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Abstract
Neurotransmitter diseases are a well-defined group of metabolic conditions caused, in most instances, by genes specifically
expressed in the presynaptic button. Better understanding of presynaptic molecular physiology, both in normal and pathological
conditions, should help develop therapeutical strategies. The clinical relevance of the presynapse in inherited metabolic disorders
is in glaring contrast with that of the postsynaptic component, which so far does not seem to play a relevant role in these disorders.
This is somewhat surprising, as postsynaptic proteins are known to be involved in many nervous system diseases, particularly in
neurodevelopmental and psychiatric disorders. The goal of this article is to explore if defects in the sophisticated postsynaptic
machinery could also have a role in neurometabolic disorders.

Introduction

Synapses are pivotal in cognition and behaviour, as they de-
code and store sensorial information. For this reason, they are
very often involved in the pathophysiology of mental disor-
ders. Synapses are typically divided in three compartments:
the presynaptic button, the synaptic cleft and the postsynaptic
element. The postsynaptic element of glutamatergic synapses,
which represent the vast majority of central nervous system
synapses (Beaulieu and Colonnier 1985; von Bohlen Und
Halbach 2009; Defelipe et al. 2002), has a unique morpholo-
gy, which is essential to its function. This structure was first
described by Santiago Ramón y Cajal who named it ‘dendritic
spine’ (Yuste 2015). Dendritic spines are dynamic protrusions
of the postsynaptic membrane that present a bulbous head
connected to the dendritic shaft through a thin neck (von

Bohlen Und Halbach 2009). Another characteristic feature
of dendritic spines is the presence of a very large protein
complex beneath the postsynaptic membrane, the postsynap-
tic density (PSD). Recent large-scale proteomics experiments
have produced a very detailed catalogue of the proteins which
are present at the PSD, identifying hundreds of different pro-
teins (Bayés and Grant 2009; Bayés et al. 2012, 2017; Distler
et al. 2014; Focking et al. 2016; Roy et al. 2018). Paramount
among PSD proteins are neurotransmitter receptors, which
mediate the propagation of the incoming action potentials.
Nevertheless, the PSD contains many other protein types,
which participate in the translation of the electrical input into
chemical signals, which ultimately drive the functional state of
the synapse (Boeckers 2006; Kim and Sheng 2009; Sheng and
Kim 2011; Dosemeci et al. 2016).

Neurotransmitter disorders are a group of inherited
neurometabolic syndromes that are primarily caused by an al-
tered bioavailability of neurotransmitter at the synapse (Pearl et
al. 2007; Hoffman and Blau 2014; Marecos et al. 2014; Ng et
al. 2015; Cortès-Saladelafont et al. 2016). They are generally
caused by pathogenic mutations in genes expressed at the axon
terminal. These code for enzymes involved in the synthesis or
degradation of neurotransmitters. Nevertheless, genes coding
for proteins responsible for neurotransmitter release and reup-
take have also been reported mutated in these conditions. The
presynaptic space has thus an important role in neurometabolic
disorders. Pathophysiological descriptions of neuronal dys-
function in many other classic inborn errors of metabolism
(intoxication disorders, energy defects and complex molecule
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defects) have been mainly described from a presynaptic per-
spective. This circumstance is in strong contrast with our un-
derstanding of the postsynaptic role in neurometabolic disor-
ders. In this article, I explore what is known about the main
metabolic pathways functioning at the postsynapse and their
potential relevance in the field of neurometabolic disorders.

Postsynaptic metabolic pathways

A close inspection to the postsynaptic proteome should
readily inform us about the key metabolic pathways oper-
ating in it. To achieve this purpose, I have looked for
molecular pathways in a reference PSD proteome (Bayés
et al. 2017) using the information contained in the
‘Reactome Pathways Database’ (Fabregat et al. 2018).
The bioinformatics analysis tools provided by ‘Panther
Classification System’ (Mi et al. 2016) have been used
to identify metabolic pathways significantly enriched in
the PSD, as previously reported (Bayés et al. 2012;
Reig-Viader et al. 2018). If a pathway is significantly
enriched in the PSD, it means that it presents a higher
number of components than would be expected by
chance. The vast majority of pathways that have been
identified in this exercise are intracellular signal transduc-
tion pathways (see Supplementary Table 1), which is in
accordance with our current knowledge of the molecular
characteristics of the postsynaptic proteome (Boeckers
2006; Kim and Sheng 2009; Sheng and Kim 2011;
Bayés et al. 2012; Dosemeci et al. 2016). These pathways
typically involve the activation of membrane receptors, G-
proteins or small GTPases that result in a series of molecular
events, mostly phosphorylation cascades, which ultimately
promote changes in cellular physiology. Nevertheless, a num-
ber of canonical metabolic pathways could be identified in the
postsynaptic machinery. These are primarily related to the
energetic and protein metabolisms (Table 1). However, if
one considers the expanded definition of inborn errors of me-
tabolism (IEM), in which dysfunctions of protein traffic are
also regarded as metabolic conditions (García-Cazorla and
Saudubray, this issue), the list of postsynaptic metabolic
pathways is extended (Table 1 and Fig. 1). Interestingly,
this analysis also revealed that while the presynaptic but-
ton presents a set of specific metabolic pathways, the
postsynaptic element does not seem to contain a similarly
unique metabolism. With the exception of a pathway in-
volved in the trafficking of α-amino-3-hydroxy-5-methyl-
4-isoazolepropionic (AMPA) glutamate receptors, post-
synaptic metabolic pathways underlay basic cellular func-
tions. This is relevant, as it means that proteins involved
in these processes are not unique to the postsynapse and
thus a direct link between a mutation and a postsynaptic
role in disease would not be straightforward.

Energetic metabolism at the postsynapse

The presence at the presynaptic button of glucose transporters,
glycolytic enzymes and mitochondria is well documented
(Jang et al. 2016; Ashrafi et al. 2017). These importantly con-
tribute to the energetic demands posed by presynaptic activity
(Harris et al. 2012; Rangaraju et al. 2014). On the other hand,
our understanding of the energetic machinery present at the
postsynaptic side is by no means well established. The exis-
tence of glucose transporters and glycolytic enzymes in the
postsynapse is still controversial. Furthermore, mitochondria
do not have access to dendritic spines, remaining in dendritic
shafts (Li et al. 2004; von Bohlen Und Halbach 2009).
Actually, mitochondrial ATP is thought to freely diffuse into
the spine head (von Bohlen Und Halbach 2009), instead of
being actively transported there. This is particularly puzzling
if we consider that most brain energy is consumed by synap-
ses, andwithin synapses, restoring the postsynaptic membrane
potential alone requires 50% of all its energetic demand
(Attwell and Laughlin 2001; Harris et al. 2012).

Several PSD proteomics experiments have identified glu-
cose transporters 1 (GLUT1) and 3 (GLUT3), the former be-
ing more frequently reported (Fernandez et al. 2009; Bayés et
al. 2011, 2012, 2017; Distler et al. 2014; Focking et al. 2016).
Other glucose transporters are normally not found in proteo-
mic analyses of postsynaptic preparations. Nevertheless, these
studies commonly find GLUT1 and GLUT3 in low amounts,
so that, without evidence from other methodological ap-
proaches, their location at the postsynapse remains somewhat
uncertain. The literature on brain cells expressing GLUT1 is
neither fully conclusive. While there is evidence that GLUT1
is expressed in blood vessels and astrocytes, its expression in
neurons cannot be discarded (Leino et al. 1997; Simpson et al.
2007; Jurcovicova 2014). Instead, the expression of GLUT3
in neurons is well documented (Leino et al. 1997; Simpson et
al. 2007; Jurcovicova 2014). The presence of GLUT3 at syn-
apses has been confirmed by an immunofluorescence co-
localisation experiment, although its precise sub-synaptic lo-
cation (pre- vs. postsynaptic) could not be fully established
(Ferreira et al. 2011).

Proteomics experiments also report glycolytic enzymes at
the PSD (Fernandez et al. 2009; Bayés et al. 2011, 2012, 2017;
Distler et al. 2014; Focking et al. 2016). Actually, these arti-
cles usually identify the complete set of glycolytic enzymes.
Nevertheless, to the best of my knowledge, the location at the
PSD of glycolytic enzymes has only been proven once using
other experimental approaches (Wu et al. 1997). In this sem-
inal article, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was localised to the PSD by electron microscopy
using specific antibodies. Furthermore, the activity of phos-
phoglycerate kinase (PGK), GAPDH and lactate dehydroge-
nase (LDH) was measured in biochemical preparations of
postsynaptic densities proving that ATP can be synthesised
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at the PSD. This pioneer work suggests that some of the ATP
consumed at the PSD would be locally produced via glycoly-
sis, instead of coming from dendritic mitochondria. They also
suggest that some postsynaptic functions require an instant
and spatially controlled supply of ATP. As it occurs in synaptic
vesicles, which contain both GAPDH and PGK that produce
ATP in a highly localised manner for efficient neurotransmit-
ter loading (Ikemoto et al. 2003). Further research will be
required to completely clarify if glycolytic enzymes play a
relevant function at the PSD, and if their malfunction could
have a role in disease. Besides glycolysis, the pathway
‘Translocation of GLUT4 to the plasma membrane’ has also

been found enriched among PSD proteins (Table 1). Out of the
67 proteins that constitute this pathway, 38 are at the PSD,
representing a sixfold enrichment fromwhat would be expect-
ed by chance (Fisher’s exact test p = 9.5 E-14, Supplementary
Table 1). Nonetheless, it is important to remark that GLUT4 is
not found in the postsynaptic proteome, neither has it ever
been localised to dendritic spines using alternative experimen-
tal approaches. Thus, these 38 proteins might be involved in
the traffic of other glucose transporters.

Finally, the postsynaptic proteome presents many proteins
involved in the Krebs cycle and oxidative phosphorylation
(see Supplementary Table 1), two metabolic processes that

Fig. 1 Schematic representation
of a glutamatergic synapse
indicating major metabolic
pathways identified in the
postsynaptic proteome. Proteomic
evidence suggests that the glucose
transporters GLUT1 and GLUT3
as well as the entire glycolytic
pathway (represented as a yellow
circle) would be present at the
postsynaptic site. Confirmation of
this observation with alternative
methodological approaches
would be required to confidently
locate the glycolytic pathway
within the PSD. Polysomes, for
protein synthesis, and the
proteasome, for protein
degradation, are shown to
represent the enrichment in the
PSD of pathways related to
protein metabolism. Finally, the
traffic of AMPA receptors in and
out of the postsynaptic membrane
is also shown, indicating the
endocytic zones where clathrin-
mediated endocytosis of AMPA
receptors occurs

Table 1 Postsynaptic metabolic pathways

Pathway name Pathway code Postsynaptic proteins
in pathway

Energetic metabolism

Glycolysis R-MMU-70171 9

Translocation of GLUT4 to the plasma membrane R-MMU-1445148 38

Protein metabolism

Protein translation R-MMU-72766 62

Chaperonin-mediated protein folding R-MMU-390466 22

Different proteasome pathways R-MMU-5610785; R-MMU-195253; R-MMU-5610780 33

Endocytosis and traffic of neurotransmitter receptors

Trafficking of AMPA receptors R-MMU-399719 25

Clathrin-mediated endocytosis R-MMU-8856828 43
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occur within mitochondria although, as has been already men-
tioned, these are absent from the postsynaptic compartment.
Nevertheless, the presence of contaminating mitochondria in
biochemical preparations of the PSD is as well documented as
difficult to avoid (Carlin et al. 1980). Mitochondrial proteins,
and the pathways they are involved in, are not considered as
true components of the PSD.

Protein metabolism at the postsynapse

Protein synthesis is required for the long-term changes in syn-
aptic plasticity that underpin the formation of long-lasting
memories (De Robertis and Bennett 1954; Palade and Palay
1954; Gray 1959; Martin et al. 2000). One of the first indica-
tions that proteins are synthesised outside the cell soma was
actually obtained from the observation of polysomes at neu-
ronal dendrites, close to postsynaptic spines (Steward and
Levy 1982; Spacek 1985). Later, polysomes were shown to
selectively enter dendritic spines that had been stimulated to
produce a long-term potentiation (Ostroff et al. 2002). On the
bases of all these findings, it should not come as a surprise that
several molecular pathways related to protein metabolism ap-
pear as enriched at the postsynapse (Table 1 and Fig. 1). These
include pathways involved in protein translation but also path-
ways important for protein turnover, such as ‘Chaperonin-me-
diated protein folding’ and protein degradation via the protea-
some. The control of protein degradation by the ubiquitin
proteasome pathway is tightly regulated at postsynaptic den-
dritic spines (Ehlers 2003). As it occurs for polysomes, the
proteasome complex also displays a dynamic localisation be-
tween dendritic shafts and spines, which is under the control
of synaptic activity (Bingol and Schuman 2006).

Traffic of AMPA glutamate receptors
and postsynaptic endocytosis

AMPA glutamate receptors (AMPAR) are the main drivers of
fast excitatory neurotransmission. As a general rule, an in-
crease in AMPAR at the synapse results in synaptic potentia-
tion, while the opposite results in synaptic depression
(Shepherd and Huganir 2007). Thus, their traffic in and out
of the postsynaptic membrane is tightly regulated (Anggono
and Huganir 2012). The insertion of AMPARs in the postsyn-
aptic membrane occurs via exocytosis of cytosolic vesicles
containing these receptors and later lateral diffusion towards
the PSD. Similarly, endocytosis is required to remove
AMPAR from the synapse. The areas of endocytosis at den-
dritic spines have been termed endocytic zones (Racz et al.
2004); these promote clathrin-mediated endocytosis of
AMPARs and other cargo leaving the synapse. Proteins in-
volved in AMPAR traffic and clathrin-mediated endocytosis
are involved in the last two metabolic pathways characteristic
of the postsynaptic machinery (Table 1). Because of the

specialised machinery involved in AMPAR traffic, this path-
way is likely to be the only metabolic pathway really specific
to the postsynaptic proteome.

Postsynaptic metabolic disorders

As previously introduced, neurometabolic disorders are inti-
mately associated with presynaptic physiology. The notion of
postsynaptic metabolic disorders is, at this point, rather spec-
ulative, with hardly any scientific literature supporting it. It is
plausible that neurotransmitter diseases will secondarily alter
postsynaptic physiology. Actually, this has already been re-
ported for the creatine transporter deficiency, which results
in increased synaptic levels of creatine and a prolonged stim-
ulation of GABA receptors, to which the postsynaptic neuron
responds by reducing the number of inhibitory synapses
(Salomons et al. 2003). Similar pathophysiological mecha-
nisms have been shown for the SSADHD deficiency (Pearl
et al. 2009; Reis et al. 2012). Nevertheless, in this section, I
wish to explore if there is evidence suggesting that primary
dysfunction of the postsynaptic metabolic pathways described
above could be involved in neurological conditions. To
achieve this goal, we have looked for those genes coding for
proteins involved in postsynaptic metabolic pathways that
when mutated cause inherited brain conditions. It is important
to keep in mind that most postsynaptic metabolic pathways
are not exclusive to the postsynapse. Thus, their mutation will
not necessarily imply a clinically relevant affectation of the
postsynaptic physiology.

Fifty-three PSD proteins involved in metabolic
pathways cause inherited disease

The ‘OnlineMendelian Inheritance inMan’ (OMIM) database
(McKusick 2007) was first used to identify proteins from
postsynaptic metabolic pathways causing disease. I later gath-
ered the individual symptoms that constitute these conditions
from the ‘Human Phenotype Ontology’ (HPO) database
(Köhler et al. 2017), which systematically brakes down clin-
ical conditions into their main symptoms (or phenotypes).
According to OMIM, of the 232 PSD proteins involved in
postsynaptic metabolic pathways, 53 cause inherited clinical
disorders. Table 2 lists these proteins with the name of the
disease they are involved in. As some genes cause more than
one condition, the total number of medical conditions caused
by these 53 genes raises to 60.

Most inherited diseases caused by metabolism
proteins in the PSD show neurological symptoms

The phenotypic information obtained fromHPO allowed us to
identify those clinical conditions from OMIM that present
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Table 2 Proteins involved in postsynaptic metabolic pathways that cause inherited diseases

Pathway Gene name Disease (OMIM) OMIM ID

Energetic metabolism

Glycolysis (including glucose transporters)

ALDOA GLYCOGEN STORAGE DISEASE XII 611881

HK1 NEUROPATHY, HEREDITARY MOTOR AND SENSORY, RUSSE TYPE 605285

PFKM GLYCOGEN STORAGE DISEASE VII 232800

SLC2A1 GLUT1 DEFICIENCY SYNDROME 2 612126

TPI1 TRIOSEPHOSPHATE ISOMERASE DEFICIENCY 615512

Translocation of GLUT4 to the plasma membrane

MYH9 (1) SEBASTIAN SYNDROME 605249

MYO5A GRISCELLI SYNDROME, TYPE 1 214450

TUBA4A AMYOTROPHIC LATERAL SCLEROSIS 22 616208

TUBA8 CORTICAL DYSPLASIA, COMPLEX, WITH OTHER BRAIN MALFORMATIONS 8 613180

TUBB2A CORTICAL DYSPLASIA, COMPLEX, WITH OTHER BRAIN MALFORMATIONS 5 615763

TUBB2B CORTICAL DYSPLASIA, COMPLEX, WITH OTHER BRAIN MALFORMATIONS 7 610031

TUBB3 FIBROSIS OF EXTRAOCULAR MUSCLES, CONGENITAL, 3A 600638

YWHAE MILLER-DIEKER LISSENCEPHALY SYNDROME 247200

YWHAG EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 56 617665

Protein metabolism

Protein translation

RPL21 HYPOTRICHOSIS 12 615885

RPL26 DIAMOND-BLACKFAN ANEMIA 11 614900

RPS10 DIAMOND-BLACKFAN ANEMIA 9 613308

RPS19 DIAMOND-BLACKFAN ANEMIA 1 105650

RPS28 DIAMOND-BLACKFAN ANEMIA 15 606164

RPS29 DIAMOND-BLACKFAN ANEMIA 13 615909

RPS14 CHROMOSOME 5q DELETION SYNDROME 153550

RPL11 DIAMOND-BLACKFAN ANEMIA 7 612562

RPL35A DIAMOND-BLACKFAN ANEMIA 5 612528

RPS23 BRACHYCEPHALY, TRICHOMEGALY, AND DEVELOPMENTAL DELAY 617412

RPL5 DIAMOND-BLACKFAN ANEMIA 6 612561

Chaperonin-mediated protein folding

CCT5 NEUROPATHY, HEREDITARY SENSORY, WITH SPASTIC PARAPLEGIA 256840

CSNK2A1 OKUR-CHUNG NEURODEVELOPMENTAL SYNDROME 617062

GNAI2 VENTRICULAR TACHYCARDIA, FAMILIAL 192605

GNAI3 AURICULOCONDYLAR SYNDROME 1 602483

GNAO1 NEURODEVELOPMENTAL DISORDERWITH INVOLUNTARY MOVEMENTS 617493

GNAO1 EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 17 615473

GNB3 NIGHT BLINDNESS, CONGENITAL STATIONARY, TYPE 1H 617024

GNB4 CHARCOT-MARIE-TOOTH DISEASE 615185

GNB5 LANGUAGE DELAYAND ATTENTION DEFICIT-HYPERACTIVITY DISORDER 617182

RGS9 PROLONGED ELECTRORETINAL RESPONSE SUPPRESSION 608415

Different proteasome pathways

APC FAMILIAL ADENOMATOUS POLYPOSIS 1 175100

CTNNB1 MENTAL RETARDATION, AUTOSOMAL DOMINANT 19 615075

PPP2R1A MENTAL RETARDATION, AUTOSOMAL DOMINANT 36 616362

Endocytosis and traffic of neurotransmitter receptors

Trafficking of AMPA receptors

AP2S1 (2) HYPOCALCIURIC HYPERCALCEMIA, FAMILIAL, TYPE III 600740

CACNG2 MENTAL RETARDATION, AUTOSOMAL DOMINANT 10 614256
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neurological manifestations. Interestingly, of all 60 disorders,
only eight did not cause neurological symptoms
(Supplementary Table 2 and Table 3). This indicates that the
majority of these proteins perform important functions in the
brain and may be also at the postsynaptic level. The list of
identified disorders includes (i) eight forms of intellectual dis-
abilities, (ii) three epileptic encephalopathies, (iii) three
neurodevelopmental conditions, (iv) three types of cortical
dysplasia and (v) one lissencephaly, as well as neuropathies
such as Charcot-Marie-Tooth diseases (Supplementary Table
2). When looking at disease types caused by proteins involved
in the same metabolic pathways, we see that (i) large brain
malformations such as cortical dysplasias and lissencephaly
are caused by proteins—mostly tubulins—involved in the
pathway ‘Translocation of GLUT4 to the plasma membrane’
and (ii) intellectual disabilities are very common among pro-
teins involved in ‘Trafficking of AMPA receptors’, which is
likely the pathway most specific to postsynaptic function.
Finally, I have identified many anemias caused by proteins
involved in protein translation, although these present few
neuro log ica l symptoms , bes ides mig ra ine ( see
Supplementary Table 2).

Intellectual disability and seizures are
among the most common symptoms caused
by metabolism proteins in the PSD

We first looked into the overall number of different phenotypes
caused by these 60 diseases. Surprisingly, 836 different

phenotypes were identified, indicating the complex nature of
the conditions caused by these 53 proteins. This is further illus-
trated by the fact that most phenotypes are only found in one or
two disorders (691/836, ≈ 83% of the total). Among the most
frequent symptoms identified by HPO (Table 3), two are neu-
rological: ‘Intellectual Disability’ (in 18 different diseases) and
‘Seizures’ (in 17). Other relevant neurological symptoms iden-
tified are ‘Microcephaly’, ‘Specific Learning Disabilities’,
‘Hyporeflexia’ or ‘Spasticity’. Some of these symptoms were
much more commonly found in conditions caused by proteins
from the same metabolic pathway. The most extreme case
is that of ‘Spasticity’, which is only caused by proteins
related to energetic metabolism. Another example is found
in ‘Specific Learning Disabilities’ that is absent from dis-
eases caused by the protein machinery involved in protein
metabolism. Many of these diseases are related to the new
categories of inborn errors of metabolism affecting systems
involved in intracellular vesiculation, trafficking, process-
ing of complex molecules and quality control processes
(such as protein folding and autophagy) (García-Cazorla
and Saudubray, this issue).

The elevated frequency of intellectual disability and sei-
zures among disorders caused by proteins related to postsyn-
aptic metabolic pathways is in favour of a postsynaptic role in
some of these conditions. These two phenotypes are charac-
teristic of disorders caused by genes coding for proteins with a
very prominent role at the PSD. This is the case of ionotropic
glutamate receptors and their auxiliary proteins (Soto et al.
2014; Bayés et al. 2014; Volk et al. 2015; Zehavi et al.

Table 2 (continued)

Pathway Gene name Disease (OMIM) OMIM ID

CAMK2A MENTAL RETARDATION, AUTOSOMAL DOMINANT 53 617798

CAMK2B MENTAL RETARDATION, AUTOSOMAL DOMINANT 54 617799

EPB4.1 L1 MENTAL RETARDATION, AUTOSOMAL DOMINANT 11 614257

GRIA3 MENTAL RETARDATION, X-LINKED, SYNDROMIC, WU TYPE 300699

GRIA4 NEURODEVELOPMENTAL DISORDERWITH ORWITHOUT SEIZURES AND GAITABNORMALITIES 617864

GRIP1 FRASER SYNDROME 3 617667

MYO6 DEAFNESS, AUTOSOMAL DOMINANT 22 606346

PRKCG RETINITIS PIGMENTOSA 11 600138

PRKCG SPINOCEREBELLAR ATAXIA 14 605361

Clathrin-mediated endocytosis

ACTB (3) BARAITSER-WINTER SYNDROME 1 243310

ACTG1 (3) BARAITSER-WINTER SYNDROME 2 614583

DNM2 CHARCOT-MARIE-TOOTH DISEASE 606482

NECAP1 EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 21 615833

PIP5K1C LETHAL CONGENITAL CONTRACTURE SYNDROME 3 611369

WNT5A ROBINOW SYNDROME, AUTOSOMAL DOMINANT 1 189700

(1) This gene causes six different syndromes with similar phenotypes, none of which are of a clear neurological nature

(2) AP2S1 is also in the group of proteins implicated in ‘Clathrin-mediated endocytosis’

(3) ACTB and ACTG1 are also in the group of proteins implicated in ‘Translocation of GLUT4 to the plasma membrane’
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2017), SYNGAP1 (Hamdan et al. 2009; Clement et al. 2012),
DLG3 (Tarpey et al. 2004), SHANK2 (Berkel et al. 2010;
Leblond et al. 2012), SHANK3 (Guilmatre et al. 2014),
NEUROLIGIN 2 (Parente et al. 2017) or OPHN1 (Billuart et
al. 1998), to mention just a few. These phenotypic correspon-
dences would support the notion that postsynaptic dysfunction
might have a role in some neurometabolic disorders.
Nevertheless, further research in this field must be done to
corroborate this hypothesis.

Conclusions

In the recently developed field of synaptopathies (Brose et al.
2010; Grant 2012), the role of many postsynaptic proteins in
mental disorders is already well established (Guilmatre et al.
2009; Hamdan et al. 2011; Kirov et al. 2011). Nevertheless,
the vast majority of postsynaptic proteins known to cause
brain conditions are not involved inmetabolism. In this article,
I have explored the possibility of a primary role in disease of
postsynaptic proteins involved in metabolic pathways. I have
shown that energy production, protein turnover and neuro-
transmitter receptor traffic are the major metabolic pathways
present at the postsynapse and that many proteins from
these processes cause inherited disorders encompassing
neurological manifestations. Importantly, the most com-
mon neurological phenotypes caused by these disorders
are intellectual disability and seizures. Although, many
other symptoms are present, including movement disor-
ders, as recently reported (Kurian M, this issue). The fact
that intellectual disability and seizures are key phenotypes
of well-established synaptopathies caused by postsynaptic
proteins and of conditions caused by postsynaptic proteins
involved in metabolism is suggestive of a role of postsyn-
aptic metabolism in certain neurological conditions. Future
research will be required to explore this hypothesis.
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