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Abstract—The density peak clustering (DPC) algorithm is
designed to quickly identify intricate-shaped clusters with high
dimensionality by finding high-density peaks in a non-iterative
manner and using only one threshold parameter. However, DPC
has certain limitations in processing low-density data points
because it only takes the global data density distribution into
account. As such, DPC may confine in forming low-density data
clusters, or in other words, DPC may fail in detecting anomalies
and borderline points. In this paper, we analyze the limitations
of DPC and propose a novel density peak clustering algorithm
to better handle low-density clustering tasks. Specifically, our
algorithm provides a better decision graph comparing to DPC
for the determination of cluster centroids. Experimental results
show that our algorithm outperforms DPC and other clustering
algorithms on the benchmarking datasets.

Index Terms—clustering, density peak clustering, squared
residual error, low-density data points

I. INTRODUCTION

Clustering algorithms aim to analyze data by discovering
their underlying structure and organize them into separate
categories according to their characteristics expressed as in-
ternal homogeneity and external bifurcation without priori-
knowledge. Successful applications of clustering techniques
are evident in various domains, such as pattern recognition
[1] [2], bioinformatics [3], disease diagnosis [4], risk analysis
[5] [6], etc. Moreover, some emerging topics such as big
data [7], virtual reality [8], IoT [9], etc., also avail from
clustering methods. In general, clustering methods can be
broadly categorized into five groups based on their dynamics:
partitioning [10], hierarchical [11] [12], density-based [13],
model-based [14], and grid-based [15].

This research is supported in part by the Science & Technology Devel-
opment Foundation of Jilin Province under grant No. 20160101259JC and
the National Science Fund Project of China No. 61772227. This research is
also supported in part by the National Research Foundation, Prime Minister’s
Office, Singapore under its IDM Futures Funding Initiative.

Density-based clustering methods have been widely used
to form arbitrary shape clusters by detecting high-density
regions in the high dimensional data space. Fundamentally,
the region with high density, or a set of densely connected
data points, in the data space is treated as a cluster. Density-
based spatial clustering of applications with noise (DBSCAN)
[16] is probably the most well-known density-based clustering
algorithm engendered from the basic notion of the local den-
sity, which creates arbitrary-shaped clusters. Recently, density-
based clustering methods have attracted more attention since
Rodriguez and Liao proposed their density peak clustering
(DPC) algorithm [17] in 2014. The desirable features of DPC
include detection of non-spherical clusters without specifying
the number of clusters, few number of control parameters,
and autonomous identification of cluster centroids for varying
cluster sizes and within-cluster density.

However, DPC has its limitations. Alike DBSCAN, DPC
may fail to capture thin clusters by using its decision graph
(see Section II), i.e., it does not perform well on anomaly
detection. Data distribution within clusters has to be carefully
examined to detect anomalies, mainly because the presence
of anomalies is a clear sign of erroneous conditions that may
lead to significant performance degradation [18]. As shown in
Fig. 1, DPC generates groups of data points by identifying
clusters with maximum density, but does not handle well the
uneven distribution in individual clusters (also pointed out in
[19]), e.g., the two anomalies (at top left corner) are always
considered as part of a larger cluster regardless of different Cd
values, where Cd denotes the user specified cutoff disctance
(see Section II). In such cases, it is difficult for DPC to pick
up all the outliers with varying Cd values and it may not be
able to find clusters of small sizes or consisting of borderline
points and outliers (relatively speaking) only. Furthermore,
when the dimensionality of the underlying dataset increases,
the well-known “curse of dimensionality” problem [20] will
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Fig. 1. Visualizations of clusters identified in the Flame dataset by DPC with
different Cd parameter values.

exacerbate. Hence, in this paper, we propose a novel density-
based clustering algorithm to detect anomalies that cannot be
identified using existing methods. As a result, the proposed
algorithm can better identify and handle various types of
anomalies manifested in different patterns.

To correctly and efficiently identify the anomalies and
consequently finalize the cluster formation, we rely on using
the concept of halo points to unravel low-density points in the
following two ways (see Section III-C for more technical de-
tails): (i) halo points identification: a set of low-density points
are considered as halo points, and (ii) halo points decision:
halo points can be categorized into outliers and borderline
points that they are either merged into certain existing clusters
or used to form new clusters. To better deal with halo points
and hence increase the clustering performance, in this paper,
we propose an effective density-based clustering algorithm
based on squared residual error (e2) [21].

The main contributions of our proposed clustering method
are listed as follows:

1) We incorporate the squared residual error theory to
enable the discovery of anomalies and borderline points
by identifying the halo points.

2) The decision graph derived by our proposed clustering
method can better identify the cluster centroids and
aggregate clusters.

3) Halo points make it easier to isolate anomalies from
borderline points.

We apply our proposed algorithm on four synthetic datasets
and four UCI datasets for performance evaluations. We also
apply K-Means [22], affinity propagation (AP) [11] and DPC
on the same datasets for comparisons. Experimental results
show that our algorithm achieves the best performance on most
datasets (specifically, best on seven out of eight datasets and
the second best on the remaining dataset).

The rest of the paper is organized as follows. We briefly
introduce the dynamics of DPC in Section II. We present
our proposed clustering method based on squared residual
error in Section III. We report the experimental results with
comparisons and discussions in Section IV. We draw the
conclusion and propose future work in Section V.

II. RELATED WORK

We present the dynamics, pros and cons of DPC in this
literature review section. In a nutshell, DPC generates clusters
by assigning data points to the same cluster of its nearest
neighbor with higher density. Moreover, DPC uses the decision
graph approach to identify cluster centroids. A decision graph
is derived based on the following two fundamental properties
of each data point xi: (i) local density ρi and (ii) individual
distance of each data point from points of higher density δi.

Assume a dataset consists of XP×M = [x1, x2, ..., xP ]T ,
where xi = [x1i, x2i, ..., xMi] is a vector with M attributes
and P is the total number of data points. The distance between
two data points xi and xj is computed as follows:

dij = || xi − xj ||. (1)

The local density of a data point xi, denoted as ρi and
known as the hard threshold [17], is then defined as:

ρi =
∑
j

χ(x) · (dij − Cd), (2)

where χ(x) = 1, if x < 0, and Cd is the cutoff distance
that user specified to control the weight degradation rate. The
determination of Cd is actually the assignment of the average
number of neighbors that each data point has. Specifically,
ρi is defined as the number of data points that have shorter
distance than Cd and are adjacent to xi.

Another way of local density computation known as the soft
threshold [17] is defined as follows:

ρi =
∑
j

exp

(
−
d 2
ij

C 2
d

)
. (3)

δi is defined as the shortest distance from any other data
point that has a higher density value than xi. If xi has the
highest density value, δi is assigned to the longest distance to
any other data point. Specifically, δi is computed as follows:

δi =

 min
j:ρj>ρi

dij, if ∃ j s.t. ρj > ρi,

max
j

dij, otherwise.
(4)

DPC finds a border region for each cluster, where the region
is defined as the set of points assigned to that cluster but within
certain distance (i.e., Cd) from the data points belonging to
another cluster. Subsequently, DPC finds the data point of
the highest density within the border region of that cluster
and denotes its density as ρb. The data points of the cluster
whose density is higher than ρb are considered as part of the
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Fig. 2. Determination of cluster centroids and the resulting cluster formation
based on the decision graph generated by DPC on the Iris dataset.

cluster core and others are considered as part of the cluster
halo (suitable to be considered as noise) [17].

The performance of DPC is highly sensitive to the identi-
fication of the cluster centroids [17]. Cluster centroids with
high local density ρ and high δ can be easily identified in the
decision graph (see Fig. 2(a)). Nevertheless, it is difficult for
DPC to identify cluster centroids with low ρ and high δ, or
with high ρ and low δ.

III. REDPC: RESIDUAL ERROR-BASED DENSITY PEAK
CLUSTERING ALGORITHM

In this section, we present our proposed clustering algo-
rithm named Residual Error-based Density Peak Clustering
(REDPC), which inherits the strengths of centroid detection
from DPC [17], distance measure from residual error theory
[21], and density-connectivity from DBSCAN [16].

The dynamics of REDPC are designed according to the
following two bases:

1) A cluster is formed when its centroid is surrounded by
only the data points with higher residual error.

2) A data point can be assigned to the cluster when there
is another data point with higher δ (see the following
subsection) and lower residual error.

The overall REDPC procedure consists of the following
four stages and each stage is elaborated in the following
subsections, respectively.

1) Preprocessing: compute the squared residual error be-
tween data points and compute δ.

2) Initial assignments: generate the decision graph based
on residual errors, identify centroids, and assign data
points with their respective cluster label.

3) Halo identification: identify halo points (consists of
borderline points and anomalies).

4) Final refinements: detect and isolate anomalies from
halo points and output the final clustering results (with
anomalies represented using special symbols).

A. Preprocessing

Unlike DPC [17], we incorporate the residual error approach
instead of relying on local density between data points, be-
cause residual error constructs a more informative decision
graph in the later stage, which may lead to better clustering
performance. Specifically, the squared residual error (e2ij) of a

data point xi to its neighbor xj is determined by the distance
between xi and xj and the neighborhood size:

e2ij =
|| xi − xj ||2

| Ni |2
, (5)

where || · || denotes Euclidean distance, N is a predefined
parameter, which defines the neighborhood size, and | Ni |
denotes the number of data points in Ni.

Similar to DPC, a cut-off residual Cd value is predefined
and later in Section III-C, Cd is used to identify halo points.
δi denotes the minimum distance of data point xi to another

data point with lower residual error. δi is computed as follows:

δi =


min

j:(e2ji)<(e2ij)
|| xi − xj ||, if ∃ j s.t. (e2ji) < (e2ij),

max
j:(e2ji)<(e2ij)

|| xi − xj ||, otherwise.

(6)

B. Initial Assignments

A decision graph is plotted based on residual error e2

between data points and δ. First, each centroid of the cluster
is identified by its relatively low e2ij and high δi. Secondly,
each data point is assigned to the same cluster as its neighbor
with low residual error and high δ. As such, cluster labels are
initially assigned (see Algorithm 1).

Algorithm 1 Cluster aggregation algorithm.
Require: X (Centroids), sortd e2ij (residual error vector of

point i) sorted in ascending order
Ensure: Cl (aggregated clusters)

for i ← 1:Total(X) do
Cl(i) ← 1:X(i)

end for
for j ← 1:n do

if Cl(sortd e2ji) 6= ”label not assigned” then
Cl(sortd e2ji) ← Cl(NNneigh(sortd e2ji)

end if
end for

C. Halo Identification

After cluster aggregation, we further identify the halo points
if the number of identified centroids is greater than one. First,
we compute the average residual error avg e2 between each
data point xi in cluster Cl(i) and each data point xj in cluster
Cl(j) if the residual error between xi and xj is less than Cd.
Secondly, we define the border residual error of every point
belongs to the same cluster border e2(Cl(i)) with the value of
avg e2, if and only if avg e2 < 1. Finally, all the halo points
of the clusters are identified if the individual residual error
of each data point in the cluster exceeds the corresponding
cluster border residual value, i.e., Cl(i) > border e2(Cl(i))
(see Algorithm 2). All the halo points of all the clusters
are collected in a haloset wherein each point is labeled with
its assigned clusterId. As exemplified in Fig. 3, halo points
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Fig. 3. Halo points detected in Flame, D2 (see Section IV), Spiral and
Aggregation datasets.

identified in various datasets are represented with circles in
red color.

Algorithm 2 Halo points identification.
Require: Cl (aggregated clusters)
Ensure: haloset (vector of halo points)

if Total(X) > 1
border e2 ← ones(1, Total(X))

for i ← 1:n-1 do
for j ← i+1:n do

if Cl(i) ∼= Cl(j) && DM(i, j)<= Cd
avg e2 = (e2(i)+e2(j))/2
if avg e2 < border e2(Cl(i)) then

border e2(Cl(i)) ← avg e2

end if
if avg e2 < border e2(Cl(j)) then

border e2(Cl(j)) ← avg e2

end if
end if

end for
end for
if Cl(i) > border e2(Cl(i)) then

halo(i)← 0 (halo point identified not belong to any
class (0))

end if
end if
haloset = find(halo(:)==0) % put all halo points in haloset

D. Final Refinements

During anomaly detection, a halo point with high residual
error and high δ (these threshold values are auto-derived, see
Algorithm 3) is recognized as an anomaly. All the anomalies
are collected in the anoset. The final clustering results are then

TABLE I
THE PROPERTIES OF THE SYNTHETIC AND UCI DATASETS

Datasets Parameters
No. of Points No. of Dimensions No. of Clusters

Flame 240 2 2
Aggregation 788 2 7

Spiral 312 2 3
Iris 150 4 3

Seeds 210 7 3
Wine 178 13 3
Glass 214 9 6
D2 85 2 4

plotted in a way to highlight those identified anomalies (see
Fig. 5(d)).

Algorithm 3 Anomaly identification.
Require: haloset (vector of halo points)
Ensure: anoset (vector of anomalies points)

Set thresold limit for e2 and δ for anomaly detection
limit e2 ← mean(e2)+ sortd(e2)*0.8
limit δ ← max(δ)+min(δ)/2
for i ← 1:haloset do % for every halo point

if Cl(i) > limit e2 && δi < limit δ then
ano(i) ← 0 % anomaly identified

end if
end for
anoset = find(ano(:)==0) % put all anomalies in anoset

It is of great importance to distinguish the anomalies from
normal data points and reasonable outliers because anomalies
highly likely represent the abnormal patterns or malicious
activities in real-world scenarios. For example, unusual road
traffic patterns may suggest nearby accidents or emergencies,
unusual credit card transactions may indicate identity theft,
unusual computer network loads should alert the cyber security
division, etc.

IV. EXPERIMENTAL RESULTS

To test the feasibility and validate the robustness of REDPC,
we compare its performance withK-Means [22], AP [11], and
DPC [17] on three widely-used synthetic clustering datasets,
namely Flame, Aggression and Spiral, four UCI datasets,
namely Iris, Seeds, Wine and Glass, and one own-defined
dataset D21. The properties of all eight datasets are listed in
Table I.

In this paper, we use F -score to measure the accuracy of
the clustering results. The performance comparisons among
all the benchmarking models are reported in Table II. It is
encouraging to find that REDPC achieves the highest F -score
on seven out of eight datasets. Although REDPC only achieves
the second best on Seed, the difference between the winner is
as small as 0.8068− 0.8065 = 0.0003 or 0.03%.

1The D2 dataset (with cluster labels) is available online: https://www.
dropbox.com/s/899xltgq3gg09bg/D2 with label.csv?dl=0



TABLE II
F -SCORE ON EIGHT BENCHMARKING DATASETS

Dataset K-Means AP DPC REDPC
Iris 0.8208 0.4851 0.7715 0.8404

Seeds 0.8068 0.3877 0.8026 0.8065
Wine 0.5835 0.3142 0.5892 0.5892
Glass 0.5052 0.2874 0.5418 0.5542
Spiral 0.3277 0.2853 1 1
Flame 0.7364 0.2874 1 1

Aggregation 0.7725 0.3429 1 1
D2 0.4333 0.4332 1 1
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Fig. 4. Determination of cluster centroids and the resulting cluster formation
based on the decision graph generated by REDPC on the Iris dataset.

Other than REDPC always performs better or equally good
when compared to DPC, we find that it is much easier to
identify cluster centroids by using the decision graph derived
by REDPC than that by DPC. It is shown in Fig. 2(a) that the
third cluster centroid is difficult to be identified merely based
on ρ and δ. However, as shown in Fig. 4(a), the identification
of the third cluster centroid is easier based on e2 and δ.
More importantly, DPC does not perform well when there are
ascertaining anomalies whose distance to higher density points
is less than Cd. On the other hand, REDPC uses e2 as one
of the identification criteria, which reduces the dependency of
Cd. This is the main reason why REDPC outperforms DPC
on all the UCI datasets.

To illustrate the capability of REDPC in anomaly detection,
we present the clustering results of applying all the bench-
marking clustering methods on the Flame dataset in Fig. 5.
Comparing Fig. 5(d) to the rest of the subfigures, it is clearly
shown that only REDPC successfully identifies the anomalous
data points in the top left corner (although both DPC and
REDPC achieve 100% F -score).

To illustrate the performance of REDPC on datasets with
different density distributions, we present the clustering results
of applying all the benchmarking clustering methods on the
Aggregation dataset in Fig. 6. Fig. 6(d) shows that REDPC can
perfectly handle clusters of different sizes with boundaries in
close proximity.

V. CONCLUSION

In this paper, we propose a novel density peak type of clus-
tering method named REDPC by using squared residual error
to better identify cluster centroids. The experimental results on
both synthetic and real-world UCI datasets demonstrate that
REDPC outperforms DPC and other clustering algorithms.
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Fig. 5. An illustration of anomaly detection on the Flame dataset.
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Fig. 6. Cluster formation on the Aggregation dataset.

Going forward, we will improve the proposed clustering al-
gorithm for more autonomy in parameter value determinations,
refinement in the clustering dynamics for better performance,
and applications on more complex and challenging datasets.
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