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ABSTRACT The advent of (big) data management applications operating at Cloud scale has led to extensive
research on the data placement problem. The key objective of data placement is to obtain a partitioning
(possibly allowing for replicas) of a set of data-items into distributed nodes that minimizes the overall
network communication cost. Although replication is intrinsic to data placement, it has seldom been studied
in combination with the latter. On the contrary, most of the existing solutions treat them as two independent
problems, and employ a two-phase approach: (1) data placement, followed by (2) replica placement.
We address this by proposing a new paradigm, CDR, with the objective of combining data and replica
placement as a single joint optimization problem. Specifically, we study two variants of the CDR problem:
(1) CDR-Single, where the objective is to minimize the communication cost alone, and (2) CDR-Multi,
which performs a multi-objective optimization to also minimize traffic and storage costs. To unify data and
replica placement, we propose a generic framework calledUnifyDR, which leverages overlapping correlation
clustering to assign a data-item to multiple nodes, thereby facilitating data and replica placement to be
performed jointly. We establish the generic nature of UnifyDR by portraying its ability to address the CDR
problem in two real-world use-cases, that of join-intensive online analytical processing (OLAP) queries
and a location-based online social network (OSN) service. The effectiveness and scalability of UnifyDR
are showcased by experiments performed on data generated using the TPC-DS benchmark and a trace of
the Gowalla OSN for the OLAP queries and OSN service use-case, respectively. Empirically, the presented
approach obtains an improvement of approximately 35% in terms of the evaluated metrics and a speed-up
of 8 times in comparison to state-of-the-art techniques.

INDEX TERMS Data placement, replica placement, OLAP, online social networks, join-intensive queries,
location-based services, scalability, overlapping clustering.

I. MOTIVATION
We live in an information age, where almost every day-to-
day need of an individual is fulfilled by digitally enabled
services. This digital revolution has led to an exponential
increase in the scale of data, and today, many Internet-
based services (e.g., Facebook, Netflix, etc.) offer data at a
never-before-seen scale [10], [23]. Although advancements in
enabling technologies such as big data and cloud computing
have provided us with the necessary machinery and systems
(e.g., Apache Hadoop [39] and Spark [46]) to perform data
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management at scale, effective strategies for data placement
and partitioning remain crucial for ensuring the performance
of such systems [15]. Having said that, the field of data
placement has witnessed a humongous amount of research
over the past two decades [3], [4], [17], [30], [36], [41], [43],
[45], [48], [49].

To better motivate the need for scalable solutions to the
data placement problem, we consider two popular appli-
cation domains—(1) Online analytical processing (OLAP),
and (2) Online social networks (OSNs). OLAP is a com-
puting paradigm for exploration and knowledge discovery
from large data warehouses, thereby being a cornerstone for
business intelligence and analytics [8]. Since data warehouses
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are usually stored in a distributed manner across multiple
nodes, successful execution of OLAP queries requires inter-
node transfer of database tables. It is intuitive that identify-
ing a placement of database tables in distributed nodes to
reduce the inter-node table transfer during query execution
reduces to an instance of the data placement problem.Moving
on to the second application domain, OSN services are the
most popular Internet-based services in today’s world [43].
While Facebook and WhatsApp are used by individuals to
communicate with their friends across the globe, Twitter
has become the most preferred channel for information dis-
semination such as traffic news, emergency services, etc.,
to a large audience. Owing to the usage of OSN services
at a global scale, the data of OSN users is usually stored
in geographically distributed nodes. Thus, if a user wants to
mention or access the profile of one of her friends, the profile
specific data of the latter has to be transferred to a node
closest (in geographical distance) to the former. To this end,
even for the OSN use-case, identifying a placement of user
data to minimize the inter-node migrations triggered from
profile visits or user mentions reduces to an instance of the
data placement problem. Note that in both aforementioned
applications, replication is required to ensure fault tolerance,
while also facilitating reduction in communication cost.

It is evident from the above discussion that both data
and replica placement are important for scalable data
management. Besides, replication or replica placement is
intrinsic to data placement, which is substantiated by a
cautious examination of the generalized data placement
problem [17] and its objectives. What is more, replication
oblivious data placement is a specific instance of the generic
data placement problem. Therefore, both data and replica
placement should be considered as objectives of a single joint
optimization problem. Having said that, although the field
of data placement has witnessed significant advancements
[3], [17], [43], to the best of our knowledge, none of the
existing techniques possess the capability of performing data
and replica placement jointly. On the contrary, most of the
existing techniques treat the two placement steps as inde-
pendent problems, and perform data placement followed by
replica placement (Fig. 1). A key limitation of this ad hoc
two-phase approach is that it results in solutions of inferior
quality.

To address the aforementioned limitation, in this article,
we propose a unified paradigm of combining data and replica
placement, called CDR, as a joint optimization problem.
Motivated by the aforementioned applications, we study two
variants of the CDR problem. Specifically, as discussed pre-
viously, the goal of data placement for the OLAP use-case is
to minimize the inter-node database table migration during
the execution of OLAP queries. Since the optimization is
concerned with minimizing a single objective, i.e., the com-
munication cost, we formally denote the problem as CDR-
Single. Recall that since OSN services usually operate at a
global scale, a placement that minimizes the communica-
tion cost alone by minimizing the inter-node data migrations

FIGURE 1. The standard two-phase data placement process (in green):
where the data-items (black dots) are first placed in nodes and then
replicated (red dots); and the proposed CDR paradigm (in magenta):
where data and replica placement are jointly performed in a single step.

cannot be deemed as optimal. More specifically, since both
user data and nodes are geographically distributed, factors
such as inter-node latency, outgoing traffic, and storage costs,
all of which are significantly different1 for different geo-
graphically distributed nodes, need to be included in the
optimization objective. Thus, we study amulti-objective opti-
mization problem in the context of combined data and replica
placement for OSN services, which is formally referred to
as CDR-Multi. To solve both variants of the CDR problem,
we propose a generic and unified framework, called Uni-
fyDR, which leverages overlapping correlation clustering to
address data and replica placement as a joint optimization
problem. More specifically, overlapping clustering facilitates
joint optimization of data and replica placement in a single
step by allowing each data-item to be assigned to multiple
nodes.

To summarize, we have comprehensively extended our pre-
vious work on combined data and replica placement [4] as a
unified framework called UnifyDR. In addition to addressing
the CDR problem for data-intensive OSN services in geo-
graphically distributed clouds (CDR-Multi) using overlap-
ping clustering on hypergraphs, we solve the CDR problem
for workflows originating in business analytics and intelli-
gence, that of OLAP queries (CDR-Single), using graph-
based overlapping clustering. This portrays the generalization
ability of UnifyDR in addressing the CDR problem for a
wide-variety of workflows originating from different real-
world use-cases. Specifically, in contrast to [4], the following
novel contributions and extensions are added in this work:
(1) a new variant of the generic CDR problem, i.e., CDR-
Single (Sec. III-B), (2) a generic framework UnifyDR to
address the CDR problem under diverse settings (Sec. IV), (3)

1Note that in the majority of the cases OLAP queries are performed on
data warehouses that are distributed on a cluster of (local) nodes, thus, factors
such as inter-node latency, outgoing traffic, and storage costs are similar for
different nodes, and hence, it is not required to include these factors in the
optimization process.
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a new algorithm for solving CDR-Single using overlapping
clustering on graphs (Algorithm 1 and Sec. V), and (4) new
empirical evaluations on data generated using the TPC-DS
benchmark (Sec. VI-A).
Contributions.
• The study of a novel paradigm of combined data and
replica placement, CDR, with the objective of unifying
the aforementioned placement tasks into a single joint
optimization problem (Sec. III). Motivated by two dif-
ferent real-world use-cases of OLAP and OSN services
respectively, we study two variants of the CDR problem,
called CDR-Single and CDR-Multi.

• A generic and unified framework, UnifyDR (Sec. IV),
capable of solving the CDR problem in a single unified
step as opposed to the traditional two-step process prac-
ticed by the existing state-of-the-art methods. UnifyDR
also provides the ability to solve the CDR problem for
workflows generated from different real-world appli-
cations, which is portrayed in this article using OLAP
(CDR-Single) and OSN (CDR-Multi) use-cases.

• A novel algorithm based on overlapping correlation
clustering, which allows each data-item to be assigned
to multiple nodes (Sec. V). The proposed algorithm
performs a single optimization for the OLAP use-case
using overlapping clustering on graphs, while overlap-
ping clustering on hypergraphs is employed for the OSN
use-case to perform a multi-objective optimization for
minimizing latency, node span, inter-node traffic, and
storage cost.

• An extensive experimental study on data simulated
based on the TPC-DS decision support benchmark and a
trace of the Gowalla social network (Sec. VI), to show-
case the effectiveness and scalability of the proposed
UnifyDR framework and its associated CDR placement
algorithm in solving the CDR-Single and CDR-Multi
problems.

II. RELATED WORK
In the past decade, the data placement problem has witnessed
extensive research with a wide variety of techniques devel-
oped for different execution environments, namely – dis-
tributed computing [9], [17], grid computing [13], [26], [27],
and cloud computing [16], [19], [30], [44]. Initially, the focus
of these works was on relational workloads such as database
joins [17] and scientific workloads [14], [31], [45], how-
ever, recently the focus has shifted towards workloads ema-
nating from specialized applications such as OSN services
[21], [24] and data intensive services in geo-distributed
clouds [1], [41]–[43], [47]. Given that our focus in this work
is to combine data and replica placement as a single joint
optimization problem, we only present a review of the exist-
ing literature on data placement that is directly related to our
work.

The two main capabilities required to address the
geo-distributed data placement problem are to capture
and improve (1) data-item – data-item associations and

(2) data-item – node associations. The former is measured
as the frequency of co-occurrence of two or more data-
items, whereas the latter is calculated using the frequency of
occurrence of a data-item at a given node. While data-item –
data-item associations were captured by methods relying on
hierarchical clustering of data-item correlations [48], [49] and
frequent pattern mining [33], literature also witnessed tech-
niques [1], [22], [35], [47] capable of capturing data-item –
node associations. Volley [1], a system proposed by Agarwal
et al., performs automatic data placement in geo-distributed
nodes based on co-occurrence information mined from the
server logs of node requests. Rochman et al. [35] design
algorithms that not only are cost efficient but also capable of
serving a significant portion of user requests raised within the
same region, along with the ability to manage the dynamic
behavior of user requests. It is important to simultaneously
honor the node storage capacities as well as minimize the data
communication costs. To this end, Zhang et al. [47] propose
an algorithm based on integer programming.

Literature also includes works focusing on other aspects
related to the geographically distributed data placement
problem, such as development of specialized strate-
gies for replication and data placement in multi-clouds.
Shankarnarayanan et al. [37] proposed strategies for location-
aware replica placement2 in order to minimize inter-node
communication costs and other node location specific met-
rics. Shifting the focus of our discussion to multi-cloud
environments, Jiao et al. [24] present a technique that takes
multiple optimization objectives, such as inter-cloud traffic
and carbon footprint, into consideration to perform data
placement in multi-clouds. Later, Han et al. [21] proposed an
algorithm for OSN service data migration, which can adapt
to the variation in data traffic in multi-clouds.

Having said that, none of the aforementioned techniques
are capable of modeling both data-item – node and data-item
– data-item associations.

Recently, methods based on hypergraph representation of
data-items and nodes have been extensively used in the liter-
ature for data placement in geographically distributed clouds.
Yu and Pan [41]–[43] introduce the use of hypergraph mod-
eling and leverage a partitioning tool called PaToH [7] to
design data placement algorithms for data intensive services.
On the one hand, hypergraph modeling helps to simultane-
ously capture both data-item – node and data-item – data-item
associations. On the other hand, publicly available special-
ized heuristics for hypergraph partitioning [7] enable grace-
ful scaling of the aforementioned methods to large datasets.
Moving further, Atrey et al. [3], [5] proposed an algorithm
based on spectral clustering of hypergraphs, which portrayed
quality similar to the algorithms proposed in [43], however,
achieved superior efficiency and scalability owing to the use
of randomized eigendecomposition techniques for factorizing
the hypergraph laplacian.

2Please see [18] for an in-depth survey of replica placement algorithms.
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Owing to their ability to capture both data-item – node and
data-item – data-item associations, the methods proposed by
Atrey et al. [3] and Yu and Pan [43] constitute the repre-
sentative state-of-the-art for geo-distributed data placement
of data-intensive services, and are therefore considered for
empirical comparisons with UnifyDR in the OSN use-case.

(Hyper)graph based solutions have also been popular for
data placement of more traditional workloads such as scien-
tific and relational workflows. The existence of a polynomial-
time reduction of the data placement problem into an instance
of the graph partitioning problem was proved in [17]. Fur-
thermore, Golab et al. [17] proposed three algorithms—an
optimal algorithm based on integer linear programming (ILP)
and two heuristics for practically solving the problem on
large scale workloads—to perform data placement for join-
intensive database queries and data-intensive scientific work-
flows by minimizing the overall network communication
cost.With the objective of reducing the partitioning overhead,
Quamar et al. [34] present SWORD, a light-weight and scal-
able approach for data placement of Online Transaction Pro-
cessing (OLTP) workloads. Specifically, SWORD performs
data placement in two phases. Hypergraphmodeling and hash
partitioning based compression of the constructed hyper-
graph are carried out in the first phase, which is followed
by partitioning of the compressed hypergraph in the second
phase.

Owing to their scalability and effectiveness, the techniques,
Metis andMetis+H2, proposed byGolab et al. [17] constitute
the representative state-of-the-art for data placement of tra-
ditional data-intensive workloads, and are therefore consid-
ered for empirical comparisons with UnifyDR in the OLAP
use-case.

Based on the aforementioned discussion, all the existing
state-of-the-art techniques lack the capability of jointly solv-
ing data placement and replication. On the contrary, these
techniques treat the two placement steps as independent prob-
lems, and perform data placement followed by replica place-
ment, thereby resulting in solutions of inferior quality. To the
best of the authors’ knowledge, the research presented in this
article is the first effort towards combining data and replica
placement (CDR) into a single joint optimization problem,
which is solved using overlapping correlation clustering on
graphs (for the OLAP use-case) and hypergraphs (for the
OSN use-case). More specifically, overlapping clustering
facilitates joint optimization of data and replica placement
in a single step by allowing each data-item to be assigned
to multiple nodes. To summarize, the UnifyDR framework
provides an elegant solution to both variants of the CDR
problem, i.e., CDR-Single and CDR-Multi.

III. COMBINED DATA AND REPLICA PLACEMENT
Although the CDR paradigm is generically applicable to myr-
iad settings, we motivate CDR-Single specifically through
OLAP join queries and CDR-Multi through location-based
OSN services. We first introduce the basic terminology
related to data and replica placement.

A. PRELIMINARIES
Definition 1 (Data-Items (D)): A data-item is defined as

an atomic unit of data storage and transfer.D denotes the set
of data-items, where |D| = n.
Definition 2 (Nodes (N )): A node constitutes a set of

resources to store the data-items and perform different com-
putational tasks on the stored data-items. Nodes are denoted
using the set N , where |N | = l.

It is common for data-items to be placed across geograph-
ically distributed nodes in large-scale systems. Naturally,
migration of some data-items may be required for proper
execution of various tasks. Having said that, a data-request
pattern is comprised of data-items that require migrations.
Formally,
Definition 3 (Data-Request Patterns (R)): A data-request

pattern R ∈ R is comprised of a set of data-items D ⊆ D that
are required to be present together in a single node Nj for a
given task to be executed. The data-items (di ∈ D) that are
not stored in Nj are transferred from the nodes in which they
are stored to Nj. The set of data-request patterns denoted as
R represent the system workload.
In addition to distributing data across nodes, real-world

systems usually store multiple replicas of each data-item
as well. This is because replication helps in ensuring fault-
tolerance, while also facilitating reduction in communication
cost and retrieval latency by potentially allowing for data-
item retrieval from a geographically closer node.
Definition 4 (Replication Factor (r)): The replication fac-

tor r is defined as the number of replicas stored for each
data-item.

Given the replication factor, a set of nodes, data-items,
and data-request patterns as input, the objective of CDR is
to partition the set of data-items, allowing for replication
wherever applicable, across distributed nodes in order to
minimize the overall communication cost emanating from
migration/replication3 of data-items corresponding to differ-
ent data-requests. At this juncture, we would like to clarify
that the CDR placement algorithm presented in this work
considers the system workload to be static. More specifi-
cally, any change (small or large) in the system workload
would require re-execution of the full pipeline to obtain the
placement output. This design decision is in line with almost
every existent technique [3]–[5], [16], [17], [43], [49] in
the extensive literature on data placement. Thus, making the
CDR placement algorithm dynamically adapt to the changes
in the systemworkload is not in the scope of the current work.

Having defined the basics, we next discuss concepts spe-
cific to OLAP join queries and location-based OSN services,

3Among others, packet loss and data-item retrieval delays are some of the
additional overheads that might effect migration or replication of data-items.
However, in this article we restrict our attention towards minimization of
communication cost alone. Note that this assumption is only introduced for
the sake of brevity, and is not limiting with respect to the capabilities of the
proposed CDR placement algorithm, which remains generically applicable
in a variety of settings.
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FIGURE 2. An example of OLAP join query.

portray their relationship to the CDR problem, and formally
define the CDR-Single and CDR-Multi problems.

B. CDR-SINGLE
As discussed in Section I, many OLAP queries involve
database joins. A sample join query on a database comprised
of four tables partitioned across four servers is portrayed
in Fig. 2. There are two central aspects pertaining to OLAP
queries: (1) a database of tables, where each table contains
information specific to a real-world entity, and (2) an execu-
tion engine that allows users to submit and execute analytical
queries.
Definition 5 (Database (D(T ))): A database D(T ) is a

collection of information tables T : |T | = n, where each
table consists of one or more attributes.

In the context of the OLAP use-case, each database table
corresponds to a data-item (Def. 1). Thus, the setD contains n
data-items corresponding to each table t ∈ T of the database,
where the data-item corresponding to a table t is denoted
as d(t).

Moving ahead, queries allow end-users to perform a variety
of analytical tasks, such as computing the average quarterly
sales and profit per product category. Such queries might
require information from multiple database tables (often par-
titioned across servers), thereby triggering a data-request pat-
tern (Def. 3) comprised of the tables that need to be migrated
for proper query execution. To enable efficient query exe-
cution, naturally, each query is executed at a node Nj ∈ N
(Def. 2) which requires the least number of tables to be
migrated.

Thus, the data-request pattern R(Qk ) ∈ R triggered by a
query Qk at a node Nj is mathematically denoted as {d(t) |
t ∈ QS(Qk )∧t 6∈ Nj}, whereQS(Qk ) denotes the set of tables
required for executing the query Qk . Given this information,
we formally define a query as follows:
Definition 6 (Queries (Q)): A query Qk ∈ Q | 1 ≤ k ≤

η signifies a request for the data-items contained in R(Qk )
triggered from a nodeNj capable of serving user requests. The
setQ contains η queries and represents the system workload.

FIGURE 3. A location-based OSN service.

For example, the sample query Q1 portrayed in Fig. 2
would be executed at the node N3 (i.e., Server C),
and would trigger a data-request pattern R(Q1) where
R(Q1) = {d(t1), d(t3)}.
Next, we provide a formal description of the CDR-Single

problem, which is stated as follows.
Problem (CDR-Single): Given a set of n data-items D

corresponding to the set of database tables T , η user queries
Qk ∈ Q representing the system workload, where each query
comprises a data-request pattern R(Qk ) being originated
from a node Nj ∈ N , and the replication factor r, perform
combined data and replica placement to minimize the aver-
age number of nodes spanned S(R(Qk )) by the data-items
corresponding to the request pattern R(Qk ) of each query.

C. CDR-MULTI
As discussed in Section I, we study the CDR-Multi problem
in the context of location based OSNs. There are two central
aspects pertaining to location basedOSN services: (1) a social
network of users with network connections indicating friend
relationships, and (2) a list of check-ins triggered by the
users of the OSN service visiting diverse locations across the
globe. A sample social network of seven users with six check-
ins registered at four different node locations is presented
in Fig. 3.
Definition 7 (Social Network (G(V ,E))): A social net-

work with n individuals and m social ties can be denoted as a
graph G(V ,E), where V is the set of vertices representing the
users of the social network, |V | = n, and E is the set of edges
(representing friend relationships) between any two vertices,
E ⊆ V × V , |E| = m.

For the OSN use-case, a data-item (Def. 1) corresponds to
the most recent snapshot of a user’s profile (e.g., comments,
posts, profile picture, etc.). The data-item corresponding to a
social network user v ∈ V is denoted as d(v), and there exists
a total of n data-items (one for each social network user) in
the set D.

Moving further, check-ins characterize the OSN users’
behavior of visiting different places in the world. A user
check-in usually consists of two parts: (1) a geographic loca-
tion in the world where the user registered the check-in, and
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(2) a data-request pattern triggered in response to the user
check-in. Note that the location recorded for a user check-in
may be different from the location where the check-in was
registered. This is because for each check-in, the recorded
location is that of a node (Def. 2), which is closest (in geo-
graphical distance) to the location where the user registered
the check-in. Thus, for OSN services, each node Nj ∈ N
possesses a location attribute Nj.loc. The node locations are
represented using the set L, where Lj = Nj.loc : Nj ∈ N ,
resulting in a total of |L| = l node locations.
Moreover, the data-request pattern R(v) ∈ R (Def. 3)

triggered by a check-in from a user v at a nodeNj is composed
of the data-items corresponding to each of her friends. This is
because a user may want to tag/mention some of her friends
while registering a check-in. Mathematically, R(v) = {d(u) |
u ∈ Adj(v)}, where Adj(v) is the set of all the friends of the
user v. Next, we provide a formal description of check-ins,
which is stated as follows.
Definition 8 (Check-Ins (C)): A check-in is a tuple
∀k1≤k≤ρ , Ck = (R(v),Lj) ∈ C consisting of a data-request
pattern R(v) ∈ R triggered by v and a location Lj ∈ L of a
node Nj capable of serving user requests. The set C contains
ρ user check-ins.
In other words, the check-in Ck = (R(v),Lj) by a user v at

a location Lj signifies a request for the data-items contained
in R(v) triggered from the node Nj located at Lj = Nj.loc.
Considering the example presented in Fig. 3, if the first check-
in was registered by the OSN user v5 at the node N3 with
L3 = N3.loc = Frankfurt, then C1 = (R(v5),L3), where
R(v5) = {d(v4), d(v6), d(v7)}.
It should be noted that each check-in, even if it is registered

by the same OSN user at the same location, is considered as
unique or different from all other check-ins. This is required
for modeling data-item – node and data-item – data-item
associations appropriately. For instance, let’s consider that
the OSN user v7 visited Frankfurt and Sydney 7 and 2 times,
respectively. Intuitively, the association of the data-items con-
tained in the data-request pattern R(v7) is relatively stronger
with the node located in Frankfurt when compared to the
one located in Sydney. This behavior is properly modeled
by registering 7 different check-ins numbered Ck , . . . ,Ck+6
for the OSN user v7 with the data-request pattern R(v7) at N3
with L3 = N3.loc = Frankfurt. Similarly, 2 different check-
ins Ck+7,Ck+8 for the same user v7 are registered at N2 with
L2 = N2.loc = Sydney. In the same vein, the data-item –
data-item association between two data-items that co-occur
more frequently (say, five times for data-items d(v3) and
d(v4)) in data-request patterns would be stronger when com-
pared to that of data-items that are requested together rarely
(say, only once for data-items d(v4) and d(v5)). Further-
more, the aforementioned discussion provides substantive
evidence in favor of our design choice to not index user check-
ins uniquely using data-request patterns R and check-in
locations Lj.

Having discussed the concepts specific to OSN services,
the CDR-Multi problem is formally defined as follows.

Problem (CDR-Multi): Given a set of n data-itemsD corre-
sponding to the set of social network users V , ρ user check-
ins Ck = (R(v),Lj) ∈ C | v ∈ V , Nj ∈ N representing
the system workload, where each check-in comprises a data-
request pattern R(v) being originated from a node located at
Lj, a setN of l nodes, with the per unit cost of outgoing traffic
from each node 0(Nj) | Nj ∈ N , the per unit storage cost of
each node 1(Nj) | Nj ∈ N , the inter node latency (directed)
for each pair of nodes κ(Nj,Nj′ ) | Nj,Nj′ ∈ N , the average
number of nodes spanned by the data-items corresponding to
each request pattern R(v) being S(R(v)), and the replication
factor r, perform combined data and replica placement to
minimize the optimization objective O, which is defined as
the weighted average4 of 0(·), κ(·, ·),1(·), and S(·).

IV. UnifyDR
In this section, we provide a description of the UnifyDR
framework, its core components, and the underlying com-
bined data and replica placement algorithm. An architectural
overview of the proposed UnifyDR framework is presented
in Fig. 4.

We begin by providing a description of the building blocks
of the UnifyDR framework.
• Construct Graph. The module responsible for con-
structing a binary graph adjacency matrix using the
information about associations between database tables
(data-items) manifested in the OLAP queries submitted
by the users. More specifically, the data-item – data-item
association between two database tables co-occurring in
a join query is modeled using an edge between them in
the constructed graph.

• Calculate Edge Weights. This module employs the use
of query set characteristics to assign weights to edges
constructed in the aforementioned step. Edge weights
capture the strength of data-item – data-item associa-
tions, thereby appropriately accounting for the contribu-
tion of each edge towards minimizing the objective for
CDR-Single.

• Construct Hypergraph. The module responsible for
constructing a binary hypergraph incidence matrix using
the information about a variety of associations between
OSN users (data-items) and nodes manifested in the
check-ins registered by these users. More specifically,
the data-item – data-item association between OSN
users co-occurring in a data-request pattern triggered by
a user check-in is modeled using a hyperedge connecting
data-items in the constructed hypergraph. In the same
vein, the data-item – node association is modeled using
a hyperedge connecting the data-item with the node
location where the data-item was requested based on the
user check-in.

• Calculate Hyperedge Weights. This module is respon-
sible for assigning weights to each hyperedge of

4The weights determine the relative importance of these metrics towards
the overall optimization objective, and are discussed in Sec. IV-B.
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FIGURE 4. Overview of the proposed UnifyDR framework for combined data and replica placement.

the hypergraph constructed in the aforementioned
step based on user check-in behavior and node
characteristics. Hyperedge weights capture the strength
of data-item – node and data-item – data-item associa-
tions, thereby enabling accurate estimations of the con-
tribution of each hyperedge towards the multi-objective
optimization for CDR-Multi.

• Construct (Hyper)Graph Similarity Matrix. This
module uses the (hyper)graph representation and the
(hyper)edge weights to compute the similarity between
each pair of vertices in the (hyper)graph. It is required
for performing analytical operations such as clustering
on (hyper)graphs. Mathematical details of this step for
both graphs and hypergraphs are provided in Sec. V.

• Greedy Cluster Refinement. This module facilitates
partitioning the data-items into l nodes while allowing
at most r replicas. Specifically, it iteratively refines the
cluster assignment of each data-item given the cluster
assignment of all the other data-items is fixed.

A. CDR-SINGLE: GRAPH MODELING
Data placement research has shown that graph partitioning is
capable of accurately optimizing the objective of minimizing
the number of nodes spanned by data-items partitioned across
nodes [12], [17], [28]. Since the aim of CDR-Single is to
minimize the number of nodes spanned during the execution
of OLAP queries, graphs provide a powerful representation
to model data-item – data-item associations in this case.

To this end, given a set of database tables D(T ) corre-
sponding to data-items, and a set of queries Q representing
the system workload, we construct a graph G(VG,EG). There
exists a vertex v ∈ VG for each data-item d(t) ∈ D, thus,
the vertex set VG consists of |VG| = n vertices. Furthermore,
there exists an edge between each pair of data-items (corre-
sponding to database tables) that co-occur in a join query,
thereby capturing data-item – data-item associations. Recall
that for each query Qk ∈ Q, QS(Qk ) denotes the set of

data-items (tables) that should co-exist for execution of the
query. In other words, there should be an edge between each
pair of vertices (corresponding to data-items) in QS(Qk ).
With this, we formally define the edge set EG = {(u, v)} |
u, v ∈ VG ∧ ∃Qk ∈ Q : d(u), d(v) ∈ QS(Qk ), totaling to
|EG| = m edges.
The graph G(VG,EG) is represented using a n× n dimen-

sional binary adjacency matrixA, which possesses n vertices
and m edges. An entry Ai,j = 1 indicates that there is an edge
between the ith and jth vertex in the graph vertex set, while
Ai,j = 0 indicates otherwise.
While each edge (u, v) ∈ EG captures the association

between two vertices u and v, not all associations are equally
important. Instead, some associations are relatively more
important. For example, two data-items d(t1) and d(t2) that
co-occur in 10 join queries possess a stronger association
when compared to another pair of data-items d(t1) and d(t3)
that co-occur only twice. Thus, partitioning the edge between
d(t1) and d(t2) should possess a higher cost when compared
to that of the edge between d(t1) and d(t3). To capture this,
we construct an edge weight matrix WA of dimensionality
n × n that captures the relative importance of the edges.
Each entryWAi,j captures the number of times the data-items
corresponding to the ith and jth vertex co-occurred in a join
query Qk ∈ Q.
In sum, the graph modeling step facilitates capturing the

interaction between data-items in the form of a graph adja-
cencymatrixA, and the edge weight matrixWA representing
the relative importance of the constructed edges.

B. CDR-MULTI: HYPERGRAPH MODELING
The suitability of hypergraphs to model the associations
emanating from data-item – node and data-item – data-item
interactions has been substantiated in a plethora of works [3],
[4], [43] on geo-distributed data placement. As opposed
to edges (in traditional graphs) that can only model pair-
wise relationships, hyperedges possess the capability of
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modeling multi-way relationships by connecting several ver-
tices together using a single hyperedge. Thus, in all respects,
hypergraphs serve as a generalization over graphs, and being
a more sophisticated construct, provide a solid representation
for modeling data-item – data-node and data-item – data-item
associations.

The set EH of hyperedges constructed based on the infor-
mation manifested in the check-ins registered by the OSN
users consists of two types of hyperedges. (1) Data-request
pattern hyperedges (R): For each data-request triggered
corresponding to a user check-in, a data-request pattern
hyperedge captures data-item – data-item associations by
connecting all of its constituent data-items via a single hyper-
edge; and (2) Data-item – node hyperedges (RN ): This
hyperedge captures data-item – node associations by con-
necting each data-item contained in the data-request triggered
in response to a user check-in to the node location of the
registered check-in. The set of data-items D and nodes N
constitute the hypergraph vertex set VH , resulting in a total
of |VH | = n′ = n+ l vertices. Similarly, the hypergraph edge
set EH is composed of the data-request pattern hyperedges
R and the data-item – node hyperedges RN , totaling to
|EH | = m′ = |R| + nl hyperedges. These two sets are
formally defined as follows.

VH = D ∪N ,
EH = R ∪RN . (1)

We use a binary hypergraph incidence matrix 5 with n′

rows andm′ columns to represent the constructed hypergraph
H (VH ,EH ). Moreover, each hyperedge is represented via a
n′ × 1 binary column vector and the hypergraph contains a
total of m′ hyperedges. Mathematically,

∀hei ∈ EH , heTi = [he1,i, he2,i, . . . , hen′,i],

5 = [he1, he2, . . . , hem′ ]. (2)

An entry hej,i = 1 indicates that the jth vertex in the hyper-
graph vertex set is participating in the ith hyperedge, while
hej,i = 0 indicates otherwise.
Moving further, we discuss the hyperedge weight assign-

ment mechanisms, which lie in two broad categories cor-
responding to the aforementioned hyperedge types. These
hyperedge weights guide the optimization by focusing on
different objectives of the underlying optimization problem.
For instance, to minimize the node span S(R(v)), which is
computed as the average number of node accesses for fetch-
ing the data-items requested in a data-request pattern R(v),
WR enforces these co-occurring data-items in R(v) to be
placed in the same node by giving higher weight to data-
request pattern hyperedges. In the same vein, to minimize
the outgoing traffic cost 0(Nj), storage cost 1(Nj), and inter
node latency κ(Nj,Nj′ ), a higher preference is given towards
placement of data-items at the nodes from where they were
requested more often, by employing the use of data-item –
node hyperedge weights W0

RN
, W1

RN
, and W κ

RN
, respec-

tively. Eventually, we perform a weighted sum of the four

weighting mechanisms presented above to obtain the final
hyperedge weight matrix. Mathematically,

W5 =W · (WR,W
κ
RN

,W1
RN

,W0
RN

). (3)

where, the vector W controls the relative importance of the
aforementioned hyperedge weight assignment strategies5 to
obtain the final diagonal hyperedge weight matrix W5 of
size m′ × m′.
To summarize, the hypergraph modeling step produces

a hypergraph incidence matrix 5 and a hyperedge weight
matrix W5, where the former (5) models the higher-
order interaction between data-items and nodes, while the
latter (W5) controls the relative importance of different
hyperedges.

C. OVERLAPPING CORRELATION CLUSTERING
Overlapping clustering has been shown to possess applica-
tions in a wide-variety of research areas: community detec-
tion [29], bioinformatics [6], and information retrieval [6].
The key feature of overlapping clustering is that it allows each
data point to be assigned to more than one cluster, which is a
natural requirement for multiple real-world applications. For
example, it is highly likely for a user to be a part of more than
one community. Having motivated the importance of over-
lapping clustering, we next provide a brief summary of the
steps required to perform overlapping correlation clustering
on (hyper)graphs.
The first step requires construction of a (hyper)graph sim-

ilarity matrix, where each entry corresponds to a similar-
ity score between two vertices. Moving ahead, each vertex
is randomly assigned to at most l different clusters. The
next step is to greedily refine the cluster assignments of
each vertex (given the assignments of all other vertices is
fixed), with the objective that the similarity between any
two vertices agree as much as possible with the similarity
computed based on their cluster assignments. This two step
process: (1) (Hyper)Graph similarity computation, followed
by (2) Greedy cluster refinement, constitutes the proposed
combined data and replica placement algorithm.

V. COMBINED DATA AND REPLICA
PLACEMENT ALGORITHM
In this section, we first describe the overlapping correlation
clustering algorithm in a detailed and formal manner. Next,
we describe OverlapG and OverlapH, the combined data and
replica placement algorithms proposed in this work.
Given the set of user queries Q and user check-ins C rep-

resenting the system workload for the OLAP (CDR-Single)
and the OSN (CDR-Multi) use-case, respectively, and the set
of data-items D as input, the first step is to construct a graph
(line 2 in OverlapG) or a hypergraph (line 8 in OverlapH).
This is followed by the construction of normalized graph
(lines 3–4 in OverlapG) or hypergraph (lines 9–10 in

5Please see [3], [5], [43] for further details pertaining to the construction
of hypergraph and hyperedge weight assignment.

VOLUME 8, 2020 216901



A. Atrey et al.: UnifyDR: A Generic Framework for Unifying Data and Replica Placement

Algorithm 1 CDR Placement Algorithm
Input: D, R, N , r , l, Q, C
Output: Partitioning of the set of data-items P(D) into l

nodes allowing r replicas
1: procedure OverlapG(D,R, N , r , l, Q) F OLAP

Use-case
2: (A,WA)← ConstructGraph(D,R,N ,Q)
3: DvA← diag(

∑
A)

4: Compute normalized graph Gsim as described in
Eq. (9)

5: P(D) ← OverlappingCorrelationClustering
(V ,NG, l, r)

6: end procedure
7: procedure OverlapH(D, R, N , r , l, C) F OSN

Use-case
8: (5,W5)← ConstructHypergraph(D,R,N , C)
9: Dv5← diag(

∑
5); Dhe5← diag(

∑
5T )

10: Compute normalized hypergraph H sim as described
in Eq. (12)

11: P(D) ← OverlappingCorrelationClustering
(VH ,NH , l, r)

12: end procedure
13: return P(D)

OverlapH) similarity matrix depending upon the use-case.
The last step employs the use of the proposed overlapping
clustering algorithm (line 5 in OverlapG and line 11 in Over-
lapH) to assign each data-item d(t) or d(v) ∈ D to r < l
nodes, thereby obtaining a partitioning of D while allowing
for at most r replicas per data-item.

A. PRELIMINARIES
As a first step, we provide a description of correlation cluster-
ing. Given a normalized similarity matrix M sim representing
the pair-wise similarity between data-items, and a set N of
l labels representing nodes as input, the task of correlation
clustering is to find a mapping F : V → N for partitioning
the set of data-items into l nodes, that minimizes the follow-
ing loss function:

LCorrelate(V ,F) =
∑

(u,v)∈V×V
F (u)=F (v)

(1−M sim(u, v))

+

∑
(u,v)∈V×V
F (u)6=F (v)

M sim(u, v). (4)

Moving ahead, overlapping correlation clustering was
introduced to relax the requirement of correlation clustering
to assign each data-item to exactly one partition. This design
choice is well-motivated. For instance, in social networks a
user might be a part of multiple communities. In the context
of data placement, replication of data-items is often required
for ensuring fault-tolerance and obtaining a lower overall
communication cost.

Having said that, we leverage this feature of overlapping
clustering to obtain a partitioning of D into l nodes by
assigning each data-item to multiple nodes, thereby allowing
for replication. In overlapping clustering, this is achieved
by mapping each data-item to a label set as opposed to a
single label, where each label corresponds to a node. Given
the label set definition as the set of all subsets of nodes N
except the empty set: N+ = 2N \ {∅}, and a similarity
function over the data-item label sets S(·), the underlying
optimization objective reduces to identifying a mapping F :
V → N+ under which the similarity between any pair of
data-items ∀u, v ∈ V , M sim(u, v) agrees as much as possible
with the similarity between their corresponding label sets
S(F(u),F(v)).

Similar to the loss function for correlation clustering
LCorrelate, the loss function for overlapping correlation clus-
tering is defined as:

LOverlap(V ,F)

=

∑
(u,v)∈V×V

|S(F(u),F(v))−M sim(u, v)|,

=

∑
u∈V

∑
v∈V\{u}

|S(F(u),F(v))−M sim(u, v)|. (5)

where S(·) is defined as the set-intersection indicator
function:

S(X ,Y ) =

{
1, if X ∩ Y 6= ∅.
0, otherwise.

(6)

Formally, the goal of overlapping correlation clustering is
to find a mapping F∗ in order to minimize LOverlap(V ,F),
which is mathematically denoted as:

F∗ = argmin
F

LOverlap(V ,F). (7)

Note that for the OLAP use-case the underlying repre-
sentation is a graph, hence the set of vertices is represented
using VG while the normalized similarity matrix M sim is
represented using Gsim. Similarly, for the OSN use-case the
set of vertices is represented using VH while the normalized
hypergraph similarity matrix is denoted as H sim.

As stated in Sec. IV, overlapping correlation clustering
requires a similarity matrix denoting similarities between
each pair of vertices in the (hyper)graph as input. Thereby,
we provide a formal description of the graph and hypergraph
similarity matrix construction in the following sections.

B. CDR-SINGLE: NORMALIZED GRAPH
SIMILARITY MATRIX
To construct the normalized graph similarity matrix Gsim,
we first compute the vertex degree matrix (DvA) from the
graph adjacencymatrixA.DvA is a diagonalmatrix of dimen-
sionality n×n, which captures the number of adjacent vertices
for each vertex in the graph. Mathematically,

DvA = diag(
∑

A). (8)
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Algorithm 2 Overlapping Clustering Algorithm

Input: V , M sim, l, r
Output: Partitioning of the (hyper)graph vertex set P(V )

into l clusters allowing r replicas
1: Randomly initialize the label sets of size r for each data-

item u ∈ V
2: while LOverlap(V ,F) decreases do
3: for each u ∈ V do
4: find the label set F that minimizes LuOverlap(F |F)
5: Update F(u)← F
6: end for
7: end while
8: return P(V ) defined by F

where,
∑
X represents the row-wise sum of the input

matrix X .
Note that the methods for normalizing a similarity matrix

was described by [32], [40] for constructing the graph lapla-
cian. To this end, we mathematically define the normalized
graph similarity matrix Gsim as follows.

Gsim =
(
D−1/2vA ·A ·WA · D

−1/2
vA

)
. (9)

where,WA is a n×n edge weight matrix. Thus,Gsim becomes
a n× n matrix.

C. CDR-MULTI: NORMALIZED HYPERGRAPH
SIMILARITY MATRIX
A main requirement for constructing the normalized hyper-
graph similarity matrix H sim is the computation of two diag-
onal degree matrices from the hypergraph incidence matrix
5. (1) The vertex degree matrix Dv5 of size n′ × n′, which
measures the number of hyperedges that are connected to
each vertex, and (2) the hyperedge degree matrix Dhe5 of
size m′ × m′, which captures the number of vertices that
are connected together by each hyperedge. The two degree
matrices are mathematically defined as follows.

Dv5 = diag(
∑

5). (10)

Dhe5 = diag(
∑

5T ). (11)

where,
∑
X represents the row-wise sum of the input matrix

X and XT represents the transpose of the matrix X .
Similar to the normalization procedure for a similarity

matrix [32], [40], the normalization procedure for hyper-
graphs was defined in [50]. To this end, we mathematically
define the normalized hypergraph similarity matrix H sim as
follows.

H sim
=

(
D−1/2v5 ·5 ·W5 · D

−1
he5 ·5

T
· D−1/2v5

)
. (12)

where,Dv5 andDhe5 are diagonal matrices of size n′×n′ and
m′ × m′ storing vertex and hyperedge degrees, respectively.
Moreover, W5 is a m′ × m′ diagonal matrix representing
hyperedge weights. With this, the dimensionality of the nor-
malized hypergraph similarity matrix H sim becomes n′ × n′.

Having described the (hyper)graph similarity matrix con-
struction, we next discuss the optimization approach for per-
forming overlapping clustering.

D. GREEDY CLUSTER REFINEMENT
Overlapping correlation clustering cannot be solved opti-
mally in polynomial time as it is a NP-Hard problem [6].
Thus, we employ the use of an iterative greedy algorithm
focused on improving the label set quality of one vertex at a
time. More specifically, keeping the label sets of all the other
vertices in the (hyper)graph as fixed, the greedy algorithm
applies a local optimization (on one vertex) to improve the
cost of the overall solution until convergence. The steps for
performing overlapping correlation clustering are portrayed
in Algorithm 2.

The first step requires initializing each vertex u ∈ V
with a set of cardinality r consisting of randomly assigned
labels (line 1). This initialization allows each data-item to be
simultaneously assigned to r different nodes. Next, the afore-
mentioned greedy local optimization approach is applied to
iteratively refine the label sets of each vertex (lines 2–7).
More specifically, the label set of each node u ∈ V is iter-
atively improved while keeping the label sets of all the other
nodes fixed, until the overall loss LOverlap(V ,F) converges.
Note that Eq. (5) is reformulated to clearly depict the loss with
respect to each node u, and is stated as follows.

L(V ,F) =
∑
u∈V

LuOverlap(F(v) | F). (13)

where,

LuOverlap(F(v) | F)

=

∑
v∈V\{u}

|S(F(u),F(v))−M sim(u, v)|. (14)

VI. EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed
UnifyDR framework in solving the CDR-Single and CDR-
Multi problems through experiments on data simulated using
a decision support benchmark, and data extracted from a large
scale location-based OSN respectively. We perform experi-
ments with algorithms implemented in C++ on an Intel(R)
Xeon(R) E5-2680 v3 24-core machine with 2.5 GHz CPU
and 256 GB RAM running Linux Ubuntu 18.04. Results cor-
responding to all the methods (barring Nearest) are averaged
over 10 runs.

A. CDR-SINGLE
1) DATASET
In accordance with the state-of-the-art for data placement
research in scientific workflows [17], we incorporate the
use of data simulated based on the TPC6 decision support

6The transaction processing performance council (TPC) is a non-profit
organization with the focus of defining benchmarks for transaction process-
ing in databases.
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(TPC-DS) benchmark [11]. The TPC-DS benchmark pro-
vides an appropriate medium to study the OLAP use-case
as it facilitates modeling of various performance aspects of
a decision support system, such as query execution and data
maintenance. The benchmark contains a total of 24 database
tables (7 fact and 17 dimension tables) corresponding to data-
items. Additionally, it contains 99 queries that represent the
system workload.

2) SETUP
A real-world distributed execution environment is simulated
by partitioning the 24 data-items in l nodes. The number of
nodes l is varied from 2 to 8. Since usually the fact tables
are significantly larger than the dimension tables, the size
of the data-items corresponding to the fact tables is chosen
from the range [50, 100] units, while those corresponding
to the dimension tables is chosen from the range [1, 10].
Furthermore, let the total size of all the data-items be
S =

∑
t∈T size(d(t)) and the size of the largest data-item be

Smax , then the storage capacity of each node Nj ∈ N is set
as max(S/l, Smax). This is because the storage capacity of a
node is dependent upon the total size of all the data-items as
well as the size of the largest data-item.

In summary, the CDR placement task for the OLAP use-
case reduces to partitioning 24 data-items corresponding to
the database tables into {2, 4, 8} nodes respectively based on
the data-request patterns triggered from 99 user queries.

Baselines:We considered the following two baselines.
• Random: obtains a placement by randomly partitioning
the set of data-items D into |N | nodes.

• Bipartite graph partitioning (Metis): is the placement
algorithm proposed in [17], which constructs a bipartite
graph of the set of queries Q and the set of tables D(T ),
and employs Metis [25] to perform graph partitioning.
The authors tackle replica placement using a heuristic
termed H2.

As discussed in Sec. II, Metis (with the replication heuris-
tic H2) [17] serves as the representative state-of-the-art
method for data placement and replication of data-intensive
scientific workflows.

Parameters: The parameters for Metis are set based on
the recommendations by the authors of [17], where k-way
partitioningwith 1000 cuts and 1000 iterations is used. Lastly,
we fix the replication factor r to 3 based on best practices
prescribed in the field of data storage management [20].

Evaluation Metrics: The metrics used to evaluate the
effectiveness of OverlapG in solving the CDR-Single prob-
lem are stated as follows:
• Efficiency: The execution time, which is measured as
the time required to obtain CDR placement, is used to
evaluated the efficiency of the methods benchmarked in
this study.

• Efficacy: is measured using the node span S(·) of data-
request patterns, which is defined as the average num-
ber of node accesses required to fetch the data-items
requested in a query Qk corresponding to a request

pattern R(Qk ). The average of the node spans of each
data-request pattern ∃Qk ∈ Q : R(Qk ) ∈ R represents
the span of the entire system workload.

Note that we normalize the node spans obtained from
different techniques in the scale of [0, 1] as it provides an intu-
itive way to analyze their relative performance. Furthermore,
since the optimization problem underneath CDR-Single is
concernedwith theminimization of node span, smaller values
imply better performance.

3) RESULTS
Figs. 5a– 5d present the results for the CDR-Single problem
on the considered evaluation metrics. We compare OverlapG
with the considered baselines on two settings: (1) no repli-
cation (r = 0), and (2) with replication (r = 3). This
analysis is performed to showcase the backward compatibil-
ity of overlapping clustering. In other words, it indicates the
ability of overlapping clustering to assign each data-item to
one and only one node. Fig. 5a shows that OverlapG produces
a node span similar toMetis, which is the current state-of-the-
art. Furthermore, both OverlapG and Metis are significantly
better when compared to the Random baseline, thereby por-
traying their ability to effectively capture data-item – data-
item associations. Having said that, we also compare the
execution time of OverlapG with Metis under this setting.
Fig. 5c shows that both techniques require a similar amount
of time, 2.3 – 4.6 seconds for Metis and 2.6 – 4.9 seconds for
OverlapG, to perform data placement. Note that the execution
time of OverlapG is slightly on the higher side owing to the
relatively higher complexity of the optimization.

Having analyzed the ability of OverlapG to perform data
placement (without replication r = 0), we next evaluate its
ability to effectively solve the CDR-Single problem. As dis-
cussed previously, for this analysis we consider the setting
where each data-item can possess at most 3 replicas (r = 3).
It is evident from Fig. 5b that OverlapG significantly outper-
forms the Random baseline, while also achieving a reduction
of around 30% in node span when compared to Metis+H2.
This reduction is attributed to the ability of OverlapG to
jointly optimize for data and replica placement in a unified
manner. On the contrary, the two-step approach of performing
data placement using Metis followed by replica placement
using a heuristic (H2) falls short of finding a high quality
solution to the CDR-Single problem. Furthermore, as shown
in Fig. 5d it is interesting to note that OverlapG achieves
a speed-up of around 20% over Metis+H2 as well. While
OverlapG possessed a slightly higher execution time when
compared to Metis for r = 0, it is faster when compared
to Metis+H2 for r = 3. The main reason behind this is the
requirement of executing two algorithms (Metis and H2) on
the entire workload for the latter.

In summary, our experimental evaluation portrays the
effectiveness of OverlapG in solving the CDR-Single prob-
lem. Additionally, its ability to perform data and replica
placement in a single step allows for a better and unified
system design.
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FIGURE 5. Analyzing the performance of OverlapG on the considered evaluation metrics. OverlapG achieves (a) a similar node span S(·) as Metis when
r = 0; while (b) it results in a reduction of ≈ 31% when compared to Metis+H2 with r = 3. The execution time of OverlapG is (c) similar to Metis for
r = 0, while it is (d) ≈ 1.3 times faster than Metis+H2 for r = 3.

B. CDR-MULTI
1) DATASET
We use the publicly available Gowalla7 social network
dataset, as it is a popular choice in the data placement liter-
ature on geo-distributed cloud services [3], [43]. The dataset
consists of 196591 social network users (represented via ver-
tices in the social network), and 950327 friend relationships
(represented via edges). Additionally, the dataset provides
information pertaining to user behavior. It contains 6442890
check-ins registered by social network users between
February, 2009 and October, 2010, triggering 102314 unique
data-request patterns in total.

2) SETUP
The AWS global infrastructure [2] is used as a basis for
simulating a geographically distributed cloud execution envi-
ronment. Following convention in the literature [3], [41],

7http://snap.stanford.edu/data/loc-gowalla.html

the l = 9 oldest AWS data center (node) regions8—
California, Frankfurt, Ireland, Oregon, Sao Paulo, Singapore,
Sydney, Tokyo, and Virginia—are used to setup our experi-
ments. The traffic and storage costs for each node are set as
advertised by Amazon. Furthermore, we use the Linux ping
command [38] to obtain the packet transfer latency between
the chosen node regions, which provides a good estimate
of their inter node latency. The aforementioned steps enable
us to closely mimic the real AWS execution environment.
Table 1 presents the node characteristics.

Based on our analyses, we identified the existence of
disparity in the user check-in behavior. More specifically,
while there exist nodes that receive a huge number of check-
ins (e.g., Frankfurt and Virginia), there are others where
only a few check-ins are registered (e.g., Sydney and Sao
Paulo). Having said that, both the number and the size (mea-
sured as the size of the triggered data-request pattern) of the

8These regions are listed in alphabetical order.
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TABLE 1. (a) Traffic and Storage Costs, and (b) Inter Node Latency based on Geo-distributed Amazon Clouds.

check-ins registered in a region dictate the storage capacity
required at each node. The storage capacity of each node
∀Nj ∈ N is therefore computed as Sj =

∑
|R(v)| :

∃Ck = (R(v),Lj),Lj = Nj.loc ∈ L.
In summary, the CDR placement task for the OSN use-

case reduces to distributing 196591 data-items corresponding
to OSN users into 9 nodes based on 102314 data-request
patterns triggered from user check-ins.

Baselines:We consider the following four baselines.

• Random: obtains a placement by randomly partitioning
the set of data-items D into |N | nodes.

• Nearest: produces a placement by assigning each data-
item to the node with the highest number of requests for
that data-item.

• Hypergraph Partitioning (Hyper): partitions the
hypergraph induced on data-items and nodes using algo-
rithms from the PaToH toolkit [7] to produce the data
placement output. Hyper was proposed in [41], [43].

• Spectral Clustering (Spectral): obtains a place-
ment using spectral clustering on hypergraphs and
achieves superior efficiency by leveraging randomized
eigendecomposition methods. Spectral was proposed
in [5].

Recall that as described in Sec. II, the representative state-
of-the-art for data placement and replication of data-intensive
services into geographically distributed clouds is comprised
of the techniques Spectral [5] and Hyper [43].

Parameters: The weight vector W (Eq. (3)) is one of the
most important parameters for tuning the optimization under-
lying Spectral, Hyper, and OverlapH algorithms. It enables
preferred optimization of certain chosen evaluation metrics
over others by controlling the relative importance of different
hyperedge weights described in Sec. IV-B. For our exper-
iments, we have employed the use of 4 different settings
of the parameter W, namely W1 : {100, 1, 1, 1}, W2 :

{1, 100, 1, 1}, W3 : {1, 1, 100, 1}, and W4 : {1, 1, 1, 100}
for minimizing the node span S(·), inter node traffic 0(·),
inter node latency κ(·), and storage cost 1(·), respectively.
Note that the value 100 used to obtain different weight-vector
settings W1–W4 is only indicative of the higher relative
importance provided to the metric under consideration. Hav-
ing said that, any value� 1 should facilitate reproducibility
of the main findings in the presented results, as the observed
trends do not depend on the chosen value 100. Unless stated

otherwise, spectral clustering is performed by using the 100
smallest eigenvectors of the hypergraph laplacian. Similar to
the parameter setting for CDR-Single (Sec. VI-A2), we fix
the replication factor r to 3.
Evaluation Metrics: The metrics used to evaluate the

effectiveness of OverlapH in solving the CDR-Multi problem
are stated as follows.
• Efficiency: Similar to the CDR-Single case
(Sec. VI-A2), efficiency of the methods is measured
using their execution time.

• Efficacy: is measured using multiple metrics,9 namely
the node span S(·) (Span), outgoing traffic cost 0(·)
(Traffic), inter node latency κ(·) (Latency), storage cost
1(·) (Storage), and a weighted sum (Obj) of the four
aforementioned metrics using the weights prescribed
byW.

Similar to the CDR-Single case (Sec. VI-A2), we
normalize the results obtained from different techniques cor-
responding to each evaluation metric in the scale of [0, 1]
as it provides an intuitive way to analyze their relative per-
formance. Furthermore, normalization ensures equal and fair
contribution of each evaluation metric towards Obj as all
values lie in the common range [0, 1]. Lastly, it is impor-
tant to note that since the optimization problem underneath
CDR-Multi is concerned with the minimization of the afore-
mentioned evaluation metrics, smaller values imply better
performance.

3) RESULTS: EFFICACY
It is evident from the results portrayed in Figs. 6a– 6d that
OverlapH is the best performing technique in terms of the
weighted sum of the considered metrics, i.e., Obj, which
is observed across each of the four different weight vector
settings W1–W4 considered in the evaluation. Specifically,
OverlapH substantially outperforms Random and Nearest,
and is around 30–40% and 20–30% better when compared
to Hyper and Spectral, respectively.

Redirecting our focus to other evaluation metrics, it can be
noticed that Nearest outperforms Hyper, Spectral, and Over-
lapH in some cases, however, the latter are still significantly
better than the Randommethod. For instance consider Fig. 6a,
it can be observed that Nearest is better on the inter node
traffic and latency metrics. This is because according to the

9For details on these metrics, please see Sec. 5.2 of [4].
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FIGURE 6. Analyzing the effect of different weight-vector settings on the evaluation metrics. OverlapH results in reducing the (a) node span S(·) by
≈ 35% when compared to Spectral with W1 = {100,1,1,1}; (b) inter node traffic 0(·) by ≈ 26% when compared to Spectral with
W2 = {1,100,1,1}; (c) inter node latency κ(·) by ≈ 38% when compared to Spectral with W3 = {1,1,100,1}; (d) storage cost S(·) by ≈ 24% when
compared to Spectral with W4 = {1,1,1,100}.

weight vector settingW1, minimizing the node span holds the
highest priority while traffic and latency metrics have lower
weights in the optimization objective. A similar behavior is
observed for the other three weight vector settings: W2, W3,
and W4 as well (Figs. 6b– 6d). To understand this observed
behavior better, let us analyze the results presented in Fig. 6d.
It is not hard to infer that storage cost might be inversely
related to other parameters such as inter node latency and
traffic. Therefore, preferentially optimizing to achieve lower
storage costs (W4) thereby also obtaining better performance
on Obj, might lead a technique to suffer on other metrics,
i.e., a lower storage cost might lead to higher latencies or
traffic cost. Despite this behavior, most importantlyOverlapH
significantly outperforms all the considered baselines on the
corresponding evaluation metric that the weight-vector set-
ting is tuned to optimize. More fundamentally, in addition to
being better on Obj, OverlapH outperforms the other methods
in minimizing the node span S(·), inter node traffic cost 0(·),
inter node latency κ(·), and storage cost 1(·), when a higher

preference is given to these metrics under the weight-vector
settingsW1,W2,W3, andW4 respectively.

Moving ahead, we analyze the reason behind the sub-
optimal performance of the Nearest method. The main lim-
itation is that Nearest is inclined to assign each data-item to
a node that receives the highest number of access requests
for that data-item, which consequently results in minimizing
(on an average) the geographical distance between the data-
item and the source location of the data-request. Note that this
optimization strategy is oblivious to the fact that the storage or
traffic costs might not be correlated with the distance, thereby
leading to sub-optimal performance in real-world settings that
require multi-objective optimization. We also refer the reader
to Table 2, which presents a quantitative summary of the
performance of all the considered baselines indicating how
worse each baseline is relative to OverlapH.

Based on the above analysis, it is clear that Hyper, Spec-
tral, and OverlapH possess the capability to adapt the opti-
mization based on the input weight vector setting. This is

VOLUME 8, 2020 216907



A. Atrey et al.: UnifyDR: A Generic Framework for Unifying Data and Replica Placement

TABLE 2. Quantifying the performance of the considered baselines
relative to OverlapH on the evaluation metrics.

FIGURE 7. Comparing the execution time of OverlapH with spectral
clustering [5] and hypergraph partitioning [43] algorithms.

because of their higher-order modeling capabilities cour-
tesy hypergraphs, which renders them better suited for
performing multi-objective optimizations. Further, since
OverlapH models data placement and replication as a
joint optimization problem (CDR-Multi), it achieves bet-
ter performance on the evaluation metrics when com-
pared to both Hyper and Spectral that solve each problem
independently.

4) RESULTS: EFFICIENCY AND SCALABILITY
In this section, we analyze the execution time performance
of Hyper, Spectral, and OverlapH—the three techniques that
stand out in terms of performance on efficacy related eval-
uation metrics (Sec. VI-B3)—on the Gowalla dataset. It is
evident from Fig. 7 that OverlapH substantially outperforms
Hyper and Spectral in terms of execution time efficiency.
Specifically, OverlapH achieves an average speed-up of
≈ 4–5 and ≈ 2–3 times over and above Hyper and Spectral,
respectively. The capability of scaling to large datasets is
a desired property in any CDR placement algorithm. Over-
lapH, with its ability to gracefully scale to large scale social
networks, stands strong on this requirement, thereby being
highly advantageous in real-world scenarios when compared
to Hyper and Spectral.

To summarize, our extensive experimental evaluation por-
trays the efficiency, scalability, and effectiveness of OverlapH
in solving the CDR-Multi problem. Additionally, its ability to
perform data and replica placement in a single step allows for
a better and unified system design.

VII. CONCLUSION AND FUTURE WORK
The problem of combined data and replica placement has
been addressed in this article. Although replication is an
integral part of data placement, we identified that most
of the techniques in the literature do not address the two
placement steps as a single joint optimization problem, but
rather treat them as two independent problems. Hence, exist-
ing techniques employed a two-stage approach: perform-
ing data placement followed by replica placement. Conse-
quently, with the objective of combining data and replica
placement we proposed a unified paradigm, called CDR,
which facilitates the two problems to be studied jointly.
We proposed two variants of the CDR problem: CDR-Single
and CDR-Multi with applicability in addressing use-cases
under two interesting real-world application domains: OLAP
and OSN, respectively. To effectively solve the CDR prob-
lem (and its variants), we proposed a generic framework,
called UnifyDR, which possessed the capability to unify
data and replica placement. We also proposed two algo-
rithms, namely – OverlapG and OverlapH, possessing the
capability of partitioning a set of data-items by allowing
each data-item to be assigned to multiple nodes, thereby
facilitating joint optimization of data and replica place-
ment. While OverlapG performed overlapping correlation
clustering on a graph to address the CDR-Single problem,
the OverlapH algorithm performed overlapping clustering on
hypergraphs for solving the CDR-Multi problem. To eval-
uate the effectiveness and efficiency of the proposed algo-
rithms OverlapG and OverlapH, we performed experiments
on data simulated using a decision support benchmark and a
trace-based social network dataset respectively. It was iden-
tified that the proposed algorithms are approximately 20–
30% better on the evaluated metrics while being 2–8 times
faster.

Currently, UnifyDR and its algorithms (OverlapG and
OverlapH) perform a static analysis of the considered work-
load to learn a data and replica placement strategy. In other
words, they lack the ability to manage dynamic workloads.
In the future, the focus will be to make UnifyDR and the
underlying algorithms capable of handling updates in the
data in an online manner, and dynamically updating the CDR
placement output.
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