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 

Abstract— Following amputation, almost two-thirds of 

amputees experience unpleasant to painful sensations in the 

area of the missing limb. Whereas the mechanism of phantom 

limb pain (PLP) remains unknown, it has been shown that 

maladaptive cortical plasticity plays a major role in PLP. 

Transcutaneous electrical nerve stimulation (TENS) generating 

sensory input is believed to be beneficial for PLP relief. TENS 

effect may be caused by possible reversing reorganization at the 

cortical level that can be evaluated by changes in the 

excitability of the corticospinal (CS) pathway. Excitability 

changes are dependent on the chosen stimulation patterns and 

parameters. The aim of this study was to investigate the effect 

of two TENS patterns on the excitability of the CS tract among 

healthy subjects. We compared a non-modulated TENS as a 

conventional pattern with pulse width modulated TENS 

pattern. Motor evoked potentials (MEPs) from APB muscles of 

stimulated arm (TENS-APB) and contralateral arm (Control-

APB) were recorded. We applied single TMS pulses on two 

subjects for each TENS pattern. The results showed that both 

patterns increase the CS excitability, while the effects of the 

conventional TENS is stronger. However, the amplitude of 

MEPs from control-APB after TENS delivery remained almost 

the same. 

 Clinical Relevance— The primary results revealed changes 

in the activity of CS pathway for both patterns. A future study 

on a larger population is needed to provide strong evidence on 

the changes in CS excitability. The evaluation part with more 

factors such as changes in intracortical inhibition (ICI) may be 

beneficial to find an optimal modulated TENS pattern to 

enhance pain alleviation process in PLP. 

I. INTRODUCTION 

Phantom limb pain (PLP) is experienced by most 
subjects (up to 80%) following amputation. Painful 
sensations localized in or around the area of the lost limb are 
frequent symptoms [1]. While PLP influences the quality of 
life amputees negatively, the mechanism and nature of this 
phenomenon are yet not fully understood. Some researchers 
believe that the peripheral nervous system may be  involved 
due to spontaneous discharges caused by the formation of 
neuromas [2]. However, recent studies have reported that 
significant cortical reorganization in the somatosensory map 
may also play a major role in PLP [3], [4]. Some studies also 
reported a significant reduction of intracortical inhibition in 
the affected side in comparison to the non-affected side or in 
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comparison with healthy subjects [5], [6]. These changes 
may be considered as markers of PLP. 

Despite the lack of understanding the underlying 
mechanism of PLP, several interventions have been applied 
with the aim to reduce PLP (e.g., mirror therapy, virtual 
reality, and transcutaneous electrical nerve stimulation). 
Also, several clinical trials showed that high-frequency 
stimulation (HFS) delivered on the affected or contralateral 
limb can temporarily relieve pain [7]–[9]. In EPIONE (an 
EU project at Aalborg University) application of non-painful 
steady-state electrical stimulation on the surface of the 
residual limb, caused significant temporary changes in the 
perception of PLP and a reduction of PLP up to 40 % [10].  

Transcutaneous electrical nerve stimulation (TENS) may 
induce plasticity in the central nervous system. In healthy 
subjects, changes in the amplitude of motor-evoked 
potentials (MEPs) have been observed after TENS delivery 
[11]-[14]. Depending on the TENS parameters (i.e., 
frequency, amplitude, pulse width, and duration), MEPs 
evoked by TMS pulses was found to either increase or 
decrease. For instance, Miyata studied the impact of short-
duration (120 s) high-frequency (100 Hz) electrical muscle 
stimulation on corticospinal (CS) excitability and reported 
considerable reduction in MEP amplitude from APB muscle 
after TENS [12]. Furthermore, two hours of low-frequency 
somatosensory stimulation (10 Hz) of the ulnar nerve 
increased the excitability of the ADM muscle (target 
muscle) more than APB and FDI (non-target muscles). It 
depicts that the effects of this electrical stimulation pattern 
on all three muscles were apparent, but changes in the ulnar-
nerve-innervated muscle (ADM) is stronger than APB and 
FDI. [13]. However, Mang in 2011 conducted an experiment 
where 40 min of neuromuscular electrical stimulation (1ms 
pulse width, 20s on - 20s off cycle) could improve the 
excitability of CS for both the leg and the hand. This 
enhancement was more focused in the hand muscle [14]. In 
another study, he investigated the effect of electrical 
stimulation with different frequencies. The result showed 
that 100 Hz TENS increased the amplitude of MEPs more 
than 10, 50, and 200 Hz TENS [11]. 

 While the neural mechanism of TENS action is yet to 
well-known, it is believed to be likely the combination of 
cortical reorganization, strengthening the CS pathway, and 
neural inhibition effect in local and cortical level [15]–[18].  
Long-duration TENS has been used as rehabilitation method 
for chronic pain patients such as back pain and PLP [19] or 
patient with performing function movement problems 
disease like stroke [20]. Recent articles have been a focus on 
investigating alternative temporal patterns of electrical 
stimulation instead of conventional non-modulated pattern to 
enhance therapies [21], [22]. Pulse width modulated (PWM) 
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electrical stimulation is one of the novel approaches which 
has been tested on patients with back pain, and the quality of 
pain relief results was equivalent to non-modulated tonic 
stimulation, but it produced a more comfortable perception 
for patients. Daniel et al. reported that despite conventional 
TENS (with constant parameters), this stimulation pattern 
activated the population of axons sequentially and replicates 
physiological neural signals [19].  

Different TENS patterns may affect differently on CS 
activity. For improving the PLP reduction process, the way 
that the TENS patterns influence the excitability of CS 
pathway needs to be further investigated. To our knowledge, 
the changes in the CS activity following PWM TENS have 
not been studied. Our aim in this paper was to compare the 
effect of two different TENS patterns on the excitability of 
the CS tract. Conventional TENS pattern (i.e., a rectangular 
pulse with constant parameters) and modulated TENS 
(PWM) were used as an intervention phase. MEPs were 
recorded by applying single TMS pulses with two intensities 
before and after delivery of the TENS interventions. The 
peak-to-peak amplitudes of MEPs before and after electrical 
stimulation delivery were studied in two subjects for each 
TENS pattern.   

II. METHODS  

A. Subjects 

Four healthy, right-handed volunteers (two males and two 

females, age from 29 to 32 years) with no history of 

peripheral and central nervous system diseases participated in 

the experiment. The subjects had no prior experience with 

electrical stimulation (TENS) and provided their written 

informed consent. The North Denmark Region Committee on 

Health Research Ethics (N-20190016) approved the protocol 

of this study. 

B. Peripheral sensory stimulation (TENS) 

Electrical stimulation was generated by DS5 stimulator 

(Digitimer, UK) and delivered with a pair of surface 

electrodes (Axelgaard PALS Electrodes, contact size 4 × 4.6 

cm, oval) placed on left-handed median nerve close to the 
wrist. Two electrical stimulation patterns were applied; 1) 

non modulated conventional TENS (100 Hz bipolar 

rectangular pulses with 1ms pulse width) and 2) a novel 

PWM TENS (bipolar, rectangular pulses, pulse rate = 100 

Hz, sinusoidal modulated pulse width from 0 to 1ms. Each 

TENS pattern lasted 20 min (20s on, 10s off cycle) and 

delivered with intensity at 80% of the discomfort level. 

Subjects were randomly selected for stimulation with one of 

the two TENS patterns. 

B. Recording 

Excitability of the CS pathway was evaluated by 

analyzing the MEPs elicited by TMS pulses in the following 

time phases; 1) Pre-TENS as baseline MEPs, 2) Post-TENS 

(immediately after intervention), and 3) Post30-TENS (30 

min after intervention phase) (Fig.1). 

 MEPs were recorded from APB of stimulated hand (right 

hand) as TENS-APB and APB muscles of the left hand as 

Control-APB.  During all sessions, subjects were aske to seat 

in a comfortable chair and keep their muscle completely 

relaxed. MEP from each muscle was collecting with bipolar 
surface recording electrodes (Ambu Neuroline 720). The 

signals were pre-amplified, band-passed filtered (50 Hz to 2 

kHz) and  then stored by a sampling rate of 5 kHz by 

custom-made software (“Mr. Kick”, Aalborg University, 

Aalborg, Denmark). MEPs were recorded with the length of 

the sweep of 400ms (100ms before to 350ms after TMS 

onset). 
 

TMS was performed thorough a figure-of-eight shaped 
magnetic coil (MagVenture, MC-B70 Butterfly Coil) to 

optimal scalp sites (hotspots) to stimulate the target muscle 

of each hand. The coil was connected to the stimulator 

(DANTEC Magnetic Primer TwinTop & MagLite r-25) and 

placed on the scalp with the intersection of both wings at a 

45o angle with the midline. While the subjects were asked to 

relax the muscles, rest motor threshold (rMT) was measured. 

It was defined as the minimum intensity of TMS pulse 

needed to elicit MEP with a peak to peak amplitude more 

than 50 mV in at least 5 out of 10 trials. Each session of the 

experiment approximately lasted for two hours.  

MEPs by TMS stimulation with intensities at 20% and 
30% over rMT were obtained. Eight pulses were delivered 

for each intensity with a 5s interval. Changes in CS 

excitability pathway induced by TENS patterns for each 

muscle were analyzed. We averaged the sixteen MEPs from 

two subjects for each TENS pattern at each TMS intensities 

and time phase. The peak-to-peak of averaged MEPs 

amplitude were measured and expressed as a feature to 

compare changes in excitability over time conditions. 

III. RESULTS 

Averaged MEPs amplitude of Pre-TENS, Post-TENS, and 

Post30-TENS for TENS and control muscles with 120% 

TMS intensity are shown in Fig.2. As can be seen, the MEP 

amplitude for the TENS-APB increased following both the 

TENS patterns phase. Changes after PWM TENS were less 

significant than conventional TENS, increased by 31% and 

Figure 1. overview of proposed protocol: baseline, intervention, and evaluation 

 



  

 

Figure 3. Recruitment curve, average of 8 MEPs for two muscles and both intervention patterns with intensities of 120% and 130% of 

rMT over three different time conditions. A: TENS-APB. B: Control-APB 

B. 

Figure 2. 16-MEPs (for two subjects) averages at 120% of rMT. MEP amplitude was measured at three different time conditions. A: Right-APB 

as the target muscle. B: Left-APB as the non-target muscle. 

 

 

Figure 3. Recruitment curve, averaged MEPs of two subjects in both muscles and intervention patterns with intensities of 120% and 

130% of rMT over three different time conditions with standard division. A: TENS-APB. B: Control-APB. 



  

95%, respectively. An enhancement in activity is maintained 

after 30 min while the MEP amplitudes in Post30-TENS 

became weaker than Post-TENS. Moreover, the MEPs 

amplitude of control APB (left APB) remained almost 

unchanged over three time phases. 6% reduction with 
conventional TENS and 9% increase immediately after PWM 

TENS were shown in control muscle. 

 In Fig.3, MEPs changes for muscles are presented before 

and after the TENS session at TMS pulse 20 % and 30% 

above the rest motor threshold. Results for TENS-APB 

showed enhancement of MEPs amplitude after TENS 

delivery at 130% rMT as well. The increase of activity in 

stimulated muscle became 62% and 30% after conventional 

and PWM TENS pattern, respectively. Furthermore, by 

increasing TENS intensity, the impact of PWM TENS 

became stronger than results with 120% rMT pulses. In 

addition, TENS intervention effects on control muscle have 

changed reversely between TMS intensities. 

IV.   DISCUSSION 

The present experiment was designed to investigate the 

influence of two different TENS patterns on CS excitability 

(non-modulated pattern with constant pulse width and PWM 

pattern). MEPs from APB muscles of stimulated and the 

contralateral hands were collected by applying single TMS 
pulses. The average MEPs of two subject for each pattern 

was measured. Our main finding was that both TENS 

patterns induced changes and increased excitability of the 

CS pathway of stimulated hand, while MEPs amplitude of 

control muscle maintained almost unchanged. In addition, 

the conventional pattern had a stronger effect on MEPs 

amplitude. To our knowledge, it is the first time that the 

effects of this PWM TENS pattern on the excitability of the 

CS tract were studied in healthy subjects. This pilot study 

can provide stronger evidence with a larger population. The 

future work can be investigating the impact of conventional 

and modulated TENS patterns on CS excitability by 
applying paired TMS pulses. In this way, changes in 

intracortical inhibition (ICI) and intracortical facilitation 

(ICF), before and after interventions, can be studied and 

compared as other factors between two TENS patterns. The 

result may show markers of cortical plasticity and possible 

reorganization effect after stimulation delivery leading to 

improve PLP relief process. 
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