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Abstract 

Existing robotic systems can take actions based on natural language commands but they tend to be 
only simple commands. On the other hand, in the domain of Natural Language Processing (NLP), 
complex sentences are processed, but this NLP domain does not make close contact with robotics. 
The beginning of computer processing of natural language, when traced back to a system such as 
Winograd’s SHRUDLU, conceived in 1973, actually aimed to address the issues of Natural 

Language Understanding (NLU) of relatively complex sentences by a robotic system which in turn 
takes actions accordingly based on the natural language input. NLU, in the robotic context, thus 
constitutes taking the correct actions from language instructions. This paper explores the use of 
cognitive linguistic constructs as well as other constructs such as spatial relationship constructs to 
configure an NLU system for translating complex natural language instructions into actions to be 
taken by a robot. This research work illustrates that two important steps are necessary: the first step 
is to translate a language-dependent surface sentential structure into a language independent deep-
level predicate representation, and then the next step is to translate the predicate representation into 
grounded real-world references and constructs that enable a robot to carry out the language 
instructions accordingly. 

 

Keywords: Complex sentence understanding, Grounding, Language and robotics, Natural 
language understanding, Predicate meaning representation, Predicate to referent grounding, 
Robotics, Semantic grounding 

 

1   Introduction 

This paper explores the relationship between language and robotics as well as the representational 
and computational devices needed for the understanding of complex natural language instructions. 
In the past decade or more, the research in Artificial Intelligence (AI) has splintered into many 
different “sub-areas” such as Natural Language Processing (NLP), Computer Vision (CV), 
robotics, machine learning, etc. In some cases, there are stronger connections, such as between 
machine learning and the other fields, because machine learning has to be applied to some problems 
(NLP, CV, etc.). There are also strong connections between CV and robotics. However, even 
though robotics is connected to NLP in the sense that some robotic systems do employ  



NLP when it is desired that robots respond to natural language commands, these
commands tend to be relatively simple [1–3]. On the other hand, NLP people largely
proceed with their research as though robotics does not exist [4–7]. But there is actually
a very strong connection between the two aspects of intelligent systems. One of the
very first NLU systems, Winograd’s SHRUDLU, conceived in 1973, consists of a toy-
world in which a robotic arm is made to carry out actions based on natural language
commands [8]. This work illustrates the inseparability between language and robotics:
through carrying out the respective actions correctly, the system demonstrate that it
really “understands” the natural language input, and this distinguishes NLU from
“merely” NLP. And from a robotic system’s point of view, it would naturally benefit
from being able to carry out actions based on natural language commands.

This paper first reviews some of the representative past work which demonstrates
the close connections between language and robotics, and then proceeds to describe a
method to enable robots to receive complex natural language commands and carry out
the respective actions accordingly. This research will contribute to human-like next
generation AI.

2 Review of Relevant Work

Recent work in NLP focuses more on the “processing” aspect of natural language
rather than addresses the issue of “understanding” [4–7]. E.g., a machine translation
could output a string of words given another string of words in another language, but it
does not really “understand” what they mean, nor perhaps does it really matter as far as
the task is concerned. However, there has also not been many attempts in trying to
define what “understanding” really entails. Ho and Wang [9] attempts to clarify what
“understanding” really entails and in the subsequent discussions we will demonstrate
that the process discussed not only clarifies what “understanding” really entails, it also
provides an NLU framework for robots to receive complex natural language commands
and act on them accordingly.

One of the earliest works relevant to NLU is Winograd’s SHRUDLU system,
conceived in 1973 [8]. Figure 1 shows a “toy-world” used in the system. The system
basically involves a user typing in a series of commands and the system would answer
some questions, or through a robotic arm, would carry out a series of actions
accordingly. Thus, from the outset, language and robotics are intertwined in this
paradigm of NLU. It is almost like Winograd is declaring “understanding is under-
standing how to act.”

Issues of ambiguous reference are resolved through some built-in heuristics as well
as clarifications requested by the system to the human user giving the commands. For
example, as shown in the figure, it uses heuristics to determine what “it” refers to in one
sentence and which block is being referred to in another sentence.

SHRUDLU suffered from the issue of scalability. At that time (the 70’s) there was
no machine learning or computer vision to assist in learning rules, say, for mapping
between words and their referents in the real world, and hence the knowledge used had
to be hand-coded. However, today there are systems that can achieve both the learning
and word referents as well as the grammatical rules is possible concurrently [10].
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Another piece of natural language related research that came from the 1970’s that is
relevant to robotics and vision is Schank and Abelson’s work on Scripts [11]. Scripts
basically consist of Causal-Spatio-Temporal (CST) descriptions of an event, such as the
happenings in a restaurant, that allow complex question-answering exchanges to take
place. Suppose someone says something like “I went to the Restaurant yesterday.
I didn’t leave a tip,” the Restaurant Script may allow questions such as this to be
responded to by a system: “Was the service bad?” as this piece of knowledge is
encoded in the script’s processes describing what happen and why in a typical
restaurant. If a Restaurant is simply defined as “an establishment where food can be
purchase,” as in a typical dictionary definition, “deep understanding” reflected by this
sophisticated linguistic response cannot be achieved.

In the 70’s these Scripts were hand-coded but recently it has been shown that CST
graphs are learnable through observing the environment directly [12, 13].

There has been a number of linguistic paradigms [14] that attempt to formulate
semantics – i.e., the meaning of meaning, or what meaning entails. Among all these
paradigms, “cognitive linguistics” is most suited for providing useful representational
constructs for AI and robotics [15].

Figure 2 shows some examples of representational constructs proposed in cognitive
linguistics to describe spatial and temporal relationships. Figure 2(a) depicts the
“above” and “below” relationships. It can be shown that as far as the objects involved
are concerned (Object1 and Object2), the spatial arrangement between them remains
the same in both descriptions. However, in a sentence such as “Object1 is above
Object2,” cognitive linguistics identifies Object1 as the Trajector (TR) and Object2 as
the Landmark (LM). TR is like a “focus” of the sentence and LM is like a “reference.”
Therefore, should the positions of TR and LM be interchanged, then the language
description becomes “Object2 is below Object1.” Thus above and below are in a
complementary relationship, depending on the TR and LM.

Fig. 1. Winograd’s SHRUDLU system [8].
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Figure 2(b) depicts a similar situation, but in the temporal domain – the “before”
and “after” relationships. The two events, Event1 and Event2, bear the same relative
relationship in time in both situations, but there are two possible sentential descriptions
arising from it, depending on which is the TR and LM.

Figure 2(c) depicts the meaning of the present imperfective and the past imper-
fective tenses in a temporal picture. The corresponding tense is used depending on the
temporal relationship between the utterer of the sentence and the event itself.

In the following, we will leverage some of these cognitive linguistic representations
for the use of robotic language understanding.

3 Language and Robotics: Complex Sentence Understanding

In this section, we elucidate the intimate connections between language and robotics,
and show how some of the concepts reviewed above can be integrated to bear on the
problems of complex sentence understanding. Due to the limitation of space, the dis-
cussions here are not meant to be exhaustive but merely illustrative.

3.1 Basic Instructions

We consider two kinds of instructions given to a robot:

AFFORDANCE:
Use OBJECT1 for TASK1 (AFFORDANCE)

Fig. 2. Cognitive linguistics representations of (a) above and below; (b) before and after;
(c) past and present imperfective [15].
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TEMPORAL SEQUENCE:
Do TASK1 then (begin to do) TASK2
After you have done TASK1 then do TASK2
Do TASK1 until TASK2/EVENT1 begins
While you are doing TASK1, do TASK2

The first kind of instructions is to inform the robot what entity can be used to
achieve a certain goal, i.e., what can afford what. (E.g., “use the screw driver to screw
the screw” – a screw driver affords screwing of screws.) The second kind of instruc-
tions is to inform the robot what temporal steps it should take. Here we are assuming
that words like “use,” “for,” “do,” “you,” etc. have built-in procedural meanings (i.e.,
procedures are used to implement them) and we do not explore how they may be
represented explicitly such as in the cognitive linguistics examples for certain concepts
in Fig. 2.

For the words in italics, such as “then,” “after,” “while,” “have done,” “are doing,”
“until,” “begin,” they are grounded in the corresponding cognitive linguistic constructs
such as shown in Fig. 2.

Note that of course when a certain instruction such as “use a screw driver to screw
the screw” is given to a totally naïve “infant” robotic system, the system still needs to
work out, through a problem solving process, how exactly to use the screw driver. But
this instruction at least helps to cut down the search space tremendously, otherwise
thousands of objects may have to be tried.

Of course, the system can recurse: it can ask further questions and receive further
language instructions: “How do I use that screw driver?” The answer(s) may be:

(1) “First, you pick-up that screw driver, and then you position the screw driver such
that its long axis is aligned with the long axis of the screw, and then you insert the
tip of the screw driver into the grooves on the top part of the screw, and then you
rotate the screw driver around its long axis in a clockwise direction…”

The system may further ask, “How do I pick up the screw driver?” And the answer
may be:

(2) “First, you position your hand directly above the screw driver’s handle area, then
you rotate your hand until the main axis of the gap between your fingers is aligned
with the long axis of the screw driver’s handle, then you lower your hand until
these two axes coincide, then you close your fingers onto the handle, …”

If these complex language instructions can be “understood,” the appropriate actions
can be carried out. This will be explored in the subsequent sections. Figure 3 shows
how the various sentences above can be represented in an explicit temporal repre-
sentation through a syntactic transformation process.
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There is ambiguity inherent in the co-temporal instruction while and the temporal
instruction after…then. The two tasks in a while construct may begin at the same time
or at slightly different times, though they must overlap temporally, and the two tasks in
the after…then construct may be separated by any amount of time. The robotic system
may (i) decide on the time interval based on some earlier learned typical values;
(ii) decide on the time interval based on the knowledge about the tasks at hand; and
(iii) ask for further instructions.

For (iii), further language processing is needed, and the instructions may be:

Do TASK2 while doing TASK1, begin TASK2 1 minute after starting TASK1
Do TASK2 after TASK1, begin TASK2 1 minute after stopping TASK1

The new words introduced here and their corresponding progressive versions are
“start” and “stop”. Start has the same meaning in this context as begin.

For the case of “Do TASK1 until TASK2/EVENT1 begins,” it implies that TASK1
could have continued but its termination is effected by the beginning of TASKS2 or
another EVENT1.

3.2 Complex Instructions

There are a number of basic constructs that are needed before the complex instructions
(1) and (2) discussed above can be “understood” and they are described as follows.

Basic Constructs Needed

Objects and Parts
Figure 4 shows an arrow-shaped object. For a longish and asymmetrical object such as
this, it is typical for humans to identify, say by pointing or through the use of words, a
“front” and a “back” parts. These parts could also be identified by their shapes – the
“rectangular” part and the “triangular” part. The center of gravity (CG) of an object
could also be its dividing point, and a back and front parts of the object with respect to
the CG can thus be identified, which will not coincide exactly with the identification
based on the shapes. If the object is symmetrical (i.e., no “triangular” vs “rectangular”
region), then these are more likely to be referred to as “left” and “right” parts.

Fig. 3. Syntactic transformation converts the sentences 1, 2, 3, and 4 into the corresponding
temporal structures.
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Other than the CG, there are the “long axis” and “short axis” which could typically
be identified for a longish object.

Predicate representations can be used to identify or refer to the various subparts of
the object involved, such as Long-Axis(Object1), Front-Part(Object1), CG(Object1),
etc.

A concrete object such as the arrow-shaped object have sub-structures that are
identifiable as its parts. In the following discussion, we will also use “abstract” objects,
which could represent “any” objects, and these are shown as hatched shapes in Fig. 4 –

the circular one represents something that is more or less symmetrical with no clear
distinction of a long and short axes, and in the rectangular one, long and short axes can
be discerned.

Spatial Relationships
Spatial relationships are very fundamental to the positioning and placement of objects
and entities for the purpose of subsequent goal-oriented actions. Figure 5 shows some
very fundamental spatial relationships.

Figure 5(a) shows the “above” relationship. In the spirit of cognitive linguistics as
discussed in Sect. 2.3, the focus of the relationship is the Trajector, TR, and the
reference, the Landmark, LM. In a sentence like, “A is above B,” A is the TR and B is
the LM. And as shown in Fig. 5(a), when a relationship such as “TR is above LM” is
specified, there could be a range of locations in which TR can be positioned with
respect to LM, and this is shown as two arrows showing the tolerable relative positions
of the CG in which the above relation still holds. However, if more specific relation-
ships are specified, such as “TR is 5 cm above LM,” then the location range is more
constrained.

These tolerable relative positions may be derived from observational statistics of
the relative positions of the real-world instances of objects in which the relationship of
above holds. These probabilities can then be used to determine what is a most “typical”
configuration for the above spatial relationship.

Specifications such as this in Fig. 5(a) and in the rest of the figures can be used for
recognition as well as generation. For recognition, the specification is mapped onto
two real world objects, and if they satisfy this specification, they are in the above spatial
relation.

Fig. 4. An object and its parts. Definitions of Center of Gravity (CG), and long and short axes.
Abstract objects are hatched and used in subsequent discussions.
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Fig. 5. Spatial relations. (a) above; (b) to the left or right/next to/at; (c) above and to the left of;
(d) to the left of and above; (e) at; (f) overlap/coincide with, fully or partially; (g) temporal
overlap/coincide with, fully or partially; (h) inside; (i) between; (j) a GAP as an object, between;
(k) entities with longish spatial extent. The horizontal and vertical double arrows indicate the
ranges of positions of the corresponding CGs.
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For generation, the specification would direct the placement of the objects involved
accordingly, using the concepts as well as probabilities learned earlier as a guide to
produce the “typical” situation, taking consideration of other constraints (e.g., there
may be other blockages so that the next most probable placement is selected).

Figure 5(b) shows the “to the left of” (and similarly “to the right of”) relationships.
If the objects are very close together, the description could be “next to” or “at.”

Figure 5(c) shows a combination of above and left of. The situation is more of an
above than a left of, so the word order is above and to the left of. If the situation is more
left of than above, than it may be more likely to be described as left of and above such
as shown in Fig. 5(d). Note that in both Figs. 5(c) and (d), the range of allowable
positions of the TR is smaller than those in Fig. 5(a) and (b).

Figure 5(e) shows that other than the very nearby kind of left of or right of, even if
there is some overlap between the TR and LM, the relationship could be “the TR is at
the LM.” Figure 5(f) shows the “overlap” situation. Sometime, “coincide” may be used
to describe the same situation.

Figure 5(g) shows the concept of overlap/coincide applied to a temporal situation
in which one event is a TR and another an LM. One can also say “Event1 (TR) is next
to Event2 (LM)” but there is no corresponding situation of “Event1 is above Event 2.”

Figure 5(h) shows a situation in which the LM is a container-like object and the TR
is likely to be described as “inside” the LM rather than just overlap with the LM. All
the other relationships of above, to the left, to the right, next to, etc. can also be
characterized as “outside,” if LM is container-like.

Figure 5(i) shows the “between” relationship. Figure 5(j) shows how a “gap” could
be characterized as an “object” and the relationship of between could be applied here.

Figure 5(k) shows entities with spatial extents in which the relative orientation
between the entities is important. In the case of entities with a longish spatial extent
(i.e., a long axis can be defined), they can be in parallel to each other or aligned with
each other, or not in parallel or not aligned with each other. The entities can also
intersect each other or coincide/overlap with each other as shown in the same figure.
Even though intersect is a little like overlap, for longish objects in which the “over-
lapping” area is small, intersect is used to describe the relationship instead.

Sentence to Action Predicates Transformation
Sentences are “surface” structures and different languages may represent the same
“deep” structure (i.e., “meaning”) using different surface structures (e.g., in some
languages such as English, the word order is SUBJECT—VERB—OBJECT, while in
some other languages, e.g., Japanese, it could be SUBJECT—OBJECT—VERB).
Even within the same language, a passive voice and an active voice surface structure
map onto the same deep structure (e.g., Mary kicks John has the same “meaning” as
John is kicked by Mary). Whatever the surface structure, we should have transfor-
mation rules that map them into the same deep structure if they are indeed the same in
meaning. In the following, we show an example of a Spatial Predicate and an example
of an Action Predicate created from the surface structure sentences.
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TR is above LM
! Above(TR, LM) – Spatial Predicate

Mary kicks John or John is kicked by Mary
! Kick(John, Mary) – Action Predicate

Next, we show an example of the use of the concept of Until. (Fig. 3)

John moves his hand until it is next to the Wall
! Move(John, Hand(John), Until(Next-To(Hand(John), Wall)

Usually what follows Until is a condition to be met to terminate the earlier action.
And usually, the concept of “positioning” is used to describe a similar situation more
succinctly as follows:

John positions himself at the door
! Move(John, John, Until(At(John, Door)

Note that the Move Action Predicate could be a simple movement or the more
complex sequence of steps generated through a problem solving process – i.e., the
Until predicate specifies a Goal State, and a problem solving process is called to
generate the sequence of move actions to reach that state from the current state.

Predicate to Referent Conversion: Representation and Action
Having derived the predicate descriptions from sentences as described above, the next
step of processing is to convert the predicates to their referents. One kind of predicate
we discussed above is a predicate that specifies a subpart of an object. Figure 6 depicts
an example of referencing the Long-Axis of an object.

Figure 6 shows that in the process of referencing the Long-Axis of an object, the
equation of the Long-Axis is returned (some other forms of representation, such as an
analogical representation, for the long-axis may be used instead of an equation).
Similarly, something like Top-Surface(ObjectA) will return the equation or some other
representational form for the top surface. If the predicate is Front-Part(ObjectA), then
a volumetric representation of that front part is returned.

Figure 7 shows how a spatial predicate is converted into a referent. Suppose the
spatial predicate Above is used to describe the spatial relationship between two specific
objects, ObjectA and ObjectB. The process begins with the recall of the grounded
representation of Above, shown on the left side of the figure (see Fig. 5(a)). Then the
specific concrete instances ObjectA and ObjectB are bounded to the respective abstract
objects in the grounded representation, and a grounded and specific concrete repre-
sentation of Above(ObjectA, ObjectB) is output. This specific concrete representation
of Above(ObjectA, ObjectB) contains a range of possible positions for ObjectA, rel-
ative to ObjectB.
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The use of this specific representation can be for answering a query such as “Is
ObjectA above ObjectB?”, i.e., “Above(ObjectA, ObjectB)?” For this task, this con-
crete representation can be used to match to the current specific ObjectA and ObjectB
in their corresponding specific locations to see if the Above relationship really holds.
This is a RECOGNITION TASK.

This specific representation can also be used for a GENERATION TASK. I.e.,
suppose currently ObjectA and ObjectB are not in an Above relationship. The specific
concrete representation of Above(ObjectA, ObjectB) is then used to specify a desired
GOAL CONFIGURATION for a problem solving process to take actions to achieve
that goal.

Because there is still a range of possible positions of ObjectA relative to ObjectB,
before the problem solving process can use the goal, it may take the most typical
relation positions (such as ObjectA is directly above ObjectB), or if the Above

Fig. 7. Predicate to Referent Converter: A Spatial Predicate above is converted into the
corresponding referent. Note the distinction between a RECOGNITION TASK and a
GENERATION TASK, and the corresponding predicate representations are shown.

Fig. 6. Predicate to Referent Converter: An Aspect-of-Object Predicate, Long-axis, references
the long axis of an ObjectA, and the Predicate to Reference Converter outputs the equation or
other forms of representation of the long axis.
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relationship has further specification arguments such as Above(ObjectA, ObjectB,
Directly), Above(ObjectA, ObjectB, 5 cm), etc., it will use those arguments to restrict
the range of the possible positions of ObjectA relative to ObjectB or use those argu-
ments as a basis for further questioning of the command giver (e.g., the human
involved) for further specific instructions. The system may also have knowledge, for a
given context, about the exact relative positions of ObjectA and ObjectB, given the
Above relationship.

Integration
Armed with the above basic constructs, we are now ready to describe how the system
may process the complex instructions (2) from Sect. 3.1.

Figure 8 depicts a robotic hand with fingers and a screw driver with two subparts,
the Handle and the Shank. The operation instructed by the first sentence “position your
hand directly above the screw driver’s handle” is shown. Through the Sentence to
Predicate transformation process described above, this is translated into the following
predicate representation:

Move(Hand(Robot), Until(Above(Hand(Robot), Handle(Screw-Driver), Directly)

To carry out this action, first the Predicate to Referent process discussed above and
depicted in Fig. 7 is engaged to derive the CONCRETE GOAL CONFIGURATION of
Above(Hand(Robot), Handle(Screw-Driver), Directly) as shown. Then, a problem
solving process, employing either forward or backward chaining, is used to derive the
action steps to bring the hand to the designated position. There could be more than one
solution derived from the problem solving process.

Figure 9 illustrates the rest of the Sentence to Predicate conversion process and
further Predicate to Referent conversion process will derive the corresponding actions.

Fig. 8. A situation with a robot hand and a screw driver, and the robot is instructed to position
its hand directly above the screw driver’s handle.
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Figure 8 also illustrates the goal of the Rotate action involved. Rotate…Until is
also an action like the earlier Move…Until that will launch a problem solving process
if needed. Note that in Fig. 9 a variant of the Move Action Predicate is introduced in
which the direction of movement is specified in an argument.

A similar process can be used to process and understand the other complex sen-
tence example (1) used in Sect. 3.1.

4 Conclusion and Summary

This paper analyzed the connection between language and robotics and successfully
demonstrated how complex natural language instructions can be processed by a robotic
system that will then carry out the actions accordingly. Two goals have been achieved
at once for two seemingly disparate domains – it elucidates the meaning of meaning for
the domain of linguistics and NLU, and it also elucidates the representational and
computational processes for a robot to convert natural language instructions to actions.

This paper first reviewed and analyzed the previous works in linguistics, AI NLP
and NLU, and robotics that point to a direction of how NLU can be applied to robotics.
The paper then elucidates the steps of converting the temporal order embedded in
certain natural language instructions to an explicit temporal representation for tasks to
be carried out accordingly. Following that, a Sentence to Predicate conversion process
is elucidated, followed by a Predicate to Referent process that grounds the meaning of
the sentence in real-world constructs of spatial relations, spatial arrangements, and
action sequences. This enables the robot to carry out the instructions accordingly.

Further work includes bringing in more of the cognitive linguistic constructs, such
as those illustrated in Fig. 2, to represent the meaning of even more complex sentences,
finessing the representational constructs for spatial relationship and spatial arrange-
ments so that they can participate in the recognition and generation processes as

Fig. 9. The complete Predicate representation of the complex sentence under consideration.
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discussed, and upgrade the 3 major blocks of processing, the Syntactic Transformation
Rules, the Sentence to Predicate Converter, and the Predicate to Referent Converter, to
handle more general and complex sentences. This will bring about the development of
truly intelligent robots which can perform human-like understanding in the future.

References

1. Taniguchi, A., Taniguchi, T., Cangelosi, A.: Cross-situational learning with Bayesian
generative models for multimodal category and word learning in robots. Front. Neuro-
robotics 11, 66 (2017). https://doi.org/10.3389/fnbot.2017.00066

2. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language
commands to a robot control system. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds.)
Experimental Robotics, pp. 403–415. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-319-00065-7_28

3. Khayrallah, H., Trott, S., Feldman, J.: Natural language for human robot interaction. In:
Proceedings of the Workshop on Human-Robot Teaming at the 10th ACM/IEEE
International Conference on Human-Robot Interaction (2015)

4. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag. 31(3),
59–79 (2010)

5. Ganegedara, T.: Natural Language Processing with TensorFlow: Teach Language to
Machines Using Python’s Deep Learning Library. Packt Publishing, Birmingham (2018)

6. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge (1999)

7. Wang, Z., Chong, C.S., Lan, L., Yang, Y., Ho, S.-B., Tong, J.C.: Fine-grained sentiment
analysis of social media with emotion sensing. In: IEEE Future Technologies Conference
2016 (FTC 2016), San Francisco, United States, 6–7 December 2016

8. Winograd, T.: A procedural model of language understanding. In: Schank, R., Colby, K.M.
(eds.) Computer Models of Thought and Language. W. H. Freeman & Company, San
Francisco (1973)

9. Ho, S.-B., Wang, Z.: On true language understanding. In: 5th International Conference on AI
and Security, New York, 26–28 July 2019

10. Alomari, M., Duckworth, P., Hogg, D.C., Cohn, A.G.: Natural language acquisition and
grounding for embodied robotic systems. In: Proceedings of the 31st AAAI Conference on
Artificial Intelligence (2017)

11. Schank, R., Abelson, R.: Scripts, Plans, Goals, and Understanding. Lawrence Erlbaum
Associates, Hillsdale (1977)

12. Pei, M., Jia, Y., Zhu, S.-C.: Parsing video events with goal inference and intent prediction.
In: International Conference on Computer Vision. IEEE, New Jersey (2011)

13. Si, Z., Pei, M., Yao, B., Zhu, S.-C.: Unsupervised learning of AND-OR grammar and
semantics from video. In: International Conference on Computer Vision. IEEE, New Jersey
(2011)

14. Cruse, A.: Meaning in Language. Oxford University Press, Oxford (2011)
15. Langacker, R.W.: Foundation of Cognitive Grammar, vols. I and II. Stanford University

Press, Stanford (1987)

654 S.-B. Ho and Z. Wang

http://dx.doi.org/10.3389/fnbot.2017.00066
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.1007/978-3-319-00065-7_28

	Language and robotics: Complex sentence understanding
	Citation


