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ERKLÄRUNG  
Eigene Beiträge und veröffentlichte Teile der Arbeit 

Entsprechend §9 (1) der Promotionsordnung der Philipps-Universität Marburg (Fassung 

vom 15.07.2009) werden im Folgenden die eigenen Anteile an den einzelnen Kapiteln 

detailliert erläutert. 

Kapitel I: Transmedulla neurons in the sky-compass network of the 

honeybees (Apis mellifera) are a possible site of circadian input 

- Durchführung der Anti-Synapsin/Phalloidin Färbung (Abb. 1A &B und 

Abb. 3A), Farbstoffinjektion und Anti-GABA Färbung (Abb. 7 und Abb. 

8C) und Evaluation dieser Daten 

- Schemaerstellung Abb. 9 

- Korrektur des Manuskripts 

- Dieses Kapitel wurde in der hier vorliegenden Form (von 

geringfügigen editorischen Änderungen abgesehen) bei PLoS ONE 

veröffentlicht:  

Zeller, M., Held, M., Bender, J., Berz, A., Heinloth, T., Hellfritz, T., 

Pfeiffer, K. 2015. Transmedulla neurons in the sky compass network of 

the honeybee (Apis mellifera) are a possible site of circadian input. 

PLoS ONE 10: e0143244. DOI: 10.1371/journal.pone.0143244 

Kapitel II: Microglomerular synaptic complexes in the sky-compass network 

of the honeybee connect parallel pathways from the anterior optic 

tubercle to the central complex 

- Konzeption in Zusammenarbeit mit Prof. Dr. Keram Pfeiffer, Prof. Dr. 

Uwe Homberg und Prof. Dr. Wolfgang Rössler 

- Schemaerstellung, Rekonstruktion der Neuronentype (Abb. 1) 

- Durchführung der Anti-Synapsin/Phalloidin Färbung (Abb. 2C), aller 

Farbstoffinjektionen und Anti-GABA Färbungen (Abb. 5), sowie aller 

Elektronenmikroskopischen Aufnahmen und Rekonstruktionen (Abb. 

6 und 7)  

- Evaluation der Daten 

- Anfertigung von 71% der Abbildungen (Abb. 1, 2, 5, 6, 7) 

- Überarbeitung der Abbildungen 3 und 4 
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- Anfertigung des Manuskripts in Zusammenarbeit (Korrektur) mit Prof. 

Dr. Keram Pfeiffer 

- Dieses Kapitel wurde in der hier vorliegenden Form (von 

geringfügigen editorischen Änderungen abgesehen) bei Frontiers in 

Behavioral Neuroscience veröffentlicht:  

Held, M., Berz, A., Hensgen, R., Muenz, T.S., Scholl, C., Rössler, W., 

Homberg, U., Pfeiffer, K. 2016. Microglomerular synaptic complexes in 

the sky-compass network of the honeybee connect parallel 

pathways from the anterior optic tubercle tot he central complex. 

Frontiers in Behavioral Neuroscience. 10:186.  

DOI: 10.3389/fnbeh.2016.00186 

Kapitel III: Calcium imaging in tethered behaving honeybees 

- Konzeption aller Experimente und Setup Aufbau in Zusammenarbeit 

mit Prof. Dr. Keram Pfeiffer und Dr. Vivek Jayaraman 

- Anpassung und Etablierung des Protokolls 

- Durchführung aller Experimente 

- Konzeption der Auswertung in Zusammenarbeit mit Dr. Hannah 

Haberkern 

- Durchführung der gesamten Auswertung 

- Evaluation der Daten in Zusammenarbeit mit Prof. Dr. Keram Pfeiffer 

- Anfertigung aller Abbildungen 

- Anfertigung des Kapitels in Zusammenarbeit (Korrektur) mit Prof. Dr. 

Keram Pfeiffer 

- Dieses Kapitel wurde bis Promotionsabgabe nicht veröffentlicht 

Kapitel IV: Anatomical and ultrastructural analysis of the posterior optic 

tubercle in the locust Schistocerca gregaria 

- Konzeption aller Experimente in Zusammenarbeit mit Prof. Dr. Uwe 

Homberg 

- Einarbeitung von Kim Le 

- Betreuung der zugrundeliegenden Bachelorarbeit von Kim Le in 

Zusammenarbeit mit Prof. Dr. Uwe Homberg 

- Evaluation der Daten 

- Anfertigung aller Abbildungen 
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- Verfassen des Manuskripts in Zusammenarbeit mit Prof. Dr. Uwe 

Homberg (Korrektur) und Prof. Dr. Keram Pfeiffer (Korrektur) 

- Dieses Kapitel wurde in der hier vorliegenden Form (von 

geringfügigen editorischen Änderungen abgesehen) bei Arthropod 

Structure & Development veröffentlicht: 

Held, M., Le, K., Pegel, U., Dersch, F., Beetz, J.M., Pfeiffer, K., Homberg, 

U. 2020. Anatomical and ultrastructural analysis of the posterior optic 

tubercle in the locust Schistocerca gregaria. Arthropod Structure & 

Development. 58, 100971. DOI: 10.1016/j.asd.2020.100971 
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ABSTRACT 

Many insect species demonstrate sophisticated abilities regarding spatial 

orientation and navigation, despite their small brain size. The behaviors that are based 

on spatial orientation differ dramatically between individual insect species according 

to their lifestyle and habitat. Central place foragers like bees and ants, for example, 

orient themselves in their surrounding and navigate back to the nest after foraging for 

food or water. Insects like some locust and butterfly species, on the other hand, use 

spatial orientation during migratory phases to keep a stable heading into a certain 

direction over a long period of time. In both scenarios, homing and long-distance 

migration, vision is the primary source for orientation cues even though additional 

features like wind direction, the earth’s magnetic field, and olfactory cues can be 

taken into account as well. Visual cues that are used for orientational purposes range 

from landmarks and the panorama to celestial cues. The latter consists in diurnal 

insects of the position of the sun itself, the sun-based polarization pattern and intensity 

and spectral gradient, and is summarized as sky-compass system. For a reliable sky-

compass orientation, the animal needs, in addition to the perception of celestial cues, 

to compensate for the daily movement of the sun across the sky. It is likely that a 

connection from the circadian pacemaker system to the sky-compass network could 

provide the necessary circuitry for this time compensation.  

The present thesis focuses on the sky-compass system of honeybees and locusts. 

There is a large body of work on the navigational abilities of honeybees from a 

behavioral perspective but the underlying neuronal anatomy and physiology has 

received less attention so far. Therefore, the first two chapters of this thesis reveals a 

large part of the anatomy of the anterior sky-compass pathway in the bee brain. To 

this end, dye injections, immunohistochemical stainings, and ultrastructural 

examinations were conducted. The third chapter describes a novel methodical 

protocol for physiological investigations of neurons involved in the sky-compass system 

using calcium imaging in behaving animals. The fourth chapter of this thesis deals with 

the anatomical basis of time compensation in the sky-compass system of locusts. 

Therefore, the ultrastructure of synaptic connections in a brain region of the desert 

locust where the contact of both systems could be feasible has been investigated.  
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ZUSAMMENFASSUNG 

 Viele Insektenarten zeigen trotz ihrer geringen Gehirngröße komplexe 

Fähigkeiten zur räumlichen Orientierung und Navigation. Die Verhaltensweisen, die 

auf räumlicher Orientierung basieren, unterscheiden sich jedoch je nach Lebensweise 

und -raum erheblich zwischen den verschiedenen Arten. Nestgebundene Sammler, 

wie beispielsweise Ameisen und Bienen, orientieren sich nach ihrer Futter- und 

Wassersuche anhand ihrer Umgebung und navigieren zurück zu ihrem Nest. Manche 

Heuschrecken- und Schmetterlingsarten nutzen räumliche Orientierung hingegen, um 

während ihrer Migrationsphasen einen stabilen Kurs über eine längere Zeit in eine 

bestimmte Richtung zu halten. In beiden Szenarien, Rückkehr zum Nest und 

Langstreckenmigration, werden primär visuelle Informationen zur Orientierung 

verwendet. Zusätzliche Eindrücke beispielsweise von Windrichtungen, dem 

Erdmagnetfeld und olfaktorischen Informationen können jedoch mit einbezogen 

werden. Visuelle Orientierungshilfen reichen von Landmarken und dem Panorama bis 

hin zu Himmelsinformationen. Letztere bestehen bei tagaktiven Insekten aus der 

Position der Sonne, dem sonnenbasierten Polarisationsmuster und Gradienten in 

Intensität und Wellenlänge am Himmel, welche unter dem Begriff des 

Himmelskompasssystems zusammengefasst werden. Für eine zuverlässige 

Himmelskompass-orientierung muss das Tier jedoch nicht nur die Himmelssignale 

wahrnehmen, sondern auch die tägliche Sonnenbewegung mit einbeziehen. Es ist 

daher wahrscheinlich, dass eine Verbindung vom zirkadianen System zum 

Himmelskompasssystem das nötige Netzwerk für diese Zeitkompensation bieten 

könnte.  

Die vorliegende Arbeit behandelt das Himmelskompasssystem von 

Honigbienen und Heuschrecken. Es gibt bereits umfassende Verhaltensstudien über 

die Navigationsfähigkeiten von Bienen, wohingegen die zugrundeliegende 

Neuroanatomie und –physiologie bisher kaum untersucht wurden. Daher werden in 

den ersten zwei Kapiteln dieser Arbeit Studien vorgestellt, die große Teile der Anatomie 

des anterioren Himmelskompasssignalwegs im Bienengehirn beschreiben. Dazu 

wurden Farbstoffinjektionen, immunhistochemische Färbungen und ultrastrukturelle 

Untersuchungen durchgeführt. Das dritte Kapitel beschreibt ein neues 

Methodenprotokoll, in dem Calcium Imaging in sich verhaltenden Tieren etabliert 

wurde. Dabei waren Neurone, die am Himmelskompasssystem beteiligt sind, Ziel der 

physiologischen Untersuchungen. Das vierte Kapitel dieser Arbeit befasst sich mit der 
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anatomischen Grundlage der Zeitkompensation im Himmelskompasssystem. Hierbei 

wurde eine mögliche synaptische Verbindung der beiden Systeme auf 

ultrastruktureller Ebene in Wüstenheuschrecken untersucht.  

 

KAPITEL 1: TRANSMEDULLA NEURONS IN THE SKY-COMPASS NETWORK 

OF THE HONEYBEES (APIS MELLIFERA) ARE A POSSIBLE SITE OF 

CIRCADIAN INPUT 

 Honigbienen benutzen während ihrer Sammelflüge unter anderem ein 

Himmelskompasssystem, um zu ihrem Nest zurück zu finden. Auch sind sie dabei fähig, 

den täglichen Sonnenverlauf in ihre Orientierung mit einzubeziehen. Dies wurde bereits 

in vielen Verhaltensstudien nachgewiesen, wobei der Signalweg dahinter bisher 

unbekannt ist. Auch ist unklar, welche neuromodulatorischen Prozesse daran beteiligt 

sind. Das Ziel der Studie in diesem Kapitel war daher, die Eingangsneurone und die 

ersten Stationen des Himmelskompasssignalweges im Bienengehirn aufzudecken. 

Dazu wurden Farbstoffkristalle in verschiedene Regionen injiziert und die gefärbten 

Neurone anatomisch untersucht und kategorisiert. Darüber hinaus wurden in 

manchen Präparaten, zusätzlich zu den Injektionen, immunhistochemische Färbungen 

gegen verschiedene Neurotransmitter durchgeführt. Dies hatte zum Ziel, mögliche 

Verbindungen zum System der inneren Uhr zu finden und weitere neuromodulatorische 

Einflüsse auf das Kompasssystem zu charakterisieren. 

 Die Injektionen legten verschiedene Neuronentypen im Signalweg von der 

Retina bis ins Zentralgehirn offen, die anatomisch große Ähnlichkeiten zu bereits 

untersuchten Neuronen im Heuschreckengehirn aufweisen. Der Eingang des 

anterioren Himmelskompasssignalweges erfolgt in der Heuschrecke über die dorsale 

Randregion der Retina (DRA). Dies wurde hier in der Biene durch Injektionen in die DRA 

bestätigt, die eine direkte Verbindung von der DRA zur dorsalen Randregion der 

Medulla, ein Neuropil im optischen Lobus, offenbarten. Durch zusätzliche 

Injektionsfärbungen konnte der weitere Verlauf über Transmedulla Neurone in den 

Komplex der unteren Einheit (LUC) des anterioren optischen Tuberkels (AOTU) gezeigt 

werden. Die Transmedulla Neurone ziehen hierbei von dorsal nach ventral etwa bis zur 

Hälfte der Medulla, machen dann einen Knick und ziehen im anterioren optischen 

Trakt in den LUC des AOTU. Dort verzweigen sie in allen Untereinheiten, wobei sich das 

Verzweigungsmuster je nach Typ der Transmedulla Neurone unterscheidet. Von dort 

ziehen sowohl Intertuberkelneurone in den LUC auf der kontralateralen Seite, als auch 
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ein weiterer Neuronentyp in Richtung Zentralgehirn, wo sie in den Bulbi des 

Lateralkomplexes mit erstaunlich großen synaptischen Endigungen verzweigen. Auch 

diese Neuronentypen weisen in Bienen große Ähnlichkeiten zur Heuschrecke auf, 

wobei die Neurone anatomisch und zum Teil physiologisch bereits beschrieben 

wurden. Zusätzlich zu den Injektionsfärbungen wurden Phalloidinfärbungen und 

Antikörperfärbungen gegen Synapsin angefertigt, um die involvierten 

Neuropilstrukturen genauer visualisieren zu können. 

 Um neuromodulatorische Einflüsse auf das Kompasssystem zu untersuchen, 

wurde zusätzlich zu den Injektionen auch immunhistochemische Färbungen 

durchgeführt. Hierzu wurden Antikörper gegen das Neuropeptid pigment dispersing 

factor (PDF), das biogene Amin Serotonin (5HT) und das biogene Amin Ƴ-

Aminobuttersäure (GABA) verwendet. Das Neuropeptid PDF ist ein Ausgangssignal der 

inneren Uhr von Insekten. 5HT und PDF zeigten in Studien in Fliegen und Grillen 

zirkadiane Modulationseinflüsse im visuellen System. Da Doppelfärbungen oder 

räumliche Überlappungen auf einen modulatorischen Eingang ins Kompasssystem 

hindeuten könnten, wurden Injektionsfärbungen mit Antikörperfärbungen gegen 

diese Transmitter kombiniert. Tatsächlich wurden in der Medulla PDF- und 5HT-

immunoreaktive Fasern gefunden, die Verzweigungen in der gleichen Schicht 

aufwiesen, wie die Transmedulla Neurone. Es wurden keine Doppelfärbungen 

gefunden, jedoch eine räumliche Nähe der Neuronentypen, die auf eine mögliche 

Verschaltung der PDF- und 5HT-Neurone auf die Transmedulla Neurone entlang deren 

Neurite hindeutet. Die dorsale Randregion der Medulla und der LUC des AOTU waren 

dahingegen in beiden Antikörperfärbungen nicht markiert. Neben PDF und 5HT wurde 

auch eine Färbung gegen GABA vorgenommen. Dieser Transmitter ist bekannt für eine 

inhibitorische Wirkung auf Neurone im Insektengehirn und könnte eine weitere 

Modulation im Kompasssystem bewirken. Tatsächlich wurde auch in diesen Färbungen 

eine enge räumliche Nähe zu den Transmedulla Neuronen festgestellt. Im Gegensatz 

zu PDF und 5HT wurde GABA jedoch auch in der Randregion der Medulla gefunden. 

Wie auch bei den anderen beiden Antikörperfärbungen zeigte der LUC des AOTU 

keine Markierung. Zusammengefasst wurden in dieser Studie somit die Neurone des 

ersten Teils des Himmelskompasssystems von der DRA bis hin zum Zentralgehirn 

anatomisch beschrieben, sowie die involvierten Neuropile genauer charakterisiert. Die 

Transmedulla Neurone erwiesen sich hierbei als möglicher Ort, wo sowohl 

zeitkompensatorische als auch andere modulatorische Einflüsse in das Kompasssystem 
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gelangen könnten, was jedoch durch weitere Studien noch genauer untersucht 

werden sollte.  

 

KAPITEL 2: MICROGLOMERULAR SYNAPTIC COMPLEXES IN THE SKY-
COMPASS NETWORK OF THE HONEYBEE CONNECT PARALLEL 

PATHWAYS FROM THE ANTERIOR OPTIC TUBERCLE TO THE CENTRAL 

COMPLEX 

 Im vorangegangenen Kapitel und der dort vorgestellten Studie wurde die 

Anatomie des anterioren Himmelskompasssignalweges von der dorsalen Randregion 

des Komplexauges (DRA) bis hin zu den Bulbi im Zentralgehirn der Honigbiene 

beschrieben. Die anatomische Charakterisierung der involvierten Neurone wurde in 

diesem Kapitel weitergeführt. Dabei wurden die TuLAL1 Neurone, die heute TuBu 

Neurone genannt werden, von dem Komplex der unteren Einheit (LUC) des anterioren 

optischen Tuberkels (AOTU) zu den Bulbi des Lateralkomplexes durch 

Farbstoffinjektionen visualisiert. Eine Subpopulation der TuLAL1 Neurone verzweigt im 

medialen Bulbus, während eine andere Population im lateralen Bulbus endet. TuLAL1 

Neurone besitzen in beiden Bulbi einzigartig große synaptische Endigungen, die bereits 

in der Heuschrecke und Hummel beschrieben wurden. Aus diesen Studien ist ebenfalls 

bekannt, dass die synaptischen Partner der TuLAL1 Neurone GABA-erge 

Tangentialneurone (TL Neurone) sind. TL Neurone haben eine Verzweigung in den Bulbi 

und ziehen dann in die untere Einheit des Zentralkörpers, wo sie weitere Endigungen 

aufweisen. Der Zentralkörper ist Teil des Zentralkomplexes, eine Gruppe von Neuropilen 

im Zentralgehirn vieler Insekten, die als Integrationszentrum von Kompasssignalen 

beschrieben wurde. In der vorliegenden Studie wurde daher, zusätzlich zu den 

Injektionen, Antikörperfärbungen gegen GABA angefertigt. Dabei konnte die 

Erkenntnis aus der Heuschrecke, dass TuLAL1 Neurone in großen synaptischen 

Komplexen Endigungen von TL Neuronen umfassen, auch für Bienen gezeigt werden. 

Außerdem war es möglich die Anzahl dieser synaptischen Komplexe durch 

Phalloidinfärbungen kombiniert mit Antikörpermarkierungen gegen Synapsin in den 

beiden Bulbi beider Hirnhemisphären zu bestimmten. Um ein aussagekräftiges Bild der 

synaptischen Verschaltung innerhalb der Komplexe treffen zu können, wurden 

transmissions-elektronenmikroskopische Untersuchungen durchgeführt. Hierbei konnte 

ein Ergebnis aus der Heuschrecke bezüglich der synaptischen Polarität in Bienen 

ebenfalls beobachtet werden. In Bienen und Heuschrecken sind TuLAL1 Neurone in 
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den synaptischen Komplexen präsynaptisch, während die TL Neurone als 

postsynaptische Partner dienen. Zudem offenbarten die elektronenmikroskopischen 

Daten, dass einzelne Komplexe von Gliazellen umhüllt sind, was eine Art Isolation zur 

Umgebung darstellen könnte. Außerdem wurden verschiedene Synapsentypen 

divergenter Natur gefunden. Das bedeutet, dass eine präsynaptische aktive Zone auf 

mehrere postsynaptische Profile verschaltet. Diese synaptische Verschaltung deutet 

zusammen mit der isolierenden Gliaschicht auf eine schnelle und robuste 

Signalweiterleitung hin. Zusammengefasst zeigen die Ergebnisse in der Honigbiene 

eine hohe Ähnlichkeit zu denen in der Heuschrecke, obwohl die beiden Insektenarten 

in keiner nahen Verwandtschaft zu einander stehen.  

 

KAPITEL 3: CALCIUM IMAGING IN TETHERED BEHAVING HONEYBEES 

 Im dritten Kapitel steht die Entwicklung und Etablierung eines neuen Protokolls 

im Fokus, welches es ermöglicht Calcium Imaging Experimente durchzuführen, 

während die Honigbiene Laufverhalten zeigt. Die außergewöhnlichen 

Navigationsfähigkeiten von Bienen, die sich sowohl im Sammelflug, als auch im 

Schwänzeltanz wiederspiegeln, wurden in ethologischen Studien bereits vor über 70 

Jahren aufgedeckt. Während ihrer Sammelflüge sind Bienen und andere 

nestgebundene Insekten in der Lage durch Wegintegration und einem ausgeprägten 

visuellen Gedächtnis nach einem langen, kurvigen Suchflug auf direktem Weg zu 

ihrem Nest zurück zu finden. Dabei wird durch den Himmelskompass und zum Teil durch 

Landmarken die Richtung, in der das Nest liegt bestimmt, während ein 

Entfernungsmesser die Distanz speichert. In Bienen basiert der Entfernungsmesser auf 

dem optischen Fluss, den das Tier während des Flugs wahrnimmt, also die 

translationale Bewegung von Bildern über die Retina. Im Schwänzeltanz gibt die Biene 

die direkte Weginformation zu einer lohnenswerten Futterquelle an andere 

Sammlerinnen im Stock weiter, um diese dorthin zu rekrutieren. Dabei führt die 

tanzende Biene eine bestimmte Abfolge von Kreisen und Vibrationen in Form einer 

Acht durch, welche die Entfernung vom Stock und den Winkel der Futterquelle zur 

Sonne kodieren.  

 Obwohl dieses erstaunliche und mit der Tanzkommunikation einzigartige 

Verhalten der Bienen bereits seit langem bekannt und erforscht ist, ist der neuronale 

Hintergrund bisher weitgehend unerforscht. In den ersten beiden Kapiteln wurden Teile 

der involvierten Anatomie untersucht, während in diesem Kapitel eine Möglichkeit zur 
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physiologischen Untersuchung der beteiligten Neurone etabliert werden sollte. Dabei 

wurden verschiedene Aspekte berücksichtigt: die physiologische Methode sollte auf 

Grund des unbekannten Systems eine visuelle Untersuchung der Neurone zulassen. Da 

der anteriore Himmelskompasssehweg im Fokus stand sollte des Weiteren eine visuelle 

Stimulation während der Datenaufnahme möglich sein. Als dritter Punkt war die 

Bewegungsfähigkeit des Tieres von großem Interesse, da die meisten bisherigen 

physiologischen Untersuchungen des Sehsystems und des Himmelskompasses in 

Bienen und anderen Insekten an komplett fixierten Tieren durchgeführt wurde. Dies hat 

den Nachteil, dass etwaige zustandsabhängige Antworten von Neuronen nicht 

hervorgerufen und somit nicht aufgenommen werden können. Besonders im visuellen 

System wurde jedoch bereits gezeigt, dass sich die Zellantwort deutlich unterscheiden 

kann, wenn das Tier seinen Zustand, zum Beispiel von Stehen zu Laufen, ändert. All 

diese Anforderungen an die neue Methode führten zu einem innovativen Protokoll, 

bei dem Calcium Imaging in sich verhaltenden Tieren ermöglicht wurde. Hierzu 

wurden die Bienen mit dem Kopf an eine spezielle Halterung geklebt, wobei Augen, 

Beine und das Abdomen frei blieben. Im Verlauf des Projekts wurden zwei 

verschiedene Kalziumindikatoren getestet und in die Zielneurone des Bienengehirns 

eingebracht. Diese zeigen durch Fluoreszenzänderungen Unterschiede in der 

Kalziumkonzentration innerhalb der Zelle an, die durch neuronale Aktivität ansteigt. 

Nach erfolgreicher Farbstoffaufnahme durch die Zellen, wurden die Tiere dann auf 

einen Styroporball gesetzt, der auf einem Luftstrom schwebte und dadurch von der 

Biene in alle Richtungen gedreht werden konnte. Die Biene auf dem Ball wurde dann 

in die Mitte einer blauen LED Arena positioniert. Diese befand sich wiederum unter 

einem Zwei-Photonen Mikroskop, an dem Imaging Experimente durchgeführt wurden. 

Die Ballbewegung, die durch das Tier ausgelöst wurde, wurde mit einem 

Kamerasystem aufgenommen, um das Laufverhalten später auswerten zu können. 

Am Ende der Etablierungsphase war es möglich dem Tier verschiedene visuelle Reize 

zu zeigen und gleichzeitig sowohl die neuronale Antwort der injizierten Zellen, als auch 

das Laufverhalten aufzunehmen. Anschließend wurden die einzelnen Komponenten 

zeitlich synchronisiert und dann ausgewertet. Das etablierte Protokoll bietet somit 

einen neuen methodischen Ansatz, um neuronale Grundlagen im visuellen System der 

Honigbienen mit gleichzeitigen Verhaltensantworten zu erforschen.  
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KAPITEL 4: ANATOMICAL AND ULTRASTRUCTURAL ANALYSIS OF THE 

POSTERIOR OPTIC TUBERCLE IN THE LOCUST SCHISTOCERCA 

GREGARIA 

 Viele Erkenntnisse über den neuronalen Signalweg des Himmelskompasses 

stammen aus zahlreichen Studien an Wüstenheuschrecken. Vor allem die Perzeption 

und Weitergabe von polarisiertem Licht wurden hierbei in verschiedenen 

Neuronentypen physiologisch untersucht und die Zellen anatomisch beschrieben. 

Weitgehend unbekannt ist jedoch auch in diesem recht gut untersuchten Insekt, wie 

nötige Informationen zur Zeitkompensation in das System integriert werden. 

Vorangegangene Studien stellten die Hypothese auf, dass es eine Verbindung vom 

Zentrum des zirkadianen Zeitgebersystems, der sogenannten akzessorischen Medulla, 

zur Protozerebralbrücke, ein Neuropil des Zentralkomplexes, besteht. Der 

Zentralkomplex ist eine Gruppe von Neuropilen im Zentralgehirn, die als wichtige 

Integrationsstelle des Himmelskompasssystems gilt. Der mutmaßliche Kontakt zwischen 

Protozerebralbrücke und akzessorischen Medulla erfolgt nach der bestehenden 

Hypothese in einem kleinen Neuropil namens posteriorer optischer Tuberkel (POTU). 

Einzelzellableitungen und –färbungen, sowie Antikörperfärbungen gegen das 

Neuropeptid pigment dispersing hormone (PDH) zeigten, dass Neurone der 

Protozerebralbrücke im POTU wahrscheinlich ihre Eingangsregion haben, während 

PDH-immunreaktive Neurone möglicherweise Informationen von der akzessorischen 

Medulla in den POTU bringen und dort ihren Ausgang haben. In dem vorliegenden 

Kapitel wurde nun eine Studie angefertigt, in der die Anatomie des POTU genauer 

beleuchtet wurde. Dazu wurde aus immunhistochemischen Färbungen die 

durchschnittliche dreidimensionale Form des POTUs rekonstruiert. Außerdem wurden 

Semidünnschnitte angefertigt, um die Neurite, die den POTU mit anderen Hirnarealen 

verbindet, genauer darstellen zu können. Anschließend wurde die Ultrastruktur des 

Neuropils in transmissionselektronenmikroskopische Präparaten untersucht. Hierbei 

wurden synaptische Profile charakterisiert und die synaptische Polarität zwischen ihnen 

bestimmt. Anschließend wurde eine Immunogoldmarkierung gegen PDH 

durchgeführt, um synaptische Profile, die von Zellen der akzessorischen Medulla 

stammen identifizieren zu können. Darüber hinaus konnten Zellen, die den POTU mit 

der Protozerebralbrücke verbinden, durch Einzelzellfärbungen im Elektronenmikroskop 

sichtbar gemacht werden. All diese anatomischen Daten zum ultrastrukturellen 

Aufbau des POTUs bestätigten die Annahme, dass die Neurone der Medulla dort 
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präsynaptisch sind, also ihren Ausgang haben. Die untersuchten Zellen der 

Protozerebralbrücke hingegen erhalten im POTU ihren Eingang und leiten dann die 

Information in die Protozerebralbrücke, und somit in den Zentralkomplex, weiter. Somit 

konnten vorangegangene Annahmen bestätigt werden, was einen wichtigen Schritt 

zum Verständnis des zeitkompensatorischen Einflusses auf das Himmelskompasssystem 

liefert.  
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INTRODUCTION 
Goal-directed behavior of insects and other animals is guided by a 

combination of external cues and internal physiological states. External stimuli range 

from environmental factors like light, temperature, available water and food to 

species-specific determinants such as present mating partners, conspecifics, resource 

competitors, and predators. Internal physiological states that are motivators for 

directed behavior are for example hunger and thirst, reproduction phase, discomfort 

or pain, and the circadian rhythm. Those factors can elicit goal-directed behaviors of 

various complexity. One very basic behavior is escape behavior, either quickly from 

an approaching predator, or on varying time scales from unpleasant to even harmful 

conditions. Escape behavior can range from simple appearing short movements to 

very sophisticated long-term behavior. A quick escape jump due to a looming stimuli, 

as observed in flies or locusts, appears very simplistic and robust. In fact, this movement 

already comprises stimuli-dependent posture and leg movement adjustments and 

therefore allows for some flexibility regarding the escape direction (reviewed in Card, 

2012). If the escape motion contains for example a constant straight-line movement, 

the underlying processes are much more intricate. For that motion, the animal needs 

to update its current position over a longer period of time to keep a straight line away 

from the point of origin. The most impressive forms of goal-directed behavior in insects 

are long-distance migration and homing. Long-distance migration enables some 

insects to leave a place with unfavorable conditions, like harmful temperatures or food 

shortages, towards a better environment. Another sophisticated goal-directed 

behavior including demanding memory performances is homing behavior of central 

place foragers like bees and ants. Failing the task of finding home after foraging is 

often deadly for the individuals but also harmful for the colony in social insects. All 

those goal-directed behaviors, escape behavior, straight-line motion, long-distance 

migration, and foraging and homing, demand for a reliable spatial orientation system. 

 

SPATIAL ORIENTATION 

Spatial orientation requires a sense for the own body orientation in the 

environment in combination with the perception, processing, and integration of 

external sensory information to assess the own position during self-motion. Sensory 

information originates from different cues and insects as well as other animals are 

usually able to perceive multiple cues to make the system more robust. Utilizing more 
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than one cue might be physiologically more costly but it ensures a reliable orientation 

even when one cue is not available while it also increases the accuracy of the 

reference system. Sensory cues that can be used for spatial orientation are manifold, 

depending on the animal’s habitat and goal. Moths that are searching for a mating 

partner use for example olfactory cues in pheromone plums (Hansson, 1995). Dung 

beetles are able to use olfaction, visual cues but also mechanosensory information 

from steady winds for straight-line rolling of a dung ball (Tribe and Burger, 2011; Dacke 

et al., 2003; Dacke et al., 2012;cue Dacke et al., 2019). However, the most reliable 

sensory source for spatial orientation in most insects is vision, offering multiple reference 

types. They can range from local visual cues, like landmarks (Wehner et al., 1996), and 

distant visual cues, like the panoramic skyline (Collett, 2008), to global cues of the sky, 

like the sun, polarization pattern, the moon, stars, the Milky Way and spectral and 

intensity gradients (Wehner, 1984; Wehner and Müller, 2006; Dacke et al., 2004; Dacke 

et al., 2013; el Jundi et al., 2014; el Jundi et al., 2015). The usage of different cues from 

the sky are cumulated under the term “sky-compass orientation” which is used by 

many species, for example bees, locusts, ants, butterflies, and dung beetles. The 

complexity of the behaviors in which the same reference frame is used varies 

significantly between species. Dung beetles use primarily the sky compass to roll the 

dung ball in a straight line away from the dung pile and therefore away from 

competitors (Fig. 1A; Dacke et al., 2003; Dacke et al., 2012; Khaldy et al., 2018). 

Another form of spatial orientation is exhibited by bees and ants. As central place 

foragers, they have one nest they return to after foraging for food. The outbound route 

is often several hundred meters to many kilometers long and tortuous while the 

homebound path is in a shorter and straighter beeline (Fig. 1B). To achieve this path 

integration, central place foragers integrate visual cues with an odometer to build up 

a homing vector (Hoinville and Wehner, 2018). Homing ants and bees use celestial 

cues to gather directional information but take landmarks into account as well to fine-

tune their steering (Wehner, 2008; Grob et al., 2019). Recent studies showed 

furthermore, that ants calibrate their orientation system in learning walks by using the 

gradient information of the earth’s magnetic field (Fleischmann et al., 2018). Bees 

calculate the covered distance using the optic flow, meaning the motion of images 

over the retina to estimate the traveled distance (reviewed by Srinivasan, 2014). Ants 

estimate the walked distance primarily by utilizing a stride integrator but in some cases 

also by using optic flow information (Wittlinger, 2006; Pfeffer and Wittlinger, 2016). 

Spatial orientation is also the basis of long-distance migration in butterflies that use the 
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sky cues for orientation. Monarch butterflies migrate by millions every fall thousands of 

kilometers from Canada and the northern US to central Mexico to escape the cold 

winter. In spring, the next generations return back north, mainly relying on the sky 

compass for orientation (Fig. 1C; Mouritsen and Frost, 2002; Heinze and Reppert, 2011).  
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Fig. 1: Three examples of goal-directed behavior based on spatial orientation. A: straight-line 

orientation exhibited by the dung beetle Scarabaeus lamarcki under a natural sky. Colored 

lines indicate trajectories of four individual beetles with their balls with twenty rolling trajectories 

each. Adapted from Khaldy et al., 2018. B: Desert ants Cataglyphis fortis use path integration 

to walk back to the nest in a straight line after a tortuous outbound search for food. Adapted 

from Heinze et al., 2018, picture C. fortis ©M. Wittlinger. C: The monarch butterfly Danaus 

plexippus performs seasonal long-distance migrations, with one generation leaving North 

America towards Mexico during winter and the next generations migrating back in spring. 

©Xerces Society, picture D. plexippus ©M. Franzke  

Taken together, all those species demonstrate different behaviors but all are 

based on spatial orientation and at least partly on utilizing information from a sky 

compass. This thesis focuses on the sky-compass system of honeybees and locusts and 

therefore a more detailed introduction into the relevant sky-compass cues, as well as 

the ethology and neuroanatomy of those species is provided in the following sections.  

 

SKY-COMPASS SIGNALS 

The most prominent and by diurnal insects primarily used cue in the sky is the 

sun itself. If the sun is visible, insects use its position as a reference point for spatial 

orientation for the individual behaviors. The same is true at night for the moon or 

patterns at the night sky, like the Milky Way. These night sky cues have been shown to 

serve as a basing point for orientation in nocturnal insects, for example in some dung 

beetle species (Dacke et al. 2013). If the sun is obscured during the day, for example 

by clouds, many insects are able to resort to other cues. One important feature of the 

blue sky is the polarized light that forms a specific pattern. Physically, unpolarized 

sunlight can be described as transverse waves with the electric field components of 

the light oscillating in every possible direction perpendicular to the direction of 

propagation. If sunlight enters the earth’s atmosphere those oscillating waves get 

scattered by atmospheric molecules and particles in a way that polarizes the light, 

meaning one oscillation plane is predominant. This scattering phenomenon is called 

“Rayleigh scattering”, and leads to a polarization pattern in concentric circles 

perpendicular to the sun. With 75% oscillation in one plane, the highest degree of 

polarization is reached 90° away from the sun (Strutt, 1871; Brines and Gould, 1982). If 

polarization-sensitive insects see a blue patch of the sky, they are able to deduce the 

position of the sun from the specific orientation of the polarization pattern (Fig. 2A; 
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Wehner, 1989; Wehner, 2001; Homberg, 2004). Another physical property of the blue 

sky is the spectral or intensity gradient. Due to the light scattering in the atmosphere, 

short-wavelength light (300-460 nm) is relatively homogeneously distributed across the 

sky while the intensity of long-wavelength light (460-700 nm) is higher on the solar 

hemisphere than on the opposite sky hemisphere (Fig. 2B & C).  

Fig. 2: Illustrations of the celestial dome and physical properties of the blue sky. A: Rayleigh 

scattering of unpolarized sunlight in the earth’s atmosphere leads to a distinct pattern of the 

electric field vectors of partly polarized light. The pattern is arranged in concentric circles 

around the sun, with the highest degree of polarization 90° away from the sun (indicated in the 

thickness of the bars). ©K. Pfeiffer. B: Light scattering causes long-wavelength light, indicated 

by green color, to have a higher intensity in the solar hemisphere than in the anti-solar side. 

Short-wavelength UV light is distributed uniformly causing a spectral gradient across the sky with 

a higher chromatic contrast close to the sun. Adapted from el Jundi et al., 2014. 
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This leads to a spectral gradient with a higher ratio of long- and short-

wavelength light in the solar hemisphere than in the antisolar hemisphere that some 

insects can utilize for orientation purposes (Coemans et al., 1994; el Jundi et al., 2014).  

 

WESTERN HONEYBEE (APIS MELLIFERA) 

The Western honeybee is the main model organism used in this thesis. 

Honeybees are eusocial insects, living in a hive with up to 80,000 individuals. Their social 

network has a defined structure, with one queen as the only fertile female, a few 

hundred male drones in early summer during mating season, and sterile female worker 

bees (Fig. 3).  

 

Fig. 3: Morphology of the three castes in a honeybee colony. A: The queen bee is larger than 
the worker bees, especially due to the elongated abdomen. B: Female worker bee. C: Male 
drones are identifiable by their large eyes that are double the size of worker bee or queen eyes. 
The body size is between queen and worker bees. © A. Wild 

The worker bees fulfill different age-dependent tasks in the bee colony. After 

hatching, they operate first as nursing bees, cleaning and feeding the brood. Getting 

older, they shift to building honeycombs and covering the brood with wax. 20 days 

after hatching, worker bees transition from the inside of the hive to the outside world. 

First, they stay as guards at the nest entrance and then they start to forage, collecting 

water, pollen, and nectar. They forage until they reach their natural life expectancy 

of five to six weeks (reviewed by Kilani, 1999). Like other central place foragers, 

honeybees need a reliable orientation system to find their way home after a long 

tortuous outbound flight. Over 70 years ago, it has been shown in behavioral studies 

that bees utilize the position of the sun but are also able to resort to the polarization 

pattern of the blue sky and landmarks for orientation (von Frisch, 1949; Brines and 

Gould, 1979; Wehner et al., 1996). In addition to their foraging behavior, honeybees 

exhibit a remarkable and unique behavior that is based on spatial orientation as well: 

the waggle dance. Foraging bees that are returning from a worthwhile food source 

give important information to other forager bees in the hive through the waggle 
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dance, recruiting them to collect there as well. By walking and turning on the combs 

in a very distinct way, while vibrating with the abdomen, the dancing bee encodes 

multiple parameters that are tailored to that specific foraging path. The angle 

between the food source and the current position of the sun is encoded as well as the 

distance from the hive (von Frisch, 1949). The recruited bees learn all those information 

for spatial guidance in darkness in the hive, mainly over tactile input via vibrations of 

the dancing bee. That means the returning forager has to encode visual information 

from the outside world into vibrations and walking movements on vertical combs in 

the hive, while the recruits have to decode those the information and align them with 

visual input when they forage themselves. Even though the waggle dance has been 

described decades ago on a behavioral level and ethologists decoded the 

contained information, it is still vastly unknown how honeybees manage to precisely 

transition between those considerably different modalities. The underlying neural 

network is not discovered yet and therefore it is uncharted how and where the 

complex integration of visual and tactile processing, learning, and memory is taking 

place in the brain. Nevertheless, it is clear that those behaviors, foraging and the 

waggle dance, are based on spatial orientation (Menzel et al., 2005). Due to those 

behaviors, the honeybee is an unique model organism that has been in the focus of 

ethological investigations for some time but the underlying neural system is brought to 

the fore just recently. The general anatomy of the honeybee brain has been 

investigated in a couple of studies, leading to a coarse three-dimensional average 

shape atlas (Fig. 4; Brandt et al., 2005). In this thesis the neuroanatomy (chapter I and 

II) and physiology (chapter III) of neurons involved in the sky-compass system has been 

investigated on several levels and partly compared to other model organisms. 
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Fig. 4: Illustrations of the brain of the western honeybee Apis mellifera. A: Three-dimensional 

average shape atlas of major neuropils in the honeybee brain. Adapted from Brandt et al. 

(2005) and the insect brain database (insectbraindb.org) B: Frontal schematic drawing of the 

honeybee brain and prominent neuropils. AL: antennal lobe, CA: calyx, CBU: upper division of 

the central body, CBL: lower division of the central body, CX: central complex, DRA: dorsal rim 

area, LA: lamina, LO: lobula, LUC: lower unit complex of the anterior optic tubercle, ME: 

medulla, MEDRA: dorsal rim area of the medulla, PE: peduncle, RE: retina, VL: vertical lobe of 

the mushroom body. Scale bars = 500 µm. 
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DESERT LOCUST (SCHISTOCERCA GREGARIA) 

Desert locusts occur in two states: solitary and gregarious, with completely 

different behaviors and significant morphological distinctions (Fig. 5A & B). Solitary 

animals are for example nocturnal, while gregarious locusts are active and migrate 

during the day. Desert locusts are known to form swarms of millions of animals in their 

gregarious phase, migrating long distances across the desert of Africa and the Middle 

East. That migration appears seasonal to find new feeding grounds and mating 

partners (Fig. 5C; reviewed in Symmons and Cressman, 2001).  

Fig. 5: Morphology of solitary and gregarious desert locusts (Schistocerca gregaria) and 

migration map. A: Morphological comparison of nymphs in the gregarious (left side) versus the 

solitary stage (right side). Gregarious nymphs show an aposematic coloration, while solitary 

ones have a more concealing appearance. B: Morphological comparison between a male 

adult locust in the gregarious stage (left side), versus one in solitary stage (right side), with the 

gregarious one exhibiting a bright mustard yellow coloring, while the solitary locusts appear 

brown. A&B adapted from Burrows et al., 2011. C: Map of the seasonal migrations areas of 

desert locust swarms in northern Africa and the Middle East. Adapted from Symmons and 

Cressman, 2001. 
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How locusts keep a certain heading over a long distance has been 

investigated for over 70 years, with first behavioral observations suggesting, that the 

swarms are just flying downwind (Rainey, 1951). A behavioral study of flying tethered 

locusts showed later that the animals respond with a 180°-periodic turning movement 

to a dorsally rotating polarizer (Mappes and Homberg, 2004). This experiment 

demonstrated that locusts are not only able to perceive linear polarized light but also 

have a behavioral response to it. This suggests that locusts are capable of using 

information of the celestial polarization pattern for orientation purposes. Based on that 

hypothesis, numerous anatomical and physiological studies in the brain of locusts have 

been conducted, revealing distinct neuronal pathways for polarized light information 

as well as multitudinous involved neuron types and neuropils (Homberg, 2004; 

reviewed in Homberg, 2015). In many of those studies, the physiological response of 

polarized light sensitive neurons to short-wavelength UV and long-wavelength green 

unpolarized light has been investigated. On top of that, a detailed three-dimensional 

average shape atlas has been established for the locust brain (Fig. 6A; Kurylas et al., 

2008; von Hadeln et al., 2018). That opened the possibility to register neurons into the 

atlas to create a network model of the sky-compass pathway (for example el Jundi et 

al., 2010; von Hadeln et al., 2019). Taken all those studies together, earlier beliefs that 

locusts are migrating by just flying downwind are unlikely. The whole body of 

knowledge that has been acquired over the past years makes the desert locust the 

longest and most extensively investigated model organism for celestial compass 

orientation. However, many aspects of the sky-compass system are still unknown, 

especially the connection patterns on an ultrastructural level that are the basis for 

integration networks. Hence, a part of this thesis investigated the anatomy and 

ultrastructure of a neuropil of the sky-compass system called the posterior optic 

tubercle that has so far received less attention but might be important for the 

integration of time information into the network (chapter IV). 

 

THE SKY-COMPASS PATHWAY IN THE DESERT LOCUST 

In the desert locust, there are two sky-compass pathways described 

anatomically and to some extend physiologically through immunohistochemical 

labelings, dye injections, and single cell recordings. One is called the anterior sky-

compass pathway while the second one is the posterior sky-compass pathway (Fig. 

6B; el Jundi et al., 2010). Most neurons involved in both of them have been shown to 
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be sensitive to polarized light and other stimuli that imitate skylight information like an 

unpolarized green light spot mimicking the sun (Kinoshita et al., 2007; Pfeiffer and 

Homberg, 2007; el Jundi and Homberg, 2010; Pegel et al., 2018). The input of polarized 

light to this pathway is captured by a distinct region of the retina of the compound 

eyes called the dorsal rim area (DRA). Due to the aligned arrangement of the 

rhabdomeres of the receptor cells and other specializations of the ommatidia, the 

DRA is specialized in the perception of polarized light. From the receptor cells the 

information is brought to the dorsal rim area of the lamina (LADRA) via short visual 

fibers, while long visual fibers run through the lamina into the medulla where they 

branch in the dorsal rim are of the medulla (MEDRA; Schmeling et al., 2015). 

Transmedulla neurons transmit the input from the MEDRA further towards the central 

brain into the lower unit (LU) of a neuropil called anterior optic tubercle (AOTU; el Jundi 

et al., 2011). From there intertubercle neurons connect one AOTU to the tubercle of 

the contralateral brain hemisphere. In addition, tubercle-bulbs neurons (TuBu neurons, 

formerly called TuLAL neurons) run through the anterior optic tract (AOT) towards the 

lateral complex (LX), where they branch in two distinct subcompartements called the 

medial and lateral bulbs (MBU and LBU; Kinoshita et al., 2007; Pfeiffer and Homberg, 

2007; Träger et al., 2008). Regarding their size, the synaptic endings are remarkable 

with a diameter of up to 9 – 11 µm. They build large microglomerular synaptic 

complexes with tangential neurons of the central body (TL neurons) as postsynaptic 

partners. TL neurons bring the information into the lower division of the central body 

(CBL), a subcompartment of a neuropil group in the central brain called the central 

complex (CX; Müller et al., 1996; Träger et al., 2008; Heinze et al., 2009). This group 

consists of an upper (CBU) and a lower division of the central body (CBL), paired noduli 

(NO), and the protocerebral bridge (PB); but TL neurons only branch in the CBL. 

Different types of columnar, pontine, and tangential neurons interconnect all neuropils 

of the CX and the adjacent bilateral LX (Heinze and Homberg, 2008).  

The CX has been in the focus of numerous studies across different insect species 

for the last decade leading to astonishing findings about the role and the mechanisms 

of this neuropil group. Those studies showed that the CX plays for example a role in the 

integration of visual cues, especially spatial information from sky-compass cues like 

polarized light. In addition, a spatial representation of visual cues like landmarks has 

been demonstrated as well as spatial visual memory features. 
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Fig. 6: Illustrations of the brain of the desert locust Schistocerca gregaria and the two sky-

compass pathways. A: Three-dimensional average shape atlas of important neuropils within 

the locust brain. Adapted from Kurylas et al. (2008) and the insect brain database 

(insectbraindb.org). B: Frontal schematic diagram of the locust brain, showing the anterior sky-

compass pathway (blue) and the posterior sky-compass pathway (red) from the optic lobe to 

the central complex. The expanded diagram shows the connections in the posterior sky-

compass pathway of the posterior optic tubercles with each other and the protocerebral 

bridge. AME: accessory medulla, CA: calyx, CBL: lower division of the central body, CBU: upper 

division of the central body, LA: lamina, LADRA: dorsal rim area of the lamina, LO: lobula, LU: 

lower unit of the anterior optic tubercle, LX: lateral complex, ME: medulla, MEDRA: dorsal rim 

area of the medulla, PB: protocerebral bridge, PED: peduncle, POTU: posterior optic tubercle. 

Scale bars = 500 µm. 

The integration of visual input and the transformation into a spatial memory system 

leads to an output of directional control of walking or flight behavior of the CX 

(reviewed in Pfeiffer and Homberg, 2014; Turner-Evans and Jayaraman, 2016). 

The posterior sky-compass pathway runs to the MEDRA in parallel to the anterior 

one. From there, medulla tangential neurons connect the MEDRA with the accessory 

medulla (AME). Further downstream in the central brain, neurons from the AME project 

to the posterior optic tubercle (POTU), a small neuropil located laterally to the PB of 

the CX. Beyond that, the POTU is connected with the PB via tangential neurons of the 

protocerebral bridge (TB neurons), and via posterior intertubercle neurons (pTuTu) 

reciprocally with the contralateral counterpart. Except for the connections from the 

AME to the POTU, that have not been studied physiologically yet, all involved types of 

neuron are sensitive to the oscillation plane of polarized light (el Jundi and Homberg, 

2010; Beetz et al., 2015). How all those different parts of the sky-compass system are 

integrated with each other is not fully understood yet, therefore further anatomical 

and physiological studies of the cell-to-cell connection patterns are vital to uncover 

this complex network.  
 

CIRCADIAN RHYTHM AND TIME COMPENSATION 

A circadian rhythm describes an approximately 24-hour long, periodic, 

endogenous, self-sustaining rhythm of organisms, synchronized to the length of the 

day. There are, in some instances, huge changes in the physiological functions, 

endocrine systems, and behaviors like activity in the organism between periods, for 

example day versus night (reviewed in Numata et al., 2015). Periodically changing 
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environmental properties like light or temperature can act as “Zeitgeber”, shifting a 

period partly or entirely (Aschoff and Pohl, 1978). A circadian rhythm has been 

described across kingdoms, in animals, plants, fungi and even some bacteria (Saini et 

al., 2019). There are rhythmic processes that are not bound by a 24-hours length, for 

example infradian rhythms that are in some cases connected to the seasons, like in 

hibernation or the migration of certain animals (Lloyd and Stupfel, 1991).  

 The circadian rhythm is controlled and maintained by a circadian clock. Studies 

in cockroaches, fruit flies, and other insects showed that the center of the circadian 

clock is the AME and that its associated neurons function as pacemakers, influencing 

behaviors that are controlled by the circadian rhythm (reviewed by Helfrich-Förster et 

al., 1998; Homberg et al., 2003). Important neuropeptides, secreted in the circadian 

clock system, are pigment dispersing factors (PDF) which are encoded by the 

eponymous gene and closely related to the crustacean pigment dispersing hormone 

(PDH) family (Helfrich-Förster et al., 2000). The circadian clock in insects is not only 

important to synchronize the activity level with the preferred activity time of the day 

but also in some species to stabilize orientation behaviors. It has been shown that 

central place foragers like ants and honeybees who orient themselves with the help 

of sky-compass cues compensate for angular changes between the solar azimuth and 

the targeted direction in course of the day (reviewed by Lindauer, 1960; Wehner, 

1992). That holds true for the individual foragers but also for honeybees that 

communicate the position of food in relation to the sun to recruits via the waggle 

dance. Here, it has been shown that honeybees can dance inside the hive without 

seeing the sun in an updated and therefore correct direction over a period of several 

hours (Lindauer, 1954). Besides central place foragers, all insects that use the position 

of the sun over a longer period of time need to update their own position. Therefore, 

they need that time component in their orientation system to compensate for solar 

azimuth changes. Monarch butterflies, that use sky-compass cues to keep a certain 

heading, have to adjust their direction as well, otherwise they would not be able to 

migrate into a specific direction or to a specific place. Behavioral studies in monarch 

butterflies confirmed the ability to compensate for the azimuthal changes in the sun’s 

position (Mouritsen and Frost, 2002) and single cell recordings in locusts pointed 

towards time compensated neuronal responses (Pfeiffer and Homberg, 2007). 

However, how and where exactly the time compensating information is factored into 

the sky-compass system in the brain is still poorly understood. Therefore, chapter IV of 

this thesis focused on the ultrastructure of connections in the POTU and investigated 
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the linkage of the AME with the CX by using, inter alia, immunogold labeling 

techniques against PDH.  
 

SCOPE OF THIS WORK 
For many years, honeybees and locusts have been model organisms to study 

orientation behavior. In both species, behavioral responses to sky-compass cues have 

been recorded and therefore their ability to use them for their respective orientation 

movements has been demonstrated. While in locusts the different layers of the neural 

basis for sky-compass orientation have been investigated in numerous studies the 

picture changes in honeybees. Even though the waggle dance and in connection to 

that, the orientation capacities have been decoded decades ago, the neural system 

has so far received less attention. To this end, in the first study of this thesis the sky-

compass pathway in honeybees has been investigated at the anatomical level with 

dye injections and immunohistochemical methods from the DRA to the lower unit 

complex (LUC) of the AOTU (chapter I). The involved types of neuron are comparable 

to those in locusts and show high anatomical similarities between species. 

Furthermore, in one type of neuron, so called transmedulla neurons, an interesting 

anatomical feature has been identified. Those neurons run through a very specific 

layer of the medulla towards the AOTU. In the same layer PDF-immunoreactive fibers 

have been traced and show a strong overlapping staining pattern with the 

transmedulla neurons. This finding suggests that in that layer of the medulla the PDF-ir 

neurons could provide input from the circadian clock into the sky-compass system. 

The second study traced the pathway in honeybees further from the LUC of the AOTU 

towards the central body of the CX (chapter II). Here, bulk injections into the LUC, 

combined with an immunostaining against gamma-aminobutyric acid, revealed 

connections between TuLAL neurons, now called TuBu neurons, and TL neurons. The 

connection between the two neuronal types is outstanding in the sky-compass 

pathway due to the uncommon large size of the synaptic complexes in the bulbs of 

the LX. In addition to the investigation at the light microscopic level, a three-

dimensional model of the complexes has been generated. To investigate a possible 

cell-to-cell connection between the two neuronal types, the synaptic complexes were 

characterized on a cellular level by investigations with a transmission electron 

microscope. The third project of this thesis evolved around a new method to perform 

physiological studies on the sky-compass pathway in honeybees (chapter III). The aim 

was to establish calcium imaging in neurons of the sky-compass network while 
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tethered animals show walking behavior on a treadmill. For that, an innovative 

preparation protocol was developed as well as a novel setup in a multiphoton 

microscope. The successful establishment of this unprecedented approach in 

honeybees has been demonstrated by promising preliminary data. The last project 

was performed in desert locusts, more precisely in the posterior sky-compass pathway 

in the locust brain (chapter IV). This pathway has been described anatomically and 

for the most parts physiologically in previous studies. Due to anatomical data of 

overlapping branching patterns, it has been hypothesized that this pathway brings 

circadian clock information from the AME via the POTU into the CX. Here, it has been 

shown at the cellular level, that neurons from the AME containing PDH provide input 

into the POTU. Furthermore, the study showed that TB neurons are postsynaptic in this 

neuropil, meaning they receive input in the POTU. Together with a newly established 

three-dimensional average shape atlas of the POTU that has now been included in 

the locust standard brain, the last study of this thesis provides, as well as the other three 

studies, important details of the sky-compass pathways in honeybees and locusts. 

Furthermore, the established new method of calcium imaging in behaving honeybees 

provides a fruitful basis for further studies of that complex topic. 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

REFERENCES 
Aschoff, J., Pohl, H. 1978. Phase relations between a circadian rhythm and its Zeitgeber within 
the range of entrainment. Naturwissenschaften. 65, 80-84. DOI: 10.1007/BF00440545 
 
Beetz, J.M., el Jundi, B., Heinze, S., Homberg, U. 2015. Topographic organization and possible 
function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria. 
J. Comp. Neurol. 523:1589-1607. DOI: 10.1002/cne.23736 

Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege, H.C., Menzel, R. 
2005. Three-dimensional average-shape atlas of the honeybee brain and its applications. J. 
Comp. Neurol. 492:1-19. DOI: 10.1002/cne.20644 

Brines, M.L., Gould, J.L. 1979. Bees have rules. Science. 206:571-3. DOI: 
10.1126/science.206.4418.571 

Brines, M.L., Gould, J.L. 1982. Skylight polarization patterns and animal orientation. J. Exp. Biol. 
96, 69-91. 

Burrows, M., Rogers, S.M., Ott, S.R. 2011. Epigenetic remodeling of brain, body and behaviour 
during phase change in locusts. Neural Syst. Circuits. 1:11. DOI: 10.1186/2042-1001-1-11 

Card, G.M. 2012. Escape behaviors in insects. Curr. Opin. Neurobiol. 22:180-186. DOI: 
10.1016/j.conb.2011.12.009 

Coemans, M.A.J.M, Vos Hzn, J.J., Nuboer, J.F.W. 1994. The relations between celestial colour 
gradients and the position of the sun, with regard to the sun compass. Vision Res. 34, 1461-1470. 
DOI: 10.1016/0042-6989(94)90148-1 

Collett, T.S. 2008. Insect navigation: Visual panoramas and the sky compass. Curr. Biol. 22, 1058-
1061. DOI: 10.1016/j.cub.2008.10.006 

Dacke, M., Nilsson, D.E., Scholtz, C.H., Byrne, M.J., Warrant, E.J. 2003. Insect orientation to 
polarized moonlight. Nature. 424:33. DOI: 10.1038/424033a 

Dacke, M., Byrne, M.J., Scholtz, C.H., Warrant, E.J. Lunar orientation in a beetle. Proc. Biol. Sci. 
271:361-365. DOI: 10.1098/rspb.2003.2594. 

Dacke, M., Byrne, M.J., Smolka, J., Warrant, E., Baird, E.J. 2012. Dung beetles ignore landmarks 
for straight-line orientation. J. Comp. Physiol. A. 199, 17-23. DOI: 10.1007/s00359-012-0764-8 

Dacke, M., Baird, E., Byrne, M., Scholtz, C.H., Warrant, E.J. 2013. Dung beetles use the Milky Way 
for orientation. Curr. Biol. 23, 298-300. DOI: 10.1016/j.cub.2012.12.034 

Dacke, M., Bell, A.T.A., Foster, J.J., Baird, E.J., Strube-Bloss, M.F., Byrne, M.J., el Jundi, B. 2019. 
Multimodal cue integration in the dung beetle compass. PNAS. 116, 14248-14253. DOI: 
10.1073/pnas.1904308116 

el Jundi, B., Homberg, U. 2010. Evidence for the possible existence of a second polarization-
vision pathway in the locust brain. J. Insect Physiol. 56, 971-979. DOI: 
10.1016/j.jinsphys.2010.05.011 

el Jundi, B., Heinze, S., Lenschow, C., Kurylas, A., Rohlfing, T., Homberg, U. 2010. The locust 
standard brain: a 3D standard of the central complex as a platform for neural network analysis. 
Front. Syst. Neurosci. 3:21. DOI: 10.3389/neuro.06.021.2009 



32 
 

el Jundi, B., Pfeiffer, K., Homberg, U. A distinct layer of the medulla integrates sky compass 
signals in the brain of an insect. PLoS ONE. 6:e27855. DOI: 10.1371/journal.pone.0027855 

el Jundi, B., Pfeiffer, K., Heinze, S., Homberg, U. 2014. Integration of polarization and chromatic 
cues in the insect sky compass. J. Comp. Physiol. A. 200:575-89. DOI:10.1007/s00359-014-0890-6 

el Jundi, B., Foster, J.J., Byrne, M.J., Baird, E., Dacke, M. 2015. Spectral information as orientation 
cue in dung beetles. Biology Letters. 11:20150656. DOI: 10.1098/rsbl.2015.0656. 

Fleischmann, P.N., Grob, R., Müller, V.L., Wehner, R., Rössler, W. 2018. The geomagnetic field is 
a compass cue in Cataglyphis ant navigation. Curr. Biol. 28, 1140-1444. DOI: 
10.1016/j.cub.2018.03.043 

Grob, R., Fleischmann, P.N., Rössler, W. 2019. Learning to navigate – how desert ants calibrate 
their compass system. Neuroforum. 25:109-120. 
DOI: 10.1515/nf-2018-0011 

Hansson, B.S. 1995. Olfaction in Lepidoptera. Experientia. 51, 1003-1027. DOI: 
10.1007/BF01946910 

Heinze, S., Homberg, U. 2008. Neuroarchitecture of the central complex of the desert locust: 
intrinsic and columnar neurons. J. Comp. Neurol. 511:454-478. DOI: 10.1002/cne.21842 

Heinze, S. Gotthardt, Homberg, U. 2009. Transformation of polarized light information in the 
central complex of the locust. J. Neurosci. 29:11783-11793. DOI: 10.1523/JNEUROSCI.1870-
09.2009 

Heinze, S., Reppert, S.M. 2011. Sun compass integration of skylight cues in migratory monarch 
butterflies. Neuron. 69, 345-358. DOI: 10.1016/j.neuron.2010.12.025 

Heinze, S., Narendra, A., Cheung, A. 2018. Principles of insect path integration. Curr. Biol. 28, 
R1043-1058. DOI: 10.1016/j.cub.2018.04.058 

Helfrich-Förster, C., Stengl, M., Homberg, U. 1998. Organization of the circadian system in 
insects. Chronobiol. Int. 15, 567-594. DOI: 10.3109/07420529808993195 

Helfrich-Förster, C., Täuber, M., Park, J.H., Mühlig-Versen, M., Schneuwly, S., Hofbauer, A. 2000. 
Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in 
Drosophila melanogaster. J. Neurosci. 20:3339-3353. DOI: 10.1523/JNEUROSCI.20-09-03339.2000 

Hoinville, T., Wehner, R. 2018. Optimal multiguidance integration in insect navigation. PNAS. 
115:2824-2829. DOI: 10.1073/pnas.1721668115 

Homberg, U., Reischig, T., Stengl, M. 2003. Neural organization of the circadian system of the 
cockroach Leucophaea maderae. Chronobiol. Int. 20:577-91. DOI: 10.1081/CBI-120022412 

Homberg, U. 2004. In search of the sky compass in the insect brain. Naturwissenschaften. 91:199-
208. DOI: 10.1007/s00114-004-0525-9 

Homberg, U. 2015. Sky compass orientation in desert locusts – evidence from field and 
laboratory studies. Front. Behav. Neurosci. 9:346. DOI: 10.3389/fnbeh.2015.00346 

Khaldy, L., Tocco, C., Byrne, M., Baird, E., Dacke, M. 2018. Straight-line orientation in the 
woodland-living beetle Sisyphus fasciculatus. J. Comp. Physiol. A. DOI: 10.1007/s00359-019-
01331-7 

Kilani, M. 1999. Biology of the honeybee. CIHEAM. Pp: 9-24. 



33 
 

Kinoshita, M., Pfeiffer, K., Homberg, U. 2007. Spectral properties of identified polarized-light 
sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J. Exp. Biol. 210, 
1350-1361. DOI: 10.1242/jeb.02744 

Kurylas, A.E., Rohlfing, T., Krofczik, S., Jenett, A., Homberg, U. 2008. Standardized atlas of the 
brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333:125-145. DOI: 
10.1007/s00441-008-0620-x 

Lindauer, M. 1954. Dauertänze im Bienenstock und ihre Beziehung zur Sonnenbahn. 
Naturwissenschaften. 41:506-507.  

Lloyd, D., Stupfel, M. 1991. The occurrence and functions of ultradian rhythms. Biol. Rev. Camp. 
Physiol. Soc. 66:275-299. DOI: 10.1111/j.1469-185x.1991.tb01143.x 

Mappes, M., Homberg, U. 2004. Behavioral analysis of polarization vision in tethered flying 
locusts. J. Comp. Physiol. A. 190:61-68. DOI: 10.1007/s00359-003-0473-4 

Menzel, R., de Marco, R.J., Greggers, U. 2005. Spatial memory, navigation and dance behavior 
in Apis mellifera. J. Comp. Physiol. A. DOI: 10.1007/s00359-006-0136-3 

Mouritsen, H., Frost, B.J. 2002. Virtual migration in tethered flying monarch butterflies reveals their 
orientation mechanisms. PNAS. 99, 10162-10166. DOI: 10.1073/pnas.152137299 

Müller, M., Homberg, U., Kühn, A. 1996. Neuroarchitecture of the lower division of the central 
body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res. 288:159-176. DOI: 
10.1007/s004410050803 

Numata, H., Miyazaki, Y., Ikeno, T. 2015. Common features in diverse insect clocks. Zool.l lett. 
1:10. DOI: 10.1186/s40851-014-0003-y 

Pegel, U., Pfeiffer, K., Homberg, U. Integration of celestial compass cues in the central complex 
of the locust brain. J. Exp. Biol. 221: jeb171207. DOI: 10.1242/jeb.171207 

Pfeffer, S.E., Wittlinger, M. 2016. Optic flow odometry operates independently of stride 
integration in carried ants. Science. 353:1155-1157. DOI: 10.1126/science.aaf9754 

Pfeiffer, K., Homberg, U. 2007. Coding of azimuthal directions via time-compensated 
combination of celestial compass cues. Curr. Biol. 17, 960-965. DOI: 10.1016/j.cub.2007.04.059 

Pfeiffer, K., Homberg, U. 2014. Organization and functional roles of the central complex in the 
insect brain. Annu. Rev. Entomol. 59:165-84. DOI: 10.1146/annurev-ento-011613-162031 

Rainey, R.C. 1951. Weather and the movement of locust swarms: a new hypothesis. Nature. 
168, 1057-1060. DOI: 10.1038/1681057a0 

Saini, R., Jaskolski, M., Davis, S.J. 2019. Circadian oscillator proteins across the kingdoms of life: 
structural aspects. BCM Biol. 17:13. DOI: 10.1186/s12915-018-0623-3 

Srinivasan, M.V. 2014. Going with the flow: a brief history of the study of the honeybee’s 
navigational “odometer”. J. Comp. Physiol. A. 200:563-573. DOI: 10.1007/s00359-014-0902-6 

Strutt, J.W. 1871. On the light from the sky, its polarization and colour. Philos. Mag. 41:107-120. 
DOI: 10.1080/14786447108640452 

Symmons, P. M., Cressman, K. 2001. Desert Locust Guidelines: Biology and Behavior. Rome: 
Food and Agriculture Organization of the United Nations. 



34 
 

Träger, U., Wagner, R., Bausenwein, B., Homberg, U. 2008. A novel type of microglomerular 
synaptic complex in the polarization vision pathway of the locust brain. J. Comp. Neurol. 
506:288-300. DOI: 10.1002/cne.21512 

Tribe, G.D., Burger, B.V. 2011. Olfactory ecology. In Ecology and Evolution of Dung Beetles. Pp. 
87-106. Wiley-Blackwell. DOI: 10.1002/9781444342000.ch5 

Turner-Evans, D.B., Jayaraman, V. 2016. The insect central complex. Curr. Biol. 26, R453-R457. 
DOI: 10.1016/j.cub.2016.04.006. 

Vitzthum, H., Müller, M., Homberg, U. 2002. Neurons of the central complex of the locust 
Schistocerca gregaria are sensitive to polarized light. J. Neurosci. 22:1114-1125. DOI: 
10.1523/JNEUROSCI.22-03-01114.2002 

von Frisch,K.1949. Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen 
der Bienen. Experientia 5, 142–148. DOI:10. 1007/bf02174424 

von Hadeln, J., Althaus, V., Häger, L., Homberg, U. Anatomical organization of the cerebrum of 
the desert locust Schistocerca gregaria. Cell Tissue Res. 374:39-62. DOI: 10.1007/s00441-018-
2844-8 

von Hadeln, J., Hensgen, R., Bockhorst, T., Rosner, R., Heidasch, R., Pegel, U., Pérez, M.Q., 
Homberg, U. 2019. Neuroarchitecture of the central complex of the desert locust: tangential 
neurons. J. Comp. Neurol. 528:6. DOI: 10.1002/cne.24796 

Wehner, R. 1984. Astronavigation in insects. Annu. Rev. Entomol. 29:277-298. DOI: 
10.1146/annurev.en.29.010184.001425 

Wehner, R. 1989. Neurobiology of polarization vision. Trends Neurosci. 12:353-9. DOI: 
10.1016/0166-2236(89)90043-x 

Wehner, R., Michel, B., Antonsen, P. 1996. Visual navigation in insects: coupling of egocentric 
and geocentric information. J. Exp. Biol. 199, 129-140. 

Wehner, R. 2001. Polarization vision – a uniform sensory capacity? J. Exp. Biol. 204, 2589-2596. 

Wehner, R., Müller, M. 2006. The significance of direct sunlight and polarized skylight in the ant’s 
celestial system of navigation. Proc. Natl. Acad. Sci. 103:12575-12579. DOI: 
10.1073/pnas.0604430103. 

Wehner, R. 2008. The desert ant’s navigational toolkit: Procedural rather than positional 
knowledge. Navigation. 55, 101-114. DOI: 10.1002/j.2161-4296.2008.tb00421.x. 

Wittlinger, M., Wehner, R., Wolf, H. 2006. The ant odometer: stepping on stilts and stumps. 
Science. 312:1965-1967. DOI: 10.1126/science.1126912 

 

 

 

 

 



35 
 

 

 

 

 
 
 
 
 

CHAPTER I: 

TRANSMEDULLA NEURONS IN THE SKY-COMPASS NETWORK OF THE 
HONEYBEE (APIS MELLIFERA) ARE A POSSIBLE SITE OF CIRCADIAN 

INPUT 
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ABSTRACT 
Honeybees are known for their ability to use the sun’s azimuth and the sky’s 
polarization pattern for spatial orientation. Sky compass orientation in bees 
has been extensively stud- ied at the behavioral level but our knowledge 
about the underlying neuronal systems and mechanisms is very limited. 
Electrophysiological studies in other insect species suggest that neurons of 
the sky compass system integrate information about the polarization pattern 
of the sky, its chromatic gradient, and the azimuth of the sun. In order to 
obtain a stable directional signal throughout the day, circadian changes 
between the sky polarization pat- tern and the solar azimuth must be 
compensated. Likewise, the system must be modulated in a context specific 
way to compensate for changes in intensity, polarization and chromatic 
properties of light caused by clouds, vegetation and landscape. The goal of 
this study was to identify neurons of the sky compass pathway in the 
honeybee brain and to find potential sites of circadian and neuromodulatory 
input into this pathway. To this end we first traced the sky compass pathway 
from the polarization-sensitive dorsal rim area of the compound eye via the 
medulla and the anterior optic tubercle to the lateral complex using dye 
injec- tions. Neurons forming this pathway strongly resembled neurons of the 
sky compass path- way in other insect species. Next we combined tracer 
injections with immunocytochemistry against the circadian neuropeptide 
pigment dispersing factor and the neuromodulators serotonin, and γ-
aminobutyric acid. We identified neurons, connecting the dorsal rim area of 
the medulla to the anterior optic tubercle, as a possible site of 
neuromodulation and interac- tion with the circadian system. These neurons 
have conspicuous spines in close proximity to pigment dispersing factor-, 
serotonin-, and GABA-immunoreactive neurons. Our data therefore show for 
the first time a potential interaction site between the sky compass path- way 
and the circadian clock. 
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INTRODUCTION 
Honeybees possess a time-compensated sun-compass, which enables them to use the solar azi- muth, 
i.e. the horizontal component of the sun’s position, as a reference direction for navigation [1]. In his 
seminal studies, Karl von Frisch was able to show that bees can infer the solar azimuth from a patch of 
blue sky [2]. Using a polarizer von Frisch manipulated the bee’s orientation dur- ing waggle dances on 
a horizontal comb, showing for the first time polarization-sensitivity and its use for orientation in any 
animal [3]. Employing polarized light as a navigational cue in lieu of the sun is possible, because the 
scattering of sunlight in the atmosphere leads to a regular pat- tern of electric field vectors (E-vectors) 
that are oriented tangentially to concentric circles around the sun [4]. In addition, scattering leads to 
a chromatic and an intensity gradient across the sky [5, 6], both of which can be the source of 
directional information for orienting insects [7, 8]. Recent evidence from desert ants of the genus 
Cataglyphis shows that these animals can learn homing directions using only the sun as an 
orientational cue and later use this information to navigate solely by the polarization pattern and vice 
versa [9]. This suggests that the neuronal correlates of the sun-compass and polarization compass can 
either exchange information or that they are identical. The latter hypothesis is supported by the 
finding that the same neurons in the anterior optic tubercle of the locust that code for E-vector 
orientation of polarized light also code for the azimuthal position and wavelength of unpolarized light 
stimuli [10, 11]. Simi- larly, polarization-sensitive neurons in monarch butterflies and dung beetles 
also code for the azimuth of an unpolarized light stimulus, albeit wavelength sensitivity in these 
species is either lacking (monarch) or has not been tested (dung beetle) [12, 13]. Most insects, 
including honey- bees, perceive the E-vector of polarized light with a specialized dorsal rim area 
(DRA) of their compound eye [14]. As polarization-vision systems are normally homochromatic, 
perception of the color gradient and the direct sun light is performed with the remainder of the 
compound eye [10, 14]. It is currently not clear at which stage of the sky compass pathway these pieces 
of information are integrated, but electrophysiological data from locusts suggest that a central layer 
of the medulla might be important for this task [15]. 

In order for an animal to use the sun as a spatial reference cue throughout the entire day, it has to 
continuously update its orientation with respect to the changing solar azimuth. An intuitive 
demonstration of this time-compensation capability was provided by Martin Lindauer [16] who 
observed that bees that performed waggle dances for extended periods of time contin- uously updated 
their dancing directions to match the changing solar azimuth. In addition to compensating for changes 
in solar azimuth, a system that integrates polarized and unpolarized celestial cues also needs to 
compensate for potential cue conflicts that arise from changes in solar elevation. Such a 
compensation mechanism has been shown to be present in neurons of the anterior optic tubercle, but 
the underlying mechanisms are unknown [11]. A fundamental requirement for both types of time-
compensation is that neurons representing solar azimuth receive time information from neurons of 
the circadian clock. 

In the cockroach (Rhyparobia maderae) and the fruit fly (Drosophila melanogaster), some 
neurons of the accessory medulla that contain the neuropeptide pigment dispersing factor (PDF), 
have been shown to be the pacemakers of the circadian clock. [17–19]. PDF is an output signal of the 
insect circadian clock [20–22]. In honeybees the expression level of pdf mRNA shows a circadian 
rhythm both under light-dark and constant darkness conditions [23]. Both PDF and the biogenic 
amine serotonin (5-hydroxytrypamine, 5HT) have been shown to medi- ate circadian effects in the 
visual system of insects, including size changes of lamina monopolar neurons in the housefly [24], as 
well as sensitivity changes in visual interneurons of crickets [25–27] and ERGs of blowflies [28]. In 
honeybees, 5HT has been shown to modulate the sensi-tivity of visual interneurons in the lobula [29].  

 

There is now a large body of work regarding the navigational capabilities of honeybees with respect to 
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celestial cues, but beyond the level of the polarization sensitive photoreceptors of the DRA [30], 
neither the neural substrates nor mechanisms that underlie this sophisticated behav- ior are known. In 
other insect species the morphology and physiology of polarization-sensitive neurons in the brain 
have been studied in some detail, but a locus for time-compensation has not yet been identified. The 
goals of this study were to morphologically characterize the honey- bee sky compass pathway and to 
identify potential sites of interaction with the circadian clock within this pathway. 

METHODS 
Animals 
Honeybees (Apis mellifera) were obtained from hives maintained at the University of Marburg, 
Germany. Between April and October, bees were kept outdoors. In October, hives were moved to a 
greenhouse under natural light/dark conditions, temperatures between 20 and 25°C, and relative 
humidities between 60% and 80%. Bees could freely forage for ground pollen, honey water (20–
30% v/v), and water within a volume of 2 m x 2 m x 2 m. All experiments were per- formed on foraging 
worker honey bees collected outside the hive. According to the German animal welfare act, no 
approval is required for experiments on insects. 

Preparation 1 
Animals were cold anesthetized on ice or in the refrigerator. To immobilize the animals they were 
attached to a custom made holder using dental wax. The head capsule was opened fron- tally and 
trachea, air sacs and glands were removed to expose the brain. 

Mass dye injections 
To trace the sky compass pathway, we used mass injection of dextrans that were either coupled to 
fluorescent dyes (dextran Texas Red, 3000 MW, lysine fixable; dextran Alexa Fluor 488, 10000 MW, 
anionic, fixable) or to biotin (3000 MW, lysine fixable, Molecular Probes; all dex- trans: Molecular 
Probes, Eugene, USA). To stain photoreceptors of the dorsal rim area, the cor- nea and crystalline cone 
layer of the DRA were removed using a microscalpel. A tracer crystal was placed into the opening, 
which was then sealed with petroleum jelly to avoid desiccation. For injection into the anterior optic 
tubercle and the dorsal rim area of the medulla, intracellu- lar recording pipettes were pulled from 
borosilicate glass (inner diameter 0.75 mm, outer diam- eter 1.5 mm, Hilgenberg, Malsfeld, Germany) 
using a p-97 horizontal puller (Sutter Instrument, Novato, CA, USA) and broken to a tip diameter of 
approximately 5–30 μm. The tip of the pipette was dipped into petroleum jelly which allowed us to 
pick up a small tracer crystal. After removing the neural sheath above the target area, the handheld 
pipette was inserted into the brain to deposit the dye. Superficial excess dye was removed by extensive 
rins- ing with honey bee Ringer solution (in mM: NaCl 130, KCl 5, MgCl2 4, HEPES 15, Glucose 25, 
Sucrose 160). After the injection, the previously removed piece of cuticle from the head capsule was 
replaced and covered with a tissue soaked in bee Ringer. The animals were placed over- night in a 
moist chamber at 4°C to allow for tracer uptake and diffusion. 

Extracellular iontophoretical dye injections 
To stain small numbers of neurons (1–20) with processes in the anterior optic tubercle (AOTU), we 
used extracellular iontophoretical dye injections. Intracellular recording pipettes with resistances 
between 100 and 300 MO in the tissue were fabricated as described above.
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Electrode tips were filled with 4% Neurobiotin (Vector Laboratories Burlingame, USA) in 1 M KCl 
and backed with 1–2.5 M KCl. After removing the neural sheath, electrodes were frontally inserted 
into the AOTU using a micromanipulator (Leica Microsystems, Wetzlar, Germany). To eject the 
tracer, and to create an electroporating electrical field [31], we applied rectangular current pulses of 
10 nA amplitude with a frequency of 1 Hz and a duty cycle of 50% for 15 to 45 minutes, using a 
custom built amplifier. 

Preparation 2 
Brains were dissected from the head capsule during continuous submersion in fixative solution. Brains 
were then fixated overnight at 4°C. In some preparations, the entire head capsule was fixated 
overnight and the brain was removed the next day. Fixative solutions depended on the type of 
subsequent antibody staining and are listed in Table 1. Specimen that were not immu- nostained, 
were fixated in 4% paraformaldehyde, 0.2% glutaraldehyde, and 0.2% saturated pic- ric acid in 0.1 M 
phosphate buffered saline (PBS, pH 7.4). 
 
Biotin/streptavidin labeling 
In preparations where either Neurobiotin or biotinylated streptavidin was injected, neurons were 
visualized through incubation of the tissue with streptavidin conjugated to Cy3 (1:1000, Jackson 
Immunoresearch, West-Grove, PA, USA, RRID: AB_2337244). Streptavidin was applied for 3 to 5 
days in 0.1 M PBS, 0.3% TrX, and 0.02% sodium azide. In brains that under- went subsequent 
immunostaining, streptavidin was added to either the primary and secondary, or only the secondary 
antibody solution. 
 
Antibody characterization 
For immunolabeling, we used polyclonal antibodies against Apis mellifera pigment dispersing factor 
(NSELINSLLGLPKNMNNA-NH2, PDF), Uca pugilator β-pigment dispersing hormone 
(NSELINSILGLPKVMNDA-NH2, PDH), γ-aminobutyric acid (GABA), and serotonin 
(5-hydroxytryptamine, 5HT) and a monoclonal antibody against the synaptic vesicle protein 
synapsin (Table 1). 

The polyclonal PDF antiserum (kindly provided by Dr. M. Shimohigashi, Fukuoka Univer- sity, 
Japan) was raised in rabbits against synthetic Cys-attached Apis mellifera PDF, which was conjugated 
to keyhole limpet hemocyanin (KLH). Specificity of the antibody was tested using ELISA. No cross 
reaction was found to the PDFs of Bombyx mori or Gryllus bimaculatus, but about 20% cross reactivity 
was observed for the PDF of Musca domestica. In-situ hybridization, using an antisense cRNA probe 
that hybridized specifically to all types of pdf mRNA, labeled the same number of cell bodies (n = 14) 
in the same region as the polyclonal antibody did [23]. 

The polyclonal PDH antiserum (kindly provided by Dr. Heinrich Dircksen, Stockholm Uni- 
versity, Sweden, RRID:AB_2315088) was raised in rabbits against a glutaraldehyde conjugate of 
synthetic Uca pugilator pigment dispersing hormone and thyroglobulin [32]. This antiserum has been 
well characterized through ELISAs and immunoassays [32, 33]. It has been previously used to stain 
PDH-ir neurons in a large number of different insect species including the honey- bee [17, 34–36, 36–
39]. Staining patterns in the honeybee brain using either the PDF antiserum or the PDH antiserum are 
highly similar, with a slightly larger number of cell bodies stained by the PDH antibody [23, 37]. 

The polyclonal antiserum against 5HT was purchased from ImmunoStar (Hudson, NY, USA, 
Cat# 20080, RRID:AB_572263). It was raised in rabbit against 5HT conjugated to bovine serum 
albumin. According to the manufacturer’s datasheet this antiserum exhibited no cross reactivity to 5-
hydroxytryptophan, 5-hydroxyindole-3-acetic acid, or dopamine in Bn-SA/HRP 
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Table 1. Primary antibodies, dilutions and fixatives. 

 

GA, glutaraldehyde; GSA, glutathione-S-transferase; KLH, keyhole limpet hemocyanin; MBS, m-maleimidobenzoyl-N-hydroxysuccinimide ester; PA, 
picric acid; PFA, paraformaldehyde. 

 

doi:10.1371/journal.pone.0143244.t001 

 

labeling assays. Preadsorption of the antiserum with 5HT-BSA conjugate abolished, or strongly 
reduced immunoreactivity in bumblebee brains [40], while preadsorption with BSA had no effect on 
the staining [41]. The staining pattern in the optic lobe using this antiserum was virtu- ally identical 
to that described by Ehmer and Gronenberg [42], who used a different antiserum (DiaSorin, 
Stillwater, MN). 

The antiserum against GABA (kindly provided by Dr. T. G. Kingan, No. 9/24, RRID: 
AB_2314457) was raised in rabbit against GABA conjugated to KLH and has been affinity purified 
against KLH [43]. Preadsorption experiments on brain sections of Manduca sexta, and 
Schistocerca gregaria have previously demonstrated the specificity of the antiserum [43, 44]. 

The monoclonal antibody against the synaptic vesicle protein synapsin (kindly provided by Dr. E. 
Buchner Würzburg, Germany, SYNORF1, RRID: AB_2315425) was raised against fusion proteins 
of glutathione-S-transferase and Drosophila SYN1 protein [45] and has been used in many insect 
species, including honeybees, to label synaptic neuropils [45–49]. The specificity of the antibody has 
been characterized by Klagges et al. [45]. Drosophila synapsin null mutants (syn79) completely lack 
immunoreactivity [50]. 

 
Apis PDF immunohistochemistry on whole mount brains 
Brains were washed in PBS with 0.3% Triton X-100 (TrX, Sigma, Deisenhofen, Germany) and 
incubated overnight at 4°C in blocking solution containing 5% normal goat serum (NGS, Dia- nova, 
Hamburg, Germany), 0.3% TrX, and 0.02% sodium azide in PBS. After rinsing in PBS, brains were 
incubated for five days at 4°C with the primary antibody solution containing anti- PDF antiserum at 
a dilution of 1:1000, 1% NGS, 0.5% TrX and 0.02% sodium azide in PBS. After washing in PBS, 
brains were incubated for three days at 4°C with the secondary antibody solution. It contained goat 
anti-rabbit IgG conjugated to Cy2 (1:300, Dianova, Hamburg, Ger- many), 1% NGS and 0.5% TrX 
and 0.02% sodium azide in PBS. After several rinses in PBS, brains were dehydrated in an ascending 
ethanol series (25%, 50%, 70%, 90%, 95%, 100%, 15 min each) and transferred to a 1:1 mixture of 
100% ethanol and methylsalicylate for 30 min. Eventually they were cleared in methylsalicylate for 
at least 45 min and mounted between two coverslips using Permount (Fisher Scientific, Pittsburgh,

Antibody Raised against Raised Fixative Working  Source reference 
  in  dilution   

Anti-synapsin Drosophila SYNORF1-GSA 
fusion protein 
 

mouse 4% PFA, 0.2% 
saturated PA,  
0.25% GA 

1:50 Dr. E. Buchner, 
Würzburg, Germany 

Klagges et al. 1996, RRID: 
AB_2315425 
 

Anti-Apis pigment 
dispersing factor 
 

Apis PDF coupled to KLH  
with MBS 
 

rabbit 4% PFA 1:2000 Dr. M.  
Shimohigashi, 
Fukuoka, Japan 

Sumiyoshi et al. 2011 
 

Anti Uca pugilator 
pigment dispersing 
hormone 

conjugate of synthetic Uca 
pugilator β-PDH and bovine 
thyroglobulin 

rabbit 4% PFA, 7.5% 
saturated PA 
 

1:1000 Dr. H. Dircksen, 
Stockholm, Sweden 

Dircksen et al. 1987, RRID: 
AB_2315088 

Anti-5HT 5HT coupled to BSA with  
PFA 
 

rabbit 4% PFA, 7.5% 
saturated PA 

1:1000 ImmunoStar, Cat ImmunoStar; histochemical 
5HT antisera specification 
sheet, RRID:AB_572263 

Anti-GABA No. 9/ 
24; 
 

GABA coupled to KLH with  
GA 
 

rabbit 4% PFA, 0.5%  
GA 
 

1:500 Dr. T. Kingan Hoskins et al. 1986, RRID: 
AB_2314457 
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PA, USA). To avoid deformation of the brain, eight stacked hole reinforcements (Zweckform, 
Oberlaindern, Germany) were used as a spacer. 

PDH immunostaining on gelatin sections from rehydrated brains 
Brains were washed, dehydrated, cleared and mounted as described in the previous section. Tracer 
injection was evaluated using a fluorescence microscope (Zeiss Axioskop, Zeiss, Jena Germany) and 
brains with successful injections into the AOTU were selected for further pro- cessing. To recover 
the embedded brains, Permount was removed by incubation in xylene for 1–3 hours at room 
temperature. Following a descending ethanol series (100%, 95%, 90%, 70%, 50%, 25%) brains were 
washed in PBS, embedded in albumin/gelatin (12% ovalbumin, 4.8% gelatin in demineralized water) 
and fixated overnight at 4°C with 8% formaldehyde in PBS. Brains were sectioned at 130 μm in the 
frontal plane using a vibrating blade microtome (VT1200 S, Leica Microsystems, Wetzlar, Germany). 
After several washes in 0.01 M PBS with 0.3% TrX, sections were pre-incubated with 5% NGS, 
0.02% sodium azide and 0.01 M PBS with 0.3% TrX overnight at 4°C. The primary antibody solution 
was then applied for 5 days at 4°C. It contained PDH antiserum (1:1000), 1% NGS, 0.3% TrX, 0.02% 
sodium azide and 0.01 M PBS. After extensive rinses in 0.01 M PBS with 0.3% TrX, the secondary 
antibody solution was applied for 3 days at 4°C. It consisted of goat anti rabbit IgG conjugated to Cy2 
(1:200, Dia- nova, Hamburg, Germany), 1% NGS, 0.3% TrX, 0.02% sodium azide and 0.01 M PBS. 
After washing, dehydrating, and clearing, as described for the whole mount preparations, sections 
were mounted on microscopic slides using Permount and spacers. 

GABA and 5HT immunohistochemistry on gelatin sections 
Brains were embedded in albumin/gelatin and fixated overnight at 4°C with 8% formaldehyde in 
PBS and sliced in the frontal plane at a thickness of 40 μm using a vibrating-blade micro- tome 
(VT1200 S, Leica Microsystems, Wetzlar, Germany). 

For GABA immunohistochemistry, slices were washed with saline substituted Tris-buffer (SST; 
pH 7.4) containing 0.1% TrX. To reduce background fluorescence caused by Schiff’s bases as a 
result from glutaraldehyde fixation, free floating sections were treated for 10 minutes with 10 mg/ml 
NaBH4 and 0.1% TrX in 0.01 M phosphate buffer [51]. After rinsing with 0.1% TrX in SST, sections 
were pre-incubated for one hour at room temperature with 10% normal donkey serum (NDS; 
Dianova, Hamburg, Germany), 0.5% TrX and SST. The primary antise- rum against GABA was 
diluted 1:500 in a solution of 1% NDS, 0.02% sodium azide and 0.5% TrX in SST. Slices were 
incubated overnight at 30°C in an incubator. After washing in SST con- taining 0.1% TrX, the 
secondary antibody solution, which was composed of donkey anti-rabbit IgG Cy2 (1:200; Dianova, 
Hamburg, Germany) 1% NDS and 0.5% TrX in SST, was applied for one hour at room temperature. 
After washing with 0.1% TrX in SST sections were mounted on chrome-alum/gelatin-coated 
microscope slides, dehydrated in an ascending ethanol series and coverslipped using Entellan 
(Merck, Darmstadt, Germany). 

To label 5HT immunoreactive neurons, slices were washed in PBS. Unspecific binding sites were 
blocked for one hour at room temperature using 5% NGS in PBS containing 0.5% TrX. The primary 
antibody solution was applied for two days at 4°C and consisted of rabbit-anti- 5HT antiserum 
(1:2000, ImmunoStar, Cat No. 20080) 5% NGS, and 0.5% TrX in PBS. After several rinses in PBS 
containing 0.5% TrX, sections were incubated overnight at 4°C with goat anti-rabbit IgG conjugated 
to Alexa Fluor 488 (1:200; Molecular Probes, Eugene, OR), 5% NGS and 0.5% TrX in PBS. After 
rinsing in PBS, sections were mounted on chromalum/gelatin- coated microscope slides, dehydrated 
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in an ascending ethanol series and coverslipped using Entellan (Merck, Darmstadt, Germany). 

Synapsin/phalloidin staining 
For general observation of brain structures we combined f-actin labeling using phalloidin with anti-
synapsin immunostaining, as described previously by others [52, 53]. Brains were fixed in 4% 
paraformaldehyde in PBS at 4°C overnight. After washing in PBS, brains were embedded in 5% low-
melting point agarose (Typ I-A, low EEO, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and 
sectioned in the frontal plane at 100 μm using a vibrating blade microtome (VT1200 S, Leica 
Microsystems, Wetzlar, Germany). To increase antibody permeability, sections were treated with 
subsequent rinses in 2% TrX (10 min) and 0.2% TrX (2x10 min) at room tempera- ture. After pre-
incubation with 2% NGS, 0.2% TrX in PBS for 1 h at room temperature, sections were incubated for 3 
days at 4°C with the primary antibody solution containing anti-synapsin (1:50, SYNORF 1, RRID: 
AB_2315425), 2% NGS, and 0.2% TrX in PBS. After at least 5 rinses in PBS, the sections were incubated 
overnight at 4°C with a solution containing goat-anti-mouse antiserum conjugated to Cy3 (1:300, 
Dianova, Hamburg, Germany), 1% NGS and 0.2 units phal- loidin conjugated to AlexaFluor 488 (Life-
technologies, Thermo Fischer scientific Inc., Rockford IL, USA) in PBS (500 μl per brain). After five 
rinses in PBS, sections were transferred to 60% glyc- erol in PBS for at least 30 min, before they were 
mounted and coverslipped in 80% glycerol. 

 
Image acquisition and processing 
Fluorescence was detected using a confocal laser scanning microscope (Leica TCS SP5, Leica 
Microsystems, Wetzlar, Germany). Depending on the required resolution we used either a 10x or 20x 
oil immersion objective (HC PL APO 10x/0.40 IMM CS, HCX PL APO 20x/0.70 lmm Corr Lbd. bl.) 
or a 63x glycerin immersion objective (HCX PL APO 63X/1.3 GLY CORR CS 21; all Objectives: 
Leica). The fluorophores were excited using the following lasers and wave- lengths: Cy2/Alexa Fluor 
488, argon laser, 488 nm; Texas Red, helium neon laser, 594 nm; Cy5, helium neon laser, 633 nm. 
Image stacks were acquired at a z-step size of 3 μm (10x objective), 
1.5 μm (20x objective) or 0.5 μm (63x objective) and a resolution of 1024x1024 pixels per 
image. All scans were acquired at 200 Hz scanning frequency and a pinhole size of 1 Airy unit. 
Specimens containing more than one fluorophore were always scanned sequentially. 
All primary image processing on the data stacks was carried out using Amira 5.3.3 (FEI Visualization 
Sciences Group, Mérignac Cedex, France; RRID:nif-0000–00262). For 3D recon- struction of 
neuropils, data stacks were resampled to a voxel size of 3x3x3 μm3. Images were manually 
segmented based on background staining (medulla, lobula) or tracer injection (MEDRA) in selected 
slices of all three cardinal planes using the segmentation editor. The out- line of the entire neuropil 
was then interpolated using the wrapping function with each one sin- gle subsequential run of the 
shrinking and the smoothing function. 

The morphology of tracer injected neurons was visualized by intensity-based direct volume 
rendering using the voltex function. To remove background fluorescence, neuronal staining was 
segmented in each slice using a combination of threshold based and manual selection in the 
segmentation editor. The resulting labelfield was used to remove any background using the arithmetic 
function. 

In one preparation from an injection experiment (TuLAL1 neurons) image brightness and 
contrast were locally adjusted using Photoshop (Adobe Systems, San Jose, CA, USA) to visual- ize 
weakly stained projections in the lateral bulb. If not explicitly stated otherwise, confocal images of 
double labeling experiments show a single confocal section. 
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Axes and naming conventions 
All positional information is given with respect to the body axis, not the neuraxis. We followed the 
naming conventions for neuropils suggested by Ito et al. [54] wherever possible. This includes the 
designation “upper unit” rather than “major unit” (as suggested by Mota et al. [55]) for the large 
subcompartment of the anterior optic tubercle. To facilitate comparison with other species we coined 
the new term “lower unit complex” (abbreviated AOTU-LUC) embracing all small neuropils of the 
anterior optic tubercle (lateral unit and ventrolateral unit in honeybees, 55), as they seem to be 
functionally connected. For further details see Discussion. The names of neuron types were adapted 
from publications describing homologous neurons in other insect species (bumblebee: [56]; locust: 
[57, 58]; monarch butterfly: [59]). 
 

RESULTS 
Dorsal rim area of the medulla 
Using an antibody against the synaptic vesicle protein synapsin (syn-ir) and phalloidin, which binds 
to filamentous actin, we identified the dorsal rim area of the medulla (MEDRA) as a small neuropil 
area, at the dorsal edge of the medulla (Fig 1). It was not spatially separated from the medulla proper, 
but rather integrated into the outer medulla (Fig 1A). Syn-ir strongly labeled two distinct structures 
within the MEDRA. Most conspicuously, numerous processes entered the neuropil from dorsal 
(asterisks in Fig 1B) and terminated in large irregular swell- ings which were most likely the 
terminals of long visual fibers. At the ventral face of the MEDRA syn-ir labeled a band of granular 
appearance (arrowheads in Fig 1B). In the phalloidin staining the MEDRA was delineated by a darker 
outline (arrowheads in Fig 1B’). Tracer appli- cation to the dorsal rim area of the compound eye 
(DRA) showed that long visual fibers termi- nate exclusively in the MEDRA (Fig 1C). Additional 
injection of a different tracer into the lower unit complex of the anterior optic tubercle (AOTU-LUC) 
revealed overlapping branch- ing areas of DRA photoreceptors and transmedulla neurons throughout 
the MEDRA (Fig 1C). Based on the ramifications of these transmedulla neurons we created a 3D 
reconstruction of the MEDRA. In addition, the medulla proper was reconstructed based on 
background staining. The 3D reconstruction shows the MEDRA as an elongated structure which was 
located posteri- orly in the dorsal medulla (Fig 1D–1F). Transmedulla neurons branching in the 
MEDRA extended ventrally approximately half way to two thirds in the dorsoventral axis (Fig 1E, 
see also Fig 2A, 2B and 2D), but were present almost throughout the entire anterior-posterior axis 
(Fig 1F). Double labeling of syn-ir and transmedulla neurons stained through tracer injection into the 
AOTU-LUC, revealed that a narrow layer, highlighted by syn-ir, corresponded to the layer in which 
the transmedulla neurons ran (Figs 1A and 2B–2B” arrows). Closer inspection showed that the syn-
ir was in close proximity to the transmedulla neurons, but did not coloca- lize with them suggesting 
synaptic output of yet unknown neurons onto the transmedulla neu- rons (Fig 2C–2C”). 
The cell bodies of the transmedulla neurons were located between the outer face of the 
medulla and the inner face of the lamina (Fig 2A, asterisk). The primary neurite entered the medulla 
and gave off two branches approximately in the middle of the neuropil. A presumably axonal branch 
projected through the 2nd optic chiasm and the lobula to the AOTU-LUC. The other, presumably 
dendritic, neurite ran along the innermost layer of the outer medulla to the MEDRA, where it gave 
rise to an extensive field of arborizations. For a closer morphological investigation of this type of 
neuron, we used extracellular iontophoretic dye injections into the AOTU-LUC, which allowed us to 
stain small numbers of transmedulla neurons (Fig 2D–2F). The extensive ramifications within the 
MEDRA of only two individual neurons suggest input from numerous photoreceptors of the DRA 
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Fig 1. Input layer of the honeybee sky compass system: dorsal rim area of the medulla (MEDRA). (A) Confocal image of 
anti synapsin (syn-ir, magenta) and phalloidin (green) labeled frontal section of the honeybee optic lobe. Arrows mark a distinct 
layer within the dorsal half of the outer medulla (OME). (B) Maximum intensity projection (20 slices, z-pitch: 0.5 μm) of the MEDRA 
shows strongly synapsin-ir labeled terminals, probably of long visual fibers, entering the MEDRA at its dorsal edge (asterisks). 
Additionally a granular band of unknown origin shows strong synapsin immunoreactivity (arrowheads). (B’) Phalloidin labeling in 
the dorsal medulla shows a clear delineation of the MEDRA by a darker border (arrowheads). (B”) Overlay of B and B’. (C) Double 
injection of dextran-Alexa488 (Dex-A488, green) into the dorsal rim area of the compound eye and dextran Texas Red (Dex-TR, 
orange) into the AOTU-LUC shows common projection area of DRA-photoreceptor terminals and transmedulla neurons of the 
anterior optic tubercle in the MEDRA. (D-E) 3D-reconstruction of the medulla (gray) and the MEDRA (orange) based on whole 
mount background staining and dextran Texas Red injection into the AOTU-LUC. (D) Posterior-median view. The MEDRA is an 
elongated structure at the dorsal posterior edge of the medulla. (E) Frontal section through medulla shows a thin layer that is 
defined by transmedulla neurons branching out in the MEDRA. Neurons were stained by injection of biotinylated dextran (Dex-B, 
gray) and labeling with streptavidin-cy3. (F) Ventral view of the same preparation as in D shows that the layer of transmedulla 
neurons extends almost from the anterior to the posterior end of the medulla. IME, inner medulla; LA, lamina; LO, lobula. Cartoons 
illustrate injection site. Scale bars: 200 μm in A; 30 μm in B; 100 μm in C-F. 

 

doi:10.1371/journal.pone.0143244.g001 



Circadian Input to the Sky Compass of Bees 

 

46 
 

 
 

 
Fig 2. Transmedulla neurons: Ramifications within the medulla. Tracer injection into the lower unit of the anterior optic 
tubercle labels transmedulla neurons within a thin layer of the dorsal half of the medulla (ME) which extend into the dorsal rim area 
of the medulla (MEDRA). (A) Direct volume rendering of dextran Texas Red labeling superimposed on synapsin-ir slice. The neurons 
have their cell bodies at the distal face of the medulla (asterisk), branch in the MEDRA, run through a thin layer within the medulla 
and enter the 2nd optic chiasm. (B) Transmedulla neurons, labeled through Dex-TR injection into the AOTU-LUC, lie in the same 
layer (arrows) as a narrow band of synapsin-ir (cyan). (C) Higher magnification/resolution shows that synapsin-ir punctae are 
next to, but not identical to swellings of the transmedulla neurons, suggesting synaptic input onto the latter. (D-F) Direct volume 
rendering of two neurobiotin- injected sibling transmedulla neurons. (D) Extracellular iontophoretic injection of Neurobiotin into the 
AOTU-LUC labeled with streptavidin-Cy3 shows two sibling transmedulla. From an extensive meshwork of branches within the 
MEDRA, a single, unbranched neurite runs in dorsoventral direction through the medulla. (E, F) Higher magnification/resolution 
images of MEDRA (E) and a more ventral part of the neurite running dorsoventrally through the medulla (F). Arrows indicate small 
processes both medially and laterally of the neurite. LA, lamina; LO, Lobula. All views in frontal plane. Scale bars: 100 μm in A, B, 
and D; 20 μm in C, E, and F. 

 
doi:10.1371/journal.pone.0143244.g002 

 
(Fig 2E) onto each neuron within the population. Higher resolution imaging of the neurites showed 
studding with spine-like appendages that extended both laterally and medially suggesting input not 
only in the MEDRA but along the entire dorsoventral extent of the neurite (arrows Fig 2E and 2F). 
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Anterior optic tubercle 
To identify the target neuropil of the transmedulla neurons, we injected dextran Texas Red into the 
MEDRA. Central projections were exclusively found in the AOTU. We therefore investigated the 
AOTU using syn-ir/phalloidin labeling to get a better understanding of its ana- tomical fine structure. 
As shown previously by Mota et al. [55] the AOTU-LUC is not a contin- uous neuropil, but is further 
segmented into a lateral unit and a ventrolateral unit (Fig 3A). 
Beyond these two main compartments, syn-ir/phalloidin labeling revealed further segmenta- tion 
into a complicated aggregation of numerous small subregions with irregular shape (Fig 3A–3A”). 
Tracer injection into the MEDRA further confirmed this observation: each subcom- partment was 
innervated by a different fascicle given off by the anterior optic tract (Fig 3B– 3D). In each individual 
preparation, we found staining in a different set of subcompartments that were usually in close spatial 
proximity to each other, suggesting a spatial mapping between the medulla and the subcompartments 
of the AOTU-LUC. A large, highly stained area around the injection site, however, precluded the 
systematic investigation of such a spatial mapping. 
Compartmentalization of the AOTU-LUC was also observed when injecting dye directly into this 
neuropil and observing the projections within the complementary neuropil on the contralateral side. 
We were able to identify three morphological types of heterolateral interneu- ron interconnecting the 
AOTU-LUC of both sides through the intertubercle tract (Fig 4A–4C). Following the naming 
conventions in other insects this type of neuron was termed tubercle- tubercle neuron 1 (TuTu1) [57–
59]. The first subtype (TuTu1a, Fig 4A and 4A’) entered the AOTU with its main neurite between 
the dorsal and ventral lobe of the upper unit and then branched almost exclusively in the dorsalmost 
compartment of the AOTU-LUC (termed lat- eral unit by Mota et al. [55]). The second and the third 
subtype (TuTu1b, Fig 4B and 4B’ TuTu1c, Fig 4C and 4C’) also entered the AOTU from median, but 
their neurites first bent dor- sally and subsequently deflected downwards where they gave rise to 
several large sidebranches that then innervated several subcompartments within the ventral two thirds 
of the AOTU-LUC (collectively termed ventrolateral unit by Mota et al. [55]). While the ramifications 
of these two subtypes generally overlapped, the dorsal field of ramifications was dense in TuTu1b 
neurons (Fig 4B, green arrows) and sparse in TuTu1c neurons (Fig 4C, white arrow), whereas the 
oppo- site was true for the ventral ramification area. Both types seemed to spare the neuropil area 
that was innervated by TuTu1a neurons. In all three types of neuron the distribution of pro- cesses 
within the AOTU-LUC appeared similar in the ipsilateral and contralateral brain hemi- sphere (S1 
Fig). 

Central projections 
Most successful dye injections into the AOTU-LUC stained neurons that projected through the 
AOTU-LAL tract around the vertical lobe of the mushroom body. As the tract deflected downwards 
the fibers segregated into a medial and a lateral fascicle projecting to two focal areas in the vicinity 
of the central complex termed the lateral and medial bulb (Fig 4D and 4E). According to the naming 
conventions in desert locusts these neurons were termed TuLAL1a if they projected to the lateral 
bulb and TuLAL1b, if they projected to the medial bulb [57, 60]. The presynaptic terminals of 
TuLAL1 neurons were conspicuously large having a diameter of up to 8 μm. To check whether the 
projections within the medial and the lateral bulb were asso- ciated with specific compartments of the 
AOTU-LUC, we analyzed the subtypes of TuTu1 and TuLAL1 neurons that were stained in the same 
brains. Most injections that predominantly labeled projections in the lateral bulb also stained TuTu1a 
neurons in the contralateral 
AOTU-LUC, suggesting that the dorsalmost compartment of the AOTU-LUC (lateral unit) is 
connected to the lateral bulb. Likewise injections labeling projections in the medial bulb usually 
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Fig 3. Transmedulla neurons: Ramifications within the lower unit complex of the anterior optic tubercle (AOTU-LUC). (A) 
Confocal image of synapsin-ir (syn-ir, magenta) and f-actin labeling (phalloidin, green) of the anterior optic tubercle. The AOTU-LUC 
has been previously divided into the lateral unit (lat. U) and the ventrolateral unit (vlat. U) [55]. Synapsin/phalloidin labeling reveals 
that these two units are further structured into a complicated assembly of multiple small subcompartments. B-D) Direct volume 
rendering of AOTU-LUC projections from transmedulla neurons labeled through dextran Texas Red (Dex-TR) injection into the 
MEDRA. In each sample a different combination of focal projection areas is stained. Cartoon in (B) illustrates injection site. B’-D’) 
Single confocal sections (B’, C’) and maximum intensity projection of 10 adjacent slices (D’) of the neurons shown in B-D, 
combined with anti-synapsin labeling (grey). Projections from MEDRA neurons are exclusively found in the AOTU-LUC. AOT, 
anterior optic tract; UU, upper unit of the anterior optic tubercle. All views in frontal plane. All scale bars: 30 μm. 

doi:10.1371/journal.pone.0143244.g003 

 
also stained TuTu1b and/or TuTu1c neurons, suggesting a link between the ventral compart- ments 
of the AOTU-LUC (ventrolateral unit) and the medial bulb. 

Transmedulla neurons are in close proximity to PDF-ir, 5HT-ir and  
GABA-ir fibers 
The neuropeptide pigment dispersing factor (PDF) has been shown to be an output signal of the 
insect circadian clock [20–22]. To locate possible sites of interaction between the circadian clock and 
the sky compass network, and thus potential neural substrates for time-compensation, we used an 
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Fig 4. Central projections of neurons in the lower unit complex of the anterior optic tubercle (AOTU-LUC). (A-E) 
Neurobiotin (NB) injection into the AOTU-LUC reveals central projection areas. Cartoon in A illustrates injection site. (A-C) 
Direct volume rendering from projections in the contralateral AOTU-LUC shows three morphologically different types of TuTu1 
neuron (TuTu1a, TuTu1b, TuTu1c). (A’-C’) Maximum intensity projections of six (A’) or three (B’, C’) adjacent slices from 
preparations shown in A-C, combined with anti-synapsin labeling (syn-ir, grey). (A’) TuTu1a neurons connecting only the dorsal 
areas of the AOTU-LUC. (B’, C’) Two similar types of TuTu1 neuron with ramifications in the ventral and median areas of the 
AOTU-LUC. These neurons had dense (green arrows) and sparse (white arrows) ramification areas. While TuTu1b neurons 
ramified densely within their dorsal, and sparsely within their ventral branching areas (B’), the opposite was true for TuTu1c 
neurons (C’). (D, E) Projections of TuLAL1 neurons from the AOTU-LUC to the medial and lateral bulb. (D) Overview (direct 
volume rendering) shows course of the axons which run within the AOTU-LAL tract. The tract separates into two fascicles that 
innervate the lateral or the medial bulb (LBU, MBU), respectively. The cell bodies of TuLAL1 neurons were located medially 
of the AOTU (asterisk). Also stained are axons of TuTu1 neurons that run in the intertubercle tract (ITT). (E) Direct volume 
rendering of large synaptic terminals of TuLAL1 neurons within the median and the lateral bulbs. (E’) Maximum intensity 
projection of three adjacent slices of preparation shown in E combined with anti- synapsin labeling (grey) illustrates the projection 
areas of TuLAL1 neurons with respect to the central complex. AL, antennal lobe; CBU, central body upper division; CBL, central 
body lower division; UU, upper unit of AOTU. All views in frontal plane. Scale bars: 30 μm in A-C; 100 μm in D; 50 μm in E. 

doi:10.1371/journal.pone.0143244.g004 

antiserum directed against the PDF of honeybees. Spatial overlap between PDF-immunoreactivity 
(PDF-ir) and ramifications of sky compass neurons was exclusively found in the medulla (Fig 5). 
PDF-ir fibers sparsely innervated a narrow layer in the medulla from the dorsal to the ventral edge 
of the neuropil. The PDF-ir neurons in the medulla strongly overlapped with the layer defined by 
the transmedulla neurons of the sky compass system (Fig 5A). Imaging at high 
magnification/resolution showed that the two fiber systems did not colocalize. Rather we observed 
small PDF-ir punctae in close proximity to transmedulla neurons of the sky compass system,  
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Fig 5. Spatial relationship between transmedulla neurons and PDF-ir fibers. (A) Confocal image of PDF-immunoreactive 
neurons (PDF-ir, green) and transmedulla neurons stained by dextran Texas Red injection into the AOTU-LUC (DEX-TR, 
magenta). Both types of neuron run in the same layer of the medulla (ME). (B, C). Higher magnification/resolution images of the 
areas indicated in A shows close proximity, but no colocalization of the two stainings. (B) PDF-ir is not found within the dorsal rim 
area of the medulla (MEDRA), only at its ventral edge. (C) PDF-ir sparsely labels small punctae which are in close proximity to the 
transmedulla neurons. All views in frontal plane. Scale bars: 100 μm in A; 30 μm in B, C. 

doi:10.1371/journal.pone.0143244.g005 

allowing for the possibility of PDF releaseonto these neurons. Overlap was not found within the 
MEDRA (Fig 5B) but only along the ver- tical passage of the transmedulla neuron’s fibers through 
the medulla (Fig 5C). Experiments where an antiserum against crustacean β-pigment dispersing 
hormone (PDH) was used instead of the Apis PDF antiserum gave virtually identical staining 
patterns in the medulla (S2 Fig). 

It has previously been shown that 5HT immunoreactivity (5HT-ir) is only found in the dor- sal half 
of one of the median layers of the medulla [42]. 5HT has also been shown to mediate several circadian 
effects within the insect visual system. To test whether 5HT-ir neurons also overlap with neurons of 
the sky compass system in the honeybee’s medulla, we combined 5HT-immunostaining with tracer 
injection into the AOTU-LUC (Fig 6). We found a clear overlap between the immunostaining and 
transmedulla neurons of the sky compass network projecting to the AOTU-LUC (Fig 6A). The 
antiserum against 5HT stained a broader layer of dense punctae overlapping the layer of transmedulla 
neurons on its lateral side. A striking fea- ture of the 5HT-ir in relation to the transmedulla neurons 
was, that both sets of neuron only occupied approximately the dorsal half to two thirds of the neuropil. 
As with the PDF-ir we observed no overlap within the MEDRA (Fig 6B) but only along the vertical 
passage through the medulla (Fig 6C) Again, no colocalization was detected, i.e. injection and 
immunostaining labelled two distinct neuron populations, allowing for the possibility of 5HT release 
onto neu- rons of the sky compass system. 

In search of further candidate substances that could provide modulatory input to the sky compass 
system we combined immunostaining using an antiserum against γ-aminobutyric acid (GABA) with 
tracer injection into the AOTU-LUC (Fig 7). Dense GABA immunoreactiv- ity (GABA-ir) was found 
throughout the medulla as previously described by Schäfer and Bicker [61], including the layer 
defined by the transmedulla neurons of the sky compass system (Fig 7A). At high 
resolution/magnification, we identified GABA-ir of beaded appearance in close proximity to the 
transmedulla neurons. Different from PDF-ir and 5HT-ir, GABA-ir was found along the entire length 
of the transmedulla neurons, including the MEDRA. No colocalization was found between the two 
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Fig 6. Spatial relationship between transmedulla neurons and 5HT-ir fibers. (A) Confocal image of 5HT-immunoreactive 
(5HT-ir) neurons (green) and transmedulla neurons labelled by dextran biotin/streptavidin Texas Red (magenta). Both stainings are 
restricted to the dorsal and medial parts of the medulla. (B, C) Higher magnification/resolution images of the areas indicated in A 
show close proximity, but no colocalization of the two stainings. (B) The dorsal rim area of the medulla (MEDRA) is devoid of 5HT-
ir. (C) Transmedulla neurons overlap with the band of 5HT-ir, but the latter is wider and extends more medially. ME, medulla. All 
views in frontal plane. Scale bars: 100 μm in A; 30 μm in B, C. 

 

doi:10.1371/journal.pone.0143244.g006 

 

stainings, suggesting that they represent different neuron populations. 

The AOTU-LUC is devoid of PDF-ir, 5HT-ir and GABA-ir 
To assess whether there are other potential modulation sites within the honeybee sky compass 
pathway, we studied immunoreactivity against PDH, 5HT and GABA within the AOTU. While the 
upper unit of the AOTU, which is not part of the sky compass pathway, was labelled by antisera 
against 5HT and GABA, the AOTU- LUC was devoid of immunoreactivity to all three antisera (Fig 
8A–8C). 

DISCUSSION 
In this study we combined anatomical tracing techniques with immunocytochemistry against PDF, 
5HT and GABA, to unravel the sky compass pathway of the honeybee and to find poten- tial sites of 
circadian and neuromodulatory input to this system. We show a neuronal pathway that originates in 
the dorsal rim area of the medulla, connects to the AOTU-LUC and projects to the bulbs near the 
central complex (Fig 9). One major finding was that transmedulla neurons connecting the MEDRA 
to the AOTU-LUC have numerous short spines along their passage through the medulla. This 
suggests that they receive additional input, like unpolarized light information and/or 
neuromodulatory input there. PDF-ir, 5HT-ir and GABA-ir neurons all branch in the vicinity of these 
neurons in the medulla pointing towards modulatory input, some of it potentially of circadian nature. 

Comparison to the sky compass pathway of other insect species 
The sky compass pathway has previously been described in locusts [57, 62], bumblebees [56] and 
desert ants [63]. The DRA visual fibers and some elements from the AOTU have also been 
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Fig 7. Spatial relationship between transmedulla neurons and GABA-ir fibers. (A) Confocal image of GABA-ir neurons 
(green) and transmedulla neurons stained by dextran Texas Red injection into the AOTU-LUC (magenta). GABA-ir is found 
throughout the medulla, but is more concentrated in some layers than in others. (B, C) Higher magnification/resolution images of 
the areas indicated in A show close proximity, but no colocalization of the two stainings. (B) GABA-ir is also present within the 
dorsal rim area of the medulla (MEDRA). (C) Varicose GABA-ir is in close proximity to the transmedulla neurons. ME, medulla. All 
views in frontal plane. Scale bars: 100 μm in A; 30 μm in B, C.  

 

 

doi:10.1371/journal.pone.0143244. g007 

reported from the honeybee [55, 64] and the monarch butterfly [12, 59, 65]. With the exception of 
LoTu1 neurons, which bilaterally connect the lobulae and AOTUs of both brain hemi- spheres in 
locusts [66], we found counterparts for all previously described types of sky compass pathway neurons 
in the honeybee. As expected from the close relationship of honeybees and bumblebees the systems 
in the two species were extremely similar. The similarities between the locust and the honeybee sky 
compass pathway were also striking, particularly considering the evolutionary distance between 
holometabolous and hemimetabolous insects. 
One conspicuous difference, however, was the dorsoventral extent of the transmedulla neu- rons. 
While in honeybees, as described before in bumblebees [56], these neurons extended from the 
MEDRA only about halfway ventrally, they span the entire dorsoventral extent of the 
 

 
Fig 8. Absence of PDF-, 5HT, and GABA-ir in the lower unit complex of the anterior optic tubercle (AOTU-LUC). Synapsin-
immunoreactivity (syn-ir, magenta) and immunoreactivity to antisera against PDH (PDH-ir), 5HT (5HT-ir) and GABA (GABA-ir), 
shown in green, in the anterior optic tubercle. (A) The entire AOTU is devoid of PDH-ir. (B) 5HT-ir was found in the upper unit of the 
anterior optic tubercle (UU), but not in the AOTU-LUC. (C) GABA-ir, green was found in the AOTU-UU, but not in the AOTU-LUC. AL, 
antennal lobe. All views in frontal plane. All scale bars: 30 μm. 

 

doi:10.1371/journal.pone.0143244.g008 
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Fig 9. Summary of the main findings. Frontal schematic diagram of the honeybee brain illustrates the main neuropils and the 
sky compass pathway. The dorsal rim area of the eye (DRA) is connected to the dorsal rim area of the medulla (MEDRA) through 
long visual fibers. Transmedulla neurons project from the MEDRA to the lower unit complex of the anterior optic tubercle (LUC). 
TuLAL1 neurons project from the LUC around the vertical lobe of the mushroom body (VL) to the median and lateral bulb (MBU, 
LBU). Three Types of TuTu1 neurons project to the contralateral LUC. Stippled grey lines in medulla (ME) indicate hypothetical 
unpolarized light input pathways. Also shown is immunoreactivity in the medulla to antisera against pigment dispersing factor (PDF) 
and 5HT (5HT). AL, antennal lobe; CBL, lower division of the central body; CBU, upper division of the central body; LA, lamina; LCA 
and MCA, lateral and medial calyx of the mushroom body; LO, lobula; PED, pedunculus. Scale bar: 200 μm. 

 

doi:10.1371/journal.pone.0143244.g009 

 
medulla in locusts [15, 57]. This probably creates a receptive field covering only the area above the 
horizon in bees, while in locusts it is to be expected that the receptive field extends ventrally. The 
functional implications of this finding are not clear at present. 

The anterior optic tubercle 
The anterior optic tubercle of insects is composed of one large and up to three small subunits. (locust: 
[57]; blowfly: [67]; sphinx moth: [68]; honeybee: [55]; butterflies: [69, 70]; bumblebee: [56]). In most 
insects the large compartment is called the upper unit (it has previously been called the major unit in 
honeybees [55]) and is probably homologous across species. It has been implicated in the processing 
of color and motion in honeybees [55, 71, 72]) and in figure- ground discrimination and phototaxis in 
Drosophila [73, 74]. The smaller units have been assigned varying names and are not easily 
homologized across species. However, in all species that have been investigated so far, the upper unit 
is not part of the sky compass pathway, whereas all the small compartments are (locust: [58]; 
monarch butterfly: [12, 59]; bumblebee: [56]; honeybee: this study). Heinze et al. [59] demonstrated 
a spatial mapping between the small compartments of the AOTU and the projection areas of TuLAL1 
neurons in the bulb (of which monarch butterflies only have one per hemisphere). We found a similar 
mapping in the honeybee, where TuLAL1 neurons from different subcompartments of the AOTU-
LUC either projected to the lateral or the medial bulb, suggesting two separate input pathways into the 
cen- tral complex. Although in locusts there is only one small subunit, called the lower unit, there 
are also two sets of TuLAL1 neurons projecting to the lateral and the medial bulb in the lateral 
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complex [58, 60]. Taken together the findings from different species suggest that the small units in 
holometabolous insects have been derived from a single small unit as represented by the AOTU-LU 
in the locust brain. To facilitate comparison between species, we suggest using the term lower unit 
(AOTU-LU) in species that possess only a single small AOTU subunit, and the term lower unit 
complex (AOTU-LUC) in species with multiple small subunits, to collec- tively signify all of them. 

Integration of polarized and unpolarized sky compass cues 
It is well known that polarization-sensitive neurons in the sky compass system of insects also code 
for the azimuth of unpolarized light spots (locust: [10, 11]; monarch butterfly: [12]; dung beetle: [13]), 
but the integration site of these different stimuli is unknown. While integration could theoretically 
take place in the AOTU itself, the morphology of the transmedulla neurons studied here and their 
position within the pathway strongly suggest that these are the neuronal elements performing the 
integration. The overlap of their prominent ramifications in the MEDRA with terminals of DRA 
photoreceptors suggests polarized light information input in this neuropil. Recent data from the locust 
show that the MEDRA is organized in a retinotopical way [75]. Therefore, their extensive dendritic 
fields in the MEDRA indicate that these neurons sample polarization information from a large area of 
the sky. This agrees with electrophysiolog- ical data from a different type of polarization-sensitive 
Neuron (POL1) in the medulla of crick- ets which receives input from the entire DRA [76]. Large-
field integration is an important property of neuronal systems processing celestial polarized light, 
because it makes the system robust against local irregularities of the polarization pattern [76–78]. In 
contrast, accurate detection of the solar azimuth requires the opposite: narrow receptive fields. 

The transmedulla neurons studied here are likely to fulfill this condition as well. The spines along 
their dorsoventral passage through the medulla suggest additional input to this segment of the 
neurons. The insect visual system is organized retinotopically, i.e. neighboring points of the 
environment are represented by neighboring neuronal elements [79]. According to the anatomy of 
the transmedulla neurons one can therefore assume a receptive field in the shape of a narrow vertical 
bar directed at a certain azimuth. Thus, each neuron in the population could be tuned to respond 
maximally when the sun is located at a certain azimuth with respect to the animal and due to their 
long extent in dorsoventral direction, this response should be indepen- dent of solar elevation. 

While the DRA photoreceptors seem to project directly onto the transmedulla neurons, the 
unpolarized light information is probably neither provided directly by long visual fibers nor by lamina 
monopolar cells, because these elements terminate in the outer layers (layers 1 and 2) of the medulla 
[80]. Instead it has to be expected that a connection is made by local interneurons within the medulla, 
as indicated in Fig 9 (grey stippled arrows). 

Circadian input into the sky-compass system 
While multimodal integration can help to make systems more robust by adding redundancy, it bears 
the risk that different input channels provide conflicting information. In the case of the sky compass 
system, this problem can occur through changes in the spatial relationship between non-zenithal E-
vectors and the solar azimuth, arising from changes in solar elevation [11]. In neurons of the locust 
AOTU, two physiological properties help to avoid cue conflicts. First, an area of about 50° around 
the sun, where these changes are particularly prominent, pro- vides no polarization information to the 
system due to its subthreshold degree of polarization [81]. Second, these neurons continuously adjust 
their tuning throughout the day so that changes in the angle between E-vectors in the sky and the solar 
azimuth are compensated for [11]. Similar properties have been shown for neurons in the monarch
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butterfly [82]. Clearly, such a compensation mechanism has to be implemented upstream of, or 
directly at, the inte- gration site of polarization-information and solar azimuth information. 
Furthermore it is nec- essary that either only the polarization channel or only the unpolarized light 
channel is modulated (or at least that they are modulated differentially). Both conditions could be 
met through the interaction of transmedulla neurons and the circadian system in the honeybee. 
PDF-ir fibers were found in close proximity to transmedulla neurons as they pass through the 
medulla, while the MEDRA was devoid of PDF-ir. PDF is an output signal of the insect circa- dian 
clock and has been shown to cause dose- and daytime-dependent changes (increases and decreases) 
in the sensitivity of visual interneurons in the medulla of crickets [26]. 

Similarly to PDF-ir, 5HT-ir spared the MEDRA, but otherwise overlapped prominently with the 
transmedulla neurons of the sky compass pathway. In the optic lobe of crickets, 5HT levels undergo 
circadian fluctuations [25]. Furthermore 5HT has been shown to downregulate the sensitivity of 
visual interneurons in the medulla of crickets and the lobula of honeybees [26, 29]. It is therefore 
conceivable that selective local release of PDF and 5HT onto the transme- dulla neurons of the sky 
compass pathway aids to shape the solar azimuth tuning of neurons further downstream in a circadian 
manner. 

Our findings fit well with a previous study in monarch butterflies that also located a poten- tial 
connection between the sky-compass system and the circadian clock in a central layer of the medulla 
[65]. These authors used an antiserum against CRYPTOCHROME-1 (CRY1), which is part of the 
molecular clock network, as a proxy for neurons of the circadian system. Similar to PDF-ir fibers in 
the honeybee, CRY1-ir fibers in the monarch had fine varicose branchings restricted to a central 
layer of the medulla. Terminals of DRA photoreceptors, traced by injection of fluorescent dyes 
terminated in the dorsal part of this medulla layer. This was interpreted as an indication of circadian 
input into the sky compass system. 

In locusts, PDH-ir fibers only branch in the outermost layers of the medulla and hence do not 
overlap with the transmedulla neurons in this species [35]. This is a profound species spe- cific 
difference between bees and locusts and particularly interesting regarding the fact that compensation 
for changes in the angle between the solar azimuth and celestial E-vectors has been shown in the 
AOTU of locusts, i.e. downstream of the transmedulla neurons [11]. It raises the question how time 
information is integrated in the medulla of these animals. El Jundi et al. showed that several types of 
polarization- and azimuth sensitive large-field tangential neurons branching throughout the same 
layer as the transmedulla neurons have additional branches in the accessory medulla [15]. These 
neurons could act as the interface between the circadian clock and the peripheral sky-compass 
network in locusts. 

In two studies on locusts and monarch butterflies the distribution of preferred E-vector angles 
from all recorded neurons shows a substantially larger scatter than the corresponding distribution 
of preferred azimuth tuning angles from the same cells [11, 12]. This was inter- preted as an 
indication that E-vector tuning rather than azimuth tuning is adjusted in the course of the day to 
compensate for diurnal changes arising from changes in solar azimuth. Such a mechanism would 
call for modulatory input into the DRA rather than the unpolarized input sites of the transmedulla 
neurons as reported here. Since there is no physiological description of the bee’s sky-compass 
system to date, it is not clear if a compensation for changes in solar elevation in bees is carried out 
in these insects as it is in locusts and monarch butterflies. 

Circadian input into the sky compass system could also have other functions as well. Bees indeed 
compensate for changes in solar azimuth and this specifically requires adjustment of the azimuth 
sensitivity somewhere in the network. It is also conceivable that a peripheral circadian modulation of 
the sky compass network simply globally modulates sensitivity to account for different light levels.  
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Physiological studies are needed in the future to distinguish between these possibilities. 

GABA-ir in the medulla 
GABA-ir is abundant in the optic lobe of a variety of insect species (honeybee: [61]; hawkmoth: [83]; 
locust: [84]; swallowtail butterfly: [85]). GABA usually has inhibitory effects on the post- synaptic 
neurons, but its specific functions in the optic lobe of honeybees are unknown. In flies, GABA plays 
a crucial role in shaping the tuning of visual interneurons in the lobula plate. In direction sensitive 
movement detectors, called H1, selective blocking of GABAA receptors using picrotoxin reverses 
directional selectivity [86]. Similarly, the preference for small object over large field motion in FD1 
neurons is inverted by picrotoxin [87]. In the sky compass path- way of honeybees GABA might also 
play a role in shaping the tuning of the neurons. Unlike PDF-ir and 5HT-ir, GABA-ir was present 
throughout the MEDRA, as reported previously for locusts [62], and could therefore interact with 
the processing of both polarized and unpolar- ized-light information. GABA can act both 
neuromodulatory or as a regular transmitter. The GABA-ir fibers in proximity to the transmedulla 
neurons could therefore provide photic inputs into these fibers rather than modulating them. In the 
MEDRA, however one can assume that the principal input comes from the photoreceptors of the 
DRA and that the GABA-ir fibers serve a different function. 
 
CONCLUSION 
Our results show that the sky compass pathway is highly conserved between different insect species. 
Immunocytochemistry combined with tracer injection suggests interaction between PDF-ir, 5HT-ir 
and GABA-ir fibers with transmedulla neurons. Our data are a first hint of cir- cadian and 
neuromodulatory input to the sky compass pathway in the medulla of honeybees. Future experiments, 
including electron microscopy and especially neurophysiological experi- ments combined with 
pharmacology, will help to better understand the function of the sky compass system and its 
modulation. 
 
SUPPORTING INFORMATION 
S1 Fig. Comparison of ipsi-and contralateral ramifications of three TuTu1 neuron types. (A, 
B) Ipsi- (A, ipsi) and contralateral (B, contra) ramifications of a single TuTu1a neuron stained by 
extracellular iontophoretic dye injection of Neurobiotin (NB, orange). Neuropil stained through 
synapsin immunoreactivity (syn-ir, gray). Maximum intensity projections showing entire AOTU (A, 
117 slices, z-pitch: 0.5 μm) and ramifications in the lower unit com- plex of the anterior optic tubercle 
only (LUC; A’, ipsilateral, 16 slices; B, contralateral, 6 slices, z-pitch: 0.5 μm). Ramifications are 
restricted to the dorsalmost compartments of the (LUC) on both sides of the brain. On the ipsilateral 
side, TuLAL1a neurons and some unidentified neu- ron types are stained as well. B is identical to 
Fig 4A’. (C, D) Ipsi- (C) and contralateral (D) ramifications of a single TuTu1b neuron stained by 
extracellular iontophoretic dye injection of NB. Maximum intensity projections showing entire 
AOTU (C, 42 slices, z-pitch: 3 μm) and ramifications in the LUC only (C’, ipsilateral, 15 slices; D, 
contralateral, 30 slices, z-pitch: 
0.5 μm). On both sides of the brain, TuTu1b neurons have characteristic ramification areas with 
only sparse innervation of the ventralmost compartments of the LUC (arrows in C’, D) close to the 
cellular cortex (asterisk) and a dorsally tapered denser ramification area in the medial LUC 
compartments. Also stained on the ipsilateral side are TuLAL1 neurons and some unidentified 
neuron types. (E, F) Contra- (E) and ipsilateral ramification areas (F) of TuTu1c neurons stained 
through dextran Texas-Red injection (Dex-TR) in two different preparations. Maximum intensity 

 

projections showing entire AOTU (E, 145 slices, z-pitch: 0.5 μm) and ram- ifications in the LUC (E’, 
contralateral, 21 slices; D, ipsilateral, 3 slices, z-pitch: 0.5 μm). This type of neuron has branches 
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predominantly in the ventral LUC, including the ventralmost area that is only sparsely innervated in 
TuTu1b neurons. Also stained is an axon of a heterolateral lobula neuron running in the anterior 
optic tract (arrowhead). F is identical to Fig 4C’. AL, antennal lobe; ITT, intertubercle tract; UU 
upper unit of anterior optic tubercle; d dorsal; l, lat- eral; m, medial; Scale bars: 30 μm. (TIF) 

S2 Fig. Spatial relationship between transmedulla neurons and PDH-ir fibers. (A) Confocal 
image of PDH-immunoreactive neurons (PDH-ir, green) and transmedulla neurons stained by 
dextran Texas Red injection into the AOTU-LUC (DEX-TR, magenta) combined with immu- 
nostaining against synapsin (gray). Both types of neuron run in the same layer of the medulla (ME). 
(B, C). Higher magnification/resolution images of approximate areas indicated in A shows close 
proximity, but no colocalization of the two stainings. (B) PDH-ir is not found within the dorsal rim 
area of the medulla (MEDRA), only at its ventral edge. (C) PDH-ir sparsely labels small punctae 
which are in close proximity to the transmedulla neurons. All views in frontal plane. Scale bars: 100 
μm in A; 30 μm in B, C. (TIF) 
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CHAPTER II: 

MICROGLOMERULAR SYNAPTIC COMPLEXES IN THE SKY-
COMPASS NETWORK OF THE HONEYBEE CONNECT PARALLEL 

PATHWAYS FROM THE ANTERIOR OPTIC TUBERCLE TO THE CENTRAL 
COMPLEX 
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While the ability of honeybees to navigate relying on sky-compass information has 
been investigated in a large number of behavioral studies, the underlying neuronal 
system has so far received less attention. The sky-compass pathway has recently 
been described from its input region, the dorsal rim area (DRA) of the compound 
eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the 
connection from the AOTU to the central complex (CX). For this purpose, we 
investigated the anatomy of large microglomerular synaptic complexes in the medial 
and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes 
are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the 
AOTU and GABAergic tangential neurons of the central body’s (CB) lower division 
(TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these 
complexes in other insect species. We further investigated the ultrastructure of these 
synaptic complexes using transmission electron microscopy. We found that single 
large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of 
TL neurons. The synaptic connections between these neurons are established by 
two types of synapses: divergent dyads and divergent tetrads. Our data support the 
assumption that these complexes are a highly conserved feature in the insect brain 
and play an important role in reliable signal transmission within the sky-compass 
pathway. 

Keywords: sky-compass orientation, insect brain, central complex, polarization 
vision, honeybee, synaptic connections, anterior optic tubercle 
Abbreviations: AL, antennal lobe; AOT, anterior optic tract; AOTU, anterior optic tubercle; CB, central 
body; CBL, lower division of the central body; CBU, upper division of the central body; CNS, central 
nervous system; cV, clear vesicle; CX, central complex; dcV, dense core vesicle; DRA, dorsal rim area; 
GABA, γ-aminobutyric acid; GS, glia sheath; IT, isthmus tract; KLH, keyhole-limpet hemocyanin; LA, 
lamina; LBU, lateral bulb; LCA, lateral calyx; LO, lobula; LP, large profile; LUC, lower unit complex of the 
anterior optic tubercle; LX, lateral complex; M, mitochondrion; MBU, medial bulb; ME, medulla; MEDRA, 
dorsal rim area of the medulla; N, nucleus; NO, nodulus; NOL, lower division of the nodulus; NOU, upper 
division of the nodulus; PED, pedunculus; RE, retina; SP, small profile; TL, tangential neuron; TuLAL, 
tubercle-lateral accessory lobe neuron; UU, upper unit of the anterior optic tubercle; VL, vertical lobe. 
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INTRODUCTION 
Many insects have well developed abilities for orientation and 
navigation. En route, they rely on different strategies, like 
landmark navigation or vector integration (reviewed by Wehner, 
2003; Menzel et al., 2006; Collett et al., 2013; Srinivasan, 2015). 
For spatial orientation many insects use sky-compass cues, like 
the position of the sun, the chromatic gradient and the 
polarization pattern of the sky (reviewed in Homberg et al., 
2011). The ability to navigate in relation to the polarization 
pattern of the sky was first shown in behavioral studies on 
honeybees by von Frisch (1949). The neuronal basis and 
mechanisms underlying sky-compass orientation have been 
investigated anatomically and physiologically in a most detailed 
manner in locusts and crickets (reviewed by Homberg et al., 
2011), whereas in honeybees, research into this topic is still at the 
beginning. Recently the sky-compass pathway in the honeybee 
brain has been described anatomically from the compound eye 
up to the lateral complex (LX; Zeller et al., 2015). The goal of 
this study is to investigate the anatomy of this pathway further 
from the LX into the central complex (CX), a neuropil which, 
amongst other functions, holds a neuronal representation of 
space around the animal (reviewed by Pfeiffer and Homberg, 
2014). 

The sky-compass pathway receives input via a 
specialized area of the compound eye, the dorsal rim area 
(DRA). DRA photoreceptors project through the lamina (LA) 
and terminate in the DRA of the medulla (MEDRA). 
Transmedulla neurons ramify in the MEDRA. Their fibers run 
dorsoventrally through the medulla (ME) and enter the lower 
unit complex (LUC) of the anterior optic tubercle (AOTU) via 
the anterior optic tract (AOT). From there two types of neuron, 
tubercle-lateral accessory lobe neuron 1a (TuLAL1a) and 
TuLAL1b project toward the LX and end in conspicuously large 
synaptic terminals in the lateral and the medial bulbs (LBUs, 
MBUs; Mota et al., 2011; Zeller et al., 2015). In the desert locust 
tangential TL2 and TL3 neurons of the lower division of the 
central body (CBL) have dendritic branches in the bulbs, 
forming large synaptic complexes with the terminals of 
TuLAL1 neurons (Vitzthum et al., 2002; Träger et al., 2008). 
The boundaries of the bulbs are defined by the presence of these 
microglomerular synaptic complexes. Locust TL2 and TL3 
neurons are immunoreactive with antisera against γ-
aminobutyric acid (GABA) and therefore, can be labeled using 
immunocytochemistry (Homberg et al., 1999). Large synaptic 
structures in the bulbs, either from TuLAL1 or TL neurons, have 
been found in other insect species as well, such as the fruit fly 
Drosophila melanogaster (Hanesch et al., 1989; Seelig and 
Jayaraman, 2013), the moth Manduca sexta (Homberg et al., 
1990), the cricket Gryllus bimaculatus (Sakura et al., 2008), the 
monarch butterfly Danaus plexippus (Heinze and Reppert, 
2011), the bumblebee Bombus ignitus (Pfeiffer and Kinoshita, 
2012), and the desert ant Cataglyphis fortis (Schmitt et al., 
2016). While in most of these species these neurons are involved 
in sky-compass vision, in Drosophila melanogaster a  
different function has been found. The dendrites of the  
 

equivalent to TL neurons, called ring neurons, represent visual 
features of the environment with a strong preference for a 
vertical stripe. The associated microglomeruli in the bulbs are 
arranged retinotopically and therefore form a spatial map of the 
visual field of the fly (Seelig and Jayaraman, 2013). Additionally, 
these neurons have been found to be activated by an optic flow 
pattern around the yaw axis (Weir and Dickinson, 2015). Thus 
far the sky-compass pathway of the honeybee has been traced 
with anatomical methods from the DRA to the bulbs of the LX 
(Mota et al., 2011; Zeller et al., 2015). The neurons in this 
pathway share many anatomical features with those of locusts, 
where electrophysiological studies revealed their sensitivity to 
polarized and chromatic light stimuli (el Jundi et al., 2014). In 
this study we investigate the sky-compass pathway in the 
honeybee from the LUC of the AOTU to the central body (CB). 
To reveal whether neurons from the LUC are connected to 
GABA-immunoreactive tangential neurons of the CB as shown 
in locusts, we analyzed the anatomy and ultrastructure of synaptic 
complexes in the MBUs and LBUs. 

MATERIALS AND METHODS 
Animals 
Worker honeybees (Apis mellifera) were caught at the entrance 
of the hive, which was maintained at the Department of Biology 
at the Philipps-University Marburg. Injections and 
immunostainings were performed in spring and summer, when 
the colony was outside. The preparations for transmission 
electron microscopy were made in winter. At this time the hive 
was kept inside a greenhouse at 25◦C, and bees were fed with 
honey water (20–30% honey) and pollen. Experiments for 
synapsin/f-actin double labeling for 3D reconstructions were 
made during the winter season using adult worker bees 
(‘‘winterbees’’) from inside a colony maintained at the 
departmental bee station at the University of Würzburg. 

Preparation 
Bees were cooled at 4◦C until immobilized. For better handling 
during preparation, the animals were waxed to a holder with 
dental wax. The cuticle of the frons between the compound eyes, 
ocelli and labrum was removed. For getting access to the brain, 
the hypopharyngeal glands and air-sacks as well as the neural 
sheath were removed. 

Extracellular Iontophoretic Dye Injection 
Extracellular iontophoretic dye injections were performed to 
achieve staining of small numbers of neurons (1–20) connecting 
the AOTU to the bulbs of the LX or the bulbs to the CX. Sharp 
glass microelectrodes were fabricated by pulling borosilicate 
capillary tubes (outer diameter 1.5 mm, inner diameter 0.75 mm, 
Hilgenberg, Malsfeld, Germany) with a Flaming/Brown puller 
(P97, Sutter instrument, Novato, CA, USA). Electrode tips were 
filled with 4% Neurobiotin tracer (Vector Laboratories, 
Burlingame, CA, USA) in 1 M KCl and backed up with 2.5 M 
KCl. These electrodes had a resistance of 100–200 MΩ in the 
tissue. Using a micromanipulator an electrode was positioned in  
the area of the LUC of the AOTU or the CBL. By applying a 

pulsed current of 10 nA (1 Hz, 50% duty cycle) for 20–45 min the tracer was ejected from the electrode and entered the neurons 
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in the vicinity of the tip presumably through pores created by 
an electroporating effect of the electric field. After removing the 
electrode, brains were dissected from the head capsule and 
immersed in a fixative containing 4% paraformaldehyde 
(Sigma-Aldrich, Steinheim, Germany), 0.25% glutaraldehyde 
(Carl Roth, Karlsruhe, Germany) and 0.25% saturated picric 
acid in 0.1 M phosphate buffered saline (PBS, pH 7.4) 
overnight at 4°C. They were then washed with PBS. To detect 
neurons labeled with Neurobiotin, brains were immersed in a 
solution containing Cy3-conjugated streptavidin (1:1000, 
Jackson Immunoresearch Laboratories, West Grove, PA, USA), 
0.3% Triton X-100 (TrX; Sigma, Deisenhofen, Germany) and 
PBS. After incubation at 4°C for 3 days, brains were washed 
with PBS and 0.3% TrX (PBT) and afterwards with PBS. The 
brains were then dehydrated in an ascending ethanol series. To 
increase image quality brains were cleared with methyl 
salicylate (Merck, Darmstadt, Germany). Finally, the brains 
were embedded between two cover slips in Permount (Fisher 
Scientific, Pittsburgh, PA, USA). Eight reinforcement rings 
(Zweckform, Oberlaindern, Germany) served as spacers to 
prevent squishing the tissue. 

Mass Staining Procedure 
For tracing of TuLAL1 neurons, dextran Texas Red crystals 
(lysine-fixable, 3000 MW, Molecular Probes, Eugene, OR, 
USA) were inserted into the LUC. To do this, the tip of a sharp 
glass microcapillary, that was created as described above, was 
broken to a diameter of about 5–30 µm. The tip was dipped into 
petroleum jelly and then into the dextran Texas Red to pick up 
a few tracer crystals. After removing all liquid around the brain 
with a piece of paper tissue, the microcapillary was manually 
advanced into the target area. Excess dye was washed off with 
Ringer solution (130 mM NaCl, 5 mM KCl, 4 mM MgCl2, 15 mM 
HEPES, 25 mM glucose, 160 mM saccharose, 5 mM CaCl2). 
To allow for complete uptake and distribution of the tracer in 
the neurons, the head capsule was covered with tissue paper and 
the bee was kept overnight at 4°C in a moist chamber. To 
prevent bleaching of the fluorescent dye all further steps were 
performed in darkness if possible. After removing the brain 
from the head capsule it was fixed overnight at 4°C in 4% 
paraformaldehyde and 0.5% glutaraldehyde in 0.1 M sodium 
phosphate buffer (NaPi; pH 7.4). The brain was then washed 
with 0.01 M PBS. After embedding in albumin-gelatin (12% 
ovalbumin and 4.8% gelatin in demineralized water) and 
fixation overnight at 4°C with 8% formaldehyde in NaPi, the 
brain was sectioned at 40 µm in the frontal plane using a 
vibrating-blade microtome (VT 1000S or VT 1200S; Leica, 
Wetzlar, Germany). 

GABA Immunostaining 
To label GABA-immunoreactive neurons, we used two 
different antisera that were raised against GABA conjugated to 
keyhole- limpet hemocyanin (KLH) via glutaraldehyde. The 
first antiserum was raised in guinea pig (ab17413; Lot 
GR51659; Abcam, Cambridge, UK). According to the  
 
 
manufacturer the specificity of the antiserum was tested on 

brain slices of rats by preadsorption with 100 nM GABA 
conjugated to glutaraldehyde, which abolished all staining. 
Preadsorption with 500 nM of similar conjugates of glutamic 
acid, glutamate and taurine failed to block staining (product 
datasheet anti- GABA antibody ab17413). The second antibody 
was raised in rabbit (# 9/24; kindly provided by Dr. T.G. 
Kingan). It had been affinity purified against KLH. The 
specificity of this antiserum was tested on brain sections of the 
sphinx moth Manduca sexta, the honeybee and the desert locust 
Schistocerca gregaria. In Manduca sexta liquid-phase 
preadsorption of the diluted antiserum with GABA-
glutaraldehyde-KLH and similar conjugates of L-glutamic acid, 
β-alanine, L-glutamine and taurine was performed (Hoskins et 
al., 1986). GABA- glutaraldehyde-KLH blocked 
immunostaining at a concentration of 24 nM, whereas similar 
concentrations of the other amino acid conjugates were without 
effect (Hoskins et al., 1986). Likewise, on brain sections of the 
honeybee, preadsorption with 1 mM GABA-glutaraldehyde 
completely blocked labeling (Schäfer and Bicker, 1986), and in 
the desert locust, preadsorption with 15 nM GABA-
glutaraldehyde-bovine serum albumin (BSA) conjugate 
abolished all staining on brain sections (Homberg et al., 1999). 

For double staining of tracer-injected brains with GABA 
antiserum, gelatin slices were washed with 0.1% TrX in saline 
substituted Tris-buffer (SST; pH 7.4). Sodium borohydride was 
used to reduce background autofluorescence caused by Schiff 
bases that occur during glutaraldehyde fixation (Baschong et al., 
1999). Sections were covered for 10 min with 10 mg/ml NaBH4 
and 0.1% TrX in NaPi. Deposit was washed out with 0.1% TrX 
in SST. To block unspecific binding sites the slices were pre- 
incubated for 1 h at room temperature on a shaker with 10% 
normal donkey serum (NDS; Dianova, Hamburg, Germany), 
0.5% TrX and SST. The primary antibody against GABA was 
diluted 1:500 in a solution of 1% NDS, 0.02% sodium azide 
and 0.5% TrX in SST. Slices were incubated overnight at 30°C 
in an incubator on a shaker. After washing in SST containing 
0.1% TrX, sections were treated with the secondary antibody 
solution. It consisted of Cy2-conjugated donkey anti-guinea pig 
IgG against the antiserum from Abcam (1:300; Dianova, 
Hamburg, Germany) and donkey anti-rabbit IgG against the 
antiserum from Kingan (1:200; Dianova, Hamburg, Germany), 
1% NDS and 0.5% TrX in SST. The secondary antiserum was 
applied for 1 h on a shaker at room temperature. After further 
washing with 0.1% TrX in SST the sections were mounted on 
chromalum/gelatin-coated microscope slides, dehydrated in an 
ascending ethanol series, and embedded in Entellan (Merck, 
Darmstadt, Germany) under cover slips. 

F-actin Staining and Immunolabeling for 
Synapsin 
To obtain an overview of all synaptic complexes in the bulbs of 
the LX, we performed double labeling for the vesicle- associated 
protein synapsin and filamentous actin (see Groh et al., 2004; 
Schmitt et al., 2016). Brains were dissected from the head 
capsule and immediately fixed with ice-cold 4% 
paraformaldehyde (methanol free, 28908, Fischer Scientific,

 
Schwerte, Germany) in PBS overnight at 4°C. After washing 

with PBS, brains were embedded in 5% low-melting point 
agarose (Agarose II, no. 210–815, Amresco, Solon, OH, USA), 



Held et al. Honeybee Microglomerular synaptic complexes  

68 
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adjusted to a frontal plane and sectioned at 100 µm thickness 
using a vibrating-blade microtome (VT 1000S; Leica, Wetzlar, 
Germany). Preincubation was performed using 0.2% TrX in 
PBS containing 2% normal goat serum (NGS, 005-000-121, 
Jackson ImmunoResearch Laboratories, West Grove, PA, 
USA) for 1 h at room temperature. To visualize f-actin, sections 
were incubated with 0.2 units Alexa Fluor 488 conjugated 
phalloidin (A12379, Molecular Probes, Eugene, OR, USA) in 
0.2% TrX and 2% NGS in PBS for 3 days at 4°C. For the 
additional labeling of synapsin, a monoclonal antibody raised 
against the Drosophila synaptic-vesicle-associated protein 
synapsin I (SYNORF1, kindly provided by E. Buchner, 
University of Würzburg, Germany) was added (1:50). 
SYNORF1 in honeybee tissue has been characterized by Pasch 
et al. (2011). Sections were washed several times in PBS, 
before incubated in Alexa Fluor 568 conjugated goat anti-mouse 
(1:250, A11004, Molecular Probes, Eugene, OR, USA) in PBS 
with 1% NGS for 2 h at room temperature. After washing with 
PBS, sections were transferred into 60% glycerol in PBS for 30 
min. They were then mounted in 80% glycerol in PBS on glass 
slides covered with cover slips. 

Wholemount Preparation for Neuropil 
Reconstruction 
Brains were dissected from the head capsule as described above 
and fixed with ice-cold 2% paraformaldehyde and 2% 
glutaraldehyde in PBS for 4 days at 4◦C. After several washing 
steps with PBS the brain tissue was dehydrated in an ascending 
ethanol series (50%, 70%, 90%, 95% and 3 100% for 10 min 
each) before being cleared in methyl salicylate for 4 days at 
4◦C. Brains were then mounted in methyl salicylate in custom 
metal slides covered with cover slips (method adapted from 
Kuebler et al., 2010). 

Transmission Electron Microscopy 
To investigate the ultrastructure of synaptic complexes brains 
were fixed using the high-pressure freezing technique 
(McDonald, 2007; Müller-Reichert et al., 2007; Rachel et al., 
2010; Peschke et al., 2013). Dissected brains were prefixed 
overnight at 4°C with 4% paraformaldehyde and 2.5% 
glutaraldehyde in 0.1 M sodium cacodylate buffer (NaCB; pH 
7.2). After washing in 0.1 M NaCB, brains were embedded in 
7% low-melting point agarose (LM3, AppliChem GmbH, 
Darmstadt, Germany), and a 200 µm thick slice, containing the 
area of interest, was cut with a vibratome. These sections were 
then high-pressure frozen with a Wohlwend HPF Compact 02 
(M. Wohlwend, Engineering Office, Sennwald, Switzerland). 
They were then transferred to an automatic ASF2 freeze 
substitution unit (Leica Microsystems, Wetzlar, Germany) to 
replace the water and enhance contrast. For cryo-substitution 
fixation (CSF) a solution of 0.2% OsO4, 0.25% uranyl acetate 
and 5% (vol/vol) H2O in acetone (A.O.U.H; Walther and 
Ziegler, 2002; Junglas et al., 2008; Rachel et al., 2010) was  

 
added. Freeze-substitution was carried out at 90°C for 46.5 h, 
60°C for 8 h, 30°C for 8 h and held at 0°C for 3 h. The heating 
time between the steps was 1 h. Afterwards, the sections were 
washed twice with ice-cold acetone (100%) and were then 
gradually infiltrated with Epon at room temperature, followed 
by polymerization for 72 h at 60°C. Ultrathin sections (60–80 
nm) were cut with an ultramicrotome (Ultracut; Reichert-
Labtech, Wolfratshausen, Germany), collected on uncoated 
copper 400 mesh grids (Plano, Wetzlar, Germany) and contrast 
enhanced by positive staining with 2% uranyl acetate and lead 
citrate (Reynolds, 1963). 

Image Acquisition and Processing 
Images of fluorescent samples were acquired with a confocal 
laser scanning microscope (CLSM; TCS SP5 and TCS SP2, Leica 
Microsystems, Wetzlar, Germany). Optical serial sections of an 
overview of all synaptic complexes in the tracer-injected brains 
immunostained for GABA were scanned using a 
40× objective (HCX PL APO 40× /1.25 0.75 Oil Lbd. bl.; Leica, 
Bensheim. Germany) at a resolution of 1024 × 1024 pixels and 
a z-stepsize of 1.5 µm. For detailed scans at the 
same resolution with a z-stepsize of 1 µm a 63× objective 
(HCX PL APO 63× /1.3 GLY CORR CS 21, Leica, Bensheim, 
Germany) was used. For double labeled synapsin/f-actin 
preparations, physical sections containing the whole two clusters 
of synaptic complexes in the bulbs were selected and scanned at 
a resolution of 1024 × 1024 pixels using a 20× objective (HC PL 
APO 20× /0.70 Imm, Leica, Bensheim, Germany) and 63× 
objective (HCX PL APO 63× /1.4 0.6 Oil, Leica, Bensheim, 
Germany) to obtain image stacks at a z-stepsize of 1 µm. 
Exploiting the increased autofluorescence attributes of the 
paraformaldehyde/glutaraldehyde-fixed wholemount 
preparations, these brains were scanned with a 10× objective 
(HC PL APO 10× /0.4 Imm, Leica, Bensheim, Germany) at a z-
stepsize of 4 µm in three tiles to create a panoramic overview 
image stack of the whole brain. 

All image stacks were processed with Amira (versions 3.1.1 
and 5.3.3; FEI Visualization Sciences Group, Mérignac Cedex, 
France). Amira was further used for the 3D reconstruction of 
individual synaptic complexes in the bulbs based on f-actin 
positive profiles in synapsin/f-actin double labeled preparations 
and to create a whole brain reconstruction of all major neuropils 
based on autofluorescence wholemount preparations. To 
evaluate the spatial distribution and localization of synaptic 
complexes in the context of the whole brain the synaptic 
reconstructions were transformed into the whole brain 
reconstruction using the CX as a landmark for orientation. 
Volumes of the reconstructed postsynaptic portion of the 
microglomeruli were calculated using Amira 5.6. The data for 
the lateral and medial cluster were statistically compared using 
the Mann-Whitney test (VassarStats1). 

Transmission electron micrographs were taken using a 
JEOL JEM-2100 transmission electron microscope (JEOL, 
Tokio, Japan) at an acceleration voltage of 120 kV.  

 
1http://vassarstats.net/

Images were taken with a 2k×2k pixel CCD-camera F214 and the software EM- Menu 4 (TVIPS, Gauting, Germany). Contrast 

http://vassarstats.net/
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and brightness were optimized with Adobe Photoshop CC 
(Adobe Systems, San Jose, CA, USA) software if necessary, and 
all figures were created with Adobe Illustrator CC. 

RESULTS 
We investigated the anatomy and ultrastructure of 
microglomerular synaptic complexes in the bulbs of the LX 
that connect the AOTU to the CB in the brain of the honeybee 
Apis mellifera (Figure 1). We first describe the different neuron 
types that are involved in these conspicuous connections. Then 
the general distribution and appearance of the synaptic 
complexes is shown. Last, we present data on the subcellular 
organization and show two types of synapses forming cell-cell 
connections. Positional information within the brain is given 
with respect to the body axis. For neuropils we followed the 
terminology suggested by Ito et al. (2014) wherever possible. 
Additionally, we refer to the entirety of small subunits of the 
AOTU as ‘‘LUC’’ as suggested by Zeller et al. (2015). The 
nomenclature of all neurons corresponds to the terminology 
used in locusts, monarch butterflies and bumblebees (Müller et 
al., 1997; Homberg et al., 2003; Pfeiffer et al., 2005; Heinze and 
Reppert, 2011; Pfeiffer and Kinoshita, 2012). 

Neurons Innervating the Bulbs 
Using extracellular iontophoretic dye injections, we were able 
to identify and distinguish two subtypes of TuLAL1 neuron 
connecting the LUC of the AOTU to the bulbs. The bulbs are 
neuropils located laterally on both sides of the CX. In each 
hemisphere there are two bulbs: the MBU and LBU. Together 
with the lateral accessory lobe they form the LX which is 
closely associated with the CX (Ito et al., 2014). Both subtypes 
of TuLAL1 neuron had their cell bodies medially to the AOTU 
and their axons extended around the vertical lobe (VL) of the 
mushroom body toward the CX. The axons of both subtypes 
ended in conspicuous large, hat-like terminals. The majority of 
the injected neurons had only one of those synaptic endings, 
but in a few cases the axon ended in more than one terminal. In 
these cases, the terminals were always in close proximity to 
each other and in the same bulb. The terminals of TuLAL1a 
neurons were located in the LBU, ventrolaterally to the CB 
(Figure 1B). The second subtype, TuLAL1b neurons, 
projected to the MBU which lies directly adjacent to the groove 
formed between the lateral boundary of the lower and upper 
divisions of the CB (Figure 1C). The transmission of 
information from the bulbs into the CB is assumed to take place 
in tangential neurons of the type TL2 and TL3, the 
presumptive equivalent to ring neurons in the fruit fly 
(Schistocerca gregaria: Vitzthum et al., 2002; Träger et al., 
2008; Drosophila melanogaster: Seelig and Jayaraman, 2013; 
Wolff et al., 2015). We were able to identify these neuronal cell 
types in the honeybee brain. They had their cell bodies medially 
to the AOTU and posteriorly from the somata of TuLAL1 
neurons. Their primary neurites ran toward the isthmus tract 
(IT), where they gave off single large side branches that  
extended into one of the bulbs and had dense accumulations of  
protrusions at their tips (Figures 1D,E arrowheads). These 
dendritic side branches were about 20 µm to 50 µm long in TL2 
neurons (Figure 1D) and invaded the LBU. In contrast, in TL3 

neurons they had a stub-like appearance of only a few µm and 
innervated the MBU (Figure 1E). The axons of both types of 
neuron extended into the CBL, where they branched in all slices 
of defined layers. 

Owing to the close morphological similarity of these four 
neuron types with equivalent neurons in locusts, monarch 
butterflies and bumblebees (Müller et al., 1997; Homberg et al., 
2003; Pfeiffer et al., 2005; Heinze and Reppert, 2011; Pfeiffer and 
Kinoshita, 2012), we suppose that these neurons form the large 
synaptic complexes found in the bulbs. More precisely, TuLAL1a 
neurons develop synaptic connections with TL2 and TuLAL1b 
with TL3 neurons (Figure 1A). 

Appearance of the Microglomerular Synaptic 
Complexes 
To obtain an overview of the synaptic complexes within the 
bulbs, we performed double labeling experiments using anti- 
synapsin and f-actin phalloidin staining. Synaptic complexes 
were clearly visible using this method and arranged in two 
distinct clusters, one group of synaptic complexes very close to 
the CBL in the MBU, and another group located more laterally 
in the LBU (Figure 2A). Higher magnification revealed that 
synapsin-immunoreactivity (IR) was localized within a cup-
shaped profile, and dense f-actin phalloidin staining was 
concentrated inside the halo of synapsin-IR (Figure 2B). The 
anterior-posterior expansion of both clusters becomes obvious in 
horizontal sections (Figure 2C). Figures 3A,B show a complete 
3D reconstruction of the lateral (red) and medial (blue) clusters 
of one brain hemisphere of synaptic complexes merged into a 
tissue section of phalloidin- labeled fiber bundles. The total 
number of synaptic complexes within each of the two clusters 
was assessed by individual 3D reconstructions of phalloidin-
labeled profiles revealing 68 ±1.9 SD (n = 4) complexes in the 
lateral cluster and 197.5 ± 37.5 SD (n = 4) in the medial cluster 
(Figures 3C–E). Because synapsin-positive presynaptic profiles 
often appeared fused, we used the more distinct phalloidin-
labeled profiles to quantify individual synaptic complexes. It 
cannot be excluded, however, that in some cases, particularly in 
the medial cluster, more than one phalloidin-labeled profile was 
associated with one (fused) synapsin-positive complex at this 
level of resolution. In addition to the total numbers of synaptic 
complexes defined by phalloidin- labeled clusters, the 3D 
reconstructions illustrate the position and extension of the two 
clusters in relation to other brain structures, in particular the CB. 
Based on the 3D reconstruction of the f-actin positive 
(postsynaptic) portion of the microglomeruli, we measured their 
volumes (Figure 4). Owing to the rather small size of these 
structures, compared to the z-resolution of the image stacks, 
these values should be treated with caution and should not be 
taken as absolute measurements. However, they illustrate the 
size difference between the elements of the lateral and the 
medial cluster as well as the distribution of volumes within the 
clusters.



Held et al. Honeybee Microglomerular synaptic complexes 
 

70 
 

 
 
 

 
 

FIGURE 1 | (A) Schematic drawing of the position of the neuron types forming microglomerular synaptic complexes in the medial and lateral bulbs of the honeybee 
Apis mellifera. The connection from the anterior optic tubercle to the central complex (CX) is formed by tubercle-lateral accessory lobe neurons 1a (TuLAL1a; green) 
and TuLAL1b neurons (orange). Two types of tangential neuron (TL2, blue; TL3, purple) provide input into the lower division of the central body (CBL). (B–E) 
Reconstructed morphologies of neurons labeled by extracellular dye injections. TuLAL1a (B) and TuLAL1b (C) neurons have their cell bodies medially from the 
AOTU. The axons of both types run toward the central body (CB), where they end in large terminals (arrowheads). In TuLAL1a neurons these terminals are located in 
the LBU (B, arrowhead), whereas TuLAL1b neurons terminate in the MBU (C, arrowhead), close to the CBL. TL neurons have their cell bodies medially to the AOTU 
and posteriorly to the somata of TuLAL1 neurons. Their primary neurites run toward the isthmus tract (IT), where they give off sidebranches. The sidebranches of TL2 
neurons extend into the LBU, and those of TL3 to the MBU (D,E, arrowheads). The axons extend from the bulbs further into the CBL, where they branch in all slices 
but not in all layers. TL2 neurons branch in the dorsal part of the CBL, TL3 neurons in the ventral part. AL, antennal lobe; CBU, upper division of the CB; DRA, dorsal 
rim area; LA, lamina; LBU, lateral bulb; LCA, lateral calyx; LO, lobula; LUC, lower unit complex of the AOTU; MBU, medial bulb; ME, medulla; MEDRA, dorsal rim 
area of the medulla; RE, retina; UU, upper unit of the AOTU; VL, vertical lobe. Scale bars: A = 200 µm, B–E = 100 µm. 
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The median volume of the postsynaptic elements from four 
brains in the medial cluster was 33 µm3, whereas it was 79 µm3 

in the lateral cluster. This difference was statistically 
significant (Mann-Whitney test, P < 0.0001, U = 157060.5, z 
= 13.39, Nmedial = 772, Nlateral = 262). The total volume of all 
postsynaptic elements was 8485 µm3 in the medial cluster and 
6244 µm3 in the lateral cluster (median values, n = 4). 
To investigate whether the synaptic complexes are formed by 
TuLAL1a/b and TL2/3 neurons we performed double label 
experiments. In Schistocerca gregaria, TL2 and TL3 tangential 
neurons of the CB are GABA-immunoreactive (Homberg et al., 
1999; Träger et al., 2008). In honeybees immunostaining for 
GABA also labels putative tangential neurons in the CBL 
(Schäfer and Bicker, 1986). Immunofluorescent labeling for 
GABA confirmed the data of Schäfer and Bicker (1986) and 
revealed a subdivision of terminals of the labeled TL neurons 
lateral to the CB into two larger medial groups and two smaller  
lateral groups (Figure 5A). It also confirmed that branching of 
these neurons in the CB is restricted to the CBL. The few fibers 
stained in the upper division of the central body (CBU) likely 
belong to TU1 and TU2 neurons as described in Schistocerca 

gregaria (Homberg et al., 1999). To analyze whether the TL 
neurons are candidates for postsynaptic partners of TuLAL1 
neurons, we stained TuLAL1 neurons through tracer injection 
into the LUC of the AOTU, followed by marking of TL neurons 
through GABA immunofluorescence labeling. Terminals of 
TuLAL1 neurons were large hat-like structures with an uneven 
surface (Figures 5B,C). Close inspection of single complexes 
in double labeled samples revealed a distinct pattern: hat-like 
terminals from TuLAL1 neurons partly enclosed the terminals 
of side branches of TL neurons (Figures 5B,C). 

Ultrastructure and Synaptic Connections 
To investigate the synaptic connectivity between TuLAL1 and 
TL neurons, we studied the microglomeruli at the 
ultrastructural level. Transmission electron micrographs 
showed that the synaptic complexes have a diameter of up to 8 
µm and are partly enwrapped by layers of glia (Figures 6A,B). 
Therefore, individual synaptic complexes were clearly 
distinguishable from one another. Each microglomerular 
complex consisted of a single large cup-shaped profile,  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 | Anti-synapsin (Syn, magenta) and f-actin phalloidin (Phallo, green) staining of the microglomerular synaptic complexes. (A) Frontal sections  
show that the synaptic complexes are arranged in two clusters: one in the MBU close to the connection of the CBL and the upper division (CBU). The second cluster 
is located in the LBU. (B) At higher magnification of both clusters the distribution of the anti-synapsin and f-actin phalloidin staining reveals a synapsin-positive cup-
shaped structure with an f-actin containing profile in the center. (C) In horizontal sections the distribution in the anterior-posterior axis becomes apparent. The synaptic 
complexes in both bulbs appear posterior to the pedunculi (PED). Those of the MBU extend posterior to the upper division of the noduli (NOU). a, anterior; m, medial; 

NOL, lower division of the noduli; p, posterior; v, ventral. Scale bars: A = 100 µm, B,C = 50 µm, inset in B = 10 µm. 
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apparently from a TuLAL1 neuron, enclosing numerous small 
profiles (SPs), apparently originating from TL neurons.The 
large profiles (LPs) of TuLAL1 neurons were less electron 
dense than the small central profiles. They contained many 
mitochondria and two types of vesicle, numerous clear vesicles 
(cVs) with a diameter of 20–60 nm and a small number of dense 
core vesicles (dcVs) with a diameter of 50–80 nm (Figure 6). 
The bulk of vesicles was concentrated close to the internal 
membrane of the cup-shaped LP. The synaptic endings of the 
TL neurons formed many SP surrounded by the single LP. 
Apparently, one or a few processes from TL neurons enter the 
microglomerulus and give rise to a dense bush of ramifications 
in the center (Figure 6). These profiles also contained some 
mitochondria but additional organelles were difficult to 
distinguish. All synaptic connections were made at the inside 
of the complexes; we never found active zones at the exterior 
membrane of the LP. Synaptic release sites were identified 
based on their electron dense ultrastructural specializations as 
described previously in other studies (Gray, 1959; Uchizono,  

1965; Aghajanian and Bloom, 1967; Colonnier, 1968; 
Mayhew, 1996; Watson and Schürmann, 2002). The synapses 
we found were only formed between LPs and SPs, no synaptic 
connections were found between SPs. The electron dense 
synaptic release sites enabled us to identify the LPs of TuLAL1 
neurons as presynaptic terminals. They included transmitter-
containing vesicles and a number of mitochondria as described 
above. Additionally, an electron-dense membrane structure 
was present as transmitter release site. The associated 
membranes of the small postsynaptic profiles of TL neurons 
showed an electron- dense thickening, implying postsynaptic 
densities. Another feature of synaptic sites was a cleft of diverse 
thickness between the pre- and postsynaptic membranes. We 
were able to distinguish two types of synapses. The more 
frequent type was a divergent dyad where one presynaptic 
profile (Figure 7A, LP) was connected to two postsynaptic 
partners (Figure 7A, arrowheads). Due to the triangular 
arrangement and the preserved membranes the synaptic cleft 
was well defined. The presynaptic membranes showed 
aggregations of cVs in the vicinity of the electron-dense region. 
All involved postsynaptic profiles showed characteristic 
electron- dense membrane regions. The inside of the 
postsynaptic profiles was devoid of synaptic vesicles but 
contained mitochondria. The second type of synapse was a 
divergent tetrad, where the presynaptic profile (Figure 7B, LP) 
formed one synapse with four postsynaptic profiles (Figure 
7B, arrowheads). The structure was nearly the same as in 
dyads: the presynaptic membrane showed an electron-dense 
fusion region with adjacent cVs, and a visible thickening of the 
postsynaptic membranes. 
DISCUSSION 
We characterized the anatomy and ultrastructure of 
microglomerular synaptic complexes in the bulbs of the 
honeybee brain. These complexes have been investigated 
previously in the sky-compass pathway of the locust 
Schistocerca gregaria (Träger et al., 2008) and in the brain of 
the desert ant Cataglyphis fortis (Schmitt et al., 2016), and 
therefore, seem to be a highly conserved feature of the insect 
brain. The sky-compass pathway in locusts originates in 
specialized photoreceptors of the DRA of the compound eye 
and runs through the ME toward the LUC of the AOTU and 
from there to the LX and into the CB (reviewed by Pfeiffer and 
Homberg, 2014). This pathway has been characterized 
anatomically in the honeybee from the DRA to the LX, and the 
involved neurons strongly resemble those described in the 
locust (Zeller et al., 2015). In this study, we focused on the 
synaptic contacts in the bulbs of the LX, connecting the LUC 
of the AOTU to the CBL. In the locust (Träger et al., 2008) and 
desert ant (Schmitt et al., 2016) these microglomeruli have a 
remarkable size and structure. Therefore, they are likely to play 
an important role in the processing of visual information,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 3 | 3D reconstructions of f-actin phalloidin labeled 
microglomerular synaptic complexes. (A) Reconstruction of the cluster 
(red) in the LBU. (B) Reconstruction of the synaptic complexes in the MBU 
(blue). (C) 3D reconstruction of the microglomerular synaptic complexes and 
their spatial distribution in relation to the PED and the CBU and CBL. (D) View 
from posterior reveals the distribution of the clusters in relation to the CB and 
the noduli (NO). (E) Sagittal view shows the location of the clusters in anterior-

posterior axis extending to the NO. Scale bars: A,B = 50 µm,   C–E = 70 
µm. 
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like sky-compass cues or visual detection, by providing proper 
visual input into the CX. 

Structure of the Microglomeruli of the LX 
Compared to Other Species 

The large microglomerular synaptic complexes in Apis 
mellifera are located in the MBU and LBU of the LX. Each 
synaptic complex consists of one large presynaptic terminal 
formed by a TuLAL1a or TuLAL1b projection neuron from the 
LUC of the AOTU (Zeller et al., 2015). These terminals have 
been mentioned in a previous study (Mota et al., 2011) but have 
not been investigated in bees any further. The TuLAL1 neurons 
are connected to GABA-immunoreactive TL2 and TL3 
tangential neurons of the CBL. Those TL neurons have 
conspicuous dendritic endings with single bushy structures at 
the tip of a stalk. At the ultrastructural level these endings 
appear as SP that are enclosed by a single LP of a TuLAL1 
neuron. The large presynaptic terminals contain two types of 
vesicles: cVs and dcVs, but no information exists on their 
transmitter content. Single complexes are enclosed by glia cells. 
This glia can be referred to as astrocyte-like, as described in the 
fruit fly (Awasaki et al., 2008). It is the only known type of glia 
located within neuropils and associated with synaptic 
connections. Its function is likely the support of neurons, which 
in our case is very crucial considering the size and the amount 
of mitochondria in pre- and postsynaptic profiles. Additionally, 
this type of glia probably takes part in the modulation of neural 
connections (Awasaki et al., 2008; Edwards and 
Meinertzhagen, 2010). Homologs of the involved neuron types  
were characterized anatomically and physiologically in many 
other insect species and, therefore, seem to be highly conserved. 

In the fruit fly Drosophila melanogaster GABAergic ring 
neurons of the ellipsoid body are homologous to TL neurons in 
honeybees. They form microglomeruli in the bulbs and connect 
them to the ellipsoid body, the equivalent of the CBL in the 
honeybee (Hanesch et al., 1989). Calcium-imaging experiments 
in tethered fruit flies showed that these microglomeruli are 
sensitive to visual features with an orientation tuning to vertical 
stripes (Seelig and Jayaraman, 2013; Weir and Dickinson, 
2015). In the cricket Gryllus bimaculatus compass-neuron like 
cells (homologs of TL2 neurons in other species) that connect 
the LX with the CBL are sensitive to polarized light (Sakura et 
al., 2008). In the monarch butterfly (Danaus plexippus) there is 
only one cluster, the LBU, but different subtypes of TuLAL1 
neuron ramify in spatially segregated areas. That is suggestive 
for a similar connectivity specificity as in honeybees. Colabeling 
of TL3- and TuLAL1 neurons revealed spatial proximity of large 
terminals of TuLAL1 neurons and profiles of TL3 neurons 
(Heinze and Reppert, 2011, 2012; Heinze et al., 2013). In the 
bumblebee Bombus ignitus TuLAL1a/b neurons share a very 
similar anatomy to the two cell types shown here (Pfeiffer and 
Kinoshita, 2012). 

Although in all of these species one or both types of TuLAL1- 
and TL neuron have been described morphologically and partly 
investigated physiologically, the synaptic complexes they form 
have been explored only in desert ants and desert locusts. In the 
desert ant Cataglyphis fortis the microglomerular synaptic 
complexes are clustered in a single bulb (LBU; Schmitt et al., 
2016) whereas in honeybees we found two clusters, one in the 
LBU and the other one in the MBU. Although the general 
anatomy appears very similar in honeybees and ants, a closer look 
reveals some distinct differences. 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 
FIGURE 4 | Volumes of the reconstructed f-actin positive postsynaptic portion of the microglomeruli. Unilateral data from four brains. Histograms of data   
from the medial (A) and lateral (B) cluster. Note different scaling in (A,B). (C) Comparison of volume data. Box: 25th, 50th and 75th percentile, small square: average, 
whiskers: 5th and 95th percentile, cross: 1st and 99th percentile, dash: minimum and maximum value. The median microglomerulus volume in the medial cluster 
was 33 µm3 , whereas it was 79 µm3 in the lateral cluster. This difference was statistically significant (indicated by ∗∗∗, Mann-Whitney test, P < 0.0001, U = 
157060.5, z = −13.39, n = 4, Nmedial = 772, Nlateral = 262). 
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In honeybees the complexes have a diameter of up to 8 µm 
compared to only 5 µm in ants (Schmitt et al., 2016). 
Likewise, the presynaptic terminals appear larger and swollen 
whereas in ants they have the shape of a thin cup. Another 
difference between the two species lies in the vesicle pool 
within the presynaptic terminals. In ants the LP is densely 
packed with cVs and only a few dcVs and mitochondria are 
visible (Schmitt et al., 2016). In the honeybee a higher number 
of mitochondria and dcVs, but fewer cVs were found. The 
reason for the differences in the vesicle stock is currently 
unknown, fixation artifacts seem unlikely due to the high-
quality conservation of the tissue. 

Microglomerular synaptic complexes of the bulbs in 
the desert locust Schistocerca gregaria share a similar  

 

distribution,anatomy and ultrastructure to those in honeybees 
(Träger et al., 2008). However, one difference arises again in the 
vesicle stock. In locusts the presynaptic terminal is filled with 
cVs throughout the profile like in ants, whereas in honeybees 
vesicles are concentrated near synaptic release sites. 
Electrophysiological and anatomical studies in locusts showed 
that these synaptic complexes are part of the sky- compass 
pathway (Vitzthum et al., 2002; Pfeiffer et al., 2005; Träger et 
al., 2008). Taken together, the pathway described by Zeller et al. 
(2015) and the anatomical similarity to locusts shown here 
strongly suggest that the complexes are part of the sky-compass 
pathway in honeybees as well. 

Synaptic Complexes in Other Species 
In insects, neuromuscular junctions are monads, and most 
chemical synaptic connections in the central nervous system 
(CNS) are dyads (Wernitznig et al., 2015). In the visual system, 
more complex multi-contact synapses have been described in the 
optic lobes, more precisely in the LA, of muscomorph flies 
(Shaw and Meinertzhagen, 1986; Meinertzhagen and O’Neil, 
1991) and locusts (Wernitznig et al., 2015). In both taxa, 
photoreceptor neurons provide input to LA monopolar cells via 
triads and tetrads. At a later stage of visual processing, multi-
contact synapses have been mentioned in the calyces of 
honeybees and in the microglomerular synaptic complexes in 
the bulbs of the desert locust Schistocerca gregaria and in the 
desert ant Cataglyphis fortis. In ants the synaptic connection is 
formed by triads, tetrads and only a few dyads (Schmitt et al., 
2016). Our data revealed a slightly different synaptic formation 
in the honeybee, with connections being formed by dyads and 
tetrads. By contrast in locusts the synaptic connections within 
the microglomerular complexes consists solely of regular 
ribbons of dyads (Träger et al., 2008). Neither in ants nor in 
honeybees synapses in the microglomerular complexes are 
arranged in such a distinguishable and regular manner. 

Microglomeruli containing multi-contact synapses also occur 
in the calyces of the mushroom bodies of insects that are regarded 
as high-order sensory integration centers. The organization of 
microglomerular complexes in the calyces is reversed compared 
to those in the bulbs. In the mushroom body, a microglomerulus 
consists of one central presynaptic bouton that is surrounded by 
many postsynaptic profiles belonging to several Kenyon cells 
(Trujillo-Cenóz and Melamed, 1962; Schürmann, 1974; 
Ganeshina and Menzel, 2001; Groh and Rössler, 2011). In the 
complexes in the bulbs of the honeybee it is so far not known if 
the postsynaptic profiles are related to one or various neurons in 
one microglomerulus. The calycal microglomerular complexes 
are smaller than those in the bulbs. In the bulbs of the bee, 
complexes have a diameter of approximately 8 µm, whereas the 
size of the microglomeruli in the calyx of honeybees reaches 
only 2–3 µm (Ganeshina and Menzel, 2001). The synaptic 
connections in the calyx of honeybees are formed by dyads, 
triads and tetrads (Groh et al., 2012). In the calycal 
microglomeruli of fruit flies the number of postsynaptic profiles 
within one synapse can differ between 1 and 14 (Butcher et al., 
2012). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 5 | Staining of neurons contributing to terminals in the 
bulbs. (A) Immunostaining for Ƴ-aminobutyric acid (GABA; green) using the 
antibody from Abcam. GABA-immunoreactive TL neurons branch in the LBUs 
and the larger MBUs. The neurons have dense ramifications in the CBL 
whereas the upper division (CBU) is barely stained. (B,C) Double labeling by 
injection of dextran Texas Red into the AOTU, labeling TuLAL1 neurons 
(magenta) and immunostaining for GABA (green) with the antibody of Kingan, 
labeling TL neurons, reveals the structure of microglomerular synaptic 
complexes. (B) In the MBU TL3 neurons form complexes with large terminals 
of TuLAL1b neurons. The TuLAL1b neuron terminals are located on top of the 
TL neuron branches. (C) In the LBU the complexes have a similar structure. 
Here, GABA immunostaining exposes a bushy structure at the tip of the 

extension of a TL neuron (arrowhead). Scale bars: A = 50 µm, B,C = 10 µm. 
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Similar to the synaptic complexes in the bulbs, the postsynaptic 
elements of mushroom body microglomeruli contain high 
concentrations of motile f-actin (Groh and Rössler, 2011). 

Microglomerular synaptic complexes do not only occur in 
insects. Two well studied types of giant axosomatic synapses 
in the mammalian CNS, more precisely in the auditory pathway, 
are the endbulb and the calyx of Held. The presynaptic calyx of 
Held, probably the largest synaptic terminal in the mammalian 
CNS, envelopes the soma of a principal cell (Walmsley et al., 
1998; review von Gersdorff and Borst, 2002; Schneggenburger 
and Forsythe, 2006; Rodríguez-Contreras et al., 2008). EM 
studies in rats showed that one calyx contains about 550 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

active zones (Sätzler et al., 2002). In comparison, a small 
glomerulus in the LX of locusts had around 150 active zones 
(Träger et al., 2008). 

Functional Implications of Microglomerular 
Synaptic Complexes 
Indications for the functional implication of these complexes 
exist so far only for ring neurons, the Drosophila melanogaster 
equivalent to honeybee TL neurons. There, activity patterns of 
the dendrites in the bulbs, triggered by a vertical stipe, suggest a 
retinotopic arrangement and therefore a representative map of 
the visual surrounding (Seelig and Jayaraman, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 | Transmission electron micrographs showing the ultrastructure of microglomerular synaptic complexes in the LBU (A,A’) and the MBU 
(B,B’) of the lateral complex (LX). (A) The complex consists of one large profile (LP) enclosing many small profiles (SPs). The LP contains clear vesicles (cVs), 
some large dense core vesicles (dcVs) and many mitochondria (M) and forms numerous synaptic connections with the SP (arrowheads). A glial sheath (GS) is 
wrapped around the complex. It is located in proximity to two nuclei of other cells (N). (A’) Drawing of the complex in (A) shows the borders of the profiles, organelles 
and synaptic connections. All parts of the LP are shown in white and the SP in gray. (B,B’) The structure of the complex in the LBU is similar to the one in the MBU: 
one LP encloses many SP. Scale bars = 1 µm. 
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While the anatomical data presented in this study provide no 
direct insight into the physiology of the synaptic complexes of 
the LX, their structural characteristics allows for some 
speculations concerning functionality. First, their striking size 
is remarkable and to our knowledge unique within the insect 
brain. We assume that the organization and ultrastructure of the 
complexes leads to a fast and reliable signal transmission. The 
composition of one large presynaptic terminal enclosing the 
postsynaptic profiles with all active zones in the center might 
indicate a low-noise signal transmission. Additionally, the 
astrocyte-like glial layers around the synaptic complexes likely 
support reliable transmission. In Drosophila astrocyte- like glia 
is important to clear the synaptic cleft from neurotransmitters 

and their enzymatic breakdown products (reviewed in Freeman, 
2015). In honeybees acetylcholinesterase has been detected in 
the microglomerular synaptic complexes in the bulbs (Kreissl 
and Bicker, 1989), suggesting that acetylcholine is likely to act 
as a transmitter there. NADPH diaphorase labeling in locusts, 
suggesting nitric oxide synthase activity, revealed staining in 
TL2 neurons and the LBUs, suggesting the presence of nitric 
oxide (Kurylas et al., 2005). Nitric oxide is known to function as 
a retrograde messenger in sensory processing in the nervous 
system. Since it is gaseous it can pass membranes and diffuse 
into the surrounding tissue without synaptic release (Dawson and 
Synder, 1994; Müller, 1997; Bicker, 2001). Therefore, the glia 
sheaths (GS) around the single complexes might work as 
diffusion barrier for NO as well as transmitters between adjacent 
complexes like the ensheathing glia around individual neuropils. 

Electrophysiological data of the calyx of Held showed that 
one single action potential in the presynaptic profile leads to 
rapid depolarization of the postsynaptic profiles. This on the 
other hand ensures not only a rapid transmission but also the 
retention of the timing of signals (Schneggenburger and 
Forsythe, 2006). Given that the organization of the calyces of 
Held is comparable to the synaptic complexes in the LX of 
honeybees, the same principle for fast transmission could be 
valid here as well. The divergent multi-contact synapses support 
this assumption, as the transmitter release from one presynaptic 
membrane simultaneously addresses two or four postsynaptic 
partners. This could lead to a depolarization of the postsynaptic 
neuron above threshold by only one presynaptic action potential. 
So far we could not determine the ratio between the involved 
pre- and postsynaptic neurons. Whether this ratio is 1:1 as in the 
calyx of Held, divergent as in locusts, or convergent might be 
addressed in further studies. 

Why do honeybees need such large complexes promoting 
reliable signal transmission? A closer look at the localization 
might give some indications. These microglomerular complexes 
are part of the visual pathway. The preservation of timing is a 
crucial feature in most sensory pathways to maintain all 
information of a stimulus. The calyces of Held are part of a 
pathway for sound-source localization based on time delays, 
where signal timing is absolutely essential. Another example for 
the importance of timing for an efficient signal processing is the 
dual olfactory pathway of the honeybee, where the responses 
within and between the two tracts reveal an odor-dependent 
latency (Brill et al., 2013, 2015). Studies on experience-related 
plasticity of the synaptic complexes in the LX of the desert ant 
(Schmitt et al., 2016) revealed that the number of synaptic 
complexes increases upon first exposure to light. The relatively 
high variation in the total number of synaptic complexes we 
found in the honeybee may arise from different levels of visual 
experience in the samples of winter bees used for the present 
study. 

Taken together, the anatomical formation, compared to well- 
known features of other synaptic complexes, strongly suggests 
that the microglomerular synaptic complexes in the LX of 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7 | Detailed view of two types of synapse. (A) One presynaptic 
LP of a TuLAL1 neuron (LP) gives input into three small postsynaptic profiles 
(SP) of a TL neuron via two divergent dyads. The structure of both dyads is 
similar: some small cVs are near an electron dense stalk-like structure at the 
presynaptic membrane. The synaptic cleft between the pre- and postsynaptic 
membranes has a triangular structure. In both postsynaptic profiles the 
membranes form electron dense foldings due to transmitter receptors 
(arrowheads) and contain mitochondria (M). (B) One presynaptic terminal (LP) 
and four postsynaptic profiles (SP) forming a divergent tetrad. Many small cVs 
are concentrated at the presynaptic membrane. Scale bars = 200 nm. 
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honeybees and other insects are essential for reliable signal 
transmission in the sky-compass pathway. It seems plausible 
that transmission speed and input timing is crucial in a 
sophisticated visual task like navigation and orientation during 
flight. However, future neurophysiological experiments on the 
neurons described here and their synaptic complexes are 
needed to better understand the properties of signal 
transmission at this specific point of the visual neuronal system. 
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INTRODUCTION 
Honeybees have been in the focus of insect ethologists for decades, offering 

many-faceted behaviors with some being unique in the insect world. The social 

structure of a hive of these eusocial insects comprise one fertile queen, male drones 

occurring only in early summer, and thousands of infertile female worker bees. The 

age-dependent division of labor of worker bees came to the fore in recent 

neuroethological investigations, especially regarding experienced-based neural 

plasticity due to the transition from inside workers to foragers (e.g. Fahrbach et al., 

1998; Groh et al., 2012; Cabirol et al., 2018). Another important behavioral aspect of 

honeybees that has been investigated by ethologists over 70 years ago and is now 

studied from a neurobiological and neuroethological angle is the orientational and 

navigational capability of these central place foragers. Their outbound flight to forage 

for water or to collect pollen and nectar often has a sinuous path stretching over 

several kilometers whereas the flight path back to the hive is in a rather straight beeline 

(Wehner and Srinivasan, 2003; Srinivasan, 2015). For the direct inbound flight, bees use 

a navigational tool known as path integration, a combination of directional 

information and an odometer which stores the traveled distance. In bees, the 

odometer system calculates the covered distance using optic flow, which is 

translational motion of images across the retina (Esch et al., 2001; reviewed by 

Srinivasan, 2014). Furthermore, behavioral studies showed that they rely heavily on 

visual information to stay on course back to the hive. They use primarily celestial cues 

like the sun and the polarization pattern of the blue sky in a sun-based compass system 

but also refine their steering by using landmarks during their inbound flight (von Frisch, 

1949; Zeil et al., 1996; Kraft et al., 2011; Menzel et al., 2019). The navigational abilities of 

honeybees also emerge in the waggle dance, a communication behavior that is 

unique in the insect world. The waggle dance is performed by foragers that are 

returning from a rewarding collecting site on the vertical comb. The goal of the dance 

is to transmit the information of the target site to recruit other worker bees to forage at 

the same location. The incoming foragers are performing in a figure-eight shape a 

specific sequence of turns and vibrations on the straight stretch with the latter 

encoding the distance to the food source. The direction of the destination is indicated 

by the angle to the right or the left between the vertical line on the comb and the 

straight stretch of the dance. The vertical line is based on the force of gravity and 
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indicates the azimuth of the sun. The angle between the straight stretch of the figure-

eight shaped dance and the vertical line signals recruited bees the angle they have 

to take from the hive with respect to the sun’s position (Fig. 1; von Frisch, 1949).  
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Fig. 1: Structure of the waggle dance of honeybees. A bee coming back from a foraging trip is 

dancing on the vertical comb in the hive in a figure-eight shape. The gravitational force is used 

as reference system, with the upward vertical line indicating the position of the sun. The bee 

dances in an angle to the vertical line that represents the angle between the position of the 

sun’s azimuth and the food source. On the straight stretch of the figure-eight shape, the 

recruiting bee vibrates with her abdomen, with the duration of the vibration indicating the 

distance to the foraging site.  

It is worth mentioning that the waggle dance is not only astonishing solely 

because of the recruiting system. Bees are furthermore capable to precisely translate 

the visual information gathered during the food search into vibrations and turns using 

the gravity on the vertical comb in the dark hive as a reference system. The recruited 

bees on the other hand receive the information mainly over tactile input. Therefore, 

they have to decode this input and compare it with the visual cues they receive during 

their own foraging flight, which requires a complex integration of different modalities. 

Even though the astonishing navigational and communication skills of bees have been 

described by ethological studies in detail, the underlying neuronal system has only 

partly been described anatomically. The location and mechanisms of the integration 

processes of the different modalities are however still largely unknown.  

As a first step to close this gap, this project focused on the investigation of 

physiological responses of neurons within the sky-compass pathway to visual 

stimulation. Since visual interneurons exhibit state dependent responses (Seelig and 

Jayaraman, 2013; Weir and Dickinson, 2015; Rosner et al., 2019; Ache et al., 2019) and 

a long-term goal is to investigate visual guided behavior, the aim of this project was to 

record physiological responses from the compass system of behaving animals. This 

undertaking, which would be a novelty in the field of physiological investigations in 

honeybees, raised some serious methodical challenges. The physiological recordings 

had to be stable enough without completely restraining the animal. It was also crucial 

to be able to visualize the recorded cells since the physiology of neurons involved in 

the sky-compass system is still largely uncharted in the bee brain. For the same reason 

it was also favorable to be able to record from a population of neurons opposed to a 

single cell recording. Taken all those requirements together, calcium imaging 

appeared to be the method of choice for the presented project. There have been 
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two studies conducted in the upper unit of the anterior optic tubercle in honeybees 

brain using calcium imaging (Mota et al., 2011; Mota et al., 2013). This part of the 

tubercle receives visual input, especially color information, but is not part of the sky-

compass pathway. In addition, some calcium imaging experiments have been 

performed in the antennal lobes of bees, the main olfaction input center (e.g. Rigosi 

et al., 2015; Jernigan et al., 2019). All these studies were carried out in completely 

restrained bees though, which prevented any investigation of the interaction between 

sensory stimulation and behavior. Especially state dependent physiological changes 

in neurons are not taken into account if the animals are not able to perform some sort 

of self-motion or behavioral responses. This disadvantage is particularly crucial 

because recent studies in locusts and fruit flies showed, that, depending on the 

behavioral state, some neurons of the sky-compass pathway show drastic changes in 

their responses to visual stimulation (Seelig and Jayaraman, 2013; Weir and Dickinson, 

2015; Rosner et al., 2019). Therefore, current research is focusing more and more on 

performing physiological recordings in animals that are as little restrained as possible. 

For this reason, this project focused on the development and establishment of a new 

protocol that would allow for the first time ever calcium imaging in a walking 

honeybee. Calcium imaging is so far not as broadly established in honeybees as it is 

for example in fruit flies, especially regarding the indicators and the indicator delivery 

system. In fruit flies, genetically encoded calcium indicators are broadly used, while in 

bees and other insects those genetically tools are not available. Therefore, chemical 

dyes have to be injected into the neurons. For this reason, the first step included an 

extensive search for a suitable calcium indicator. In the end, the conventionally used 

Calcium Green-1 dextran was utilized, as well as a custom-made JF549-BAPTA dye 

coupled to ester groups. The lower unit complex of the anterior optic tubercle (LUC) 

was chosen as target area. The reasons for this choice is its part in the sky-compass 

pathway at the junction of the optic lobes to the central brain and its superficial 

location (Zeller et al., 2015; Fig. 2). The latter is crucial for this project since the LUC still 

lays within the depth limit of multiphoton microscopes to image in living tissue. 
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Fig. 2: Schematic drawing of the honeybee brain and the input part of the anterior sky-compass 

pathway. The targeted transmedulla neurons (red line) are part of the sky-compass pathway 

that receives input from the dorsal rim are of the compound eye. Neurons project through the 

lamina and branch in the dorsal rim area of the medulla. From there the transmedulla neurons 

project through the medulla and lobula to the lower unit complex of the anterior optic tubercle, 

where they branch in all sub-compartments. From the lower unit complex the pathway projects 

further around the vertical lobes of the mushroom bodies into the central brain, where they 

end up in the central body. Further branchings in the central complex, to the contralateral side 

as well as the projections further downstream are not shown. AL: antennal lobe, CA: calyx, CBL: 

lower division of the central body, CBU: upper division of the central body, DRA: dorsal rim area, 

LA: lamina, LO: lobula, LUC: lower unit complex of the anterior optic tubercle, ME: medulla, 

MEDRA: dorsal rim area of the medulla, PE: peduncle, RE: retina, VL: vertical lobe. Scale bar = 

500 µm. 

Anatomical studies revealed furthermore a distinct subcompartmentalization of 

the structure into five subunits (Heinloth unpublished, 2013; Zeller et al., 2015; Fig. 3A). 

One question of this project was therefore if the compartments have a mechanistic 

purpose, for example if there is a retinotopic allocation of the input neurons. To this 

end, the input neurons, called transmedulla neurons, were labeled in the medulla and 

their dendrites in the LUC were imaged (Fig. 3B - D). 
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Fig. 3: Three-dimensional average shape atlas of the anterior optic tubercle and branching 

patterns of transmedulla neurons. A: Based on an anti-synapsin staining an average shape atlas 

of the anterior optic tubercle was created, including a larger upper unit (purple structure) and 

a smaller lower unit complex, consisting of five sub-compartments (colored structures). B, C: 

Single confocal sections of a Dextran Texas Red injection (orange, Dex-TR) into transmedulla 

neurons in a brain labeled against synapsin (grey, syn-ir). The neurons show different projection 

areas in the lower unit complex of the anterior optic tubercle. D: Maximum intensity projection 

of 10 consecutive slices of the neurons shown in B & C. LUC: lower unit complex of the anterior 

optic tubercle, UU: upper unit of the anterior optic tubercle. Scale bars: A = 50 µm, B-D = 30 µm. 

A: Heinloth unpublished, 2013, B-D: adapted from Zeller et al., 2015. 

To allow the bees to show walking behavior, a treadmill system based on the 

fruit fly system (Seelig et al., 2010) was developed and fabricated in multiple steps 

together with a camera system to record the walking trajectories. For visual stimulation, 
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an LED arena was used to present different patterns. The overall goal was to be able 

to align the behavioral recordings with the calcium responses to investigate state 

dependent influences. In the end, the delivery system for the dye, the preparation 

protocol, the calcium imaging and walking recording, and the analysis of the data 

was successfully established. This methodical advancement might open the door for 

future experiments to investigate the neurophysiological processes behind the 

astonishing behaviors of honeybees.  
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MATERIAL AND METHODS 
CALCIUM GREEN-1 DEXTRAN AND JF549-BAPTA-MPM ESTER  

The depolarization of a neuron, either due to spontaneous activity or caused 

by stimulation, causes voltage-gated Ca2+ channels in the membrane to open, which 

leads to a rapid increase of Ca2+ inside the cell. Therefore, calcium ion concentration 

can serve as an excellent readout of neural activity, and a large number of fluorescent 

calcium indicators that are able to reliably detect the calcium influx have been 

developed. Those can be separated into two groups: “synthetic” based on small-

molecule fluorophores and “genetically encoded” based on fluorescent proteins 

(Bolbat and Schultz, 2017). Although genetically encoded reporters are routinely used 

in model organisms such as Drosophila or mice, they cannot be easily implemented in 

honeybees. I therefore focused on the use of synthetic calcium indicators for this 

project.  

Many synthetic calcium indicators rely on the calcium chelator BAPTA (1,2-

bis(ο-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid) that is attached to a 

fluorophore (Tsien, 1980). In the absence of calcium, the compound is only weakly 

fluorescent due to quenching by photo-induced electron transfer. This effect is 

suppressed upon binding of calcium, and fluorescence is recovered. For this project, 

we first examined the use of the commercially available Calcium Green-1 dextran 

(3,000MW, Molecular Probes, Invitrogen, ThermoFisher Scientific, Waltham, MA, USA). 

This dextran-conjugated calcium indicator is membrane-impermeant and needs to 

be physically introduced into neurons via bulk injections. After the dye is loaded into 

the cells, it is actively transported from the point of introduction anterogradely or 

retrogradely across the whole neuron (Russell, 2011). It exhibits a ~ 14 fold fluorescence 

increase with a slight wavelength shift upon Ca2+ binding. The excitation peak is at 506 

nm and the emission maximum occurs at 531 nm (Fig. 4).  



 

89 
 

Fig. 4: Excitation and emission spectra of Calcium Green-1 dextran. The calcium sensitive 

fluorescence molecules of Calcium Green-1 dextran have the highest absorption level at 506 

nm and show their emission peak with a slight wavelength shift at 531 nm. Adapted from 

SpectraViewer (ThermoFisher). 

To circumvent the need for intracellular injection, we also evaluated the use of 

a cell-permeant calcium indicators in collaboration with the laboratory of Luke Lavis 

(HHMI Janelia Research Campus). Cell-permeant calcium indicators are usually 

designed by synthetically incorporating ester groups on the BAPTA moiety. The ester 

groups mask the highly polar carboxylic acids of the BAPTA, making it cell-permeant. 

Inside the cells, the ester groups are then cleaved by endogenous enzymes called 

esterases (Tian et al., 2012). The removal of the ester groups has two effects: the 

molecule is not cell-permeant anymore and therefore trapped inside the cell, and it 

reveals the Ca2+-binding moieties. Esterases are however species-specific and cell-

type dependent. In order to determine the most suitable ester group for esterases in 

the honeybee brain, a series of pre-experiments had to be conducted (see Preliminary 

ester tests).  

PREPARATION 
All preliminary tests and calcium imaging experiments were performed on adult 

foraging worker bees that were caught from the hive entrance. Bees of three different 

locations were used: in summer 2016 and 2017 from the outdoor hive of the Janelia 

Research Campus (Ashburn, VA, USA), in winter 2017 and 2018 from an indoor hive of 

the Würzburg University bee station’s greenhouse (Würzburg, Germany) and in summer 

2018 and 2019 from outdoor hives of the Biocenter (Würzburg, Germany). Honeybees 
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were immobilized in plastic vials at 4°C in the refrigerator or on ice. They were then 

tethered with UV curable glue (Perfomic Pen midget, Conrad Electronic SE, Hirschau, 

Germany) to a custom-built holder (Fig. 5A). Caution had to be taken to keep the 

main part of the eye free from glue, as well as the abdomen, the legs, and the 

antennae tips (Fig. 5B & C). Preliminary tests showed that the animals would not walk 

in a proper fashion later in the experiments if the tips of the antennae, the abdomen 

and stinger or the legs had any glue on them but would rather try to clean themselves. 

Afterwards, the head capsule of the bees was opened with a scalpel by cutting a 

window frontally between the eyes, ocelli, and antennae base in the cuticle. To 

expose the brain and prevent artefacts later in the imaging process, all excess tissues 

surrounding the brain, like salivary glands, air sacks, and the neural sheath were 

removed (Fig. 5C). 

Fig. 5: Preparation of honeybees for preliminary testing and calcium imaging. A: A custom-built 

holder was used for all experiments. The holder is composed of a flat part that can be attached 

to a micromanipulator and a reservoir that can be filled with Ringer’s solution. At the bottom 

of the reservoir is a hole through which the preparation and the imaging is carried out. B: The 

bee was glued to the holder with the head capsule attached to the hole and the thorax glued 

to the holder. Abdomen, legs, the tips of the antennae, and the majority of the eyes were free 

of glue. C: View through the hole in the holder a window in the cuticle into the bee head 

through. The brain was exposed by removing air sacs, glands, and neural the sheath and the 

reservoir was filled with bee Ringer’s solution.  

At all stages of the preparation the brain was kept moist by regularly applying 

bee Ringer’s solution (130 mM NaCl, 5 mM KCl, 4 mM MgCl2, 15 mM HEPES, 25 mM 

glucose, 160 mM saccharose, 5 mM CaCl2) into the head capsule. Up to this point, the 

preparation of all honeybees was following the same protocol, for the pre-tests, 
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Calcium Green-1 dextran, and JF549-BAPTA-MPM ester injection. Since two types of 

dyes were tested in the experiments, one as crystals the other one dissolved, the 

injection protocol varied from here on, depending on the used dye.  

PRELIMINARY ESTER TESTS 
To find the most suitable ester group masking the indicator molecules for 

honeybee neurons, we systematically tested the loading and cleavage of twelve 

different ester groups in vivo (Table 1). These ester groups were linked to the basic 

fluorophore fluorescein (excitation/emission: 494/512 nm), resulting in twelve different 

molecules. These non-fluorescent compounds are not calcium sensitive, but become 

brightly fluorescent upon ester cleavage, which allows for a direct readout of cell 

loading and intracellular esterase activity. To achieve comparable results, the dyes 

were loaded into living honeybees following the same preparation protocol. To this 

end, the bee brains were exposed as described before. The dye molecules were all 

prepared the same way. First, the fluorescein crystals that were masked with different 

ester groups were dissolved in DMSO (dimethyl sulfoxide, Sigma-Aldrich, St. Louis, MO, 

USA). The final mixtures of 1000 µl contained 1 µM of the respective dye molecule, 

0.25% DMSO, and 0.0025% Pluronic F127 (Sigma-Aldrich, St. Louis, MO, USA) in bee 

Ringer’s solution. DMSO served here as an anti-freeze agent to avoid crystallization 

of the solution since it was stored after usage in the freezer. Pluronic F127 was used to 

solubilize the large dye molecules in a physiological medium. The dyes were always 

dissolved right before usage and mixed thoroughly on a shaker. 36 µl of that solution 

were then transferred into a second vial and 4 µl of dissolved rhodamine B (synthesized 

by the Lavis lab) dye was added. Rhodamine B has a different fluorescent spectrum 

(excitation/emission: 554/600 nm) and was used as an orientation aid during imaging. 

From the final mixture 2 µl were pipetted into a glass microelectrode. The electrodes 

were fabricated by pulling borosilicate capillary tubes (outer diameter 1.5 mm, inner 

diameter 0.86 mm; Sutter Instrument, Novato, CA, USA) with a Flaming/Brown puller 

(P97, Sutter Instrument, Novato, CA, USA). After loading the dye solution, the 

microelectrode was inserted into a micromanipulator that was attached to a pressure 

injection setup (Pneumatic PicoPump PV820, WPI, Sarasota, FL, USA) and inserted into 

the region of interest of the exposed brain. In these tests, cell bodies of Kenyon cells in 

the mushroom body were chosen as target area since their structure allows for an easy 
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identification and their superficial position make them suitable to image in living tissue. 

Through short pressure pulses, the dye was injected into the brain over several minutes. 

Remaining superficial dye on the brain was removed by rinsing with bee Ringer’s 

solution. Afterwards all bees were kept at room temperature for 30 minutes to ensure 

a comparable timeframe for distribution of the dye throughout the neurons and 

cleavage of the ester groups by esterases. Bees were then transferred into a two-

photon microscope (Prairie Technologies, Bruker, Billerica, MA, USA) to image the cell 

bodies of the Kenyon cells. In all trials, the dyes were excited by an Insight two-photon 

laser at 20% power using a wavelength of 920 nm. The emitted fluorescence was 

detected with a photomultiplier tube (PMT) set at a gain of 700. Using the same settings 

across all dyes ensured that differences in the fluorescence intensity stem from 

efficiency differences of the uptake and cleavage of the varying ester groups and not 

excitation and detection disparities. The results were analyzed by comparing the 

mean intensity of 10 cell bodies across all dyes using the open source software ImageJ 

and Excel (Microsoft Corporation, Redmon, WA, USA). Following those tests, a JF549-

BAPTA-MPM-ester dye was synthesized and tested (see Results and the next chapter).  

INJECTION JF549-BAPTA-MPM ESTER 
The preliminary testing of different ester groups (see Results) allowed us to 

identify the MPM ester (methoxypropiomethyl) as the most robustly loaded and 

cleaved ester in the honeybee brain. A bright, red-shifted, cell-permeant calcium 

indicator bearing MPM ester groups, called JF549-BAPTA-MPM ester dye, was custom-

synthesized by the Lavis Lab (Fig. 6).  
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Fig. 6: Chemical structure and processes upon cell entrance and calcium binding of JF549-

BAPTA-MPM ester. The molecule consists of two parts: the fluorophore JF549 and the BAPTA 

moiety that is masked with four MPM esters. Those ester groups suspend the polarity of the 

molecule which makes it cell permeant. Inside the cell esterases cleave the ester groups off 

the BAPTA part which makes it calcium sensitive. Upon calcium inflow into the neuron the 

calcium binds to the BAPTA which in turn abolishes the quenching of the fluorophore part 

resulting into a 15-fold fluorescence increase (in vitro).  

Following ester cleavage, this compound exhibits a 15-fold fluorescence 

increase upon binding calcium (Fig. 7; excitation/emission: 546/569 nm; Deo et al., 

2019), and was used in the following experiments besides Calcium Green-1 dextran.  
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Fig. 7: Excitation and emission spectra of JF549 and fluorescence increase of JF549-BAPTA 

depending on Ca2+ availability. A: The fluorophore JF549 exhibits the highest excitation at a 

wavelength of 546 nm and the emission peak at 569 nm. B: The fluorescence increase of JF549-

BAPTA depends on the availability of Ca2+. Adapted from SpectraViewer (ThermoFisher) and 

Deo et al., 2019. 

The injection of the JF549-BAPTA-MPM ester dye followed a similar protocol as the 

preliminary tests described before. First, 20% Pluronic F127 was mixed with DMSO by 
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heating the mixture to 40°C for 20 minutes. 4 µl of this mixture were added to the dye 

vial and then placed in an ultrasonic bath for 20 minutes to dissolve the dye crystals. 

Afterwards, 35 µl bee Ringer’s solution was added and everything was further mixed 

on a shaker. For the final solution, 10 µl of this mixture was combined with 3.5 µl of fluid 

rhodamine B stock. The dye was then transferred to the microelectrode and injected 

in to the bee brain as described above. Here, transmedulla neurons were targeted by 

injecting the dye mixture in the MEDRA and AOT. To allow for a complete uptake of 

the molecules and cleavage of the ester groups bees were kept for 2 hours at room 

temperature. 

To image a living brain without getting any movement artefacts the brain needs 

to be as still as possible. After testing a metal spoon to lift the brain up, two component 

glue, and UV glue, the final solution for the movement problem was agarose (LMP 

agarose, Carl Roth, Karlsruhe, Germany; low EEO agarose AppliChem GmbH, 

Darmstadt, Germany). The agarose was melted in a waterbath at 65°C (LMP agarose) 

or 85° (low EEO agarose) for 20 minutes until the mixture appeared clear. After testing 

different concentrations, 1.5% agarose was used for the following experiments since it 

gave enough stabilization for the brain but kept the agarose translucent enough so 

the light of the laser would not get scattered too much during the imaging process. 

The best stabilization results were achieved by removing all liquid around the brain with 

a tissue before applying the agarose. Any remaining fluids would allow the brain to 

move due to pumping movements of the bee’s abdomen. In addition, the bees were 

immobilized at 4°C in the refrigerator before applying the agarose to prevent any 

movement that would cause and uneven agarose surface. After covering the brain 

with a drop of agarose, the bees were placed back into the refrigerator for 10 minutes 

until the agarose hardened. Afterwards bee Ringer’s solution was added onto the 

agarose sheath for two purposes: it kept the agarose from drying out and the agarose 

let some nutrition of the solution through to nourish the brain. The bees were then 

transferred into the setup and imaged using either a custom-built two-photon 

microscope or a Leica Multiphoton Microscope TCS SP8 MP.  
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INJECTION CALCIUM GREEN-1 DEXTRAN 
For the injection of this calcium indicator, the bees were prepared as described 

above. Since Calcium Green-1 dextran is not masked by ester groups, the molecules 

need to be introduced into the cells physically. To this end, sharp microelectrodes 

were pulled like described before but this time the capillary tubes had an outer 

diameter of 1.5 mm and an inner one of 0.75 mm (Hilgenberg, Malsfeld, Germany). 

After pulling, the tips were broken to a diameter of 5 – 30 µm. To attach a few dye 

crystals to the electrode, the tip was dipped in petroleum jelly and then into Calcium 

Green-1 dextran powder. After removing all fluids around the brain with a tissue, the 

microelectrode was inserted manually into the target area of the brain. The target was 

again to load the dye into transmedulla neurons. Afterwards, excess dye was rinsed 

off with bee Ringer’s solution. For a complete uptake and distribution of the dye 

throughout the neuron, the bees were kept in a moist chamber at room temperature 

for 2-3 hours. The brains were afterwards covered with LMP agarose as described 

before and then transferred into the setup at the Leica Multiphoton Microscope TCS 

SP8 MP for imaging.  

IMAGING AND BEHAVIORAL RECORDINGS WITH CUSTOM-BUILT TWO-PHOTON MICROSCOPE 
 For the experiment during the time at the Janelia Research Campus in summer 

2016 and 2017, a custom-built two-photon microscope was used as described in Seelig 

and Jayaraman (2015). The setup consisted of the imaging and the behavioral part 

(Fig. 8).  



 

97 
 

 

Fig. 8: Schematic drawing of the setup. The custom-built setup in Janelia and the Leica setup in 

Würzburg had a similar structure but parts of the microscope and ball tracking system differed. 

A: Side view. The Styrofoam ball is supported by an airflow from underneath. The bee is 

positioned on the ball with the head tethered to the bee holder. The objective is immersed in 

the saline in the reservoir of the holder. B: View from above. The stimulation is carried out by a 

blue LED arena, while the movements of the ball are recorded with a camera.  

In the custom-built microscope, a Chameleon Ultra II laser (Coherent, Inc., 

Santa Clara, CA, USA), a GaAsP photomultiplier tube (H7 422PA-40, Hamamatsu) and 

an Olympus × 40 objective (LUMPlan /Fl/IR, NA 0.8) was used for imaging. Those parts 

and the collecting of images was controlled via the program ScanImage 2015. To 

avoid missing any activity signals, a scanning frequency of over 8 Hz was chosen. For 

the experiment, the holder glued to the bee was attached to a three-axis 

micromanipulator and the bee was positioned on an air-supported Styrofoam ball with 

a diameter of 48 mm. The movement of the ball and therefore the walking behavior 

of the bee was recorded with a two-camera system with a 20 Hz frame rate as 

described by Seelig et al. (2010). The visual stimulation was carried out with a 

cylindrical blue LED arena, spanning 270° in azimuth and 120° in elevation with the 

animal on the ball in the center. Different patterns were used as stimuli: a single bright 
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stripe on a dark background, a dark stripe on a bright background, white noise, a 

single bright dot, and a grating pattern with several vertical stripes to mimic optic flow 

movements. The stimulation was either operated in open loop, meaning the 

experimenter controls the position of the pattern in the arena, or in closed-loop with 

the animal’s movement controlling the pattern. The camera system was controlled 

and operated using MatLab (The Mathwork, Inc., Natick, MA, USA), and the imaging 

and behavioral recordings were synchronized using LabView (National Instruments, 

Austin, TX, USA). 

IMAGING AND BEHAVIORAL RECORDINGS WITH THE LEICA MULTIPHOTON MICROSCOPE TCS 
SP8 MP 

The experiments done from 2017 until 2019 were carried out in a newly built rig 

with a Leica Multiphoton Microscope of the Zoology II department of the Biocenter at 

the University in Würzburg (Fig. 9).  

Fig. 9: Setup for calcium imaging and behavioral recordings. This setup was attached to a Leica 

Multiphoton Microscope TCS SP8 MP but the setup used at the Janelia Research Campus 

looked similar. A: The bee holder was attached to a micromanipulator and positioned between 

a Styrofoam ball and a × 25 objective. The ball floated on a constant airflow from underneath. 

The ball and the bee was positioned in the center of a 330° LED arena with an opening behind 

the animal. For the picture, LED panels lateral to the animal were removed. B: The bee was 

positioned on top of the ball with enough room for the animal to walk and turn. The reservoir 

of the holder was filled with bee Ringer’s solution to keep the brain moist and to allow for a 

water column between the brain and the objective. Pictures ©Claudia Groh.  

Overall, the setup was similar but key components differed between the Leica 

microscope and the custom-built one. In the microscope from Leica, three solid-state 
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lasers are available with excitation wavelengths of 488 nm, 552 nm, and 638 nm. In 

addition, for multiphoton microscopy and live imaging, a tunable Insight DeepSee 

Dual laser (SpectraPhysics, Santa Clara, CA, USA) ranging from 680 – 1300 nm was 

available as well as a second laser line set at 1040 nm. To detect the fluorescence 

signals different detectors were at hand: two internal tuneable photomultiplier tubes 

(PMT) and one tunable Hybrid Detector (HyD). In addition, two tuneable external PMTs 

and two tuneable HyDs were available with higher sensitivity settings. All experiments 

were conducted using a Leica × 25 water objective (HC IRAPO L motCORR, Leica 

Mikrosysteme GmbH, Wetzlar, Germany). In the experiments with Calcium Green-1 

dextran, the specimens were looked at in the rhodamine B channel first to help with 

the orientation in the brain. If transmedulla neurons were labeled, an overview image 

was taken. For that, one internal PMTs tuned to detect light in the range from 560 – 650 

nm was used at a gain of ~ 700 V while using the 552 nm laser for excitation. Afterwards 

the internal HyD was set to detect light with a wavelength of 520 – 580 nm with the 

tuneable multiphoton laser at 810 or 960 nm to perform the imaging experiments with 

Calcium Green-1 dextran, which has two excitation peaks. For experiments with the 

JF549-BAPTA-MPM ester dye, the internal HyD, tuned to 560 – 630 nm, was used right 

away. The excitation was carried out by the multiphoton laser tuned to 910 nm. 

The microscope and image acquisition was controlled with the Leica software 

Leica Application Software X (LAS-X). For a quick overview and to identify the ROI the 

rhodamine B channel was used with the solid-state laser exciting the fluorophore with 

552 nm and the corresponding PMT was used. After recording an overview z-stack of 

the location of the injection, the microscope was set to live imaging mode. The 

resolution, magnification, in some trials steps in z, and laser power were adjusted 

individually for every scan, depending on the signal strength and ROI. The scan speed 

was set to 600 Hz, or if the Galvo stage was used the speed was pre-set at 8000 Hz. The 

latter was just tested but not used regularly since the signal strength was not strong 

enough for such a high scanning frequency. The resolution and image size settings 

were adjusted to end up with a final frame rate of 8 Hz or higher with a trial length of 

60 to 120 seconds, depending on the stimulus pattern. In addition, a trigger was set in 

the microscope software to send out a TTL signal at the beginning of every frame 

taken, to use those time stamps for later alignment with the behavioral and stimulus 
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data in the analysis. The first of those TTL signals did also trigger the LED arena to start 

the stimulus via an Arduino Uno board (Arduino LLC, Somerville, MA, USA) and the 

corresponding script in the open source Arduino software. The azimuth position of the 

visual stimulus was controlled via an analog signal that was generated by a digital-to-

analog converter, which was driven by the Arduino board. The behavior was recorded 

using a full HD IR webcam (ELP, Ailipu Technology Co., Ltd., China) and the open 

source software FicTrac (Moore et al., 2014). The LED arena system (IO Rodeo Inc., 

Pasadena, CA, USA) consisted of a 12 ring board, 35 FlyPanels-G3 with 35 blue (470 

nm peak emission) LED matrixes with 8 × 8 LEDs each and a panel display controller 

unit. Due to the one-camera system, the arena was spanning in this setup 330° instead 

of 270° like in the custom-built setup. The tested patterns were displayed in open-loop 

control and included all LEDs on/off to determine a light reaction, and one bright stripe 

on dark background moving clockwise or counter-clockwise.  

ANALYSIS 
The analysis of the imaging and behavioral data was a multiple step process. 

The imaging data were first examined with the open-source software LAS-X from Leica. 

These software packages allowed to look at individual images and whole series. With 

that, it was possible to create an overview image of the position in the brain. It was 

also determined, looking at the whole times series, if too many movement artefacts 

occurred or if the experiment was suitable for further analysis. Afterwards, the raw data 

of the imaging part and the behavioral part were imported into a Python script, 

aligned, and analyzed further. The first step was the correction of small movements in 

the x/y axis by aligning the pixels throughout the image series. To analyze the 

fluorescence changes over time and therefore the calcium activity ΔF/F = (F-F0)/(F0-

Fb) had to be calculated. In this case, F is the fluorescence signal during stimulation of 

a region of interest (ROI) that was selected and manually defined in the image. F0 

corresponds to the baseline fluorescence, meaning the fluorescence of that ROI 

before stimulation. To filter out background noise, one region where no obvious activity 

or dye was present was defined as background fluorescence Fb, which gets 

subtracted from the fluorescence signal. With the calculation of fluorescence 

changes over time, activity tracks for every ROI were visualized. To ensure that 

fluorescence changes did not stem from movement artefacts a correlation cluster 
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between movement in the x/y axis and the fluorescence values was created. For the 

behavioral part, the movement of the ball and therefore of the bee was derived from 

the raw data of the two tracking setups and visualized as walking traces. The pattern 

position in the arena was extracted for the single trials and connected to the 

behavioral data. In a last step, the fluorescence signals were compared to features of 

the walking behavior. This should allow for a readout of possible influences of the 

behavior on the calcium responses. For a step-by-step tutorial of the whole 

preparation, experimental procedure, and the analysis script see Appendix.  
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RESULTS 
BEHAVIORAL DATA 

To assess if neurons in the honeybee brain show state dependent responses due 

to walking behavior, the walking behavior itself was examined in preliminary tests first. 

The walking traces were recorded and analyzed in closed- and open-loop in 

dependence to the pattern position. In addition, the walking behavior was recorded 

after the head capsule was opened and dye was injected into the brain. Therefore, it 

is a suited readout to evaluate how much the preparation affected the bee’s 

behavior. To explore which pattern is stimulating the most robust and constant walking 

behavior, different patterns were tested in a few bees in closed-loop and opened-

loop control with a 270° arena in the custom-built setup. The closed-loop trials showed 

promising responses in single bees (example bee #170712 shown in Fig. 10-14) but in 

the end, a bright stripe on a dark background in open-loop control was the main 

stimulus for further experiments.  

In closed-loop control, the animal stabilized the stripe lateral to one side but 

switched sides in between over a longer period of time (Fig. 10A). This behavior, 

stabilizing an object in one fixed position that is not in front of the animal is called 

menotaxis and has been observed for example in Drosophila melanogaster 

(Heisenberg and Wolf, 1979). During the experiments, the walking behavior showed in 

addition to the general menotaxis behavior an underlying constant motor pattern that 

was independent of the visual stimulation. In the walking trace, this motor pattern 

appeared as small regular yaw turns in both directions. Those turns did not influence 

the overall stripe position in closed-loop experiments, meaning the bees were not 

biased or inclined in one direction. The recorded walking behavior allowed for further 

analysis, with the position of the pattern in the arena being calculated first to confirm 

a stabilization of the pattern by the animal to predominantly one position (Fig. 10B). In 

addition, the walking trajectory was computed and visualized (Fig. 10C), to get a 

better overview over the tortuosity/straightness of the walked path. Additional 

information like the translational (Fig. 10C, blue shades) and rotational (Fig. 10D, 

red/blue shades) velocity were visualized as well, to gain a better assessment of the 

quality of the behavior. The walking trajectory could, for example, be straight and 

insinuate that the animal performed a stabile straight walk. However, the translational 
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velocity, which indicates the walking speed, could be low at the same time, 

suggesting that the animal did actually not perform well. Very high or low turning 

velocities can be further indicators for experimental errors, like tilted tethering or 

unwanted behaviors like a retraction of all six legs. Therefore, those parameters were 

always checked for, even though they were not further analyzed.  

 

Fig. 10: Behavioral analysis of the walking behavior of a honeybee (#170712) in closed-loop 

control of a visual pattern in the custom-built setup. A: The black trace indicates the position of 

a bright blue stripe on dark background in a 270° LED arena around the animal over a 120 

seconds long trial. B: The frequency of the stripe in one position was counted. C: The two-

dimensional trajectory of the walking path was calculated and color-coded for the 

translational velocity. This shows the straightness or tortuosity of the walking path as well as the 

forward speed. D: The same trajectory as in C is shown but with the rotational velocity instead 

of the translational, to determine the yaw turning speed of the animal. 
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To test the strength of the behavior shown in closed-loop mode, in some trials 

pseudo-randomized jumps of the stripe by 90° or 180° were introduced (Fig. 11). Those 

trials revealed that the bee brings the stripe back to roughly the same position she kept 

it at before the jump. Here, it made no difference if the pattern was moved by 90° or 

180°.  

Fig. 11: Pattern position in the arena in closed-loop control of a bee ((#170712) with artificial 

jumps. A: To test the robustness of the behavior, artificial jumps of 180° or 90° of the bright blue 

stripe on dark background are introduced pseudo-randomly during the trials. The position of 

the stripe in the 270° arena is illustrated by the black trace, while the displacements are 

indicated by the red lines. B: The behavioral response to the displacement of the stripe was 

tested several times.  

In addition to this stimulus, a bright moving stripe on a stationary white noise 

background was tested. Even though this pattern was more complex, the bee 

exhibited a rather stable walking behavior with a menotactic tendency over longer 

periods of time (Fig. 12A). However, introducing a jump of 180° lead in this case to a 

fixation of the stripe at a new position, close to the center front of the animal, instead 

of returning it back to the former position as the bee did without the white noise (Fig. 

12B). Changing the setting of the pattern to white noise and bright stripe moving 

together in closed-loop mode, lead to walking behavior without stabilizing the position 
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of the pattern in one place and therefore without a stable direction (Fig. 12C). 

Introducing a jump of 180° of the whole pattern did not show an effect on the 

undirected walking trajectory (Fig. 12D).  
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Fig. 12: Positioning of different patterns in the LED arena in closed-loop control by a bee 

(#170712). The response via walking behavior of a bee to different patterns was investigated 

by visualizing the pattern position (black traces) in the arena in 120 seconds long trials. A: A 

bright blue stripe was presented on a stationary white noise background pattern. B: The same 

pattern as in A was displayed but this time an artificial jump by 180° (red line) of the stripe was 

introduced. C: A bright blue stripe is presented on a white noise background pattern but stripe 

and background move together. D: Same pattern as in C but with an artificial 180° jump (red 

line).  

Another important pattern is the inverse of the first pattern, a dark stripe on a 

bright background. In this visual stimulation setting, the bee showed a more tortuous 

walking trajectory than with a bright stripe on dark background (Fig. 13A). However, 

the bee was not completely disoriented but kept the stripe primarily to her left while 

walking forward. Following two 180° jumps, the bee exhibited a stripe-fixation 

behavior, meaning the bee kept the stripe in front of herself and was walking 

“towards” it for over 30 seconds (Fig. 13B). Bees did not showcase this stripe-fixation 

often though, most of the time they showed a menotactic behavior with the stripe to 

predominantly on one side.  
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Fig. 13: Positioning of a dark stripe on a bright blue background by a bee (#170712) in closed-

loop control over an LED arena. A: The inversed pattern of the previous trials was presented to 

the bee for 120 seconds in each trial. The position of the stripe is indicated by the black traces 

B: Introduction of two jumps by 180° is highlighted by red lines.  

At the end of all the trials with different patterns, the first pattern of a bright stripe 

on dark background was displayed again to check, if the behavior shown in the 

beginning is still robust. Indeed, the bee showed again a constant menotaxis with the 

stripe to one side (Fig. 14A). Introducing two 180° jumps did also elicited the same 

behavior shown before with the bee bringing the stripe back into the position it has 

been before the jump (Fig. 14B).  

Fig. 14: Re-testing of a bright stripe on dark background in a bee (#170712) in closed-loop 

control. The robustness of the first tested pattern was investigated by showing the same pattern 

again after trialing the previous described patterns. The position of the stripe in the 270° arena 

is indicated by the black trace during 120 seconds long trials. A: Black trace indicates the 

position of the stripe in the arena. B: Artificial jumps of 180° (red lines) are introduced during the 

trial, the position of the stripe in the arena is indicated as black trace.  

In addition to tests in closed-loop control, the behavior of a bee (#170920) was 

also tested during open-loop mode. In this setting, a bright stripe was rotated on a dark 
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background with 60°/s clockwise or counter-clockwise around the bee. This stimulus 

evoked an optomotor-response, with the bees following the stripe rotation when it was 

in their frontal field of view (Fig. 15). This optomotor-response occurred during several 

rotations within one trial and lasted several seconds each time. There was no 

noticeable difference in the response of the bees between clockwise and counter-

clockwise rotation regarding translational velocity (Fig. 15).  
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Fig. 15: Walking behavior of a bee (#170920) in the custom-built setup during open-loop control 

of the stimulus. A bright blue stripe on a dark background was displayed in the 270° arena and 

rotated around the animal with 60° per second. The position of the stripe is indicated by the 

black stripes, in blue the walking trajectory including the translational velocity is visualized. A: 

The stripe was rotated clockwise around the animal. B: Counter-rclockwise rotation of the stripe 

around the bee. 

In the setup with the Leica SP8 MP microscope in Würzburg only open-loop 

control was used and tested in the 330° arena. Here, only the behavioral response to 

a bright stripe on dark background stimulus was evaluated further. Since the output 

format of the data file acquired by the FicTrac software differed from the files obtained 

with the custom-built system, the analysis and visualization of the results differed slightly. 

In Fig. 16, one trial of one example bee (#20190717_2) is shown. The position of the 

bright stripe in the arena was color coded (Fig. 16A) and the rotation with 60° per 

second clockwise or counter-clockwise was repeated in this example ten times. In the 

walking trajectory, the color code of the stripe position was included, to have one 

trace where both pieces of information were stored (Fig. 16B). During the first four 

rotations the bee showed an optomotor-response when the stripe was in front of the 

animal followed by a short period where the animal turned in the opposite direction. 

The optomotor-response was in this case contrary to the heading direction the animal 

had before the pattern started turning. However, not all ten rotations elicited that 

behavioral response. Therefore, the turning response of the first four rotations was 

visualized selectively, showing a higher rotation velocity when the stripe moved in the 

frontal view to the right of the animal (Fig. 16C), while rotation 5 – 10 elicited a more 

tortious turning behavior (Fig. 16D).  
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Fig. 16: Pattern position and walking behavior of a bee (#20190717_2) in an LED arena with 

open-loop control of the visual pattern in the Leica setup. Combined data from the visual 

stimulus and the behavioral recordings with FicTrac. A: A bright stripe on dark background was 

rotated ten times clockwise around the bee. The position of the stripe in the 330° arena is 

annotated on the y axis but is also color-coded in the trace. B: Walking trajectory of the bee in 

the open-loop setup during the stimulation. The color of the trace displays the position of the 

stripe as introduced in A. C: Superimposition of the position of the stripe in the arena in ° and 

the rotation velocity in °/s for the first four rotations. D: Superimposition of the stripe position and 

the rotation velocity for rotation 5 – 10.  

Other patterns, like all LEDs on and off, a grating pattern of many stripes that 

had a translational movement around the animal to mimic optic flow, and white noise 

was used as well. However, those pattern did not elicit robust walking behavior and 

therefore, those trajectories were not further analyzed.  

PRELIMINARY TESTING OF ESTER COUPLED DYES 
 In our preliminary tests, all fluorophores were measured with a microscope 

setting of 700 V PMT gain and 20% laser power (Fig. 17 and Fig. 18). Fluorophores 

coupled to methoxypropiomethyl (MPM) ester groups exhibited the brightest 

fluorescence labeling of all twelve tested molecules, with an even uptake and 

distribution throughout the cell bodies of Kenyon cells (Fig. 17A). In contrast, the dye 

coupled to acetoxymethyl (AM) ester, which is the most widely used ester for passive 

dye uptake (e.g. Hamad et al., 2015), did not exhibited similar labeling and emission 

results with the same setting (Fig. 17B). The laser power had to be increased to 30% 

and the PMT gain to 800 V to show labeling in cell bodies of Kenyon cells of the 

mushroom bodies (Fig. 17C).  
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Fig. 17: Fluorescence signal compared between MPM ester and AM ester coupled dye. The 

same dye molecules were masked with either methoxypropiomethyl (MPM) esters 

acetoxymethyl (AM) esters. A: Cell bodies of Kenyon cells that were labeled with dye molecules 

that were masked with MPM esters are imaged with 20% laser power and the PMT gain set to 

700 V. B: Cell bodies of Kenyon cells filled with AM ester coupled dye imaged with the same 

microscope settings as in A. C: Cell bodies of Kenyon cells filled with dye that was coupled to 

AM esters were imaged with a laser power of 30% and the gain of the photomultiplier tube 

(PMT) at 800. Scale bar = 10 µm (applies for A-C). 

Statistical analysis revealed that the signal in cell bodies labeled with the AM 

ester coupled dye was indeed significantly weaker than in the ones labeled by the 

MPM ester coupled fluorophores (Fig. 18, Mann-Whitney U test: p = <0.0001, U = 0).  

 

Fig. 18: Statistical comparison of the emission brightness in cell bodies labeled with dyes 

coupled to AM and MPM esters. The relative intensity of twenty labeled cell bodies of Fig. 17A 

& B was measured and statistically analyzed. The Mann-Whitney-U test resulted in p = <0.0001 

and U = 0, determining a significant difference and showing that cell bodies labeled with the 

MPM ester coupled fluorophores are brighter than the ones containing AM ester dye.  

Some other ester groups showed a sufficient uptake into the cells but with a 

high background labeling. Other molecules revealed no labeling at all or strong 

artefacts like labeling of other structures than cell bodies like neural sheaths and 

trachea. In some brains the injection with an ester-masked dye lead to a staining of 
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cell bodies but with bright spots at the cell membranes and only a weak staining in the 

cytoplasm. For a more detailed summary of the results, see Table 1.  

Table 1: Observations about uptake, brightness, and distribution of Fluorescein 
molecules coupled to different ester groups. 

Masked 
Fluorescein 

 
Ester group 
(=R) name Chemical structure Observation 

FD-ACE-DE 

(AM ester)  

Cell bodies weakly stained but with 
background staining; strongest staining 
superficial at entrance point; sometimes 
bright spots at membrane of cell bodies 
→ agglomerated dye? 

FD-MPM-DE  

Strong staining of cell bodies, single CBs 
clearly distinguishable; glomerular 
structures in lip and collar of MB visible as 
well; overall impression much better than 
with AM ester; worked in ants (Lavis, 
personal communication) 

FD-BTY-DE 

 

Weak staining; structures not clearly 
identifiable 

FD-MEME-DE 
 

Cell bodies weakly stained but with 
background; labeling just at the surface, 
no neurons traceable 

FD-BUT-ME 

 

Cell bodies visible but strong staining at 
the brain surface = neural sheaths? 

FD-PEG-ME 
 

Weak staining of cell bodies with bright 
spots at the membranes 
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FD-PRO-DE 

 

Staining in cell bodies but accumulation 
of dye at the membranes 

FD-OXZ-DE 

 

Good labeling of cell bodies but very 
strong background staining; problem for 
calcium signal? 

(HO-cPAM)2-

FL 
 

Cell bodies not distinguishable but string-
like structures, tracheae? 

FD-PIV-ME 

 

No real structure visible but strong 
background; auto-fluorescence? 

FD-VAL-ME 

 
No structures visible 

FD-MOA-DE 

 

String-like structures visible but no cell 
bodies 

 

Overall, the preliminary testing with twelve different ester groups revealed that 

MPM esters seemed to be preferable over the others. 

CALCIUM IMAGING DATA WITH JF549-BAPTA-MPM ESTER 
 Even though many experiments were conducted at the custom-built and the 

Leica setup with the custom-made calcium indicator JF549-BAPTA MPM ester, the 

analysis of the data revealed, that only a few data sets were considered valid. This 

had several reasons, for example artefacts during the acquisition process or chemical 

problems with the dye itself (see Discussion and Outlook). The visual stimulation 

protocol was changed multiple times in search for the most suitable setting. In the end, 

an experiment started with imaging the structure for 5 seconds without visual 

stimulation, then turning the pattern on but keeping it stationary for another 5 seconds. 

The, the pattern was rotated for 12 seconds around the animal at a speed of 60° per 

second, followed by turning it off and imaging the brain further for 8-10 seconds 
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resulting in a total trial of 30-32 seconds. To evoke a broad response to visual 

stimulation, in the first trial of a new experiment all LEDS were turned for 17 seconds 

after 5 seconds of darkness and then turned off again. The 17 seconds of illumination 

made those trials more comparable to trials with a moving pattern.  

In one data set (#20181113_1), the targeted transmedulla neurons were labeled 

and structures in the lower unit complex (LUC) of the anterior optic tubercle (AOTU, 

Fig. 19A) were visible, while the upper unit (UU) showed no staining (Fig. 19B). In the 

LUC, four regions of interest (ROI) were chosen as an example to show regions that 

response and one in close proximity as comparison where no signal increase is visible. 

The calcium response to turning all LEDs on was analyzed (Fig. 19B). The (F-F0)/(F0-Fb) 

traces of those four ROIs revealed a response of varying strength to the onset of the 

stimulation in three of the ROIs and no response in the fourth ROI (Fig. 19C). The 

fluorescence signal of the three responding ROIs returned back to baseline after 5-6 

seconds of stimulation. In two of those ROIs a small increase of fluorescence occurred 

when the LEDs were turned off. It is not possible though to tell from one animal if this 

indicates an on/off response to light in the neurons, as has been shown for example in 

ocellar neurons (Goodman, 1970), or if it is anomaly in the response of this bee. To 

ensure that the fluorescence increase in the ROIs is a result of a calcium response of 

the dye and not an artefact of brain movements, a correlation analysis of the (F-F0)/(F0-

Fb) values were plotted against the estimated movement per pixel in x and y direction 

at those given points of time (Fig. 19D). A strong correlation, meaning an increase or 

decrease in fluorescence signals occurring with simultaneous increasing or decreasing 

movement values, would suggest that the effects seen in the fluorescence trace are 

movement artefacts rather than neuronal responses to visual stimulation. In the 

example in Fig. 19, this seems not to be the case.  
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Fig. 19: Calcium response of transmedulla neurons labeled with JF549-BAPTA-MPM ester dye to 

visual stimulation (bee #20181113_1). The calcium response to turning all blue LEDs of the arena 

on was imaged in the branchings of transmedulla neurons in the lower unit complex (LUC) of 

the anterior optic tubercle (AOTU). A: Three-dimensional average shape atlas of the AOTU, 

consisting of a large upper unit (UU) and the LUC, consisting of five subcompartments (Heinloth 

2013, unpublished). B: Example frame from the calcium imaging time series. The imaged 

structures are located in the LUC while the UU shows not labeling. In the LUC four ROIs were 

selected and further analyzed. C: Calculation of the fluorescence changes as (F-F0)/(F0-Fb) over 

the 30 second long trial. After 5 seconds in darkness, all LEDs are turned on for 17 seconds, 

followed by 8 seconds in darkness. D: (F-F0)/(F0-Fb) values were connected to the concurrent 

estimated motion in x/y per pixel in the four ROIs. Color code for ROIs as in B and C. AOTU: 

anterior optic tubercle, LUC: lower unit complex of the anterior optic tubercle, ROI: region of 

interest, UU: upper unit of the anterior optic tubercle. Scale bars: A = 50 µm, B = 20 µm. 

 In another example bee (#20181012_1), the LUC showed a strong labeling, 

while the UU remained again untinged (Fig. 20A). After analyzing the response in all 

labeled structures, three ROIs were chosen to visualize their fluorescence signals due 

to their strong responses (Fig. 20B). After turning all LEDs on, the fluorescence signal in 

two of the three ROIs changed with a time-delay of several seconds. ROI1 showed an 

increase in fluorescence, ROI2 showed no response, while in ROI3 a decrease of the 

fluorescent signal was detectable. The trace layout of ROI3 showed a strong 

resemblance to ROI1, but mirrored. After a few seconds after the onset of fluorescence 

changes, the curves of ROI1 and ROI3 returned back to roughly the level they had 

before the response. After turning all LEDs off after 17 seconds, ROI1 showed another 

but smaller fluorescence increase, again slightly time-delayed to the stimulus. The 

signal of ROI2 showed a similar course to ROI1 after the first 17 seconds but with smaller 

amplitudes. To test if the fluorescence changes seen in Fig. 20B are based on 

movement artefacts, an analysis was conducted, comparing the (F-F0)/(F0-Fb) values 

with the estimated movement in x and y (Fig. 20C). In this example, the fluorescence 

increase in ROI1 seemed to be correlated to more movement in x and y. ROI2 showed 

in some parts a correlation but a weaker one than ROI1. ROI3 showed a very similar 

picture to ROI1, just mirrored again. Taken together the similarities between ROI1 and 

ROI3, even though it was a mirrored, some similarities between ROI1 and ROI2, and the 

time-delay to the onset of the visual stimulation, it is likely that the effects seen in the 
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fluorescence traces are artefacts rather than responses to the stimulus. 
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Fig. 20: Example for possible movement artefact during imaging experiment with JF549-BAPTA-

MPM ester labeled transmedulla neurons (bee #20181012_1). The branches of transmedulla 

neurons in the lower unit complex of the anterior optic tubercle were imaged during visual 

stimulation with all LEDs on. A: Example image of a time series during stimulation. Labeled 

structures are limited to the lower unit complex in which three ROIs were defined. B: 

Fluorescence traces of the three ROIs during a 32 second long trial. After 5 seconds in darkness 

all LEDs were turned on for 17 seconds. After turning them off the brain was imaged for 10 more 

seconds. C: Comparison between fluorescence values to the estimated motion per pixel in x/y 

during the same time. ROI: region of interest, UU: upper unit of the anterior optic tubercle. Scale 

bar = 50 µm. 

However, since the analysis was made after the experiment and since the signal 

in the LUC was strong more tests were made with this bee. After the trial with all LEDs 

on/off, the rotation of a bright stripe on dark background was tested in 10 trials with 

two rotations of 60° per second in each trial. To allow for a straightforward comparison 

of the responses across all 10 trials, the stripe was always rotated clockwise around the 

animal. The individual trials followed the same protocol as described before. First, the 

structure was imaged for 5 seconds without visual stimulation, then the pattern was 

turned on but kept stationary for another 5 seconds, and then rotated around the 

animal for a total of 12 seconds at 60°/s. Afterwards, the pattern was turned off and 

the structure was imaged in darkness, this time for 10 seconds, yielding a total time of 

32 seconds for one trial. However, those tests did not deliver conclusive results with the 

traces of each of the three ROIs being different between trials. Only the traces of three 

out of ten trials showed a similar time course and were analyzed further. Averaging the 

fluorescence traces of the three ROIs of those three trials revealed strong similarities 

between the ROIs but no obvious correlation to the pattern position (Fig. 21). It has to 

be noted though, that only the mean fluorescence intensity was analyzed here, not 

the (F-F0)/(F0-Fb)values, meaning that the background fluorescence changes were not 

taken into account. Looking at the individual trials, the ROIs never showed response 

patterns based on the visual stimulation, like, for example, fluorescence peaks 

according to the stripe position. Taken together with the analysis of the stimulation with 

all LEDs on in Fig. 20, it is very likely that the fluorescence changes seen during those 

experiments were based on movement artefacts in x, y and probably also z and not 

on responses of the transmedulla neurons to visual stimulation. 
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Fig. 21: Mean fluorescence changes in three ROIs and the whole field of view over three trials 

with a rotating stripe. One trial consisted of 5 seconds in darkness, 5 seconds bright stripe on but 

stationary and then two rotations with 60° per second clockwise around the animal, followed 

by 10 seconds in darkness. The mean fluorescence intensity of the three ROIs and the whole 

image was averaged over three out of ten trials to check for a pattern in the response to the 

two rotations in each trial. ROI: region of interest. 

CALCIUM IMAGING DATA WITH CALCIUM GREEN-1 DEXTRAN 
 Since the JF549-BAPTA-MPM ester dye showed issues concerning the chemical 

stability (see Discussion), Calcium Green-1 dextran was the predominantly used 

calcium sensor in the Leica setup. To check for the reliability of the calcium response 

of the dye, two test trials with potassium chloride (KCl) were conducted without any 

visual stimulation (bee #20180618_1). Adding KCl in a high concentration, in our case 

100 mM, via bath application onto the brain leads to a reliable depolarization of 

neurons, causing a Ca2+ influx into functional neurons. Neurons filled with a calcium 

indicator will therefore show a fluorescence increase after the KCl application (Chen 

and Huang, 2017). Here, the test was conducted in cell bodies in the medulla (Fig. 

22A). These cell bodies have the advantage that they are rather big, and lay 

superficially in the brain and are therefore easily accessible to imaging in living tissue. 
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They are also well defined structures and therefore choosing ROIs and analyzing the 

fluorescence responses is less demanding than in areas with fine branchings for 

example. The cell bodies were imaged for ten seconds in darkness. Then, a small 

amount of 100 mM KCl solution was added manually into the saline reservoir of the 

bee holder via a syringe system and the cell bodies were further imaged for 50 

seconds. For the analysis, the mean fluorescence intensity traces of two cell bodies 

chosen at random as ROIs (Fig. 22A) were visualized during the 60 second long trial 

(Fig. 22B). The traces show a drop in fluorescence after around 12 seconds for about 

7 seconds, which can be explained by the added volume onto the brain, which 

caused a drop in z until the fluid was distributed evenly in the reservoir. Immediately 

after the recovering at around 20 seconds into the trial, both traces displayed an 

increase in fluorescence. After additional 5 seconds, the fluorescence did go back to 

the baseline. The time-delay between application of KCl and Ca2+ response readout 

can be explained by different factors. First, the manual introduction of KCl caused 

probably a human error leading to an application that was not exactly at 10 seconds 

into the trial. Then, the movement in z due to the volume increase might have covered 

the detection of an earlier fluorescence increase. The distribution of the KCl in the fluid 

and into the brain takes some time as well. However, the Ca2+ response was so 

distinguishable that a reliable calcium detection of Calcium Green-1 dextran in this 

setup seems likely.  

 



 

122 
 

 



 

123 
 

Fig. 22: KCl induced Ca2+ response in cell bodies in the medulla (bee #20180618_1). A: Cell 

bodies in the medulla were filled with Calcium Green-1 dextran. Two cell bodies were marked 

as ROIs. B: KCl was added manually to the saline solution in the reservoir of the bee holder after 

10 seconds of imaging. A drop of the mean fluorescence intensity right after the application is 

likely a movement in z due to the pressure of the added volume. Right after the drop a Ca2+ 

response via a fluorescence increase of various strength in both ROIs was detected. Ca2+: 

calcium, KCL: potassium chloride, ROI: region of interest. Scale bar = 20 µm. 

 After this pre-test of the dye, experiments with visual stimulation of animals were 

performed. In bees, the LUC is well distinguishable when many transmedulla neurons 

are labeled (Fig. 23A). In one example bee (#20180717_1), the branching pattern of 

transmedulla neurons filled with rhodamine B and Calcium Green-1 dextran was 

clearly visible, even in uncleared living tissue (Fig. 23B & C). In the Calcium Green-1 

dextran channel, two areas were selected as ROIs, ROI1 in the anterior optic tract, 

ROI2 in the LUC (Fig. 23C). The calcium response via the (F-F0)/(F0-Fb) traces over time 

was first investigated for an experiment where all LEDs were turned on after 5 seconds 

of darkness for 17 seconds (Fig. 23D). Shortly after the onset of the stimuli, the 

fluorescence increased in both ROIs, with a peak after around two seconds and the 

highest value around 10 seconds after switching the LEDs on. After the highest peak 

the fluorescence level decreased back to the level of before the stimulation and even 

lower. After turning the LEDs off, there was a small increase in fluorescence followed 

by a short dip and then a recovery to roughly the baseline. The analysis between the 

fluorescence values and the motion estimate in x/y showed no obvious connection 

between those two factors, a fluorescence increase caused by motion artefacts is 

therefore unlikely (Fig. 23E).  
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Fig. 23: Morphology and calcium response of branchings of transmedulla neurons in the lower 

unit complex (bee #20180717_1). A: Branching pattern of Dextran Texas Red filled transmedulla 

neurons in the lower unit complex of the anterior optic tubercle in cleared tissue (from Zeller et 

al., 2015). B: Rhodamine B labeling of transmedulla neurons in the LUC in uncleared tissue of an 

alive bee. C: Calcium Green-1 dextran labeling of the same structure described in B. Two ROIs 

were selected for further analysis. D: (F-F0)/(F0-Fb) for both ROIs was calculated during a 32 

second long trial. After 5 seconds in darkness, all LEDs were turned on for 17 seconds, followed 

by another 10 seconds in darkness. E: (F-F0)/(F0-Fb) was compared to the estimated motion per 

pixel in x/y. ROI: region of interest. Scale bars = 10 µm.  

Afterwards, the same structure in the same animal was tested for a response to 

a rotating bright stripe on a dark background (Fig. 24A). Here, the fluorescence 

increased in both ROIs shortly after the bright stripe was switched on but kept stationary 

5 seconds into the trial. During the first rotation with 60° per second clockwise around 

the animal the fluorescence first showed a short decrease and then an increase. In 

the second rotation there was again a small decrease in the beginning, followed by 

an increase but unlike in the first rotation the fluorescence decreased then. After the 

stimulus was turned off, the fluorescence remained higher than before the stimulation 

but was overall, despite some fluctuations, slightly lower than during the stimulation. 

The comparison of the fluorescence to the concurrent motion in x/y showed again no 

obvious correlation (Fig. 24B).  
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Fig. 24: Calcium response to a rotating bright stripe on dark background. The same structures 

in the lower unit complex of the anterior optic tubercle as in Fig. 20 were tested (bee 

#20180717_1). A: (F-F0)/(F0-Fb) was calculated and visualized for the two ROIs from Fig. 20C. 

After 5 seconds in darkness, a bright stripe was turned on, but kept stationary for another 5 

seconds. Afterwards it was rotated twice clockwise around the animal with a speed of 60° per 

second. After those 12 seconds of rotations the pattern was turned off but the brain was 

imaged for another 10 seconds. B: Fluorescence values were compared to the concurrent 

estimated motion per pixel in x/y. ROI: region of interest. 

ALIGNMENT OF CALCIUM IMAGING DATA WITH THE BEHAVIOR 
 One of the goals of establishing this method was, to create a readout if walking 

behavior influences physiological responses. If the investigated neurons showed some 

sort of state dependency it could either mean that during walking the response to 

visual stimulation is increased or decreased, or that the walking shows changes in the 

fluorescence traces even without stimulation. To this end, the data of the calcium 

imaging had to be analyzed together with the data from FicTrac. The data shown in 

Fig. 16 showed a robust walking behavior of the bee (#20190717_2) and therefore this 

data set was used as an example. In that bee, cell bodies in the medulla were labeled 

with Calcium Green-1 dextran and two of them were selected as ROIs (Fig. 25A). As 

visual stimulus, one bright stripe was turned on after 5 seconds in darkness, kept 

stationary for another 5 seconds and then rotated clockwise around the animal 10 

times, with 60° per second for 60 seconds in total. Afterwards the brain was imaged 

and the walking behavior was recorded for ~ 25 more seconds. Since it is difficult to 

see in continuous traces (Fig. 25B) if the stripe is stimulating the neurons during every 

rotation in a similar way and if there is a distinct response pattern towards to position 

of the stripe, the responses had to be visualized in a different way. To this end, single 

repeats of the stimulus were picked, in this case the first four, and the traces during 

those rotations were superimposed. The result was visualized for each ROI either with 

the single trial traces plus the average (Fig. 25C) or the just the average (Fig. 25D, bold 

lines) and the variability maxima of the four rotations (Fig. 25D, fine lighter lines). For 

both ROIs there is no distinct response pattern visible, the position of the stripe in the 

arena did not elicit a peak at one location for example.  
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Fig. 25: Example data set (#20190717_2) used to align calcium response to the behavioral 

recordings. A: Two cell bodies in the medulla labeled with Calcium Green-1 dextran were 

selected as ROIs. B: The fluorescence traces of those two ROIs were plotted as (F-F0)/(F0-Fb) for 

an experiment with a rotating bright stripe. After 5 seconds of darkness, the stripe was turned 

on but kept stationary for 5 seconds (blue box). Afterwards, the stripe rotated 10 times 

clockwise around the animal, with a speed of 60° per second (green boxes), resulting in 6 

seconds per rotation and 60 seconds for the whole moving stimulus. After the 10th rotation, the 

stripe was turned off but the brain was imaged for another 25 seconds. C: For a better 

evaluation, the first four repeats of the stimulus were chosen and superimposed for both ROIs 

on the same time scale. In addition, the mean fluorescence traces for both ROIs over the 

course of those four repeats was displayed (bold lines). D: Overview of the mean response of 

the two ROIs (bold lines) of the four repeats from C and the variability (fine lighter lines). Scale 

bar = 20 µm.  

To connect the fluorescence response to the self-movement of the animal the 

data recorded by FicTrac (Fig. 16 and 26A) was plotted against the (F-F0)/(F0-Fb) values 

of Fig. 25. To this end, the fluorescence values in both ROIs were connected in one plot 

to the rotation velocity in ° per second and in a second plot to the translational velocity 

in mm/s (Fig. 26B).  

Those plots visualize therefore if the animal performing yaw turns has an 

influence on the fluorescence. The same is true for the forward movement or 

translational velocity: the plots would show if there is an obvious correlation between 

walking forward and the fluorescence values. In this example this is not the case, there 

is no obvious state dependency. However, it shows that the data collection and 

analysis established in this project allows for such an investigation which opens many 

possibilities for future experiments.  
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Fig. 26: Example data set with aligned calcium response to a bright stripe stimulus and walking 

behavior. A: The fluorescence traces belong to the experiment with the walking behavior 

shown in Fig. 16. The color code of the walking trace corresponds to the position of the stripe 

in the arena (see Fig. 16). B: The (F-F0)/(F0-Fb) values of the two ROIs were aligned and plotted 

with the walking behavior of the bee during the stimulation. As readout of the movement the 

rotation velocity in °/s was used (upper row) as well as the translational velocity in mm/s (lower 

row). 
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DISCUSSION AND OUTLOOK 

 The aim of this project was to establish a new methodological protocol to 

combine calcium imaging in neurons of the sky-compass network while presenting 

visual stimuli to tethered animals walking on a treadmill. So far either calcium imaging 

(e.g. Mota et al., 2011; Mota et al., 2013; Rigosi et al., 2015) or behavioral experiments 

on a treadmill (e.g. Moore et al., 2014; Taylor et al., 2015; Buatois et al., 2017) were 

performed in honeybees, therefore an innovative preparation protocol as well as a 

novel setup in a multiphoton microscope had to be developed. The establishment of 

the method included many demanding steps and some challenging obstacles had 

to be overcome during the process. One important step was to find a suitable dye 

that had to meet several requirements. The calcium indicator had to have a high 

fluorescence increase upon calcium binding to ensure a detectable signal in living 

tissue. In addition, the excitation and emission of the fluorophore should ideally be in 

a longer wavelength range than the light from the LED arena to avoid noise in the 

emission detection. Using a red-shifted dye has the advantage that it is possible to 

image structures that are deeper in the brain because scattering and absorption 

effects of the tissue are reduced with light of a longer wavelength (Kobat et al., 2009). 

Another important factor is the size of the dye molecules, which had to be small 

enough for an even distribution throughout the cell. In this project, two calcium 

indicators were used: the commercially available and well-established Calcium 

Green-1 dextran and the custom-made innovative JF549-BAPTA-MPM ester dye. 

Calcium Green-1 dextran is with 3,000 MW a rather small indicator molecule allowing 

an even labeling of neurons. The fluorescence increases ~ 14 fold upon Ca2+ binding 

and the compound has a high quantum yield at saturated Ca2+ (Φsat = 0.75). The 

quantum yield describes described the ratio between emitted photons to absorbed 

photons. The high fluorescence increase and high quantum yield mean that even 

small amounts of dye deliver strong signals and therefore phototoxicity can be 

reduced. The Kd value indicates the calcium amount needed to saturate half of the 

indicator and therefore the affinity. For Calcium Green-1 dextran the value is ~ 190 nM, 

meaning the indicator exhibits a high affinity (Paredes et al., 2008). However, one 

downside is the delivery system into the neurons. Since the potassium salt is cell-

impermeant, it had to be introduced physically into the cells by scratching the 
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membranes with a sharp glass electrode with the attached dye. Depending on the 

amount of damage done to the cell, this method could have had an influence on the 

activity and therefore the calcium signal. Therefore, a second dye with a different 

delivery system was tested. JF549-BAPTA-MPM ester is a molecule consisting of a JF549 

fluorophore part, the calcium sensitive BAPTA moiety and MPM esters. These esters 

mask the molecule in a way that makes it cell-permeant when introduced into the 

brain and cell-impermeant after ester cleavage inside a neuron. Therefore, the dye 

only had to be injected into the area of interested and was then taken up by the 

neurons passively, allowing for the usage of blunt glass electrodes that cause less 

damage. Unfortunately, since this innovative dye molecule was custom-made for this 

project and has not been used in vivo before, the detailed characterization available 

for Calcium Green-1 dextran and other commercial indicators does not exist for JF549-

BAPTA-MPM. However, single components have been tested to some extent, for 

example, the fluorophore is JF549 known to be very bright and suitable for live-cell 

labeling (Grimm et al., 2015). In addition, the calcium sensitivity and brightness of the 

combination of JF549 and BAPTA has been tested in vitro, revealing a high quantum 

yield at saturating Ca2+ (Φsat = 0.75). The Kd value in vitro was ~ 310 nM, which is higher 

than the value of Calcium Green-1 dextran, meaning the Ca2+ affinity of JF549-BAPTA 

is lower than of Calcium Green-1 dextran. It should be noted though that the Kd value 

is highly dependent on factors like pH level and temperature so the in vivo affinity 

could be different. With a ~15 fold fluorescence increase upon Ca2+ binding the dye 

showed a high signal strength in vitro and together with the superior delivery system 

into the cells and the slightly longer excitation/emission wavelengths it was an 

attractive alternative for the project. During the experiments both indicators could be 

imaged in the areas of interest, thus both were suitable for imaging in the LUC of living 

honeybees. However, two main technical issues arose during the experiments and the 

analysis. The imaging data from the custom-built setup in Janelia turned out to contain 

artefacts from the microscope itself. A vibration of the scan head caused by a faulty 

ventilation system lead to movement artefacts in the imaging data set, which became 

apparent after the project in Janelia ended and the analysis script was complete. 

Unfortunately, the movement artefacts lead to missing data points, which did not 

allow for a correction during the analysis. Therefore, those data sets were not used 

further. In Würzburg a second technical issue arose when the JF549-BAPTA-MPM ester 
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turned out to have some chemical issues. The ester groups of the molecules tend to 

hydrolyze making them cell-impermeant before injecting them into tissue and thereby 

useless for calcium imaging in neurons. This probably happened with some vials of dye 

during shipping from the US to Germany, potentially resulting in poor labeling of the 

cells (personal communication with Dr. Claire Deo). As a result, JF549-BAPTA-MPM ester 

was only used in the beginning at the Leica setup in Würzburg, after this problem was 

detected only Calcium Green-1 dextran was used. However, in single trials both 

indicators showed fluorescence increases upon light stimulation but the yield of 

convincing imaging data was overall rather low, raising the question why the 

recordings were often not conclusive. One reason might have been the manual 

injection that could have resulted in a poor staining or a labeling of the unintended 

neurons. A considerable amount of honeybees died between injection and 

experiment or during the trials (see Appendix). The age of the bees could be one 

reason for the death rate. Only foraging honeybees were used which are the oldest 

worker bees in a hive and might therefore already exhibit a decreased fitness level. 

Another explanation could be that the bees were starving coming back from an 

exhausting foraging trip. By feeding them some sugar water before starting any 

preparation, it was attempted to avoid that the bees would starve during the long 

preparation and experiment time. Since the mouthparts were glued as soon as the 

preparation started, they could only be fed once though and if they would not take 

up enough, it was possible that they starved during the following hours. The 

preparation itself was very invasive too, so bees with a lower fitness level might have 

died due to the procedure. Another reason why many data sets were not analyzed 

further was the brain movement during imaging. Even though the application of 

agarose avoided this problem in many preparations, in some cases errors could have 

hindered a successful execution. For example remaining fluid in the head capsule 

could prevent the agarose from covering the entire surface of the brain. Pumping 

movements of the bee during the application could also have caused air pockets that 

facilitated passive displacement of the brain. Since movements in the µm range could 

already cause fluorescence artefacts, data sets from bees that showed obvious 

motion artifacts during the experiment were often not used further whereas for smaller 

movements a correction via x/y alignment was made. The last reason why the imaging 

data did not necessarily deliver the expected results could be the experiment design 
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itself. One assumption was, that rotating the stripe ten times around the animal would 

induce the same calcium response in the LUC for all ten rotations resulting in a distinct 

pattern in the fluorescence trace. The data did however never show such a pattern, 

not even in trials with only two rotations. The reasons for that could be manifold. For 

example could one explanation be that the region of interest, the transmedulla 

neuron projections in the LUC, do not respond to moving patterns as expected. 

Experiments in the locust sky-compass pathway showed that neurons, sensitive to 

polarized light, also code for the azimuth of unpolarized UV and green light (Kinoshita 

et al., 2007; Pfeiffer and Homberg, 2007). However, where exactly the information of 

the unpolarized light is integrated into the system is unknown. Anatomical 

investigations in locusts and honeybees suggested that transmedulla neurons are a 

potential candidate to receive unpolarized light information (el Jundi et al., 2011; Zeller 

et al., 2015). In addition, immunohistochemical stainings against pigment dispersing 

factor, serotonin and γ-aminobutyric acid in the bee also suggested that transmedulla 

neurons might receive neuromodulatory input, inter alia from the circadian clock 

(Zeller et al., 2015). However, beyond those hypotheses based on anatomical findings, 

the physiological properties of those transmedulla neurons have not been investigated 

yet and therefore it is not known if and how they code for moving stripes and other 

visual stimuli. In addition, phenomena like light adaptation, habituation and state 

dependency could also have had a considerable effect on the neuronal response. 

Habituation has been shown for example in neurons of the bumblebee lobula, that 

responded only to the first light flash of a flash series but not the following ones (Paulk 

et al., 2008). Since turning all LEDs on, or rotating a stripe multiple times around the 

animal might also lack the novelty factor, the transmedulla neurons could also 

habituate and therefore show no response beyond the initial one. Experiments in the 

fruit fly Drosophila showed, that neurons in their vision system showed state 

dependency, meaning the response frequency and the motion speed sensitivity was 

higher in walking animals than in stationary ones (Chiappe et al., 2010, Maimon et al., 

2010). Even though the experimental setup and analysis of this project allowed to 

evaluate some aspects of state dependency, there were too few data sets to draw a 

conclusion on this matter.  
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 Besides the challenging dye delivery into cells and the problems involving the 

imaging part of the project, several other steps of establishment had to be taken in 

the second important part, the behavior. First, the whole treadmill system had to be 

designed and custom-built in cooperation with the workshop of HHMI/Janelia 

Research Campus according to the size of a bee. In addition, the holder was 

developed in multiple steps over three prototypes, and fabricated trying out different 

materials. It had to fulfill three requirements: the bee had to be able to walk, meaning 

legs and abdomen needed to be moveable, the bee needed to be tethered in a 

way that allowed for as much coverage of the LED arena in the visual field as possible, 

and the brain needed to be accessible for the preparation. To track the ball 

movement and therefore the intended bee movement, a two-camera system was 

used in Janelia and a one-camera system based on FicTrac was established in 

Würzburg. Both tracking systems needed additional supporting systems to 

communicate with the microscopes, which made the data collection and the analysis 

more elaborate. In addition, the separation of the data acqusitition of the imaging 

and walking part required another supporting system consisting of a trigger and time 

stamp encoder, to allow for a subsequent data alignment. Incorporating all those 

different systems in an existing two-photon microscope and run all systems 

simultaneous was a demanding task, which caused many bugs and added another 

reason to why the number of complete data sets that were suitable for further analysis 

is not as high as desired. Finally, the acquired data had to be analyzed in an 

appropriate fashion. To this end, a cooperation with Dr. Hannah Haberkern (Janelia 

Research Campus, Jayaraman lab) was established, to develop a new script that was 

constantly updated and tailored to incorporate the individual data files and execute 

all needed analysis steps (see Appendix).  

 All those challenges were overcome over time and in the end the preparation 

protocol, the handling of all the different parts of one experiment, and the analysis 

were established. As a result, it was possible to record the calcium response from 

walking animals while presenting visual stimulation for the first time in honeybees. The 

aim for the walking part was in the beginning to just measure if the bees are moving 

at all to be able to draw a conclusion about any type of state dependency. The first 

striking success was that the bees not only showed robust walking behavior after they 
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went through the whole injection procedure, some even showed directed behavior, 

either menotaxis in closed-loop control or an optomotor response in an open-loop 

setting. During the menotaxis, when they kept the pattern roughly at the same position 

lateral to them in the arena, they also exhibited small zigzag movements on the ball. 

One likely explanation for those small movements are the hexapod typical tripod gait 

where the front- and hind leg on one side are on the ground together with the middle 

leg of the other side, while the other legs swing forward. In freely walking honeybees, 

it has been shown that this tripod gait causes small and steady yaw turns of the whole 

body by just a few degrees (Zhao et al., 2018). Since the bees here were tethered the 

ball was doing those zigzag movements instead of the whole bee. It is also known that 

during walking and flying the trajectory of insects consist of straight stretches and fast 

body turns, called saccades that are preceded by even faster head saccades 

(Boeddeker et al., 2010; Boeddeker et al., 2015). The straight stretches contribute to 

the gaze stabilization of the animal during self-motion (Boeddeker et al., 2010). The 

insects also gain from the translational optic flow during the straight parts depth 

information of the surrounding scenery. That enables them to deduce the distance to 

objects from the visual motion parallax (Boeddeker et al., 2010; Geurten et al., 2014). 

The saccades in between the straight stretches are used to change the direction 

during flight or walking. Performing those directional changes in fast saccades 

maximizes the periods of gaze stabilization while minimizing the time the visual system 

is confronted with rotational optic flow (Boeddeker et al., 2010; Boeddeker et al., 2015). 

Since the tethered animals in this project were not able to perform head saccades 

that are independent from body saccades, it is possible that the small zigzag 

movements were actualy head saccades preceding directional changes. However, 

it is not possible to determine from our recordings if the zigzag movements were 

performed intentionally or if they were just a product of the tripod gait. To answer this 

question, future experiments could record the legs of the bees in a higher resolution to 

allow for a more detailed analysis of the walking pattern.  

Taken together, calcium imaging in walking and behaving honeybees while 

presenting them different visual patterns was successfully established. However, due 

to manifold problems during the development of the protocol and the setup, the initial 

questions could not be answered. They included the question how exactly calcium 
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responses in transmedulla neurons toward visual stimulation with different patterns 

would look like. Even though some conclusive Ca2+ responses were recorded, the 

amount of complete data sets with a stable fluorescence signal was too low to give a 

generally valid answer to that question (see Table in Appendix). It was furthermore of 

interest, if the anatomical subcompartmentalization of the LUC corresponds to a 

functional division, for example a retinotopic map. This question was difficult to 

investigate though since the span of the LUC made it hard to image the entire 

structure at once. The addition of walking behavior to the calcium imaging part was 

implemented to allow for the investigation of state dependency of the neurons based 

on self-motion of the animal. Even though it was possible in the end to connect the 

imaging data with the behavioral recording, it was not revealed if state dependency 

effects are present in transmedulla neurons. After establishing all the single steps, the 

limited time frame of this project impeded to record more data. Therefore, it would be 

desirable to continue the project in the future to gain enough data sets to follow up 

the successful establishment of the method with a complete study to answer the 

questions above. Especially the stabilization and characterization of the JF549-BATPA 

MPM ester dye should have a high priority here since this dye offers, as mentioned 

above, some very interesting advantages over the established indicators. In general, 

the development of calcium indicators and delivery systems is a continuous growing 

field in biochemistry and could therefore offer even better solutions in the future. Apart 

from that, the transmedulla neurons are just one possible investigation site that is 

accessible with this method. By adjusting the preparation slightly, the region of interest 

could be focused on other parts of the sky-compass pathway like the optic lobes or 

the protocerebral bridge. The only important factor is here the depth of the structure 

in the brain, which is currently limited by physical restrictions of the microscope to ~ 

250 µm. As described in the preliminary ester tests, cell bodies of Kenyon cells are also 

well visible and accessible for dye injections with the current protocol. This would allow 

for physiological characterizations in the mushroom bodies, which would open a 

whole new field, since these neuropils are known to be an integration site for olfactory 

and visual cues but also for memory and learning (e.g. Heisenberg, 1998; Plath et al., 

2017). Even though physiological investigations via intra- and extracellular recordings 

(e.g. Homberg, 1984; Strube-Bloss and Rössler, 2018), patch-clamp (Kropf and Rössler, 

2018), and calcium imaging (e.g. Szyszka et al., 2008; Haehnel et al., 2009) have been 
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performed in the mushroom bodies of honeybees before, they lack so far the state 

dependency aspect of moving animals. Overall, this innovative combination of 

different methods in the honeybee opens the door for many important and interesting 

questions, which have been asked so far for either behavioral aspects or for neuronal 

responses but not in a combined study. Similar experiments as performed here have 

been conducted in Drosophila for the last decade with astonishing and important 

results for the neuroethology field. The fly community has the advantage of genetic 

tools that abolish with genetically encoded calcium indicators one huge obstacle to 

combine calcium imaging with behavior. With this project, a powerful protocol has 

now been introduced that could help to close this methodical gap and allow to move 

forward to investigate the unique features that the honeybee offers as a model 

organism. 
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ABSTRACT  
 

Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during sea- 
sonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent 
movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the 
circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the 
internal sky compass, has been proposed to mediate the required time compensation. Toward a 
better understanding of neural connectivities within the posterior optic tubercle, we investigated this 
neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile 
were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-
dispersing hormone immuno- reactive neurons from the accessory medulla, containing large dense-
core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination 
of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these 
neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the 
posterior optic tubercles in mediating circadian input to the insect sky compass. 

© 2020 Elsevier Ltd. All rights reserved.

1. INTRODUCTION 
Insects use, among other sensory information, celestial cues for 

spatial orientation (Wehner, 1984). The most prominent celestial cue 
is the sun itself, which is used as reference point throughout the day 
(von Frisch, 1949; Lindauer, 1959). When the direct view of the sun 
is blocked, other skylight features like the chromatic gradient (Rossel 
and Wehner, 1984; el Jundi et al., 2014a) and the polariza- tion 
pattern of the sky (von Frisch, 1949; von Frisch, 1965; Wehner, 
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1984; Wehner and Labhart, 2006) can be used to deduce the sun's 
position. The ability to use polarized light for orientation during 
walking or flight has been shown in behavioral assays in honeybees 
(von Frisch, 1949; Evangelista et al., 2014), locusts (Mappes and 
Homberg, 2004), dung beetles (el Jundi et al., 2014b), monarch 
butterflies (Merlin et al., 2012), desert ants (Wehner, 2008), 
houseflies ( von Philippsborn and Labhart, 1990), and fruit flies 
(Weir and Dickinson, 2012; Mathejczyk and Wernet, 2019). 

The anatomy and physiology of the underlying neuronal system 
have been studied most comprehensively in locusts. Two neuronal 
pathways that carry polarized light information from the com- 
pound eye to the central brain have been described: the anterior 
and posterior sky-compass pathways (Fig. 1A; el Jundi and 
Homberg, 2010). The angle of polarization is detected by a 
specialized region of the compound eye, the dorsal rim area (DRA). 
Photoreceptors of the DRA send axonal projections to dorsal rim 
areas of the lamina (LADRA) and medulla (MEDRA; Schmeling et al., 
2015). From the MEDRA, the anterior sky-compass pathway ex- 
tends via the lower unit of the anterior optic tubercle (AOTU; 
Homberg et al., 2003; Pfeiffer et al., 2005) and the bulbs into the 
central complex (CX; Fig. 1A, blue pathway; Tr€ager et al., 2008). 
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Fig. 1. Schematic overview of the locust brain and three-dimensional standardization of the posterior optic tubercle and central complex formation. A: Frontal schematic diagram of 
a locust brain, showing the anterior sky-compass pathway (blue) and the posterior sky-compass pathway (red) from the optic lobe to the central complex. The expanded diagram 
shows the connections of the posterior optic tubercles with each other, the protocerebral bridge, and other neuropils. Adapted from el Jundi and Homberg (2010). B: Anti-synapsin 
labeling in the posterior brain (specimen #9) illustrating the size and shape of the posterior optic tubercles (posterior view of maximum intensity projection). CeE: Three- dimensional 
average shape atlas of the posterior optic tubercles, central complex, and lateral complexes of the locust standard brain. C: Anterior view, D: posterior view, E: posterior-lateral 
view. AME: accessory medulla, AOTU: anterior optic tubercle, CA: calyx, CBL: lower division of the central body, CBU: upper division of the central body, LA: lamina, LADRA: dorsal 
rim area of the lamina, LO: lobula, LX: lateral complex, ME: medulla, MEDRA: dorsal rim area of the medulla, NO: noduli, PB: protocerebral bridge, PED: peduncle, POTU: posterior 
optic tubercle, pTuTu: posterior intertubercle neuron, TB: tangential neuron of the protocerebral bridge. Scale bars = 200 µm. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Evidence for similar pathways exist in dung beetles (el Jundi et al., 
2019), monarch butterflies (Merlin et al., 2012; Heinze, 2014), fruit 
flies (Turner-Evans and Jayaraman, 2016; Sun et al., 2017), honey- 
bees (Mota et al., 2011; Zeller et al., 2015; Held et al., 2016), and ants 
(Grob et al., 2019). The posterior sky-compass pathway has so far 
received less attention. In locusts, medulla tangential neurons 
connect the MEDRA with the accessory medulla (AME; el Jundi and 
Homberg, 2010). Neurons of the AME project to the posterior optic 
tubercle (POTU; Fig. 1A, red pathway; Homberg and Würden, 1997; 
el Jundi and Homberg, 2010), which is connected to the proto- 
cerebral bridge (PB) of the CX (TB neurons) and reciprocally with its 
contralateral counterpart (pTuTu neurons; Fig. 1A, expanded 

diagram; el Jundi and Homberg, 2010; Beetz et al., 2015). Except for 
the neurons from the AME to the POTU, that have not been studied 
physiologically, all described connections are sensitive to the 
oscillation angle of polarized light (Heinze and Homberg, 2007; el 
Jundi and Homberg, 2010; Beetz et al., 2015; Bockhorst and 
Homberg, 2017; Pegel et al., 2019). 

The CX, consisting of the PB, the central body and a pair of noduli, 
holds a topographic representation of heading directions in the fruit 
fly (Seelig and Jayaraman, 2015; Turner-Evans et al., 2017; Kim et 
al., 2019) and serves as an internal sky-compass for the locust 
(Heinze and Homberg, 2007; Pegel et al., 2019). Beetz et al. (2015) 
proposed that feedback loops between both POTUs and 
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the PB serve to stabilize the sky compass representation in the  
locust PB. 

Sky compass orientation usually requires a mechanism for time 
compensation, to constantly adjust the heading direction against the 
apparent movement of the sun across the sky. Based on evi- dence 
from flies and cockroaches that the AME houses the insect circadian 
clock (Helfrich-Fo€rster et al., 1998), the POTU appears as a strong 
candidate neuropil for an integration of sky compass and timing 
information. The AME is connected with the POTU by two types of 
neuron, small field neurons that specifically connect the AME to the 
POTU (el Jundi et al., 2010) and wide-field neurons that are 
immunoreactive with an antiserum against the crustacean 
peptide pigment-dispersing hormone (PDH; Homberg et al., 1991). 
Those neurons, commonly termed pigment-dispersing factor 
(PDF)-neurons, connect the AME to wide areas in the brain 
including the POTUs and, as shown in flies and cockroaches (Renn 
et al., 1999; Stengl and Arendt, 2016), provide efferent signals from 
the internal clock to multiple brain areas. The polarity of TB neu- 
rons connecting the POTU and PB has been interpreted controver- 
sially. Whereas Heinze and Homberg (2007, 2009) who first 
described these neurons, reported their terminals as “strongly 
varicose”, a later study by Beetz et al. (2015) reported EPSPs in 
intracellular recordings from these neurons near the POTU and 
concluded that they receive synaptic input in the POTU. Finally, 
histochemical and immunocytochemical staining of TB neurons 
was intense (NAPH diaphorase) or weak (serotonin) in the POTU, 
suggesting that TB neurons may signal bidirectionally between the 
PB and POTU (Beetz et al., 2015). The present study was aimed at 
elucidating the synaptic organization and role of the POTU within 
the AME-PB pathway. Following 3D reconstruction and standardi- 
zation of the POTU we provide an inventory of its synaptic profiles. 
Immunogold and preembedding immunoelectron microscopy 
showed that PDF neurons, assigned to specific synaptic profiles are, 
indeed, presynaptic whereas two Neurobiotin-labeled TB neurons 
were postsynaptic in the POTU. 

 
2. MATERIALS AND METHODS 

 
2.1 Animals 

 
Experiments were performed on sexually mature female and 

male locusts (Schistocerca gregaria). Animals were reared under 
gregarious conditions at the University of Marburg, Department of 
Biology, under 12:12 h light:dark (LD) cycles, at 60e70% relative 
humidity with a temperature of 24 oC at night and 28 oC during the 
day. 

 
2.2 Tissue preparation for standard average POTU and 

anti-PDH labeling 
 

Brains were dissected from the head capsule and fixed overnight 
in 4% formaldehyde in 0.1 M phosphate-buffered saline (PBS) at 
4 °C. The next day, brains were washed 4 × 15 min in 0.1 M PBS, 
embedded in gelatin/albumin, and fixed overnight in 4% formal- 
dehyde in 0.1 M phosphate buffer. Brains were then sectioned in 
frontal plane into 130 mm sections using a vibrating blade micro- 
tome (Leica VT 1200S, Leica Microsystems, Wetzlar, Germany). 
Sections were rinsed 2 x 20 min in 0.1 M PBS with 0.3% Triton X- 
100 (PBT) and 3 × 20 min in 0.1 M PBS. To block unspecific binding 
of antibodies, sections were treated overnight at 4 °C with a solu- 
tion containing 5% normal goat serum (NGS, Dianova, Hamburg, 
Germany), 0.02% sodium azide and 0.1 M PBS. Sections for the 
standard average POTU were then incubated for 5 days at 4 ° C with 
a solution containing monoclonal mouse antibodies against the 
synaptic vesicle protein synapsin (dilution 1:50, SYNORF 1, 
 
 
 

provided by Dr. E. Buchner), 1% NGS, and 0.2% Triton X-100 (TrX) in 
PBS. For immunolabeling of pigment dispersing hormone (PDH), 
brains were treated the same way but with the addition of a 
polyclonal rabbit antiserum against PDH (from the crab Uca pugi- 
lator, dilution 1:20 000, #TIM3B3, provided by Dr. H. Dircksen) to 
the solution. Next, sections were rinsed 2 x 20 min in 0.1 M PBT and 3 
× 20 min in 0.1 M PBS. For visualization, sections were then 
incubated for 3 days at 4 °C with a solution containing goat-anti- 
mouse antiserum conjugated to Cy5 (dilution: 1:300, Dianova, 
Hamburg, Germany), 0.02% sodium azide, 1% NGS, and 0.1 M PBT. 
For anti-PDH staining goat-anti-rabbit antiserum conjugated to Cy2 
(dilution 1:300, Dianova, Hamburg, Germany) was added to the 
solution. Following 5 rinses (2 × 20 min in 0.1 M PBT and 
3 × 20 min in 0.1 M PBS), sections were dehydrated in an ascending 
ethanol series (15 min each, 30%, 50%, 70%, 90%, 95%, 100%), cleared 
(15 min 100% ethanol/methyl salicylate 1:1; 1 h methyl salicylate), 
and mounted with Permount (Fisher Scientific, NJ) on microslides. 
To avoid squeezing of the sections, spacers made from hole rein- 
forcement rings were inserted between the slides and coverslips. 

 
2.3 Tissue preparation for transmission electron microscopy 

 
We dissected the brains from the head capsules and fixed them 

overnight at 4 ° C in 2.5% glutaraldehyde and 2% paraformaldehyde 
in 0.1 M sodium cacodylate buffer (pH 7.2). The next day, the brains 
were rinsed in 0.1 M sodium cacodylate buffer (pH 7.2) and post- fixed 
with 1% osmium tetroxide in H2Omillipore for 45e60 min. After 
dehydrating the brains in an ascending ethanol series, they were 
embedded in Epon 812 (Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany). Reference sections (thickness 2e3 mm) were cut with a 
glass knife on an LKB Pyramitome (Reichert-Labtech, Wolf- 
ratshausen, Germany) and stained with methylene blue for light 
microscopy (Richardson et al., 1960). Ultrathin sections (~70 nm 
thickness) were cut with a diamond knife (Diatome, Biel, 
Switzerland) on an ultramicrotome (Ultracut, Reichert-Labtech, 
Wolfratshausen, Germany) and transferred to uncoated copper grids 
with a 200 × 75 mesh (Plano, Wetzlar, Germany). Sections were 
contrasted with 1% uranyl acetate and lead citrate (Reynolds, 1963). 

 

2.4 Tissue preparation for immunogold labeling 
 

Osmium tetroxide is known to mask antigens due to its high 
reactivity resulting in poor labeling (Deetz and Behrman, 1981). To 
compromise between tissue preservation, sufficient contrast, and 
antigenicity, the fixative was adjusted for brains used for immu- 
nogold labeling by reducing the concentration of glutaraldehyde and 
adding picric acid, leading to a solution containing 2% glutar- 
aldehyde, 2% paraformaldehyde, and 0.1% picric acid in 0.1 M so- 
dium cacodylate buffer. The post-fixation was carried out with only 
0.05% osmium tetroxide in H2Omillipore instead of 1% as described 
before to reduce antigen-masking effects. Embedding in epoxy resin 
and section preparation was conducted as described before. Instead 
of uncoated copper grids, coated nickel grids with a 
200 × 75 mesh (Plano, Wetzlar, Germany) were used. To reduce 
unspecific antibody labeling, sections were first treated with 0.1% 
glycine in 0.01 M phosphate buffered saline (PBS; pH 7.4) and then 
with 1% bovine serum albumin (BSA) in 0.01 M PBS. Anti-PDH was 
used as primary antiserum at a concentration of 1:1000. After 
rinsing the sections with 0.1% BSA in 0.01 M PBS, the secondary 
antibody, goat anti rabbit IgG (BBI Solutions, Crumlin, United 
Kingdom) coupled with 10 nm colloidal gold particles, was applied. 
To fixate the linkage between antibody and epitope of the antigen, 
sections were treated with 2% glutaraldehyde in 0.01 M PBS. 
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Fig. 2. Photomicrographs and reconstructed diagram of semi-thin sections through the posterior optic tubercle (POTU) stained with methylene blue. Semi-thin sectioning of the 
right hemisphere from posterior reveals the anatomy and position of the POTU as reference for ultra-thin sectioning. A: In the posteriormost section, the outer part of the POTU 
appears first, surrounded by cell bodies. B: Further anterior, the posterior optic commissure (POC) and the tubercle protocerebral bridge (POTU-PB) tract appear. The POC contains 
processes of intertubercle neurons (pTuTu neurons) connecting the right and left tubercle, while the POTU-PB tract contains processes of TB neurons that connect the POTU to the 
protocerebral bridge. C: At a more anterior level, the POC becomes larger. D: Deeper into the brain, the POTU-PB tract becomes smaller. A small bundle of fibers within the POC 
(white arrowhead) innervates the POTU. Lateral to the POTU fibers of the posterior optic tract (POT) become visible. Some fibers in the POT connect the accessory medulla to the 
POTU (white arrow). E: At an anterior level, numerous large fibers of the POT/POC bypass the POTU, while processes in distinct fascicles invade the tubercle. Arrow points to fibers of 
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Fig. 3. Transmission electron micrograph of synaptic profiles in the posterior optic tubercle. Based on the synaptic vesicle content, four types of profile were identified: Profile type 
I: many small clear vesicles; profile type II: many large oval dense core vesicles; profile type III: a mixture of small clear vesicles and round dense core vesicles that are smaller than 
in type II profiles; profile type IV: only a few single clear vesicles and mitochondria, otherwise no organelles. cV: clear vesicle, dcV: dense core vesicle, M: mitochondrion.  
Scale bar = 2 µm.

Contrast enhancement using uranyl acetate and lead citrate was 
performed as described above. 

 
2.5 Tissue preparation for light microscopy combined with 
electron microscopy 

 
As an additional approach to investigate profile types and the 
associated neuron types in the POTU, we combined light- and 

electron microscopy. The protocol described by Sun et al. (1998) 
was used as a template and adjusted to our protocols for intracel- 
lular recordings in locusts (e.g., Pegel et al., 2019). Intracellular re- 
cordings were performed from two TB1 neurons, connecting the PB 
and POTU, with glass electrodes filled with 4% Neurobiotin (Vector 
Laboratories, Burlingame, USA) in 1 M KCl in the tip and 1 M KCl in 
the shaft. After recording the response of the TB1 neuron to light 
stimuli, the Neurobiotin mixture was iontophoretically injected

 
 

the POT invading the tubercle, white arrowhead indicates a bundle of neurons of the POC that innervate the POTU. F: Diagram reconstructed from semi-thin sections shows the 
POTU (light blue) and the tracts connecting it to other neuropils. A part of the POC (dark blue) runs towards the contralateral tubercle. The POTU-PB tract connects the POTU with 
the PB. Lateral to the POTU a fiber fascicle within the POT (dark blue) connects the tubercle to the AME. AME: accessory medulla, CBR: cell body rind, m: medial, PB: protocerebral 
bridge, POC: posterior optic commissure, POT: posterior optic tract, POTU-PB tract: posterior optic tubercle-protocerebral bridge tract, PS: posterior slope, S: cell soma in the ell 
body rind; T: trachea, v: ventral. Scale bars = 100 µm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Synaptic polarity of the four profile types in the posterior optic tubercle. A: Type I profile contains many small clear vesicles and some mitochondria. The displayed profile 
has three synaptic release sites (red arrowheads) showing typical accumulation of vesicles next to a presynaptic membrane thickening. B: Type II profile is defined by many large 
oval dense core vesicles. Only very few clear vesicles are present, adjacent to the active zones (red arrowheads). The postsynaptic partners in those synapses are profiles of type IV. 
C: Type III profiles contain small clear vesicles and dense core vesicles that are more round and smaller than the ones in profile type II. Red arrowheads point to two synapses in 
which profile type III has typical presynaptic vesicle accumulations next to an electron dense membrane thickening. Postsynaptic partners in these cases are type IV profiles. D: Type 
IV profiles contain a few clear vesicles and mitochondria. One synapse is visible in which profile type IV is postsynaptic (black arrowhead), showing the typical postsynaptic electron 
dense membrane due to receptors. Red arrowhead ¼ presynaptic side. Scale bars = 1 µm. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

into the cell with a positive current of 1 nA. Afterwards the brain 
was dissected from the head capsule and immersed overnight in 
Neurobiotin-fixative (4% paraformaldehyde, 0.25% glutaraldehyde, 
and 0.2% saturated picric acid, in 0.1 M sodium phosphate buffer). 
After rinsing the brain in sodium phosphate buffer, it was 

embedded in 7% low melting point agarose, and 100 mm thick slices 
were made with a vibrating blade microtome (Leica VT1200 S, Leica 
Microsystems, Wetzlar, Germany). For light microscopy, the slices 
were incubated overnight with Cy3 conjugated streptavidin (Dia- 
nova, Hamburg, Germany) with a concentration of 1:1000 in 0.1 M 
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Fig. 5. Quantitative comparison of dense core vesicle size in profile type II and III. The 
maximum diameter of dense core vesicles differs significantly between type II and type 
III profiles, with type II containing significantly larger vesicles (Mann-Whitney-U- Test, 
p = 0, U = 2620.5). Median size for type II vesicles is 149.5 nm and for type III vesicles 
99.0 nm. Boxes show 25th and 75th quantile, whiskers denote 5th/95th percentile, x 
denotes 1st/99th percentile, – denotes minimum and maximum values. Measurements 
are from N = 200 vesicles in n = 10 profiles (for each profile type). 

PBS which binds to the injected Neurobiotin. After rinsing the slices 
with 0.1 M PBS, they were mounted in 80:20 glycerol/0.1 M PBS on 
a microscope slide and covered with a coverslip. To investigate the 
ultrastructure of the stained neuron via electron microscopy, the 
neuron had to be labeled with electron dense material. To this end, 
we transferred the slices out of the glycerol/PBS mixture into PBS to 
rinse them. Afterwards, they were incubated for 18 h in horseradish 
peroxidase (HRP) conjugated biotin (Life Technologies, Rockford, 
USA), dissolved 1:200 in 0.1 M PBS. After rinsing the slices in 0.1 M 
PBS, they were incubated in 0.25% 3,3´-diaminobenzidine tetrahy- 
drochloride (DAB). The addition of 0.01% hydrogen peroxide (H2O2) 
resulted in electron dense staining of the Neurobiotin-labeled TB1 
neuron. After 5 × 10 min the reaction was stopped by rinsing with 
0.1 M PBS, and the slices were post-fixed with 0.5% osmium te- 
troxide in H2Omillipore. Afterwards, they were prepared for 
ultrathinsectioning and electron microscopy as described above. 

 

2.6 Microscopy and image processing 
 

For the anti-synapsin and anti-PDH labeled brains, and the 
fluorescently labeled TB1 neurons, specimens were scanned with a 
confocal laser scanning microscope (Leica TCS-SP5, Leica 
Microsystems, Wetzlar, Germany). Fluorophores were excited with 
an argon laser at a wavelength of 488 nm (Cy2) and HeNe lasers 
operating at 543 nm (for Cy3) and 633 nm (for Cy5). Image stacks 
were acquired at 200 Hz with a resolution of 1024 × 1024 pixels in 1 
mm steps (neuron) or 2 mm steps (neuropils) in z axis, using a 10× 
oil objective (HC PL APO 10× / 0.4 Imm Corr CS). Light microscopic 
images were obtained with a Zeiss Axioskop (Carl Zeiss, Jena, 
Germany). Fibers in tracts were counted from sagittal, horizontal, 
and frontal methylene blue stained 2 mm sections as close as possible 
to the POTU using a 40× or 63× oil immersion objective. For 
transmission electron microscopy a Jeol JEM-2100 200 kV TEM/FEG 
microscope (Jeol, Tokyo, Japan) with a 2k × 2k CCD-camera F214 
was used. Electron micrographs were taken with the program EM- 
Menu 4 (TVIPS, Gauting, Germany). Contrast and brightness of 
images were adjusted with CorelDRAW2018 (Corel Corporation, 
Ottawa, Canada). For neuropils, we followed the terminology 
suggested by Ito et al. (2014) wherever possible. The nomenclature 
of all mentioned neurons follows earlier accounts (e.g., Pfeiffer and 
Homberg, 2014). 

 
 
 

2.7 Analysis of transmission electron micrographs 
 

Synaptic profiles were classified based on presence or absence of 
the following features: clear vesicles, dense core vesicles, and 
synaptic release sites. In two types of profile that both contained 
dense core vesicles but differed in the distribution of clear vesicles 
we analyzed the size of dense core vesicles. To this end, we 
randomly chose 10 profiles from randomly chosen micrographs and 
measured the diameter of 200 randomly chosen vesicles in each of 
the two profile types. The median for both profile types of all 
measured values was calculated. The size distributions were sta- 
tistically tested against each other using the Mann-Whitney-U-Test

 

 
 

Fig. 6. Anti-pigment dispersing hormone (PDH) labeling of neurons innervating the posterior optic tubercles. Maximum intensity projection view of staining with an antiserum 
against PDH. Processes of neurons from the accessory medulla that invade the posterior optic tubercles, the intertubercle tract (contoured arrowhead), and the posterior optic 
tubercle-protocerebral bridge tract (filled arrowheads) are labeled. AME: accessory medulla, m: medial, POTU: posterior optic tubercle. Scale bar = 100 µm. 
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Fig. 7. Transmission electron micrographs of immunogold labeling of PDH in the posterior optic tubercle. Gold particles are concentrated on large dense core vesicles in type II 
profiles. A: A synaptic profile of type II shows many gold particles on the dense core vesicles. Three synapses are visible (red arrowheads). B: Magnified display of A. Profile type II 
shows presynaptic characteristics in the synaptic connections. C: Another type II profile shows labeling of the dense core vesicles as well. The red arrowhead points to a large active 
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2.8 Calculation of the standard average POTUs 

 
A standard average POTU was calculated from 12 brains, 7 brains 

from female and 5 from male locusts. Because the volumes of the 
female and male POTUs were not significantly different (Mann 
Whitney U test, U = 56, Z = 0.777918, p = 0.436617), all 12 specimens 
were integrated into the final standard average. All preprocessing of 
data before the actual standardization was carried out using Amira 
5.3.3 (now Thermo Fisher Scientific, RRID:SCR_007353). In order to 
be able to integrate the standard- ized POTUs into the standard CX 
(el Jundi et al., 2010), it was necessary to integrate both the POTUs 
and a part of the CX into the scans. We therefore first aligned and 
merged the scans from serial sections to obtain data stacks that 
contained both POTUs and the PB. Data stacks were then resampled 
to a voxel size of 2 × 2 × 2 mm. Neuropils were segmented using 
Amira's segmentation editor. In the confocal image stacks, data 
outside a 10-voxel margin around the neuropils were replaced by 
black pixels and the remaining data were normalized to cover the 
full 8-bit range of gray values. The standardization procedure was 
applied separately to the left and right POTU. Therefore, two data 
sets were generated, each with one POTU removed. One dataset out 
of 12 brains was chosen as tem- plate. The criteria for the template 
were: 1. Its volume had to be close to the median of the volumes of all 
specimen. The median volume of all 24 POTUs from the 12 brains 
was 108 516 µm3 the volumes of the POTUs from the template brain 
were 98 176 µm3 (left hemisphere) and 121 088 µm3 (right 
hemisphere). 2: Its shape and position had to be a typical 
representation of the population. This was assessed through visual 
inspection of the 3D-reconstructions of all 12 specimens by two of the 
authors (KP and FD). It should be noted, that the template strongly 
influences the overall size of the resulting average, while it has only 
very minor effects on its shape. We then applied the iterative shape 
averaging method (ISA) using the computational morphometry 
toolkit (CMTK, version 3.2.3). For details on the ISA method, see 
Rohlfing et al. (2003) and Groothuis et al. (2019). Briefly, all datasets 
were registered onto the template using affine registrations. The 
average of all registered data stacks and the template served as the 
template for the sub- sequent elastic registration, where a 3D grid 
was applied to the data and grid points were individually moved to 
achieve the best possible fit between the current specimen and the 
template. After elastic registration of all data stacks, a new average 
was computed, which served as the template for the next round of 
elastic registrations. Each subsequent elastic registration had a finer 
3D grid than the previous one. This process was carried out five times 
in total and the average of the fifth round was the final average. The 
transformation matrices of each stage (including the affine regis- 
tration) were saved for each brain and applied to the segmentation 
data. Finally, a shape-based average was computed from the 
transformed segmentation data using Euclidean distance maps 
(Rohlfing and Maurer, 2007). 

For the integration of the POTUs into the standard locust CX, the 
CBU that was segmented together with the POTUs was registered 
onto the CBU of the standard CX (el Jundi et al., 2010) using an affine 
registration with 9 degrees of freedom (rotation and trans- lation 
along/around the x, y, and z axis, scaling of x, y, z axis). 
Transformation parameters of this registration were then applied to 
the POTUs. 

 

3. RESULTS 
 

We investigated the anatomy and ultrastructure of the POTU in 
the posterior sky compass pathway (Fig. 1A) of the desert locust S. 
gregaria. To aid future anatomical studies, a three-dimensional 
average standard of the POTU based on anti-synapsin immunos- 
tainings (Fig. 1B) was added to the locust standard brain. At the 
ultrastructural level, we describe four types of synaptic profile 
within the POTU based on differences in vesicle content, polarity, 
and synaptic connectivity patterns. One type of profile could be 
identified by PDH-immunogold labeling as terminals of neurons 
that originate in the accessory medulla (Homberg et al., 1991), the 
circadian pacemaker of insects. Likewise, single cell tracer injection 
into neurons connecting the POTU to the protocerebral bridge (TB1 
neurons) allowed us to show their postsynaptic sites in the POTU 
ultrastructurally and assign them to one of the profile types. 

 
3.1  Anatomy of the posterior optic tubercle 

 
To reconstruct and compare the branching patterns of neurons 

in the POTU within a common frame of reference, we created a 
three-dimensional average shape atlas of the POTU based on anti- 
synapsin immunolabeling (Fig. 1B) of 12 specimens. The median 
volume of the POTU was 108 516 mm3. The average shape POTUs 
were registered into the coordinate frame of the locust standard CX 
(Fig. 1CeE; el Jundi et al., 2010). 

The POTUs are small ovoid neuropils situated at the posterior 
face of the locust brain about 100 mm lateral, 150 mm posterior and 
slightly ventral of the protocerebral bridge (Fig. 1C-E). Their lateral 
extent was 104 µm (median of 24 POTUs from 12 brains, inter- 
quartile range: 12.6 µm), and the axis of maximum lateral extent 
was tilted slightly upward at the medial, pointier side of the neu- 
ropil. Their thickness (anterior/posterior) was 35.4 µm (median of 
24 POTUs from 12 brains, interquartile range: 3.8 µm). The vari- 
ability of the shape of individual POTUs can be viewed in 
Supplemental Fig. S1. 

To investigate the internal organization of the POTU, we 
analyzed series of semi-thin sections stained with methylene blue 
(Fig. 2). In contrast to other neuropils, the POTU shows no internal 
compartmentalization in slices and layers. Three neuronal tracts 
connect the POTU with other brain regions. Except for these tracts, 
the POTU is largely separated from adjacent tissue by a glial sheath. 
Posteriorly, it is completely surrounded by cell bodies of the pos- 
terior soma rind (Fig. 2A). Neurites of the posterior optic tubercle- 
protocerebral bridge tract (POTU-PB tract) are the first to appear at 
a posterior level. The tract extends from the POTU in dorsomedial 
and anterior direction toward the PB (Fig. 2B) and largely contains 
fibers of TB1, TB2, and TB3 neurons (von Hadeln et al., 2020). More 
anteriorly, large fibers of the posterior optic tract which continue as 
the posterior optic commissure toward the brain midline bypass the 
tubercle dorsally and cover its anterior face (Fig. 2C-F). Within this 
large tract, a bundle of fibers in the commissure invades the POTU 
(Fig. 2D & E). It contains pTuTu neurons that specifically connect 
the POTUs of both hemispheres (el Jundi and Homberg, 2010). 
Likewise, a fiber bundle within the posterior optic tract invades the 
POTU (Fig. 2D-F). Neurons in this fascicle connect the AME with the 
POTU (el Jundi and Homberg, 2010). 

 
 

zone. D: Magnified display of C illustrates that the type II profile is presynaptic. E: A type II profile is located adjacent to a profile of type III. Both types contain dense core vesicles. 
While those in profile type II are larger and oval-shaped, dense core vesicles in profile type III are smaller and rounder. Only the oval-shaped dense core vesicles of profile type II are 
labeled for PDH while the round ones in profile type III are not labeled. Scale bars = 500 µm. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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Fiber counts in the three tracts connecting the POTU to other 
brain areas showed about 35 (32, 37, n = 2) small fiber profiles in 
the POTU-PB tract (diameter 1.5 – 3 µm), about 16 (12, 20, n = 2) 
large fiber profiles in the POC (diameter 2 – 7 µm), and about 43 (42, 
38, 50) medium size fiber profiles in the POT (diameter 3 – 4 µm). 
Fiber profiles smaller than 1 µm could not be resolved, therefore, the 
total number of fibers in these tracts may be larger. 

 
3.2 Ultrastructure 

 
Using transmission electron microscopy, the POTU was struc- 

turally well distinguishable from the surrounding tissue that con- 
sists mainly of cell bodies, neurites, and tracheae. Fig. 3 shows the 
general appearance of the POTU in ultrathin sections. It consists of 
many synaptic profiles, characterized by cell organelles like mito- 
chondria and different types of synaptic vesicles. Based on the 
appearance of vesicles, we distinguished four different profile types 
(overview in Fig. 3, blue shaded (All colour indications refer to the 
web version), I-IV). Type I profiles were densely packed with small 
clear vesicles and often contained many mitochondria (Fig. 4A). In 
all sections examined (>1000 images), we only found presynaptic 
features within synaptic connections of type I profiles, like a 
thickening of the membrane, in some cases an enlarged synaptic gap, 
and vesicles concentrated at the presynaptic side of an active zone 
(Fig. 4A, red arrowheads). Profile type II held many large, often ovoid, 
dense core vesicles, single clear vesicles adjacent to active zones, and 
some mitochondria (Fig. 4B). In sections showing syn- aptic contact 
sites type II profiles were always the presynaptic partners of type IV 
profiles (Fig. 4B, red arrowheads). Profile type III contained many 
clear vesicles and, in addition, dense core vesicles that appeared 
smaller and rounder than the ones in type II profiles. Because a size 
difference of dense core vesicles in different profile types could hint 
at differences in content of neuroactive substances, we quantified 
and compared the size of the dense core vesicles of profile II and III. 
We found a median of 149.5 nm (maximum vesicle diameter) for 
vesicles in type II profiles and 99.0 nm for vesicles in type III profiles. 
The vesicle size was significantly different between the two profile 
types (Mann-Whitney-U-Test, p = 0, U = 2620.5;  Fig. 5). In synaptic 
connections, profile type III was the presynaptic partner of profile 
type IV, with mainly clear vesicles accumulated at the active zones 
(Fig. 4C, red arrowheads). Profile type IV contained only a few 
mitochondria and some scattered vesicles but appeared “empty” 
compared to all other profile types. In synaptic connec- tions, this 
type of profile was always identified as the postsynaptic partner of 
profile type I, II and III, with electron dense membrane foldings 
adjacent to a presynaptic active zone but no synaptic vesicles present 
(Fig. 4D, black arrowhead postsynaptic side, red arrowhead 
presynaptic side). 

 
3.3 Immunogold labeling 

 
To identify the neuronal cell types corresponding to the 

different types of profile, we used an antiserum against pigment 
dispersing hormone (PDH), which in insects labels the peptide 
pigment dispersing factor (Homberg et al., 1991; Rao and Riehm, 
1993). In locusts, this antiserum labels neurons from the AME 
that have processes in the POTU (Fig. 6; Homberg et al., 1991). La- 
beling was highly specific, with virtually no background and was 
highly concentrated in the dense core vesicles of type II profiles 
(Fig. 7). In all sections examined, all profiles of type II were labeled 
but within those profiles not all vesicles were marked. Numerous 
immunogold-labeled profiles of type II had synaptic release sites, 
identifying profile type II as presynaptic in the POTU (Fig. 7AeD, red 
arrowheads). Like profile type II, type III profiles also contained 
dense-core vesicles. However, these slightly smaller dense core 

vesicles were never labeled by the anti-PDH antiserum, which 
provides further evidence that type II and type III profiles originate 
from different neuronal cell types. This is illustrated in Fig. 7E, 
showing a labeled profile of type II adjacent to a profile of type III. 
 

3.4 Combined fluorescence staining with electron microscopy 
 

To further investigate the neuronal identity of profiles in the 
POTU, we used a combination of fluorescence microscopy and 
electron microscopy. TB1 neurons connect the POTU with the PB 
(Fig. 8A, B) and were previously described as part of the CX compass 
network (Heinze and Homberg, 2007). Electrophysiological data 
suggest that TB1 neurons are postsynaptic in the POTU (Beetz et al., 
2015). We used Neurobiotin filled preparations of two TB1 neurons 
(Fig. S2). In a first step, Neurobiotin was visualized using strepta- 
vidin conjugated to Cy3, to confirm the neuronal cell type. In the 
second step the Neurobiotin tracer was transformed into an elec- 
tron dense signal that allowed identification of labeled profiles of the 
TB1 neurons ultrastructurally (Fig. 8CeE). The stained neurites of 
the TB1 neurons were located in a neurite bundle close to the POTU 
(Fig. 8C). Within the POTU, multiple labeled profiles were found. 
While strong staining of the TB1 neuron profiles precluded the 
attribution of a profile type to them, most TB1 profiles appeared 
adjacent to profiles of type III. In some slices, we found character- 
istics indicating that the stained profile is postsynaptic to profiles of 
type III (Fig. 8D, E). Those characteristics include a postsynaptic 
membrane folding in the labeled profile at the active zone as well as 
vesicle accumulation on the presynaptic side (Fig. 8D, red arrow- 
head). In one of those labeled profiles, we found a divergent dyad, 
meaning that a labeled profile is again postsynaptic but together with 
a second unlabeled profile in the same synaptic connection (Fig. 8E, 
red arrowhead). We did not find any instances of TB1 neuron 
appearing as a presynaptic profile. Because profile types I, II and III 
are presynaptic output profiles, we conclude that the TB1 neuron 
profiles are of type IV. 

 
4. DISCUSSION 

 
At present, it is not known where and how time compensation is 

integrated into the navigation system of insects. Because the POTU 
in the brain of the desert locust is connected with the AME, the PB, 
and the contralateral POTU, it has been hypothesized that this 
neuropil is the link between the circadian clock and the orientation 
system (el Jundi and Homberg, 2010). However, it has been an open 
question how these neurons are connected with each other and how 
the information flow is directed in the POTU. Our ultrastruc- tural 
analysis revealed four different types of synaptic profiles that were 
distinguishable based on synaptic vesicle content. We also 
investigated the polarity of those profiles in synaptic connections and 
found that profiles of type I, II, and III were always presynaptic with 
profiles of type IV as postsynaptic partners. Two neuron types could 
be assigned to those profiles. Some type IV profiles belonged to TB1 
neurons, while all profiles of type II arose from PDH- 
immunoreactive neurons (Table 1), which, in locusts, have ramifi- 
cations in the AME (Homberg et al., 1991). The synaptic polarity of 
these neurons supports earlier hypotheses that the POTU is involved 
in connecting the circadian clock with the spatial orien- tation 
system in locusts. 

We investigated the POTU at the light microscopic and ultra- 
structural level to gain more insights into its neuron types, their 
vesicle content, synaptic connections, and polarity within this 
neuropil. The addition of a three-dimensional average shape POTU 
to the locust standard brain extends the possible use of the locust 
standard CX platform and allows for further neural network ana- 
lyses and registration of neuronal cell types that have ramifications 



 

155 
 

M. Held et al. / Arthropod Structure & Development 58 (2020) 100971 11 

 
Fig. 8. Three-dimensional reconstruction and transmission electron micrographs of a dye-filled TB1 neuron. A: Frontal view of the central complex showing a three-dimensionally 
reconstructed TB1 neuron registered into the protocerebral bridge and posterior optic tubercle of the locust standard central complex. The neuron connects the posterior optic 
tubercle with the protocerebral bridge. In the protocerebral bridge, the neuron has alternating smooth and varicose ramifications, with the varicose ramifications being eight slices 
apart. B: Same as A tilted horizontally by 45°. C: In an electron micrograph one neurite of a TB1 neuron in a bundle is labeled with electron dense material. D: Labeled profile of the 
TB1 neuron in the posterior optic tubercle. The profile is postsynaptic to a type III profile. At the active zone (red arrowhead) vesicles are visible at the presynaptic membrane. E: 
Labeled profile from the second TB1 neuron is postsynaptic to a type III profile. In this synaptic connection the presynaptic side (red arrowhead), indicated by small vesicles and 
membrane thickening, is connected to two postsynaptic profiles, one labeled and one unlabeled. Scale bar A – B = 200 mm, C = 1 mm, D – E = 300 nm (three-dimensional recon- 
struction of the TB1 neuron from Beetz et al., 2015). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Table 1 
Summary of the ultrastructural findings. dcV: dense core vesicle, PDH-ir: pigment dispersing hormone-immunoreactive. 

 

 Type I Type II Type III Type IV 

Polarity Presynaptic Presynaptic Presynaptic Postsynaptic 
Vesicle types Many clear vesicles Many large dcV, very few clear vesicles Clear vesicles & small dcV Few clear vesicles 
Neuron types TB, pTuTu? PDH-ir neurons from AME pTuTu? TB1, pTuTu? 

 
in the POTU like TB1, TB2 and TB3 neurons (von Hadeln et al., 2020). 
The series of semi-thin slices confirmed the highly restricted con- 
nections of the POTU to the PB, the posterior POTU and the optic 
lobe but no additional connections to the surrounding posterior 
slope. Fiber counts provided numbers of larger fibers in the three 
tracts but could not resolve fibers below diameters of about 1 mm. 
Nevertheless, the number of about 35 fibers in the POTU-PB tract 
fits well with the collective number of about 30 serotonin-, Dip- 
allatostatin-, and Mas-allatotropin-immunoreactive neurons in 
this tract (Beetz et al., 2015). Ultrastructural analysis revealed four 
different types of synaptic profiles based on vesicle stock. Different 
neuroactive substances are stored in different types of vesicle. 
Classical transmitters like acetylcholine or g-aminobutyric acid are 
present in clear vesicles while neuropeptides like PDH are stocked 
in dense core vesicles (reviewed by Watson and Schürmann, 2002). 
In cockroaches, synaptic profiles in the AME contain four different 
types of dense core vesicles: small, medium, large, and granular 
ones. Of these, only medium and large vesicles contained PDH 
(Reischig and Stengl, 1996). We found two types of dense core 
vesicles in the profiles of the POTU in locusts: larger ones in type II 
profiles and smaller ones in type III profiles. Immunogold labeling 
revealed that only the large dense core vesicles in type II profiles 
were PDH-immunoreactive but not all of them were labeled in one 
profile. This finding shows that PDH-immunoreactive neurons from 
the AME provide input to the POTU but beyond that suggests that in 
type II profiles PDH is co-localized with other transmitters. 
Candidate neuropeptides are members of the RFamide peptide 
family that are co-localized with PDH in the locust AME (Würden 
and Homberg, 1995). RFamide-labeled neurons, like PDH-labeled 
AME neurons target the POTU. 

Light microscopic immunohistochemical studies revealed the 
presence of allatostatins, allatotropin, and serotonin in TB neurons 
connecting the POTU and PB (Beetz et al., 2015) and dopamine in 
the intertubercle pTuTu neurons (Wendt and Homberg, 1992). 
Unfortunately, immunogold labeling using antisera against these 
peptides and amines were unsuccessful in our hands. We, there- fore, 
investigated TB1 neurons by transforming Neurobiotin- fluorescence 
in two TB1 neurons into electron dense material. Both TB1 neurons 
were postsynaptic in the POTU indicating that they formed type IV 
profiles. Based on spiking behavior in intra- cellular recordings, 
Beetz et al. (2015) suggested that some TB1 subtypes receive input 
in the POTU, which is supported by our data. A third type of neurons 
of the POTU are pTuTu neurons. At the light- microscopic level, their 
neuroanatomy suggests that they receive input in the POTU 
ipsilateral to their soma and provide synaptic output in the 
contralateral POTU. Therefore, some type IV profiles might 
correspond to dendritic inputs of pTuTu neurons. Because dopamine, 
the likely neurotransmitter of pTuTu neurons (Wendt and Homberg, 
1992), is usually stored in dense core vesicles (Watson and 
Schürmann, 2002), their axonal projections might be the type III 
profiles. Because type III profiles contained dense core vesicles and 
clear vesicles, it is likely that there is a co-localization with a 
classical transmitter. These hypotheses suggest that type IV profiles 
are a heterogeneous group, corresponding to input regions of TB1 
and pTuTu neurons. 

We could not identify direct connections between PDH- 
immunoreactive neurons from the AME and TB1 neurons because 
we did not perform immunogold labeling in a specimen with a labeled 
TB1 neuron. This could be an interesting step for future experiments 
aimed at identifying direct cell-to-cell connections. Further studies 
might reveal the cellular identity of type I and III profiles. Possible 
candidates are other subtypes of TB neurons that form reciprocal 
connections between the POTU and the PB (Beetz et al., 2015) or 
pTuTu neurons connecting both POTUs. 

It is likely that integration of time information into the orien- 
tation system differs between insect species. While in monarch 
butterflies the core compass network is very similar to that in the 
locust (Heinze and Reppert, 2012), the picture is different in the 
fruit fly Drosophila melanogaster and in dung beetles, where 
POTUs are apparently missing. Nevertheless, Drosophila is 
capable of long- range flights and thus might require a mechanism 
for time compensation in sun-compass orientation (Jones et al., 
1981; Coyne et al., 1982, 1987). The question arises where fruit 
flies integrate time information into their orientation system 
(Franconville et al., 2018). A newly discovered set of PDF-
expressing clock neurons target the anterior optic tubercle, a 
neuropil that is two steps up- stream from the CX in the sky 
compass pathway (Schubert et al., 2018). Time information might 
be fed via this connection into the sky compass. Another 
possibility is that Drosophila does not use a time-compensated 
sun compass. Experiments in tethered flight showed that 
Drosophila adjusts flight directions relative to a simulated sun 
but does not change its heading over time, even after a time gap of 
several hours (Giraldo et al., 2018). The authors concluded that 
their data corresponded better to a fixed memory model than a 
time-compensated model of sun compass orientation. The same 
could be true for dung beetles that are known for straight-line 
orientation using a snapshot-based celestial compass (el Jundi et 
al., 2018) for which time compensation might not be necessary. 
Future studies might further test those hypotheses and the role of 
connections by the circadian system. 

So far, the most detailed knowledge of the POTU has been ac- 
quired in locusts including insights into its ultrastructure and 
synaptic network provided here. Being a small neuropil with 
confined connections to only few other brain areas and small number 
of innervating cell types, the POTU might be ideal for a connectomics 
analysis that can help to better understand how time compensation 
in a celestial navigation system works. 
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APPENDIX 
PROTOCOL CALCIUM IMAGING 

1. Catch bee:  
- Catch a worker bee at the hive entrance with a “Drosophila” vial 

2. Cooling: 
- Cool the animal in the fridge or on ice until immobilization 

3. Tethering: 
- Tether the bee with UV curable glue (Perfomic Pen midget, Conrad Electronic 

SE, Hirschau, Germany) to the holder with the head sticking slightly through 
the hole; glue the head with a small amount of glue to the edge of the hole 

- Leave the tips of antennae free of the otherwise the bees will show less 
walking behavior 

- Glue the wings and the thorax to the bridge next to the hole  
- Apply some glue on the mouthparts but keep eyes, abdomen and legs as 

free from glue as possible 
 

 
Fig. S1: Bee holder and tethering position of the bee to the holder.  

 
4. Preparation: 

- Cut a window through the hole in the cuticle of the head. Remove air sacs, 
fat bodies, salivary glands and neural sheaths 

- Add bee Ringer’s saline if necessary to keep the brain moist 
5. Calciumindicator injection: 

- For the injections, pull with a Flaming/Brown puller (P97, Sutter instrument, 
Novato, CA, USA) glass microelectrodes from borosilicate capillary tubes 
(outer diameter 1.5 mm, inner diameter 0.86 mm; Sutter Instrument, Novato, 
CA, USA).  

a. Calcium Green-1 dextran: If Calcium Green-1 dextran is used break the tip of 
the electrode off and insert it into petroleum jelly which allows you to pick up 
small dye crystals. Pick up a few crystals with the electrode tip. Remove all 
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fluids from the head capsule and pierce the handheld electrode shortly into 
the target region. Remove excess dye bye rinsing with bee’s saline. Keep the 
bees in a dark moist chamber for 2 – 3 hours to allow for complete dye uptake 
into the cells.  

b. JF549-BAPTA MPM ester dye: To use the JF549-BAPTA MPM ester dye, mix 20% 
Pluronic F127 with DMSO by heating the mixture to 40°C for 20 minutes. This 
mixture can be stored at room temperature and re-used until crystals are 
visible in the vial. Add 4 µl of this mixture to the vial with the dye and place it 
in an ultrasonic bath for 20 minutes to dissolve the dye crystals. Afterwards, 
add 35 µl bee Ringer’s solution and mix further on a shaker. For the final 
solution, combine 10 µl of this solution with 3.5 µl of fluid rhodamine B stock. 
Transfer 2.5 µl of the final solution into the microelectrode. Place the electrode 
with a micromanipulator into the target area of the brain and inject the dye 
using short pulses over several minutes with a pressure injection system 
(Pneumatic PicoPump PV820, WPI, Sarasota, FL, USA). Rinse the brain with bee 
Ringer’s saline and place the bee for 2 hours in a dark moist chamber.  

 

Fig. S2: Schematic drawing of the bee brain with the red neuropil (MEDRA) indicating the target 
area and the blue path outlining the targeted Transmedulla neurons. 

6. Preparation of the Setup: 
- If necessary exchange objective revolver with the × 25 objective 
- Install LED arena in the setup 
- Install camera in the setup.  

7. Positioning in Setup: 
- Attach the holder with the tethered bee to the micromanipulator in the setup 

and then position the bee on top of the ball; make sure the distance between 
ball and bee body is high enough for her to move her legs freely but not too 
high since this could cause movement artefacts 
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Fig. S3: Setup and positioning of bee on the ball. A: 1: camera to record ball movements, 2: 
objective, 3: micromanipulator arm to position holder/bee, 4: bee holder that is attached to the 
micromanipulator arm, 5: LED arena (panels removed for picture), 6: Styrofoam ball holder that 
guids the air flow to support the ball. B: 1: objective, 2: bee holder with saline reservoir, 4: 
honeybee, 4: Styrofoam ball. 

 
8. Preparation FicTrac System: 

- Start Linux laptop and log in 
- Open terminal (F12) 
- Position IR LEDs underneath the arena to get in the camera an even 

illumination of the ball  
- Type “qv4l2 –device=X” with X being the port of the camera (0 or 1) to open 

camera program to check for position and illumination of the ball 
- Calibrate the FicTrac software to the ball position by entering 

“../bin/configGui” into the terminal and follow the instructions 
- Set path in terminal by entering “cd fictrac” and then “cd FicTrac/Martina” 

9. Preparation Leica System: 
Switch on the setup in the following order:  
- Workstation and wait until the PC has booted 
- HyD supply unit (if needed) 
- Microscope electronics box 
- Fluorescence Lamp (if needed) 
- CSU box: scanner button, laser power button, turn laser key 
- STP box 8000 
- Start Leica Application Suite X (LAS X) program 
- Select desired settings (e.g. resonant scanner) 
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Fig. S4: Overview Leica Application Suite X (LAS X) program. 

- Change mode to “Live Data Mode” 
- Select xyt or xyzt as acquisition mode 

 

Fig. S5: Acquisition mode set to “Live Data Mode” and “xyt” scan.  
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- Select needed lasers in “Configuration” 
- Tune MP laser to desired wavelength 

 

Fig. S6: Example setting for the JF549-BAPTA-MPM indicator with the multiphoton laser tuned to 
910 nm at 3% power. 

- Tune detectors (PMT or HyD) to desired detection wavelength window 

 

Fig. S7: Example setting of the internal HyD detector for the JF549-BAPTA-MPM indicator (emission 
peak at 571 nm) with a detection range of 550 – 640 nm. 

 

- Set trigger to “Output 1” and “every frame” 
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Fig. S8: Trigger setting window with trigger out set to output slot 1, with a trigger pulse for every 
frame, beginning with the first one.  

10.  Preparation LED arena and arena controller 
- Turn on laptop (Thinkpad) 
- Start Arduino program 
- Start Matlab 
- Turn on power supply for LED arena and LED arena itself 
- Turn on controller 
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Fig. S9: 1: Arena panels power supply unit, 2: Panels display controller unit, 3: Arena controller 
signal to Arena Arduino, 4: Arena Controller signal output , 5: CED 1401 Micro 3 data acquisition 
board (previously Axon CNS Digidata), 6: Arena signal input, 7: Input Arduino from Arena and 
Arduino from FicTrac software, 8: Input SP8, 9: USB connection to Laptop, 10: Connection to 
arena board 

- Turn on CED bard (previously Axon CNS DigiData) 
- Start AxoScope software 
- Run in Matlab “PControl” script 
- Select pattern 
- Open in Arduino the latest “Reiser_arena” script 
- The first part defines the input and output pins  
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- In the next part, the commands in the serial monitor window are set; the user 
has the option to show the pattern in clockwise, counterclockwise, 
downward, and upward motion, or as on/off 
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- Then those options are coded as commands for the Arduino 
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- The last part of the script defines to get the information from the serial monitor 
and send the options chosen by the user to the digital-to-analog converter 
(DAC) 
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- Select in the Arduino software “Tools/Serial monitor” 
- Select movement direction of pattern 
- Select speed of pattern movement (°/s) 
- Now the LED arena is waiting for the trigger of the first frame of the 

microscope 
11.  Imaging settings 

- Turn on needed laser and detector 
- Click on “live”, set gain of detector and search for region of interest  
- Adjust zoom, laser power, gain and offset of detector 
- Turn “live” off, set biderctional scan, and adjust scanning speed to 600 (if 

resonant scanner is off) 
- Adjust resolution and image section to see enough details with the highest 

temporal resolution possible, in the end the desired temporal resolution should 
be above eight frames per second 
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Fig. S10: Example setting for a live calcium imaging experiments with the resolution and speed 
set to values that allow for a scanning speed of 8.82 frames per second.  

 
- Set desired scanning time for one experiment 
-  

 
Fig. S11: Example setting for imaging experiment duration at ~ 90 seconds. The time interval 
between frames is set to minimize, resulting with a scanning speed of 8.82 frames per second in 
799 frames for the whole trial. 
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12.  Run imaging, Fictrac, and AxoScope 
- Hit “record” in AxoScope software, three rows should start recording: one for 

the pattern position in the arena, one for the microscope signals per frame, 
and one for the FicTrac frames 

 

Fig. S12: AxoScope window with three recording traces as volt over time. The top row shows the 
recording of the position of the pattern in the arena, the second the output signal for every 
frame of the microscope, and in the row below every frame of the FicTrac software is shown.  

- Start Fictrac script by entering “../bin/FicTrac/Martina/Martina_config.txt”; 
FicTrac will start when hitting enter 
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Fig. S13: FicTrac recording window with the live video, the fictive walking path of the bee, the 
defined sphere ROI, the difference of the sphere ROI to the previous frame, the instand map of 
the ball tracking and the accumulated map. For more information see Moore et al., 2014.  

- Hit “Start” in Leica software to start imaging and to send first trigger impuls to 
the Arduino that controls the arena to start the pattern display 

- After the Leica software is done with the imaging part, stop FicTrac by 
pressing “strg +c” and AxoScope by pressing “stop” 

- Save all files and rename if necessary 
13.  Analysis imaging data 

- First, look at the imaging stacks with the free Leica LAS X software 
- You can also extract the properties and settings of each stack in the software 
- Afterwards analyze the data in more detail with the Python script in Jupyter 

Notebook (written by Dr. Hannah Haberkern): 
- Check if all needed libraries are installed 
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- Import tiff file by changing directory/name of “rawtiff”; check if printed 
directories are correct 

 
- Check in the next step if the script reads out the dimensions of the stack 

correctly 
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- Check if printed frames/second and information about z-stack/volume 
matches the original data set 

 
 

- The stack gets opened with the Plug-in “flika” which will open in an additional 
pop-up window 
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- The movement in the x/y axes of the opened stack gets analyzed; for that a 
reference frame gets picked manually, normally at the beginning of the 
experiment (in this case it is the tenth frame) 
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- The shift of the other frames compared to the reference frame gets 
computed and visualized in a figure 
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- In the next step the mean fluorescence of the whole image across all frames 
gets visualized 

 
- Flika opens in the next step a new window with whole stack where one region 

of interest gets manually defined to extract the background signal. This region 
should lay outside any stained structures 
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- The fluorescence in that region gets extracted and is in further steps used as 
background fluorescence  
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- Now the actual regions of interest are defined in an additional window in flika 
and the fluorescence in those ROIs get extracted over the whole time series; 
with the background fluorescence and the fluorescence in the ROIs dF/F is 
calculated 
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- The data extracted from the ROIs are getting saved 

 
- The borders of the ROIs get extracted from Flika and visualized  

 

- The visualized ROIs are saved as figure as further reference 
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- dF/F ((F-F0)/F0-Fb)) gets plotted as graph with the fluorescence trace over time 
and saved as a figure for future reference 
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- For a better visualization the traces of the individual ROIs gets plotted with an 
offset and saved as a figure for future reference 

 

 
- In the end of the imaging evaluation a correlation analysis is conducted 

between the fluorescence signal and the estimated motion in x/y for each 
ROI. If there would be a strong connection between fluorescence increase 
and stronger movements this could hint towards artefacts in the calcium 
signal. The correlation plots get saved as a figure for future reference. 
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14.  Analysis FicTrac 

- Open the Python analysis script (written by Dr. Hannah Haberkern) for FicTrac 
data in Jupyter Notebook 

- First, the necessary libraries are located and the directions for the raw data 
and plots are defined 

 
- Then, the data from the .dat file generated by FicTrac gets loaded into the 

script. Change filename to the desired data set and change “expt” which is 
going to be the name of the plots the script is going to generate 
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- The script is then retrieving the data saved in the .dat file 

 

- Out of the data the virtual walking path gets plotted with different color 
codes, one for the time of the whole trace, the other plot has a color-code 
for the heading direction. The plots get saved as figures for future reference. 
 

 

 

 

 

 

 

 

 



 

188 
 

- In addition, the walking path gets also plotted as graphs with heading, ball 
movement direction, and movement speed traces over all frames. Those 
graphs get saved for further reference.  
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15.  Alignment of behavior and imaging data 
- First, the script needs to load the needed libraries  

 
 

- The folder paths of the different data files is set as well as the directory of 
where to save the plots 
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- The names of the individual files (FicTrac .dat file, imaging .tiff file, and 
Digidata .abf file) in the folder path set before needs to be inserted manually 
for every new analysis 

 
 

- In the next steps the .abf file is used to synchronize the imaging and the 
behavior part 
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- In the next steps the Fictrac data get aligned with the pattern position in the 
arena 

 

 

 

- Then the Fictrac data get interpolated with the imaging frames 

 

- The alignment of the Fictrac data and the arena position of the stimulus gets 
visualized and saved for future reference 
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- To allow for a better evalutation if the bee showed a behavioral response to 
the stimulus, the whole trial can get divided into early repeats that 
correspond to the first five rotations of the stimulus and later repeats including 
rotation six to ten. The data is plotted as a graph of the bee’s movement as 
rotational velocity matched to the panorama position of the pattern in the 
arena. 
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- In the next steps the imaging data file name needs to be inserted manually 
to allow the script to load the data  

 

 

- The dimensions and other information are extracted from the file 
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- In the next steps the ROIs set in step 13 and all attached information get 
extracted for this experiment 
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- The ROI fluorescence data get now aligned with information from Fictrac like 
the rotation and translational velocity to evaluate self-movement influences 
on the neuronal activity to check for state dependency. The resulting plots 
are getting saved for further reference. 
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- In the next steps, all data are geting combined. For a better visualization 
single rotation repeats of the stimulus are getting picked, in this example the 
first four rotations. 

 

- The filtered rotational and translational velocity of the chosen repeats, in this 
case the first four stimulus rotations, gets overlayed and plotted for the 
stimulus time of six seconds (colored lines). The mean of those four rotations is 
plotted as well into the graph (black bold line). The graphs are getting saved 
for future reference. 
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- As last step of the analysis, dF/F of each ROI is plotted in the same chosen 
repeats as before over the stimulus time (colored lines) together with the 
mean (green bold line). The graph is getting saved for future reference. 
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TABLE NOTES FOR CALCIUM IMAGING IN LEICA SETUP 
Abbreviations: AOT: anterior optic tract, AOTU: anterior optic tubercle, CaG: Calcium Green-1 
dextran, JF549MPM: JF549-BAPTA-MPM ester, MB: mushroom body, ME: medulla, MEDRA: 
dorsal rim area of the medullaLO: lobula, LUC: lower unit complex of the AOTU, TR: Dextran Texas 
Red, UU: upper unit of the AOTU, VL: vertical lobe 
Specimen Dyes Injectionsite Comments 

180221_1 TR ME, LO right; VL 
left overnight 4°C, too much movement 

180222_1 CaG ME left; VL right Agarose too fluid, too much 
movement for in vivo 

180405_1 TR OL right, VL left 
cell bodies visible but no other 
structures -> wholemount preparation  
-> AOTU staining and collar 

180405_2 TR OL right, VL left 
cell bodies visible  
-> wholemount preparation  
-> AOTU staining  

180511_1 TR & CaG MEDRA no imaging possible, objective can't 
reach ROI  

180514_1 TR & CaG MEDRA both sides 
usage of Marburg holder 
-> wholemount preparation  
-> AOTU staining 

180520_1 TR & CaG MEDRA both sides 

SP8 broke, control with fluoBino;  
-> wholemount preparation  
-> AOTU UU and LUC stained on both 
sides 

180523_1 TR & CaG MEDRA both sides 

z stacks of TR shows staining in AOTU 
UU, LUC  
hard to see; 2 channel stack: CaG 
very dim 

180525_1 TR & CaG MEDRA both sides Scan of AOTU but no staining visible 

180613_1 TR & CaG MEDRA/ME both 
sides 

staining in both channels, CaG at least 
cell bodies in ME, UU and LUC (bright 
spots?), KCl application during scan 
but signal not stable 

180613_2 TR & CaG MEDRA/ME both 
sides 

weak staining, dark material (Retina?)  
on the brain, no scan 

180618_1 TR & CaG MEDRA both sides 

syringe system for KCl application, KCl 
after 10s -> brain has a short drop in z 
but afterwards Ca response in ME cell 
bodies  

180618_2 TR & CaG MEDRA both sides bee dead 

180620_1 TR & CaG MEDRA/ME both 
sides 

Overnight at 4°C, tested all patterns, 
staining in UU and LUC? Imaged in 
LUC; problems with arena (pattern 
from the beginning shown) 

180620_2 TR & CaG MEDRA/ME both 
sides bee dead 

180626_1 TR & CaG MEDRA/ME both 
sides no visible structures 
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180626_2 TR & CaG MEDRA/ME both 
sides 

all patterns tested, F increases also in 
the background -> artefact from the 
arena; HyD must be more narrow 

180628_1 TR & CaG MEDRA/ME both 
sides 

no clear staining in central brain visible,  
only cell bodies; objective can't go 
deep enough 

180628_2 TR & CaG MEDRA/ME both 
sides 

no clear staining in AOTU, runtime of 
dye too short? 

180710_1 TR & CaG MEDRA/ME both 
sides Overnight 4°C, bee dead the next day 

180711_1 TR & CaG MEDRA 
no clear staining in AOTU, HyD at 
510nm still shows leakage, excitation at 
820nm seems suitable 

180716_1 TR & CaG MEDRA both sides 

no clear staining in AOTU; Imaging of 
ME  
cell bodies, all LEDs on; bee in the end 
dead? 

180716_2 TR & CaG MEDRA both sides bee dead 

180717_1 TR & CaG MEDRA/ME both 
sides 

strong staining in AOTU, LUC lowest unit 
in both channels, different patterns 
tested, response? 

180717_2 TR & CaG MEDRA/ME both 
sides 

staining in AOTU but too much 
movement (pumping) to image 

180724_1 TR & CaG MEDRA/ME both 
sides 

maybe staining in AOTU but not clear; 
imaging in MB calyx, response?  
-> wholemount preparation 

180724_2 TR & CaG MEDRA/ME both 
sides too much movement; no clear staining 

180730_1 TR & CaG AOTU left side bee dead 

180730_2 TR & CaG AOTU right side 
clear staining of TUTU neurons on 
contralateral side in TR channel; CaG 
very dim; still leaking arena signal  

180808_1 TR & CaG ME left; MEDRA 
and ME right bee dead 

180821_1 JF549MPM&TR AOTU right side objective not deep enough 
180821_2 JF549AM&TR AOTU right side no staining visible 

181001_1 JF549MPM&TR MEDRA and ME 
both sides no clear staining, too much movement  

181010_1 JF549MPM&A488 AOTU right side bee dead 

181010_2 JF549MPM&A488 AOTU left side some patterns tested, bee walking, 
following pattern? 

181010_3 JF549MPM&A488 MB medial left Bee dead 

181012_1 JF549MPM&A488 AOTU left side 
staining in UU and LUC?, patterns 
tested and bee was walking but not 
very smoothly 

181012_2 JF549MPM&A488 AOTU left side bee dead 

20181112_1 JF549MPM&A488 MEDRA both sides TR staining in LUC; CaG very dim; bar 
tested, bee did not walk a lot 

20181112_2 JF549MPM&A488 MEDRA both sides bee dead 

20181113_1 JF549MPM&A488 MEDRA both sides imaged with horizontal bar and all 
LEDs on; bee not walking 
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20181113_2 JF549MPM&A488 MEDRA both sides ? 
20181113_3 JF549MPM&A488 MEDRA both sides bee dead 

20181128_1 JF549MPM&A488 MEDRA both sides 
resonant scanner, AOTU LUC left?, ME 
cell bodies right, imaged with all 
on/off, response? 

20181128_2 JF549MPM&A488 MEDRA both sides microscope crashed during imaging 
190123_1 JF549MPM&A488 MEDRA both sides bee dead 
190123_2 JF549MPM&A488 MB both sides too much movement; no clear staining 

20190204_1 TR & CaG ME/AOT both 
sides 

good staining in AOTU UU, maybe LUC; 
bee walked only in the beginning 

20190213_1 CaGreen ME/AOT both 
sides 

AOTU hard to find, imaging of cell 
bodies in ME; bee alive but not really 
walking 

20190218_1 TR & CaG MEDRA both sides ME cell bodies imaged but too much 
movement, z-stack 

20190227_1 TR & CaG MEDRA both sides bee alive but barely walking, staining 
very weak 

20190227_2 TR & CaG MEDRA both sides 

Bombus terrestris; AOT visible but AOTU 
not; imaging of LO cell bodies, 
bumblebee followed stripe for a short 
period of time 

20190228_1 TR & CaG MEDRA both sides imaged in AOT, LUC? With different 
patterns, no walking 

20190228_2 TR & CaG MEDRA both sides Bombus terrestris; no clear staining 

20190326_1 TR & CaG MB both sides Bombus terrestris; microscope crashed 
3 times 

20190327_1 TR & CaG MEDRA both sides UV glue instead of Agarose; too blurry 
to image 

20190328_1 TR & CaG MEDRA both sides QuickSeal instead of Agarose; not 
curing; no imaging 

20190328_2 TR & CaG MEDRA both sides QuickSeal instead of Agarose; not 
curing; no imaging 

20190402_1 ? ? no notes, cell bodies? 

20190410_1 JF549MPM&A488 AOT both sides bee positioned badly; objective can't  
go deep enough 

20190410_2 JF549MPM&A488 AOT right side bee dead 

20190525_1 TR & CaG ME/AOT both 
sides 

too much eye covered, AOTU not 
visible but cell bodies in central brain 
and OL (also in CaG channel) 

20190625_2 TR & CaG ME/AOT both 
sides 

TR staining in AOTUr but no staining 
visible in CaG channel; bee dead 

20190626_1 TR & CaG ME/AOT both 
sides 

TR staining in UU but not clear staining 
in CaG channel, no visible structures;  
no signal during test 

20190704_1 TR & CaG ME/AOT both 
sides bee dead 

20190704_2 TR & CaG ME/AOT both 
sides 

very dim signal in AOT and UU; no 
signal in CaG channel 

20190705_1 JF549MPM MEDRA both sides 
dim staining in AOT and maybe LUC;  
all on/off tested and horizontal optic 
flow up; reaction to all on? No walking 
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20190716_1 TR & CaG AOT both sides bee dead 

20190716_2 TR & CaG AOT/MEDRA both 
sides bee dead 

20190717_1 TR & CaG AOT both sides staining in AOT and UU; all on/off 
tested, vertical stripe; no reaction 

20190717_2 TR & CaG MB both sides 

very bright staining in TR and CaG  
channel, KC cell bodies; all on/off,  
vertical stripe cw/ccw/, all on/off  
2 channels, z-stack/t-stack 2 channels 
in darkness; no signal, lot of noise 

20190718_1 TR & CaG AOT/ME both 
sides 

staining in TR channel, CaG very dim,  
z-stack of left AOTU but too much 
movement for further testing 

20190718_2 TR & CaG AOT/ME both 
sides 

Strong staining in AOTU UU in TR 
channel, very dim in CaG; a lot of 
movement in z, no testing; new 
Agarose batch; wholemount 
preparation 

20190723_1 TR & CaG AOT both sides 

New CaG batch, good staining in r 
AOTU, less movement then before, all 
on/off, stripe cw/ccw, optic flow 
tested, z-stack both channels, maybe 
reaction 

20190723_2 TR & CaG AOT both sides bright staining in AOT and UU in TR 
channel but not in CaG 

20190730_1 TR & CaG ME/AOT both 
sides 

Legs and abdomen fixed with dental 
wax; bee dead 

20190730_2 TR & CaG AOT both sides Legs and abdomen fixed with dental 
wax; bee dead; wax too hot? 

20190731_1 TR & CaG AOT both sides Fixated animal with UV glue; leaking of 
saline; no imaging possible 

20190809_1 TR & CaG ME both sides 
Fixated with UV glue; staining in AOTU 
but very dim?; imaging of cell bodies 
in ME; stripe cw/ccw; no reaction 

20190813_1 TR & CaG MEDRA/AOT both 
sides 

staining in right AOT and UU right side 
in both channels; z-stack TR and CaG;  
cw/ccw/cw2 tested; no reaction, 
signal very weak/noisy 

20190813_2 TR & CaG MEDRA/ME both 
sides 

staining in TR channel in leftAOT and 
UU; no structures visible in CaG; 
cw/ccw tested, no reaction? 

20190913_1 TR & CaG MEDRA/AOT both 
sides 

dim staining in right AOT in TR channel 
but not in AOTU; z-stack + t-series in 
CaG channel with all on/off, cw, cww; 
no reaction 

20190913_2 TR & CaG MEDRA/AOT both 
sides 

staining in right AOT, UU, and LUC in TR  
channel, CaG channel very dim; z-
stack + t-series with CaG stripe cw; cw 
without z; signal too dim 
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WHOLEMOUNT PREPARATION  

1. Preparation: 
- After the experiment, remove bee from holder and cut off the head with a 

scalpel 

- Arrange and fixate the head in a wax bowl  

- Widen with the scalpel the window of the cuticula and remove with forceps 

rests of the cuticula, muscles and neural sheaths 

- Remove brain from head capsule 

- Transfer brain in Neurobiotin fixative and store it overnight at 4°C in the fridge 

- Next day: wash 4 × 15 minutes with phosphate-buffered saline (PBS) 

- Dehydrate brain in an ascending ethanol series for 15 minutes in each 

concentration: 30%, 50%, 70%, 90%, 95%, two times 100% 

- Transfer to 50:50 absolute ethanol:methyl salicylate for 20 minutes 

- Exchange for pure metchyl salicylate for 1 hour or more 

- Embed in permount on a cover slip with 9 spacers, seal with cover slip and 

put weights overnight on it   
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