Journal Pre-proof -
Adhesion&

A thick bondline beam model for the adhesively bonded 3-point bending specimen AdheSi\'eS

A.B. de Morais
PII: S0143-7496(19)30214-3
DOI: https://doi.org/10.1016/j.ijadhadh.2019.102465

Reference: JAAD 102465

To appearin: International Journal of Adhesion and Adhesives

Received Date: 28 August 2019

Accepted Date: 19 October 2019

Please cite this article as: de Morais AB, A thick bondline beam model for the adhesively bonded 3-
point bending specimen, International Journal of Adhesion and Adhesives, https://doi.org/10.1016/
j-ijadhadh.2019.102465.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ijadhadh.2019.102465
https://doi.org/10.1016/j.ijadhadh.2019.102465
https://doi.org/10.1016/j.ijadhadh.2019.102465

A thick bondline beam model for the adhesively bonded 3-point bending specimen
A. B. de Morais

University of Aveiro, Department of Mechanical Engering, RISCO research unit, Campus Santiago,

3810-193 Aveiro, Portugal, Tel.: +351 234 370820 f+351 234 370953; E-mail: abm@ua.pt

Abstract

The adhesively bonded 3-point bending specimerbbas recently considered for
evaluating the adhesive shear stress-strain balrali® main advantage is avoiding the
spurious end effects typical of lap-joints. A p@aw beam model proved to be fairly
accurate for thin bondlines typical of structu@hjs. The present study extends such
model to thick bondlines and achieves improved issieain results. Model predictions
were in very good agreement with finite elementyses of specimens with metal
adherends and adhesive elastic-perfectly plastiawaeur. The present model will
facilitate the inverse method needed to evaluag#rameters of a piecewise linear
approximation to the adhesive shear stress-stuarecFurthermore, two simplified
models were shown to provide useful bounds fosstiear stress-strain curve using only

the basic load-displacement data.

Keywords: B. Steels; C. Stress analysis; D. Mechanical ptaseof adhesives; Three-

point bending; Shear test.

1. Introduction
The adhesive behaviour under shear stresses ssantel input for the design of
adhesive joints [1,2]. However, despite the seveistk developed, measuring the

adhesive shear stress-strajy, curve is far from straightforward [3]. The thick-



adherend shear test (TAST), currently standardixe@STM and I1SO, has been the
most widely used because of the relatively simpkrsnen and loading mode.

One of the main difficulties in adhesive sheatstésto measurg, given the
typical thin bondlines adopted in structural joif8s Special extensometers were thus
developed for the aforementioned standard testaeMer, measurement points are
located in the adherends, thereby demanding cansctor adherend deformations.
The increasing use of the digital image correlaldiC) technique [4] seems to be a
valid alternative to the special extensometers|[B6vertheless, some difficulties with
noise and the need of corrections for adherendhefttons remain [5,6].

The DIC measurements of [6] show another majoblpra in adhesive shear
testing: they,-distribution along the overlap of the TAST speaintas peaks at the joint
ends. Strength measurements are thus affecteceliygital joint end features i.e.
adherend chamfers, rounded corners and spew {ilg&gk

The relatively small bonded area used in the TABd in other specimens [3] also
raises the question of the representativeness asuned adhesive properties. Evidently,
this question is particularly relevant for the gabsially different approach of testing
bulk specimens, given the special specimen manufagttechniques needed.

Finally, the adhesively bonded 3-point bending 8B) specimen (Fig. 1) has
been recently considered a possible alternativedasure adhesive shear properties
[9,10]. In fact, the specimen addresses one ofrtéi@ problems identified above, as
failure will initiate inside the bonded area, rath®an at the joint ends [10].
Significantly large regions of nearly constantan also be achieved, thereby favouring
the representativeness of results [10]. HoweverAB3PB specimen will usually

require thick high strength metal adherends in otol@void adherend yielding.



Moreover, elastic-plastic analyses are neededdtaiming approximate,-y, curves
through an inverse method that may require bondliren measurements [10]. A beam
model was developed in [10] for obtaining an etapgrfectly plastic approximation to
thezz-y5 curve from relatively long specimens with typi€al-0.4 mm thick bondlines.
Compared to finite element analyses (FEA), the beerdel of [10] gave accurate

strengthg,, but underpredictegd, with errors that could reach 17%.
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Fig. 1. The adhesively bonded 3-point bending (ABB&pecimen.

The present work extends the beam model of [1@jitk bondlines i.e. results
are here presented for bondlines up to 3 mm thictact, such thick bondlines are
common in wind turbine blades [11], and are cuiyemting considered for civil
engineering applications [12]. Ideally, adhesiveastproperties should not depend on
the bondline thickness. However, studies with thpkm-ring [13,14] and TAST [15]
showed that the bondline thickness affects thersteength and the failure strain.
According to Chai [13,14], the strong bondline Kmess effect on the failure strain is
associated to the constraints imposed by theasttierends and to the probability of
finding large flaws.

The present beam model also predicts more actyratéhan the one of [10].
Furthermore, two simplified models derived provimrinds for the,-y, curve just from

the basic load-displacement data. These develognfeilitate considerably data



reduction, which requires an inverse method thatuates the parameters of,g,

curve base description.

2. The beam model
2.1. Fundamental equations
As in [10], one begins by analysing an infinitesimi@ment of the upper adherend (Figs.
1 and 2) at a distance Ox< L from the left support. The element cross-sectares
subjected to the normal fortg the transverse shear forégthe bending momed.
The adhesive shear stregsicts on the element lower surface. Two of the main
assumptions of [10] are here retained:

* neglect other adhesive stresses thadespite inevitable compression in the

vicinity of supports and load-point;

* uniformz, across the bondline thickness.
Both assumptions proved to be accurate for thelthin0.1-0.4 mm bondlines
considered in [10], but, evidently, their suitalyilior thicker bondlines warranted

evaluation.

dx
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Fig. 2. Forces acting on an infinitesimal elemeramAB3PB specimen upper adherend [10].

In this framework, the horizontal force, vertitatce and moment equilibrium

equations of the adherend element are



_1dN

Ta =% 1)
P bhgtg

V=i @
dM = bht,

V=—+— (3)

respectively, wherb is the specimen width ardis the adherend thickness (Fig.1).

The present model also adopts initially Euler-Beith beam theory,

M =EI

= @
whereE is the adherend Young’s modullis; bh*/12 is the adherend second moment of
area andy, is the beam bending vertical displacement. In, faettal AB3PB specimens
have high span-to-thicknedg/lf) ratios, thus allowing a posteriori inclusion bét

small transverse shear contribution. CombinatioBgd. (1)-(4) gives

d3vp _ 3[P-2b(h+hy)T4] (5)
dx3 Ebh3

Where the kinematics is concernegis associated with the longitudinal adherend
relative displacement,. The latter is generated by the bending rotatiamsch can be
taken agiw/dxin the geometrically linear regime, and by axtehiss (Fig. 3). As in
[10], uniform bondline through-thicknegsis assumed. However, instead of the

ua/h, thin bondline hypothesis adopted in [10], the tiotaterm is now included i.e.

Ug dv
Vo=~ (6)

an expression that bears the> 0, u, > 0 anddw/dx < 0 sign conventions. In particular,
because of the symmetry about ¥eL plane of the specimen (Fig. 19M/dX)x-. =0

anduy(L) = 0, and so we have

d L N
haYo = —(h+hy) =2 =2 [ ——dx (7)

using theN > 0 sign convention.



Fig. 3. Contributions of the bending rotationstfl@ind axial strains (right) to the bondline shetaains.

It is worth noting that all of the above equatiapply to the €< x < 0 overhung
region by letting® = 0. The analysis of the overhang is identicahtoone of [10], and
thus is not detailed here. Again, as done in [,adhesive behaviour herein adopted

is elastic-perfectly plastic (Fig. 4) for model &ation purposes.
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Fig. 4. Pure shear elastic-perfectly plastic betwavadopted for the adhesive.

2.2. Solution procedures

The solution for the initial loading stages in whibhe adhesive remains linear elastic
starts by substitutingy/G, for y, in Eq. (7),G4 being the adhesive shear modulus,
performing a double differentiation, and substitgtEq. (1) fodN/dx. This leads to a

2" order differential equation fax whose solution can be written as

Ty = Tp + 1o + 7, (8)



whererp andr; are integration constants,

_ |Gql2h?2+6(h+hy)?]
A= \/ Eh3h, ()

is the elastic shear stress distribution paranseter

3(h+hg)P

b[2h2+6(h+hgy)?] (10)

Tgp =

is the limit “remote” shear stress i.e. the maximyrinat can act in the regions
sufficiently distant from the support and load-gdifig. 1). In fact, by lettindp, = 0 i.e.
for a homogeneoushzhick beam under 3PB, Eq. (10) becomes equalaovtil-
known mechanics of material®@bh maximum transverse shear stress.

The next stage is substituting Eq. (8) #om Eq. (5), which is then successively
integrated untily, thereby introducing new integration constants. (Bjis also to be
substituted foe, in Eq. (1), which is afterwards integrated korAll integration
constants are obtained by the specimen boundadjtom s and the,, N, M, dw/dx and
Vp continuity conditions with the overhang. For tlaées of conciseness and because of
the similarity with [10], the detailed derivatiofithe present model equations is not
done here. Nevertheless, the Appendix outlineglptiee procedures and conditions
employed in such derivations. Fig. 5 plots scheradiii thez,-distribution during the
elastic stage (0). It reaches the peak limitedgoyear thex = L/2 andx = 3L/2 positions,

while it decreases towards the overhangrand., where symmetry demands that O.
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Fig. 5. Schematic representation of the shearssttissribution along the bondline at 4 loading stag

Thea or e left-end andl right-end limit coordinates of the plastic regame marked.

Evidently, at sufficiently high loadg, 7,4 is reached and an adhesive plastic zone
is formed (Fig. 5). At higher loads, the plastimeaan encompass the entire overhang,
but an elastic region always exists nearL. As in the elastic case, equations for the
plastic zone are derived by substitutiggfor z; in Egs. (5) and (1), which are
subsequently integrated fay andN, respectively. Integration constants for the @ast
and plastic regions, as well as the limit coordésaif the plastic region (Fig. 5), are
determined by the aforementioned boundary and roityi conditions, which are
detailed in the Appendix. Specifically, before filastic zone reaches the overhang, it

can be shown that the limiting coordinates (Figar®) obtained by solving the Egs.

_ 2TRNc+2(Tya—TR) [N cosh(Aa)—sinh(Aa)]
d=a+ A(tyq—7R)[cosh(Aa)—n. sinh(Aa)] (11)
5 _ 2(tug=7R) cosh(A(L-ad))+27R
a-d= A(tua—r) sinh(A(L—d)) (12)
where
n. = —tanh(Ac) (13)

is the overhang elastic factor. This requires noentlban a simple one-variable



numerical iterative procedure e.g. the secant ntefh®] usinga as the main variable,
obtainingd from Eq. (11) and adopting Eq. (12) as error fiomct
For the partially plastic overhang, evaluatiore@indd (Fig. 5) can be done by

iterating on the former and computing, successj\tbaly equivalent overhang distance

tanh(A(c—e))

c.=¢e+ 7 (24)
d from the well-known closed-form solution of theagimatic equation

(tr — Tua)d” — (2¢,Tya)d — Tyqe(2c, —€) = 0 (15)
until

Ad sinh(A(L-d))+cosh(AL-d))-1 _ tyq (16)

A(ce+d) sinh(A(L—d))+cosh(A(L-d)) ~ g
At last, for fully plastic overhang (Figs. 1 angd &is obtained by solving Eq. (16)

with c. =c.

2.3. Main modél outputs
In the initial elastic stage, along the main & x < L region is given by Eq. (8) with

217 ne(etr-1)-1 214 ne(1-e A)-1

TR = cosh(AL)-7, sinh(/lL)'; - cosh(AL)—-n.sinh(AL) 17)
and this stage ends when
Tamax = TR — 2\/ToTq (18)
reaches,.. The beam bending load-point displacement is
Elvp(L) _  h%L®  h+hg _

btg  18(h+hy) 223 (AL =¢.) (19)
where

__ 2n¢[1-cosh(AL)]+sinh(AL)

S;e o cosh(AL)—n. sinh(AL) (20)

As mentioned above, the load-point displacementludes the contribution of



transverse shear, so that [10]

3L(1-hg/2h)

§ = |vp(D| +—15,,7

(21)
G being the adherend shear modulus.
The next loading stage involves adhesive yielawty elastic overhang (Fig. 5).

After evaluating the andd coordinates from Egs. (11) and (12), thelistributions in

the 0<x<a,a<x<dandd<x<L regions are given by

_ TR _ NcTrSinh(A(x=a))+(Tr—Tyuqa)[cosh(Ax) -1, sinh(Ax)]
Ya(x) TG Gglcosh(1a)—n.sinh(Aa)] (22)
Ya(x) =Yoo + T A~ a)(d ~ ) (23)
_ TR _TR sinh(A(x—d))+(Tr—Tyuq) sinh(A(L—x))
Ya(x) = Ga Gg sinh(A(L—d)) )

respectively, with maximum at= (a + d)/2. The beam bending load-point displacement

IS now

v = = () - S - e @)
with

o= ) @
£ = (2t — 7o) tanh [ 2] (27)

while Eq. (21) gives the total load-point displassm
When the overhang becomes patrtially plastic (bjgthee andd coordinates are
computed by solving Egs. (15) and (16). Thelistribution along the 8 x < d region is

22(d—x)[(TR—Tyua) (d+X)—2TyqgCe]
2G4

Ya(X) = Yoq + (28)

attaining the peak at= 7,,CJ/(r — 7ua), Whereas Eq. (24) still holds for tde< x <L

region. The bending component of load-point disphaent can be written as

10



Elvp(L) _ _( h )2 TRL® _ TRL _ (rR—ru,a( 3 _ g) TuaCed® | £a
b(h+hy) h+hg/ 18 212 6 d 22 t 4 + 213 (29)

Finally, Egs. (28) and (29) can be used for thig falastic overhang by letting.
= c after obtainingd from Eq. (16).

As seen in [10], one of the limitations of the ABEB specimen is the risk of
adherend yielding before bondline failure, espéciak ductile adhesives. The

maximumM andN occur aix = L, generating the maximum adherend normal stress

__ tr(2h+hg)L | 2h+3h, Tua A(L-d)
Omax = h(h+hg) + Ah? sinh(A(L—d))+TR tanh( 2 )] (30)

It is thus clear that the present model retaiesstmplicity of the one of [10],
enabling an easy spreadsheet implementation. Malse@®quations are quite similar,
but, as shown below, the modified kinematics exggdsy Eqgs. (6) and (7) improved

significantly the accuracy gf-distributions, allowing application to thick bonu#s.

3. Model evaluation
As discussed in [10], AB3PB specimens need to halagively large span-to-thickness
ratios so that:
e spurious stress components do not play a releedmtspecially the thickness-
wise compression stresses near the supports aahgbdoat;
« considerable regions of nearly constardre generated;
» the specimen is not too stiff, enabling the borelto reach the adhesive failure
strainy,, (Fig. 4).
However, an excessive length may indagg values (Eg. (30)) high enough to cause
premature adherend yielding. Thick high strengtlelshdherends will usually be needed

for measuring the,-y, curve of typical ductile adhesives [10]. Accordingve consider

11



here:
» adherends with Young’s moduliés= 210 GPa and Poisson’s ratie 0.3;
» adhesives witlt, = 1.8 GPa and, = 0.35.
The specimen geometries herein adopted (Table B sadected so that:
« fairly highz,;= 40 MPa [15,17,18}.= 20% (Fig. 4) could be attained for 2-3
mm thick bondlines, while allowing,.= 30 and 40% foh, = 0.5 and 0.1 mm,
respectively;
* omax< 1300 MPa, a value well within the reach of qureand tempered alloy

steels [19].

Evidently, testing thicker bondlines demands thicdherends and, consequently,

longer specimens. Nevertheless, the selected spasifit in the workspace of typical

universal testing machines.

Table 1. Specimen geometries adopted in this deidy 1) and respectivil parameter values. The

specimen width wals = 20 mm.

hy(mm) h(mm) L(mm) c(mm) AL

0.1 4 3¢ 7 8.9¢

0.5 10 90 10 6.66
2.0 25 230 15 5.50
3.0 30 270 15 4.88

The present model is now compared with 2D finiggnent (FE) models similar
to those of [10]. The models were constructed with8-node solid quadratic reduced
integration elements of Abaqus®. Mesh refinemeamdists showed that accurate results
could be obtained by modelling (see Table 1): thvedtine with 1 i, = 0.1-0.5 mm) or

2 (ha = 2.0-3.0 mm) layers of solids elements; each @afttewith 2 i = 4-10 mm) or 4

12



(h = 25-30 mm) layers of solids elements; lengthweisenent sizes of 0.5 mrhy(= 0.1-
0.5 mm) or 1 mmlk = 2.0-3.0 mm). Given the beam-like geometry, plstness was
assumed for the adherends. In turn, the bondlireema@delled with plane strain
elements, due to the strong constraints imposetdogtiff adherends. Geometrically
non-linear analyses were conducted assuming ekdtierends and elastic-plastic
adhesive with von Mises yield behaviour. Owinghest = L symmetry plane (Fig. 1),
only half-specimen was modelled.

Firstly, it was seen that the elastiedistributions agree very well with FE results
(Fig. 6). The latter confirmed that was practically constant across the bondline
thickness, even for the thickdst= 3.0 mm one. Values presented in Fig. 6 are Hgtua
thickness-wise averages normalizedrpgt load values low enough for the adhesive to
remain elastic. It should be noted that the aforégiraeed mesh refinement employed in
FE models provided many more points than thosequloh Fig. 6. A selection of points
was made just for clarity purposes.

1.6

1.4"... o-o—o-o ....
1'2_... ..oooo.......o
1 a.....ooooo.,.:‘.'.o
tf: 0.8 -t '. ..::O.o hu(mm)
& e ® e
0.6 e 30
» ...
0.4 4 vt 2.0
0.2 - N 0.5
0 T T T T T T T ! .IO1

T
0 0.1 02 03 04 05 0.6 0.7 0.8 09 1
x/L

Fig. 6. Bondline normalized shear stress distringipredicted by the beam (grey lines) and FE ¢sede
black points) models for the specimens of Tableden elastic conditions. For clarity, the curves fo
specimens witln, = 0.5, 2.0 and 3.0 mm were vertically offset b¥, @.4 and 0.6 units, respectively.

Note thatr, = 0 atx = L.
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Figs. 7-8 compare beam and FE model predictionsfé/L curves, which are
proportional to the common load-displacem@sit ones. The improvements of the
present beam model relative to the one of [10] vgeen at the elastic stage. In fact,
errors in initial specimen compliance were loweartl®).7%, even for the thickdst=
3.0 mm bondline specimen, which had a kdw= 4.9 (Table 1). In [10] errors reached
6.2% for specimens wittL = 7.5, and thusL > 9 had been recommended. Specimens
with low AL have some advantage in terms of increased setysaithe P-o curve to
the bondline properties. Nevertheledsneeds to be high enough so that a region of
nearly constant, is achieved. It is worth noticing that Figs. 7Hbw that the specimen
response is quite sensitiverdg, despite the use of stiff adherends. This confitimas

the AB3PB specimen is particularly well-suited fioeasuringa.

64
56 o «*

L ] 4
] o

48 | . .

o *h,=0.1mm /* h,=0.5 mm
40 . p o o .

32 . e

7, (MPa)

24 g ’
16 s
8_

0 I T I I T T 1

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
JL

Fig. 7. Remote shear stress Eq. (10) versus naewhload-point displacement curves predicted by the
beam (grey lines) and FE (selected black pointgjetsofor thin bondline specimens (see Table 1) with

Tua = 25 and 40 MPa. For clarity, some curves werégbaotally offset.
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Fig. 8. Remote shear stress Eq. (10) versus naewload-point displacement curves predicted by the
beam (grey lines) and FE (selected black pointgjetsofor thick bondline specimens (see Table 1 wit

Tua = 25 and 40 MPa. For clarity, some curves werézbaotally offset.

The main weakness of the model developed in [@BFerned,-predictions.
When plotted again®, the maximunmny, of FE results could be underestimated by 17%
during the adhesive plastic stages [10]. In antidahexercise, the underestimation of
the maximuny, was here lower than 3.5%. Moreover, if comparistih FE results is
made on the basis of identical specimen compli&hee/P, the accuracy of the present
model was even better i.e. errors in the pgalaried from —0.3% to 1.2% whdm =
0.1-3.0 mm. In fact, as shown in Figs. 9-10, thespnt model predicted very well the
ya-distributions at the approximate maximuy= 20-40% considered. Again, it is worth
remarking that FE results confirmegto be practically constant across the bondline
thickness. Values presented in Figs. 9-10 arenagsackness-wise averages selected
from a vaster set of points available by the refimeeshes adopted. Figs. 9-10 show
another interesting feature of the AB3PB specinitezontains fairly long zones along
which y, is quite close to its maximum, especially for knpondlines. This favours the

representativeness of experimental results.
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Fig. 9. Bondline shear strain distributions preglicby the beam (grey lines) and FE (selected black
points) models for specimens with thg,{,,) values indicated (see Table 1). For clarity, sconwes

were vertically offset by 5-20%. Note thgt= 0 atx = L.
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Fig. 10. Bondline shear strain distributions présticby the beam (grey lines) and FE (selected black
points) models for specimens with thg,{,,) values indicated (see Table 1). For clarity, sconwes

were vertically offset by 5-15%. Note thgt= 0 atx = L.

4. Data reduction methods
Having demonstrated the accuracy of the presemh imeadel and illustrated some

relevant characteristics of the AB3PB specimenjgbee is now model application in

16



experimental data reduction. Several approachebeamvisaged, but they all involve
an inverse method i.e. evaluation of the parametieas,-y, curve base description.

The most obvious and simple approach consistsiafjuhe present model to fit
theP-6 curve. The optimization problem is thereby reduttetheG, andz,, parameters
of the elastic-perfectly plastic approximation (Fg. This approach is likely to provide
accurater, for ductile adhesives, as they tend to preseidtagur, for a widey, range.
Moreover, as seen abo\Ry curves are quite sensitive#g (Figs. 7 and 8). However,
owing to the limitations of the elastic-perfectlagtic approximation, a global fit to the
P-6 curve will provide a secant modulGs, rather than the tangent modulus, which
corresponds to the initial truly elastic regionphinciple, one may attempt to evaluate
the trueG, by applying the present beam model Eq. (19) torthial part of theP-o
curve. The difficulty here resides on the low sevisy of the latter toG,, which is a
side effect of the relatively high specimen stifse@eeded to avoid premature adherend
yielding. This limitation was already identified [ihO] for thin bondlines and is
confirmed by the present results for the specimétish, = 0.1 mm: a 20 % increase of
G, around the value adopted in the above simulatmhgresults in a 1.6 % decrease of
the initial compliance. Such decrease is more proned for specimens with thickiey
= 2.0-3.0 mm bondlines i.e. 3.6-4.3 %, but remam®ewhat modest.

In turn, the AB3PB lends itself to a far more eledie approach involving
simultaneously:

* amore accurate baggy, curve e.g. a piece-wise linear approximation taat

be implemented in the beam model with closed-foxpressions similar to the
above ones;

* bondliney,-distributions measured by DIC [4].

17



Actually, a similar inverse method using FEA, Diddahe short beam specimen was
applied to the shear behaviour of composites [B8%ides involving a more complex
mathematical optimization procedure, this appraaely suffer from difficulties in DIC
ya-measurements along the long bondlines of AB3PBispns.

Regardless of the method employed, initial estsaf ther,-y, curve or of the
parameters of the base approximation are welcoraee e propose 2 bounds that can
be derived from the above model, and easily apptiexkperimental data reduction.
The upper bound, designated as pseudo-elasticisadiastic behaviour throughout the
entire loading process. Therefore, for edela)(point, one must successively:

* computergr andv, from Egs. (10) and (21), respectively;

» solve Eg. (19) foi by a simple iterative method e.g. Newton-Raphsote

that Eq. (9) provide&, during the initial truly elastic stage, and a @asing
apparents, towards the failure point;

» obtain an estimated point of they, curve by letting, = 7a max0f EQ. (18) and

ya= Ta,malGa.
In turn, a lower bound for thg-y, curve can be obtained from a constant stress model
I.e. assuming that, is constant along the bondline at eaeld) point. With this strong
simplification, Eqgs. (1)-(7) quick lead to

= PL3—Ebh3|vy(L)|
@ ™ p(h+hg)(2L+3C)L2

(31)

2 2 r )_ 2
Vo = [h +3(h+hg) ][L(TR Ta)—CTql (32)

a Eh3hg(TR—Tq)

the latter corresponding to the maximum shearrstiming the bondline.
Figs. 11 and 12 show the application of such siredimodels to the above FE
simulations for the thickest and thinnest bondlikesexpected, the pseudo-elastic

model predicted very accurately the elastic pathefelastic-perfectly plastig-ya

18



curve used in the simulations, but afterwards uegtenated, and overestimated. In
turn, the constant stress model overestimat@thd underestimateqd, especially at the
elastic stages, but became very accurate at srfflgihigh plasticity levels. The
simplified models gave broader bounds for the tegth,= 0.1 mm bondline. This can
be understood by looking at the steeper decreasgdmfiards the overhang depicted in
Fig. 6. Nevertheless, the results of Figs. 11 @dhbw the usefulness of the simplified
models as a basis for obtaining the tri@, curve by more sophisticated approaches,

such as the one outlined above.
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Fig. 11. Shear stress-strain curves estimateddygithplified pseudo-elastic¥() and constant stresd |
models from selected points of FE simulatiomsfor h, = 0.1 mm bondlines with elastic-perfectly plastic

behaviour (black lines). For clarity, curves fgr= 25 MPa were horizontally offset by 10%.
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Fig. 12. Shear stress-strain curves estimatedégithplified pseudo-elasti¥() and constant stresd
models from selected points of FE simulatiomsfor h, = 3.0 mm bondlines with elastic-perfectly plastic

behaviour (black lines). For clarity, curves tgr= 25 MPa were horizontally offset by 5%.

A final evaluation of the simplified models wasaeavith FE simulations based
on trilinearza-ya model curves, characterized by a yield stressleéquade,, a 2 point
of 7o = 0.9, andy,= 10%, and the failure point at.= 20%. First of allzz-d/L curves
were compared with those of elastic-perfectly ptatgtwith identicalG,, tya andyya
(Fig. 13). The sensitivity to the adhesiyer, curve was relatively low for very thim, =
0.1 mm bondlines. Nonetheless, the performanckeeo$implified models was similar
to the elastic-perfectly plastic case (Figs. 14 &by providing tighter bounds for thick
bondlines. The,-overestimation of the pseudo-elastic model rentasmeall during the
first plastic hardening linear branch. Moreoveis timodel was quite sensitive to the
beginning of the last plastic branch. From the ficatviewpoint, the accuracy of
constant stress model can be assessed from tia¢ differences relative to the pseudo-
elastic model. Furthermore, the hardening prediffiégs 14 and 15) gives another sign
of zo-underestimation, as opposed to the plateaux redonelastic-perfect plasticity

(Figs. 11 and 12).
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Fig. 13. Remote shear stress Eq. (10) versus nmeddbad-point displacement curves for elastic-
perfectly plastic (grey lines) and trilinear (bldakes)z,-y, curves models (see text and Table 1 for

details). For clarity, curves fdr, = 3.0 mm were horizontally offset by 0.005 units.
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Fig. 14. Shear stress-strain curves estimatedégithplified pseudo-elastic¥() and constant stresd |
models from selected points of FE simulations (blates) forh, = 0.1 mm bondlines with trilineaw}

T4-Ya CUrve. For clarity, curves fag, = 25 MPa were horizontally offset by 10%.
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Fig. 15. Shear stress-strain curves estimatedégithplified pseudo-elasti¥() and constant stresd
models from selected points of FE simulations (blates) forh, = 3.0 mm bondlines with trilineaw}

T4-7a CUrve. For clarity, curves fay, = 25 MPa were horizontally offset by 5%.

5. Concluding remarks

The improved beam model of the metal adhesivelylbdr8-point bending (AB3PB)
specimen here developed widens the perspectivets fasage to characterize the
adhesive shear stress-strain behaviour. This sefsalh the accurate shear strain
distributions predicted and from the applicabititythick bondlines. One can apply the
more basic data reduction approach which consigteriving an elastic-perfectly
plastic approximation from the load-displacementeuNevertheless, the beam model
can be used in a more elaborate inverse methodhwalpiimizes the parameters of a
piece-wise linear description of the adhesive skass-strain curve. In fact, such
description can be easily implemented in the prtelseam model, leading to closed-
form expressions similar to the ones obtained f@relastic-perfect plasticity. The
beam model facilitates parameter optimization n&detio finite element modelling. In
any case, the inverse method is likely to demamiliwe shear strain distributions

measured by digital image correlation in orderigdyaccurate stress-strain curves.
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Nevertheless, the beam model also enabled theadiervof simplified pseudo-elastic

and constant stress models that provide boundbdandhesive shear stress-strain curve

just from the basic load-displacement data.

The present advances in data reduction add tadwentages of the AB3PB

specimen i.e.:

involves a simple 3-point bending set-up;
generates regions of nearly constant bondlinarsteess;
the load-displacement response is quite sengiitiee adhesive shear strength;

enables the measurement of strength values wtedf®y joint end effects.

However, some drawbacks can be pointed out:

specimen geometry has to be selected takingaictount the bondline
thickness and shear properties that are not knowios;

thick high strength steel adherends will usubiyneeded to avoid premature
adherend yielding;

owing to the relatively high specimen stiffnetbs initial part of the load-
displacement curve has low sensitivity to the atfeeshear modulus;

though facilitated by the present advances inetiod) and in obtaining initial
parameter estimates, data reduction requires amsawmethod;

bondline shear strain measurements may be affésteifficulties similar to

those already reported in other tests.

Experimental studies are underway to assess thalgotential of the AB3PB

specimen.
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Appendix
As mentioned in Section 2.2, owing to the similanith [10], the detailed derivation of
the present model equations is not done in thisp&fonetheless, the boundary and
continuity conditions leading to Eqgs. (11)-(29) atdlined in the next paragraphs. The
mainza(X), ya(X), N(X), M(X) andvy(X) equations obtained as described in Section 2.2 fo
the elastic and plastic regions withirc& < L (Figs. 1 and 5) do involve integration
constants that have to be determined. One mustatssider similar equations for the
— <x< 0 overhang (Fig. 1) [10]. The number of integmatomnstants, and thus the
number of conditions, varies according to the spifahe adhesive yielding zone.
Nevertheless, some conditions always apply i.e.:

* 74(L) =0 and §w/dx)x-. = 0, given the symmetry relative xa= L (Fig. 1);

* \W(0) =0, because of the left support;

» continuity ofz,, ya, N, M, dw/dx atx = 0, accounting for the constraints

imposed by the overhang.

In the fully elastic bondline stage, only the comitplty of { ya(L) — ya(0)} with Eq. (7)
Is needed to arrive at Egs. (13), (17)-(20).

Additional conditions have to be imposed whenasit region develops (Figs. 1
and 5) i.e.:

* w(d) =g

e continuity ofN, M, dw/dx andw, atx =d;

» compatibility of {ya(L) — ya(d)} with Eq. (7).
A similar set of conditions is also needed ata when the plastic zone has not yet
reached the overhang. This leads to Egs. (11), {#th provide the limit coordinates

of the plastic region, and subsequently to Eq9-(22). Once the overhang bondline
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becomes patrtially plastic, one must determine firetcorresponding limit coordinage
(Fig. 5) by imposinga(e) = 7ua and continuity of,, N andM, which results in Egs.

(14)-(16).Finally, compatibility with the mainOx <L region yields Egs. (28) and (29).
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