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Abstract—In this paper, different ways of training codebook 

containing autoregressive (AR) parameter vectors are discussed. 

The fundamental goal of the discussion is to investigate if the 

classical approach for training AR-codebooks by clustering line 

spectral frequencies (LSF) can be improved. To do this, we 

discuss and evaluate the alternatives in terms of the de-

correlated AR-parameters and manifold learning. The different 

training methods are evaluated using different metrics 

quantifying the distance between actual power spectral density 

(PSD) and the estimated PSD from the AR-codebook. The 

experimental results show that the training on the de-correlated 

features can improve the performance to some degree compared 

to the traditional LSF training approach in terms of the Itakura-

Saito divergence not in terms of the Kullback-Leibler 

divergence, the log-spectral distortion and speech distortion. 

Keywords—linear prediction, Cramer-Rao bound, manifold 

learning, (weighted) k-means clustering, AR model 

I. INTRODUCTION 

The codebook consisting of AR [1] coefficients has been 
widely used for designing vector quantizers [2], speech 
enhancement [3], speech coding [4]–[6] and speech 
recognition [7]. Typically, the AR-codebook is trained by 
clustering line spectral frequencies (LSF) using a k-means 
clustering algorithm [2]. This approach has been extremely 
popular since the LSF coefficients are easily checked for 
stability and are much less sensitivity to quantization errors [8] 
than the AR coefficients [9]. However, clustering the LSF 
parameters directly potentially leads to a suboptimal AR-
codebook since the LSF may not meet the assumption of 
classical AR model [10], namely, the excitation may not be a 
Gaussian distribution. Therefore, we have to discuss and 
compare alternative approaches for training AR codebook. 

In addition to the classical LSF-based approach using k-
means clustering, we here consider a number of alternatives to 
train an AR-codebook. These are k-means clustering on the 
raw and de-correlated AR-parameters [10] as well as k-means 
clustering on the raw and de-correlated features extracted 
from non-linear manifolds produced by sparse manifold 
clustering and embedding (SMCE) algorithm [11]. The main 
idea behind performing de-correlation prior to the clustering 
or, equivalently, to perform weighted k-means clustering, is 
that a more efficient representation of the training data is 
obtained. The de-correlation can be performed efficiently 
using the Fisher information matrix (FIM) [10]. Unfortunately, 
this de-correlation is not robust to outliers so that the 
clustering centers might be quite sensitive to the de-
correlation. This problem was mitigated by the application of 
the SMCE  method [11], which is more robust to those outliers. 
Furthermore, with the increasing of the dataset, the mini-batch 

k-means algorithm can be utilized to solve memory 
requirements.  

The paper is organized as follows: In Section 2, we de- 
scribe the computation of different features, which can be used 
for training AR-codebook. These features include AR- 
parameters, LSF-parameters as well as manifold vectors. In 
addition to these features, we also describe how can the 
weights be computed so that a weighted k-means clustering 
algorithm implicitly performs this de-correlation. The 
weighted k-means clustering algorithm is then described in 
Section 3, and the performance of the different AR-codebook 
training methods are evaluated in Section 4. Finally, Section 5 
concludes the paper. 

II. FEATURES AND WEIGHTS 

To explain different concepts and the evaluation procedure 
used in this paper, we will use the illustration in Fig. 1 to show 
both the training and the testing stages. In the training stage, 
the features as well as weights are extracted from the training 
data. Note that the weights in some methods are simple 
identity matrix. These features and weights are then used as 
input to a clustering approach that produces M cluster centers 
form a codebook in the feature domain. If the feature domain 
is not the AR-parameter domain, the codebook is converted 
into an AR-codebook in the final step in the training stage. In 
the testing stage, the entry from the AR-codebook whose 
spectrum minimizes the Itakura-Saito (IS)-divergence [12] to 
the periodogram for a testing segment is selected. Using the 
spectrum corresponding to this selected entry from the 
codebook, the performance of the AR-codebook is then 
measured using a number of common metrics used in speech 
processing shown in Table 1.  

In this section, we will describe the different ways of 
training AR codebook in the testing stage, and we will cover 
both the traditional approach based on LSF parameters as well 
as the alternative approaches discussed in the introduction. 
First, however, we will briefly describe the autoregressive 
process. 

A. Autoregressive Processes 

An AR process is a stationary random signal 𝑥(𝑛) given 
by  

𝑥(𝑛) = −∑

𝑝

𝑖=1

𝑎𝑖𝑥(𝑛 − 𝑖) + 𝑒(𝑛) () 

where 𝑎𝑖  is the 𝑖 ’th out of 𝑝  AR parameters and 𝑒(𝑛) is a 
white and Gaussian excitation signal with variance 𝜎2. The 
AR-coefficient vector can be expressed as 



𝒂 = [𝑎1 ⋯ 𝑎𝑝]𝑇 () 

and the excitation variance 𝜎2  can be estimated in many 
different ways, but the classical and computationally efficient 
approach is to solve the Yule-Walker equations using the 
Levension-Durbin recursion (LDR) [13]. An AR-codebook 
consists of 𝑀 AR-coefficient vectors 

𝑨 = [𝒂1 ⋯ 𝒂𝑀]  , () 

with each vector being a cluster center representing typical AR 
coefficients in a neighbourhood around this cluster center. 
Generally, the spectral shape or power spectral density (PSD) 
𝝓𝑋 of an AR-process is given by 

𝜙𝑋(𝑘) =
𝜎2

|𝐴𝑝(e
𝑗𝜔𝑘)|

2   ,    𝑘 = 0, … , 𝑁 − 1  . () 

where the prediction error filter 𝐴𝑝(𝑧) is a polynomial given 

by 

𝐴𝑝(𝑧) = 1 − ∑

𝑝

𝑖=1

𝑎𝑖𝑧
−𝑖    () 

Note that the excitation variance is typically not a part of the 
AR-codebook. 

B. LSF Parameters 

Clustering the AR coefficients directly is often not a good 
idea since there is no easy way of ensuring that the cluster 
centers corresponds to stable AR processes, there is no simple 
relationship between the AR coefficients and the AR spectrum, 
and the dynamic range of the parameters is typically quite high. 
Instead, the line spectral frequencies (LSF) [8] have been used 
as an alternative representation of the AR coefficients. The 
LSF parameters are related to the zeros of the two polynomials 

𝑃𝑝(𝑧) = 𝐴𝑝(𝑧) + 𝑧−(𝑝+1)𝐴𝑝(𝑧
−1) () 

𝑄𝑝(𝑧) = 𝐴𝑝(𝑧) − 𝑧−(𝑝+1)𝐴𝑝(𝑧
−1) () 

where 𝐴𝑝(𝑧) is the prediction error filter given in (5). Since 

each of these polynomials has 𝑝 + 1 zeros, a total of 2𝑝 + 2 
zeros can be computed. These zeros are all on the unit circle, 

i.e., 𝑧𝑖 = e𝑗𝜔𝑖. They appear alternately and orderly in terms of 
a complex-conjugate pair, and two of them are always fixed, 
i.e., 𝜔0 = 0 and 𝜔𝑝+1 = 𝜋. Therefore, the 𝑝 frequencies {𝜔𝑖} 
in the interval (0, 𝜋) uniquely specifies the 2𝑝 + 2 zeros of 
𝑃𝑝(𝑧)  and 𝑄𝑝(𝑧)  and are called the LSF. Since the LSF 

parameters are closely related to the frequency response, not  
sensitive to quantization errors and easily restricted to 
correspond to a stable prediction error filter, they have 
historically been the de-facto standard for speech coding [2]. 

C. De-correlated AR-parameters 

A well-known property of the maximum likelihood 
estimator is that it produces estimates which, asymptotically, 
are samples from a normal distribution centered on the true 
value 𝜽 and with a covariance matrix equal to the inverse 

Fisher information matrix (FIM) ℐ−1(𝜽), i.e., [14] 

�̂� ∼ 𝒩(𝜽, ℐ−1(𝜽)) . () 

As explained in [10], an AR-codebook can be trained on the 
de-correlated AR-coefficient vectors where the de-correlation 
matrix is derived from the FIM. The FIM is in general defined 
as [14] 

ℐ(𝜽) = 𝐸 {
𝜕ln𝑝(𝒙; 𝜽)

𝜕𝜽

𝜕ln𝑝(𝒙; 𝜽)𝑇

𝜕𝜽
} () 

where 𝐸 indicates the mathmatical expectation, 𝑝(𝒙; 𝜽) 
indicates probablity density function of  𝒙  under the condition 
𝜽 , and 𝒙  and 𝜽  are a signal segment containing 𝑁 
observations and an unknown parameter vector, respectively. 
For the case of AR parameters, we can define this parameter 
vector as 

𝜽 = [𝒂𝑇 𝜎2]𝑇  . () 

For the AR parameters, it can be shown that the FIM is 
approximately block diagonal and given by [15] 

ℐ(𝜽) ≈ 𝑁 [
(𝑨1𝑨1

𝑇 − 𝑨2𝑨2
𝑇)−1 0

0
1

2𝜎4

] () 

 

Fig. 1. The training stage and Example of a figure caption. 

 the testing stage of the codebook. 
TABLE I.  SOME COMMON METRICS USED IN SPEECH PROCESSING 

Metric  Formula 

LSD  1

𝐾
∑

𝐾

𝑘=1
[log10

𝜙𝑋(𝑘)

�̃�𝑋(𝑘)
]

2

 

IS  1

𝐾
∑

𝐾

𝑘=1
[
𝜙𝑋(𝑘)

�̃�𝑋(𝑘)
− ln

𝜙𝑋(𝑘)

�̃�𝑋(𝑘)
− 1] 

KL  1

𝐾
∑

𝐾

𝑘=1
[𝜙𝑋(𝑘)ln

𝜙𝑋(𝑘)

�̃�𝑋(𝑘)
− 𝜙𝑋(𝑘) + �̃�𝑋(𝑘)] 

SD  1

𝐾
∑

𝐾

𝑘=1
[𝜙𝑋(𝑘) − �̃�𝑋(𝑘)]

2
 

 



where 𝑨1 and 𝑨2 are lower triangular matrices given by 

𝑨1 = [

1 0 ⋯ 0
𝑎1 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
𝑎𝑝−1 𝑎𝑝−2 ⋯ 1

] () 

𝑨2 =

[
 
 
 
𝑎𝑝 0 ⋯ 0

𝑎𝑝−1 𝑎𝑝 … 0

⋮ ⋮ ⋱ ⋮
𝑎1 𝑎2 ⋯ 𝑎𝑝]

 
 
 

. () 

Since the FIM is block diagonal, we can easily extract the part 
pertaining to the AR-vector 𝒂 from the FIM and use it for de-
correlating the AR-vector. Specifically, we will use the 
following weighting matrix 

𝐖 = (𝑨1𝑨1
𝑇 − 𝑨2𝑨2

𝑇)−1  . () 

D. Modified Features 

When clustering the raw or de-correlated AR parameters 
using a k-means algorithm, we implicitly assume that the 
feature vectors pertaining to a given cluster are normally 
distributed with either an isotropic or a general covariance 
matrix. Since the AR-parameters might in general lie in a non-
elliptical manifold, we also perform the clustering directly on 
such a manifold which is learned using the SMCE algorithm 
[11]. The goal of the SMCE is to build a sparse similarity 
matrix 𝐒 for the similarity graph describing how similar the 
various AR training vectors (either raw or de-correlated) are. 
For the details of similarity matrix computation, please refer 
to [11]. From this similarity matrix, the diagonal degree matrix 
𝑫 can easily be computed. The rth diagonal element describes 
the amount that the AR training vectors  is connected to the rth  
training vector on the similarity graph. The Laplacian matrix 
𝑳 is then defined as [16] 

𝐋 = 𝐈 − 𝐃−
1
2𝐒𝐃−

1
2   () 

To extract the training vectors (or features) {𝒇𝑟}𝑟=1
𝑅  used in 

the clustering algorithm, we then factorise the Laplacian 
matrix using the singular value decomposition (SVD) and 
have 

𝐋 = 𝐔𝚺𝐕𝑇   . () 

From the matrix 𝑽, we then extract the last 𝑝 singular vectors 
to form new matrix as follows 

𝒀 = [𝒚1 ⋯ 𝒚𝑅] = [𝒗𝑅 ⋯ 𝒗𝑅−𝑝+1]𝑇   . () 

By normalizing the column of 𝒀, we then get the 𝑅 training 
vectors as 

𝒇𝑟 =
𝒚𝑟

∥ 𝒚𝑟 ∥2

  ,    𝑟 = 1,… , 𝑅 () 

which are used as the features in the clustering algorithm. 

III. CLUSTERING 

In the previous section, we have described the feature and 
weight extraction in Fig. 1, and we now proceed to describe 
the clustering which will be performed using the weighted k-
means clustering. For the discussion, we will assume that we 
have 𝑅  feature vectors {𝒇𝑟}𝑟=1

𝑅  each having its own weight 

matrix {𝑾𝑟}𝑟=1
𝑅  that might possibly be the identity matrix 

(e.g., for the case of LSF features). 

In the weighted k-means clustering, the objective function 

𝐽(𝑼, 𝑺) = ∑

𝑅

𝑟=1

∑

𝑀

𝑚=1

𝑠𝑟𝑚(𝒇𝑟 − 𝝁𝑚)𝑇𝑾𝑟(𝒇𝑟 − 𝝁𝑚) () 

is minimized where 

𝑼 = [𝝁1 ⋯ 𝝁𝑀] () 

and 

𝑺 = [

𝑠11 ⋯ 𝑠1𝑀

⋮ ⋮
𝑠𝑅1 ⋯ 𝑠𝑅𝑀

] () 

indicate the cluster centers marixes and the binary indicator 
matrixes describing which feature vectors are assigned to the 
corresponding clusters, respectively. The problem can easily 
be solved using an EM-algorithm [17] that estimates the 
cluster centers and indicator matrixes by the followng iteration 

𝝁𝑚 = [∑

𝑅

𝑟=1

𝑠𝑟𝑚𝑾𝑟]

−1

∑

𝑅

𝑟=1

𝑠𝑟𝑚𝑾𝑟𝒇𝑟 () 

where 

𝑠𝑟𝑚 = {
1 𝑚 =        argmin       (𝒇𝑟 − 𝝁𝑗)

𝑇𝑾𝑟(𝒇𝑟 − 𝝁𝑗)

            𝑗 ∈ {1,… ,𝑀}

0 otherwise

 () 

We use the implementation called k-means++ [18] for 
obtaining these estimates. 

IV. SYSTEM EVALUATION AND COMPARISON 

A. Data Set and the Comparison 

All experiments were conducted on the TIMIT corpus [19] 
where speech signals are sampled at 16 kHz. The AR 
parameters were estimated using the LPC-function in 
MATLAB from signal segments containing 512 samples, 
extracted with an overlap of 50% frame and windowed by a 
sine window [20]. Considering the memory requirements of 
the SMCE methods, small training database with 150 
utterances were used for all methods, and large training 
database with 700 utterances were used except for the SMCE 
methods. Different numbers of training data were used for 
training the codebook consisting of M=8, 16, 32, 64, 128, 256, 
1024 separately AR-vectors, each having an order of p=16. 
Another 100 utterances were used for testing the performance 
based on the metrics in Table 1. 

In total, we evaluated eight different ways of training the 
AR-codebook. In addition to the 1) classical LSF-approach 
with small database (LSF) and 2) classical LSF-approach with 
large database (LSFl), we evaluated 3) AR-parameters without 
weighting with small database (AR), 4) AR-parameters 
without weighting with large database (ARl), 5) AR-
parameters with weighting with small database (W-AR), 6) 
AR-parameters with weighting with large database (W-ARl), 
7) SMCE without any weighting with small database (SMCE) 
and 8) SMCE with weighting with small database (W-SMCE). 
All of the methods were run in MATLAB 2019b. For the 
SMCE algorithm, the maximum neighbor was set as 500, the 



feature embedding features was set to 12, and λ was set to 0.1 
for the trade-off of the sparsity and the rebuilding matrix error.  

B. Performance Comparison 

Fig. 2 shows the performance comparison of the 
codebooks evaluated on the test data set using different 
metrics and different codebook sizes, in which the large 
database was trained the codebooks. Larger codebook size 
shows better performance for all codebook training methods. 
Meanwhile, the difference of the performance between the 
different approaches is smaller for larger codebook size. 
Especially the performance using the IS-divergence, the KL-
divergence, and the LSD between the LSF-approach and the 
weighting AR-approach were compared. For the IS-
divergence, the weighted AR approach is slightly better than 
others, because the IS-divergence metric, the weighting AR-
approach distance and the LDR are all from the assumption of 
the Gaussian excitation signal. For the KL-divergence, the 
LSF approach is marginally better than others for larger 
codebook size. 

Fig. 3 shows the performance comparison of the codebook 
with 1024 codewords evaluated on the test data set using 
different metrics, in which the codebook was trained by the 
small database and large database separately. Large training 
data gives better performance of the metrics except for the IS 
divergence and the LSD for the AR approach. Basically, there 

is no difference for speech distortion measure. The general 
trend seems that the weighted approaches perform well across 
the IS-divergence. The SMCE approach improved the 
performance of the KL-divergence to some degree. The 
classical LSF-approach seems to be on par with these 
approaches. The main disadvantage of the SMCE approaches 
are their computational complexity and memory requirements. 
However, since the training is often performed offline, the 
computational complexity is not an issue. 

V. CONCLUSION 

In this paper, we have compared a number of ways to train 
an AR-codebook. In addition to the classical approach of 
training LSF parameters, we also evaluated the performance 
of using raw and de-correlated AR parameters and manifold 
features produced by the SMCE algorithm. The experimental 
results showed that training an AR-codebook from the de-
correlated features can improve the performance in terms of 
the Itakura-Saito divergence, but not in terms of the Kullback-
Leibler divergence, the log-spectral distortion and the speech 
distortion. 
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Fig. 3. Mean and 95% confidence intervals of the performances for the AR coefficients estimated by the codebooks with different bit allocation shown 

in horizontal axis indicates. 

 

 

Fig. 2. Mean and 95% confidence intervals of the performances for the AR coefficients estimated by the codebooks. 
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