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A CNN-Based Approach to Identification of
Degradations in Speech Signals
Yuki Saishu1, Amir Hossein Poorjam1,2* and Mads Græsbøll Christensen1

Abstract

The presence of degradations in speech signals, which causes acoustic mismatch between training and
operating conditions, deteriorates the performance of many speech-based systems. A variety of enhancement
techniques have been developed to compensate the acoustic mismatch in speech-based applications. To apply
these signal enhancement techniques, however, it is necessary to know prior information about the presence
and the type of degradations in speech signals. In this paper, we propose a new convolutional neural network
(CNN)-based approach to automatically identify the major types of degradations commonly encountered in
speech-based applications, namely additive noise, nonlinear distortion, and reverberation. In this approach, a
set of parallel CNNs, each detecting a certain degradation type, is applied to the log-mel spectrogram of audio
signals. Experimental results using two different speech types, namely pathological voice and normal running
speech, show the effectiveness of the proposed method in detecting the presence and the type of degradations
in speech signals which outperforms the state-of-the-art method. Using the score weighted class activation
mapping, we provide a visual analysis of how the network makes decision for identifying different types of
degradation in speech signals by highlighting the regions of the log-mel spectrogram which are more influential
to the target degradation.

Keywords: Signal enhancement; Convolutional neural network; Identification of degradation; Quality control;
Visualization

1 Introduction
Advances in portable devices such as smartphones and
tablets, that are equipped with high-quality micro-
phones, facilitate capturing and processing speech sig-
nals in a wide range of environments. However, the
quality of the recordings is not necessarily as expected,
as they might be subject to degradation. In prac-
tice, the presence of degradation during the operat-
ing time can deteriorate the performance of speech-
based systems, such as speech recognition [1], speaker
identification [2], pathological voice analysis (assess-
ment of voice signal of a speaker with a voice disorder)
[3, 4], mainly due to acoustic mismatch between train-
ing and operating conditions. The most common types
of degradation typically encountered in speech-based
applications are background noise, reverberation, and
nonlinear distortion.

A speech signal degraded by additive noise, rever-
beration, and nonlinear distortion can be, respectively,
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modeled as follows:

xn(t) = s(t) + e(t), (1)

xr(t) = s(t) ∗ h(t), (2)

xd(t) = ψ(s(t)), (3)

where t is the time index, s(t) is the clean speech sig-
nal recorded by a microphone in a noise-free and non-
reverberant environment, e(t) is an additive noise, ψ
represents a nonlinear function, h(t) is a room impulse
response (RIR), and the ∗ indicates the convolution
operation. We note that in reality, these degradations
are even more complex. For example, they may be
time-dependent. A variety of effective signal enhance-
ment techniques have been developed to enhance a de-
graded speech signal such as noise reduction [5, 6],
dereverberation [7, 8], and restoration of some types
of nonlinear distortion [9, 10]. Most of these enhance-
ment algorithms have been designed to deal with a
specific type of degradation in a signal, although re-
cent research in comprehensive speech enhancement,
dealing with both additive noise and reverberation, is
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promising [11, 12, 13]. Nevertheless, to properly com-
pensate for the effects of degradations, it is necessary
to know or obtain information about the presence and
the type of degradations in speech signals. Since man-
ual inspection of the signals is very time consuming,
costly, and even impossible in many speech-based ap-
plications, an accurate degradation detection system
would be useful to automatically identify the presence
and type of degradations.

There are a variety of approaches to identify dif-
ferent types of degradation in speech signals. For ex-
ample, Ma et al. in [14] proposed a hidden Markov
model based approach to distinguish different types of
noise in speech signals. In another study by Desmond
et al. [15], the reverberant signals are detected us-
ing a channel-specific statistical model. In [16, 17],
clipping in speech signals, as an example of nonlin-
ear distortion, is detected. Although effective, these
approaches are focused on detecting a single, specific
type of degradation. The use of a multiclass classifi-
cation, on the other hand, can be used to detect dif-
ferent types of degradations. In [18, 19], Poorjam et
al. proposed two generalized multiclass classification-
based approaches detecting various types of degrada-
tion, which investigated only on pathological voice sig-
nals and the accuracy was still inadequate. Moreover,
there is no control over the class assignment in these
approaches when a new type of degradation is observed
for which the classifier has not been trained. For exam-
ple, clipping, packet-loss, dynamic range compression,
automatic gain control, and distortions due to using
low quality or improperly configured equipment are
considered as new types of degradation for a multi-
class classifier trained only with noisy and reverberant
signals.

To overcome the limitations of the multiclass-based
approaches, one can use a multilable classification ap-
proach in which more than one class labels may be
assigned to each sample. Compared to the multiclass-
based methods, this approach can better deal with
some challenging cases such as the presence of a new
degradation type and when more than one degrada-
tion coexists. In the former case, the sample may be
classified as none of the target classes. In the latter
case, more than one detector can accept a signal sub-
ject to a mixture of degradations. One possible solu-
tion is to integrate the existing algorithms, developed
for detecting each type of degradation, into a unified
framework and consider each subsystem as a detector
to make a decision about a signal. However, algorithms
that are independently developed may make very dif-
ferent assumptions and may have diverse requirements
that could occasionally be conflicting. Thus, integrat-
ing them into a framework is very challenging, and

meeting all requirements at the same time might not
be feasible in some cases.

As an alternative solution, Poorjam et al. proposed a
data-driven approach which uses a set of parallel Gaus-
sian mixture models (GMMs) to detect three types
of degradation in pathological voice signals, namely
background noise, reverberation, and nonlinear distor-
tion [4]. All detectors in this approach are similar in
terms of the complexity, underlying assumptions, and
the acoustic features except that they are trained using
different degraded signals. This approach is focused on
pathological voices and, particularly, on the sustained
vowels.

In this paper, we propose a more accurate convo-
lutional neural network (CNN)-based approach which
can identify degradations not only in sustained vowels,
but also in normal running speech. CNNs are computa-
tionally efficient deep neural networks that are able to
learn complex patterns in the spectrogram of a speech
signal. In this approach, we apply a set of parallel
CNNs to the log-mel spectrograms of the signals. Each
CNN model, trained with signals corrupted by a spe-
cific degradation type, is responsible for detecting the
corresponding degradation in a test signal. The pre-
diction scores of an unseen test sample can be used to
associate multiple degradation labels to an observation
and can be interpreted as the degree of contribution
of each degradation in a degraded signal. Moreover,
using the score class activation mapping (score-CAM)
technique [20], we visually explain on what basis the
CNN models make a specific decision in detecting dif-
ferent types of degradation by finding the regions in
the mel-scale spectrograms of a degraded signal that
are most influential to the scores of the target class. In
this technique, different activation maps are applied to
the input spectrogram, each perturbing a region of the
spectrogram. Then, the effect of each activation map
on the prediction scores is observed. The importance
of each activation map is determined by the predic-
tion score on the target class. Finally, a saliency map
is generated by a weighted linear combination of all ac-
tivation maps to visualize the internal representation
in a CNN [20]. Since this technique does not require
any modifications to the architecture of the network,
it can be applied to a wide variety of CNN models.

The rest of this paper is organized as follows. In Sec-
tion 2, we formulate the problem of automatic degra-
dation detection, and describe the proposed approach.
The experimental setup is explained in Section 3. In
Section 4, we present and discuss about the results.
The paper ends with conclusions in Section 5.
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2 System Description
2.1 Problem Formulation
In the problem of degradation detection in speech
signals, we are given a set of training data Λ =
{xn, yn,d}Nn=1, where xn ∈ Rk denotes the nth obser-
vation of k dimension. Depending on the system and
the level of processing, this could represent acoustic
features of an audio signal or a frame of a signal. For
example, in the proposed system, introduced in Sec-
tion 2.2, xn represents the log-mel spectrogram of the
nth audio signal, and in the baseline system, described
in Section 2.3, it is the mel-frequency cepstral coeffi-
cients of the nth frame of a signal. yn,d ∈ {0,1} denotes
whether the nth observation belongs to a degradation
class d. N is the total number of training samples. The
goal is to approximate a binary classifier function gd
for each degradation type d, such that for an observa-
tion not in the training data, xtest, the probability of
the test sample classified in the correct class is max-
imized. In other words, the estimated degradation la-
bel, ŷd = gd(xtest), for ŷd ∈ [0,1], is as close as possible
to the true label.

2.2 The Proposed Method
In our proposed method, we use a set of parallel
CNNs to approximate the functions gd. Each CNN,
inspired by VGGNet [21], consists of several convolu-
tional blocks, and each block consists of several con-
volutional layers with kernel size of 3 × 3. As shown
in Fig. 1, we propose 5 different CNN architectures
for each detector to investigate the optimal architec-
ture for degradation detection problem. The numbers
in front of “Conv” in each layer show the number of
feature maps. The CNN32, which has 28,807 parame-
ters to train, consists of one convolutional block of 3
layers. The CNN64, with 120,423 parameters, consists
of a 2-layer and a 3-layer convolutional blocks. The
CNN128 comprises two 2-layer and one 3-layer con-
volutional blocks. The number of parameters of this
network is 469,543. In CNN256, there are two 2-layer
and two 3-layer blocks and has 1,979,175 parameters.
Finally, the CNN512, which consists of 7,947,559 pa-
rameters, is made of three 2-layer and two 3-layer
blocks. In Fig. 2, the architecture of CNN128 is il-
lustrated in more detail. To connect the convolutional
layers, we employ batch normalization (BN) and rec-
tified linear unit (ReLU). BN permits a deep neural
network to learn with larger learning rates which fa-
cilitates quicker convergence and better generalization
[22]. The output layer consists of two dense layers—
also known as the fully connected layers—that are con-
nected to the last convolutional layer by a global av-
erage pooling. We use a sigmoid activation function in
the output layer to produce a score in a range [0,1].

Figure 1 The architecture of CNN models of different number
of convolutional layers.

As the acoustic feature, we use the log-mel spectro-
gram of size 300 frames × 40 mel bins, calculated by
taking the logarithm of the output of a mel-scale fil-
ter bank applied to the short-time Fourier transform
(STFT) of a signal. The log-mel spectrogram is a popu-
lar signal parametrization technique in many audio ap-
plications using deep neural networks which provides
an efficient, perceptually relevant, 2-dimensional rep-
resentation of an audio signal. Compared to the STFT,
the log-mel spectrogram provides a less redundant rep-
resentation of an audio signal and allows CNNs to
learn with a smaller number of training data. The deci-
bel scaling is motivated by the human perception of
loudness [23] and has shown to provide a better dis-
criminability compared to the linear version [24]. The
resulting log-mel spectrogram together with the first-
and second-order derivatives is used as the input fea-
ture to the CNN.

We use stochastic gradient descent (SGD) to mini-
mize the binary cross-entropy for each classifier that is
defined as:

Ld = −
1

N

N

∑
n=1

(yn,d ln(gd(xn))+(1−yn,d) ln(1−gd(xn))),

(4)

where gd(xn) ∈ [0,1] is the output score of the CNN
trained to identify a specific type of degradation, and
yn,d ∈ {0,1} is the true degradation label.

The decision for the test observation is made by set-
ting a threshold over the output scores of each CNN.
This way, if a test sample is subject to a new type of
degradation, we expect it to be rejected by all CNNs
based on a pre-defined threshold. Moreover, if an ob-
servation is subject to more than one type of degrada-
tion, we expect that the output score of more than one
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Figure 2 The architecture of the CNN models used in the
proposed degradation detection approach.

CNN to be above the threshold. It should be noted that
since the selection of an optimal decision threshold de-
pends on the application, in this study, we consider the
soft scores and use a threshold-independent metric, in-
troduced in Section 3.4, to evaluate the performance
of the proposed system.

2.3 Baseline System
As a baseline system, with which we compare our pro-
posed system, we use the Gaussian mixture model-
universal background model (GMM-UBM) degrada-
tion detection approach proposed in [4]. In this ap-
proach, a set of parallel GMMs, fitted to the frames
of the speech signals in the mel-frequency cepstral
coefficient (MFCC) domain, is used to detect differ-
ent types of degradation. The training phase consists
of two steps: 1) training a degradation-independent
GMM with a very large amount of training data from
various degradation classes, referred to as the UBM;
and 2) training a set of degradation-dependent GMMs
by adapting the parameters of the UBM using the
corresponding training data. For evaluation, the iden-
tification score of a certain type of degradation, d,
and time-sequence input, X = (x1, . . . ,xn, . . . ,xN), is
computed by the following equation:

σd = gd(X)

= 1

N
(

N

∑
n=1

log p(xn∣λd) −
N

∑
n=1

log p(xn∣λubm)) ,
(5)

where the N is the total number of time-frames, the
λubm and the λd are the parameters of the UBM and
the degradation-dependent GMMs, respectively, and
p(xn∣λ) is the Gaussian probability density function.
The identification is made by setting a threshold over
the scores.

3 Experimental Setup
3.1 Data sets
Our approach can be applied to any type of speech,
such as normal running speech, whispered speech,
emotional speech, sustained vowel phonation, and
singing voice. In this study we consider two types of
speech, namely pathological voice and normal run-
ning speech, to evaluate the performance of the pro-
posed method. For the pathological voice, we used the
mPower mobile Parkinson’s disease (MMPD) data set
[25] which includes more than 65,000 voice samples
of 10 seconds sustained phonations of the vowel /a/
recorded at 44.1 kHz sampling frequency by PD pa-
tients and healthy speakers. This data set has been
selected because most PD patients suffer from some
form of vocal disorders [26]. Moreover, since sustained
vowel phonations provide a simple acoustic structure
to characterize the glottal source and resonant struc-
ture of the vocal tract [27], they are considered as the
main voice material for analysis of pathological voice
caused by a range of medical disorders. For the normal
running speech, we used an English speech database
published by the Center for Speech Technology Re-
search at University of Edinburgh [28]. The samples of
this database were recorded at 48 kHz.
Pathological Voice: To prepare data for degrada-

tion detection experiments in pathological voices, we
randomly selected 9,000 samples from the MMPD data
set, and divided them into 5 equal groups of 1,800 sam-
ples. The recordings of the first group were degraded
by six different types of additive noise, namely bab-
ble, street, restaurant, office, white Gaussian, and wind
noises [1] under different signal-to-noise ratio (SNR)
conditions ranging from -10 dB to 20 dB. The noise
signals were resampled to 44.1 kHz before being added
to the voice signals. To reduce the probability of ob-
serving signals degraded by exactly the same noise
segments in both training and evaluation subsets, we
added a random segment of a noise file to each clean
signal.

[1]The babble, restaurant and street noise files were taken from
https://www.soundjay.com, the office noise was taken from
https://freesound.org/people/DavidFrbr/sounds/327497,
the white noise was taken from https://www.audiocheck.
net/testtones_whitenoise.php, and the wind noise was
taken from https://www.iks.rwth-aachen.de/forschung/
tools-downloads/databases/wind-noise-database.

https://www.soundjay.com
https://freesound.org/people/DavidFrbr/sounds/327497
https://www.audiocheck.net/testtones_whitenoise.php
https://www.audiocheck.net/testtones_whitenoise.php
https://www.iks.rwth-aachen.de/forschung/tools-downloads/databases/wind-noise-database
https://www.iks.rwth-aachen.de/forschung/tools-downloads/databases/wind-noise-database
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The recordings of the second group were filtered by
46 real room impulse responses (RIRs) of the AIR
database [29], measured with a mock-up phone in
hand-held and hands-free positions in various realis-
tic indoor environments, such as a meeting room, a
corridor, a lecture room, an office, a stairway, and a
kitchen, to produce reverberant samples. The rever-
beration time of the RIRs, RT60, defined as the time
it takes for a switched-off sound to decay by 60 dB
[30], ranges from 390 ms to 1.47 s. The direct to re-
verberant energy ratio of the RIRs ranges from 4.35
dB to 12.28 dB. The RIRs were resampled to 44.1 kHz
prior to convolution.

The samples of the third group were distorted by ei-
ther clipping, coding, or clipping followed by coding
as an example of nonlinear distortion. The clipping
level, defined as a proportion of the peak absolute sig-
nal amplitude to which the sample values greater than
this threshold are limited, was set to 0.3, 0.5, or 0.7,
and we used 9.6 kbps and 16 kbps code-excited linear
prediction (CELP) codecs [31].

We used the fourth group for a combination of addi-
tive noise and reverberation, in which a voice sample
was filtered by a RIR and added to a noisy signal that
was also convolved with a RIR. The noisy signals in
this case are degraded by indoor environment noises
such as babble, restaurant, and office noise under 0
dB, 5 dB, or 10 dB SNR conditions. The reason for
choosing this subset is to evaluate whether a signal,
in which both noise and reverberation coexist, can be
detected by both noise and reverberant detectors. The
fifth group was used without any processing and con-
sidered as the clean class.
Normal Running Speech: To prepare samples for

noisy and noisy-reverberant classes in normal speech,
we used the clean and noisy parallel speech data set
(NS) [28], and clean and noisy-reverberant speech data
set (NRS) [32], respectively.

In the NS data set, clean speech signals, recorded by
28 gender-balanced speakers, were subject to 10 differ-
ent noises obtained from the DEMAND database [33]
at 0 dB, 5 dB, 10 dB, and 15 dB SNRs. From the clean
subset of this data set, we randomly selected 1,800
samples for the clean class, and 1,800 non-overlapping
samples from the noisy subset for the noisy class.

In the NRS database, the noisy reverberant speech
is created by convolving a clean signal with a RIR and
adding it to a noisy signal that was also convolved with
a room impulse response. Thus, we randomly selected
1,800 samples for the noisy-reverberant class. To pre-
pare data for the reverberant and nonlinear distortion
classes, we selected two disjoint subsets of 1,800 sam-
ples from the clean part of the data set, and degraded
them in a similar way as for creating reverberant and
nonlinear distortion classes for the pathological voices.

3.2 Acoustic Features
We normalized the signals by subtracting the mean
and dividing by the absolute maximum amplitude.
Then, for the input to the CNNs, we segmented a sig-
nal into frames of 30 ms with 10 ms overlap using a
Hamming window. Then, for each frame of a signal, we
computed 40 channels log-mel spectrogram together
with the first and second derivatives.

As the input to the GMM-UBM system, we used
MFCCs computed by using a 30 ms Hamming win-
dow with 10 ms overlap, and a 27 channel mel-scale
filter bank. For each frame of a signal, 13 coefficients,
including the log-energy of the frame, along with the
first and second derivatives of the MFCCs have been
calculated to form a 39-dimensional feature vector. We
used the same values for the parameters of the baseline
system as were used in [4] to reproduce their results.

3.3 Configuration Parameters
All CNN networks in our experiments were trained
20 epochs by using SGD to minimize the binary-cross-
entropy loss function defined in equation (4). The mag-
nitude of the random fluctuations in the SGD dynam-
ics is represented by the noise scale, ρ, which is pro-
portional to the speed of convergence and defined as
[34]:

ρ = ε

1 − ν (N
B
− 1) ≈ εN

B(1 − ν) , (N ≫ B), (6)

where N is the number of training samples, ε is the
learning rate, B is the batch size, and ν is the momen-
tum of the SGD. In our experiments, the batch size in
each epoch, and the momentum of SGD were set to 64,
and 0.9, respectively. We also exponentially decreased
the learning rate from 0.01 to 0.0001 from one epoch
to another.

For the baseline system, the number of mixture com-
ponents is set to 1024 according to [4].

3.4 Performance Metric
To evaluate the performance of the proposed system,
we used the area under the receiver operating charac-
teristic (ROC) curve (AUC). In the ROC curve, the
true positive rate is plotted against the false positive
rate for different decision thresholds of the scores. The
AUC summarizes the ROC curve into a single number
facilitating an easier comparison between different sys-
tems regardless of the decision threshold which is an
application- and user-dependent parameter. The AUC
value equals to 0.5 represents a chance level perfor-
mance, while the AUC equals to 1 means a perfect
separation of the classes.
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Table 1 Comparison between the performance of different CNN architectures on the pathological voice data set in the form mean
AUC±95% confidence interval. The bold-faced numbers represent the best performance.

Detectors CNN32 CNN64 CNN128 CNN256 CNN512

Noise 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Distortion 0.98±0.01 0.98±0.01 0.99±0.00 0.98±0.01 0.98±0.01
Reverberation 0.90±0.01 0.91±0.01 0.93±0.01 0.91±0.01 0.89±0.01

Table 2 The performance of the CNN128 system when no
parameters were shared across detectors, and when the
parameters in some layers were shared. The results are in the form
mean AUC±95% confidence interval.

Detectors
Independent Training

(First Approach)
Sharing Parameters
(Second Approach)

Noise 1.00±0.00 1.00±0.00
Distortion 0.99±0.00 0.98±0.01
Reverberation 0.93±0.01 0.88±0.01

4 Results and Discussion
CNN is a complex, nonlinear transformer which can
provide a rich variation of expressions of the input
through the layers. By increasing the number of pa-
rameters, a better expression of the input can typi-
cally be achieved at the expense of increasing the risk
of overfitting as the model can memorize specific de-
tails of the training data. Therefore, we first conduct
an experiment to choose the optimal CNN architecture
for the degradation detection problem and use it for
the rest of the experiments. Then, after comparing the
performance of the proposed method with the base-
line, we visually explain how the CNNs make decision
for identifying a degradation in a speech signal.

In all experiments, we used 10-fold cross validation
(CV) in which the samples were randomly divided into
10 non-overlapping and equal sized subsets. Then, 9
out of 10 subsets were used for training the models,
and the remaining subset was used for evaluation. This
procedure was repeated 10 times so that all subsets
were used once for training and evaluating the model.
It should be noted that for evaluation, we extended
each test subset by adding 20 outlier samples, which
do not contain relevant information with respect to
the context of the data sets such as the bark of dog or
a recording of whispered speech, to show whether the
detectors can reject such outlier samples.

To investigate the best architecture for the CNN
models, we compare the performance of CNN32,
CNN64, CNN128, CNN256, and CNN512. These ar-
chitectures are explained in Section 2.2 and illustrated
in Fig. 1. In this experiment, we used the pathologi-
cal voices. The results, reported in Table 1, show that
the difference in performance between the various net-
work architectures is marginal, particularly for noise
detection in which all networks perform equally well.
However, having a network of a simpler architecture
which exhibits a higher performance is more desired to

reduce the risk of overfitting. Considering the number
of parameters of each model, mentioned in Section 2.2,
and since the CNN128 outperforms others in identi-
fication of distortion and reverberation and has the
most balanced complexity and accuracy for our appli-
cation, we choose this architecture for the remaining
experiments.

Once the optimal CNN architecture is selected, we
can impartially compare the performance of the pro-
posed system with the baseline. As explained in Sec-
tion 2.3, the training phase in the baseline system
consists of two steps, namely training a UBM with a
large number of training samples from different degra-
dation classes, and adapting degradation-dependent
models with the corresponding training samples. For
training the UBM, we used 8,000 samples (1,600 sam-
ples from each class). The remaining 1,000 samples
(200 samples from each class) were used for adapt-
ing and evaluating the degradation-dependent GMMs.
To provide a fair comparison between the proposed
method and the baseline system in terms of how the
data are used, we took two different approaches. In the
first approach, we train each binary classifier from the
scratch using all the corresponding training samples.
In the second approach, on the other hand, we trained
a multiclass classifier with the training samples used
for training the UBM model. Then, using the sam-
ples exploited for adapting the degradation-dependent
GMMs, we fine-tuned three binary classifiers from the
trained multiclass classifier. In the fine-tuning step, we
kept the parameters of the first and the second con-
volutional blocks frozen and adapted the parameters
of the last convolutional block and the fully-connected
layers. This way, similar to the baseline system, the
parameters of the first two blocks were shared across
each detector. Table 2 shows the performance of the
CNN128 on the pathological voice data set when these
two approaches were applied. We can observe that the
models, particularly the reverberation detector, per-
form better when the classifiers were independently
trained. Therefore, we used the first approach when
comparing our proposed method with the baseline sys-
tem.

Table 3 shows the performance of the baseline and
the proposed systems. The results show that the pro-
posed system outperforms the baseline for both patho-
logical voices and running speech signals. Particularly,
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Table 3 Comparison between the proposed method for degradation detection and the baseline system for pathological voice and normal
running speech. The results are in the form mean AUC ± 95% confidence interval, and the bold-faced numbers represent the best
performance.

Detectors
Pathological Voice Normal Running Speech

Baseline Proposed Baseline Proposed

Noise 0.96±0.00 1.00±0.00 0.71±0.00 0.95±0.01
Distortion 0.90±0.01 0.99±0.00 0.83±0.01 1.00±0.00
Reverberation 0.75±0.00 0.93±0.01 0.84±0.01 0.99±0.00

for identifying reverberation in pathological voices and
additive noise in running speech. We can observe that
both systems show a common tendency that the per-
formance of the reverberation detector is much lower
than the noise detector, mainly due to the false recog-
nition of recordings in which noise and reverberation
coexist, but the noise is more dominant. Furthermore,
the results indicate that the identification of reverber-
ation in pathological voices is challenging for the base-
line system. This is because unlike running speech, the
temporal envelop of a sustained vowel is not peaky
and, consequently, is not highly influenced by reverber-
ation. Moreover, since the pitch contour in a sustained
vowel remains almost the same over a short period
of time compared to the running speech, the dynamic
changes in the frequency domain are less influenced in
sustained vowels than in running speech. These make
the identification of reverberation more challenging for
the baseline system. However, the CNN model, can
better distinguish these subtle differences.

On the other hand, since the frequency content and
the characteristics of some types of background noises,
such as babble, are similar to those of running speech
signals, identifying additive noise in running speech
is more challenging for the baseline system, while the
CNN model could effectively detect the presence of
the background noise in running speech. Given that
for each noisy signal in the data set, we selected a
random segment of a noise file and a random SNR
value, and that the acoustic characteristics of the noise
files used in these experiments vary in time (except
for the white noise), the probability of observing noisy
signals degraded by exactly the same noise segment
with similar SNR value is very low. Therefore, based
on the results, we expect the proposed system to be
able to generalize for noise types not seen during the
training phase.

Since deep learning models, such as CNNs, are as-
sociational machines which tend to learn the easiest
path to associate the input data into the labels, one
might suspect that a better performance of the pro-
posed approach compared to the baseline system might
be due to picking up spurious influences from some
confounders in the data. Therefore, it is important to
understand the basis on which the CNN models make
a specific decision about the presence of degradation

(a) Additive Noise

(b) Reverberation

(c) Nonlinear Distortion

Figure 3 Visualization of the saliency map, plotted in blue
shading on top of the gray-scale signal spectrogram, by
applying the score-CAM method to the log-mel spectrogram
of a pathological voice signal (sustained vowel /a/) degraded
by three types of degradation. The intensity of the saliency
map, shown on a scale of 0 to 255 by the colorbars, illustrates
the importance of each region of the input space to the target
class.

in a signal. There are a variety of techniques for under-
standing the behavior of complex deep learning models
and how they make a particular decision [35]. Score-
weighted class activation mapping (CAM) is one of
these techniques which maps the internal representa-
tion in a CNN and provides a meaningful, fine-grained
visual explanation of complex CNN-based models [20].

In this method, different masks, referred to as the ac-
tivation maps, are applied to the input image, which
is the log-mel spectrogram of a speech signal in our
experiments. Then, the prediction scores for each acti-
vation map is calculated and used as an indicator of the
importance of that activation map. By overlaying the
weighted activation maps on the input image, the parts
of an image that are most influential to the score of the
target class in prediction by the CNN model are high-
lighted. Fig. 3 shows the saliency maps produced by
applying the score-CAM method to a degraded patho-
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(a) Additive Noise

(b) Reverberation

(c) Nonlinear Distortion

Figure 4 Visualization of the saliency map, plotted in blue
shading on top of the gray-scale signal spectrogram, by
applying the score-CAM method to the log-mel spectrogram
of a normal running speech signal degraded by three types of
degradation. The intensity of the saliency map, shown on a
scale of 0 to 255 by the colorbars, illustrates the importance of
each region of the input space to the target class.

logical voice signal. We can observe the differences be-
tween the highlighted regions in the images depend-
ing on the type of degradation. For example, in Fig. 3
(a), a sustained vowel /a/ is degraded by a restau-
rant noise. It can be observed that the noise detector
tends to focus on the wide-range areas in the log-mel
spectrogram over the whole frequency, namely on both
the patchy regions in the log-mel spectrogram, cor-
responding to clattering sounds of the tableware and
plates, and some low-frequency regions, corresponding
to the babble noise in the restaurant. On the other
hand, as shown in Fig. 3 (b) and (c), the reverbera-
tion and distortion detectors tend to focus more on the
continuous area along the temporal axis in the log-mel
spectrogram and mainly in the high frequency regions.
The results suggest that the high frequency regions are
more influential and important in identification of dis-
tortion and reverberation. However, the tendency is a
completely opposite in speaker recognition, which as-
signs great importance to the low frequency regions
(about 200 Hz to 3 kHz) [36].

The saliency maps produced by applying the score-
CAM method to a degraded normal running speech
signal is shown in Fig. 4. We can observe that the ten-

dency, i.e., that the noise detector focuses on the areas
over the whole frequency and others focus on the high
frequency region, is the same as the pathological voice.
Interestingly, it can be seen that the distortion detec-
tor mainly focuses on the high frequency regions of the
voiced frames (high power area) in the log-mel spec-
trogram. That is why, it is supposed that the nonlinear
distortion appears remarkable when the original voice
becomes loud.

To investigate further the importance of high fre-
quency regions in degradation identification, we evalu-
ated the performance of the proposed method using
the log-mel spectrogram of different cutoff frequen-
cies. The log-mel spectrogram is typically derived by
applying triangular filters aligned at even intervals in
mel-scale to the normalized STFT power. The linear
frequency f in Hz can be converted to the mel-scale
frequency m using the following equation [37]:

m = Φ(f) = 1000

ln(1 + 1000/700) ln(1 + f

700
) . (7)

We define the low and high cutoff frequencies for
the mel-scale filters as mlow = Φ(flow) and mhigh =
Φ(fhigh), respectively. The performance of each detec-
tor for pathological voice and normal running speech
when changing the value of cutoff frequencies is re-
ported in Tables 4 and 5, respectively. In these tables,
the frequencies are shown in linear Hz-scale that can
be converted to the mel-scale using the equation (7). It
should be remarked that, in the sense of the equation
(7), the amount of mel frequencies included in the fre-
quency bands less than 300 Hz, 700 Hz, and 2.5 kHz is
equivalent to those of included in the frequency bands
of more than 15 kHz, 11 kHz, and 4.3 kHz, respectively.
Despite of this fact, the performance of the reverbera-
tion detectors become significantly worse by decreasing
the fhigh to 11 kHz. However, increasing the flow has
only a limited impact on the performance of the rever-
beration detector. In contrast, the performance of the
noise detector become slightly better by decreasing the
fhigh, probably due to the increase in the resolution of
lower frequency regions. Meanwhile, the performance
of distortion detectors stay pretty much the same even
by changing the higher and lower cutoff frequencies.
These results are well in consistent with the visual ex-
planations in the previous experiments, and indicate
that typical 8 kHz of sampling rate derived from tele-
phone systems, is insufficient to identify the reverber-
ation. We infer that a high frequency sound tends to
be easily attenuated by a wall or other impediment
objects in a room, and as a result, a damping appears
in the high frequency region.
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Table 4 The impact of changing the lower and higher cutoff frequencies of the log-mel spectrogram on the performance of each
detector for pathological voice signals. The results are in the form mean AUC ± 95% confidence interval.

Detectors
flow [Hz] fhigh [kHz]

0 300 700 2500 4.3 11 15 Nyquist

Noise 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Distortion 0.99±0.00 0.98±0.01 0.98±0.01 0.98±0.01 0.97±0.01 0.98±0.01 0.97±0.01 0.99±0.00
Reverberation 0.93±0.01 0.93±0.01 0.91±0.01 0.86±0.02 0.83±0.02 0.88±0.01 0.92±0.01 0.93±0.01

Table 5 The impact of changing the lower and higher cutoff frequencies of the log-mel spectrogram on the performance of each
detector for normal running speech signals. The results are in the form mean AUC ± 95% confidence interval.

Detectors
flow [Hz] fhigh [kHz]

0 300 700 2500 4.3 11 15 Nyquist

Noise 0.95±0.01 0.92±0.01 0.94±0.00 0.91±0.01 0.99±0.00 1.00±0.00 0.99±0.00 0.95±0.01
Distortion 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.01 1.00±0.00 0.99±0.00 1.00±0.00
Reverberation 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.90±0.01 0.90±0.01 0.97±0.01 0.99±0.00

5 Conclusion
In this paper, we have proposed a new CNN-based ap-
proach for identifying degradation in speech signals.
In this method, a set of CNN models, each responsi-
ble for detecting a particular type of degradation, has
been used. The advantage of this method over the mul-
ticlass degradation detection methods is that parallel
and independent detectors facilitate both detecting the
presence of a combination of degradations in a speech
signal, and rejecting an outlier of a new type of degra-
dation for which the models have not been trained.
The CNNs were trained with the log-mel spectrogram
of a large number of degraded speech signals. The ex-
perimental results using two different speech types,
namely pathological sustained vowel sound and normal
running speech show the effectiveness of the proposed
approach in detecting degradations in signals which
outperforms the state-of-the-art system. Furthermore,
using the score-CAM technique, we visually explained
how the CNN models make a specific decision in identi-
fying degradation in signals. It also revealed that high
frequency regions in log-mel spectrogram carry im-
portant information for identifying reverberation. It
makes the identification of reverberation challenging
when applying to telephone quality signals of 8 kHz
sampling frequency.
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