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Refsum disease (RD) is an inborn error of metabolism that is characterised

by a defect in peroxisomal a-oxidation of the branched-chain fatty acid

phytanic acid. The disorder presents with late-onset progressive retinitis

pigmentosa and polyneuropathy and can be diagnosed biochemically by

elevated levels of phytanate in plasma and tissues of patients. To date, no

cure exists for RD, but phytanate levels in patients can be reduced by

plasmapheresis and a strict diet. In this study, we reconstructed a fibrob-

last-specific genome-scale model based on the recently published, FAD-cu-

rated model, based on Recon3D reconstruction. We used transcriptomics

(available via GEO database with identifier GSE138379), metabolomics

and proteomics (available via ProteomeXchange with identifier

PXD015518) data, which we obtained from healthy controls and RD

patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our

model correctly represents the metabolism of phytanate and displays

fibroblast-specific metabolic functions. Using this model, we investigated

the metabolic phenotype of RD at the genome scale, and we studied the

effect of phytanate on cell metabolism. We identified 53 metabolites that

were predicted to discriminate between healthy and RD patients, several of

which with a link to amino acid metabolism. Ultimately, these insights in

metabolic changes may provide leads for pathophysiology and therapy.

Databases

Transcriptomics data are available via GEO database with identifier GSE138379, and pro-

teomics data are available via ProteomeXchange with identifier PXD015518.

Abbreviations

3-MAA, 3-methyladipate; 4,8-DMN-CoA, 4,8-dimethylnonanoyl-CoA; CTRL, control; CYP, cytochrome P450 family; PCA, principal component

analysis; PHYH, phytanoyl-CoA 2-hydroxylase; RD, Refsum disease.
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Introduction

Peroxisomes are organelles that, among other func-

tions, are crucial for cellular lipid metabolism. They

perform both anabolic and catabolic processes, includ-

ing the a- and b-oxidation of very-long-chain fatty

acids, dicarboxylic acids and methyl-branched-chain

fatty acids [1]. Furthermore, peroxisomes are involved

in the biosynthesis of ether phospholipids, including

plasmalogens, bile acids and essential polyunsaturated

fatty acids such as docosahexaenoic acid [2].

Refsum disease (RD) is a rare inborn error of per-

oxisomal metabolism with an unknown incidence. It

probably remains highly unrecognised since the aware-

ness of inborn errors of metabolism is low among oph-

thalmologists. RD is caused by biallelic mutations in

the gene encoding phytanoyl-CoA 2-hydroxylase

(PHYH), resulting in defective a-oxidation of the

branched-chain fatty acid phytanate (3,7,11,15-tetram-

ethylhexadecanoate) [3]. Phytanate contains a 3-methyl

group and is therefore not a substrate for peroxisomal

b-oxidation. Consequently, phytanate first needs to

undergo a-oxidation, thereby producing pristanate,

which then can be further degraded by b-oxidation [2].

An alternative metabolic pathway for the breakdown

of phytanate is x-oxidation, which takes place in the

endoplasmic reticulum [4]. The end product of x-oxi-
dation of phytanate is 3-methyladipic acid (3-MAA),

and x-oxidation has been described to be upregulated

in patients with RD [5]. RD was first described in

1945 and is clinically characterised by progressive

retinitis pigmentosa, polyneuropathy, cerebellar ataxia

and deafness [5]. Biochemically, RD is diagnosed by

elevated levels of phytanate in plasma and tissues.

Phytanate solely derives from the diet, and patients

with RD are mostly diagnosed in late childhood [3,5].

To date, patient management focuses on the reduction

of phytanate levels by plasmapheresis and a strict diet

to reduce the intake of dairy-derived fat [6].

Recently, computational models have become valu-

able tools to study the complex behaviour of metabolic

networks. One type of computational models is gen-

ome-scale models of metabolism, which contain all

currently known stoichiometric information of meta-

bolic reactions, together with enzyme and pathway

annotation [7]. These models can further be con-

strained and validated by incorporation of different

types of data, including mRNA and metabolite pro-

files, as well as biochemical and phenotypic informa-

tion [8]. To date, the most comprehensive human

models are Recon3D [9] and HMR 2.0 [10], which are

consensus metabolic reconstructions that were built to

describe all known metabolic reactions within the

human body. Besides, a few tissue- and cell-type-speci-

fic models have been developed by incorporating tis-

sue- or cell-specific transcriptomics and proteomics

data. These models can be used to predict possible

ranges of metabolic fluxes for all enzymes in the net-

work. Flux ranges in diseased and control (CTRL)

models can be compared to discover functional

changes in the metabolic network. These may be used

as biomarkers or give insight into the biochemical ori-

gin of disease symptoms [11-15].

In the last decade, a paradigm shift occurred in the

field of inborn errors of metabolism. Today, they are

no longer viewed according to the ‘one gene, one dis-

ease’ paradigm as proposed more than 100 years ago,

but recognised to be complex diseases [16]. However,

only few studies using systems biology and multi-omics

approaches that are widely used for complex diseases

have been published for inborn errors of metabolism

[8-9,14,17-22].

In this study, we aim to investigate the metabolic

phenotype of RD at the genome scale and to study the

effect of phytanate on cell metabolism. Cultured

fibroblasts contain most metabolic functions present in

the human body, and biochemical and functional stud-

ies in cultured skin fibroblasts are important tools for

the diagnosis of patients with a peroxisomal disorder

[23]. Therefore, we reconstructed a fibroblast-specific

genome-scale model based on fibroblast-specific tran-

scriptomics, metabolomics and proteomics data, and

starting from the recently published Recon3D-based

model. We obtained these data from healthy CTRLs

and RD patient fibroblasts incubated with phytol, a

precursor of phytanate. Since flavoproteins play a cru-

cial role in lipid metabolism, we integrated our

recently curated set of FAD-related reactions [20]. The

resulting model reflects the in vivo situation in fibrob-

lasts and demonstrates the physiological effects of a

defective a-oxidation. Ultimately, such insights in

metabolic changes may provide leads for pathophysiol-

ogy and therapy.

Results

Model curation and generating a fibroblast-

specific model

For this study, we used an updated version of the

Recon3D model in which flavoprotein-related metabo-

lism was curated [20]. This addition was essential for

this study because many enzymes in fatty acid metabo-

lism are flavoproteins, which carry FAD as a cofactor.

Furthermore, a known alternative route for phytanate

degradation, x-oxidation, was not accounted for in
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Recon3D. In this pathway, phytanate is first converted

into x-hydroxyphytanate, followed by oxidation to the

corresponding dicarboxylic acid (x-carboxyphytanate;
see Fig. 1A). After activation to their CoA esters,

dicarboxylic acids have been shown to enter the perox-

isome by active transport via the ATP binding cassette

transporter ABCD3 (also known as peroxisomal mem-

brane protein PMP70) [24], and are then degraded via

peroxisomal b-oxidation [25]. It is assumed that x-car-
boxyphytanate follows the same pathway as an

unbranched-long-chain dicarboxylic acid. The final

product of phytanate breakdown via x-oxidation is 3-

MAA, which has been identified in urine from patients

with RD [26].

To optimise the model, we added 25 reactions

involved in the x-oxidation and the subsequent b-oxi-
dation of phytanate. Furthermore, 17 reactions

involved in phytanate metabolism were deleted,

because they were duplicates of other reactions in the

model. Lastly, we examined the import/export reaction

boundaries and blocked the flux of several drug meta-

bolism pathways, such as those of statins, ibuprofen,

paracetamol and antibiotics. These pathways were not

relevant to this study but could play a role in the

model outcome. All changes to the model are sum-

marised in Table S1. The resulting curated model was

called Recon3D_X_c and is available on GitHub

(https://github.com/WegrzynAB/Papers).

To create a fibroblast-specific model, we generated a

fibroblast dataset related to the metabolic genes

included in the model. To this end, we cultured human

primary CTRL fibroblasts (n = 6) and RD patient-

derived fibroblasts with a defect in a-oxidation (n = 5)

under standardised conditions, and harvested cells

after 96 h to isolate RNA and protein. The cells were

either incubated with phytol, a precursor of phytanate,

or with the solvent ethanol (Fig. 1B). Our primary

dataset consisted of the data obtained from transcrip-

tomics (RNAseq) and proteomics (shotgun) measure-

ments. In the principal component analysis (PCA), no
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Fig. 1. Developing a fibroblast-specific

model. (A) Schematic overview of relevant

metabolic pathways for phytanate

metabolism. (B) Schematic representation

of the experimental set-up. CTRL and RD

fibroblasts were incubated with or without

phytol, the precursor of phytanate, for the

indicated time points. All cells were seeded

and harvested under the same conditions.

(C) Schematic overview of the steps to

obtain a fibroblast-specific model based on

constraints of the Recon3D_FAD_x model.

3The FEBS Journal (2020) ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

A. B. Wegrzyn et al. Changes in amino acid metabolism in Refsum disease

https://github.com/WegrzynAB/Papers


separation was seen between the groups of fibroblasts

(Fig. 2C,D), suggesting that overall the patient-to-pa-

tient variation was larger than the adaptation to the

disease, at least in the fibroblasts. Differential analysis

of the transcriptomics and proteomics data revealed

only 12 differentially expressed genes and 18 proteins

between the CTRL fibroblasts and fibroblasts defective

in a-oxidation (Fig. 2). All differentially expressed

genes and 15 proteins were upregulated in the Refsum

group relative to CTRLs, while no genes and only

three proteins were downregulated. These upregulated

genes and proteins were primarily involved in cell cycle

CTRL and structure (Table S4). When we tested the

correlation between protein and RNA levels in the

subset of genes that were included in our database, six

proteins that were detected in the shotgun proteomics

were not present in the transcriptomics data, even

though protein and RNA fractions were obtained from

the same sample (Fig. 2C). To complement our own

data, we included publicly available information of tis-

sue-specific gene and protein expression levels present

in the Human Protein Atlas (Uhlen et al. [27], www.

proteinatlas.org), published transcriptomics and pro-

teomics data obtained from fibroblasts [28], OMIM

information [29], fibroblast-specific information pub-

lished along with the Recon 2 model [8] and informa-

tion on metabolic assays that are used for diagnostic

approaches in fibroblasts (Table S2). To generate the

fibroblast-specific model, the activity of metabolic

reactions was constrained in a two-step manner

(Fig. 1C). First, all genes involved in metabolic path-

ways that were not detected in our transcriptomics

data with < 10 raw counts were initially marked as ‘in-

active’. Secondly, all these genes were manually cross-

examined with our generated database to determine

whether the gene was expressed in fibroblasts (either

on RNA or on protein level). If expressed in skin

fibroblasts, the gene was changed to ‘active’. Finally,

the FASTCORE algorithm [30] was used to create a

flux consistent fibroblast-specific network. This proce-

dure resulted in the final model, ‘fibroblast_CTRL’,

which was used for further analysis.

Model characterisation

First, we tested whether the fibroblast-specific model

showed physiological resemblance to fibroblasts

in vivo. To this end, we used a set of metabolic tasks

defined by Thiele et al. [8] and focused explicitly at the

metabolic tasks, which are known to be crucial for

fibroblast metabolism, that is the conversion of glu-

tamine to a-ketoglutarate [31]), or which are known to

be absent in fibroblasts, that is bile acid metabolism

[32]. The fibroblast-specific model completed 208 out

of all 419 generic tasks (Table S5), demonstrating that

the fibroblast model adequately reflects general human

metabolism. Additionally, specific reactions known to

be present or absent in fibroblasts were also accurately

predicted (Table 1), including diagnostically relevant

genes (Table S5).

Subsequently, we simulated the capacity of the

fibroblast-specific model to produce ATP from phy-

tanate as the single-carbon source under aerobic condi-

tions in a minimal medium (consisting of only ions,

oxygen, water and riboflavin). ATP utilisation is

explicitly defined in the model and is corrected for

ATP investments required for ATP synthesis, such as

reactions involved in cofactor synthesis, metabolite

transport and substrate activation. The ATP utilisation

flux was used as an objective function of which the

value was maximised in the steady-state calculation.

Since the flux through the ATP utilisation reaction

equals that of ATP production after subtraction of

ATP costs at steady state, it reflects the net ATP pro-

duction from a single-carbon source (in this case phy-

tanate). In contrast to the initial Recon3D_FAD

model, the curated model (Recon3D_FAD_X) and the

fibroblast-specific model (fibroblast_CTRL) showed a

net ATP production flux of 68.5 and

61.65 mmol�gDW�1�h�1, respectively, at a forced phy-

tanate uptake flux of 1 mmol�gDW�1�h�1.

Furthermore, we created a RD model (fibrob-

last_RD) by setting the flux through the phytanoyl-

CoA hydroxylase (PHYH, HGNC:8940) reaction to 0.

The fibroblast_RD model was able to metabolise phy-

tanoyl-CoA in minimal medium conditions (Fig. 3,

Table S3), albeit at a much lower flux than CTRL

(38.8 mmol�gDW�1�h�1). These results implied that x-
oxidation of phytanate and the subsequent b-oxidation
in the peroxisomes are less efficient in the ATP pro-

duction and could require a richer growth media sup-

plemented with glutathione (Fig. S2, uptake flux for

glutathione was set at 1 mmol�gDW�1�h�1). Supple-

mentation of glutathione to the minimum media

allowed all studied models to break down phytanate,

albeit with very strong differences in the total ATP

yields. The net ATP production flux of 46.50 and

86.46 mmol�g�DW�1�h�1 was shown for the initial

Recon3D_FAD model and the fibroblast_RD model,

respectively, while much higher net ATP production

flux of 116.5 and 109.3 mmol�gDW�1�h�1 was seen for

the Recon3D_FAD_X and the fibroblast_CTRL mod-

els (Fig. 4). Similarly, we analysed the amino acid cat-

abolism in the models. All amino acids could be

catabolised to yield ATP in the Recon3D_FAD_X

model. However, the fibroblast-specific models were
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unable to metabolise asparagine, histidine and thre-

onine, as well as nearly no ATP yield from phenylala-

nine and tyrosine. Furthermore, net ATP production

from tryptophan was lower in fibroblast-specific model

compared with the generic model (Fig. 3). In the mini-

mum media supplemented with glutathione and pan-

tothenic acid, all amino acids were broken down;

however, asparagine, histidine, phenylalanine, thre-

onine and tyrosine were showing a strong decrease in

the ATP yield in the fibroblast models compared with

the generic models (Fig. 4).

To investigate the effect of a defective a-oxidation
on the flux distribution in the curated, fibroblast-

specific model, we used the fibroblast_RD model to

sample the steady-state solution space using the

ACHR algorithm [33]. Since genome-scale models typ-

ically have multiple steady-state solutions, in this pro-

cedure, the solution space reflects the flux ranges

found for each reaction when sampling many steady-

state solutions (see Materials and methods for details).

To be able to compare the results of this analysis with

the data from the in vitro fibroblast studies, rich media

were used. As expected, the total flux of phytanate

uptake into the cell was decreased in the fibrob-

last_RD model when compared to the fibrob-

last_CTRL model. Because of the simulated deletion
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of the PHYH gene, a-oxidation was abolished entirely

in the fibroblast_RD model, whereas it was active in

the fibroblast_CTRL model (Fig. 5). Pathways

involved in x-oxidation, however, were active in both

models (Fig. 5). Interestingly, both pathway fluxes

were significantly smaller than their maximum rates as

obtained from the simulation wherein the maximum

flux of a- or x-oxidation pathways was used as objec-

tive functions (Fig. 5, insert).

Metabolic characterisation of fibroblasts cultured

in vitro

To qualitatively validate our model predictions, we

obtained fibroblast-specific metabolomics data. Similar

to the transcriptomics and proteomics experiments, we

cultured human primary CTRL fibroblasts (n = 6) and

RD patient-derived fibroblasts (n = 5) under standard-

ised conditions, and collected cell culture medium and

cells every 24 h for four consecutive days. The cells

were incubated with phytol or with the solvent ethanol

(Fig. 1B). First, we measured the levels of total phy-

tanate in cells incubated with or without phytol for

96 h. The addition of phytol resulted in increased

levels of phytanate when compared to untreated cells.

This was expected, as phytol is converted to phytanate

once taken up into the cell [34]. In addition, phytanate

levels were increased in fibroblasts with a defect in a-
oxidation when compared to CTRL fibroblasts when

phytol was added to the medium (Fig. 6A), reflecting

impaired oxidation of phytanate.

Furthermore, we measured amino acid profiles in

the cell culture medium. We observed no significant

changes between the CTRL and RD groups (Fig. 6B

and Fig. S2A) at measured time points. However, a

few changes were seen in the rates of uptake or secre-

tion of amino acids (Fig. 6C and Fig. S1). Notably,

citrulline and sarcosine have shown to change the

directionality in the two groups. While citrulline is

secreted, and sarcosine is consumed in the healthy

fibroblasts exposed to phytol for 96 h, this situation is

reversed in RD fibroblasts. Furthermore, uptake of

asparagine is decreased in the RD fibroblasts com-

pared with the healthy ones (Fig. 6C). Other amino

acids show some minor differences in their uptake or

secretion rates; however, those are not significant

(Fig. S1).

Finally, glucose levels (Fig. 4B), cellular protein

levels (Fig. 4C) and cell content (Fig. 4D) were similar

Table 1. Model performance in the metabolic tasks test. A subset

of tasks relevant to fibroblast metabolism selected. For a full list of

all tested tasks, see Table S5

Metabolic task

Reported in

fibroblasts

Active in the

model

Bile acid metabolism NO NO

Pyrimidine degradation NO NO

Glutamine to citrulline

conversion

NO NO

Melatonin synthesis NO NO

Urea cycle NO NO

Glutamine conversion to a-

ketoglutarate

YES YES

ATP production via electron

transport chain

YES YES

Mitochondrial b-oxidation YES YES

Peroxisomal b-oxidation YES YES

Peroxisomal a-oxidation YES YES

x-Oxidation of phytanate YES YES

All 419 generic metabolic tasks 208
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between the CTRL fibroblasts and the RD fibroblasts

with a defect in a-oxidation after 96 h of cell culture.

Predicting physiological effects of defective a-
oxidation

To investigate other flux changes in the fibroblast_RD

model when compared to the fibroblast_CTRL model,

we explored the steady-state flux distribution obtained

by the sampling of the solution space in the model.

We studied changes in the flux ranges of the exchange

reactions between CTRL and disease models after

forcing a minimum uptake of phytanate

0.1 mmol�gDW�1�h�1) in the models. Shlomi et al. [19]

proposed that if the secretion flux through the

exchange reaction is high, it may lead to a high

metabolite concentration outside of the cell. In con-

trast, if uptake is more prevalent, then the extracellular

concentration is expected to be lower under the stud-

ied conditions. Exchange reactions in the model define

the model boundaries. They allow some metabolites to

be imported in or secreted from the cell, enabling the

model to reach a steady state. First, we compared the

model predictions for the exchange of amino acids

with the data obtained in vitro. Our model predicted

the directionality of amino acid exchanges with 73%

accuracy, in line with the previously published accu-

racy scores [8,20] (Table S6). Secondly, we investigated

the response of the two models to phytanate. They

responded differently to the forced phytanate uptake

flux (Fig. 7). The mean value of the phytanate flux

was reduced by 85% in the fibroblast_RD model when

compared to the fibroblast_CTRL model, and secre-

tion of pristanic acid was absent in the RD model

(Fig. 7A). The export reaction of 3-MAA, which is the

end product of subsequent x- and b-oxidation of phy-

tanate (Figs 1A and 7B), did not show a significant

change in its mean flux, while 2,6-dimethylheptanoyl

carnitine, one of the end products of canonical degra-

dation pathway of phytanate, showed 100% decrease

of the flux rate in RD. Besides these known metabo-

lites associated with a defect in a-oxidation, we identi-

fied 49 other boundary metabolites that were

significantly changed (FDR < 0.05 and log2FC > 1.3)

between the fibroblast_RD and the fibroblast_CTRL

models (Table S6). Of these, 24 flux changes were pre-

dicted to lead to higher extracellular concentrations in

the absence of PHYH activity, including L-alanine and
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supplemented with glutathione and pantothenic acid based on the

ATP production from single-carbon source, including Recon3D_FAD,
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3-mercaptolactate-cysteine disulphide (Fig. 7C),

caproic acid (Fig. 7D), 2-hydroxybutyrate, malonylcar-

nitine and several di- and tripeptides (Table S7). On

the other hand, 27 distribution flux changes were pre-

dicted to result in reduced extracellular concentrations

in RD fibroblasts, such as lactate (Fig. 7C), N-acetyl-

asparagine, L-citrulline (Table S7) and several di- and

tripeptides (Fig. 7E and Table S7). These changes

depend either on the lower/higher uptake rate or on a

lower/higher secretion rate (Fig. 7C–E). Interestingly,

the rate of secretion of citrulline in our in vitro study

showed a significant decrease (Fig. 6C) confirming one

of our model predictions.

Discussion

In this study, we present a fibroblast-specific metabolic

model for RD. Using transcriptomics and proteomics

data, we developed a cell-specific metabolic network

based on Recon3D_FAD [20]. Cell-type-specific meta-

bolic models have been reported earlier [13-14,17,21-

22,35], and are essential tools to study specific research

questions. We studied the effect of phytanate loading

on the metabolic fluxes in a fibroblast-specific model

for RD, which is characterised by a defect in a-oxida-
tion. Phytanate is a natural ligand of peroxisome pro-

liferator receptor a (PPARa) [3,4]. Furthermore,

elevated levels of phytanate have been reported to

induce lipotoxicity in the brain [36]. Many of these

findings, however, derive from in vitro experiments.

The consequences of phytanate accumulation have also

been studied in a mouse model of RD, which resem-

bles the clinical symptoms of patients [3,37]. Notably,

these mice showed no disease phenotype when fed a

regular diet, but only developed the phenotype resem-

bling RD when challenged with a phytol-enriched diet

[37]. Studies in humans, however, are scarce due to

limited options for invasive studies. Computational

modelling of human cells or tissues is meant to fill this

gap partly. In our study, we curated the existing

genome-scale model by including pathway information

for x-oxidation and following b-oxidation of phy-

tanate and constrained the model to obtain a fibrob-

last-specific model based on generated data and

existing databases. The reconstruction of metabolic

networks is an iterative process, and updates will

assure better accuracy and prediction of the human

metabolic model [38]. Our model predicted amino acid

fluxes with 73% accuracy in line with the previously

reported values [8,20]. To reach higher accuracy, fur-

ther curation of the network might be required. Since

amino acids are the main building blocks of the cell, a

cell-type-specific protein composition incorporated in

the biomass function of the model might yield more

accurate results.

Using the curated model, we aimed to get an insight

into metabolic changes that may provide leads for

pathophysiology and biomarkers. Genome-scale meta-

bolic models have been described to be useful tools for

these aims [8-10,14,19-22,35]. In our fibroblast-specific

model resembling RD, the flux of phytanate uptake

was significantly reduced, reflecting the accumulation

of phytanate in the body, a known biomarker for RD

[3]. On the other hand, the average 3-MAA secretion

rate was not changed between the models. Our results

show that it is more desirable for metabolism to lower

the phytanate uptake rather than increase the x-oxida-
tion. However, an average sampled flux of 3-MAA

secretion was 60 times as low as its maximum theoreti-

cal yield (Fig. 5B), showing that the x-oxidation path-

way can be upregulated further. Notably, it has been

described that x-oxidation was indeed upregulated in

patients with peroxisomal disorders [4,39].

Besides the changes in the known biomarkers, the

model predicted aberrant flux distributions, leading to

accumulation or reduction of extracellular metabolites

in the Refsum fibroblast model when compared to the

healthy model. Interestingly, di- and tripeptides were

predicted to be changing significantly between the

patient and healthy models (Fig. 7F). Biologically

Fig. 6. Metabolic characterisation of fibroblasts cultured in vitro. Model validation using experimental data of (A) phytanate, and (B + C)

amino acid measurements. (A) Phytanate concentrations were determined in pellets from cultured cells after incubation for 96 h. Phytanate

levels are increased in cells incubated with phytol. Per condition, mean per group and 95% confidence interval per group are indicated.

Significant differences between the groups were determined by one-way ANOVA (***P-value < 0.001, n CTRL = 6, n RD = 5). (B)

Significantly changed uptake and secretion rates of amino acids between healthy (n = 6) and RD (n = 5) fibroblasts exposed to phytol for

96 h (shown as mean and 95% confidence interval). Amino acid concentrations were determined in the medium of the cells 96-h incubation

with phytol. Rates were calculated based on the fresh medium measurements. Significant differences between the groups were

determined using a t-test with a two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, with Q = 1%, to correct for the

multiple testing (**q-value < 0.01, ***q-value < 0.001). Rates of uptake and secretion of other amino acids are shown in Fig. S1. C) Amino

acid concentrations were determined in the medium of the healthy (n = 6) and RD (n = 5) fibroblast cells after incubation at indicated time

points (shown as mean � SD). Results for other amino acids are shown in Fig. S2D.
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Fig. 7. Changes at the level of secretion and uptake reactions between healthy and Refsum models forced to take up phytanate. (A–E)

Secretion/uptake fluxes distributions of metabolites with the most significant differences between CTRL (CTRL + phyt, green; n = 10 000)

and RD (RD + phyt, blue, n = 10 000) models forced to take up phytanate selected based on the log2(FC) > 1.3 and FDR < 0.05. Statistical

differences were analysed using the Wilcoxon rank sum test; FDR values were calculated using the Bonferroni–Holm correction.
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active peptides [40] have been found to play important

roles in the metabolic functions, including intercellular

signal transmission [41] and neuron signal transmission

[42,43]. Furthermore, specific peptides are involved in

the processes that lead to disease development, and

their presence could indicate specific diseases, that is

serve as disease biomarkers [44-47]. However, the

power of the prediction and the value of these meta-

bolic changes in relation to the pathogenesis of phy-

tanate in patients with RD require further analysis. If

validated, our predictions could lead to potential ther-

apeutic strategies to intervene with the accumulation

of phytanate in these patients. The upregulation of x-
oxidation as an escape route for the breakdown of

phytanate, and also very-long-chain fatty acids, has

been studied in vitro for diseases such as RD and X-

linked adrenoleukodystrophy [3,39]. The activation of

the cytochrome P450 family (CYP) 4A enzymes, which

are known to induce x-oxidation, has indeed been an

attractive target for therapeutic interventions. How-

ever, until now, studies using compounds or drugs to

upregulate x-oxidation via CYP4A have not been per-

formed successfully [48]. Our model predicts (Figs 3

and 4) that increase in the glutathione levels could not

only protect the cells from the oxidative stress postu-

lated to play a role in RD [49] but potentially also

support the phytanate breakdown via the x-oxidation
pathway. However, the clinical value of our predic-

tions remains to be evaluated. Fortunately, as men-

tioned before, a mouse model of RD exists in which a

systemic whole-body effect of phytanate accumulation

has been studied [37]. Since the expression of x-hy-
droxylases from the CYP4 family is similar in mice

and humans, studies using mice fed with a glutathione-

enriched diet could be performed to determine the rate

of x-oxidation of phytanate. To investigate the clinical

potential of our findings, these diet studies could be

complemented with the application of previously pro-

posed CYP4 inducers, that is fibrates and statins [4].

Materials and methods

Cell culture

For this study, we used anonymised primary skin fibrob-

lasts from patients that had been sent previously to our

laboratory for diagnostic evaluation and that were diag-

nosed with RD. All cell lines were anonymised. Fibroblasts

were cultured in 75-cm2 flasks for transcriptomics and pro-

teomics analysis, and in 25-cm2 flasks for metabolomics

experiments. Cells were cultured in Ham’s F-10 medium

with L-glutamine, supplemented with 10% FBS (Invitrogen,

Carlsbad, CA, USA), 25 mM HEPES, 100 U�mL�1

penicillin and 100 µg�mL�1 streptomycin, and 250 µg�mL�1

amphotericin in a humidified atmosphere of 5% CO2 at

37 °C. Cells were seeded on the same day and incubated

for the indicated time points (Fig. 1B). To standardise tis-

sue culture conditions, cells were grown to 100% conflu-

ence in the flask, which was achieved after 96 h of

incubation. Cells were incubated with 25 lM phytol, dis-

solved in ethanol, or ethanol as the vehicle. Cells were har-

vested by trypsinisation (0.5% trypsin/EDTA; Invitrogen)

and washed once with phosphate-buffered saline and twice

with 0.9% NaCl, followed by centrifugation at 4 °C
(16 100 g for 5 min) to obtain cell pellets. For metabolo-

mics experiments, the cell culture medium was collected

before harvesting. Cell pellets and medium samples were

stored at �80 °C until analysis.

RNA and protein isolation for RNAseq and

Shotgun proteomics measurements

RNA and protein were isolated from the cell pellets from

the T75 cultures using TRIzolTM Reagent (Thermo Fisher

Scientific, Waltham, MA, USA) using supplier protocol for

RNA and protein extraction. RNA pellets were dissolved

in 50 lL of RNase-free water, and RNA concentrations

were measured using NanoDropTM 2000 Spectrophotometer

(Thermo Fisher Scientific). Protein pellets were dissolved in

200 lL 5% SDS solution, and protein concentrations were

determined using PierceTM BCA Protein Assay Kit (Thermo

Fisher Scientific).

RNAseq

Sample preparation and sequencing

First quality check of and RNA quantification of the sam-

ples were performed by capillary electrophoresis using the

LabChip GX (PerkinElmer, Waltham, MA, USA). Nonde-

graded RNA samples were selected for subsequent sequenc-

ing analysis. Sequence libraries were generated using the

NEXTflex Rapid Illumina Directional RNA-Seq Library

Prep Kit (Bioo Scientific, Austin, TX, USA) using the Sci-

clone NGS Liquid Handler (PerkinElmer). The obtained

cDNA fragment libraries were sequenced on an Illumina

Nextseq500 (Illumina, San Diego, CA, USA) using default

parameters (single read 1 9 75 bp) in pools of multiple

samples, producing on average 4 million reads per sample.

Gene expression quantification

The trimmed fastQ files were aligned to build

human_g1k_v37 Ensemble [50] release 75 reference genome

using hisat/0.1.5-beta-goolf-1.7.20 [51] with default settings.

Before gene quantification, SAMtools/1.2-goolf-1.7.20 [52]

was used to sort the aligned reads. The gene-level quantifi-

cation was performed by HTSeq-count: HTSeq/0.6.1p1 [53]
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using --mode=union, with Ensembl release 75 [50], was used

as a gene annotation database.

Calculate QC metrics on raw and aligned data

Quality CTRL (QC) metrics are calculated for the raw

sequencing data. This is done using the tool FastQC

(FastQC/0.11.3-Java-1.7.0_80) [54]. QC metrics are calcu-

lated for the aligned reads using Picard-tools (picard/1.130-

Java-1.7.0_80) [55] CollectRnaSeqMetrics, MarkDuplicates,

CollectInsertSize- Metrics and SAMtools/1.2-goolf-1.7.20

flagstat.

Shotgun proteomics

In-gel digestion and strong cation-exchange

fractionation

Protein samples were mixed with LDS loading buffer

(NuPAGE) at a concentration of 3.4 µg total protein. The

sample was run briefly into a precast 4–12% Bis-Tris gels

(Novex, Carlsbad, CA, USA, ran for maximally 5 min at

100 V). The gel was stained with Biosafe Coomassie G-250

stain (Bio-Rad, Redmond, WA, USA), and after destaining

with milliQ-H2O (Merck, Burlington, MA, USA), the band

containing all proteins was excised from the gel. The gel band

was sliced into small pieces, and washed subsequently with

30% and 50% v/v acetonitrile in 100 mM ammonium bicar-

bonate (dissolved in milliQ-H2O), each incubated at RT for

30 min while mixing (500 r.p.m.), and lastly with 100% ace-

tonitrile for 5 min, before drying the gel pieces in an oven at

37 °C. The proteins were reduced with 20 lL 10 mM dithio-

threitol (in 100 mM ammonium bicarbonate dissolved in

milliQ-H2O, 30 min, 55 °C) and alkylated with 20 lL 55 mM

iodoacetamide (in 100 mM ammonium bicarbonate dissolved

in milliQ-H2O, 30 min, in the dark at RT). The gel pieces

were washed with 50% v/v acetonitrile in 100 mM ammo-

nium bicarbonate (dissolved in milliQ-H2O) for 30 min while

mixing (500 r.p.m.) and dried in an oven at 37 °C before

overnight digestion with 20 lL trypsin (1 : 100 g�g�1,

sequencing grade modified trypsin V5111; Promega, Madi-

son, WI, USA) at 37 °C. The next day, the residual liquid

was collected before elution of the proteins from the gel

pieces with 20 µL 75% v/v acetonitrile plus 5% v/v formic

acid (incubation 20 min at RT, mixing 500 r.p.m.). The elu-

tion fraction was combined with the residual liquid and was

dried under vacuum and resuspended in 30 lL of 20% v/v

acetonitrile plus 0.4% v/v formic acid (dissolved in milliQ-

H2O) for strong cation-exchange (SCX) fractionation. Sam-

ples were loaded onto an SCX StageTips (20 lL tip Stage-

Tip; Thermo Scientific) according to the manufacturer’s

instructions, except that the elution solvent (500 mM ammo-

nium acetate in 20% v/v acetonitrile, dissolved in milliQ-

H2O) plus 0.4% v/v formic acid was used instead of the 1 M

NaCl solution in this protocol during initialisation. After

loading and washing of the peptides according to the proto-

col, the peptides were eluted in three separate fractions by

stepwise elutions (30 lL each) of 25, 150 and 500 mM ammo-

nium acetate in 20% v/v acetonitrile (dissolved in milliQ-

H2O). The collected flow-through was polled with the last

elution fraction. The elution fractions were dried under vac-

uum and resuspended in 8 lL 0.1% v/v formic acid (dis-

solved in milliQ-H2O).

LC-MS analysis

Discovery mass spectrometric analyses were performed on

a quadrupole–Orbitrap mass spectrometer equipped with a

nano-electrospray ion source (Orbitrap Q Exactive Plus;

Thermo Scientific). Chromatographic separation of the pep-

tides was performed by liquid chromatography (LC) on a

nano-HPLC system (Ultimate 3000; Dionex, Sunnyvale,

CA, USA) using a nano-LC column (Acclaim Pep-

MapC100 C18, 75 µm 9 50 cm, 2 µm, 100 �A; Dionex,

buffer A: 0.1% v/v formic acid, dissolved in milliQ-H2O,

buffer B: 0.1% v/v formic acid, dissolved in acetonitrile).

In general, 6 µL was injected using the µL-pickup method

with buffer A as a transport liquid from a cooled autosam-

pler (5 °C) and loaded onto a trap column (µPrecolumn

Cartridge, Acclaim PepMap100 C18, 5 µm, 100 �A,

300 µm 9 5 mm; Dionex). Peptides were separated on the

nano-LC column using a linear gradient from 2% to 40%

buffer B in 117 min at a flow rate of 200 nL�min�1. The

mass spectrometer was operated in positive ion mode and

data-dependent acquisition mode using a top-10 method.

MS spectra were acquired at a resolution of 70 000 at m/z

200 over a scan range of 300–1650 m/z with an AGC target

of 3e6 ions and a maximum injection time of 50 ms. Pep-

tide fragmentation was performed with higher energy colli-

sion dissociation (HCD) using normalised collision energy

of 27. The intensity threshold for ion selection was set at

2.0 e4 with a charge exclusion of ≤ 1 and ≥ 7. The MS/MS

spectra were acquired at a resolution of 17 500 at m/z 200,

an AGC target of 1e5 ions and a maximum injection time

of 50 ms, and the isolation window was set to 1.6 m/z.

LC-MS data analysis

Liquid chromatography-MS raw data were processed with

MAXQUANT (version 1.5.2.8) [56]. Peptide and protein identi-

fication was carried out with Andromeda against a human

SwissProt database (www.uniprot.org, downloaded 10

November 2016, 20 161 entries) and a contaminant data-

base (298 entries). The searches were performed using the

following parameters: precursor mass tolerance was set to

10 p.p.m., and fragment mass tolerance was set to

20 p.p.m. For peptide identification, two miss cleavages

were allowed, a carbamidomethylation on cysteine residues

as a static modification and oxidation of methionine resi-

dues as a variable modification. Peptides and proteins were
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identified with an FDR of 1%. For protein identification,

at least one unique peptide had to be detected, and the

match between run option was enabled. Proteins were

quantified with the MaxLFQ algorithm [57] considering

unique peptides and a minimum ratio count of one. Results

were exported as tab-separated *.txt for further data analy-

sis.

Principal component analysis and differential

analysis of transcriptomics and proteomics

Principal component analysis was performed using prcomp

function with raw data being first normalised (scaled and

centred). Differential gene/protein expression analysis based

on the negative binomial distribution was performed using

DESeq2 [58]. Genes for which summed across all samples

raw counts were higher than 20 were analysed. Protein

intensities were transformed to integers and analysed simi-

lar to the transcriptomics data.

Cell growth

Fibroblasts were seeded in 96-well plate with a density of

2000 cells per well and cultured in 200 lL of medium for

7 days. xCELLigence system (ACEA Biosciences, Inc., San

Diego, CA, USA) was used to monitor cell attachment and

growth in real time [59]. Areas under the curve were calcu-

lated using PRISM7 (GraphPad Software, San Diego, CA,

USA).

Metabolomics

Determination of protein concentration in cell pellets

Cell pellets were sonicated in 250 lL of water. Protein con-

centration was determined using the PierceTM BCA Protein

Assay Kit (Thermo Fisher Scientific).

Amino acid profile

To analyse the amino acid profile of medium from cell cul-

tures, 100 lL of the medium sample was mixed with 100 lL
of internal standard (12 mg of norleucine mixed with 15 g

sulphosalicylic acid in 250 mL of water). The analysis was

performed according to the method of Moore, Spackman

and Stein [60] on a Biochrom 30TM Amino acid Analyser

(Biochrom.co.uk). Acquisition and data handling were done

with Thermo ScientificTM ChromeleonTM 7.2 Chromatogra-

phy Data System software (Thermo Fisher Scientific).

Sugar measurements

To analyse sugar profiles, 250 lL of the medium sample or

100 lL of a standard mix (50 mg of D-(+)-glucose in

50 mL of water) was mixed with 100 lL of internal stan-

dard (50 mg phenyl-b-D-glucopyranoside in 50 mL of water

mixed with 1 mL of chloroform). Glucose analysis was per-

formed as described by Jansen et al. [61] on a Trace GCMS

(Thermo Fisher Scientific). Acquisition and integrations

were done with XcaliburTM software (Thermo Fisher Scien-

tific).

Phytanate measurement

Phytanate levels were measured as described previously

[62].

Model curation

Our model is based on a previously published FAD-curated

version of Recon3D [20]. Current representation of phy-

tanate metabolism was analysed and compared with current

knowledge [4,63]. Missing reactions in omega-oxidation of

phytanate and follow-up peroxisomal beta-oxidation of its

products were added to the reconstruction. Additionally,

invalid or duplicated reactions (created by merge of differ-

ent metabolic reconstructions to create Recon 2 model [8])

were removed. The curated model was saved as Recon3D_-

FAD_X. For detailed information on all the changes to the

model, see Table S1 [fix, del].

Model constraints

We examined all exchange/demand reactions to determine

the model constraints. Since drug metabolism introduced

by Sahoo et al. [64] is out of the scope of our research, we

decided to block the import/export reactions for drugs and

their metabolites. Additionally, we identified redundant

demand and sink reactions that duplicate some exchange/

demand reactions or allow sink reaction for a metabolite

whose metabolism has been fully reconstructed and does

not create a dead-end pathway. Last, we closed all import

reactions besides those that transported compounds present

in the culture media, water and oxygen. All the changes

can be examined in Table S1 (constraints).

Additionally, ‘biomass_reaction’ minimum flux was set

to 0.1 mmol�gDW�1�h�1, to mimic the essential cell mainte-

nance (protein synthesis, DNA and RNA synthesis etc.),

unless stated otherwise, as in Ref. [65]. Other constraints

used only in specific simulations are indicated where appli-

cable.

Fibroblast-specific gene database

A database containing information about the expression

levels of metabolic genes (genes present in the metabolic

reconstruction Recon3D_FAD) and proteins in human

fibroblasts was first generated based on the results from
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our transcriptomics and proteomics experiments. Addition-

ally, we added information present in the Human Protein

Atlas [27,66], OMIM [29] fibroblast-specific information

published along with the first Recon 2 model [8] and Uni-

Prot [67] databases. Experimental data from human fibrob-

last gene expression levels by Matsumoto et al. [28] were

also included. Usage of fibroblasts in diagnostics of specific

gene defects was also examined. In the end, a binary deci-

sion was made about fibroblast-specific genes – 1 if there

was evidence for a gene/protein to be present in human

fibroblasts, and 0 for genes classified as inactive in fibrob-

lasts. Database, including the final decision, is available as

Table S2.

Fibroblast-specific model generation

A list of reactions depending on the genes marked as active

was used as a core set for the FASTCORE algorithm [30]

implemented in The COBRA Toolbox v3.0 [68]. Next, reac-

tions dependent on the inactive genes were removed, and

the fastcc algorithm [30,68] was used to generate a flux,

consistent fibroblast-specific model. The final model, named

‘fibroblast_CTRL’, is available in our GitHub folder.

Model analysis

Refsum simulations

Phytanoyl-CoA hydroxylase deficiency (RD) was simulated as

a single gene deletion (PHYH, HGNC:8940). Additionally, x-
oxidation (‘CYP450phyt’ reaction) and a-oxidation (‘PHYHx’

reaction) pathway maximum rates were constrained to

20.2176 and 48.7656 mmol�gDW�1�h�1, respectively, to reflect

those described in the literature [69,70]. Lastly, the ‘EX_phyt

(e)’ reaction upper boundary was set to �0.1 mmol�gDW�1�
h�1 to force the model to utilise phytanate at a minimum rate

of 0.1 mmol�gDW�1�h�1 for the simulations resembling

fibroblasts with phytol added to the medium.

To sample the solution space of generated models,

ACHR algorithm [33] implemented in the COBRA Tool-

box 3.0 [68] was used. Randomly selected 10 000 sampled

points were saved with from the total of 50 000 sampled

points with a 500 step size.

Calculation of maximum ATP yield per carbon source

To calculate the maximum ATP yield per carbon source, we

adapted the method developed by Swainston et al. [38].

Shortly, all uptake rates of nutrients were set to 0, except for

a set of reactions defined collectively as a minimal medium

(Ca2+, Cl�, Fe2+, Fe3+, H+, H2O, K+, Na+, NH4SO
2�
4 , Pi and

riboflavin) for which the uptake/export fluxes rates were set

to �1000 and 1000 mmol�gDW�1�h�1, respectively. For each

of the specified carbon sources, the uptake flux was set to

�1 mmol�gDW�1�h�1 forcing the model to consume it at a

fixed rate. The demand reaction for ATP, ‘DM_atp_c_’ was

used as an objective function flux, which should be max-

imised in the optimisation process. The oxygen intake flux

was set to ‘EX_o2(e)’ �1000 mmol�gDW�1�h�1 to maintain

aerobic conditions. If the model was unable to break down

specified carbon source to ATP, the steady-state flux could

not be reached (infeasible solution).

Statistical analysis of model predictions

Flux distribution of each exchange reaction was compared

between the CTRL and RD to find the most changed

metabolite fluxes. To this end, we tested normality and vari-

ance of the distributions using single-sample Kolmogorov–
Smirnov goodness-of-fit hypothesis test and two-sample F-

test for equal variances, respectively. Depending on the out-

come, Student’s t-test (for normally distributed samples with

equal or unequal variance) or Wilcoxon rank sum test (for

non-normally distributed samples with unequal variance)

was used to determine whether the differences between the

CTRL and RD models were significant. The Bonferroni–
Holm correction for multiple comparisons was used to calcu-

late the adjusted P-values (FDR). Significance thresholds

were set at FDR < 0.05 and log2(FC) > 1.3.

Software

Model curation and all simulations were carried out with

MATLAB R2019a (MathWorks, Inc., Natick, MA, USA)

using the Gurobi 8.1 (Gurobi Optimization, Inc., Houston

TX, USA) linear programming solver and the COBRA 3.0

toolbox [68].
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online in the Supporting Information section at the end

of the article.
Table S1. Manual curation of the model including

added and curated reactions [Fixes], deleted reactions [

Recon3D_del], added metabolites [Added_mets], and
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information about the media constraints [HAM’sF10].

Table S2. Fibroblast specific genes.

Table S3. Detailed information about the ATP yields

for Figs 3 and 4.

Table S4. Genes and proteins significantly changed

between RD and CTRL fibroblasts.

Table S5. Detailed results of the metabolic tasks analy-

sis in the fibroblast model.

Table S6. Comparison between the exchanged amino

acids in model prediction and in the in vitro experi-

ments (CTRL + phyt group). For a full list of pre-

dicted uptake and secretion rates of metabolites see

Table S7.

Table S7. Detailed comparison at the level of secretion

and uptake reactions between healthy and Refsum

models forced to take up phytanate.

Fig. S1. Additional data on amino acid uptake and

secretion rates in the fibroblast CTRL (n = 6; green)

and RD (n = 5; blue) cultures exposed to phytol for

96 h (shown as mean � SD). Rates were calculated

based on the fresh medium measurements.

Fig. S2. Additional experimental data of (A) amino

acids and (B) glucose determinations in the medium of

the fibroblast CTRL (n = 6) and RD (n = 5) cells

after incubation at indicated time points (shown as

mean � SD). For details, see Fig. 6C. (C) Protein con-

centrations of cell pellets after incubation at indicated

time points. (D) Growth curves of attached cells for

the indicated time points (left panel), and statistical

analysis of the total area under the curve per cell line

after 7 days of incubation (right panel). Data are

shown as bar plots.
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