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Nagy Soper substraction scheme Tania Robens

1. Introduction: General structure of subtraction schemes

In higher order calculations, the cancellation of infrared singularities nermgdy treated by
the introduction of an infinitesimal regulator, eg in the form of a finite mass onthssless gauge
boson, or by lowering the dimensi@hof the respective phase space integraB te 4—2¢. This
way, the analytic cancellation of the respective divergent terms for fudliugive variables after
phase space integration is straightforward; however, numerical impletioastaf terms contain-
ing small regulators prove to be challenging. In subtraction schemes, dhikepr is circumvented
by the introduction of local counterterms, which mimic the behaviour of thersguaal emission
matrix elements in the singular regions; adding back the respective ondeartégrated coun-
terparts to the virtual contributions results in finite integrands for both meéston and virtual
contribution phase space. Symbolically, this is given by

UNLO — aBorn + Gwrt + O.real — GBorn + awrt + O'A + O.real o O'A7 (1.1)

where

0B 4 gVt 4 oA = / drm [|///Born|2 + 2Re(Mpom M jin) + 27/i|~//f50rn‘2] ;
|

o' gh = / dlme1 [|///rea||2 - ZDi|///B()m|2] (1.2)
1

are the respectiv, m+ 1 phase space contributions to the total NLO cross séctidanvolution
with jet functions then allows to define differential quanities and guaraiméesed safety of the
respective Born contribution. In eq (1.2), the sum goes over all lamatterterms needed to match
the complete singularity structure of the real emission contribution. For eaghlar limit, the
real emission matrix element factorizes according to

| #real*(P) — D|-Aeoml*(P), (1.3)

whereD denotes the dipole containing the respective singularity structureZAg and.#gom
live in different phase spaces, a mapping of the respective momentanfrgrh to m particle
phase space needs to be introduced, which is defined by a mapping fiuRgipaccording to
P = Fmap(p). While the complete singularity structure of the limit considered is containé€y in
bothD and. g0 can depend on the leftover nonsingular parameters of phase §phaowl 7; are
related by?; = u?¢ [ dé D, where the integration measuté is an effective one particle integral.
Summarizing, any subtraction scheme needs to fulfill the following requirements

o definition of subtraction termd; which, following eq (1.3), one by one mimic the behaviour
of the real emission matrix element in each singular region such that theirauaires the
complete singularity structure of the process,

o definition of a mappindrmap Which guarantees total energy momentum conservation as well
as onshellness of all external particles both before and after the mapping

1For hadronic initial states, an additional collinear countertefmneeds to be added im particle phase space,
which accounts for contributions already contained in the NLO PDFs.
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e integration measurdé, with a “smart” choice of variables providing optimal singularity
structure parametrization.

In the following, we will discuss this for our specific scheme, comparing wviitwhere appropri-
ate.

2. Scheme setup

In the scheme discussed in this report, the NLO subtraction terms arediednethe splitting
functions introduced in [2], and thea+ 1 to m phase space mappings needed correspond to the
inverse of the respective showarto m+ 1 mappings. In the following, we will denote time+ 1
phase space four vectors Ipy, p2,... andm phase space four vectors Ipy, po, .... Indicesa, b
will denote initial state particles; im+ 1 phase spacg; i5 the emitterp; the emitted particle, and
P« the spectatdr By default, for initial state emissions we s@t= p, in all general expressions
below. Equally, we restrict our expressions to subtractions on the plastehand to the massless
case; details on convolution with PDFs are given in [2], and the extensimassive particles is in
the line of future work.

2.1 Momentum mapping and integration measure: Initial state

For the initial state, the mapping from the+ 1 to them particle phase space is given by

pa: (1_ PJ?) ﬁaa p| = /\(KJ/(\) ﬁh pb = f’ba (21)
Pa - Po

where the index goes over all final state particles in theparticle phase space and with

~ 2(K+K)(K+K) = 2KK

whereK = pa+ pp, Q = Pa+ Po, K = Q — Pj. The phase space factorizes according to

[d{P, f}mea] 9({B, f}mer) = [A{p, F}m] dEpa({P. f}min), (2.3)

wheref denotes the flavour and with the D-dimensional integration measure

dép = 5 p-1 0+ (B7) - (2.4)

2.2 Momentum mapping and integration measure: Final state

For final state splittings, the initial state momenta remain unchanggd:= Pa, P = Po.
The mapping uses all non-emitting particles as one spectator for momenturnilvedan. We
introduce the additional variables

P:ﬁi+ﬁj7Q:ﬁa+ﬁb7
P2 2
=  a= Q 9
2P.Q— P2 2P.Q— P2

2In contrast to [1], in our case a spectator only needs to be specifpaiénotes a gluon.

y A =4/(1+y)2—4ay. (2.5)
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The emitting particle is mapped according to

P 1-A+y

Pi = e WQ (2.6)

All non-emitting final state particles are mapped using the Lorentz transformedian eq. (2.2),
where nowK = Q — pj, K=Q-P Especially, this means that the total number of mappings
needed for &-jet final state scales a%f which reduces scalifgvith respect to [1] by a factox.

The phase space factorization takes a similar form as in the initial state splitting,Have again

[d{P, FYmia] 9P, FYmia) = [A{p, f}m] dEI{P, FImia) 2.7)
where now
3pi-Q dPp o dPp; .
d&p = dyB(Ymax—Y) AP 3 p= W@(D?)QTDJA@(DJZ)
x (2mP s <P—A pi - 1_2’\a+yQ> . (2.8)

Ymax = (\/é— va— 1)2 can directly be derived from total energy momentum conservation.

2.3 Treatment of interference terms: dipole partitioning functions

Double poles in splitting functions only arise if the emitted particle is a gluon; in ttge,ca
interference terms between different emitters have to be taken into actoont.scheme, we split
the collinear and soft parts of the respective spin averaged splittingjdns®V according to [4]

V] —eik Feik

Wii — Wi = <Wii - W; ) + <Wii _Wik)a (2.9)
wherevivffik is the spin-averaged eikonal factor. The second part of the abosieq can be then
expressed in terms of dipole partitioning functig®s[5]

-2
(Bj - Bi B} - Pu)?’

F7eik

Wi — Wi = 4masAy (2.10)

wherePy = Bj- Bi Pk — P; - P« Bi. Several choices fok) have been proposed [5]; all results given
here have been obtained using eq (7.12) therein.

3. Example of integrated splitting function: g — qqfinal state splitting

For our scheme, all collinear as well as singular parts of the soft splittimgfitns have been
tested; a complete list will be given in [6]. In this section, we give the finéésta~ qqdipole and
the corresponding integrated term as an example, additionally commentinglonithier m — 2.

Forag — qqsplitting in the massless case, the spin averaged subtraction term is ggg¥gorn(P) 2,

with 4 22012
mag z(1-z
1— 3.1
yp-Q ] (31)

3The subtraction scheme in [3] has a scaling similar to our scheme.

Dg(ﬁ:TR 1—¢
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where we introduced the additional variabtes @;, fi= ”2{\*’\ Q- /\é P, and all other variables as
in eg. (2.5). This subtraction term was derived by squaring the regpdictal state shower splitting
function in [2]. Momentum mapping is done according to eq. (2.6) and theritbtransform with
the respective expressions fér K. For the integrated splitting function, we rewrite the measure

(2.8) in terms of the variables introduced above and obtain

2pQ*Y* dQg»
16m  (2m)l-2¢

dép = dzdyA ' 28y [2(1—2)]* 6(Ymax—Y) 6 [2(1—2)] (3.2)

which results in

R C_as 1 [f2mpA\[ 2 16 2
VYV =u /dEpD_TRZT[F(l—E)( piQ) [359+3[(a1)ln(a1)aln?} .)
3.3

As expected, fom = 2 the above expressions as well as the mapping completely reduce to the
resultin [1].

We want to comment that in our scheme, the most complicated expressiongatenhé inte-
gration of the interference terms as in eq. (2.10). As all final state partictesiapped using the
Lorentz transform\, the finite parts of the respective subtraction functions need to be ewvgluate
numerically; details will be given in [6].

4. First results

As an example, we give the analytic result of our splitting functions wheheapto dijet pro-
duction at lepton colliders, as well as a numerical comparison for Drellpyacess at NLO using
[1] as well as the scheme proposed in this writeup. We additionally tested ikenscfor Higgs
production at hadron colliders and decay; the respective calculatidinsevpresented elsewhere.

4.1 Dijet production at lepton colliders

For dijet production at lepton colliders, the final state squared splittingitmb = Dqqq is
needed. We denote the four-momenta of the outgoing partons in this pmitess: (q), P2(q),
andps(g). The unintegrated dipole subtraction term for emission f@rs then given by

8mas 1 X1 1—x 1—xg
D=——C =112 —
Q& F{<X2) [ (2—X1—X2 (2—X1—X2)2>+1—x2}

X1+X2—1 X1
+ 2( 1—Xo >(1_X1>X1+(1—X2)X2} (4.2)

with X, = Zg“ZQ. The respective integrated averaged splitting function is

2\ €
LI (4"“) [1+3 1+"2]. 4.2)

2m " F(1—g)\ @ e ' 2e 6
Combining the above splitting functions for both emitters with the Born, real emisaia virtual
matrix elements and integrating over phase space, we obtain the standgétrd res
oNLO _ gNLO(2} 4 gNLOfs) _ Os —10+i"n2 n 23 4 o0 _ §%CFGL0_
VAL 3 2 3 41t
4.3)
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Figure 1. Relative difference between NLO corrections to single WHpiaion using Catani Seymour and
Nagy Soper dipoles respectively, as a function of the hacdem energy. The results agree on sub-permil
level, shown are the numerical integration errors.

4.2 Drell-Yan production

We calculated singl&/ production for appinitial state at NLO, using both the scheme in [1]
as well as our scheme, including PDFs and varying the hadronic cmyeaktige process. We
here only show the numerical result for this process. Figure 1 plots ldié/eedifference between
the two implemented schemes. We see that the numerical differences arepamrttiklevel and
consistent with zero.

5. Summary and Outlook

In this report, we introduce a subtraction scheme which reduces the nofmibappings in
the real emission part of an NLO calculations by a fadgi with respect to the scheme
suggested in [1]. We explained the setup as well as phase space mamuimgyesented first
results for an integrated splitting function as well as applications for simplepses. A complete
listing of all integrated splitting functions as well as further examples will bergin [6].
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