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MATRIX CONCENTRATION FOR PRODUCTS

DE HUANG, JONATHAN NILES-WEED, JOEL A. TROPP, AND RACHEL WARD

Abstract. This paper develops nonasymptotic growth and concentration bounds for a product of inde-
pendent random matrices. These results sharpen and generalize recent work of Henriksen–Ward, and
they are similar in spirit to the results of Ahlswede–Winter and of Tropp for a sum of independent random
matrices. The argument relies on the uniform smoothness properties of the Schatten trace classes.

1. Motivation

Products of random matrices arise in many contemporary applications in the mathematics of data
science. For instance, they describe the evolution of stochastic linear dynamical systems, which
include popular stochastic algorithms for optimization such as Oja’s algorithm for streaming principal
component analysis [28] and the randomized Kaczmarz method for solving linear systems [36]. To
understand the detailed behavior of these algorithms, such as the rate of convergence, we may seek
out methods for studying a product of random matrices.

Unfortunately, the tools currently available in the literature are poorly adapted to these circum-
stances. Indeed, an instantiation of a stochastic optimization algorithm involves a finite product
of finite-dimensional matrices, often with a particular structure (e.g., low-rank perturbations of the
identity). But most existing theoretical results are limit laws that require the number of factors in the
product or the dimension of the factors to tend to infinity. Furthermore, strong assumptions on the
random matrices (e.g., independent and identically distributed entries) are usually required.

This paper offers some new tools for studying random matrix products that arise from stochastic
optimization algorithms and related problems. The research is inspired by the recent paper [19] of
Henriksen and Ward. Our hope is to replicate the successful program for studying sums of random
matrices, implemented in the works [1, 29, 38, 39, 40, 41]. In particular, we seek to develop methods
that are flexible, easy to use, and powerful [42]. We also aspire to use transparent theoretical
arguments that can be adapted easily to new situations.

2. Contributions

To motivate our work, we start with an elementary concentration inequality for a product of
independent random numbers. We will generalize this bound, and others, to the matrix setting.

2.1. Context: A Product of RandomNumbers Near 1. Consider an independent family {X1, X2, . . . } ⊂
R of bounded random variables that satisfy

E Xi = µ and |Xi − µ |2 ≤ b2 almost surely.
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Form a product of random perturbations of 1, and compute its mean:

Zn :=
∏n

i=1

(

1 +
Xi

n

)

and E Zn =

(

1 +
µ

n

)n

= eµ · (1 − O(n−1)).

We anticipate that the random product Zn concentrates around its expectation E Zn ≈ eµ.
To check this surmise, we can use standard methods from scalar concentration theory. For s > 0,

P {Zn ≥ (1 + s) eµ} = P

{

∏n

i=1

(

1 +
Xi

n

)

≥ (1 + s) eµ
}

≤ P

{

exp

(

1

n

∑n

i=1
Xi

)

≥ (1 + s) eµ
}

= P

{

1

n

∑n

i=1
(Xi − E Xi) ≥ log(1 + s)

}

.

The inequality follows from the numerical fact 1 + a ≤ ea, valid for a ∈ R. Hoeffding’s inequality
furnishes the bound

P {Zn ≥ (1 + s) eµ} ≤ exp

(

−n log2(1 + s)
2b2

)

. (2.1)

At the small scale s ≤ e, in which case log(1 + s) ≥ s/e, the growth bound (2.1) implies a subgaussian
tail behavior:

P {Zn − E Zn ≥ t eµ} ≤ P {Zn − eµ ≥ t eµ} ≤ exp

(

−nt2
2e2b2

)

for t ≤ e. (2.2)

A similar inequality holds for the lower tail.

2.2. A Product of Random Perturbations of the Identity. We might hope that products of random
matrices exhibit a similar behavior. Consider an independent family {X1, . . . , Xn} ⊂ Md of d × d

matrices that satisfy

E Xi = A and ‖Xi − E Xi‖2 ≤ b2 almost surely. (2.3)

Here are elsewhere, ‖·‖ is the spectral norm, that is, the ℓ2 operator norm. Form a product of random
perturbations of the identity and compute its mean:

Zn =

(

I +
Xn

n

)

· · ·
(

I +
X1

n

)

and E Zn =

(

I +
A

n

)n

≈ eA. (2.4)

Is it true that the spectral norm ‖Zn‖ is proportional to eµ, where µ = ‖A‖? Does the random product
Zn concentrate near its mean E Zn?

These speculations are correct. Moreover, we can obtain bounds that parallel the scalar inequalities
announced in the last subsection. Here is one particular result that follows from our analysis.

Theorem I (Products of Perturbations of the Identity—Special case). Consider an independent family

{X1, . . . , Xn} ⊂ Md of random matrices that satisfy the hypotheses (2.3). Define µ := ‖A‖. The matrix

product Zn introduced in (2.4) satisfies the bounds

P {‖Zn‖ ≥ (1 + s) eµ} ≤ d · exp
(

−n log2(1 + s)
2b2

)

when log(1 + s) ≥ 2b2/n;

P {‖Zn − E Zn‖ ≥ teµ} ≤ (d + e) · exp
(

−nt2
2e2b2

)

when t ≤ e.

Theorem I follows from Corollary 6.1.
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As compared with the scalar bounds (2.1) and (2.2), the results in Theorem I feature an additional
dimensional factor d in front of the exponential. This term leads to a dependency of log d in the
bounds for products of random matrices. Otherwise, everything is the same, including the constants.

2.3. Proof Strategy. Howmight one establish a result like Theorem I? The derivation in Section 2.1 is
valid only for products of random scalars. We cannot even begin to make this argument for matrices
because the exponential of a sum of matrices generally does not equal the product of the exponentials.

In this paper, we take a completely different approach. The key is to observe that multiplying a
random product Z ∈ Md by a statistically independent factor Y ∈ Md creates a predictable change
plus a random perturbation:

YZ = (EY)Z + (Y − EY)Z.
Since the second term has zero mean, conditional on Z, we can exploit this orthogonality property to
estimate the size of the product:

E ‖YZ‖22 = E ‖(EY)Z‖22 + E ‖(Y − EY)Z‖22
≤

(

‖EY ‖2 + E ‖Y − EY ‖2
) (

E ‖Z‖22
)

=: (1 + v )m ·
(

E ‖Z‖22
)

The notation ‖·‖2 refers to the Schatten 2-norm, also known as the Frobenius norm. The last
step introduces data about the random matrix Y : the mean m = ‖EY ‖ and the relative variance
v = E ‖Y − EY ‖2 /‖EY ‖2. We can apply the same argument recursively to decompose the matrix Z

into its own factors.
The approach in the last paragraph depends on the fact that ‖·‖2 is the norm induced by the trace

inner product. To undertake the same action for the spectral norm ‖·‖, we first need to approximate
the spectral norm by the Schatten p-norm for p ≈ log d. Then we can invoke a remarkable geometric
property of the Schatten p-norm, called uniform smoothness, as a substitute for the orthogonality law.
See the paper [26] for an introduction to this circle of ideas. Section 4 executes this method.

2.4. Additional Results. We establish a family of norm inequalities for products of random matrices.
The main result, Theorem 5.1, gives a bound for the moments of a Schatten p-norm of a random
product and a centered random product. From this fact, we derive expectation bounds, tail bounds,
and matrix concentration inequalities. Many of these results hold under weaker assumptions than
Theorem I, addressing cases where the matrices have different means or are unbounded.

To give a better indication of what we can prove, let us give an informal presentation of one of our
main results, Corollary 5.4. The statement concerns a general product Zn = Yn · · ·Y1 of independent
random matrices of dimension d. Abbreviating p = 1 + 2 log d, we have the inequality

E ‖Zn − E Zn‖ ≤ e
√
pv

∏n

i=1
‖EYi‖ when v :=

∑n

i=1

E ‖Yi − EYi‖2

‖EYi‖2
≤ 1

p
.

We can interpret v as the accumulated relative variance in the product.
For example, in the setting of Theorem I, the quantity v = O(b2/n). It follows that

E ‖Zn − E Zn‖ = O

(
√

pb2

n
‖E Zn‖

)

. (2.5)

In particular, ‖Zn‖ is much closer to eµ than to the worst-case bound eb.

2.5. Roadmap. We continue with an overview of related work in Section 3. Section 4 presents
background results from matrix theory and high-dimensional probability. We establish our main
results for general matrix products in Section 5. Afterward, Section 6 draws corollaries for a product
of perturbations of the identity. Finally, we describe some refinements and extensions in Section 7.
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3. Related Work

Products of random matrices have been studied for decades, primarily within the fields of ergodic
theory, control theory, random matrix theory, and free probability. More recently, applied mathemati-
cians have developed results that are tailored to problems arising in data science. Almost all prior
work is either asymptotic in the length of the product or asymptotic in the dimension of the matrices.
This section contains an overview of these inquiries.

3.1. Direct Connections. The most immediate precedent for our research is the recent paper of
Henriksen andWard [19]. Theyweremotivated by the problem of understanding streaming algorithms
for covariance estimation. Their work gives, perhaps, the first explicit nonasymptotic bounds for a
somewhat general product of random matrices with fixed dimension. The argument is based on the
matrix Bernstein inequality and a combinatorial fact about set partitions.

Henriksen and Ward focus on the setting of Theorem I, and they establish a bound of the form

E ‖Zn − E Zn‖ ≤ beb

√
n
· polylog(n, d).

In contrast, our new result (2.5) replaces the worst-case factor eb with the more typical value eµ. We
are also able to relax several of the assumptions in [19].

Also in the setting of Theorem I, several works obtain results on the asymptotic behavior of Zn.
Berger [8] establishes, via a semigroup argument based on the Chernoff product formula, that Zn → eA

in probability as n → ∞. Emme and Hubert [13] recently obtained a refinement of this result:
motivated by a problem in ergodic theory, they show that Zn → eA as n → ∞ under the sole
assumptions that

∑n
i=1 Xi/n → A and

∑n
i=1 ‖Xi‖/n < ∞. Their argument expands the product

and computes the limit of the kth order term using an induction. Neither approach readily yields
nonasymptotic bounds.

3.2. Other Recent Applications. Some applied work on random matrix products has been driven
by the empirical observation that stochastic gradient descent converges faster when the gradient
approximations are sampled without replacement, rather than sampled with replacement. Some
papers that investigate this question from the point of view of (nonasymptotic) matrix inequalities in-
clude [32, 20, 2]. This specific problem has been solved by Gürbüzbalaban et al. [17] using optimization
theory. However, none of these results directly address the questions at hand.

Researchers studying randomly initialized deep neural networks have also developed theoretical
analysis for products of random matrices; see [18, 46]. These results involve operations on matrices
with independent entries, and they focus on the large-matrix limit.

3.3. Ergodic Theory and Control Theory. Products of random matrices describe the evolution of a
linear stochastic dynamical system. For this reason, they have been a subject of perennial interest
within the literatures on ergodic theory and on control theory. For the most part, this research is
concerned with properties of the asymptotics of infinite products of matrices (of fixed size). Let us
give a few more details.

Consider a finite family A = {A1, . . . , As} ⊂ Md of fixed matrices. Construct a random matrix
X ∈ Md with the distribution

P {X = Ai} =
1

s
for each i = 1, . . . , s.

The Lyapunov exponent of the set A is the quantity

λ(A) := lim
n→∞

1

n
log ‖Xn · · · X1‖ where Xi ∼ X iid.
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The Furstenberg–Kesten theorem [15] establishes that λ(A) exists almost surely, but approximating
λ(A) is algorithmically undecidable [43, Thm. 2]. As a consequence, we must be pessimistic about
finding a completely satisfactory solution to the matrix concentration problem for products.

To learn more about Lyapunov exponents and to find additional references, see the paper [3] for
work in control theory and the paper [45] for work in ergodic theory. Another major application of
random products is to study the asymptotic behavior of a random walk on a group; we refer the reader
to [23, 14, 7] for more information.

3.4. Random Matrix Theory and Free Probability. Products of random matrices have also been
considered within random matrix theory and free probability. This connection is natural, but matrix
products have received somewhat less attention than other kinds of random matrix models. In these
contexts, it is common to study a product of a small number of matrices (two or three, say) in the
limit as the dimension of the matrices grows.

Bai and Silverstein [4, Chap. 4] present a limit law for the sequence of products of a random
matrix with iid entries and a random matrix whose spectral distribution has a deterministic limit. This
theorem is motivated by a statistical application, multivariate analysis of variance. Note, however,
that convergence of the spectral distribution does not determine the limit of the spectral norm.

Free probability gives a complete description of the spectral distribution of a product of two freely
independent elements as the “multiplicative free convolution” of the spectral distributions of the
factors. The connection to random matrix theory stems from the fact that a family of “adequately
random” matrices becomes freely independent in the limit as the dimension of the matrices tends to
infinity. See the book of Nica & Speicher [27] for a digestible introduction; some other good treatments
include [31, 34, 35]. Free probability has significant applications in wireless communications [44].

For highly structured random matrices (invariant ensembles), it may be possible to obtain more
detailed formulas for products. See [21, 12] for some recent work in this direction.

4. Random Matrix Inequalities via Uniform Smoothness

To analyze products of random matrices, we exploit classic methods that were developed to study
the evolution of a martingale taking values in a uniformly smooth Banach space. These ideas are
relevant for us because the matrix Schatten classes (with power 2 ≤ p < ∞) enjoy a remarkable
uniform smoothness property.

In this section, we outline the required background from matrix analysis and high-dimensional
probability. Naor’s tutorial paper [26] serves as a model for our presentation, and it contains a more
general treatment. See Section 4.6 for additional discussion about the history of these ideas.

4.1. Notation and Background. We work in the complex field C; identical results hold for the real
field R. We often use the infix notation for the minimum (∧) and the maximum (∨) of two real
numbers.

The operator P computes the probability on an event. The operator E computes the expectation of
a random variable. Subscripts denote partial expectation; for example, EZ is the expectation over the
randomness in Z. Nonlinear functions, such as powers, bind before the expectation.

The linear space C
d×r contains all d × r matrices with complex entries. The algebra Md consists

of all d × d matrices with complex entries. We use the standard definitions of scalar multiplication,
matrix addition, matrix multiplication, and the adjoint (i.e., conjugate transpose). Any statement
about matrices that is not qualified with specific dimensions holds for all matrices with compatible
dimensions. Nonlinear functions, such as matrix powers, bind before the trace. The matrix absolute
value |A| := (A∗A)1/2, where (·)1/2 is the positive-semidefinite square root of a positive-semidefinite
matrix.



6 HUANG ET AL.

We write ‖·‖ for the spectral norm on matrices; the spectral norm coincides with the maximum
singular value, and it is also known as the ℓ2 operator norm. For each p ≥ 1, the symbol ‖·‖p refers
to the Schatten p-norm which returns the ℓp norm of the singular values of its argument. The symbol
Sp refers to a linear space of matrices (of fixed dimension), equipped with the Schatten p-norm.

For parameters p, q ≥ 1, we define the Lq(Sp) norm of a random matrix X as

|||X |||p,q := ‖X‖Lq(Sp) :=
(

E ‖X‖qp
)1/q
.

The Lq(Sp) norm is an operator ideal norm, in the sense that

|||AX |||p,q ≤ ‖A‖ · |||X |||p,q for fixed A and random X. (4.1)

This statement follows instantly from the analogous property of the Schatten p-norm.
We sometimes use the following simple inequalities for the moments of a random matrix X:

E ‖X‖ ≤ inf
p≥1

E ‖X‖p = inf
p,q≥1

|||X |||p,q. (4.2)

The equality follows from Lyapunov’s inequality, combined with the fact that |||X |||p,1 = E ‖X‖p for all
p ≥ 1.

4.2. Uniform Smoothness for Matrices. Uniform smoothness ¹ is a property of a normed space
that describes how much the norm of a point changes under symmetric perturbation. Since the
Schatten-2 space S2 is an inner-product space, the parallelogram law gives an exact description of this
phenomenon:

1

2

[

‖X + Y ‖22 + ‖X − Y ‖22
]

= ‖X‖22 + ‖Y ‖22 .
Remarkably, in other Schatten classes, the parallelogram law is replaced by an inequality.

Fact 4.1 (Uniform Smoothness for Schatten Classes). Let A, B be matrices of the same size. For p ≥ 2,
[

1

2

(

‖A + B‖pp + ‖A − B‖pp
)

]2/p
≤ ‖A‖2p + Cp ‖B‖2p . (4.3)

The optimal constant Cp := p − 1. The inequality is reversed when 1 ≤ p ≤ 2.

Fact 4.1 was first established by Tomczak-Jaegermann [37]; she obtained the sharp constant Cp

when p is an even number. Ball, Carlen, and Lieb [5, Thm. 1] determined that Cp is the optimal
constant for all values of p. Throughout the paper, we will continue to write Cp = p − 1.

4.3. Uniform Smoothness for Random Matrices. Much as the Schatten class Sp of matrices enjoys a
uniform smoothness property, the normed space Lq(Sp) of random matrices is also uniformly smooth.
When 2 ≤ q ≤ p, this statement follows as an easy consequence of Fact 4.1.

Corollary 4.2 (Uniform Smoothness for Random Matrices). Let X, Y be random matrices of the same

size. When 2 ≤ q ≤ p,
[

1

2

(

|||X + Y |||qp,q + |||X − Y |||qp,q
)

]2/q
≤ |||X |||2p,q + Cp |||Y |||2p,q.

Proof. Apply Lyapunov’s inequality to the left-hand side of (4.3) to pass from the pth power to the qth
power, and then transfer the exponent to the right-hand side to obtain the pointwise bound

1

2

(

‖X + Y ‖qp + ‖X − Y ‖qp
)

≤
[

‖X‖2p + Cp ‖Y ‖2p
]q/2
.

¹More precisely, we are considering uniformly smooth spaces whose modulus of smoothness has power type 2.



MATRIX CONCENTRATION FOR PRODUCTS 7

Take the expectation, and use the triangle inequality for the Lq/2 norm:

1

2

(

E ‖X + Y ‖qp + E ‖X − Y ‖qp
)

≤
[

(

E ‖X‖qp
)2/q
+ Cp

(

E ‖Y ‖qp
)2/q

]q/2
.

Reinterpret the latter display using the Lq(Sp) norm |||·|||p,q. �

4.4. Subquadratic Averages for Random Matrices. Corollary 4.2 admits a powerful extension that
controls how the norm of a matrix changes if we add a random matrix that has zero mean. This result
is the main tool that we employ in our study of random products.

Proposition 4.3 (Subquadratic Averages). Consider random matrices X, Y of the same size that satisfy

E[Y |X] = 0. When 2 ≤ q ≤ p,

|||X + Y |||2p,q ≤ |||X |||2p,q + Cp |||Y |||2p,q.
The constant Cp = p − 1 is the best possible.

Ricard and Xu [33] obtained a version of Proposition 4.3 in the more general setting of a von
Neumann algebra. In their work, the expectation implicit in the Lq norm is replaced by the projection
onto a subalgebra. They emphasize that the key feature of their work is the determination of the
sharp constant.

Here, we offer a very short proof of Proposition 4.3 with a suboptimal constant. The method is
drawn from Naor’s paper [26]. Lemma A.1, in the appendix, unspools an elementary argument that
delivers the sharp constant.

Proof. By Jensen’s inequality, applied conditionally on X,

1

2

(

|||X + Y |||2p,q + |||X |||2p,q
)

≤ 1

2

(

|||X + Y |||2p,q + |||X − Y |||2p,q
)

≤
[

1

2

(

|||X + Y |||qp,q + |||X − Y |||qp,q
)

]2/q
≤ |||X |||2p,q + Cp |||Y |||2p,q.

The second inequality is Lyapunov’s; the third is Corollary 4.2. Upon rearranging, we find that

|||X + Y |||2p,q ≤ |||X |||2p,q + 2Cp |||Y |||2p,q. (4.4)

This is the stated result, with a spurious factor of 2. �

4.5. Matrix-Valued Martingales. To demonstrate the value of Proposition 4.3, let us explain how it
leads to moment bounds for a matrix-valued martingale sequence. Consider a null matrix martingale
{X1, . . . , Xn} ⊂ Md with difference sequence {∆1, . . . , ∆n} ⊂ Md . That is,

X0 = 0 and Xi = Xi−1 + ∆i where E[∆i |X0, . . . , Xi−1] = 0 for i = 1, . . . , n.

Applying Proposition 4.3 repeatedly, we arrive at the bound

|||Xn |||2p,q ≤ Cp

∑n

i=1
|||∆i |||2p,q. (4.5)

In words, the squared norm of the martingale is controlled by the sum of the squares of the norms of
the martingale differences. The inequality (4.5) is a powerful extension of the orthogonality of the
increments of a martingale taking values in an inner-product space, say S2. The uniform smoothness
constant Cp shows how the geometry of the matrix space intermediates.

In this work, we will develop bounds for random matrix products by applying a similar technique
to appropriately chosen decompositions of the product.
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4.6. History. The approach in this section has a long history. Let us summarize the contributions that
are most relevant to our development.

For real numbers, the (sharp) uniform smoothness property in Fact 4.1 is known as the two-point

inequality; it was established independently by Leonard Gross [16] and Aline Bonami [10] in the early
1970s, with later contributions by William Beckner [6]. In 1974, the uniform smoothness property
for the Schatten classes was obtained by Nicole Tomczak-Jaegermann [37]. It took another 20 years
before Ball, Carlen, and Lieb [5] obtained the sharp uniform smoothness constants for all Schatten
classes. The property dual to uniform smoothness is called uniform convexity. See [5] for a detailed
exposition.

Tomczak-Jaegermann [37, Thm. 3.1] also demonstrated that Rademacher averages are subquadratic
in each Schatten space Sp with p ≥ 2; that is, the Banach space Sp is type 2 [22]. This fact is a prototype
for the more general result stated in Proposition 4.3. Tropp [39, Sec. 4.8] points out that parts of
the Ahlswede–Winter [1, App.] theory of sums of independent random matrices already follow from
Tomczak-Jaegermann’s work. (In contrast, Tropp’s matrix concentration inequalities [39] are more
closely related to a fact from operator theory, the noncommutative Khintchine inequality of Françoise
Lust-Piquard [25]; Tropp’s results are derived using a theorem [24, Thm. 6] of Elliot Lieb.)

Assaf Naor [26] traces the application of uniform convexity inequalities in the study of martingales
to a 1975 paper of Gilles Pisier [30]. Naor [26] gives a nice introduction to this circle of ideas, which he
uses to derive a general version of the Azuma inequality that holds in any uniformly smooth Banach
space.

At least as early as 1988, Donald Burkholder [11] applied closely related convexity inequalities to
derive sharp inequalities for martingales taking values in a Hilbert space. The paper [33] of Éric Ricard
and Quanhua Xu is a recent entry in this line of research.

5. A Product of Independent Random Matrices

In this section, we obtain our main results on the growth and concentration of a product of
independent random matrices. Section 5.1 shows how to decompose a random product into pieces
that we can control using a recursive argument. Based on these ideas, we derive Theorem 5.1, a
general bound on the moments of the norm of the matrix product. The moment estimate leads to a
family of expectation bounds (Corollary 5.4) and probability bounds (Corollary 5.6).

The balance of the paper contains applications of these results (Section 6) and extensions of the
method to other settings (Section 7).

5.1. Decomposition of Random Products. Our approach is based on a recursive argument that
describes how the product evolves as we include more factors. At each step, we decompose the
product into a nonrandom term and a random term with mean zero. This formulation allows us to
apply Proposition 4.3 on subquadratic averages.

Consider a fixed matrix Z0 ∈ Md and an independent family {Y1, Y2, . . . , Yn} ⊂ Md of random
matrices. We can recursively construct products of these random matrices:

Zi = YiZi−1 for i = 1, . . . , n.

Evidently, the last element of the sequence takes the form Zn = Yn · · ·Y1Z0. By independence,
E Zn = (EYn) · · · (EY1)Z0.

The random product Zi admits a simple decomposition into a mean term and a fluctuation term:

Zi = YiZi−1 = (EYi)Zi−1 + (Yi − EYi)Zi−1 for each i = 1, . . . , n. (5.1)

Since Yi is independent from Zi−1, the second term is conditionally zero mean:

E[(Yi − EYi)Zi−1 |Zi−1] = 0. (5.2)
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The property (5.2) supports the use of Proposition 4.3. It is also helpful to have an explicit norm
bound for the random fluctuation term:

|||(Yi − EYi)Zi−1 |||p,q ≤
(

E ‖Yi − EYi‖q · E ‖Zi−1‖qp
)1/q
= (E ‖Yi − EYi‖q)1/q |||Zi |||p,q. (5.3)

The first relation follows from the operator ideal property of the Schatten p-norm and the statistical
independence of the random matrices Yi and Zi−1.

We can study the concentration properties of the product Zi using a related decomposition:

Zi − E Zi = YiZi−1 − (EYi)(E Zi−1) = (EYi)(Zi−1 − E Zi−1) + (Yi − EYi)Zi−1. (5.4)

As in (5.2), the second term is a fluctuation that is conditionally zero mean. The fluctuation term
satisfies the norm bound (5.3).

5.2. Growth and Concentration. Our main result controls the growth of the moments of a product
of independent random matrices. It also describes how well the random product concentrates around
its expectation.

Theorem 5.1 (Growth and Concentration of Products). Consider a fixed matrix Z0 ∈ C
d×r and an

independent family {Y1, Y2, . . . , Yn} ⊂ Md of random matrices. Form the product

Zn = YnYn−1 · · ·Y2Y1Z0 ∈ C
d×r .

For parameters 2 ≤ q ≤ p, assume that

‖EYi‖ ≤ mi and
(

E ‖Yi − EYi‖q
)1/q ≤ σimi for i = 1, . . . , n.

Define the product of means and the accumulated relative variance

M =
∏n

i=1
mi and v =

∑n

i=1
σ2

i .

Then the random product Zn satisfies the growth bound and the concentration bound

|||Zn |||p,q ≤ eCpv/2 ‖Z0‖p · M; (5.5)

|||Zn − E Zn |||p,q ≤
(

eCpv − 1
)1/2 ‖Z0‖p · M. (5.6)

Proof of Theorem 5.1, relation (5.5). By the homogeneity of (5.5), we may assume that mi = 1 for each
index i, so that also M = 1. As in (5.1), we have the decomposition

Zi := YiZi−1 = (EYi)Zi−1 + (Yi − EYi)Zi−1 for each i = 1, . . . , n.

Now, Proposition 4.3 implies that

|||Zi |||2p,q ≤ |||(EYi)Zi−1 |||2p,q + Cp · |||(Yi − EYi)Zi−1 |||2p,q
≤ ‖EYi‖2 · |||Zi−1 |||2p,q + Cp (E ‖Yi − EYi‖q)2/q · |||Zi−1 |||2p,q
≤ (1 + Cpσ

2
i ) · |||Zi−1 |||2p,q

≤ exp(Cpσ
2
i ) · |||Zi−1 |||2p,q.

The second line follows from (5.3), and the third depends on our hypotheses about the factors Yi. The
last relation requires the numerical inequality 1 + a ≤ ea, valid for all a ∈ R. By iteration,

|||Zi |||2p,q ≤ exp
(

Cp

∑i

k=1
σ2

k

)

· ‖Z0‖2p . (5.7)

In the final step, we use the assumption that Z0 is not random to see that |||Z0 |||p,q = ‖Z0‖p. For i = n,
the formula (5.7) is the advertised result. �

Proof of Theorem 5.1, relation (5.6). The pattern of argument is similar with the proof of (5.5). By the
homogeneity of (5.6), we may assume that all mi = 1 and that M = 1. As in (5.4), we have the
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decomposition

Zi − E Zi = YiZi−1 − (EYi)(E Zi−1) = (EYi)(Zi−1 − E Zi−1) + (Yi − EYi)Zi−1.

Again, we invoke Proposition 4.3 to ascertain that

|||Zi − E Zi |||2p,q ≤ |||(EYi)(Zi−1 − E Zi−1)|||2p,q + Cp · |||(Yi − EYi)Zi−1 |||2p,q
≤ |||Zi−1 − E Zi−1 |||2p,q + Cpσ

2
i · |||Zi−1 |||2p,q

≤ |||Zi−1 − E Zi−1 |||2p,q + Cpσ
2
i exp

(
∑i−1

k=1
Cpσ

2
i

)

· ‖Z0‖2p .

The last inequality is our growth bound (5.7). This recurrence relation delivers

|||Zn − E Zn |||2p,q ≤ |||Z0 − E Z0 |||2p,q +
[
∑n

i=1
Cpσ

2
i exp

(
∑i−1

k=1
Cpσ

2

k

)]

· ‖Z0‖2p

=

[
∑n

i=1
Cpσ

2
i exp

(
∑i−1

k=1
Cpσ

2

k

) ]

· ‖Z0‖2p

≤
[

exp

(
∑n

i=1
Cpσ

2
i

)

− 1

]

· ‖Z0‖2p .

The equality holds because Z0 is not random. The last relation is a numerical inequality, whose proof
appears in Lemma A.2. �

Observe that the difference between the bounds (5.5) and (5.6) is only visible when Cpv is small,
in which case

eCpv/2 ≈ 1 and
(

eCpv − 1
)1/2 ≈

√

Cpv . (5.8)

This is the setting where the concentration result may be nontrivial.
The next two remarks contain some minor extensions of Theorem 5.1. Similar extensions are

possible at other points in this paper. For the most part, we omit these developments.

Remark 5.2 (Growth from Concentration). In some instances, we can improve over the growth
bound (5.5) by applying the triangle inequality to the decomposition Zn = (E Zn) + (Zn − E Zn) and
invoking the concentration bound (5.6):

|||Zn |||p,q ≤ ‖E Zn‖p +
(

eCpv − 1
)1/2 ‖Z0‖p · M.

Similarly, we can apply Proposition 4.3 together with (5.6) to obtain

|||Zn |||2p,q ≤ ‖E Zn‖2p + Cp

(

eCpv − 1
)

‖Z0‖2p · M2.

Neither of these bounds represents a strict improvement over the other or over the growth bound (5.5).

Remark 5.3 (Uniform Bounds on Factors). Potentially stronger estimates are possible if the factors
are bounded in norm. Fix parameters 2 ≤ q ≤ p. Suppose that ‖Yi‖ ≤ bi almost surely and
|||Yi − EYi |||p,q ≤ σibi for each index i. Define B =

∏n
i=1 bi and v =

∑n
i=1 σ

2
i
. Then

|||Zn |||p,q ≤ ‖Z0‖p · B; (5.9)

|||Zn − E Zn |||p,q ≤
√

Cpv ‖Z0‖p · B. (5.10)

Compare these results with (5.5), (5.6), and (5.8). As for the proof, the growth bound (5.9) is an
immediate consequence of the definition Zn = Yn · · ·Y1Z0. The concentration result (5.10) follows if
we repeat the proof of (5.6), using the growth bound (5.9) in place of (5.5).

5.3. Expectation Bounds for the Spectral Norm. In many cases, we just need to know the expected
value of the product ‖Zn‖ or the expected value of the fluctuation ‖Zn − E Zn‖. We can obtain bounds
for these quantities as an easy consequence of Theorem 5.1.
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Corollary 5.4 (Expectation Bounds). Consider an independent sequence {Y1, . . . , Yn} ⊂ Md of random

matrices, and form the product Zn = Yn · · ·Y1. Assume that

‖EYi‖ ≤ mi and
(

E ‖Yi − EYi‖2
)1/2 ≤ σimi for i = 1, . . . , n.

Let M =
∏n

i=1 mi and v =
∑n

i=1 σ
2
i
. Then

E ‖Zn‖ ≤ exp

(

√

2v (2v ∨ log d)
)

· M. (5.11)

Provided that v (1 + 2 log d) ≤ 1, then also

E ‖Zn − E Zn‖ ≤
√

e2v (1 + 2 log d) · M. (5.12)

Proof. To apply Theorem 5.1, we set Z0 = I and choose the power q = 2.
To obtain the growth bound (5.11), consider the Schatten norm of order p =

√

2(2v ∨ log d)/v .
Note that p ≥ 2 and that ‖Z0‖p ≤ d1/p ≤ epv/2. Invoke Theorem 5.1, relation (5.5), to see that

E ‖Zn‖ ≤ |||Zn |||p,2 ≤ eCpv/2 ‖Z0‖p · M ≤ epv/2 · epv/2 · M = epv · M.
We used the fact that Cp = p − 1 < p. This is the stated result.

To obtain the concentration bound (5.12), consider the Schatten norm p = 2(1 + log d). Note that
p ≥ 2 and that ‖Z0‖p ≤ d1/p ≤

√
e. Now, we use Theorem 5.1, relation (5.6), in a similar fashion.

Assuming that Cpv ≤ 1,

E ‖Zn − E Zn‖ ≤ |||Zn − E Zn |||p,2 ≤
(

eCpv − 1
)1/2 ‖Z0‖p · M ≤ e

√

Cpv · M.
The last bound is the numerical inequality ea − 1 ≤ ea, valid when a ∈ [0, 1]. Finally, note that
Cp = p − 1 = 1 + 2 log d. �

The inequality (5.11) shows its power when eachσi is small. Assume that eachmi = 1 andσi ≤ b/n
for a constant b. Then it is not hard to check that

‖E Zn‖ ≤ 1 and ‖Zn‖ ≤ (1 + (b/n))n ≤ eb.

If L
√

(2 log d)/n is close to zero, then (5.11) implies

E ‖Zn‖ ≤ eb
√
(2 log d)/n ≈ 1.

That is, E ‖Zn‖ is much closer to ‖E Zn‖ than to the worst-case value eb.

Remark 5.5 (Uniform Bounds on Factors). Fix p ≥ 2. Assume that ‖Yi‖ ≤ bi almost surely and
|||Yi − EYi |||p,2 ≤ σibi for each i. Let v =

∑n
i=1 σ

2
i
and B =

∏n
i=1 bi. Then Remark 5.3 implies that

E ‖Zn − E Zn‖ ≤
√

ev (1 + 2 log d)B.
This improves the constant in (5.12) by a factor of

√
e, and it removes the condition thatv (1+2 log d) ≤

1.

5.4. Tail Bounds for the Spectral Norm. The moment bounds in Theorem 5.1 can also be upgraded
to obtain tail bounds for ‖Zn‖ and ‖Zn − E Zn‖.
Corollary 5.6 (Tail Bounds). Consider an independent sequence {Y1, . . . , Yn} ⊂ Md of randommatrices,

and form the product Zn = Yn · · ·Y1. Assume that

‖EYi‖ ≤ mi and ‖Yi − EYi‖ ≤ σimi almost surely for i = 1, . . . , n.

Let M =
∏n

i=1 mi and v =
∑n

i=1 σ
2
i
. Then

P {‖Zn‖ ≥ tM} ≤ d · exp
(

− log2 t

2v

)

when log t ≥ 2v . (5.13)
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Furthermore,

P {‖Zn − E Zn‖ ≥ tM} ≤ (d ∨ e) · exp
(

−t2
2e2v

)

when t ≤ e. (5.14)

Proof. We begin with the proof of (5.13). By homogeneity, we may assume that mi = 1 for each i, so
also M = 1. Apply Markov’s inequality and (4.2) to obtain

P {‖Zn‖ ≥ t} ≤ inf
p≥2

t−p · E ‖Zn‖p ≤ inf
p≥2

t−p · |||Zn |||pp, p.

To bound the Lp(Sp) norm, we will use Theorem 5.1 with Z0 = I and with q = p. Relation (5.5) gives

t−p · |||Zn |||pp, p ≤ t−p · epCpv/2 ‖Z0‖pp = d ·
(

t−2eCpv
) p/2
.

We have used the fact that ‖Z0‖pp = ‖I‖pp = d. Under the assumption that log t ≥ 2v , we may select
p = (log t)/v ≥ 2. This choice yields

d ·
(

t−2epv
) p/2
= d · exp

(

− log2 t

2v

)

.

Sequence the last three displays to arrive at the bound (5.13).
We establish (5.14) in an analogous fashion. The same argument, using relation (5.6), implies that

P {‖Zn − E Zn‖ ≥ t} ≤ inf
p≥2

d ·
[

t−2
(

eCpv − 1
)] p/2

.

Supposing that t2/(e2v ) < 2, the bound (5.14) holds trivially because e · exp(−t2/(2e2v )) ≥ 1.
Otherwise, we may select the parameter p = t2/(e2v ) ≥ 2. Under the assumption that t ≤ e,
Cpv ≤ pv ≤ (t/e)2 ≤ 1, so that eCpv − 1 ≤ eCpv ≤ t2/e. Therefore,

d ·
[

t−2
(

eCpv − 1
) ] p/2 ≤ d · e−p/2 = d · exp

(

−t2
2e2v

)

.

The last two displays imply (5.14). �

Remark 5.7 (Uniform Bounds on Factors). In the setting of Remark 5.5, we have an unconditional
variant of the concentration bound (5.14):

P {‖Zn − E Zn‖ ≥ t · B} ≤ (d ∨ e) · exp
(

−t2
2ev

)

for all t > 0.

6. Application: Random Perturbations of the Identity

This section treats the fundamental case where the factors Yi in the product are independent,
random perturbations of the identity. That is, Yi = I + Xi where {Xi} ⊂ Md is an independent family.
We will develop specialized theory for this class of problems, and we will use these results to compare
our work with several recent papers.

6.1. Iterative Algorithms. To motivate this development, observe that random perturbations of the
identity arise from the analysis of the iterative scheme

u
(i+1)
= u

(i)
+ Xiu

(i) for i = 1, 2, 3 . . . . (6.1)

where Xiu
(i) is a linear update to the current iterate u

(i). In this application, the norm of each Xi is
proportional to the step size of the scheme, so it is typically small and it is controlled by the user. For
example, the updates in Oja’s algorithm [28] take the form (6.1).
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For now, we do not permit the random matrix Xi to depend on the sequence {u(i)} of iterates. Later,
in Section 7.3, we describe an extension of our approach to the setting where {Xi} is an adapted
sequence. This variant allows for the study of a wider class of iterative algorithms.

6.2. Bounds for the Product. First, we develop bounds for the growth and concentration of a product
of perturbations of the identity. In Section 6.4, we develop results for the inverse of the product.

Corollary 6.1 (Perturbations of the Identity). Consider an independent family {X1, . . . , Xn} ⊂ Md of

random matrices, and form the product Zn = (I + Xn) · · · (I + X1). Assume that

‖E Xi‖ ≤ ξi and ‖Xi − E Xi‖ ≤ σi almost surely for i = 1, . . . , n.

Define ξ =
∑n

i=1 ξi and v =
∑n

i=1 σ
2
i
. Then

E ‖Zn‖ ≤ exp
(

ξ +
√

2v log d
)

when 2v ≤ log d;

E ‖Zn − E Zn‖ ≤ eξ+1
√

v (1 + 2 log d) when v (1 + 2 log d) ≤ 1.

Moreover,

P
{

‖Zn‖ ≥ teξ
}

≤ d · exp
(

− log2 t

2v

)

when log t ≥ 2v ;

P
{

‖Zn − E Zn‖ ≥ teξ
}

≤ (d ∨ e) · exp
(

−t2
2e2v

)

when t ≤ e.

Proof. Let Yi = I + Xi for each index i. Then

‖EYi‖ ≤ 1 + ‖E Xi‖ ≤ eξi =: mi.

Furthermore, since mi ≥ 1,

‖Yi − EYi‖ = ‖Xi − E Xi‖ ≤ σi ≤ σimi.

The results follow instantly from Corollary 5.4 and Corollary 5.6. �

6.3. Comparison with Prior Work. To clarify the meaning of Corollary 6.1, let us elaborate what it
predicts when

‖E Xi‖ ≤ T/n and ‖Xi − E Xi‖ ≤ L/n for constants T, L.

This situation can arise if we perform n iterations of the iterative scheme (6.1) with a uniform step
size of 1/n. In this setting, Corollary 6.1 implies that

E ‖Zn − E Zn‖ ≤
√

1 + 2 log d

n
Le1+T when L2(1 + 2 log d) ≤ n. (6.2)

For δ ∈ [0, 1], with probability at least 1 − δ,

‖Zn − E Zn‖ ≤
√

2 + 2 log(d/δ)
n

Le1+T when L2(2 + 2 log(d/δ)) ≤ n. (6.3)

Furthermore, if we assume that ‖Xi‖ ≤ T/n almost surely for each i, then Remark 5.5 implies that
(6.2) and (6.3) hold without restriction.

The paper [19] of Henriksen and Ward only contemplates the situation described in the last para-
graph. It obtains a concentration bound of the form

‖Zn − E Zn‖ ≤ LeL

√
n
· polylog(n, d, 1/δ) with probability at least 1 − δ.

The salient improvement in (6.3) stems from the reduction of the factor eL to eT . This difference is
most pronounced when E Xi = 0 for each i, in which case the bound (6.3) removes the exponential
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factor entirely. Even under the assumption that Xi < 0 for all each i, it can happen that L ≥ dT , so
this refinement can make a big difference.

Last, we mention one instance that has special importance. Let A ∈ Md be a fixed matrix. Consider
a triangular array {X(n)

i
: i ≤ n and n ∈ N} ⊂ Md of independent random matrices. For each index n,

assume that
E X

(n)
i
= A/n and ‖X(n)

i
− E X

(n)
i

‖ ≤ L/n for i = 1, . . . , n.

Define the product
Z
(n)
=

(

I + X
(n)
n

)

· · ·
(

I + X
(n)
1

)

.

By functional calculus,
E Z

(n)
= (I + A/n)n → eA as n → ∞.

The bound (6.3), combined with the first Borel–Cantelli Lemma, guarantees that

Z
(n) → eA as n → ∞, almost surely.

This result is a special case of the limit theorem of Emme and Hubert [13, Thm. 1.1]. They do
not require independence, but they only achieve an asymptotic result. Our analysis gives a rate of
convergence that matches the corresponding bound (2.2) for scalar random variables.

6.4. Bounds for the Inverse of a Product. In some applications, it is valuable to have a lower bound
for the minimum singular value of a random product. Equivalently, we can seek an upper bound for
the spectral norm of the inverse of the product. This section describes a situation where clean results
are possible.

Consider the case where the factors Yi are perturbations of the identity: Yi = I + Xi, where Xi is
small enough to ensure that Yi is invertible with probability 1. In this setting, we can easily study the
inverse of the product using Corollary 6.1.

Corollary 6.2 (Perturbations of the Identity: Inverses). Frame the same hypotheses as in Corollary 6.1.

Assume that ξi + σi < 1 for each index i, and define

ξ̄ =
∑n

i=1

[

ξi +
(ξi + σi)2

1 − (ξi + σi)

]

and v̄ =
∑n

i=1

[

σi +
2(ξi + σi)2
1 − (ξi + σi)

]2

.

Then

E





Z
−1
n





 ≤ exp

(

ξ̄ +
√

2v̄ log d

)

when 2v̄ ≤ log d;

E





Z
−1
n − E Z

−1
n





 ≤ eξ̄
√

e2v̄ (1 + 2 log d) when v̄ (1 + 2 log d) ≤ 1.

Proof. With the same notation as in Corollary 6.1, observe that Z−1n = (I + X1)−1 · · · (I + Xn)−1. This is
an independent product that can be bounded by applying the corollary. To do so, we simply need to
express (I + Xi)−1 = I + X̄i for suitable random matrices X̄i. The perturbation terms X̄i are obtained
from the calculation

(I + Xi)−1 = I +
∑∞

k=1
(−1)kXk

i = I − Xi + X
2
i (I + Xi)−1 =: I + X̄i.

It remains to develop estimates for the size of the perturbation.
The uniform bound ‖Xi‖ ≤ ‖E Xi‖ + ‖Xi − E Xi‖ ≤ ξi + σi < 1 implies that





(I + Xi)−1




 ≤
(

1 − ‖Xi‖
)−1 ≤ 1

1 − (ξi + σi)
.

Therefore, the norm of the expected perturbation satisfies





E X̄i





 ≤ ‖E Xi‖ +




E
[

X
2
i (I + Xi)−1

]



 ≤ ξi +
(ξi + σi)2

1 − (ξi + σi)
=: ξ̄i.
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The fluctuations of the perturbation satisfy





X̄i − E X̄i





 ≤ ‖Xi − E Xi‖ + 2




X
2
i (I + Xi)−1





 ≤ σi +
2(ξi + σi)2
1 − (ξi + σi)

=: σ̄i.

The results follow when we apply Corollary 6.1 with the random matrices X̄i in place of the Xi. �

7. Improvements and Extensions

The argument underlying Theorem 5.1 has several natural extensions. First, we develop sharper
results for products of random contractions. In Section 7.2, we derive better estimates for a matrix
product where the initial term is rectangular. In Section 7.3, we document the changes that are
necessary in case the factors in the product are not independent but form an adapted sequence. Last,
In Section 7.4, we explain how to develop a bound on the spectral radius of a product.

7.1. A Product of Contractions. Most of our results are designed for products of general random
matrices. In some circumstances, the factors in the product are contractions, matrices whose singular
values are bounded by one. For example, the randomized Kaczmarz algorithm [36] can be expressed
as the repeated application of random contractions. Other randomized linear fixed-point iterations
take a similar form. This section derives sharper estimates for this important setting.

Theorem 7.1 (Product of Contractions). Consider an independent family {Y1, . . . , Yn} ⊂ Md of random

contractions; that is, ‖Yi‖ ≤ 1. Form the random product Zn = Yn · · ·Y1. Assume that




E |Yi |2




 ≤ m2
i ≤ 1 and ‖Yi − EYi‖ ≤ σimi almost surely for i = 1, . . . , n.

Define M :=
∏n

i=1 mi and v :=
∑n

i=1 σ
2
i
. Then

E ‖Zn‖ ≤ 1 ∧ (
√
d · M); (7.1)

E ‖Zn − E Zn‖ ≤
√
dv · M. (7.2)

Furthermore, we have the tail bound

P {‖Zn − E Zn‖ ≥ t} ≤ dM2 · e−t2/(2ev ) when t2 ≥ 2ev . (7.3)

To prove this result, we require a lemma that isolates the influence of each factor in the product.
This step exploits the uniform bound on the singular values in an essential way.

Lemma 7.2 (Random Contractions). Let Y ∈ Md be a random contraction, and let Z ∈ Md be a random

matrix that is independent from Y . For 2 ≤ q ≤ p,

|||YZ |||p,q ≤




E |Y |2






1/p · |||Z |||p,q.
Proof. Write out the Lq(Sp) norm, and introduce matrix absolute values:

|||YZ |||qp,q = E ‖YZ‖qp = E

[

tr
(

Z
∗
Y
∗
YZ

) p/2
]q/p
= E

[

tr

(

|Z∗ | · |Y |2 · |Z∗ |
) p/2

]q/p
.

The last relation can be verified using polar factorizations. Apply the Araki–Lieb–Thirring inequality [9,
Thm. IX.2.20] to distribute the power onto the factors in the trace. We obtain

|||YZ |||qp,q ≤ E

[

tr
(

|Z∗ |p/2 · |Y |p · |Z∗ |p/2
) ]q/p

≤ EZ EY

[

tr
(

|Z∗ |p/2 · |Y |2 · |Z∗ |p/2
)]q/p

≤ EZ

[

tr

(

|Z∗ |p/2 ·
(

EY |Y |2
)

· |Z∗ |p/2
)]q/p

.
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The second inequality holds because a contraction satisfies |Y |p 4 |Y |2 for each p ≥ 2. The third
inequality is Jensen’s, justified because q/p ≤ 1. Bounding the matrix in the center by its norm,

|||YZ |||qp,q ≤




E |Y |2






q/p · E
[

tr |Z∗ |p
]q/p
=





E |Y |2






q/p · |||Z |||qp,q.
This completes the analysis. �

With this result at hand, Theorem 7.1 follows from familiar arguments.

Proof of Theorem 7.1. Define Z0 = I and Zi = YiZi−1 for each index i = 1, . . . , n. We begin with the
proof of (7.1). Since each factor is a contraction, it is clear that

E ‖Zn‖ ≤ E

∏n

k=1
‖Yk‖ ≤ 1.

To obtain a less trivial bound on the expectation, we apply Lemma 7.2 repeatedly. For p ≥ 2,

E ‖Zi‖ ≤ |||Zi |||p, p ≤
∏i

k=1





E |Yk |2






1/p · |||I|||p, p ≤ d1/p
∏i

k=1
m

2/p
k
. (7.4)

The statement (7.1) combines these two observations when we set i = n and p = 2.
Let us continue with the proof of (7.2), which is analogous to the argument in Theorem 5.1(5.6).

First, by expanding the inequality E |Yi − EYi |2 < 0, we see that 0 4 |EYi |2 4 E |Yi |2. As a
consequence,

‖EYi‖2 ≤




E |Yi |2




 ≤ m2
i .

For p ≥ 2, calculate that

|||Zi − E Zi |||2p, p ≤ |||(EYi)(Zi−1 − E Zi−1)|||2p, p + Cp · |||(Yi − EYi)Zi−1 |||2p, p
≤ m2

i · |||Zi−1 − E Zi−1 |||2p, p + Cpσ
2
i m

2
i · |||Zi−1 |||2p, p

≤ m
4/p
i

· |||Zi−1 − E Zi−1 |||2p, p + Cpσ
2
i · d2/p

∏i

k=1
m

4/p
k
.

The second inequality is Lemma 7.2, and the third inequality requires (7.4). We have also used the
fact that m2

i
≤ m

4/p
i

because mi ≤ 1. Unrolling the recursion,

|||Zn − E Zn |||2p, p ≤ Cpd
2/p

(
∏n

i=1
m

4/p
i

) (
∑n

i=1
σ2

i

)

= Cpd
2/pM4/pv . (7.5)

For p = 2, this result implies the advertised bound (7.2).
Finally, the tail inequality (7.3) follows from the estimate

P {‖Zn − E Zn‖ ≥ t} ≤ min
p≥2

t−p · |||Zn − E Zn |||pp, p ≤ (dM2) ·min
p≥2

( pv

t2

) p/2
.

The last inequality follows from (7.5) and Cp < p. Bound theminimumwith the power p = t2/(ev ) ≥ 2

to complete the argument. �

7.2. Low-Rank Products. So far, we have focused on the setting where the initial matrix Z0 = I. In
many applications, we are interested in the action of the random product Yn · · ·Y1 ∈ Md on a specific
matrix Z0 ∈ C

d×r with relatively few columns. In this case, the terms that the control the behavior of
the product may be significantly smaller. Here is an example of the kinds of results one can achieve.

Theorem 7.3 (Growth and Concentration of Low-Rank Products). Consider a fixed matrix Z0 ∈ C
d×r

and an independent sequence {Y1, . . . , Yn} ⊂ Md of randommatrices. Form the product Zn = Yn · · ·Y1Z0.

Assume that

‖EYi‖ ≤ mi and sup
P∈Pr

(

E ‖(Yi − EYi)P‖2
)1/2

≤ σimi for i = 1, . . . , n,
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where Pr ⊂ Md is the set of rank-r orthogonal projectors. Define M =
∏n

i=1 mi and v =
∑n

i=1 σ
2
i
. For

each p ≥ 2,

E ‖Zn‖ ≤ eCpv/2 · ‖Z0‖p · M.

E ‖Zn − E Zn‖ ≤
(

eCpv − 1
)1/2 · ‖Z0‖p · M.

Proof. Define Zi = YiZi−1 for each index i. Since Z0 ∈ C
d×r, the rank of each matrix Zi is at most

r. Thus, we can write Zi = PiZi, where Pi is a rank-r orthogonal projector that only depends on
Yi, . . . , Y1 and Z0. As a consequence,

|||(Yi − EYi)Zi−1 |||p,2 = |||(Yi − EYi)Pi−1Zi−1 |||p,2
≤

(

E
[

‖(Yi − EYi)Pi−1‖2 · ‖Zi−1‖2p
] )1/2

≤ sup
P∈Pr

(

E ‖(Yi − EYi)P‖2
)1/2 ·

(

E ‖Zi−1‖2p
)1/2 ≤ σimi · |||Zi−1 |||p,2.

We have used the fact that Yi is independent from Pi−1 and from Zi−1 to pass to the last line.
The rest of the proof runs along the same lines as the argument in Theorem 5.1, using the last

display in place of the bound (5.3). �

Let us offer a simple example to illustrate why Theorem 7.3 can produce better outcomes than
Theorem 5.1. Consider a random matrix X ∈ Md with the distribution P {X = e je j

∗} = d−1 for
each j = 1, . . . , d. As usual, e j ∈ C

d is the jth standard basis vector. Construct the random matrix
Y = I + εX, where ε is a Rademacher random variable that is independent from X. Clearly, EY = I.
For any rank-r orthogonal projector P,

E ‖(Y − EY)P‖2 = E ‖PX∗
XP‖ = 1

d

∑d

i=1
tr[Peie∗i P] =

1

d
tr P =

r

d
.

Therefore,

sup
P∈Pr

(

E ‖(Y − EY)P‖2
)1/2
=

√

r/d ≤ 1.

By contrast, E ‖Y − EY ‖2 = E ‖X‖2 = 1. When r ≪ d, this bound offers a significant improvement.
instead of the ambient dimension d.

7.3. Adapted Sequences. We can easily generalize our results on a product of independent random
matrices to a product of adapted random matrices. This kind of extension is valuable for studying
iterative algorithms where the choices made by the algorithm at a given step depend on the history of
the iteration.

Let (Ω, F, P) be a probability space, and let F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ F be a filtration. For each
index i = 1, . . . , n, we write Ei for the expectation conditioned on the σ-algebra Fi. The operator
E0 := E is the unconditional expectation.

We consider an adapted sequence {Y1, . . . , Yn} ⊂ Md of random matrices; that is, each Yi is mea-
surable with respect to Fi. The next result provides information about the growth and concentration
properties of the product Zn = Yn · · ·Y1. Note that the natural concentration result compares Zn with
a product of conditional expectations, rather than the expectation of the product.

Theorem 7.4 (Products of Adapted Random Matrices). Consider a fixed matrix Z0 ∈ Md and an

adapted sequence {Y1, . . . , Yn} ⊂ Md of random matrices. Form the products

Zn = Yn · · ·Y1Z0 and Fn = (En−1 Yn) · · · (E1 Y2)(E0 Y1)Z0.

Assume that

‖Ei−1 Yi‖ ≤ mi and ‖Yi − Ei−1 Yi‖ ≤ σimi almost surely for i = 1, . . . , n.
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Define M =
∏n

i=1 mi and v =
∑n

i=1 σ
2
i
. For 2 ≤ q ≤ p, the random product Zn satisfies the growth and

concentration bounds

|||Zn |||p,q ≤ eCpv/2 ‖Z0‖p · M; (7.6)

|||Zn − Fn |||p,q ≤
(

eCpv − 1
)1/2 ‖Z0‖p · M. (7.7)

Proof. Recursively construct the products

Zi = YiZi−1 and Fi = (Ei−1 Yi)Zi−1 for i = 1, . . . , n.

To bound the growth of Zi and the concentration of Zi − Fi, we simply need to update the argument
from Theorem 5.1.

To obtain (7.6), decompose

Zi = (Ei−1 Yi)Zi−1 + (Yi − Ei−1 Yi)Zi−1.

Since Ei−1 Yi and Zi−1 are both measurable with respect to Fi−1 and Ei−1(Yi −Ei−1 Yi) = 0, the obvious
variant of Proposition 4.3 implies that

|||Zi |||2p,q ≤ |||(Ei−1 Yi)Zi−1 |||2p,q + Cp |||(Yi − Ei−1 Yi)Zi−1 |||2p,q
≤ m2

i |||Zi−1 |||p,q + Cpm
2
i σ

2
i |||Zi−1 |||2p,q.

The second inequality follows from (4.1). This is the same recurrence we obtain in the proof of
Theorem 5.1, relation (5.5). The rest of the argument is the same.

To obtain (7.7), decompose

Zi − Fi = YiZi−1 − (Ei−1 Yi)Fi−1 = (Ei−1 Yi)(Zi−1 − Fi−1) + (Yi − Ei−1 Yi)Zi−1.

As before, Proposition 4.3 implies that

|||Zi − Fi |||2p,q ≤ |||(Ei−1 Yi)(Zi−1 − Fi−1)|||2p,q + Cp |||(Yi − Ei−1 Yi)Zi−1 |||2p,q
≤ m2

i |||Zi−1 − Fi−1 |||p,q + Cpm
2
i σ

2
i |||Zi−1 |||2p,q.

This is the same recurrence that arose when we established Theorem 5.1, relation (5.6). The balance
of the argument is identical. �

7.4. The Spectral Radius. Products of matrices are closely related to the evolution of discrete-time
linear dynamical systems. In this context, it may be more natural to study the spectral radius of the
matrix product, rather than its spectral norm. Bounds for the spectral radius follow as corollary of our
work, owing to the following classical fact.

Fact 7.5 (Schur). Let M ∈ Md be a square matrix. The spectral radius ̺(M) is defined as the maximum

absolute value of an eigenvalue of M. It satisfies the variational principle

̺(M) = inf
S∈Md





S
−1

MS





 .

The infimum takes place over all invertible matrices S. In particular ̺(M) ≤ ‖M‖.

Let us give an indication of the kinds of results that are possible.

Corollary 7.6 (Expectation Bounds for the Spectral Radius). Consideran independent sequence {Y1, . . . , Yn} ⊂
Md of random matrices, and form the product Zn = Yn · · ·Y1. Let S ∈ Md be a fixed invertible matrix,

and assume that




S
−1(EYi)S





 ≤ mi and

(

E





S
−1(Yi − EYi)S







2
)1/2

≤ σimi for i = 1, . . . , n.
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Let M =
∏n

i=1 mi and v =
∑n

i=1 σ
2
i
. Then

E ̺(Zn) ≤ exp
(

√

2v (2v ∨ log d)
)

· M.

Proof. Combine Corollary 5.4 and Fact 7.5. �

7.5. Prospects. We have developed a collection of nonasymptotic bounds for products of random
matrices. These results hold under simple and easily verifiable conditions, and they give accurate
predictions about the behavior of some particular instances (e.g., products of iid random perturbations
of the identity). The proofs are based on foundational results about the geometry of the Schatten
classes, and they can easily be adapted to treat variants of the problems under consideration.

A disappointing feature of our results is that they do not account for interactions between the matrix
factors. For example, when Yi = I+ Xi/n for bounded, independent matrix perturbations Xi, we have
shown that

logE ‖Yn · · ·Y1‖ ≤ 1

n

∑n

i=1
‖ E Xi‖ + O

(
√

log d

n

)

.

However, when the matrices Xi commute almost surely, it is easy to show the sharper bound

logE ‖Yn · · ·Y1‖ ≤ 1

n










∑n

i=1
E Xi








 + O

(
√

log d

n

)

.

The results of Emme and Hubert [13] establish that limn→∞ logE ‖Yn · · ·Y1‖ = limn→∞






∑n
i=1 E Xi





 /n.
It therefore seems reasonable to conjecture that a refined bound of the latter type exists in more
generality. The growth bounds discussed in Remark 5.2 imply a statement of the form

logE ‖Yn · · ·Y1‖ ≤ log
1

n










∏n

i=1
E Xi








 + error ,

but the error term is not sharp. This type of bound would echo Tropp’s improvements [39] to the
Ahlswede–Winter results [1] for a sum of independent random matrices. At present, it is not clear
whether this refinement is possible, nor what technical arguments would lead there.

Appendix A. Supplementary Proofs

This appendix collects a few additional arguments. First, we establish the sharp form of the result
on subquadratic averages, Proposition 4.3, using an elementary method.

Lemma A.1 (Sharp Subquadratic Averages). Let X, Y be random matrices of the same size that satisfy

E[Y |X] = 0. When 2 ≤ q ≤ p,

|||X + Y |||2p,q ≤ |||X |||2p,q + Cp |||Y |||2p,q,
where the optimal constant Cp := p − 1.

Proof. Fix a natural number n, and set Z = n−1Y . Inequality (4.4) states that

D1 := |||X + Z |||2p,q − |||X |||2p,q − 2Cp |||Z |||2p,q ≤ 0.

For a parameter 2 ≤ k ≤ n, Corollary 4.2 and Lyapunov’s inequality imply that

|||X + kZ |||2p,q + |||X + (k − 2)Z |||2p,q ≤ 2|||X + (k − 1)Z |||2p,q + 2Cp |||Z |||2p,q.
Rearranging the last display, we see that

Dk := |||X + kZ |||2p,q − |||X + (k − 1)Z |||2p,q − 2Cpk|||Z |||2p,q
≤ |||X + (k − 1)Z |||2p,q − |||X + (k − 2)Z |||2p,q − 2Cp(k − 1)|||Z |||2p,q = Dk−1.
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In particular, Dk ≤ D1 ≤ 0. Using a telescoping sum,

|||X + Y |||2p,q − |||X |||2p,q =
∑n

k=1

(

|||X + kZ |||2p,q − |||X + (k − 1)Z |||2p,q
)

=

∑n

k=1

(

Dk + 2Cpk|||Z |||2p,q
)

≤
∑n

k=1
2Cpk|||Z |||2p,q = Cp

n + 1

n
|||Y |||2p,q.

Take the limit as n → ∞ to arrive at the stated result. �

Second, we present a basic numerical inequality for weighted sums of exponentials.

Lemma A.2. Let a1, a2, . . . , an be a sequence of real numbers. Then
∑n

i=1
ai exp

(
∑i−1

k=1
ak

)

≤ exp
(
∑n

i=1
ai

)

− 1.

Proof. The elementary inequality a ≤ ea − 1, valid for a ∈ R, implies that

ai exp
(
∑i−1

k=1
ak

)

≤ exp
(
∑i

k=1
ak

)

− exp
(
∑i−1

k=1
ak

)

.

Sum the displayed equation over i = 1, . . . , n to verify the claim. �
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