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Abstract. Health experts and government authorities’ actions to com-
bat the coronavirus outbreak are strongly compromised by the misinfor-
mation infodemic that evolved in parallel to the COVID-19 pandemic.
When people get misled by unscientific and unsubstantiated claims re-
garding the origin or cures for COVID-19, public health response efforts
get undermined and people might be less likely to comply with official
guidance and thus spread the virus or even harm themselves. To prevent
this from happening, a first step is to reveal the prevalence of misin-
formation ideas in the public. In this study, we use search log analysis
to investigate the extent and characteristics of misinformation seeking
behaviour in the US using the Bing Search Data-set for Coronavirus
Intent. We train a machine learning model to distinguish between regu-
lar and misinformation queries and find that only around 1% of queries
are related to misinformation myths or conspiracy theories. The query
term qanon — connecting the conspiracy theory to many different ori-
gin myths of COVID-19 — is the most frequent and steadily increasing
misinformation-related query in the data-set.

Keywords: COVID-19 · coronavirus · infodemic · misinformation · Bing
· search log analysis

1 Introduction

On March 11, 2020, the World Health Organisation (WHO) declared the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes
the coronavirus disease COVID-19, a global pandemic [26]. For several months
now, health experts and authorities around the globe try to fight the pandemic
through developing vaccines, finding novel treatments and communicating what
they have learned about the virus to inform people on how to best prevent in-
fection and contain the spread of the virus. However, their work is seriously
jeopardized by the infodemic that accompanies the pandemic [28]. An infodemic



is defined as "an overabundance of information —– some accurate and some not
—– that occurs during an epidemic" [25]. Most problematic about an infodemic
is the vast amount of inaccurate, false and misinformation that gets propagated.
The spread of misinformation is a serious concern in fighting a pandemic because
when people get misled by unscientific and unsubstantiated claims regarding the
origin or cures for COVID-19, public health response efforts get undermined and
people might be less likely to comply with official guidance and thus spread the
virus or even harm themselves by following false claims e.g. injecting disinfectant
in seek for protection 1.

In the US, for example, many Republican officials including President Donald
Trump, downplayed the severity of the crisis, which lead to less social distancing
and more COVID-19 infections in Republican-leaning states [5]. Moreover, a re-
cent study found Donald Trump to be “likely the largest driver of the COVID-19
misinformation infodemic” in English-language news media [12]. Motivated by
these observations, we were wondering how widespread the interest in misinfor-
mation topics among US citizens is. Thus, in this study, we use search queries as
a proxy for public interest and analyse Bing’s search logs with COVID-19 intent
made publicly available by Microsoft [20] to reveal the extent and characteristics
of COVID-19 misinformation-related searching behaviour in the US. We train
a classifier to determine whether a query is related to misinformation or not.
For training the machine learning model we create a list of COVID-19 misin-
formation themes and associated keywords based on multiple sources [16,17,12].
We find that only around 1% of the search volume in the data-set is related to
misinformation seeking behaviour. While we observe queries related to possible
cures (e.g. hydroxychloroquine coronavirus or does vinegar kill coronavirus), the
most frequent misinformation query is associated with the QAnon conspiracy
theory propagating various origin myths of the virus.

2 Related Work

Mining query logs for studying public interest in health topics has a long tradition
in health information behavior research [8,11,1]. Our study is mostly situated
in the context of supply-based infodemiology which assesses the quality of online
health (mis-)information [13], tries to predict epidemic outbreaks from search
log data [15] and investigates the public’s reaction to epidemics [7].

Although COVID-19 is only several month old, many studies already dis-
cuss or empirically study the infodemic following it [3,21,17,19,24,28]. Rovetta
et al. studied web search behavior and infodemic attitudes in Italy using Google
trends [24]. They find that misinformation (e.g. 5G coronavirus) was widely
circulated in the Campania region and racism-related information (e.g. chinese
virus) in Umbria and Basilicata. Islam et al. classify COVID-19 misinformation
into rumours, stigma, and conspiracy theories and study the volume of misinfor-
mation using social media data [17]. Their main finding is that misinformation
1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-
public/myth-busters#bleach



Country # Queries % Queries

United States 1751769 45.73
United Kingdom 805201 21.02
France 197275 5.15
Italy 172992 4.52
Germany 166362 4.34

Canada 144528 3.77
Japan 78967 2.06
Spain 73105 1.91
Australia 71794 1.87
India 49231 1.29

Table 1: Count and share of queries per top ten countries in the data-set.

is most prominent in USA and India and that misinformation has the potential
to decrease community trust in governments and international health agencies.
Makhortykh, Urman, and Ulloa perform an analysis of search engine results for
“coronavirus” in English, Russian, and Mandarin highlighting the significant dif-
ferences in the types of resources provided to users across search engines and
languages [19].

3 Data-set & Experiments

The Bing Search Data-set for Coronavirus Intent is a curated set of Bing search
logs published by Microsoft with new updates released on Github every month
[20]. The data-set contains queries issued by desktop users with intent related
to the coronavirus or COVID-19. In some cases, this intent is explicit in the
query itself e.g., Coronavirus map, in other cases it is implicit, e.g., toilet paper.
The implicit intent is predicted by a method known as random walks on the
click graph [10]. Instead of raw query frequencies, the popularity of a query is
represented in a normalized popularity score ranging from 1 - 100.

The version of the data-set we use in our study covers the time period from
January 1st to August 31st 2020 and contains 3,830,284 queries coming from all
over the world. Table 1 lists the ten countries with the largest volume in the
data-set and shows that queries issued in the US account for almost half of all
queries (45.73%) while other countries are only poorly represented. The top five
most frequent queries can be seen in Figure 3.

3.1 Building a Classification Model

To identify misinformation queries in the data-set we trained a classifier to dis-
tinguish between regular and misinformation-related queries. The model was
trained in a three-step approach: (1) Simply selecting a random sample of queries



(a) (b)

Fig. 1: ROC-AUC (a) visualiszation and (b) values for the final models.

for manual coding to create a ground truth data-set for training was deemed un-
feasible as initial analysis showed that misinformation queries are simply not
frequent enough to create a balanced training data-set. Thus we created a list of
misinformation themes and associated keywords relating to conspiracy theories
and myths around COVID-19. To create this list we consulted different sources
e.g. The WHOMythbusters resource2, the COVID19MisInfo.org3 portal [16] and
similar lists created by Islam et al. [17] and Evanega et al. [12]. (2) We used this
list to create keyword-based regular expressions that helped with randomly se-
lecting 1000 queries and building the positive class. We supplemented this 1000
queries with another random sample of 1000 queries representing regular queries
i.e. the negative class. The 2000 queries were manually coded by two researchers
on whether a query is with regular or misinformation intent. A total of 52 obser-
vations were found to be coded differently (Cohen’s Kappa κ = 0.946). The data
was split into a training and test set at an 80/20 ratio. (3) The supervised learn-
ing part started with feature engineering. We created idf feature vectors based
on unigrams and bigrams. We experimented with selecting different numbers of
most frequent tokens (20-200). We compared four algorithms: Logistic regression
(glmnet,[14]), random forest (ranger,[27]), tree boosting (XGBoost,[9]) and sup-
port vector machines (SVM). Hyperparameters were tuned when possible. All
machine learning was performed using 10-fold cross-validation with splits set to
be stratified according to the original partition. As we were mainly interested
in the extent of misinformation related searching behaviour we optimized the
model for sensitivity (recall).

Figure 1a and Figure 1b show the results of the final and tuned models
using ROC-AUC. The performance was excellent across all models excluding
XGBoost, which had a very low sensitivity score of 45%. Glm, random forest,
and SVM all had sensitivity scores above 90% and ROC-AUC scores above 96%.

2 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-
public/myth-busters

3 https://covid19misinfo.org/



Fig. 2: Share of regular and misinformation queries per month.

Given the very similar performance between the models, the logistic regression
model (glm) was selected as it is the simpler model with lower computational
requirements [2].

4 Results

Applying the final model to the whole data-set revealed only around 1% (0.98%;
17.288) of all queries being classified as misinformation-related searches. This is
quite low considering the fact that recent research found "over 1.1 million news
articles [...] that disseminated, amplified or reported misinformation related to
the pandemic" [12, p.3]. Considering this high number of news reports containing
misinformation one might expect to see more search volume dedicated to it.

4.1 National-Level Analysis

Figure 2 gives an overview of the number of regular and misinformation queries
from January to August. One can see that the search volume is highest in March
(430,810) and April (380,091), when in most countries the first wave of infec-
tions was hitting. Moreover, it shows that the share of misinformation-related
queries is highest in January (4.8%) and balances out to be around 1% in the
following month. Table 2 also lists the number and share of unique regular and
misinformation queries in this time period. While the share of unique regular
queries varies between 3.1% and 6.6%, the share of unique misinformation-related
queries ranges only from 1.3% to 5.5%. In total, we observed only 378 unique
misinformation queries. This, suggests that misinformation searching behaviour
is focused on a smaller set of themes or topics. Regular queries are also more pop-
ular with an average popularity score of 4.85 (misinformation queries popularity
score avg = 2.62).

Figure 3 visualizes the ten most frequent regular and misinformation-related
queries side-by-side and reveals qanon to be the most frequent misinformation
search term, occurring 4685 times within the data-set period. Qanon queries are
labelled as implicit intent, meaning their relation to the coronavirus pandemic



Fig. 3: Most frequent regular and misinformation queries.

is based on the users clickstream-interaction. The QAnon conspiracy theory is
originally revolving around US President Donald Trump fighting a satanic cult of
elite-paedophiles forming a secret government (deep state). However, supporters
of QAnon started to also spread misinformation regarding the COVID-19 pan-
demic e.g. the pandemic being a population control scheme [17] or the technology
standard 5G causing the infection [3].

The query herd immunity refers to the idea of a "large uncontrolled outbreak
in the low-risk population while protecting the vulnerable. Proponents suggest
this would lead to the development of infection-acquired population immunity in
the low-risk population" [4]. However, most scientists and healthcare profession-
als consider this strategy to be a "dangerous fallacy unsupported by scientific
evidence" [4] that would cause many deaths and suffering, "but not speeding up
society’s return to normal" [6]. Other queries relate to myths around cures (hy-
droxychloroquine coronavirus, malaria drug coronavirus, does vinegar kill coron-
avirus) or the origin of the virus (bat soup). The misspelled query carona virus
is a false positive.

Finally, we looked at the development of the five most frequent misinforma-
tion queries (seen in Figure 3) over time. Figure 4 visualizes their development
and shows that neither of them was present in January. In February, we begin to
see the first occurrences. It is interesting to note, that the query hydroxychloro-
quine coronavirus sparked in April, after President Donald Trump mentioned
the antimalarial drug as a treatment for COVID-19 at a press briefing on March
19 [22]. Moreover, we can see the myth around Bill Gates’ involvement in the
spread of the virus loses popularity. From June onward no instances of the query
bill gates coronavirus can be seen. Most striking is the development of qanon
which increases steadily and peaks in August. The increase is also reflected in
qanon’s popularity score which surged from 1 in January, February and March



Fig. 4: Time series analysis of the top five misinformation queries.

to 60 in August. As the conspiracy theory related movement is gaining more
and more popularity in the US, their views on the coronavirus outbreak attracts
more and more attention.

4.2 Per-state-Level Analysis

US states showed vast differences in how they were affected by the spread of
COVID-19. While some government officials downplayed the virus, others en-
forced interventions for stopping the spread like mandates to wear face mask and
practice social distancing [23]. This motivated us to also investigate per-state-
level differences regarding the extent of how much people engage in misinformation-
related searching behaviour. Figure 5a visualizes the number of regular queries
in relation to the number of misinformation queries. One can observe that the
US states with the highest population (California, Texas and Florida) also do
have the most search volume. Moreover, the regression line that was produced by
a linear model is diagonal with almost all states aligning perfectly along with it.
This suggests that no state had remarkably more or less misinformation-related
searches.

Studies found political orientation and partisanship to be strongly associated
with the spread of the coronavirus as people in pro-Trump states have tended
to practice fewer social distancing behaviors and displayed less concern over
COVID-19, resulting in more infections [5,18]. Thus we investigated whether
the political orientation of a state would lead to more misinformation searching
behaviour. Figure 5b shows a map of the US. States are colored by being either
Republican-leaning or Democratic-leaning based on the 2016 election outcome.
The color saturation of a state represents the likelihood of a misinformation query
being observed (log-odds). The more saturated a state appears the more likely it
is that their residents engage in misinformation searching behaviour. Figure 5b
reveals that the likelihood of observing a misinformation related query is highest
in the three Republican-leaning states Wyoming (-3.97), Missouri (-4.45) and
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Fig. 5: (a) Relation between the number of regular and misinformation queries
(counts) and (b) visualisation of political orientation (election result 2016) and
likelihood of misinformation-related queries (log-odds) per state.

Texas (-4.45). However, the Democratic-leaning state New York follows closely
with logodds = −4.47. Among the top ten states, five are Republican-leaning
and five are democratic-leaning. Thus, in general, we don’t observe a tendency or
evidence for political affiliation explaining the volume of misinformation searches.

5 Discussion and Conclusion

This study performed a search log analysis of the Bing search data-set for Coro-
navirus intent using a supervised machine learning model to classify queries into
regular and misinformation-related queries with the aim to reveal the extent and
characteristics of misinformation searching behaviour in the US.

The overall extent of misinformation, was observed to be approximately 1%.
Given the huge volume of media articles covering the COVID-19 infodemic [12]
the interest in misinformation themes appears to be rather low. Of course it
is questionable whether the data is representative enough as search queries are
pre-selected by Microsoft and the market share of Bing only lies at 2.83%4. We
identified the level of misinformation being highest in January (4.8%), but several
top misinformation queries of this month included misspellings of coronavirus
which can be considered false positives. These need to be revisited in future
analysis.

The most frequent query by far was qanon. Other queries are related to myths
about the origin (bat soup) and treatment (hydroxychloroquine coronavirus) of
the coronavirus, some are related to popular conspiracy theories (bill gates coro-
navirus), and few queries could be interpreted as assigning blame or stigma to-
wards Asian groups (wuhan virus). An analysis of whether political orientation
(section 4.2) has an effect on the extent of misinformation queries did not reveal
4 https://gs.statcounter.com/search-engine-market-share



any evidence for this claim. However, the Republican-leaning state Wyoming was
identified as the state with the highest likelihood for misinformation queries.

The study showed, that conspiracy theories and myths that prompt misinfor-
mation searching behaviour are bursty in nature often changing rapidly. While
some myths — like the malaria drug hydroxychloroquine being an effective cure
— rose and disappeared during the data-set period, qanon rose steadily.
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