
LA-UR-20-24538

Quantum simulation
of the qubit-regularized O(3) sigma model

Alexander J. Buser
Caltech, Institute for Quantum Information and Matter, Pasadena, CA 91125

Tanmoy Bhattacharya, Lukasz Cincio, and Rajan Gupta
Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545

(Dated: September 7, 2020)

Recently, Singh and Chandrasekharan [1] showed that fixed points of the non-linear O(3) sigma
model can be reproduced near a quantum phase transition of a spin model with just two qubits per
lattice site. In this paper, we demonstrate how to prepare the ground state of this model and measure
a dynamical quantity of interest, the O(3) Noether charge, on a quantum computer. In particular, we
apply Trotter [2] methods to obtain results for the complexity of adiabatic ground state preparation
in both the weak-coupling and quantum-critical regimes and use shadow tomography [3] to measure
the dynamics of local observables. We then present and analyze a quantum algorithm based on non-
unitary randomized simulation methods that may yield an approach suitable for intermediate-term
noisy quantum devices.

I. INTRODUCTION

Considering the rapid pace of experimental progress in
quantum computing, now is the time to think seriously
about how quantum simulations of high energy physics
will look in the near future. Quantum field theories gen-
erally involve infinitely many degrees of freedom per unit
physical volume. A crucial step in simulating field theo-
ries, then, is choosing a method of truncating the Hilbert
space and representing the states of the truncated model
using qubits. According to the standard procedure advo-
cated by Wilson [4], one regulates the theory via a hard
cutoff, restricting it to a discrete finite lattice. Bosonic
theories, however, involve infinitely many quantum states
per lattice site even after regularization. Realizing the
theory as a quantum simulation on a finite computer re-
quires us to truncate the dimension of the Hilbert space,
being careful to preserve the interesting physics of the
theory.

One approach is to impose a hard cut-off on the oc-
cupation number in the Fourier space of the relevant
symmetry group, and directly map the truncated Hamil-
tonian to one acting on a system of qubits [5]. This
approach is provably efficient for Kogut-Susskind type
lattice gauge theories [6], and trivially converges to the
correct behavior as the local dimension is scaled back to
infinity. In the near-term, however, one will be limited
to small local dimension with only few qubits per lattice
site. Such truncated models are not, in general, good
approximations to the original field theory.

We therefore advocate working directly with the stan-
dard definition of the continuum field theory as describ-
ing the long distance physics near the critical points
of a discretized theory. This is particularly interesting
for asymptotically-free theories that arise near Gaussian
fixed points of the renormalization group evolution. To
this end, we construct a lattice Hamiltonian possessing
the same symmetries as the desired continuum QFT, but

acting on a Hilbert space with small local dimension.
This is the approach taken in Ref. 1 and extended in
Appendix C for the case of the O(3) non-linear sigma
model. The present paper is concerned with the sec-
ond step of this process—having found a lattice model
in the right universality class, how does one go about
simulating it on a quantum computer? We describe the
implementation of two interesting and non-trivial tasks,
namely ground state preparation and the measurement
of dynamic quantities, in particular the O(3) Noether
current, and provide estimates of the complexity of each
task. While the main focus of the paper concerns the
capabilities of fault-tolerant quantum devices, we also
consider approximate algorithms that could find appli-
cations in intermediate-term noisy quantum computers.
Of particular interest to the quantum computing commu-
nity is an algorithm developed here combining quantum
circuit compiling and randomized simulation methods for
adiabatic state preparation.

This paper is organized as follows. In Section II we
describe the model and discuss the preparation of the
ground state. In Section III the measurement of the
O(3) Noether charge is discussed. In Section IV we esti-
mate the resources required for ground state preparation
in both the weak-coupling and quantum-critical regimes.
In Section V we find short-depth circuits approximat-
ing the adiabatic state-preparation algorithm and study
them numerically. We end with a discussion of our main
results in Section VI. Technical details are provided in
appendices.

II. EXACT ALGORITHM

In this section, we describe the model studied in Ref. 1
using a slightly more convenient convention. We then
describe a quantum circuit for preparing the ground state
of this system using the Trotter approximation [2] on a
fault-tolerant quantum computer and numerically study
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the fidelity of the process. We then discuss the resource
requirements for this algorithm.

A. The model

Singh and Chandrasekharan [1] recently demonstrated
that, using just two qubits per lattice site, a direct trun-
cation scheme reproduces the Wilson-Fisher fixed point
of the O(3) sigma model in two spatial dimensions and
the Gaussian fixed point in three spatial dimensions [25].
The model considered there resides on a regular square or
cubic lattice of length L in d spatial dimensions. We de-
scribe the system in the basis of the total angular momen-
tum J of two spin- 1

2 degrees of freedom representing the
two qubits at each site. For the site at position x, let |s, x〉
be the J = 0 singlet state, and |m,x〉 ,m = −1, 0,+1 be
the J = 1 triplet states with angular momentum compo-
nent along the z-axis having the value m. The Hamilto-
nian consists of on-site and nearest-neighbor terms.

H = H1 +H2,

H1 =
∑
x,m

(J + µm) |m,x〉 〈m,x| ,

H2 = Jr(Hp +Hh),

Hp = −
∑
〈x,x′〉,m

(−1)m |m,x;−m,x′〉 〈s, x; s, x′|+ h.c.,

Hh =
∑
〈x,x′〉,m

|s, x;m,x′〉 〈m,x; s, x′|+ h.c.

(1)

The choice of the sign of the couplings here is slightly
different from that in Ref. 1, owing to a different choice
of phases for the basis states.

The model contains three independent coupling con-
stants: the on-site coupling J is the extra energy of the
triplet states, µ is the splitting between the triplet states,
and Jr is the nearest-neighbor coupling. When Jr and
µ are small and J is positive, the vacuum is close to the
all-singlet state, and one can think of the |m〉 as particle
excitations with mass J , µ a ‘chemical potential’ corre-
sponding to this particle, Hh the kinetic term, and Hp

the pair creation/annihilation interaction.
This model is a qubit-representation of the non-linear

O(3) sigma model with a hard cut-off in angular momen-
tum at l = 1 (see details in Appendix A). In this work, we
study only the µ = 0 case, when the theory has a global
O(3) symmetry (see details in Appendix A), and so con-
serves total angular momentum J and its z-component
M . The Hamiltonian also has two more symmetries: the
number of sites in state |s〉 modulo 2, and the parity sym-
metry. We normalize the Hamiltonian by setting J = 1,
so that the only free parameter is Jr, hereafter referred
to as the coupling constant. Since Hp and Hh separately
have all the symmetries of the full model, we need not
have the same coefficient for both, so this is actually a
choice we are making.

FIG. 1: Circuit performing arbitrary diagonal unitary on two
qubits. Operators are z-rotations by the corresponding angle.
One degree of freedom is set to zero by the global phase, and
the other three uniquely determine θ, φ, and ψ.

B. Adiabatic state preparation

The first task of quantum simulation is to prepare ini-
tial states for a given Hamiltonian. The Hilbert space of a
quantum field theory consists of the closure of the poly-
nomials of particle creation and annihilation operators
acting on the vacuum, i.e., the ground state—so prepar-
ing ground states is of fundamental importance. In the
presence of an energy gap at all values of the couplings
considered, we may prepare the ground state via the
adiabatic algorithm [7]. Although many algorithms ex-
ist for simulating time-evolution with better asymptotic
scaling [8–10], we choose to work with standard Trotter
methods. This is because the symmetries of the present
model make this kind of approach particularly simple to
analyze. Furthermore, Trotter formulae are well-suited
to the randomized algorithm presented in Section V.

The adiabatic algorithm works by choosing a Hamil-
tonian whose ground state is easy to prepare, and then
slowly tuning a set of coupling constants to reach a tar-
get Hamiltonian without exciting the system away from
the ground state appreciably throughout the whole com-
putation. This requires the evolution to be slow on the
time scale of the mass gap of the system.

Specializing to the model in Eq. (1), when Jr = 0 the
ground state is the trivial all-singlet state. We define
our computational basis in such a way that, for a pair
of qubits at a single site, |00〉 = |s〉 , |01〉 = |−1〉 , |10〉 =
|0〉 , |11〉 = |1〉. Note that, for instance, what we will
refer to as a singlet state does not correspond to the
singlet state of two physical qubits, but as long as this
choice is made consistently throughout our algorithm,
we never need to implement this unitary operation ex-
plicitly. Starting from the zero-coupling ground state,
which, being a product state, is easy to prepare, we reach
the ground state at finite coupling, |Ω(Jr)〉, by a series
of discrete time-steps;

|Ω(Jr)〉 ≈
N∏
i=1

e−i∆ti(H1+Jr,i(Hp+Hh)) |Ω(0)〉 . (2)

Here we have allowed the length of the time-step ∆ti
and the coupling Jr,i to change with each iteration, i, and
have let N be the number of time-steps. We approximate
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FIG. 2: Accuracy of adiabatic state preparation on two- (left) and six- (right) site system as a function of maximum coupling
strength Jr for various numbers of Trotter steps. Here, the time step ∆ti is chosen to be one-tenth of the inverse of the energy
gap, ∆Ei, at coupling Jr,i. Fidelity between the adiabatically-prepared state |ψ〉 and the true ground state |Ω〉 is defined as√
〈ψ|Ω〉 〈Ω|ψ〉, where both |Ω〉 and |ψ〉 are properly normalized. Fidelity can be further improved by simultaneously increasing

the number of Trotter steps and reducing the time step to minimize non-adiabaticity and Trotterization error.

each time-step by separating out the single-site piece

e−i∆ti(H1+Jr,i(Hp+Hh)) ≈
e−i∆tiH1e−i∆tiJr,i(Hp+Hh) +O(Ld∆t2). (3)

Since H1 is diagonal in our computational basis this term
is easy to implement. As shown in Fig. 1, for a single site
x, exp{−i∆ti(J+µm) |m,x〉 〈m,x|}may be implemented
using just two single-qubit rotations and one controlled
rotation even for nonzero µ. Because the adiabatic evolu-
tion maintains the translational invariance of the ground
state, any possible global phase may be removed consis-
tently from each qubit so that the on-site term is imple-
mented exactly with 3Ld gates.

Next, we decompose the nearest-neighbor term into
a product of 2d non-commuting operators [11]. In one
dimension, this involves splitting the links of the lattice
into two disjoint sets of even and odd links;

e−i∆tiJr,i(Hp+Hh) ≈
e−i∆tiJr,iHevene−i∆tiJr,iHodd +O(Ld∆t2). (4)

Here Heven and Hodd denote H2 from Eq. (1) restricted
to the sites connected by even and odd links, respectively.
This is easily generalized to a cubic lattice in arbitrary
dimension. Assuming L is even, each term within Heven

commutes with all the rest (likewise for Hodd), since the
links are disconnected from each other and Hh and Hp

operate on different symmetry sectors (see Appendix C).
Now it suffices to simulate the hopping and pair-creation
terms on a single pair of adjacent sites. To do this ex-
actly, we can follow an approach similar to Ref. 5 and
introduce a unitary operator UCG that implements the
Clebsch-Gordan transform on the computational basis.
Specifically, this takes a state |j1,m1; j2,m2〉 in the local
angular momentum basis and gives a state |J,M, p〉 in
the total angular momentum basis [26]. Hp acts nontriv-
ially only on the 2-dimensional J = 0 sector. Similarly,

the Hh term acts only on the 9-dimensional J = 1 sec-
tor, decomposing into three 2 × 2 blocks and one 3 × 3
diagonal block (See Appendix C). Thus, evaluating the
nearest-neighbor time-step reduces to implementing four
two-qubit unitaries.

For a one-dimensional lattice of small size, the above
procedure can be simulated exactly on a classical com-
puter. The accuracy of the output is a complicated func-
tion of the adiabatic scheduling, that is, the number of
time-steps and the values of Jr and ∆t at each step. In
Fig. 2 we plot the fidelity as a function of the target
coupling Jr for five different numbers of time steps to
simulate the adiabatic ground state preparation.

For each value of the maximum coupling, we prepare
the ground state of our model at Jr = 0, and apply the
unitary operation in Eq. (2) under the approximations
of Eqs. (3) and (4). The couplings are linearly interpo-
lated between 0 and the maximum coupling. We require
∆t∆E � 1 for adiabaticity, where ∆E is the energy gap
of the model, so we set ∆t = 0.1/∆E. As expected,
the procedure works best for small values of the target
coupling, and improves markedly as the number of time
steps is increased. For a fixed Jr and number of time
steps, however, the fidelity decreases significantly as the
lattice size is increased from 2 to 6 as in Fig. 2. This
reflects the introduction of Trotter error which increases
linearly in the lattice volume, owing to the even-odd de-
composition described in Eq. (4).

C. Resource Requirements

The number of quantum gates demanded by the algo-
rithm described in the previous subsection makes it im-
practical to implement on noisy intermediate-scale quan-
tum computers. Even neglecting the cost of the Clebsch-
Gordan transformation, the circuit in Fig. 3 requires
six single qubit gates and four controlled unitaries with
three qubit control. In terms of arbitrary single-qubit
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FIG. 3: Circuit implementing time evolution of the single-
link nearest neighbor term. R performs the two-level unitary
corresponding to the hopping term, while R̃ handles the pair
creation. The U gate represents the Clebsch-Gordan trans-
formation on four qubits, schematically shown in Fig. 4, or-
dering the resulting states such that the controlled two-level
gates act on the right states. Using the Sleater-Weinfurter
construction [12], the three-qubit control gates can be rewrit-
ten in terms of single-qubit controls.

and single-controlled-unitaries, this requires a total of 58
gates per time step [12, 13] (see Fig. 3).

In addition, one must implement the Clebsch-Gordan
transformation and its inverse. A schematic description
of a circuit implementing this transformation was pro-
vided by Bacon, Chuang, and Harrow [14] (see Fig. 4),
however it requires ancilla qubits and many-qubit con-
trol gates. Although the number of gates required to im-
plement a single time-step this way scales linearly with
system size, implementing it exactly seems out of reach
on current experimental platforms. In Section V we pro-
pose a resolution of this problem by finding short-depth
circuits that approximate the desired unitary dynamics
via numerical optimization.

III. NOETHER CURRENT

One promising application of quantum computing to
high energy physics is the potential to measure dynamic
quantities in real-time. This requires both the excitation
of interesting initial states out of the vacuum (i.e., ground
state) and measurement of the quantities of interest. In
this study, we focus on the latter problem alone.

As a prototypical example of this, we consider the
problem of measuring an interesting local observable
which is simple to write down, namely the O(3) Noether
current. The z-component of the Noether charge Qz,x
simply counts the angular momentum in the z-direction
at the site x. Because of the O(3) symmetry of our model,
Qz =

∑
xQz,x is a conserved quantity. However, there

may be interesting physics contained in the local fluctu-
ations of Qz,x. To find the current, Jz,x, of this charge
we use the following relation

[Qz,x, H] = −i(
∑
x′

Jz,〈x,x′〉) (5)

where 〈x, x′〉 represent a pair of neighboring sites. Evalu-
ating this commutator explicitly, we obtain the following

FIG. 4: Schematic description of the Clebsch-Gordan trans-
formation by Bacon, Chuang, and Harrow [14]. Here s repre-
sents a single qubit which is added to a system with angular
momentum J and m. On the right, J ′ and m′ label the re-
sulting angular momenta, and p keeps track of the pathway
through which those values are obtained. The slash denotes
a wire containing a register of qubits, the control-X gate adds
angular momentum appropriately, and the controlled rota-
tions (one for each J , m′) produce the correct amplitudes.

two-site operator for Jz,〈x,x′〉:

Jz,〈x,x′〉 = iJr
∑
m

m( |sm〉 〈ms| − |ms〉 〈sm|

+ |s s〉 〈m−m| − |−mm〉 〈ss|),
(6)

where for convenience we have suppressed the position la-
bels and used a compressed notation: |p q〉 ≡ |p, x〉 |q, x′〉.
On a large scale fault-tolerant device, one could effi-
ciently compute the expectation value of this observable
using the standard technique of phase estimation [15].
This would allow one to determine the Noether cur-
rent at a single site to precision ε using O(log(1/ε)) an-
cilla qubits and O(1/ε) controlled-U gates, where U =
exp(iJz,〈x,x′〉), so that the Noether current everywhere
can be computed in time O(V/ε), where the number of
links is V = dLd.

For a noisy device with a limited number of qubits,
however, the need for a large number of ancilla qubits and
a circuit depth linear in system size makes applying full-
scale phase estimation somewhat impractical. A recent
algorithm by Huang et al. applies a technique known as
shadow tomography to predict expectation values of M
local observables using measurements on log(M) copies
of a quantum state [3, 16]. By measuring a quantum
state in a sequence of random bases, one can construct
an efficient classical representation of the state, which
suffices for predicting expectation values of a set of lo-
cal observables. For a local observable like the Noether
current, obtaining a precision δ uses only O(logV/δ2) in-
dependent copies of the system. This protocol, free from
the need for ancilla qubits and long coherence times, ap-
pears to be more suitable for near-term experiments than
phase estimation.

Concretely, we measure the time-dependence of lo-
cal observables like the Noether current through several
steps.
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FIG. 5: Time-dependence of the expectation value of the z-component of the O(3) Noether charge (left) and current (right)
predicted using shadow tomography for a two-site system, prepared in a random initial state, with Jr = 0.1. Solid lines indicate
the exact charge or current on each site while points show the values predicted using shadow tomography. Red dashed line
and dots show the exact and predicted values, respectively, of the total charge or current across both sites. This is expected
to be a constant for the charge and zero for the current. Since Qz has range k = 1, the results converge more rapidly than
suggested by Eq. (8). Here we have used N = 1, 000, 000 and 5, 000, 000 random Pauli measurements for the charge and current
respectively with n = 10 per time-step (δ ≈ 0.027). This implies ε ≈ 3.7 × 10−3 and ≈ 0.030 for the charge and current
respectively. Note that, even though we have used more measurements for the current, the prediction is less accurate than that
for the charge owing to the four-fold increase in the range of the observable.

1. Prepare the desired initial state.

2. Simulate time-evolution for time t.

3. Perform a random unitary operation (this could be
a random Clifford [27] circuit as in Ref. 3), then
measure the state in the computational basis.

4. Repeat steps 1–3 N times. Use the results to
predict, through a median-of-means estimator de-
scribed below, the measurement outcome of the ob-
servable at time t to precision ε. It is known that
one requires N = O(log(V/ε2)).

5. Repeat steps 1–4, sweeping t over a range of values
from tinitial to tfinal.

For the present case we choose a random unitary ensem-
ble composed of single-qubit Clifford circuits. This choice
is equivalent to measuring the state in a random Pauli
basis at each step. Then the results of Ref. 3 tell us that
to estimate the expectation value of a local observable
O acting non-trivially on only k qubits (at all sites on
a lattice of volume V) to within ε of its true value with
probability 1− δ, it suffices to repeat steps 1–3 N times,
where

N = (2log(2V/δ))34

ε2
4k||O||2∞. (7)

For O = Jz,x in one spatial dimension, we have

N = (2log(2V/δ))8704

ε2
|Jr|2. (8)

For instance, estimating the current on a two-site sys-
tem to two decimal places with success probability 90%
(δ = 0.1, ε = 0.01, k = 4) is guaranteed provided

N ' (5 × 107)|Jr|2. Since each repetition can be per-
formed in parallel, such large values of N pose no tech-
nical difficulties.

The precision parameters ε and δ are set indepen-
dently via a simple median-of-means protocol. That
is, we construct N classical representations of the ini-
tial state using the procedure outlined above, split them
into n groups of N/n shadows each, and average over
each group. This gives a set of n classical states
{ρ1, · · · , ρn}. We return the median expectation value,
Median({Tr(Oρ1), · · · ,Tr(Oρn)}), of the desired observ-
able over this set, yielding rigorous guarantees on δ and
ε as in Ref. 3;

n = 2log(2V/δ)

N =
34n

ε2
4k|O|2∞.

(9)

As a demonstration of principle, we compute the time-
evolution of the charge Qz and its current on a two-site
system prepared in a random initial pure state, that is,
one whose complex-valued entries are identically and in-
dependently distributed according to a normal distribu-
tion. The results are shown in Fig. 5. In both cases,
the results appear significantly better than the rigorous
performance guarantees suggested by Eq. (9). The er-
rors in the current are larger than those in the charge
owing to the fact that the charge is a sum of single qubit
operators, whereas the current acts on four qubits at a
time. The closeness of the predicted values to the ex-
act results suggest that this method may be an effective
way to measure dynamic quantities in lattice models of
quantum field theories on a quantum computer.
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IV. ERROR ANALYSIS

Assuming perfect gate fidelity, there are two sources
of errors we need to consider—Trotterization and viola-
tions of adiabaticity. Trotter error, which is O(∆t2) in
a first-order approximation, can be reduced at the cost
of larger circuit depth by using a Trotter-Suzuki approx-
imation of sufficiently high order, however we choose to
work with a first-order approximation for several reasons.
First, the algorithm of Section V was designed only to
second order in the Trotter step size ∆t, so any improve-
ment via higher-order formulae would be lost. Second,
the field theory of interest emerges at a quantum critical
point and depends primarily on the symmetries preserved
by the Hamiltonian, rather than its exact form. Under
reasonable assumptions, the errors induced by Trotter-
ization reside in the algebra of operators invariant un-
der the same symmetries as the original Hamiltonian.
Thus, treating Trotterized time-evolution as exact evo-
lution under an effective Hamiltonian by resumming the
Baker-Campbell-Hausdorff formula, the effective Hamil-
tonian will likely reside in the same universality class as
the original [17]. In that case, close to a critical point,
the effective Hamiltonian and the target field theory dif-
fer only in a set of irrelevant UV operators which should
not affect the physical content of the lattice theory.

We mention, in passing, that throughout this work
we use the fidelity of the prepared quantum state as a
measure of accuracy. This is, however, known to be too
strong. High fidelity implies that all observables are close
to their desired values, but the continuum field theory
cares only about products of local operators at separa-
tions scaling as the divergent correlation length. In other
words, the relevant measure of fidelity should be calcu-
lated after tracing out the ultraviolet degrees of freedom.
We ignore this subtlety in this work.

A. Weak-Coupling Limit

In this section we quantify errors due to Trotterization
and violation of the adiabatic condition within the weak
coupling approximation Jr � 1.

First, we will consider errors due to non-adiabaticity.

Let H̃(t) be a time-varying Hamiltonian where 0 ≤ t ≤ T ,

H(τ) = H̃(t/T ), and the energy gap of H(τ) is ∆(τ). A
theorem due to Teufel [18] says that as long as the total
time of the adiabatic evolution T satisfies

T ≥ 4

ε
[ ||Ḣ(0)||

∆(0)2
+
||Ḣ(1)||
∆(1)2

+

1∫
0

dτ

(
10
||Ḣ(τ)||2

∆(τ)3
+
||Ḧ(τ)||2

∆(τ)3

)
],

(10)

then the final state is within ε of the true ground state.
We can schedule the adiabatic evolution by linearly in-

terpolating the coupling from its initial to its final value,
using a series of discrete time steps ∆ti where ∆ti is set
by the inverse spectral gap. According to our perturba-
tive estimate of the spectral gap (Appendix B),

∆ti := 1/∆i = 1/(1− 2dJr,i + 3dJ2
r,i). (11)

The linear interpolation ensures that Ḧ(τ) = 0. Since
the on-site term is time-independent, it does not factor
into the adiabatic condition. Then, defining Hh,〈x,x′〉 as
the hopping term Hh from Eq. (1) restricted to the lattice
sites x, x′ (and similarly for Hp), we have

Ḣ(τ) = Jr,max

∑
〈x,x′〉

(Hp,〈x,x′〉 +Hh,〈x,x′〉), (12)

where Jr,max is the final desired value of Jr and

||Ḣ(τ)|| = ||Jr,max

∑
〈x,x′〉

(Hp,〈x,x′〉 +Hh,〈x,x′〉)||

≤ Jr,max

∑
〈x,x′〉

||Hp,〈x,x′〉 +Hh,〈x,x′〉||

∝ VJr,max. (13)

In this analysis, we ignored the fact that we change
the Hamiltonian along a staircase approximation to the
linear function. Assuming that ∆(τ) decreases monoton-
ically with τ , a standard result from real analysis lets
us bound the error induced by replacing the integral in
Eq. (10) with a sum as

10∆tmax

(
||Ḣ(0)||2

∆(0)3
− ||Ḣ(1)||2

∆(1)3

)
= O(V2J3

r,max∆tmax)

(14)

where we have defined ∆tmax = maxi{∆ti}. To second
order in Jr,max, we can obtain the mass gap perturba-
tively and choose

∆ti =

(
1− 2d

(
iJr,max

N

)
+ 3d

(
iJr,max

N

)2
)−1

. (15)

Since for small Jr,max the spectrum is completely gapped,
∆ti is bounded by a constant. Therefore, the leading
discretization error is of order V2J3

r,max.

To summarize, to second order in Jmax, the adiabatic
condition becomes

T = O

(
J2
r,maxV2

ε
+ V2J3

r,max

)
(16)

= O

(
J2
r,maxV2

ε

)
. (17)

This result holds so long as the energy gap is bounded
from below by a constant. For fault-tolerant devices,
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the limiting factor is then the adiabatic evolution near a
phase transition where the gap shrinks to zero. In that
case, knowledge of the critical exponent can determine
the optimal scheduling as in Ref. 19.

Having obtained an upper bound on the error due to
non-adiabaticity, we now include that arising from Trot-
terization. Suppose there are N time steps and the cou-
pling is linearly interpolated between 0 and Jr,max. Since
each time-evolution operator has leading error correc-
tions of order V∆t2i in a first-order Trotter approxima-
tion, the full evolution is valid to order V

∑
i ∆t2i . Nat-

urally, this sum is bounded by VT 2, so demanding that
the Trotterization error is of order ε constrains the total
time simulated as

T = O
(√

ε

V

)
. (18)

Näıvely, we assign as the total error the sum of those
induced by Trotterization and non-adiabaticity, so that
the total error is of order ε provided that

T = O
(

(Jr,maxV)2

ε
+

√
ε

V

)
. (19)

The total run-time is

T =
∑

∆ti = O(N), (20)

so equivalently we can write

N = O
(

(Jr,maxV)2

ε
+

√
ε

V

)
. (21)

Previously we showed that a single time-step can be im-
plemented exactly with a constant number of gates per
lattice site, so, multiplying by the total number of links,
the total time-complexity of our algorithm is

O

(
J2
r,maxV3

ε
+
√
εV

)
(22)

in arbitrary spatial dimension. We will continue to dis-
play the subdominant term in this expression to keep
track of the Trotterization error in comparison to the
adiabaticity error.

B. Quantum-Critical Regime

The estimates in the previous section describe the re-
source requirements for preparing the ground-state of
the discretized theory in the weak-coupling limit. Our
goal, however, is to probe the physics of a quantum field
theory, the O(3) sigma model, which emerges only in
the long-distance limit as the correlation length in the
theory diverges. In two and three spatial dimensions
the model in Eq. (1) resides in the universality class

of the O(3) non-linear sigma model, meaning that, in
infinite volumes, it undergoes a quantum phase transi-
tion at some critical value of the coupling Jr,c. Accord-
ingly, the mass gap ∆(Jr) scales as |Jr − Jr,c|ν , where
Jr,c and ν are the critical coupling and exponent, re-
spectively. For our model, we have efficient classical
procedures for determining the critical parameters [1]:
ν = 0.693(15) in (2+1)-dimensions and ν = 0.5050(96)
in (3+1)-dimensions. The critical values of the cou-
pling are Jr,c = 4.81695(37) in (2+1)-dimensions and
Jr,c = 10.09817(55) in (3+1)-dimensions.

To estimate the time required to prepare the ground
state at coupling Jr close to Jr,c, we apply the same
methods as in Section IV A, starting from Eq. (10). We
find that the error due to non-adiabaticity is less than ε
provided that the total simulated time obeys

T ≥ 4V||Jr(Hp +Hh)||
ε

(
1 + α|Jr − Jr,c|−2ν

+ 10V||Jr(Hp +Hh)||
1∫

0

ds∆(s)−3
)
,

(23)

where ∆(τ) ∼ α|Jr − Jr,c|ν for τ ≈ 1, the linearly inter-
polated Hamiltonian is

H(s) =
∑
x

H1,x + Jrs
∑
〈x,x′〉

(Hp,〈x,x′〉 +Hh,〈x,x′〉) (24)

and s ranges from 0 to 1.

Because the gap approaches zero as Jr approaches
Jr,c, we assume that ∆(s) is bounded from below by
∆(1). Since the norm of the nearest-neighbor Hamil-
tonian ||(Hp,〈x,x′〉 + Hh,〈x,x′〉)|| on a single pair of sites
is of unit order, we can lower bound the total required
simulated time T in our algorithm as

T ≥ 4V|Jr|
ε

(
1 + α|Jr − Jr,c|−2ν + 10V|Jr||Jr − Jr,c|−3ν

)
.

(25)
For Jr close to the critical value, then, the dominant
contribution is

T = O
(

|JrV|2

ε|Jr − Jr,c|3ν

)
. (26)

Trotterization again requires that T = O(
√
ε/V), so the

total time-complexity of adiabatic state preparation in
the quantum-critical regime in arbitrary spatial dimen-
sion is

O
(

|Jr|2V3

ε|Jr − Jr,c|3ν
+
√
εV
)
. (27)

In particular, this result implies that we can prepare the
ground state of our model at coupling Jr close to the criti-
cal coupling Jr,c in time polynomial in the distance to the
critical point, lattice volume, and precision ε. The scal-
ing of the time-complexity with the critical exponent ν
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FIG. 6: Circuit for implementing nearest-neighbor time evo-
lution step using ten gates. The single qubit operations are
optimized over all possible unitary gates.

follows directly from the adiabatic condition in Eq. (10),
and is independent of the spatial dimension. For infi-
nite lattice size and Jr sufficiently close to Jr,c, physical
properties of this ground state correspond to those of the
vacuum state of the non-linear O(3) sigma model.

V. QUANTUM COMPILING AND
RANDOMIZATION

Current quantum devices are severely limited by noisy
gate implementations and short decoherence times. As a
result, real near-term simulations demand circuits which
can be implemented in time on the order of the qubit life-
time, strongly favoring short-depth circuits. Since, as in
Section II, implementing the time-evolution operator ex-
actly using the circuit we provided would require ancilla
qubits and at least 58 gates per time-step, realizing the
time-evolution operator of our model does not appear to
be feasible for a near term device. Therefore, we should
consider alternative approximate methods.

In order to find a short-depth circuit approximating
the time-evolution operator for the nearest-neighbor
Hamiltonian in Eq. (1), we use a classical simulation of
quantum-assisted quantum compiling (QAQC), origi-
nally proposed by Khatri et al. [20]. Just as a compiler
translates high-level source code to a low-level version
which can be interpreted by a computer processor,
quantum compiling seeks to translate a representation
of a unitary, for instance, its matrix representation in
a fixed basis, to a sequence of gates executable on a
quantum device.

We fix an allowed set of gates specific to a device and
set a desired circuit depth, then apply standard opti-
mization techniques to obtain an approximation of the
desired quantum circuit. Here, we allow only CNOT and
arbitrary single-qubit gates, as in IBM’s QX architecture.
The cost function is taken to be the square of the Frobe-
nius norm of the difference between the exact operator
and its approximation.

Performing this protocol for our model, we obtain 10,
20, and 30-gate circuits composed only of CNOTs and
single-qubit gates (see Fig. 6) approximating the time
evolution operator on a single pair of sites,

U(Jr∆t) = eiJr∆t(Hh+Hp), (28)

for a fixed value of the coupling constant and time step
(Jr = 0.04, ∆t = 0.2). In each case, the optimizer was
allowed to run for up to 48 CPU hours. One could re-
peat this procedure for each value of the coupling needed,
however, for simulations involving many steps, this would
be computationally demanding.

Instead, we run the procedure a single time and inter-
polate with a randomized approach [21]. By performing a
probabilistically scheduled sequence of gates, the dynam-
ics of the quantum state is represented as a non-unitary
super-operator, also known as a quantum channel, map-
ping density matrices to density matrices. The aim is to
produce a mixed state that still has a very high overlap
with the desired ground-state, so that observables and
expectation values are reproduced with little error.

The specific random sequence of gates is determined
as follows. First we determine Uapprox as the short-depth
circuit best approximating U(Jr∆t) for the largest Jr∆t
of interest. Then, for adiabatic state preparation with N
steps, and coupling Jr,i and time step ∆t(Jr,i) at the i’th
step, let

pi =
Jr,i∆t(Jr,i)

maxi(Jr,i∆t(Jr,i))
. (29)

At each time step, we apply the identity circuit with
probability 1 − pi and Uapprox with probability pi. This
has the advantage of optimality for fixed circuit depth
at pi = 0, 1. Since the randomized circuit is not a uni-
tary operation, one needs to modify our measure of fi-
delity. We choose to use the channel fidelity, namely
the diamond norm of the difference between the ap-
proximate and exact circuits. The diamond norm is
a measure of how hard it is to distinguish two quan-
tum channels with a single measurement. Specifically, if
Φ,Φ′ ∈ L(H ⊗H)→ L(H ⊗H) are two unital quantum
channels, their diamond distance is

||Φ− Φ′||� = max
ρ

Tr(Φ⊗ I)(ρ)− (Φ′ ⊗ I)(ρ)), (30)

where ρ is a density matrix on the k-qubit Hilbert space
operated on by the circuit, with the addition of k possi-
bly entangled ancilla qubits not acted on by the circuit.
We use semidefinite programming to perform the max-
imization in Eq. (30) for each circuit. The results are
shown in Fig. 7, Fig. 8 and Fig. 9.

A. Analysis of randomized algorithm

Consider an arbitrary Hamiltonian H which is a func-
tion of a set of coupling constants λi. Suppose we can
implement U(λi,∆t) = e−iH(λi)∆t exactly for two sets
of values for the couplings and time step; λi(0),∆t(0)
and λi(1),∆t(1). In order to find the ground state of
H(λi(1)) using adiabatic state preparation (or similar
quantum quench), one could prepare the system in the
ground state of H(λi(0)) and linearly interpolate the cou-
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FIG. 7: Diamond distance, given by Eq. (30), between the ex-

act time-evolution operator eiJr∆t(Jr)(Hp+Hh) and its approx-
imation by short-depth unitaries, on four qubits as a function

of p = Jr∆t(Jr)
max(Jr∆t(Jr))

, shown here for max(Jr∆t(Jr)) = 0.1.

Curves are shown for 10 (blue), 20 (magenta), and 30 (green)
gate circuits. Solid lines indicate deterministically applying
the approximate circuit at each time-step. Dashed lines corre-
spond to applying the identity with probability 1− p and the
approximate circuit with probability p. The black dashed line
shows the identity circuit as a benchmark for performance.
Randomized approach appears to work better than determin-
istic one for all circuit depths, since the randomized circuit
is closer to the exact time-evolution operator in diamond dis-
tance.

FIG. 8: Fidelity of adiabatic state preparation on four qubits
for several numbers of Trotter steps using the short-depth
probabilistic method with circuit depth 10. Fidelity is av-
eraged over 10 repetitions. There appears to be only slight
variation in the accuracy as the number of steps is increased.
Note that the fidelity does not increase monotonically with
the number of steps. This is because the error from quantum
circuit compiling grows additively with the number of steps,
eventually out-pacing whatever gains are made by reducing
Trotter error through more steps.

plings between λi(0) and λi(1).

Now we form the quantum channel

Λt(ρ) = (1− p)U(0)ρU†(0) + pU(1)ρU†(1), (31)

where U(t) is shorthand for U(λi(t),∆t(t)). Letting

λ̃i(t) = λi(t)∆t(t) and λ be any of the various couplings,

FIG. 9: Adiabatic state preparation on four qubits using prob-
abilistic method with 10, 20, and 30-gate circuits, and exact
nearest-neighbor time-evolution operator. For the curve la-
beled ’exact,’ deviations from one are due entirely to Trotter-
ization and non-adiabatic errors. Results are averaged over
100 repetitions, using 10 Trotter steps. Results for short-
depth circuits are slightly worse than an exact Trotterized
approach, with small improvements through larger depth. We
expect the short-depth circuits to perform better in the pres-
ence of noise.

we set for the probability

p(t) =
λ̃(t)− λ̃(0)

λ̃(1)− λ̃(0)
. (32)

Expanding Eq. (31) in powers of ∆t(t), we obtain

Λt(ρ) = U(t)ρU†(t)(1 +O(∆t2)). (33)

Thus, we see that the time-dependent dynamics is repro-
duced to the same order in ∆t as in first-order Trotter-
ization, implying that the randomized scheme does not
change the asymptotic scaling of the time-complexity of
our algorithm.

If, as in the present case, we replace the exact imple-
mentation of U(1) with an approximate unitary U(1) =
U(1)(1 +O(δ)), the result becomes

Λt(ρ) = U(t)ρU†(t)(1 +O(∆t2, δ)). (34)

In this way, it suffices to compile a constant number of
circuits and interpolate between them using randomized
simulation, rather than compiling a number of circuits
growing linearly with the number of time steps.

VI. CONCLUSION

Quantum computing has enormous potential for fu-
ture investigations in high energy physics. In this paper,
we focused on the task of simulating a qubit-regularized
version of the non-linear O(3) sigma model, in particu-
lar, preparing its ground state and measuring dynamic
quantities. We found that, in d-dimensions, for a lat-
tice of size V = dLd, the ground state may be pre-
pared near the quantum critical point to precision ε in
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time O
(
V3|J|2

ε|J−Jc|3ν +
√
εV
)

using ordinary Trotter meth-

ods and provided an explicit circuit representation. We
described how to use shadow tomography to measure
the time-dependent O(3) Noether current efficiently on
a near-term device to precision δ in time O(log(V/δ2)).
Lastly, we performed numerical experiments simulating a
heuristic algorithm for obtaining short-depth circuits ap-
proximating adiabatic ground state preparation for ap-
plications on intermediate-term devices, as well as an
improved version implementing techniques from random-
ized quantum simulation.
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where i and j are nearest neighbor sites on a Euclidean

spatial lattice in d-dimensions, ~̂φi is a unit 3-vector as-

sociated to site i and ~̂Li is the angular momentum. In
spherical coordinates the dot product of two unit Eu-
clidean 3-vectors can be expressed as

~φ1 · ~φ2 = sin(θ1) sin(θ2) cos(φ1 − φ2)

+ cos(θ1) cos(θ2).
(A2)

According to the Peter-Weyl theorem, the space of square
integrable functions on the unit sphere is isomorphic
to the direct sum of all unitary irreducible representa-
tions of SO(3). This is precisely the content of spheri-
cal harmonic analysis. In terms of spherical harmonics
Y ml (θ, φ),

~φi · ~φj =
4π

3
(Y 0

1 (θi, φi)Y
0
1 (θj , φj)

− Y 1
1 (θi, φi)Y

−1
1 (θj , φj)

− Y −1
1 (θi, φi)Y

1
1 (θj , φj)). (A3)

These spherical harmonics may be recast as Hermitian
operators acting on a Hilbert space where the states are
labelled by the irreps of SO(3), as in Ref. 5. We define

Ŷ ml |s〉 =
√

2l + 1 |l,m〉 , (A4)

where |s〉 is the l = m = 0 state, and the irrep states
satisfy

〈l,m|l′,m′〉 = δ(l, l′)δ(m,m′). (A5)

The remaining matrix elements of the Ŷ ml are determined
by Clebsch-Gordan decomposition

Ŷ m1

l1
Ŷ m2

l2
=

L=l1+l2∑
L=|l1−l2|

ŶML 〈L,M |l1,m1; l2,m2〉 , (A6)

with M = m+m′.

We now imagine truncating the Hilbert space by im-
posing a hard cutoff on the irrep labels L ≤ Lmax. Set-
ting Lmax = 1 for the Hamiltonian of the non-linear O(3)
sigma model, we have 4 states per lattice site and a 16×16
Hamiltonian;

Ĥφ =
4πJ2

3

∑
〈i,j〉,m

(−1)m ˆY m1 (i)Ŷ −m1 (j). (A7)

Allowing this to act on the singlet-singlet state, we can
identify a pair-creation term

Ĥp =
4πJ2√

3

∑
〈i,j〉

(−1)m |m,−m〉 〈ss|i,j + h.c. (A8)

The Hamiltonian must either increase or decrease l1 and
l2 by one, so the only other states on which Ĥφ acts non-

trivially are those of the form |sm〉 or |ms〉. Subtracting

Ĥp from Ĥφ yields a simple hopping term

Ĥh =
4πJ2√

3

∑
〈i,j〉

|sm〉 〈ms|i,j + h.c., (A9)

where

Ĥφ = Ĥh + Ĥp. (A10)

These results also follow by directly evaluating the inte-
gral∫

d{θ, φ} (~φi · ~φj)Y
m1

l1 (θ1, φ1)Y
m2

l2 (θ2, φ2)

×Y m3

l3
(θ1, φ1)Y m4

l4
(θ2, φ2).

(A11)

Performing this calculation in Mathematica for all {l,m},
l ≤ 1, we obtain precisely the terms above (up to nor-
malization).

The kinetic term, ĤL, is diagonal in the |l1,m1; l2,m2〉
basis;

ĤL |l1,m1; l2,m2〉 = J1
l21 + l22

2
|l1,m1; l2,m2〉 , (A12)

yielding an onsite potential term in the truncated Hilbert
space,

ĤL =
J1

2

∑
m,i

|m〉 〈m|i . (A13)

In this way, the qubit model from Eq. (1) can be inter-
preted as a truncation of the lattice-regulated Hamilto-
nian for the O(3) non-linear sigma model. This provides
a connection between our work and that of other groups
who consider direct truncation schemes for simulating
quantum field theories, as in Ref. 5, 23, 24.

Appendix B: Perturbation Theory

We consider the model of Eq. (1) on a regular square
or cubic lattice of length L in d dimensions. We wish to
know the energy gap near the weak-coupling limit, since
this will inform our adiabatic algorithm, and the fidelity
between the strong-coupling ground state and that at
finite coupling. Both questions may be handled by ordi-
nary Rayleigh-Schrödinger perturbation theory.

The weak-coupling vacuum |Ω(0)〉 has the singlet on
all spatial sites, |Ω(0)〉 = ⊗r |s〉r. In the degenerate case
µ = 0 at weak coupling, the first excited state manifold is
spanned by all states with a single site in a triplet state.
Thus, the energy gap at weak coupling is 1 in units where
J = 1. The first order correction to the ground state
energy is zero.

Since the first excited state manifold for a lattice with
finite volume is highly degenerate, we must apply de-
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generate perturbation theory. Luckily, within this man-
ifold the perturbation is easily diagonalized. Since the
pair-creation term does not act within this subspace we
may ignore it. The hopping term conserves M and is
translation invariant, so its eigenstates are also momen-
tum eigenstates. Thus the hopping term decomposes into
three equal blocks, each of which is diagonalized by the
Fourier transform within that subspace.

In one dimension the momentum eigenstates are rep-
resented by the Lth roots of unity e2πin/L. The corre-
sponding eigenvalue of the hopping term is readily shown
to be 2Jr cos(2πn/L). In d-dimensions the first-order cor-
rections to the energy eigenvalues are

Eni = 2dJr cos(2πni/L). (B1)

For large L the first-order correction to the energy gap is
therefore −2Jr;

∆E = 1− 2dJr +O(J2
r ). (B2)

We now consider the first-order correction to the weak-
coupling ground state. Since |Ω(0)〉 has zero momentum
it can only couple to a state which also has zero mo-
mentum. The hopping term is nonzero only in the sub-
space with an odd number of triplet states, so it does not
contribute. The pair creation term couples the weak-
coupling vacuum to the subspace of the second-excited
state manifold with a |p,m〉,|p,−m〉 pair on adjacent sites
and zero momentum in each spatial direction (call this
manifold D).

The first-order correction is

|Ω(0)(1)〉 = −Jr
∑
k∈D

〈k|Hp|Ω(0)〉
2

|k〉 . (B3)

Note that Hp |Ω(0)〉 is the sum of all states with adjacent
|p,m〉,|p,−m〉 pairs. An orthonormal basis of D is the
equal superposition of |p,m〉,|p,−m〉 pairs for each of the
3 choices of m. This gives an overlap of

〈k|Hp|Ω(0)〉 =
√
Ld,

so that

|Ω(0)(1)〉 = −Jr
√
Ld

2

∑
k∈D

|k〉 = −Jr
2
Hp |Ω(0)〉 . (B4)

We can now calculate the overlap between the ground
state at finite Jr and that at Jr = 0. The normalized
finite-coupling ground state is (let −Jr2 Hp |Ω(0)〉 = |C〉)

|Ω(Jr)〉 =
|Ω(0)〉+ |C〉√
1 + 3J2

rL
d/4

, (B5)

so that

〈Ω(0)|Ω(Jr)〉 =
(
1 + 3J2

rL
d/4
)−1/2

. (B6)

FIG. 10: Ground state energy gap as a function of coupling
constant in one spatial dimension for various lattice sizes,
compared to perturbative result. The energy gap is nearly
linear in coupling for larger values of Jr (not shown). The
spectrum appears to converge to something which is gapped
at all values of Jr as L is increased.

Next, to calculate the energy gap to O(J2
r ), we need

to obtain the first-order corrections to the first-excited
states. The contributions here are from the third-excited
states, which couple to the former via the pair annihi-
lation operator. Again, momentum must be preserved.
Now, however, there is a large degeneracy owing to where
we decide to create the pair (for simplicity we imagine the
state as having an excitation at one spatial site, create
a pair somewhere else on the lattice, and extrapolate to
the full state using the translation operator).

Let |k,m〉1 be a first-excited state with momentum k
and M = m. We can create a pair at any of Ld−2d sites
(call the site r), and we have 3 options for the m-value of
that pair (call this m′), so that |k,m〉1 couples to exactly
(3Ld − 6d) third-excited states (call these |k,m, r,m′〉).
This gives an overlap

〈k,m|1Hp|k,m, r,m′〉 = 1, (B7)

and

|k,m(1)〉1 = −Jr
∑
r,m′

1

2
|k,m, r,m′〉 = −Jr

2
Hp |k,m〉1

(B8)
We find second-order corrections to the ground and first
excited state energies of

E
(2)
0 = −3J2

rL
d/2,

E
(2)
1 = −3J2

r (Ld − 2d)/2,
(B9)

so that the energy gap to second order in the coupling is

∆E = 1− 2dJr + 3dJ2
r +O(J3

r ). (B10)

We find reasonable agreement between this result and
that obtained via exact diagonalization on finite lattices
(see Figures 10 and 11).
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FIG. 11: Ground state energy gap as a function of coupling
constant in two spatial dimensions for L = 2, 3, compared
to perturbative result. The energy gap is nearly linear in
coupling for larger values of Jr (not shown).

Appendix C: General Symmetric Model

In this section we provide a complete characterization
of all translation invariant nearest-neighbor Hamiltoni-
ans with two qubits per lattice site that are invariant
under SO(3) . This treatment serves to clarify some of
the statements made in the main text. Let g ∈ SO(3),
and let Uρg be the representation of g under the irrep ρ.
The Hilbert space on each lattice site transforms as the
direct sum 0 ⊕ 1. If H is a Hamiltonian acting on two
sites, H transforms as the direct sum 0 ⊕ 1 ⊕ 2, with
multiplicities 2, 3, and 1, respectively.

In order to conjugate H by a group element g on each
site, we apply (U0

g ⊕ U1
g ) ⊗ (U0

g ⊕ U1
g ). This is unitarily

equivalent to the following 16× 16 matrix;

Ug =


U2
g 0 0 0 0 0

0 U1
g 0 0 0 0

0 0 U1
g 0 0 0

0 0 0 U1
g 0 0

0 0 0 0 U0
g 0

0 0 0 0 0 U0
g

 .

If H is SO(3) -invariant, then UgHU
†
g = H for all

g ∈ SO(3). Writing H in the same basis as that which
block diagonalizes Ug, we can think of H in block-form,
where each block defines a linear map between represen-
tations j and j′. According to Schur’s lemma, if a block
commutes with the group action it is either 0 or invert-
ible. Thus the blocks coupling different representations
are 0, and the blocks coupling equivalent representations
are proportional to the identity. This implies that H

takes the following simple form

H =


aI5 0 0 0 0 0
0 bI3 cI3 dI3 0 0
0 eI3 fI3 gI3 0 0
0 hI3 iI3 jI3 0 0
0 0 0 0 k l
0 0 0 0 m n

 ,

where In is the n× n identity matrix.
The most general SO(3) invariant four-qubit Hamilto-

nian can then be written as

H = I5 ⊕ (I3 ⊗Hj=1)⊕ (Hj=0), (C1)

where Hj=1 and Hj=0 are 3 × 3 and 2 × 2 Hermitian
matrices, respectively. Any additional symmetries of the
Hamiltonian arise from symmetries of Hj=1 and Hj=0.

For convenience we work in the standard basis, in
which the three l = 1 blocks are those of the ordinary
symmetry channels, 1⊕1, 1⊕0, and 0⊕1, in that order.
The l = 0 blocks are the 1⊕ 1 and the 0⊕ 0 channels, in
that order.

1. Parity

In this context, by parity we mean ordinary spatial in-
version; for example, in one-dimension site i is mapped
to site L − i. Since our general symmetric Hamiltonian
is translation-invariant and nearest-neighbor, under par-
ity it is mapped to another translation-invariant nearest-
neighbor Hamiltonian. Identifying the nearest-neighbor
terms on a given pair of lattice sites before and after a
parity transformation, in the basis considered above the
parity operator is represented as

P =


I5 0 0 0 0 0
0 −I3 0 0 0 0
0 0 0 I3 0 0
0 0 I3 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (C2)

If H is SO(3) invariant and PHP−1 = H, this implies
that

H =


aI5 0 0 0 0 0
0 bI3 cI3 dI3 0 0
0 c∗I3 eI3 fI3 0 0
0 d∗I3 f∗I3 gI3 0 0
0 0 0 0 h i
0 0 0 0 i∗ j



=


aI5 0 0 0 0 0
0 bI3 −dI3 −cI3 0 0
0 −d∗I3 gI3 f∗I3 0 0
0 −c∗I3 fI3 eI3 0 0
0 0 0 0 h i
0 0 0 0 i∗ j

 . (C3)
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Without imposing parity there are 14 real degrees of free-
dom. Under parity, four of these are removed (c = −d,
e = g, f = f∗).

The most general SO(3) and parity-invariant Hamil-
tonian is then

H =


aI5 0 0 0 0 0
0 bI3 cI3 −cI3 0 0
0 c∗I3 dI3 eI3 0 0
0 −c∗I3 eI3 dI3 0 0
0 0 0 0 f g
0 0 0 0 g∗ h

 . (C4)

Lastly, imposing time-reversal symmetry, we derive that
c = 0, g = g∗. Using our freedom to subtract an overall
constant, The full SO(3) , P, and T-symmetric Hamilto-
nian (with 6 real degrees of freedom) is

H =


aI5 0 0 0 0 0
0 bI3 0 0 0 0
0 0 dI3 eI3 0 0
0 0 eI3 dI3 0 0
0 0 0 0 f g
0 0 0 0 g 0

 . (C5)

We would like to connect this general model to our orig-
inal qubit-regularized Hamiltonian. From now on, we
neglect the cumbersome In in each block. The terms in
our original Hamiltonian take the form (setting µ = 0)

Hh =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (C6)

Hp =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 (C7)

H1 =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (C8)

We get back to the most general model by adding three
additional couplings

HX =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 (C9)

H= =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 (C10)

Hsm =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (C11)

Including all the couplings, we obtain the Hamiltonian

H =


2Jt + JX 0 0 0 0 0

0 Jt − JX 0 0 0 0
0 0 Jt + Jsm Jh 0 0
0 0 Jh Jt + Jsm 0 0
0 0 0 0 J= + JXJp
0 0 0 0 Jp 0

 .
(C12)
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