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Resummation of heavy-particle pair production at the LHC M. Beneke

1. Introduction

Like in the well-studied Drell-Yan process, the partonic cross sectionsqq̄,qg,gg→ HH ′ + X of
heavy-particle pair production contain higher-order terms

[
αs ln2β

]n
, β 2 = 1−z= 1−M2

HH′/ ŝ (1.1)

in their perturbative expansion, which should be summed to all orders, if it can be argued that the
hadronic cross section is dominated numerically by these threshold logarithms. For two coloured
particles in the final state with some fixed invariant massMHH′ complications arise relative to the
Drell-Yan process due to colour-exchange and kinematics-dependent anomalous dimensions sim-
ilar to di-jet production [1]. For the total partonic cross section the only parametrically enhanced
logarithms arise from the true production threshold,MHH′ = MH + MH′ and the kinematical de-
pendence disappears. On the other hand, the particles are non-relativistic in this region and even
more strongly enhanced terms(αs/β )n appear due to the Coulomb force. Although resummation
for total partonic cross sections has been performed in the past [2], the issue of factorization of
soft and Coulomb gluons, and their simultaneous resummation has not been addressed with rigour
until recently. In this proceedings article we discuss the factorization formula applicable to this
situation, the diagonal colour basis for the leading soft function relevant to the heavy-particle pair
production process, and the two-loop anomalous dimension for soft radiation. For details we refer
to [3]. See the talk by P. Falgari [4] for a discussion of resummation of the squark anti-squark
production cross section at the LHC.

To define the LL, NLL, etc. approximations of the resummed cross section in the presence of
Coulomb effects, we note that near threshold the usual expansion, whereαs lnβ in the exponent
of (1.2) below counts as order one, is combined with an expansion in β , such thatαs/β also counts
as order one. This leads to a parametric representation of the expansion of the cross section in the
form

σ̂pp′ = σ̂ (0) ∑
k=0

(
αs

β

)k

exp
[

lnβ g0(αs lnβ )
︸ ︷︷ ︸

(LL)

+g1(αs lnβ )
︸ ︷︷ ︸

(NLL)

+αsg2(αs lnβ )
︸ ︷︷ ︸

(NNLL)

+ . . .
]

×
{

1(LL,NLL); αs,β (NNLL); α2
s ,αsβ ,β 2 (NNNLL); . . .

}
, (1.2)

which reproduces the standard structure [2] away from threshold for k = 0 and no expansion in
β . This implies that atO(α2

s ) relative to the Born cross section the termsα2
s ×{1/β ; ln2,1 β ;β ×

ln4,3 β} are NNLL. Note thatα2
s ln2,1 β terms may arise from the product of a Coulomb-enhanced

one-loop correctionαs/β and aβ -suppressed soft emissionαsβ ln2,1 β . This highlights the subtle
point that one must consider approximations one order beyond the standard eikonal approximation
to capture all NNLL terms.

2. Factorization of soft and Coulomb gluons

The factorization of soft and Coulomb gluons is a non-trivial issue, since the non-relativistic energy
of the heavy particles is of the same order as the soft gluon momentum. Hence, Coulomb exchanges
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are not part of the hard process and take place (diagrammatically) “in between” the soft gluon
emissions. In [3] it is shown that both effects are simultaneously resummed by means of the
formula

σ̂(β ,µ) = ∑
a

∑
i,i′

Ha
ii ′(M,µ)

∫

dω ∑
Rα

Ja
Rα (E−

ω
2

)Wa,Rα
ii ′ (ω ,µ), (2.1)

which contains a multiplicative short-distance coefficient Ha
ii ′ in each colour (in higher orders also

spin) configuration, and a convolution of soft functionsWa,Rα
ii ′ with Coulomb functionsJa

Rα
. The

factorization of soft gluons from collinear fields follows from a field redefinition with a light-like
Wilson line in soft-collinear effective theory (SCET) in the usual way [5]. To prove the decoupling
from non-relativistic fields we redefineψa(x) = S(R)

v (x0)abψ(0)
b (x) with a time-like Wilson line

S(R)
v (x) = Pexp

[

−igs

∫ ∞

0
dt v·Ac

s(x+vt)T(R)c
]

. (2.2)

This has the effect of turningD0
s into ∂ 0 in the leading-order PNRQCD Lagrangian

LPNRQCD = ψ†

(

iD0
s +

~∂ 2

2mH
+

iΓH

2

)

ψ + ψ ′†

(

iD0
s +

~∂ 2

2mH′
+

iΓH′

2

)

ψ ′

+

∫

d3~r
[

ψ†T(R)aψ
]

(~r )
(αs

r

)[

ψ ′†T(R′)aψ ′
]

(0). (2.3)

The key observation is thatSv drops out from the Coulomb interaction expressed in terms ofthe
new fields, sinceS(R)†

v T(R)aS(R)
v = [Sad]

abT(R)b in any representationR and sinceSad in the adjoint
representation is real and independent of~r. For the latter point it is important that the soft gluon field
in D0

s depends only onx0 [6], while the Coulomb interaction is non-local but instantaneous. This
proves decoupling of soft gluon and Coulomb resummation, since soft gluons disappear from the
leading-order Lagrangians for the other fields. They do not disappear from higher-order terms in the
SCET and PNRQCD Lagrangians, but these sub-leading interactions can be treated as perturbations
in β , resulting in the sum overa in (2.1).

3. All-order diagonal colour basis for the leading soft function

The soft function relevant to the leading power in theβ expansion (a = 1 in (2.1)) is given by the
Fourier transform ofŴRα

ii ′ (z,µ) = PRα
{k}c

(i)
{a}Ŵ

{k}
{ab}(z,µ)c(i′)∗

{b} where

Ŵ{k}
{ab}(z,µ) = 〈0|T[Sv,b4k2Sv,b3k1S

†
n̄, jb2

S†
n,ib1

](z)T[Sn,a1iSn̄,a2 jS
†
v,k3a3

S†
v,k4a4

](0)|0〉, (3.1)

and{a} = a1a2a3a4 denotes a colour multi-index for the 2→ 2 production process.ŴRα
ii ′ (z,µ)

is obtained from (3.1) by projecting it withPRα
{k} on an irreducible representationRα in the prod-

uct R⊗R′ = ∑β Rβ of final state representations, and on the elementsc(i)
{a} of a suitable colour

basis. The number of basis elements (i, i′ = 1. . .n) is constrained by colour conservation. Fur-
ther decomposing the product of initial state colour representations into irreducible ones accord-
ing to r ⊗ r ′ = ∑α rα , the number of basis elements equals the number of pairsPi = (rα ,Rβ ) of
equivalent representationsrα and Rβ . For example, in case of a 8⊗ 8 → 8⊗ 8 process,Pi ∈
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{(1,1), (8S,8S), (8A,8S), (8A,8A), (8S,8A), (10,10), (10,10), (27,27)}, so the basis is eight-
dimensional. One then finds [3] thatWRα

ii ′ (ω ,µ) in (2.1) is diagonal to all orders in perturbation
theory in the colour basis

c(i)
{a} =

1
√

dim(rα )
Crα

αa1a2
C

Rβ∗
αa3a4 (3.2)

constructed from the Clebsch-Gordan coefficients that couple the initial and final colour represen-
tations to the equivalent pairsPi. This result follows from colour conservation; the fact that the
Coulomb interaction is diagonal in the irreducible colour representations; and the ability to com-
bine the two final-state Wilson lines into a single one usingCRα

αa1a2S
(R)
v,a1b1

S(R′)
v,a2b2

= S(Rα)
v,αβCRα

β ,b1b2
, since

the Wilson lines for a heavy-particle pair produced directly at threshold carry the same velocity vec-
tor v. Finally, due to Bose symmetry of the soft function there is no interference of the production
from a symmetric and antisymmetric colour octet, which excludes the only possible off-diagonal
terms after applying the arguments above.

4. Two-loop anomalous dimension for heavy-particle pair production

Once the leading soft function is diagonal and reduced to thesoft function of an effective 2→ 1
process with a coloured final-state particle in representation Rα , the soft gluon part of the resumma-
tion can be done in SCET just as for Drell-Yan production [7].For NNLL resummation, one only
needs in addition the two-loop anomalous dimension and the one-loop finite term of the heavy-
particle soft functions. Since (3.1) is essentially the “square” of the soft function relevant to the
effective 2→ 1 amplitude, the two-loop anomalous dimension satisfies Casimir scaling and can be
extracted from [8]. In particular, potential three-particle colour correlations vanish trivially after
the reduction to the 2→ 1 process. The result can be converted to the anomalous dimension re-
quired in the Mellin-space resummation formalism [2], which requires the one-loop calculation of
the soft function, and one finds [3]

D(1)Rα
HH′ = −CRαCA

(
460
9

−
4π2

3
+8ζ3

)

+
176
9

CRα TFnf , (4.1)

which has been confirmed independently in [9]. The process-independent ingredients for NNLL
resummation of threshold logarithms in arbitrary production processes of heavy coloured particles
at hadron colliders are now in place. The resummation of the squark anti-squark production cross
section at the LHC at NLL using the formalism outlined above is discussed in [4].

5. Threshold enhancements at NNLO

When resummation is not required one can use the fixed-order expansion of (2.1) to calculate the
velocity-enhanced terms at NNLO. However, to obtain allα2

s ln2,1 β correction terms, one must in-
clude logarithms from sub-leading heavy-quark potentialsand sub-leading soft gluon couplings [3].
These additional terms have been worked out explicitly in [10]. The contributions from sub-leading
soft gluon couplings could be a source of velocity-enhancedthree-particle colour correlations,
which have been calculated in [11] and found to be non-zero atthe amplitude level. The result
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of [10] implies that there are no contributions to the lnβ terms from such three-particle correla-
tions in both, the virtual and real corrections to the total cross section. This holds independent of
particular colour representations.

Here we provide the velocity-enhanced terms at NNLO for the production of a pair of heavy
particles with equal massm in the scattering of massless partons in colour representations r and
r ′, respectively, under the only assumption that the Born cross section admits anS-wave term
proportional toβ . The heavy-particle pair is in colour representationRα and a definite spin state
(singlet or triplet for spin-1/2 fermions). Denoting byσ (2)

X the NNLO correction relative to the
Born cross section, the threshold expansion reads [10]

σ (2)
X =

4π4D2
Rα

3β 2 +
π2DRα

β

{

(−8)(Cr +Cr ′)

[

ln2
(

2mβ 2

µ

)

−
π2

8

]

+2(β0 +4CRα ) ln

(
2mβ 2

µ

)

−8CRα −2a1−4Re[C(1)
X ]+2β0 ln

(
2m
µ

)}

+128(Cr +Cr ′)
2 ln4β +64(Cr +Cr ′)

{

4(Cr +Cr ′)(L8−2)−
β0

3
−2CRα

}

ln3β

+

{
8
3

(Cr +Cr ′)
2[72L2

8−288L8 +576−35π2]+
16
9

(Cr +Cr ′)
[

18Re[C(1)
X ]

+18β0 (−L8+2)+36CRα (−3L8 +7)+CA(67−3π2)−20nl Tf

]

+16CRα (β0 +2CRα )

}

ln2β

+

{

8(Cr +Cr ′)
2
[

8L3
8−48L2

8 +

(

192−
35π2

3

)

L8−384+
70π2

3
+112ζ3

]

+2(Cr +Cr ′)

[

−16Re[C(1)
X ] (−L8+2)+ β0

(

−8L2
8 +32L8−64+

11π2

3

)

+2CRα

(

−24L2
8 +112L8−224+

35π2

3

)

+CA

(
8
3

(
67
3

−π2
)

L8−
4024
27

+
59π2

9
+28ζ3

)

+
4nl Tf

9

(

−40L8 +
296
3

−π2
)]

+4CRα

[

−4Re[C(1)
X ]−4(β0 +2CRα )(−L8+3)+CA

(

−
98
9

+
2π2

3
−4ζ3

)

+
40
9

nl Tf

]

+16π2DRα

[

CA−2DRα (1+vspin)
]}

lnβ +O(1) . (5.1)

HereCr , Cr ′ andCRα denote the quadratic Casimir operators of the colour representations,β0 =
11
3 CA−

4
3nl Tf is the one-loop beta-function coefficient, andL8 = ln(8m/µ). The quantitiesDRα ,

a1 = 31
9 CA−

20
9 nl Tf andvspin are connected with the heavy-quark potentials such thatvspin = 0 and

−2/3 for a pair of spin-1/2 fermions in a spin-singlet and spin-triplet state, respectively, andDRα

refers to the strength of the Coulomb potential in representation Rα (DRα = −CF for the singlet
andDRα =−(CF −CA/2) for the octet representation). The only process-specific input is Re[C(1)

X ],
equal to one half of the the one-loop short-distance coefficientHX(M,µ) in (2.1), when the heavy-
particle pair is in colour and spin stateX. Alternative to a direct computation, it can also be deduced
from the constant term in the threshold limit of the NLO production cross sectionσ (1)

X in colour

5
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and spin channelX by comparing the expansion ofσ (1)
X to the formula

σ (1)
X =−

2π2DRα

β
+4(Cr +Cr ′)

[

ln2
(

8mβ 2

µ

)

+8−
11π2

24

]

−4(CRα +4(Cr +Cr ′)) ln

(
8mβ 2

µ

)

+12CRα +2Re[C(1)
X ]+O(β ) . (5.2)
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