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Abstract. Computing path queries such as the shortest path in public
transport networks is challenging because the path costs between nodes
change over time. A reachability query from a node at a given start
time on such a network retrieves all points of interest (POIs) that are
reachable within a given cost budget. Reachability queries are essential
building blocks in many applications, for example, group recommenda-
tions, ranking spatial queries, or geomarketing. We propose an efficient
solution for reachability queries in public transport networks. Currently,
there are two options to solve reachability queries. (1) Execute a mod-
ified version of Dijkstra’s algorithm that supports time-dependent edge
traversal costs; this solution is slow since it must expand edge by edge
and does not use an index. (2) Issue a separate path query for each sin-
gle POI, i.e., a single reachability query requires answering many path
queries. None of these solutions scales to large networks with many POIs.
We propose a novel and lightweight reachability index. The key idea is to
partition the network into cells. Then, in contrast to other approaches,
we expand the network cell by cell. Empirical evaluations on synthetic
and real-world networks confirm the efficiency and the effectiveness of
our index-based reachability query solution.

Keywords: Reachability queries · Public transport networks ·
Temporal graphs · Spatial network databases

1 Introduction

We study the problem of scalable and efficient reachability querying in public
transport networks. A reachability query retrieves all points of interest (POIs)
reachable from a given query node at a specific start time within a given time
budget. The start time is required since the reachability result changes over
time. Interesting applications of reachability queries include group recommen-
dations, ranking spatial queries, urban planning, and geomarketing. We present
two examples.
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Consider a platform that recommends events to a group of people such that
the group members like to attend the event together [2,14]. Group members are
query nodes and events are POIs. When the group is given, the events must be
evaluated by various criteria to optimize the benefit to the group. One important
aspect is the location of the event relative to the group members. The start time
and the travel time budget to reach an event may differ for each member. Events
too far away are unlikely to be successful. A single recommendation comprises
multiple reachability queries, one for each group member.

Another example is a real estate website that ranks properties (query nodes)
according to user preferences. The users may customize reachability criteria for
different POIs (e.g., school, working place, train station). Thereby, the time
budget for individual types of POIs may vary: a user may be willing to commute
to work for an hour, while a school must be nearby. Ranking the results of a
single user query requires the computation of multiple reachability queries: one
for each property and parameter setting.

To support such applications, reachability queries must be computed effi-
ciently. Achieving this goal in public transport networks is tricky since the short-
est path between two nodes depends on the start time, and the time to traverse
a path may vary greatly across time. In a public transport network, stations are
nodes, and connections between stations are edges between nodes. An edge can
only be traversed at specific points in time as given by a schedule. Therefore,
computing an index for public transport networks is more complex than for net-
works with constant edge-traversal costs or networks in which an edge can be
traversed at any time (like pedestrian networks or road networks).

Example 1. Consider, the public transport network in Fig. 1a. The nodes v1, v2,
. . . , v12 represent stations, and the directed edges represent connections between
the stations. Each connection has a pair (td, ta) of departure and arrival times.
For example, there is a connection leaving v4 at time 10 and arriving at v3 at
time 11. The traversal cost between nodes is expressed in terms of time units.
The cost of traversing the edge (v4, v3) at time 9 is 2, since we have a waiting
time in addition to the edge traversal time. The shortest path from v10 to v11 at
start time ts = 9 has cost 2 (edge (v10, v11)), while at ts = 10, the cost of the
shortest path is 3 (edges (v10, v12), (v12, v11)). At start time ts = 9, the nodes
{v8, v9, v11} are reachable from v10 with budget Δt = 2; at ts = 10 with the same
budget, we can reach the nodes {v9, v12}.

The state of the art in answering reachability queries in public transport net-
works includes two approaches. The first is based on a temporal version of Dijk-
stra’s algorithm [10] that expands in the network until the budget is exhausted.
Algorithms following this approach compute a so-called isochrone (the reach-
able region) and intersect it with the set of POIs [6,12]. Since all edges in the
isochrone must be expanded, these algorithms do not scale to large networks.
The second approach translates a single reachability query into a set of path
queries (e.g., shortest path or earliest-arrival path [18,20,21]), one for each POI.
Path queries require heavy index structures and do not scale to large numbers
of POIs.



36 B. Tesfaye et al.

v1

v2 v3

v4 v5

v6

v7

v8

v9

v10

v11 v12

(8,9)

(11,12)

(1
0,

11
)

(9, 10)

(8,9)

(9,12)

(14,17) (12,13)

(9,10)
(1

0,
11

)

)9,8( )2
1,

11
(

(9,10)

(9,10)

(9,10)

(9
,1
2)

(11,14)

(10,11)
(11,12)

(8,11)

(9
,1
1)

(1
0,
12
)

(1
0,
12
)

(11,12)

(12, 13)

(1
0,
11

)(12,13))5
1,

41
(

(11,13)

(11,13)

(9,11)

(10,12)
(11,13)

(12,14)

(a) A public transport network.
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(b) Temporal graph G of the network in (a).
G is partitioned into cells C1, C2.
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Fig. 1. Temporal graph of public transport network and reachability index.

We propose an index-based technique for reachability queries in public trans-
port networks. Instead of expanding edge by edge, in a precomputation step, we
partition the network into cells and construct a novel reachability index. At query
time, the index is used to expand cell by cell. Each cell covers a region of the
network and all POIs in that region. The precomputation effort for a specific cell
is independent of the other cells such that the index scales to large networks. The
index is small, even smaller than the original graph for some inputs. To the best
of our knowledge, this is the first work that proposes an index for reachability
queries in public transport networks.

The rest of the paper is structured as follows. In Sect. 2, we define the prob-
lem, and we give an overview of our solution in Sect. 3. We introduce our reach-
ability index in Sect. 4 and discuss query processing using the index in Sect. 5.
In Sect. 6, we review related work. In Sect. 7 we investigate experimentally the
performance of our solution. We conclude in Sect. 8.

2 Preliminaries and Problem Definition

In a public transport network, stations are nodes and connections are edges. A
connection has a departure time td and an arrival time ta. We assume periodic
schedules as is typically the case in public transport networks, e.g., schedules
repeat daily or weekly.

A temporal graph G = (V,E, c) is a directed graph with vertices V , edges
E ⊆ V × V , and a time-dependent cost function c(e, t), c : E × R → R≥0
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that captures the cost of traversing edge e starting at time t. We represent
public transport networks as temporal graphs with a specific cost function,
which we derive from the schedule. Each station is a node in the graph, and
there is an edge from node u to node v iff there is a direct connection (i.e.,
there are no intermediate stops) from the station of u to the station of v. The
cost function is periodic with period Π, i.e., c(e, t) = c(e, t + Π) and piecewise
linear; all linear pieces have slope k = −1; the cost function is not continu-
ous; all discontinuities are at departure times of some connections. For a single
connection si = (td, ta) on an edge e, the cost in the period (td − Π, td] is
ci(e, t) = ta − t; if there are multiple connections S = {s1, s2, . . . , si} for edge e,
the cost of e at time t is the minimum of all costs of the individual connections
at time t, c(e, t) = min{ci(e, t) | ci is the cost function of connection si}. Our
cost function is consistent, i.e., for any edge e ∈ E and all start times t1 ≤ t2:
t1 + c(e, t1) ≤ t2 + c(e, t2). Intuitively, in a consistent cost function, it never pays
off to wait. Consistency is required for the use with Dijkstra’s shortest-path
algorithm [17].

Example 2. Consider the edge e7 in Fig. 1b with connections s1 = (10, 11) and
s2 = (11, 12). Then, for Π = 12, the cost function of s1 is c1(e7, t) = 11 − t,
t ∈ (−2, 10] and for s2 is c2(e7, t) = 12−t, t ∈ (−1, 11]. The overall cost function
c(e7, t) is the minimum of c1(e7, t) and c2(e7, t).

A path p from u to v in a temporal graph G = (V,E, c) is a sequence of edges
p = 〈e1, e2, . . . , en〉 such that ei ∈ E, ei = (wi−1, wi), w0 = u, and wn = v;
P (u, v) is the set of all paths from node u to node v. The cost of a path is the
fastest time to traverse the path at a given start time. Due to the consistency
property of our cost function, the path cost is the sum of all edge costs. The
cost of path p = 〈e1, e2, . . . , en〉 at time t, is the cost sum of all edges in p:
c(p, t) =

∑
1≤i≤n c(ei, ti), where t1 = t and ti = ti−1 + c(ei−1, ti−1) for i > 1.

The shortest-path cost from node u to node v at time t is the minimum cost of
any path from u to v, sp(u, v, t) = min{c(p, t) | p ∈ P (u, v)}. A path with the
minimum cost is called the shortest path. A node v is reachable from a node u
at time t within budget Δt iff there is a path p ∈ P (u, v) such that the cost
of p at time t is no larger than Δt, i.e., c(p, t) ≤ Δt. The reachability query,
RQ(u, t,Δt) = {v ∈ V | ∃p ∈ P (u, v), c(p, t) ≤ Δt, v ∈ POI}, in a temporal
graph G = (V,E, c) with points of interst POI ⊆ V , returns all points of interest
reachable from node u at time t within budget Δt.

Problem Definition. The goal of this work is to develop an efficient index-based
solution for reachability queries that scales to large temporal graphs.

3 Solution Overview

We propose a novel index structure, the reachability index, to answer reachability
queries. We introduce a bulk loading technique for our index, provide access



38 B. Tesfaye et al.

methods for answering reachability queries, and discuss the incremental insertion
and deletion of POIs in the index.

The reachability index is built in a precomputation step. To construct the
index, we partition the temporal graph into disjoint cells. Any such partitioning
yields correct results. The choice of cells, however, affects the effectiveness of the
index. We define requirements for a good partitioning and propose a suitable
partitioning technique.

The index is a temporal graph that contains only those nodes of the original
graph that are POIs or directly connect different cells, called border nodes. Each
POI belongs to a cell. POIs can be inserted into and deleted from the index at
any time; the update cost is low and depends on a single cell. The index consists
of the original edges between border nodes of neighboring cells and new edges
between the border nodes within a cell. Further, an edge between each POI and
the border nodes in its cell is introduced. The edge costs are the costs of shortest
paths between the respective nodes in the original graph.

A high number of border nodes per cell increases the index size. Each POI
adds as many edges to the index as there are border nodes in its cell.

A search query traverses the index cell by cell. The border nodes are used to
cross cells and to reach neighboring cells. For each border node, we verify if any
of the POIs in that cell is reachable.

4 The Reachability Index

The reachability index R is a temporal graph that is constructed from the original
graph G as follows:

1. Graph partitioning. The nodes of graph G are split into disjoint cells. At query
time, instead of expanding edge by edge in G, we expand cell by cell in the
index.

2. Constructing the index core. Based on the graph partitioning, we insert nodes
and edges into the initially empty index. This index core never changes.

3. Computing the index cost function. The edge cost is computed as a shortest-
path cost for each departure time from a source node to a destination node.

4. Inserting POIs. Inserting a POI into a cell adds a new node and an edge to
each border node of the cell. POIs that are not border nodes can be inserted
and deleted dynamically without modifying the rest of the index.

We detail each step of the index construction next. Additionally, we discuss
the factors that affect the size of the reachability index and present a compaction
technique to reduce the number of connections.

4.1 Graph Partitioning

We partition the nodes of a temporal graph G = (V,E, c) into a set of disjoint
cells C = {C1, C2, . . . , Cn}, such that each node of G belongs to exactly one
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cell Ci, i.e., Ci ∩ Cj = ∅ for any pair of cells with i �= j, and
⋃

1≤i≤n Ci = V .
Each disconnected component of the graph should be partitioned into at least
two cells. Within each cell Ci, we distinguish border nodes Bi. A node v ∈ Ci

is a border node if it has an edge to or from another cell, i.e., there is a node
w ∈ V,w /∈ Ci, and an edge (v, w) ∈ E or an edge (w, v) ∈ E. For example, the
temporal graph G in Fig. 1b of our example public transport network (Fig. 1a)
can be partitioned into two cells (dashed boxes): C1 with border nodes v5 and
v7, and C2 with border nodes v8 and v9.

The cells define the structure of the reachability index. The index will be
expanded cell by cell to answer reachability queries. A good partitioning should
satisfy the following properties:

1. Well connected inside. A cell comprises highly-linked nodes with many edges
and connections inside the cell.

2. Loosely connected outside. The number of border nodes per cell is small.
3. Large distance between cells. Crossing cell borders is expensive: the number

of connections between cells is small and their cost is high.

Finding a good partitioning that satisfies our requirements is not straight-
forward. In our scenario, the number of partitions or their sizes is not known
up front, which renders many partitioning techniques inapplicable. We propose
to use the Louvain method for community detection [7], which produces good
partitions in our experiments. This technique efficiently finds communities in a
network. It partitions the graph into communities of strongly connected nodes;
nodes from different communities are loosely connected. The quality of the par-
titions is the so-called modularity that measures the density of links inside a
community as compared to links between communities. Louvain iteratively finds
good communities by increasing the modularity value. It starts with each node
being in a different community and improves by moving nodes between com-
munities. It supports a custom weight function for the links between nodes. We
chose the number of connections between nodes for the weight function, i.e.,
how many times, according to the schedule, one can cross a direct edge between
two nodes. Such a weight results in cells that are well connected inside and are
loosely connected to other cells.

Exploring alternative weight functions and partitioning techniques is cer-
tainly a worthwhile effort. A possible weight refinement uses edge costs and
assigns higher weights to edges with lower traversal cost. Interesting alternative
graph partitionings include METIS [16] and the Merging-Algorithm [11].

4.2 Constructing the Index Core

Given a temporal graph G = (V,E, c) and a partitioning C of G, we construct
the core of our reachability index. The index core is independent of POIs and
never changes. The reachability index is a temporal graph R = (VR, ER, cR) with
nodes VR ⊂ V , edges ER ⊆ VR × VR, and cost function cR(e, t) on the edges
e ∈ ER. For an edge e = (u, v) ∈ ER, cR returns the shortest-path cost from u
to v at time t, i.e., cR(e, t) = sp(u, v, t).
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Index Nodes. For each cell Ci ∈ C, we insert all its border nodes Bi into the node
set VR of the index. Thus, the nodes of the index VR =

⋃
1≤i≤|C| Bi. Figure 1c

shows the index core of the temporal graph (Fig. 1b) with cells C1 = {v5, v7}
and C2 = {v8, v9}.

Index Edges. The edges of the index core are ER = BB ∪ BC . BB is all edges
between border nodes of neighboring cells. For each edge (u, v) ∈ E between
two border nodes of different cells in C, u ∈ Ci, v ∈ Cj , i �= j, insert a new
edge between the respective nodes into the index, ER = ER ∪ {(u, v)}. BC is
edges between pairs of border nodes within a cell. For each pair u, v ∈ Bi, insert
two new edges (u, v) and (v, u) into the index, ER = ER ∪ {(u, v), (v, u)}. For
example, BB = {α3, α4, α7} and BC = {α1, α2, α5, α6} in Fig. 1c.

4.3 Computing the Index Cost Function

The cost function cR of an edge e = (u, v) ∈ ER in index R is defined as the
shortest-path cost from u to v at time t in graph G, i.e., cR(e, t) = sp(u, v, t).
For computing the values of the cost function cR, we execute Dijkstra’s single-
source shortest-path algorithm once for every border node b ∈ Bi and every
departure time at b. The expansion stops when all other border nodes in the cell
and all direct neighbors of b (i.e., nodes reachable from b via a BB edge) are
visited. Since the cells are small compared to the overall graph, typically only a
small number of nodes needs to be considered for each execution of Dijkstra’s
algorithm. BC and BP edges may connect nodes that are not reachable in the
original temporal graph. If a node is not reached during one of the shortest-path
computations, we assign infinite cost to the respective edges. Cost examples
for the index core in Fig. 1c are: cR(α3, 14) = 3, cR(α4, 9) = 3, cR(α7, 8) = 3,
cR(α1, 9) = 2, cR(α2, 11) = 3, cR(α5, 9) = 2, cR(α6, 8) = 2.

4.4 Points of Interest

POIs can be inserted and deleted at any time, also after index construction.
This is beneficial because POIs may change over time. A POI v ∈ V may be any
node in the original temporal graph. If v is a border node, no action is required
because such a node is in the index core already. Otherwise, similarly to border
nodes, inserting v into the index involves three steps. (1) We add v to the index
nodes (VR = VR ∪{v}). (2) We add an edge from each border node of v′s cell to
v (we call such edges BP edges). (3) The cost function based on shortest paths
(like for all other edges) is computed. Deleting a POI from the index removes the
POI node and all its incoming edges. For example, consider inserting two POIs,
v2, v10, into the index in Fig. 1d. We add edges BP = {α8, α9, α10, α11} with
cost examples cR(α8, 9) = 3, cR(α9, 8) = 7, cR(α10, 9) = 1, and cR(α11, 11) = 1.
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4.5 Index Size

The index consists of border nodes and POIs. Thus, the number of index nodes
is at most the number of nodes in the temporal graph. We introduce three types
of edges into the index. BB edges connect border nodes between different cells,
and they are a subset of the temporal graph edges. BC edges connect border
nodes in a single cell, and their cardinality is at most quadratic in the number
of border nodes. Each POI adds as many BP edges as border nodes in a cell.
The numbers of BC and BP edges depend only on the subset of temporal graph
nodes that are in a single cell. The numbers do not depend on the graph size. In
sparse graphs, where many nodes have only a few edges, the reachability index
may grow larger than the temporal graph: we can remove only a small number
of original edges but need to insert new BC and BP edges.

Each edge has as many edge cost values as there are departure times from
a node. The edge costs are computed for each single cell in isolation, making
parallel computation possible. In particular, the edge cost of a specific border
node at a specific departure time is independent of all other edge costs.

4.6 Index Compaction

The index size, as well as the size of the temporal graph, is dominated by the
size of the schedule, i.e., the number of edge connections. After computing the
edge costs in the index, we observe that many different departure times have
the same arrival time at the destination. It is enough to keep only one con-
nection per arrival time, namely the one with the maximum departure time.
We leverage that and compact the index by reducing the number of connec-
tions as follows. Consider an edge e(u, v) ∈ ER and set S of departure–arrival
connection pairs (d, a) on that edge. We compact S to S′ ⊆ S, such that
S′ = {(d, a) ∈ S : �(di,ai)∈Sai = a ∧ di > d}. Experiments show that this
compaction technique is highly effective and reduces the index size by up to
73% (cf. Sect. 7). For example, the set of all connections on edge α8 in Fig. 1d,
{(8, 12), (9, 12), (11, 15)}, is compacted into {(9, 12), (11, 15)}.

5 Answering Reachability Queries

The core idea of our reachability algorithm is to expand cell by cell rather than
edge by edge. The BB edges between border nodes of different cells allow us
to expand to the neighboring cells; the BC edges between border nodes of the
same cell reflect the time to cross a cell; the direct BP edges from border nodes
to POIs allow for a quick evaluation of which POIs can be reached. In addition,
we discuss a heuristic to avoid unnecessary edge expansions and processing of
query nodes that are non-border nodes.

The Reachability Algorithm. Algorithm 1, takes as an input the reachability index
R = (VR, ER, cR), query node q, start time ts, and the cost budget Δt. The
expansion proceeds like in Dijkstra’s algorithm and returns the set N of reachable
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Algorithm 1: RQ(R, q, ts,Δt)
1 M : min-heap ordered by time from q; M [q] = 0; M [v] = ∞, v ∈ VR \ {q}
2 N ← {}
3 while M is not empty do
4 pop (v, w) from M // v ∈ VR, w = sp(q, v, ts)
5 if w > Δt then break; // no more reachable nodes
6 O ← outgoing edges from v
7 if v is flagged then O ← {edges BB at v}; // avoid expansions
8 foreach (v, u) ∈ O do
9 w′ ← w + cR((v, u), ts + w) // binary search in list of edge costs

10 if w′ ≤ Δt ∧ w′ < M [u] then
11 M [u] ← w′

12 if u in cell of v then flag v else remove flag from v

13 N ← N ∪ {v}
14 return N

POIs in R. Nodes and their costs from q are stored in a min-heap M initialized
to M [q] = 0, and M [v] = ∞ for all other nodes v (line 1). The closest node v to
q is popped from the min-heap (line 4), and the costs for nodes adjacent to v are
updated if smaller (lines 9–11). To retrieve the correct edge cost, we do a binary
search in the list of edge costs sorted by departure time (line 9). Each node is
traversed only once. The algorithm terminates when no more nodes with cost
lower than the budget are in the heap (line 5). Consider the reachability index
in Fig. 1d. Here, RQ(R, v5, 8, 6) = {v2, v10} because sp(v5, v2, t) = 4 (through
α8) and sp(v5, v10, t) = 5 (through α4 and α10). RQ(R, v5, 6, 6) = {v2} because
sp(v5, v2, t) = 6 (through α8) but sp(v5, v10, t) = 7 (through α4 and α10).

Avoiding Unnecessary Expansions. Regarding the edges within a cell, we observe
the following. Consider Algorithm1 processing a border node b of a cell Ci. Then,
the costs of the other nodes, vj ∈ Ci, are updated w.r.t. the cost of reaching them
from b. When we pop a node vj in a later round, and if vj was last updated by
b, there is no point in following the edges from vj to the other nodes in the cell.
The cost of accessing the other nodes in the cell through vj cannot be smaller
than the cost of accessing these nodes directly from b since all edge costs are
shortest paths. If, however, vj was updated through an edge from a neighboring
cell, the edges to the other nodes in the cell need to be followed. We exploit
this observation to avoid following edges inside a cell that cannot lead to an
update and thus do not affect the solution. We flag the nodes whenever their
cost was updated by processing a node from within a cell, and we remove the
flag, otherwise (line 12). The outgoing edges that must be expanded are selected
based on the flag (line 7).

Note that the number of edges within a cell is quadratic in the number
of border nodes of that cell. Thanks to the use of flags we avoid unnecessary
expansions. In particular, if the cheapest way to reach all nodes in a cell is
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through k border nodes, we only expand k(w − 1) edges per cell, where w is the
number of all border nodes and POIs in a cell. The value of k is expected to be
small and will often be 1 (i.e., the shortest path from a query node q to all nodes
in the cell crosses the border node that is closest to q).

Non-border Query Nodes. The reachability index does not contain all nodes of
the original graph. If the query node q in cell Ci is not a border node, the
algorithm starts the expansion from q in the temporal graph. All POIs reached
in cell Ci are part of the result. Once a border node b′ ∈ Bi is reached, the
expansion continues in the index at time ts + sp(q, b′, ts).

Correctness. We show that the shortest-path costs in the index and the orig-
inal temporal graph are identical. Let u,w ∈ VR be two index nodes and
p = 〈(v0, v1), (v1, v2), . . . , (vn−1, vn)〉 be the corresponding shortest path in the
temporal graph, i.e., u = v0, w = vn. If there is a direct edge between u and w in
the index, the shortest-path cost is the cost of that edge: this cost is precomputed
using Dijkstra’s algorithm for each departure time in the original temporal graph;
since our cost function is consistent (cf. Sect. 2), the edge cost is correct [17].
Otherwise, u and w are not in the same cell (all nodes in a cell are connected with
an edge). So, there must be a path along index nodes u1, u2, . . . uk ⊆ v1, . . . vn−1

that are all on path p since cells can be exited only through border nodes. We
show that the cost of the index path is indeed the shortest path. Assume a node
ui exists such that sp(v0, vn, t) < sp(u, ui, t)+sp(ui, w, t)+sp(u, ui, t). On a path
of length two, the costs of edges (u, u1) and (u1, w) are precomputed shortest-
path costs, and they are therefore correct. The assumption, however, implies
that one of the edge costs could be decreased, i.e., the assumption is incorrect.
This argument can be extended edge by edge to paths of arbitrary length.

6 Related Work

Shortest-path and reachability queries on road networks, i.e., graphs with con-
stant edge cost, have been studied extensively. Unfortunately, these works can-
not be applied readily to public transport networks [3]. An evaluation by Bast
et al. [4] shows a large performance gap between the two types of networks. This
is due to the time-dependent edge costs of public transport networks, which
makes the precomputation efforts of many algorithms infeasible.

Current solutions for public transport networks either rely on Dijkstra’s algo-
rithm [10] or require heavy precomputations. Dijkstra-based approaches include
isochrone algorithms for multimodal networks [6,12]. They expand from a query
point using Dijkstra’s algorithm and compute a so-called isochrone, which is the
reachable portion of the network at a given point in time. Since all edges in the
isochrone must be expanded, this approach does not scale to large networks.

Many works fall into the category of labeling approaches. The earliest work,
2-hop labeling [9], is designed for weighted graphs and is based on 2-hop covers
of shortest paths. Recent works strive to decrease the index size and construction
time [8,15], which are bottlenecks of 2-hop labeling and prevent application to
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large graphs. Time Table Labeling (TTL) [20] and Top Chain [21] adapt 2-hop
labeling to public transport networks; they support shortest-path and point-to-
point reachability queries. In TTL, the main idea is to precompute label sets
for each node v containing reachable nodes from and to v. Top Chain creates
a directed acyclic graph (DAG), where each node represents a departure time,
and decomposes the DAG to create the label sets. Creating label sets in both
techniques requires high precomputation costs and large index sizes. To decrease
the index size, Top Chain only stores K label sets, called chains. The index size
of Top Chain for small K values is smaller than that of TTL, but there is no
guarantee that the query results can be found using the index.

Non-labeling techniques include Scalable Transfer Patterns [5], Connec-
tion Scan Algorithm (CSA) [19], and Contraction Hierarchy for Timetables
(CHT) [13]. Transfer Patterns require an expensive profile search from each
node to find the optimal paths to all other nodes. CSA organizes a schedule as
two sequences of edges. The first sequence contains sorted edges based on arrival
times, and the second sorts edges based on departure times. These approaches
involve expensive precomputations or large index sizes, which limits their scala-
bility.

To compute reachability queries as defined in this paper, all techniques based
on point-to-point queries require the computation of shortest paths from a given
query node to every POI, which does not scale to large number of POIs.

Table 1. Statistics of our datasets

Dataset #Nodes #Edges #Conn #Part #B-nodes Part. size #POIs

sum avg avg min max sum avg

Zurich 2,508 5,630 555,713 45 315 7.0 55 2 157 99 2.20

Berlin 12,984 34,791 1,348,070 50 1,241 24.8 259 2 921 567 11.34

Synthetic 145,188 433,272 31,042,468 44 1,245 28.3 3,299 831 4,037 7,176 163.00

7 Experiments

We experimentally evaluate our solution, RQ , and compare it with two competi-
tors, a no-index solution, NI , and a fully-indexed solution, SP . We report on the
index size and efficiency of the algorithms w.r.t. the number of expanded edges,
which is the work that an algorithm has to do to find reachable nodes. The
algorithms are implemented in Python 3 and executed on a Intel Xeon server
(E5-2630 v3 2.40 GHz, 2 CPUs of 8 cores, 96 GB RAM, Debian 9.12).

Competitors. The no-index solution, NI , operates on the original temporal graph
and does not build an index. The reachability is computed with a modified ver-
sion of Dijkstra’s algorithm that supports our cost function (cf. Sect. 5). The
fully-indexed solution, SP , stores all shortest paths from every node in the tem-
poral graph to all POIs at every departure time. SP represents the collection of
works that index the shortest paths between pairs of nodes (cf. Sect. 6).
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Datasets. We use two real-world public transport networks represented as tem-
poral graphs, Zurich and Berlin [1], and one synthetic graph, Synthetic. Zurich
and Berlin are obtained in GTFS format that is further processed. For these
graphs, we chose all transport modes and all connections operating on Mondays.
Synthetic is a 6 × 6 grid of equally-sized spider-web subgraphs. Each spider-
web subgraph has one edge to every neighboring subgraph (to its left, right,
top, and bottom). This graph simulates loosely connected cities that are densely
connected inside. Table 1 shows the statistics. Here, #Conn is the number of
all connections (departure-arrival pairs) that can be used to cross an edge. We
report the details of partitioning the data graphs using the Louvain method
(with maximum partition sizes): number of partitions, number of border nodes
(sum and average per partition), partition sizes (avg, min, and max). We also
show the number of POIs (sum and average per partition). POIs are chosen
randomly as 5% of the nodes of each partition (at least one per partition).

Index Size. RQ and SP precompute certain shortest paths and build an index
structure that is sufficient to answer reachability queries. If the index of SP
is stored as a graph, its number of nodes equals #Nodes (POIs are nodes of
the graph), its number of edges equals #Nodes × #POIs (shortest paths from
every node to every POI are computed), and the number of connection equals
#Conn × #POIs (a shortest path at every departure time to every POI is
computed); #Nodes, #POIs, and #Conn are of the original temporal graph.
Although NI does not require precomputation, the input graph has to be kept
in memory. In Table 2, we compare the index sizes (RQ , SP) to the input graph
size (NI ). The values that increase the index size are the number of nodes and
edges, and the number of connections. The index size of RQ is always smaller
than that of SP (up to four orders of magnitude). RQ is also significantly smaller
than the original Zurich and Synthetic graphs (NI ). For Berlin, despite it having
significantly fewer nodes, the numbers of edges and connections in RQ are larger
than in the original graph. This is caused by the sparsity of Berlin (cf. Sect. 4.5).
Finally, #Connections is the number of edge connections stored. For RQ , we list

Table 2. Index details

Dataset Algorithm #Nodes #Edges #Connections

Zurich RQ 414 4,021 421,268

SP 2,508 248,292 55,015,587

NI 2,508 5,630 555,713

Berlin RQ 1,808 53,543 2,533,940

SP 12,984 7,361,928 764,355,690

NI 12,984 34,791 1,348,070

Synthetic RQ 8,421 212,564 18,018,811

SP 145,188 1,041,869,088 222,760,750,368

NI 145,188 433,272 31,042,468
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the absolute number of connections after the compaction. The reduction rate of
compaction varies from 67% in Synthetic to 73% in Zurich and Berlin.

Number of Expanded Edges. To evaluate the efficiency, we compare the number
of edges that an algorithm has to process in order to find all reachable POIs
(Fig. 2). One data point in the figure (scatter plot) is a single reachability query.
Data points are sorted along the x-axis by the number of expanded edges. The
number of expanded edges (y-axis) is displayed in log scale. We execute one
reachability query starting at every border node in our index. We do so at five
different start times (8:00, 12:00, 16:00, 18:00, 22:00) and for two time budgets
(60 and 120 min). Thus, the number of data points is 10× #Border nodes. The
budgets are large enough to force RQ to traverse multiple edges. Since the edge
costs of large cells in the RQ index are often above 15 min (and above 30 min in
about half of the cases), budgets near these values provide little insight. Since
SP precomputes the path to each POI, it always evaluates one edge per POI.
This is a lower bound on the cost of any point-to-point index. Although the
index of SP is orders of magnitude larger, RQ expands significantly fewer edges
for many of the data points. We observe the largest differences for the budget
of 120 min. On Synthetic, the number of edges expanded by RQ is up to three
orders of magnitude lower than that of SP , and it is up to one order of magnitude
lower than that of NI . RQ always expands fewer edges than NI . Values equal to
zero indicate that an algorithm cannot expand due to high connection costs. We
also performed similar experiment with an increased percentage of POIs (more
than 5%): the difference in the number of expanded edges between RQ and NI
decreases. This is to be expected since RQ can leverage the sparsity of POIs,
while NI cannot.

Overall, our experiments show that dispite its small size, RQ substantially
reduces the number of edges (by about an order of magnitude in realistic settings)
and therefore speeds up reachability queries in public transport networks.

(a) Zurich (b) Berlin (c) Synthetic

Fig. 2. Number of expanded edges (y-axis in log scale).

8 Conclusion

The paper offers improved support for reachability queries in temporal graphs
that retrieve all reachable points of interest (POIs) from a given query node at a
specific start time within a given time budget. We observe that current solutions
do not scale to large network (solutions based on Dijkstra’s algorithm without
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a pre-computed index) or to networks with many POIs (solutions based on an
index for single-path queries that must be executed for each POI separately).
We propose a solution based on a novel access structure, the reachability index.
This index partitions the original temporal graph into cells, thus enabling us to
expand the graph cell by cell rather than edge by edge. We report on experiments
that suggest that our technique is both effective and efficient.
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