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Guest Editorial
Urban Analytics and
City Science

Big data, spatial optimization,
and planning

Introduction

Spatial optimization represents a set of powerful spatial analysis techniques that can be used

to identify optimal solution(s) and even generate a large number of competitive alternatives.

The formulation of such problems involves maximizing or minimizing one or more objectives

while satisfying a number of constraints. Solution techniques range from exact models solved

with such approaches as linear programming and integer programming, or heuristic algo-

rithms, i.e. Tabu Search, Simulated Annealing, andGenetic Algorithms. Spatial optimization

techniques have been utilized in numerous planning applications, such as location-allocation

modeling/site selection, land use planning, school districting, regionalization, routing, and

urban design. These methods can be seamlessly integrated into the planning process and

generate many optimal/near-optimal planning scenarios or solutions, in order to more quan-

titatively and scientifically support the planning and operation of public and private systems.

However, as most spatial optimization problems are non-deterministic polynomial-time-hard

(NP-hard) in nature, even a small data set will generate a very complex solution space and

therefore tend to be very computationally intensive to solve. In addition, the quantification

andmodeling of different (spatial) objectives and relevant constraints also remain a challenge,

which requires further attention from the scientific community.
In the past decade, emerging (spatio-temporal) big data have started to play an increas-

ingly important role in city management and planning, and are changing our perceptions

about cities. Without a doubt, we are at the beginning of the big data revolution as society

incorporates information technologies into every facet of our existence (Mayer-Sch€onberger
and Cukier, 2013), and this big data revolution will significantly change the way in which

spatial optimization techniques are utilized in various planning tasks. Traditional

approaches, such as linear programming, need to be recast when solving complex problems

involving big data while addressing problems such as land use planning, urban economic

modeling, and optimal resource allocation. The goal of such work is to better understand,

predict, plan, and manage the future of our cities.
Before proposing this special issue, it is evident that researchers in spatial optimization

have faced numerous challenges as well as opportunities brought about by the emergence

and development of various kinds of (spatio-temporal) big data apart from the evolution of

its own modeling theory and technology. Undoubtedly, these data, coupled with new

models and approaches, will help change and improve traditional ways of planning

within different contexts, such as land use and urban planning, transportation planning

and routing, as well as facility siting. The remainder of this editorial reviews the nexus of
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these three components, including the research shifts in spatial optimization enabled plan-
ning, followed by a paradigm for spatial optimization enabled planning involving big data
along with an introduction to the five published articles in this special issue on various topics
within this wider umbrella.

Research shifts in spatial optimization enabled planning

Spatial optimization has been broadly used to address various types of planning and man-
agement tasks, such as land use and urban planning (Aerts et al., 2005; Cao et al., 2011; Cao
and Huang, 2019; Cao et al., 2012, 2020; Ligmann-Zielinska et al., 2008), forest planning and
management (Borges et al., 2002; Church et al., 1998; €Ohman and Eriksson, 2002; Pukkala
and Kurttila, 2005), ecological and environmental resource planning and management (Hu
et al., 2015; Klein et al., 2010; Williams et al., 2004; Yu et al., 2020), water resource planning
and management (Afshar et al., 2015; Murray et al., 2012; Sidiropoulos and Fotakis, 2016),
transportation planning (Church and Cova, 2000;Murray andWu, 2003; Vazifeh et al., 2018;
Xue et al., 2015), and routing (Bowerman et al., 1995; Church and Niblett, 2020; Keenan,
2008; Li et al., 2013; Tu et al., 2015; Xue and Cao, 2016), as well as the allocation of public
facilities (Church and Li, 2016; Cova and Church, 2000; Farhan and Murray, 2008; Li et al.,
2009; Zhang et al., 2016). In the past two decades, there has been remarkable progress made in
this field by scientists and scholars from a variety of disciplines, such as geography, ecology
and environment, regional science, operational research, engineering, and urban planning.
Most of these studies involving spatial optimization modeling have been directed toward a
finer scale, with the support of more effective optimization models, as well as more efficient
optimization problem solving capabilities from well-adapted heuristic approaches, high per-
formance computing (HPC) and methods to trim superfluous features from spatial optimi-
zation models, making them easier to solve without compromising on the task of finding
optimality (Church, 2018). Alongside the rapid development of information and communi-
cations technology as well as the empowered availability of (spatio-temporal) big data and
analytics capabilities (Li et al., 2020), there have been a few notable shifts in the field of spatial
optimization enabled planning in the past few years, which shed light on not only the oppor-
tunities and insights in this field, but also the challenges that are worth more attention from
scientists and scholars in the future.

The first notable shift is the transition from small data-based spatial optimization to (spatio-
temporal) big data-based spatial optimization studies. The emerging big data in the past decade,
such as data sources from smart phones, smart card transactions, and the Internet of Things,
have brought forward massive opportunities in a broad range of disciplines by its finer gran-
ularity and the new angles for addressing various research issues, including spatial optimization
and planning related research questions. Meanwhile, the velocity, volume, and variety of big
data also pose huge challenges. One example is the research on addressing the minimum fleet
problem serving on-demand urban mobility by Vazifeh et al. (2018). They address how best to
size and operate a fleet of vehicles, given a certain demand for personal mobility. This has been
modeled using spatio-temporal data associated with more than 150 million trips and 13,586
taxicabs in New York City in 2011. The proposed method identified an optimal solution for an
entire year of operation. A real-time implementation produced a near-optimal solution that
involved a 30% reduction in the needed fleet size compared to the current taxi operation. The
implementation of big data in spatial optimization not only enables a more detailed spatial
optimization process at a finer scale, but can also empower a shift from static spatial optimi-
zation to dynamic/real-time spatial optimization applications. Undoubtedly, spatial optimiza-
tion supported by big data is an appealing direction that will play a critical role in many

942 EPB: Urban Analytics and City Science 47(6)



optimization problems in the era of smart cities. Without a doubt these new developments

demand more attention from academia and industry.
The second notable shift is the transition from spatial optimization to spatio-temporal

optimization studies. One of the common challenging issues is the optimization of both

spatial and temporal dimensions. For example, the spatial optimization for land use plan-

ning is able to determine the optimal or near-optimal land use planning scenarios in terms of

“where” and “how much” different land use types or activities should be allocated. Another

critical issue involved is “when” or “how” to optimally transit to a given land use planning

target scenario across time, which might be extremely complicated and computationally

intensive. Cao et al. (2019) have developed a multi-objective, spatio-temporal land use

optimization model to determine the possible spatial land use planning solutions over

time through a novel hierarchical and back-tracing strategy. The proposed model was

implemented effectively and successfully in a case study of the Wuhan urban agglomeration

region. There were, however, limitations, including the resulting computational efficiency

and the limited exploration of the solution space. Of course, spatio-temporal optimization

would be empowered by the integration of (spatio-temporal) big data; however, it is also a

challenge to address the resulting complexity that big data dimensions present. It is still the

dawn of this new era and considerable advances are expected along this front.
The third shift is the transition from the traditional applied disciplines, e.g. business,

planning, ecology, and engineering, to the disciplines of social and behavioral sciences,

such as health and ageing, criminology, and epidemiology. At the same time, given the current

vision of spatially integrated social sciences (Goodchild et al., 2000), spatial optimization

approaches are more than just good additions to the existing pool of methods for spatially

integrated social sciences, helping to form an enhanced version of spatially integrated social

and behavioral sciences. One example is the research of location-allocation modeling of

healthcare facilities by Zhang et al. (2016). In addition to the gravity-based accessibility

model implemented in the research, a multi-objective optimization model was also con-

structed and utilized to help quantitatively identify the optimal configurations of public

healthcare facilities in Hong Kong. It is evident that spatial optimization approaches could

supplement fundamental GIS functions: spatial statistics and visualization. But the lack of

user-friendly and effective spatial optimization tools is one of the main barriers to social

scientists working in this field, especially when (spatio-temporal) big data are involved.

A paradigm for spatial optimization enabled planning in the era

of big data

As discussed above, most of these research shifts are directly or indirectly affected by the

booming availability of spatio-temporal big data (e.g. smart card data and smart phone

data), and new big data analytics capabilities. The opportunities and challenges, brought by

the big data era, represent an evolving new paradigm in spatial optimization enabled plan-

ning (see Figure 1).
In this special issue, we received dozens of submissions, where five papers were finally

accepted for publication, all of which reflect various facets of this paradigm.
Zou et al. (p. 948) combine machine learning, big data, and spatial optimization to

produce time-sensitive routes to avoid poor air quality when travelling across an urban

region. Using a deep learning approach, namely the long, short-term memory and city-

level air quality data, the proposed machine learning model is capable of making temporal

predictions of air quality across an urban area. Using air quality predictions, a spatial
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optimization model is developed for planning a suitable path that optimizes both distance

and overall air quality. This work has significant value in helping cyclists, hikers, and other

people engaged in outdoor activities to plan ideal travel routes to stay active and healthy.
Yin et al.’s (p. 964) work aims at resolving the computational complexity in evacuation route

planning in the midst of urban disasters. Their approach is to derive, in advance, a spatial

distribution of the population of a region from mobile phone location data. Based on this

information, a knowledge base is developed to store the optimal evacuation routes given the

known population distribution. When a disaster occurs, the information within the knowledge

base is leveraged to search for near-optimal evacuation routes using agent-basedmodeling. This

work sheds light on combining data-driven and knowledge-based approaches to develop effi-

cient solutions for applications with a real-time requirement, such as emergency evacuation.
The paper by Mu and Tong (p. 981) develops a computationally efficient solution to tackle

large p-median optimization problems. The p-median problem aims to allocate p facilities in a

study area to minimize the overall cost (sum of travel distances) from any demand node to the

nearest facility. Given the NP-hard nature of the problem, the optimal solution is extremely

difficult to obtain when applied to very large problems (as measured by the number of demand

nodes and facility sites). To address this problemwhen applied to big data, the authors develop a

heuristic algorithm to partition the problem into smaller, sub p-median problems and solve them

in parallel, leveraging HPC. The solutions are then combined strategically into the final solution

using a spatial voting algorithm. This research represents an important step toward solving big

data spatial optimization problems. The ability to solve large p-median problems has important

real-world use and can be of significant value.
Koenig et al. (p. 997) present an interesting and integrative framework for urban design

and planning. The paper starts with defining a holistic data representation of urban fabric,

including various urban factors, such as a street network, land parcels, etc. that influence

design decisions. Based on this definition, the authors demonstrate a computational

approach for integrating this unified data structure in a software called Grasshopper,

which supports the solution of Rhino3D, a commonly used optimization system for address-

ing urban design problems. By relying on such a framework, contradicting design goals can

Figure 1. A paradigm for spatial optimization enabled planning in the era of big data. HPC: high perfor-
mance computing.
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be reconciled, and a semi-automated design process can be achieved. This research was

shown to be of great value in major master-design planning projects for smart cities.
The final paper in this special issue by Church and Baez (p. 1014) involves an aspect of

spatial optimization that many planners and researchers tend to ignore when using a model in

spatial design. Making decisions based on what was found as the optimal or best heuristic

solution fails to consider errors in problem data that might preclude the true optimal solution

from being found, overlooks the fact that decision makers may have not fully divulged all of

their objectives or preferences, and discounts the key issue that most models are simplified

forms to make them solvable to optimality. Church and Baez discuss how models could better

assist in the search for competitive but different configurations of spatial optimization prob-

lems. They present a new “tree-based” search method that can be used to find all multiple

optima or all near-optimal configurations to many facility location problems. They apply their

approach to two widely used location models and demonstrate that there can be a rich and

varied set of near-optimal configurations with which to better support decision makers and

stakeholders. They also compare their new process to the current standard approach and

show significant improvement in computational efficiency, paving the way for greater oppor-

tunities to generate different but competitive spatial alternatives.

Concluding remarks

While these five articles have solved different spatial optimization problems involving var-

ious facets of the paradigm mentioned above, we admit that the articles in this special issue

have explored a very small subset of the types of problems that exist within the scope of

applied spatial optimization and big data. We hope that this issue will stimulate readers to

develop more related research ideas and actively contribute to the development of spatial

optimization enabled “smart” planning in the era of big data.
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