memory demands, we focus here on possible usage of a special type of a particle swarm optimization
algorithm transformed by discretization and meme usage into so-called discrete self-organizing migrat-
ing algorithm. In the paper, there is confirmed that it is possible to suggest a sophisticated heuristic
for zero-one programming problem, which can produce near-to-optimal solution in much smaller time
than the time demanded by exact methods. We introduce a special adaptation of the discrete self-
organizing migration algorithm to the p-location problem making use of the path-relinking method. In
the theoretical part of this paper, we introduce several strategies of the migration process. To verify
their features and effectiveness, a computational study with real-sized benchmarks was performed. The
main goal of the experiments was to find the most efficient version of the suggested solving tool.
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1. Introduction

Many kinds of public service systems are usually designed to satisfy their users by providing
necessary service in case of emergency. Since the resources, from which the service can be
provided, are limited mostly due to economic or technological restrictions, the mathematical
model of the problem may often take the form of a weighted p-median problem [3, 7, 18, 21]
or any similar one. To make the mathematical model applicable in wider spectrum of research
problems, the concept of so-called generalized disutility has been introduced [8, 13, 15, 19, 26].
This model extension enables to cover more demands of system users, which can arise almost
simultaneously, and furthermore, the nearest located service center does not need to have
sufficient capacity to solve all the assigned demands at the same time. Of course, mentioned
model generalization brings some difficulties into the solving process of the problem.

The necessity to solve large problem instances has led to the development of several effective
solving techniques. The first group of approaches contains the exact methods based on the
branch and bound principle. Many of them use a specific model reformulation, in which so-
called radial approach is applied [1, 3, 9, 10, 24]. One of the biggest disadvantages of the
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exact methods consists in their almost unpredictable demands, which usually make the solving
process extremely time consuming. Simultaneously, many different approximate methods have
been developed. Currently, the main attention is paid to various metaheuristic approaches, i.e.
genetic algorithms, scatter search, path-relinking method and many others [11, 12, 14, 23], the
aim of which can be specified as a task of obtaining a good solution in acceptably short time.

In this paper, we focus on study of possible usage of a special type of a particle swarm
optimization algorithm [2] transformed by discretization and meme usage into so-called discrete
self-organizing migrating algorithm [5, 22, 30].

The principle of the self-organizing migrating algorithm has proved to be very hopeful tool
for solving real life problems from the field of engineering [6, 25]. The discrete version of the self-
organizing migrating algorithm has been successful in solving complicated problems described
as zero-one programming problems in the field of scheduling and routing [4]. The successful
results in solving real complex discrete problems indicate that the principle can be also used to
solve other scheduling problems referenced in [27, 28, 29]. Nevertheless, it must be taken into
account that a successful application of any metaheuristic must be paid by very thoroughly
performed implementation of the solving algorithm making use of individual characteristics of
the problem.

In this paper, we deal with the hypotheses that stochastic characteristic of service of ran-
domly emerging demands including impact of limited capacity of service centers can be described
using generalized disutility model and, furthermore, that it is possible to suggest a sophisticated
heuristic for a specific problem, which can produce near-to-optimal solution in much smaller
time than the time demanded by an exact method.

The study is aimed at application of the algorithm to efficient solving of the min-sum p-
location problem. We introduce a special adaptation of the discrete self-organizing migration
algorithm to the p-location problem making use of the path-relinking method. We study various
strategies of the migration process and compare them to find the most efficient version of the
solving tool.

2. Strategies of discrete self-organizing migrating algorithm

The standard general particle swarm optimization algorithm repeatedly updates a population
(swarm) of problem solutions (particle positions) by performing a perturbation with each so-
lution of the population taking into account the general best-found solution and also the best
solutions in trajectories traversed by the individual particles. The way of perturbation de-
pends on the range of the optimized objective function and the perturbation operations include
weights of the general and local best-found solutions and some random changes. The derived
discrete self-organizing migrating algorithm is also based on the idea of updating particle po-
sitions corresponding to problem solutions, nevertheless updating of an individual particle is
performed by moving its current position to the best position found on the trajectory connect-
ing the current position of the updated particle to some other particle. The choice of the other
particle is specified by the used migration strategy. Based on the way of population updating,
various strategies can be distinguished. We will study the following often referred ones [30].

The strategy AllToOne (ATO): Each particle of the current population is evaluated and the
best one is denoted as a leader. Then the trajectories from the individual particles to the leader
are inspected and the particle positions are updated with exception of the leader. Updated
particle positions and the leader position represent the new population.

The strategy AllToAll (ATA): This strategy does not distinguish any special particle, e.g.
the leader. Each trajectory from an updated particle to other particle locations is inspected
and the best found positions enter the new population.

The above mentioned strategies have also their adaptive versions, which follow.
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The strategy AllToOne-Adaptive (ATO − A): This strategy starts similarly to ATO by
population evaluation and the leader determination. Then, trajectories from particles to the
leader are subsequently inspected and the position of the leader is updated immediately after
each trajectory inspection.

The strategy AllToAll-Adaptive (ATA−A): This strategy differs from the above-described
ATA only in the start of a single trajectory inspection. When trajectories from an updated
particle are inspected, the starting position corresponding to the particle is updated after each
trajectory inspection. A decision on the most efficient strategy for the studied p-location prob-
lem is matter of experiments, which will be referred in the remainder of the paper.

3. Implementations of the discrete self-organizing migrating algorithm
for the min-sum p-location problem

The solved p-location problem defined for m possible facility locations and p facilities to be
located can be described by (1) in general.

min {f (P ) , P ⊂ {1, 2, . . . ,m} , |P | = p} (1)

The generalized min-sum version of the p-location problem is determined by the objective
function f specification (2).

f (P ) =

n∑
j=1

bj

r∑
k=1

qkmink {dij : i ∈ P} (2)

The objective function value f (P ) for given subset P of facility locations is computed for n
users with weights bj for j = 1, . . . , n and for probability values qk for k = 1, . . . , r, where qk is
probability that the k-th nearest facility is the closest available one. The symbol dij stays for
the distance between locations i and j and operation mink {} denotes the k-th minimal value
of the list of values in the brackets.

Path-relinking(P, Q)
begin

0. Initialize B by argmin {f(P ), f(Q)}, determine U = P −Q and V = Q− P .
1. Determine facility locations i∗ ∈ U and g∗ ∈ V by

(i∗, g∗) = argmin {f ((P − {i}) ∪ {g}) : i ∈ U, g ∈ V }.
2. Update P , U , V , and B according to

P = (P − {i∗}) ∪ {g∗}
U = U − {i∗}
V = V − {g∗}
B = argmin {f (P ) , f (P ∗)}

3. If —U— = —V— = 1, then terminate and return B, otherwise perform
exchange P for U and Q for V and go to 1.

end.

Table 1: Algorithm Path-relinking (P, Q)

The presented implementations of the discrete self-organizing migrating algorithms are based
on the path-relinking method, implementation of which makes use of a special structure of the
set of all feasible solutions of (1). The method inspects vertices of an m-dimensional hypercube
lying on the shortest path in the hypercube surface between elements of a pair of input vertices
corresponding with a pair of the p-location problem solutions. The path-relinking method
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[16, 20] skips the hypercube vertices, which do not correspond to feasible solutions of (1), i.e.
the vertices, where |P | 6= p. Let P and Q denote a pair of input solutions. Then, the used
path-relinking method is described by the following steps.
Let S =

{
P 1, . . . , P |S|

}
denote a starting population of feasible solutions of the problem (1).

Descriptions of the studied implementations associated with the individual strategies follow.

ATO(S, tmax)

begin
0. Compute f

(
P k
)
, for each P k ∈ S. Determine the leader

P l = argmin
{
f
(
P k
)

: k = 1, . . . , |S|
}

.
1. Initialize Snew =

{
P l
}

.
2. For each P k ∈ S −

{
P l
}

compute Bk = Path− relinking
(
P k, P l

)
and perform Snew = Snew ∪

{
Bk
}

.
3. Determine P l = argmin

{
f
(
Bk
)

: k = 1, . . . , |S|
}

.
4. If (currentT ime > tmax), then terminate and return P l,

otherwise set S = Snew and go to 1.
end.

Table 2: ATO (S, tmax)

ATA(S, tmax)

begin
0. Initialize Snew = ∅.
1. For each P k ∈ S initialize Bk = P k

and perform steps 2 and 3 and then to 4.
2. For each P t ∈ S −

{
P k
}

compute
Bk = argmin

{
f
(
Bk
)
, f
(
Path− relinking

(
P k, P t

))}
.

3. Update Snew = Snew ∪
{
Bk
}

.
4. If (currentT ime > tmax), then terminate and return

argmin
{
f
(
Bk
)

: k = 1, . . . , |S|
}

,
otherwise set S = Snew and go to 0.

end.

Table 3: ATA (S, tmax)

ATO-A(S, tmax)

begin
0. Compute f

(
P k
)

for each P k ∈ S. Determine the leader
P l = argmin {f (Pk) : k = 1, . . . , |S|}.

1. For each P k ∈ S −
{
P l
}

update
P l = argmin

{
f
(
P l
)
, f
(
Path− relinking

(
P k, P l

))}
.

2. If (currentT ime > tmax), then terminate and return P l,
otherwise go to 1.

end.

Table 4: ATO-A (S, tmax)
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ATA-A(S, tmax)

begin
0. Initialize Snew = ∅.
1. For each P k ∈ S initialize Bk = P k and perform steps 2 and 3 and then to 4.
2. For each P t ∈ S −

{
P k
}

compute
Bk = argmin

{
f
(
Bk
)
, f
(
Path− relinking

(
Bk, P t

))}
.

3. Update Snew = Snew ∪
{
Bk
}

.
4. If (currentT ime > tmax), then terminate and return

argmin
{
f
(
Bk
)

: k = 1, . . . , |S|
}

,
otherwise set S = Snew and go to 0.

end.

Table 5: ATA-A (S, tmax)

4. Numerical experiments

The main goal of the following computational study is a comparison of the presented strategies
of the discrete self-organizing migrating algorithm (DSOMA) with the goal to find the most
efficient implementation of the algorithm for solving the generalized weighted p-median problem.
The initial study has been performed using the benchmarks, which were derived from some of
the Slovak self-governing regions. The individual instances of the benchmarks are denoted by
the following names: Nitra (NR), Trenč́ın (TN), Trnava (TT), Žilina (ZA), Banská Bystrica
(BB), Košice (KE) and Prešov (PO). The sizes of the individual benchmarks are determined
by integers m and p. The number m gives the number of possible center locations and p gives
the number of service centers to be located. The generalized disutility objective function was
computed for r = 3. The coefficients qk for k = 1, . . . , r have been obtained from statistics
presented in [17] and their values are: q1 = 77.063, q2 = 16.476 and q3 = 100–q1–q2.

The starting population for each solved instance was established as a uniformly deployed
set of p-location problem solutions according to [14] and [15]. To increase robustness of the
comparison, we made use of the uniformly deployed set property that each permutation of
m subscripts of locations generates a different uniformly deployed set. Thus, we generated
randomly ten different uniformly deployed sets for each benchmark.

The sizes m and p and uniformly deployed set parameters |S| and h are reported in Table
1 together with the optimal solution values of (1) taken from [14]. The optimal solution values
are reported in the column denoted by OptSol. The symbol |S| denotes the cardinality of the
set S and h is the minimal Hamming distance between each two problem solutions of the set.

Region m p |S| h OptSol

NR 350 27 83 50 48940
TN 276 21 137 38 35275
TT 249 18 212 32 41338
ZA 315 29 112 52 42110
BB 515 36 172 66 44752
KE 460 32 60 60 45588
PO 664 32 232 60 56704

Table 6: Benchmark parameters

Experiments with the individual strategies were organized so that each implementation
was applied to each uniformly deployed set for given value of tmax and then the results were
summarized in the table associated with the time threshold tmax. A table for given tmax



246 Jaroslav Janáček and Marek Kvet

tmax = 10s. tmax = 5s.
ATO ATO-A ATO ATO-A

Region F ∗avg CT [s] F ∗avg CT [s] F ∗avg CT [s] F ∗avg CT [s]

NR 49320 10.0 48965 10.7 50911 5.1 48965 7.4
TN 35533 10.0 35277 11.5 35533 5.0 35277 7.0
TT 41521 10.0 41386 10.8 41521 5.0 41386 6.6
ZA 42314 10.0 42121 14.4 49807 5.2 42121 5.2
BB 56510 25.0 44752 25.3 56510 26.1 44752 26.1
KE 46070 10.0 45661 10.9 55502 5.9 45678 6.0
PO 72673 33.4 56736 33.3 72673 35.2 56736 34.9

Table 8: Results of numerical experiments with all-to-one strategies

contains sections denoted by ATO ,ATA,ATO-A,ATA-A, in which the results obtained by
the associated strategies are plotted. Each section contains two columns denoted by F ∗avg and
CT [s]. The column denoted by F ∗avg reports the average minimum of the objective function
of resulting solutions obtained by the approach application to ten uniformly deployed sets. The
average computational times of the studied approaches are reported in the columns denoted
by CT [s]. These values are given in seconds. As concerns the threshold tmax and reported
computational time CT , we have to notice that the termination rule acts only after the new
population is completed. Taking into account the computational complexity of the population
update under the individual strategies, the threshold tmax can be several times exceeded in
all-to-all strategies. That is why computational time is reported regardless of the threshold
setting. The experiments were performed for tmax = 10 seconds. The numerical experiments
were run on a PC equipped with the Intel® Core� i7 3610QM processor with the parameters:
2.3 GHz and 8 GB RAM. The algorithms were implemented in the Java language and run in
the NetBeans IDE 8.2 environment.

ATO ATA ATO-A ATA-A
Region F ∗avg CT [s] F ∗avg CT [s] F ∗avg CT [s] F ∗avg CT [s]

NR 49320 10.0 57556 300.1 48965 10.7 48961 149.8
TN 35533 10.0 42473 316.3 35277 11.5 35276 159.4
TT 41521 10.0 46528 456.0 41386 10.8 41386 230.6
ZA 42314 10.0 49025 562.3 42121 14.4 42120 283.6

Table 7: Results of numerical experiments for the threshold tmax = 10 seconds

Having compared the preliminary results reported in Table 7, we have found that the both
all-to-all strategies are very inefficient concerning the type of studied problem and the way of
creating the starting population. In the prescribed time tmax = 10 seconds, these strategies
were not able to complete a single population update. The update takes an order of magnitude
higher time than the threshold. Despite this extension, the results of ATA differ significantly
from the optimal solution, while the other strategies reach almost the optimal solutions with
accuracy better than one percent of the optimal value. It can be noticed that the adaptive mode
considerably contributes to the resulting solution quality. As the all-to-all approach represents
such a burden in a strategy performance that it demands for inacceptable computational time,
we restricted the remainder of the computational study only to all-to-one strategies. We applied
them to a broader set of benchmarks and, furthermore, we reduced the time threshold to
estimate differences in their convergence speed. The obtained results are plotted in Table 8.
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The results reported in Table 8 confirm advantage of the adaptive mode over the simple
all-to one strategy. Even if the ATO strategy is able to repeat the population update more
times in the given threshold compared to ATO − A, the ATO − A results are better even for
the harder instances BB and PO.

5. Conclusion

The paper deals with possible strategies of the self-organizing migrating algorithm and follows
the goal to find the most suitable strategy for the generalized weighted p-median problem
using a uniformly deployed set of solutions as the starting population. We have performed a
series of numerical experiments and found that the most suitable strategy for the given type
of problem and the special way of starting population determination is the adaptive all-to one
strategy. We confirmed the hypothesis that it is possible to suggest a sophisticated heuristic
for a specific problem, which can produce near-to-optimal solution in much smaller time than
the time demanded by an exact method.

Further research in this area may be focused on exploitation the preliminary mapping of the
feasible solution set in the range of objective function values yielded by the uniformly deployed
set for accelerating the self-organizing migrating algorithm performance. The next objective of
the future research will be aimed at applications of the suggested method to obtaining series of
non-dominated solutions of the bi-criterial p-location problems.
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[23] Rybičková, A., Burketová, A. and Mocková, D. (2016). Solution to the locating – routing problem
using a genetic algorithm. SmaRTT Cities Symposiuum Prague, 1-6.

[24] Sayah, D. and Irnich, S. (2016). A new compact formulation for the discrete p-dispersion problem.
European Journal of Operational Research, 256(1), 62-67. doi:10.1016/j.ejor.2016.06.036

[25] Singh D. and Deep K. (2016). SOMGA for Large Scale Function Optimization, Davendra D.,
Zelinka, I. (Eds.) Self-Organizing Migrating Algorithm-Methodology and Implementation (pp.
187-206), Springer International Publishing.

[26] Snyder, L. V. and Daskin, M. S. (2005). Reliability models for facility location; The expected
failure cost case. Transport Science, 39(3), 400-416. doi:10.1287/trsc.1040.0107

[27] Yilmaz, O. (2020). Attaining flexibility in seru production system by means of Shojinka: An
optimization model and solution approaches. Computers & Operations Research, 119, 104917.
doi:10.1016/j.cor.2020.104917

[28] Yilmaz, O. and Durmusoglu, M. (2019). Multi-objective scheduling problem for hybrid manufac-
turing systems with walking workers. The International Journal of Industrial Engineering: Theory,
Applications and Practice, 26, 625-650. journals.sfu.ca/ijietap/index.php/ijie/article/view/2810

[29] Yilmaz, O., Ozcelik, G., Yeni, F.B. (2019). Lean holistic fuzzy methodology employ-
ing cross-functional worker teams for new product development projects: A real case
study from high-tech industry. European Journal of Operational Research, 282(3), 989-1010.
doi:10.1016/j.ejor.2019.09.048

[30] Zelinka, I. (2016). SOMA-Self –organizing Migrating Algorithm, Davendra D., Zelinka, I. (Eds.)
Self-Organizing Migrating Algorithm-Methodology and Implementation (pp. 3-49), Springer Inter-
national Publishing.

https://doi.org/10.1287/ijoc.1100.0418
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1016/j.trpro.2019.07.185
https://doi.org/10.17535/crorr.2016.0005
https://doi.org/10.1016/j.ejor.2016.06.036
https://doi.org/10.1287/trsc.1040.0107
https://doi.org/10.1016/j.cor.2020.104917
https://journals.sfu.ca/ijietap/index.php/ijie/article/view/2810
https://doi.org/10.1016/j.ejor.2019.09.048

	Introduction
	Strategies of discrete self-organizing migrating algorithm
	Implementations of the discrete self-organizing migrating algorithm for the min-sum p-location problem
	Numerical experiments
	Conclusion

