-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by VBN

Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Common-Mode Voltage Analysis and Reduction for the Quasi-Z-Source Inverter with A
Split Inductor

Liu, Wenjie; Yang, Yongheng; Kerekes, Tamas; Liivik, Elizaveta; Vinnikov, Dmitri ; Blaabjerg,
Frede

Published in:
Applied Sciences

Creative Commons License
CCBY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Liu, W., Yang, Y., Kerekes, T., Liivik, E., Vinnikov, D., & Blaabjerg, F. (2020). Common-Mode Voltage Analysis
and Reduction for the Quasi-Z-Source Inverter with A Split Inductor. Applied Sciences, 20(23), 1-13.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbon@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://core.ac.uk/display/365181406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/67031d70-8d0f-42f3-9a9d-5af6f56fa5d4

iriried applied
L sciences

Article
Common-Mode Voltage Analysis and Reduction for
the Quasi-Z-Source Inverter with a Split Inductor

Wenjie Liu 119, Yongheng Yang V*(, Tamas Kerekes (7, Elizaveta Liivik >(, Dmitri Vinnikov 2
and Frede Blaabjerg !

1 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; wie@et.aau.dk (W.L.);

tak@et.aau.dk (T.K.); fbl@et.aau.dk (E.B.)

Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology,
19086 Tallinn, Estonia; elizaveta liivik@taltech.ee (E.L.); dmitri.vinnikov@gmail.com (D.V.)
Correspondence: yoy@et.aau.dk

check for
Received: 5 November 2020; Accepted: 1 December 2020; Published: 4 December 2020 updates

Abstract: In transformerless grid-connected photovoltaic (PV) systems, leakage currents should be
properly addressed. The voltage fluctuations between the neutral point of the grid and the PV array,
i.e.,, common-mode voltage (CMV), will affect the value of the leakage currents. Therefore, the leakage
currents can be attenuated through proper control of the CMV. The CMV depends on the converter
topology and the modulation strategy. For the quasi-Z-source inverter (qZSI), the amplitude of the
high-frequency components in the CMV increases due to the extra shoot-through (ST) state. The CMV
reduction strategies for the conventional voltage source inverter (VSI) should be modified when
applied to the qZSI. In this paper, an input-split-inductor qZSI is introduced to reduce the CMV,
in which all the CMV reduction strategies for the VSI can be used directly with appropriate ST state
insertion. Moreover, the proposed method can be extended to impedance source converters with a
similar structure. Simulations and experimental tests demonstrate the effectiveness of the proposed
strategy for the qZSI in terms of CMV reduction.

Keywords: photovoltaic (PV); quasi-Z-source inverter (qZSI); leakage current reduction (LCR);
common-mode voltage (CMV); input split inductor

1. Introduction

The interest in renewable power generation systems has been increasing with no signs of slowing
down in recent years worldwide. The photovoltaic (PV) arrays are particularly attractive as a renewable
source for distributed generation with the advantages of relatively small size, noiseless operation
and simple installations [1]. Due to the low-voltage and intermittent output characteristics of the
PV arrays, power electronics are essential interfaces to deliver solar energy to the grid or residential
applications with boosting capability. The conventional topologies for PV applications either employ a
high-frequency or a low-frequency transformer for galvanic isolation between the PV arrays and the
grid, which results in higher cost, larger volume and lower efficiency. Recently, the transformerless
alternatives have been receiving more and more attention by addressing the aforementioned issues.
However, the leakage current may appear due to the PV array parasitic capacitance to the ground.
Leakage currents bring many concerns, e.g., electromagnetic interference issues, fault activation of
detector circuits and harmonic currents [2—4]. Therefore, the leakage current should be suppressed
within a certain level according to the standards like the IEC 62109-2 [5].

The fluctuations between the grid and PV array, i.e., common-mode voltage (CMV), will induce
large leakage currents flowing through the parasitic capacitors in a transformerless PV system [6,7].
To tackle the leakage current issue, various topologies and modulation methods have been
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proposed [8-10]. The basic principle of the topology modification is to introduce new paths to isolate
the PV array from the grid, e.g., a highly efficient and reliable inverter concept (HERIC). The CMV
amplitude depends on the choice of the switching vectors in the same topology. Hence, there are
various pulse width modulation (PWM) methods that can reduce the CMYV, such as discontinuous pulse
width modulation (DPWM), active zero state pulse width modulation (AZSPWM), near state pulse
width modulation (NSPWM) and remote state pulse width modulation (RSPWM) [11-13]. While the
conventional PWM methods make the most use of all the vector states, the modified PWM methods can
reduce the CMV with active vector states and partial zero vector states to generate the output. DPWM
adopts all the active vector states and partial zero vectors to eliminate the CMV. RSPWM uses the
active vector states, e.g., odd vectors or even vectors, which lead to the same CMV amplitude. NSPWM
adopts the adjacent active vector states to generate the output that meets the reference requirement.
Furthermore, the CMV can also be alleviated by changing the traditional control schemes [14-19].

In terms of topology, the quasi-Z-source inverter (qZSI) has been considered as an alternative to
the conventional two-stage two-level inverter [20-24]. The qZSI can operate as a single-stage converter
by utilizing the shoot-through (ST) state. Due to its advantages, like a continuous input current and a
common ground point between the input and the DC-link, the qZSI can be an attractive candidate
for renewable applications with a wide input range. A typical three-phase grid-connected qZSI is
presented in Figure 1. As a transformerless inverter, the CMV fluctuations in the gZSI can also lead to
large leakage currents. The high-frequency components in the CMV of the qZSI are much larger than
those in the conventional two-stage transformerless inverter when the ST states were adopted [25].
When the prior-state-of-the-art CMV reduction strategies for the conventional voltage source inverter
(VSI) are applied to the qZSI, the high-frequency components are still large, which results from the
ST state. To address this issue, various strategies have been proposed. In [26], the CMV in the qZSI
with different modulation methods was analysed in detail. A modified PWM method, which only
utilizes odd vectors and the ST vector, was proposed in [27]. However, the maximum modulation
index decreased dramatically. To tackle the limited modulation index, the three-phase four-leg qZSI
was proposed in [28,29] with an extra phase leg. In [30], a recovery diode was adopted in the negative
side of the PV array to cut off the power flow of the CMV when the ZSI is operating in the ST state.
However, the ZSI will be disconnected from the PV array, which results in discontinuous input
conditions. To further take advantage of the qgZSI system, it is essential to deal with the high-frequency
components in the CMV that result from the ST state. Meanwhile, further explorations are needed to
make the CMV reduction strategies for the conventional VSI also available for the qZSI system.
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Figure 1. Schematic of a three-phase grid-connected quasi-Z-source inverter system, where the
quasi-Z-source network (qZSn) consists of two inductors L1, Ly, two capacitors C;, C; and a diode D,
L f is the output filter, v is the grid voltage, Cpy is the parasitic capacitance between the PV array and
the ground and i}, is the leakage current.
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In light of the above, this paper explores the CMV reduction strategies for the qZSI system based
on the methods for the conventional VSI without introducing additional circuits. By splitting the input
inductor into two parts, which maintains the total inductance, the high-frequency components due to
the ST state can be reduced to some extent. With the inductor-splitting method, all the conventional
CMYV reduction strategies for the VSI can be used for the qZSI with appropriate ST state insertion.
More importantly, the proposed split-inductor qZSI shows the same operating features as the original
qZSI. The rest of this paper is organized as follows. The CMV of the qZSI is derived in Section 2, in
which the effect of the ST state on the CMV of the qZSI is discussed. The CMV reduction strategies for
the conventional VSI are presented in Section 3 in detail. The CMV of the proposed input split-inductor
qZSl is explored when the conventional CMV reduction strategies are used in Section 4. Simulations
and experimental tests demonstrate the effectiveness of the proposed strategy for the qZSI in terms of
CMV reduction in Section 5. Finally, concluding remarks are given in Section 6.

2. CMV Analysis in Different Operational States for the qZSI

As shown in Figure 1, the qZSI consists of two identical inductors (L1,L,), two identical capacitors
(C1,(7), a diode (D) and a conventional VSI. There are three different operation states in the qZSI
system: the active state, the null state and the ST state. Figure 2 illustrates the equivalent circuits of
the gZSI in the three states [31,32]. As a transformerless inverter, leakage currents may appear, as
previously mentioned. The leakage current is related to the CMV, which is defined as the average value
of the voltages between the outputs (as #, v, w) and the common reference in a three-phase inverter. In
the qZSI, the negative terminal (marked as N) of the input source vj, is the common reference. Thus,
the CMV for the qZSI is obtained as [33]:

UyN + UpN + UpN

Uemv = 3 (1)

75
1

where ¢y is the CMV and vy (i = u, v, w) is the voltage from point “i” to the negative terminal N.

The space-vector PWM (SVPWM) has eight possible combinations of the switch vectors in the
conventional VSI: six active vectors (Vi, V3, V3, V4, V5, V) and two zero vectors (Vp, V7), as shown in
Figure 3. 6 in Figure 3 is the angle of the output reference V.. In addition to the eight traditional
switching states, the qZSI has seven ST zero states (Vj, V3, V¥, Vi, V3%, VE?, Vi™). The CMV
can be calculated according to the equivalent circuits in Figure 2 as follows with the corresponding
switching states.

2.1. CMV during the Active State

Figure 2a shows the equivalent circuit of the qZSI during the active state. In this state, the diode
is conducting. The input voltage and inductors provide energy to the inverter side and charge the
capacitors simultaneously. Applying (1) in the equivalent circuit in Figure 2a, the CMV in the active
state can be calculated with odd vectors or even vectors as:

odd _ Yc +0c, £0+0 _ g + ¢,

anﬁV 3 3 (2)

in which v%44  is the same value for all odd active vectors (Vi, V3, V). This is because during these

vectors, only one phase is connected to the impedance network through the upper switch and two
phases are connected through the lower switches. The CMV with the even vectors is obtained as:

even _ 2(00 T06,) 0 _ 2(ve, +vcy)

camv 3 3 (3)

even
camyv

two phases are connected to the qZSn through the upper switches, and only one phase is connected
through the lower switch.

where v represents the same value for all even active vectors (V3, Vi, Vg). Similarly, in this case,
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Figure 2. Equivalent circuits of the quasi-Z-source inverter during the (a) active state, (b) null state and
(c) shoot-through state.

2.2. CMV during the Null State

Figure 2b shows the equivalent circuit of the qZSI during the null state. In this state, the diode
is also conducting. The output voltage of the inverter is zero, and the impedance-source network is
disconnected from the inverter with no energy being transferred from the impedance-source network
to the inverter. Meanwhile, the input source and the inductors are still charging the capacitors.
Applying (1) to the equivalent circuit in Figure 2b, the CMV can be calculated as:

04+0+0
Ugmv = 3 =0 4)
3(ve, +vc,)
vaV =—1 2= 'Ucl + UC2 (5)
3
with 99, and v/, being the CMV values for zero vectors V and V7, respectively. During the zero

vector V), all three phases are connected to the qZSn through the lower switches. While this works
with the zero vector V7 state, all three phases are connected to the qZSn through the upper switches.

Figure 3. Switching vectors generated by the qZSI in the vector space.

2.3. CMV during the Shoot-Through State

Figure 2c shows the equivalent circuit of the qZSI during the ST state. In this case, the diode is
reverse-biased and the capacitors transfer energy to the inductors. According to (1) and the equivalent
circuit in Figure 2¢c, the CMV can be obtained as:

04+0+0
iy = 2H0E0 g ©)

where v is the CMV for all the ST vectors. During the ST state, all three phases are connected to the

cmv
common reference.
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During the ST state, the DC-link voltage is zero. However, during the active state and null state,
the DC-link voltage reaches its peak value, which is equal to the sum of the two capacitor voltages in
the gZSn. The relationship between the peak DC-link voltage and the two capacitor voltages can be
described as:

Upc = 0¢, + Vg, ()

Assuming that the peak DC-link voltage and the capacitor voltages are constant during the operation

and D is defined as the ST duty ratio in a switching cycle, in steady-state, the voltages of the two
capacitors can be obtained as:

Ve, = (1-D)Vc ®)

Ve, = DVpc )

The CMV values in different states can be obtained according to (7)—(9). Table 1 shows the

switching vectors and the relevant CMV values. The CMV values in the qZSI are not constant in a

switching cycle with the utilization of different vectors, as shown in Table 1. Thus, the CMV values

vary depending on the modulation methods. The CMYV fluctuation can lead to large leakage currents
when the qZSI is applied to the PV system.

Table 1. CMVs with relevant vectors in the qZSI.

Vectors CMYV Values
V1, V3, V5 (odd vectors) %VDC
V,, V4, Vg (even vectors) %VDC
V7 (zero vector) Vbe
V) (zero vector) 0
Vst (shoot-through vectors) 0

3. CMV Reduction Strategies for the VSI

Although the PV system with isolation between the PV arrays and the grid side can avoid the
leakage current issue, the transformerless PV system is more attractive with higher efficiency and
lower weight considering the installation cost. However, the CMV of the transformerless system
should be limited to decrease the leakage current. The common-mode filter at the output side can
realize CMV reduction, but the system size and cost are further increased. The amplitude of the CMV
is related to the operation states, as shown in Table 1, making the modulation strategies available for
CMYV reduction. By appropriately locating the sequence of the operation states in a switching cycle,
the fluctuation of the CMV in the VSI can be limited. Many modulation strategies for CMV reduction
have been proposed for the conventional VSI, e.g.,, DPWM, AZSPWM, NSPWM and RSPWM, as
shown in Figure 4. The conventional CMV reduction strategies are discussed in the following with
exemplified switching patterns and CMYV in a switching cycle.

The conventional SVPWM uses all the vectors, as shown in Figure 3, while the CMV reduction
strategies for the VSI adopt partial switching vectors to reduce the CMV. Figure 4a shows the
switching signals for Sq, S3 and Ss in the VSI (see Figure 1) and the corresponding CMV values.
In the conventional VSI, the switches in the same leg, e.g., S; and S, in Figure 1, are complementary.
In Sector 1, the DPWM uses two adjacent active states V1, V; and a zero vector Vy, where the zero
vector V( will not be included. The CMV, with the DPWM, varies from % to Vpc, for which the
amplitude is shown in Table 1. All the active vector states, i.e., V1—Vj, are used in the DPWM, which
makes the DC-link voltage utilization identical to the conventional SVPWM method. Figure 4b shows
the switching signals and corresponding CMV values when AZSPWM is used. S3 and Sg are used to
create an output state that is the same as the zero state, while the zero vectors V and V7 are eliminated
to reduce the CMV amplitude. AZSPWM adopts only the active vector states, making the CMV
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amplitude vary between % and ZVTDC. More importantly, the maximum DC-link utilization ratio is
the same as that with DPWM. Referring to Table 1, a constant CMV can be obtained when only odd
or even switching patterns are used, i.e., NSPWM, as shown in Figure 4c. The CMV is % with only
odd vectors, i.e., V1, V3 and V5, and ZV% with only even vectors, i.e., Vy, V4 and V. However, the
maximum DC-link voltage utilization is reduced to 0.67, which is much smaller than that when the
SVPWM is adopted. As shown in Figure 4d, NSPWM adopts three active vector states that are close
to the output reference without using any zero vectors. There are two kinds of switching patterns
with the NSPWM in the same space sector. For example, in Sector 1, the switching vectors are V,
V3, V¢ when the output angular 8 meets 0 < 6 < 71/6, while the switching vectors are Vq, V,, V3
when 71/6 < 0 < 71/3. NSPWM also uses only active vector states to reduce the CMV and maintain
the same maximum DC-link voltage utilization ratio. However, when the ST vector state is inserted,
the conventional CMV reduction strategies for the VSI are no longer available for the qZSI. Thus,
further work should be done to tackle this issue, making the conventional CMV reduction methods
appropriate for the qZSI system.

AZSPWM
V3 V2
vV, ¢ vV,
VS V6
A A
Sl Sl
S3 3
SS
z)cm
20, /3
Vpe /3
A
1 Sl
SS 53
SS SS
19 Vl V3 V5 V3 Vl 19 V2 Vl V() Vl VZ
cm 2UDCc/m
Upc /3 Upe /3
(c) (d)

Figure 4. Typical CMV reduction strategies with switching patterns and CMV when using:
(a) discontinuous pulse width modulation (DPWM), (b) active zero state pulse width modulation
(AZSPWM), (c) remote state pulse width modulation (RSPWM) and (d) near state pulse width
modulation (NSPWM) strategies.
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4. Modified qZSI for CMV Reduction

The qZSI can achieve the boost capability by utilizing the ST vectors. The introduction of the ST
vectors will also change the CMV. According to Table 1, the CMYV is zero when the ST vector state is
adopted, introducing high-frequency harmonics. Thus, an input-split-inductor qZSI is adopted to
reduce the CMV when the ST vector state is utilized in the conventional CMV reduction strategies.
According to the vectors, the average CMV value during the non-ST state and the CMV during the ST
state is applied, which can reduce the high-frequency components in the CMV. The CMV reduction in
the qZSI can be achieved in the following.

According to Figure 2, the voltage of the inductor L; during the non-ST state can be obtained as

le = —DVDC (10)
while the voltage of the inductor L; during the ST state can be described as
o1, = (1 - D)Vic (11)

The CMYV and the inductor voltage in the qZSI are presented in Figure 5, in which v¢my is the CMYV,
Ucmv_avg 18 the average CMV during the non-ST state when DPWM, AZPWM, RSPWM and NSPWM
are used. The average CMV during the non-ST state can be obtained as

4 2V
0- tzero_0 + % “todd + % “teven + VDC - tzero_7
tzero + todd + teven

Ucmv_avg = (12)
in which t,4; is the time interval of all the odd vector states, i.e., V1, V3 and V5, ey, is the time interval
of all the even vector states, i.e., V,, V4 and Vg, ., o is the time interval of the zero vector state Vy,
trero 7 is the time interval of the zero vector state V7 and t5., is the sum of t,., ¢ and t,er 7.

As observed in Figure 5, the voltage of the inductor L; is positive with its maximum value being
(1 — D) Vpc during the ST state when v is zero. Meanwhile, the voltage of the inductor L, is negative
with its minimum value being —DVpc during the ST state when vem_avg is positive. According to
the phenomenon seen from the CMV and the inductor voltage, the input inductor voltage can be
used to compensate for the CMV by splitting the inductor and maintaining the same total inductance.
The inductor L can be divided into L1; and L1, as shown in Figure 6. The proportional relationship
among L1, L1; and L1, can be obtained as

Ly = xLy
13
{ Lip = (1-x)L; (13)

where x is a coefficient that is used to describe the ratio of the split inductor, and then:

{ =1 (14)

v, = (1 —x)or,

in which v;,, and v, are the voltages of L1; and L1, and vy, is the voltage of the original inductor L;.
Referring to (1), the CMV can be derived as

UyuN’ + UpN? + Uy
3

Uemv = UL, + (15)
Subsequently, the average CMV during the non-ST state can be described as

Uemv = Uemv_avg — XDVpc (16)
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while the CMV during the ST state can be given as
Vemv = X(1 = D)Vpc (17)

To reduce the CMYV in the split-inductor qZSI, the average CMV during the ST state and the CMV
during the non-ST state should be equal. Then, the following is obtained:

Ucmv_avg — xDVpc = x(l - D)VDC (18)

Combining (12) and (18), the proportional coefficient x can be calculated as

_ O . tzgro_[) + 1 . todd + 2 : teven + 3 . tZ€T0_7

19
3- (tzero + todd + teven) ( )
The average CMV o) during one cycle is then obtained as
1-D)(¢ 2t 3t
Temy = ( )( odd T 2teven + zero_7) Voo (20)

3- (tzem + todd + teven)

The average CMV in (12) during the non-ST state is reduced to the average CMV in (20), while the
CMV during the ST state, i.e., 0V, is increased to the average CMV in (20) with the proposed CMV
reduction strategy. The CMV amplitude of the inductor-split ZSI becomes lower by shifting the
CMV effect of the ST state, which reduces the high-frequency components. With the proposed CMV
reduction strategy, the CMV reduction technique for the conventional VSI can be used for the gZSI
system directly with appropriate ST state implementation.

A "
vcm V7 \,7 cm_avg Ucm
VZ Vl VZ V6 Vl VZVSVZ Vl V6 Vl V3 V5 V3 Vl VZ Vl V6 Vl VZ
2V, /3
Ve /3 ¢
U A DPWM AZSPWM RSPWM NSPWM
(1-D)V,.
non-ST ST non-ST ST non-ST ST non-ST ST
-DV,. g
g T - T - T > T -

s S S S

Figure 5. Proposed CMV reduction strategies with switching patterns and CMV when using DPWM,
AZPWM, RSPWM and NSPWM strategies.

=

Figure 6. Modified quasi-Z source inverter system with a split inductor.
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According to (14), the inductance variation of L7 and L1, will also be reflected in the ratio of the
split inductor, i.e., x. The CMV during the non-ST state and ST state shown in (16) and (17) can be
obtained as vemy_avg — ¥’ DVpc and x'(1 — D) Vpe with ¥’ being the new ratio of the split inductor. The
inductance tolerance, e.g., £5% in x, will make the average CMV vary around £5% DVpc, which is
almost negligible.

5. Simulation and Experimental Results

To verify the above analysis, simulations and experimental tests of the three-phase qZSI with the
proposed CMYV reduction strategies are presented. The system parameters of the qZSI are listed in
Table 2. The simulations were implemented in MATLAB/Simulink. Meanwhile, the experimental
tests were applied to the qZSI platform with a TMS320F28379 digital signal processor (DSP) controller,
an Altera Cyclone field-programmable gate array (FPGA) and three Mitsubishi intelligent power
modules (IPM), i.e., PM75DSA120.

The simulation results of the conventional gZSI system with the NSPWM and RSPWM strategies
are presented in Figures 7a and 8a. As shown in Figure 7a, the amplitude of the CMV with the NSPWM
strategy varies from 0 to 133.3 V due to the adopted switching vectors, i.e., V1—Vg and Vg, referring
to Table 1. The introduction of the ST state increases the CMV with more high-frequency components;
see Figure 7a. The output current and voltage are also shown in Figure 7a, in which the peak-peak
value of the load current is 10 A. Figure 8a shows the CMV value and the output of the conventional
qZSI system. The amplitude of the CMV with the RSPWM strategy changes between 0 and 133.3 V
when the chosen switching vectors are V;, V4, Vg and V. The CMV of the conventional VSI with the
RSPWM strategy is constant, but the CMV of the conventional qgZSI with the RSPWM strategy contains
high-frequency components, as shown in Figure 8a. The output current and voltage of the system
present high total harmonic distortion (THD) (see Figure 8a), which results from the low DC-link
utilization with only four switching vectors. This also occurs when the RSPWM strategy is used in the
conventional VSI.

The simulation results of the modified qZSI system with RSPWM and NSPWM strategies
are presented in Figures 7b and 8b. The switching vectors for the two CMV reduction strategies
are different, making the corresponding modified qZSI system not the same. According to (19),
the relationship among Liq, L1 and Ly is L1; = L1p = %Ll when the proposed method is adopted in
the qZSI system with the RSPWM strategy. The amplitude of the CMV with the NSPWM strategy
on the modified qZSI system varies from 66.7 V to 123.3 V, as shown in Figure 7b, which is reduced
dramatically when compared with that in Figure 7a. The output voltage and currents are exactly the
same as that of the conventional qZSI system, which is not affected by the input split inductors. When
the NSPWM strategy is used in the modified qZSI system, the relationship among L1, L1 and Ly is
L1 =2Lpp = %Ll. As shown in Figure 8b, the CMV is constant at 120 V, and all the high-frequency
components are removed, while the output characteristics are not affected. The modified qZSI system
is related to the adopted switching vectors, which will not change the output of the system, but reduce
CMYV when using the conventional CMV reduction strategies.

Figure 9 shows the experimental setup of the three-phase qZSI system. Figure 10 exemplifies the
conventional qZSI system and the modified qZSI system when the RSPWM strategy is adopted. The
experimental results agree well with the simulation results in Figure 8. The CMV of the conventional
qZSI system contains high-frequency components when the ST state is used, which varies from 0 to
133.3 'V, as shown in Figure 10a. With the split inductor of L1:L1; = 2:1, the CMV is constant as 120 V
using the RSPWM strategy in Figure 10b. The output characteristics of the conventional qZSI system
and the modified qZSI system are the same, as shown in Figure 10, which verifies the effectiveness of
the proposed CMV reduction strategy. The ST state is inserted in the zero states of the inverter, making
the output of the inverter similar in the VSI, the qZSI and the modified qZSI when the same CMV
reduction strategy is used. The total harmonic distortion (THD) of the output of the qZSI system is
related to how many switching states exist in a switching cycle, which can be analysed exactly like the
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conventional VSI. When considering the output THD, CMYV reduction strategies, e.g., the AZPWM

and RSPWM strategies, can achieve a high-quality output compared to that with the NSPWM strategy
in the VSI, the gZSI and the modified qZSI.

Table 2. Parameters of the three-phase qZSI system.

Parameters Symbol Values
Input voltage Vin 160 V
qZSl inductors Ly, Ly 700 uH
gqZSI inductor resistance Ry 0.05 Q)
qZSI capacitors C1, G 200 uF
qZSI capacitor resistance  R¢q 0.05 Q2
Output filter L¢ 1.8 mH
Switching frequency fs 10 kHz
Shoot-through duty ratio Dy 0.1
Uepgy (50 V/div) L Ve (50 V/div),
\

1 SO S YRR

J‘H

/(10 A/div)

out
L
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Figure 7. Simulation results of the CMV vcny, output voltage vyt and output voltage ioyt when

the NSPWM strategy is used in (a) the conventional three-phase qZSI system and (b) the modified
three-phase qZSI system [Time (5 ms/div)].
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/(10 A/div)

s out

(10 A/div)
«— Time (5 ms/div) ———» «—— Time (5 ms/div) ———>
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Figure 8. Simulation results of the CMV vcmy, output voltage voyt and output voltage ioyt when

the RSPWM strategy is used in (a) the conventional three-phase qZSI system and (b) the modified
three-phase qZSI system [Time (5 ms/div)].
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Figure 9. Photograph of the experimental setup of the three-phase qZSI system.
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Figure 10. Experimental results of the CMV vy, output voltage vout and output voltage iout when

the RSPWM strategy, i.e., all even vectors in this paper, is used in (a) the conventional three-phase qZSI
system and (b) the modified three-phase qZSI system [Time (10 ms/div)].

6. Conclusions

A CMV reduction strategy is proposed in this paper by splitting the input inductor to make the
CMYV reduction strategies for the conventional VSI available for the qZSI system. With the proposed
strategy, the input inductor is divided into two parts at the positive and negative side of the input
source with the same total inductance, keeping the continuous characteristics of the qZSI system. The
ratio of the divided two-part inductance is related to the switching vectors that are chosen, which are
generally used to reduce the CMV. The average CMV during the non-ST state is used to derive the
proportional relationship between the divided inductance. With the proposed strategy, the output
features are not affected, while the amplitude of the CMYV is reduced. Simulations and experimental
results are provided to verify the effectiveness of the proposed CMV reduction strategy. Moreover, the
proposed CMYV reduction strategy can also be used for other converters with a similar structure to
reduce the CMV.
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