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” ... 100 billion neurons, each neuron is connected to 10 thousand other...sitting on your shoulders,

the brain is the most complicated object in the known universe...”

Michio Kaku

iii



iv



Acknowledgments

Firstly, I would like to thank my supervisor, Prof.Rita Nunes, for the opportunity given to me to develop my

project and study a area of my interest in the Institute for Systems and Robotics (LaSEEB), at Instituto Superior
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Resumo

Os Espaços perivasculares (EPV) estão compreendidos entre as paredes das artérias perfurantes do encéfalo e

meninges, estando preenchidos por lı́quido céfalorraquidiano (LCR) e lı́quido intersticial. Por vezes ficam dilata-

dos, tornando-se visı́veis em imagens de ressonância magnética (IRM), apesar das suas dimensões próximas da

resolução espacial dos equipamentos de ressonância magnética (RM) atuais. Ao longo dos anos tem sido colocada

a hipótese de o número dessas estruturas dilatadas se correlacionar com algumas doenças, por exemplo acidentes

vasculares cerebrais ou demência. No entanto, estes estudos baseiam-se em contagens e escalas semi-quantitativas

em algumas regiões cerebrais de interesse, por visualização das imagens.

A marcação manual destas estruturas consumiria muito tempo, pois os médicos necessitariam de verificar

vários planos de modo a obter uma segmentação precisa. Assim, este estudo tem por base a implementação de

um sistema semi-automático que, utilizando imagens de ressonância magnética, seja capaz de extrair estas estru-

turas, proporcionando informação relativa à sua quantificação e orientação espacial no cérebro. A realização

deste método possibilitaria também, do ponto de vista clı́nico, uma ferramenta rápida de triagem e contı́nua

monitorização da condição patológica de cada paciente, ao invés da marcação manual de cada estrutura, corte

a corte.

Esta tese pretende descrever as atividades realizadas na dissertação do Mestrado Integrado em Engenharia

Biomédica e Biofı́sica, pela Faculdade de Ciências da Universidade de Lisboa, no perfil de Engenharia Clı́nica e

Instrumentação Médica. Este projecto experimental realizou-se no no Instituto de Sistemas e Robótica (ISR), mais

propriamente no Laboratório de Sistemas Evolutivos e Engenharia Biomédica (LaSEEB), associado ao Instituto

Superior Técnico (IST), sobre a orientação da Professora Doutora Rita Nunes e do Professor Doutor Nuno Matela.

Nesse sentido, este trabalho focou-se na implementação de um filtro de vasos (filtro de Frangi), que tem a

capacidade de delinear e detetar estruturas com caracterı́sticas semelhantes a um vaso sanguı́neo.

Para obtenção de uma máscara de EPV, neste trabalho, foram definidos três passos distintos: pré processa-

mento, aplicação do filtro, e melhoria da máscara obtida após aplicação do filtro.

Tanto o pré-processamento como a melhoria da máscara de vasos obtida pela aplicação do filtro foram realiza-

dos com recurso ao FSL. Mais especificamente, o input usado para aplicação do filtro correspondeu à criação de

uma região de interesse (RI) otimizada , que no contexto deste trabalho foi estabelecido como a substância branca.

A criação desta Região de Interesse (RI) foi criada com base no uso das funções BET (remoção do escalpe e outras

heterogeneidades do cérebro), FAST (cálculo de um atlas de probabilidades, considerando que as intensidades de

cada região seguem uma distribuição gaussiana é realizado uma segmentação ao nı́vel da substância branca (SB),

substância cinzenta (SC) e LCR. Foi usado também a função do FSL FLIRT registo linear.

Para a implementação do filtro recorreu-se ao uso do Matlab R2016(b). De forma a obter uma maior fiabilidade

clı́nica relativamente à máscara gerada pelo filtro, foi necessária uma otimização ao nı́vel dos parâmetros usados.

É importante referir que este filtro usa como grande referência para a identificação de estruturas tubulares, assim

como a sua extração, os sinais e magnitudes dos valores próprios da matriz hessiana, com base na forma, orientação

e diferenças de contraste comparativamente ao plano de fundo. Em IRM, na sequência T1 os EPV surgem como

estruturas hipointensas na substância branca, pelo que na sequência T2 surgem como estruturas hiperintensas. Com

base nestas diferenças de contraste entre a intensidade do LCR e SB é possı́vel ajustar e realizar uma otimização
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ao nı́vel dos parâmetros usados.

Ao longo da implementação verificou-se que os parâmetros que revelaram uma maior efeito no output foram

α e σ . Sigma σ controla a escala em que uma determinada estrutura pode ser encontrada, aumentando consid-

eravelmente a sensibilidade na resposta do filtro. Por outro lado, Alfa α controla a sensibilidade em que uma

estrutura hiper ou hipointensa comparativamente ao seu respetivo background é extraı́da e delineada. O comporta-

mento e a sensibilidade demonstrados por ambos os parâmetros foram muito semelhantes em T1 e T2. Por outro

lado, usando a sequência otimizada de parâmetros para T1 e T2 verificou-se que em imagens T2 o desempenho

do filtro foi superior, conseguindo numa mesma RI delinear e extrair um maior número de EPV com a orientação

e estrutura esperada, mostrando robustez relativamente à presença de artefactos de movimento e lesões de SB,

compativamente a T1. Foi notado que o desempenho do filtro revelou ser extremamente sensı́vel a diferenças de

contraste, e por isso, quando a máscara que continha a RI continha rebordos com hiperintensidades, resultante

de uma má segmentação obtida pelo FSL, estruturas não pertencendo a EPV eram delineadas, diminuindo a fi-

abilidade. Também foi testado o uso do filtro de Frangi em imagens T2-FLAIR, mas nenhum EPV foi extraı́do

com sucesso. Porém, a análise do output neste tipo de imagens revelou-se promissor na deteção de lesões de SB.

Consequentemente, toda a análise de quantificação e segmentação teve por base o uso de imagens T2.

Depois de se terem estabelecido todas as condições necessárias para a aplicação deste método na identificação

e extração de EPV, prosseguiu-se com a quantificação de EPV por lobo cerebral recorrendo a um atlas, permitindo

a segmentação apenas nas regiões desejadas. Uma vez otimizado o filtro, o principal objetivo foi verificar se

existiam diferenças significativas ao nı́vel da distribuição de EPV por região do cérebro em imagens de pacientes

com Atrofia Múltipla Sistémica (MSA), Paralisia supranuclear progressiva (PSP) e doença de Fabry (FD). Cada

volume de EPV por paciente foi normalizado. A normalização teve por base o volume total de EPV obtido pelo

filtro, nas regiões segmentadas, dividido pelo volume correspondente de SB.

Uma vez que o pressuposto de normalidade não foi verificado, com base no resultado estatı́stico de kolmogorov-

Smirnov (p<0.05) a um intervalo de confiança de 95%, procedeu-se à utilização de testes não-paramétricos. Todos

os cálculos estatı́sticos foram realizados com recurso ao R-Studio.

Relativamente aos volumes normalizados de EPV observados em indivı́duos pertencentes a um grupo de

Atrofia Múltipla Sistémica (MSA), foi notada uma tendência para significância estatı́stica de maior densidade

de EPV no lobo frontal (p = 0.05351), resultado estatı́stico obtido através de comparações múltiplas, calculado

usando o teste de TukeyHSD.

Numa outra análise, tentou-se verificar se existiam diferenças significativas entre controlos e indivı́duos pa-

tológicos. Deste modo, aglomerou-se individuos associados a MSA, PSP e FD, comparando estes com indivı́duos

controlos. Foi encontrado significância estatı́stica, a num intervalo de confiança de 95% quando se compararam

estes dois grupos (p = 0.0382).
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Numa fase final do estudo comparou-se a avaliação quantitativa realizada com valores atribuı́dos com base na

escala visual de Wardlaw e Patankar. Esta escala permite atribuir a cada paciente um certo nı́vel de severidade,

tendo em conta a distribuição e densidade de EPV presentes no cérebro.

Também, no contexto deste trabalho, a comparação entre os scores visuais, obtidas pela escala de Wardlaw, e

os resultados quantitativos fornecidos pela segmentação do filtro de Frangi, permitiu uma maior validação ao nı́vel

da fiabilidade deste método.

Os respetivos resultados revelaram uma correlação significativa entre a métrica estudada quando comparada

com os scores atribuidos (p = 0.0243).

Por outras palavras, estes resultados indicam que um indivı́duo a quem seja atribuı́do um score mais elevado

de severidade, ao nı́vel da distribuição destas estruturas, será mais susceptı́vel a um maior volume de EPV.

Concluindo, a segmentação de EPV com este método permitiu a análise da distribuição e orientação espacial

ao nı́vel do cérebro, apresentando-se como uma possı́vel ferramenta de monitorização e de apoio clı́nico, podendo

no futuro ser utilizado como um biomarcador para a doença dos pequenos vasos.

Palavras-chave: Espaços perivasculares, doença dos pequenos vasos, Imagem por ressonância magnética,

filro de Frangi, segmentação e quantificação.
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Abstract

Perivascular Spaces (PVS) allow interstitial solutes to be cleared from the brain contributing to the brain‘s home-

ostasis. Dysfunction of these pathways can occur if there is deposition of substances causing stagnation of fluid

(CSF). Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their

relationship with dementia, stroke and vascular diseases.

Manual delineation of PVS is very time consuming, and clinicians have to check multiple views in order to ob-

tain a very accurate segmentation. Therefore, finding a method that would provide a reliable visual and quantitative

information of a patient with PVS would enable a continuous monitoring giving clinical support throughout the de-

velopment of each disease. Moreover, it would allow to understand and characterize PVS, provide useful insights

into their role in normal brain physiology and small vessel disease (SVD). This work focused on the segmentation

and further quantification of PVS in the brain using a vesselness filter (Frangi filter) . The Frangi filter, typically

used to detect vessel-like or tube-like structures and fibers in volumetric image data, was capable to delineate, map

and extract elongated and dot like features of PVS that were not easily seen when comparing with the non filtered

images. However, this method requires a careful parameter optimization and further validation, since it presented

different output behaviour in each MRI acquisition (T1-Weighted, T2-Weighted and T2-FLAIR).

Also, quantitative analysis regarding the Frangi segmentation indicate that PVS visual rating scores may have

a positive association with PVS volume. Statistical significance was found by clustering patients diagnosed with

Multiple System atrophy (MSA), Progressive Supranuclear Palsy (PSP) and Fabry disease (FD) when compared

with control patients.

Keywords: Perivascular spaces, small vessel disease, Magnetic ressonance imaging, segmentation, Frangi

filter, quantification.
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Chapter 1

Introduction

1.1 Motivation

Cerebrovascular diseases remain a leading cause of death and functional disability worldwide. Vascular disorders

of the brain, including stroke are a major cause of death in addition to physical and cognitive disability [1]. In a

2013 study, the American Heart Association identified greater stroke burden in men than women with 133/100,000

males-years and 99/100,000 females-years incidence of ischemic stroke [2]. Vascular disorders of the brain, in-

cluding Cerebral small vessel disease (SVD) are commonly observed on neuroimaging among elderly individuals

and recognized as a major vascular contributor to dementia, cognitive decline, gait impairment, mood disturbance

and stroke. Vascular cognitive impairment can be caused by various types of cerebrovascular disease, including

cortical and subcortical infarcts, resulting in white matter injury causing neurodegeneration [1, 3]. With an ageing

population the number of people affected is expected to double over the next two decades [2].

Recently, several studies evidence that Perivascular spaces contribute to the brain‘s homeostasis, were solutes

presented in interstitial fluid are cleared from the brain, resulting in a drainage system [4]. Dysfunction of PVS

pathways can occur if there is deposition of substances causing stagnation of this fluid, and thus may lead to the

dilation of these cavity forming an enlarged Perivascular space. Subsequent neuronal dysfunction and myelin loss

are related with this process, which clearly have profound implications in small vessel disease [5]. Type 3 of small

vessel disease is Fabry disease, which can be characterized as lysossomal storage disorder resulting in a cascade

of several cellular events including cellular dysfunction and microvascular pathology [6].

The main goal of my Master Thesis was the Quantification of Perivascular spaces (PVS) on Magnetic Resonance

Image in patients diagnosed with neurological diseases, with our main focus in patients diagnosed with Fabry dis-

ease, Multiple System Atrophy and Progressive supranuclear palsy.

There are no publications that claim that the enlargement of PVS is directly connected with any of these neurolog-

ical conditions. This analysis will give us a better understanding of the relationship between the enlargement of

PVS within the referred neurological diseases.

Manual delineation of tubular structures such as PVS in a three-dimentional image can be very time consuming,

and clinicians have to check multiple views to obtain a very accurate delineation. Recent studies show it is possible

to capture the 3D geometrical shape of PVS using a certain type of vesselness filtering, thus this method shows
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promise for identifying and quantifying these structures [7, 8].

During the past decades, imaging has become an indispensable tool in the diagnosis and treatment planning for

these diseases. However, it is extremely necessary to find new methods in order to increase the specificity and

sensitivity of neuroimaging. Quantitative measurements will also better characterize the severity of Perivascular

spaces in ageing people and their associations with cerebrovascular diseases.

This first chapter presents a literature review of the methods for quantification and segmentation of PVS in

patients diagnosed with Fabry disease (FD), Multiple System Atrophy (MSA) and Progressive supranuclear palsy

(PSP) . PVS are an important part of the brain circulation and glymphatic drainage system. Dilated PVS found to be

associated with many conditions including ageing, dementia, SVD, and their quantitative analysis is important for

a better understanding of their role and relationship with neurological diseases, in particular SVD. This literature

search was performed using PubMed, Web of Science. For this search a combination of the following terms was

used: segmentation, perivascular space(s),Virchow-Robin, VRS, methods, quantification, MRI, SVD.

1.2 Background

1.2.1 Perivascular Spaces

PVS also referred as the Virchow-Robin spaces (VRS), are fluid filled compartments or cavities containing CSF-

like fluid [4], surrounding small arteries and arterioles as they perforate from the subarachnoid space through the

brain parenchyma, represented in Figure 1.1, working as a major conduct for drainage of interstitial fluid (ISF) and

CSF from the brain and clearance of waste products from the brain [9, 10], playing an important role in normal

brain homeostasis. In this drainage system, the efflux of ISF occurs to facilitate the waste clearance while the

influx of CSF from the subarachnoid spaces into the periarteriolar spaces acts in the delivering of metabolic fac-

tors and signalling molecules, required for brain function[5]. Normal PVS are not typically seen on conventional

structural brain MRI [10], but when these spaces start to become dilated, due to the stagnation of fluid drainage

by the accumulation of protein and cell debris, they cause an edema in the White matter (WM) becoming visible

[9], resulting in Enlarge Perivascular Spaces (EPVS). EPVS are an important marker of various neurological con-

ditions, including aging, dementia [4, 10], Alzheimers disease(AD) [5], traumatic brain injury, stroke, and other

white-matter lesions[9, 10]. Some studies also refer that these dilation may due to neuroinflammation, neurode-

generation, demyelination, being a sign of a lymphatic dysfunction [10, 11, 12], contributing for the pathogenesis

of several SVD, but not being the result of the disease [9].

These cavities can be found in various regions, and its anatomy varies by location. They appear only in white

matter regions being commonly found in the basal ganglia, centrum semiovale and pontomesencephalic junction

[5, 10-12]. In the arteries of the basal ganglia is where the largest CSF influxes occur contributing to a common site

for EPVS formation in SVD. Also, the size and shape of EPVS can vary in these locations, and can be commonly

mistaken with Lacunes , Lacunar infarcts and punctuate white matter hyperintensities[5,6] since its diameter is

very similar, ranging 3-20 mm. Only looking at the shape and intensity on a MRI scan it is possible to differentiate

EPVS from these spaces. EPVS when seen on MRI scans tend to be round or oval if viewed transversally and

tubular or elongated if longitudinally, with a well-defined smooth boundary, while lacunes and Lacunar infarctions

usually present wedge shaped or ovoid, with well and non-well smooth boundary, respectively [6]. According to
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intensity on MRI scans, EPVS present hypointensities on fluid attenuated inversion recovery sequences (FLAIR)

on T1-Weighted images, and appear as Hyperintensities on T2-weighted image sequences[5-6, 10-12]. Moreover,

these cavities tend to form a network of spaces around cerebral microvessels. These structures lie between the

basement membrane around pericytes and the basement membrane at the surface of the glia limitans of the brain

vessels. Although, there are no PVS around arteries in the cortex, there is a potential for dilatation of PVS related

to arteries in the cerebral white matter [13]. Dilated PVS are seen only in the white matter, basal ganglia, and

brainstem [14].

Figure 1.1: Healthy perivascular space (in the left) and a dilated or enlarged perivascular space (in the
right)(adapted from [15]).

1.2.2 Role of PVS in cerebral small vessel disease

Small vessel disease (SVD) is a group of age-related neuropathological processes affecting the small perforating

arteries, arterioles, capillaries, and venules resulting in damage to the cerebral white and deep grey matter [9].

SVD is responsible for a large proportion of cases like stroke and dementia worldwide [2], and it can manifest

in several different ways. The most common subtypes of SVD are the types 1-3. Type 1 consists of sporadic

arteriolosclerosis secondary to aging and other vascular risk factors including systemic arterial hypertension (AHT)

and type 2 diabetes mellitus (DM2) [2,6]. Type 2 is a sporadic or hereditary cerebral amyloid angiopathy (CAA).

Type 3 includes all inherited or genetic SVD subtypes excluding CAA, the most common[18] being cerebral

autossomal dominant arteriopathy with subcortical ischemic strokes and leukoencephalopathy (CADASIL). Fabry

Disease (FD) can be characterized as a type 3 genetic SVD, where there is a deficiency in the lysossomal enzyme,

resulting in a disorder of the glycosphingolipid metabolism [16, 17].

Neuroimaging in SVD contributes to the pathological findings of increased exposure to vascular risk factors in

adulthood (particularly hypertension and smoking), cognitive decline [9, 17], increased risk of stroke, and other

neurological and psychiatric disorders [16]. In particular MRI images from patients with SVD show white matter

hyperintensities (WMH), associated with White matter lesions (WML) comprised of myelin loss, and other char-

acteristic abnormalities, such as enlarged perivascular spaces (EPVS), lacunes and cerebral microbleeds (CMB)

[14]. All of these individual imaging features are inter-related contributing to the SVD burden [18].
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EPVS are widespread and present in almost all SVD types in both sporadic forms of SVD type 1 and 2 and

hereditary type 2 and 3 [16], and are routinely seen together in the Basal ganglia and centrum semiovale, implying

a common cause [6]. However, there are no confirmations yet of EPVS in CADASIL patients [18]. These events

indicate that EPVS may be a sign of lymphatic fluid stasis and play a role in the pathogenesis of SVD.

PVS are considered to play a role in normal brain homeostasis [10-12].

Glymphatic system

The glymphatic system is a brain-wide pathway along a system of connecting perivascular spaces (PVS) over which

cerebroespinal fluid (CSF) surrounding the brain exchanges with the interstitial fluid (ISF) within the parenchima

[6,18]. Bulk flow entry of CSF into the periarterial spaces (lymphatic influx) is important for the brain delivery

of glucose in energy metabolism, transport of lipids and signaling molecules [18], and apolipoprotein E (apoE)-

delivered from the choroid plexus, while the efflux of ISF play a role in the clearance of several metabolic waste

products. This lymphatic system requires an adequate CSF production by the choroid plexus to provide a pressure

gradient of fluid, moving from ventricles to the subarachnoid space (SAS) and PVS.

1.2.3 Small Vessel Disease

Cerebral SVD refers to a variety of pathological processes that affect the small arteries, arterioles, venules, and

capillaries of the brain [2], along with the subsequent damage caused in the white and deep grey matter, which are

crucial to the normal brain function [1]. SVD term covers a variety of abnormalities related to small blood vessels

in the brain, being the lead cause of cognitive decline and functional loss in the elderly. Its repercussions include

disabilities at a cognitive, psychiatric and physical level, adding to the increased risk of stroke and dementia [1].

With the ageing of the population, the prevalence of SVD is increasing and so are the costs associated with its

consequences [4]. It is thus essential to improve the assessment of this disease by investigating its clinical mani-

festations in the brain, which can be achieved through imaging techniques. This pathology affects the small vessels

in the brain and its clinical manifestations vary from physical disabilities that in more advanced stages of disease

can lead to loss of autonomy, to neuropsychological impairments causing progressive cognitive deterioration and

eventually dementia [2]. Therefore, it is of major importance to identify early physiological alterations that might

precede vascular damage. Progress in neuroimaging has led to a better understanding of the pathophysiology of

SVD, contributing to the development of biomarkers that can provide an evaluation of the disease’s progression.

SVD has been subdivided into six different subtypes, based on an aetiopathogenic classification [2]:

(i) arteriolosclerosis: related to ageing and vascular risk factors. Small vessels are affected by the reduction of the

number of smooth muscle cells in the tunica media, thickening of the wall and narrowing of the lumen;

(ii) cerebral amyloid angiopathy (both sporadic and hereditary): amyloid -peptide accumulates in small vessels’

walls, particularly in small arteries and arterioles. As a consequence, vessels can dilate and even rupture, leading

to hemorrhages;

(iii) genetic/inherited SVD: the most common pathologies within this subtype of SVD are CADASIL and Fabry’s

disease - both of them are associated with genetic mutations;

(iv) inflammatory/immunologically mediated: as the name suggests, these pathologies derive from the presence of

inflammatory cells in small vessels’ walls;
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(v) venous collagenosis: affects mainly veins and venules located near the lateral ventricles. These vessels’ lumen

becomes narrower due to increased thickness of the walls, which can lead to occlusion;

(vi) other SVD: this subtype of SVD includes post-radiation angiopathy, which appears as an irradiation therapy’s

side-effect and affects mainly white matter, causing thickening of the vessels’ walls.

1.2.4 Fabry Disease

Fabry disease (FD) is an X-linked devastating progressive inborn disorder of the glycosphingolipid metabolism

due to a deficient or absent lysossomal enzyme resulting in a cascade of several cellular events [19, 20]. It is

reported that the annual incidence ranges from 1 in 476,000 to 1 in 117,000 [19] in the general population. In FD,

particularly in the early stages, several important roles such as cellular dysfunction and microvascular pathology

are induced, mainly occuring in the late fourth through early sixth decades of life [19, 20].

Figure 1.2: Mechanism of Fabry disease. (Left) Healthy pathway, hydrolisation occurs in lysossome. (Right)
Deficiency in enzime, resulting in an accumulation of ceramide (Gb3).

FD is transmitted as an X-linked trait and can be mainly characterized by a lysosomal storage disorder, where

exists a deficiency or inexistence of the lysosomal hydrolase α - galactosidase A (α-D-galactosidase)[18, 21],

coded by an unique gene. GLA consists of seven exons distributed over 12,436 base of pairs[19], leading to a pro-

gressive endothelial accumulation of enzyme substrates, mainly globotriaosylceramide (Gb3 or GL-3),also known

as ceramide trihexoside(CTH), and related glycosphingolipids (galabiosylceramide) within lysosomes which are

ubiquitous subcellular organelles, in several typical locations such as in the vascular endothelium, perithelium,

and smooth muscle cells, as well as in parenchymal cells in kidney, heart, dorsal root ganglia, autonomic ner-

vous system, and brain [18-19]. When this progressive accumulation comes to light in these places it is belived

that a cascade of several subsequent vascular events emerge including small-vessel injury [17, 13], K(Ca) chan-

nel dysfunction in endothelial cells [19], oxidative stress, impaired autophagossome maturation, tissue ischemia,

irreversible cardiac and renal tissue fibrosis [20].The primary disease process starts in the early fetal stage of devel-

opment and the first clinical symptoms arise in childhood, between the ages of 3 and 10 years, commonly diverging

according to gender, affecting girls more later comparing to boys, but most of the patients remain clinically asymp-

tomatic. As the years advance symptoms intensity start to increase, becoming more proeminent after the age of 30

[21], and also the clinical condition becomes more delicate, providing progressive damage in several organ systems
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including the kidneys, heart and brain,becoming life-threatening, reducing life-expectancy by 20 years compaired

with normal population [18].

All these cellular damages can be visualized on both T1-weighted and T2-weighted MR images [21, 22].

1.2.5 Parkinson disease

Parkinson‘s disease (PD) is an idiopathic disease of the nervous system characterized by the inclusions of abnormal

intracellular aggregates, Lewy Bodies, containing proteins such as α-synuclein and ubiquitin that impair optimal

neuron functioning [23] . These aggregates lead to manifestations in both motor and non-motor system presenting

degeneration of dopaminergic neurons (dopamine-producing) in the substantia nigra (SN) of midbrain, resulting

in a synaptic dysfunction that interfere with axonal transport and thus neuronal damage [24, 25], causing the core

motor features of PD.

Several neurodegenerative disorders like Multiple System Atrophy, Progressive Supranuclear Palsy (PSP) and

Corticobasal Degeneration (CBD) can mimic PD. Parkinsonian symptoms may be linked to perivascular spaces.

These connection is not clear, but accordingly to some studies, these cavities would have an important role in

cortical-subcortical connections and involve the corticostriatal fibres, contributing to a cognitive impairment and

parkinsonism [26], respectively. PVS may contribute to an earlier onset of the symptoms of these disorders.

1.2.6 Atypical Parkinsonism

Multiple System Atrophy (MSA)

Multiple System Atrophy (MSA) is an adult-onset, fatal rare sporadic neurodegenerative disease characterized by

progressive autonomic failure with neuronal loss, axonal degeneration of multiple neurological systems leading to

a myelin loss and microglia activation, resulting in autonomic dysfunction signs [27] and other symptoms such as

dysphagia [28], stridor and dysarthria [27, 22], and also non-motor symptoms like anxiety, depression, emotional

incontinence, REM sleep behaviour disorder [28].

Genetic and environmental factors may contribute to the initiation of the pathophysiological cascade of MSA.

Postmortem examinations reflected olivopontocerebellar atrophy and striatonigral degeneration.

These neurodegenerative conditions lead to cytoplasmic inclusions of the glia that usually occur mainly in the

striatonigral system, olivopontocerebellar region, autonomic nuclei of the brainstem and the spinal chord, and as

consequence, activated microglia and reactive astrogliosis are a common finding in patients diagnosed with MSA

[22]. Glial cytoplasmatic inclusions are constituted by a protein, alpha-synuclein, located in neuronal axons and

synapses.

In addition, some authors afirm that a frontal lobe atrophy may also be observed after a long disease duration

[24, 22]. Depending on the dominant motor phenotype, MSA can be classified in two subtypes, the Parkinsonian

MSA (MSA-P) or Cerebellar MSA (MSA-C).

Moreover, the pathogenesis mechanisms remain unclear. Taking evidences from preclinical models and post-

mortem studies, the α-synuclein aggregation may arise from an overexpression of α relocalisation of an important

stabilizer of mielin, p25α into the oligodendroglial soma. These interaction between p25α and α-synuclein pro-

motes a phosphorylation and aggregation of synuclein into insoluble oligomers that later on gives rise to the forma-
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tion of a glial cytoplasmatic inclusion. These formation will interfere with neuronal support, activating microglial

cells [29]. After this process, a neuronal cytoplasmatic inclusion is formed due to the misfolding α-synuclein into

the extracellular space, affecting neighbouring neurons. Reaching this point, neuroinflammation, loss of oligoden-

droglial neurotrophic support and neuronal dysfunction, neuronal death starts to take place [27, 22].

Progressive supranuclear palsy (PSP)

Progressive supranuclear palsy (PSP) is another type of rare, sporadic and progressive neurodegenerative disorder

that causes postural instability, seudobulbar palsy, Parkinsonism unresponsive to Levodopa and cognitive impair-

ment [30, 31]. PSP is defined by the accumulation of tau protein and neuropil threads, mainly in the pallidum,

subthalamic nucleus, red nucleus, substantia nigra, pontine tegmentum, striatum, oculomotor nucleus, medulla,

and dentate nucleus [32].

The main pathological features of PSP are the presence of star-shaped astrocytic tufts and neurophibrillary

tangles that can be seen with light microscopy, supporting the role of tau dysfunction in the pathogenesis as a

primary tauopathy [32].

1.2.7 Fundamentals of Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is an imaging modality that makes use of the magnetic properties of tissues in

order to produce an image. This method has provided huge developments in Medical investigation and diagnosis,

particularly with avoidance of exposure to potentially dangerous ionizing radiation. This method makes use of the

hydrogen nuclei, abundant in the human body and found in water molecules as well as in fat. For that reason, it

will spin around its own axis, creating a magnetic moment that can interact with magnetic fields. When placed in

a strong external magnetic field, the proton experiences a turning force, or torque, which tries to align its moment

with the main field [33].

T1-Weighted

T1 is a parameter related to the regrowth of longitudinal magnetization characterized of specific tissue. The rate

at which this longitudinal magnetization grows back is different for protons associated with different tissues, con-

tributing to the fundamental source of contrast in T1-weighted images. Moreover, assuming a 90o RF Pulse, T1 is

the time necessary for the longitudinal magnetization reaches 63% of its final value.

The magnetization of tissues with different values of T1 will grow back in the longitudinal direction (T1 relaxation)

at different rates.

White matter (WM), Cerebrospinal fluid (CSF) and Gray matter(GM) have different rates of T1-relaxation. WM

has a very short T1 time and relaxes rapidly, contributing to the lighter pixels. CSF relaxes at a slow rate obtaining

a long T1, contributing for the darker pixels, same intensity of perivascular spaces. GM has an intermediate T1

relaxation and appear in T1W images as pixels with intermediate shades of gray [33, 34].

7



T2-Weighted

T2 relaxation process occurs simultaneously with the T1. After a 90o RF pulse T2 decay occurs causing the

dephasing of the transverse magnetization, while the longitudinal magnetization grows back parallel to the main

magnetic field. After a few seconds, most of the transverse magnetization is dephased. As a consequence, T2 is

characterized as the rate of dephasing for the protons, associated with different tissues and corresponds to the time

that it takes for the transverse magnetization to decay 37% of its original value.

WM has a short T2, dephases rapidly and is associated with darker pixels. PVS appear in the same intensity as

CSF( associated with lighter pixels) due to a slow dephase and long T2. GM has an intermediate T2, dephases

intermediately and is associated with gray-level pixels [33, 34].

Fluid attenuated inversion recovery - FLAIR

The inversion-recovery pulse sequence is useful for suppressing unwanted signals in MR images. This type of

sequence will attenuate or suppress fluid and is characterized by having an additional 180o RF pulse, prior to

the regular spin-echo pulse sequence. Moreover, this additional RF pulse causes an initial inversion, towards

in the z axis of the longitudinal magnetization, so that it is aligned in the -z direction, and after this RF pulse the

magnetization will grow back towards +z direction. Once again, different tissues presents different grow back rates,

and since the magnetization passes through the -z to the +z will cross zero axis, where the signal of magnetization

is zero. GM appears brighter than WM, while the CSF is dark instead of bright [33, 34].

Figure 1.3: MRI sequences used in the study: T1-Weighted (T1W), T2-Weighted (T2W) and T2-Flair.

1.3 State-of-the-art

So far, few studies showed that is possible to capture the 3D shape of a perivascular space using an automatic

method, and very few of those showed accuracy, in terms of segmentation, and a correct correlation when com-

pared with neurological assessments performed by clinicians. Most recent works developed in 2018 proposed a

segmentation technique based on vesselness filtering, especially using 3D Frangi filter [7, 35, 36, 37], showing

promising results in the analysis of the spatial distribution, orientation and density. Descombes et al. in 2004

constructed a model for PVS segmentation using Markov chain Monte Carlo to optimize pre-defined filters [38],

becoming the first author who proposed a segmentation method for these features using Markov models for opti-
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mization. Moreover, an algorithm enabling automatic detection of lacunar infarcts using intensity thresholding was

proposed in 2007 [39] by Yokoyama et al. They evaluated their method to detect lacunar infarct and prevent the

ocurrence of cerebral apoplexy in high-risk patients. Thereafter, the sensitivity of the detection of lacunar infarct

was 90.1% on 828 MR images from 80 patients. Since 2008, several authors proposed a extraction methods by

using intensity thresholding. Wuerfel et al.(2008) investigated PVS distribution in different brain regions [9] in

45 Multiple Sclerosis (MS) patients and 30 healthy controls using different MRI sequence (T2-weighted and T1-

weighted). In this study, MS patients had significantly larger PVS volumes comparing with healthy subjects. PVS

were visualized as hyperintense regions on T2-weighted and as hypointense regions. A different method in 2011

was proposed by Ramirez et al, using Lesion Explorer, a semi-automatic segmentation method [40].This method

allowed to exploit both T1 and T2 images for subcortical hyperintensities segmentation. In this study, subcortical

hyperintensities and PVS were extracted by applying thresholds derived from both image sequences. Similar to

[15], Zong et al.(2016) developed also a semi-automatic method using Frangi vesselness filter performing a de-

tailed distribution, length and volume of PVS [5]. For this study, T1 and T2 MRI sequences were acquired using a

7 T Siemens scanner, with a 32-channel receive head coil in 17 healthy volunteers between ages (21-37).

In 2018 Ballerini et al. proposed a segmentation technique using Frangi Filter [41], being capable to extract PVS

from MRI. They applied this filter in a dementia sample of 20 patients and 48 patients suffering Mild to moderate

stroke. Before the filtering application, a mask containing the region of interest was created for each image, where

automatic brain, CSF and white-matter extraction were performed on T1-W and T2-W MR images using FMRIB

software library (FSL). In this work the parameters of the Frangi filter were optimized using a Log-likelihood func-

tion. The results of this study presented a good correlation with the visual rating scores, obtaining a Spearman‘s

ρ= 0.47 and a p-value= 0.001. The optimization procedure was applied to both T1W and T2W MRI sequences.

In [42, 5, 37] studies, the authors suggest that the most effective method to extract tubular features from White

matter is using Frangi filter. Another learning based PVS segmentation method was proposed [5], where first the

region of interest (ROI) was extracted using Brain extraction tool, dividing brain in different regions, creating a

ground-thruth for PVS masks.

In another recent study realized in 2018 by Feldman et al. with the main purpose to evaluate and compare PVS

density in different brain hemispheres [8], in a group of epilepsy and healthy patients, an ultra-high resolution MRI

(7 Tesla). The location and cross-sectional diameter of all structures were manually marked, and their anatomical

landmarks in the same coordinate axis were exported from Osirix to a custom built software using Matlab. Using

these coordinates, each marked PVS was categorized as being localized in either left or right hemisphere of the

brain. Afterwards, the quantitative analysis in this study showed that great overall PVS asymmetry exists in the

brains of epilepsy patients when compared to healthy controls (p = 0.016). Moreover, PVS density was found to

increase with age and their distribution may be strongly linked to effects of epilepsy and neurological structure and

function.

9
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1.4 Objectives

The objectives to be achieved in this thesis can be divided in two groups. Firstly, use a filter capable to extract

the desired features in T1 and T2-Weighted MR images, the Frangi Filter, in order to enhance perivascular spaces,

and then perform a clinical validation accordingly with the output given by the filter, by comparing it with samples

previously marked by physicians. During this stage, image processing will be performed by using a MRI software

tool (FSL) in order to create a region of interest (ROI), giving the filter the best conditions to achieve a reliable

output. After performing image processing, the implementation of the filter advances using matlab, and is impor-

tant to verify which sequence possesses an higher level of clinical reliability by comparing the respectively output.

During this process several parameters of the filter will be tested, and reported, in order to test the sensitivity of

the filter, optimising that values accordingly to the visual output expected, finding the most adequate and reliable

interval values of parameters, capable of extracting only perivascular spaces.

Secondly, after finding the best parameter values, the second main goal of my thesis is performing a quan-

tification based on the density of perivascular spaces accordingly to each type of disease. It is also interesting to

perform a quantification in each brain region, using an atlas, and check for statistical significance in both analysis.

This analysis would give a better understanding of the major role and connection that these structures have in

neurological diseases.

1.5 Thesis Outline

This dissertation is composed by six chapters, which are organised as follows: the present chapter introduces a

motivation for the following study, also the respective background regarding concepts that are addressed throughout

the dissertation, and a literature review on previous studies containing possible methods that allow vessel feature

enhancement regarding the features of a perivascular space, and their results. Chapter 2 presents a full description

of the data and the methodology applied, including the pipelines used from the pre-processing of MR images to the

application of the filter, including parameter optimization in order to obtain a more reliable output regarding the

ground-truth. In other words, this trials will allow to verify the behaviour and sensitivity of each parameter present

in the segmentation of structures. Chapter 3 displays the results of the application of the filter with parameter

optimization, and also a verification and validation of the output. Chapter 4 includes statistical analysis in the

context of the work. The last two chapters, Chapter 5 and 6, provide the principal discussion and conclusions of

this study. Moreover, some limitations are presented in the last chapter, and how they could be addressed in future

works.
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Chapter 2

Methods

The segmentation and quantification of PVS has been a true challenge, especially, the differentiation between la-

cunes and other tubular structures from PVS. The present chapter focuses on the description of all methodology

used in this study in order to respond to the defined objectives. Therefore, in this section is included a full descrip-

tion of the data used regarding MRI acquisition and the proposed pipelines regarding the optimization and selection

of regions of interest (ROI), used as input to the filter. Also, the methodology used to perform an improvement of

the mask given by the filter, and finally, the pipeline used for PVS quantification.

2.1 Data Description

2.1.1 Imaging data

All the data used in this study were provided by Hospital Santa Maria - CHLN (Centro Hospitalar Lisboa Norte),

especially gathered by Professor Sofia Reimão, MD, PhD. and João Madureira, MD, both physicians working in

the neuroimaging department of the mentioned Hospital. Moreover, the collected data for the following study were

comprised of 4 groups: 3 control patients, 2 patients diagnosed with Fabry disease (FD), 7 patients diagnosed with

MSA and 3 PSP patients, making a total of 15 individuals.

The MRI data, acquired on a 3T Philips MRI system, were composed by a set of structural images, whereby the

ones analysed in this study were T1-Weighted (T1W) images obtained using an MPRAGE sequence, T2-Weighted

(T2W) and T2-FLAIR images obtained using a fluid attenuation inversion recovery sequence. The MRI acquisition

parameters used in this study for the sequences T1W, T2W and T2-FLAIR are displayed in table 2.1.

Table 2.1: MRI acquisition Parameters used in the study.
T1-Weighted MPRAGE T2-Weighted T2-FLAIR

Magnetic Field Strength
TE (ms)
TR (ms)
TI (ms)
Voxel size (x,y,z) [mm]
Matrix size (x,y,z)
Flip Angle (degrees)

3 Tesla
4.6

2250
-

1x0.4883x0.4883
512x512x150

90

3 Tesla
80

8500
-

0.4688x0.4688x5
512x512x28

90

3 Tesla
136
6200
1882

0.4688x0.4688x6.2
512x512x24

variable
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2.2 Segmentation

Segmentation is very important for the assessment of PVS, distinguishing it from confounding tissue boundaries or

similar regions like lacunar infarcts, and in other cases to reduce errors from minor imaging artifacts. An accurate

segmentation of PVS will allow the analysis of their spatial distribution, orientation and density.

Figure 2.1: Brief review of the methodology used to extract the region-of-interest, used as input to the filter.

To segment an extremely narrow structure as the PVS some techniques are not capable of capturing the discrim-

inative features and characteristics of PVS. Image processing algorithms such as segmentation, texture analysis or

classification that use the gray level values of image pixels will not produce satisfactory results due to the existence

of bias field. Bias field signal is a low-frequency that blurs images reducing the high frequency of the image such

as edges and contours, changing the intensity values of image pixels so that the same tissue has different gray

level distribution across the image. Therefore, a pre-processing step is needed to correct for the bias field signal

before submitting corrupted MRI images as input to the Frangi filter. In order to perform an accurate segmenta-

tion, vesselness filters were used such as the Frangi filter into a structured random forrest for classifying voxels

into positive (i.e PVS) and negative (background). However, before performing a structural segmentation of a very

narrow feature some pre-processing image steps were required, especially bias field correction and brain extraction

that allowed to give as input only the region-of interest, eliminating the scalp. There are computer software’s that

allow brain extraction, bias field correction and alignment such as FSL.

In order to segment perivascular spaces several steps of image processing have to be taken into account. In this

study the implementation can be divided in three pipelines: Pre-Frangi, Filtering (implementation of Frangi), and

Pos-Frangi.

Firstly, the first step (Pre-Frangi) includes the optimization of images previously acquired, bias field correction and

14



brain extraction, allowing the selection of regions of interest, serving as input to the filter (figure 2.1).

Secondly, the segmented region of interest is given as input to the Frangi filter along with required parameters,

using Matlab. At the end of the current Chapter is also shown all the trials that were used to realize a parameter

optimisation are shown, so as to select the best parameter combination for each sequence.

At last, similarly to the first stage, FSL is used to optimize the first created mask, containing the region of interest,

eliminating non PVS zones.

2.2.1 FSL for brain segmentation

FSL is a comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data [43, 44]. FSLs

automated segmentation toolbox (FAST) can be used to segment raw images, normally T1,T2 and proton-density

images into certain probability for tissue types such as CSF, GM and WM, performing a segmentation and bias

field correction. The BET toolbox allows brain extraction where non-brain tissues with highly variable contrast

and geometry (i.e. scalp) are eliminated (figure 2.3), leaving all the brain intact [43].The FAST toolbox uses the

BET function to remove non-brain. All volumetric results are highly sensitive to errors here.

Figure 2.2: Brain probability maps based on gray matter(GM), white matter(WM),and CSF using FSLs automated
segmentation toolbox - FAST. A and B (GM in yellow, CSF in blue and WM in light-blue); C - Axial view of the
WM mask (light-blue).

Also, the bias field correction is necessary since the MRI RF(radio-frequency field) inhomogeneity causes

Figure 2.3: Comparison between brain with scalp(A and B - before applying BET function) , and after applying
skull stripping (BET: C and D), in a T1W.
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intensity variations across space, causing problems for segmentation. The FAST toolbox uses the BET function to

remove non-brain. Figure 2.2 shows an example of a resulting probability map for three tissue type, White matter,

gray matter and CSF represented in yellow, light-blue and green, respectively.

FMRIB’s Linear Image Registration Tool (FLIRT)

Linear registration and motion correction are important components of structural and fuctional brain image analy-

sis, where accuracy and robustness are required. The registration problem is to find the best geometric alignment

of two volumetric brain images. After the selection of the desired ROI, and in the context of this work is the white

matter (WM), the FLIRT (FMRIB’s Linear Image Registration Tool)[45] was used in order to perform an affine

registration from T1W space to T2W and T2-Flair (figure 2.4).

Figure 2.4: Linear registration in a T1W white matter mask, our region of interest (ROI) in red, to T2W, using
FLIRT.

The following command lines used to perform an accurate registration was: an input (-in) and a reference (-ref)

volume. The calculated affine transformation that registers the input to do the reference which is saved as an affine

matrix and a output volume (-out). To align it with the reference volume the transform matrix generated is applied

to the input volume. The implementation of FLIRT can be divided in two stages: the first stage requires an input

(-in) and a reference volume (-ref). After the implementation of the first stage, an affine matrix of the two volumes

aligned is generated. The second stage requires the application of a transformation containing the generated affine

matrix, and the output given will be the input given volume aligned in the desired reference space. In addition,

FLIRT can also be used to apply a saved transformation to a volume (-applyxfm, -init and -out) or to apply a

transform that aligns the NIFTI mm coordinates (-applyxfm, -usesqform and -out, but not -init). For these usages

the reference volume must still be specified as this sets the voxel and image dimensions of the resulting volume

[45].
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After having a reliable segmentation of the mask containing the WM along with PVS the implementation of

the filter takes place. As it is shown in figure 2.5, the usage of the frangi requires several input parameters.

Figure 2.5: Implementation of the Frangi Filter method, using Matlab.
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2.3 Enhancement filtering

Most state-of-the-art enhancement filters employ the analysis of 2nd order derivatives of image intensity, which is

encoded in a Hessian matrix involving eigenvalues. Several enhancement filters characterize the local structure by

analyzing the 2nd order intensity derivatives or Hessian at each point in the image. Also, in these type of analysis,

a Gaussian scale space of the image is used to enhance local structures of several sizes [41].

2.4 Frangi Filter

Vessels generally consist of elongated structures that occupy a small area of the total Area being analyzed in the

images, and either are lighter or darker comparing with their respective background. Regarding the context of

the following work, a vessel enhancement filter was chosen for the extraction of PVS, and it can be described as

a filtering process that searches for geometrical structural and common such as tubular or elongated and dot-like

features [37, 46].

Thereafter, a common approach, defined by [37], in order to analyze the local behaviour of an image I , is to

consider its Taylor Expansion in the neighborhood of a point X0,

I(X0 +δX0,S)≈ I(X0,S)+δx0
T

∇0,S +δx0
T H0,S×δX0 (2.1)

where ∇0,S is referred as the Gradient vector and H0,S the Hessian matrix of the image computed in X0 at a

scale S.

To calculate these differential operators of I , some concepts of linear space theory are required. Differentiation

is defined as a convolution with derivatives of Gaussian’s with Lideberg parameter,γ , being useful to compare the

response of differential operators at multiple scales.

∂

∂x
I(x,S) = Sγ I(x)∗ ∂

∂x
G(x,S) (2.2)

where the D-Dimensional Gaussian at a scale S, G(x,S) is defined as

G(x,S) =
1

√
2ΠS2D e

−||x| |
2

2S2 (2.3)

The second order directional is given by the third term in equation (2.1).

The second order derivative of a Gaussian Kernel, DxxG, generates a probe kernel that measures the contrast

between the inside and outside range (−S,S) in the direction of the derivative. Eigenvalue analysis of the Hessian

allows the extraction, in the three orthonormal directions of curvature (λ1,λ2 and λ3) in which the local second

order structure of the image can be decomposed, as illustrated in figure 2.6. This approach is the one followed in

this work.

The Frangi filter has been largely used for enhancing blood vessels in retinal images. This filter can enhance

and capture the geometrical shape of a PVS. However, one limitation of this method is that it relies on the image

processing step for the ROI masks, and requires high resolution and quasi isotropic structural MRI. Moreover, this
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Figure 2.6: In the left, the second order derivative of a Gaussian kernel probes inside/outside contrast of the range
(−1,1). In the right, the second order ellipsoid describing the local principal directions of curvature (λ1,λ2 and λ3),
adapted from [46].

filter analyses the second order derivatives of an image I, defined in the Hessian matrix [38], Hs(v) as:

Hs(v) =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (2.4)

to describe the ”vesselness” F(v) of a voxel v at a scale s as :

Fs(v) =


0 λ2orλ3 ≥ 0,

(1− e
−R2

A
2α

2
) · e

R2
B

2β
2
· (1− e

−s2

2c2
) otherwise,

(2.5)

where λ1,λ2 and λ3 are the ordered eigenvalues (|λ1 |) ≤ (|λ2 |) ≤ (|λ3 |) of the Hessian matrix , RA = |λ2

|/ |λ3 |,RB = |λ1 |/(|λ2 λ3|)1/2,S = (λ1
2+λ2

2+λ3
2)1/2.

This method takes into account two geometric ratios based on the second order ellipsoid.

The first ratio accounts for the deviation from a blob-like structure but cannot distinguish between a line/plate-like

pattern.

RB =
volume/(4Π/3)

(Largest cross-section Area/Π)3/2 =
|λ1|

(|λ2λ3|)1/2 (2.6)

This ratio attains its maximum for a blob-like structure and its zero whenever λ1 ≈ 0 , or λ1 and λ2 tend to

vanish.

RA =
Largest cross-section Area/(Π)

(Largest Axis Semi-Length)2 =
|λ2|
|λ3|

(2.7)

The second ratio refers to the largest area-cross section of the ellipsoid and accounts for the aspect ratio of the

two largest second order derivatives. Thus, this ratio is essential to distinguish between plate-like and line-like

structures.

α ,β and C are the thresholds which control the sensitivity of the filter to the measures RA, RB and S.

λK will be the eigenvalue with the K-th smallest magnitude (|λ1| ≤ |λ2| ≤ |λ3|). For example, a pixel belonging

to a vessel region will be signaled by λ1 being small, ideally zero, and λ2 and λ3 of a large magnitude. The sign of
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Table 2.2: Structure based on Hessian eigenvalue analysis. Eigenvalues are sorted according to magnitude, whereas
H = high and L =low magnitude and +/- indicates the sign of the eigenvalue.

3D
orientation pattern λ1 λ2 λ3

Plate-like structure (bright) L L H−

Plate-like structure (dark) L L H+

tubular structure (bright) L H− H−

tubular structure (dark) L H+ H+

blob-like structure (bright) H− H− H−

blob-like structure (dark) H+ H+ H+

eigenvalues are indicators of brightness or darkness.

The eigenvalues are obtained through eigenvalue decomposition of the Hessian matrix, i.e, eigH(x,s) for λi, i=

1, ...,D which can be computed fast for 2x2 and 3x3 Hessian matrices. The respective eigenvectors point out in

singular directions (u1,u2,u3). u1 indicates the direction along the vessel (minimum intensity variation), u2 and u3

form a base for the orthogonal plane.

Thereafter, the local relevant structures in the image can be enhanced by analyzing the signs and magnitudes of

the ordered Hessian eigenvalues, with respect to their orientation, shape and foreground vs background brightness.

In T1-Weighted MR images, PVS appear as hipointense comparing with their relative background, so it is

expected that λ1,λ2 have lower values and λ3 have a positive sign. In the other hand, PVS that are present in

T2-Weighted images, a bright tubular structure is expected: |λ1| ≤ |λ2| , |λ3| and |λ2| ∼ |λ3| , |λ1| ∼ 0 and λ2 ,λ3

≤ 0. For a dark structure it is expected that |λ2| , |λ3| ≥ 0 .

Given a set of scales S ∈ [smin,smax], the responses are combined as:

F(v) = maxFs(v) (2.8)

where smin and smax are the minimum and maximum scales at which relevant structures are expected to be

found.

2.4.1 Implementation of the Frangi Filter

The implementation of Frangi filter was based on three pre-existing main functions written by D.Kroon Univer-

sity of Twente (June 2009), provided in Mathworks. These three main functions were implemented in Matlab

R2016(b). The main objective was to apply the Frangi Filter, performing a parameter optimization, in the nifti files

(T1 and T2) containing WM as our region of interest, previously segmented with brain extraction (BET) and bias

field correction (FAST), so that the expected output could be possible to obtain. All the nifti files (presented in .nii

format) were converted to .mat format using Nifti toolbox, allowing Matlab to recognize it. Afterwards the first

main function (imgaussian) allowed to select which nifti file was wanted to serve as input to be filtered.

Moreover, the second main function used, Hessian3D.m take as input the volume matrix (I) defined by the previ-

ous function, and Sigma σ . This function filters the image with an Gaussian Kernel (if Sigma is zero no gaussian

filtering) followed by the calculation of second order gradients, which approximates to the second order derivatives

of the image. The given outputs are the second order derivatives of the image (Dxx,Dyy,Dzz,Dxy,Dxz and Dyz).

The third main function, Frangi3D.m, uses the eigenvectors calculated in the Hessian3D to compute the likeliness
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of an image region to vessels, according to the method described on [37, 46], and take as input the input volume

matrix (I), a certain range scale (Sigma - σ ) and the thresholds that control the sensitivity of the filter (α , β and

C). While running this function, for each sigma scale range a matrix containing the filtered 3D image is generated

named Iout . Afterwards, NIFTI toolbox was used for the conversion of the generated matrix into .nii format, and

then visualization in FSLeyes.

Figure 2.7: Single slice view in Matlab of the matrix Iout generated after applying Frangi Filter.

2.4.2 Parameter optimization

In order to obtain a Ground truth for the clinical validation of the output images generated after using the filter,

allowing the extraction of PVS, is important to perform a certain parameter optimization so that the main features

that are extracted after applying the filter are as close to reality as possible, with the same structure and shape,

and also decrease the false positive and negative rate, obtaining a high value of clinical validity and reliability.

Furthermore, as it was explained in the previous section, the main parameters that control the sensitivity of the

filter are (α , β , and C). The other parameter that takes a huge importance in the extraction of these features is

Sigma (σ ), that controls the range that a certain feature is expected to be found in a scale of (Smin, Smax). These

parameters can differ from each MRI sequence and resolution of the scanner. Regarding the context of this work,

since perivascular spaces are features with a radius no more than 3mm, thus, the value of sigma has to be taken

in account. Table 2.3 represents the range used during the optimisation of parameters. In an attempt to find the

best sequence for the frangi filter usage, firstly a range containing the minimum and the maximum accepted value

for the filter to work was determined, using FSLeyes to perform a qualitative evaluation. Afterwards, in several

trials trying to see, and understand which changes occur in the output as the values were changing, and at the same

time, verify each parameter behaviour and their impact in the final enhancement mask, it was decided to assign to

each parameter, according to their sensitivity, a certain increment. The value of Sigma was selected by trial-error

in a several test trials, then it was realized that for the enhancement of these structures, the range of sigmas had

to contain low values, in a scale of approximately between 0.6 and 2 voxels. Higher Sigma values lead to the
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Table 2.3: Frangi Filter parameters optimisation procedure for both MRI sequences : T1-Weighted and T2-
Weighted.

α β C σ

minimum
accepted value 0.05 0.05 10 0.05

maximum
accepted value 10 10 900 2

increment 0.01 0.01 10 0.01

enhancement of other structures that do not correspond to perivascular spaces.

Post-Frangi

After the implementation of the Frangi filter, the Post-Frangi procedure starts in order to perform an improvement

of the final output mask given by matlab. In most of the cases, the matrix generated by the filter (Iout ) contains

border zones and enhanced regions that do not correspond to PVS. Due to the extraction of the WM mask, using

FSL function (FAST ), in some cases, this segmentation can present small regions that have the same contrast of

CSF, and PVS, leading to its enhancement by the filter.

In figure 2.8 is presented the masks that allow an accurate segmentation of PVS.

Figure 2.8: Segmentation of PVS on a T2W in FSL. (A) WM mask obtained FSL( f ast). (B) PVS mask (light
blue) given by Frangi Filter displaying PVS and border zones.(C) Binarized WM mask (white), assuming a brain
probability mapping of 1. (D) PVS extraction (light blue) final mask.

In Figure 2.8, (A) represents the region that is given to the frangi filter in matlab. This mask is also the output

given from the FAST function in FSL, representing the intersection of the binary mask with the brain, obtained by

BET function, using f slmaths.

Here, the brain probability mapping considered for the mask is zero in order to pick up border areas that contain

not only WM, and also to ensure that the mask given to the filter contains the whole area corresponding to WM in

its entirety (figure 2.8 (B)). Afterwards, given the certain parameters to the filter, the output given by the matlab is

saved in nii format, and is represented in light-blue in (B). Furthermore, the current mask (B) contains PVS inside,

but at the same time a border surrounding WM is enhanced leading to a inadequate quantification, so a second

binary mask is needed. Similarly to obtain (A), f slmaths allows to create a binary mask represented in (C). The

white area results from the output of the binarized mask, using a brain probability mapping of 1, to ensure all the
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area is WM (figure 2.8 (C)).

Lastly, f slmaths is used one more time to intersect mask (C) with (B) resulting in the mask containing only PVS

(D). Taking into account the MR sequence that is under test, another FSL function, (FLIRT ) can be used to perform

a linear registration.

A summary of the Post-Frangi procedure is demonstrated in the following scheme, in figure 2.9.

Figure 2.9: Post-Frangi procedure method.

After the Post-Frangi procedure is completed, is important to validate its output. In here, basically searched for

enhanced zones that did not rigorously match PVS, and also, check if border zones of the mask were successfully

removed.
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2.5 Implementation - Part II

2.5.1 Quantification using Brain Atlas

Based on the cerebrovascular diseases, in this thesis, the quantification of PVS was performed in different ways.

Firstly, each brain had a corresponding volume of PVS considering the whole white matter region. After the

extraction of these structures, demonstrated in the the previous sections, its quantification was performed using

a FSL function ( f slstats), applied only to the mask containing the PVS that were extracted. This distribution

allowed to compare the density of PVS by disease. Similarly to these, and also because in literature review a

quantification method by brain lobe was not specified or performed, it was interesting to check if there was a

significance difference of PVS by brain lobe, and for further analysis, to see if this distribution remains constant

for each brain disease. Moreover, in order to perform an accurate brain lobe analysis, the quantification was based

on an adult atlas provided by the Imperial College of London, displayed in figure 2.10, containing the mean of 30

subjects in the MNI space, including 95 brain regional probabilistic maps, demographics, handedness and label

names (data from A Hammers, R Allom et al. 2003, IS Gousias et al. 2008, I. Faillenot et al. 2017).

Figure 2.10: Hammers adult atlas provided by Imperial College of London, representing 95 brain regions, repre-
sented in MNI152 (T1) space.

This atlas was created in the MNI-space (MNI152,T1, 2mm). In order to use this atlas in the T2-space, Flirt

function was necessary as a registration procedure, since the voxel location in the MNI space was different from

the voxel location presented in T2 space, giving as input the MNI space image, and as reference the brain con-

taining PVS (T2-Weighted). After performing this step, it is possible to use these brain regions for segmentation.

Each color area, representing a specific brain area was established as a label, represented by a certain number

(1-95). For a further analysis, accordingly to the principal five brain lobes (frontal, temporal, parietal, motor and

somatosensory, and occipital), FSL was used to extract only these desired brain areas. Particularly, f slmaths was

implemented in a bash script using several thresholds.

To aggregate an accurate brain region a lower and a upper threshold was established, containing the range that

allowed to aggregate each area, fulfilling the requirements to build an entire lobe. After running the script, as

summarized in figure 2.11, it was possible to extract PVS in each corresponding brain lobe, using f slmaths, based

on the intersection of the mask generated by the frangi filter with the created brain lobe mask.

24



Figure 2.11: Pos-Frangi implementation - Part II scheme.

2.5.2 Visual rating scale using Wardlaw and Patankar user guide

Visual ratings are commonly used by clinicians in order to assign a certain degree of pathology [47]. Also, these

ratings can be used when there is a lack of quantitative information regarding the patient. In the context of perivas-

cular spaces, visual ratings can be used with quantitative methods to understand the physiological condition of

each patient, as well as their connection with disease type and age.

Several PVS rating scales are either limited in their anatomical location, in the range of EPVS that they de-

scribe, or in their method of assessing severity. Additionally, some scales were tested using specific MRI sequences

rather than standard structural brain MRI. In this present work, visual ratings were used according with the visual

rating scale proposed by Patankar and Potter et al [47, 48]. This visual rating scale was consulted in [47] and was

our online user guide to our ratings. According to the online user, PVS are rated 0 (no PVS), 1 (mild: 1-10 PVS),

2 (moderate: 11-20 PVS), 3 (frequent: 21-40 PVS) or 4 (severe: ≥ 40 PVS).

Table 2.4: PVS visual rating scores given by the Wardlaw and Patankar scale.
Wardlaw and Patankar visual rating scale
Severity Perivascular spaces number

0 0
1 1 - 10
2 11 - 20
3 21 - 40
4 >40

This user guide will enable a cross-comparison between the analysed groups and facilitate the assignment of a

severity scale.
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Figure 2.12: Perivascular spaces visual rating scale proposed by Patankar and Potter et al [47, 48].PVS are rated
with mild (A) (1-10 PVS), moderate (B) (11-20 PVS), frequent (C) (21-40 PVS), or severe (D) (≥ 40 PVS).
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Chapter 3

PVS segmentation

3.1 Parameter optimization in T1-Weighted images

In T1-Weighted MR images, CSF appear as hipointense regions, containing the darker pixels when compared

with white-matter (WM). In this MR sequence PVS are easily distinguishable from WM, regarding their intensity.

Regarding previous trials, the first parameter to be tested in the T1-Weighted sequence is the sigma (σ ). Likewise

in the T2-Weighted sequence, several trials were performed in order to obtain the optimal sensitivity matching

the desired output mask, using value incrementation, while observing each parameter behaviour and sensitivity

obtaining a specific value parameter combination that will allow structure enhancement. The visualization of the

output given with different σ scale ranges are illustrated in figures 3.1 and 3.2.

Figure 3.1: Axial view (T1-Weighted) in Matlab of the output matrix generated after implementing the Frangi
Filter with different sigma scale ranges, σ = 1.6 (in the left) and σ = 6 (in the right).
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Figure 3.2: Visualization of the output given by the Frangi filter, using σ = 6 in a T1-Weighted MRI (sagital view),
using FSL.

Firstly, during the test-trials a certain scale of sigma was used, i.e, σ = [1 7] with an increment of 1, and it

was realized, using a certain range of sigma scale containing high values that most structures generated by the

Frangi filter do not resemble perivascular spaces. In addition, it was noted, using (σ = 6) that the filter creates

some kind of a layer around the white matter, and in its majority overlaps grey matter. Through the increment it

was also realized that for a range of sigma reaching values higher than 6, the output of the matrix generated by

matlab, containing the image filtered, will not differ, remaining similar to images that used a σ = 6. Moreover,

figure 3.2 demonstrates a higher sensitivity in the enhancement of hipointense regions presented in the brain. The

same output was capable to detect regions not easily seen contributing to the enhancement of the majority of PVS.

However, the referred output was not used for quantification analysis since other regions that do not correspond

to PVS were also mapped. Throughout the trials it was realized that the best Frangi parameters set found are

represented in the following images contained in this subsection. The performance of the Frangi filter in T1W

had a positive capability in the detection and mapping of PVS only when a significant contrast between CSF and

WM was displayed. Figures 3.3 and 3.4 correspond to a segmentation in this modality (T1W). In here, elongated

features that are displayed in the most peripheric areas of the brain were more easily mapped since they displayed

a greater contrast between CSF-WM.
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Table 3.1: Some trials performed, using different parameters of the Frangi filter, in T1-Weighted MR images with
the purpose of finding the best sequence. Parameters in test are marked with ?.

Sensitivity parameters
range

Frangi sigma scale
σ ∈ [smin,smax]

MR sequence Output analysis

α *= [0.01-0.05] , β = 0.1 , C = 300 σ = 0.06 T1-Weighted
Voxels corresponding to PVS were successfully
delineated. Voxels regarding other hipointense
regions were mapped, resulting in false positives.

α* = 0.1 , β = 0.1 , C = 300 σ = 0.06 T1-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.
Only voxels regarding PVS were marked.

α* = 10 , β = 0.1 , C = 300 σ = 0.06 T1-Weighted
Majority of enhanced regions overlapped PVS,
however, false positives is clearly displayed.

α*= 100 , β = 0.1 , C = 400 σ = 0.06 T1-Weighted

Filter sensitivity increased, enhancing
any voxel that displayed a slightly hipointense
contrast compared with background.
Impossible to distinguish PVS.

α = 0.1 , β* = 0.01 , C = 400 σ = 0.06 T1-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.
Only voxels regarding PVS were marked.

α = 0.1 , β *= 10 , C = 400 σ = 0.06 T1-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.
Only voxels regarding PVS were marked.

α = 0.1 , β* = 100 , C = 400 σ = 0.06 T1-Weighted

Most of perivascular spaces were successfully
enhanced, however, border zones regarding
regions that do not correspond to PVS start to
be delineated and extracted.

α = 0.1 , β = 0.1 , C* = 10 σ = 0.06 T1-Weighted
Resulting output showed a lot of false positives.
The filter was not capable to delineate any PVS.

α = 0.1 , β = 0.1 , C* = 0.01 σ = 0.06 T1-Weighted
Resulting output showed a lot of false positives.
The filter was not capable to delineate any PVS.

α = 0.1 , β = 0.1 , C* = [250-400] σ = 0.06 T1-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.
Only voxels regarding PVS were marked.

Furthermore, PVS that were displayed closely to the ventricles were not so easily seen due to the lack of

contrast displayed. Even in this cases, the filter was capable to map and detect these structures displayed with a

poor contrast. the range containing α must increase, allowing the filter to extend/increase the range of sensitivity

that a certain feature is expected to be found. Therefore, for the filter to be capable to detect and delineate those

non-easily seen PVS, the range containing had to increase, allowing the filter to extend the range of sensitivity

that a certain feature is expected to be found. Increasing the value of this parameter allowed the filter to capture

and delineate a higher number of structures in the same ROI, however, if the same parameter increased to much,

WM voxels regarding WM that do not resemble as PVS started to be enhanced, generating false positives in the

output mask.

It was noticed that the performance of the Frangi segmentation and mapping in the T1W was higher in coronal

acquisitions, enhancing PVS in the expected voxels. In addition, figures 3.3, 3.4 and 3.5 correspond to obtained

segmentation in coronal T1W MR images. In these data-sets, the majority of enhanced structures were dot like

features. When comparing with the non filtered image, PVS that are displayed with dot-like and elongated features

were positively mapped in the corresponding hypointense voxels. Therefore, presented results suggest that the

filter can delineate with some precision detailed and clear hypointense regions.
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Figure 3.3: Example of the final PVS segmentation in a coronal T1-Weighted MRI, using Frangi filter. Respective
segmentation is represented in blue.

Figure 3.4: Example of the final PVS segmentation in a coronal T1-Weighted MRI, using Frangi filter. Respective
segmentation is represented in blue.
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Figure 3.5: Example of the final PVS segmentation in a coronal T1-Weighted MRI, using Frangi filter. Respective
segmentation is represented in blue.

Furthermore, in figure 3.3 elongated features were more easily mapped and captured compared with other

features. This can be explained due to the fact that elongated features occupy large areas, being more easier for the

filter to recognize and differentiate hypointensities from the background, and consequently, lead to a more efficient

mapping and delineation of the cavity.

Figure 3.6: Example of the final PVS segmentation in a axial T1-Weighted MRI, using Frangi filter. Respective
segmentation is represented in blue.
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3.2 Parameter optimization in T2-Weighted images

Trials performed in the following MR images (T2W) were executed in order to obtain an optimal sensitivity

matching the desired output mask using the same method (value incrementation) while observing each parame-

ter‘s effect.

T2-Weighted images present a good contrast between CSF and WM, when comparing with the remaining se-

quences, which may enable better results concerning the segmentation of PVS. Regarding previous tests, the first

parameter to be tested in the T2-Weighted sequence is sigma (σ ). As shown, this parameter controls the scale that

a certain feature and structure is expected to be found, and as consequence, it must be the first parameter to be

tested, allowing an accurate enhancement of the desired structures.

For application to this MR acquisition, sigma (σ ) revealed a great sensitivity. The optimal value for this

parameter was contained in a range between [0.06 - 0.1]. Outside this range the output does not behave as it was

expected (figure 3.7) when a higher sigma is used, the output begins to form a single volume, being unable to

determine any PVS. On the other hand, if a value for σ below 0.05 is used, the Frangi output will not be capable

to enhance any PVS. Figure 3.7 shows the results for the same slice using a value for σ inside (a) and over the

admitted range (b), using matlab, during the implementation of the frangi filter. Due to these results, the chosen

value for sigma (σ ) in order to find the best values for the remaining parameters was σ = 0.06.

Afterwards, each of the remaining parameters of the frangi were tested according to their sensitivity. Table 3.2

summarizes some of the trials that were conducted in order to test which set of parameters are most suitable for

the enhancement of PVS.

Figure 3.7: Same slice, in matlab, of a T2-Weighted MR image containing PVS using different sigma values. In
(a) a sigma (σ = 0.06 ) is used, and in (b) a (σ > 1 ) is used.

Through the trials it was noted that a small increment in α leads to a large impact in the enhancement of the

structures by the filter (figure 3.8). In the same axial slice, several α values were tested. The value that results in

a more reliable output is α = 0.05 , enhancing only hyperintense regions that correspond to a perivascular space

(figure 3.8 (a) represented in blue). However, if an higher value is attributed to this parameter, the filter will start to
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Table 3.2: Some trials performed, using different parameters of the Frangi filter, in T2-Weighted MR images with
the purpose of finding the best sequence. Parameters under test are flagged with a (?).

Sensitivity parameters
range

Frangi sigma scale
σ ∈ [smin,smax]

MR sequence Output analysis

α *= 0.01 , β = 0.1 , C = 300 σ = 0.06 T2-Weighted
PVS were positively mapped, however,
some features were discontinued.
No false positives displayed.

α* = [0.05-0.1] , β = 0.1 , C = 300 σ = 0.06 T2-Weighted

PVS morphology was well delineated.
Filter was capable to detect elongated and
dot-like features, recognizing non-easily
seen PVS. No false positives were displayed.

α* = 10 , β = 0.1 , C = 300 σ = 0.06 T2-Weighted
Sensitivity increased leading to the enhancement
of any slightly hiperintense region compared
with the background. False positives displayed.

α*= 100 , β = 0.1 , C = 400 σ = 0.06 T2-Weighted
Increased false positives were displayed,
overlapping the segmentation of PVS.

α = 0.05 , β* = 0.01 , C = 400 σ = 0.06 T2-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.

α = 0.05 , β *= 10 , C = 400 σ = 0.06 T2-Weighted
PVS morphology was successfully delineated.
No false positives were displayed.

α = 0.05 , β* = 100 , C = 400 σ = 0.06 T2-Weighted

Most of PVS were successfully
enhanced, however, border zones regarding
regions that do not correspond to PVS start to
be delineated and extracted.

α = 0.05 , β = 0.1 , C* = 0.01 σ = 0.06 T2-Weighted
Increased false positives were displayed.
The filter was not capable to delineate any PVS.

α = 0.05 , β = 0.1 , C* = 10 σ = 0.06 T2-Weighted
Increased false positives were displayed.
The filter was not capable to delineate any PVS.

α = 0.05 , β = 0.1 , C* = [250-500] σ = 0.06 T2-Weighted

PVS morphology was well delineated.
Filter was capable to detect elongated and
dot-like features, recognizing non-easily
seen PVS. No false positives were displayed.

delineate structures that do not correspond to PVS, resulting in false positives (figure 3.8 (a) represented in orange).

In a comparison for the same slice, it is clearly seen that the slice containing the higher value for α possesses an

higher number of segmented structures. As a consequence, is shown that the value α = 0.05 allows practically

an optimal segmentation of PVS, enhancing only hyperintense regions that correspond to a PVS, excluding false

positives from the segmented output. However, if this value increases, several micro hyperintense regions that do

not resemble a PVS will also start to be enhanced, resulting in false positives. This behaviour was consistent for

other MR images for the same values.

Other parameter that revealed having a great impact on the results when its values were increased was C. Even

so, this parameter only requires a minimum value to result in an acceptable output. For values lower than 50, the

segmented mask showed a lot of noise, enhancing regions that do not correspond to PVS. In this example, C = 0.01,

the final output represents a cluster of points forming almost a tridimensional volume, impossible to distinguish

and enhance only PVS. Through the trials the admitted values for C, in order to obtain a reliable segmentation had

to be higher than 50.
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(a) T2-Weighted axial view. (b) T2-Weighted axial view.

Figure 3.8: Visualisation in FSLeyes of the Frangi filter output mask using diferent parameters.

Figure 3.9 shows the best set of parameters obtained by applying the Frangi filter ( α = 0.05,β = 0.1,C =

[300−500],σ = 0.06 ). In the representative axial slice of the WM, each hyperintense structure assigned to a PVS

was positively marked in light-blue, even those that appear with a lower intensity and which were hard to be de-

tected through visual inspection. This set of values contributed to a reliable segmentation, mapping with precision

PVS. As evaluated through visual inspection in many of slices, PVS delineation appear to be very symmetrical in

both hemispheres.

Figure 3.9: Segmentation of PVS of a T2-Weighted image.

PVS visible in the (T2-Weighted) White-matter mask axial slice presenting small high-signal areas were ob-

tained using the mentioned parameter set (figure 3.9), and the respective output revealed that PVS appear linear
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when parallel and dot-like when perpendicular to the imaging plane. Moreover, in the same figure, an increase

number of PVS was found, presenting almost the same pattern, defined as small, sharply and elongated features

following the orientation of perforating arterioles, running perpendicular to the brain surface. Furthermore, PVS

were clearly distinguishable from lacunes. The Frangi filter could extract and perform a reliable delineation of

the features since the segmentation (in light-blue) occupies exactly the correct space while looking at the non-

filtered WM mask. Areas where small hyperintensities arise, the filter is able to detect PVS, if using the mentioned

parameter set (α = 0.05,β = 0.1,C = 300,σ = 0.06).

Consistent with these results, another example, presented in figure 3.10 strengthens observation that the per-

formance of the filter applied to this modality provides promising results. In this figure, PVS were hard to be

detected through visual inspection, even so, the filter could successfully delineate the majority of PVS, enhancing

its tubular shape and size. In the same image, PVS near the most periphery brain areas seem to display a more

elongated shape, while comparing to those marked in the rest of the slice.

Figure 3.10: Segmentation of perivascular spaces procedure on a T2-Weighted.

From the presented figures, it is plausible to affirm that PVS in multiple slices follow a similar pattern, ap-

pearing round in the center regions of the axial slices with elongated features in the most periphery and posterior

regions. The filter also clearly allowed to distinguish PVS from large WM lesions such as lacunes and other WMH

based on its shape (above 3 mm spheroid shape), spatial distribution and orientation, avoiding these areas. These

results suggest that, further improvement in T2-Weighted image resolution may result in the detection of more

PVS, and assist in an automatic process analysis. Furthermore, this method provides an accurate segmentation,

also contributes to the analysis of PVS orientation, spatial distribution and density. Masks obtained by the Frangi

filter could be used in combination with other measurements and medical data to provide a better diagnosis and to

understand the role of PVS in neurological disease. One limitation noted in this method relies in the processing
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Figure 3.11: Segmentation of perivascular spaces procedure of a T2-Weighted. PVS obtained using Frangi filter
are mapped in blue.

Figure 3.12: Segmentation of PVS procedure of a T2-Weighted. PVS obtained using Frangi filter are mapped in
blue.

of the region of interest (ROI) that is given as input to the filter which should to a map of the WM. If the output

given by FSL−FAST function contains any border zones of giry, that appear with the same intensity of CSF, these

regions can be enhanced, giving rise to false positives.
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Figure 3.13: T2-Weighted coronal MRI showing the non-filter brain, presenting perivascular spaces (at left), and
their respective segmentation in centrum semiovale and brainstem (marked in light blue) using the frangi filter
(α = 0.05,β = 0.1,C = 300,σ = 0.06). PVS appear to be small, round and oval-like, arising with more density in
the brainstem.

Figure 3.14: T2W MR sequence showing the enhancement of perivascular spaces. PVS obtained using Frangi
filter are mapped in blue.
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3.3 Segmentation in T2-FLAIR

The same procedure was repeated for the Fluid attenuated inversion recovery (FLAIR) images. The FLAIR se-

quence is useful in the detection of subtle changes at the periphery of the hemisphere and in the periventricular

region close to CSF. Brain tissue appears more similar to the T2-Weighted images with grey matter brighter than

white matter, while the CSF is dark instead of bright since this sequence removes signal from the cerebrospinal

fluid (CSF) from the resulting images. To null the signal from fluid, the inversion time (TI) of the FLAIR pulse

sequence is adjusted such that at the equilibrium there is no net transverse magnetisation of fluid.

The application of the Frangi Filter to this type of images could not detect any PVS. Also, in the visual ratings

using FSLeyes it was extremely difficult to distinguish PVS, that appear as hipointense regions due to low intensity

and so more difficult to distinguish CSF from the WM (background). This MR sequence can not be used for

segmentation since the enhancement of regions from the filter do not match PVS.

Nevertheless, this sequence can have an important role in Validation since it can detect areas containing WMH

(White matter hyperintensities), that appear as large hyperintensities in these images. In the following figure 3.18,

a mask containing WM was submitted to the Frangi filter with the purpose to enhance PVS that appear dark in this

type of images, presenting the same signal as CSF.

Figure 3.15: Segmentation of perivascular spaces procedure of a T2-Weighted image using matlab and FSL.

Results indicate that the Frangi filter showed a capability to map and delineate hyperintense areas regarding

white-matter lesions (WML), thus, the given output in this sequence could be useful if combined with T1W and

T2W masks, eliminating remaining WMH areas in the PVS mask.
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3.4 T1-Weighted vs T2-Weighted images - Segmentation analysis

Regarding the analysis performed throughout the trials, it was found that the segmentation displayed in T2W is

more similar to what is expected, getting closer to the ground-truth. The comparison of a segmentation using

optimized parameter set in both MR sequences (figure 3.18) indicates that T2-Weighted MR images provided a

higher CSF-WM contrast to the filter compared with T1W, allowing the filter to recognize more easily the shape

and orientation of vessel-like features.

The optimised parameter set included (α = 0.1,β = 0.2,C = 400,σ = 0.06) and (α = 0.05,β = 0.1,C =

500,σ = 0.06) for the T1W and T2W, respectively.

Figure 3.16: Brain axial slices presenting PVS. From left to right: T1W brain with no filter applied, T1W brain
with Frangi filter, T2W without filter, and T2W filtered. PVS are marked in light-blue.

In the same figure, when comparing the two given outputs, it was noticed that in the most periphery brain

areas PVS presented in its majority elongated shapes. However, in areas near the ventricles PVS started to display

more dot-like features. These features are more easily captured in the T2W segmentation when compared with the

T1W. Also, PVS that were difficult to detect in T1W were successfully captured in T2W allowing a more reliable
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mapping.

The results may indicate that the sensitivity in T2W enabled to capture and delineate a higher number of

structures, as well as the enhancement of expected vessel-like features. For the T1W to be capable to detect

PVS, elongated features in the periphery, as demonstrated in the T2W, α had to be higher, allowing the sensitivity

between the CSF and background (WM) increase. However, it was noticed in these cases the enhancement of false

positives. Consequently, the modality of choice for PVS mapping analysis in this work was the T2W.

3.5 Verification and Validation

The main goal of this section is to validate if obtained images using the Frangi filter correspond to the expected

PVS segmentation. In addition, the main purpose is to verify if this method allows a reliable PVS mapping and

extraction on MR images, understanding the behaviour and accuracy displayed in T1W and T2W. In the context

of this work, a positive mapping can be defined as the usability that the filter has to delineate and mark only voxels

corresponding to contrast displayed by CSF, in T2W MR images the contrast of PVS corresponds to the brightest

pixels, as in T1W MR images the contrast enhanced by PVS correspond to darker pixels when comparing with the

background (WM).

Figure 3.17: Implementation of Frangi Filter in a coronal T2-Weighted MR image. After implement the skull-
stripping (BET) with no filter applied (In the left) and the extraction pvs generated by the filter, marked in light-blue
(in the right). Red arrows are pointing to PVS displayed in WM.

However, motion artifacts and WM lesions may display the same contrast as CSF, mostly in T2W MR images

appearing as hyperintense regions. In order to perform a reliable segmentation it is important that the filter is

capable to avoid voxels regarding these artifacts and lesions. On the other hand, PVS can arise in the the boundaries

of WM lesions, overlapping the hiperintensity area. Therefore, in these cases, the filter must be capable to perform

a correct mapping. This verification will strengthen results obtained in further PVS quantification.

Figures 3.17 and 3.18 demonstrate the segmentation of perivascular spaces in different patients, obtained in a

coronal T1W and T2W MRI, respectively. Both images contain red arrows that are pointing to PVS, displayed
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Figure 3.18: Implementation of the Frangi Filter in a coronal T2-Weighted MR image. The non filtered brain
image contain the red arrows that are pointing to PVS in WM, and the PVS extraction generated by the filter,
marked in light-blue.

Figure 3.19: Implementation of the Frangi Filter in a axial T2-Weighted WM mask. The non filtered WM mask
contains the red arrows that are pointing to PVS, as the PVS generated by the filter are marked in light-blue.

with CSF contrast. The segmentation represented in the T1W was capable to map and delineate almost the totality

of visible PVS. PVS that presented elongated features were easily captured by the filter (marked in blue), however,

a minority number of hypointense structures located in the most peripheric regions of the brain were not mapped.
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In figure 3.18 a great density of hyperintensities in the brainstem that were not so easily seen were successfully

captured by the filter. The segmentation illustrated in Figure 3.19 demonstrates the reliability of the filter in

capturing structures that are not easily visible, delineating each PVS, enhancing the correct orientation and shape.

These results reinforce the mapping capability in T2W.

White matter hiperintensities and Motion distortion artifacts

Movement artifacts in MRI degrade image quality and may lead to misinterpretation. Motion artifacts can be

identified as ghosting or blurring, leading to an unreliable analysis. In some cases PVS can arise in the boundaries

of WM lesions, overlapping the hyperintensity area, so the filter must detect these structures in these cases. In this

subsection, some examples of the output given by the filter when it is presented in cases like the ones reported.

Figure 3.20: Enhancement of PVS in a axial T2W presenting white matter lesion. The red arrows indicate some
white matter hyper intensity areas, and some visible PVS appear inside the red square. PVS are marked in light-
blue.

During the first stage of image processing, when a brain presenting severe white matter lesion, the mask created

using FSL function, FAST, in some cases can be compromised. Since these lesions have the same intensity as CSF,

during image processing, in order to create a mask for the respective WM, GM and CSF, the software used can

ignore some of the areas that contain severe lesion, and some parts of the white matter can be misunderstood as

CSF, vanishing in the final mask, generated by FSL. The mask that is given as input to the filter has to be very

optimised, so that any area containing a PVS is presented to the filter, and not misunderstood as CSF. The following

examples describe a segmentation trial in a brain presenting severe white matter lesion. Particularly, in figure 3.20

a severe white matter lesion is presented, as well as motion artifacts.
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Figure 3.21: T2W MR sequence showing the enhancement of perivascular spaces in a patient diagnosed with
Multiple System Atrophy (MSA) (in the right). The output given by Frangi filter (in blue) did not enhance lacune
areas (marked inside the red square).

The areas containing severe white matter lesion are marked with red arrows, and the red square contains a zone

affected by motion. In here, the final output mask avoided WMH and motion distortion areas.

A good example of reliability of the output given by Frangi is presented in figure 3.21, where the enhancement

of PVS occurs, avoiding areas with other WM lesions as lacunes, shown inside the red square. Moreover, the green

arrow is pointing to perivascular spaces that arise in WM. The Frangi output performed a correct segmentation,

although, in some areas in the neighbourhood of grey matter (GM) with CSF, the filter detected some areas that may

not correspond to a PVS. This problem needs to be accounted, and may concern to a problem during processing of

the WM mask, used as input in the Frangi filter. If the mask created by FSL using FAST function, after binaring,

contains regions of CSF that appear as hyperintense, the filter will probably enhance these regions misleading

to an incorrect and unreliable segmentation. In case of the filter marked a lacune this would lead to a wrong

quantification of PVS. In the same figure (3.21), inside the the red square, lacunes (extremely enlarged PVS) are

displayed.

Another contribution to the reliability on the output given by Frangi filter is shown in figure 3.22, where

the enhancement of PVS occurs avoidoided areas with increased WMH (represented inside of the red squares).

Segmented PVS in the boundaries of WHM were delineated.
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Figure 3.22: T2W MR sequence showing the enhancement of PVS in a patient diagnosed with Multiple System
Atrophy (MSA).
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Chapter 4

Statistical analysis

4.1 Quantification resulting from the PVS segmentation

After performing the quantification of PVS in all subjects according to their disease, it is necessary to use statistical

analysis in order to check for statistical significance between diseases for the measured variables. In this work,

statistical significance was defined for a p-value below 0.05 (Confidence interval of 95%).

In order to choose an adequate test for our measures, more specifically, a parametric or non-parametric test,

several assumptions need to be verified.

The main assumptions for a parametric test are normality, linearity, homoscedasticity, and independency [49,

50]. Before opting between a parametric or non-parametric test, all the assumptions referred above have to be

tested.

The first assumption of a parametric test is normality [49]. Normality requires that the scores in the population

follow a certain distribution: the normal distribution ( Population(P) ∼ N(µ,σ2)). When the sample is small,

usually the rule of thumb used is that for samples lower than 30 subjects or values, the normality assumption

cannot be made. For samples lower than 30 it is advisable to use a normality test (Kolmogorov Smirnov), in which

the null hypothesis is H0 : Population(P) ∼ N(µ,σ2), and H1 : Population(P) does not follow a N(µ,σ2). For

smaller samples, e.g, lower than 10 it is not necessary to check for normality, because the test will lead to failure.

The second assumption of a parametric test is homoscedasticity, where equal population variances per group,

and equal population variances for every value are required. Furthermore, the null hypothesis is H0 : σ2
a = σ2

b ,

where the equality of variances between the group a and b are tested. To test homoscedasticity a F− test is used,

although, if more then two groups (k > 2) are presented, a different test is used (levene test).

While running these 2 tests separately, if the null hypothesis is not rejected, than a parametric test can be used

for further statistical analysis.
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4.1.1 Statistical analysis regarding Perivascular spaces volume by disease

The obtained test-statistical and p-values for the normality and homoscedasticity tests using Kolmogorov-Smirnov

and classical Levene test (based on the absolute deviations from the mean), respectively, are displayed in table 4.1

. This analysis showed a significant value in the normality test (p < 0.05). On the other hand, no significant values

were found in the deviations from the mean (homoscedasticity test). These results give us a better understanding

regarding the obtained distributions, as well as the type of statistical test that should be used along the work.

Therefore, all tests should be non-parametric. Also, all statistical analysis results were performed using R-Studio.

The following analysis will focus on the obtained distribution of normalized PVS volumes in each brain lobe,

across different groups of patients, where the normalization in each analyzed subject consisted in dividing the

segmented PVS volume by the volume of white matter (WM). More specifically, the purpose of the following tests

is to check for significant differences for the normalized PVS volumes in each brain lobe, considering different

patient conditions.

Table 4.1: Kolmogorov-Smirnov test and Classical Levene‘s test.
Test-statistic value p-value

One Sample Kolmogorov-Smirnov test
D = 0.50036 2.098e - 14*

data: all patient groups.
Classical Levene‘s test based on the absolute deviations
from the mean w = 2.4065 0.07683
data: all patient groups.

PVS distribution in Patients diagnosed with MSA

Results regarding the distribution of normalized PVS volumes in patients diagnosed with MSA are displayed in

table 4.2. A Kruskal-Wallis test using as factors frontal lobe (FL), occipital lobe (OL), temporal lobe (TL) and

parietal lobe (PL) demonstrated significant differences between lobes.

Table 4.2: Kruskal-Wallis rank sum test between the normalized volumes of perivascular spaces distributed by
brain lobe in patients diagnosed with MSA.

Kruskal-Wallis rank sum test Test-statistic df(n-1) p-value
Data: perivascular spaces normalized volumes in MSA. χ2 = 13.387 3 0.00387

The same distribution can be seen in figure 4.1 (boxplot). Figures 4.1 illustrate the distributions of the normal-

ized volumes in different lobes. PVS volumes presented a narrow distribution in the parietal and temporal lobes,

on the other hand, the obtained PVS distribution in FL was more wide by comparing with the other brain lobes.

Moreover, lower medians can be observed for the occipital, parietal and temporal lobes compared to the frontal

lobe.
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Figure 4.1: The central mark indicates the median; the upper and lower edges of the box correspond to the 25th
and 75th percentiles, respectively; the upper and lower extremes represent the maximum and minimum values,
respectively; and the dots correspond to the outliers.

Results consistent with figure 4.1 are displayed in table 4.3. In here, multiple comparisons were performed in

order to understand the significant difference found. Differences found in multiple comparison test using Tukey

HSD along each brain lobe are concordant with the results observed in figure 4.1. Post-hoc comparisons shown in

table 4.3 evidence that the obtained normalized PVS volume means in frontal lobe were higher while comparing

with the ones in the temporal lobe, resulting in a close to significance-level (p = 0.05351).

In the other hand, no significant differences were found between the remaining lobes.

Table 4.3: Obtained values from the TukeyHSD Multiple comparisions regarding the distribution of perivascular
spaces normalized volume means by brain lobe, in patients diagnosed with MSA, using a 95% confidence level.

brain lobes
occipital-

frontal
parietal-
frontal

temporal-
frontal

parietal-
occipital

temporal-
occipital

temporal-
parietal

p-value 0.36813 0.16210 0.05351* 0.95624 0.70998 0.94219
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PVS distribution in Patients diagnosed with PSP

Boxplots regarding the distribution of normalized PVS volumes in PSP patients can bee seen in figure 4.2. The

volumes in the frontal and occipital lobe presented very similar medians compared with the parietal and temporal

lobes. In addition, obtained values regarding the volume of PVS in the frontal lobe showed less variability amongst

the remaining brain lobes. Moreover, decreased values were found in the temporal lobe, making the respective

distribution visually distinguishable from the remaining regions.

Figure 4.2: Distribution of perivascular spaces by brain lobe in PSP patients. The central mark indicates the
median; the upper and lower edges of the box correspond to the 25th and 75th percentiles, respectively; the upper
and lower extremes represent the maximum and minimum values, respectively; and the dots correspond to the
outliers.

Despite the apparent differences across the medians, no statistically significant differences were found between

the groups (p = 0.129) given a 95% confidence level, neither their interaction, given by post hoc comparisons,

showed in tables 4.4 and 4.5. However, differences between the parietal and frontal (p = 0.06), and the temporal

and occipital (p = 0.097) lobe may show a tendency towards significance, in a 90% confidence interval.

Table 4.4: Kruskal-Wallis rank sum test between the normalized volumes of perivascular spaces distributed by
brain lobe in patients diagnosed with PSP.

Kruskal-Wallis rank sum test Test-statistic df(n-1) p-value
Data: perivascular spaces normalized volumes in PSP. χ2 = 5.6667 3 0.129
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Table 4.5: Obtained values from the TukeyHSD Multiple comparisions regarding the distribution of perivascular
spaces normalized volume means by brain lobe, in patients diagnosed with PSP, using a 95% confidence level.

brain lobes
occipital-

frontal
parietal-
frontal

temporal-
frontal

parietal-
occipital

temporal-
occipital

temporal-
parietal

p-value 0.99401 0.63332 0.06846 0.77096 0.09756 0.35611

Results of the analysis of PVS distribution in patients diagnosed with Fabry disease

Similar to the previous analysis, figure 4.3 illustrates the distribution of PVS in both FD patients. Among the

obtained data, the lobes where a higher value was found regarding the metric analyzed were the frontal and Parietal

lobes. On the other hand, the temporal lobe revealed a lower density of normalized PVS between the remaining

lobes.

Figure 4.3: Distribution of normalized PVS across different brain lobes. Each red dot represents a normalized
volume for a given patient in the respective regions of interest (brain lobes).
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Comparison of PVS normalized volumes distribution by patient group

After analyzing each group individually, figure 4.4 illustrates the distribution of the same analyzed metric across

different regions of interest (different brain lobes) to determine whether there are significant differences in this

same region of interest between the different groups. The analysed groups displayed are the controls (HLT),

Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP).

Figure 4.4: The central mark indicates the median; the upper and lower edges of the box correspond to the 25th
and 75th percentiles, respectively; the upper and lower extremes represent the maximum and minimum values,
respectively; and the dots correspond to the outliers.

The groups where a greater difference was observed concerning the medians of the analyzed metric were

patients diagnosed with MSA and PSP, mainly observed on the occipital and parietal lobes.

On the other hand, the lobe where a lowest variability was found in the obtained metric across the analysed

groups was the temporal lobe. In this brain region, visual trends displayed in the boxplots can be confirmed by

analyzing the value given by TukeyHSD multiple comparisons test. In table 4.6, the p-values regarding the multiple

comparisions between different groups are displayed. The difference between groups concerning the distribution

of normalized PVS volume was found to be less significative in the temporal and occipital lobes (higher p-values).

Difference between groups obtained in the frontal lobe were considered more significative , while comparing

with the remaining brain lobes.
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In order to see if any significative value was achieved, a multiple comparisons test was performed. According

with the Kruskal Wallis multiple comparisons test, the distribution concerning the analyzed metric was found to

be less significative, in the parietal and temporal brain lobes.

Table 4.6: Obtained values from the TukeyHSD Multiple comparisions regarding the distribution of perivascular
spaces normalized volume means by brain lobe using a 95% confidence level.

MSA-HLT PSP-HLT PSP-MSA
Multiple comparision TukeyHSD

p-value
kruskal-wallis

χ2 d f (n−1)
p-value

(kruskal-wallis test)
frontal
lobe 0.1211887 0.6200567 0.5579179 6.6248 2 0.03643

occipital
lobe 0.9680215 0.5758043 0.6077585 4.3391 2 0.1142

temporal
lobe 0.3477222 0.8723731 0.6698178 2.7441 2 0.2536

parietal
lobe 0.9997415 0.4463290 0.3250871 2.3171 2 0.3139

Comparison groups regarding perivascular spaces normalized volumes

Similarly to the previous metric, the following analysis considered all obtained values in the brain lobes, according

with each group type. The distribution for the four groups of the median values across the ROIs (brain lobes) can

be consulted in figure 4.5.

Lowest variability and reduced values can be observed for the Healthy group (HLT) compared to the PSP and

FD.

In terms of boxplot distribution, the medians corresponding to the MSA and HLT group look very similar while

comparing with the remaining groups. Also, a decreased number of outliers can be observed for patients diagnosed

with MSA amongst the remaining groups.

No statistically significant group differences were found for either of the groups (p = 0.2293), displayed in

table 4.7.

Moreover, post hoc comparisons given by Tukey HSD amongst the ROIs (brain lobes) did not reveal statisti-

cally significant, neither significant interactions between the groups (table 4.8).

Table 4.7: Analysis of variance statistical test regarding normalized PVS volumes presented in all groups.
df (n-1) Sum Sq Mean Sq F-value p-value

groups 3 0.00201 0.00067 1.4819 0.2293

Table 4.8: Obtained values from the TukeyHSD multiple comparisions regarding the distribution of normalized
PVS volume means in all analysed groups, using a 95% confidence level.

Patient groups HLT - FD MSA - FD PSP - FD MSA - HLT PSP - HLT PSP - MSA
p-value 0.61801 0.99913 0.93702 0.34183 0.19549 0.89734

Comparison regarding normalized PVS volumes between healthy and pathological groups

Since no significance was found between the previously analyzed values between the four groups, potentially due

to their small size, a new test was attempted by grouping all patients, more specifically, a group including MSA,
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Figure 4.5: The central mark indicates the median; the upper and lower edges of the box correspond to the 25th
and 75th percentiles, respectively; the upper and lower extremes represent the maximum and minimum values,
respectively; and the dots correspond to the outliers.

PSP and Fabry‘s disease, and compare them with controls.

Thus, in this trial, the first group used concerned control subjects (HLT), and the second group concerned all

patients. Consequently, a data frame was created displaying all obtained values regarding these two groups.

Figure 4.6 illustrates the comparison of the analyzed metrics between controls subjects and patients. Healthy

subjects displayed a lower variability regarding the analyzed metric compared with pathological subjects. In addi-

tion, a small number corresponding to the Pathology group reached increased volumes of normalized PVS when

compared with the other group.

Similar to previous tests, in order to determine the existence of significance amongst the groups and their

interaction, the Mann-Whitney Rank Sum test was used, and the results can be consulted in table 4.9.

Table 4.9: Mann-Whitney test between healthy and pathological patients. Pathological patients include patients
diagnosed with MSA, PSP and FD.

Wilcoxon Rank SumTest (Mann-Whitney) W df (n-1) p-value
Data: healthy (HLT) and pathological
patients (MSA,PSP,FD) 400 1 0.0382*
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Figure 4.6: The central mark indicates the median; the upper and lower edges of the box correspond to the 25th
and 75th percentiles, respectively; the upper and lower extremes represent the maximum and minimum values,
respectively; and the dots correspond to the outliers.

Based on p value, at a confidence interval of 95%, a significant difference was found between the analyzed

groups (p = 0.0382) leading to the rejection of the null hypothesis (H0: equality between medians).

Visual ratings based on the Wardlaw and Patankar proposed scale

Qualitative measurements were performed across the data in order to understand if the severity scores were related

with quantitative measurements. In addition, in the context of PVS, the comparison between these visual ratings

with quantitative results provided by the segmentation using the Frangi filter would allow to a better understanding

of the impact that the enlargement and distribution of these structures present in each patient‘s physiological

condition.

In this work, qualitative measurements were performed based on the proposed scale by Wardlaw and Patankar

et al. Some examples resulting from the attribution regarding the respective scoring are displayed in figure 4.7.

According to these guidelines, a certain value of severity was assigned to each patient.

53



Figure 4.7: Visual scoring according to the Wardlaw and Patankar scale [47] after applying the Frangi segmenta-
tion.

Figure 4.8 summarizes the visual rating scores given to all patients.

The results showed that patients diagnosed with MSA displayed more variable severity rating scores, whereas

in the majority of the cases scale Frequent (3) and Severe (4) scores were assigned. In addition, the patient for

whome the minimum score of severity was observed belonged to the same group.

Furthermore, similarly to MSA, patients diagnosed with PSP also obtained higher visual rating scores, being

the majority of cases assigned to the frequent level (3).

Moreover, both FD patients presented the same score level.

In order to see if PVS visual rating scores have a clear connection within obtained PVS computational total

volume, obtained by the segmentation using Frangi filter, the following associations between these two metrics can

be consulted in figure 4.8.

Obtained PVS computational total volumes and PVS visual rating scores were compared, using a Linear model.

In here, the corresponding volume of each patient was assigned to a certain visual rating score (1-4) and they can be

consulted in figure 4.8. In addition, the linear model represents a continuous quantitative response variable (PVS

normalized volumes) and an explanatory variable, which corresponds to a categorical variable with four levels
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(visual rating scores). The results obtained in this study can consulted in tables 4.10 and 4.11.

The intercept given by the linear model corresponds to the average response of the reference class for a patient

with mild PVS score, as the remaining betas explain how much each of the remaining classes differ from the

reference class.

Table 4.10: Linear model regarding the visual rating scores obtained.
Visual ratings given by
Wardlaw and Patankar scales Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.06195 0.04737 1.308 0.2176
moderate (11-20 pvs) -0.01626 0.05470 -0.297 0.7719
frequent (21-40 pvs) 0.03578 0.05024 0.712 0.4912
Severe ( >40 pvs) 0.12207 0.05470 2.232 0.0474*

Table 4.11: Linear moder regarding Wardlaw and Patankar visual rating scores obtained.
Multiple R - Squared Adjusted R - Squared F - statistic p - value

0.5602 0.4403 4.671 0.02437*

Figure 4.8: Visual rating scores obtained in all patients regarding the proposed scale by Wardlaw and Patankar et
al.

In other words, the purpose of these trials is to verify once more the performance of the filter and strengthen

clinical validation.

PVS total volume increased significantly with PVS count, [coefficient of linear regression: 0.0619, p-value =

0.0243*]. These results indicate that PVS visual rating scores may have a positive association with PVS volume,

therefore, this method indicates that a patient who is assigned a more severe rating is more likely to have a higher

volume of PVS.
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Chapter 5

Discussion

PVS and cerebrovascular disease

PVS allow interstitial solutes to be cleared from the brain, resulting in an important part of the brain circulation and

drainage system. However, dysfunction of PVS pathways can occur if there is deposition of substances causing

stagnation of fluid. Therefore, this stagnation may result in an enlarged PVS due to the accumulation of fluid.

Finding a method that provides further information regarding quantitative analysis of a patient (regarding the

severity and presence of these cavities) would allow a better understanding and characterization of PVS severity in

aged people and its associations with dementia, stroke and vascular diseases.

The major goal of this thesis was the segmentation of these structures and further quantification. In addition,

this work focused the analysis in groups of patients diagnosed with MSA, PSP and FD.

PVS segmentation

The process of PVS counting can be laborious and error-prone, so efforts to improve its efficiency and accuracy

are extremely important. Finding a segmentation method for these cavities will avoid clinicians manually each

structure and double-counting, will allow a better characterization in terms of spatial distribution, orientation and

volume, perform a fast screening in each patient resulting in an easy and more reliable qualitative analysis, and

above of all, will allow physicians to save time. PVS manually marking can be very time consuming, thus, a

segmentation method will be useful to perform a fast screening in several patients at the same time. Moreover, this

method will make possible to track quantitative measurements and disease progression in each patient.

Several techniques including markov models, random forest segmentation, algorithm automatic detection and

threshold methods have been proposed in order to enhance these structures. The method applied in this work

concerns the use of the 3D Frangi vesselness filter.

Frangi filter performance

As shown in chapter 4, the Frangi filter allowed a correct identification and extraction of PVS capturing the 3D ge-

ometrical shape, showing it can act as a promising tool and give clinical support in both qualitative and quantitative

measurements.
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In other words, given certain parameters, the Frangi Filter allowed a detection of PVS that were hardly identi-

fiable, mostly in T1-Weighted MR images. PVS that could barely be spotted visually, were identified (as is shown

in the figures).

During the filtering process a greater speed and precision was noticed regarding the calculation of the matrices

containing the corresponding eigenvalues and eigenvectors of each image, avoiding problems of error overload

memory when using matlab. Although, in some MR images that displayed a higher number in slices, specially in

some T1-Weighted MR images, the calculation of the referred matrices lead to the shutdown of the system, making

matlab unable to calculate the referred matrices, and consequently, the output mask containing the PVS was not

generated.

Trials regarding parameter optimization were performed with the purpose to find the optimal sensitivity in the

generated output provided by the Frangi filter, making the segmentations closer to what is expected from visual

inspection and to be used as a reliable clinical tool. Therefore, different values were assigned to each parameter

(α,β ,C,σ ) to understand their behaviour among the trials, and improve the PVS mapping.

Since PVS quantification is performed by a neuroradiologist, an image with high PVS-tissue contrast is ideal.

This difference in contrast was an important contributor to the filter performance.

T2-Weighted MR images offered a higher contrast of PVS-CSF (or PVS - White-matter) compared with T1-

Weighted MR images. Furthermore, PVS that are difficult to detect in T1W were successfully displayed in T2W

MR images allowing a more reliable mapping (figure T1 vs T2).

Consequently, the modality of choice for PVS mapping analysis in this work was the T2W. Only in one patient

T1W segmentation was used (fig 3.17).

Parameter optimisation in T1, T2 and T2-FLAIR

Throughout the trials it was found that the parameters that revealed a greater sensitivity were alpha(α) , C and

Sigma(σ ).

Sigma (σ ) controls the scale for which a certain feature is expected to be found. It revealed to be the most

sensitive parameter found, therefore, it was the first parameter tested. The behaviour and sensitivity showed by σ

was very similar in both sequences( T1W and T2W). The admissible found value for σ included a range between

[0.06 - 0.1], a value outside this range lead to a poor mapping (figure 4.9). Moreover, a small increment in alpha

(α) lead to a large impact in the the PVS morphology captured by the filter. Using an α = 0.05 allowed to minimise

false positives displayed in the output mask, enhancing in its majority only voxels corresponding to PVS. Also,

it was noticed that α controls the sensitivity that a structure (hiperintense or hipointense) is enhanced comparing

with the respective background. Consequently, in the context of a this study, where PVS are extracted based in

contrast(CSF-WM) and morphology, these parameters are extremely important in PVS mapping.

Furthermore, C only required a threshold value for the filter to allow the PVS mapping. Figure 4.10 (b)

represents a case where a value lower than 50 is used, consequently the segmented mask displayed false positives,

not corresponding to PVS. The minimum admissible value found for C was 200.

Therefore, the best parameter obtained for the T2W MR sequence was (α = 0.05,β = 0.1,C = [300−500],σ =

0.06), and the respective segmentation is illustrated in figures 3.19 and 3.21.

Using this parameter set allowed the filter to avoid areas not belonging to PVS. Particularly, areas containing
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severe white matter lesion were not segmented by the filter (figures 4.30 and 4.31). In these areas, PVS that

were displayed in the neighbourhood of the respective WMH were positively mapped. Figure 4.32 illustrates the

avoidance by the filter in voxels regarding other WMH like lacunes. Moreover, the filter allowed to avoid areas

caused by motion artifacts (figure 4.31).

A comparison given the filter regarding both sequences, illustrated in figure 4.20 and 4.21, indicate that the

performance of the Frangi filter was higher in the T2W, being capable to detect a higher number of PVS, as well

as a more reliable morphology according to what was expected by looking at the non filtered image, specially PVS

that display elongated features are more easily enhanced in the T2W. A plausible explanation for this is the PVS-

WM contrast, higher in the T2W modality, compared with the T1W. The same pipelines used in these modalities

(T1W and T2W) were replicated for the T2-Flair, where a poor performance in the mapping of PVS was noted.

A plausible explanation is the poor contrast between CSF and WM, blocking the filter to detect any structure.

However, as opposed to the segmentation performed in the T1W and T2W, the output given by the Frangi filter

in this modality showed a capability to mark and detect areas containing WM lesions, thus, segmentation in the

T2-Flair can be important since it is possible to subtract the respective output mask by the T2W segmentation, and

as a consequence, an improvement in the T2W mask can be performed, eliminating non desired areas. The lack of

CFS-WM contrast displayed in the T2-Flair MR images, making the filter unable to recognize any contrast changes

between PVS (hipointense) and WM. Therefore, the filter could only detect contrast changes in areas displaying

a significant contrast difference compared with the respective background, such as WMH. As a consequence, no

PVS found were mapped using this modality, and areas regarding WM lesions, that appear as hiperintense were

mapped.

PVS quantification

The purpose of PVS quantification was to check for significant differences along the distribution of normalized

PVS volumes regarding brain lobe and patient group. Throughout the statistical analysis it was found that means

regarding the MSA patients ( figure 5.1) in the frontal lobe were significantly higher when compared with the

temporal lobe (p = 0.05351). Statistical results regarding brain lobes comparison showed a potential significance

among the patient groups. Values obtained in the frontal lobe were considered more significant (p = 0.03643) when

comparing with the remaining brain lobes. However, multiple comparisons test (table 5.7) revealed no significant

differences between patient groups, while comparing with the remaining brain lobes.

Moreover, a lower variability and reduced values illustrated in figure 5.5 were observed for the control group

(HLT), when compared with the PSP and FD patients. Despite visual differences across the group medians no

significant differences were found across the groups (p>0.05). This fact can be explained by the reduced sample

size. However, when all patients were grouped together, more specifically,a group including MSA, PSP and Fabry‘s

disease, and compared them with controls, the Mann-Whitney test showed a statistically significant difference

between the groups (p = 0.0382) leading to the rejection of the null hypothesis. This result may indicate that the

PVS volumes increase with certain cerebral pathological conditions, thus, PVS distribution and volume may have

a possible connection with cerebrovascular diseases.

Quantitative measurements will better characterize the severity of PVS in ageing people and their associations

with dementia, stroke and vascular diseases.
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Wardlaw and Patankar visual rating scores

Results obtained regarding PVS visual rating scores showed a clear connection within PVS computational total

volume given by application of the Frangi filter. The following associations between these two metrics can be

consulted in figure 4.8. A total Obtained PVS computational total volumes and PVS visual rating scores were

compared, using a Linear model. In here, the corresponding volume of each patient was assigned to a certain visual

rating score (1-4) and they can be consulted in figure 4.8. In addition, the linear model represents a continuous

quantitative response variable (PVS normalized volumes) and an explanatory variable, which corresponds to a

categorical variable with four levels (visual rating scores)

The intercept given by the linear model corresponds to the average response of the reference class for a patient

with mild PVS score, as the remaining betas explain how much each of the remaining classes differ from the

reference class. In other words, the purpose of this trials was to verify once more the performance of the filter,

strengthen clinical validation. PVS total volume increased significantly with PVS count, [coefficient of linear

regression: 0.0619, p-value = 0.0243*]. These results indicate that PVS visual rating scores may have a positive

association with PVS volume, therefore, this method indicates that a patient who is assigned a more severe rating

is more likely to have a higher volume of PVS.
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Chapter 6

Conclusions

PVS allow interstitial solutes to be cleared from the brain contributing to the brain homeostasis. Dysfunction of

these structures can occur if there is a deposition of substances causing stagnation of CSF, leading to the dilation

of these cavity forming an enlarged PVS, visible in MRI.

This work focused the segmentation and further quantification of PVS in the brain. Manual delineation of

tubular structures such as PVS in a three-dimentional image can be very time consuming, and clinicians have to

check multiple views to obtain a very accurate delineation.

Therefore, the first main goal proposed in this work was to optimize a method capable to detect and map PVS

morphology and features displayed in MR images. This achievement would empower and make clinicians able to

perform a better characterization in terms of spatial distribution, orientation and volume, monitoring each patient‘s

condition. After accomplishing the first goal, the second main objective proposed was the PVS quantification

based on a brain atlas, for further quantification in the major brain lobes. This analysis would enable multiple

comparisons along these ROIs and check for statistical significance between patient groups.

In order to be able to implement the defined objectives, this work includes three different pipelines, that can be

summarized as Pre-Frangi, Enhancement filtering, and Post-Frangi.

Pre-Frangi included the optimization of images previously acquired, without any kind of processing, allowing

the selection of regions of interest, more precisely White-matter, serving as an input to the filter. FSL was used to

fulfill the needs regarding the creation of the ROI.

Afterwards, using Matlab R2016(b) as software, the Frangi filter was used for PVS mapping. Given certain

values to α,β ,C and σ , the filter could capture the majority and geometrical shape of PVS displayed in WM.

Concluded the filtering stage, the Post-Frangi procedure allowed to improve and empower the resulting mask

given by matlab. The matrix generated by the filter Iout contains border zones and enhanced regions that do not

correspond to PVS. These border zones needed to be removed. Consequently, a WM mask with a brain probability

mapping = 1 was created using f slmaths, removing all border zones, ensuring that only PVS inside WM were

extracted.

A final assessment in this work focused on the statistical analysis regarding multiple comparisons across the

analyzed metrics between patient groups. All tests presented in Chapter 5 concerns the statistical analysis found

regarding PVS distributions across the patient groups. R-Studio was used as a statistical tool for our measures.
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Moreover, for validation, it was investigated whether the PVS volumes were related with visual rating scores.

These ratings can be used with quantitative methods to understand the physiological condition of each patient, as

well as its progression.

Enhancement filtering

In this work, the Frangi filter was successfully implemented and applied to our data sets, accomplishing the first

defined goal. Throughout the trials, the parameters used in the Frangi filtering process were set to allow a cor-

rect identification and mapping. Results presented in Chapter 4 reinforce that PVS were positively mapped, with

more precision in T2W MR images. Moreover, using the best parameters found, the filter‘s sensitivity increases,

being capable to extract PVS 3D geometrical shape, showing that it can act as a clinical support tool in qualitative

and quantitative measurements. Filter performance was not equal in both sequences, and a plausible explanation

is differences in CSF-WM contrast. T2W segmentation showed a more reliable PVS mapping and morphology,

being capable to detect PVS in the boundaries of WM. On the contrary, T1W segmentation revealed a less sen-

sitive PVS detection, presenting false positives in the output mask. A comparison given the filter regarding both

sequences(T1W,T2W and T2-Flair) indicate that the performance of the Frangi filter was higher in the T2W image,

making it the most suitable for PVS mapping, being capable to detect a higher number of PVS.

Filter validation

Results shown in chapter 4, more precisely, figures 4.30 to 4.32 illustrate that the filter can avoid voxels regarding

areas displaying WMH. Despite WMH presenting the same contrast as PVS, the filter could avoid areas that

belong to WMH, such as severe WM lesions and lacunes. It is also demonstrated that the filter was capable to

extract elongated and dot like features of PVS that were not easily seen when comparing with the non filtered

image.

PVS quantification

Quantification analysis were performed using FSL, accomplishing the second defined goal.

Regarding the performed statistical analysis, the defined metric concerned the volume of PVS divided by the cor-

responding WM volume. Post hoc comparisons given by Tukey HSD showed a tendency for statistical significance

between brain lobes regarding the normalized PVS volumes in MSA group. The distribution of this metric was

higher in the frontal lobe when compared with the temporal lobe (p = 0.05351). Reduced medians were observed

for the occipital, parietal and temporal lobes. On the other hand, post hoc comparisons in the FD and PSP groups

revealed no significant differences across the brain lobes in the analyzed metric (p = 0.6823) and (p = 0.129),

respectively. In brain lobe analysis, regarding the analyzed metric, a tendency towards statistical significance in

the frontal lobe was seen. In the contrary, the same distribution was found to be less significative, in the parietal

lobe and temporal brain lobes. Moreover, a lower variability and reduced values were observed for the control

group (HLT) compared to the remaining groups. However, post hoc comparisons given by Tukey HSD amongst

the ROIs (brain lobes) did not reveal statistically significant, neither significant interactions between the groups

(P = 0.2293). However, statistical significance was found when all patients were clustered, more specifically, a

group including MSA, PSP and Fabry were compared with control patients (p = 0.0382). This results strengthens
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visual differences observed in the figure 5.6, where differences across the medians corresponding to the healthy

and pathological groups were considered statistically significant. This result may indicate that the PVS volumes

increase with certain cerebral pathological conditions.

Wardlaw and Patankar visual rating scale

The results of this experiment suggest a fair reliability regarding the output of the segmentation method, given by

the PVS computational total volume and count vs validated PVS rating scores, through visual inspection.

The purpose of these trials were to verify once more the performance of the filter, strengthen clinical validation.

In this work, PVS total volume increased significantly with PVS count (coefficient of linear regression: 0.0619,

p-value = 0.0243*), therefore, based on a 95% confidence interval, these results strengthen that PVS visual rating

scores may have a positive association with PVS volume.

Final statement

The Frangi filter, given certain parameters, showed a positive performance in PVS mapping. The segmentation of

these structures will enable the analysis of PVS spatial and volumetric distributions with other markers of SVD,

such as acute lacunar infarcts, WMH, lacunes, and microbleeds. Moreover, obtained results indicate that this PVS

quantification method is promising for assessing PVS count and volume from conventional clinical MR scans, and

could complement by giving neuroradiologists clinical support in visual rating scores.

Currently, PVS count is performed visually rather than using an automatic threshold-based way, therefore, this

method could complement subjective visual rating scales by achieving a precise quantification.

Furthermore, future studies could use this method in longitudinal studies where PVS burden can be assessed in

relation with other measures to study possible changes in cerebral blood brain barrier permeability, perfusion and

cerebrovascular reactivity.
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Limitations and Future Work

The present study presented some limitations that could be addressed in future studies. Firstly, one of the main

limitations was the lack of contrast between CSF-WM, specially presented in T1W MR images. This limitation

lead to the decrease in sensitivity regarding the Frangi filter output mask. A possible approach should focus on

the MR acquisition with a more powerful magnetic field strength. Increasing the magnetic field would provide to

the filter a higher sensitivity detection, better conditions to differentiate and improve CSF-WM contrast, leading

to the decrease of false positive rate in this modality (T1W). However, the use of MRI scanners with a higher

magnetic field strength may not be easily accessible, and on the other hand it would lead to greater memory

oveload during the eigenvalue and eigenvalue matrix calculations in matlab, probably causing a shutdown in the

system. Therefore, an approach to overcome the referred issued, so as to get a more supported validation should

include samples previously marked by clinicians and neuroradiologists. This process can be very laborious and

time consuming but would help to eliminate false positives, decreasing possible errors in the output mask and

perform a continuous improvement in the parameter ranges, used for the Frangi filter. Moreover, marked images

can be used with the output masks given by the filter. This method is commonly used as a measure of overlapping

two sets of images A and B, allowing the comparison and similarity between these two samples. Furthermore, the

values resulting from the calculation of Dice coefficient will allow to adjust the Frangi parameters used for PVS

mapping.

Future studies should focus the quantification of PVS using other regions of interest (ROI) in brain atlas, more

precisely, in the brainstem and basal ganglia. It would be very interesting to perform volume comparisons for

results found with quantification in these regions.

Another limitation in this study concerns the small sample size regarding some patient groups, more specifically

FD and PSP. Statistical significance was not found between patient groups probably due to the lack of statistical

power. Future work should include larger samples, which could also prove important to confirm the results hereby

obtained regarding the statistical differences obtained between control and pathological groups. The use of a larger

sample would further enhance the utility of PVS quantification as monitoring tool for the analyzed metrics provid-

ing a relatively straightforward confirmation regarding PVS distribution in disease progression, by investigating

PVS volume differences across age.
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