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Abstract 

The adhesively bonded 3-point bending specimen has been recently considered for 

evaluating the adhesive shear stress-strain behaviour. Its main advantage is avoiding the 

spurious end effects typical of lap-joints. A previous beam model proved to be fairly 

accurate for thin bondlines typical of structural joints. The present study extends such 

model to thick bondlines and achieves improved shear strain results. Model predictions 

were in very good agreement with finite element analyses of specimens with metal 

adherends and adhesive elastic-perfectly plastic behaviour. The present model will 

facilitate the inverse method needed to evaluate the parameters of a piecewise linear 

approximation to the adhesive shear stress-strain curve. Furthermore, two simplified 

models were shown to provide useful bounds for the shear stress-strain curve using only 

the basic load-displacement data. 

 

Keywords: B. Steels; C. Stress analysis; D. Mechanical properties of adhesives; Three-

point bending; Shear test. 

 

1. Introduction 

The adhesive behaviour under shear stresses is an essential input for the design of 

adhesive joints [1,2]. However, despite the several tests developed, measuring the 

adhesive shear stress-strain τa-γa curve is far from straightforward [3]. The thick-
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adherend shear test (TAST), currently standardized by ASTM and ISO, has been the 

most widely used because of the relatively simple specimen and loading mode. 

 One of the main difficulties in adhesive shear tests is to measure γa, given the 

typical thin bondlines adopted in structural joints [3]. Special extensometers were thus 

developed for the aforementioned standard tests. However, measurement points are 

located in the adherends, thereby demanding corrections for adherend deformations. 

The increasing use of the digital image correlation (DIC) technique [4] seems to be a 

valid alternative to the special extensometers [5,6]. Nevertheless, some difficulties with 

noise and the need of corrections for adherend deformations remain [5,6]. 

 The DIC measurements of [6] show another major problem in adhesive shear 

testing: the γa-distribution along the overlap of the TAST specimen has peaks at the joint 

ends. Strength measurements are thus affected by the typical joint end features i.e. 

adherend chamfers, rounded corners and spew fillets [7,8]. 

 The relatively small bonded area used in the TAST and in other specimens [3] also 

raises the question of the representativeness of measured adhesive properties. Evidently, 

this question is particularly relevant for the substantially different approach of testing 

bulk specimens, given the special specimen manufacturing techniques needed. 

 Finally, the adhesively bonded 3-point bending (AB3PB) specimen (Fig. 1) has 

been recently considered a possible alternative to measure adhesive shear properties 

[9,10]. In fact, the specimen addresses one of the main problems identified above, as 

failure will initiate inside the bonded area, rather than at the joint ends [10]. 

Significantly large regions of nearly constant τa can also be achieved, thereby favouring 

the representativeness of results [10]. However, the AB3PB specimen will usually 

require thick high strength metal adherends in order to avoid adherend yielding. 
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Moreover, elastic-plastic analyses are needed for obtaining approximate τa-γa curves 

through an inverse method that may require bondline strain measurements [10]. A beam 

model was developed in [10] for obtaining an elastic-perfectly plastic approximation to 

the τa-γa curve from relatively long specimens with typical 0.1-0.4 mm thick bondlines. 

Compared to finite element analyses (FEA), the beam model of [10] gave accurate 

strengths τua, but underpredicted γa, with errors that could reach 17%.  

 

 

Fig. 1. The adhesively bonded 3-point bending (AB3PB) specimen. 

 

 The present work extends the beam model of [10] to thick bondlines i.e. results 

are here presented for bondlines up to 3 mm thick. In fact, such thick bondlines are 

common in wind turbine blades [11], and are currently being considered for civil 

engineering applications [12]. Ideally, adhesive shear properties should not depend on 

the bondline thickness. However, studies with the napkin-ring [13,14] and TAST [15] 

showed that the bondline thickness affects the shear strength and the failure strain. 

According to Chai [13,14], the strong bondline thickness effect on the failure strain is 

associated to the constraints imposed by the stiff adherends and to the probability of 

finding large flaws.  

 The present beam model also predicts more accurately γa than the one of [10]. 

Furthermore, two simplified models derived provide bounds for the τa-γa curve just from 

the basic load-displacement data. These developments facilitate considerably data 
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reduction, which requires an inverse method that evaluates the parameters of a τa-γa 

curve base description. 

 

2. The beam model 

2.1. Fundamental equations 

As in [10], one begins by analysing an infinitesimal element of the upper adherend (Figs. 

1 and 2) at a distance 0 < x < L from the left support. The element cross-sections are 

subjected to the normal force N, the transverse shear force V, the bending moment M. 

The adhesive shear stress τa acts on the element lower surface. Two of the main 

assumptions of [10] are here retained:  

• neglect other adhesive stresses than τa, despite inevitable compression in the 

vicinity of supports and load-point;  

• uniform τa across the bondline thickness.  

Both assumptions proved to be accurate for the thin ha = 0.1-0.4 mm bondlines 

considered in [10], but, evidently, their suitability for thicker bondlines warranted 

evaluation.  

 

 

Fig. 2. Forces acting on an infinitesimal element of an AB3PB specimen upper adherend [10]. 

 

 In this framework, the horizontal force, vertical force and moment equilibrium 

equations of the adherend element are 
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respectively, where b is the specimen width and h is the adherend thickness (Fig.1). 

 The present model also adopts initially Euler-Bernoulli beam theory, 

� = �� ����
���  (4) 

where E is the adherend Young’s modulus, I = bh3/12 is the adherend second moment of 

area and vb is the beam bending vertical displacement. In fact, metal AB3PB specimens 

have high span-to-thickness (L/h) ratios, thus allowing a posteriori inclusion of the 

small transverse shear contribution. Combination of Eqs. (1)-(4) gives 

����
��� = ��
��������� 

!��  (5) 

 Where the kinematics is concerned, γa is associated with the longitudinal adherend 

relative displacement ua. The latter is generated by the bending rotations, which can be 

taken as dvb/dx in the geometrically linear regime, and by axial strains (Fig. 3). As in 

[10], uniform bondline through-thickness γa is assumed. However, instead of the γa = 

ua/ha thin bondline hypothesis adopted in [10], the rotation term is now included i.e. 

"� = #�
� − ���

��  (6) 

an expression that bears the γa ≥ 0, ua ≥ 0 and dvb/dx ≤ 0 sign conventions. In particular, 

because of the symmetry about the x = L plane of the specimen (Fig. 1), (dvb/dx)x = L = 0 

and ua(L) = 0, and so we have 

ℎ�"� = −�ℎ + ℎ�� ���
�� − 2& �

!� '()
�  (7) 

using the N ≥ 0 sign convention. 
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Fig. 3. Contributions of the bending rotations (left) and axial strains (right) to the bondline shear strains. 

 

 It is worth noting that all of the above equations apply to the –c ≤ x ≤ 0 overhung 

region by letting P = 0. The analysis of the overhang is identical to the one of [10], and 

thus is not detailed here. Again, as done in [10], the adhesive behaviour herein adopted 

is elastic-perfectly plastic (Fig. 4) for model evaluation purposes. 

 

 

Fig. 4. Pure shear elastic-perfectly plastic behaviour adopted for the adhesive. 

 

2.2. Solution procedures 

The solution for the initial loading stages in which the adhesive remains linear elastic 

starts by substituting τa/Ga for γa in Eq. (7), Ga being the adhesive shear modulus, 

performing a double differentiation, and substituting Eq. (1) for dN/dx. This leads to a 

2nd order differential equation for τa whose solution can be written as 

�� = �* + �+,�-� + ��,-� (8) 
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where τ0 and τ1 are integration constants, 

. = /0�����1����� 
!��  (9) 

is the elastic shear stress distribution parameter and 

�* = �����

�����1�����  (10) 

is the limit “remote” shear stress i.e. the maximum τa that can act in the regions 

sufficiently distant from the support and load-point (Fig. 1). In fact, by letting ha = 0 i.e. 

for a homogeneous 2h-thick beam under 3PB, Eq. (10) becomes equal to the well-

known mechanics of materials 3P/8bh maximum transverse shear stress.  

 The next stage is substituting Eq. (8) for τa in Eq. (5), which is then successively 

integrated until vb, thereby introducing new integration constants. Eq. (8) is also to be 

substituted for τa in Eq. (1), which is afterwards integrated for N. All integration 

constants are obtained by the specimen boundary conditions and the τa, N, M, dvb/dx and 

vb continuity conditions with the overhang. For the sake of conciseness and because of 

the similarity with [10], the detailed derivation of the present model equations is not 

done here. Nevertheless, the Appendix outlines briefly the procedures and conditions 

employed in such derivations. Fig. 5 plots schematically the τa-distribution during the 

elastic stage (0). It reaches the peak limited by τR near the x = L/2 and x = 3L/2 positions, 

while it decreases towards the overhang and x = L, where symmetry demands that τa = 0.  
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Fig. 5. Schematic representation of the shear stress distribution along the bondline at 4 loading stages. 

The a or e left-end and d right-end limit coordinates of the plastic region are marked. 

 

 Evidently, at sufficiently high loads P, τua is reached and an adhesive plastic zone 

is formed (Fig. 5). At higher loads, the plastic zone can encompass the entire overhang, 

but an elastic region always exists near x = L. As in the elastic case, equations for the 

plastic zone are derived by substituting τua for τa in Eqs. (5) and (1), which are 

subsequently integrated for vb and N, respectively. Integration constants for the elastic 

and plastic regions, as well as the limit coordinates of the plastic region (Fig. 5), are 

determined by the aforementioned boundary and continuity conditions, which are 

detailed in the Appendix. Specifically, before the plastic zone reaches the overhang, it 

can be shown that the limiting coordinates (Fig. 5) are obtained by solving the Eqs. 

' = 2 + ��345����6���3��45 789:�-���9;<:�-�� 
-��6���3��789:�-���45 9;<:�-��  (11) 

2 − ' = ���6���3� 789:=-�)���>���3
-��6���3� 9;<:=-�)���>  (12) 

where 

?@ = − tanh�.E� (13) 

is the overhang elastic factor. This requires no more than a simple one-variable 
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numerical iterative procedure e.g. the secant method [16] using a as the main variable, 

obtaining d from Eq. (11) and adopting Eq. (12) as error function.  

 For the partially plastic overhang, evaluation of e and d (Fig. 5) can be done by 

iterating on the former and computing, successively, the equivalent overhang distance 

EF = , + GH<:=-�@�F�>
-  (14) 

d from the well-known closed-form solution of the quadratic equation 

��* − �#��'� − �2EF�#��' − �#�,�2EF − ,� = 0 (15) 

until 

-� 9;<:=-�)���>�789:=-�)���>��
-�@J��� 9;<:=-�)���>�789:=-�)���> = �6�

�3  (16) 

 At last, for fully plastic overhang (Figs. 1 and 5), d is obtained by solving Eq. (16) 

with ce = c.  

 

2.3. Main model outputs 

In the initial elastic stage, τa along the main 0 ≤ x ≤ L region is given by Eq. (8) with 

��K
�3 = 45=FLM��>��

789:�-)��45 9;<:�-)� , ��O
�3 = 45=��FPLM>��

789:�-)��45 9;<:�-)� (17) 

and this stage ends when 

��,Q�� = �* − 2R�+�� (18) 

reaches τua. The beam bending load-point displacement is 

!S���)�
��3 = − �)�

�T���� − ��
�-� �.U − VF� (19) 

where 

VF = �45���789:�-)� �9;<:�-)�
789:�-)��45 9;<:�-)�  (20) 

 As mentioned above, the load-point displacement δ includes the contribution of 
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transverse shear, so that [10] 

W = |Y��U�| + �)���� �⁄ �
�+�0  (21) 

G being the adherend shear modulus. 

 The next loading stage involves adhesive yielding with elastic overhang (Fig. 5). 

After evaluating the a and d coordinates from Eqs. (11) and (12), the γa-distributions in 

the 0 ≤ x ≤ a, a ≤ x ≤ d and d ≤ x ≤ L regions are given by 

"��(� = �3
0� − 45�3 9;<:=-�����>���3��6���789:�-���45 9;<:�-�� 

0��789:�-���45 9;<:�-��  (22) 

"��(� = "+� + �3��6�
�0� .��( − 2��' − (� (23) 

"��(� = �3
0� − �3 9;<:=-�����>���3��6�� 9;<:=-�)���>

0� 9;<:=-�)���>  (24) 

respectively, with maximum at x = (a + d)/2. The beam bending load-point displacement 

is now 

!S���)�
����� = −[ 

��\
� �3)�

�T − �3)
�-� − ��3��6��������

�� + ]^�]�
�-�  (25) 

with 

V� = ��3��6�� 9;<:�-���45�6����789:�-�� 
789:�-���45 9;<:�-��  (26) 

V� = �2�* − �#�� tanh _-�)���
� ` (27) 

while Eq. (21) gives the total load-point displacement. 

 When the overhang becomes partially plastic (Fig. 5), the e and d coordinates are 

computed by solving Eqs. (15) and (16). The γa-distribution along the 0 ≤ x ≤ d region is 

"��(� = "+� + -���������3��6����������6�@J 
�0�  (28) 

attaining the peak at x = τuace/(τR − τua), whereas Eq. (24) still holds for the d ≤ x ≤ L 

region. The bending component of load-point displacement can be written as 
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 Finally, Eqs. (28) and (29) can be used for the fully plastic overhang by letting ce 

= c after obtaining d from Eq. (16). 

 As seen in [10], one of the limitations of the AB3PB specimen is the risk of 

adherend yielding before bondline failure, especially for ductile adhesives. The 

maximum M and N occur at x = L, generating the maximum adherend normal stress 

aQ�� = �3�����)
���� + ����

-� b �6�
9;<:=-�)���> + �* tanh [-�)���

� \c (30) 

 It is thus clear that the present model retains the simplicity of the one of [10], 

enabling an easy spreadsheet implementation. Most of the equations are quite similar, 

but, as shown below, the modified kinematics expressed by Eqs. (6) and (7) improved 

significantly the accuracy of γa-distributions, allowing application to thick bondlines.  

 

3. Model evaluation 

As discussed in [10], AB3PB specimens need to have relatively large span-to-thickness 

ratios so that: 

• spurious stress components do not play a relevant role, specially the thickness-

wise compression stresses near the supports and load-point; 

• considerable regions of nearly constant τa are generated; 

• the specimen is not too stiff, enabling the bondline to reach the adhesive failure 

strain γua (Fig. 4). 

However, an excessive length may induce σmax values (Eq. (30)) high enough to cause 

premature adherend yielding. Thick high strength steel adherends will usually be needed 

for measuring the τa-γa curve of typical ductile adhesives [10]. Accordingly, we consider 
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here:  

• adherends with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3; 

• adhesives with Ea = 1.8 GPa and νa = 0.35.  

The specimen geometries herein adopted (Table 1) were selected so that:  

• fairly high τua= 40 MPa [15,17,18], γua= 20% (Fig. 4) could be attained for 2-3 

mm thick bondlines, while allowing γua= 30 and 40% for ha = 0.5 and 0.1 mm, 

respectively; 

• σmax < 1300 MPa, a value well within the reach of quench and tempered alloy 

steels [19].  

Evidently, testing thicker bondlines demands thicker adherends and, consequently, 

longer specimens. Nevertheless, the selected specimens fit in the workspace of typical 

universal testing machines.  

 

Table 1. Specimen geometries adopted in this study (Fig. 1) and respective λL parameter values. The 

specimen width was b = 20 mm. 

ha (mm) h (mm) L (mm) c (mm) λL 

0.1 4 35 7 8.99 

0.5 10 90 10 6.66 

2.0 25 230 15 5.50 

3.0 30 270 15 4.88 

 

 

 The present model is now compared with 2D finite element (FE) models similar 

to those of [10]. The models were constructed with the 8-node solid quadratic reduced 

integration elements of Abaqus®. Mesh refinement studies showed that accurate results 

could be obtained by modelling (see Table 1): the bondline with 1 (ha = 0.1-0.5 mm) or 

2 (ha = 2.0-3.0 mm) layers of solids elements; each adherend with 2 (h = 4-10 mm) or 4 
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(h = 25-30 mm) layers of solids elements; lengthwise element sizes of 0.5 mm (ha = 0.1-

0.5 mm) or 1 mm (ha = 2.0-3.0 mm). Given the beam-like geometry, plane stress was 

assumed for the adherends. In turn, the bondline was modelled with plane strain 

elements, due to the strong constraints imposed by the stiff adherends. Geometrically 

non-linear analyses were conducted assuming elastic adherends and elastic-plastic 

adhesive with von Mises yield behaviour. Owing to the x = L symmetry plane (Fig. 1), 

only half-specimen was modelled.  

 Firstly, it was seen that the elastic τa-distributions agree very well with FE results 

(Fig. 6). The latter confirmed that τa was practically constant across the bondline 

thickness, even for the thickest ha = 3.0 mm one. Values presented in Fig. 6 are actually 

thickness-wise averages normalized by τR at load values low enough for the adhesive to 

remain elastic. It should be noted that the aforementioned mesh refinement employed in 

FE models provided many more points than those plotted in Fig. 6. A selection of points 

was made just for clarity purposes.  

 

Fig. 6. Bondline normalized shear stress distributions predicted by the beam (grey lines) and FE (selected 

black points) models for the specimens of Table 1 under elastic conditions. For clarity, the curves for 

specimens with ha = 0.5, 2.0 and 3.0 mm were vertically offset by 0.2, 0.4 and 0.6 units, respectively. 

Note that τa = 0 at x = L. 
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 Figs. 7-8 compare beam and FE model predictions for τR-δ/L curves, which are 

proportional to the common load-displacement P-δ ones. The improvements of the 

present beam model relative to the one of [10] were seen at the elastic stage. In fact, 

errors in initial specimen compliance were lower than 0.7%, even for the thickest ha = 

3.0 mm bondline specimen, which had a low λL = 4.9 (Table 1). In [10] errors reached 

6.2% for specimens with λL = 7.5, and thus λL ≥ 9 had been recommended. Specimens 

with low λL have some advantage in terms of increased sensitivity of the P-δ curve to 

the bondline properties. Nevertheless, λL needs to be high enough so that a region of 

nearly constant τa is achieved. It is worth noticing that Figs. 7-8 show that the specimen 

response is quite sensitive to τua, despite the use of stiff adherends. This confirms that 

the AB3PB specimen is particularly well-suited for measuring τua. 

 

  

Fig. 7. Remote shear stress Eq. (10) versus normalised load-point displacement curves predicted by the 

beam (grey lines) and FE (selected black points) models for thin bondline specimens (see Table 1) with 

τua = 25 and 40 MPa. For clarity, some curves were horizontally offset. 
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Fig. 8. Remote shear stress Eq. (10) versus normalised load-point displacement curves predicted by the 

beam (grey lines) and FE (selected black points) models for thick bondline specimens (see Table 1) with 

τua = 25 and 40 MPa. For clarity, some curves were horizontally offset. 

 

 The main weakness of the model developed in [10] concerned γa-predictions. 

When plotted against P, the maximum γa of FE results could be underestimated by 17% 

during the adhesive plastic stages [10]. In an identical exercise, the underestimation of 

the maximum γa was here lower than 3.5%. Moreover, if comparison with FE results is 

made on the basis of identical specimen compliance C = δ/P, the accuracy of the present 

model was even better i.e. errors in the peak γa varied from −0.3% to 1.2% when ha = 

0.1-3.0 mm. In fact, as shown in Figs. 9-10, the present model predicted very well the 

γa-distributions at the approximate maximum γa = 20-40% considered. Again, it is worth 

remarking that FE results confirmed γa to be practically constant across the bondline 

thickness. Values presented in Figs. 9-10 are, again, thickness-wise averages selected 

from a vaster set of points available by the refined meshes adopted. Figs. 9-10 show 

another interesting feature of the AB3PB specimen: it contains fairly long zones along 

which γa is quite close to its maximum, especially for thick bondlines. This favours the 

representativeness of experimental results. 
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Fig. 9. Bondline shear strain distributions predicted by the beam (grey lines) and FE (selected black 

points) models for specimens with the (ha,τua) values indicated (see Table 1). For clarity, some curves 

were vertically offset by 5-20%. Note that γa = 0 at x = L. 

 

 

Fig. 10. Bondline shear strain distributions predicted by the beam (grey lines) and FE (selected black 

points) models for specimens with the (ha,τua) values indicated (see Table 1). For clarity, some curves 

were vertically offset by 5-15%. Note that γa = 0 at x = L. 

 

4. Data reduction methods 

Having demonstrated the accuracy of the present beam model and illustrated some 

relevant characteristics of the AB3PB specimen, the issue is now model application in 
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experimental data reduction. Several approaches can be envisaged, but they all involve 

an inverse method i.e. evaluation of the parameters of a τa-γa curve base description.  

 The most obvious and simple approach consists of using the present model to fit 

the P-δ curve. The optimization problem is thereby reduced to the Ga and τua parameters 

of the elastic-perfectly plastic approximation (Fig. 4). This approach is likely to provide 

accurate τua for ductile adhesives, as they tend to present a plateau τa for a wide γa range. 

Moreover, as seen above, P-δ curves are quite sensitive to τua (Figs. 7 and 8). However, 

owing to the limitations of the elastic-perfectly plastic approximation, a global fit to the 

P-δ curve will provide a secant modulus Ga, rather than the tangent modulus, which 

corresponds to the initial truly elastic region. In principle, one may attempt to evaluate 

the true Ga by applying the present beam model Eq. (19) to the initial part of the P-δ 

curve. The difficulty here resides on the low sensitivity of the latter to Ga, which is a 

side effect of the relatively high specimen stiffness needed to avoid premature adherend 

yielding. This limitation was already identified in [10] for thin bondlines and is 

confirmed by the present results for the specimens with ha = 0.1 mm: a 20 % increase of 

Ga around the value adopted in the above simulations only results in a 1.6 % decrease of 

the initial compliance. Such decrease is more pronounced for specimens with thicker ha 

= 2.0-3.0 mm bondlines i.e. 3.6-4.3 %, but remains somewhat modest. 

 In turn, the AB3PB lends itself to a far more elaborate approach involving 

simultaneously:  

• a more accurate base τa-γa curve e.g. a piece-wise linear approximation that can 

be implemented in the beam model with closed-form expressions similar to the 

above ones;  

• bondline γa-distributions measured by DIC [4]. 
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Actually, a similar inverse method using FEA, DIC and the short beam specimen was 

applied to the shear behaviour of composites [20]. Besides involving a more complex 

mathematical optimization procedure, this approach may suffer from difficulties in DIC 

γa-measurements along the long bondlines of AB3PB specimens. 

 Regardless of the method employed, initial estimates of the τa-γa curve or of the 

parameters of the base approximation are welcome. Here we propose 2 bounds that can 

be derived from the above model, and easily applied in experimental data reduction. 

The upper bound, designated as pseudo-elastic, adopts elastic behaviour throughout the 

entire loading process. Therefore, for each (P,δ) point, one must successively: 

• compute τR and vb from Eqs. (10) and (21), respectively; 

• solve Eq. (19) for λ by a simple iterative method e.g. Newton-Raphson; note 

that Eq. (9) provides Ga during the initial truly elastic stage, and a decreasing 

apparent Ga towards the failure point; 

• obtain an estimated point of the τa-γa curve by letting τa = τa,max of Eq. (18) and 

γa= τa,max/Ga. 

In turn, a lower bound for the τa-γa curve can be obtained from a constant stress model 

i.e. assuming that τa is constant along the bondline at each (P,δ) point. With this strong 

simplification, Eqs. (1)-(7) quick lead to 

�� = 
)��!��|���)�|
�������)��@�)� (31) 

"� = d��������e�)��3�����@�� �
!����3����  (32) 

the latter corresponding to the maximum shear strain along the bondline. 

 Figs. 11 and 12 show the application of such simplified models to the above FE 

simulations for the thickest and thinnest bondlines. As expected, the pseudo-elastic 

model predicted very accurately the elastic part of the elastic-perfectly plastic τa-γa 
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curve used in the simulations, but afterwards underestimated γa and overestimated τa. In 

turn, the constant stress model overestimated γa and underestimated τa, especially at the 

elastic stages, but became very accurate at sufficiently high plasticity levels. The 

simplified models gave broader bounds for the thinnest ha= 0.1 mm bondline. This can 

be understood by looking at the steeper decrease of τa towards the overhang depicted in 

Fig. 6. Nevertheless, the results of Figs. 11 and 12 show the usefulness of the simplified 

models as a basis for obtaining the true τa-γa curve by more sophisticated approaches, 

such as the one outlined above.  

 

 

Fig. 11. Shear stress-strain curves estimated by the simplified pseudo-elastic (▼) and constant stress (▲) 

models from selected points of FE simulations (●) for ha = 0.1 mm bondlines with elastic-perfectly plastic 

behaviour (black lines). For clarity, curves for τua = 25 MPa were horizontally offset by 10%. 
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Fig. 12. Shear stress-strain curves estimated by the simplified pseudo-elastic (▼) and constant stress (▲) 

models from selected points of FE simulations (●) for ha = 3.0 mm bondlines with elastic-perfectly plastic 

behaviour (black lines). For clarity, curves for τua = 25 MPa were horizontally offset by 5%. 

 

 A final evaluation of the simplified models was made with FE simulations based 

on trilinear τa-γa model curves, characterized by a yield stress equal to 0.4τua, a 2nd point 

of τa = 0.9τua and γa= 10%, and the failure point at γua= 20%. First of all, τR-δ/L curves 

were compared with those of elastic-perfectly plasticity with identical Ga, τua and γua 

(Fig. 13). The sensitivity to the adhesive τa-γa curve was relatively low for very thin ha = 

0.1 mm bondlines. Nonetheless, the performance of the simplified models was similar 

to the elastic-perfectly plastic case (Figs. 14 and 15), providing tighter bounds for thick 

bondlines. The τa-overestimation of the pseudo-elastic model remained small during the 

first plastic hardening linear branch. Moreover, this model was quite sensitive to the 

beginning of the last plastic branch. From the practical viewpoint, the accuracy of 

constant stress model can be assessed from the initial differences relative to the pseudo-

elastic model. Furthermore, the hardening predicted (Figs 14 and 15) gives another sign 

of τa-underestimation, as opposed to the plateaux reached for elastic-perfect plasticity 

(Figs. 11 and 12). 
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Fig. 13. Remote shear stress Eq. (10) versus normalised load-point displacement curves for elastic-

perfectly plastic (grey lines) and trilinear (black lines) τa-γa curves models (see text and Table 1 for 

details). For clarity, curves for ha = 3.0 mm were horizontally offset by 0.005 units. 

 

 

Fig. 14. Shear stress-strain curves estimated by the simplified pseudo-elastic (▼) and constant stress (▲) 

models from selected points of FE simulations (black lines) for ha = 0.1 mm bondlines with trilinear (●) 

τa-γa curve. For clarity, curves for τua = 25 MPa were horizontally offset by 10%. 
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Fig. 15. Shear stress-strain curves estimated by the simplified pseudo-elastic (▼) and constant stress (▲) 

models from selected points of FE simulations (black lines) for ha = 3.0 mm bondlines with trilinear (●) 

τa-γa curve. For clarity, curves for τua = 25 MPa were horizontally offset by 5%. 

 

5. Concluding remarks 

The improved beam model of the metal adhesively bonded 3-point bending (AB3PB) 

specimen here developed widens the perspectives for its usage to characterize the 

adhesive shear stress-strain behaviour. This results from the accurate shear strain 

distributions predicted and from the applicability to thick bondlines. One can apply the 

more basic data reduction approach which consists of deriving an elastic-perfectly 

plastic approximation from the load-displacement curve. Nevertheless, the beam model 

can be used in a more elaborate inverse method which optimizes the parameters of a 

piece-wise linear description of the adhesive shear stress-strain curve. In fact, such 

description can be easily implemented in the present beam model, leading to closed-

form expressions similar to the ones obtained here for elastic-perfect plasticity. The 

beam model facilitates parameter optimization relative to finite element modelling. In 

any case, the inverse method is likely to demand bondline shear strain distributions 

measured by digital image correlation in order to yield accurate stress-strain curves. 
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Nevertheless, the beam model also enabled the derivation of simplified pseudo-elastic 

and constant stress models that provide bounds for the adhesive shear stress-strain curve 

just from the basic load-displacement data. 

 The present advances in data reduction add to the advantages of the AB3PB 

specimen i.e.: 

• involves a simple 3-point bending set-up; 

• generates regions of nearly constant bondline shear stress; 

• the load-displacement response is quite sensitive to the adhesive shear strength; 

• enables the measurement of strength values unaffected by joint end effects.  

However, some drawbacks can be pointed out: 

• specimen geometry has to be selected taking into account the bondline 

thickness and shear properties that are not known a priori; 

• thick high strength steel adherends will usually be needed to avoid premature 

adherend yielding; 

• owing to the relatively high specimen stiffness, the initial part of the load-

displacement curve has low sensitivity to the adhesive shear modulus; 

• though facilitated by the present advances in modelling and in obtaining initial 

parameter estimates, data reduction requires an inverse method; 

• bondline shear strain measurements may be affected by difficulties similar to 

those already reported in other tests.  

 Experimental studies are underway to assess the actual potential of the AB3PB 

specimen. 
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Appendix 

As mentioned in Section 2.2, owing to the similarity with [10], the detailed derivation of 

the present model equations is not done in this paper. Nonetheless, the boundary and 

continuity conditions leading to Eqs. (11)-(29) are outlined in the next paragraphs. The 

main τa(x), γa(x), N(x), M(x) and vb(x) equations obtained as described in Section 2.2 for 

the elastic and plastic regions within 0 ≤ x ≤ L (Figs. 1 and 5) do involve integration 

constants that have to be determined. One must also consider similar equations for the  

–c ≤ x ≤ 0 overhang (Fig. 1) [10]. The number of integration constants, and thus the 

number of conditions, varies according to the spread of the adhesive yielding zone. 

Nevertheless, some conditions always apply i.e.:  

• τa(L) = 0 and (dvb/dx)x = L = 0, given the symmetry relative to x = L (Fig. 1); 

• vb(0) = 0, because of the left support; 

• continuity of τa, γa, N, M, dvb/dx at x = 0, accounting for the constraints 

imposed by the overhang. 

In the fully elastic bondline stage, only the compatibility of { γa(L) − γa(0)} with Eq. (7) 

is needed to arrive at Eqs. (13), (17)-(20). 

 Additional conditions have to be imposed when a plastic region develops (Figs. 1 

and 5) i.e.:  

• τa(d) = τua; 

• continuity of N, M, dvb/dx and vb at x = d;  

• compatibility of {γa(L) − γa(d)} with Eq. (7).  

A similar set of conditions is also needed at x = a when the plastic zone has not yet 

reached the overhang. This leads to Eqs. (11), (12), which provide the limit coordinates 

of the plastic region, and subsequently to Eqs. (22)-(27). Once the overhang bondline 
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becomes partially plastic, one must determine first the corresponding limit coordinate e 

(Fig. 5) by imposing τa(e) = τua and continuity of γa, N and M, which results in Eqs. 

(14)-(16).Finally, compatibility with the main 0 ≤ x ≤ L region yields Eqs. (28) and (29). 
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