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Abstract

The performance of adaptive beamformers suffers from significant degradation in the presence of steering vector errors, statistics
estimation errors, and reverberation. To address this issue, narrowband robust beamforming methods are extended to the wideband
case for processing speech signals in this paper. We study two types of methods. In the first type, the robustness of the beamformer
is improved by adding a norm constraint and/or a steering vector uncertainty constraint to the optimization problem. It is worth
noticing that the norm constraint also helps to control the sidelobes of the beampattern, which makes the beamformers able to
suppress the interferences and the reflections of the desired signal, thereby improving the robustness of the beamformers against
reverberation. Another type of methods is developed by using the spatial smoothing technique. The noise covariance matrix
is implicitly estimated first by subtracting a delay-and-sum beamforming estimate of the desired signal covariance matrix from
the observed signal covariance matrix, which helps improve the robustness of the beamformer. Experiments are performed to
investigate the performance of the developed robust beamformers in acoustic environments. The results show that the robust
beamformers outperform the non-robust counterparts in terms of: 1) robust performance in reverberation and different noise levels;
2) resilience against steering vector and noisy signal covariance matrix estimation errors; and 3) better predicted speech quality and
intelligibility measured using the output SINR, PESQ, and STOI scores under reverberant conditions.

Keywords: Microphone array, Capon beamforming, steering vector error, reverberation, robust beamforming,
amplitude-and-phase estimation beamforming

1. Introduction

A beamformer, which is basically an optimal spatial filter,
can be applied in many acoustic applications to acquire high-
fidelity signals of interest and eliminate interference and noise.
It is the core part of an array system for signal processing [1–
5] and its performance plays an important role on the overall
performance of the signal processing system. However, steer-
ing vector estimation errors may cause the desired signal to
be distorted, which makes the robustness of the beamformers
against steering vector estimation errors an essential consid-
eration. Beamformers including delay and sum beamformer
(DSB) and minimum power distortionless response (MPDR)
beamformer (also known as the Capon beamformer) [6], are
sensitive to steering vector estimation errors, which introduce
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severe speech distortion. The minimum variance distortion-
less response (MVDR) beamformer on the other hand, is ro-
bust against steering vector estimation errors. However, the
MVDR beamformer is difficult to implement in practice, since
the estimation of the noise covariance matrix is not trivial [7–
9]. Herein, we focus on the beamformers based on the observed
signal statistics, and seek to increase their robustness against
steering vector estimation errors by generalizing techniques
from robust narrowband beamforming to broadband speech
scenarios.

In practice, the steering vector mismatch may cause the de-
sired signal to be canceled as if it is an interference. Further-
more, the observed signal covariance matrix estimation errors
also challenges the ability of the beamformer to maintain robust
performance. It is interesting to note that the difference between
the estimated covariance matrix and the theoretical one can be
viewed as steering vector estimation errors [10]. The reverbera-
tion caused by the sound reflections in the acoustic environment
makes accurate DOA estimation hard to obtain which increases
the likelihood of the steering errors in practice. Moreover, un-
der reverberant condition, the signal model mismatch appears
when the free field steering vector is used to model the signal
propagation. Additionally, coherent reflections of the desired
signal may lead to cancellation of the desired signal. A pos-
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sible way to handle the reverberation is to utilize the transfer
function when developing beamformers. However, the estima-
tion of room impulse response (RIR) is a difficult task [11].

Robust beamforming [10, 12–18] has been widely used in
narrow band signal processing. In [12, 13], in order to control
the amplification of spatially white noise of the beamformer,
a norm constraint is added to the Capon beamformer which
gives the norm constraint Capon beamformer (NCCB). The
norm constraint turns out to help improve the robustness of the
beamformer against the steering vector estimation error. An-
other way to deal with the steering vector inaccuracy is to ap-
ply a steering vector uncertainty constraint to the optimization
problem, which leads to the beamforming method called the
robust Capon beamformer (RCB) [14]. By taking into account
the norm constraint as well as the steering vector uncertainty
constraint, the doubly constrained robust Capon beamformer
(DCRCB) can be derived [10]. An alternative way is to apply
the spatial smoothing technique to improve the robustness of
the beamformer, which leads to a promising method called the
amplitude-and-phase-estimation beamformer (APES) [19–23].
The APES beamformer can be interpreted as first estimating
the noise covariance matrix by using the delay and sum method
within the subarray. The robustness of the beamformer is im-
proved by utilizing the noise statistics in forming the spatial fil-
ter. In order to apply these methods to wideband signals such as
speech signals, the signal can be transformed into the frequency
domain, after which the narrowband robust methods can be ap-
plied in each subband independently [24–27]. The broadband
filtered signal is then synthesized from the outputs of subband
filters [26]. For example, in [24] the RCB was studied for pro-
cessing speech signals, but only two channels and a simple al-
phabetical task were considered in the simulations. In [28], the
inequality-constrained minimum variance beamformer is devel-
oped by adding inequality constraints to the original MVDR
optimization problem for acoustic signal processing. However,
the noise covariance matrix need to be estimated, which limits
the application of this method, since multichannel noise track-
ing is still an open problem.

In this paper, we apply beamformers using the observed sig-
nal statistics to process speech signals in reverberant and noisy
environments, and seek to improve the robustness of the beam-
former against the steering vector estimation errors. The ob-
served signal statistics estimation errors and reverberation can
be regarded as steering vector estimation errors, which makes
the beamformers also robust against statistics estimation er-
rors and reverberation. In our previous work [25], we evalu-
ated the performance of the robust beamformers in speech sig-
nal processing by taking into account different noise conditions
and small amounts of reverberation. The experimental results
showed that the robust beamformers are promising in both im-
proving the speech quality and speech intelligibility. Based on
the former work in wideband robust beamforming, we will give
more details about how to solve the optimization problems of
the beamforming methods in this paper. Furthermore, the per-
formance of the beamformers under different reverberation con-
ditions is further studied. Robust beamformers is promising in
dealing with reverberation, since the added norm constraint is

able to lower the sidelobes of the beampattern which helps re-
duce the reflections of the signal and thus reduce cancellation
of the desired signal.

The rest of this paper is organized as follows. Section 2 de-
picts the signal model and problem formulation. Section 3 re-
views the standard approaches for beamforming. Section 4 de-
fines and studies the robust beamformers including the robust
Capon/MPDR type of methods and the APES method. Sec-
tion 5.1 continues to analyze the approach by introducing some
performance measures. Experimental results are then presented
in Section 5 before the paper is concluded in Section 6.

2. Signal model and problem formulation

We consider to use a uniform linear array (ULA), which con-
sists ofM microphones, to capture an acoustic signal of interest
in noisy environments. If the signal of interest impinges on the
array from the farfield and there is no reverberation, the ob-
servation signal at the mth microphone is written in the time
domain as

ym(t) = xm(t) + vm(t)

= x(t− τm) + vm(t), m = 1, 2, · · · ,M, (1)

where ym(t), xm(t) and vm(t) are, respectively, the observa-
tion signal, the speech signal, and the additive noise (includ-
ing both non-stationary noise and stationary noise) from micro-
phone m at time t, τm = (m − 1)τ0 is the time difference of
arrival (TDOA), τ0 is the TDOA between the second and first
microphones, i.e., τ0 = (δ cos θd)/c, with θd being the source
incidence angle, δ denoting the spacing between neighboring
microphones, and c being the speed of sound in air.

Speech signals are nonstationary and we generally process
such signals in the short-time-Fourier-transform (STFT) do-
main. In such a domain, the signal model in (1) rewritten as:

Ym(n, ω) = Xm(n, ω) + Vm(n, ω)

= e−j(m−1)ωτ0X(n, ω) + Vm(n, ω), (2)

where n and ω denote, respectively, the frame and frequency
indices. Ym(n, ω), Xm(n, ω) and Vm(n, ω) are the STFT co-
efficients of ym(t), xm(t) and vm(t), respectively. X(n, ω) is
the noise free speech signal at the reference (first) microphone.
In case that there exists reverberation, the signal model in (2)
should be modified as

Ym(n, ω) = Dm(n, ω)X(n, ω) + Vm(n, ω), (3)

where Dm(n, ω) is the relative transfer function between the
mth microphone and the reference (first) microphone. The sig-
nal model mismatch between (2) and (3) may dramatically de-
grade the beamforming performance if robustness is not taken
into account.

By stacking all the M observation signals in a vector form,
we obtain

y(n, ω) = [Y1(n, ω) Y2(n, ω) . . . YM (n, ω)]
T

= a(n, ω)X(n, ω) + v(n, ω), (4)
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where a(n, ω) =
[
1 e−jωτ0 · · · e−j(M−1)ωτ0

]T
is the sig-

nal propagation vector (in the same form as the steering vector)
of the source signal if there is no reverberation, and [·]T denotes
the transpose operator. In order to do adaptive beamforming in
the following sections, the second order statistics of the signals
are needed. The covariance matrix of y(n, ω) is defined as fol-
lows:

Ry(n, ω) = E[y(n, ω)yH(n, ω)], (5)

where E[·] denotes mathematical expectation, and [·]H is the
conjugate-transpose operator. In practice, Ry(n, ω) is not
accessible and often estimated using the short-time average
method, i.e.,

R̄y(n, ω) =
1

N

N−1∑
k=0

y(n− k, ω)yH(n− k, ω), (6)

where N is the total number of most recent frames used in the
short-time average. The mismatch between (5) and (6) may
significantly degrade the beamforming performance [10].

The objective of beamforming is then to develop an optimal
filter to obtain a good estimate of the desired signal. By apply-
ing a spatial filter h(n, ω) to the noisy observations in (4), we
get

Z(n, ω) = hH(n, ω)y(n, ω)

= Xfd(n, ω) + Vrn(n, ω), (7)

where Z(n, ω) is an estimate of X(n, ω), while Xfd(n, ω) =
hH(n, ω)x(n, ω) and Vrn(n, ω) = hH(n, ω)v(n, ω) are the
filtered desired signal and the residual noise, respectively. The
derivation of h(n, ω) will be discussed in the following sec-
tions.

3. Standard Capon and MVDR beamformers

3.1. Standard Capon beamformer (SCB)

The standard Capon beamformer, also known as the mini-
mum power distortionless response (MPDR) beamformer, is
derived by minimizing the output power of the array with the
constraint that the signal from the desired look direction is
undistorted. Mathematically, the SCB is obtained by solving
the following optimization problem

hSCB(n, ω) = arg min
h(n,ω)

hH(n, ω)R̄y(n, ω)h(n, ω)

subject to hH(n, ω)ā(n, ω) = 1, (8)

where ā(n, ω) is an estimate of the steering vector. The solution
of (8) is

hSCB(n, ω) =
R̄−1

y (n, ω)ā(n, ω)

āH(n, ω)R̄−1
y (n, ω)ā(n, ω)

. (9)

It has been shown in [7–9] that the MPDR beamformer is sen-
sitive to steering vector estimation errors.

3.2. Minimum variance distortionless response (MVDR) beam-
former

Unlike the SCB which utilizes the noisy statistics, the MVDR
beamformer is derived by using the noise covariance matrix,
which makes the MVDR beamformer robust against steering
vector inaccuracy. The MVDR beamformer is obtained by solv-
ing the following problem

hMVDR(n, ω) = arg min
h(n,ω)

hH(n, ω)R̄v(n, ω)h(n, ω)

subject to hH(n, ω)ā(n, ω) = 1, (10)

where R̄v(n, ω) is an estimate of the noise covariance matrix
Rv(n, ω), and Rv(n, ω) has a similar definition to Ry(n, ω)
in (5). The solution to (10) is

hMVDR(n, ω) =
R̄−1

v (n, ω)ā(n, ω)

āH(n, ω)R̄−1
v (n, ω)ā(n, ω)

. (11)

The implementation of the MVDR filter in (11) requires to es-
timate the noise covariance matrix, which is not trivial in prac-
tice. Note that, theoretically, the beamformers in (9) and (11)
are strictly equivalent if there is no errors in statistics estima-
tion.

4. Robust beamformers

In this section, we discuss how to derive optimal beamform-
ers, which are robust against steering vector estimation errors.

4.1. SCB with diagonal loading

The robustness of SCB against steering vector estimation er-
rors can be improved by applying the common diagonal loading
technique. The SCB with a fixed amount of diagonal loading is
derived as

hSCBD(n, ω) =

[
R̄y(n, ω) + αI

]−1
ā(n, ω)

āH(n, ω)
[
R̄y(n, ω) + αI

]−1
ā(n, ω)

, (12)

where the parameter α ≥ 0 controls the amount of diagonal
loading, and I is an identity matrix of size M ×M . However,
the proper selection of α is not obvious. In the next subsection,
the norm constrained Capon beamformer (NCCB) is introduced
to adaptively adjust the diagonal loading amount.

4.2. Norm constrained Capon beamformer

By adding a norm constraint to the problem in (8), the NCCB
method is obtained [12]. The norm constraint helps limit the
amplification of the spatial white noise as well as improving the
robustness of the beamformer against steering vector estimation
error [12]. The optimization problem for NCCB is stated as

hNCCB(n, ω) = arg min
h(n,ω)

hH(n, ω)R̄y(n, ω)h(n, ω)

subject to hH(n, ω)ā(n, ω) = 1

‖h(n, ω)‖2 ≤ ζ, (13)

3



where ζ is a user-chosen parameter. The value of ζ plays an
important role on the performance and robustness of NCCB,
which will be discussed in Section 5. The Lagrangian of (13) is

L(h(n, ω), µ, ν)

= hH(n, ω)R̄y(n, ω)h(n, ω) + 2µ[hH(n, ω)ā(n, ω)− 1]

+ ν(‖h(n, ω)‖2 − ζ), (14)

where µ and ν are Lagrangian multipliers ν ≥ 0.
We first consider the case with ν = 0, which means the norm

constraint is not active. The problem then degenerates to (8),
and the solution is given by (9).

The second scenario is when ν > 0. By taking the deriva-
tive of the Lagrangian with respect to h(n, ω) and equating the
result to 0, we obtain

R̄y(n, ω)h(n, ω) + µā(n, ω) + νh(n, ω) = 0, (15)

from which we readily derive

hNCCB(n, ω) = −µ(R̄y(n, ω) + νI)−1ā(n, ω). (16)

The beamformer in (16) can be interpreted as diagonal loading
type of method, which is widely used in beamforming. The
adaptive parameter ν controls the amount of diagonal loading
and makes it possible to obtain a proper amount of diagonal
loading. With the distortionless constraint, we also have

µ = − 1

āH(n, ω)
[
R̄y(n, ω) + νI

]−1
ā(n, ω)

. (17)

Substituting (17) into (16), we get

hNCCB(n, ω) =
(R̄y(n, ω) + νI)−1ā(n, ω)

āH(n, ω)
[
R̄y(n, ω) + νI

]−1
ā(n, ω)

. (18)

Let us consider the equality constraint of ζ first, we then have
that ∥∥∥∥ (R̄y(n, ω) + νI)−1ā(n, ω)

āH(n, ω)(R̄y(n, ω) + νI)−1ā(n, ω)

∥∥∥∥2

= ζ. (19)

Applying eigenvalue decomposition to the matrix R̄y(n, ω)
gives

R̄y(n, ω) = U(n, ω)Γ(n, ω)UH(n, ω), (20)

where U(n, ω) = [u1,u2, · · · ,uM ] contains the all the eigen-
vectors and Γ(n, ω) is a diagonal matrix whose diagonal ele-
ments are the corresponding eigenvalues, i.e., Γmm(n, ω) =
γm. We assume that the eigenvalues are sorted in a descending
order, i.e., γ1 ≥ γ2 ≥ · · · ≥ γM ≥ 0. With (19) and according
to [10], we get the bounds on ν as

0 ≤ ν ≤ γ1 −
√
ζMγM√

ζM − 1
. (21)

There is a unique solution for ν in the proposed range with a
given ζ [10].

With an estimate of the parameter ν from (19) and by using
the eigenvalue decomposition result in (20), (18) can be rewrit-
ten as

hNCCB(n, ω) =
U(Γ + νI)−1UH ā

āHU(Γ + νI)−1UH ā
, (22)

where the inverse of the diagonal matrix Γ + νI can be easily
computed. We omit the frame index and frequency index for
clarity. Compared with the filter in (12), the NCCB method
adaptively chooses the diagonal loading amount.

4.3. Robust Capon beamformer (RCB)
Another robust solution for beamforming is the robust Capon

beamformer[14]. The robustness of the filter against steering
vector estimation error is obtained by adding an uncertainty
constraint to the steering vector. RCB is obtained by solving
the following optimization problem:

aRCB(n, ω) = arg min
a(n,ω)

aH(n, ω)R̄−1
y (n, ω)a(n, ω)

subject to ‖a(n, ω)− ā(n, ω)‖2 ≤ ε, (23)

where ε ≥ 0 is a user-chosen parameter. The problem is convex
and can be solved by using the method of Lagrange multipliers.
The Lagrangian of (23) is

L(a(n, ω), ξ) = aH(n, ω)R̄−1
y (n, ω)a(n, ω)

+ξ(‖a(n, ω)− ā(n, ω)‖2 − ε), (24)

where ξ ≥ 0 is the Lagrangian multiplier. We then have

aRCB(n, ω) =

(
R̄−1

y (n, ω)

ξ
+ I

)−1

ā(n, ω)

=
(
I−

(
ξR̄y(n, ω) + I

)−1
)

ā(n, ω). (25)

With the uncertainty constraint, the parameter ξ can be obtained
by finding the root of the following function:

‖
(
ξR̄y(n, ω) + I

)−1
ā(n, ω)‖2 = ε. (26)

This is again a nonlinear equation. The function on the left-
hand side is a monotonically decreasing function of ξ, so there
is a unique solution to ξ for a given ε [14]. We can get an upper
bound and lower bound for ξ as

‖ā(n, ω)‖ −
√
ε

γ1
√
ε

≤ ξ ≤ ‖ā(n, ω)‖ −
√
ε

γM
√
ε

. (27)

With the solution to ξ from (26), we have a revised estimate of
the steering vector according to (25). The RCB has a similar
form to (9), and can be obtained as

hRCB(n, ω) =
R̄−1

y (n, ω)aRCB(n, ω)

aHRCB(n, ω)R̄−1
y (n, ω)aRCB(n, ω)

=

(
R̄y + 1

ξ I
)−1

ā

āH
(
R̄y + 1

ξ I
)−1

R̄y

(
R̄y + 1

ξ I
)−1

ā

=
U
(
Γ + 1

ξ I
)−1

UH ā

āHU
(

1
ξ2 Γ−1 + Γ + 2

ξ I
)−1

UH ā
. (28)
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Due to computing the eigen-decomposition of matrix R̄y, the
complexity of RCB is O(M3) flops which is the same as SCB.

4.4. Double-constraint robust Capon beamformer (DCRCB)

In this section, we recall the derivation of the double-
constraint robust Capon beamformer presented in [10]. By tak-
ing into account the uncertainty constraint as well as the norm
constraint of the steering vector, the optimization problem can
be formulated as

aDCRCB(n, ω) = arg min
a(n,ω)

aH(n, ω)R̄−1
y (n, ω)a(n, ω)

subject to ‖a(n, ω)− ā(n, ω)‖2 ≤ ε
‖a(n, ω)‖2 = M. (29)

Due to the equality constraint, the problem in (29) is not convex
contrary to the previous beamformer design problems. Since
the estimated steering vector satisfies ‖ā(n, ω)‖2 = M , we
have

‖a(n, ω)− ā(n, ω)‖2 = 2M − 2<[aH(n, ω)ā(n, ω)], (30)

where <[·] denotes taking the real part of a complex number.
An equivalent formulation of the problem can be obtained as

aDCRCB(n, ω) = arg min
a(n,ω)

aH(n, ω)R̄−1
y (n, ω)a(n, ω)

subject to <[aH(n, ω)ā(n, ω)] ≥ δ
‖a(n, ω)‖2 = M, (31)

where δ = M − ε
2 . The Lagrangian of (31) is

L(a(n, ω), λ, %) = aH(n, ω)R̄−1
y (n, ω)a(n, ω)

+ λ
(
δ −<

[
aH(n, ω)ā(n, ω)

])
+ %(M − ‖a(n, ω)‖2).

(32)

The KKT conditions of the problem are

R̄−1
y (n, ω)a(n, ω)− λā(n, ω)− %a(n, ω) = 0 (33)

<[aH(n, ω)ā(n, ω)] ≥ δ (34)

‖a(n, ω)‖2 = M (35)

λ(δ −<[aH(n, ω)ā(n, ω)]) = 0, λ ≥ 0. (36)

The optimization problem will only be solved by an optimal
point if some constraint qualification (or regularity conditions)
are satisfied [29]. Note that the KKT conditions are only nec-
essary (but not sufficient) conditions since the problem is non-
convex. As constraint qualification, we consider the linear in-
dependence constraint qualification (LICQ), i.e., the gradients
for active inequality constraint and equality constraint are lin-
ear independent at solution a?(n, ω). For the problem in (31),
the gradients are ∇a(n,ω)<[aH(n, ω)ā(n, ω)] = 2ā(n, ω) and
∇a(n,ω)‖a(n, ω)‖22 = 2a(n, ω). Consider that there is linear
dependence and the LICQ is not satisfied, then

a?(n, ω) = αā(n, ω), α ∈ C . (37)

Due to the equality M = ‖a?(n, ω)‖22 = |α|2‖ā(n, ω)‖22, we
have that |α| = 1. The objective in (31) in this case becomes

f (a?(n, ω)) = (αā(n, ω))HR̄−1
y (n, ω)(αā(n, ω))

= |α|2āH(n, ω)R̄−1
y (n, ω)ā(n, ω). (38)

With the equality constraint, which implies that |α| = 1, the ob-
jective is constant. We can now consider that either 1) the LICQ
is satisfied and compute all a(n, ω) that solves the KKT or 2) all
αā(n, ω), with |α| = 1 and feasible ‖αā(n, ω) − ā(n, ω)‖22 =
|1 − α|2‖ā(n, ω)‖22 = |1 − α|2M ≤ ε are possible solutions.
Since all the latter solutions have the same objective, and we are
simply seaking a solution, we can pick ā(n, ω) (α = 1) and all
possible a(n, ω) that satisfy the KKT conditions as candidates
and select the one with the smallest objective as the solution.

Assume now the LICQ holds. Furthermore, there is a unique
(λ, ν) that solves the KKT system if and only if the LICQ is
satisfied [29]. We first consider the case λ = 0, then the KKT
conditions become

R̄−1
y (n, ω)a(n, ω) = %a(n, ω) (39)

‖a(n, ω)‖22 = M, <[aH(n, ω)ā(n, ω)] ≥ δ . (40)

From this we can obtain a solution for the case λ = 0:

• Compute the eigen-decomposition of R̄y(n, ω) and eval-
uate the following starting from the eigenvector associated
with the largest eigenvalue of R̄y(n, ω), i.e., γ1.

1. For each eigenvector um, compute a candidate
solution ǎ(n, ω) by scaling the eigenvector to
have ‖ǎ(n, ω)‖22 = M and phase rotating to
maximize <[ǎH(n, ω)ā(n, ω)], i.e., ǎ(n, ω) =√
Mej

6 uHmā(n,ω)um.
2. Test feasibility, i.e., if ‖ǎ(n, ω) − ā(n, ω)‖22 ≤ ε or
<[ǎH(n, ω)ā(n, ω)] ≥ δ.

3. If feasible and f(ǎ(n, ω)) < f(ā(n, ω)), return
ǎ(n, ω) as a solution for aDCRCB(n, ω).

The reason we can stop is that we are evaluating the eigenvec-
tors in order, and if a scaled eigenvector is feasible associated
with the unique %, then this must be the solution with the small-
est objective.

We can continue and consider λ > 0 which leads to

R̄−1
y (n, ω)a(n, ω)− λā(n, ω)− %a(n, ω) = 0 (41)

‖a(n, ω)‖22 = M, <[aH(n, ω)ā(n, ω)] = δ. (42)

From the first equation, consider the case with a selected % such
that R̄−1

y (n, ω) − %I is positive definite. The revised steering
vector can be derived as

a(n, ω) = λ(R̄−1
y (n, ω)− %I)−1ā(n, ω). (43)

From the equality constraints we then have

λ2‖(R̄−1
y (n, ω)− %I)−1ā(n, ω)‖22 = M. (44)
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Since the inequality constraint is active, we have

<[aH(n, ω)ā(n, ω)]

= <[λāH(n, ω)(R̄−1
y (n, ω)− %I)−1ā(n, ω)]

=
√
M

āH(n, ω)(R̄−1
y (n, ω)− %I)−1ā(n, ω)

‖(R̄−1
y (n, ω)− %I)−1ā(n, ω)‖2

= δ. (45)

This is a non-linear equation in the real scalar % ∈ R. By
squaring, (45) can be rewritten as [10, (51)–(52)]:

ρ =
M

δ2

=
āH(n, ω)(R̄−1

y (n, ω)− %I)−2ā(n, ω)

(āH(n, ω)(R̄−1
y (n, ω)− %I)−1ā(n, ω))2

. (46)

There is a unique solution to (46) for % ∈ (−∞, 1/γ1) [10].
Furthermore a lower bound on % can be obtained as follows

[10]:

% ≥
1
γ1

√
Mρ− 1

γM√
Mρ− 1

. (47)

The algorithm is summarized as follows:

• Compute the unique solution to (46) for % ∈[
1
γ1

√
Mρ− 1

γM√
Mρ−1

, 1/γ1

)
.

• Compute λ =
√
M

‖(R̄−1
y (n,ω)−%I)−1ā(n,ω)‖2

.

• A candidate solution is obtained as

a(n, ω) = λ(R̄−1
y (n, ω)− %I)−1ā(n, ω). (48)

• Select the solution with the smallest objective

aDCRCB(n, ω) =

{
a(n, ω) if f(a(n, ω)) ≤ f(ā(n, ω))

ā(n, ω) otherwise .
(49)

After we get a revised estimate of the steering vector, the
DCRCB is formed in a same way as the RCB in (28), i.e.,

hDCRCB(n, ω) =
R̄−1

y (n, ω)aDCRCB(n, ω)

aHDCRCB(n, ω)R̄−1
y (n, ω)aDCRCB(n, ω)

.

(50)

4.5. Amplitude-and-phase-estimation (APES) beamformer
The APES beamformer uses the spatial smoothing technique

to improve the robustness against steering vector and covari-
ance matrix estimation errors.

Let M̄ < M denote the number of microphones in the subar-
ray. The lth subarray contains the microphones from number l
to l+ M̄ − 1. The subarray observation signal vector is written
as

ȳl(n, ω) =
[
Yl(n, ω) Yl+1(n, ω) · · · Yl+M̄−1(n, ω)

]T
,

(51)

and the corresponding subarray steering vector of size M̄ ×1 is

āl(n, ω) =
[
e−jlωτ0 e−j(l+1)ωτ0 · · · e−j(l+M̄−1)ωτ0

]T
,

(52)

where l = 0, . . . , L− 1, and L = M − M̄ + 1. With the ULA
assumption, the subarray steering vectors are related as

āl(n, ω) = e−jlωτ0 ā0(n, ω). (53)

Using (53), one can rewrite ȳl(n, ω) as

ȳl(n, ω) = e−jlωτ0 ā0(n, ω)X(n, ω) + v̄l(n, ω). (54)

The principle of APES is to minimize the least-squares error be-
tween the beamformer’s output and the desired signal for each
subarray with the constraint that the signal from the desired
look direction is undistorted[22]. If we combine (54) with the
APES principle, an estimate of X(n, ω) and the filter h̄(n, ω)
of length M̄ can be obtained by solving the following optimiza-
tion problem

min
h̄(n,ω),X(n,ω)

J(n, ω) subject to h̄H(n, ω)ā0(n, ω) = 1,

(55)

where

J(n, ω)

=

N−1∑
k=0

L−1∑
l=0

∣∣h̄H(n, ω)ȳl(n− k, ω)ejlωτ0 −X(n− k, ω)
∣∣2

(56)

Let us reformulate the optimization problem in (55) over only
h̄(n, ω). To this end, let

g(n− k, ω) =
1

L

L−1∑
l=0

ȳl(n− k, ω)ejlωτ0 . (57)

Note that

1

L

L−1∑
l=0

∣∣h̄H(n, ω)ȳl(n− k, ω)ejlωτ0 −X(n− k, ω)
∣∣2

= h̄H(n, ω)

[
1

L

L−1∑
l=0

ȳl(n− k, ω)ȳHl (n− k, ω)

]
h̄(n, ω)

− h̄H(n, ω)g(n− k, ω)gH(n− k, ω)h̄(n, ω)

+ |X(n− k, ω)− h̄H(n, ω)g(n− k, ω)|2. (58)

Minimizing (58) with respect to X(n − k, ω), we obtain an
estimate of X(n− k, ω) as

X(n− k, ω) = h̄H(n, ω)g(n− k, ω). (59)

Substituting (59) into (55) gives

h̄APES(n, ω) = arg min
h̄(n,ω)

h̄H(n, ω)Q̂(n, ω)h̄(n, ω)

subject to h̄H(n, ω)ā0(n, ω) = 1, (60)
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where

Q̂(n, ω) =
1

N

N−1∑
k=0

1

L

L−1∑
l=0

ȳl(n− k, ω)ȳHl (n− k, ω)

− 1

N

N−1∑
k=0

g(n− k, ω)gH(n− k, ω). (61)

This expression can be interpreted as an estimate of the noise
covariance matrix. Note that we should have NL ≥ M to en-
sure that Q̂(n, ω) is positive-definite. The solution to (60) is
then given by

h̄APES(n, ω) =
Q̂−1(n, ω)ā0(n, ω)

āH0 (n, ω)Q̂−1(n, ω)ā0(n, ω)
. (62)

With (57), (59) and (62), the estimate of X(n, ω) is

ZAPES(n, ω) = h̄H(n, ω)
1

L

L−1∑
l=0

ȳl(n, ω)ejlωτ0 . (63)

As shown in (63), the filtering procedure of APES beamformer
is different from the other methods, since it applies a spatial
smoothing technique.

We summarize SCB and all the robust beamformers in Ta-
ble 1.

Table 1: Beamformers

SCB
min

h(n,ω)
hH(n, ω)R̄y(n, ω)h(n, ω)

s. t. hH(n, ω)ā(n, ω) = 1

filter hSCB(n, ω) =
R̄−1

y (n,ω)ā(n,ω)

āH(n,ω)R̄−1
y (n,ω)ā(n,ω)

NCCB
min

h(n,ω)
hH(n, ω)R̄y(n, ω)h(n, ω)

s. t. hH(n, ω)ā(n, ω) = 1
‖h(n, ω)‖2 ≤ ζ

filter hNCCB(n, ω) = U(Γ+νI)−1UH ā
āHU(Γ+νI)−1UH ā

RCB
min

a(n,ω)
aH(n, ω)R̄−1

y (n, ω)a(n, ω)

s. t. ‖a(n, ω)− ā(n, ω)‖2 ≤ ε

filter hRCB(n, ω) =
U(Γ+ 1

ξ I)
−1

UH ā

āHU
(

1
ξ2

Γ−1+Γ+ 2
ξ I

)−1
UH ā

DCRCB
min

a(n,ω)
aH(n, ω)R̄−1

y (n, ω)a(n, ω)

s. t. ‖a(n, ω)− ā(n, ω)‖2 ≤ ε
‖a(n, ω)‖2 = M

filter hDCRCB(n, ω) =
R̄−1

y (n,ω)aDCRCB(n,ω)

aHDCRCB(n,ω)R̄−1
y (n,ω)aDCRCB(n,ω)

APES
min

h̄(n,ω)
h̄H(n, ω)Q̂(n, ω)h̄(n, ω)

s. t. h̄H(n, ω)ā0(n, ω) = 1

filter h̄APES(n, ω) = Q̂−1(n,ω)ā0(n,ω)

āH0 (n,ω)Q̂−1(n,ω)ā0(n,ω)

5. Simulations

We will study in this section the performance of the robust
beamformers in reverberant and noisy environments.

5.1. Performance measures
In this subsection, we present some performance measures

to evaluate the aforementioned robust beamformers. Without
loss of generality, we consider the signal of interest received at
the first microphone as the desired signal. The input signal-to-
interference-and-noise-ratio (SINR) is defined as

iSINR =
E[|X(n, ω)|2]

E[|V1(n, ω)|2]
. (64)

The output SINR, according to the model given in (7), is

oSINR =
E[|Xfd(n, ω)|2]

E[|Vrn(n, ω)|2]
. (65)

Note that due to the use of the spatial smoothing, the definition
of SINR with the APES method in (63) is different from that of
other methods. First, we rewrite (63) as

ZAPES(n, ω) = Xfd,APES(n, ω) + Vrn,APES(n, ω), (66)

where

Xfd,APES(n, ω) = h̄H(n, ω)
1

L

L−1∑
l=0

x̄l(n, ω)ejlωτ0 (67)

and

Vrn,APES(n, ω) = h̄H(n, ω)
1

L

L−1∑
l=0

v̄l(n, ω)ejlωτ0 (68)

are filtered desired signal and residual noise, respectively. Sim-
ilar to (65), the output SINR for the APES beamformer is then
defined as

oSINR[h̄(n, ω)] =
E[|Xfd,APES(n, ω)|2]

E[|Vrn,APES(n, ω)|2]
. (69)

We also use the perceptual evaluation of speech quality (PESQ)
[30] and the short-time objective intelligibility measure (STOI)
[31] to evaluate the speech quality and intelligibility of the en-
hanced speech signal.

5.2. Experimental setup
In this subsection, we evaluate the robust beamformers with

numerical experiments under reverberant and noisy environ-
ment. Both simulated signal and real environment recorded sig-
nal are considered. The speech quality and speech intelligibility
improvement are shown in the following experiments. We con-
sider a simulated room of size 5m × 5m × 3m. The desired
signal is located at (3.25, 1.2, 1.5) with DOA being θd = 30◦.
In order to simulate babble noise, we consider multiple interfer-
ences here. There are six interferences located at (1.3, 1.5, 1.5),
(1.0, 2.2, 1.5), (1.5, 3.7, 1.5), (2.75, 4, 1.5), (3.8, 3.5, 1.5) and
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Figure 1: The room setup.

(4.1, 2.3, 1.5), respectively. An ULA containing 16 micro-
phones is located at the center of the room with δ = 0.04m.
The first microphone is located at (2.5, 2.2, 1.5). The micro-
phone and speaker setup is shown in Fig. 1. The room impulse
response is generated by using the image model based method
[32]. The room impulse responses with different reverberation
times are shown in Fig. 2. The speech signal is taken from the
TIMIT database[33] and down sampled to 8k Hz for our use.
Each experiment is repeated with the speech signal from 10 dif-
ferent speakers, and 100 seconds of speech are used totally. The
interferences are first scaled to have the same power before con-
volved with the corresponding room impulse responses. The
convolved interferences at the first microphone are then added
together as the interference signal. The interference signal and
white Gaussian noise are scaled and added to the desired signal
with a certain input SIR and SNR. The interference signal at the
other microphones is proper scaled based on the input SIR at the
first microphone. Unless clarified, the input SIR mentioned in
the following section is at the first microphone. The time do-
main noisy signal is then transformed to the frequency domain
by applying the STFT, the overlap rate is set to be 75% with a
frame length of 128. The sound speed is set as c = 340 m/s.

5.3. Simulation results
In the first experiment, we evaluate the influence of the DOA

estimation error (∆θ) on the performance of the beamformer.
For comparison, the performance of DAS, MVDR and SCB are
also studied. As discussed in Section 4.1, diagonal loading is
commonly used in practice when applying the SCB method. We
already studied in our former work [25] that the SCB method
without diagonal loading even degrades the speech quality and
speech intelligibility. In the experiment, we also add a fixed
amount of diagonal loading to the SCB method. The results are
shown in Fig. 3. We can notice that the DOA estimation er-
ror influences the performance of the beamformer dramatically.
The performance of all the methods are decreasing with in-
creasing amount of DOA estimation error. The MVDR method
has the best performance in all cases. The adaptive methods
outperform the fixed beamforming (DAS). We can notice that
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(a) Room impulse response with T60 ≈ 150 ms.
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(b) Room impulse response with T60 ≈ 300 ms.
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(c) Room impulse response with T60 ≈ 450 ms.

Figure 2: The room impulse response from the desired signal to the first micro-
phone.
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(a) The mean output SINR.
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Figure 3: The beamformers performance with different amount of DOA esti-
mation errors. We set M = 8, N = 100, θd = 30◦, iSNR = 20 dB,
iSIR = −5 dB and T60 ≈ 150 ms.
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Figure 4: The beamformers performance with different input SIRs. We set
M = 8,N = 100, θd = 30◦, ∆θ = 5◦, iSNR = 20 dB and T60 ≈ 150 ms.
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(a) MVDR, f = 750 Hz (b) MVDR, f = 2750 Hz

(c) SCB, f = 750 Hz (d) SCB, f = 2750 Hz

(e) NCCB, f = 750 Hz (f) NCCB, f = 2750 Hz

(g) RCB, f = 750 Hz (h) RCB, f = 2750 Hz

(i) DCRCB, f = 750 Hz (j) DCRCB, f = 2750 Hz

Figure 5: The beampatterns of different beamformers with different frequen-
cies. We set M = 8, N = 100, θd = 30◦, ∆θ = 5◦, iSNR = 20 dB,
iSIR = −5 dB and T60 ≈ 150 ms.

4 5 6 7 8 9 10 11 12
-4

-2

0

2

4

6

8

10

(a) The mean output SINR.

4 5 6 7 8 9 10 11 12
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

(b) The mean PESQ score.

4 5 6 7 8 9 10 11 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(c) The mean STOI score.

Figure 6: The beamformers performance with different number of micro-
phones. We set θd = 30◦, ∆θ = 5◦, iSNR = 20 dB, iSIR = −5 dB
and T60 ≈ 150 ms.
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(a) The mean output SINR.
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Figure 7: The beamformers performance with different amount of reverbera-
tion. We set M = 8, N = 100, θd = 30◦, ∆θ = 5◦, iSNR = 20 dB and
iSIR = −5 dB.

the RCB and DCRCB methods outperform the SCB when the
DOA error is small. It should be noticed that even though the
APES beamformer shows better performance in improving the
oSINR, the definition of oSINR for APES is different from that
for the other methods as seen in (65) and (69). For RCB and
DCRCB, the choice of ε should be frequency dependent ide-
ally. We use a same ε for all the frequency bins in practice for
simplicity. Here the proper values of these parameters are cho-
sen based on experiments, which are listed in Table 2 for dif-
ferent DOA estimation errors. For NCCB, we have ζ = β/M ,
and for APES, the subarray microphone number is chosen as
M̄ = M − 1. We choose α = 10−4 for the SCB method.

Table 2: Parameters for NCCB, RCB and DCRCB with different DOA errors

∆θ 0◦ 5◦ 10◦ 15◦ 20◦

NCCB (β) 1.5 1.75 1.75 1.75 1.75

RCB (ε) 0.1 0.1 0.25 0.25 0.25

DCRCB (ε) 0.1 0.1 0.1 0.25 0.25

The second experiment is to study the performance of the
beamformers under different iSIRs. Figure 4 shows that the
robust beamformers outperform DAS method both in improv-
ing the speech quality and speech intelligibility. The APES
method gives better performance than the other robust meth-
ods under all the conditions, while RCB and DCRCB behave
similarly under most iSIR conditions. The results illustrate that
SCB has less speech quality and speech intelligibility improve-
ment than RCB, DCRCB and APES methods under low iSIR
conditions. This is simply because it suffers from steering vec-
tor and covariance matrix estimation errors, which forces the
mainlobe to point to a wrong direction and causes higher level
of sidelobes as well. The DAS beamformer suffers from the
high white noise amplification in low frequency which limits
its performance when compares to the robust methods.

In order to analyse the behavior of different beamformers, we
also illustrate the beampatterns for different methods in Fig. 5.
The beampattern is defined as

B[h(n, ω), θ] = aH(n, ω)h(n, ω), (70)

which is used to describe the sensitivity of the beamformer to
the plane wave impinging on the array from different direc-
tions. One can notice from Fig. 5 that the beampattern varies
significantly with different frequency bins. At low frequency,
the DOA estimation error does not affect the mainlobe direc-
tion much because the mainlobe is already quite wide. But the
difference between the sidelobes is significant. More specif-
ically, RCB, DCRCB have lower sidelobes compared to the
other methods, which helps to better suppress the interferences
and eliminate the white Gaussian noise. There is not too much
of difference between the beampatterns of RCB and DCRCB
at low frequency. At high frequency, It can be noticed that the
steering directions of RCB and DCRCB are corrected because
of the uncertainty constraint. The NCCB method gives high
sidelobe at low frequency and shallow valley at unwanted di-
rections at high frequency, which makes its performance not
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as good as RCB and DCRCB as shown in Fig. 3 and Fig. 4.
Additionally, from Fig. 5 (f), we can notice that the pointing
direction is not well corrected by using NCCB.

The next experiment studies the performance versus differ-
ent number of microphones. To estimate the observed signal
covariance matrix, the proper short-time average length for dif-
ferent M is set according to experiments, which are listed in
Table 3. The choice of parameters for different methods are
also listed in Table 3. As shown in Fig. 6, the performance
of robust beamformers and DAS improves with the increas-
ing of microphone number. But the performance increasing of
RCB and DCRCB are slowing down after M reaches 8. The
performance of RCB with a fixed amount of diagonal loading
starts to decrease after M reaching 10. This is due to the es-
timation error of the covariance matrix, which increases with
the number of microphones. Interestingly, the performance of
the APES method keeps increasing with the increasing of M ,
which makes it promising in further improving the speech qual-
ity and speech intelligibility with large number of microphones.

Table 3: Parameters for NCCB, RCB, DCRCB and SCB with different number
of microphones.

M 4 6 8 10 12

N 40 80 100 120 160

NCCB (β) 2.75 2 1.75 1.75 1.75

RCB (ε) 0.1 0.1 0.1 0.5 1

DCRCB (ε) 0.1 0.1 0.1 0.25 0.5

SCB (α) 10−5 10−5 10−4 10−4 10−4

The next experiment is to study the performance of the beam-
formers under different reverberation conditions. The parame-
ters are selected by experiments which are shown in Table. 4.
We select α = 10−4 for SCB method. As illustrated in
Fig. 7, an increasing reverberation time dramatically decreases
the speech quality and speech intelligibility. The RCB, DCRCB
and APES still outperform the standard methods in most cases.
However, when T60 reaches 450 ms, the robust methods have
almost the same performance with the DAS beamformer.

Table 4: Parameters for NCCB, RCB and DCRCB with different amount of
reverberations.

T60 0 ms 150 ms 300 ms 450 ms 600 ms

NCCB (β) 1.75 1.75 1.5 1.25 1.25

RCB (ε) 0.1 0.1 0.25 0.25 0.25

DCRCB (ε) 0.1 0.1 0.25 0.75 1

We further study the performance of the robust filters under
non-stationary noise. The number of microphones is set to 8.
We consider one interference which is located at (3.8, 3.5, 1.5).
The interference signal is then scaled to get the iSIR at the first
microphone as −5 dB. We set T60 = 150 ms and N = 100.

The noise data in this experiment is taken from the AURORA
database [35]. The multichannel non-stationary noise is gener-
ated by using the method proposed in [36]. The noise signal is
scaled to have iSNR = 20 dB. We set the parameter α = 10−4

for SCB, β = 1.75 for NCCB and ε = 0.1 for both RCB and
DCRCB. The results are illustrated in Table 5, Table 6, and Ta-
ble 7. We can notice that the RCB, DCRCB, and APES beam-
former outperform the SCB and DAS method under different
noise conditions.

Table 5: Performance of beamformers under restaurant noise condition. The
PESQ and STOI of the noisy signal are 1.4623 and 0.6291, respectively.

Restaurant MVDR SCB DAS NCCB RCB DCRCB APES

mean oSINR 20.0866 5.5134 -3.1152 3.5572 6.5247 6.4153 6.8056

mean PESQ 3.1465 2.3345 1.9228 2.2377 2.3920 2.3963 2.4600

mean STOI 0.9244 0.7684 0.6867 0.7312 0.7783 0.7789 0.8280

Table 6: Performance of beamformers under street noise condition. The PESQ
and STOI of the noisy signal are 1.4574 and 0.6283, respectively.

Street MVDR SCB DAS NCCB RCB DCRCB APES

mean oSINR 20.0089 5.5126 -3.1323 3.5427 6.5273 6.4168 6.9064

mean PESQ 3.1791 2.3233 1.9173 2.2282 2.3752 2.3785 2.4524

mean STOI 0.9284 0.7672 0.6857 0.7298 0.7778 0.7784 0.8266

Table 7: Performance of beamformers under station noise condition. The PESQ
and STOI of the noisy signal are 1.4610 and 0.6299, respectively.

Station MVDR SCB DAS NCCB RCB DCRCB APES

mean oSINR 20.2860 5.5227 -3.1185 3.5605 6.5388 6.4287 6.8535

mean PESQ 3.1447 2.3320 1.9236 2.2371 2.3876 2.3917 2.4570

mean STOI 0.9255 0.7684 0.6867 0.7311 0.7784 0.7789 0.8272

In the last experiment, we use the real environment recorded
signal to test the performance of the robust beamformers. The
signals are taken from the single- and multichannel audio
recordings database (SMARD) [34]. We use the first ULA
array in the database. The desired signal is the male speech
(50 male speech english) from the configuration 0010 at the
direction θd = 79.8◦. An interference female speech signal
(CA02 03) is located at 53.2◦ which is taken from the data in
configuration 0110. More details about the room setup and the
positions of the array and sources can be found in [34]. The
iSIR is set to be 0dB, and we set N = 100. The parameters
are set by experiments, i.e., α = 10−4 for SCB, β = 1.75 for
NCCB and ε = 0.1 for both RCB and DCRCB. The results
of different methods are listed in Table 8. The performance
of the MVDR is the best in both improving the speech qual-
ity and speech intelligibility. However, the requirement of esti-
mating the covariance matrix of the noise signal makes MVDR
beamforming difficult to implement in practice. We can no-
tice from Table 8 that the NCCB, RCB, DCRCB and APES
outperform the SCB method. Moreover, the NCCB, RCB and
DCRCB show better performance with real recorded data. The
performance of APES is not consistent with the performance
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with simulated data, this is because of that the relationship in
(53) is not satisfied any more, which degrades the beamform-
ing performance. We remark that from listening to the output
of the different methods, we have observed that the filtered sig-
nal quality is consistent with the experiment results both with
simulated data and real environment recorded data.

Table 8: Performance of beamformers with real environment recorded signal.
The PESQ and STOI of the noisy signal are 2.7950 and 0.8334, respectively.

MVDR SCB DAS NCCB RCB DCRCB APES

oSIR 34.5816 7.8358 1.3095 4.5175 7.3247 7.0856 2.5589

PESQ 2.9986 2.4328 2.7544 2.8451 2.9105 2.9096 2.7822

STOI 0.9108 0.8192 0.8331 0.8530 0.8612 0.8601 0.8350

The simulation results indicate that the robust beamformers
perform better than the traditional methods in noisy and re-
verberant environments. Among the studied robust methods,
RCB shows slightly better performance than DCRCB. With real
recorded data, the NCCB, RCB, and DCRCB show potential in
improving the speech quality and speech intelligibility. With
simulated data, APES beamformer is able to further improve
the speech quality and speech intelligibility with large number
of microphones, however, the performance with real recorded
data is not that good. In summary, with the application of ro-
bust methods in acoustic signal processing, the robustness of
the beamformer against the steering vector, covariance matrix
and signal model errors are dramatically improved.

6. Conclusion

This paper considered different robust adaptive beamformers
for wideband acoustic signals. Several different robust meth-
ods based on the Capon beamformer have been considered, as
well as one based on the APES method. The NCCB method
belongs to the diagonal loading type of method, but instead of
setting a fixed diagonal loading parameter, NCCB adjusts the
diagonal loading amount adaptively according to the current
signal statistics and the steering vector. Moreover, the RCB
and DCRCB intend to adaptively revise the inaccurate steering
vector to improve the robustness of the filter against the steer-
ing vector estimation errors. Meanwhile, the APES method de-
velops an estimate of the noise covariance matrix before form-
ing the filter, which leads to the improvement of robustness.
Experiments were performed in reverberant environments with
multiple interference sources. We considered different input
SINRs, different numbers of microphones, different amounts
of reverberations, and different types of non-stationary noise.
The performance of the robust methods with real environment
recorded data was also studied. The results showed that the
robust methods are able to improve the robustness of the beam-
former against the estimation errors of both the steering vec-
tor and the covariance matrix. More importantly, these robust
adaptive beamformers maintain robustness against the signal
model mismatch in reverberant environments. It is worth notic-
ing that the APES beamformer has shown the potential to im-
prove the speech quality and speech intelligibility with large

number of microphones. This is because the use of a noise
covariance matrix estimate in forming the beamformer, which
leads to a low level of signal distortion even when there are es-
timation errors in the steering vector and the signal covariance
matrix.
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