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Systems of cubic forms in many variables
By Simon L. Rydin Myerson at London

Abstract. We consider a system of R cubic forms in n variables, with integer coeffi-
cients, which define a smooth complete intersection in projective space. Provided n � 25R, we
prove an asymptotic formula for the number of integer points in an expanding box at which
these forms simultaneously vanish. In particular, we obtain the Hasse principle for systems of
cubic forms in 25R variables, previous work having required that n� R2. One conjectures
that n � 6RC 1 should be sufficient. We reduce the problem to an upper bound for the num-
ber of solutions to a certain auxiliary inequality. To prove this bound we adapt a method of
Davenport.

1. Introduction

1.1. Main result. Let c1; : : : ; cR be homogeneous cubic forms in nvariables x1; : : : ; xn
with integer coefficients. We treat the simultaneous Diophantine equations

c1.Ex/ D 0; : : : ; cR.Ex/ D 0

and the corresponding projective variety in Pn�1Q , which we call V.c1; : : : ; cR/. We assume
throughout that the ci generate the ideal of V.c1; : : : ; cR/, and are linearly independent. The
cubic case of a classic result of Birch gives us:

Theorem 1.1 (Birch [2]). Let B be a box in Rn, contained in the box Œ�1; 1�R, and
having sides of length at most 1 which are parallel to the coordinate axes. For each P � 1,
write

Nc1;:::;cR
.P / D #¹Ex 2 Zn W Ex=P 2 B; c1.Ex/ D 0; : : : ; cR.Ex/ D 0º:

If the variety V.c1; : : : ; cR/ is a smooth complete intersection, and the inequality

(1.1) n � 8R2 C 9R

holds, then for all P � 1, some I � 0 depending only on the ci and B, and some S � 0

depending only on the ci , we have

(1.2) Nc1;:::;cR
.P / D ISP n�3R CO.P n�3R�ı/;
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and EP/M507970/1.
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where the implicit constant depends only on the forms ci , and the positive real number ı
depends only on R. If the variety V.c1; : : : ; cR/ has a smooth point over Qp for each prime p,
and a smooth real point whose homogeneous co-ordinates lie in B, then S and I are positive.

In particular, the latter theorem follows from [2, Theorem 1], on inserting the bound
dimV � � R � 1 for the dimension of the variety V � occurring in that result. This bound fol-
lows from [4, Lemma 3.1] whenever V.c1; : : : ; cR/ is a smooth complete intersection. See
[18, Lemma 1.1] for details.

In Section 1.3 we prove:

Theorem 1.2. In Theorem 1.1 we may replace (1.1) with the condition

(1.3) n � 25R:

This sharpens (1.1) as soon as R � 3. For example when R D 3 and V.c1; c2; c3/ is
a smooth complete intersection, Theorem 1.2 applies when n � 75, whereas Birch’s theorem
requires n � 99.

The “square-root cancellation” heuristic suggests that in place of (1.1) the condition
n � 6RC 1 should suffice, see for example [3, discussion around formula (1.5)]. By handling
systems of forms in O.R/ variables we come within a constant factor of this conjecture.

Our strategy is an extension of our previous work [18]. In forthcoming papers we further
generalise this approach to treat systems of R forms with degree d � 2, with rational or real
coefficients.

1.2. Related work. We begin with the case when the forms ci .Ex/ are diagonal.
In the case of a single diagonal form c, Baker [1] proves that V.c/ has a rational point

whenever n � 7.
Brüdern and Wooley [7, 8, 11] treat diagonal systems in n � 6RC 1 variables, the best

value of n possible with the classical circle method. In particular, they prove the Hasse principle
for V.c1; : : : ; cR/ whenever the ci are diagonal, V.c1; : : : ; cR/ is smooth and n � 6RC 1.
They also prove an asymptotic formula of the type (1.2) whenever n � 6RC 3 holds, or when
R D 2 and n � 14 holds [5, 6, 9]. In the case R D 2 they prove a Hasse principle for certain
pairs of diagonal cubics in as few as eleven variables [10].

Returning to the case of general (not necessarily diagonal) forms, we consider the case
R D 1. Let c be a cubic form. Hooley [17] proves that if n D 8, the variety V.F / is smooth,
and the box B is sufficiently small and centred at a point at which the Hessian determinant of F
does not vanish, then a smoothly weighted version of the asymptotic formula (1.2) holds. In
this work he assumes a Riemann hypothesis for a certain modified Hasse–Weil L-function.
When n D 9, he proves the same result unconditionally [16], with the weaker error term
O.P n�3.logP /�ı/ in place of the O.P n�3�ı/ from (1.2). Heath-Brown [15] proves that if
n � 14, then V.c/ always has a rational point, regardless of whether it is singular.

In the case R D 2, Dietmann and Wooley [14] have shown that V.c1; c2/ always has
a rational point when n � 827, whether or not it is smooth.

In the general case R � 1, Schmidt [19] shows that V.c1; : : : ; cR/ always has a rational
point if n � .10R/5. Recent work of Dietmann [13] improves this condition to

n � 400;000R4:
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1.3. Reduction to an auxiliary inequality. To prove Theorem 1.2 we will use Theo-
rem 1.3 from the author’s previous work [18]. This will reduce the problem to proving an upper
bound for the number of solutions to the following auxiliary inequality.

Definition 1.3. For any k 2N and Et 2Rk , we write kEtk1 D maxi jti j for the supremum
norm. When c.Ex/ is a cubic form in n variables with real coefficients, we define a symmetric
matrix

(1.4) Hc.Ex/ D
1

kck1

�
à2c.Ex/
àxiàxj

�
1�i;j�n

;

where

kck1 D
1

6
max

i;j;k2¹1;:::;nº

ˇ̌̌̌
à3c.Ex/
àxixjxk

ˇ̌̌̌
:

Thus Hc.Ex/ is the Hessian of the cubic form c.Ex/=kck1, which has been normalised so that 1
is the absolute value of its largest coefficient. For each B � 1 we put N aux

c .B/ for the number
of pairs .Ex; Ey/ of integer vectors with

kExk1; k Eyk1 � B; kHc.Ex/ Eyk1 < B:

We show that this definition of the counting function N aux
c .B/ agrees with the one given

in [18, Definition 1.1]. There we consider a degree d polynomial f and a system of multilinear
forms Em.f /.Ex .1/; : : : ; Ex .d�1//, and when d D 3 and f .Ex/ D c.Ex/, we see that

Em.f /.Ex .1/; Ex .2// D kck1Hc.Ex
.1//Ex .2/:

One can then check that the definitions agree. The case d D 3 of [18, Theorem 1.3] therefore
states that:

Theorem 1.4. Let the counting function Nc1;:::;cR
.P / be as in Theorem 1.1. Suppose

that for some C0 � 1 and C > 3R, we have

(1.5) N aux
Ě�Ec
.B/ � C0B

2n�8C

for all Ě 2 RR and B � 1, where we write Ě � Ec for ˇ1c1 C � � � C ˇRcR. Then we have

Nc1;:::;cR
.P / D ISP n�3R CO.P n�3R�ı/

for all P � 1, where the implicit constant depends at most on C0, C and the ci , and the positive
constant ı depends at most on C and R. Here the constants I and S are as in Theorem 1.1.

We give the following bound for the counting function N aux
c .B/. The proof occupies the

bulk of this paper and is completed in Section 6.

Proposition 1.5. We call a set K of real cubic forms in n variables a closed cone if

(i) for all c 2K and � � 0 we have �c 2K ,

(ii) K is closed in the real linear space of cubic forms in n variables.
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Let K be a closed cone as above, and let N aux
c .B/ be as in Definition 1.3. If we set

(1.6) �K D 1C max
c2Kn¹0º

dim SingV.c/;

so that �K 2 ¹0; : : : ; n � 1º, then for all � > 0, c 2K and B � 1 we have

(1.7) N aux
c .B/�K;� B

nC�KC�:

Note that without the normalising factor 1=kck1 in (1.4) this result would be false, since
we would then have N aux

c .B/�n B
2n whenever kck1 � 1

B
. We will outline the proof of the

proposition after deducing Theorem 1.2.

Proof of Theorem 1.2. Suppose that (1.3) holds. We claim that for all B � 1, � > 0 and
Ě 2 RR we have

(1.8) N aux
Ě�Ec
.B/�c1;:::;cR;� B

nCR�1C�;

where Ě � Ec is as in Theorem 1.4. If we set C D .n �RC 1
2
/=8 and let C0 be sufficiently large

in terms of the forms ci , we can then apply Theorem 1.4. For (1.8) implies (1.5) on setting
� D 1

2
in (1.8). Moreover, we have C > 3R, by (1.3). So the hypotheses of Theorem 1.4 are

satisfied, and Theorem 1.2 follows.
Setting K D ¹ Ě � Ec W Ě 2 RRº in Proposition 1.5, we see that (1.8) follows from (1.7)

unless �K > R � 1 holds. Suppose for a contradiction that we have �K > R � 1.
By the definition in (1.6) there must be Ě 2 RR n ¹E0º with

(1.9) dim SingV. Ě � Ec/ � R � 1:

We may assume that V.c1; : : : ; cR/ D V.c1; : : : ; cR�1; Ě � Ec/ holds, after permuting the ci if
necessary. We have

V.c1; : : : ; cR�1/ \ SingV. Ě � Ec/ � SingV.c1; : : : ; cR/

since V.c1; : : : ; cR/ is a complete intersection, and so

dim SingV.c1; : : : ; cR/ � dimV.c1; : : : ; cR�1/C dim SingV. Ě � Ec/ � .n � 1/

D dim SingV. Ě � Ec/ � .R � 1/:

Thus (1.9) implies that dim SingV.c1; : : : ; cR/ � 0, which contradicts the assumption in the
theorem that SingV.c1; : : : ; cR/ D ;.

1.4. Outline of remaining steps. To prove Proposition 1.5 we adapt the argument
used to prove Lemma 3 in Davenport [12], and subsequently a somewhat more general result
in [19, Section 5]. These authors consider the counting function defined by

N
aux-eq
c .B/ D #¹.Ex; Ey/ 2 .Zn/2 W kExk1; k Eyk1 � B; Hc.Ex/ Ey D E0º

for a cubic form c with integer coefficients. Davenport proves that either N aux-eq
c .B/ is small,

or there is a large rational linear space on which c vanishes. In order to briefly sketch his line
of reasoning, we define some additional notation.
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Definition 1.6. Define

kHc.Ex/k1 D max
i;j
jHc.Ex/ij j:

Let �c;1.Ex/; : : : ; �c;n.Ex/ be the eigenvalues of the real symmetric matrix Hc.Ex/, listed with
multiplicity and in order of decreasing absolute value. Observe that

(1.10) j�c;1.Ex/j � nkHc.Ex/k1 � n
2
kExk1:

For each i 2 ¹1; : : : ; nº let ED.c;i/.Ex/ be the vector of all i � i minors of Hc.Ex/, arranged
in some order. This is a vector of degree i homogeneous forms in the variables Ex, with real
coefficients. Let J ED.c;i/.Ex/ be the Jacobian matrix .àD.c;i/j .Ex/=àxk/jk .

Davenport’s argument runs as follows.

(1) Let � 2 ¹0; : : : ; n � 1º. Suppose that we haveN aux-eq
c .B/� BnC� for some sufficiently

large implicit constant. The contribution to this count from any one vector Ex is at most
O.Bn�rankHc.Ex//. So there must be an integer b in the set ¹0; : : : ; n � 1º such that at
least� B�Cb integer points Ex satisfy both rankHc.Ex/ D b and kExk1 � B .

(2) If � and b are as in (1), then one can deduce that there is an integer point Ex .0/ satis-
fying the condition rankHc.Ex .0// D b such that the tangent space to the affine variety
ED.c;bC1/.Ex/ D E0 at the point Ex .0/ has dimension � C b C 1 or more. Equivalently,

rankHc.Ex .0// D b and rankJ ED.c;bC1/.Ex
.0// � n � � � b � 1

both hold. This follows from [12, Lemma 2].

(3) If c has integral coefficients and there exists a vector Ex .0/ as in (2), then it follows
that there exist linear subspaces X; Y of Qn, with dimensions � C b C 1 and n � b,
respectively, such that for all EX 2 X and EY ; EY 0 2 Y the equality EY THc. EX/ EY 0 D 0 holds.
See [19, Lemma 4] or [12, proof of Lemma 3].

(4) We conclude that if N aux-eq
c .B/� BnC� , then there are spaces X; Y as in (3). In that

case the space Z defined by Z D X \ Y is a rational linear space, with dimension at
least � C 1, such that for all EZ 2 Z the equality c. EZ/ D 0 holds.

Our setting differs in three ways from that of Schmidt and Davenport. First, we consider
the inequality kHc.Ex/ Eyk1 � B rather than the equationHc.Ex/ Ey D E0. Second, for us the cubic
form c.Ex/may have real coefficients. And third, rather than concluding that c.Ex/ has a rational
linear space of zeroes, we seek to show that the variety V.c/ is very singular.

1.5. Structure of this paper. In Section 2 and Sections 4–6 we will modify each of the
four steps (1)–(4) above to accommodate the three changes described at the end of Section 1.4.
In the remaining section, Section 3, we prove some technical lemmas relating the minors and
eigenvalues of real matrices.

1.6. Notation. Throughout, we let c, kEtk1, kck1,Hc.Ex/ andN aux
c .B/ be as in Defini-

tion 1.3, and we let kHc.Ex/k1, �c;i .Ex/, ED.c;i/.Ex/ and J ED.c;i/.Ex/ be as in Definition 1.6. We do
not require algebraic varieties to be irreducible, and we adopt the convention that dim; D �1.
We use Vinogradov’s� notation and big-O notation in the usual way.
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2. The eigenvalues of the Hessian matrix Hc.Ex/

In this section we show that if the counting functionN aux
c .B/ from Definition 1.3 is large,

there are many integer points Ex for which the eigenvalues of Hc.Ex/ lie in some fixed dyadic
ranges. Namely, we will show that there are many integer points in a set Kk.E1; : : : ; EkC1/
defined as follows. This corresponds to step (1) from Section 1.4.

Definition 2.1. Suppose that k 2 ¹0; : : : ; nº and that E1; : : : ; EkC1 2 R such that the
inequalities E1 � � � � � EkC1 � 1 hold. Then we define Kk.E1; : : : ; EkC1/ to be the set of
all vectors Ex in Rn satisfying the following conditions: the inequality kExk1 � B holds, and
we have

1

2
Ei < j�c;i .Ex/j � Ei

whenever 1 � i � k holds, and we have

j�c;i .Ex/j � EkC1

whenever k C 1 � i � n holds.

Lemma 2.2. Let H be a real symmetric n � n matrix and let �1; : : : ; �n be the eigen-
values of the matrix H , listed with multiplicity and in order of decreasing absolute value. Let
C � 1 and B � 1, and suppose that j�1j � CB holds. Set

NH .B/ D #¹ Ey 2 Zn W k Eyk1 � B; kH Eyk1 � Bº:

Then we have

NH .B/�C;n min
1�i�n

Bn

1C j�1 � � ��i j
:

Proof. The integral vectors Ey counted byNH .B/ are all contained in the box k Eyk1 � B
and in the ellipsoid ¹Et 2 Rn W Et THTH Et � nB2º, which has principal radii j�i j�1

p
nB . Hence

NH .B/�n

nY
iD1

min¹1C j�i j�1
p
nB;Bº

and as j�i j � CB holds, this is

�

nY
iD1

min¹2C j�i j�1
p
nB;Bº:

It follows that

NH .B/�C;n B
n
nY
iD1

min¹j�i j�1; 1º:

Since the inequalities j�1j � � � � � j�nj hold, we deduce that

NH .B/�C;n B
n min

²
1;

1

j�1j
;

1

j�1�2j
; : : : ;

1

j�1 � � ��nj

³
� min

1�i�n

Bn

1C j�1 � � ��i j
;

as claimed in the lemma.
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Corollary 2.3. Let N aux
c .B/ be as in Definition 1.3, let �c;i .Ex/ and ED.c;i/.Ex/ be as in

Definition 1.6, and let Kk.E1; : : : ; EkC1/ be as in Definition 2.1. For any B � 1, one of the
following alternatives holds. Either

(2.1)
N aux
c .B/

Bn.logB/n
�n #¹Zn \K0.1/º;

or there is k 2 ¹1; : : : ; n � 1º and there are e1; : : : ; ek 2 N satisfying logB �n e1 � � � � � ek
and

(2.2)
2e1C���CekN aux

c .B/

Bn.logB/n
�n #¹Zn \Kk.2

e1 ; : : : ; 2ek ; 1/º;

or there are e1; : : : ; en 2 N satisfying logB �n e1 � � � � � en and

(2.3)
2e1C���CenN aux

c .B/

Bn.logB/n
�n #¹Zn \Kn�1.2e1 ; : : : ; 2en/º:

Proof. Note that in the case that k D n, there are no values of i satisfying kC1 � i � n,
so the last condition in the definition of Kk.E1; : : : ; EkC1/ is vacuously true and can be omit-
ted. In particular, if k D n then (2.3) follows from (2.2), because

Kn.2
e1 ; : : : ; 2en ; 1/ � Kn�1.2

e1 ; : : : ; 2en/:

So it is enough to prove that either (2.1) holds or there exist integers k and e1; : : : ; ek satisfying
the inequalities 1 � k � n and logB �n e1 � � � � � en such that (2.2) holds.

The set K0.1/, together with the sets Kk.2e1 ; : : : ; 2ek ; 1/, partition the box kExk1 � B
into disjoint pieces. So, if we let

NHc.Ex/
.B/ D #¹ Ey 2 Zn W k Eyk1 � B; kHc.Ex/ Eyk1 � Bº;

then we have

(2.4) N aux
c .B/ D

X
Ex2Zn

Ex2K0.1/

NHc.Ex/
.B/C

X
1�k�n

e1�����ek�1
e1�nlogB

X
Ex2Zn

Ex2Kk.2
e1 ;:::;2ek ;1/

NHc.Ex/
.B/:

The total number of terms on the right-hand side of (2.4) isOn..logB/n/ at most, so it follows
that either

(2.5)
X
Ex2Zn

Ex2K0.1/

NHc.Ex/
.B/�n

N aux
c .B/

.logB/n

holds, or else there are 1 � k � n and e1 � � � � � ek � 1 such that

(2.6)
X
Ex2Zn

Ex2Kk.2
e1 ;:::;2ek ;1/

NHc.Ex/
.B/�n

N aux
c .B/

.logB/n
:

If (2.5) holds, then the trivial bound NHc.Ex/
.B/�n B

n implies (2.1). Suppose instead that
(2.6) holds.
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By (1.10), for each real vector Ex the bound

j�c;1.Ex/j �n B

holds. So we may apply Lemma 2.2 with the choice H D Hc.Ex/ and some C depending on n
only. This shows that

NHc.Ex/
.B/�n

Bn

2e1C���Cek
:

Substituting this into (2.6), we see that (2.2) holds, as claimed.

3. Intermission: Eigenvalues and minors

Here we collect some results about the eigenvalues and minors of real matrices which
will be needed in Section 4. We need the following relatively straightforward fact; we include
a proof for the reader’s convenience.

Lemma 3.1. For each k; ` 2 N, let

Tk;` D ¹Ea 2 Nk
W 1 � a1 < � � � < ak � `º:

This set has
�
`
k

�
members. For each k; `;m 2 N such that k � min¹`;mº, and each ` �m real

matrix L, define an
�
`
k

�
�
�
m
k

�
real matrix LŒk� by

LŒk� D .L
Œk�

EaEb
/
Ea2Tk;`;Eb2Tk;m

; L
Œk�

EaEb
D det..Laibj

/1�i;j�k/;

so that the LŒk�
EaEb

are the k � k minors of L. For all ` �m matrices L and allm � n matricesM
we have

.LM/Œk� D LŒk�M Œk�

for all k � min¹`;m; nº. That is, we have

(3.1) .LM/
Œk�

EaEb
D

X
Ew2Tk;m

L
Œk�

Ea Ew
M
Œk�

Ew Eb
:

Proof. Let Ee .1/; : : : ; Ee .m/ be the standard basis of Rm. Fix L; Ea; Eb; then each side
of (3.1) is an alternating multilinear form in those k columns of M whose indices appear
in the vector Eb. This is some k-tuple of m-vectors.

Given the value of an alternating multilinear form at the k-tuple Ee .z1/; : : : ; Ee .zk/ for
each Ez 2 Tk;m, one can extend by linearity and the alternating property to find its value at any
k-tuple of m-vectors. In other words, it suffices to check (3.1) when, for some Ez 2 Tk;m, the
k � k submatrix .Mzibj

/1�i;j�k is the identity and all other entries of M are zero. In this
case both sides of (3.1) are equal to LŒk�

Ez Eb
.

Our main result of this section is the following technical lemma.

Lemma 3.2. Let M be a real m � n matrix. Recall that MTM is positive semidefinite
and symmetric. Let the eigenvalues of MTM be ƒ21; : : : ; ƒ

2
n in decreasing order, where the

ƒi are nonnegative and in decreasing order. That is, the ƒi are the singular values of M .
In particular, if M is a symmetric matrix, then the ƒi are exactly the absolute values of

the eigenvalues of M , by diagonalisation.
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Given a natural number k with k � min.m; n/, let ED.k/ be the vector of k � k minors
of M , arranged in some order. Then we have:

(i) The maximum norm k ED.k/k1 satisfies

(3.2) k ED.k/k1 �m;n ƒ1 � � �ƒk :

(ii) There is a k-dimensional linear space V � Rn such that for all Ev 2 V ,

(3.3) kM Evk1 �m;n kEvk1ƒk :

We may take V to be a span of k standard basis vectors Ee .i/ in Rn.

(iii) For any C � 1, either there is an .n � k C 1/-dimensional linear subspaceX of Rn such
that

kM EXk1 � C
�1
k EXk1 for all EX 2 X;(3.4)

or there is a k-dimensional linear subspace V of Rn, spanned by standard basis vectors
of Rn, such that

kM Evk1 �m;n C
�1
kEvk1 for all Ev 2 V:

Proof. Part (i). First we prove the result on the assumption that MTM is diagonal. Let
the sets Tk;` and the matrices LŒk� be as in Lemma 3.1. SinceMTM is diagonal with diagonal
entries ƒ2i , we have X

Ea2Tk;n

ƒ2a1
� � �ƒ2ak

D

X
Ea2Tk;n

.MTM/
Œk�

EaEa
D

X
Ea2Tk;n

Ew2Tk;m

.M
Œk�

Ew Ea
/2;(3.5)

by (3.1). The left-hand side of (3.5) is�n ƒ21 � � �ƒ
2
k

, and the right-hand side is�m;n k ED.k/k21,
so this proves (3.2).

Let O be an n � n orthogonal matrix such that OTMTMO is diagonal. Let EC .k/ be
the vector of k � k minors of MO . We claim that the norms k EC .k/k1 and k ED.k/k1 are of
comparable size.

Lemma 3.1 shows that

.MO/Œk� DM Œk�O Œk�;

and since we have

.OT /Œk�O Œk� D I Œk� and .OT /
Œk�

EaEb
D O

Œk�

EbEa
;

it follows that O Œk� is orthogonal. Hence the maximum norm of the entries satisfies

k EC .k/k1 D k.MO/
Œk�
k1 �m;n kM

Œk�
k1 D k ED

.k/
k1:

So in proving (3.2) we may assume that MTM is diagonal. The result follows.
Part (ii). By permuting the rows and columns of M , we may assume that

(3.6) k ED.k/k1 D jdet.Mij /1�i;j�kj:
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Let Ev be in the span of the first k basis vectors. If (3.3) holds for all such Ev, then we have proved
the lemma. Since vi D 0 for i > k, one finds that0BBBBB@

M11 � � � M1n

:::
: : :

:::

Mk1 � � � Mkn

0.n�k/�k In�k

1CCCCCA
 
Ev

01�.n�1/

In�1

!
D

0BBBBB@
.M Ev/1 M12 � � � M1n

:::
:::

: : :
:::

.M Ev/k Mk2 � � � Mkn

0.n�k/�k In�k

1CCCCCA ;
where we have divided each matrix into three blocks, and 0p�q stands for a p � q block of
zeroes. By (3.6) we have ˙v1 � k ED.k/k1 as the determinant of the left-hand side. Expanding
the determinant of the right-hand side in the first column, we find that it is equal to

˙k ED.k/k1v1 D

kX
`D1

.�1/`C1.M Ev/` det
��
Mij

�
iD1;:::;kI i¤`
jD2;:::;k

�
� kkM Evk1k ED

.k�1/
k1:

Note the .k � 1/ � .k � 1/ determinant in which i runs over 1; : : : ; k with the value ` omitted,
and j runs over 2; : : : ; k.

By part (i), this implies that ƒkv1 �m;n kM Evk1, so provided that kEvk1 D jv1j, then
(3.3) holds.

If we apply the same permutation both to the vi and to the first k rows of M , then
both sides of our claim (3.3) and our assumption (3.6) remain the same. By applying such
a permutation, we may assume kEvk1 D jv1j, and so we have proved (3.3).

Part (iii). Let X be the span of the ƒ2i -eigenvectors of MTM , where i runs from k up
to n. As the matrix MTM is symmetric, we have EXTMTM EX �n k EXk

2
1ƒ

2
k

for all EX 2 X ,
and so

kM EXk1 �m;n k EXk1ƒk

for all EX 2 X: Therefore either this space X satisfies (3.4), or the bound ƒk �m;n C
�1 holds

and the existence of the space V follows by part (ii).

4. Counting points in the sets Kk.E1; : : : ; EkC1/

In this section we estimate the number of integer points in the sets Kk.E1; : : : ; EkC1/
from Definition 2.1. We give the following result.

Lemma 4.1. Let c and Hc.Ex/ be as in Definition 1.3, �c;i .Ex/, ED.c;i/.Ex/, J ED.c;i/.Ex/

as in Definition 1.6, and Kk.E1; : : : ; EkC1/ as in Definition 2.1. Suppose that B;C � 1,
� 2 ¹0; : : : ; n � 1º, k 2 ¹0; : : : ; n � � � 1º and that CB � E1 � � � � � EkC1 � 1. Then at
least one of the following holds:

(I)k The set Kk.E1; : : : ; EkC1/ may be covered by a collection of at most

OC;n.B
� .E1 � � �EkC1/E

���k�1
kC1 /

boxes in Rn of side EkC1. Such a box contains On.EnkC1/ integral points, so it follows
that

(4.1) #¹Zn \Kk.E1; : : : ; EkC1/º �C;n B
� .E1 � � �EkC1/E

n���k�1
kC1 :
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(II)k There exist an integer 1 � b � k, a .� C b C 1/-dimensional linear subspace X of Rn,
and a point Ex .0/ 2 Kb.E1; : : : ; EbC1/ such that

EbC1 < C
�1Eb

and

kJ ED.c;bC1/.Ex
.0// EXk1 � C

�1
k ED.c;b/.Ex .0//k1k EXk1 for all EX 2 X:(4.2)

(III) There is a .� C 1/-dimensional linear subspace X of Rn such that

kHc. EX/k1 � C
�1
k EXk1 for all EX 2 X;(4.3)

with kHc. EX/k1 as in Definition 1.6.

We have subscripted the first two items to emphasize their dependence on k; note that item (III)
has no such dependence.

In Corollary 5.2 below, we will use Lemma 4.1 to bound quantities (2.1) and (2.2) from
Corollary 2.3. Before proving the lemma, we give a comparison with step (2) in Section 1.4.

If there are many integer points Ex for which rankHc.Ex/ D b holds, then step (2) gives
us a point Ex .0/ for which the matrix J ED.c;bC1/.Ex

.0// has a kernel of dimension .� C b C 1/ or
more and rankHc.Ex .0// D b holds.

If there are many integer points Ex for which Ex 2 Kk.E1; : : : ; EkC1/, then (4.1) is false
and so either (II)k or (III) must hold. Of these, case (II)k gives us a point Ex .0/ such that
J ED.c;bC1/.Ex

.0// is small on a .� C b C 1/-dimensional space. Moreover, it states that

Ex .0/ 2 Kb.E1; : : : ; EbC1/ and EbC1 < C
�1Eb;

so that the .b C 1/st eigenvalue of the matrix Hc.Ex .0// is about C times smaller than the bth
eigenvalue. Thus (II)k gives us a point Ex .0/ for which in some sense J ED.c;bC1/.Ex

.0// is close
to having a kernel of dimension at least .� C b C 1/ and Hc.Ex .0// is close to having rank b.

The third case (III) is less directly comparable to step (2). We suggest that it could corre-
spond to the case b D 0 of step (2).

Proof of Lemma 4.1. The proof is by induction on k. Let c, C , B , and � be fixed.

The case k D 0. Let k D 0, let CB � E1 � 1 and suppose that alternative (III) does
not hold. We claim that alternative (I)0 holds, that is, K0.E1/ is covered by OC;n.B�=E�1 /
boxes of side E1.

As (III) is false, applying Lemma 3.2 (iii) to the matrix of the linear map Ex 7! Hc.Ex/

shows that there is an .n � �/-dimensional subspace V of Rn with

kHc.Ev/k1 �n C
�1
kEvk1 for all Ev 2 V:(4.4)

For each Ez 2 Rn, let A0.Ez/ be the box in Rn defined by

A0.Ez/ D ¹Ez C EuC Ev W Eu 2 V
?; Ev 2 V; kEuk1 � E1; kEvk1 � Bº:

Now K0.E1/ is contained in the box kExk1 � B . It follows that we can cover K0.E1/ with
a collection of OC;n.B�=E�1 / boxes of the form A0.Ez/, each one of which is centred at
a point Ez belonging toK0.E1/. We will show below that for each Ez 2 K0.E1/, the intersection
A0.Ez/ \K0.E1/ is contained in a box of side OC;n.E1/. It follows that K0.E1/ is covered by
OC;n.B

�=E�1 / boxes of side E1, as claimed.
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It remains to let Ez 2 K0.E1/ and let Ey 2 A0.Ez/ \K0.E1/, and to deduce that the bound
k Ey � Ezk1 �C;n E1 must hold.

By the definition ofK0.E1/we have j�c;1. Ey/j � E1 and j�c;1.Ez/j � E1, and the bounds
kHc. Ey/k1 �n E1 and kHc.Ez/k1 �n E1 follow by (1.10). So we have

(4.5) kHc. Ey � Ez/k1 �n E1:

Let Eu 2 V ? and let Ev 2 V such that Ey D Ez C EuC Ev holds. Since Ey lies in A0.Ez/, we have
kEuk1 � E1, and with (4.5) this implies that

kHc.Ev/k1 �n E1:

By (4.4) it follows that kEvk1 �n CE1, and hence that k Ey � Ezk1 �C;n E1, as claimed.

The inductive step. Let k � 1 and CB � E1 � � � � � EkC1 � 1. We suppose that (II)k
and (III) are both false, and claim that (I)k holds.

By induction, at least one of (I)k�1, (II)k�1, or (III) holds. Note that of these (III) is false
by assumption, and (II)k�1 is false since it implies (II)k , and so (I)k�1 must hold.

Suppose for the time being that

(4.6) EkC1 < C
�1Ek :

The contrary case is almost trivial and will be dealt with at the end of the proof. We claim that

(4.7) Kk.E1; : : : ; EkC1/ D
[
V

K.C;V /
k

.E1; : : : ; EkC1/;

where V runs over those .n � � � k/-dimensional subspaces of Rn which are spanned by
standard basis vectors, and we define

K.C;V /
k

.E1; : : : ; EkC1/(4.8)

D
®
Ex 2 Kk.E1; : : : ; EkC1/ W kJ ED.c;kC1/.Ex/Evk1 � C

�1
k ED.c;k/.Ex/k1kEvk1

for all Ev 2 V
¯
:

We have assumed that EkC1 < C�1Ek and that the case b D k of (II)k is false. So the case
b D k of (4.2) must be false for every Ex .0/ 2 Kk.E1; : : : ; EkC1/ and every .�CbC1/-dimen-
sional subspace X of Rn.

That is, for any Ex .0/ 2 Kk.E1; : : : ; EkC1/ and any .� C k C 1/-dimensional linear sub-
space X of Rn, we must have

kJ ED.c;kC1/.Ex
.0// EXk1 > C�1k ED.c;k/.Ex .0//k1k EXk1

for some EX 2 X . Applying Lemma 3.2 (iii) with the choice M D J ED.c;kC1/.Ex
.0// shows that

for each Ex .0/ 2 Kk.E1; : : : ; EkC1/ there is an .n � � � k/-dimensional subspace V of Rn,
spanned by standard basis vectors, such that

(4.9) kJ ED.c;kC1/.Ex
.0//Evk1 � C

�1
k ED.c;k/.Ex .0//k1kEvk1 for all Ev 2 V .

This proves (4.7). So to prove (I)k it suffices to show that for each .n � � � k/-dimensional
space V , the set (4.8) is covered by a union of OC;n.B� .E1 � � �EkC1/E���k�1kC1

/ boxes of
side EkC1.
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Let � > 0 be a sufficiently small constant depending at most on C and n, and for each
Ez 2 Rn set

(4.10) Ak.Ez/ D ¹Ez C EuC Ev W Eu 2 V
?; Ev 2 V; kEuk1 � EkC1; kEvk1 � �Ekº:

Recall from the start of this inductive step that (I)k�1 holds, and so Kk�1.E1; : : : ; Ek/ is
covered by a collection of OC;n.B� .E1 � � �Ek/E���kk

/ boxes of side Ek . We can subdivide
each of these boxes into OC;n.E�Ckk

=E�Ck
kC1

/ sub-boxes of the form Ak.Ez/. Since

K.C;V /
k

.E1; : : : ; EkC1/ � Kk�1.E1; : : : ; Ek/;

it follows that the set K.C;V /
k

.E1; : : : ; EkC1/ may be covered by a collection of no more
than OC;n.B� .E1 � � �EkC1/E���k�1kC1

/ boxes of the form Ak.Ez/, each of which is centred
at a point Ez belonging to the set K.C;V /

k
.E1; : : : ; EkC1/. We will show below that for each

such box Ak.Ez/, the intersection Ak.Ez/ \K.C;V /k
.E1; : : : ; EkC1/ is covered by a box of side

OC;n.EkC1/. It follows that each set (4.8) is covered by OC;n.B� .E1 � � �EkC1/E���k�1kC1
/

boxes of side EkC1, and by the comments after (4.9) this proves the lemma.
Let Ez 2 K.C;V /

k
.E1; : : : ; EkC1/ and let Ey 2 Ak.Ez/\K.C;V /k

.E1; : : : ; EkC1/. The claim
is that k Ey � Ezk1 �C;n EkC1 holds. Let Eu 2 V ? and let Ev 2 V such that Ey D Ez C EuC Ev, and
note that since Ey 2 Ak.Ez/, we have

(4.11) kEuk1 � EkC1; kEvk1 � �Ek :

Now the j th partial derivatives of the .k C 1/ � .k C 1/ minors ED.c;kC1/.Ex/ are linear
combinations of the minors ED.c;kC1�j /.Ex/with coefficients of size at mostOn.1/. So we haveàj ED.c;kC1/.Ex/àxi1 � � � àxij


1

�n k ED
.c;kC1�j /.Ex/k1;

and Taylor expansion shows that

ED.c;kC1/.Ez C EuC Ev/ � ED.c;kC1/.Ez/

D J ED.c;kC1/.Ez/:.EuC Ev/COn
�
kEuC Evk21k

ED.c;k�1/.Ez/k1 C � � �

C kEuC Evkk1k
ED.c;1/.Ez/k1 C kEuC Evk

kC1
1

�
:

It follows that

kJ ED.c;kC1/.Ez/Evk1 �n k ED
.c;kC1/. Ey/k1 C k ED

.c;kC1/.Ez/k1(4.12)

C kEuk1k ED
.c;k/.Ez/k1 C � � �

C kEukk1k
ED.c;1/.Ez/k1 C kEuk

kC1
1

C kEvk21k
ED.c;k�1/.Ez/k1 C � � �

C kEvkk1k
ED.c;1/.Ez/k1 C kEvk

kC1
1 :

Since Ey; Ez 2 Kk.E1; : : : ; EkC1/, Lemma 3.2 (i) gives us the bounds

k ED.c;j /.Ez/k1 �n

jY
iD1

Ei ; k ED
.c;kC1/. Ey/k1 �n

kC1Y
iD1

Ei ;(4.13)
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and since Ez 2 K.C;V /
k

.E1; : : : ; EkC1/, it follows from (4.8) that

kJ ED.c;kC1/.Ez/Evk1 �n C
�1
kEvk1

kY
iD1

Ei :(4.14)

Substituting (4.13) and (4.14) into (4.12) yields

C�1kEvk1

kY
iD1

Ei �n

kC1Y
iD1

Ei C kEvk
2
1

k�1Y
iD1

Ei C � � � C kEvk
k
1E1 C kEvk

kC1
1

C kEuk1

kY
iD1

Ei C � � � C kEuk
k
1E1 C kEuk

kC1
1 :

Applying the bounds from (4.11) and the inequalities E1 � � � � � EkC1, we deduce that

C�1kEvk1

kY
iD1

Ei �n

kC1Y
iD1

Ei C �kEvk1

kY
iD1

Ei :

Since � is assumed to be small in terms of C and n, it follows that kEvk1 �n CEkC1 holds and
hence that k Ey � Ezk1 �C;n EkC1 holds. By the comments after (4.10), this proves the lemma.

It remains to consider the case when (4.6) is false, that is, when EkC1 � C�1Ek holds.
At the start of the inductive step we supposed that (I)k�1 holds, so the set Kk�1.E1; : : : ; Ek/
may be covered by OC;n.B� .E1 � � �Ek/E���kk

/ boxes of side Ek . We have

Kk.E1; : : : ; EkC1/ � Kk�1.E1; : : : ; Ek/;

and so the setKk.E1; : : : ; EkC1/ is also covered by this collection of boxes. Since the estimate
EkC1 � C

�1Ek holds, we can divide each of these boxes into OC;n.1/ boxes of side EkC1.
This proves (I)k .

5. Small values of a trilinear form

Part (3) of Davenport’s argument from Section 1.4 starts from a point Ex for which the
matricesHc.Ex/ and J ED.c;bC1/.Ex/ have prescribed ranks, and finds linear spaces X; Y such that
the equation

EY THc. EX/ EY
0
D 0

holds for all EX 2 X and EY ; EY 0 2 Y . Our analogue is the following pair of results, which give
linear spaces on which the trilinear form EY THc.Et / EY 0 is small. One may recover Davenport’s
result by setting b D rankHc.Ex .0//, X D kerJ ED.c;bC1/.Ex

.0// and restricting Et to lie in the
space X

Lemma 5.1. Let c.Ex/ be as in Definition 1.3, and let �c;i .Ex/ and J ED.c;i/.Ex/ be as in
Definition 1.6. Suppose that b 2 ¹1; : : : ; n�1º and that Ex .0/ 2Rn. Then, provided ED.c;b/.Ex .0//
is nonzero, there exists an .n � b/-dimensional linear subspace Y of Rn such that for all
EY ; EY 0 2 Y and all Et 2 Rn we have

(5.1) EY THc.Et / EY 0�n

�
kJ ED.c;bC1/.Ex

.0//Etk1

k ED.c;b/.Ex .0//k1
C
j�c;bC1.Ex

.0//j � kEtk1

j�c;b.Ex
.0//j

�
k EY k1k EY

0
k1:
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We prove Lemma 5.1 at the end of this section, after deducing

Corollary 5.2. Let c, Hc.Ex/ and N aux
c .B/ be as in Definition 1.3. For any B;C � 1

and any � 2 ¹0; : : : ; n � 1º, one of the following alternatives holds: Either

(5.2) N aux
c .B/�C;n B

nC� .logB/n;

or else there exist positive-dimensional linear subspaces X and Y of Rn, satisfying the condi-
tion dimX C dimY D nC � C 1, such that

j EY THc. EX/ EY
0
j �n C

�1
k EY k1k EXk1k EY

0
k1 for all EX 2 X; EY ; EY 0 2 Y:(5.3)

Proof. Lemma 4.1 shows that for any k 2 ¹0; : : : ; n���1º and anyE1; : : : ; EkC1 2 R
satisfying

CB � E1 � � � � � EkC1 � 1;

one of (I)k , (II)k , or (III) must hold. Suppose first that in every case alternative (I)k holds.
By (4.1), we then have

(5.4) #¹Zn \Kk.E1; : : : ; EkC1/º �C;n B
� .E1 � � �EkC1/E

n���k�1
kC1

for every k 2 ¹0; : : : ; n � � � 1º and every CB � E1 � � � � � EkC1 � 1. Now Corollary 2.3
shows that either

(5.5)
N aux
c .B/

Bn.logB/n
�n #¹Zn \K0.1/º;

or

(5.6)
2e1C���CekN aux

c .B/

Bn.logB/n
�n #¹Zn \Kk.2

e1 ; : : : ; 2ek ; 1/º;

where k 2 ¹1; : : : ; n � 1º and the inequalities B �n 2
e1 � � � � � 2ekC1 � 1 hold, or

(5.7)
2e1C���CenN aux

c .B/

Bn.logB/n
�n #¹Zn \Kn�1.2e1 ; : : : ; 2en/º;

where the inequalities B �n 2
e1 � � � � � 2en � 1 hold. We may assume that C is sufficiently

large in terms of n, so that CB � 2e1 holds in (5.6)–(5.7). Substituting the bound (5.4) into
each of (5.5)–(5.7) proves the conclusion (5.2).

Suppose next that alternative (III) holds in Lemma 4.1. In this case we let Y D Rn, and
the conclusion (5.3) follows from (4.3).

It remains to treat the case when there exist k 2 ¹0; : : : ; n���1º andE1; : : : ; EkC1 2 R
satisfying CB � E1 � � � � � EkC1 � 1 such that alternative (II)k holds in Lemma 4.1. This
means that there exist an integer b with 1 � b � k, a point Ex .0/ 2 Kb.E1; : : : ; EbC1/, and
a .� C b C 1/-dimensional linear subspace X of Rn such that

EbC1 < C
�1Eb(5.8)

and

kJ ED.c;bC1/.Ex
.0// EXk1 � C

�1
k ED.c;b/.Ex .0//k1k EXk1 for all EX 2 X:(5.9)
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Since Ex .0/ 2 Kb.E1; : : : ; EbC1/, the inequalities 1
2
Ei < �c;i .Ex

.0// � Ei hold. There-
fore (5.8) implies

(5.10) �c;bC1.Ex
.0// < 2C�1�c;b.Ex

.0//:

Note that (5.10) implies that �c;b.Ex .0// ¤ 0 so by Lemma 3.2 (i) we have ED.c;b/.Ex .0// ¤ 0.
Hence we may apply Lemma 5.1. This gives us an .n � b/-dimensional space Y such that for
all EY ; EY 0 2 Y and all Et 2 Rn the bound (5.1) holds. Taking Et D EX in (5.1) and substituting in
the bounds (5.9) and (5.10) shows that (5.3) holds. Since dimX D �CbC1 and dimY D n�b,
we have dimX C dimY D nC � C 1, as required.

Proof of Lemma 5.1. We imitate the proof of Lemma 3 in Davenport [12], which begins
by considering the following easy “warm-up” problem. Suppose we were to look for n � b lin-
early independent vectors Ey at which Hc.Ex .0// Ey vanishes. One approach would be as follows.
One can construct matrices L.i/, M .i/ for i D 1; : : : ; n � b, with entries in ¹0;˙1º, such that
the vectors

Ey .i/.Ex/ D L.i/ ED.c;b/.Ex/(5.11)

satisfy

Hc.Ex/ Ey
.i/.Ex/ DM .i/ ED.c;bC1/.Ex/:(5.12)

In particular, one can take the components of Ey .i/.Ex/ to be polynomials of the form˙D.b/j .Ex/,
and the components of Hc.Ex/ Ey .i/.Ex/ to be polynomials of the form˙D.bC1/j .Ex/.

If Hc.Ex .0// Ey D E0 had exactly n � b linearly independent solutions Ey, we would have
ED.c;bC1/.Ex .0// D E0, while ED.c;b/.Ex .0// would be nonzero. We would then have n � b solu-

tions EY .k/ defined by

EY .k/ D
Ey .k/.Ex .0//

k ED.c;b/.Ex .0//k1
.1 � k � n � b/;(5.13)

and if we chose our matrices L.i/;M .i/ appropriately, these would be linearly independent.
We now return to the proof of the lemma. Assume for the time being that L.i/, M .i/,

Ey .i/.Ex/ and EY .i/ satisfying (5.11)–(5.13) are given, and let Ex .0/ be as in the lemma. Let Et 2 Rn.
Let àEt be the directional derivative along Et defined by

P
ti
à
àxi

, and apply àEt to both sides
of (5.12). This shows that

(5.14) ŒàEtHc.Ex/� Ey
.i/.Ex/CHc.Ex/ŒàEt Ey

.i/.Ex/� DM .i/ŒàEt ED
.c;bC1/.Ex/�:

Now we have
àEt ED

.c;k/.Ex/ D J ED.c;k/.Ex/Et ;

and together with (5.11) and (5.14) this shows that

Hc.Et / Ey
.i/.Ex/ DM .i/J ED.c;bC1/.Ex/Et �Hc.Ex/L

.i/àEt ED
.c;b/.Ex/:

Premultiplying by Ey .j /.Ex/T and using (5.12) gives

Ey .j /.Ex/THc.Et / Ey
.i/.Ex/ D Ey .j /.Ex/TM .i/J ED.c;bC1/.Ex/Et(5.15)

� ŒM .i/ ED.c;bC1/.Ex/�T ŒL.i/àEt ED
.c;b/.Ex/�:
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Now Lemma 3.2 (i) shows that

k ED.c;bC1/.Ex/k1

k ED.c;b/.Ex/k1
�n j�c;bC1.Ex/j;

kàEt ED
.c;b/.Ex/k1

k ED.c;b/.Ex/k1
�n

kEtk1

j�c;b.Ex/j

and substituting these bounds into (5.15) gives

(5.16) EY .j /THc.Et / EY
.i/
�n

kJ ED.c;bC1/.Ex
.0//Etk1

k ED.c;b/.Ex .0//k1
C
j�c;bC1.Ex

.0//j � kEtk1

j�c;b.Ex
.0//j

;

where the EY .k/ are as in (5.13).
The idea is now to let Y be the span of the EY .k/ and deduce (5.1) from (5.16). Since

we are looking for an .n � b/-dimensional space Y , we will need EY .1/; : : : ; EY .n�b/ to be lin-
early independent. In order to prove (5.1) we require the following slightly stronger statement.
We claim there are L.i/, M .i/, Ey .i/.Ex/ and EY .i/ satisfying (5.11)–(5.13) such that the linear
combination defined by EY D

Pn�b
iD1 i

EY .i/ satisfies kEk1 �n k EY k1 for every vector E in
real .n � b/-space. The lemma then follows, with Y being the span of the EY .i/, on expressing
EY ; EY 0 as linear combinations of the EY .i/ and applying (5.16).

For the remainder of the proof we will assume for simplicity that the b � b minor of
Hc.Ex

.0// with largest absolute value is the minor in the lower right-hand corner, that is, we
will assume that

(5.17) k ED.c;b/.Ex .0//k1 D
ˇ̌̌
det
�
.Hc.Ex

.0//k`/kDn�bC1;:::;n
`Dn�bC1;:::;n

�ˇ̌̌
:

In general (5.17) holds after permuting the rows and columns of the matrixHc.Ex/ and one can
then apply the same permutations throughout the rest of our construction of EY .i/, every time
the matrix Hc.Ex/ appears.

Define Ey .1/.Ex/; : : : ; Ey .n�b/.Ex/ by

y
.i/
j .Ex/ D

8̂̂̂̂
<̂
ˆ̂̂:
.�1/n�b det

�
.Hc.Ex/k`/kDn�bC1;:::;n

`Dn�bC1;:::;n

�
if j D i;

.�1/j det
�
.Hc.Ex/k`/ kDn�bC1;:::;n

`Di;n�bC1;:::;nI `¤j

�
if j > n � b;

0 otherwise;

where .` D i; n � b C 1; : : : ; nI ` ¤ j / means that ` first takes the value i and then runs over
the numbers n � b C 1; : : : ; n with j omitted. Now this is of the form (5.11), and one can
check that

.Hc.Ex/ Ey
.i/.Ex//j D

8<:.�1/
n�b det

�
.Hc.Ex/k`/kDj;n�bC1;:::;n

`Di;n�bC1;:::;n;

�
if j � n � b

0 otherwise;

which is of the form (5.12). Define a matrix Q by

Q D
�
EY .1/ � � � EY .n�b/ Ee .n�bC1/ � � � Ee .n/

�
;

or equivalently by

Q D
�

Ey .1/.Ex .0//

k ED.c;b/.Ex .0//k1
� � �

Ey .n�b/.Ex .0//

k ED.c;b/.Ex .0//k1
Ee .n�bC1/ � � � Ee .n/

�
;
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so that the entries Qij have absolute value at most 1. Then one sees from (5.17) that

Q D

 
In�b 0b�beQ Ib

!
;

where eQ is some .n � b/ � .n � b/matrix. In particular, detQ D 1, and so the entries ofQ�1

are bounded in terms of n. It follows that if EY D
Pn�b
iD1 i

EY .i/, then

i D .Q
�1 EY /i �n k EY k1;

as claimed.

6. Constructing singular points on V.c/

Corollary 5.2 shows that eitherN aux
c .B/ is small, or there are spacesX; Y of large dimen-

sion on which EY THc. EX/ EY 0 is small. To prove Proposition 1.5 we show that the second alter-
native implies that V.c/ is singular. This is our analogue of Davenport’s step (4), as described
in Section 1.4.

Proof of Proposition 1.5. Suppose for a contradiction that the result is false. Then for
every N 2 N there is cN 2K with

N aux
cN
.B/ � NBnC�K .logB/n:

By Corollary 5.2, this implies that there are linear subspaces XN ; YN of Rn such that

dimXN C dimYN D nC �K C 1

holds and for all EX 2 XN and EY ; EY 0 2 YN , we have

j EY THcN
. EX/ EY 0j � N�1k EY k1k EXk1k EY

0
k1:

If we multiply cN by a constant, then the matrix HcN
.Ex/ does not change. So we may assume

that for each N the equality kcN k1 D 1 holds. After passing to a subsequence, we have
cN ! c as N !1, and it follows that there are subspaces X; Y of Rn such that

dimX C dimY D nC �K C 1

and

EY THc. EX/ EY
0
D 0 for all EX 2 X; EY ; EY 0 2 Y:(6.1)

Let b 2 ¹0; : : : ; n � � � 1º such that

dimX D n � b; dimY D �K C b C 1:

Let Ex .1/; : : : ; Ex .n/ be a basis of Rn such that Ex .bC1/; : : : ; Ex .n/ is a basis of X .
Let ŒY � be the projective linear space in Pn�1R associated to Y . Take homogeneous

co-ordinates Ey on ŒY �, so that Ey takes values in Y .
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Let W be the projective variety cut out in ŒY � by the b equations

W W EyTHc.Ex
.i// Ey D 0 .i D 1; : : : ; b/;(6.2)

so that

dimW � dimŒY � � b D �K :

We claim that W is contained in the singular locus of the projective hypersurface V.c/. It
follows that dim SingV.c/ � �K , which is a contradiction, by (1.6).

Now (6.1) implies that for every Ey 2 Y we have

EyTHc.Ex
.i// Ey D 0 .i D b C 1; : : : ; n/:

So if we let Ey 2 Y such that (6.2) holds, then we have

EyTHc.Ex/ Ey D 0 for all Ex 2 Rn:

This implies that Er Eyc. Ey/ D E0 holds, by the definition (1.4). It follows that every point of W is
contained in SingV.c/, as claimed.
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