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ABSTRACT: Metals underpin essential functions in modern
society, yet their production currently intensifies climate change.
This paper develops global targets for metal flows, stocks, and use
intensity in the global economy out to 2100. These targets are
consistent with emissions pathways to achieve a 2 °C climate goal
and cover six major metals (iron, aluminum, copper, zinc, lead, and
nickel). Results indicate that despite advances in low-carbon metal
production, a transformative system change to meet the society’s
needs with less metal is required to remain within a 2 °C pathway.
Globally, demand for goods and services over the 21st century
needs to be met with approximately 7 t/capita of metal stock—
roughly half the current level in high-income countries. This
systemic change will require a peak in global metal production by

2030 and deep decoupling of economic growth from both metal flows and stocks. Importantly, the identified science-based targets
are theoretically achievable through such measures as efficient design, more intensive use, and longer product lifetime, but immediate
action is crucial before middle- and low-income countries complete full-scale urbanization.

1. INTRODUCTION

International agreement on both climate change mitigation' and
sustainable development” poses a fundamental global challenge:
how to satisfy the basic needs of an expanding global population
without jeopardizing the 1.5—2 °C climate goals. Meeting this
challenge calls for immediate changes in metal production and
usage, which currently accounts for approximately 10% of global
greenhouse-gas (GHG) emissions’ while underpinning vital
services in a modern society in the form of products, factories,
and infrastructures.* Despite its importance, however, a clear
vision of a future metal use system in harmony with long-term
climate goals is lacking, impeding our ability to achieve an
international consensus on global targets for metal flow, stock,
and use intensity in the global economy based on a systematic
understanding.” One key to building this consensus is to explore
future metal use scenarios that satisfy the metal service demands
of future generations without compromising long-term climate
goals and to develop a science-based target (SBT)*™® to
accelerate concerted and innovative efforts by government and
industry.

Technology-rich integrated assessment models are typically
used to provide such scenarios by exploring possible technology
mixes and their costs.”~"' However, this approach often fails to
reflect the physical interconnection in the series of metal cycles'
that includes material production, manufacturing, in-use stock,
and waste management, resulting in a weak foundation for
explaining future demand and scrap availability."* Furthermore,
existing studies have focused strongly on innovative technology
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solutions such as carbon capture and storage (CCS)'* and
hydrogen-based production,15 while metal cycle solutions, '
including circular economy (CE)'” strategies, have tended to
receive less attention. Although several studies”'® *° have
demonstrated important steps by systematically linking metal
cycles to carbon emissions based on the principle of material
flow analysis (MFA), such studies have failed to account for
cumulative emissions—carbon budgets’'—and provide no
explicit long-term or time-series targets for metal flows, stocks,
and use intensity.

In this study, we develop global targets for metal flow, stock
and use intensity out to 2100 harmonized with 2 °C climate
goals using a dynamic MFA model coupled with an optimization
routine and a global MFA system boundary incorporating 231
countries. Our approach explicitly deals with the physical
interconnections of the entire metal cycle based on mass balance
principles and carbon budgets, enabling the elucidation of the
time series of metal flows, stocks, and efficiency required to meet
the climate goal. Given the large uncertainties and environ-
mental risks associated with innovative technology solutions,”>
we aim to provide a benchmark indicating the extent to which
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material efficiency needs to be improved if the innovative
technologies fail to scale as planned. The metal cycle solutions
considered in our analysis include product lifetime extension
and improved end-of-life recycling based on the concept of a
CE.” We also discuss strategies to meet basic human needs
using less metal, including more intensive use of metal stocks,
and efficient product design.”* As our aim is to cover metals that
are widely used in modern society, we have included six major
metals—iron, aluminum, copper, zinc, lead, and nickel—which
account for more than 98% by mass of all metal production.”

2. METHODS

2.1. Historical Metal Flows and Stocks. Historical world
flows and stocks of major metals from 1900 to 2010 are
estimated by linking global MFA system boundaries for 231
countries’®”” with a dynamic stock model®® that explicitly
describes the multiyear physical interconnections of the entire
metal cycle.””*° In this modelling approach, the trade flows of
metals contained in semimanufactured and finished products
often cause mass imbalances because of data quality. This is
resolved by adjusting the metal content and cut-off value for
each trade commodity using a quadratic programming
technique.”® All metal flows in the 231 countries are then
calculated based on the mass balance equations (eqs 1—13 in the
Supporting Information). Stock dynamics aggregated according
to the income level’' are estimated using the inflow-driven
approach,” assuming a specific lifetime for each product sector
(Tables S2—S7).

2.2. Future Metal Flows and Stocks under the Carbon
Budget. Future metal flows and stock dynamics aligning with
the emission pathways of the 2 °C climate goal are explored by
the optimization routine, which links to the dynamic stock
model and emission intensities obtained from a life cycle
assessment (LCA) database.”® The optimization routine
determines the maximum production available under the annual
carbon budget while aiming to minimize the divergence between
supply and estimated baseline demand within the scenario
period (2010 to 2100). In this case, the production includes
both primary and secondary production; the latter covers two
supply sources: new and old scrap. The new scrap is supplied
from the yield generated at each processing stage; the old scrap is
supplied from the outflow from the society as end-of-life
products. Old scrap availability depends on the metabolism of
the metal stock, and primary production is estimated as the
remaining demand that cannot be satisfied by secondary
production. The baseline demand is calculated based on future
stock dynamics, which are determined under an assumption that
global per capita in-use stocks follow growth patterns similar to
those experienced by the current high-income countries. This
trajectory does not take into account the emission constraints
and is given as an exogenous variable to the optimization
routine.

With regard to the emission intensities of each production
route, we follow the method developed by Van der Voet and
colleagues,34 who linked MFA with LCA to simulate the future
environmental implications associated with metal demand—
supply scenarios. The dataset distinguishes between primary and
secondary production routes and is a time series from 2010 to
2100. We consider the potential of an ore grade decline (for
copper, zing, lead, and nickel), energy efficiency improvements
in the primary production route (for iron and aluminum), and
electricity system decarbonization that reduces indirect
emissions (for all six metals) as in existing studies™ (see Figure
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S3). Note that we assume here that future metal supply will not
be limited by physical availability or any other environmental
impacts such as biodiversity losses and water contaminations but
is solely constrained by carbon emissions. Although our
approach has some obvious limitations because of its
simplification of several other factors (e.g, the rebound effect,
market dynamics, and metal linkages), it nevertheless provides a
useful stepping stone to explore future metal flows and stocks in
line with Earth’s carrying capacity. Detailed system boundaries,
equations, data sources, and limitation descriptions can be found
in the Supporting Information.

2.3. Scenario. 2.3.1. Metal Cycle Solution. We explore two
scenarios for metal cycles in the 2 °C pathway: business as usual
(BAU) and a CE. The BAU scenario assumes that all model
parameters regarding the metal cycle are constant during the
analysis period. The CE scenario, on the other hand, expects that
the end-of-life recycling rate and product lifetime will rise to
their theoretical maximum values from 2011 to 2100 by
following a gradual saturation curve. Tables giving a detailed
scenario parameter overview for the six metals are provided in
Tables S2—S7 in the Supporting Information.

2.3.2. Innovative Technology Solution. We examine the
implications of innovative technology developments such as
CCS and hydrogen reduction, targeting iron and aluminum, for
which a long-term roadmap® ™ has already been established.
Metals other than iron and aluminum are excluded here as there
are few roadmaps for innovative technologies, which makes it
difficult to create scenarios. The detailed assumptions are as
follows:

e Best available technology (BAT) for steel and aluminum
making: The International Energy Agency estimated that
the global emission reduction potential of BAT
implementation for primary steel and aluminum
production is 21 and 10%, respectively.”> We assume
that these are achieved from 2011 to 2050 by following
the saturation curve.

CCS and hydrogen reduction for steel making: the
emission reduction target is set based on the long-term
roadmap of the Japan Iron and Steel Federation for
climate change mitigation:>> Accordingly, the CCS
reduction is 20% and the hydrogen reduction is 10%. As
these technologies are expected to be implemented after
2030, we assume that the abovementioned reduction
targets for primary production are achieved gradually
from 2030 to 2060 for CCS and from 2050 to 2080 for
hydrogen reduction.

Superinnovative technologies for steel making (e.g., top
gas recycling, bath smelting, direct reduction, and
electrolysis): The European Steel Association (EURO-
FER) announced a more ambitious roadmap™® that aims
for a 90% reduction by 2050 in the European Union by
combining a series of technologies such as HIsarna
(smelting reduction) and ULCORED (direct reduction),
both connected to CCS or CO,-free hydrogen
production. We assume that a 90% reduction for primary
steel production is accomplished by 2100 on a global scale
after obtaining the reduction effects of all the BAT, CCS,
and hydrogen reduction solutions mentioned above.

CCS and inert anodes for aluminum making: European
Aluminum created a scenario for lower carbon direct
emission reductions through CCS and inert anodes’® in
the aluminum sector. The association projected that the
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Figure 1. Per capita in-use stock for six major metals, 1960—2100. The ranges in the 2 °C scenario are due to differences in assumptions regarding the
end-of-life recycling rate and product lifetime. The upper limit of the range (CE scenario) assumes that the end-of-life recycling rate and product
lifetime increase to the theoretical maximum by 2100 according to the saturation curve. The lower limit of the range (BAU scenario) represents the
assumption that all model parameters are constant throughout the scenario period.

implementation of these innovative technologies could
reduce 23% of direct carbon emissions for primary
aluminum production by 2050 in the European Union.
We thus assume that a 23% reduction is achieved by 2100
on a global basis by following the saturation curve after
2030.

Note that the potential for emission reductions by switching
to renewable biofuels and charcoal instead of fossil fuels*" in
thermal applications is not considered here because of the lack of
a roadmap.

3. RESULTS AND DISCUSSION

3.1. In-Use Stock. Historically, in-use stocks of all major
metals have been unevenly distributed across countries, based
on the income level (Figure 1). Per capita stocks in high-income
countries have shown a gradual growth or near-plateauing trend
in recent years, reaching approximately 11,370 kg/cap for iron,
360 kg/cap for aluminum, 150 kg/cap for copper, 57 kg/cap for
zing, 23 kg/cap for lead, and 19 kg/cap for nickel in 2010. These
levels are three to four times higher than the world average. On
the other hand, the figures for upper-middle-income countries
have remained at 20—40% of those in the high-income countries
despite a sharp increase from around 2000. Most remarkably,
lower-middle- and low-income countries have reached only 1—
8% of the high-income country levels, suggesting a strong
correlation between the major metal stock and economic level.
These historical trends clearly illustrate a key challenge in the
metal sector: how to achieve an absolute reduction in GHG
emissions associated with major metal production while
satisfying the increasing demand for metal services needed for
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purposes such as power generation, water sanitation, and basic
infrastructure in low- and middle-income countries.

Our analysis shows that this fundamental challenge cannot be
sufficiently addressed solely through aggressive scrap recycling
and product lifetime extension. Figure 1 shows that the global
average of per capita metal stocks cannot follow the historical
evolution patterns of high-income countries because of carbon
constraints in the 2 °C scenario. More specifically, per capita
stocks of all major metals in the world average, except lead, need
to saturate at levels 2—3 times lower than those that are currently
the case in high-income countries: 6500 kg/cap for iron, 230 kg/
cap for aluminum, 58 kg/cap for copper, 34 kg/cap for zinc, 4
kg/cap for lead, and 8 kg/cap for nickel in 2100. If the CE
transition fails along with innovative production technologies,
these values can be expected to be 40—75% lower (absolute
stock dynamics can be seen in Figure S4). The variation in per
capita stock dynamics by each metal is primarily due to the
difference in average lifetime and potential for improved end-of-
life recycling rate and emission intensity. For example, as
aluminum has more room to reduce emission intensity by
decarbonizing electricity systems and improving energy
efficiency (Figure S3), its per capita stock dynamics under the
2 °C pathway are closer to the baseline than is the case for the
other metals. Lead, in contrast, has a shorter average lifetime and
has limited room for improving its end-of-life recycling rate and
emission intensity, thus creating a downward trend rather than
plateauing.

Overall, findings here indicate that metal cycle solutions
limited to end-of-life recycling and product lifetime extension
are unlikely to be sufficient for meeting the 2 °C climate goal in
the metal sector. Satisfying the metal service demand of 10
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Figure 2. Production activities for six major metals, 1960-2100. The shade of the line color represents the ratio of secondary production to total
production. The 2 °C scenario shows a case assuming increased end-of-life recycling rate and product lifetime (CE scenario).

a Flow intensity b Stock intensity

80 1,200
2

70 A
=2 4
5 1,000
> 60 -
g 800 -
& 50
o
(5}
g 40 - Lower-middle 600 A
;. 30 1 Low
? 400
c
2 204
E
= ; 200 1
2 101 High Target
=

0 T T T T T T 0 T T T T T T
1960 1980 2000 2020 2040 2060 2080 2100 1960 1980 2000 2020 2040 2060 2080 2100

Figure 3. Metal use intensity in the global economy, 2010-2100: (a) metal flow intensity of the economy (metal inflows/GDP) and (b) metal stock
intensity of the economy (metal stock/GDP). The ranges of the target are generated by the CE and BAU scenarios. Future GDP is based on SSP2,**

which represents a middle-of-the-road scenario.

billion people within the carbon budget will require a
transformative system change to meet society’s needs with less
metal. One benchmark can be stabilizing the growth of global
major metal in-use stock at around 7 t/cap, which is
approximately half the current level of high-income countries.
3.2. Primary and Secondary Production. For the world
average to follow stock growth patterns similar to those of high-
income countries, production activities will need to be increased
by a factor of 2—3 from 2010 to 2100, depending on the metal
(Figure 2). These estimates are consistent with those of a
previous study®' (Figure S7). However, the carbon budget in
line with the 2 °C goal significantly constrains production
activities. Figure 2 clearly shows that the 2 °C scenario requires a
production peak for all six major metals by around 2030. That is,
an absolute decoupling of economic growth and metal
production should be accomplished by no later than 2030 if
we cannot rely on innovative technology solutions. The role of
secondary production (production from scrap) is increasing
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over time, with approximately 54—87% of production coming
from secondary production in 2050 and 84—100% in 2100, with
an increased end-of-life recycling rate. Primary production
(production from ore), on the other hand, peaks around 2020—
2030 and continues to decline thereafter. These results suggest
that metal demand needs to be substantially curtailed if large-
scale implementation of the innovative technology solutions fails
to scale. Realistically speaking, it is difficult to meet all of the
demand with 100% secondary production because of quality
issues”> and thermodynamic reasons.”> Thus, production
activities will be more restricted if we fail to develop an
advanced recycling technology that enhances the quality of
secondary production or product design harmonized with scrap
utilization.

Potential per capita targets in this domain include stabilization
at roughly 115.8 kg/cap for iron, 8.4 kg/cap for aluminum, 1.4
kg/cap for copper, 1.1 kg/cap for zinc, 0.3 kg/cap for lead, and
0.2 kg/cap for nickel until 2100 (Figure S6). These values are 2—
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Figure 4. Per capita in-use stock of iron and steel with the various innovative technology solutions, 2000—2100. The horizontal grey area indicates the
current saturation levels in high-income countries. The baseline represents the stock growth pattern without carbon constraints. CE assumes increased
end-of-life recycling rate and product lifetime, while BAU assumes a constant value of these parameters in the 2 °C scenario. Abbreviations for
innovative production technologies are as follows: best available technology (BAT), carbon capture and storage (CCS), and hydrogen reduction
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9 times lower than those in current high-income countries,
underscoring the urgent need to break the coupling of economic
growth and metal demand.**

3.3. Metal Use Intensity. To what extent should we
promote decoupling in the coming decades? This question is
addressed by linking the metal flows and stock dynamics
identified above to the shared socioeconomic pathways
(SSPs).*> Here, we define the metal use intensity of the
economy (g-metals/ GDP)—that is, the physical metal flow or
in-use stock per unit of economic activity—as an indicator of
decoupling.*®

Figure 3 illustrates the urgent need for a significant decrease in
the metal use intensity of the global economy over the 21st
century and the difficulty of achieving this decrease. The
historical metal flow intensity of the global economy shows
gradual improvements before 2000 but deteriorates after this
period because of a drastic increase in upper-middle-income
countries, mainly China. Intensity targets in line with the 2 °C
goal call for an immediate change in this situation. Figure 3
shows that the metal flow intensity needs to be reduced by 36%
by 2030, 70% by 2050, and 90% by 2100 relative to 2010,
meaning a strong decoupling of global metal production from
economic activities.

We also confirm the importance of improving metal stock
intensity in parallel with flow intensity. Stock intensity provides
better insights into the nexus of service provision and metal use,
as metal services are delivered in the form of stocks such as
buildings and vehicles.” Historically, the metal stock intensity of
the global economy has not improved significantly, remaining at
roughly 400 g/US $. This observation is consistent with trends
observed in previous studies'” involving comprehensive
materials such as cement and biomass. This tight coupling,
however, needs to be severely broken in the 21st century. The
identified targets for metal stock intensity are to reduce it by 3—
4% by 2030, 20—25% by 2050, and 60—75% by 2100 relative to
2010 levels, depending on whether we assume an increased end-
of-life recycling rate and an extended product lifetime.

These targets intrinsically depend on the assumed socio-
economic future and vary widely among SSP scenarios (Figure
S8). However, given the significant uncertainties, our results
consistently support the hypothesis that the 2 °C pathway
requires continuous and substantial decoupling during the 21st
century. Importantly, achieving the specified targets will allow us
to align the GHG emissions in the metal sector with the 2 °C
pathway without relying on technologies, whose applicability on
a global scale is still unclear and may involve serious socio-
environmental trade-offs.””

3.4. Potential of Innovative Technology Solutions.
Despite the large uncertainty, innovative technology solutions
such as CCS and hydrogen reduction are currently considered
central options for climate change mitigation.“"48 Thus, it is
worth investigating the potential impacts of these technologies
on the future metal use scenario, specifically targeting iron and
aluminum, for which a long-term roadmap® ™% is already
established. Figure 4 shows that the various innovative
technologies are not likely to be sufficient to maintain the
available amount of iron stock at the current level of high-
income countries within the carbon budget corresponding to the
2 °C goal (see Figure S9 for aluminum). The combination of
BAT, CCS, and hydrogen reduction can contribute to raising the
iron stock to 7600 kg/cap in 2100. Implementing super-
innovative technologies, which are currently only in the
laboratory stage, such as CO,-free hydrogen and electrolysis,
has further promise of increasing the iron stock to 8200 kg/cap.
Still, none of these scenarios match the baseline scenario that
follows a similar stock growth pattern as that of the high-income
countries. Similarly, the implementation of BAT, CCS, and inert
anodes in aluminum making has a limited effect on the stock
available under carbon constraints (Figure S9). This indicates
that climate policy making for the metal sector that focuses only
on innovative technology solutions may be highly problematic.
The remaining gap needs to be filled by transitioning to a society
in which the same services are delivered with less metal.
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3.5. Identified Target is Theoretically Achievable. Lack
of international consensus on the sustainable level of resource
use is currently preventing agreement on global resource use
targets.”” The present study bridges this important knowledge
gap. Our analysis, which is based on the explicit link between
MFA and the carbon budget, provides a benchmark indicating
the extent to which metal use intensity in the global economy
needs to be curtailed by decoupling both metal flows and stocks
from economic activities.

Specifically, we find that global metal stock should be
saturated at around 7 t/cap (6500 kg/cap for iron, 230 kg/cap
for aluminum, 58 kg/cap for copper, 34 kg/cap for zinc, 4 kg/cap
forlead, and 8 kg/cap for nickel), which is approximately half the
current level of high-income countries. Can this level of metal
use meet the basic needs of future generations? What strategic
options exist? Our simplified estimation, based on a literature
review, "' > suggests that the 7 t/cap metal stock could deliver
sufficient services for the expanding global population by
implementing cross-cutting material efficiency strategies over
the entire metal/product life-cycle. This includes more intensive
use of metal stocks and more efficient design (Figure S10),
facilitated through well-coordinated policy packages such as
virgin material taxes, green public procurement, and a material-
efficient design certification scheme.” Obviously, the difficulty
of implementing these strategies will differ greatly depending on
the metal, and future market trends will affect the ease with
which demand reduction can be achieved (e.g., the demand for
lead may suffer given its dominant use in lead-acid car
batteries,”” while the demand for copper and nickel may
increase through lithium-battery technology in electric vehicles
or offshore wind53’54). In any case, urgent action is critical, as the
time required for designing and implementing effective policies
is likely to be extensive. If such urgency is absent, the metal
sector may well contribute to the overshooting of annual
emission targets, leading to more stringent reduction require-
ments in the second half of the 21st century.” In this context, it
is important to link the metal use targets identified in this study
with urban development planning in middle- and low-income
countries in the 21st century, as major metals are deeply
connected to basic urban components such as buildings and
infrastructures.”® With the per capita stocks in these countries
still well below the target, we now have an important
opportunity to meet the needs of future generations with
much less metal by a careful urban design that can stimulate a
deep decoupling.

3.6. Climate Policy Should Cover Material Efficiency.
Despite the key role of decoupling metal use from economic
growth in climate change mitigation, much about material
efficiency strategies®” remains unknown or ill defined, including
their full potential, barriers to their implementation, and the
trade-offs involved. Scientific knowledge regarding policy
instruments and their costs also remains unclear. Notably, the
latest International Resource Panel report™ points out that
commitments to material efficiency have been scarcely
incorporated into the nationally determined contributions of
the Paris Agreement. An important step would be to include
material efficiency strategies in the list of climate change
mitigation options, taking into account specific policy
alternatives and their costs. Broadening the horizons of policy
makers, business leaders, and consumers is an essential challenge
if they are to see and understand the full range of opportunities
across the entire life cycle and value chain. If science-based
policy instruments work properly, the metal sector can
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potentially provide sufficient emission abatement while meeting
the basic needs of an expanding global population. The
fundamental question is whether we can act fast enough before
today’s middle- and low-income countries complete full-scale
urbanization.
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