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Introduction:  In order to improve our understand-
ing of the shock response of Yorkshire sandstone, par-
ticle impact tests were carried out using the Open Uni-
versity’s All Axis Light Gas Gun [1, 2], and 1-D plate 
impact shock studies implemented using the University 
of Cambridge’s Plate Impact Facility [3]. Preliminary 
measurements of the crater depth and diameter have 
been carried out, using a range of techniques. Predic-
tion of the pressures generated on impact requires ap-
propriate material data, preferably measured for the 
material (particularly relevant for geological materials 
where there can be material variability). This paper 
reports on the  development of a Hugoniot for York-
shire sandstone, building on previous work [4, 5, 6]. A 
range of hydrocodes and analytical techniques were 
used [7, 8], supported by published data on sandstones 
and related rocks and minerals [9, 10, 11, 12]. Tech-
niques to estimate the shock-driven heating of the tar-
get were applied [13]. This work is a precursor to in-
vestigating the possibility of shock-driven DNA modi-
fication of microbial organisms in sandstone targets, 
which could occur at lower pressures than those previ-
ously established to cause extinction [14, 15]. Future 
studies may also look at impact-driven changes to sub-
surface habitats, noting that shock processing of rocks 
may make them more colonisable [16]. Before any 
conclusions can be drawn for these large structures, 
the different responses for the strength and gravity 
dominated regimes must be established. 

Sandstone Properties: The measured Hugoniot 
values are reported in Ref. 4. The bulk density was 
measured to be 2.24 g/cm3. The composition of the 
sandstone was established using low vacuum backscat-
tered electron images to obtain modal mineral analyses 
(i.e. % of whole rock by area ~ volume) for five repre-
sentative areas of a polished section taken from the 
edge of the target (example shown in Figure 1). All 
areas were very similar in their major mineral contents 
(quartz ca. 60%), and porosity (10-16%), but variable 
in the minor mineral contents. The results are reported 
in Table 1. Noting that the ratio of chlorite to K feld-
spar is estimated to be 5:1, and  that the ratio of SiO2 
to albite is estimated to be 9:1, we set the composition 
of the Yorkshire sandstone (for the purposes of devel-

oping a “composite” synthetic Hugoniot) to be: quartz 
(59%), pore space (14%), chlorite (9%), kaolinite 
(8%), albite (7%), Fe and Ti oxides (3%) and K feld-
spar (2%).  
 

    
Figure 1. Backscattered electron image of the Yorkshire 

sandstone sample. 
 

Table 1. Composition of Yorkshire sandstone sample 
Material Proportion 

(%) 
Error 

(st.dev.) 
“Bright” (metal oxides) 2.90 1.98 
Chlorite and K feldspar 10.52 2.99 

Silica and albite 65.28 2.85 
Kaolinite 8.02 1.81 

Pore space 13.60 2.18 
TOTAL 100.32 N/A 
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Figure 2.  P-V curve for Yorkshire sandstone. A trilinear 

Hugoniot was derived from these data [6]. 

Workshop on Impact Cratering II (2007) 8067.pdf



 
Figure 3. Profile of central region of the impact crater, pro-
duced by 1 mm spherical particle stainless steel projectile, 

impacting at 4.8 km/s at 30° to the horizontal. 
 

 
Figure 4. Distribution of impact residue 

 
Further Development of a Sandstone Hugoniot: 

Based on previous work, as shown in Figure 2, where 
the P-V curve was based on an interpolation between ex-
perimentally measured data for Yorkshire Sandstone and a 
high pressure quartz data set., we now construct a “com-
posite” synthetic Hugoniot from mineral data. Shock 
data for serpentine are used as the closest available 
analogue for K feldspar. All other data are from pub-
lished experimental tests. A simple pressure-dependent 
crush-up model, following the approach of Ref. 13, is 
also developed. 

 
Hydrocode Simulations and Analytical Calcula-

tions: A series of 1-D, 2-D and 3-D simulations are 
presented. The tri-linear (and a bi-linear, with a range 
fits reflecting the data in this intermediate regime) 
Hugoniot, as defined in Us-up space, are used in two 
hydrocodes (AUTODYN and CAV_KO). A new com-
posite Hugoniot, based on data for the constituent min-
erals is also used as input to the hydrocode simula-
tions. Both sets of results are compared with analytical 
results based on the planar impact approximation 
(CAV_SHOCK). 

 
Further Work:  Strength and failure models for 

sandstone will be need to be implemented before a 
better understanding of the cratering processes. We 

plan to explore application of the Johnson-Holmquist 2 
damage model, as previously used by the two of the 
authors to explore cratering and penetration in soda 
lime glass [17].  The objective is to characterise more 
fully the pressures generated on impact, and to draw 
broad conclusions on the pressure bounds for any 
changes observed in the microbial specimens. A con-
straint on the modeling will be provided by crater pro-
file data, as shown in Figure 3. Plate data for water 
saturated sandstone are needed, noting recently re-
ported results on survivability of microbial life differ-
ing between dry, and saturated, sandstone [18]. Model-
ling of larger scale impacts – a longer term aim – must 
consider gravity-driven effects, and other aspects, be-
fore any conclusions can be drawn about pressures 
experienced by any microbial life and changes in habi-
tability driven by shock effects. The derived Hugoniot 
will be used to estimate release temperatures via ana-
lytical calculations of waste heat generated [13].  Ini-
tial observations suggest that material may have been 
emplaced downrange, possibly both from ejecta, and 
also down fracture systems (Figure 4). A detailed map 
of the impactor-bearing residue will need to be pro-
duced. 
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