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Abstract. This paper considers the case of pricing discretely-sampled
variance swaps under the class of equity-interest rate hybridization. Our

modeling framework consists of the equity which follows the dynamics of

the Heston stochastic volatility model, and the stochastic interest rate
is driven by the Cox-Ingersoll-Ross (CIR) process with full correlation

structure imposed among the state variables. This full correlation struc-
ture possesses the limitation to have fully analytical pricing formula for

hybrid models of variance swaps, due to the non-affinity property embed-

ded in the model itself. We address this issue by obtaining an efficient
semi-closed form pricing formula of variance swaps for an approximation

of the hybrid model via the derivation of characteristic functions. Subse-

quently, we implement numerical experiments to evaluate the accuracy of
our pricing formula. Our findings confirm that the impact of the correla-

tion between the underlying and the interest rate is significant for pricing

discretely-sampled variance swaps.

1. Introduction

The study of finance largely concerns about the trade-off between risk and
expected return. A significant source of risk in financial market is the un-
certainty of the volatility of equity indices, where volatility is understood as
the standard deviation of a financial instrument’s returns with a specific time
horizon. In late 1990s, Wall Street firms started trading volatility derivatives
such as variance swaps. Since then, these derivatives have become a preferred
route for many hedge fund managers to trade on market volatility. Due to
the crucial role that volatility plays in investment decision–making, it is im-
portant for financial practitioners to understand the nature of the volatility
variations. Research on volatility derivatives has been an active pursued topic
in quantitative finance.
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Researchers working in the field concerning volatility derivatives have been
focusing on developing suitable methods for evaluating variance swaps. Carr
and Madan [5] combined static replication using options with dynamic trading
in futures to price and hedge certain volatility contracts without specifying
the volatility process. The principal assumptions were continuous trading and
continuous semi-martingale price processes for the future prices. Demeterfi et
al. [8] worked in the same area by proving that a variance swap could be repro-
duced via a portfolio of standard options. The requirements were continuity of
exercise prices for the options and continuous sampling time for the variance
swaps. One common feature shared among these researches was the assump-
tion of continuous sampling time which was actually an simplification of the
discrete sampling reality in financial markets. In fact, options of discretely-
sampled variance swaps were mis-valued when the continuous sampling was
used as approximation, and large inaccuracies occurred in certain sampling
periods, as discussed in [1], [10], [17], [21].

In addition to the above mentioned analytical approaches, some other au-
thors also conducted researches using numerical approaches. Little and Pant
[17] explored the finite-difference method via dimension-reduction approach
and obtained high efficiency and accuracy for discretely-sampled variance
swaps. Windcliff et al. [20] investigated the effects of employing partial-integro
differential equations on constant volatility, local volatility and jump diffusion-
based volatility products. An extension of the approach in [17] was made
by Zhu and Lian in [21] through incorporating Heston two-factor stochastic
volatility for pricing discretely-sampled variance swaps. Another recent study
was conducted by Bernard and Cui [1] on analytical and asymptotic results
for discrete sampling variance swaps with three different stochastic volatility
models. Their Cholesky decomposition technique exhibited significant simplifi-
cation. However, the constant interest rate assumption by the authors did not
reflect the real market phenomena.

One of the contemporary developments in the financial research was the
emergence of hybrid models, which describe interactions between different as-
set classes such as stock, interest rate and volatility. The main aim of these
models was to provide customized alternatives for market practitioners and fi-
nancial institutions, as well as reducing the associated risks of the underlying
assets. Hybrid models could be generally categorized into two different types,
namely hybrid models with full correlation and hybrid models with partial
correlation among engaged underlyings. Literature concerning hybrid models
with partial correlation among asset classes appears to dominate the field due
to less complexity involved. Majority of the researchers focused on either in-
ducing correlation between the stock and interest rate, or between the stock
and the volatility. Grunbichler and Longstaff [11] developed pricing model for
options on variance based on the Heston stochastic volatility model. In [6] and
[13], it is stressed that correlation between equity and interest rate was crucial
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to ensure that the pricing activities were precise, especially for industrial prac-
tice. According to these authors, the correlation effects between equity and
interest rate were more distinct compared to the correlation effects between
interest rate and volatility. The hybrid models with full correlation among un-
derlyings started to attract attention for their improved model capability. In
[14] and [19], the authors compared their Heston-Hull-White hybrid model with
the SZHW hybridization for pricing inflation dependent options and European
options, respectively.

In this article we develop a modeling framework that extends the Heston
stochastic volatility model by including the stochastic interest rate which fol-
lows the CIR process. Note that Cao et al. [4] derived a semi-analytical pricing
formula for partially correlated Heston-CIR hybrid model of discretely-sampled
variance swaps. Their suggestion of imposing full correlation among state vari-
ables is considered in this work. Our focus is on the pricing of discrete sam-
pling variance swaps with full correlation among equity, interest rate as well as
volatility. Since the Heston-CIR model hybridization is not affine, we approach
the pricing problem via the hybrid model approximation which fits in the class
of affine diffusion models [9, 12]. The key ingredient involves the derivation
of characteristic functions for two phases of partial differential equations and
we obtain a semi-closed form pricing formula for variance swaps. Numerical
experiments are performed to evaluate the accuracy of the pricing formula.

2. Specification of the variance swaps pricing model

In this section we present a hybrid model which combines the Heston sto-
chastic volatility model with the one-factor CIR stochastic interest rate model.
Our model extends the one in [4] by imposing full correlation among the un-
derling asset, volatility and interest rate. Recently, Kim et al. [16] proposed a
model which was a combination of the multi-scale stochastic volatility model
and the Hull-White interest rate model and showed that incorporation of the
stochastic interest rate process into the stochastic volatility model gave better
results compared with the constant interest rate case in any maturity.

2.1. The Heston-CIR hybrid model

Given T > 0, let {S(t) : 0 ≤ t ≤ T} be the stochastic process of some asset
price with the time horizon [0, T ]. The Heston-CIR hybrid model under the
real world measure P is as follows

(1)


dS(t) = µS(t)dt+

√
ν(t)S(t)dW1(t), 0 ≤ t ≤ T,

dν(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW2(t), 0 ≤ t ≤ T,

dr(t) = α(β − r(t))dt+ η
√
r(t)dW3(t), 0 ≤ t ≤ T,

where {ν(t) : 0 ≤ t ≤ T} and {r(t) : 0 ≤ t ≤ T} are the stochastic instanta-
neous variance process and the stochastic instantaneous interest rate process,
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respectively. In the stochastic instantaneous variance process ν(t), the param-
eter θ is its long-term mean, κ governs the speed of mean reversion and σ is the
volatility of the volatility. Similarly in the stochastic instantaneous variance
process r(t), β is the interest rate term structure, α controls the mean-reverting
speed and η determines the volatility of the interest rate. In order to ensure
that the square root processes in ν(t) and r(t) are always positive, it is required
that 2κθ ≥ σ2 and 2αβ ≥ η2 respectively, refer to [7, 15]. {Wi(t) : 0 ≤ t ≤ T}
(1 ≤ i ≤ 3) are the Brownian motions under P with filtration {F (t)}0≤t≤T ,
and let (ζ1(t), ζ2(t), ζ3(t)) be an adapted process. The correlation involved are
given by (dW1(t), dW2(t)) = ρ12dt = ρ21dt, (dW1(t), dW3(t)) = ρ13dt = ρ31dt,
and (dW2(t), dW3(t)) = ρ23dt = ρ32dt, where −1 ≤ ρij ≤ 1 for all i, j = 1, 2, 3.

Let W̃i(t) = Wi(t) +
∫ t

0
ζi(s)ds and L(t) = exp(−1/2

∑3
i=1

∫ t
0
(ζi(s))

2ds −∑3
i=1

∫ t
0
(ζi(s)dWi(s))). We assume that the Novikov condition holds where

E[exp(1/2
∑3
i=1

∫ T
0

(ζi(t))
2dt)] < ∞. Then L(t) is a martingale and hence

E[L(t)]=E[L(0)]=1 for t ≥ 0. Define a probability measure Q by dQ=L(T )dP.

According to the Girsanov theorem, (W̃1(t), W̃2(t), W̃3(t)), 0 ≤ t ≤ T is a 3-
dimensional Brownian motion with respect to the risk-neutral measure Q.

Under Q the Heston-CIR model can be described as

(2)


dS(t) = r(t)S(t)dt+

√
ν(t)S(t)dW̃1(t), 0 ≤ t ≤ T,

dν(t) = κ∗(θ∗ − ν(t))dt+ σ
√
ν(t)dW̃2(t), 0 ≤ t ≤ T,

dr(t) = α∗(β∗ − r(t))dt+ η
√
r(t)dW̃3(t), 0 ≤ t ≤ T,

where the risk-neutral parameters are given as κ∗ = κ + λ1, θ∗ = κθ
κ+λ1

, α∗ =

α + λ2 and β∗ = αβ
α+λ2

, and the parameters λ1 and λ2 represent the premium
prices of volatility and interest rate risk, respectively. The Brownian motion

under Q is denoted by {W̃i(t) : 0 ≤ t ≤ T} (1 ≤ i ≤ 3).
Using the Cholesky decomposition, we can re-write SDEs (2) in terms of

independent Brownian motions as

(3)


dS(t)
S(t)

dν(t)
dr(t)

 = µQdt+ Σ× L×

 dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T,

where

µQ =

 r(t)
κ∗(θ∗ − ν(t))
α∗(β∗ − r(t))

 , Σ =


√
ν(t) 0 0

0 σ
√
ν(t) 0

0 0 η
√
r(t)

 ,
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and

L =


1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23 − ρ13ρ12√

1− ρ2
12

√√√√1− ρ2
13 −

(
ρ23 − ρ13ρ12√

1− ρ2
12

)2


such that

LL> =

 1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 .

Here, W ∗1 (t), W ∗2 (t) and W ∗3 (t) are three Brownian motions under Q such that
dW ∗1 (t), dW ∗2 (t) and dW ∗3 (t) are mutually independent and satisfy the following
relation 

dW̃1(t)

dW̃2(t)

dW̃3(t)

 = L×

 dW ∗1 (t)

dW ∗2 (t)

dW ∗3 (t)

 , 0 ≤ t ≤ T.

2.2. Valuation of variance swaps

Variance swaps were first launched in 1990s due to the breakthrough of
volatility derivatives in the market. Since the payment of a variance swap is
only made in a single payment at maturity, it is defined as a forward contract
on the future realized variance of the returns of the underlying asset. Suppose
that the underlying asset S(t) is observed N times during the contract period
and tj denotes the j -th observation time, then a typical formula for the measure
of realized variance, denoted as RV , is given by

(4) RV =
AF

N

N∑
j=1

(
S(tj)− S(tj−1)

S(tj−1)

)2

× 1002,

where AF is the annualized factor which converts the above expression to an-
nualized variance points depending on the sampling frequency. The measure of
realized variance requires sampling the underlying price path discretely, usu-
ally at the end of each business day, so AF is 252 in this case. If the sampling
frequency is every month or every week, then AF will be 12 or 52 respectively.

At maturity time T , a variance swap rate is V (T ) = (RV −K)× L, where
K is the annualized delivery price for the variance swap and L is the notional
amount of the swap in dollars. In the risk-neutral world, the value of a variance
swap with stochastic interest rate at time t is the expected present value of

its future payoff amount, that is, V (t) = EQ
t

[
e−

∫ T
t
r(s)ds(RV −K)× L

]
. This

value should be zero at t = 0, since it is defined in the class of forward contracts.
The above expectation calculation involves the joint distribution of the interest
rate and the future payoff, so it is complicated to evaluate. Thus, it would be
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more convenient to use the bond price as the numeraire, since the price of a

T -maturity zero-coupon bond at t = 0 is given by EQ
0

[
e−

∫ T
0
r(s)ds

]
. We can

determine the value of K by changing Q to the T -forward measure QT . It
follows that

(5) EQ
0

[
e−

∫ T
0
r(s)ds(RV −K)× L

]
= EQ

0

[
e−

∫ T
0
r(s)ds

]
ET0 (RV −K)× L,

where ET0 (·) denotes the expectation with respect to QT at t = 0. Thus, the
fair delivery price of the variance swap is given by K = ET0 [RV ].

2.3. Variance swaps dynamics under the T -forward measure

Under the T -forward measure, the valuation of the fair delivery price for a
variance swap is reduced to calculating the N expectations expressed in the
form of

(6) ET0

[(
S(tj)− S(tj−1)

S(tj−1)

)2
]

for t0 = 0, some fixed equal time period ∆t and N different tenors tj = j∆t
(j = 1, . . . , N). It is important to note that we have to consider two cases j = 1
and j > 1 separately. For the case j = 1, we have tj−1 = 0 and S(tj−1) = S(0)
is a known value, instead of an unknown value of S(tj−1) for any other cases
with j > 1. In the process of finding this expectation, j, unless otherwise
stated, is regarded as a constant. Hence both tj and tj−1 are regarded as
known constants.

Based on the tower property of conditional expectations, the calculation of
expectation (6) can be separated into two phases in the following form

(7) ET0
[(

S(tj)
S(tj−1) − 1

)2
]

= ET0
[
ETtj−1

[(
S(tj)
S(tj−1) − 1

)2
]]
.

We denote the term ETtj−1

[(
S(tj)
S(tj−1) − 1

)2
]

by Gj(ν(tj−1), r(tj−1)) for nota-

tional convenience. Then, in the first phase, the computation involved is to
find Gj(ν(tj−1), r(tj−1)), and in the second phase, we need to compute

(8) ET0 [Gj(ν(tj−1), r(tj−1))] .

To this purpose, we implement the measure change from risk neutral measure
Q to the T -forward measure QT . Note that the numeraire under Q is N1,t =

e
∫ t
0
r(s)ds, whereas the numeraire under QT is N2,t = A(t, T )e−B(t,T )r(t), refer to

[3]. Implementation of the Radon-Nikodym derivative for these two numeraires
gives the dynamics for (3) under QT as follows dS(t)

S(t)

dν(t)
dr(t)

 = Σ× L×

 dW ∗1 (t)
dW ∗2 (t)
dW ∗3 (t)

(9)
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+

 r(t)− ρ13B(t, T )η
√
r(t)

√
ν(t)

κ∗(θ∗ − ν(t))− ρ23σB(t, T )η
√
r(t)

√
ν(t)

α∗β∗ − (α∗ +B(t, T )η2)r(t)

 dt,

where

B(t, T ) =
2
(
e(T−t)

√
(α∗)2+2η2 − 1

)
2
√

(α∗)2 + 2η2 +
(
α∗ +

√
(α∗)2 + 2η2

)(
e(T−t)

√
(α∗)2+2η2 − 1

) .
We present further details regarding the change of measure in Appendix A.

3. Solution techniques for pricing variance swaps

3.1. Solution for the first phase

In order to find the term Gj(ν(tj−1), r(tj−1)), we consider a contingent claim
denoted by Uj(S(t), ν(t), r(t), t) for t ∈ [tj−1, tj ]. The contingent claim has a
European-style payoff function at expiry tj denoted by

(10) Hj(S) =

(
S

S(tj−1)
− 1

)2

.

Applying standard techniques in the general asset valuation theory, the PDE
for Uj over [tj−1, tj ] can be obtained as
(11)
∂Uj
∂t

+
1

2
νS2 ∂

2Uj
∂S2

+
1

2
σ2ν

∂2Uj
∂ν2

+
1

2
η2r

∂2Uj
∂r2

+ ρ12σνS
∂2Uj
∂S∂ν

+
(
rS − ρ13B(t, T )η

√
r(t)

√
ν(t)S

) ∂Uj
∂S

+
(
α∗β∗ − (α∗ +B(t, T )η2)r

) ∂Uj
∂r

+
(
κ∗(θ∗ − ν)− ρ23σB(t, T )η

√
r(t)

√
ν(t)

) ∂Uj
∂ν

+ ρ23ση
√
ν(t)

√
r(t)

∂2Uj
∂ν∂r

+ρ13η
√
ν(t)

√
r(t)S

∂2Uj
∂S∂r

= 0

with the terminal condition

Uj(S, ν, r, tj) = Hj(S).
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For notational convenience, we omit the subscript j, replace the expiry tj as T
and let τ = T − t and x = lnS, then (11) is transformed into

(12)



∂U

∂τ
=

1

2
ν
∂2U

∂x2
+

1

2
σ2ν

∂2U

∂ν2
+

1

2
η2r

∂2U

∂r2
+ ρ12σν

∂2U

∂x∂ν

+

(
r − ρ13B(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)− 1

2
ν

)
∂U

∂x

+
(
κ∗ (θ∗ − ν)− ρ23σB(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)

) ∂U
∂ν

+
(
α∗β∗ − (α∗ +B(T − τ, T )η2)r

) ∂U
∂r

+ ρ13η
√
ν(T − τ)

√
r(T − τ)

∂2U

∂x∂r

+ ρ23ση
√
ν(T − τ)

√
r(T − τ)

∂2U

∂ν∂r
.

U(x,ν, r, 0) = H(ex).

Next, we perform the generalized Fourier transform with respect to x to
find the solution of this PDE (refer to [18]). As a result, the transformed PDE

system of Ũ(ω, ν, r, τ) = F [U(x, ν, r, τ)] is

(13)



∂Ũ

∂τ
=

1

2
σ2ν

∂2Ũ

∂ν2
+

1

2
η2r

∂2Ũ

∂r2

+
(
κ∗θ∗ + (ρ12σωi− κ∗)ν − ρ23σB(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)

) ∂Ũ
∂ν

+
(
α∗β∗ − (α∗ +B(T − τ, T )η2)r + ρ13η

√
ν(T − τ)

√
r(T − τ)ωi

) ∂Ũ
∂r

+ ρ23ση
√
ν(T − τ)

√
r(T − τ)

∂2Ũ

∂ν∂r

+

(
−1

2
(ωi+ ω2)ν + rωi− ρ13B(T − τ, T )η

√
ν(T − τ)

√
r(T − τ)ωi

)
Ũ ,

Ũ(ω,ν, r, 0) = F [H(ex)],

where i =
√
−1 and ω is the Fourier transform variable. In order to solve

the above PDE system, we adopt Heston’s assumption in [15] that the PDE
solution has an affine form as follows

(14) Ũ(ω, ν, r, τ) = eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rŨ(ω, ν, r, 0).

We can then obtain three ordinary differential equations by substituting the
above function form (14) into the PDE system (13) as

(15)



dD

dτ
=

1

2
σ2D2 + (ρ12ωσi− κ∗)D −

1

2

(
ω2 + ωi

)
,

dE

dτ
=

1

2
η2E2 − (α∗ +B(T − τ, T )η2)E + ωi,

dC

dτ
= κ∗θ∗D + α∗β∗E − ρ13η

√
ν(T − τ)

√
r(T − τ)ωiB(T − τ, T )

+ρ13η
√
ν(T − τ)

√
r(T − τ)ωiE

−ρ23ση
√
ν(T − τ)

√
r(T − τ)DB(T − τ, T )

+ρ23ησ
√
ν(T − τ)

√
r(T − τ)DE,
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with the initial conditions

C(ω, 0) = 0, D(ω, 0) = 0, E(ω, 0) = 0.

Note that only the function D has analytical form as

D(τ) =
a+ b

σ2

1− ebτ

1− gebτ
, a = κ∗ − ρ12σωi,

b =
√
a2 + σ2(ω2 + ωi), g =

a+ b

a− b
.

The approximate solutions of the functions E and C can be found by numerical
integrations using standard mathematical software package, e.g., Matlab. The
algorithm of evaluating the functions E and C is given in Appendix B.

Since the Fourier transform variable ω appears as a parameter in functions
D, C and E, the inverse Fourier transform is conducted to retrieve the solution
as in its initial setup

U(x, ν, r, τ) = F−1
[
Ũ(ω, ν, r, τ)

]
= F−1

[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)rF [H(ex)]

]
.

In [2] the generalized Fourier transform f̂ of a function f is defined to be

f̂(ω) = F [f(x)] =

∫ ∞
−∞

f(x)e−iωxdx.

The function f can be derived from f̂ via the generalized inverse Fourier trans-
form

f(x) = F−1[f̂(ω)] =
1

2π

∫ ∞
−∞

f̂(ω)eiωxdω.

Note that the Fourier transformation of the function eiξx is

F [eiξx] = 2πδξ(ω),

where ξ is any complex number and δξ(ω) is the generalized delta function
satisfying ∫ ∞

−∞
δξ(x)Φ(x)dx = Φ(ξ).

For notational convenience, let I = S(tj−1). Conducting the generalized

Fourier transform for the payoff H(ex) = ( e
x

I − 1)2 with respect to x gives

(16) F

[(
ex

I
− 1

)2
]

= 2π

(
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

)
.

As a result, the solution of the PDE (11) is derived as follows

Uj(S, ν, r, τ) = F−1

[
eC(ω,τ)+D(ω,τ)ν+E(ω,τ)r2π

(
δ−2i(ω)

I2
−2

δ−i(ω)

I
+δ0(ω)

)]
=
e2x

I2
eC̃(τ)+D̃(τ)ν+Ẽ(τ)r − 2ex

I
eĈ(τ)+Ê(τ)r + 1(17)
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=
S2

I2
eC̃(τ)+D̃(τ)ν+Ẽ(τ)r − 2S

I
eĈ(τ)+Ê(τ)r + 1,

where tj−1 ≤ t ≤ tj and τ = tj − t. We denote C̃(τ), D̃(τ) and Ẽ(τ) as

C(−2i, τ), D(−2i, τ) and E(−2i, τ) respectively. In addition, Ĉ(τ) and Ê(τ)
are the notations for C(−i, τ) and E(−i, τ) respectively. Note that D(−i, τ) =
0.

3.2. Solution for the second phase

In this subsection, we continue to carry out the second phase in finding out
the expectation ET0 [Gj(ν(tj−1), r(tj−1))]. Following (17) and letting τ = ∆t in
Uj(S, ν, r, τ), we obtain the inner expectation Gj(ν(tj−1), r(tj−1)) as

Gj(ν(tj−1), r(tj−1))

= Uj(S, ν, r,∆t)(18)

= eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1) − 2eĈ(∆t)+Ê(∆t)r(tj−1) + 1.

The outer expectation, ET0 [Gj(ν(tj−1), r(tj−1))], is represented by

Gj(ν(0), r(0))

(19)

= ET0 [Gj(ν(tj−1), r(tj−1))]

= ET0
[
eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1) − 2eĈ(∆t)+Ê(∆t)r(tj−1) + 1

]
= ET0

[
eC̃(∆t)+D̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

]
− 2ET0

[
eĈ(∆t)+Ê(∆t)r(tj−1)

]
+ 1

= eC̃(∆t) · ET0
[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

]
− 2eĈ(∆t) · ET0

[
eÊ(∆t)r(tj−1)

]
+ 1.

In Appendix C, we show in more details how to derive approximate solutions for

ET0
[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

]
and ET0

[
eÊ(∆t)r(tj−1)

]
by using approximations

of normally distributed random variable and its characteristic function.

3.3. Delivery price of a variance swap

In the previous two subsections, we demonstrate our solution techniques for
pricing variance swaps by separating them into phases. However, as mentioned
in Section 2.3, we have to consider two cases j = 1 and j > 1 separately. The
case j > 1 follows directly the expression in (19). For the case of j = 1, we use
the method described in Section 3.1 to obtain

G(ν(0), r(0)) = ET0

[(
S(t1)

S(0)
− 1

)2
]

= eC̃(∆t)+D̃(∆t)ν(0)+Ẽ(∆t)r(0) − 2eĈ(∆t)+Ê(∆t)r(0) + 1.
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The summation for the whole period from j = 1 to j = N gives the fair delivery
price of a variance swap as

(20) K = ET0 [RV ] =
1002

T

G(ν(0), r(0)) +

N∑
j=2

Gj(ν(0), r(0))

 .

4. Numerical results

In order to analyze the performance of our approximation formula (20) for
evaluating prices of variance swaps as described in the previous section, we
conduct some numerical simulations. Comparisons are made with the Monte
Carlo (MC) simulation which resembles the real market. In addition, we also
investigate the impact of full correlation setting among the state variables in
our model.

Table 1 shows the set of parameters that we use for all the numerical exper-
iments, unless otherwise stated. This set of parameters was adopted from [12].

Table 1. Model parameters of the Heston-CIR hybrid model.

S0 ρ12 ρ13 ρ23 V0 θ∗ κ∗ σ r0 α∗ β∗ η T
1 -0.4 0.5 0.5 0.05 0.05 2 0.1 0.05 1.2 0.05 0.01 1

4.1. Comparison with MC simulation

The MC simulation is a widely utilized numerical tool for the basis of con-
ducting computations involving random variables. We perform our MC sim-
ulation in this paper using the Euler-Maruyama scheme with 200, 000 sample
paths.

Table 2. Comparison of the variance swaps prices and re-
spective relative error between pricing formula and MC simu-
lation.

Frequency Formula result MC simulation
(100,000 sample

paths)

Relative error
between pricing

formula and
MC simulations
(100,000 paths)

MC simulation
(200,000 sample

paths)

Relative error
between pricing

formula and
MC simulations
(200,000 paths)

N=4 542.06 541.38 0.125% 541.73 0.061%
N=12 529.84 529.03 0.153% 530.27 0.081%
N=26 526.47 527.05 0.110% 526.30 0.032%
N=52 525.03 525.88 0.162% 525.43 0.076%
N=252 523.89 524.42 0.101% 524.10 0.040%

We present the comparison results between numerical implementation of
the formula (20) with the MC simulation in Figure 1 and in Table 2. All
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Figure 1. Comparison of the fair delivery prices of variance
swaps between the formula (20) and the MC simulation.

values for the fair delivery prices are measured in variance points. It could be
seen in Figure 1 that our approximation formula matches the MC simulation
very well. To gain some insight of the relative difference between our formula
and the MC simulation, we compare their relative percentage error. By taking
N = 52 which is the weekly sampling frequency and 200, 000 paths, we discover
that the error is 0.07%, with further reduction of the error as path numbers
increase to 500, 000. Furthermore, even for small sampling frequency such as
the quarterly sampling frequency when N = 4, our formula can be executed
in just 0.49 seconds compared to 27.7 seconds needed by the MC simulation.
These findings verify the accuracy and efficiency of our formula.

4.2. Impact of correlation among asset classes

Next, we investigate the impact of the correlation coefficient between the
interest rate and the underlying ρ13 and the correlation coefficient between the
interest rate and the volatility ρ23, on the fair delivery prices of variance swaps
respectively. The impact of the correlation between the interest rate and the
underlying is shown in Figure 2.

In Figure 2 we can see that the values of variance swaps are increasing corre-
sponding to the increase in the correlation values of ρ13. The difference of the
variance swap rates goes up to 5 variance points for largely different correlation
coefficient values of ρ13. This is very crucial since a relative difference of 2%
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Figure 2. Impact of different ρ13 values on the fair delivery
prices of variance swaps in the Heston-CIR hybrid model.

might produce considerable error. However, it is also observed that the impact
of the correlation coefficient ρ13 becomes less apparent as the sampling times
increase.

The effects of the correlation coefficient between the interest rate and the
volatility on the fair delivery prices of variance swaps are displayed in Figure
3. In contrast to the significant correlation effects of ρ13 in Figure 2, smaller
impact of ρ23 is observed. In fact, the variance swap rates for three different
values of ρ23 are almost the same. For example, for N = 12 which is the
monthly sampling frequency, the delivery price is 529.834 for ρ23 = 0, with
only a slight increase to 529.836 for ρ23 = 0.5, and a slight decrease to 529.833
for ρ23 = −0.5. Figure 3 also displays the same trend of diminishing impact of
the correlation as the number of sampling periods increases.

5. Conclusion

This paper studies the evaluation of discretely-sampled variance swap rates
in the Heston-CIR hybrid model of stochastic volatility and stochastic interest
rate. This work extends the model framework considered in [4] by imposing
the full correlation structure among the state variables. The proposed hybrid
model is not affine, and we derive a semi-closed form approximation formula
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Figure 3. Impact of different ρ23 values on the fair delivery
prices of variance swaps in the Heston-CIR hybrid model.

for the fair delivery price of variance swaps. We consider the numerical imple-
mentation of our pricing formula which is validated to be fast and accurate via
comparisons with the Monte Carlo simulation. This pricing formula could be
a useful tool for the purpose of model calibration to market quotation prices.
Our pricing model which offers the flexibility to correlate the underlying with
both the volatility and the interest rate is a more realistic model with practical
importance for pricing and hedging. In fact, our numerical experiments con-
firm that the impact of the correlation coefficient between the underlying and
interest rates on the fair delivery prices of variance swaps is very crucial, as
it becomes more apparent for larger correlation values. The pricing approach
in our paper can be applied to other stochastic interest rate and stochastic
volatility models, such as the Heston-Hull-White hybrid model.

6. Appendices

Appendix A.

In order to obtain the dynamics for the SDEs in (3) under QT , we need
to find the volatilities for both numeraires, respectively (refer to [3]). Denote

the numeraire under Q as N1,t = e
∫ t
0
r(s)ds and the numeraire under QT as
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N2,t = A(t, T )e−B(t,T )r(t). Differentiating lnN1,t yields

d lnN1,t = r(t)dt =

(∫ t

0

α∗(β∗ − r(s))
)
dt+

(∫ t

0

η
√
r(s)dW̃3(s)

)
dt,

whereas the differentiation of lnN2,t gives

d lnN2,t =

(
A′(t, T )

A(t, T )
−B′(t, T )r(t)−B(t, T )α∗(β∗ − r(t))

)
dt

−B(t, T )η
√
r(t)dW̃3(t).

Now we have obtained the volatilities for both numeraires as

(21) ΣQ =

 0
0
0

 and ΣT =

 0
0

−B(t, T )η
√
r(t)

 .

Next, the drift term µT for the SDEs under QT is found by utilizing the formula
below

µT = µQ −
(
Σ× L× LT × (ΣQ − ΣT )

)
,

with ΣQ and ΣT in (21) and the terms µQ, Σ and LLT as defined in (3). This

results in the transformation of (3) under Q to the following system under the
forward measure QT dS(t)

S(t)

dν(t)
dr(t)

 = Σ× L×

 dW ∗1 (t)
dW ∗2 (t)
dW ∗3 (t)

(22)

+

 r(t)− ρ13B(t, T )η
√
r(t)

√
ν(t)

κ∗(θ∗ − ν(t))− ρ23σB(t, T )η
√
r(t)

√
ν(t)

α∗β∗ − (α∗ +B(t, T )η2)r(t)

 dt,

where

B(t, T ) =
2
(
e(T−t)

√
(α∗)2+2η2 − 1

)
2
√

(α∗)2 + 2η2 +
(
α∗ +

√
(α∗)2 + 2η2

)(
e(T−t)

√
(α∗)2+2η2 − 1

) .

Appendix B.

The approximate solutions of the functions E and C can be found from
the following differential equations which are obtained using the deterministic
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approximation technique discussed in [12]

dE

dτ
=

1

2
η2E2 − (α∗ +B(T − τ, T )η2)E + ωi,

dC

dτ
= κ∗θ∗D + α∗β∗E − ρ13ηET

[√
ν(T − τ)

√
r(T − τ)

]
ωiB(T − τ, T )

+ρ13ηET
[√

ν(T − τ)
√
r(T − τ)

]
ωiEb

−ρ23σηET
[√

ν(T − τ)
√
r(T − τ)

]
DB(T − τ, T )

+ρ23ησET
[√

ν(T − τ)
√
r(T − τ)

]
DE,

with the initial conditions

E(ω, 0) = 0, C(ω, 0) = 0.

The differential equation related to C contains terms of
√
ν(t)

√
r(t) which

are non-affine. Note that standard techniques to find characteristic functions
as in [9] could not be applied in this case, thus we need to find approximations

for these non-affine terms. The expectation ET
[√

ν(t)
]

with the CIR-type

process can be approximated by, see [12]:

(23) ET
[√

ν(t)
]
≈

√
q1(t)(ϕ1(t)− 1) + q1(t)l1 +

q1(t)l1
2(l1 + ϕ1(t))

=: Λ1(t),

with

(24) q1(t) =
σ2(1− e−κ∗t)

4κ∗
, l1 =

4κ∗θ∗

σ2
, ϕ1(t) =

4κ∗ν(0)e−κ
∗t

σ2(1− e−κ∗t)
.

In order to avoid further complications during the derivation of the characteris-
tic function and present a more efficient computation, the above approximation
is further simplified as

(25) ET
[√

ν(t)
]
≈ m1 + p1e

−Q1t =: Λ̃1(t),

where

(26) m1 =

√
θ∗ − σ2

8κ∗
, p1 =

√
ν(0)−m1, Q1 = − ln(p−1

1 (Λ1(1)−m1)).

The same procedure can be applied to find the expectation of ET
[√

r(t)
]

as follows:

(27) ET
[√

r(t)
]
≈

√
q2(t)(ϕ2(t)− 1) + q2(t)l2 +

q2(t)l2
2(l2 + ϕ2(t))

=: Λ2(t),

with

(28) q2(t) =
η2(1− e−α∗t)

4α∗
, l2 =

4α∗β∗

η2
, ϕ2(t) =

4α∗r(0)e−α
∗t

η2(1− e−α∗t)
,
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and simplify further as

(29) ET
[√

r(t)
]
≈ m2 + p2e

−Q2t =: Λ̃2(t),

where

(30) m2 =

√
β∗ − η2

8α∗
, p2 =

√
r(0)−m2, Q2 = − ln(p−1

2 (Λ2(1)−m2)).

Utilizing the above expectations of both stochastic processes, we are able

to obtain ET
[√

ν(t)
√
r(t)

]
by employing the following relation of dependent

random variables and instantaneous correlation:

ET
[√

ν(t)
√
r(t)

]
= CovT

[√
ν(t),

√
r(t)

]
+ ET

[√
ν(t)

]
ET
[√

r(t)
]
.

In order to figure out CovT
[√

ν(t),
√
r(t)

]
, we utilize the definition of instan-

taneous correlations:

(31) ρ√ν(t)√r(t) =
CovT

[√
ν(t),

√
r(t)

]
√
VarT

[√
ν(t)

]
VarT

[√
r(t)

] .
Substitution of the following

VarT
[√

ν(t)
]
≈ VarT [ν(t)]

4ET [ν(t)]
≈ q1(t)− q1(t)l1

2(l1 + ϕ1(t))

and

VarT
[√

r(t)
]
≈ VarT [r(t)]

4ET [r(t)]
≈ q2(t)− q2(t)l2

2(l2 + ϕ2(t))

into (31) gives us

CovT
[√

ν(t),
√
r(t)

]
≈ ρ√ν(t)√r(t)

(√(
q1(t)− q1(t)l1

2(l1 + ϕ1(t))

)(
q2(t)− q2(t)l2

2(l2 + ϕ2(t))

))
.

Appendix C.

In this appendix, we derive approximate expressions of the expectations

ET0
[
eD̃(∆t)ν(tj−1)+Ẽ(∆t)r(tj−1)

]
and ET0

[
eÊ(∆t)r(tj−1)

]
. Then, we can obtain an

approximation for Gj(ν(0), r(0)).
The variables ν(tj−1) and r(tj−1) can be approximated by normally dis-

tributed random variables [12] as follows:

ν(t) ≈ N
(
q1(t)(l1 + ϕ1(t)), q1(t)

2
(2l1 + 4ϕ1(t))

)
,

and

r(t) ≈ N
(
q2(t)(l2 + ϕ2(t)), q2(t)

2
(2l2 + 4ϕ2(t))

)
,
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where q1(t), l1, ϕ1(t) are defined in (24) and q2(t), l2, ϕ2(t) are defined in (28).
Since both approximations of ν(t) and r(t) are normally distributed, we can
find the characteristic function of their sum which is also normally distributed.

Let Y (0, tj−1) = D̃(∆t)ν(tj−1) + Ẽ(∆t)r(tj−1), then

ET0
[
eY (0, tj−1)

]
≈ exp

(
ET0 [Y (0, tj−1)] +

1

2
VarT [Y (0, tj−1)]

)
,

where

ET0 [Y (0, tj−1)]

≈ D̃(∆t)(q1(tj−1)(l1 + ϕ1(tj−1))) + Ẽ(∆t)(q2(tj−1)(l2 + ϕ2(tj−1))),

and

VarT [Y (0, tj−1)]

≈ 2D̃(∆t)Ẽ(∆t)ρ23

√
q1(tj−1)

2
(2l1 + 4ϕ1(tj−1))

√
q2(tj−1)

2
(2l2 + 4ϕ2(tj−1))

+ D̃(∆t)2(q1(tj−1)2(2l1 + 4ϕ1(tj−1)))

+ Ẽ(∆t)2(q2(tj−1)2(2l2 + 4ϕ2(tj−1))).

We can apply the same procedure to find the expression of ET0
[
eÊ(∆t)r(tj−1)

]
,

which is given as follows:

ET0
[
eÊ(∆t)r(tj−1)

]
≈ exp

(
ET0
[
Ê(∆t)r(tj−1)

]
+ 1

2Var
T
[
Ê(∆t)r(tj−1)

])
≈ exp

(
Ê(∆t)(q2(tj−1)(l2 + ϕ2(tj−1)))

+ Ê(∆t)2

2 (q2(tj−1)2(2l2 + 4ϕ2(tj−1)))
)
.

Therefore, an approximation of Gj(ν(0), r(0)) is given as follows

Gj(ν(0), r(0))

≈ eC̃(∆t) · exp
(
D̃(∆t)(q1(tj−1)(l1+ϕ1(tj−1)))+Ẽ(∆t)(q2(tj−1)(l2+ϕ2(tj−1)))

+
Ẽ(∆t)2

2
(q2(tj−1)2(2l2+4ϕ2(tj−1)))+

D̃(∆t)2

2
(q1(tj−1)2(2l1+4ϕ1(tj−1)))

+D̃(∆t)Ẽ(∆t)ρ23

√
q1(tj−1)

2
(2l1+4ϕ1(tj−1))

√
q2(tj−1)

2
(2l2+4ϕ2(tj−1))

)
− 2eĈ(∆t) · exp

(
Ê(∆t)(q2(tj−1)(l2 + ϕ2(tj−1))

+
Ê(∆t)2

2
(q2(tj−1)2(2l2 + 4ϕ2(tj−1)))

)
+ 1.
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