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Abstract. The Nearest Neighbor (NN) algorithm is a well-known and
effective classification algorithm. Prototype Selection (PS), which pro-
vides NN with a good training set to pick its neighbors from, is an
important topic as NN is highly susceptible to noisy data. Accurate
state-of-the-art PS methods are generally slow, which motivates us to
propose a new PS method, called OWA-FRPS. Based on the Ordered
Weighted Average (OWA) fuzzy rough set model, we express the quality
of instances, and use a wrapper approach to decide which instances to se-
lect. An experimental evaluation shows that OWA-FRPS is significantly
more accurate than state-of-the-art PS methods without requiring a high
computational cost.
Keywords: Ordered Weighted Average, Fuzzy Rough Sets, Prototype
Selection, KNN

1 Introduction

One of the most well-known and most widely used classification algorithms is
Nearest Neighbors (NN,[1]). This method classifies a test instance t to the class
of the nearest neighbor of t in the training set. Although NN has been proven
to be very useful for many classification problems, it deals with some problems,
among which its sensitivity to noise and its large storage requirements are the
most important ones.
In this work we alleviate these problems by using Prototype Selection (PS,[2]).
This technique removes redundant and/or noisy instances from the training set,
such that the training set requires less storage and such that the NN algorithm
is more accurate. PS techniques that mainly try to improve the classification
accuracy are called edition methods, those that focus on reducing the required
storage are condensation methods. Hybrid PS techniques try to tackle both prob-
lems simultaneously. In this work we develop an editing method.
Many PS methods have been proposed in the literature, a comprehensive overview
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can be found in [2]. When the algorithm does not make use of a specific clas-
sifier to classify the entire training set, the method is called a filter method.
Condensation methods do use a specific classifier, the NN classifier in our case,
to classify the entire training data to obtain a quality assessment of a certain
prototype subset. Filter methods are generally faster and less accurate, while
wrapper methods are slower and more accurate. Many wrapper PS algorithms
are evolutionary based, like CHC [3], GGA [4, 5] or SSMA [6], while others use
other search heuristics like RMHC [7] or RNG [8]. Most of the filter methods are
based on the NN algorithm itself, like AllKNN [9] or MENN [10]. The method
that we develop is a wrapper.
Although many researchers have focused on developing fuzzy rough feature se-
lection [11] algorithms, there is not much literature on fuzzy rough PS yet.
Nevertheless, fuzzy rough set theory [12] is a good tool to model noisy data.
To the best of our knowledge, the only fuzzy rough based PS method is FRIS
[13]. This method selects those instances that have a fuzzy positive region higher
than a certain threshold. This method has some problems, the main one being
that the method’s performance highly relies on a good threshold selection.
In this work, we propose a new fuzzy rough based PS method that assesses the
quality of instances using Ordered Weighted Average (OWA) fuzzy rough set
theory [14], a more robust version of fuzzy rough set theory, and automatically
selects an appropriate threshold.
The remainder of this work is structured as follows. In Section 2, we first discuss
three OWA fuzzy rough quality measures that can be used to assess the quality
of instances, and then show how these measures can be used to carry out PS.
In Section 3, we evaluate our algorithm, called OWA Fuzzy Rough Prototype
Selection (OWA-FRPS), and we conclude in Section 4.

2 Ordered Weighted Average based Fuzzy Rough
Prototype Selection

In this section we present our new PS method. In the first subsection we define
three measures to assess the quality of instances, and in the second subsection
we demonstrate how we can use these measures to carry out PS.

2.1 Assessing the quality of instances using OWA fuzzy rough sets

First we introduce some notations. We consider a decision system (X,A∪ {d}),
consisting of n instances X = {x1, . . . , xn}, m attributes A = {a1, . . . , am} and
a decision attribute d /∈ A. We denote by a(x) the value of an instance x ∈ X
for an attribute a ∈ A. We assume that each continuous attribute a ∈ A is
normalized, that is, ∀x ∈ X : a(x) ∈ [0, 1]. The categorical attributes can take
values in a finite set. The decision attribute d is categorical too and assigns a
class d(x) to each instance x ∈ X.
We associate a fuzzy indiscernibility relation R : X×X → [0, 1] with the decision
system as follows. First, we calculate the fuzzy indiscernibility Ra for each feature



a ∈ A separately. When a is categorical, Ra(x, y) = 1 for x, y ∈ X if a(x) = a(y)
and Ra(x, y) = 0 otherwise. When a is continuous, Ra(x, y) = 1− |a(x)− a(y)|
for all x, y ∈ X.
Next, we combine these separate fuzzy indiscernibility relations using a t-norm
T (the Lukasiewicz t-norm3 in this paper):

∀x, y ∈ X : R(x, y) = T (Ra(x, y))︸ ︷︷ ︸
a∈A

(1)

This fuzzy indiscernibility relation is the keystone of fuzzy rough set theory. A
fuzzy set S can be approximated by its fuzzy rough lower approximation

∀x ∈ X : (R ↓ S)(x) = min
y∈X
I(R(x, y), S(y)) (2)

with I the Lukasiewicz implicator4 in this paper, and by its upper approximation

∀x ∈ X : (R ↑ S)(x) = max
y∈X
T (R(x, y), S(y)) (3)

The fuzzy lower approximation expresses to what extent instances similar to x
also belong to S , while the upper approximation expresses to what extent there
exist instances that are similar to x and belong to S.
These concepts can be used to assess the quality of instances. First, note that
we can consider the class [x]d of an instance x ∈ X as a fuzzy set in X:

∀y ∈ X : [x]d(y) =

{
1 if d(x) = d(y)
0 else

(4)

which can be considered as the crisp set that contains all instances that have
the same class as x.
If we want to assess the quality of an instance x, we can use the lower approxi-
mation of [x]d :

(R ↓ [x]d)(x). (5)

This value expresses to what extent instances similar to x also belong to the
same class as x. Another option is to use the upper approximation of [x]d:

(R ↑ [x]d)(x) (6)

which expresses to what extent there exist instances that are similar to x and
that belong to the same class as x.
Both measures are particularly meaningful in the context of NN classification,
because they rate instances highly if they are surrounded by neighbors of the
same class: the lower approximation measure is high for x if there are no instances

3 The Lukasiewicz t-norm is the mapping T : [0, 1]2 → [0, 1], such that ∀a, b ∈
[0, 1], T (a, b) = max(0, a+ b− 1)

4 The Lukasiewicz implicator is the mapping I : [0, 1]2 → [0, 1], such that ∀a, b ∈
[0, 1], I(a, b) = min(1− a+ b, 1)



from a different class that are near (similar) to x, while the upper approximation
measure is high if there exist neighbors from the same class.
In [14] it was noted that the traditional fuzzy rough approximations are highly
susceptible to noise, as they use the crisp min and max operators, such that sin-
gle instances can drastically influence the approximation values. A solution to
this problem is to use OWA fuzzy rough sets [14], which replace these crisp
operators by softer OWA operators [15]. Recall that, given a weight vector

W = 〈w1, . . . , wn〉 for which
n∑
i=1

wi = 1 and ∀i ∈ 1, . . . , n, wi ∈ [0, 1], the OWA

aggregation of n values s1, . . . , sn is given by:

OWAW (s1, . . . , sn) =

n∑
i=1

witi, (7)

where ti = sj if sj is the ith largest value in s1, . . . , sn.
When 〈0, . . . , 0, 1〉 is used as weight vector, the minimum operator is retrieved,
which is the operator that is used in the traditional fuzzy lower approximation.
We replace this minimum by a less strict operator that still has the characteristics
of a minimum operator, that is, we consider a weight vector with ascending
weights, such that lower values get higher weights, and higher values get lower
weights. In this work we use the weight vector Wmin = 〈w1, . . . , wn〉 where

∀i ∈ 1, . . . , n : wi =
i

n(n+ 1)/2
. (8)

Completely analogously, we can define the OWAWmax operator that softens the
maximum operator. Its weights Wmax = 〈w1, . . . , wn〉 are defined as follows in
this paper:

∀i ∈ 1, . . . , n : wi =
n− i+ 1

n(n+ 1)/2
. (9)

Replacing the strict minimum and maximum operators in the traditional defini-
tions of fuzzy lower and upper approximation leads to the following more robust
definitions of OWA fuzzy rough sets:

∀x ∈ X : (R ↓OWA S)(x) = OWAWmin

y∈X
I(R(x, y), S(y)) (10)

∀x ∈ X : (R ↑OWA S)(x) = OWAWmax

y∈X
T (R(x, y), S(y)) (11)

We will use this OWA fuzzy rough set model, leading to the following three
quality measures:

∀x ∈ X : γL(x) = (R ↓OWA [x]d)(x), (12)

∀x ∈ X : γU (x) = (R ↑OWA [x]d)(x), (13)

and
∀x ∈ X : γLU (x) = (R ↓OWA [x]d)(x) + (R ↑OWA [x]d)(x) (14)



2.2 OWA-FRPS

Based on the quality measures γ defined in the previous subsection, we can
formulate an algorithm to find a good subset of instances. We obviously want
to select the instances with a high γ value and remove those with a low γ value,
but now the question raises what threshold to use.
The main idea of our approach is to use the γ values of all instances in X as
threshold. We calculate the leave-one-out training accuracy of the corresponding
reduced subsets of instances and select the threshold that corresponds to the
highest accuracy. More specifically, we carry out the following steps:

1. Calculate the γ(x) values for all instances x ∈ X.
2. Remove the duplicates among all these γ values, the final set of γ values,

which will all be considered as thresholds, is G = {τ1, . . . , τp}, p ≤ n.
3. For each of the thresholds τ ∈ G, consider the following subset: Sτ = {x ∈
X|γ(x) ≥ τ}.

4. Calculate the training leave-one-out accuracy of each of these subsets using
the LOO procedure in Algorithm 1.

5. Select the subsets Sτi1 , . . . , Sτis with the highest leave-one-out accuracy.
Note that multiple subsets can correspond to the same leave-one-out ac-
curacy.

6. Return the subset Smedian(τi1 ,...,τis ).

Algorithm 1 LOO, procedure to measure the training accuracy of a subset of
instances using a leave-one-out approach

Input: Reduced decision system (S,A ∪ {d}) (S ⊆ X).
acc← 0
for x ∈ X do

if x ∈ S then
Find the nearest neighbor nn of x in S \ {x}

else
Find the nearest neighbor nn of x in S

end if
if d(nn) = d(x) then
acc→ acc+ 1

end if
end for
Output: acc

We illustrate the algorithm with an example. Consider the decision system in
Table 1, with ten instances, two continuous features and one categorical feature.
The values γLU are given in the last column for each instance. There are no
duplicates, so the set of thresholds consists of the ten values in the last column
of Table 1. In Table 2, we show the corresponding subsets. In order to calculate
the training leave-one-out accuracy, we need the Euclidean distances between



the instances, which are given in Table 3. In the last two columns of Table 2, the
instances that are correctly classified using the subset Sτ are given, together with
the training accuracy. The subsets corresponding to the highest LOO training
accuracy are Sτ1 , Sτ3 and Sτ9 , and subset Sτ3 = {x1, x3, x5, x9} will be returned
by the OWA-FRPS algorithm.

Table 1. Decision system with 2 continuous features (a1 and a2) and one categorical
feature (a3). The class is given in column d and the value for the γLU measure is shown
in the last column.

a1 a2 a3 d γLU
x1 0.2 0.4 A 0 1.02
x2 0.3 0.3 A 1 1.016
x3 1 0 B 0 1.16
x4 0.7 0.9 B 1 1.07
x5 0.4 0.3 A 0 1.05
x6 0.3 0.6 A 1 1.01
x7 0.4 1 B 0 1.06
x8 0.3 0.2 B 1 1.15
x9 0.7 0.5 A 0 1.17
x10 0 0.1 A 1 1.14

Table 2. Thresholds τ considered in the OWA-FRPS algorithm and corresponding
subsets of instances Sτ .

Threshold τ Corresponding subset Sτ Correctly classified instances LOO training accuracy

1.02 {x1, x3, x4, x5, x7, x8, x9, x10} {x1, x5, x6, x9, x10} 0.5
1.016 {x1, x2, x3, x4, x5, x7, x8, x9, x10} {x5} 0.1
1.16 {x3, x9} {x1, x3, x5, x7, x9} 0.5
1.07 {x3, x4, x8, x9, x10} {x2, x4, x5} 0.3
1.05 {x3, x4, x5, x7, x8, x9, x10} {x4, x5, x9} 0.3
1.01 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} {x5, x9} 0.2
1.06 {x3, x4, x7, x8, x9, x10} {x2, x5} 0.2
1.15 {x3, x9, x10} {x3, x5, x7} 0.3
1.17 {x9} {x1, x3, x5, x7, x9} 0.5
1.14 {x3, x9, x10} {x3, x5, x7} 0.3

3 Experimental Evaluation

In this section we carry out an experimental evaluation to demonstrate the
benefits of OWA-FRPS over other PS methods.



Table 3. Euclidean distance between the instances

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x1 0.000 0.082 0.775 0.707 0.129 0.129 0.683 0.592 0.294 0.208
x2 0.082 0.000 0.726 0.712 0.058 0.173 0.707 0.580 0.258 0.208
x3 0.775 0.726 0.000 0.548 0.695 0.785 0.673 0.420 0.668 0.819
x4 0.707 0.712 0.548 0.000 0.695 0.645 0.183 0.465 0.622 0.843
x5 0.129 0.058 0.695 0.695 0.000 0.183 0.705 0.583 0.208 0.258
x6 0.129 0.173 0.785 0.645 0.183 0.000 0.624 0.622 0.238 0.337
x7 0.683 0.707 0.673 0.183 0.705 0.624 0.000 0.465 0.668 0.810
x8 0.592 0.580 0.420 0.465 0.583 0.622 0.465 0.000 0.645 0.606
x9 0.294 0.258 0.668 0.622 0.208 0.238 0.668 0.645 0.000 0.465
x10 0.208 0.208 0.819 0.843 0.258 0.337 0.810 0.606 0.465 0.000

3.1 Experimental Set-up

We use 28 datasets from the KEEL dataset repository5. The characteristics of
these datasets are listed in Table 4. As our main focus is to improve the accuracy
of NN, we compare OWA-FRPS with 12 PS algorithms that are most accurate
according to the study performed in [2]. Additionally, we also compare OWA-
FRPS to FRIS [13] with parameter value α = 10. In Table 5, we give an overview
of the algorithms we consider with references to the literature. Note that we use
three versions of the new OWA-FRPS algorithm, depending on which measure
is used to rank the instances.
For each dataset and PS method, we carry out the following 10 fold cross vali-
dation procedure. For each fold, we apply the PS method to the remaining folds
(the train data) and then let NN find the nearest neighbors of the test instances
in this reduced training set. We report the average classification accuracy, re-
duction and running time over the 10 folds.

3.2 Results

In Table 6, we show the average accuracy, reduction (the percentage of removed
instances) and running time (in seconds) over all datasets. First, we note that
on average, the OWA-FRPS-LU algorithm is more accurate than the other ver-
sions, which shows that both the lower and upper approximation contribute to
the quality assessment of the instances. All OWA-FRPS algorithms outperform
the state-of-the-art PS algorithms. From now on, we continue the analysis with
OWA-FRPS-LU, to which we simply refer to as OWA-FRPS. To test if the im-
provement is significant, we carry out the statistical Friedman test and Holm
post hoc procedure [21]. The Friedman ranks and the adjusted p-values of the
Holm post hoc procedure are listed in Table 7. The OWA-FRPS algorithm has
the best (i.e. lowest) rank. The low adjusted p-values confirm that OWA-FRPS
is significantly more accurate than the state-of-the-art PS algorithms.

5 www.keel.es



Table 4. Datasets used in the experimental evaluation with their number of instances
(#Inst.), number of features (#Feat.) and number of classes (#Cl.).

Name #Inst. #Feat. #Cl. Name #Inst. #Feat. #Cl.

appendicitis 106 7 2 housevotes 232 16 2
australian 690 14 2 iris 150 4 3
automobile 150 25 6 led7digit 500 7 10
balance 625 4 3 lymphography 148 18 4
bands 365 19 2 mammographic 830 5 2
breast 277 9 2 new thyroid 215 5 3
bupa 345 6 2 pima 768 8 2
crx 653 15 2 saheart 462 9 2
dermatology 358 34 6 sonar 208 60 2
ecoli 336 7 8 vehicle 846 18 4
glass 214 9 7 vowel 990 13 11
haberman 306 3 2 wine 178 13 3
hayesroth 160 4 3 wisconsin 683 9 2
heart 270 13 2 zoo 101 16 7

Table 5. Overview of the algorithms evaluated in the experimental study.

Name Description Reference

AllKNN NN based filter method [9]
CHC Evolutionary based wrapper method [3]
GGA Evolutionary based wrapper method [4, 5]
HMNEI Hit and miss network based filter method [16]
MENN NN based filter method [10]
ModelCS Tree-based filter method [17]
MSS Spatial-based filter method [18]
POP Spatial-based filter method [19]
RMHC Random mutation hill climbing wrapper method [7]
RNG Graph based wrapper method [8]
RNN NN based filter method [20]
SSMA Evolutionary wrapper method [6]
FRIS Fuzzy rough based filter method [13]
OWA-FRPS-LU New OWA-FRPS method based on the quality

measure that takes into account both the lower
and upper approximation

-

OWA-FRPS-L New OWA-FRPS method based on the quality
measure that takes into account the lower approx-
imation

-

OWA-FRPS-U New OWA-FRPS method based on the quality
measure that takes into account the upper approx-
imation

-



The reduction rate of the OWA-FRPS algorithms is about 30 percent, which is
not as high as some of the evolutionary PS methods, but as the focus of our
method is to improve the accuracy rather than reducing the storage needs, this
result is of less importance.
The running time is of more interest to us. OWA-FRPS is slower than 6 other
methods, but these methods have considerably lower accuracy rates. The run-
ning time of OWA-FRPS is shorter than the running times of the most accurate
PS methods, so although OWA-FRPS is a wrapper and obtains excellent accu-
racy results, it does not come with the extra computational cost that wrapper
PS methods typically have.

Table 6. Average results of the PS methods averaged over all datasets, ordered ac-
cording to performance. Reduction is the ratio of removed instances, running time is
given in seconds.

Accuracy Reduction Running Time

OWA-FRPS-LU 0.8087 CHC 0.9681 POP 0.0083
OWA-FRPS-L 0.8053 GGA 0.9391 MSS 0.0297
OWA-FRPS-U 0.7948 SSMA 0.9356 ModelCS 0.0306
RNG 0.7901 RNN 0.9111 MENN 0.0474
CHC 0.7893 RMHC 0.9015 FRIS 0.0576
ModelCS 0.7892 HMNEI 0.5383 AllKNN 0.0580
GGA 0.7863 MENN 0.4723 HMNEI 0.0714
AllKNN 0.7837 MSS 0.4632 OWA-FRPS-U 0.1834
SSMA 0.7828 OWA-FRPS-U 0.3462 OWA-FRPS-L 0.1880
FRIS 0.7808 AllKNN 0.3377 OWA-FRPS-LU 0.2031
RMHC 0.7799 OWA-FRPS-L 0.3247 RNG 2.6473
HMNEI 0.7785 OWA-FRPS-LU 0.2766 RNN 6.3661
POP 0.7741 RNG 0.2323 SSMA 14.9963
MENN 0.7705 ModelCS 0.1152 CHC 16.3427
MSS 0.7674 FRIS 0.0799 RMHC 18.2093
RNN 0.7614 POP 0.0484 GGA 42.9252

4 Conclusion and Future Work

In this paper, we proposed a new PS method based on the OWA fuzzy rough
set model, called OWA-FRPS. In order to select a subset of instances from the
training set that improves the classification of the NN classifier, OWA-FRPS
ranks the instances according to a OWA fuzzy rough measure, and then au-
tomatically selects a suitable threshold to select the final subset of instances.
An experimental evaluation on several datasets shows that our method achieves
accuracy rates that are better than those of state-of-the-art PS methods, and
moreover, OWA-FRPS is considerably faster.
As future directions, we would like to expand the use of OWA-FRPS for other



Table 7. Values of the statistics of the Friedman test and Holm post hoc procedure
that compares OWA-FRPS-LU to the state-of the-art algorithms. The second column
shows the Friedman ranks, the third column the Holm adjusted p-values.

Method Friedman Rank Adj. p-value

RNN 10 0.003846
MSS 10 0.004167
POP 9 0.004545
RMHC 8 0.005
FRIS 8 0.005556
MENN 7.5 0.00625
HMNEI 7 0.007143
SSMA 7 0.008333
AllKNN 7 0.01
GGA 7 0.0125
ModelCS 7 0.016667
CHC 6.5 0.025
RNG 6 0.05
OWA-FRPS-LU 4 -

classifiers like SVM and to improve OWA-FRPS for imbalanced datasets, that
is, datasets for which one class is significantly more present than the other [22,
23].
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