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ABSTRACT

In this paper, we focus on the problem of parameter esti-

mation for the damped sinusoids, which are corrupted by im-

pulsive noise. To provide a robust initial guess for the current

parameter estimators, the robust weighted linear prediction

(RWLP) estimator is developed, where the parameter esti-

mates are obtained by minimizing the weighted �p-norm of

the linear prediction (LP) error vector. The Markov optimum

weighting matrix is derived, and an iteratively reweighted

least-squares (IRLS) procedure is devised to calculate the LP

coefficient estimates. The simulation results demonstrate the

robustness of the RWLP estimator by comparing with the

�2-norm based counterpart, and the computational efficiency

by comparing with the �p-MUSIC algorithm.

Index Terms— Robust parameter estimation, damped si-

nusoids, weighted �p-norm, Markov optimum weighting, im-

pulsive noise.

1. INTRODUCTION

Spectral analysis of sinusoidal signals [1] has been a classi-

cal but ever active topic in the signal processing community,

finding its applications in a wide range of areas. For example,

in music and voiced speech signal processing, the measured

signals from the microphone array can be modeled as a two-

dimensional (2-D) harmonic signal [2], which is character-

ized by the temporal fundamental frequencies and directions-

of-arrival (DoAs). The accurate acquisition of these param-

eters is crucial to the signal enhancement and source local-

ization. In the biomedical engineering, the free induction de-

cay (FID) signal, which is measured using the spectroscopic

methods such as the nuclear magnetic resonance (NMR) and

nuclear quadrupole resonance (NQR), may be modeled as a

sum of exponentially damped sinusoids well [3]. With the

exact quantification of these damped sinusoids, it is advanta-

geous to extract the useful biomedical information for diag-

nosis.

The work of spectral analysis includes two aspects: 1)

the detection of the signal order, that is the number of the

signal’s sinusoids; and 2) the estimation of the frequencies

and/or damping factors. In this paper, we focus on the pa-

rameter estimation for the damped sinusoidal signals. During

the past decades, there has been published a lot of literature

on this problem. It is known that the maximum likelihood

estimator (MLE) is statistically optimal [4], whereas it re-

quires enormous computational cost in the multi-dimensional

search. To lower the computational complexity, several kinds

of computationally efficient techniques have been developed

for the parameter estimation, such as the subspace-based al-

gorithms [5–7] and the linear prediction (LP)-based meth-

ods [8–10]. However, in most of the above work, the back-

ground noise is assumed as white Gaussian.

Impulsive noise (sometimes named “outlier”) is an im-

portant class of disturbance in the signal measurement [11].

It follows a non-Gaussian and heavy-tailed distribution, and

occurs randomly with a value several times larger than the

standard deviation of the background noise. To the best of

our knowledge, the conventional parameter estimation meth-

ods, which are designed for the white Gaussian noise, perform

worse in the impulsive noise environment.

In the recent years, there appear several schemes for the

spectral analysis, which are based on the dictionary learn-

ing [12, 13]. However, there is a lack of the solid theoret-

ical foundation to construct the dictionary for the damped

sinusoidal signals. Up to now, there are mainly three cate-

gories of methods, which have the potential to estimate the

parameters of the damped sinusoids in the impulsive noise

environment. The first category is to perform the robust esti-

mation based on the fractional lower-order statistics (FLOS).

To overcome the vulnerability of the second-order covariance

matrix to the impulsive noise, the FLOS such as the robust co-

variation matrix (RCM) [14], fractional lower order moment

(FLOM) [15], sign covariance matrix (SCM), Kendall’s tau

covariance matrix (TCM) [16], etc., has been utilized to de-

velop the robust versions of the MUSIC-based parameter esti-



mation algorithms. However, the reliability of these methods

depends on the large sample size [14], which is normally not

available in the time-varying systems. In the second category

of methods [11,17–19], the second-order covariance matrix is

firstly estimated in a robust way. Based on this, the parameter

estimates are solved with the common subspace-based algo-

rithms. For example, the �p-MUSIC algorithm is proposed

in [19], where the signal subspace is extracted directly from

the observation by means of the robust singular value decom-

position. In the third category, the sinusoidal parameter es-

timates are found by minimizing the �p-norm (1 ≤ p < 2)

of the fitting error between the signal model and observa-

tion [20–22]. Since the �p-norm is less sensitive to the out-

liers than the �2-norm, the parameter estimation is expected

to be more resistant to the impulsive noise.

The extensive simulation results show the robustness and

accuracy of the �p-norm based parameter estimation [19–22]

in impulsive noise environments. Nevertheless, the high com-

putational burden is a critical problem of these methods, es-

pecially for the damped sinusoids. For example, in [19], the

low-rank decomposition is employed to extract the signal sub-

space in an iterative way. At each iteration, it is necessary to

solve two convex optimization subproblems with the dimen-

sion of O(N) (with N being the data length). In addition, the

damped sinusoids are characterized by the two-dimensional

parameters, that is the damping factor and frequency. Thus,

it is challenging to find a robust and accurate initial guess

quickly for the �p-norm based methods such as [19–22].

In this work, we address this issue by means of the LP

technique. With good computational efficiency, the LP-

based estimators are extensively applied in the spectral anal-

ysis [10]. However, in the conventional LP-based estimators,

it is aimed to estimate the LP coefficients by minimizing

the �2-norm of the LP error vector, which is vulnerable to

the impulsive noise. To alleviate this difficulty, we propose

to estimate the LP coefficients by minimizing the weighted

�p-norm of the LP error vector. Since the weighting matrix is

dependent on the unknown sinusoidal parameters, and there

is no closed-form solution to the LP coefficient estimates, an

iteratively reweighted least-squares (IRLS) procedure is de-

vised. In this procedure, the estimates of the LP coefficients

are calculated just from several successive least-squares so-

lutions. We term this approach as the robust weighted LP

(RWLP) estimator.

The rest of this paper is organized as follows. The signal

model and problem formulation are introduced in Section 2.

Then, the RWLP estimator is developed in Section 3. The the-

oretical performance analysis of the RWLP estimator is also

provided. The simulation results are presented in Section 4 to

evaluate the performance of the proposed parameter estima-

tor. Finally, the conclusion is drawn in Section 5.

2. PROBLEM FORMULATION

Consider the damped sinusoids, which are corrupted by im-

pulsive noise, as follows:

y(n) = x(n) + v(n) =

M∑
m=1

ρmznm + v(n), (1)

for n = 1, · · · , N , where zm = e−βm+jωm represents the

mth sinusoidal pole, with ωm ∈ [0, 2π), βm ≥ 0, and ρm ∈
C being the frequency, damping factor, and complex-valued

amplitude of zm, respectively; and M represents the signal

order, that is the number of the sinusoidal poles. Note that the

signal model of (1) also covers the undamped sinusoids with

βm = 0. Here, v(n) is the additive impulsive noise, and is

assumed as independent and identically distributed (i.i.d.).

The purpose of this paper is to estimate the sinusoidal pa-

rameters, that is {(ωm, βm)}Mm=1, of the damped sinusoids

x(n) from the observation y(n). In the parameter estimation,

it is a critical issue to overcome the outliers in a computation-

ally efficient way.

3. ALGORITHM DEVELOPMENT

In this section, the RWLP estimator is developed for the

damped sinusoids. Firstly, we construct the LP error vector,

and derive the Markov optimum weighting matrix. The LP

coefficients are estimated by minimizing the weighted �p-

norm of the LP error vector. Since there is no closed-form

solution to this optimization problem, an IRLS procedure is

devised. The detail is illustrated as follows.

3.1. Sinusoidal Parameter Estimation with the RWLP

First of all, the following LP equation is established, which is

based on the LP property of the sinusoidal signals [8–10]:

x(n) +

M∑
m=1

amx(n−m) = 0, (2)

for n = M + 1, · · · , N , where {am}Mm=1 are the LP coef-

ficients. When the signal is contaminated with noise, the LP

equation is not satisfied exactly, and there exist the LP errors

of:

e = Ya− b, (3)

where a = [a1, · · · , aM ]T is the LP coefficient vector, and

Y =Toeplitz
( [

y(M), y(M + 1), · · · , y(N − 1)
]T

,[
y(M), y(M − 1), · · · , y(1)

] )
, (4)

b =− [
y(M + 1), y(M + 2), · · · , y(N)

]T
, (5)

with Toeplitz(c1, c
T
2 ) denoting the Toeplitz matrix with c1

and cT2 as the first column and first row, respectively.



Under the assumption of the white-Gaussian noise, a is

estimated normally by minimizing the weighted �2-norm of

the LP error vector [10]:

â = argmin
a

eHWe, (6)

where W is the Markov optimum weighting matrix defined

as [23]:

W = σ2
v ·

[
E
{
eeH

}]−1
=

(
A0A

H
0

)−1
, (7)

with σ2
v being the noise variance of v(n), and

A0 = Hankel
(
[0T

N−M−1, 1]
T ,

[1, a1, · · · , aM , 0T
N−M−1]

)
.

Here, Hankel(c1, c
T
2 ) denotes the Hankel matrix with c1 and

cT2 as the first column and last row, respectively.

It is known that the �2-norm based weighted linear predic-

tion (WLP) estimator is not resistant to the impulsive noise

[19]. To enhance the robustness of the WLP estimator, it is

proposed to substitute the �p-norm (1 ≤ p < 2) for the �2-

norm as [20–22]. Accordingly, the LP coefficient vector a is

estimated by:

â = argmin
a

‖e‖pW,p , (8)

where the weighted �p-norm of e is defined as (see (9) at the

bottom of the next page):

Here, [Ya− b]i stands for the complex conjugate of [Ya −
b]i, and P is computed as

P = diag
([ |[Ya− b]1|p−2

, · · · ,

|[Ya− b]N−M |p−2 ]T)
. (10)

Given W and P, the solution to (8) is:

â =
(
YHPWY

)−1 · (YHPWb
)
. (11)

Nevertheless, the LP coefficient vector a is unknown

a priori, and the matrices P and W are unavailable before

the estimation. Instead, we devise the IRLS procedure to

solve â of (8), which is detailed as follows:

• Step 1. Determine the initial estimate of a, denoted by

â, by setting P and W as the identity matrix IN−M .

• Step 2. Construct the matrices P and W using a = â.

• Step 3. Update â according to (11).

• Step 4. Repeat Step 2 - Step 3 until the �2-norm of the

difference of â between successive iterations is smaller

than 10−13, and then the final estimate â is obtained.

Having obtained the estimate â, the existing sinusoidal

poles, that is {zm}Mm=1 of (1), are estimated as the M roots

of the following LP equation:

zM +

M∑
m=1

âmzM−m = 0, (12)

and the corresponding estimates of the frequency and damp-

ing factor of the mth sinusoidal pole zm, are calculated as:

ω̂m = ∠ẑm, β̂m = − log |ẑm|. (13)

3.2. Computational Complexity of the RWLP Estimator

In the RWLP parameter estimation, the main computational

complexity (taking only the multiplications into account) in

one iteration consists of three main parts according to (11):

1) the matrix multiplication of YHPWY and YHPWb, 2)

the matrix inversion of YHPWY, 3) the construction of the

matrices W and P, among which the third part occupies most

of the computation, and requires FLOPs of O(N3).

3.3. Accuracy of the RWLP Estimator

Mostly, the accuracy of one parameter estimator is evaluated

in terms of the mean square error (MSE). Applying the MSE

formula for the unconstrained optimization problems at the

sufficiently small noise conditions, it is derived that the MSE

of the RWLP estimate of the mth sinusoidal pole, ẑm, m =
1, · · · ,M , is:

MSE(ẑm) = E{|ẑm − zm|2}
=

1

|βm|2μ
H
mCâμm, (14)

where Câ is the covariance matrix of the LP coefficient esti-

mates, that is â of (8), and

Câ = E
{
(â− a)(â− a)H

}
= σ2

v

(
XH

(
A0A

H
0

)−1
X
)−1

, (15)

with X being the noiseless part of Y. In addition,

βm = MzM−1
m +

M−1∑
i=1

(M − i)aiz
M−i−1
m , (16)

μm =
[
zM−1
m · · · zm 1

]T
. (17)

Accordingly, the MSEs of the frequency ωm and damping

factor βm estimates are expressed as [24]:

MSE(ω̂m) = MSE(β̂m) =
1

2e−2βm
MSE(ẑm). (18)

Note that, the MSEs of (18) are independent of the p’s

value in the weighted �p-norm (9), which means that the p



plays a minor role in the estimation accuracy of the RWLP es-

timator. The different choice of the p will influence the thresh-

old performance of the estimation. In addition, as shown in

(14), when σ2
v → 0, MSE(ẑm) → 0. This means that the

RWLP-based estimation provides the asymptotically consis-

tent parameter estimates, that is the RWLP estimates of the

frequencies and damping factors converge to their respective

true values when the noise level approaches zero.

4. SIMULATION RESULTS

In this section, we investigate the performance of the pro-

posed parameter estimation method with respect to signal-to-

noise ratio (SNR). Here, the SNR is explicitly defined as the

average signal power divided by the noise variance. The per-

formance is evaluated in terms of the empirical mean square

errors (EMSEs):

EMSEω =
1

MS

M∑
m=1

S∑
s=1

(
ω̂(s)
m − ωm

)2
, (19)

EMSEβ =
1

MS

M∑
m=1

S∑
s=1

(
β̂(s)
m − βm

)2
, (20)

with (ωm, βm) and (ω̂
(s)
m , β̂

(s)
m ) being the true values of the

frequencies, damping factors and their estimates at the sth

trial, respectively, and S being the number of trials. All the

results provided are the averages of 1000 independent runs,

which are conducted on a PC with an Intel(R) Core(TM) i7-

8750H CPU @ 2.20 GHz, with 16.0 GB of installed memory.

In this study, we consider the two-tone damped sinusoidal

signal: s(n) = A1e
(−β1+jω1)n+jφ1 + A2e

(−β2+jω2)n+jφ2 ,

where ω1 = 0.3, β1 = 0.01, A1 = 1, φ1 = 1, and ω2 = 0.7,

β2 = 0.02, A2 = 1, φ2 = 2. The p of the weighted �p-norm

in (9) is set as p = 1.5, which is found empirically to result in

good performance. To show the robustness of the RWLP es-

timator, the results of the WLP approach, where the weighted

�2-norm is adopted instead, are provided. Besides, the re-

sults of the �p-MUSIC algorithm [19], with the estimates of

the RWLP and WLP as the initial guess, are provided, re-

spectively. Here, we consider the impulsive noise model of

the Gaussian mixture model (GMM). The PDF of the circular

GMM noise, v, is:

pv(v) =
2∑

i=1

ρi
πσ2

i

exp

(
−|v|2

σ2
i

)
, (21)

which consists of two terms of Gaussian distributions with the

different variances σ2
i , i = 1, 2. Here, it is set that c1 = 0.1,

c2 = 0.9, and σ2
1 = 100σ2

2 , which means that the outliers

come present with the probability of 10% and with the vari-

ance 100 times that of the background noise. Correspond-

ingly, the total variance of the impulsive noise v is σ2
v =

10.9σ2
2 .

Figs. 1 and 2 show the estimation performance for the

damped sinusoids corrupted by the GMM noise, with the data

length set as N = 50 and N = 100, respectively. It is

observed that, the EMSEs of all the methods are asymptot-

ically linear with respect to the SNR. At the sufficiently large

SNR, the EMSEs of the RWLP and WLP estimators are al-

most equal to their theoretical expression of (18). Further on,

when N = 50, the RWLP estimator falls into the asymptotic

region at SNR ≥ 5 dB, whereas the threshold SNR of the

WLP is 7 dB. This means that the RWLP estimator is more

resistant to the outliers, with the threshold SNR advantage

over the WLP by 2 dB, or equivalently, with the power sav-

ing by 37%. When N = 100, the RWLP estimator bears the

threshold SNR advantage over the WLP by 1 dB, or equiva-

lently, saves the power by 21%. It is also noted that the thresh-

old performance of the �p-MUSIC algorithm accords with its

initial guess. Fed on the results of the RWLP estimator, the

�p-MUSIC algorithm has a lower threshold SNR.

In addition, when N = 50, there exist the gaps between

the EMSEs of the RWLP, WLP, and �p-MUSIC estimators

and their corresponding CRLBs by 9.8 dB, 9.8 dB, and

3.9 dB, respectively. This means that the �p-MUSIC al-

gorithm improves the estimation accuracy by 5.9 dB. When

N = 100, the asymptotic EMSEs of the �p-MUSIC algorithm

are smaller than those of the RWLP and WLP estimators by

6.0 dB. Table 1 shows the CPU time for each run of the

parameter estimation at SNR = 10 dB. From this table, it

is seen that the RWLP and WLP estimators bear the sim-

ilar computational efficiency; and the �p-MUSIC algorithm

provides the accuracy improvement at the cost of vast compu-

tational overhead. In detail, the CPU time of the �p-MUSIC

algorithm is longer than those of the LP-based estimators by

about 430 times and 330 times, for N = 50 and N = 100,

respectively.

Table 1: CPU Time for Sinusoidal Parameter Estimation (ms)

N RWLP WLP �p-MUSIC

50 4.6 4.4 1941

100 13.4 14.0 4646

‖e‖pW,p =
N−M∑
i=1

N−M∑
j=1

[W]i,j · [Ya− b]i ·
∣∣[Ya− b]i

∣∣p−2 · [Ya− b]j = (Ya− b)
H
PW (Ya− b) . (9)
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Fig. 1: EMSEs for the GMM noise corrupted damped sinu-

soids when N = 50: (a) frequency and (b) damping factor.

5. CONCLUSION

In this work, the RWLP estimator is developed for the param-

eter estimation of the damped sinusoidal signals, which are

corrupted by the impulsive noise. We derive the Markov opti-

mum weighting matrix, and propose to estimate the LP coef-

ficients by minimizing the weighted �p-norm of the LP error

vector. Furthermore, an IRLS procedure is devised to cal-

culate the LP coefficient estimates. Theoretical analysis and

simulation results demonstrate the computational efficiency

of the proposed estimator. By comparing with the �2-norm

based counterpart, it is observed that the �p-norm minimiza-

tion brings the robustness to the RWLP estimator in terms of

the threshold performance.

Future works include the extension of the RWLP estima-

tor to the more general scenarios such as the multi-channel
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Fig. 2: EMSEs for the GMM noise corrupted damped sinu-

soids when N = 100: (a) frequency and (b) damping factor.

and multi-dimensional sinusoidal signals, and its application

in source localization [2], biomedical signal analysis [3],

wireless communication [25], and so on.
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