
DETECTING AND CORRECTING
DUPLICATION IN BEHAVIOUR

DRIVEN DEVELOPMENT
SPECIFICATIONS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2020

By
Leonard Peter Binamungu

School of Engineering, Department of Computer Science

Contents

Abstract 10

Declaration 12

Copyright 13

Acknowledgements 14

Dedication 16

1 Introduction 17
1.1 Behaviour Driven Development . 20

1.2 The Problem . 24

1.3 Hypothesis and Research Questions 26

1.4 Thesis Contributions . 27

1.5 Publication Activity . 29

1.6 Thesis Organisation . 29

2 Literature Review 31
2.1 Terminology . 32

2.1.1 Terminology on Duplication 32

2.1.2 Other Terminology . 35

2.2 Duplication in Software Systems . 35

2.2.1 Evidence of Duplication in Real World Systems 35

2.2.2 Causes of Duplication in Software Systems 36

2.2.3 Upsides and Downsides of Duplication in Software Systems . 37

2.3 Duplication Detection . 43

2.3.1 Static analysis approaches 44

2

2.3.2 Dynamic analysis approaches 46

2.3.3 Combination of static and dynamic analysis approaches . . . 47

2.4 Duplication Removal . 49

2.4.1 Refactoring of duplicates in production code 50

2.4.2 Removing duplication in test code 53

2.4.3 Test Suite Reduction . 54

2.4.4 Removing duplication in natural language tests 55

2.4.5 Assessing the quality of tests and requirements 56

2.5 Analysis and Improvement of BDD Specifications 58

2.6 Research Gap . 63

2.7 Summary . 65

3 Challenges and Opportunities for Maintaining BDD Suites 68
3.1 Introduction . 68

3.2 Study Design . 69

3.2.1 Survey Design . 69

3.2.2 Recruitment of Respondents 70

3.2.3 Survey Respondents and Data Analysis Approach 72

3.2.4 Ethical Considerations . 75

3.3 Results . 76

3.3.1 RQ1. Extent of Active Use of BDD 76

3.3.2 RQ2. Perceived Benefits and Challenges Involved in Using BDD 79

3.3.3 RQ3. Challenges of Maintaining BDD Specifications 84

3.3.4 RQ4. Duplication in BDD Suites 85

3.4 Discussion . 92

3.5 Research Opportunities . 96

3.6 Threats to Validity . 97

3.7 Summary . 99

4 Benchmark Development 101
4.1 Introduction . 101

4.2 Semantically Equivalent Scenarios 101

4.3 Benchmark Development . 102

4.3.1 Context . 102

4.3.2 The Host Systems . 103

4.3.3 Duplicates between Original Scenarios 105

3

4.3.4 Duplicate Injection . 106

4.4 Summary . 109

5 Detecting Duplicate Scenarios in BDD Suites 110
5.1 Introduction . 110

5.2 The Duplicate Detection Problem in BDD 113

5.3 Existing Tools . 115

5.3.1 Tools Selection . 115

5.3.2 Tools Configuration and Experiment Setup 116

5.3.3 Results and Discussion . 117

5.4 Detecting Duplicate Scenarios . 118

5.4.1 Hypothesis . 118

5.4.2 Overall Duplicate Detection Framework 119

5.4.3 Definitions of Key Terms . 122

5.4.4 Using Default Traces to Detect Duplicate Scenarios 123

5.4.5 Using Essential Traces to Detect Duplicate Scenarios 125

5.4.6 Algorithm and Implementation 129

5.5 Evaluation . 133

5.5.1 Experiment Design . 133

5.5.2 Results . 134

5.5.3 Discussion . 138

5.6 Summary . 140

6 Quality-Oriented Removal of Duplicate Scenarios in BDD Suites 142
6.1 Introduction . 142

6.2 BDD Suite Quality Principles . 145

6.2.1 Aspects of Quality in BDD Specifications 146

6.2.2 Principle of Conservation of Steps 148

6.2.3 Principle of Conservation of Domain Vocabulary 149

6.2.4 Principle of Elimination of Technical Vocabulary 149

6.2.5 Principle of Conservation of Proper Abstraction 150

6.3 Community Support for the Quality Principles 150

6.3.1 Survey Design . 151

6.3.2 Ethical Considerations . 152

6.3.3 Respondents and Data Analysis 152

6.3.4 Results . 154

4

6.3.5 Conclusions from the Survey 158
6.4 Operationalization of BDD Quality Principles 161

6.4.1 Assessing Conservation of Steps 161
6.4.2 Assessing Conservation of Domain Vocabulary 162
6.4.3 Assessing Elimination of Technical Vocabulary 163
6.4.4 Assessing Conservation of Proper Abstraction 165
6.4.5 Implementation . 167

6.5 Evaluation . 169
6.5.1 Context and Research Questions 169
6.5.2 Lab Experiment: Design, Results and Discussion 172
6.5.3 Industry Experiment: Design, Results and Discussion 179

6.6 Threats to Validity . 183
6.7 Summary . 185

7 Conclusions and Future Work 188
7.1 Summary of Research Contributions 188
7.2 Answers to the Research Questions 190
7.3 Future Work . 192

7.3.1 Future work on duplicate detection in BDD 192
7.3.2 Future work on quality of BDD specifications 193
7.3.3 Future work for BDD as a whole 194

Bibliography 195

A A Survey on BDD Use by Software Engineering Teams and the Challenges
of Duplication in BDD Specifications 215
A.1 Survey Questions . 215
A.2 Codes and Themes from the Challenges Reported by BDD Practitioners 217

B Sample Duplicate Report 228
B.1 Example duplication report . 228

C Sample Remove Suggestions 229
C.1 Sample remove suggestions . 229

Word Count: 56184

5

List of Tables

2.1 Example code fragments for different types of duplication in program
code (adapted from Roy and Cordy [1]) 33

2.2 Evidence, advantages, and disadvantages of duplication in software
systems . 43

2.3 Summary of duplicate detection approaches 50

2.4 Approaches for removing duplication, as well as assessing and improv-
ing the quality of test suites and requirements 58

3.1 Survey on BDD maintenance challenges: Distribution of respondents
by continent . 73

3.2 Survey on BDD maintenance challenges: Distribution of respondents’
organisations . 73

3.3 Survey on BDD maintenance challenges: Distribution of job roles of
respondents . 74

3.4 Benefits and challenges of using BDD 81

3.5 Activeness of BDD use in industry 93

3.6 Challenges and research opportunities for maintenance and evolution
of BDD specifications . 98

4.1 Characteristics of selected evaluation software 105

4.2 Number of duplicate scenario pairs between original scenarios 106

4.3 Number of volunteers per system . 108

4.4 Distribution of duplicate scenario pairs across the three evaluation sys-
tems . 108

5.1 Results of experimentation with existing clone detection tools 118

5.2 Detailed results for the 8 different hypotheses on the 3 systems 136

5.3 Comparison between our tool and the existing duplicate detection tools 138

6

6.1 BDD quality aspects from scientific and grey literature 147
6.2 Survey on BDD quality principles: roles of respondents 153
6.3 Survey on BDD quality principles: sizes of respondent organisations . 153
6.4 Other recommended practices for all project stakeholders on how to

keep BDD specifications readable, easy to extend, and maintainable . 159
6.5 Other recommended practices for testers and developers on how to

keep BDD specifications readable, easy to extend, and maintainable . 160
6.6 Performance of the four principles on the scenarios injected by each of

the 13 volunteers . 177
6.7 Suggestions of injected scenarios for removal: combined algorithm . . 178
6.8 Expert opinions: scenarios suggested for removal and the reasons . . . 181

A.1 Codes for the challenges facing respondent BDD practitioners 218
A.2 BDD challenges: themes with related codes 224

7

List of Figures

1.1 Typical TDD cycle (Source: [2]) . 19

1.2 Typical ATDD cycle (Source: [3]) 20

1.3 Organisation of a typical BDD project 25

2.1 Possible distribution of duplicates and non-duplicates in a software
artefact (Adapted from Roy and Cordy [4]) 34

2.2 Classification of the literature we surveyed 66

3.1 Mapping between the research questions in section 3.1 and the ques-
tions which are not about respondents’ demographics on the survey in
Appendix A.1 . 71

3.2 Extent of BDD use . 77

3.3 Extent of BDD use by type of organisation 77

3.4 Extent to which use of BDD is mandated by organisations 78

3.5 BDD Tools used by respondents . 78

3.6 Plans by organisations to use BDD in the future 79

3.7 Perceived importance of BDD use 80

3.8 Number of scenarios in industry BDD projects (Q9) 85

3.9 Presence of duplication in the respondents’ BDD specifications 87

3.10 Extent of duplication in the respondents’ BDD specifications 88

3.11 Presence and extent of duplication in the respondents’ BDD specifica-
tions . 88

3.12 Duplicate detection and management methods 89

3.13 Extent of duplication, size of BDD specs, and duplication detection
method . 90

3.14 Duplication detection methods among active and non-active BDD prac-
titioners . 91

8

5.1 Overall framework for detecting duplicate BDD scenarios 122
5.2 Example of variations in the traces of two runs of the same scenario . 126
5.3 Plot of precision, recall, and F1 score for the algorithms of 8 different

hypotheses across the 3 systems . 137

6.1 Survey on BDD quality principles: Respondents’ experiences of work-
ing with BDD . 154

6.2 Survey on BDD quality principles: Geographical distribution of re-
spondents . 155

6.3 Acceptability of each BDD quality principle by respondents 156
6.4 Proportions of IO duplicate pairs in which injected scenarios were sug-

gested for removal by the specific principles 174
6.5 Suggestion of injected scenarios for removal: Sensitivity Analysis for

the Principle of Conservation of Domain Vocabulary 176
6.6 Pragmatic vs expert: suggestion of injected scenarios for removal . . . 182
6.7 Degree of agreement between our tool and expert 183

B.1 Example duplication report from our tool 228

C.1 Sample duplicate removal suggestions based on conservation of steps 229

9

Abstract

DETECTING AND CORRECTING DUPLICATION IN BEHAVIOUR

DRIVEN DEVELOPMENT SPECIFICATIONS

Leonard Peter Binamungu
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2020

The Behaviour Driven Development (BDD) technique enables teams to specify soft-
ware requirements as example interactions with the system. Due to the use of natural
language, these examples (usually referred to as scenarios) can be understood by most
project stakeholders, even end users. The set of examples also acts as tests that can
be executed to check the behaviour of the System Under Test (SUT). Despite BDD’s
benefits, large suites of examples can be hard to comprehend, extend and maintain.
Duplication can creep in, leading to bloated specifications, which sometimes cause
teams to drop the BDD technique. Current tools for detecting and removing dupli-
cation in code are not effective for BDD examples. Moreover, human concerns of
readability and clarity can rise. Previous attempts to detect and remove duplication
in BDD specifications have focused on textually similar duplicates, not on textually
different scenarios that specify the same behaviour of the SUT.

To fill this gap, this thesis does the following. First, we surveyed 75 BDD practitioners
from 26 countries to understand the extent of BDD use, its benefits and challenges,
and specifically the challenges of maintaining BDD specifications in practice. We
found that BDD is in active use amongst respondents; and the use of domain specific
terms, improving communication among stakeholders, the executable nature of BDD
specifications, and facilitating comprehension of code intentions emerged as some of
the main benefits of BDD. The results also showed that BDD specifications suffer
the same maintenance challenges found in automated test suites more generally. We
map the survey results to the literature, and propose 10 research opportunities in this
area. Second, we propose and evaluate a framework for detecting duplicate scenarios

10

based on the comparison of characteristics extracted from scenario execution traces.
We focus on the patterns of production code exercised by each scenario, and consider
two scenarios to be duplicates if they execute the same functionality in the SUT. In an
empirical evaluation of our framework on 3 open source systems, the comparison of
execution paths of scenarios recorded more recall and precision than the comparison of
full execution traces, public API calls, or a combination of public API calls and internal
calls. Also, the focus on essential characteristics in the execution traces of scenarios
improved the recall and precision of the duplicate detection tool. Third, we propose
four principles describing BDD suite quality that can be used to assess which of a pair
of duplicate scenarios can be most effectively removed. All of the four principles were
accepted by at least 75% of the practitioners we surveyed. An empirical evaluation of
the four principles on 3 open source systems shows that each principle gave acceptable
remove suggestions, and thus the principles can be used to guide human engineers in
removing duplicate scenarios from BDD specifications.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

13

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

First, I would like to thank God for the health and protection throughout my PhD
studies.

Second, I am grateful to my supervisors, Dr Suzanne M. Embury and Dr Nikolaos
Konstantinou, for their invaluable guidance throughout my PhD studies. Thank you
all for the thought-provoking thoughts that gave light to my research. In particular,
I would like to thank Suzanne for believing in me and giving me an opportunity to
pursue a PhD under your supervision at the University of Manchester. It has been a
great opportunity to work under your guidance, and I will forever be grateful. Nikos,
my appreciation to your unwavering support during the PhD is beyond what words can
explain!

Third, I would like to thank the Department of Computer Science, University of Manch-
ester, for funding a large part of my PhD studies, by paying school fees and funds for
other research activities during the PhD. In connection to this, I would like to ac-
knowledge the support of my employer, the University of Dar es Salaam, on this work.
Specifically, I thank the previous Vice Chancellor, Prof Rwekaza S. Mukandala, and
his entire university management team, as well as the current university management,
for the financial and moral support they continuously provided during my PhD studies.

Fourth, I would like to thank my family (my wife Joyce, my son Lestyn, and my
daughter Alinda) for their invaluable support throughout my PhD studies. This thesis
is my reward to them for whatever they endured whenever I went missing.

Fifth, I would like to thank my uncle, Prof Jonathan Kabigumila, for all the support
and inspiration throughout my academic life.

Sixth, my sincere appreciations go to the respondents and participants to the surveys
and experiments reported in this thesis. Special thanks to members of various BDD

14

practitioner communities for providing insights that informed this study. Anonymous
reviewers who helped improve part or whole of this thesis are also immensely thanked.

Last but not least, I would like to thank all my relatives, friends, and fellow PhD
students at the University of Manchester, as well as members of staff at the University
of Dar es Salaam, for all the support they provided during my studies. It is not possible
to mention all, but I am grateful to everyone who made me smile during my PhD
journey.

15

Dedication

To my wife Joyce, my son Lestyn, and my daughter Alinda.

16

Chapter 1

Introduction

Owners and users of software systems expect the software to both satisfy business
requirements and behave reliably when in operation. However, sometimes, software
systems exhibit behaviours that deviate from business requirements, and they (software
systems) experience failure during operation. To address this problem, software testing
seeks to ensure that the software behaves as expected and to expose faults in the func-
tioning of a software system [5, 6]. Testing is used extensively in many projects and
can be responsible for up to 50% of the development costs [7, 8]. Intuitively, therefore,
given the high costs involved in testing, it is important that software product owners
appreciate the value brought by the investment in testing. One way to make software
product owners appreciate the value of testing is to ensure that the tests created during
the development process continue to be useful for as long as possible in the lifetime
of a software system. However, during the lifetime of a software product, tests can
become hard to maintain [9, 10], and thus becoming unfit for purpose.

Testing can be conducted manually, requiring human intervention every time the soft-
ware has to be tested, or automatically in which the behaviour of the software system
can be verified without human intervention [11, 12, 13]. Inter alia, automating the soft-
ware testing process was introduced in a bid to lower the costs of testing [14]. Thus,
test automation is particularly important in reducing the efforts required by teams to
deliver software products within limited schedules and budgets [15], and in ensuring
that code modification (for defect fixing or introduction of new feature) does not intro-
duce defects into the software, and that the behaviour which code modification aims
to introduce is exhibited by the software system [16]. Apart from reducing the cost

17

18 CHAPTER 1. INTRODUCTION

and time required for testing, test automation minimises the threat of human errors as-
sociated with manual testing, fosters repeatability of tests, and facilitates efficient use
of team members for other activities [17]. In Agile Software Development practices
[18, 19], test automation is also used as a mechanism for getting quick feedback on the
functioning of code submitted by different team members [20]. Despite the numerous
benefits of automated testing, unfortunately, during the lifetime of the software, suites
of automated tests can become hard to maintain due to design issues, among other rea-
sons [9, 10, 21]. This can render the test suites ineffective, failing to serve the purpose
they were created for.

In a software development project, the tests to be automated can be identified with
or without customers. On the one hand, in the absence of customers, tests that are
written during the development of a software product have a risk of ensuring that the
produced code fulfils the intentions of developers, at the expense of precise business
requirements. Because writing of tests requires understanding of specific development
technologies, this kind of testing is often referred to as technology-facing testing and
it produces tests that, in most cases, only members of the development team can un-
derstand. Typical examples of technology-facing testing can be found in teams that
practice Test-Driven Development (TDD) [22] whereby, in each iteration, the follow-
ing steps are followed by developers: writing a failing unit test; making the failing unit
test pass by writing the required production code; and refactoring of production code,
to improve its design. Figure 1.1 shows the typical TDD cycle.

On the other hand, when customers are involved in software testing, the main focus
is usually on ensuring that the software satisfies business requirements. This supports
the notion of business-facing testing, which encourages writing of software tests that
customers can understand [23].

Acceptance Test Driven Development (ATDD) is an agile technique that facilitates
business-facing testing by enabling a customer to collaborate with members of the de-
velopment team to write acceptance criteria, which are then converted to functional test
cases by testers and developers. Using ATDD, before a feature is developed, project
team members create shared understanding by writing concrete examples with stake-
holders, which are then converted into automated acceptance tests. This practice re-
duces information loss between a customer and members of the development team,
and can ensure that the right software product is built [24]. During ATDD, implement-
ing one acceptance test can involve the implementation of several unit tests, as shown

19

Figure 1.1: Typical TDD cycle (Source: [2])

in Figure 1.2; an acceptance test focuses on a high level functionality which can be
associated with several low level implementation units (e.g., classes/methods), each
of which is covered by a particular unit test. An acceptance criteria is converted into
an executable acceptance test, which should fail because, at that moment, the required
functionality is not implemented yet. After the failing acceptance test is in place,
the required functionality is implemented by following the TDD cycle. When all the
required functionality for a particular acceptance criteria has been implemented, the
acceptance test will pass, signifying complete implementation of the required func-
tionality. Then, the team selects the next acceptance criteria and follows the same
process.

Related to TDD and ATDD is BDD (introduced in Section 1.1) which is another agile
technique that enables teams to perform business-facing testing by producing software
tests that all project stakeholders can understand. In BDD, tests are specified as re-
quirements [25, 26] using a natural language. The tests expressed in a natural language
are linked to the SUT using “glue code”, and can be executed to verify if the SUT is
behaving as expected. This approach has many advantages. Among other things, it im-
proves communication and collaboration between project stakeholders, and it provides
the living documentation that can be used to verify if the System Under Test behaves

20 CHAPTER 1. INTRODUCTION

Figure 1.2: Typical ATDD cycle (Source: [3])

as per specification [27, 28].

The next section provides more information about the BDD technique, by introducing
the key concepts required to understand the problem of focus in this thesis.

1.1 Behaviour Driven Development

This section introduces BDD, and the typical setup of a BDD project.

In Behaviour Driven Development [29, 30, 31], the behaviour of the required soft-
ware is given as a collection of example interactions with the system, expressed using
natural language sentences organised around a “Given-When-Then” structure (e.g.,
Listing 1.1), in a language called Gherkin. This gives a specification that is expressed
in non-technical, domain-specific terms, that should be comprehensible by end-users.
Importantly, the specification is also executable, thanks to “step definition functions”
(e.g., Listing 1.2) that link the natural language sentences to the code that is being
built. Each step in a scenario can be mapped to a step definition function for execution
against the SUT. Thus, the set of examples acts both as a high-level specification of the
requirements for the software and as a suite of acceptance tests that can verify whether
the current implementation meets the specification or not.

More specifically, in BDD, the behaviour of a software system is described by a suite of
features. Each feature is specified by a collection of scenarios. Each scenario describes
an end-to-end interaction with the system, in terms of concrete data examples typical
of what might be used in real system use. Scenarios are written in a form of structured

1.1. BEHAVIOUR DRIVEN DEVELOPMENT 21

Listing 1.1: Example ATM Transactions Feature
1 Feature: ATM transactions
2 As an account holder, whenever
3 I perform ATM withdrawals, I want my
4 balance to be updated, and I should get apt messages
5

6 Scenario: Successful withdrawal from account
7 Given my account is in credit by $100
8 When I request withdrawal of $20
9 Then $20 should be dispensed

10 And my balance should be $80
11

12 Scenario: Unsuccessful withdrawal from account
13 Given my account has an initial balance of $80
14 When I request withdrawal of $100
15 Then nothing should be dispensed
16 And I should be told that I have insufficient funds

English, following a “Given-When-Then” pattern. Listing 1.1 shows a simple example
feature, adapted from an open source specification for an ATM machine1.

The feature with two contrasting scenarios show the BDD technique at work. Both
the Feature and Scenario keywords are followed by a phrase describing the high level
purpose of the feature or scenario that they represent. A scenario consists of a sequence
of steps, each beginning with the reserved keywords Given, When, Then, And and But.
The Given step (or steps) give the starting assumptions for the example. In the case
of the first scenario in Listing 1.1, the Given step states that the user of the ATM is
assumed to have an account with the bank that is in credit by a certain amount. The
When steps give the series of actions that are presumed to be taken by the user (or an
external trigger) in the example interaction. In the first scenario in Listing 1.1, this step
states that the user requests the withdrawal of an amount of money from their account.
The Then part describes a condition that should hold at that stage in the scenario. For
the first scenario in Listing 1.1, the requested amount is dispensed and the balance is
updated.

The second scenario in Listing 1.1 describes a similar interaction between a customer
and the ATM, but with a different starting assumption. In this case, the customer does

1github.com/krzysztof-jelski/atm-example

22 CHAPTER 1. INTRODUCTION

not have enough in their account for the withdrawal to go ahead, and so a different
outcome is to be expected. The relationship between various steps of a BDD scenario
is analogous to a Finite State Machine [32] in which, given a particular state and input,
a machine transitions to a new state, producing an appropriate output.

As well as documenting the business requirements, these examples can be executed to
see which scenarios or steps have been implemented and which scenarios or steps have
not been implemented. A BDD engine is used to execute the scenarios, by mapping
steps in the scenarios to their corresponding step definition functions. The engine
executes each step in turn, reporting both the steps that pass and the steps that fail. For
example, in the Cucumber-JVM BDD execution engine, to indicate a failed step, the
Then step might be coloured red, if the software returns an amount for the balance that
is different from the expected one; however, if the returned amount is the same as the
expected one, then the Then step might be coloured green.

To execute the scenarios against the current state of the system implementation, we
must provide some glue code, telling the BDD execution engine what production code
methods to execute for each scenario step. Listing 1.2 presents the glue code expected
by Cucumber-JVM, a Java implementation of the the Cucumber execution engine, for
the first ATM scenario. It can be seen that the glue code is a collection of methods,
each of which is annotated with either @Given, @When or @Then, to indicate that the
method is a step definition (i.e., it defines how a scenario step is executed). The an-
notation takes a string parameter, consisting of a regular expression. When the feature
files are executed, the Cucumber engine matches the text of each step against the reg-
ular expressions paired with the step definition methods. The first step definition that
matches is the one that is executed. Values from the step are extracted from the text by
groups in the regular expression, and passed to the body of the method as parameters.

The body of the method then has the task of carrying out the intent of the step that it
matches. Given steps describe the conditions that are assumed to hold when the sce-
nario is executed, so the body of these methods must cause those conditions to become
true for the software under test. This is achieved by invoking production code methods
that affect the state of the software: creating a bank account, setting the balance of
the account. For example, on line 5 in Listing 1.2, a bank account is created through
an object of the production class called BankAccount and the account balance is set,
to fulfil the condition of the starting state as specified by the Given step of the first
scenario in Listing 1.1. The When steps are the ones that invoke the behaviour under

1.1. BEHAVIOUR DRIVEN DEVELOPMENT 23

Listing 1.2: Glue code for scenario 1 in Listing 1.1
1 public class ATMWithdrawalSteps {
2 BankAccount account;
3 @Given("ˆmy account is in credit by \$(\d+)$")
4 public void my_acc_is_in_credit_by_$(double amt) {
5 account = new BankAccount(amt);
6 }
7 @When("ˆI request withdrawal of \$(\d+)$")
8 public void i_request_withdrawal_of(double amt) {
9 account.withdraw(amt);

10 }
11 @Then("ˆ\$(\d+) should be dispensed$")
12 public void should_be_dispensed(double ant) {
13 // cash dispensing code goes here
14 }
15 @Then("ˆmy balance should be \$(\d+)$")
16 public void my_balance_should_be(double amt) {
17 assertEquals(amt,account.getAccountBalance());
18 }}

test: withdrawing money from an account, crediting money to an account, etc. Refer
to line 9 in Listing 1.2 whereby a call is made to the withdraw (double) method of the
BankAccount production class. Then steps check that the state of the system after the
behaviour has been invoked is what we expect: checking the balance of the account,
checking the log of the ATM, etc. See line 17 in Listing 1.2 whereby the expected
balance in the bank account is compared with the actual balance retrieved using the
production method called getAccountBalance(). Cucumber-JVM executes each step
as a JUnit test, and so we use JUnit assertion methods, such as assertEquals, to
make these checks.

We next discuss the setup of a typical BDD project.

Software developed using the BDD approach will typically consist of three types of
artefact, as shown in Figure 1.3:

• A collection of BDD scenarios, in semi-structured natural language and readable
by end users. Each scenario belong to a particular feature, and one feature file
(saved using a .feature extension) can have one or more related scenarios. For

24 CHAPTER 1. INTRODUCTION

example, feature abc in Figure 1.3 has two scenarios, foo and bar. Other fea-
tures will have varying numbers of scenarios, depending on the aspects of the
system represented by the individual features. A typical BDD suite consists of a
collection of several feature files, as shown using the multidocument symbol on
the left side of Figure 1.3.

• Glue code, which is a collection of step definition functions. The organisation
and/or implementation of glue code depends on the programming language be-
hind a BDD tool. In Cucumber-JVM, for example, step definition functions
are usually housed under one or more glue classes; and a glue class consists of
glue methods, each annotated with regular expressions matching the steps in the
scenarios. For brevity, in Figure 1.3, we only show (using the arrows) the links
between the individual steps in scenario foo to their corresponding glue methods.

• The production code classes and methods that (will) implement the behaviour
described by the BDD scenarios. The glue code invokes only methods in the
service-level API of the production code. Some of the required functionality
will be provided by private classes and methods, that the glue code cannot access
directly. For example, in Figure 1.3, calls to two different private functionalities,
IC1 and IC2, are made from the API class, Class A. Based on the arrows, while
IC1 is called from two different places in Class A, IC2 is called from only one
place in Class A; neither IC1 nor IC2 is called from Class B.

In summary, a BDD specification is formed by a collection of scenarios expressed
in a natural language and organised around several features. The natural language
scenarios are linked to the code for the SUT through the glue code, whereby, when a
scenario is executed, regular expression matching is used to decide the glue methods to
be executed as part of a scenario. We next discuss the problem faced by practitioners
in maintaining large suites of BDD specifications, part of which is what this thesis
addresses.

1.2 The Problem

Despite the advantages of BDD, it also raises problems. When BDD specifications
grow large, they can become costly to maintain and extend. System functionality can

1.2. THE PROBLEM 25

Feature: abc

@Given(...)

@When(...)

@Then(...)

BDD Specifications

Public API

Class A

Class B

IC1

IC2

Glue Code Production Code

Internal Calls

Scenario: foo

Given ...

When ...

Then ...

Scenario: bar

Given ...

When ...

Then ...

Figure 1.3: Organisation of a typical BDD project

become effectively frozen because of the costs and risks of changing the specifica-
tions. These maintenance challenges can be severe and could potentially cause teams
to drop the BDD technique, returning to technology-facing testing to play the role of
their BDD specifications. Moreover, the intellectual effort of understanding tens or
hundreds of examples, and how they relate to one another and to the production code
under construction, can be substantial. Tools to support developers in managing their
suites of examples are still in their infancy, because BDD is still comparatively new.
There could, therefore, be high costs for development teams when redundancy creeps
into their BDD specifications. Execution times are likely to lengthen, increasing the
delay between the entry of defects into an implementation and their detection by the
BDD execution engine. This is especially possible for teams that rely on the execu-
tion of BDD specifications in order to detect defects in the System Under Test; in
such cases, if test executions take longer, developers, too, might have to wait for too
long before they discover the presence or absence of defects in the System Under Test.
Waiting for too long before test execution completes might affect the ability of the
development teams to plan, prioritise and perform various development tasks. More
seriously, maintaining the quality and conceptual integrity of the specification could
become significantly harder, increasing the risk that further redundancies, omissions

26 CHAPTER 1. INTRODUCTION

and inelegances will be introduced.

Despite these challenges, existing tools perform poorly on this problem. Specifically,
on the problem of detecting duplication in BDD specifications, existing tools can detect
textual duplication between BDD scenarios [33], but not semantic duplication between
BDD scenarios, particularly when different step phrases are used to express BDD sce-
narios that represent the same behaviour of the SUT. Besides, after duplicate scenarios
are detected, the problem of managing them is non-trivial. For example, given a pair
of functionally equivalent scenarios that are not syntactically equivalent, if the main-
tenance engineer wants to remove one scenario and keep the other, deciding which of
the duplicate scenarios to remove is not easy. Naively speaking, given two duplicate
scenarios, maintainers can remove any, since the scenarios are duplicates of each other.
In practice, however, one scenario may be of better quality than the other. As such, re-
moving a particular scenario may improve or impair the quality of a suite as a whole.
There is, therefore, the need for a mechanism to guide maintenance engineers when
making decisions on which duplicate scenarios to remove from the suite. To the best
of our knowledge, such a mechanism does not exist yet.

1.3 Hypothesis and Research Questions

The central hypotheses in this work are that:

H1: Duplication is a cause for concern among BDD practitioners.

H2: Comparing how BDD scenarios exercise the production code can detect se-
mantically equivalent BDD scenarios in a way that will outperform the detection
of duplicate scenarios by existing approaches.

H3: We can use quality aspects of scenarios in a BDD suite to guide the removal
of duplicate scenarios from the suite.

To confirm or refute these hypotheses, we posed the following research questions
(RQs):

RQ1: To what extent is duplication a problem among BDD practitioners, and
how do practitioners deal with duplication in BDD specifications?

RQ2: Can the comparison of how BDD scenarios exercise the production code

1.4. THESIS CONTRIBUTIONS 27

detect semantically equivalent BDD scenarios in a way that outperforms the de-
tection of duplicate scenarios by existing approaches?

RQ3: What are the characteristics of a “good” quality BDD scenario, and how
can we assess the quality of a scenario relative to other scenarios in a suite?

1.4 Thesis Contributions

This thesis makes the following contributions:

1. The challenges faced by BDD practitioners in maintaining BDD specifica-
tions: We contribute to the understanding of the challenges faced by practition-
ers in maintaining BDD specifications. In particular, we report the results of
the survey of BDD practitioners regarding the problems of duplication in BDD
specifications as well as other challenges of maintaining BDD specifications. We
learned that duplication in BDD specifications is among the maintenance chal-
lenges of concern for BDD practitioners, and that, for the most part, practitioners
rely on manual techniques to detect and manage duplication in their BDD speci-
fications. We also learned that BDD specifications suffer the same maintenance
challenges found in automated test suites more generally.

2. Research opportunities to address BDD maintenance challenges: We iden-
tify the need to investigate the adaptation of techniques for maintenance of unit
tests, production code and other software artifacts to the problem of maintaining
BDD specifications; and the need incorporate maintenance concerns in the BDD
workflow, tools, and training materials.

3. Benchmark of duplicate BDD scenarios: We develop a benchmark of seman-
tically equivalent BDD scenarios, which can inform further research on BDD
specifications.

4. Understanding the limitation of existing duplicate detection tools on the
problem of detecting duplicate BDD scenarios in which different step phrases
are used to express the same behaviour of the SUT: We observed that, when
applied to the problem of detecting semantically equivalent but textually dissim-
ilar BDD scenarios, the three mature duplicate detection tools we experimented
with either missed the duplicates of interest or returned too many false positives.

28 CHAPTER 1. INTRODUCTION

This gives us insight into the limitation of tools developed for duplicate detec-
tion in program code on the problem of detecting semantically equivalent BDD
scenarios that specify the same behavior using different step phrases.

5. A framework to detect semantically equivalent BDD scenarios: We propose
a framework that differentiates between essential and accidental characteristics
of a BDD scenario by analysing several execution traces of a scenario, and com-
pares the essential characteristics to detect semantically equivalent BDD scenar-
ios.

6. Use of execution traces to detect semantically equivalent BDD scenarios:
During the evaluation of our framework on duplicate scenarios in 3 open source
systems, the comparison of execution paths of scenarios detected more dupli-
cate pairs than the comparison of public API calls, public API calls and internal
calls, or their combination (execution paths, public API calls, and public API
calls and internal calls). Also, the comparison of essential characteristics of sce-
narios was more effective at detecting semantically equivalent BDD scenarios
than the comparison of the characteristics of scenarios observed when each sce-
nario under consideration was executed only once.

7. BDD Suite Quality Principles: We propose four principles describing BDD
suite quality that can be used to assess which of a pair of duplicate scenarios can
be most effectively removed from a suite.

8. Practitioner Support for the BDD Suite Quality Principles, and Other Qual-
ity Facets of BDD Suites: We report the results of a survey of practitioner sup-
port for the four quality principles. All principles received support from the
community (with at least 75% of respondents voting in support of each princi-
ple), though all of them also received a number of dissenting votes. We also
report practitioners’ opinions on other quality aspects of BDD suites that are not
covered by the four principles.

9. Operationalization of the BDD Suite Quality Principles: We propose an ap-
proach to operationalize each principle, so that BDD specifications can be as-
sessed automatically against it.

10. Use of the BDD Suite Quality Principles in generating refactoring advice:
We use the operationalized principles to propose duplicate scenarios for removal,
and evaluate the approach on 3 open source software systems. The results from

1.5. PUBLICATION ACTIVITY 29

both the lab evaluation and evaluation with an industry practitioner suggest that
the principles can give advice acceptable to human engineers on which duplicate
scenarios to remove from the feature suites.

1.5 Publication Activity

Part of this work has been published in the following co-authored articles:

• Binamungu, Leonard Peter, Suzanne M. Embury, and Nikolaos Konstantinou.
“Characterising the Quality of Behaviour Driven Development Specifications.”
In 21st International Conference on Agile Software Development, pp. 87-102.
Springer, Cham, 2020.

• Binamungu, Leonard Peter, Suzanne M. Embury, and Nikolaos Konstantinou.
“Maintaining behaviour driven development specifications: Challenges and op-
portunities.” 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018.

• Binamungu, Leonard Peter, Suzanne M. Embury, and Nikolaos Konstantinou.
“Detecting duplicate examples in behaviour driven development specifications.”
2018 IEEE Workshop on Validation, Analysis and Evolution of Software Tests
(VST). IEEE, 2018.

1.6 Thesis Organisation

The rest of this thesis is organised as follows:

Chapter 2 reports the survey of the existing literature on duplication in software sys-
tems, to determine whether existing approaches and techniques can detect and remove
semantically equivalent BDD scenarios. It also surveys the existing literature on BDD
suites analysis and improvement, and identifies the research gap, which this thesis aims
to fill.

Chapter 3 presents the survey of BDD practitioners, to understand the challenges they
face with respect to maintenance of BDD specifications. Based on the analysis of

30 CHAPTER 1. INTRODUCTION

the literature related to the identified challenges, the research opportunities to support
practitioners in maintaining BDD specifications are also presented.

Chapter 4 presents the development of a benchmark of known duplicate BDD sce-
narios. In particular, it covers the description of the three systems used to develop
the benchmark, the approach used to develop the benchmark, as well as the resulting
benchmark of known duplicate scenarios across the three systems we used.

Chapter 5 discusses the limitations of existing tools on the problem of detecting se-
mantically equivalent BDD scenarios, and presents and evaluates the framework we
propose for detecting semantically equivalent BDD scenarios.

Chapter 6 enunciates the principles we propose for preserving the quality of BDD
suites, the support for the principles from the community of BDD practitioners, and
the use of the principles to provide removal advise for semantically equivalent BDD
scenarios.

Chapter 7 summarises the contributions of this thesis and discus future research direc-
tions.

Chapter 2

Literature Review

In this chapter, we want to discover whether the problem of detecting and removing
semantic duplication in BDD feature suites has been solved. We first discuss the prob-
lem of duplication in software systems in general. Thereafter, through the review of
the literature about detecting and removing duplication in software systems, as well
as the literature on analysis of BDD feature suites, we demonstrate that existing ap-
proaches and techniques have not addressed the maintenance challenge of detecting
and removing semantic duplication in BDD feature suites.

Specifically, we look for solutions and solution components in two areas of the litera-
ture. The first area is work on duplicate detection and/or removal in non-BDD contexts
(for non-BDD artefacts). The second area is work on analysis and/or improvement of
BDD feature suites. This includes studies that may or may not be about duplicate
detection and/or removal.

We start by presenting, in Section 2.1, the terms used to talk about duplication in (and
testing of) software systems. Thereafter, in Section 2.2, we present the general prob-
lem of duplication in software systems, evidence of its presence in real world software
systems, reasons for its introduction in software systems, as well as its advantages and
disadvantages. We then describe how duplication is dealt with in software systems,
covering the different approaches for its detection (Section 2.3) and removal (Sec-
tion 2.4) in software artefacts other than BDD feature suites. We then survey work
on analysis and improvement of BDD feature suites (Section 2.5), covering aspects
such as quality of scenarios in a suite, coverage of production code by scenarios in a
suite, and maintenance of scenarios in a suite. Based on the analysed literature, the

31

32 CHAPTER 2. LITERATURE REVIEW

research gap addressed in this thesis is presented in Section 2.6. Finally, Section 2.7
summarises the chapter by stating the answers we found for the various questions that
were of interest during literature review.

2.1 Terminology

This section introduces the terminology used in the literature to talk about duplication
in software systems and the different types of duplication, measuring the performance
of duplicate detection tools, as well as testing of software systems.

2.1.1 Terminology on Duplication

The definitions and types of duplication we present next are adapted from the literature
on “software clones” (e.g., [34, 35, 36]).

Code fragment: A sequence of lines of code, with or without comments, forms
a code fragment. It can be at the granularity of a function level, code block,
statements sequence, or a complete statement.

Code duplicate: In a software system, two or more identical or similar code
fragments are regarded as duplicates of each other.

Duplicate pair: A duplicate pair is formed by two code fragments which are
identical or similar to each other.

Duplicate class: A duplicate class (also called a duplicate group) is formed by a
group of identical or similar code fragments.

The “software clones” research community has categorised the different types of du-
plicates in software systems as follows [1, 35]:

Type 1: Identical code fragments with possible variations in comments and
whitespaces.

Type 2: Code fragments with similar syntax but exhibiting differences in identi-
fiers, literals, types, comments and layouts.

Type 3: Code fragments copied and modified to insert or delete statements, and
to alter identifiers, literals, types and layouts.

2.1. TERMINOLOGY 33

Type 4: Functionally similar but textually different code fragments.

Table 2.1 gives the example pairs of duplicate code fragments for each of the four types
of duplication.

Duplicate Type Example

Code Fragment 1 Code Fragment 2

Type 1 if (a >= b) {
c = d + b; // Comment1
d = d + 1;}
else c = d - a; //Comment2

if (a>=b) {
// Comment1’
c=d+b;
d=d+1;}
else // Comment2
c=d-a;

Type 2 if (a >= b) {
c = d + b; // Comment1
d = d + 1;}
else
c = d - a; //Comment2

if (m >= n)
{ // Comment1
y = x + n;
x = x + 1; //Comment3
}
else
y = x - m; //Comment2’

Type 3 if (a >= b) {
c = d + b; // Comment1
d = d + 1;}
else
c = d - a; //Comment2

if (a >= b) {
c = d + b; // Comment1
e = 1; // This statement is added
d = d + 1; }
else
c = d - a; //Comment2

Type 4 int i, j=1;
for (i=1; i<=VALUE; i++)
j=j*i;

int factorial(int n) {
if (n == 0) return 1 ;
else return n * factorial(n-1) ;
}

Table 2.1: Example code fragments for different types of duplication in program code
(adapted from Roy and Cordy [1])

Moreover, three terms are particularly common when evaluating the accuracy of du-
plicate detection tools [4]:

True Positives: Code fragments reported by a duplicate detection tool, and are
actually duplicates of each other.

False Positives: Code fragments reported by a duplicate detection tool, but are
actually not duplicates of each other.

34 CHAPTER 2. LITERATURE REVIEW

False Negatives: Code fragments not reported by a duplicate detection tool, but
are actually duplicates of each other.

The following metrics are commonly used to measure the performance of duplicate de-
tection tools. Precision is a measure of the degree of accuracy with which an algorithm
detects true duplicates, while recall is used to measure how good an algorithm is at de-
tecting all the duplicates in a system [4]. Figure 2.1 illustrates the general relationship
between the actual duplicates that might exist in a software artefact.

Figure 2.1: Possible distribution of duplicates and non-duplicates in a software artefact
(Adapted from Roy and Cordy [4])

Adapting the definitions from the clone detection community, as described by Roy and
Cordy [4, 37], and with reference to Figure 2.1, recall and precision for a duplicate
detection tool T can be defined by equations 2.1 and 2.2.

recall = |Actual duplicates in S detected by T (D)|
|All actual duplicates in S (A)| (2.1)

precision = |Actual duplicates in S detected by T (D)|
|Candidate duplicates in S reported by T (C)| (2.2)

Further, the F-score (F1) metric gives the harmonic mean of precision and recall.
Through it, we can get the balanced view of precision and recall. It is defined by

2.2. DUPLICATION IN SOFTWARE SYSTEMS 35

equation 2.3—as summarized by Sasaki et al. [38]:

F1 =
2 · precision · recall
precision+ recall

(2.3)

2.1.2 Other Terminology

The following definitions are adapted from the Guide to the Software Engineering
Body of Knowledge (SWEBOK) [39]:

Software testing: Verification that a program behaves as expected on a finite set
of test cases, which are selected appropriately from the domain that is typically
infinite.

Defect: Deficiency in a software that causes it (software) to not behave as re-
quired or specified. The term “defect” is sometimes used interchangeably to
mean either a cause of software malfunction (fault) or an undesired effect ob-
served in the service provided by the software system (failure).

Bug: “A defect in source code. An incorrect step, process, or data definition in
computer program. The encoding of a human error in source code.” ([39], p.
10-10)

2.2 Duplication in Software Systems

This section presents the problem of duplication in software systems, covering the
availability of duplication in real world systems, how and why duplication is intro-
duced, as well as the upsides and downsides of duplication.

2.2.1 Evidence of Duplication in Real World Systems

Duplication of code and/or functionality is commonplace in software systems [40, 41,
42, 43, 44]. It can be introduced intentionally or accidentally [45, 46]. To understand
the manifestations of duplication in test code, Hasanain et al. analysed a software sys-
tem which was in use in industry and found that 49% of test code was duplicated [47].
In a survey of developers to understand their experience with functionally similar code,

36 CHAPTER 2. LITERATURE REVIEW

Kafer et al. found that 91% of respondents had encountered functionally similar code
in their professional practice; and 71% of respondents had experienced the problems
caused by the presence of functionally similar code [40]. In an analysis of a repository
of 68 Java projects, Suzuki et al. found functionally equivalent methods in 28 out of
the 68 projects (41.2%) [48]. Li et al. found that 22.3% of code in the Linux kernel
and 20.4% of code in FreeBSD was duplicated [41]. In a payroll system analysed as
part of the duplicate detection study by Ducasse et al., more than 50% of code in some
files was duplicated [44].

2.2.2 Causes of Duplication in Software Systems

Reasons why duplicates get introduced into software systems are summarised in the
works of Roy [36] and Rattan [35] as follows:

1. Development strategy: The use of a development strategy that encourages reuse
of different software artefacts such as code, functionality, logic, design, architec-
ture, etc. For example, copy/paste of code to guarantee syntactic and semantic
reliability can increase the amount of duplication in a software system.

2. Reduce development efforts and foster software reliability: Duplication can
be deliberately introduced to reduce development-time effort, and to keep the
software reliable. For example, duplication can reduce both the costs of testing
new code and risks of errors associated with new code.

3. Overcoming development-time limitations: Time limitations and difficulty in
understanding an existing system can cause developers to write new functional-
ity by using examples from existing code, thereby increasing the possibility of
duplicating code. Also, the use of a language that lacks proper abstraction and
inheritance mechanisms can cause developers to write the same code multiple
times.

4. Accidental duplication: Different members working for the team at different
periods of time can coincidentally implement the same functionality.

2.2. DUPLICATION IN SOFTWARE SYSTEMS 37

2.2.3 Upsides and Downsides of Duplication in Software Systems

Apart from the benefits of duplication that can be deduced from the reasons for its in-
troduction (refer to Section 2.2.2), duplication in software systems offers the following
additional benefits. It can help developers to overcome limitations of an implementa-
tion language, and shorten development times—for example, developers can learn how
to use a particular API or library by mimicking existing code [45].

However, despite its benefits, duplication in software systems causes numerous prob-
lems:

1. Increase in maintenance costs: Although there is some disagreement among
researchers on the impact of duplicate program code on software maintenance
[49, 45], duplicated code has been reported to increase maintenance costs [50,
51, 52, 53]. Some studies on understanding the impact of duplication on the
maintainability of program code have focused on measuring the effort required
to understand and change duplicated code in the context of an evolving soft-
ware system. For example, Mondal et al. [50] used hundreds of revisions of six
open source systems written in Java, C and C# to estimate the effort required
to understand and change duplicated and non-duplicated code. They estimated
the effort spent on applying changes that had already taken place on methods,
and predicted the effort that might be required to change the methods in the
future. Duplicated code was found to require more maintenance effort than non-
duplicated code. Specifically, their approach for estimating maintenance effort
include the effort required to understand a particular method and its relatives1,
as well as the effort required to change a particular method and its relatives. To
estimate the maintenance effort for the changes that have already taken place
on methods, they measure two things: (1) time required to understand a par-
ticular method and other methods that either have a duplicate relationship with
a method of focus or co-change with a method of focus; (2) number of tokens
that were changed in a particular method and other methods that either have a
duplicate relationship with a method of focus or co-change with a method of
focus. To predict the effort that might be required to change a particular method
in the future, they also measure two things: (1) time that might be required to
understand a particular method and other methods that either have a duplicate

1Relatives of a method are methods that either have a duplicate relationship with a method of focus,
or co-change with a method of focus during evolution.

38 CHAPTER 2. LITERATURE REVIEW

relationship with a method of focus or co-change with a method of focus; (2)
number of tokens that might have to be changed in a particular method and other
methods that co-change with a method of focus. Due to the inability to know
whether future changes will take place on duplicated or non-duplicated parts of
a method, the number of tokens in duplicated methods were not included in the
prediction of effort that might be required to change a method in the future.

Other studies on understanding the maintainability of duplicate program code
have focused on measuring the effort required to fix bugs in duplicate code, as
compared to the effort required to fix bugs in non-duplicate code. For example,
in an experiment with developers, Chatterji et al. [51] measured the time taken
by developers to fix bugs both when a bug was in duplicated code, and when a
bug was in non-duplicated code; they also measured the probability of incorrect
bug fixes both when a bug was in duplicated code, and when a bug was in non-
duplicated code. They found that it was more difficult to correctly fix bugs in
duplicated code than it was for bugs in non-duplicated code. Thus, the cost of
providing correct fixes was higher in the presence of duplication than it was in
the absence of duplication.

Another group of studies have focused on studying the stability of duplicated
code, with the view that, if duplicated code changes too often than non-duplicated
code, it (duplicated code) must be involving too much effort to maintain [54, 55,
56, 57]. For example, Lozano and Wermelinger [55] investigated the evolution
of duplicate code over time, by analysing how methods with duplicated tokens
had changed across different commits. They found that duplicate code was less
stable than non-duplicate code, and posited that duplicate code has the potential
of making human engineers spend more effort and time on making tweaks on
duplicates, at the expense of implementing new software requirements. In an-
other study, Monden et al. [53] analysed a 20-year old legacy industry software
system and found out that modules with duplicated code were less maintainable
than modules without duplicated code, because modules with duplicated code
were found to have been revised more times compared to modules without du-
plicated code, to the extent that modules with duplicated code had become more
complex to understand and change.

However, the view that duplicate code is less stable compared to non-duplicate
code contradicts the view of other studies that suggest that duplicate code is

2.2. DUPLICATION IN SOFTWARE SYSTEMS 39

more stable than non-duplicate code [58, 59]. An example of studies in which
duplicated code is said to be more stable than non-duplicated code is the work
of Krinke, who studied the changes that had been made on five open source
software systems over the period of 200 weeks, and found that duplicated code
had the lower average percentage of additions, deletions, or other modifications,
compared to non-duplicated code [59]. Krinke’s findings were further confirmed
in a replication study conducted by Harder and Göde [58]. Such contradicting
views might arise due to the differences in the studied software systems, as well
as the differences in the methodologies employed by the different studies. How-
ever, it calls for further research to seek for a consensus.

2. Propagation of bugs: A bug present in a piece of code is likely to be present
in all other places where that code is duplicated. So the more the duplication of
pieces of code that contain bugs, the higher the chances that bugs will be propa-
gated across the system [35]. For example, in software product-line engineering,
a buggy component may be used in several products, increasing the possibility
that a bug will be available wherever a buggy component is used [60]. To ensure
consistency, bug fixing in one place has to be applied in all other places with
duplicated code. Failure to do so can, at a later point, cause erratic behaviour in
a system.

Evidence of duplicate bugs in program code were reported in a study by Li et

al. [41] in which 49 duplicate bugs in the Linux kernel and 31 duplicate bugs
in FreeBSD were discovered. Majority of the duplicate bugs discovered through
that study were confirmed by developers of the respective systems and were
fixed in the subsequent releases of the systems. Li and Ernst [60] conducted an
empirical study on four different projects (a software product line in industry,
the Linux kernel, Git, and PostgreSQL) and found that, in a software product
line, around 4% of bugs were duplicated across several products or files; they
also discovered 282 duplicated bugs in the Linux kernel, 33 duplicated bugs in
Git, and 33 duplicated bugs in PostgreSQL.

Several studies have investigated different aspects of bug replication and prone-
ness in duplicated code. In an empirical study conducted on thousands of re-
visions of four Java systems and two C systems, Islam et al. [61] found that
replication of bugs because of code duplication was commonplace. Specifically,
they found that: repeated bugs were in up to 10% of duplicated code; repeated

40 CHAPTER 2. LITERATURE REVIEW

bugs were found more in Type 2 and Type 3 duplicates compared to the extent
to which they (repeated bugs) were found in Type 1 duplicates; buggy duplicate
code groups tended to have very large percentages (mostly 100%) of bug repeti-
tions; and repeated bugs constituted 55% of bugs in duplicated code. Moreover,
Barbour et al. [62] analysed several revisions of two Java systems to determine
the relationship between late propagation (a phenomenon commonly used to re-
fer to how late the changes in a piece of code fragment are propagated across
its duplicate counterpart(s)) and bug proneness in duplicated code. They found
that late propagation increased the risks of bugs in software systems. Mondal et

al. [63] conducted an empirical study on thousands of revisions of nine software
systems (four in Java, three in C, and two in C#) and found that: Type 3 dupli-
cates were more prone to bugs compared to Type 2 and Type 1 duplicates; Type
3 duplicates were most likely to be co-changed during bug-fixing; Type 3 dupli-
cates experiencing bug fixing had higher chances of evolving while preserving
similarities among duplicates, compared to Type 1 and Type 2 duplicates; and
bug-proneness of duplicates was less related to late propagation. Besides, Xie
et al. [64] analysed several revisions of three Java systems and, among other
things, they found that: mutating duplicate groups of code to Type 2 or Type 3
duplicates increased the risk of bugs; the risk of bugs in a duplicate code group
was directly proportional to the extent of differences between code fragments in
a duplicate group.

Some of the research about bugs in duplicated code has attempted to detect du-
plicate bugs in program code. An example of such research is the work of Jiang
et al. [65] who devised an approach to detect bugs in duplicate code, and used
it to detect bugs that had been introduced through duplication in the Linux ker-
nel and Eclipse. 41 bugs were detected in the Linux kernel and 21 bugs were
detected in Eclipse. The idea behind their work is that, if two code fragments
are duplicates of each other, then any unjustifiable difference between their con-
trol flows would indicate the presence of a bug related to inconsistent changes
in the duplicate code fragments. Their approach first uses Deckard [66] to de-
tect duplicates in program code. Then, the parse trees of the reported duplicates
are compared to detect inconsistencies in the control flows of the reported du-
plicates. After that, to minimise the number of false positives in the list of what
they report as bugs, they apply several heuristics to filter the detected inconsis-
tencies. The filtering process produces a reduced list of inconsistencies, which is

2.2. DUPLICATION IN SOFTWARE SYSTEMS 41

used to create bug reports that developers inspect to determine if they are bugs.
Another example of research on detecting duplicate bugs in program code is the
work of Li et al. [41] who proposed an approach that detects bugs in duplicated
code based on the extent to which an identifier has been inconsistently changed
in duplicated code. In their approach, they compute the extent to which an iden-
tifier has remained unchanged as the ratio of the number of times an identifier
has remained unchanged to the total number of occurrences of an identifier in a
given duplicated code fragment. The lower the ratio of unchanged identifier, the
higher the chances that it could represent naming inconsistency, and thus indi-
cate the presence of a bug. As stated earlier in the present section, this approach
was used to detect 49 duplicate bugs in the Linux kernel and 31 duplicate bugs in
FreeBSD. A similar approach that computes the ratio of identifiers that remain
unchanged across pairs of duplicate code fragments was used by Inoue et al.

[67] to detect bugs resulting from inconsistent changes in two Samsung mobile
software systems. 25 true bugs were discovered in the first system, and 1 true
bug was discovered in the second system. Li and Ernst proposed an approach
that uses isomorphic graphs on the Program Dependency Graph (PDG) to detect
semantically equivalent buggy code fragments [60].

Other research about bugs in duplicated code has focused on avoiding repetition
of work that is likely to happen when fixing bugs in duplicated code. Nguyen
et al. [68] conducted manual analysis of repeated bug fixes in five open-source
software systems, and found that much of the repeated bug fixes occur in du-
plicated code. They subsequently developed a technique that utilises a graph
representation of how objects are used in a software system to detect similar
code and repeated bug fixes. Their approach also recommends other pieces of
code to be modified based on bug fixes in their (pieces of code) duplicate coun-
terparts. In another study, to facilitate consistent updates and fixing of bugs in
duplicated code, Fish et al. developed a tool called CloneMap which analyses
duplicates in different revisions of a software system and provides an interactive
tree representation of source code, enabling developers to track the evolution of
duplicates and get information about inconsistent updates of duplicates [69].

Other researchers have focused on detecting inconsistent bug fixing in duplicated
code. For example, the work of Steidl and Göde [70] used features of duplicated
code to construct a classifier for predicting inconsistent bug fixes in duplicate

42 CHAPTER 2. LITERATURE REVIEW

code. During empirical evaluation, their classifier attained a 22% precision, sug-
gesting the need for more research on increasing the precision of prediction of
inconsistent bug fixing in duplicated code.

3. Producing poor software design: Duplicate code can produce software with
poor design. This is especially true in the absence of practices such as refactor-
ing, inheritance, and abstraction [71]. Components of a poorly designed software
can be difficult to reuse in the long run [36]. Ducasse et al. posit that, “Code

duplication often indicates design problems like missing inheritance or missing

procedural abstraction. In turn, such a lack of abstraction hampers the addi-

tion of functionality.” ([44], p.1). Because duplication can degrade the design
of a software system, its removal can improve the design, and thus the qual-
ity, of a software system. For example, to understand the impact of duplicate
code removal on software quality, Fontana et al. [72] attempted to refactor code
duplicates from five versions of Apache Ant and five versions of GanttProject.
On almost all the studied source code quality metrics (for cohesion, complexity
and coupling), refactoring of code duplicates had a positive impact on software
quality, suggesting that the presence of duplicates produced poor design, which
improved after the duplicates were removed. However, compared to the other
problems of duplication which have been well-trodden in the literature, there
is paucity of studies on exploring the question of whether or not the presence
of duplicated code in a software system produces poor quality software design.
This makes it hard to examine, by way of comparing and contrasting, both the
quality and quantity of evidence in favour or against the position that duplication
of code hampers the quality of system design.

4. Increased consumption of technical resources: Duplicate code can increase
the cost of storage, compilation and execution of software, since the same piece
of code has to be stored, compiled and executed multiple times [35]. Nonethe-
less, this claim is purely based on intuition because we could not find any study
reporting empirical evidence on the relationship between duplicated code and
the consumption of computational resources.

It is the need to address these disadvantages of duplication that have motivated much
of the research aiming at detecting [73] and managing [74] duplication in software
systems. Table 2.2 summarises work on evidence of duplication in software systems,
as well as the advantages and disadvantages of duplication in software systems. After

2.3. DUPLICATION DETECTION 43

introducing the terminology and the different types of duplication, as used by the “soft-
ware clones” research community (Section 2.1.1), presenting evidence that duplication
exists in software systems (Section 2.2.1), causes of duplication (Section 2.2.2) as well
as its pros and cons (Section 2.2.3), we next discuss how it is dealt with. In particular,
we discuss the various approaches and techniques proposed in the literature for detect-
ing (Section 2.3) and removing (Section 2.4) duplication in software systems; we also
demonstrate that existing approaches and techniques for detection and removal of du-
plication in software systems suffer significant limitations on the problem of detecting
and removing semantic duplication in BDD specifications.

In short, duplicates in terms of “software clones” have been widely studied, and ap-
proaches for the detection and management of duplicates have been proposed. For
more details on various duplication detection and management approaches, readers
can see the summaries by Min and Ping [73], Rattan et al. [35], Koschke [75] and Roy
et al. [74].

S/n Aspect Description Example Citations

1 Evidence of duplication in real world systems

Duplication in test code [47]

Duplication in production code [48, 41, 44]

Professional experience with duplication [40]

2 Advantages of duplication in software systems
Reduce development efforts and foster software reli-
ability [36, 35, 45]

Overcoming development-time limitations

3 Disadvantages of duplication in software systems

Increases maintenance costs [50, 51, 52, 53]

Propagation of bugs [61, 41, 60, 62, 64, 65, 67, 68,
69, 70]

Producing poor software design [71, 36, 44, 72]

Increased consumption of technical resources [35]

Table 2.2: Evidence, advantages, and disadvantages of duplication in software systems

2.3 Duplication Detection

This section reviews the state of the art in duplicate detection, to determine if existing
approaches can detect duplicates in BDD specifications.

Existing duplicate detection approaches employ either static analysis, dynamic analy-
sis, or a combination of both static and dynamic analysis.

44 CHAPTER 2. LITERATURE REVIEW

2.3.1 Static analysis approaches

To detect duplication using static analysis approaches, programs are first converted into
common intermediate representations such as text [76, 77], tokens [78, 79, 43, 80],
syntax/parse trees [66, 81], Program Dependency Graphs (PDGs) [82, 83, 84], metrics
[85] or a combination of these [86, 87]. The intermediate representations are then
compared to detect duplicates. The following is a summary of the different types of
duplicate detection techniques, as well as example studies in each type of duplicate
detection techniques:

Text-based techniques: Segments of text are compared to detect duplication.
Specifically, text-based techniques regard source code as a sequence of charac-
ters whereby, after whitespaces, comments, and newlines are removed from the
source code, character sequences are compared, and code fragments that produce
similar character sequences are regarded as duplicates of each other. For exam-
ple, Ducasse et al. [77] proposed a duplicate detection technique in which, after
uninteresting information such as comments and white spaces are removed from
the source code, the resulting files are compared line-by-line to detect dupli-
cates. When evaluated, their technique recorded the recall and precision values
of more than 90%. Another example of text-based techniques can be found in the
work of Roy and Cordy [76] who employed the Longest Common Subsequence
(LCS) algorithm [88] to compare lines of source code text, to detect duplicate
code fragments. Their technique had recall and precision values of up to 100%
for some system, though on a small data set.

Token-based techniques: The source code of a software system is converted into
a sequence of tokens, which are then compared to detect duplication. A token
size is usually specified to limit the number of code fragments that get reported
as duplicates based on matches between tokens. For example, in a technique
proposed by Wang et al. [78] for detecting Type 3 duplicates, lexical analysis is
performed to produce tokens for blocks of code, before comparing the resulting
tokens to detect duplicates. During empirical evaluation, their tool had more than
80% of recall, precision, and F-score. Another example is the work of Sajnani
et al. [79] who proposed a token-based duplicate detection technique that uses
a language-aware scanner to create tokens for blocks of code, creates an index
that maps tokens to their respective code blocks, and uses an index of tokens
to search for similar blocks of code. When evaluated, their tool recorded the

2.3. DUPLICATION DETECTION 45

precision of 91% and the recall of more than 90%.

Tree-based techniques: Program code expressed in a language with a formal syn-
tax is first converted into an Abstract Syntax Trees (AST) or a parse tree. The
produced tree is then searched to detect similar sub-trees, and code fragments
corresponding to similar sub-trees are reported as duplicates of each other. Jiang
et al. [66] devised a tree-based duplicate detection technique that works as fol-
lows: it builds a parse-tree from the source code, generates vectors that represent
structural information in the tree, and performs clustering of vectors; code frag-
ments whose sub-trees produce vectors in the same cluster are regarded as du-
plicates of each other. During empirical evaluation, their tool was able to detect
higher numbers of duplicates than state-of-the-art tools at the time. In another
tree-based duplicate detection work, Falke et al. [81] proposed a technique in
which program code is parsed into an AST, and then the suffix tree of an AST is
analysed to detect similar sub-trees, and hence duplicate code fragments. Their
tool had the recall of up to more than 70%.

Semantics-based techniques: The source code for a software system is trans-
formed into representations of some aspect of its semantics (for example, pro-
gram dependence graphs [82]). These representations are then compared, to
locate candidate duplicate elements. Examples of semantics-based techniques in
which PDGs are used are the work of Tajima et al. [89] who compare PDGs to
detect functionally similar Java methods (precision of 71.7%), and the work of
Krinke [83] in which similar sub-graphs on a PDG are used to detect duplicate
code fragments (precision of 100%).

Other semantics-based techniques have employed the notion of program slicing

in the process of detecting duplication in software [90, 91]. Given a variable x

and its location in a program, a slice of x consists of other parts in a program that
have affected x (backward slicing) or are affected by x (forward slicing) [92, 93].
For instance, by combining PDGs and program slicing, Komondoor and Horwitz
use isomorphic subgraphs to identify duplicate code fragments, and detected a
fairly good number of duplicates during empirical evaluation [90].

Metric-based techniques: Collections of code metrics, such as the number of
calls to other functions and the number of decision points, are combined to form
vectors for each code unit (e.g. class, method); the vectors of metrics are then
compared to detect duplicate code fragments. For example, Mayrand et al. [85]

46 CHAPTER 2. LITERATURE REVIEW

collected 21 source code metrics related to naming of identifiers, layout of source
code, expressions and control flow, and code fragments with similar values of
these metrics were regarded as duplicates of each other. A good number of
duplicates was detected during evaluation.

Another example of metrics-based techniques is the work of Fang and Lam [94]
in which, in test methods, assertions that are reachable through similar control
flows are used to detect duplicate JUnit tests. For each JUnit test, they com-
pute a metric called “assertion fingerprint”, and test methods with similar values
of assertion fingerprint are reported as duplicates. An assertion fingerprint for
each assertion in a test method consists of the following information: number
of branch counts from the beginning of a method before an assertion can be
reached; number of merge counts from the beginning of a method before an
assertion can be reached; number of possible exceptions after an assertion; a
boolean value indicating whether or not an assertion is in a loop; and a boolean
value indicating whether or not an assertion is in a catch block. All assertion
fingerprints of a particular test method, ordered according to how they appear in
test code, are combined to form a set of assertion fingerprints for a particular test
method. Sets of assertion fingerprints for different test methods are compared to
detect duplicate unit tests. When evaluated, their technique achieved a precision
of 75%.

Hybrid techniques: Several of the above techniques are combined into a single
duplicate detection method. For example, Kodhai et al. [86] combined metrics
and text comparison to detect Type 1 and Type 2 duplicate code fragments, and
achieved up to 100% as values of recall and precision. In the work of Gabel et

al. [87], after sub-graphs in a PDG are converted to Abstract Syntax Trees, to
detect duplicate code fragments, they search ASTs for similar sub-trees. When
evaluated, their technique detected higher numbers of duplicates than state-of-
the-art techniques at the time.

2.3.2 Dynamic analysis approaches

Dynamic approaches analyse runtime information to detect duplication. On the one
hand, some duplicate detection techniques employing dynamic analysis have focused
on the analysis of untransformed programs expressed in a high level language. For

2.3. DUPLICATION DETECTION 47

example, Su et al. [95] devised a dynamic analysis duplication detection technique in
which Java programs are instrumented and executed, recording execution traces that
represent runtime behaviours of the programs. Then, program execution traces are
modelled as dynamic call graphs, in which isomorphic subgraphs are used to indicate
the presence of duplicate code fragments. They employ a page ranking algorithm [96]
to minimize the number of pairwise comparisons when searching for isomorphic sub-
graphs. During empirical evaluation with Java projects from Google code jam [97], the
implementation of this technique recorded the precision of more than 90% in detecting
groups of duplicate code fragments.

On the other hand, duplicate detection techniques employing dynamic analysis have
focused on the analysis of transformed high-level language programs. Egele et al. [98]
devised a technique called “blanket execution” for detecting duplicate functions in
executable binary code. They perform repeated executions of a particular function in a
particular environment (for example, at specific initial values of registers and memory
locations), producing a vector of features observed at runtime (for example, memory
accesses and performed system calls). Two functions producing similar feature vectors
when executed under the same environment are considered to be duplicates of each
other. The similarity between feature vectors is computed using Jaccard index [99]. A
precision of 77% was achieved during evaluation of the tool.

Park et al. analysed runtime stack behaviour to detect similarly behaving software [100].
Their technique does the following: takes as input binary executables; executes binary
executables and collects the traces; analyses the traces to identify the relations be-
tween different function calls made at runtime, thereby producing the usage patterns
for a stack; and compares the usage patterns for the stack, to detect similarly behav-
ing code. The similarity score between stack usage patterns is computed using LCS
algorithm [88]. When evaluated, the ability demonstrated by this technique in detect-
ing similarly behaving software was comparable to MOSS [101], the state-of the-art
software similarity detection tool at the time.

2.3.3 Combination of static and dynamic analysis approaches

To minimize the amount of information to be processed at runtime, with the view of
reducing the computational costs, some studies have combined both static and dy-
namic analysis approaches to detect duplicates. To detect duplicate code, techniques

48 CHAPTER 2. LITERATURE REVIEW

in this category have mainly focused on comparing inputs and outputs. In the work
of Jiang and Su [102], static analysis is combined with dynamic analysis to detect du-
plicate code fragments based on if they have the same outputs for the same inputs.
Their technique works as follows: First, function definitions in source code are parsed
into statement sequences, and then each of the possible consecutive statement subse-
quences is regarded as duplication candidate. Second, variables that are used without
being defined in a particular duplication candidate are regarded as input variables to the
duplication candidate, and variables that are defined in a duplication candidate without
being used in it are regarded as its output variables. Third, input generation is con-
ducted, in which random values are generated for the input variables. Fourth, code
fragments that are duplication candidates are executed on generated random input val-
ues, and code fragments that produce the same outputs on the same inputs are grouped
together in a duplication class.

Using their approach, many duplicate code were detected in the Linux kernel 2.6.24.
They also found that about 58% of the detected functionally similar code fragments
were syntactically dissimilar, fortifying the need for duplicate detection techniques
that focus on equivalence of functionality. They also recorded a precision of more than
67%.

Su et al. [103] devised a technique that compares inputs and outputs to detect dupli-
cate Java methods. They first identify the outputs of a method as all variables that
are written by a method and can be observed (e.g used by a developer) after a method
finishes execution. Examples of outputs include the following: a variable passed to
another method, a variable returned by a method, a variable written to a static or in-
stance variable, and a variable written to an array which is a parameter to a method.
After the outputs are identified, they use data and control flow analysis to determine all
the input variables that affect each of the output variables. This produces input-output
(IO) sets for the methods under analysis. Then, they perform bytecode instrumentation
for the variables in the IO sets, executes the methods and records the actual values of
IO variables at runtime. Finally, during similarity analysis, using the Jaccard index,
methods that produce similar IO sets are regarded as duplicates of each other.

During empirical evaluation, their approach detected more than 800 duplicate methods
in Google code jam projects [97], with 68% and 15% respectively as the proportions
of true positives and false positives in the candidate sets.

2.4. DUPLICATION REMOVAL 49

The work of Elva [104] combines static and dynamic analysis techniques to detect se-
mantically equivalent Java methods. In their approach, two methods are considered to
be semantically equivalent if they have the same input and output, and affect the heap
in the same way. The dynamic analysis part is preceded by the static analysis part.
During the static analysis phase, only methods that have the same parameter types,
the same return types, and can write to the same variables, are regarded as duplication
candidates and are put into the same group. After groups of candidate duplicate meth-
ods are identified, depending on the type (instance or static) of each method in the
duplicate candidate groups, receiver objects are created and random values of method
parameters are generated. Thereafter, methods are invoked on created receiver objects
or on individual classes (for static methods), recording the return values of methods as
well as heap state at the end of method execution. Methods that produce the same out-
put (return value and heap state after method execution) on the same input (parameter
values and heap state at the time of method invocation) are considered to be semanti-
cally equivalent. Their approach detected 502 semantically equivalent methods in six
open source Java software systems. They also found that, on average, static analysis
reduced the required dynamic analysis by 91%.

Table 2.3 summarises the existing duplicate detection approaches.

2.4 Duplication Removal

As presented in section 2.3, there has been a lot of work on identifying duplicates
in software systems, but considerably less work on advising stakeholders on how to
reduce the amount of duplication. After duplicate pairs of code fragments have been
detected in a software system, there can be numerous ways to manage the detected
duplicates [74]. While in some cases it may be appropriate to find a suitable way
to merge the duplicates, in other cases it may be appropriate to remove one of the
duplicates in a pair and keep the other. In cases where one duplicate has to be removed
while keeping the other, the process of deciding which of the duplicate to remove can
be non-trivial; various factors, some of which could be related to the overall system
quality, can come into play. We now discuss the attempts made to reduce duplication
in software systems, as reported in the literature. In so doing, we demonstrate that
the problem of advising users on which BDD scenario should be removed, given a
duplicate pair of BDD scenarios, has not been addressed.

50 CHAPTER 2. LITERATURE REVIEW

S/n Approach Techniques Example citations

1 Static analysis

Text-based [77, 76]

Token-based [78, 79]

Tree-based [66, 81]

Semantics-based [89, 83, 90, 91]

Metric-based [85, 94]

Hybrid [86, 87]

2 Dynamic analysis
Untransformed
high-level lan-
guage programs

[95]

Transformed
high-level lan-
guage programs

[98, 100]

3 Combination of
static and dynamic
analysis

Input-Output
comparison

[102, 103, 104]

Table 2.3: Summary of duplicate detection approaches

2.4.1 Refactoring of duplicates in production code

Research has been done into the refactoring of duplicate code in software systems,
mainly focusing on software “clones” [105, 106, 107, 108, 109, 110, 111]. Some
studies in this area have been about assessing the ability of duplicates to be safely
refactored. Tsantalis et al. [109] proposed a technique that assesses the differences
between duplicates to determine whether or not they can be merged without altering
the program’s behaviour. Their technique extracts data dependencies between state-
ments in the duplicates, and checks whether these dependencies are preserved after
the merging of duplicates. Evaluation of the technique showed that it provided accept-
able assessment of the refactorability of duplicates, because most of the duplicates that
were judged as refactorable by this technique could be refactored without causing test
failures or compilation errors. Also, among other things, they found that duplicates
in production code can be easily merged compared to duplicates in test code; and that
duplicates in the same files, classes, or methods can be easily merged compared to
duplicates in different files, classes or methods.

2.4. DUPLICATION REMOVAL 51

Chen et al. [112] proposed a tool called PRI (Pattern-based Clone Refactoring Inspec-
tion) which can advise developers on duplicates that can be removed and appropriate
ways to remove them, as well as the duplicates that cannot be removed and the reasons
for why they cannot be removed. It also does the following: summarises refactorings
that have taken place on groups of duplicate code across various revisions of a software
system, identifies instances in which duplicates in the same group have been inconsis-
tently refactored and the reason for the inconsistency, advises developers on ways to
safely remove duplicates in code, and ensures consistent removal of duplicates that
belong to the same duplication group. Evaluation of PRI on 6 open-source software
systems revealed that PRI can detect refactorings of duplication in code with an accu-
racy of 94.1%, and it can detect inconsistent refactoring of duplicates with an accuracy
of 98.4%. Also, the qualitative evaluation of the tool with 10 students revealed that
PRI simplifies inspection and monitoring of duplicate refactorings.

Other studies in this area have been about prioritising duplicates for refactoring, as
well as guiding the actual refactoring. For example, to guide developers in differen-
tiating duplicates that are more important for refactoring from duplicates that are less
important for refactoring, Mandal et al. [108] devised a technique that suggests the
refactoring of duplicates that have a tendency of changing together during software
evolution. Their technique suggests for refactoring duplicates that co-change without
losing similarity, across different revisions of a software system. Both the duplicates
that co-change without losing their similarity and the relationships among co-changing
duplicates are identified. Then, based on how likely to change the duplicates are, co-
changing duplicates and their relationships are ranked for refactoring. Empirical eval-
uation of the technique on 13 software systems confirmed that co-changing duplicates
were good candidates for refactoring.

To advise developers on what duplicates to refactor and how to do the refactoring, Yue
et al. [106] proposed an approach that suggests duplicates to be refactored based on
information from the present status of a software system as well as information from
the past history of a software system. A total of 34 features about the duplicates were
used to train the classifier that suggests the duplicates to be refactored. The 34 features
are divided as follows: 11 features are about the code that constitutes the duplicates
(examples include lines of code in a duplicate, number of tokens in a duplicate, and
whether a duplicate is a test code or production code); 6 features are on the history
of the duplicates (examples include percentage of developers who have maintained

52 CHAPTER 2. LITERATURE REVIEW

a particular file, and percentage of commits that changed the file); 6 features are on
relative locations of duplicates (for example, whether or not the duplicates are in the
same directory, file, class or method); 6 features are on the differences in syntax among
the duplicates (for example, number of duplicates in the same duplication class, and
proportion of naming differences for variables in a duplication class); and 5 features
are about co-evolution of duplicates (for example, percentage of commits that change
all duplicates in a particular duplication group).

Experimentation with this approach recorded an F-score of 83% for duplicates within
the same project, and an F-score of 76% for duplicates across different projects. This
outperformed the state-of-the-art approach described in the work of Wang and God-
frey [107], the classifier in which was trained based on 15 features only, and recorded
the F-scores of 70% and 50% respectively for duplicates within the same project and
duplicates across different projects.

In a work similar to ours, Fontana et al. [105] proposed a tool called DCRA (Du-
plicated Code Refactoring Advisor) for advising developers on best ways to refactor
pairs of duplicate code in Java systems, focusing on improving the quality of system
code. In DCRA, first, a tool called NICAD [76] is used for duplicate detection, and
they augment each detected duplicate with information about its location, size, and
type. Thereafter, using the information about the location of duplicates and the vari-
ables they contain, they suggest possible refactorings for the different duplicate pairs,
and rank the suggested refactorings based on the quality of resulting code if the refac-
torings were applied. Quality is determined in terms of how the resulting refactoring
would make good use of three OOP features: encapsulation, inheritance, and poly-
morphism. The tool also provides the summary of information about the duplicates,
showing, among other things, the sizes of duplicates as well as the duplicates which
should be most convenient to refactor. The evaluation of DCRA on four software sys-
tems gave advises on refactoring for more that 80% of known duplicate pairs, and the
application of refactoring advises that were given by DCRA caused 66% of all dupli-
cates across four evaluation systems to be properly refactored.

Tsantalis et al. investigated the use of lambda expressions [113] to support the merging
of duplicates. Among other things, the use of lambda expressions was found to be more
applicable for merging duplicates in test code than for merging duplicates in production
code [110].

2.4. DUPLICATION REMOVAL 53

2.4.2 Removing duplication in test code

Various refactorings on test code were proposed by Van Deursen et al. [114]. For
duplication in test code, in particular, they suggested the use of Extract Method [71],
if duplication is in the same test class. For cross-class duplicated test code, however,
they suggested mimicking the hierarchy of production classes in the hierarchy of test
classes. For example, in some context, it might be helpful to move duplicated test code
from two different test classes into a common class.

Various studies have applied the refactorings by Van Deursen et al. to refactor dupli-
cation in test code. Here, we give two examples of such application, one in the context
of JUnit test suites and another one in the context of domain-specific test suites. Zhao
[115] developed a tool called JTestParametrizer that refactors duplicates across pairs
of JUnit test methods. First, a refactoring tool called JDeodorant [116] is used to map
identical AST nodes and to identify the differences. Then, pairs of AST nodes in du-
plicate test code are mapped into a unified duplicate tree, and a parametrised utility
method is used to combine the differences in behaviour, data and type. Thereafter, pa-
rameter values are passed to the extracted utility method to instantiate individual test
cases. When evaluated on 5 open-source projects, with a total of 415 duplicate pairs,
the tool was able to refactor 65% (268 pairs) of the duplicate pairs, and all the refac-
tored Junit test methods could be compiled while 94% of the refactored test methods
were able to pass when executed. Also, it was noted that using JTestParametrizer for
refactoring produced precise test suites.

The removal of duplication in TTCN-3 (a test scripting language used in the telecom-
munication domain) was investigated in the work of Neukirchen et al. [117]. They
proposed different refactorings for TTCN-3 test suites and implemented the various
refactorings they proposed in a tool called TREX. Various refactorings for duplicated
test code in TTCN-3 test suites were part of a broad array of refactorings proposed in
their study. Among other things, they suggested the use of Extract Method to refac-
tor duplicate templates in TTCN-3 test suites. A significant reduction in the number
of lines of test code was observed when TREX was used to refactor three different
TTCN-3 test suites; changeability of the evaluation test suites was also improved.

54 CHAPTER 2. LITERATURE REVIEW

2.4.3 Test Suite Reduction

The body of work on Test Suite Reduction (TSR) [118], too, exploits duplication to
determine a representative subset of tests that covers a whole test suite. The goal of
TSR is to minimize both the size of the test suite and the time required to execute
tests within the suite. Reduction of test execution time is especially important if fast
feedback cycles are required by developers. The TSR problem can be summarised as
follows:

Given a test suite T and a set of testing requirements Rn, the TSR problem is

about finding Ti⊂T such that Ti can still satisfy Rn.

A testing requirement ri ⊂Rn is often expressed in terms of the amount of coverage
that is regarded as adequate for a particular component of the program under test. The
result of a TSR process is a subset of a whole test suite in which duplicate test cases
(multiple test cases covering the same testing requirements) have been removed.

Various TSR techniques proposed in the literature remove whole test cases from the
test suites, and rely on the availability of coverage information. An example of TSR
techniques that use coverage information to remove whole test cases from the suite is
in the work of Smith et al. [119] who devised a TSR technique that works as follows:
First, the code under test is instrumented so that the call tree associated with an execu-
tion of each test in a suite can be constructed when tests are executed. Then, tests are
executed, creating a call tree, in which a node is created for each test case, and a path
under each test node–formed by a sequence of method calls associated with the execu-
tion of a test–forms a unique test requirement for the program under test. Thereafter,
a greedy heuristic algorithm [120] is applied on call trees to compute representative
subsets of whole test suites. When applied on the evaluation case study, this technique
reduced the tests in the suite by 45% and had a 82% reduction in execution time.

Realising that it can be time consuming and hard to collect, store and keep coverage
information updated, Zhang et al. [121] proposed the TSR technique that works as
follows to remove whole test cases from a suite: First, it constructs static call graphs
to represent the relationships between tests in a suite and the system under test. Then,
the greedy algorithm [120] is applied on static call graphs to identify tests that test the
same part of the production code. This process enables the removal of duplicate whole
test cases, producing a representative subset of an entire test suite.

2.4. DUPLICATION REMOVAL 55

Other TSR techniques in the literature seek to remove partial duplication among test
cases in a suite. For example, by focusing on partial duplication among test cases, Va-
habzadeh et al. [122] proposed a tool called TESTLER that performs TSR with an aim
of removing duplicated statements in JUnit tests. Specifically, to avoid unnecessary
loss of whole test cases while paying attention to the possibility of partial duplication
among test cases in a suite, their technique analyse test execution information to model
the relationships between statements in individual test cases and test states, enabling
the re-arranging, identification and removal of duplicate statements in tests. When the
technique was evaluated on 15 open-source projects, 43% of duplicate test statements
were removed, which reduced tests with partial duplication by 52% and test execution
time by up to 37%.

2.4.4 Removing duplication in natural language tests

To produce components that can be reused across multiple tests, Hauptmann et al.

[123] used grammar inference algorithms to extract and group together test steps re-
sulting from partial duplication between automated system tests expressed in a natural
language [124]. Information such as the number of steps in a reuse component and
the number of references to it are used by maintenance engineers to decide on suitable
ways to refactor steps that are duplicated across several test cases. They first perform
detection and annotation of all duplicates in a test suite. Then, by presenting test steps
as sequences of tokens, they convert an entire test suite into input sequences for a
grammar inference algorithm called Sequitur [125]. Modelling the provided input se-
quences by detecting recurring token sequences, Sequitur produces a grammar which
is used to reconstruct the test suite in which steps duplicated across multiple test cases
are grouped into reuse components. Applied on an industry case study, this approach
helped human engineers in understanding how tests were internally structured and in
removing duplicates from the evaluation test suite.

Devaki et al. [126] investigated the merging of Graphical User Interface (GUI) tests
that contain identical steps. Their technique compares states induced by tests at run-
time to detect partial duplication between steps from different test cases in a test suite.
Then, the test cases with duplicated steps are merged into a single test case in which
duplicated steps are executed only once. When the technique was evaluated on five
web applications (four open source and one proprietary) with a total of more than

56 CHAPTER 2. LITERATURE REVIEW

3300 tests that consisted of 19600 test steps, the number of test steps were reduced by
29% and the test execution time was reduced by 39%.

2.4.5 Assessing the quality of tests and requirements

Various studies have investigated metrics for assessing and improving the quality of
test suites. Tengeri et al. [127] devised a method to assess and improve the quality of
test suites. The method goes beyond the use of the traditional code coverage propor-
tions when assessing the quality of a test suite. To use the method, one has to start by
setting an improvement goal (e.g removing duplicate test cases, improving coverage of
some parts of code, etc.). Then a granularity of focus is chosen; it can be coarse (e.g
functional level) or fine (e.g statement level). After the granularity of focus is chosen,
the tests are executed, different metrics are computed based on coverage information
gathered through test execution, and the results of the metrics are used to inform the
process of updating tests and code.

The study defined five different metrics that are computed from coverage information,
and can be used to assess the quality of a test suite. The metrics are computed for
pairs of test groups (a subset of test cases in a suite that tests a particular functionality)
and code groups (code elements that implement a particular functionality). The first
metric is about coverage of a test group for a particular code group: the ratio of the
number of elements in a code group that are covered by tests in a test group to the total
number of code elements in a code group. The second metric is about partition which
differentiates elements of the code group based on tests that cover them; elements with
the same coverage information are indistinguishable and thus they belong to the same
partition. The third metric is about tests per program elements which is the ratio of
the number of test cases in a test group to the number of elements in a code group;
it tests the extent to which tests are unique and efficient. The fourth metric is about
specialization of a test group and it is computed as the ratio of number of test cases
in a test group that cover elements of a particular code group to the number of all test
cases in the whole test suite that cover elements of a particular code group. The fifth
metric is about uniqueness of tests for a particular code group which is computed as
the ratio of the number of elements in a code group that are only covered by a test
group to the number of all code elements covered by a test group. During evaluation, it
was observed that the method did improve various metrics computed for the test suite

2.4. DUPLICATION REMOVAL 57

of the evaluation system.

A study by Palomba et al. [128] found that test cohesion and test coupling are im-
portant criteria for increasing the quality of automatically generated test cases, and in-
cluded these criteria in their algorithm for search-based test case generation. Meszaros
[129] defines test cohesion and coupling as follows: Test cohesion refers to the simplic-
ity of a test case–a highly cohesive test case should not be involved in the verification
of a lot of functionality. Test coupling, on the other hand, measures the extent to which
tests overlap with each other. Easily maintainable tests should have low cohesion val-
ues. Improvement in quality of automatically generated test cases was observed when
the two criteria were incorporated in the algorithm for automatic generation of test
cases using EvoSuite [130].

Daka et al. [131] used human judgement to develop a model for assessing the read-
ability of unit tests, and then applied this model to generate readable unit tests. Crowd-
sourced humans were used to rate the readability of tests on a five point scale (1 to 5).
This formed a ground truth indicating the readability of various unit tests. After that,
24 various structural, complexity, and code density unit test features were selected and
used to build the model. When applied on the human-judged ground truth for unit
tests readability, the model was found to be in agreement with humans by 89%. More-
over, using the model to augment automatic generation of unit tests, it was found that
more readable unit tests were generated, and the speed at which humans could answer
questions about maintenance increased by 14% without losing accuracy.

There have been a small number of attempts to assess the quality of natural language
tests and requirements through the notion of smells. Hauptmann et al. [132] used their
experience of evaluating the quality of tests of industrial systems to propose a set of
seven smells in manual tests expressed in a natural language. They also describe the
activities (test maintenance, execution, or understanding) that are negatively impacted
by each smell they propose. For example, for the smell about duplication in tests,
they state that it negatively affects comprehension and maintenance of tests. They also
devised approaches to detect each of the seven smells they proposed. For instance,
they suggest the use of substring matching to detect duplication in tests. By applying
their smell detection approaches, they were able to detect smells in seven industrial
test suites.

The work of Femmer et al. [133] proposed nine smells in natural language require-
ments, and devised the methods for detection of the proposed smells. The detection

58 CHAPTER 2. LITERATURE REVIEW

methods were implemented in a tool called Smella which parses the requirements ex-
pressed in various formats (Microsoft Word, Microsoft Excel, PDF, plain text, and
CSV) producing plain text; annotates the language used to express the requirements
with meta-data that indicate, among other things, the roles of words (e.g adjective, pos-
sessive pronoun, etc.) in sentences; use annotations on requirements to detect smells;
and presents the results of the smell detection process in a human-readable format.
When evaluated on four systems (three industry and one academia), Smella detected
smells in natural language requirements with the precision of 59% and the recall of
82%.

Table 2.4 summarises work on removing duplication in software systems, as well as
assessing and improving the quality of test suites and software requirements.

S/n Aspect Example Citations

1 Removing duplication in pro-
duction code

[112, 105, 106, 107,
108, 109, 110, 111]

2 Removing duplication in test
code

[114, 115, 117]

Test Suite Reduction [119, 121, 122]

3 Removing duplication in natural
language tests

[123, 126]

4 Assessing the quality of tests
and requirements

[127, 128, 131, 132,
133]

Table 2.4: Approaches for removing duplication, as well as assessing and improving
the quality of test suites and requirements

2.5 Analysis and Improvement of BDD Specifications

We also wanted to discover whether the detection and removal of duplicate BDD sce-
narios has been addressed by the existing studies on BDD. What we discuss next is the
work on analysis of BDD specifications. In particular, we pay attention to studies on
quality and maintenance of BDD feature suites.

There have been attempts to define quality in the context of BDD feature suites. Oliveira
et al. [134] defined 8 quality attributes for BDD scenarios and devised a checklist with

2.5. ANALYSIS AND IMPROVEMENT OF BDD SPECIFICATIONS 59

12 questions to assist human engineers in evaluating the quality of BDD scenarios.
This was a result of interviews with 18 BDD practitioners who gave opinions on qual-
ity attributes obtained from the literature on requirement engineering [135, 136] and
user stories [137], as well as their (interviewees) other personal criteria for good qual-
ity BDD scenarios . Specifically, the following were found to be attributes of a good
quality BDD scenario:

1. Essential: A BDD scenario should be concise enough by including only essen-
tial information in its steps’ text.

2. Focused: A BDD scenario should be declarative, by stating what the scenario
should do rather than how to do it.

3. Singular: A BDD scenario should have one clearly stated purpose–it should test
only one thing.

4. Clear: A BDD scenario should be unambiguous and understandable to all project
stakeholders.

5. Complete: Steps of a BDD scenario should have enough information that makes
them easy to follow, and a set of scenarios in a feature should cover the feature
as high as possible.

6. Unique: A BDD scenario should test something different from all other scenar-
ios in a feature.

7. Ubiquitous: A BDD scenario should consistently use domain terms that are
understandable to all project stakeholders.

8. Integrous: A BDD scenario should properly follow rules of a Gherkin language:
A Given step should describe the pre-conditions, should come before When and
Then steps, and should be in past tense. A When step should describe events,
should come before Then step but after Given step, and should be in present
tense. A Then step should describe the post-conditions, should come after Given

and When steps, and should be in future tense.

As well, of the 12 questions on the checklist they proposed for evaluating the quality
of BDD scenarios, 2 questions are for evaluating quality at a feature level, 6 questions
are for evaluating quality at a scenario level, and 4 questions are for evaluating quality
at a step level.

60 CHAPTER 2. LITERATURE REVIEW

Moreover, a section of studies has focused on enforcing quality in software systems
that employ BDD, by encouraging high coverage of production code by the associated
BDD scenarios, as well as high reusability within BDD feature suites. Diepenbeck et

al. [138] proposed an approach for increasing the coverage of BDD tests by generat-
ing BDD scenarios for uncovered production code. They first conducted an empirical
study on several versions of two BDD projects, and found that coverage of produc-
tion code by the projects’ BDD scenarios decreased as the projects evolved over time.
Based on this finding, they devised a technique to automatically generate BDD sce-
narios to cover the uncovered production code. They follow a two-stage process to
generate BDD scenarios for uncovered production code: global coverage in which
they ensure that all uncovered production methods are called by the glue code, and
local coverage which focuses on covering lines in the production code that remain
uncovered even after the global coverage stage. To create new BDD scenarios for
uncovered production code, they introduce a notion of feature graph, a graph of all
features and their associated scenarios in a BDD feature suite whose vertices repre-
sent system states and edges represent scenarios’ steps. When generating scenarios for
the uncovered production code, their approach first attempts to use the existing steps
from the feature graph before resorting to generating new steps, particularly when the
existing steps cannot cover specific part(s) of the production code.

To understand the potential for reuse amongst BDD feature suites, Irshad [139] used
both the Normalised Compression Distance (NCD) algorithm and the Similarity Ratio
(SR) algorithm to detect similarity between pairs of BDD scenarios. While the NCD
algorithm was adapted from the literature [140], the SR was specifically proposed in
their work. According to [140, 139], NCD is computed as shown in equation 2.4,
where Z represents a compression algorithm, Z(x) and Z(y) respectively represent the
sizes of datasets x and y after compression, Z(xy) represents the compressed size for
the concatenation of datasets x and y, and min and max respectively are the functions
for determining the minimum and maximum of given values.

NCD =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)}
(2.4)

NCD values can be in the range [0, 1], where 0 indicates that two entities are com-
pletely identical, 1 indicates that two entities are completely different, and a value
between 0 and 1 represents the distance between the two entities.

2.5. ANALYSIS AND IMPROVEMENT OF BDD SPECIFICATIONS 61

SR is computed as shown in equation 2.5. SR values are also in the range [0, 1] where 0
indicates that the two BDD scenarios do not have any step in common, and 1 indicates
that all of the steps in the shorter BDD scenario are also in the longer BDD scenario.

SR =
Number o f similar steps in the two BDD scenarios

Number o f steps in the shorter BDD scenario
(2.5)

When evaluated on BDD feature suites for two industry systems (one with 72 BDD
scenarios, and another one with BDD 15 scenarios), SR slightly outperformed NCD
in detecting similarity between BDD scenarios. SR could detect the false positives
and false negatives that were observed when NCD was applied. Both approaches,
however, produced the results that highly matched the opinions of domain experts. It
was generally learned that there is a potential for reuse of steps and other facets in
BDD feature suites.

In another work, Landhauer and Genaid [141] developed a tool called F-TRec (Func-
tional Test Recommender) that builds a knowledgebase consisting of user stories, BDD
scenarios, glue code, and production code, and the relationships between these arti-
facts, and then uses the knowledgebase to recommend steps for reuse when new BDD
scenarios are being written. During empirical evaluation, their approach recorded a
high recall (77.5%) but a low precision (8.68%).

Other authors have investigated how to improve the quality of BDD specifications
by reducing maintenance costs that can be caused by such things as duplication and
inconsistent updates in BDD projects. Yang et al. [142] studied the maintenance
of traceability links between BDD feature files and the associated source code files.
They devised a mechanism that can help maintainers to determine the feature files
that should be modified when there is a modification in source code files. To detect co-
changing patterns between feature files and source code files, they analysed a collection
of file changing commits by comparing words from Gherkin feature files to words from
Java source files. In particular, they used an NLP (Natual Language Processing) tool
called Stanford CoreNLP [143] to extract from Gherkin feature files words that were
either nouns or verbs. They focused on nouns and verbs because other types of words
are not commonly used in Java [144] and they wanted to compare words from Gherkin
feature files to words from Java files. A Java parser was used to identify and eliminate
keywords that are specific to the Java language (for example, public, private, import,
etc.). The words that remained after eliminating Java keywords formed a set of words

62 CHAPTER 2. LITERATURE REVIEW

for comparison with words extracted from Gherkin feature files. After keywords from
each pair of co-changing files were identified, they computed the Cosine Similarity
measures [145] for strings of words in pairs of co-changing files. A Cosine Similarity
of above 95% was used to identify co-changing files. This approach was able to detect
co-changing files with79% accuracy.

Moreover, based on the patterns of co-changes that were observed in feature files and
source code files, they also proposed a Random Forest [146] model for predicting
when to modify feature files before committing changes resulting from modification
of source code. Their prediction model scored an AUC (Area Under the Curve) of
0.77. As well, they also found that the number of files of test code that are added
as part of a commit, the number of other files that are modified as part of a commit,
the number of files of test code that are renamed as part of a commit, and number of
lines of code deleted from source code in a commit give best prediction of co-changes
between feature files and source code files.

Suan [33] devised the techniques for detection and removal of textual duplication in
BDD feature suites. They use identical text to detect exact matching of various el-
ements (feature/scenario/scenario outline titles, backgrounds, steps, etc.) in Gherkin
features. They also use a Dice Coefficient (DC) [147] algorithm to detect duplicates
that are textually different. DC can be computed as shown in equation 2.6, where L1
is the number of terms in the first text, L2 is the number of terms in the second text,
and C is the number terms that are common across the two texts, L1 and L2. For the
purpose of the duplication detection algorithm, the terms in the text are expressed in
the form of bigrams (consecutive units of words, letters, syllables, etc.)

DC =
2∗C

L1+L2
(2.6)

The study also suggested the following four different refactorings for the duplicates
that their approach detects in BDD feature suites. The first one is about renaming of
Gherkin elements, and it is applied on Gherkin elements that have unnecessary ex-
act matching. For example, when two different scenarios in the same feature have
the same title, it may be appropriate to rename the title for one of the scenarios. The
second refactoring is about removing of Gherkin elements, which is applied on ex-
act matches of Gherkin elements when one of them is clearly unwanted. For example,
when a feature has two textually identical scenarios, one of then can be removed. Third

2.6. RESEARCH GAP 63

is migrating to Background of certain Gherkin elements, and it is applied when cer-
tain Given steps are repeated across all scenarios of a particular feature. The fourth
refactoring is about combining of some Gherkin elements, and it is applied on sim-
ilar scenarios that differ only in terms of inputs and outputs. Such scenarios can be
combined into a single scenario outline.

Of all the duplicates detected by SEED (the tool implemented as part of their study)
during evaluation, 11% were also detected by human experts, 40% were the dupli-
cates that should have been detected by human experts but there were no evidence
that the human experts could also detect them as duplicates, and 49% were false posi-
tives returned by SEED. Also, 81.8% of the refactorings suggested by SEED were in
agreement with the suggestions of human experts, and were mostly about removal and
renaming of duplicates.

2.6 Research Gap

Essentially, the state-of-the-art techniques on duplication detection (refer to Section 2.3)
have successfully located duplicates in program code. Detecting duplication in BDD
specifications, however, poses specific challenges that naive application of these tech-
niques do not address. As described in Section 1.1, BDD scenarios are expressed using
a natural language, containing semi-structured elements and only minimal syntactic
rules. The meaning of these semi-structured elements is defined by an accompanying
body of code (so-called glue code) that must be supplied alongside them. Any attempt
to detect duplicates in BDD specifications must take into account both these elements.

More radically, much duplicate detection in the context of program code is based
around the idea of clone detection. While cloning is almost certainly used in the cre-
ation of BDD specifications, it is not the main issue of concern. BDD scenarios often
exhibit high degrees of textual similarity—almost by definition. Within a feature file,
each scenario should express a different aspect of the functionality, typically targeted
at discontinuities in the functionality being specified: for example, defining the bound-
aries of what is acceptable behaviour, and the response of the system to erroneous
inputs. These scenarios will typically contain very similar Given and When steps, with
only the parameter values (the values matched by the regular expression groups in the
step definitions) differing. Far from being problematic, such reuse of step definitions is

64 CHAPTER 2. LITERATURE REVIEW

important in keeping the BDD specification manageable and comprehensible. In BDD,
we effectively create a language of common domain concepts that are important to the
(eventual) users of the system. A coherent domain language cannot emerge from this
process unless we are disciplined about refining and reusing step definitions wherever
possible throughout the specification (except where the effect on readability negates
the benefits of the reuse).

Therefore, the detection of clones in BDD scenarios is unlikely to be helpful. We
need to be able to detect the kind of duplication that indicates redundancy in the BDD
specification: when two or more scenarios describe the same piece of functionality.
As discussed in Section 1.2, such redundancy has a high cost for teams using BDD,
leading to slower QA feedback cycles, increased effort needed to comprehend and
change the specification, and even in some cases to frozen functionality.

Considering the static analysis duplicate detection approaches (refer to Section 2.3.1),
as observed by Juergens et al. [148] and Su et al. [95], static analysis approaches can
be poor at revealing code with same behaviour since they solely depend on common in-
termediate program representations (for example, ASTs for tree-based techniques) for
duplicate detection, when code with the same behaviour can have different interme-
diate representations. Consequently, this renders static analysis approaches unsuitable
for detecting semantically equivalent BDD scenarios.

Furthermore, both the dynamic analysis approaches (see Section 2.3.2) and the ap-
proaches that combine static and dynamic analysis (see Section 2.3.3) generally rely
on input-output comparison to detect duplication. Nevertheless, as noted by Su et

al. [103, 95], deciding the extent of input-output similarity that is required to suggest
duplication between programs is not easy. In Object Oriented Programming (OOP)
languages, for example, domain-specific types can cause duplicate code to be immune
to detection through input-output similarity analysis. As such, focusing on externally
observable behaviours only (input and output) while ignoring information about in-
ternal execution behaviour of a program can miss important information required to
indicate the presence of duplication.

As for the attempts to detect duplication in BDD specifications, the techniques pro-
posed by Suan [33] and in the work of Irshad [139] can only detect textually similar
duplicates. To the best of our knowledge, the work in this thesis is the first attempt to
detect semantically equivalent BDD scenarios.

2.7. SUMMARY 65

Regarding duplication removal, the following are the limitations we deduce from the
literature. All of the techniques discussed in Section 2.4.1, Section 2.4.2 and Section
2.4.3, focus on removing duplicates in production code or test code expressed in typ-
ical programming languages, not duplicates expressed in a natural language, as is the
case for BDD scenarios. Moreover, the contexts of the studies about the removal of
duplicates in tests expressed in a natural language (refer Section 2.4.4) relate to ours in
a sense that they were also working with tests expressed in natural language. However,
these studies have focused on extracting repeated steps within tests, rather than work-
ing out which complete test is redundant and can be removed. They also do not offer
a set of quality criteria that can be used to guarantee whole test suite quality when
making decisions regarding which duplicate BDD scenarios to remove. Also, all of
the options for refactoring duplicates in BDD feature suites, as proposed in the work
of Suan [33] can only be applied on exact matches of texts in BDD scenarios. They
cannot be applied on the context of removing semantically equivalent but textually
different BDD scenarios from a feature suite.

More specifically, deciding which of the semantically equivalent but textually different
BDD scenarios to remove can be a daunting task. It can require consideration of vari-
ous aspects of a BDD specification, including the need to preserve the overall quality
of a feature suite after the removal of a duplicate scenario. To the best of our knowl-
edge, existing techniques do not offer that support, and ours is the first attempt to use
quality metrics of BDD suites to advise human engineers on what duplicate scenarios
should be removed.

2.7 Summary

Figure 2.2 summarises the literature we surveyed. As it can be seen from the sizes of
the cycles in Figure 2.2, while there is a relatively large amount of work on duplicate
detection and removal in software artefacts other than BDD, a relatively small amount
of work has focused on analysing and improving the quality of BDD specifications.
Further, of all the studies we found on analysing and improving the quality of BDD
specifications, only two studies [33, 139] attempted to detect and remove duplication in
BDD specifications. We next present the summary of answers for the different specific
questions that were of interest during literature survey.

66 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Classification of the literature we surveyed

We have started by providing evidence that duplication exists in software systems, the
reasons why duplication gets introduced into software systems, and the consequences
of the presence of duplication in software systems. We found that duplication can be
introduced deliberately into a software system, to serve specific design, development
and maintenance purposes; but it can also be introduced accidentally due to various
project and team factors. We observed that, irrespective of the motivation, the con-
sequences of duplication can be serious, negatively impacting the maintenance of a
software.

We then presented existing duplicate detection approaches and techniques, and dis-
cussed their limitations on the problem of detecting semantic duplication in BDD
specifications. We noted that specialised techniques, that take into account the typ-
ical structure of a BDD project and how various artifacts are presented in a project,

2.7. SUMMARY 67

are required to effectively detect semantically equivalent BDD scenarios. We also re-
viewed the existing literature on duplicate removal in software systems, to determine
if existing techniques can be used to advise which BDD scenario should be removed,
after semantically equivalent BDD scenarios have been detected. We conclude that the
decision on which duplicate BDD scenarios to remove should take into account vari-
ous aspects of the BDD suite, but existing duplicate removal techniques do not offer
that capability.

Finally, we surveyed the literature on analysis and improvement of BDD specifications,
to determine, among other things, if the problem of detecting and removing semantic
duplication in BDD suites has been studied. We found that existing research on du-
plicate detection in BDD has focused on detecting textual similarity in BDD feature
suites and, because of that, semantically equivalent but textually dissimilar duplicates
cannot be detected by the techniques proposed in the literature. Specifically, we found
no study focusing on the detection and removal of semantically equivalent but (pos-
sibly) texually different BDD scenarios. We conclude that there is lack of techniques
to detect and remove semantically equivalent BDD scenarios, to support the work of
BDD practitioners.

Chapter 3

Challenges and Opportunities for
Maintaining BDD Suites

3.1 Introduction

As the BDD technique has entered its second decade of use, a considerable body of ex-
perience has been built up by practitioners, and lessons have been learnt about both the
strengths and the challenges involved in its practical application. Anecdotal evidence
from the software engineers we have worked with suggest that the maintenance chal-
lenges, in particular, can be severe, and are leading some teams to drop the technique
and to return to technology-facing automated testing to play the role of their BDD
specifications. However, to the best of our knowledge, no empirical studies have been
undertaken by the academic community to capture these lessons and to understand how
research might be able to address some of the problems encountered by users of large
BDD specifications over the long term.

In the present chapter, we want to understand if duplicates are a problem for main-
tainers of BDD specifications, and we want to discover whether that is the case before
we spend much effort on solving it. To that end, we set out to answer the following
research questions (RQs):

RQ1: Is BDD in a considerable active use in industry at present?

RQ2: What are the perceived benefits and challenges involved in using BDD?

RQ3: What are the maintenance challenges reported amongst the issues raised

68

3.2. STUDY DESIGN 69

by users (and former users) of BDD?

RQ4: To what extent is the discovery and management of duplicates in BDD
specifications seen as an unsolved problem by practitioners, and what techniques
are being employed to deal with it?

To find answers to these questions, we surveyed 75 BDD practitioners from 26 coun-
tries across the world. This chapter presents the opinions of BDD practitioners re-
garding duplication and other challenges of maintaining BDD specifications. We also
present research opportunities to address the identified BDD suite maintenance chal-
lenges.

The rest of this chapter is structured as follows: section 3.2 presents the design of the
study, respondents, and the data analysis approach; section 3.3 presents the results of
the study; section 3.4 discusses the significance of the results, providing answers to
the research questions; section 3.5 enunciates the research opportunities, derived from
the results of the survey; section 3.6 discusses the threats to the validity of the survey
results, and the mitigation strategies; and section 3.7 summarises the chapter.

3.2 Study Design

This section presents the survey design, the process we used to recruit respondents,
and the approach we used to analyse survey data.

3.2.1 Survey Design

To attract more responses and yet ensure that aspects of interest are well captured, we
designed a short web survey with 18 questions. The first 14 questions covered the
extent of use of BDD in different types of organisation, the benefits and challenges
involved in using BDD, as well as the presence of duplication in respondents’ BDD
specifications and how it is dealt with. The other 4 questions were about respondents’
demographics respectively: Name, Email, Job Title, and Organisation Name. Refer to
Appendix A.1 for the full list of questions.

Whereas Q1-Q5, Q9, and Q11-Q13 were single choice questions, Q6-Q8 and Q10

70CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

were multiple choice questions. An “other(s)” option on all single choice and mul-
tiple choice questions allowed respondents to report other important information that
might not have been well covered in the choices we gave. All demographics questions
accepted free text responses, and were optional.

To avoid redundant and useless questions on the survey, and with an aim of produc-
ing a short survey that would attract more responses, the survey was designed in such
a way that each non-demographic question would be used to solicit evidence for an-
swering at least one of the four research questions posed in section 3.1. Figure 3.1
provides the mappings between the research questions (RQs) in section 3.1 and the
non-demographic questions (Qs) on the survey in Appendix A.1. Specifically, re-
sponses to Q1-Q4 and Q6 were used as evidence for answering RQ1. (Though Q1
in the survey is a demographic-like question, the organisation types obtained through
responses to Q1 were used alongside responses to other questions to understand the
activeness of BDD use in different types of organisation.)

Moreover, responses to Q5, Q7-Q8 as well as some of the responses to Q14 were used
as evidence for answering RQ2. Responses to Q10-Q13 were used as evidence for
answering RQ4. To answer RQ3, both the free text responses obtained through the
“other” option in Q8 and the free text responses to Q14 were analysed for evidence
about the prominence of maintenance challenges amongst the issues reported by BDD
practitioners. Q9 was used to gather evidence about typical sizes of BDD specifications
that are likely to pose the maintenance challenges that we focus on in RQ3 and RQ4.

The survey was reviewed by a senior academic from our school who has experience
in doing survey research. It was designed and deployed using SelectSurvey.NET1, an
instance of which is available for use on our university servers. Our respondents took
an average of 10 minutes to complete the survey, and we received responses over the
period of more than 2 and a half months from July 2017.

3.2.2 Recruitment of Respondents

Developers of BDD projects and other members of industry agile teams who had ever
used BDD, or were using BDD at the time of our survey, were our targets. The survey
was distributed through a convenience sample of online agile discussion groups and

1http://selectsurvey.net/

3.2. STUDY DESIGN 71

Figure 3.1: Mapping between the research questions in section 3.1 and the questions
which are not about respondents’ demographics on the survey in Appendix A.1

personal emails. Though it reduces generalizability of findings, convenience sampling
is appropriate when random sampling is practically impossible [149, 150]. The survey
was accessed and completed through a web link. We also encouraged respondents to
pass the survey on to others, and so some of our respondents might have been recruited
through snowballing. A similar method of recruiting survey respondents was used by
Kochhar et al. [151], and Witschey et al. [150].

We began by posting the survey on on-line communities where BDD topics are dis-
cussed. The following Google groups were targeted: Behaviour Driven Development
Google group, Cucumber Google group, and BDD Security Google group. After learn-
ing about the survey through one of these groups, the Editor in Chief of BDD Addict
[152], a monthly newsletter about BDD, included the survey in the July 2017 issue,
in order to reach a wider BDD community. The survey was also shared with the fol-
lowing twitter communities: Agile Alliance, Agile Connection, Agile For All, Scrum
Alliance, Master Scrum, RSpec—BDD for Ruby, my twitter account and the twitter
account for one of my supervisors.

We further identified email addresses of contributors to BDD projects on GitHub.com,
and sent them personalized requests to complete our survey. Relevant projects were

72CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

identified using the keywords “Behaviour Driven Development”, “Behavior Driven
Development”, and “BDD”; we extracted the public email addresses of contributors
from the resulting projects, up to and including the 5th page (10 results per page). (We
selected this limit after manual examination of the usefulness of email addresses on
later pages for a sample of projects. Pages 6 onward consisted of either trivial, demon-
stration, or empty project repositories, and thus owners of and contributors to these
projects were considered to be less appropriate for this particular survey, and therefore
their emails were deemed less useful.) We also searched for projects with keywords
based on the names of the tools mentioned in the survey: namely, Cucumber, FitNesse,
JBehave, Concordion, Spock, easyb, and Specflow. In total, 716 email addresses were
identified and contacted about the survey.

3.2.3 Survey Respondents and Data Analysis Approach

This section presents the demographics of survey respondents, the different ways we
use to present evidence required to answer RQ1, RQ2 and RQ4, and the approach we
use to analyse free text responses required to answer RQ3.

Analysis of Data about Respondents

Of the 566 people who viewed the survey, 82 began to complete it out of whom 75
submitted responses to the main questions (questions not focusing on respondents’ de-
mographics, i.e., Q2-Q14 in Appendix A.1). We hereafter refer to the 75 respondents
as R1 to R75. Further, 11 out of the 13 (84.6%) main questions were completed by all
the 75 respondents. We used IP Address Geographical Location Finder2 to approxi-
mate the geographical locations of respondents, and Table 3.1 shows the distribution
of respondents by continent. A similar approach to identifying the locations of survey
respondents was used by Garousi and Zhi whereby the analysis of IP addresses was
used to determine the countries from which survey responses came from [8].

The types of organizations the respondents worked for were distributed as shown in
Table 3.2. 44 participants gave the role they held in their organization, and most were in
senior positions. However, the remaining 31 preferred not to state their roles, probably
because we explicitly stated that identifying information was optional.

2http://www.ipfingerprints.com/geolocation.php

3.2. STUDY DESIGN 73

Continent No. %

Europe 49 65.3

North America 12 16.0

Asia 4 5.3

South America 5 6.7

Australia 3 4.0

Africa 1 1.3

Zealandia 1 1.3

Total 75 100.0

Table 3.1: Survey on BDD maintenance challenges: Distribution of respondents by
continent

Organisation Type No. %

Public 26 35

Private 47 63

Sole Trader 1 1

Did not say 1 1

Total 75 100

Table 3.2: Survey on BDD maintenance challenges: Distribution of respondents’ or-
ganisations

Table 3.3 shows the distribution of job roles for the respondents.

Analysis of Responses to Non-demographic Survey Questions

We received a total of 82 responses. We removed 7 responses in which respondents
had completed only demographics data, leaving 75 valid responses. We used charts,
tables, and summary of “other” comments on specific survey questions to present the
responses.

To be able to identify the maintenance challenges amongst the issues reported by BDD
practitioners, as required in RQ3, we used the thematic analysis guidelines by Braun
and Clarke [153] to analyse free text data obtained through the “other” option in Q8

74CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

Role No. %

Software Engineers/Architects 20 26.7
Quality Assurance Engineers/Business Analysts 4 5.3
Team Lead/DevOps Tech Lead 10 13.3
Consultant 3 4.0
Chief Executive Officer (CEO) 2 2.7
Chief Technology Officer (CTO) 4 5.3
Researcher 1 1.3
Did not say 31 41.3

Total 75 100.0

Table 3.3: Survey on BDD maintenance challenges: Distribution of job roles of re-
spondents

on the survey and all free text responses to Q14 on the survey. The thematic analysis
approach presented by Braun and Clarke involves six phases [153, 154]:

1. Familiarisation with the data: This involves actively passing through the data,
trying to make sense of them and to get an initial impression about the data.

2. Producing initial codes: At this stage, initial codes are produced, after an initial
pass through in phase 1. “Coding reduces lots of data into small chunks of

meaning” (Maguire and Delahunt [154], p.5).

3. Looking for themes: During this phase, related codes are sorted into possible
themes. “a theme is a pattern that captures something significant or interesting

about the data and/or research question” (Maguire and Delahunt [154], p.6).
Extracts of data from which the codes were produced are also placed alongside
the themes.

4. Review of themes: This phase involves the review of potential themes identified
in phase 3, to determine, among other things, how well the identified themes
are properly supported by the data extracts. It can involve merging of themes,
creating new themes, or relocating codes and data extracts to other themes.

5. Definition and naming of themes: This involves further definition and refine-
ment of themes identified through the previous phases. Both the core of each
theme as well as facets of the dataset covered by each theme are identified. It
also includes the analysis of the narrative of each theme, to determine how well
each theme fits into the broader narrative to be told from the dataset, and how

3.2. STUDY DESIGN 75

well the broader narrative from the dataset fits into the research question.

6. Report writing: This involves reporting the outcomes of a thematic analysis,
using a coherent and consistent story, and with the support of data extracts that
help to strengthen the narrative.

There were 17 free text responses obtained through the “other” option in Q8, and 17
free text responses obtained through Q14. It is these 34 free text responses that were
subjected to a thematic analysis. In particular, we conducted the theoretical thematic

analysis [154] in which data analysis is guided by the research question. In our case,
the research question was about the challenges involved in using BDD, from a practi-
tioner’s perspective.

Data coding started after we had gone through the data to become familiar with it and
to draw some initial impressions about it. We coded everything in the text that related
to BDD challenges. We used open coding—we had no predetermined codes. Table A.1
shows the codes we assigned to the various challenges reported by BDD practitioners
who responded to our survey. After coding, we grouped related codes together to
form the list of initial themes (see Table A.2). Thereafter, the initial themes and their
associated codes were iteratively refined to produce the final list of themes, which we
present as part of results (see Section 3.3.2 and Section 3.3.3). We considered a theme
to be important if it had more than one code under it.

3.2.4 Ethical Considerations

At the time we undertook the survey, our University did not require ethical approval
for surveys requesting only professional opinions from participants. We took a con-
servative approach, that went beyond these requirements, and designed the survey to
ensure anonymity of participants and proper use of data collected through the survey.
In particular, we kept any identifying information optional, and clearly stated this at
the beginning of the survey, and in all survey completion invitations. We also stated
clearly, on the survey and in the survey completion requests about the purpose of our
research and how we intended to use survey data. In addition, participation in the
survey was completely optional.

76CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

3.3 Results

This section presents the extent of BDD use amongst the BDD practitioners who re-
sponded to our survey, the perceived importance and benefits of BDD amongst re-
spondents, and the challenges faced by respondents in using the BDD technique and
maintaining BDD specifications. Here, we present the results for the different survey
questions (Qs) as we obtained them, with the significance of results being discussed in
Section 3.4.

3.3.1 RQ1. Extent of Active Use of BDD

Extent of BDD Use in Various Types of Organizations (Q1, Q2, & Q3)

Figure 3.2 shows the extent of BDD use in the organisations that respondents worked
for. By comparing the extent of BDD use in different types of organisation, we found
that, among the organisations the survey respondents worked for, BDD is used more
in private organisations than in other types of organisation (see Figure 3.3). Figure 3.4
summarises responses as to whether BDD is a mandatory or optional tool for organi-
sations.

Tools Used by Industry Teams to Support BDD and ATDD (Q6)

Respondents use the tools in Figure 3.5.

Plans to Use BDD in the Future (Q4)

Almost half of the respondents said that their organisations will use BDD as an optional
tool on some projects in the future, while more than a quarter of the respondents said
that it will be used as a key tool on all projects. Figure 3.6 summarizes the responses
on planned future BDD use.

3.3. RESULTS 77

Figure 3.2: Extent of BDD use

Figure 3.3: Extent of BDD use by type of organisation

78CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

Figure 3.4: Extent to which use of BDD is mandated by organisations

Figure 3.5: BDD Tools used by respondents

3.3. RESULTS 79

Figure 3.6: Plans by organisations to use BDD in the future

3.3.2 RQ2. Perceived Benefits and Challenges Involved in Using
BDD

Perceived Importance and Benefits of BDD (Q5 & Q7)

Fig. 3.7 presents the perceived importance of BDD use by the respondents. The views
given under “other” were:

• “Personally I find it very important, my clients though have different opinions.

Usually it requires a certain collaboration within the organization which is hard

to establish. It is not the tool that is hard to use, but more the people to get into

this work flow.”

• “BDD enables teams to write standard tests that are more expressive.”

Respondents’ opinions on the benefits of BDD are presented in Table 3.4. As the re-
sults show, respondents value the communication aspects of BDD, but also the benefits
to developers in gaining early warning signals of problems.

Under “other”, respondents listed the following additional benefits:

80CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

Figure 3.7: Perceived importance of BDD use

• BDD offers an improved way of documenting the software and the associated
code:

– “Living documentation that evolves with the system over time”

– “Documentation is a working code”

• Simplifies and enriches software testing activities:

– “Helps QA team to write tests without code implementation details”

– “Make possible fullstack tests, differently from unit tests.”

– “Reusable, finite set of steps used by test developers”

• Improves software designs by facilitating domain knowledge capture:

– “primarily a design tool→ it enables us to gain clarity about the domains

at hand, especially at the seams”

3.3. RESULTS 81

Challenges Faced by BDD Practitioners (Q8 & Q14)

Because of the strong emphasis in BDD on collaboration among all project stakehold-
ers, there is a strong interaction between social and technical challenges involved in
using the BDD technique. Because of this, we next present the results relating to both
kinds of challenge together. However, depending on the context, readers can attempt
to draw the line between social and technical BDD challenges.

The challenges faced by BDD practitioners, according to the respondents, are also
given in Table 3.4. Respondents thought that the most challenging part of BDD is that
it changes the usual approach to team software development. Other challenges reported
under the“other” option in Q8 as well as under Q14 were the following (number of
codes for each challenge are presented in brackets):

• The collaboration among stakeholders, as required in proper BDD workflows,

Benefits of BDD Rate (%)

Software specifications are expressed in domain-specific terms, and thus can
be easily understood by end users

67

Improves communication between various project stakeholders 61

Specifications can be executed to confirm correctness or reveal problematic
software behaviour(s)

52

Code intention can be easily understood by maintenance developers 50

Could produce better APIs since it emphasizes writing testable code 28

Attention is paid to validation and proper handling of data 24

Other 7

Challenges of BDD Rate (%)

Its use changes the team’s traditional approach to software development, and
that can be challenging

51

Its benefits are hard to quantify 35

It involves a steep learning curve 28

It can lower team productivity 20

Other 21

Table 3.4: Benefits and challenges of using BDD

82CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

can be difficult to establish, or sometimes ignored, leading to future problems or
failures (9):

– “Main issue when applying BDD, it to find time to do the three amigos

workshop, it is not a tool issue but more a people one” (R67, Crafter &
CTO)

– “Needing to involve Business and final users” (R2)

– “It’s a simple concept but can be hard to get right. Many people make the

assumption it’s about test automation and try to use like a scripting tool

and the project ends in failure” (R12, CEO)

– “Dsnger (Danger) of confusing the mechanics (automation, written speci-

fications) with the intention (knowledge sharing, structured conversations,

discovery of edge cases), focusing too much on the former.” (R24, Agile
Principle Consultant)

• Writing or reading tests tends to be counter-intuitive for non-developer stake-
holders (6):

– “Make other non-developers read tests. So far I have used BDD for couple

of years and even though idea behind it [is] good, people who are not

involved in testing are also not interested in test cases no matter how easy-

to-read they are.” (R20)

– “it does not succeed at being legible to colleagues outside of software en-

gineering departments” (R19, Software Engineer)

– “BDD practices “by the book” often force domain experts to waste their

time and insights trying to think like developers/testers, instead of express-

ing their needs. Real-world examples often have overwhelming details”

(R72, Principal Software Engineer)

• BDD specifications can be hard to comprehend, execute and maintain (10):

– “...Textual specs are too expensive to maintain long-term” (R49, Senior
software engineer)

– “BDD is often associated with slow suites. The difficulty of managing du-

plication is proportional to that slowness. Therefore, as BDD scales, in

my opinion it is crucial to find ways to run slow scenarios fast, either by

3.3. RESULTS 83

reducing their scope, or by running them against multiple configurations

of the system covered by the scenarios.” (R28, Developer)

– “Some developers don’t like the duplication that an (can) be created with

having BDD separate to unit tests. BDD can also get out of hand and

become far too technical and indecipherable by users” (R73, Senior Test
Engineer)

– “...tests were very brittle and manual QA types had limited ability to inves-

tigate.” (R18, Senior Software Engineer)

– “BDD add unnecessary layer of maintaining specification and make them

still readable with clean code.” (R20)

– “All the usual challenges in getting automated testing running and main-

tained” (R73, Senior Test Engineer)

• Scarcity of skills, training and coaching services about the BDD workflow (6):

– “requires design skills often absent or not valued” (R65)

– “Its hard to find someone who really understand what should be tested

by BDD therefore a bunch of developer has negative experience about it.

Probably there is no a comprehensive material on the internet that can

explain every aspect of BDD.” (R34, CTO)

– “As with other kinds of testing, the best way to learn is from somebody who

has experience. Thus just by downloading a framework, reading a bit and

trying, one can produce tests which value is disputable.” (R23, CEO)

– “there are very few sources about the structuring of *information* and the

conveyance of semantic intent...” (R65)

• Setup costs, availability and difficulty in using tools (8):

– “Productivity is initially (first 6 months) lowered. Beyond that productivity

is increased. Every project has a greater setup cost, say 1-3 days to put

BDD tooling in place. Hence it is not worth while for trivial projects...”

(R60, CTO)

– “...Writing the DSL is overhead on engineering team...” (R18, Senior Soft-
ware Engineer)

84CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

– “Poor tooling” (R45)

– “...Using bdd tools that enable writing tests in human language end up

being an overhead” (R75)

3.3.3 RQ3. Challenges of Maintaining BDD Specifications

Based on the comprehensive list of challenges involved in using BDD, as presented in
Section 3.3.2, this section presents the summary of challenges faced by respondents
concerning the maintenance of BDD specifications. Thus, the maintenance challenges
presented here are a subset of a comprehensive list of challenges faced by respondents
in using BDD.

Size of BDD Suites (Q9)

As noted in Q9 in the survey, the typical sizes of BDD specifications that respon-
dents work with are important in providing the context for the reported maintenance
challenges. Clearly, the maintenance challenges reported are likely to be of less signif-
icance if typical suites contain numbers of scenarios (i.e., examples) that can be easily
managed by hand. Fig. 3.8 shows what the respondents reported as the typical size of
the BDD suites they work with. The majority are of the order of 1000 scenarios or
less. While a significant minority are considerably large to make manual individual
inspection of all scenarios a costly task, it is our view that if manual techniques are
used, even a thousand scenarios (or a fraction of them) can be prohibitively expensive
to comprehend, maintain and extend.

Maintenance Challenges

We now present a summary of BDD maintenance challenges that were reported by
respondents.

As can be noted from the responses describing the general challenges of BDD, respon-
dents mentioned that BDD feature suites suffer from the same kinds of maintenance
challenge associated with any other forms of automated testing. Specifically, the main-
tenance challenges as presented earlier from the survey can be summarised as:

3.3. RESULTS 85

Figure 3.8: Number of scenarios in industry BDD projects (Q9)

• BDD feature suites can be hard to comprehend.

• It can be hard to locate sources of faults, especially in large BDD suites.

• It can be difficult to change BDD feature suites for the purpose of fault correc-
tion, accommodating new requirements, or adapting them to new environment.

• It can be hard to make slow BDD feature suites run faster.

• The need to maintain BDD feature suites in addition to unit tests.

• Coping with the possible complexity of BDD tools.

• Duplication detection in BDD specifications.

• Duplication management in BDD specifications.

3.3.4 RQ4. Duplication in BDD Suites

We now present the maintenance challenges caused by the presence of duplication in
BDD feature suites, the extent to which duplication is present in respondents’ BDD

86CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

feature suites, and the current state of practice in the detection and management of
duplication in BDD feature suites, as reported by the survey respondents.

Problems of Duplication (Q10)

61% of the respondents held the view that the presence of duplication in BDD specifi-
cations can cause the specifications to become difficult to extend and change (leading
potentially to frozen functionality). Moreover, nearly half of the respondents (49%)
said that the presence of duplication in BDD specifications can cause execution of
BDD suites to take longer to complete than necessary, and 43% thought that duplica-
tion can make it difficult to comprehend BDD specifications. Under “other” (7%), the
following problems of duplication in BDD suites were reported:

• The process of duplication detection and management can change the desired
software behaviour:

– “Over refactoring features and scenarios to avoid duplication causes the

requirements and their understanding to change from what the Product

Owner wants.”

• Difficulty in comprehension and execution of specifications:

– “Contradicting specifications, if the duplication is not a result of the same

team/individual working on it.”

– “Duplication in specs is usually a sign of incompletely or badly ‘factored’

behaviours, which can lead to overly complicated specs and difficult to set

up system state.”

• Necessitates changes in several places in the suite during maintenance and evo-
lution:

– “Changes required to be done in more than one place. I miss some ‘in-

clude’ keyword.”

• It is hard to use existing duplicate detection and management tools to detect and
manage duplicates in specifications expressed in a natural language:

– “if the statements are in English prose basic refactoring tools / copy paste

detection / renaming are difficult to catch and maintain.”

3.3. RESULTS 87

• BDD tests are end-to-end tests that are usually strongly connected to their unit
tests, and that makes the process of detecting duplicate BDD tests difficult:

– “It’s hard to detect duplication between BDD specs and unit-tests.”

• Difficulty in modelling how the scenarios are executed, and the scenarios can be
very slow and brittle:

– “...criteria can hold at one level and cascade down - difficult to model

how the scenarios are executed can be very slow and brittle (e.g. web

tests) - hexagonal architecture please”

Presence and extent of duplication (Q11 & Q12)

Figure 3.9 shows the proportions of respondents’ BDD projects with duplication, Fig-
ure 3.10 shows the extent to which duplication is present in the respondents’ BDD
projects, and Figure 3.11 cross-compares the presence and extent of duplication in the
respondents’ BDD specifications.

Figure 3.9: Presence of duplication in the respondents’ BDD specifications

88CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

Figure 3.10: Extent of duplication in the respondents’ BDD specifications

Figure 3.11: Presence and extent of duplication in the respondents’ BDD specifications

3.3. RESULTS 89

Detection and Management of Duplication in BDD Specifications (Q13)

We now present the current state of practice in detecting and managing duplication in
BDD specifications.

Figure 3.12 summarizes the different methods that respondents use to detect and man-
age duplication in their BDD specifications. These results suggest that duplication is
manageable but costly for respondents. Most respondents who were concerned with
duplication (40% of respondents) reported to have been detecting and managing it
manually. Also, there was a significant proportion (17%) of respondents who had de-
cided to live with duplication, given the complexity of its detection and management
process. So, while about a quarter of respondents (26%) did not regard duplication as
a problem, more than a half (57%) of the respondents were concerned with duplication
detection and management. Moreover, Figure 3.13 relates the extent of duplication,
suite size, and method of duplication detection reported by respondents.

Figure 3.12: Duplicate detection and management methods

Under “other”, some respondents had the following additional thoughts on how they
approach duplication detection and management in their (respondents) BDD specifica-
tions:

90CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

Figure 3.13: Extent of duplication, size of BDD specs, and duplication detection
method

• “We are looking at ways to automate at least part of the process of finding du-

plicates”

• “Treat the test code much like the production code. Refactor frequently to control

duplication and make test intentions clear”

• “Pay attention to SRP during or after collaborative specification.”

• “We organise the specifications specifically to prevent this (duplication). It

would be one of the worst things to happen.”

• “Using jbehave with ‘givenScenario’, we are able to reduce duplication by

reusing steps.”

Since some of our respondents might have been previous BDD practitioners who no
longer used BDD on any of their projects at the time of completing the survey, we also
wanted to know the distribution of duplicate detection methods among active and non-
active BDD practitioners who responded to our survey. An active practitioner in this
regard is the one who uses BDD in either all projects, or some projects, or a few pilot

3.3. RESULTS 91

projects. Understanding the distribution of duplicate detection and management meth-
ods among active BDD practitioners would give insight into the amount of potential
beneficiaries of future automated approaches for detecting and managing duplicates in
BDD specifications. Figure 3.14 shows the distribution of duplication detection meth-
ods among active and non-active BDD practitioners. Almost 60% of the respondents
were active BDD practitioners who either: perform manual inspection to detect dupli-
cation in their BDD specifications and thereafter decide on how to manage it; or have
decided to live with it, given the complexity of the detection and management pro-
cess; or are currently looking for an automated solution to detect and manage it. Thus,
in Figure 3.14, the group “manual, decided to live with it, or looking for solution”
represents respondents who care about duplication detection and management in their
(respondents) BDD specifications. On the other hand, the group “don’t regard it as
problem” represents respondents who do not care about the detection and management
of duplicates in their (respondents) BDD specifications.

Figure 3.14: Duplication detection methods among active and non-active BDD practi-
tioners

92CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

3.4 Discussion

This section discusses the significance of the results, providing answers to the research
questions in section 3.1. The results’ validity threats and mitigation strategies are
discussed later in section 3.6.

RQ1: Is BDD in a considerable active use in industry at present? To explain the
activeness of BDD use in industry, we use the theory of vertical (or explicit) and hori-

zontal (or implicit) use by Iivari et al. [155, 156]. Vertical use expresses the degree of
rigour with which a particular method is followed, eg., strict adherence to the method’s
documentation or partial adherence. Horizontal use, on the other hand, refers to the use
of a method across multiple teams and projects in an organization after initial adoption,
learning, and internalization.

In our study, the following is how we relate survey responses to the theory of verti-
cal/horizontal use: with respect to horizontal use, for a range of organisation types,
we pay attention to: whether BDD is used on all projects, some projects, a few pilot
projects, or not used at all; whether BDD is used as a mandatory or optional tool; and
plans by organisations to use BDD in the future. Also, we use vertical use to categorise
issues reported by practitioners that are related to conformity or non-conformity with
the BDD workflow.

Inline with the State of Agile Report [157, 158], we learn from the survey results that
BDD is in active use in the industry. It can be seen from Figure 3.3 and Figure 3.4
that there is a substantial level of horizontal use, with some organizations using it on
all projects, while others use it on some projects. Additionally, while there are orga-
nizations (20% of respondents) that have made BDD a mandatory tool, a significant
proportion (61% of respondents) use it as an optional tool. This is to be expected as
most organisations would use different software development techniques, for various
reasons, including the dictates of a particular project. We can also expect that some
organizations might use selected agile techniques, but not be committed users of every
agile practice.

Answer to RQ1: BDD is in active use in the industry, and it is used more in private

organisations than in public organisations.

Table 3.5 summarises the results of the specific survey questions related to the extent
of horizontal use. For Q2, Active Horizontal Use combines use of BDD on all projects,

3.4. DISCUSSION 93

some projects, and a few pilot projects; Inactive Horizontal Use represents responses
that stated that BDD is not currently used. For Q3, Active Horizontal Use represents
responses in which BDD is used as either a mandatory or an optional tool; Inactive
Horizontal Use represents responses indicating that BDD is not in use by the respon-
dents’ organisations. For Q4, Active Horizontal Use combines plans to use BDD as a
key tool on all projects, plans to use BDD as an optional tool on some projects, and
plans to continue using BDD on a few pilot projects; Inactive Horizontal Use repre-
sents plans not to use BDD.

Survey Question Active
Hori-
zontal
Use

Inactive
Hori-
zontal
Use

Q2: How would you describe the frequency of BDD use
in your organisation currently?

82.6% 17.4%

Q3: Which of the following best summarises the use of
BDD in your organisation currently?

81.0% 18.0%

Q4: How would you describe plans to use BDD in your
organisation in the future?

85.0% 15.0%

Table 3.5: Activeness of BDD use in industry

Moreover, we note from the survey results that there are vertical use concerns whereby
some practitioners do not observe BDD best practices, notably by avoiding or down-
playing the collaboration aspects, resulting in future costs (refer to the results of survey
questions Q8 and Q14 in Section 3.3.2). However, in the future, it would be interest-
ing to investigate the extent to which teams that claim to use BDD strictly adhere to
the dictates of the BDD workflow, such as ensuring that there are close collaborations
between customers, developers and testers when creating BDD scenarios for specific
projects. This would give more insights into the activeness and or inactiveness of ver-
tical use of BDD in industry. That said, we posit that the observed extent of use, and
the plans to continue using BDD (Figure 3.6) are sufficient to attract the attention of
the research community in uncovering better ways to support BDD practitioners.

RQ2: What are the perceived benefits and challenges involved in using BDD?
We use the following factors from the Agile Usage Model (AUM) [159, 160, 161]
to explain the perceived importance, overall benefits and challenges of BDD. In the
AUM, the following terms are used:

94CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

• Relative advantage: “the degree to which the innovation is perceived to be

better than its precursor” ([161], p.2). This can be reflected in the ability of an
agile method to offer benefits like improved productivity and quality, reduced
cost and time, producing maintainable and evolvable code, improved morale,
collaboration and customer satisfaction, etc [162].

• Compatibility: “the degree to which agile practices are perceived as being

consistent with the existing practices, values, and past experiences” ([159], p.4).

• Agile Mindset: A mindset that perceives challenges as learning opportunities,
building on optimism to grow over time, with effort in place [161].

• Agile Coach: An individual with both technical and domain knowledge who
can point an agile team in right directions without imposing matters [161].

Generally, BDD has significant rating, with more that 50% of the respondents affirming
its importance (refer to Figure 3.7, combining responses for Important and Very Im-
portant). The use of domain specific terms, improving communication among stake-
holders, the executable nature of BDD specifications, and facilitating comprehension
of code intentions are the benefits of BDD that were highly rated by respondents (Ta-
ble 3.4). These all can be linked to the relative advantage factor in the AUM that BDD
has over its precursor agile practice called TDD. Actually, it was the TDD’s limitations
in enabling teams to focus on implementing correct software behaviours that led to the
birth of BDD [29]. However, comparative studies would be required to shed light on
whether BDD’s potential has been realised in practice.

The downside of BDD agreed to by most respondents has to do with changing the
way teams used to approach software development (Table 3.4). This is in line with
the compatibility factor in the AUM: new innovations are likely to face resistance by
some adopters, especially when the adopters are slow at embracing changes. We are
of the view that an agile mindset is important in addressing this challenge. Because
approaching software development in a BDD way might be new to teams, willingness
to learn and adopt new techniques is vital in the adoption of BDD. Furthermore, impre-
cise understanding of the BDD workflow, non-adherence to it, the scarcity of coaching
services and training materials also hinder the adoption and continued use of BDD.
It is our opinion that an agile coach with good understanding of the BDD workflow
could help teams to navigate these challenges.

3.4. DISCUSSION 95

Answer to RQ2: The use of domain specific terms, improving communication among

stakeholders, the executable nature of BDD specifications, and facilitating compre-

hension of code intentions are the main benefits of BDD; changing a team’s way of

approaching software development is the main challenge of BDD.

RQ3: What are the maintenance challenges reported amongst the issues raised
by users (and former users) of BDD? From the survey responses, we learned that
BDD feature suites suffer from the same maintenance challenges that test suites in
automated testing face. Refer to Section 3.3.3 or Table 3.6 for an extended list of what
survey respondents reported as challenges of maintaining BDD feature suites.To be of
good quality, like the code under test, test suites must be maintainable [163, 164, 165,
114, 166]. As such, we hold the view that it is important to investigate, in the context
of BDD, test maintainability aspects such as ease of change, bug detectability (for the
bugs in both test and production code), test comprehensibility [164, 163], and other
maintainability aspects, to support the work of BDD practitioners.

Answer to RQ3: BDD feature suites suffer from the same maintenance challenges

that test suites in automated testing face.

RQ4: To what extent is the discovery and management of duplicates in BDD spec-
ifications seen as an unsolved problem by practitioners, and what techniques are
being employed to deal with it? Apart from agreeing with the view that the presence
of duplication in BDD feature suites could cause test execution, maintenance and evo-
lution problems (refer to Section 3.3.4 on the responses to survey question Q10), most
respondents think that, though present, duplication in their BDD specifications remains
a manageable problem (see Figure 3.10 and Figure 3.11). However, duplication is still
among the maintenance challenges of concern to some BDD practitioners. In fact, it
has caused some practitioners to stop using the BDD technique: “We decided to not

use BDD any more because it was hard to maintain it... In the beginning we were

checking for duplication, but at one point it has become very hard to manage them.

Even though our tests were very much readable, our code underneath became less and

less readable.” (R20)

Referring to Figure 3.12, for the most part, duplication detection and management is
done manually (40% of respondents). Nevertheless, there is a significant proportion
(17%) of respondents who have given up on the duplication detection and management
process, because of its complexity. Combining these, more than a half (57%) of the re-
spondents are concerned with duplication detection and management, except for those

96CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

in the “other” category, who either explicitly expressed their need for an automated so-
lution or mentioned their specific current manual approach to duplication detection and
management. We thus specifically identified O6 and O7 in Table 3.6 as opportunities
for the research community to investigate innovative ways to help BDD practitioners
who either use the manual process, or have given up, or are likely to experience, in the
future, serious duplication detection and management concerns.

Answer to RQ4: Duplication in BDD suites is reportedly manageable. It is, however,

still among the maintenance challenges of concern to some BDD practitioners and

has, in some instances, caused practitioners to stop using the BDD technique. For the

most part, detection and management of duplication in BDD suites is done manually.

3.5 Research Opportunities

We now present the research opportunities, based on the challenges reported by survey
respondents (refer to Section 3.3.2 and Section 3.3.3).

To understand how research might be able to address some of the problems encoun-
tered by users of large BDD specifications over the long term, we searched the existing
literature for research areas in which problems similar to BDD challenges reported
in our survey are being/have been investigated. Since the survey results revealed that
BDD specifications suffer the same maintenance challenges found in automated test
suites more generally, our literature search focused on research aiming to make auto-
mated test suites maintainable, comprehensive and extensible. Each of the identified
challenges, summarised in Section 3.3.3, was mapped to the existing literature, re-
sulting in 10 research opportunities which we propose in this area. In Table 3.6, we
present the available research opportunities and link them to the relevant existing liter-
ature that covers similar problems in other areas, apart from BDD. The sample papers
we list for each challenge (see column “Link to Related Literature” in Table 3.6) can
serve as starting points for researchers wishing to investigate the problems addressed
by the papers, in the context of BDD.

Specifically, the research under O1 to O7 would focus on making BDD specifications
easy to understand, maintain and extend; and the research under O8 to O10 would re-
dress the process that is likely to result into BDD specifications with significant main-
tenance problems. Inter alia, we posit that a body of scientific evidence is required to
provide answers to the following questions:

3.6. THREATS TO VALIDITY 97

1. How could the BDD workflow be enhanced to produce more maintainable spec-
ifications? Specifically, it might be worthwhile investigating whether there are
specific aspects of the BDD workflow that are prone to producing hard-to-maintain
specifications, and how that could be redressed. For example, it might be inter-
esting to compare the comprehensibility, maintainability, and extensibility of
BDD feature suites developed collaboratively between all project stakeholders
(i.e., following the proper BDD workflow), the comprehensibility, maintainabil-
ity, and extensibility of BDD feature suites created by developers in a silo, and
the comprehensibility, maintainability, and extensibility of BDD feature suites
created without developers. If, for example, overwhelming scientific evidence
suggest that BDD feature suites created by developers in a silo are easy to com-
prehend, extend, and maintain compared to BDD feature suites developed col-
laboratively between all projects stakeholders, then the BDD workflow might
have to be adapted accordingly. Investigating appropriate ways to adapt the BDD
workflow to accommodate new scientific evidence might be another possible re-
search direction.

2. Better ways to adapt existing unit test maintenance techniques to the context
of BDD tests. Or how could better techniques and tools specifically for the
maintenance of BDD tests be developed?

3. Better ways to apply existing regression test suite reduction, selection and pri-
oritization techniques (e.g. [118]) to address problems of slow suites due to the
presence of duplication, and other concerns, in BDD specifications.

4. Characterization of duplication in the context of BDD specifications, and devel-
opment of appropriate duplication detection techniques and tools.

5. How could the existing techniques and tools for detecting and managing dupli-
cation in program code (e.g. [35, 74]) be applied to the problem of duplication
detection and management in BDD specifications?

3.6 Threats to Validity

The threats to the validity of our results are as follows:

1. We mainly depended on practitioners with online presence, either through GitHub

98CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

ID Challenge Opportunity Link to Related
Literature

O1 Hard to comprehend BDD feature suites Investigate BDD test smells, technical
debt, and the adoption of test suite com-
prehension techniques to BDD specifica-
tions

[167, 114, 129, 163,
168, 169, 170, 171,
164, 172]

O2 Difficulty of locating faults in large BDD suites Investigate test fault localization tech-
niques in the context of BDD specifica-
tions

[173, 174, 175]

O3 Hard to change BDD suites Investigate automated test repair for BDD
specifications

[176, 177, 178, 179,
180]

O4 Slow BDD suites Investigate test minimization, selection
and prioritization in the context of BDD

[118, 181, 182, 183]

O5 The need to maintain BDD tests in addition to unit tests Investigate integrated functional and unit
test maintenance for BDD tests

[184, 180]

O6 Duplication detection in BDD specifications Investigate duplication detection in the
context of BDD

[35, 1]

O7 Duplication management in BDD specifications Investigate duplication management in
the context of BDD

[74]

O8 Complexity of BDD tools Investigate BDD tools selection guides,
and how to reduce complexity in BDD
tools

[185, 186]

O9 Non-adherence to the BDD workflow Investigate the incorporation of mainte-
nance concerns at the core of BDD work-
flow and tools

[187, 170, 163]

O10 Scarcity of coaching and material guidelines on BDD Investigate the impact of coaching and
guidelines on producing maintainable
specifications

[188, 189, 161, 163]

Table 3.6: Challenges and research opportunities for maintenance and evolution of
BDD specifications

or other online forums where BDD and other agile topics are discussed. Thus,
we might have missed some in-house practitioners that are not easily reachable
through any of those means. To mitigate the effects of this, we requested those
who completed or saw the survey to refer it to others. Also, we sent survey com-
pletion requests to some practitioners who were known in person to the authors,
and requested them to share the survey to others.

2. Some institutional rules and regulations might have determined whether or not
participants responded in full. To mitigate the effects of this, we kept any identi-
fying information optional, and clearly stated this at the beginning of the survey,
and in all survey completion invitations.

3. Most of the respondents might have been using a particular BDD tool, so that our
results could be valid for users of a specific BDD tool only. To cover practition-
ers using a variety of BDD tools, we followed the objective criteria mentioned
in Section 3.2.2 to identify email addresses to which survey completion requests

3.7. SUMMARY 99

were sent. We also posted the survey in general BDD and agile forums, in antic-
ipation that respondents from those forums might be using different tools. Addi-
tionally, the survey included seven tools from which respondents could choose
several tools, as well as an “other(s)” option.

4. The use of convenience sampling (in our case, depending on self-selecting re-
spondents within the groups we contacted) might limit the ability to generalise
from the survey findings. To mitigate the effects of this, we survey 75 respon-
dents from 26 countries across the world, and some of the respondents were
contributors to sizeable BDD projects in GitHub (see Section 3.2.2). Still, our
results may not generalise to all BDD practitioners across the world. For ex-
ample, our results do not represent BDD practitioners who are not proficient in
English.

5. Our focus on duplication in the survey could have distracted respondents from
mentioning other more damaging/significant maintenance challenges. But we
needed specific information on duplication–a more generic survey might have
meant respondents did not comment on duplication at all. To mitigate the effects
of this, we specifically provided Q14 in the survey (see Appendix A.1) in which
respondents were allowed to report other issues about BDD, be they related to
maintenance or not. Nevertheless, one would still need to be careful when at-
tempting to generalise from the findings of our survey.

3.7 Summary

Despite the benefits of BDD–such as producing customer-readable and executable
specifications–management of BDD specifications over the long term can be challeng-
ing, particularly when they grow beyond a handful of features and when multiple team
members are involved with writing and updating them over time. Redundancy can
creep into the specification, leading to bloated BDD specifications that are more costly
to maintain and use.

In this chapter, we have used quantitative and qualitative data collected using the sur-
vey of BDD practitioners, to report the activeness of BDD use in industry, its benefits,
general and specific maintenance challenges, particularly regarding duplication. Based
on the perspectives of an active BDD user community that we surveyed, we found that

100CHAPTER 3. CHALLENGES AND OPPORTUNITIES FOR MAINTAINING BDD SUITES

BDD is in active use in industry, inline with the State of Agile Report [157, 158],
and that it is used more in private organisations than in public and other organisation
types. Some respondent organizations use it on all projects, while the majority of
respondent organizations use it on only some of the projects. Also, while a few pre-
vious practitioners are not currently using it due to various challenges, some of which
are maintenance related, the majority of respondents among currently active and non-
active practitioners plan to use BDD in the future as either a key tool on all projects or
as an optional tool on some projects. The following benefits of BDD were highly rated
by respondents: the use of domain specific terms, improving communication among
stakeholders, the executable nature of BDD specifications, and facilitating comprehen-
sion of code intentions. While respondents were of the opinion that changing the way
teams approach software development was among the main downsides of BDD, a sig-
nificant number of responses indicated that BDD specifications suffer from the same
maintenance challenges found in automated test suites more generally. As well, we
found out that duplication is among the maintenance challenges of concern for BDD
practitioners, and, for the most part, its detection and management is done manually.
Therefore, there exists a need to investigate novel ways to automatically detect and
manage duplication in BDD specifications.

Despite the reported maintenance challenges, in this area, we are only aware of studies
which are limited in both number and scope. We conclude that there is a scarcity
of research to inform the development of better tools to support the maintenance and
evolution of BDD specifications, and we propose 10 open research opportunities in
this area (Table 3.6).

Chapter 4

Benchmark Development

4.1 Introduction

In this chapter, we present the process that was used to develop an experimental set
of duplicate scenarios for detection, as well as the information about the resulting
duplicates. Among other things, this set of duplicates is important for evaluating our
duplicate detection approach that will be presented in Chapter 5. Specifically, we
present our definition of a semantic duplicate scenario, the projects we used and the
process used to identify them, as well as the categories of duplicates we obtained.

4.2 Semantically Equivalent Scenarios

BDD scenarios often exhibit high degrees of textual similarity—almost by definition.
Within a feature file, each scenario should express a different aspect of the function-
ality, typically targeted at discontinuities in the functionality being specified: for ex-
ample, at edge cases defining the boundaries of what is acceptable behaviour, and the
response of the system to erroneous inputs. These scenarios will typically contain very
similar Given and When steps, with only the parameter values (the values matched by
the regular expression groups in the step definitions) differing. Far from being prob-
lematic, such reuse of step definitions is important in keeping the BDD specification
manageable and comprehensible. In BDD, we effectively create a language of common
domain concepts that are important to the (eventual) users of the system. A coherent

101

102 CHAPTER 4. BENCHMARK DEVELOPMENT

domain language cannot emerge unless we are disciplined about refining and reusing
step definitions wherever possible throughout the specification (except where the effect
on readability negates the benefits of the reuse).

Therefore, we need to be able to detect the kind of duplication that indicates redun-
dancy in the BDD specification: when two or more scenarios describe the same piece
of functionality. The problem is that a legal BDD specification may contain two sce-
narios describing exactly the same functionality, while being completely textually dis-
similar. Because steps are essentially described using natural language, we have the
full scope and complexity of whatever language we are working in to describe the func-
tionality. Even the division of the functionality into steps can be very different, with
some core aspects being specified as several fine-grained Given steps in one scenario
and as a single chunky When step in another.

How, then, can we define the concept of semantic duplication for BDD specifications,
if even well-designed, non-redundant BDD specifications contain a high degree of tex-
tual and syntactic similarity? The key fact that marks two scenarios as being redundant
is if they specify exactly the same production behaviour. This leads us to the following
definition of semantically equivalent scenarios.

Definition 1 Semantically equivalent scenarios: Two or more scenarios are semanti-

cally equivalent if they describe the same piece of functionality for the System Under

Test. That is, they specify exactly the same production behaviour.

4.3 Benchmark Development

4.3.1 Context

After defining what a semantic duplicate of a scenario is (Definition 1), we need an
approach to detect it. But, in order to evaluate the effectiveness of our approach in
detecting duplicate BDD scenarios, we need a benchmark against which to compare
the results of our approach. In this section, we set out to develop such a benchmark.

Recall from Definition 1 that we consider BDD scenarios to be semantically equivalent
if they describe the same piece of functionality for the System Under Test. In order to
evaluate the tool for detecting scenarios that satisfy this condition, we needed access
to BDD specifications with known duplicates, so that we could test the ability of our

4.3. BENCHMARK DEVELOPMENT 103

tool to detect these duplicates and only these duplicates. But because there were no
benchmarks with known duplicate BDD scenarios, and because we did not have access
to specific BDD systems as well as their development teams, we decided to look for
open source BDD projects for use in developing a benchmark of known duplicate
scenarios.

Moreover, manual discovery of known duplicates in a system is impractical because of,
among other things, limited domain knowledge among judges, possible disagreements
between judges on what should be regarded as a duplicate, and the size of the system
may be too large making manual analysis prohibitively expensive [4]. Thus, devel-
oping data sets of duplicates in realistic systems is expensive, as it requires a group
of participants with sufficient time and expertise to search manually [4]. We, there-
fore, decided to combine the following two approaches for developing a benchmark
of known duplicate scenarios: manual discovery of duplicate scenarios in the selected
evaluation BDD projects, as well as injecting duplicates into the evaluation systems.

In case of duplicates injection, given the potential for bias if we as designers of the
duplicate detection method performed the injection ourselves, we recruited volunteers
and asked them to inject duplicates for us. The process of obtaining these duplicates is
outlined below. First, we describe the open source systems that we selected to be the
subject of the experiment. Next, we present the process we followed in order to obtain
duplicates from existing scenarios, and to inject duplicates.

4.3.2 The Host Systems

The following criteria were used to select the systems for our experiment:

1. The BDD features must be specified using Gherkin.

2. Glue code must be written in Java.

3. The system must contain a non-trivial number of features/scenarios.

4. The source code and associated files must be available in a public source code
repository.

5. The domain of the system should be one which can be understood with only
general knowledge, to allow our volunteers to specify reasonable scenarios.

6. The system should neither be a class assignment nor a small demo project.

104 CHAPTER 4. BENCHMARK DEVELOPMENT

7. The scenarios in the system should execute to completion, to produce the trace.

Based on these criteria, we searched three popular open source project repositories
(GitHub1, GitLab 2, and Bitbucket3) in two iterations. First, we searched the reposito-
ries for potential projects based on our criteria and came up with seven projects. The
majority of the systems that were returned by our search were either not written in
Java or trivial demonstration projects. Second, we tried to execute the seven projects,
to make sure that they could be run and produce the traces before requesting our volun-
teers to work on them. The scenarios in four of the seven systems could not execute to
completion, meaning that we could not trust their traces to be complete. This resulted
in the selection of the following three projects, on which we based our experiment:

• jcshs4

• facad services cucumber automated test5

• atest bf app6

A look at the BDD features that describe the domain served by each of the three system
suggests the following:

• jcshs: Describes features for use by telecom companies to facilitate, among
other things, interactions between customers and the information stored in the
company database. For example, customers can use the software to register with
the company, as well as to send and receive text messages on various services
offered by the the company.

• facad services cucumber automated test: Describes features for managing
school information. Among other things, it facilitates the registration of pupils,
manages teachers’ profiles, and enables payment of various school dues by credit
card.

• atest bf app: Describes features that, among other things, enable customers to
perform online purchases.

1https://github.com/
2https://about.gitlab.com/
3https://bitbucket.org/
4https://bitbucket.org/manv6/jcshs
5https://bitbucket.org/mohamrah/facad services

cucumber automated test
6https://gitlab.com/alexandermiro/atest bdd

4.3. BENCHMARK DEVELOPMENT 105

Project

S/n Item System 1 System 2 System 3

1 Number of features in a feature suite 23 8 14

2 Number of scenarios in feature suite 142 41 4

3 Number of scenario outlines in feature suite 0 0 23

4 Number of background steps in feature suite 21 0 8

5 Number of packages in the whole system 76 2 19

6 Number of production classes in the system 188 8 65

7 Number of glue code classes in the system 12 8 14

Table 4.1: Characteristics of selected evaluation software

We hereafter use System 1 for jcshs, System 2 for facad services cucumber automated test,
and System 3 for atest bf app. Table 4.1 summarises the characteristics of the three sys-
tems before duplicates injection. Based on the introduction to BDD (section 1.1), the
contents of the table should hopefully be self-explanatory, except for the following:
In Gherkin, Scenario Outlines allow many scenarios to be specified succinctly, using
tables from which step parameters should be taken. Background elements are another
piece of Gherkin syntax; they specify steps which should be included in all scenarios
in the same feature file as the Background (and play a role similar to the @Before

methods in xUnit test cases).

4.3.3 Duplicates between Original Scenarios

We first wanted a benchmark of duplicate pairs between original scenarios, for use
in evaluating our duplicate detection approach before relying on injected scenarios.
Guided by the meaning of a duplicate scenario in Definition 1, and our understanding
of the domains for the evaluation systems, 13 pairs of duplicate BDD scenarios were
manually identified from our three evaluation systems (Table 4.1). For each of the three
evaluation systems, Table 4.2 shows the number of duplicate pairs between scenarios
that existed before injection.

106 CHAPTER 4. BENCHMARK DEVELOPMENT

System Number of Duplicate Scenario Pairs

1 9

2 1

3 3

Total 13

Table 4.2: Number of duplicate scenario pairs between original scenarios

4.3.4 Duplicate Injection

We recruited 13 volunteers for our study, each satisfying at least one of the criteria:

• At least 3 years experience in software testing.

• At least 3 years experience in analysis and design.

• At least 3 years experience in development.

• General understanding of one or all of the following: analysis and design of
software systems, behaviour-driven development, test-driven development, and
acceptance-test-driven development.

Whereas some volunteers were industry professionals at the time, some were PhD and
MSc students with prior industry experience. We approached the volunteers face-to-
face and through telephone, since we knew them personally. There was not a problem
of bias in doing so, since the task was synthetic rather than evaluative–we were not
asking them to make any value judgement for or against any part of our work.

The injection of duplicate BDD scenarios into the host software was conducted in two
phases. The first phase was to allow us to trial the instructions and approach before we
asked people to spend their time and effort. The second phase was for gathering more
injected duplicates that we would use in the study.

In the first phase, we met face-to-face with 2 of the 13 volunteers and they injected
duplicates in System 1 in three successive iterations. Because we needed an injection
approach that could enable volunteers to produce useful duplicates with minimal or
no supervision at all, we designed a series of tasks for enabling us to learn if this was
the case. The tasks were executed in three iterations, covering different situations in
which duplicates are likely to be created. In the first iteration, the volunteers were

4.3. BENCHMARK DEVELOPMENT 107

presented with a feature file in which some scenarios had been deleted. Only the titles
of the missing scenarios remained and the volunteers were asked to come up with steps
for each of those scenarios. After doing that, the volunteers were presented with the
original feature file, with scenario titles removed but with all the scenarios’ steps in
place, including those that had been hidden during the first part of the experiment. The
volunteers were asked to confirm that the scenario they had written was a full duplicate
of one of the existing scenarios, and to record which one. Matching of duplicates
was important for us to see if volunteers could recognise the duplicates of what they
had created, and correct matching assured us that volunteers could create the kind of
duplicates we expected them to.

In the second iteration, the volunteers were provided with general description of an-
other feature (different from the first one), the Gherkin Background steps, and three
scenarios from the given general feature description. They were then asked to add fur-
ther scenarios based on the given feature description, covering aspects of the feature
that were not covered by the initial set of scenarios. Again, at the end of the iteration,
volunteers were asked to map the scenarios they had created to the original scenarios.

In the third iteration, a feature (different from the one used in the first and second
iteration) with several scenarios was given, and volunteers were asked to study the
feature and come up with completely new scenarios that they considered to be missing
in that feature. Again, mapping of duplicate scenarios was done by the volunteers at
the end of the iteration.

This gave us a starting point for our corpus of duplicate scenarios.

After the first phase, our duplication injection instructions were improved covering,
among other things, the need for offline (not through a physical meeting between the
researchers and volunteers) duplicates injection, while at the same time ensuring that
we still got scenarios that duplicated, in a variety of ways, the behaviours of original
scenarios in the evaluation systems. In the second phase, the improved duplication
injection instructions were shared with the remaining 11 volunteers, and we continu-
ously supported them through different online means as they worked towards injecting
duplicates in the systems they were assigned to.

Volunteers were randomly assigned to the 3 systems. Table 4.3 presents the number
of volunteers per system. In the second phase, 4 more volunteers (in addition to the 2
in the first phase) injected duplicates in System 1. All the duplicates in System 2 and

108 CHAPTER 4. BENCHMARK DEVELOPMENT

System Number of Volunteers

1 6

2 5

3 3

Total 13

Table 4.3: Number of volunteers per system

System 3 were injected in the second phase. Moreover, in the second phase, of the 11
volunteers, one volunteer injected duplicates in two systems, System 2 and System 3.
To attract more and diverse duplicate scenarios, the allocation of volunteers to systems
prioritised the systems with more scenarios.

The choice of the scenarios to duplicate was based on two criteria: First, the scenario’s
ability to be easily understood by volunteers. Second, its ability to be executed to
completion and produce the trace. Almost all scenarios across the 3 systems satisfied
these criteria.

This process gave us 125 known duplicate scenario pairs, across the three systems. Ta-
ble 4.4 shows the distribution of the duplicate pairs across the three systems. IO pairs
represent duplicates between injected and original scenarios, and II pairs represent du-
plicates between scenarios that were injected by volunteers. For each of the 3 systems,
we (the researchers) were able to form the II pairs by mapping different injected sce-
narios that targeted the same original scenarios. Including II pairs in the ground truth
enabled us to classify every pair reported by our tool as either true or false positive.

System 1 System 2 System 3 Total

Number of features involved in
duplication

7 6 2 15

Number of IO duplicate sce-
nario pairs

36 23 6 65

Number of II duplicate scenario
pairs

39 17 4 60

Total number of duplicate sce-
nario pairs (IO + II)

75 40 10 125

Table 4.4: Distribution of duplicate scenario pairs across the three evaluation systems

4.4. SUMMARY 109

While preserving the overall functionalities of the original scenarios, each injected sce-
nario was produced after either a complete re-write of an original scenario, or reword-
ing of the steps of an original scenario, or reordering of steps of an original scenario,
or merging or disaggregating steps of an original scenario, or a combination of these.
Thus, the scenarios we obtained through the injection exercise represented possible
manifestations of duplicate scenarios in real world systems.

To make the scenarios created by volunteers executable, we had to create the glue code
for all the new steps. Because volunteers were guided to refrain from inventing new
requirements, (i.e, by writing scenarios that were duplicates of existing functionality),
we (the researchers) were able to create the glue code for all the new steps without
extending the production code.

Through the duplicate injection process, we obtained versions of evaluation systems
with 125 known duplicate pairs, the scenarios in which could be executed. Combining
with 13 pairs of duplicates between original scenarios (OO) (Table 4.2), we obtained a
benchmark of 138 known duplicate scenario pairs across the three evaluation systems.

4.4 Summary

Any approach for detecting semantically equivalent BDD scenarios would benefit from
a benchmark of known duplicate scenarios pairs. But our search in both scientific and
grey literature could not reveal such a benchmark. Thus, in this chapter, apart from
defining what a semantic duplicate of a BDD scenario is, we have also presented the
process we followed to develop a benchmark of known duplicate scenario pairs in three
open source systems that were identified for that purpose. This resulted into a total of
138 known duplicate scenario pairs across the three systems, 13 of which representing
duplicates between scenarios that existed before injection, and the remaining 125 pairs
representing duplicate pairs obtained through the injection process.

Chapter 5

Detecting Duplicate Scenarios in BDD
Suites

5.1 Introduction

In Chapter 3, we presented challenges faced by practitioners in maintaining BDD suites
and, in particular, the problems of duplication. In the present chapter, we demonstrate
that existing duplicate detection tools cannot effectively detect semantically equiva-
lent scenarios in BDD feature suites, and, consequently, we present and evaluate our
framework for detecting semantically equivalent scenarios in BDD feature suites.

Despite the benefits of the BDD technique, some of which were discussed in sec-
tion 3.3.2, it also brings problems. Large BDD specifications can be hard to maintain
and extend, and some teams report functionality becoming effectively frozen, or even
dropping the use of the BDD technique, because of the costs and risks of changing
the specifications (section 3.4). Furthermore, comprehension of large suites of BDD
scenarios, the relationships between them and the relationships between the scenarios
and the code they test, can be a daunting task. Also, because BDD is still relatively
new, tools to support developers in managing their suites of scenarios are still in their
infancy. Thus, it becomes costly for teams when redundancy creeps into their BDD
specifications. The suites of scenarios can have long execution times, causing slow
Quality Assurance and bug fixing cycles. Even worse, it becomes hard to maintain
both the specifications’ quality and conceptual integrity. This increases the risk of fur-
ther redundancies, omissions and inelegances in the BDD specifications. Despite these

110

5.1. INTRODUCTION 111

challenges, the state-of-the-art tools for general duplicate detection in program code
perform poorly on the problem of detecting duplication in BDD specifications.

In this chapter, we present a framework for detecting duplicate scenarios in BDD spec-
ifications based on the analysis of execution traces. We aim to establish when two
scenarios exercise the code under test in the same way–that is, execute the same func-
tional test over the production code. This is tricky, because we have to discriminate
between important and unimportant differences in the scenarios’ execution traces. In
the present chapter, we attempt to answer the question of important and unimportant
trace differences, and devise and evaluate a framework for detecting duplicate BDD
scenarios.

Specifically, we attempt to differentiate between essential and accidental behaviours
of a BDD scenario and, thereafter, we use identical essential behaviours to detect du-
plicate BDD scenarios. We suppose that a BDD scenario can have both essential and
accidental properties. On the one hand, the behaviours that are inherent in the nature of
a scenario are regarded as essential. These represent core functions of a scenario. On
the other hand, subsidiary behaviours that result from attempts to express core func-
tions of a scenario are regarded as accidental. These can change over time or can be
removed without affecting the core functions of a scenario. Section 5.4.2 will provide
more details about how we relate the notion of essences and accidents to the context of
BDD scenarios. Based on the essence-accident notion, we consider to be semantically
equivalent scenarios that exhibit the same essential behaviours.

We run a scenario several times to identify parts of its trace that change between runs,
as well as parts of its trace that remain constant across several runs. We consider any-
thing that changes between runs to be incidental and disregardable. Thus, parts of the
scenario’s execution trace that remain constant across several runs are deemed to rep-
resent its (scenario) essential characteristics, and parts of the scenario’s execution trace
that change between runs are considered to represent the accidental characteristics of
a scenario.

The duplicate detection framework that we propose can detect duplicate scenarios with
or without focusing on essential characteristics of scenarios. When the focus is not on
essential characteristics of scenarios, each scenario is run exactly once, and whole or
specific parts of the resulting traces for the individual scenarios are compared to detect
duplicate scenarios. When the focus is on essential characteristics of scenarios, we
regard scenarios that exhibit the same essential characteristics to be duplicates of each

112 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

other.

The implementation of our framework works with BDD specifications expressed in the
Gherkin1 language, and the glue code written in Java using Cucumber-JVM conven-
tions2. As well, the evaluation results suggest that the comparison of execution paths
is the most promising effective way to detect duplicate BDD scenarios. In addition, the
focus on essential traces of scenarios improved the ability to detect duplicate scenarios.

The key insight from this component of our research is to use essential traces (de-
fined in section 5.4.3) to detect semantically equivalent BDD scenarios, instead of us-
ing default traces (defined in section 5.4.3) that might contain accidental information,
causing duplicate scenarios to go undetected.

The contributions of this chapter are threefold:

• Understanding the limitations of existing duplicate detection approaches
and techniques on the problem of detecting semantically equivalent BDD
scenarios: Experimentation with three mature tools revealed that, when applied
on the problem on detecting semantically equivalent BDD scenarios, the tech-
niques and approaches for detecting duplication in program code either miss
duplicates of interest or return too many false positives. This renders them un-
suitable for the problem of detecting semantically equivalent BDD scenarios.

• BDD duplicate detection framework: We propose a duplicate detection frame-
work that analyses various information in the dynamic traces of BDD scenarios
to detect semantically equivalent scenarios in BDD specifications. Our duplicate
detection framework attempts to detect duplicate scenarios with and without fo-
cusing on essential characteristics of scenarios. Without focusing on essential
characteristics of scenarios, whole or specific parts of the traces produced when
individual scenarios are executed only once are compared to detect semantically
equivalent scenarios. We also propose an approach to determining an essential
trace of a scenario. With an attempt to separate essential from accidental charac-
teristics of scenarios, each scenario is executed several times, and trace parts that
remain constant across several runs of a scenario are used to represent the sce-
nario’s essential characteristics; BDD scenarios that exhibit identical essential
characteristics are regarded to be semantically equivalent.

1cucumber.io/docs/reference
2github.com/cucumber/cucumber-jvm

5.2. THE DUPLICATE DETECTION PROBLEM IN BDD 113

• Use of execution traces to detect semantically equivalent BDD scenarios:
We used the proposed duplicate detection framework to detect duplicate BDD
scenarios across three open source software systems, and learned that the com-
parison of execution paths of scenarios performs better at detecting semantically
equivalent BDD scenarios, compared to the comparison of full traces, API calls,
or the combination of API calls and internal calls. We also learned, based on
two of the three evaluation systems, that the focus on essential characteristics of
scenarios can improve the detection of semantically equivalent BDD scenarios.

The rest of this chapter is organised as follows: section 5.2 presents the duplicate
detection problem in BDD specifications, section 5.3 highlights the limitations of ex-
isting duplicate detection tools on the problem of detecting duplicate BDD scenarios,
section 5.4 presents our framework for detecting duplicate scenarios in BDD specifi-
cations, section 5.5 presents the evaluation of our approach, and section 5.6 concludes
the chapter.

5.2 The Duplicate Detection Problem in BDD

BDD suites contain tens to several thousands scenarios (section 3.3.3). With suites at
the larger end of the spectrum, maintaining existing scenarios or adding new steps or
scenarios can be a daunting task. At present, there is lack of tools to facilitate effective
management of collections of steps in BDD suites. This makes it difficult for teams to
reuse steps when creating new scenarios and to find existing scenarios that are close
to some new functionality that is being added to the suites. It is possible for a suite
to have multiple scenarios or steps that specify the same functionality, with different
step text. As stated previously, in the long run, specifying the same functionality using
multiple step/scenario text can cause difficulties in comprehending, maintaining and
extending BDD suites.

Listing 5.1 shows an example of three scenarios specifying the same functionality us-
ing different step text. The first two scenarios only differ in step text, but specify
the same functional behaviour and have the same number of steps in Given, When
and Then scenario parts. The third scenario not only exhibits variation in step text
compared to the first two scenarios, but it also introduces new steps to cover aspects
(checking card validity and checking availability of sufficient cash in an ATM) that

114 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

Listing 5.1: ATM Feature With Duplicate Scenarios
1 Feature: ATM transactions
2 As a bank account holder, whenever
3 I perform ATM withdrawals, I want my
4 account balance to be updated accordingly
5

6 Scenario: Successful withdrawal from an account
7 Given my account is in credit by $100
8 When I request withdrawal of $20 through the ATM
9 Then $20 should be dispensed

10 And the balance of my account should be $80
11

12 Scenario: Debit Account
13 Given an initial account balance of $100
14 When I request withdrawal of $20 through an ATM
15 Then I should receive $20 from the ATM
16 And the new account balance should become $80
17

18 Scenario: Withdraw cash from ATM
19 Given the balance in my account is $100
20 And I am using a valid card
21 When specify $20 as the withdrawal amount
22 And the ATM has cash that amounts to $20 or more
23 Then the ATM should dispense $20
24 And my account balance should be updated accordingly

were assumed in the first two scenarios. Despite the additions in the third scenario, in
general, the same functional behaviour is specified by all the three scenarios in List-
ing 5.1. But, one would argue that the third scenario is functionally different from the
first two because of the additional steps it contains. However, even in the face of that
argument, in practice, there would still be a need for a mechanism to flag the three
scenarios as duplicate candidates, given how functionally close the three scenarios are.
That would help human developers to decide if indeed the three scenarios are dupli-
cates of each other, and whether all the three scenarios have to be kept as part of the
suite, or one/two of the three scenarios can be removed without losing the behaviours
specified by the three scenarios. Importantly, if one scenario is subsumed by another
scenario, it may be unnecessary to keep both scenarios in a suite.

Since the goal of reuse means that high degrees of similarity are to be expected between

5.3. EXISTING TOOLS 115

scenarios in BDD suites, it is challenging to detect the undesirable kind of duplication.
But, intuitively, we would not want to have, in the same BDD suite, scenarios that
belong to the same equivalence class [190].

It is important to note that, naturally, duplicate scenarios could appear next to one
another in the same feature file like in Listing 5.1, or could appear between one or
more scenarios in the same feature file, or could be scattered across multiple feature
files in a BDD specification. So the artificially simple example in Listing 5.1 is just
intended to illustrate the problem we are trying to address.

5.3 Existing Tools

We experimented with three mature clone detection tools, to assess their ability to
detect duplicate BDD scenarios. In particular, we wanted to evaluate the ability of
existing techniques on the problem of detecting duplicate scenarios, before proposing
a new solution.

5.3.1 Tools Selection

After investigating the literature in the domain, we chose the tools that were available
for download based on their semantic awareness, i.e., the duplicate detection tech-
niques built in the tools incorporates some attempts to detect semantic duplication, as
is the requirement in our case. We identified tools employing a variety of duplicate
detection techniques discussed in Section 2.3. More specifically, tools employing text-
based techniques were intuitively ruled out because behaviorally similar duplicates can
be textually different [191, 148]. For token-based techniques, PMD/CPD represented
the state-of-the-art, and so it was selected for our experiment. Both CloneDR [192]
and DECKARD [66] represented mature tree-based tools, with different ways of ma-
nipulating trees to detect duplicates. We thus chose both of the two for our experiment
as well.

The literature mentions the possibility of using PDG-based techniques to detect seman-
tically equivalent code fragments. However, PDG-based techniques are discredited for
their computational complexity, posed by the graph generation process. As well, apart

116 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

from returning many false positives, these tools also perform better in detecting non-
contiguous duplicates [193], when we wanted to be able to detect both contiguous and
non-contiguous duplicates. For these reasons, plus the fact that PDG-based tools men-
tioned in the literature were not available for download and use, we did not try tools
in this category. Besides, tools in other categories (for example DECKARD, which
is tree-based) have semantic awareness [87], and so we could still meet the semantic
awareness requirement without PDG-based tools. Eventually, PMD/CPD3, CloneDR
[192] and DECKARD [66] were chosen for our experiment.

5.3.2 Tools Configuration and Experiment Setup

After selecting the tools, 13 pairs of duplicates between original scenarios (Table 4.2)
were used to assess the ability of existing duplicate detection tools on the problem
of detecting duplicate BDD scenarios. Because the tools we experimented with can
detect duplication in program code, we required code level representation of the du-
plicate scenarios that we wanted to detect. To obtain code level representation of each
scenario, we performed manual unfolding of the glue code that would execute when
each scenario was run. That is, we manually copied into one Java method glue code
for all steps of a particular scenario. Eventually, each scenario was converted into
one method, which we called a scenario-representing-method. The order of steps in
a scenario dictated the order of glue code in a scenario-representing-method. Fur-
ther, each pair of duplicate scenarios was represented by one class with two scenario-
representing-methods.

The labour-intensive nature of manually unfolding the glue code made running the se-
lected tools on all pairs of duplicate scenarios obtained through the duplicates injection
experiment (section 4.3.4) prohibitively expensive. This is why we experimented with
these tools only on a relatively small number of duplicates between original scenarios
that had been manually identified from the three evaluation systems (section 4.3.3).

We ran the selected clone detection tools on the classes with scenario-representing
methods. We used default configurations to run CloneDR and DECKARD since we did
not come across any study with recommended values, and the alternatives we tried did
not produce results with important differences. Also, after some trials, we decided to
use the minimum token size of 10 for PMD/CPD because it is the one that could at least

3pmd.github.io

5.3. EXISTING TOOLS 117

report duplicates matching whole scenarios, instead of partial code in the scenario-
representing-methods. Some token sizes did not return any results, and others returned
some results with too many false positives while missing the duplicates of interest.

A pair of duplicate scenarios was considered detected if their scenario-representing-
methods were reported by the tool as duplicates. Scenario-representing-methods in
which only part of their code was reported as duplicate meant that the duplicate sce-
narios they represented were considered undetected. In practice, reporting partial du-
plication between scenario-representing methods would imply that only parts of sce-
narios (and not whole scenarios) are reported as duplicates, when we were interested
in semantic duplication between whole scenarios.

5.3.3 Results and Discussion

Table 5.1 shows the results of using existing tools to detect semantically equivalent
BDD scenarios. “Known duplicates” represents the number of duplicate scenario pairs
that we knew for each system, “Detected known duplicates” represents the number
of known duplicate scenario pairs that were detected by each tool, “Candidates” repre-
sents the total number of duplication candidates reported by each tool, “ Duplicates Be-
tween Whole BDD Scenarios” represents the number of pairs of duplicate candidates
that reported duplication between whole scenarios, “Recall” represents the proportion
of known duplicate scenario pairs that were detected by each tool, and “Precision” rep-
resents the proportion of candidates that reported duplication between whole scenarios.
Whereas DECKARD was able to detect all but 3 of the duplicate pairs of scenarios,
PMD/CPD and CloneDR missed almost all the pairs. Nevertheless, DECKARD re-
ported many false positives, which, when applied to problems of a scale typical of
commercial applications, would mean an extra cost of time and personnel for the team
to judge the results.

We thus concluded that, in general, state-of-the-art techniques, which are specifically
designed for detecting duplication in program code, are not suitable for the problem of
detecting semantically equivalent BDD scenarios.

118 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

System Tool Known
Dupli-
cates

Detected
Known
Dupli-
cates

Candidates Duplicates
Between
Whole
BDD
Scenarios

Recall
(%)

Precision
(%)

System 1

PMD 9 0 12 0 0.00 0.00

CloneDR 9 1 6 1 11.11 16.67

DECKARD 9 9 589 112 100.00 19.02

System 2

PMD 1 0 7 0 0.00 0.00

CloneDR 1 0 1 0 0.00 0.00

DECKARD 1 0 43 0 0.00 0.00

System 3

PMD 3 0 8 0 0.00 0.00

CloneDR 3 0 1 0 0.00 0.00

DECKARD 3 1 951 48 33.33 5.05

Table 5.1: Results of experimentation with existing clone detection tools

5.4 Detecting Duplicate Scenarios

5.4.1 Hypothesis

Much existing work on duplicate detection in the context of program code is based
around the idea of clone detection. While cloning is almost certainly used in the cre-
ation of BDD specifications, it is not the main concern. BDD scenarios often exhibit
high degrees of textual similarity—almost by definition. Within a feature file, each sce-
nario should express a different aspect of a software functionality, typically targeted at
discontinuities in the functionality being specified: for example, at edge cases defin-
ing the boundaries of what is acceptable behaviour, and the response of the system to
erroneous inputs. These scenarios will typically contain very similar Given and When

steps, with only the parameter values (the values matched by the regular expression
groups in the step definitions) differing. Far from being problematic, such reuse of
step definitions is important in keeping the BDD specification manageable and com-
prehensible. In BDD, we effectively create a language of common domain concepts
that are important to the (eventual) users of the system. A coherent domain language
cannot emerge unless we are disciplined about refining and reusing step definitions
wherever possible throughout the specification (except where the effect on readability
negates the benefits of the reuse).

Therefore, the detection of clones in BDD scenarios is unlikely to be helpful. We

5.4. DETECTING DUPLICATE SCENARIOS 119

need to be able to detect the kind of duplication that indicates redundancy in the BDD
specification: when two or more textually distinct scenarios describe the same piece
of functionality. The problem is that a valid BDD specification may contain two sce-
narios describing exactly the same functionality, while being textually dissimilar (List-
ing 5.1). Because scenario steps are described using natural language, we have the full
scope and complexity of whatever language we are working in to describe the func-
tionality. Even the division of the functionality into steps can be very different from
one scenario to another, with some core aspects being specified as several fine-grained
Given steps in one scenario and as a single chunky When step in another.

How, then, can we define the concept of semantic duplication of scenarios in BDD
specifications, if even well-designed, non-redundant BDD specifications contain a high
degree of textual similarity? The key fact that indicates two scenarios as being redun-
dant is if they specify exactly the same behaviour of the software under test. This led
us to the following hypothesis:

H: We can detect semantically equivalent BDD scenarios by comparing how
BDD scenarios exercise the production code.

5.4.2 Overall Duplicate Detection Framework

As a starting point for our work, we hypothesise that a good approach to detect seman-
tically equivalent scenarios in BDD suites will require a combination of information
from the natural language texts that are used to express the scenarios, plus more con-
ventional analysis of the glue code and production code under test. We propose a
framework with eight heuristics for detecting duplicate BDD scenarios. Each heuristic
is inspired by a particular hypothesis about the run-time behaviours of semantically
equivalent scenarios. As highlighted by the hypothesis in section 5.4.1, the main no-
tion underpinning all the 8 heuristics is that semantically equivalent BDD scenarios

exercise the production code in the same way, as summarised by the following defini-
tion:

Definition 2 A scenario s1 in a BDD suite Σ is a semantic duplicate of a scenario s2

in Σ (where s1 and s2 are specified as two distinct scenarios in Σ) if: in every possible

execution of Σ, the execution of both scenarios results in the invocation of the same

sequence of production methods. The order of the method invocations must be the

same in each case, and any repeated invocations of the same method must also be

120 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

the same. The parameter types of each method call must also match, to allow for

overloaded methods.

The rest of this section presents an overview of the duplicate detection framework,
Section 5.4.3 presents the definitions of key terms in our duplicate detection frame-
work, Section 5.4.4 through Section 5.4.6 present the hypotheses that constitute our
BDD duplicate detection framework, the combined duplicate detection algorithm, and
the implementation of our duplicate detection algorithm.

Detecting semantic equivalence of programs is generally known to be an undecidable
problem [194, 102]. But we need a way to approximate when two BDD scenarios spec-
ify the same behaviour of the Software Under Test, even if their steps may be phrased
differently. To make a start in detecting scenarios that specify the same behaviour, we
attempt to differentiate between essential and accidental properties of scenarios, and
regard as semantically equivalent scenarios that have the same essential properties. In
particular, we regard as essential characteristics the behaviours that are inherent in the
nature of a scenario–that is, are important for the scenario to completely specify its
fundamental functionality. For example, irrespective of many other things that differ-
ent developers might add while writing the first scenario in Listing 5.1, it must check
for the sufficiency of funds in a user’s account and should only issue funds if a user has
sufficient balance in their account. Essential characteristics are, thus, part and parcel
of a scenario and without them specification of scenario’s behaviour would be incom-
plete. On the other hand, accidental characteristics are behaviours that get introduced
in the course of specifying the core functionality of a scenario, but are themselves not
part of the core functionality of a scenario. For practical purposes, in our case, we
consider anything that changes between runs to be incidental and disregardable. Ad-
mittedly, this imposes an obligation on a development team to avoid implementations
where lots of things change. In fact, too much change might threaten the reliability of
the test, making it non-deterministic. Too, poor quality tests might also yield a large
number of false positives for the duplicate detection tool, since the non-determinism
might cause lots of trace information to change. Our approach assumes that tests are
of good quality.

Various information from the production code can be recorded as part of the scenario’s
execution trace. To make a start in exploring the information that might help to detect
duplicate scenarios, we focused on information about the production methods that get
exercised by a scenario. In particular, we wanted our trace to contain the information

5.4. DETECTING DUPLICATE SCENARIOS 121

that can identify what production method was executed, what was its input(s) (e.g., the
arguments it takes at runtime), what was its output (e.g., return value), as well as what
statements inside the body of a method were involved in the computation of the output.
Inspired by this view, for each production method that is involved in the execution of
a scenario, we record the following information as part of a trace of a scenario:

• Name of a method

• Name of a production class to which a method belongs

• Parameter type(s)

• Return type

• Parameter value(s) of a method

• Return value of a method

• Access modifier of a method

• Executed statement(s) inside the body of a method

While somewhat limited in terms of expressing the actual runtime behaviours of a
method, this combination of various information about a method can help us to explore
both the observable behaviours of methods (e.g., through comparison of inputs and
outputs) as well as the internal behaviours of methods (e.g., through comparison of the
sequences of executed statements that produce certain outputs).

To detect duplicate scenarios, different heuristics in our duplicate detection framework
compare all or parts of the information in the scenarios’ traces. Our duplicate detec-
tion approach is guided by eight different but related hypotheses about the behaviours
of duplicate scenarios. The heuristics for the first four hypotheses compare traces
produced when each scenario is run exactly once to produce what we hereafter refer
to as default trace. A default trace of a scenario is produced by running a scenario
only once. As explained in hypotheses H1 through H4 in Section 5.4.4, the different
heuristics compare different information from the default traces of scenarios to detect
semantically equivalent scenarios.

The heuristics for the last four hypotheses detect duplicate scenarios by comparing
essential traces of scenarios. An essential trace of a scenario consists of informa-
tion that remain constant across several runs of the scenario. Different information
from the essential traces of scenarios, as explained in hypotheses H1′ through H4′ in

122 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

Section 5.4.5, are compared to detect semantically equivalent scenarios. Figure 5.1
summarises the overall duplicate detection framework.

Figure 5.1: Overall framework for detecting duplicate BDD scenarios

5.4.3 Definitions of Key Terms

Definition 3 Full trace: A full trace of a scenario is a sequence of all information that

are recorded for each production method that is exercised by a scenario.

Refer to section 5.4.2 for the information we record for each method that is exercised
by a particular scenario.

Definition 4 Default full trace: A default full trace of a scenario is a full trace formed

when a scenario is executed only once.

Definition 5 Default execution path: A default execution path of a scenario is a subset

of the default full trace that is formed by executed statements only.

Definition 6 Default API calls: Default API calls of a scenario is a subset of the

default full trace that is formed by API calls only.

We use the information we collect about public methods to form a default trace of
public API calls. In particular, since it should generally be possible to identify the API

5.4. DETECTING DUPLICATE SCENARIOS 123

calls made during the execution of a scenario without knowing the actual statements
that were executed inside the bodies of methods, we restrict ourselves to the following
information when identifying API calls: class name, method name, parameter type(s),
return type, parameter value(s), and return value.

Definition 7 Default API and internal calls: Default API and internal calls of a sce-

nario is a subset of the default full trace that is formed by both API and internal calls.

We use the information we collect about both public and non-public methods to form a
trace of default API and internal calls. As with public API calls, it should generally be
possible to identify the internal calls made during the execution of a scenario without
knowing the actual statements that were executed inside the bodies of methods. Thus,
for each method in the default full trace, the following information, for both public and
non-public methods involved in the execution of a scenario, is used to form the trace
of API and internal calls: class name, method name, parameter type(s), return type,
parameter value(s), and return value.

Definition 8 Essential full trace: An essential full trace of a scenario is a full trace

formed by information that remain constant across several runs of the same scenario.

Definition 9 Essential execution path: An essential execution path of a scenario is a

subset of the essential full trace that consists of executed statements only.

Definition 10 Essential API calls: Essential API calls of a scenario is a subset of the

essential full trace that consists of API calls only.

Definition 11 Essential API and internal calls: Essential API and internal calls is a

subset of the essential full trace that consists of both API calls and internal calls.

5.4.4 Using Default Traces to Detect Duplicate Scenarios

In order to identify duplicates, we record traces of candidate duplicate scenarios and
compare them (traces) at different levels of granularity. These different levels of gran-
ularity are:

• Full trace

• Executed statements

• Public API calls

124 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

• API and internal calls

We now present the first group of four heuristics in which the duplicate detection al-
gorithms use traces produced when each scenario is run exactly once. In this group of
heuristics, we hypothesise that, when two semantically equivalent scenarios have no
accidental differences, their traces should be identical, whether the scenarios are run
once or several times. Thus, it should, ideally, be possible to detect semantically equiv-
alent scenarios by comparing the traces produced when the scenarios are executed only
once.

H1: Any differences in the full traces of two BDD scenarios indicate that they are
not duplicates

We begin by assuming that semantically equivalent scenarios produce completely iden-
tical traces. In so doing, we wanted to learn how good the comparison of full traces
can be at detecting semantically equivalent scenarios. Thus, this heuristic takes into
account everything in the full traces when comparing traces for two BDD scenarios to
determine if they are duplicates.

H2: Any differences in the execution paths of two BDD scenarios indicate that
they are not duplicates

The comparison of default full traces, as in H1, could miss some duplicates. This can
be true when the full traces of scenarios being compared differ in unimportant ways.
For example, full traces for the two scenarios being compared could only differ in
parameter values or return values of some production method(s); and the differences
could result from deciding the parameter values in non-deterministic ways at runtime,
e.g. when the system time is used as parameter value of a method. But, intuitively,
runtime values that change depending on runtime conditions cannot entirely be used
to rule out duplication. The two scenarios could still execute the same sequence of
statements in the bodies of production methods that are exercised by the two scenarios,
suggesting the possibility of duplication between them. Thus, instead of comparing
the full traces of the scenarios, the present heuristic only compares the execution paths
from the full traces of the scenarios.

5.4. DETECTING DUPLICATE SCENARIOS 125

H3: Any differences in the public API calls of two BDD scenarios indicate that
they are not duplicates

If duplicate scenarios produce the same sequence of API calls, it may be unnecessary
to pay attention to what statements are executed inside the bodies of production meth-
ods that are involved in the execution of duplicate scenarios. Only the comparison of
the sequences of API calls can detect the duplicate scenarios. Thus, apart from the
comparison of full traces and execution paths, as described in heuristics H1 and H2,
another view on detecting duplicate BDD scenarios is that: semantically equivalent

BDD scenarios perform the same sequence of public API calls on the production code.
So, under this heuristic, the duplicate detection algorithm focuses on only public API
calls from the default full trace.

H4: Any differences in the public API and internal calls of two BDD scenarios
indicate that they are not duplicates

Sometimes, two scenarios with the same sequence of API calls can have important
differences in internal calls. In such situations, a duplicate detection approach that
focuses only on API calls, while ignoring internal calls, has the risk of increasing the
number of false positives, because even scenarios that make different internal calls will
be reported as duplicates on the basis of same sequence of API calls. To reduce the
number of false positives that are likely to result from such an omission, it may be
good to have a duplicate detection approach that combines API calls and internal calls.
Thus, instead of considering public API calls only, as in H3, this heuristic advocates
for the combination of public API calls and internal calls when comparing traces for
two scenarios to determine if they are duplicates. To detect duplication, the algorithm
for this heuristic focuses on public API calls and internal calls in the full traces of the
scenarios.

5.4.5 Using Essential Traces to Detect Duplicate Scenarios

To avoid false negatives caused by things that change in each run of a scenario, sev-
eral runs of a scenario are recorded and only things that stay the same are compared.
This is motivated by the fact that a duplicate detection approach that performs naive

126 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

comparison of whole or specific parts of default traces—without discriminating be-
tween essential and accidental parts of those traces, as in heuristics H1 through H4 in
section 5.4.4—could miss some duplicate scenarios. This is possible when the differ-
ences in the traces being compared are only accidental. Thus, for the next group of four
heuristics, each BDD scenario is run several times to produce multiple traces; and the
traces for the different runs of a scenario are analysed to identify constant information
across runs. It is this information that remains constant across several runs that forms
an essential trace of a scenario. We first introduce how to determine an essential trace
of a scenario, and thereafter present the heuristics that use essential traces to reason
about the behaviours of semantically equivalent BDD scenarios.

Determining an Essential Trace of a Scenario

Figure 5.2 shows a part of traces for two runs of the same scenario (taken from our eval-
uation benchmark, described in section 4.3). The variation of some information in the
traces for the two runs was caused by the differences in runtime conditions. A method
setMoId() in the class MoEvent takes the system time in milliseconds as its argument,
and that argument acts as a return value of the method getMoId(). This variation in
two traces of the same scenario, caused by non-determinism in the method’s parameter
and/or return values, is an example of accidental differences that could manifest in the
traces of semantically equivalent BDD scenarios.

Figure 5.2: Example of variations in the traces of two runs of the same scenario

5.4. DETECTING DUPLICATE SCENARIOS 127

Moreover, an execution path of a BDD scenario can also vary, depending on the condi-
tions at the time of execution. For example, one set of statements in the production
code can be executed when one condition is true, while another set of production
statements can be executed when another condition is true and, still, another set of
production statements can be executed in any condition. This is especially possible if
the production code involved in the execution of a scenario has a number of branch-
ing conditions. This kind of variation in the set of executed statements suggests that
essential statements and accidental statements are a possibility for a BDD scenario.
Statements that execute whenever a scenario is executed, irrespective of runtime con-
ditions, can be regarded as essential to the behaviour of a scenario, while statements
whose execution is affected by runtime conditions can be regarded as accidental to the
behaviour of a scenario.

Thus, if we have two semantically equivalent BDD scenarios whose traces have ac-
cidental differences, it can be difficult to detect them as a duplicate pair, particularly
when the duplicate detection approach performs comparison of default traces. As such,
one way to make the traces for two scenarios comparable, for purposes of duplicate
detection, is to identify, in the traces for the two scenarios, parts that remain constant
across across several runs of each scenario.

Identifying the accidental parts in the trace of a scenario would suggest the need for
it to be run several times, possibly under different conditions. But how many runs
are enough to reveal the accidental parts in the trace of a scenario? There is no fi-
nite limit to the number of runs required to eliminate the incidental differences, but a
practical limit needs to be identified. For purposes of experimentation in this work,
five runs were chosen, after experimenting with several scenarios from our evaluation
benchmark and learning that no new behaviours were observed in the scenarios’ traces
produced after the fifth run. So it was judged that five runs can give an approximately
good picture of the possible variation points observed in the execution traces when
the same scenario is run several times under different conditions (i.e. different system
times). Thus, to produce an essential trace of a scenario that can be compared with the
traces of other scenarios for purposes of duplicate detection, we follow the following
three steps:

1. Run a scenario five times, collecting traces for the different runs.

2. Compare traces for the different runs of a scenario, to identify parts that vary
across several runs as well as parts that remain constant across several runs.

128 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

Specifically, we compute diffs between traces for the different runs, to identify
trace parts that vary across several runs, and trace parts that remain constant
across several runs.

3. Regard as essential trace parts that remain constant across several runs of a sce-
nario.

Heuristics on Essential Traces

After explaining the concept of an essential trace of a BDD scenario and how it is
computed, we next present the heuristics that exploit essential traces to detect duplicate
BDD scenarios. The comparison of essential traces is likely to do better at detecting
duplicate scenarios than the comparison of default traces because accidental parts of
the scenarios’ traces are excluded from the comparison.

H1': Any differences in the essential full traces of two BDD scenarios indicate
that they are not duplicates

In the present heuristic, we suppose that semantically equivalent BDD scenarios pro-

duce the same essential full traces. If the full traces for two duplicate scenarios have
accidental differences, the comparison of default full traces, as in H1, can miss the
duplicates. However, focusing on essential full traces only can increase the duplicate
detection ability because accidental trace differences are excluded from the compari-
son.

H2': Any differences in the essential execution paths of two BDD scenarios indi-
cate that they are not duplicates

If the default execution paths for duplicate scenarios have accidental differences, the
comparison of default execution paths, as in H2, can fail to detect the duplicate scenar-
ios. But, if the duplicate detection approach involves comparison of only the essential
execution paths, the chances of detecting the duplicate scenarios increase because acci-
dental parts of the execution paths of the scenarios are excluded from the comparison.
Hence, focusing only on executed statements in an essential trace of a scenario, a pos-
sible perspective would be that semantically equivalent BDD scenarios have the same

5.4. DETECTING DUPLICATE SCENARIOS 129

essential execution paths.

H3': Any differences in the essential API calls of two BDD scenarios indicate that
they are not duplicates

If the default public API calls for duplicate scenarios have accidental differences, it is
possible for the duplicate scenarios to go undetected, if comparison is done on default
public API calls, like in H3. To increase the duplicate detection ability, it can be good
to focus only on essential public API calls, which contain no accidental differences.
So, focusing only on trace information about public API calls of a scenario, under the
present heuristic, we propose that semantically equivalent BDD scenarios exercise the

production code in the same way by making the same essential public API calls.

H4': Any differences in the essential API and internal calls of two BDD scenarios
indicate that they are not duplicates

If default API and internal calls have accidental differences, the comparison of default
API and internal calls can fail to detect duplicate scenarios. However, the focus on
essential API and internal calls has the potential of increasing the ability to detect du-
plicate scenarios because accidental differences are excluded from comparison. Thus,
focusing only on essential API and internal calls, we suggest that semantically equiv-

alent BDD scenarios make the same essential public API and internal calls on the

production code.

5.4.6 Algorithm and Implementation

We now present the duplicate detection algorithm that combines the 8 algorithms for
the 8 different heuristics introduced in Section 5.4.4 and Section 5.4.5. We also give a
summary of how an algorithm was implemented.

Algorithm

Algorithm 1 combines the heuristics for both default and essential traces. It is im-
portant to note that, for purposes of experimentation in this work, each heuristic was

130 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

tested separately and the results were generated per heuristic, to allow for comparison
of results for the different heuristics. But Algorithm 1 combines the algorithms for the
different heuristics because it is assumed that, in real world, if a duplicate pair will not
be detected by an algorithm for one heuristic, it would be detected by an algorithm for
another heuristic. This removes a costly process of subjecting all candidate duplicates
in a suite on each of the 8 heuristics.

Input description: Algorithm 1 takes the following three inputs:

• A BDD suite, hereafter referred to as Σ. For practical purposes, a complete BDD
suite consists of a collection of scenarios, the production code for the System
Under Test, and the glue code which connects the scenarios in a suite to the
System Under Test.

• A set T of default full traces of the scenarios in Σ. As described in section 5.4.4,
each scenario in Σ is executed once, producing a default trace, and this trace
becomes a member of T . Thus, T is formed by the collection of default full
traces of the scenarios in Σ. The information we record as part of the default full
trace for each scenario is mentioned in section 5.4.2.

• A set E of essential full traces of the scenarios in Σ. As described in section 5.4.5,
an essential trace of a scenario is formed by parts of the trace that remain constant
across several runs. Thus, E is formed by the collection of essential full traces
of the scenarios in Σ.

Process description: The following functions manipulate the inputs to produce a re-
port of duplicate scenarios

• Given T and scenario name s as inputs, a function de f aultFullTrace searches
T and returns from T the default full trace of s.

• Given E and scenario name s as inputs, a function essentialFullTrace searches
E and returns from E the essential full trace of s.

• Given two traces, t1 (for scenario s1) and t2 (for scenario s2), a functionn equalOr-

Subseq(Trace t1, Trace t2) checks for the equality or subsumption of one trace
by another. If t1 (for scenario s1) and t2 (for scenario s2) are equal or one trace
is subsumed by the other, then the two scenarios are considered to be semanti-
cally equivalent, and the information about the detected duplicate pair is added
(using the append function) into the set Pairs that stores information about the

5.4. DETECTING DUPLICATE SCENARIOS 131

duplicate pairs of scenarios detected by the algorithm. In practice, the subsump-
tion of one trace by another would represent a case in which the functionality
represented by one scenario is subsumed by another scenario (for example, in
Listing 5.1, the last scenario subsumes the first two scenarios). Further, as can
be seen in Algorithm 1, the function equalOrSubseq(Trace t1, Trace t2) can take
full traces or specific parts of full traces. To extract specific parts of a default
full trace or an essential full trace, three different functions (stmts(FullTrace t),
api(FullTrace t), and apiAndInternal(FullTrace t)) are used. The three functions
respectively extract statements (representing execution paths), public API calls,
and public API and internal calls, from either default full traces (t and t ′) or
essential full traces (e and e′).

Output description: Algorithm 1 produces a collection of pairs of duplicate scenarios
detected from a suite Σ.

Asymptotically, Algorithm 1 is of θ(n2)complexity.

Implementation

Several BDD tools and language variants exist. We constructed our tool to work with
BDD feature files written in the Gherkin language, currently the most widely used
BDD language [195, 28], with glue code written in Java, using Cucumber-JVM con-
ventions4. However, since we depend mainly on the ability to generate traces of se-
lected classes and methods, the tool is easily adaptable to work with other BDD engines
and languages whose program execution can be traced.

Each scenario is executed individually, and AspectJ5 is used to generate trace infor-
mation for the methods of the code under analysis. Other tools such as debuggers and
profilers might be used for this task, but AspectJ was chosen based on the convenience
and familiarity to the researcher, in addition to its suitability for the task as hand. The
trace is produced as an XML file, which allows us to use XQuery [196] to search for
duplicates. Since BDD scenarios typically number in the tens or hundreds [28], we can
match the trace of one scenario against every other trace in order to search for dupli-
cates, and still manage to get the results in reasonable time scales. Figure B.1 shows
an example duplication report for some duplicate scenarios in evaluation System 1.

4cucumber.io/docs/reference/jvm
5www.eclipse.org/aspectj

132 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

Algorithm 1: Detecting semantically equivalent scenarios in BDD specifica-
tions

Input: A BDD suite Σ

A set T of default full traces of the scenarios in Σ

A set E of essential full traces of the scenarios in Σ

Output: Semantic duplicate scenario pairs
1 Pairs←{}
2 foreach scenario s in Σ do
3 t← de f aultFullTrace(T,s)
4 e← essentialFullTrace(E,s)
5 foreach scenario s′ in Σ (where s′ 6= s) do
6 t ′← de f aultFullTrace(T,s′)
7 e′← essentialFullTrace(E,s′)
8 if equalOrSubseq(t, t ′) then
9 Pairs.append({s,s′})

10 else if equalOrSubseq(stmts(t),stmts(t ′)) then
11 Pairs← ({s,s′})
12 else if equalOrSubseq(api(t),api(t ′)) then
13 Pairs.append({s,s′})
14 else if equalOrSubseq(apiAndInternal(t),apiAndInternal(t ′)) then
15 Pairs.append({s,s′})
16 else if equalOrSubseq(e,e′) then
17 Pairs.append({s,s′})
18 else if equalOrSubseq(stmts(e),stmts(e′)) then
19 Pairs.append({s,s′})
20 else if equalOrSubseq(api(e),api(e′)) then
21 Pairs.append({s,s′})
22 else if equalOrSubseq(apiAndInternal(e),apiAndInternal(e′)) then
23 Pairs.append({s,s′})
24 else
25 report nothing because ({s,s′}) is not a duplicate pair

26 return Pairs

Finally, since we store the traces for the scenarios in XML files, we leveraged the
capabilities of the XMLUnit API6 to compute the differences between the traces for
several runs of a scenario. Identifying the differences between the traces for several
runs of a scenario helps locate parts that vary in a trace of a scenario, as well as parts
that remain constant across several runs. As described in section 5.4.5, an essential
trace of a scenario is formed by trace parts that remain constant across several runs of

6https://www.xmlunit.org/api/java/master/index.html

5.5. EVALUATION 133

a scenario.

5.5 Evaluation

In this section, we describe the design of the evaluation experiment we performed,
present the results and discuss their significance.

We conducted an evaluation to test the hypothesis that comparing how scenarios exer-
cise the production code can detect semantically equivalent BDD scenarios in a way
that outperforms existing duplicate detection approaches. In particular, we wanted to
provide answers to the following research questions:

RQ1: How effective is each heuristic in detecting duplicate BDD scenarios, and
which heuristics perform better than others?

RQ2: Does the focus on essential information in the traces of BDD scenarios
improve the detection of duplicate BDD scenarios?

RQ3: How does the tool developed in the present study compare with existing
duplicate detection tools?

5.5.1 Experiment Design

We used the benchmark of known duplicate pairs across the three evaluation systems
(section 4.3) to test the ability of our tool to detect these duplicates and only these
duplicates. As previously stated, we probably have to tolerate the fact that our tool
produces some false positive results, given the difficulty of finding a definition of se-
mantic duplication that can give accurate results in all cases. However, we would
prefer the number of false positive results to be low, as each one represents a cost to
the developer using the tool (in terms of the time required to investigate and reject the
candidate duplicate). We can tolerate false negatives, too, to an extent, again given the
difficulty of finding a definition of semantic duplication that can give accurate results
in all cases. Having a way to find some duplicates in BDD specifications is still use-
ful, even if others are left undetected. But, again, we would like the number of false
negative matches to be low, to avoid the risk of important (costly) duplicates being
missed.

134 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

However, as is well known, it is not usually possible to determine the number of false
negatives using a pure injection approach due to the size of the data set. In our case,
the BDD specifications we used for evaluation were comparatively small. But, as has
been described in section 4.3.4, the people who volunteered to inject duplicates into
our evaluation systems were not from the development team of the three systems, and
so had no specific expertise in the intended meaning of the existing scenarios. We
therefore had no reliable oracle that we could ask to provide information on known
non-duplicates within the evaluation systems. Thus, it was necessary to assume that
the only duplicates in the system were those developed in section 4.3. To obtain in-
formation about the false negative results, we can only ask how many of the known
duplicates were not detected by our tool, and to set this as a lower bound on the actual
number of false negatives. This is a normal practice in an area of software engineering
that focuses on detecting clones in software systems [4, 37].

Apart from evaluating the ability of our tool to detect injected duplicates (Table 4.4),
we also evaluated its ability to detect duplicates between original scenarios (Table 4.2).
Thus, the same benchmark used to evaluate existing duplicate detection tools (Sec-
tion 5.3) was used for this particular experiment. This, in turn, enabled us to compare
our tool with existing duplicate detection tools on the problem of detecting semanti-
cally equivalent BDD scenarios.

A good performing heuristic should be able to detect as many known duplicate sce-
nario pairs as possible from our benchmark. As well, the focus on essential traces of
scenarios will be said to increase the duplicate detection ability if there exist dupli-
cate pairs that are detected by a heuristic on essential traces but are not detected by a
corresponding heuristic on default traces.

5.5.2 Results

We now present the results of the evaluation experiment, showing the detailed results
as well as their summary through a plot of recalls, precisions and F-score.

Table 5.2 presents the results for the 8 hypotheses on the three systems. Other columns
should be self-explanatory, except for the following:

• Inj. represents the number of known duplicate scenario pairs, obtained through
injection.

5.5. EVALUATION 135

• Det. represents the number of detected duplicate scenario pairs, out of the known
ones (Inj.).

• FN represents the number of known duplicate pairs, injected in the system, that
were not detected. FN is the lower bound of False Negatives because a partic-
ular system could have other duplicate pairs of scenarios that were not detected
by our algorithm and were not part of our benchmark due to our inability to
identify them. Thus, FN is constituted by only the known duplicates that went
undetected, not all the duplicates that went undetected.

• CS represents the size of the candidate set, which is the number of scenario
pairs that were reported as duplicates by an algorithm for a particular hypothesis
(including those which were not in our set of injected pairs).

• Columns OO-TP, OO-FP, IO-TP, IO-FP, II-TP and II-FP show the distribu-
tion of the members of the candidate set for a particular heuristic. For example,
column OO represents the number of members of a candidate set that report
duplication between original scenarios (scenarios that existed before volunteers
injected duplicates). These scenario pairs can either be True Positives (TP), clas-
sified as OO-TP; or False Positives (FP), classified as OO-FP.

• IO and II represent duplication between original and injected scenarios, and du-
plication between injected scenarios, respectively—as explained in section 4.3.4.

We manually inspected every pair in the candidate set to put it in a particular category.

The charts in Figure 5.3 plot precision, recall and F-score for the results of the algo-
rithms for each of the 8 hypotheses on the 3 systems. Recall is computed as the ratio
of number of detected duplicate pairs (Det. in Table 5.2) to the number of known du-
plicate pairs (Inj. in Table 5.2). Precision is computed as the ratio of the number of
True Positives (sum of OO-TP, IO-TP, and II-TP in Table 5.2) to the number of pairs
in the candidate set (CS in Table 5.2).

Table 5.3 provides the comparison between our tool (SEED2) and the existing du-
plicate detection tools, on a benchmark of duplicates between original scenarios (Ta-
ble 4.2). With reference to the column labels in Table 5.3, Recall is computed as the
ratio of Detected Known Duplicates to Known Duplicates, while Precision is computed
as the ratio of Duplicates Between Whole BDD Scenarios to Candidates. Because H2
and H2' are the best performing heuristics of our duplicate detection framework, and

136 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

Hyp. Syst. Inj. Det. FN CS OO-TP OO-FP IO-TP IO-FP II-TP II-FP

H1 1 75 0 75 0 0 0 0 0 0 0

2 40 9 31 9 0 0 5 0 4 0

3 10 0 10 0 0 0 0 0 0 0

H2 1 75 71 4 126 16 2 48 15 23 22

2 40 40 0 40 0 0 23 0 17 0

3 10 6 4 6 0 0 4 0 2 0

H3 1 75 0 75 0 0 0 0 0 0 0

2 40 9 31 9 0 0 5 0 4 0

3 10 0 10 0 0 0 0 0 0 0

H4 1 75 0 75 0 0 0 0 0 0

2 40 9 31 9 0 0 5 0 4 0

3 10 0 10 0 0 0 0 0 0 0

H1' 1 75 3 72 3 0 0 2 0 1 0

2 40 40 0 40 0 0 23 0 17 0

3 10 0 10 0 0 0 0 0 0 0

H2' 1 75 71 4 126 16 2 48 15 23 22

2 40 40 0 40 0 0 23 0 17 0

3 10 6 4 6 0 0 4 0 2 0

H3' 1 75 3 72 3 0 0 2 0 1 0

2 40 40 0 40 0 0 23 0 17 0

3 10 0 10 0 0 0 0 0 0 0

H4' 1 75 3 72 3 0 0 2 0 1 0

2 40 40 0 40 0 0 23 0 17 0

3 10 0 10 0 0 0 0 0 0 0

Table 5.2: Detailed results for the 8 different hypotheses on the 3 systems

both H2 and H2' had equal performance during our evaluation (Table 5.2), we used the
results of H2 when comparing the performance of our tool with the performance of the
existing duplicate detection tools.

5.5. EVALUATION 137

(a) System 1

(b) System 2

(c) System 3

Figure 5.3: Plot of precision, recall, and F1 score for the algorithms of 8 different
hypotheses across the 3 systems

138 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

We used the results for H results we used to compare SEED2 with the existing tools

System Tool Known
Dupli-
cates

Detected
Known
Dupli-
cates

Candidates Duplicates
Between
Whole
BDD
Scenar-
ios

Recall (%) Precision (%)

1

PMD 9 0 12 0 0.00 0.00

CloneDR 9 1 6 1 11.11 16.67

DECKARD 9 9 589 112 100.00 19.02

SEED2 9 9 18 16 100.00 88.89

2

PMD 1 0 7 0 0.00 0.00

CloneDR 1 0 1 0 0.00 0.00

DECKARD 1 0 43 0 0.00 0.00

SEED2 1 0 0 0 0.00 0.00

3

PMD 3 0 8 0 0.00 0.00

CloneDR 3 0 1 0 0.00 0.00

DECKARD 3 1 951 48 33.33 5.05

SEED2 3 0 0 0 0.00 0.00

Table 5.3: Comparison between our tool and the existing duplicate detection tools

5.5.3 Discussion

RQ1: On the effectiveness of each heuristic, and the identification of a best per-
forming heuristic: The results for each heuristic are shown in Table 5.2 and Fig-
ure 5.3. Generally, the algorithms for H2 and H2' performed much better, on all the
systems, compared to the algorithms for the rest of the heuristics. Based on these re-
sults, the comparison of execution paths (heuristics H2 and H2') of BDD scenarios
revealed more duplicates across the three systems, than the comparison of full traces,
API calls, or the combination of API and internal calls. This was so irrespective of
whether or not the duplicate detection algorithm used default or essential traces of sce-
narios. More specifically, across the three systems, the comparison of both default and
essential execution paths (H2 and H2') detected exactly the same duplicate pairs of
scenarios. This could suggest that all of our evaluation systems had no runtime condi-
tions that affected the choice of execution paths of the scenarios in the known duplicate
pairs.

5.5. EVALUATION 139

Additionally, the algorithms that compared execution paths also detected duplicate
pairs of BDD scenarios that were not known to us beforehand. This was especially
true for heuristics H2 and H2'on System 1 where 16 pairs of duplicate scenarios were
reported between original scenarios, and confirmed to be true positives (see Table 5.2).
7 out of 16 (OO-TP) pairs of duplicates between original scenarios were not known to
us beforehand; only 9 of them were known to us beforehand from Table 4.2.

Thus, in general, the comparison of execution paths gives better detection of semanti-
cally equivalent BDD scenarios.

Answer to RQ1: Each heuristic can detect some duplicates, but the comparison of

execution paths of scenarios is the most promising approach to detecting semantically

equivalent BDD scenarios.

RQ2: On whether the focus on essential traces of scenarios improves duplicate
detection: From the results in Table 5.2 and Figure 5.3, when attempting to detect
duplicate BDD scenarios, the focus on essential parts of full traces, API calls, or the
combination of API and internal calls, can improve the duplicate detection capability.
This can be seen by comparing H1 and H1', H3 and H3', and H4 and H4', for systems
1 and 2 in Figure 5.3. For system 1, in particular, in each of these comparable cases,
the recall value improved to a relatively small extent. Nevertheless, the precision value
in each of these comparable cases improved to 100%, meaning that each of the ex-
tra duplicate pair reported by the algorithms focusing on essential traces was a true
positive. For system 2, there was a dramatic increase in all the three metrics—recall,
precision and F1 score—for the three comparable cases: H1 and H1', H3 and H3', and
H4 and H4' (refer to Figure 5.3). So, from these results, apart from execution paths,
the comparison of essential traces of full traces, public API calls, or a combination of
public API and internal calls, can also be used when relatively higher values of both
recall and precision are preferred. For System 3, however, there was no evidence that
the focus on essential traces improved the detection of semantically equivalent BDD
scenarios.

Answer to RQ2: The focus on essential traces of scenarios can improve the duplicate

detection capability.

RQ3: On how the tool developed in the present study compare with existing du-
plicate detection tools: From the results in Table 5.3, our tool has improved precision
(88.89%) on System 1, compared to the precision of DECKARD (19.02%), the best

140 CHAPTER 5. DETECTING DUPLICATE SCENARIOS IN BDD SUITES

performing tool out the existing duplicate detection tools we experimented with. How-
ever, similar to the existing tools, our tool, too, did not perform better on System 2 and
System 3. This could partly be attributable to the size of the benchmarks of known
duplicates between original scenarios of the two Systems (1 for System 2 and 3 for
System 3), in addition to scenario/project-specific attributes. Thus, in the future, it
would be good to test all the tools on reasonably large benchmarks of known dupli-
cates between original scenarios, to ascertain their true abilities.

Answer to RQ3: The tool developed in the present study recorded better precision

than existing tools on a benchmark of pairs of known duplicates between original sce-

narios.

5.6 Summary

Large BDD suites can be difficult to manage, especially when different parts of the
same suites have been developed by different teams and/or people, probably over dif-
ferent periods of time. The specifications can contain duplication that can make them
difficult to comprehend, maintain and extend.

In this chapter, we analysed the problem of detecting such duplication, discussed the
limitations of existing tools for the problem, and have described our approach for de-
tecting duplicate BDD scenarios. We have proposed to detect semantically equivalent
BDD scenarios based on the way the production code is exercised by the individual
scenarios. We analysed execution traces of methods in the production code to find
duplication candidates. We evaluated the approach by asking 13 volunteers to inject
duplicate scenarios into three open source software systems, forming the ground truth;
and compared the ground truth with the duplicate candidates that our tool produced.
The comparison of execution paths recorded better values of recall, precision and F-
score, across the 3 evaluation systems, outperforming the comparison of full traces,
public API calls, and a combination of public API calls and internal calls. Thus, on
the basis of these results, comparison of execution paths is the most promising way to
detect duplicate BDD scenarios.

To conclude, execution traces can help us find some duplicate scenarios in BDD spec-
ifications, but an appropriate abstraction over the trace is needed to give strong results
in terms of precision and recall. However, individual attributes of projects can get in
the way, leading to unforeseeable results. For example, the design and implementation

5.6. SUMMARY 141

details of individual systems could influence the duplicate scenarios that get detected
by a generic approach.

Chapter 6

Quality-Oriented Removal of
Duplicate Scenarios in BDD Suites

6.1 Introduction

In Chapter 5, we presented an approach to detect duplicate scenarios in BDD feature
suites. In the present chapter, we present an approach to guide the removal of duplicate
scenarios after they are detected. In particular, we want to explore the aspects of sce-
narios that can help us decide what scenario to remove, given a pair of duplicate BDD
scenarios.

After pairs of duplicate scenarios are reported by duplicate detection tools, different
strategies can be employed to manage the detected duplicate scenarios, just like it is
done in managing duplicates that get detected in program code [74, 197]. Like the
removal of duplicates in program code, among the possible actions for the removal of
duplicate BDD scenarios are merging duplicate scenarios into one scenario or delet-
ing one of the scenarios in a duplicate pair while keeping the other. Given a pair of
duplicate scenarios, in case the decision is to delete one scenario and keep the other,
the maintainer of the BDD suite is still left with the challenge of deciding which of the
duplicated scenarios should be removed. Naively, since they are duplicates, one might
say that either scenario in a pair could be removed without changing the semantics
of the suite. In reality, however, some scenarios may be of better quality than others,
while expressing the same example behaviour. Removing one of the scenarios in the
pair might increase the quality of the suite as a whole, while removing the other might

142

6.1. INTRODUCTION 143

reduce it.

BDD suite quality has been heavily discussed amongst practitioners [152], but as yet
no mature formal substantiated definitions have been given. Consequently, there are
no formal quality guidelines that can help maintainers in removing duplicate scenarios
from BDD feature suites. Existing studies on quality of BDD scenarios [198, 199, 134]
are still in their infancy, and the metrics they provide can support the evaluation of the
quality of individual scenarios within a feature suite. They, however, do not offer
mechanisms to evaluate the quality of a scenario relative to the whole feature suite
to which a scenario belongs. For example, both scenarios A and B from a particular
feature suite can be generally poor according to the quality attributes by Oliveira et

al. [134], but still scenario A can be preferable to scenario B when each is evaluated
relative to the whole feature suite to which scenarios A and B belong. As such, faced
with a need to make a decision on which scenario to remove, it would be preferable for
the maintainer to remove B and keep A. We thus need a set of metrics to support this
relative quality assessment, and the study we present in the present chapter set out to
devise and evaluate the performance of such metrics on the problem of deciding which
scenario to remove, given a pair of semantically equivalent BDD scenarios.

To understand how quality properties of a suite might be used to guide the removal of
duplicate scenarios, we begin the assumption that:

H: We can use quality aspects of scenarios in a BDD suite to guide the removal
of duplicate scenarios from a suite.

To confirm or refute this hypothesis, we posed three research questions, which are
answered in this chapter:

RQ1: What are the properties of scenarios that affect the quality of a feature
suite as a whole?

RQ2: How are the quality properties in RQ1 perceived in practice?

RQ3: To what extent are the scenarios’ quality properties successful in guiding
the removal of duplicate scenarios from the feature suites?

To answer these questions, it is necessary to have a clear idea of what is meant by
quality of a scenario relative to the whole BDD feature suite. The attempts to define
BDD quality in the literature can only facilitate the assessment of quality of an indi-
vidual scenario in a suite, and not for assessing the quality of a scenario in relation to

144CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

all other scenarios in a suite. We propose four principles describing BDD suite qual-
ity. Each of the proposed principles focuses on a particular property of BDD suites
whereby, to increase the quality of a suite as a whole, some of the properties have to
be maximised while some have to be minimised. The first principle encourages reuse
of step phrases across scenarios in a feature suite. The second principle encourages
reuse of domain vocabulary across scenarios in a feature suite. This is inline with the
agile practice of Ubiquitous Language [200] and the ubiquitous attribute in the list of
quality attributes for BDD scenarios as proposed by Oliveira et al. [134]. The third
principle discourages the use of implementation level terms that, in most cases, only
members of the development team can understand, when, in principle, a BDD speci-
fication should be understood by all project stakeholders, including those outside the
development team. The fourth principle encourages consistency of abstraction level
when expressing different scenarios of a particular feature suite.

We surveyed the community of BDD practitioners to gauge the level of support for the
principles. All principles received support from the community (with at least 75% of
respondents voting in support of each principle), though all of them also received a
small number of dissenting votes. We also report on practitioners’ opinions on other
BDD quality aspects not covered by the four principles.

We further demonstrate how the proposed principles can be used to guide maintainers
of BDD suites in removing duplicate scenarios from the suites. During the evaluation
of the ability of the principles to guide the removal of duplicate scenarios, each of the
four principles gave a reasonable number of acceptable remove suggestions. Thus, the
results suggest that the four principles can be used to assess which scenario in a pair of
duplicate scenarios can be most effectively removed.

This chapter makes the following contributions:

• BDD Suite Quality Principles: We propose four principles describing features
expected of a high quality BDD specification.

• Practitioner Support for the BDD Suite Quality Principles, and Other Qual-
ity Facets of BDD Suites: We report the results of a survey of practitioner sup-
port for the principles. We also report on practitioners’ opinions on other quality
aspects of BDD suites that are not covered by the four principles.

• Operationalization of Principles: We propose an approach to operationalize
each principle, so that BDD specifications can be assessed automatically against

6.2. BDD SUITE QUALITY PRINCIPLES 145

it.

• Use of Principles in Generating Refactoring Advice: We use the operational-
ized principles to propose removal of duplicate scenarios, and evaluate the ap-
proach on 3 open source software systems. The results from both the lab experi-
ment and the experiment with a BDD practitioner from the industry suggest that
the four principles can be used to support quality-preserving removal of dupli-
cate scenarios from BDD feature suites.

The rest of this chapter is structured as follows: section 6.2 presents the quality prin-
ciples we use to guide the removal of duplicates in BDD suites; section 6.3 presents
practitioners’ opinions about the proposed BDD quality principles, as well practition-
ers’ opinions on other aspects of BDD suite quality not covered by the four principles;
section 6.4 describes our operationalisation of the principles; section 6.5 presents the
empirical support we gathered for the principles; section 6.6 presents the threats to the
validity of the results for the work described in the present chapter; and section 6.7
concludes the chapter.

6.2 BDD Suite Quality Principles

Given a pair of duplicate scenarios, we need a set of criteria to decide which scenario
to keep and which scenario to remove. The mere fact that two scenarios are duplicates
does not mean that deleting either of them will have the same effect on the overall
quality of the BDD suite. One of the duplicated scenarios may be of higher quality
than the other. In order to advise owners of a BDD suite regarding which of the du-
plicate scenarios to remove we need a definition of “good quality” for BDD suites that
is precise enough to be used by an automated tool. While there is a lot of discussion
about BDD quality (and some well known rules of thumb) [152], we could find no val-
idated precise definition that would be suitable for helping in the removal of duplicate
scenarios. Oliveira et al. [134] attempted to define the characteristics desirable in a
good BDD scenario, but those characteristics are not precise enough to facilitate the
assessment of one scenario in relation all others in a suite. We set about defining a
number of BDD quality principles, based on our own experience and understanding of
writing BDD suites, informed by the opinions of practitioners as reported in blogs and
and websites.

146CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

In this section, we first present the process used to produce the principles, and then we
describe the four principles in their general form. In section 6.4, we will operationalise
the principles, to give versions that can be used in a refactoring advisor tool.

6.2.1 Aspects of Quality in BDD Specifications

We now detail the process used to produce the four BDD suite quality principles.

To understand what constitutes good quality in BDD suites, we first searched the lit-
erature for attempts to define quality in BDD specifications. This gave us only the
work of Oliveira et al. which suggested that good BDD scenarios should be essential,
focused, singular, clear, complete, unique, ubiquitous, and integrous [134, 198, 199].
Refer to section 2.5 for the description of each of these attributes. However, these at-
tributes define, in more general terms, the characteristics expected of a good scenario,
but are not precise enough to facilitate the assessment of the quality of one scenario in
relation to all other scenarios in a suite. Thus, given a pair of duplicate scenarios in
which both scenarios evaluate to “good” (for example) based on the quality attributes
by Oliveira et al. [134], the maintainer wanting to remove one scenario and keep the
other would still face the challenge of deciding which scenario to remove. Removing
one scenario may preserve the overall quality of a BDD feature suite, while removing
the other may impair it. We thus need more precise definitions of BDD quality that
can be used to assess the quality of a scenario relative to all other scenarios across a
feature suite. Such definitions would support the process of making broadly informed
decisions when removing duplicate scenarios from a BDD feature suite.

To obtain attributes that are suitable for assessing the quality of a scenario relative to
all other scenarios across a feature suite, we borrowed ideas from the quality attributes
in the work of Oliveira et al. [134] and complemented these ideas with other practi-
tioners’ opinions on quality in BDD feature suites. To obtain practitioners’ opinions on
quality in BDD feature suites, we analysed articles from the BDD Addict Newsletter
[152], a monthly online newsletter about BDD, which publishes articles about various
aspects of BDD from the perspective of BDD practitioners. Articles from 32 issues
of the newsletter (from February 2016, when the first issue was released, to December

6.2. BDD SUITE QUALITY PRINCIPLES 147

2018) were analysed for quality facets in BDD suites. We then searched StackOver-
flow1 and StackExchange2 for any additional BDD quality facets that might not have
been covered in the BDD Addict Newsletter. Table 6.1 summarises the quality facets
we obtained through this process.

S/n Quality Aspect

1 A good quality scenario should be concise, testable, understandable, unambigu-
ous, complete, and valuable

2 Reuse of steps across scenarios can improve suite quality

3 Declarative (high level) steps are preferred to imperative (low level) steps

4 Business terminology should be consistently used across the specification

5 Scenarios should focus on the benefit they offer to users, if implemented

6 Scenarios should use the terminology understood by all project stakeholders

7 Each scenario should test one thing

8 Scenario titles should be clear

9 Scenario descriptions should be focused

10 Personal pronoun “I” should be avoided in steps

11 Too obvious and obsolete scenarios should be avoided in the suite

12 Scenario outlines should be used sparingly

13 Scenarios should clearly separate Given, When and Then steps

14 Use past tense for contexts (Given), present tense for events (When), and
“should” for outcomes (Then)

Table 6.1: BDD quality aspects from scientific and grey literature

But, in the interest of time, we could not produce precise and automatable definitions
of BDD quality from all the quality facets by Oliveira et al. [134] as well as the
quality facets in Table 6.1, for use in the removal of duplicate scenarios. Hence, we
wanted a subset of these quality facets, which is concrete enough for use in guiding
the removal of duplicate BDD scenarios from the suites. We, therefore, conducted
a thought experiment in which we attempted to apply the quality facets in Table 6.1
on the problem of deciding which scenario to remove, given a pair of duplicate BDD
scenarios.

1https://stackoverflow.com/
2https://stackexchange.com/

148CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

More specifically, informed by quality facets from the literature [134] and practition-
ers’ opinions (Table 6.1), and our own experience and understanding of writing BDD
suites, we analysed 9 randomly selected pairs of duplicate scenarios from the 3 eval-
uation systems (described in section 4.3.2), aiming to determine which scenario to
remove in each pair and the reasons for the decisions we made. By assessing the rea-
sons for the choices we made for each pair, we learned the following: across the 9
pairs, we suggested keeping the scenario whose steps either had more reuse across the
specification, or used more domain terms, or used less implementation level terms,
or had an abstraction level that broadly resembled with the abstraction levels of other
scenarios in the specification it belonged to, or a combination of two or more of these
aspects. We thus summarise, in four quality principles, the aspects that stood out in
our experiment of deciding which duplicate scenarios to remove. These principles are
described in detail in the next four sections.

6.2.2 Principle of Conservation of Steps

This principle seeks to maximise the use of existing steps across the specification,
and tries to avoid having too many steps that are used only in one scenario or a small
number of scenarios. To illustrate this idea, focusing on the first scenario in Listing 1.1,
suppose we need to write a scenario for when the bank customer tries to withdraw more
money than is in their account; we should reuse the step phrases from the existing
scenarios rather than inventing new ways of phrasing the same idea (e.g. “my account
is in credit by $10” rather than “my account balance is $10”).

The rationale is as follows. The steps in a BDD suite form a vocabulary for talking
about the functionality of the system. The Given and Then steps describe aspects of
the system state, while the When steps describe all the actions the system’s users and
stakeholders should be able to take. Expressing a variety of system functionalities
using a small number of steps reduces the comprehension effort needed to understand
the whole specification, and reduces the chance that duplicated or subtly inconsistent
scenarios will be added in future.

Based on this intuition, this principle advocates for the introduction of new steps only
if the requirements to be specified in those steps cannot be expressed by existing steps.
So, given a pair of duplicate scenarios, this principle suggests the removal of the du-
plicate scenario whose steps are used least across the specification. (In the ideal case,

6.2. BDD SUITE QUALITY PRINCIPLES 149

this would remove the only appearance of a step, allowing it to be removed from the
BDD suite altogether.)

6.2.3 Principle of Conservation of Domain Vocabulary

Any organisational process that is supported by software will typically accrue over its
lifetime a set of terms or phrases describing the key ideas in the domain of the process,
that are used by the people involved to communicate about and advance the state of
the work. The agile practice of a Ubiquitous Language requires the software team to
use the same terms wherever possible, in the artefacts that describe and constitute the
system [200]. This is also true within BDD scenarios.

With this in mind, the Principle of Conservation of Domain Vocabulary seeks to max-
imise the value of each domain term or phrase that used in the BDD suite. Inevitably,
in any human endeavour, different terms may be used for the same concept (and the
same term may have different meanings). But each additional term increases the cog-
nitive load for readers and writers of scenarios. We therefore consider a suite to be of
high quality if it can express the required semantics clearly with the minimum number
of domain terms and phrases. This is also inline with the ubiquitous aspect in the list
of quality aspects for BDD scenarios proposed by Oliveira et al. [134]. So, given a
pair of duplicate scenarios, this principle suggests the removal of the scenario which
contains more less frequently used domain terms.

6.2.4 Principle of Elimination of Technical Vocabulary

Since BDD scenarios are meant to be readable by all project stakeholders (including
end users), the use of technical terms that, in most cases, only the development team
can understand, is discouraged. As such, scenarios that use domain terms are generally
preferred to scenarios that use technical terms. This principle, therefore, focuses on
minimising the use of technical terms in the steps of BDD scenarios. So, given a
duplicate pair of scenarios, the Principle of Elimination of Technical Vocabulary will
keep the scenario with no or fewer technical terms.

150CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

6.2.5 Principle of Conservation of Proper Abstraction

One challenging aspect in the creation of a BDD feature suite is to select an appropri-
ate level of abstraction for the scenarios, and in particular for the steps. Higher level
steps convey more semantics, so that scenarios can be expressed using fewer steps,
and are often closer to the domain concepts that end users are familiar with. But they
require more extensive glue code to be written, with more embedded assumptions, so
that sometimes the meaning of the suite cannot be understood with precision with-
out reference to the glue code. Lower level steps describe more fine-grained aspects
of system state and state change. Scenarios using them will typically be longer, re-
quiring more steps to express the same semantics than when using higher level steps.
But lower level steps require smaller simpler glue code to implement them. Feature
suites written using very low level steps can often be very brittle, breaking easily when
small implementation details change, and can be too procedural, resembling traditional
testing scripts, rather than end-user focussed declarative examples.

Intuitively, therefore, a BDD feature suite in which scenarios are written at a consistent
level of abstraction will be easier to understand, extend and maintain. On the contrary,
if the feature suite has a mix of scenarios expressed at a low level of abstraction and
scenarios expressed at a higher level of abstraction, it can be difficult for a maintenance
engineer to decide on the level of abstraction to use in expressing a new scenario.
Moreover, there is likely to be duplication of steps and glue code, and the test harness
code will also be at inconsistent levels of abstraction, adding to the comprehension and
maintenance burden.

This principle attempts to capture this notion of feature suite quality. As such, given
a pair of duplicate scenarios, adherence to this principle would recommend keeping
the scenario whose abstraction level is largely consistent with the abstraction levels of
other scenarios in the specification, and deleting the scenario with steps that are at a
contrasting abstraction level with the bulk of the suite.

6.3 Community Support for the Quality Principles

We conducted a survey to gather practitioners’ opinions on the four principles. We
wanted to discover whether the principles resonated with practitioners as accurate de-
scriptors of facets of BDD suite quality, and whether there were important quality

6.3. COMMUNITY SUPPORT FOR THE QUALITY PRINCIPLES 151

facets we had overlooked.

6.3.1 Survey Design

The survey questions covered respondents’ demographics, respondents’ views on the
four principles and respondents’ opinions on quality aspects not covered by the princi-
ples. The four questions on demographics were:

Q1: Which of the following best describes your job? (Options: Developer;
Tester; Business Analyst; Chief Technology Officer (CTO); Researcher; Other,
please specify)

Q2: What is the size of your organisation? (Options: 1-20 employees; 21-
99 employees; 100-1000 employees; more than 1000 employees; Other, please
specify)

Q3: Which of the following best describes your experience of working with

BDD? (Options: less than 1 year; 1-5 years; 6-10 years; over 10 years; Other,
please specify)

Q4: What country are you based in? (Free text)

To mitigate the potential for bias and allow respondents to think and respond in a
natural way, the exact principles were not disclosed in the survey. Instead, we sought
respondents’ degree of agreement with informal statements of the principles:

Q5: When adding new scenarios to a BDD specification, we should strive to

reuse existing steps wherever that is possible without compromising readability

of the scenario.

Q6: When writing the BDD scenarios for a particular domain, we should strive

to make use of a minimal set of domain terms in our scenario steps. That is, we

prefer to write steps that reuse domain terms already used in other steps, rather

than introducing new terms, wherever that is possible without compromising

readability of the scenario.

Q7: When adding new scenarios to a feature suite, we should prefer to use steps

that are expressed using domain terms over steps that are expressed using more

technical language, whenever we have a choice.

152CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Q8: Within a feature suite, the abstraction levels of steps in one scenario should

be largely consistent with the abstraction levels of steps in other scenarios in the

suite.

A 5-point likert scale (Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree)
was used to record the respondents’ degree of agreement with each of the given state-
ments in questions 5 to 8. For questions 1 to 3 and questions 5 to 8, an “other” free
text option allowed respondents to provide alternative responses or provide qualified
degree of agreement. Question 8 was supplemented by 2 example scenarios, clarifying
what we meant by “abstraction levels”.

Lastly, question 9 allowed free text for respondents to describe BDD quality aspects
not covered by the statements in questions 5 to 8:

Q9: Please give us any other thoughts on how to keep scenarios and steps of a

BDD specification readable, easy to extend, and maintainable.

The survey was pretested on a BDD practitioner from industry. Like the survey in
Chapter 3, this particular survey was developed and deployed using SelectSurvey.NET
on our university’s servers. Respondents completed the survey over a period of one
month from December 2018.

6.3.2 Ethical Considerations

The same ethical considerations in section 3.2.4 apply to this survey as well.

6.3.3 Respondents and Data Analysis

The same sampling mechanism and email contacts used for the survey in Chapter 3
(section 3.2.2) were used to distribute this survey as well. In addition to the BDD
Google groups that were used to distribute the survey in Chapter 3, this particular sur-
vey was also posted on the following Google groups of BDD practitioners: Specflow,
Concordion, and Serenity BDD.

The survey was viewed by 129 people, of whom 56 submitted responses to the key
questions on BDD suite quality. In the remainder of this chapter, all discussions of
survey results refer to this subset of 56 respondents. We randomly assigned them

6.3. COMMUNITY SUPPORT FOR THE QUALITY PRINCIPLES 153

numbers 1 to 56, and so we will hereafter refer to them as R1 to R56. The number of
responses to questions on the four principles were as follows: Conservation of Steps
(55), Conservation of Domain Vocabulary (54), Elimination of Technical Vocabulary
(55), and Conservation of Proper Abstraction (56). 31 people responded to Q9 by
mentioning other quality aspects of BDD suites.

The distribution of respondent roles was as shown in Table 6.2, and the sizes of re-
spondent organisations were as shown in Table 6.3. The respondents’ experience of
working with BDD is shown in Figure 6.1, and the geographical distribution of re-
spondents was as shown in Figure 6.2.

Role Percentage of Respondents

Developer 60.7%

Tester 12.5%

Consultant 7.1%

Chief Technology Officer (CTO) 5.4%

Researcher 3.6%

Business Analyst 1.8%

Other 7.1%

Did not say 1.8%

Total 100.0%

Table 6.2: Survey on BDD quality principles: roles of respondents

Size Percentage of Respondents

1-20 employees 26.8%

21-99 employees 16.1%

100-1000 employees 26.8%

More than 1000 employees 21.4%

All sizes 7.1%

Did not mention 1.8%

Total 100.0%

Table 6.3: Survey on BDD quality principles: sizes of respondent organisations

154CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Figure 6.1: Survey on BDD quality principles: Respondents’ experiences of working
with BDD

Also, the same mechanism used to analyse survey data in section 3.2.3 was used to
analyse the data for this survey as well. Different from section 3.2.3, the theoretical
thematic analysis in this regard was guided by the research question: how to keep BDD
suites comprehensible, extensible and maintainable?

6.3.4 Results

Figure 6.3 shows the respondents’ degree of agreement with each principle. Each
principle was accepted by at least 75% (Strongly Agree + Agree) of the respondents
who answered the question about it and clearly indicated their degree of agreement.

Other comments on the respective principles were:

1. Conservation of Steps:

• Steps should also be expressed in general terms:

– “Agree somewhat, but that’s not the most important consideration.

You should also consider generalizing existing steps. It’s not a big

deal, though, to create new steps and have them call common code

under the step definition layer.” (R2, Consultant)

6.3. COMMUNITY SUPPORT FOR THE QUALITY PRINCIPLES 155

Figure 6.2: Survey on BDD quality principles: Geographical distribution of respon-
dents

• Sometimes it can be a good idea to focus on writing clear steps that serve
the purpose, and then fix the design later:

– “Well, I would approach to famous phrase: First make it work. Then

make it right. (Kent Beck?). I agree you should try to not dupli-

cate steps, but one also must be careful not to force reuse of exist-

ing steps. Sometimes is maybe just much better to have 2 very similar

steps which doing almost same thing (but actually different), then have

1 step which hides some logic under the hood.” (R7, Developer)

– I try to express myself as clear as I can at the moment. Any reuse

is secondary. I also know that I will learn more about how the sys-

tem should in work in due time. That will effect how I might want to

rephrase myself later. (R4, Developer)

• The main focus should be on the readability, and reuse of steps can affect
the readability and maintainability of the specification:

– “Readability is the most important consideration here. If through the

light of the new spec, formulations of previously existing specs come

outdated, those should be considered for an update as well.” (R55,

156CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Figure 6.3: Acceptability of each BDD quality principle by respondents

Developer)

– “Duplication of steps is wasteful but using steps as reusable building

blocks has a high risk of compromising readability and accessibility

for business stakeholders.” (R8, Consultant)

2. Conservation of Domain Vocabulary:

• It should be possible to use new domain terms whenever necessary, pro-
vided that the specification remains readable to customers:

– “You should reuse domain terms where appropriate and introduce new

domain terms where appropriate. The scenarios should sound natural

to the widest community in the business.” (R2, Consultant)

– “The scenarios should, IMO, reflect the real domain language (as

practiced in DDD-like projects); hence I think we should introduce

domain terms from the ubiquitous language as they’re used...” (R20,
Developer)

– “The understanding and the language of the domain usually evolve

and refine over the course of a project. Therefore, if new terms arise

6.3. COMMUNITY SUPPORT FOR THE QUALITY PRINCIPLES 157

as the model evolves, those new terms must be used everywhere where

applicable (refer to ubiquitous language, E. Evans, Domain Driven

Design). It would be a reprehensable omission to stick to outdated or

unclear terms just for the sake of simplicity of consistency with slightly

related areas of the domain.” (R55, Developer)

3. Elimination of Technical Vocabulary:

• Implementation words can sometimes be used, depending on the product
owner and expected readers of the specification:

– “I would say I would normally strongly agree, but BDD tests can be

used to test the so-called non-functional requirements as well. Prod-

uct owners with some technical knowledge (the best type of product

owner) can understand technical terms and how tech affect overall

behaviour through non-functionals. So yes, why we should try to

express business behaviour with domain terms, non-functionals may

make more sense to use technical terms and we should not prohibit

that.” (R13, Developer)

– “I would agree but it depends on who reads the scenarios and how the

domain terms differ from the technical ones.” (R40, Developer)

– “The short answer is it depends .Basically it depends on the people

who will be reading the scenarios.” (R42, Tester)

• Sometimes, it can be challenging to translate domain words used in scenar-
ios into implementation details:

– “We ran into the issue where steps expressed using domain terms were

on occasion too vague to know what the implementation details were

supposed to be, as there was no spec other than the BDD tests (speci-

fication by example), and if the wrong implementation was chosen we

would receive a bug report. So while I think steps expressed using do-

main terms are more readable and understandable at a higher level

for non-technical staff, we had an implementation where we needed

more technical details to be specified to explain, for example, how the

system could get into a certain state instead of just specifying that it

was the case, and there were cases where the Given steps described an

158CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

impossible situation that lead to a decent discussion to get it erased.”

(R23, Developer)

4. Conservation of Proper Abstraction:

• The abstraction levels should be determined by capturing correct require-
ments, and producing scenarios that are readable to customers:

– “It depends. The abstraction level should help readability and it should

be based on the intent of the scenario... ” (R25, Test Architect)

• Lower abstraction levels can be appropriate if scenarios carry data:

– “Well... Not an easy question. I had situations when I have many

scenarios in feature, and my outputs are based on my inputs. So I used

2nd approach, with lower level abstraction because that way I could

change my inputs from feature file.” (R7, Developer)

• Sometimes, one can use different abstraction levels for Given, When, and
Then steps:

– “I always prefer writing the ‘Given’ part in most abstract way, then

the ‘When’ section should be more detailed. and the ‘Then’ should be

detailed but not in technical (like UI) language” (R25, Test Architect)

• The abstraction level of a scenario should depend on the behaviour being
specified:

– “The level has to fit the behaviour the example is illustrating. It should

be mention all the necessary parts and leave out all technical parts”

(R55, Developer)

Additionally, in response to Q9 in the survey, other opinions from respondents on how
to keep BDD suites readable, easy to extend and maintain, were as summarised in
Table 6.4 and Table 6.5.

6.3.5 Conclusions from the Survey

In general, the majority of the respondents supported the principles as acceptable de-
scriptors of facets of BDD suite quality (see “Strongly Agree” and “Agree” responses
in Figure 6.3). The written comments stressed the importance of reuse within BDD,

6.3. COMMUNITY SUPPORT FOR THE QUALITY PRINCIPLES 159

S/n Theme Frequency Sample Excerpts
1 Specification should act

as readable business doc-
umentation

11 -“The key is to have a multi-layered approach; the
gherkin scenarios should focus on being readable
as business documentation...” (R8, Consultant)

2 Clear description of busi-
ness goals using exam-
ples

5 -“Describe the business goal and the steps on how
to achieve them as clearly as you understand at the
moment.” (R4, Developer)
-“Focus on clean specifications that are consistent
within the bounded context” (R6, IT Consultant)

3 Use of common domain
concepts and terms
across the specification

5 - “...I like the idea of a glossary of terms from the
Writing Great Specifications book...” (R6, IT Con-
sultant)
-“Use the same domain language and terminology
as the rest of your organisation/customers/indus-
try” (R26, Chief Technology Officer)
-“...Have a glossary with important domain con-
cepts, primary term and possible synonyms.”
(R44, Principal Software Architect)

4 Focus on capturing com-
prehensive requirements
for all project stakehold-
ers

5 - “BDD specification should satisfy both business
analyst and developer as much as possible.” (R11,
Developer)
- “Everything around BDD and Specification by
example is around creating a shared understand-
ing. That is the core reason to do examples in the
first place; the help us uncover hidden assump-
tions...” (R18, BDD Coach)

5 Specification should
be easy to understand
based on general domain
knowledge

4 -“Test them on other people not involved in the
project. Can they understand what they mean?
Can they determine the intent of each scenario?...
” (R2, Consultant)
-“Where possible, involve less technical stake-
holders and team members in the process of sce-
nario development...” (R46, Developer)

6 Share specs with stake-
holders for reference and
correction, and perform
regular maintenance of
specs

4 -“I believe the key would be to periodically revisit
them and keep updated, if necessary rewrite or re-
word older ones. I find it very useful to also pub-
lish scenarios using ci tools somewhere so busi-
ness people can read specs and spot inconsisten-
cies” (R47, Developer)
-“At the very least, have the specs available for
reference by the project stakeholders.” (R46, De-
veloper)
-“...Refactoring also applies to BDD scenarios...”
(R44, Principal Software Architect)

Table 6.4: Other recommended practices for all project stakeholders on how to keep
BDD specifications readable, easy to extend, and maintainable

160CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

S/n Theme Frequency Sample Excerpts
1 Write reusable and yet

focused steps and step
definitions

11 -“...the gherkin scenarios should focus on being
readable as business documentation, and map to
reusable steps in the step definitions. It is the DSL
code in the step definitions where the real reusabil-
ity benefits occur” (R8, Consultant)
-“It’s best to re-use steps either by referring to
them directly (Using Given, And...), or creating
a new step definition using the underlying API,
not calling one step definition from another” (R24,
Software Engineer in Test)

2 Aim for more stateless
scenarios

4 -“The scenarios should be stateless, in the sense
that they should store as few data as possible.”
(R50, Developer)

3 Proper use and order of
Given, When, and Then
steps; and careful choice
and use of framework-
specific BDD features

4 -“Ensure that WHEN’s only perform actions and
THEM’s only assert (do not modify the SUT state
) and are expressed as such” (R43, Tester)
-“...Choose good titles (scenario/feature) 9) Don’t
send test data from feature file, (but examples of
behavior are allowed)10) Less is More 11) Limit
one feature per feature file. This makes it easy to
find features. 12) Hide data in the automation 13)
Steps order must be given/when/then - not other
order‘” (R25, Test Architect)

4 Miscellaneous: Keep-
ing an inventory of all
steps in a project; clear
separation of customer-
readable tests from glue
code and the underly-
ing API; and leveraging
the full capabilities of
underlying BDD frame-
work and regular expres-
sions

3 -“I’m not aware if this is already possible but it
would be helpful to produce a dictionary of all the
steps used in a project by extracting them from the
feature suites.” (R1, Developer)
-“The key is to have a multi-layered approach; the
gherkin scenarios should focus on being readable
as business documentation, and map to reusable
steps in the step definitions. It is the DSL code
in the step definitions where the real reusability
benefits occur” (R8, Consultant)
-“Make full use of the underlying BDD framework
/ regular expressions and craft the step definitions
like a powerful text-based API.” (R33, Developer)

Table 6.5: Other recommended practices for testers and developers on how to keep
BDD specifications readable, easy to extend, and maintainable

6.4. OPERATIONALIZATION OF BDD QUALITY PRINCIPLES 161

but put most emphasis on readability and clarity of the resulting specifications. Fi-
nally, the validity threats and mitigation strategies for this survey are the same as those
in section 3.4.

6.4 Operationalization of BDD Quality Principles

Since the four principles had received practitioner support, the next step was to attempt
to operationalize each principle in some way, to allow it to be automatically assessed
against a feature suite and glue code. The principles themselves are quite abstract, and
deal with concepts that are not amenable to full automation. We have therefore tried to
find pragmatic approximations to the principles that can be automated. The algorithms
we have experimented with are described below in terms of a comparison of a pair of
duplicated scenarios, and all assess the relative effect that removing each member of
the pair has on the quality of the BDD suite.

6.4.1 Assessing Conservation of Steps

This principle implies that we should prefer scenarios that use step phrases that are
frequently used by other scenarios over ones that use unique step phrases or phrases
that are only rarely used. To assess this, we statically analyse the feature suite to dis-
cover how many times each step phrase is used. This data for individual step phrases
must be aggregated together to provide a score for whole scenarios. Several aggrega-
tion options are possible. We elected initially to sum the usage score for all the steps
in a scenario to arrive at its score, but realised that usage scores will be the same for
steps that are identical between the scenarios being compared. We therefore sum the
usage scores of step phrases in the scenario that are not used in its duplicate pair. The
scenario in the pair of duplicates with the lowest usage score is the one that should
be recommended for deletion (see Algorithm 2). Asymptotically, Algorithm 2 is of
θ(n)complexity.

162CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Algorithm 2: Assessing Conservation of Steps
Input: A BDD suite Σ

A set D of known duplicate pairs of scenarios in Σ

Output: A set of remove suggestions for all known duplicate pairs in D
1 suggestions← /0 //an initially empty set of remove suggestions
2 Get a list of all scenarios (sc) and steps (sct) in a suite:
3 sc← scenarios //sc is a list of all scenarios in a suite
4 stc← steps(sc) //sc is a list of all scenario steps in a suite
5 foreach (s, s’) ∈ D do
6 Get a list of steps that are unique to each scenario in a duplicate pair:
7 st← steps(s) / steps(s’) // st is a list of steps that are unique to scenario s
8 st’← steps(s’) / steps(s) // st’ is a list of steps that are unique to scenario s’
9 Find the number of times each unique step of a particular scenario

10 in a duplicate pair is used across the suite:
11 usage = sum([1 | st ∧ stc])
12 usage’ = sum([1 | st’ ∧ stc])
13 Suggest the removal of either scenario if s and s’ have the same usage count;
14 otherwise, suggest the removal a scenario with lower steps’ usage count:
15 if usage = usage’ then
16 suggestions← suggestions ∪ remove((s, s’), { s, s’ })
17 else if usage > usage’ then
18 suggestions← suggestions ∪ remove((s, s’), { s’ })
19 else
20 suggestions← suggestions ∪ remove((s, s’), { s })

21 return suggestions

6.4.2 Assessing Conservation of Domain Vocabulary

To assess how far a BDD suite satisfies the principle of Conservation of Domain Vo-
cabulary, we need to be able to determine whether individual steps make use of terms
and phrases that end users/stakeholders would recognise and use themselves when talk-
ing about the business processes the BDD suite describes. This is not something that
can be easily assessed automatically with precision. However, all development teams
struggle with the need to use correct terminology when talking with end users. It is
common for such teams to build up glossaries of terms or to make use of enterprise
models of the business in determining what things and actions in the domain should be
called.

We therefore assume the availability of a list of preferred domain terms that we can

6.4. OPERATIONALIZATION OF BDD QUALITY PRINCIPLES 163

use to assess the appropriateness of wording used in a BDD Suite. We combine this
with a list of common stop words such as “at” and ”when”, which are ignored. We
give each step a score based on the number of recognised domain terms/phrases the
step contains. Again, the scores for the steps are aggregated into a score for each
scenario being compared. We sum the scores for each step. The scenario suggested
for removal is the one with the lower aggregated score (Algorithm 3). We decided
to try the simple scenario-based score first–more sophisticated approaches are clearly
possible and should be explored in future work. Asymptotically, Algorithm 3 is of
θ(n)complexity.

Algorithm 3: Assessing Conservation of Domain Vocabulary
Input: A BDD suite Σ

A set D of known duplicate pairs of scenarios in Σ

A set dwords of terms used in the domain of Σ

Output: A set of remove suggestions for all known duplicate pairs in D
1 suggestions← /0 //an initially empty set of remove suggestions
2 foreach (s, s’) ∈ D do
3 Get a set of words from the steps of each scenario in a duplicate pair:
4 w← { words(st) : st ∈ steps(s) } // w is a set of words in s
5 w’← { words(st) : st ∈ steps(s’) } // w’ is a set of words in s’
6 Get a number of domain words used by each scenario in a duplicate pair:
7 kw = | w ∩ dwords | //kw is a number of domain words in s
8 kw’ = | w’ ∩ dwords | //kw’ is a number of technical words in s’
9 Suggest the removal of either scenario if s and s’ have the same amount

10 of domain words; otherwise, suggest the removal a scenario with a lower
11 amount of domain words:
12 if kw = kw’ then
13 suggestions← suggestions ∪ remove((s, s’), { s, s’ })
14 else if kw > kw’ then
15 suggestions← suggestions ∪ remove((s, s’), { s’ })
16 else
17 suggestions← suggestions ∪ remove((s, s’), { s })

18 return suggestions

6.4.3 Assessing Elimination of Technical Vocabulary

Automating assessment of this principle is also challenging, since for a full solution
we need an engine that can decide whether a step phrase contains technical wording or

164CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

not. Again, we fall back on a pragmatic approach of creating a list of technical words
to be avoided in steps. Since these words are, by definition, not domain specific, we
can potentially create one such dictionary for use across all projects in an organisation,
seeded from an initial list provided along with our tool. Since for some applications,
the domain words may themselves be technical, the algorithm for assessing scenarios
against this principle would ideally have access to the dictionary of domain terms cre-
ated for the previous principle, so that terms appearing in both lists can be considered
as domain terms for the purposes of the calculation.

In this case, the score per step is a simple count of the number of words in the tech-
nical dictionary that appear within it (and which are not in the domain dictionary).
Aggregation is again performed by summing the scores for each step in the scenario.
In a duplicate pair, the scenario with the highest score is recommended for deletion
(Algorithm 4). Asymptotically, Algorithm 4 is of θ(n)complexity.

Algorithm 4: Assessing Elimination of Technical Vocabulary
Input: A BDD suite Σ

A set D of known duplicate pairs of scenarios in Σ

A set twords of technical vocabulary to avoid
Output: A set of remove suggestions for all known duplicate pairs in D

1 suggestions← /0 //an initially empty set of remove suggestions
2 foreach (s, s’) ∈ D do
3 Get a set of words from the steps of each scenario in a duplicate pair:
4 w← { words(st) : st ∈ steps(s) } // w is a set of words in s
5 w’← { words(st) : st ∈ steps(s’) } // w is a set of words in s’
6 Get a number of technical words used by each scenario in a duplicate pair:
7 tw = | w ∩ twords | //tw is a number of technical words in s
8 tw’ = | w’ ∩ twords | //tw’ is a number of technical words in s’
9 Suggest the removal of either scenario if s and s’ have the same

10 amount of technical words; otherwise, suggest the removal a scenario
11 with a higher amount of technical words:
12 if tw = tw’ then
13 suggestions← suggestions ∪ remove((s, s’), { s, s’ })
14 else if tw > tw’ then
15 suggestions← suggestions ∪ remove((s, s’), { s })
16 else
17 suggestions← suggestions ∪ remove((s, s’), { s’ })

18 return suggestions

6.4. OPERATIONALIZATION OF BDD QUALITY PRINCIPLES 165

6.4.4 Assessing Conservation of Proper Abstraction

This principle is arguably the most challenging to automate, since it centres on a subtle
and largely implicit aspect of BDD suites. But we still need a computable measure that
can act as a proxy for the more sophisticated and hard-to-compute principle. Thus, we
must again fall back on a pragmatic approach, if we are to automate it. Our solution is
based around the observation that steps at a higher level of abstraction typically require
more extensive glue code to implement than lower level steps. For example, the glue
code for the step “a customer with a balance of -$100” will likely involve only one
or two API calls to set up such a customer. A higher level step, “a customer who
is a persistent debtor”, will require more substantial glue code, setting up a trail of
transactions over a period of time.

We wanted to explore whether this tendency could be exploited in order to automate
assessment of this principle. We take the simplifying assumption that the abstraction
level of a step is proportional to the number of glue code statements that implement it.
We compute the following metrics:

1. Average Statements per Step, for the whole specification (ASPS): This is the
ratio of the number of all glue statements in the specification to the number of
all steps in the specification. We use ASPS to represent an overall estimate of
the abstraction level of an entire specification. For a particular BDD feature
suite, ASPS can serve as a benchmark for recommended abstraction level across
the suite, and can be used to guide the maintenance and extension of a suite
(for example, by giving a rough figure of expected number of steps in each new
scenario).

2. Average Statements per Step for individual scenarios in a duplicate pair: For the
first scenario in a duplicate pair, ASPS1 is computed as the ratio of the number
of glue statements in the first scenario to the number of steps in the first scenario.
An analogous quantity (ASPS2) is computed for the second scenario in the pair.

3. Abstraction Distance (AD) between individual scenarios in a duplicate pair and

the entire specification: We use AD to approximate the extent to which the ab-
straction level of a particular scenario in a duplicate pair deviates from the ab-
straction level of the entire suite. For the first scenario in a pair, AD1 is computed
as absolute(ASPS - ASPS1). An analogous quantity (AD2) is computed for the
second scenario in the pair.

166CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Using this principle, we propose the scenario with the highest Abstraction Distance be
removed, since this suggests it deviates most from the abstraction level of the entire
suite (Algorithm 5). Clearly, this is a simple case, and it might be worth considering
putting a threshold on suggestions, such that if two scenarios differ only by a negligible
value of AD, then there may not be much reason to recommend the removal of one
scenario over the other. Future work might explore sophisticated approaches for this
recommendation problem. Asymptotically, Algorithm 5 is of θ(n)complexity.

Algorithm 5: Assessing Conservation of Proper Abstraction Levels
Input: A BDD suite Σ

A set D of known duplicate pairs of scenarios in Σ

A list G of glue statements for the scenarios in Σ, grouped by step
Output: A set of remove suggestions for all known duplicate pairs in D

1 suggestions← /0 //an initially empty set of remove suggestions
2 foreach (s, s’) ∈ D do
3 Compute scenario-specific metrics
4 num steps = | { st | sc ∈ Σ and st← steps(sc) } | //num steps is a number of

all steps in a suite
5 num gstmts = | G | // num gstmts is a number of all glue statements for the

scenarios in a suite
6 avg stmts = num gstmts / num steps //avg stmts is the average number of

glue statements per step, for the whole suite
7 sc avg stmts = | gl | gl← (glue(s) ∈ G) | / | steps(s) | // sc avg stmts is the

average number of glue statements per step, for scenario s
8 sc’ avg stmts = | gl | gl← (glue(s’) ∈ G) | / | steps(s’) | // sc’ avg stmts is

the average number of glue statements per step, for scenario s’
9 sc abs dist = | avg stmts - sc avg stmts | //sc abs dist is an abstraction

distance between s and the suite
10 sc’ abs dist = | avg stmts - sc’ avg stmts | //sc’ abs dist is an abstraction

distance between s’ and the suite
11 Suggest the scenario to remove based on the values of abstraction distance:
12 if sc abs dist = sc’ abs dist then
13 suggestions← suggestions ∪ remove((s, s’), { s, s’ })
14 else if sc abs dist > sc’ abs dist then
15 suggestions← suggestions ∪ remove((s, s’), { s })
16 else
17 suggestions← suggestions ∪ remove((s, s’), { s’ })

18 return suggestions

6.4. OPERATIONALIZATION OF BDD QUALITY PRINCIPLES 167

6.4.5 Implementation

We wrote code for extracting various data from a BDD feature suite. This pre-processing
stage helped to organise data on which the recommendation algorithms (section 6.4)
could be run. For each BDD feature suite under analysis, the following three types of
data were extracted automatically:

1. A list of all steps in the suite, mapped to the scenarios in which they appear and
partitioned according to whether they are Given, When, or Then steps.

2. A list of glue statements mapping to respective scenario steps in a suite.

3. A list of all known duplicate pairs of scenarios in a feature suite.

These three types of data constituted all the inputs we needed for assessing the Princi-
ple of Conservation of Steps and the Principle of Conservation of Proper Abstraction.

We also used a semi-automatic approach to create the following two more types of data
that were part of the inputs required to assess the Principle of Conservation of Domain
Vocabulary and the Principle of Elimination of Technical Vocabulary:

4. A list of technical words: The following procedure is used to create the list of
technical words:

– First, we adapted a list of 18 technical words from cuke sniffer, a tool to
identify smells in Gherkin feature files [201]. The words in that list have
been judged by independent experts to be implementation level words that
should generally be avoided when writing BDD scenarios. This formed a
seed list of our technical terms.

– Second, we used Apache Lucene-6.6.0 3 to create the list of all words from
the steps of scenarios in a system under analysis.

– Third, the list of all words from the steps of the feature suite under analysis
was manually analysed to identify additional technical words that were not
part of the seed list. Depending on the software domain, it can be partic-
ularly hard to differentiate technical from non-technical words in a feature
suite. However, the fact that we worked with software systems whose do-
main can be understood based on general knowledge enabled us to navigate
this challenge. Even so, our list of technical words may still not be perfect.

3https://lucene.apache.org/core/6 6 0/

168CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

But it was generally okay for purposes of experimentation. Moreover, six
systems were used to create our list of technical terms. Of the six systems,
three were described in section 5.5.1 and were used for the evaluation of
the present work, and the other three systems were used only for identifi-
cation of more technical words, in a bid to have a broad list of technical
words from a variety of systems. We were able to use the three additional
systems for the purpose of identifying technical words because the process
we used to generate the list of words for a particular system did not re-
quire execution of scenarios, a criteria the additional three systems could
not meet during the duplicate injection experiment described in 5.5.1.

This process gave us a total of 74 implementation words. Since the techni-
cal terms are (by definition) not domain-specific, one technical list can suit
many domains. That is why we used one list of technical words for all the
three evaluation systems.

5. A list of domain words: After the list of technical words had been obtained,
the list of domain terms for a particular system was obtained by removing all
technical terms from the list of all words in a feature suite.

For a particular system, both the list of domain words and the list of steps in the scenar-
ios are used to assess the Principle of Conservation of Domain Vocabulary, and both
the list of technical terms and the list of steps in the scenarios are used to assess the
Principle of Elimination of Technical Vocabulary.

Lists 1, 2, and 3 above are stored in XML files, while lists 4 and 5 are supplied as
input lists respectively to the algorithms for the Principle of Elimination of Technical
Vocabulary and the Principle of Conservation of Domain Vocabulary. We use XQuery4

to query the XML lists, to obtain scenario removal suggestions for the different prin-
ciples’ algorithms. Figure C.1 shows sample remove suggestions for some duplicate
scenarios in evaluation System 1. We can get results in reasonable time scales since
typical BDD scenarios number in tens to hundreds [28], with steps numbering in tens
to a few thousands. However, the performances of both the Principle of Conservation
of Domain Vocabulary and the Principle of Elimination of Technical Vocabulary can
be affected by the sizes of the list of domain words and the list of technical words
respectively. But typical lists numbering in tens to several hundreds should generally

4https://www.w3.org/TR/xquery-31/

6.5. EVALUATION 169

be able to produce results in reasonable time scales.

6.5 Evaluation

This section presents the evaluation of the use of the proposed BDD Quality Principles
in guiding the removal of duplicate scenarios.

6.5.1 Context and Research Questions

We conducted an experiment to answer the following question:

Q: How does an automated solution perform in terms of giving acceptable scenarios

removal suggestions?

To answer this question properly, we need to test our hypothesis that the operational
forms of the quality principles we proposed are able to make acceptable suggestions
for which of a pair of duplicates to remove. Here “acceptable” means consistent with
what a human expert might advise. We can run the tool on the TP duplicates from our
evaluation in section 5.5 but we need a “ground truth”–we need to know, for each du-
plicate pair, which is the one that should be removed to maintain/increase suite quality.
This is challenging because there is no way to compute the ground truth or even to ac-
quire it. The closest to a ground truth we could get to would be to ask the developers of
the systems we worked with for their preferences. But the evaluation systems we used
were open source and had no developer contacts, and so it was impossible to get orig-
inal developers of the three systems. This forced us to look for other alternatives. Two
options were available: to find human experts who could act as a proxy for original
developers, and to find a computable ground truth. We explored both options.

For an option of using human experts, the people we used to inject the duplicates
could act as a proxy for original developers, but were too likely to be biased in favour
of their scenarios. So we had to find a neutral third party. Ideally, we would have
preferred to get more than one human experts because decisions on which scenarios to
remove are subjective and so human experts might disagree, especially on borderline
cases. In case of disagreements between human experts, a somewhat reliable ground
truth of acceptable recommendations could be produced by focusing on cases where
several human experts agree. But we only managed to get one BDD expert. Again,

170CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

our industry collaborator had limited time to spend on our experiment, and manual
preparation of the ground truth is known to be prohibitively expensive [4].

For an option of finding a computable ground truth, we employed the pragmatic ap-
proach based on the premise that: injected scenarios are most likely to violate the
proposed BDD quality principles. This is because scenario injectors (1) had limited
understanding of the domain served by the software, which limited their ability to
properly reuse steps, domain keywords, and other reusable aspects of the BDD speci-
fications they worked with when injecting duplicate scenarios; (2) were somewhat less
likely to write scenarios that used terms and steps consistently with the rest of the spec-
ification, since we asked them to focus on individual scenarios, and they may not have
ever looked at large parts of the rest of the specification. It is therefore reasonable to
expect that, given a pair of duplicate scenarios (IO) in which one scenario (O) existed
before injection and another scenario (I) was injected by a volunteer, the algorithm
should suggest the injected scenario (I) for removal. For this to be true, a further as-
sumption is that writers of the original scenarios (Os, in this regard) fairly observed,
possibly unknowingly, the principles we have proposed for preserving the quality of
BDD specifications. Besides, these features were not an issue for our experiment on
duplicates injection, where we needed only duplicate semantics, not high quality of
scenarios.

It is important to note that the idea of using the original/injected status of the TP dupli-
cates is not something we assume it is correct, nor something we want to get evidence
for or against. It is an easily computable value that we have reason to believe that it
might act as a suitable proxy for the aground truth. So, like any ground truth proxy,
we cannot draw strong conclusions from its use but any broad/strong patterns in the
results can be explored, to see if they might have significance in the context where the
particular features/limitations of the proxy are known and taken into account.

We used the two weaker forms of ground truth in the hope that they would balance/-
compliment each other, since we did not have a single good source of ground truth.
We will also be conservative in what claims we make on the basis of the experiments
we were able to run. More specifically, we combined the following two approaches to
evaluate the effectiveness of the proposed principles in guiding the removal of dupli-
cate scenarios:

1. Lab Experiment: For this particular evaluation, we explored the expectation of
recommending injected scenarios for removal. So Q can be further refined to:

6.5. EVALUATION 171

Q1: How does an automated solution perform in terms of suggesting the

removal of injected scenarios?

The success criteria in this regard is that an automated solution should suggest
the removal of injected scenarios in all (or majority of) IO pairs across the sys-
tems used in the benchmark. Q1 was further broken into the following questions:

Q1.1: What is the performance of each principle in terms of suggesting

injected scenarios for removal, and what affects the performance?

Q1.2: What is the sensitivity of the operationalised principles to changes

to the contexts of the vocabularies?

Q1.3: What proportion of scenarios injected by each volunteer is suggested

for removal by each principle, and what affects the performance of each

principle on the scenarios developed by the individual volunteers? This
question is based on the premise that there might have been traits inherent
in the duplicates injected by specific individuals, and we wanted to explore
how those traits might have affected the recommendations made the algo-
rithms for the proposed BDD quality principles.

Q1.4: How does the combination and prioritisation of the four principles

perform, in terms of suggesting injected scenarios for removal?

2. Industry Experiment: For this evaluation, we worked with an expert BDD
practitioner to build the proxy ground truth of remove suggestions for a sample
of known pairs of duplicate BDD scenarios. Specifically, this experiment sought
to answer the following questions:

Q2: To what extent are the injected scenarios suggested for removal by a

human expert? Answers to this question would qualify the results of the
pragmatic approach used in the lab experiment.

Q3: To what extent do the suggestions of the tool agree with the suggestions

of a human expert?

In the subsequent sections, we present experiment design, results and discussion for
both the lab and industry experiment.

172CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

6.5.2 Lab Experiment: Design, Results and Discussion

Experiment Design

To answer Q1, we used 65 IO pairs (Table 4.4) of duplicate BDD scenarios from
the benchmark created for the duplicate detection experiments. The characteristics of
these systems, the process through which they were identified, and the process through
which the duplicate scenarios were injected in them were detailed in section 5.5.1. To
recall from section 4.3.4, the number of duplicate pairs between original and injected
scenarios (IO) were as follows: System 1 (36), System 2 (23), System 3 (6). For each
of the 3 systems, we used the process described in section 6.4.5 to extract the data
required to run the algorithms for the proposed quality principles.

Furthermore, to study the sensitivity of the operationalised principles to changes to the
context of the vocabularies, for each of the three evaluation systems, we created differ-
ent categories of words, in order to get different domain word sets that we could run
the experiment against. In particular, for each system, we used the following process
to create different sets of domain words. To obtain an initial set of domain words, for
each system, we regarded all contents of the Lucene index file (except names of the
indexed files which, by default, are also reported as part of Lucene index) to be domain
words. Other sets of domain words were obtained by excluding numbers and technical
words from the initial set, as well as by including words in a particular set based on
their frequency of occurrence in the Lucene index file. The following categories were
identified to contain words from our evaluation systems:

1. All words–everything in the lucene index file, except the file names.

2. All domain words–as in set 1, excluding numbers and technical words.

3. Domain word frequency greater than 1–all words in set 2 that occurred more
than 1 time in the lucene index.

4. Domain word frequency greater than 2–all words in set 2 that occurred more
than 2 times in the lucene index.

5. Domain word frequency greater than 3– this set, which should hopefully be self-
explanatory, however, only had words for System 1 and System 2. System 3 had
no words in this category.

Up to this point, we were able to answer Q1.1, Q1.2, and Q1.3. To answer Q1.4,

6.5. EVALUATION 173

however, we combined the four principles, prioritising them in the following order:
Conservation of Steps, Conservation of Domain Vocabulary, Elimination of Technical
Vocabulary, and Conservation of Proper Abstraction. This order was chosen based on
the sum of the scores of each individual principle in the “Agree” and “Strongly Agree”
categories in the survey responses (Conservation of Steps (80.8%), Conservation of
Domain Vocabulary (75.0%), Elimination of Technical Vocabulary (98.1%), and Con-
servation of Proper Abstraction (83.7%)) and on the results for Q1.1. Thus, apart from
the popularity criteria, our ordering prioritised the principles that had the potential of
giving higher numbers of acceptable remove suggestions. Hence, while the Principle
of Elimination of Technical Vocabulary had more support than the rest in the popular-
ity category, to produce any results, it largely depended on whether technical words
were used in the scenarios’ steps for the specific evaluation systems, and on our ability
to identify the implementation words from the steps of the evaluation systems. This
is why the Principle of Elimination of Technical Vocabulary was preceded by both
the Principle of Conservation of Steps and the Principle of Conservation of Domain
Vocabulary in our order.

Results and Discussion

We now present and discuss the results of our lab experiment.

Q1.1: Performance of each principle: Figure 6.4 shows the performance of each
principle when used individually to suggest injected scenarios for removal.

In general, most of the injected scenarios across the three systems were suggested for
removal when steps, or domain words, or both were conserved, compared to when the
focus of our experiment was on elimination of technical vocabulary or conservation
of proper abstraction (see Figure 6.4). Based on the results for each principle, we
conducted manual analysis of the scenarios in each IO duplicate pair across the three
systems, to discover what might have influenced the recommendations made by the
different principles. For each step in a duplicate pair of scenarios, we queried the list
of all steps of a particular specification (section 6.4.5) to determine the number of times
it (step) had been used across the suite. A step was considered to have been reused if
it appeared more than once across the specification; otherwise, it was considered not
reused. The following were revealed:

Conservation of Steps: For System 1 and System 3, there was extensive reuse of steps

174CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Figure 6.4: Proportions of IO duplicate pairs in which injected scenarios were sug-
gested for removal by the specific principles

across the original scenarios in the feature suites. Since most of the steps introduced
by volunteers involved rewording, merging or splitting of the original steps, and the
injected steps were generally not reused across the suite, the Principle of Conservation
of Steps suggested the removal of injected scenarios in almost all pairs.

For System 2, however, there was not a single pair in which an acceptable remove
suggestion (remove an injected scenario and keep an original scenario) was given. Out
of the 23 known duplicate pairs, for 17 pairs, the suggestion was to remove either
scenario and, in 6 pairs, the suggestion was to remove the original scenario and keep
the injected scenario. This was because there was generally no reuse of steps across
the feature suite. This was true for both original and injected scenarios. Specifically,
for the 17 pairs in which the suggestion was to remove either scenario, each step in
both original and injected scenarios was used only once across the feature suite. For
the other 6 pairs in which the suggestion was to remove an original scenario and keep
an injected scenario, volunteers had split original steps into several new steps, making
injected scenarios have more steps than their original counterparts. Because neither
original steps nor new steps were reused across the feature suite, the Principle of Con-
servation of Steps recommended the scenarios with fewer steps (original ones, in this
regard) for removal. So the principle might work well when the suite is generally of
high quality, but breaks down when it (suite) does not follow the principle in the first

6.5. EVALUATION 175

place.

Conservation of Domain Vocabulary: While most of the injected scenarios for System
1 and System 2 had fewer domain keywords, compared to their original counterparts,
majority of the injected scenarios in System 3 used slightly more domain vocabulary
than their original counterparts. That is why in most duplicate pairs in System 3 the
recommendations resulting from the Principle of Conservation of Domain Vocabulary
were to keep injected scenarios and remove original ones (see Figure 6.4).

Elimination of Technical Vocabulary: The performance of this principle largely de-
pended on the ability to identify, beforehand, the list of known technical words in the
scenarios. Of the 74 technical words in our reference list, identified through the process
detailed in section 6.4.5, only two words were from System 1. Because there was not
a single pair of duplicate scenarios in System 1 in which an injected scenario had used
the two words more than its original counterpart, in no pair in System 1 did the Prin-
ciple of Elimination of Technical Vocabulary suggest an injected scenario for removal
(see Figure 6.4). This result suggests that the Principle of Elimination of Technical
Vocabulary cannot help us if the suite is already of consistently high quality. Further,
in 3 of the 36 pairs of duplicate scenarios in System 1, the Principle of Elimination
of Technical Vocabulary made suggestions to remove original scenarios and keep their
injected counterparts. This was because, in the 3 pairs, the two technical words were
used more number of times in the original scenarios than they were used in the injected
scenarios. Moreover, in 4 other pairs, the two implementation words had been used the
same number of times in both injected and original scenarios. Thus, the suggestion in
each of the 4 pairs was to remove either scenario. Besides, the two words were not
used at all in the other 29 pairs, and thus the suggestion in each of these pairs was to
remove either scenario.

Nevertheless, this principle suggested for removal injected scenarios in more than a
quarter of known duplicate pairs in System 2, and a third of known duplicate pairs in
System 3. This was because some of the volunteers who injected scenarios in System 2
and System 3 had used a variety of technical words that were part of our reference list.
This demonstrated the importance of the principle–our volunteers had added scenarios
that reduced the quality of the suite, and the Principle of Elimination of Technical
Vocabulary acted to correct the problem.

Conservation of Proper Abstraction: Because the abstraction levels of the injected
scenarios were largely consistent with the abstraction levels of other scenarios across

176CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

the feature suites for all the 3 systems, only a few injected scenarios (System 1 and
System 2) and none from System 3 were suggested for removal by the Principle of
Conservation of Proper Abstraction (refer to Figure 6.4). For most of the pairs in
which injected scenarios were suggested for removal, to form injected scenarios, steps
in original scenarios had been either split into several steps or merged into fewer steps.
This caused injected scenarios to have abstraction levels that deviated from the average
abstraction levels of the specifications in question.

Q1.2: Sensitivity Analysis on Domain Vocabulary: Figure 6.5 shows the sensitivity
analysis results for including and excluding words from the list of domain words.

Figure 6.5: Suggestion of injected scenarios for removal: Sensitivity Analysis for the
Principle of Conservation of Domain Vocabulary

Referring to Figure 6.5, for System 1 and System 2, the number of remove suggestions
implicating injected scenarios decreased with an increase in the frequency of the words
included in the list of domain words. This was due to the fact that frequent domain
words were mostly used in injected scenarios as well, causing the algorithm to suggest
the removal of either injected scenarios or original scenarios, or the removal of original
scenarios, keeping injected scenarios.

For System 3, however, the number of remove suggestions implicating injected scenar-
ios was directly proportional to the increase in frequency of words included in the list,
for the frequency categories up to and including Domain Word Frequency >2. This was

6.5. EVALUATION 177

because frequent domain words were least used in injected scenarios, causing them to
be suggested for removal in most pairs. The category Domain Word Frequency >3 had
no word in it for System 3.

In general, while System 2 and System 3 were too sensitive to changes in the lists
of domain words, System 1 was relatively less sensitive to changes in domain words.
Since manual analysis of the domain words used across the three systems revealed that
there was a relatively high reuse of domain words in System 1 compared to the other
two systems, the sensitivity analysis results suggest that the Principle of Conservation
of Domain Vocabulary can be useful in situations where a suite has achieved high
quality through reuse of domain words.

Q1.3: Removal suggestions for scenarios injected by specific volunteers: Table 6.6
shows the proportion of injected scenarios suggested for removal by each principle, for
each of the 13 volunteers.

Volunteer System Injected Suggested for Removal

Conservation of
Steps

Conservation of
Domain Keywords

Elimination of
Technical Vocabu-
lary

Conservation of
Proper Abstrac-
tion

Suggested % Suggested % Suggested % Suggested %

1 1 5 5 100.0 5 100.0 0 0.0 4 80.0

2 1 4 3 75.0 3 75.0 0 0.0 0 0.0

3 1 9 9 100.0 9 100.0 0 0.0 5 55.6

4 1 9 9 100.0 9 100.0 0 0.0 0 0.0

5 1 5 5 100.0 5 100.0 0 0.0 0 0.0

6 1 4 4 100.0 4 100.0 0 0.0 4 100.0

7 2 4 0 0.0 0 0.0 0 0.0 0 0.0

8 2 4 0 0.0 0 0.0 0 0.0 3 75.0

9 2 6 0 0.0 0 0.0 0 0.0 0 0.0

10 2 5 0 0.0 0 0.0 5 100.0 0 0.0

11 2 4 0 0.0 0 0.0 1 25.0 3 75.0

11 3 2 2 100.0% 2 100.0 0 0.0 0 0.0

12 3 2 2 100.0% 2 100.0 0 0.0 0 0.0

13 3 2 2 100.0% 2 100.0 2 100.0 0 0.0

Table 6.6: Performance of the four principles on the scenarios injected by each of the
13 volunteers

While almost all scenarios injected into System 1 by volunteers 1 through 6 were sug-
gested for removal when both steps and domain keywords were conserved, generally,
the scenarios which were injected by volunteers 7 through 11 in System 2 were not

178CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

suggested for removal when both steps and domain keywords were conserved (see Ta-
ble 6.6). For the Principle of Conservation of Steps, this was due to the same reasons
stated before in the discussion of the results for Q1.1. However, for the Principle of
Conservation of Domain Vocabulary, for 6 pairs from System 2, the use of domain
words was slightly more in injected scenarios than in original scenarios, causing orig-
inal scenarios to be suggested for removal. In the other 17 pairs, domain words were
used the same number of times in both original and injected scenarios, causing the
algorithm to suggest the removal of either scenario in each of the pairs.

Additionally, while the majority of injected scenarios across the three systems were not
suggested for removal by the Principle of Elimination of Technical Vocabulary, mainly
because the majority of volunteers did not use the technical words in our list, only the
scenarios injected by 5 of the 13 volunteers were suggested for removal by the Principle
of Conservation of Proper Abstraction. Manual examination of the injected scenarios
suggested for removal by the Principle of Conservation of Proper Abstraction revealed
the following. For System 1, volunteers who injected scenarios had merged one or
more steps of the targeted original scenarios, raising the abstraction levels slightly
higher, and thus deviating from the abstraction level of an overall specification. For
System 2, however, volunteers had introduced new steps that ended up having no glue
counterparts in the original scenarios. Thus, the extra number of steps with no glue
statements affected the metric ASPS (described in section 6.4.4), making the abstrac-
tion levels of the injected scenarios deviate more from the average abstraction level of
an entire specification. This resulted into higher values of abstraction distance, causing
injected scenarios to be suggested for removal.

Q1.4: Performance of the algorithm that combines and prioritises the four prin-
ciples The percentages of injected scenarios that were suggested for removal by the
combined algorithm, for each of the 3 systems, are shown in Table 6.7.

System 1 System 2 System 3

of IO scenario pairs 36 23 6

of IO pairs in which injected scenarios were suggested for removal 35 10 6

% of injected scenario remove suggestions 97.2% 43.5% 100.0%

Table 6.7: Suggestions of injected scenarios for removal: combined algorithm

Inspecting the results for the combined algorithm revealed that the remove suggestions
for System 1 and System 3 were made by the first principle in the order (Conservation

6.5. EVALUATION 179

of Steps). This is why the results of the combined algorithm on System 1 and Sys-
tem 3 are exactly the same as the results of the Principle of Conservation of Steps in
Q1.1 (refer to Table 6.7 and Figure 6.4). Also, the results of the combined algorithm
on System 2 revealed that combination of the algorithms for the respective principles
allowed other principles to make suggestions where earlier principle(s) in the order
could not. Specifically, different from Figure 6.4 where the Principle of Conservation
of Steps could not make, on System 2, any of the removal suggestions we expected, the
combined algorithm allowed other principles to make acceptable remove suggestions
for this system (see Table 6.7).

In general, based on the results for Q1, the idea that injected scenarios are most likely
to violate the BDD quality principles was acceptable for some principles, for some
systems, and for some volunteers.

6.5.3 Industry Experiment: Design, Results and Discussion

Experiment Design

To answer Q2 and Q3, we worked with an industry collaborator who had 8 years of
BDD experience, and held the position of Test Lead in their company. The collaborator
acted as an independent judge for suggesting scenarios for removal in selected pairs of
duplicate scenarios. As stated earlier, access to original developers was not possible,
even though it would have been a much better option for us. But even if we accessed
original developers, still, we could not know for definite whether our expert would
give the same, better or worse suggestions than the original developers. Working with
a BDD practitioner from the industry was the best we could do under the circumstances
we had. Additionally, though this judge was not from the development teams of the
evaluation systems, the fact that we chose evaluation systems whose understanding
did not require specialised domain knowledge (as mentioned in section 4.3.2) meant
that any experienced BDD practitioner would easily understand the scenarios in the
evaluation systems and make plausible remove suggestions.

Because our industry collaborator had limited time, we could not get remove sugges-
tions for all the 65 known duplicate pairs across the 3 systems. Instead, we randomly
sampled 14 duplicate pairs of scenarios from System 1. We chose System 1 because
it was the largest of the 3 systems, and had more known duplicate scenario pairs (the

180CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

ones obtained through our experiment on duplicates injection) compared to the other
two systems.

To cover scenarios with diverse characteristics, the sampled duplicate pairs were ran-
domly selected from 6 different features, and the injected scenarios in the 14 duplicate
pairs were developed by 4 different volunteers. Moreover, to avoid the possibility of
influencing the recommendations made by our industry collaborator, we did not dis-
close either the proposed quality principles or the information on whether a particular
scenario in a given pair was original or injected. Instead, we gave our collaborator pairs
of duplicate scenarios (one pair at a time) and asked them to make recommendations
on which scenarios should be removed. Thus, using the “think aloud” technique [202],
for each of 14 pairs, they were asked to state the scenario they would remove and why.
In most cases, they were able to make suggestions by just looking at the scenarios,
but, occasionally, they had to inspect glue code before they could make decisions. It
took about 1 and a half hours to get remove suggestions for all 14 pairs of duplicate
scenarios.

We also wanted to compare the results of the pragmatic approach used in the lab ex-
periment with the results of an expert, with respect to suggesting injected scenarios
for removal. Thus, for the sample of 14 pairs of duplicate scenarios, we analysed the
remove suggestions made by our tool, to obtain the number of pairs in which injected
scenarios were suggested for removal. The results of this process were then compared
with the number of pairs in which injected scenarios were suggested for removal by
the human expert.

Besides, to determine the extent to which the suggestions made by our tool would
agree with the suggestions of a human engineer, for a sample of 14 pairs, we regarded
as proxy ground truth the suggestions made by the industry expert, and determined the
number of pairs in which both the tool and industry expert made the same suggestions.

Results and Discussion

We now present and discuss the results of the industry experiment.

Q2: Human expert’s suggestions of injected scenarios for removal: For each of
the 14 pairs of duplicate scenarios from System 1, Table 6.8 shows the expert opinions
on the scenarios to remove and the reasons. What is presented in the column labelled

6.5. EVALUATION 181

“Reason” is our own summary of the reasons given for the recommendations made on
each pair.

Pair Remove Reason

1 I O has more information–I is subsummed by O

2 I O looks much better

3 I O has more steps that are not in I

4 O I has more steps compared to O

5 I O has more information in steps compared to I

6 I O has more steps and more information compared to I

7 I O does more more in glue code compared to I

8 I O does more more in glue code compared to I

9 O I has a clearer title than O

10 I I misses some information which is covered in O

11 Cannot decide Keep both because they look different

12 I I has more wording explaining the same thing

13 I O has more information in the steps than I

14 I O has a clearer scenario title; and I has more wording with no extra value

Table 6.8: Expert opinions: scenarios suggested for removal and the reasons

Based on the evidence in Table 6.8, generally, the expert preferred to keep scenarios
that were readable, with more steps, and rich in information; and it turned out that
majority of injected scenarios fell short of these properties. Thus, as can be seen in
Table 6.8, the majority of injected scenarios (11 out of 14) were suggested for removal
by an expert. Additionally, from the results in Figure 6.6, the expert suggested in-
jected scenarios for removal in more pairs than the pragmatic approach used in our lab
experiment, except for the Principle of Conservation of Steps in which the pragmatic
approach suggested injected scenarios for removal in slightly more pairs than was the
case for an expert. This strengthened our intuition that injected scenarios are most
likely to violate the quality principles and, therefore, should be suggested for removal.

Figure 6.6 shows the proportions of System 1 duplicate pairs in which injected scenar-
ios were suggested for removal by both the pragmatic approach used in our lab experi-
ment and the expert-involving approach. Of the 14 duplicate scenario pairs used in our
evaluation with the human expert, it was in 11 pairs only (78.6%) in which injected
scenarios were suggested for removal. The same expert’s value (78.6%) across all the

182CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

principles in Figure 6.6 is because we used expert recommendations as a proxy ground
truth for all the principles. In comparison with the lab experiment, for the Principle of
Conservation of Steps, in only 13 of the 14 pairs (92.9%) were the injected scenarios
suggested for removal during our lab experiment. This means, in 2 more pairs, injected
scenarios were suggested for removal during the lab experiment. In each of the other
three principles, the proportion of the 14 pairs in which injected scenarios were sug-
gested for removal during our lab experiment was less than the proportion of pairs in
which an expert suggested the removal of injected scenarios. For example, in only 10
out of the 14 pairs (71.4%) used in expert evaluation did the Principle of Conservation
of Domain Vocabulary suggest the removal of injected scenarios.

Figure 6.6: Pragmatic vs expert: suggestion of injected scenarios for removal

Q3: Performance of our tool on the expert proxy ground truth: Figure 6.7 shows
the performance of our tool on the proxy ground truth created based on the recommen-
dations of the human expert who worked with 14 duplicate scenario pairs from System
1.

From Figure 6.7, we can see that the majority of remove suggestions by both Conser-
vation of Steps and Conservation of Domain Vocabulary matched with the suggestions
of the expert. In addition, Conservation of Proper Abstraction agreed with the ex-
pert in more than a quarter of the duplicate pairs. This could be attributed to the fact
that many developers would determine an abstraction level of the scenario based on

6.6. THREATS TO VALIDITY 183

Figure 6.7: Degree of agreement between our tool and expert

its (scenario) intent rather than the requirement to be consistent with the rest of the
specification, as discussed in section 6.2.5. More investigation into the best ways to
measure appropriate abstraction levels for scenarios would improve the correctness of
remove suggestions by automated solutions.

Besides, as stated in the discussion for Q1.1, the fact that only 2 out of 74 words in
the list of technical terms came from System 1 largely affected the remove suggestions
by the Principle of Elimination of Technical Vocabulary. Thus, the effectiveness of
this principle can be better assessed when technical terms are frequently used in a
specification.

Answer to Q: An automated solution that implements the proposed quality princi-

ples can give acceptable remove suggestions when a BDD suite has quality violations.

However, the principles could be less helpful when a BDD suite is consistently of good

or poor quality.

6.6 Threats to Validity

The validity threats associated with the survey presented in section 6.3 about practi-
tioners’ support of BDD quality principles are:

184CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

1. Validity threats 1 and 2 in section 3.6, as well as their respective mitigation
strategies, also apply to the survey in section 6.3 on practitioners’ support of the
BDD quality principles.

2. Most of the respondents might have been using a particular BDD tool, so that our
results could be valid for users of a specific BDD tool only. To cover practitioners
using a variety of BDD tools, we followed the objective criteria mentioned in
section 3.2.2 to identify email addresses to which survey completion requests
were sent. We also posted the survey in general BDD forums, in anticipation
that respondents from those forums might be using different tools.

3. The use of convenience sampling (in our case, depending on self-selecting re-
spondents within the groups we contacted) might limit the ability to generalise
from the survey findings. To mitigate the effects of this, we survey respon-
dents from at least 4 continents across the world (see Figure 6.2), and some of
the respondents were contributors to sizeable BDD projects in GitHub (see sec-
tion 3.2.2). Still, our results may not generalise to all BDD practitioners across
the world. For example, our results do not represent BDD practitioners who are
not proficient in English.

As well, the following are the validity threats associated the experiment in section 6.5
on evaluation of the use of BDD quality principles in suggesting duplicate scenarios
for removal:

4. Part of our list of technical words (which also affected the list of domain words
we used for individual systems) was identified through intuitive reasoning. This
was mitigated in part by the fact that we were working with systems from differ-
ent domains that required general knowledge to be understood. As such, it was
fairly easy to differentiate domain words from technical words, in all the evalu-
ation systems. Also, we adopted a list which was already independently judged
as technical words by several practitioners who developed the cuke sniffer tool
[201]. This constituted almost a quarter of our list of implementation words.
However, the risk still remains, even if mitigated.

5. Some injected scenarios might comply with the BDD quality principles more
than their original counterparts, thereby affecting the validity of what we regard
as acceptable suggestions in our lab experiment. To mitigate the effect of this,
we conducted manual analysis of all the pairs in which injected scenarios were

6.7. SUMMARY 185

suggested for removal, across the 3 systems, and our assumption was true in
majority of the cases.

6. Our approach for deciding on duplicate scenarios for removal was evaluated on
3 open source systems only, which might affect our ability to generalise from the
results. To mitigate the effect of this, we worked with sizeable systems, indepen-
dently developed for 3 different domains. Also, our evaluation used 65 pairs of
duplicate scenarios across the 3 systems, and those duplicate pairs were devel-
oped by 13 different volunteers, each of whom duplicated several scenarios in
different feature files. This enabled us to use scenarios with diverse characteris-
tics. Nevertheless, in the future, we will evaluate our approach on more industry
software systems, involving practitioners for judging the validity of removal sug-
gestions given by our tool.

7. Since the original scenarios are far more likely to be consistent with the wider
scenario set than the injected ones, the use of original-injected pairs when de-
ciding which scenarios to remove is likely to suggest more injected scenarios for
removal since injected scenarios may not reflect how duplicate scenarios might
appear in real projects. However, despite this limitation, the approach enabled
us to evaluate the ability of the proposed principles in identifying scenarios of
relatively poor quality. Nevertheless, in the future, it would be good to evaluate
the principles on real duplicates.

8. The implementation of glue code for injected scenarios, as discussed in sec-
tion 4.3.4, might have affected quality assessment using the Principle of Conser-
vation of Proper Abstraction. However, since duplicate injection did not create
brand new scenarios, glue code for the duplicated scenarios was built naturally
by copy-pasting from existing code. This was intended to limit this threat to
validity as far as possible.

6.7 Summary

BDD is currently used by industry teams to specify software requirements in a cus-
tomer understandable language [28]. This produces a collection of examples that act
as executable tests for checking the behaviour of the SUT against the specifications.
However, large volumes of BDD suites can be hard to understand, maintain and extend.

186CHAPTER 6. QUALITY-ORIENTED REMOVAL OF DUPLICATE SCENARIOS IN BDD SUITES

Duplication, for example, can be introduced by members joining the teams at different
points in time. Further, existing work on the removal of duplication in BDD feature
suites has mainly focused on the removal of syntactic duplication [33]. However, to the
best of our knowledge, no prior work has focused on removing semantically equivalent
scenarios from BDD feature suites.

In this chapter, we have proposed and operationalised four quality-preserving princi-
ples for guiding the removal of semantically equivalent BDD scenarios. Each principle
was supported by at least 75% of the practitioners we surveyed. Also, the four princi-
ples gave many acceptable removal suggestions, during our empirical evaluation with
3 open source systems into which duplicate scenarios were injected by volunteers.

To respond to the main hypothesis in the present chapter and the associated research
questions:

• The following hypothesis was investigated in this chapter: we can use quality

aspects of scenarios in a BDD suite to guide the removal of duplicate scenarios

from a suite. Evidence presented in this chapter point to the fact that focus-
ing on specific quality aspects of scenarios can provide guidance on which of a
pair of duplicate scenarios to remove. Specifically, the work in this chapter has
presented evidence that there is some value in the proposed quality principles–
they can give reasonable advice in cases where quality breaches covered by the
principles are found inconsistently across the suite. But the principles are less
helpful when suites are consistently good or of poor quality, and when suites
contain more subtle quality issues. The principles cannot judge “readability” of
a scenario, for example–a property that was rated highly by the survey respon-
dents, and that probably trumps all over other quality principles. Respondents
would prefer to keep the scenario that breaks our rules if it is the more readable
one. This suggests a future work idea, looking for general metrics of text read-
ability, to see if they can be applied to BDD suites. This might help to answer
the question of whether and how text readability corresponds to the quality of
Gherkin specifications.

• RQ1: On the properties of scenarios that affect the quality of a feature suite
as a whole: The following properties of scenarios were found to relate to the
quality of a BDD suite as as whole, and were supported by the majority of BDD
practitioners that we surveyed: the reuse of steps in several scenarios across
the suite, the use of common domain terms to express the steps of individual

6.7. SUMMARY 187

scenarios across the suite, the use of little or no technical terms when expressing
steps of scenarios in a suite, and expressing scenarios at a consistent abstraction
level across the suite. Other quality aspects of a BDD suite that are not covered
by the four proposed principles are summarised in Table 6.5 and in Table 6.1.

• RQ2: On how the proposed quality properties are perceived in practice: All
the four principles were generally highly supported by practitioners as accept-
able facets of quality in BDD feature suites. Each principle received at least 75%
votes of support from respondents of the survey of BDD practitioners (sum of
“Strongly Agree” and “Agree” in Figure 6.3).

• RQ3: On the extent to which the proposed BDD scenarios quality properties
are successful in guiding the removal of duplicate scenarios from the fea-
ture suites: In general, the Principle of Conservation of Steps and the Principle
of Conservation of Domain Vocabulary gave more acceptable removal sugges-
tions, compared to the Principle of Elimination of Technical Vocabulary and the
Principle of Conservation of Proper Abstraction. All the four principles were es-
pecially observed to give acceptable removal recommendations when the quality
aspects they advocate for were breached in a suite.

Chapter 7

Conclusions and Future Work

BDD is now used by many software teams (section 3.3) to allow them to capture the
requirements for software systems in a form that is both readable by their customers
and detailed enough to allow the requirements to be executed to check whether the pro-
duction code implements the requirements successfully or not. The resulting feature
descriptions, as sets of concrete scenarios describing units of required behaviour, pro-
vides a form of living documentation for the system under construction (as compared
to the passive documentation and models familiar from other approaches to require-
ments engineering [31]). Unfortunately, management of BDD specifications over the
long term can be challenging, particularly when they grow beyond a handful of features
and when multiple development team members are involved with writing and updat-
ing them over time. Redundancy can creep into the specification, leading to bloated
BDD specifications that are more costly to maintain and use. Despite these challenges,
studies investigating BDD maintenance challenges are few in number and limited in
scope.

7.1 Summary of Research Contributions

1. Identification of BDD maintenance challenges and research opportunities:
Using quantitative and qualitative data collected through the survey of BDD
practitioners, we have gained evidence of the activeness of BDD use in industry,
its perceived benefits, and the maintenance challenges BDD practitioners have

188

7.1. SUMMARY OF RESEARCH CONTRIBUTIONS 189

encountered, including the challenge of duplication, which is of particular inter-
est to us in this thesis (Chapter 3). We mapped the identified challenges to the
literature, to identify those which are still open and which have solutions. From
this, we produced a list of 10 open research challenges that have support from
the practitioners in our survey (Table 3.6).

2. A framework for detecting semantically equivalent scenarios in BDD suites:
We have proposed a dynamic analysis based framework in which execution
traces are analysed to differentiate between essential and accidental character-
istics of BDD scenarios; and, thereafter, the essential characteristics of scenarios
are compared to detect semantically equivalent BDD scenarios (Chapter 5). The
framework was evaluated on 3 open source systems into which a total of 125
pairs of duplicate scenarios were injected by 13 volunteers. The comparison of
scenarios’ execution paths was found to detect more duplicate scenarios than
the comparison of public API calls, public API calls and internal calls, or their
combination (execution paths, public API calls, and public API calls and inter-
nal calls). As well, the comparison of essential of only the essential traces of
scenarios was found to detect more duplicate scenarios than the comparison of
every piece of information in the execution traces of scenarios.

The tool and data for this work can be accessed here1 2 3 4.

3. BDD suite quality principles and their use to guide the removal of seman-
tically equivalent BDD scenarios from suites: We have proposed four quality
principles for BDD suites. These principles encourage the reuse of steps and do-
main vocabulary, and the use of consistent abstraction levels for steps in various
scenarios of a BDD specification; and discourage the use of technical terms in
step phrases, to produce scenarios that can be understood by all stakeholders (a
very important BDD foundational element) (Chapter 6). We surveyed 56 BDD
practitioners about the proposed principles, and each principle was supported by
at least 75% of the respondents. In addition, we report on practitioners’ other
opinions on how to keep BDD suites understandable, extensible and maintain-
able. Finally, we have proposed algorithms that operationalise the four principles

1https://gitlab.cs.man.ac.uk/mbaxrlp2/SEED2/
2https://gitlab.cs.man.ac.uk/agile-research/system1-res
3https://gitlab.cs.man.ac.uk/agile-research/System2-res
4https://gitlab.cs.man.ac.uk/agile-research/system3-res

190 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

in the context of a tool to guide the user in the removal of semantically equiva-
lent BDD scenarios. Based on the proxy ground truths we used in our lab and
industry evaluation (section 6.5), the principles gave acceptable remove sugges-
tions across three systems. In particular, the Principle of Conservation of Steps
and the Principle of Conservation of Domain Vocabulary gave more acceptable
removal suggestions, compared to the Principle of Elimination of Technical Vo-
cabulary and the Principle of Conservation of Proper Abstraction. Nevertheless,
all the four principles gave acceptable removal recommendations when the suite
breached the quality aspects espoused by the respective principles. Thus, the
proposed principles can give advice to engineers on which duplicate scenarios
to remove from the feature suites.

In general, we learned that it is hard to appreciate the value of the four principles
when working with specifications of high quality. However, there seems to be
some value in the four principles we proposed, particularly when working with
specifications of low quality. But, other quality aspects of BDD suites remain to
be covered–especially readability.

The study presented in this thesis has improved our understanding of how BDD is
perceived and practiced in the software industry, as well as the challenges facing BDD
practitioners. It has also improved our understanding of how duplicate BDD scenarios
can be detected and removed from BDD specifications.

7.2 Answers to the Research Questions

RQ1: To what extent is duplication a problem among BDD practitioners, and
how do practitioners deal with duplication in BDD specifications? Most respon-
dents thought that, though present, duplication in their BDD specifications remains a
manageable problem. However, duplication is still among the maintenance challenges
of concern to some BDD practitioners, and, in some instances, it has scared away
some practitioners from using BDD. Further analysis of the survey results revealed
that about 57% of the respondents were concerned with duplication to an extent–they
performed manual inspection to detect and manage duplication, or they had given up
the detection and management of duplication due to the complexity of the duplicate
detection and management process (refer to Fig. 3.13). We therefore argue that there is

7.2. ANSWERS TO THE RESEARCH QUESTIONS 191

a need for more research about automated techniques and tools to support practitioners
in detecting and managing duplication in BDD feature suites.

RQ2: Can the comparison of how BDD scenarios exercise the production code
detect semantically equivalent BDD scenarios in a way that outperforms the de-
tection of duplicate scenarios by existing approaches? The comparison of the exe-
cution paths of the scenarios in BDD feature suites can detect semantically equivalent
scenarios with better precision that existing tools. However, even with the comparison
of execution paths (which detected more duplicate scenarios than other methods in our
experiments), still, we were not getting 100% precision, and on all projects. Also, fo-
cusing on only the information that remain constant across several runs of a scenario
can be more effective at detecting semantically equivalent BDD scenarios, than the
comparison of traces without due regard to essential parts of the trace.

RQ3: What are the characteristics of a “good” quality BDD scenario, and how
can we assess the quality of a scenario relative to other scenarios in a suite? We
proposed, and managed to gather limited evidence in support of our proposal, that
a “good” quality BDD scenario should do the following, without compromising the
readability of scenarios across the feature suite:

1. maximize the reuse of step phrases in the suite as far as possible;

2. maximize the use of the ubiquitous language across the suite [200];

3. minimize the use technical terms;

4. use steps whose abstraction levels are consistent with the abstraction levels of
steps in other scenarios of the specification.

Thus, given two scenarios A and B in a suite S; if A is assessed to be better than B

on one or more aspects of choice from this list, then A can be considered to be of
better quality than B. Therefore, if A and B were semantically equivalent, and we were
required to remove one of them from S; we would remove B since it is deemed to be
of poorer quality than A.

192 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.3 Future Work

To extend the work in this thesis, there are several possible future research directions.
In this section, we categorise future work as follows: future work on duplicate de-
tection, future work on quality of BDD specifications, and future work for BDD as a
whole, in the context of the whole software project life cycle and its artefacts.

7.3.1 Future work on duplicate detection in BDD

Future research on duplicate detection in BDD specifications could focus on the fol-
lowing:

• Investigate the best ways to combine the dynamic approaches discussed in Chap-
ter 5 with approaches based on textual and syntactic similarity, perhaps to give
more helpful reporting of duplicates that includes suggestions for how the dupli-
cation can be resolved most elegantly.

• Evaluate the proposed duplicate detection and removal approaches on more sys-
tems, particularly industry systems. This would provide the opportunity to ex-
periment with systems of diverse characteristics that contain real duplicate sce-
narios, as oracled by actual developers and or domain experts. At the time when
we started this work and were creating the benchmark, very few systems with
BDD specifications had been made public, and many were toy systems rather
than real production systems. This has now changed, based on our recent ob-
servations on several software repositories hosting systems (e.g., Github, Gitlab,
and Bitbucket). So, we would have the chance to evaluate on a much wider range
of systems. Moreover, the system of injecting duplicates had both strengths and
weaknesses. Now that we have a version of the duplicate detection tool that we
can run, we can adopt a different approach–by sending a report of the duplicates
we find to the actual developers and giving them the option of responding to the
tool’s output. This could counterbalance the strengths and weaknesses of our
duplication detection approach.

In addition, it would also be good to investigate the extent and impact of dupli-
cation in industry systems. In particular, it would be good to know about the
proportions of scenarios that are duplicated in a variety of real systems, and how
that duplication impacts the maintenance of BDD specifications.

7.3. FUTURE WORK 193

7.3.2 Future work on quality of BDD specifications

• On the duplicate scenario removal suggestions using the Principle of Conserva-
tion of Steps, it will be good to investigate which scenario to remove when one
scenario in the duplicate pair has more steps, but all steps in the duplicate pair
of scenarios are used only once in the feature suite. This will address both the
possibility of keeping many steps unnecessarily, if a scenario with fewer steps is
selected for removal; and the challenge of diminishing the reuse potential of the
steps in the specification, particularly if a scenario with more steps is selected
for removal, suggesting that, in the future, developers might have to rewrite the
steps removed because of the suggestions of the duplicate removal algorithm
using the Principle of Conservation of Steps.

• Investigate novel ways to help practitioners to manage steps, terms and abstrac-
tion levels of scenarios in the specifications. In particular, it will be good to
investigate the following: best ways to merge steps in duplicate scenarios, or sce-
narios with many steps in common, without altering the scenarios’ behaviours
or compromising the coverage of the specification; novel ways to inform main-
tenance engineers about steps existing in the specifications they work with, to
avoid unnecessary introduction of new steps; novel ways to guide the use of
proper terms and abstraction levels when writing new steps for specific BDD
specifications. In connection to the abstraction levels of steps in scenarios, it
would be good to investigate the appropriate trade off between complexity in the
scenario, step definitions, and the SUT.

• Use more industry collaborators to evaluate the effectiveness of the proposed
BDD suite quality principles in guiding the removal of duplicate scenarios. Par-
ticularly on the development of the benchmark of known poor quality scenarios
in known duplicate scenario pairs, it would be good to have each pair judged
by more than one BDD expert, to increase the reliability of the benchmark. It
will also be good if the known duplicate scenario pairs will be distributed across
reasonably many systems, with diverse characteristics.

• Explore the possibility of forming other BDD suite quality principles out of the
quality aspects not covered by the four proposed principles. This would include
further exploration of the aspects summarised in Table 6.5 and other comments
given on each of the four principles as summarised in section 6.3.4. For example,

194 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

it would be good to conduct further study on what makes BDD suites more
readable, the metrics that can be used to assess readability of scenarios in a
BDD suite, and how readability of scenarios can be used to guide the removal of
duplicate BDD scenarios.

• It might also be interesting to contextualise the advantages and disadvantages of
duplication in BDD specifications. For example, it might be interesting to inves-
tigate whether duplication of steps in BDD scenarios increases the readability of
a feature suite. Thus, the trade off between the benefits and costs of duplication
in BDD specifications might be worthy an investigation.

7.3.3 Future work for BDD as a whole

• In the future, it would be good to investigate the degree of conformity to the
BDD workflow by the industry teams. Specifically, for the teams that use BDD
on all projects, some projects, or a few pilot projects, it would be good to know
the extent to which they strictly observe the dictates of the BDD technique.

• Table 3.6 summarises some of the opportunities for future research in BDD. For
example, it would be good to do the following: study the kinds of smells that
occur in BDD suites; identify the patterns of change that occur in BDD based
systems by analysing commits in public systems, propose refactorings for them,
and automate the refactorings for use in development tools.

As yet, BDD techniques have not been studied in great depth by the research commu-
nity, and we need to gain more data and a better understanding of their strengths and
limitations in practice, to allow better tools to be developed.

Bibliography

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,”
Queens School of Computing TR, vol. 541, no. 115, pp. 64–68, 2007.

[2] http://hanwax.github.io, “The mantra of test-driven development is “red,
green, refactor”,” 2019, last accessed 17 July 2019. [Online]. Available:
http://hanwax.github.io/assets/tdd flow.png

[3] U. Enzler, “Acceptance test driven development,” 2012, last accessed
17 July 2019. [Online]. Available: https://www.planetgeek.ch/2012/06/12/
acceptance-test-driven-development/

[4] C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection: A ten-
year retrospective,” in 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 26–37.

[5] G. Fraser and J. M. Rojas, “Software testing,” in Handbook of Software Engi-

neering. Springer, 2019, pp. 123–192.

[6] A. Bertolino, “Software testing research: Achievements, challenges, dreams,”
in 2007 Future of Software Engineering. IEEE Computer Society, 2007, pp.
85–103.

[7] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Univer-
sity Press, 2016.

[8] V. Garousi and J. Zhi, “A survey of software testing practices in canada,” Journal

of Systems and Software, vol. 86, no. 5, pp. 1354–1376, 2013.

[9] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons learned from
automated testing,” in Proceedings of the 27th international conference on Soft-

ware engineering. ACM, 2005, pp. 571–579.

195

http://hanwax.github.io/assets/tdd_flow.png
https://www.planetgeek.ch/2012/06/12/acceptance-test-driven-development/
https://www.planetgeek.ch/2012/06/12/acceptance-test-driven-development/

196 BIBLIOGRAPHY

[10] K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observations on
software testing automation,” in 2009 International Conference on Software

Testing Verification and Validation. IEEE, 2009, pp. 201–209.

[11] V. Garousi and M. V. Mäntylä, “When and what to automate in software testing?
a multi-vocal literature review,” Information and Software Technology, vol. 76,
pp. 92–117, 2016.

[12] A. Leitner, I. Ciupa, B. Meyer, and M. Howard, “Reconciling manual and au-
tomated testing: The autotest experience,” in 2007 40th Annual Hawaii Inter-

national Conference on System Sciences (HICSS’07). IEEE, 2007, pp. 261a–
261a.

[13] O. Taipale, J. Kasurinen, K. Karhu, and K. Smolander, “Trade-off between auto-
mated and manual software testing,” International Journal of System Assurance

Engineering and Management, vol. 2, no. 2, pp. 114–125, 2011.

[14] E. Alégroth, R. Feldt, and P. Kolström, “Maintenance of automated test suites in
industry: An empirical study on visual gui testing,” Information and Software

Technology, vol. 73, pp. 66–80, 2016.

[15] E. Dustin, J. Rashka, and J. Paul, Automated software testing: introduction,

management, and performance. Addison-Wesley Professional, 1999.

[16] R. H. Rosero, O. S. Gómez, and G. Rodrı́guez, “15 years of software regression
testing techniquesa survey,” International Journal of Software Engineering and

Knowledge Engineering, vol. 26, no. 05, pp. 675–689, 2016.

[17] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for soft-
ware test automation: A systematic literature review,” Software Testing, Verifi-

cation and Reliability, vol. 27, no. 8, p. e1639, 2017.

[18] R. C. Martin, Agile software development: principles, patterns, and practices.
Prentice Hall, 2002.

[19] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., “Manifesto
for agile software development,” 2001.

[20] E. Collins, G. Macedo, N. Maia, and A. Dias-Neto, “An industrial experience

BIBLIOGRAPHY 197

on the application of distributed testing in an agile software development envi-
ronment,” in 2012 IEEE Seventh International Conference on Global Software

Engineering. IEEE, 2012, pp. 190–194.

[21] C. Liu, “Platform-independent and tool-neutral test descriptions for automated
software testing,” in Proceedings of the 22nd international conference on Soft-

ware engineering. ACM, 2000, pp. 713–715.

[22] K. Beck, Test-Driven Development: by Example. Addison-Wesley Profes-
sional, 2003.

[23] E. F. Collins and V. F. de Lucena, “Software test automation practices in agile
development environment: An industry experience report,” in 2012 7th Inter-

national Workshop on Automation of Software Test (AST). IEEE, 2012, pp.
57–63.

[24] M. Gärtner, ATDD by example: a practical guide to acceptance test-driven de-

velopment. Addison-Wesley, 2012.

[25] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and E. Engström, “A multi-case
study of agile requirements engineering and the use of test cases as require-
ments,” Information and Software Technology, vol. 77, pp. 61–79, 2016.

[26] E. Bjarnason, M. Unterkalmsteiner, E. Engström, and M. Borg, “An industrial
case study on test cases as requirements,” in International Conference on Agile

Software Development. Springer, 2015, pp. 27–39.

[27] L. Pereira, H. Sharp, C. de Souza, G. Oliveira, S. Marczak, and R. Bastos,
“Behavior-driven development benefits and challenges: reports from an indus-
trial study,” in Proceedings of the 19th International Conference on Agile Soft-

ware Development: Companion. ACM, 2018, p. 42.

[28] L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Maintaining behaviour
driven development specifications: Challenges and opportunities,” in 2018 IEEE

25th International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER). IEEE, 2018, pp. 175–184.

[29] D. North, “Introducing BDD,” Better Software Magazine, 2006.

198 BIBLIOGRAPHY

[30] C. Solis and X. Wang, “A study of the characteristics of behaviour driven de-
velopment,” in Software Engineering and Advanced Applications (SEAA), 2011

37th EUROMICRO Conference on. IEEE, 2011, pp. 383–387.

[31] M. Wynne and A. Hellesoy, The Cucumber Book. Pragmatic Programmers,
LLC, 2012.

[32] G. ORegan, “Automata theory,” in Guide to Discrete Mathematics. Springer,
2016, pp. 117–126.

[33] S. Suan, “An automated assistant for reducing duplication in living documenta-
tion,” Master’s thesis, School of Computer Science, University of Manchester,
Manchester, UK, 2015.

[34] M. Mondal, “Analyzing clone evolution for identifying the important clones for
management,” Ph.D. dissertation, University of Saskatchewan, 2017.

[35] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic
review,” Information and Software Technology, vol. 55, no. 7, pp. 1165–1199,
2013.

[36] C. K. ROY, “Detection and analysis of near-miss software clones,” Ph.D. disser-
tation, Queens University, 2009.

[37] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic framework
for evaluating code clone detection tools,” in IEEE International Conference

on Software Testing, Verification, and Validation Workshops. IEEE, 2009, pp.
157–166.

[38] Y. Sasaki et al., “The truth of the f-measure,” Teach Tutor mater, vol. 1, no. 5,
pp. 1–5, 2007.

[39] B. Pierre, Richard E.(Dick) Fairley, 2014. SWEBOK: Guide to the Software En-

gineering Body of Knowledge v3. 0. IEEE.

[40] V. Käfer, S. Wagner, and R. Koschke, “Are there functionally similar code
clones in practice?” in 2018 IEEE 12th International Workshop on Software

Clones (IWSC). IEEE, 2018, pp. 2–8.

[41] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste and
related bugs in large-scale software code,” IEEE Transactions on software En-

gineering, vol. 32, no. 3, pp. 176–192, 2006.

BIBLIOGRAPHY 199

[42] C. J. Kapser and M. W. Godfrey, “Supporting the analysis of clones in soft-
ware systems,” Journal of Software Maintenance and Evolution: Research and

Practice, vol. 18, no. 2, pp. 61–82, 2006.

[43] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code,” IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[44] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach
for detecting duplicated code,” in Proceedings IEEE International Conference

on Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business

Change’(Cat. No. 99CB36360). IEEE, 1999, pp. 109–118.

[45] C. J. Kapser and M. W. Godfrey, “cloning considered harmful considered harm-
ful: patterns of cloning in software,” Empirical Software Engineering, vol. 13,
no. 6, p. 645, 2008.

[46] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning practices: Why developers
clone and what can be changed,” in 2012 28th IEEE International Conference

on Software Maintenance (ICSM). IEEE, 2012, pp. 285–294.

[47] W. Hasanain, Y. Labiche, and S. Eldh, “An analysis of complex industrial test
code using clone analysis,” in 2018 IEEE International Conference on Software

Quality, Reliability and Security (QRS). IEEE, 2018, pp. 482–489.

[48] M. Suzuki, A. C. de Paula, E. Guerra, C. V. Lopes, and O. A. L. Lemos, “An
exploratory study of functional redundancy in code repositories,” in 2017 IEEE

17th International Working Conference on Source Code Analysis and Manipu-

lation (SCAM). IEEE, 2017, pp. 31–40.

[49] D. Chatterji, J. C. Carver, and N. A. Kraft, “Code clones and developer behavior:
results of two surveys of the clone research community,” Empirical Software

Engineering, vol. 21, no. 4, pp. 1476–1508, 2016.

[50] M. Mondal, C. K. Roy, and K. A. Schneider, “Does cloned code increase main-
tenance effort?” in 2017 IEEE 11th International Workshop on Software Clones

(IWSC). IEEE, 2017, pp. 1–7.

[51] D. Chatterji, J. C. Carver, N. A. Kraft, and J. Harder, “Effects of cloned code on
software maintainability: A replicated developer study,” in 2013 20th Working

Conference on Reverse Engineering (WCRE). IEEE, 2013, pp. 112–121.

200 BIBLIOGRAPHY

[52] A. Lozano and M. Wermelinger, “Assessing the effect of clones on changeabil-
ity,” in 2008 IEEE International Conference on Software Maintenance. IEEE,
2008, pp. 227–236.

[53] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto, “Software
quality analysis by code clones in industrial legacy software,” in Proceedings

Eighth IEEE Symposium on Software Metrics. IEEE, 2002, pp. 87–94.

[54] M. Mondal, M. S. Rahman, C. K. Roy, and K. A. Schneider, “Is cloned code
really stable?” Empirical Software Engineering, vol. 23, no. 2, pp. 693–770,
2018.

[55] A. Lozano and M. Wermelinger, “Tracking clones’ imprint.” IWSC, vol. 10, pp.
65–72, 2010.

[56] M. Mondal, C. K. Roy, and K. A. Schneider, “An empirical study on clone
stability,” ACM SIGAPP Applied Computing Review, vol. 12, no. 3, pp. 20–36,
2012.

[57] ——, “An insight into the dispersion of changes in cloned and non-cloned
code: A genealogy based empirical study,” Science of Computer Programming,
vol. 95, pp. 445–468, 2014.

[58] J. Harder and N. Göde, “Cloned code: stable code,” Journal of Software: Evo-

lution and Process, vol. 25, no. 10, pp. 1063–1088, 2013.

[59] J. Krinke, “Is cloned code more stable than non-cloned code?” in 2008 Eighth

IEEE International Working Conference on Source Code Analysis and Manipu-

lation. IEEE, 2008, pp. 57–66.

[60] J. Li and M. D. Ernst, “Cbcd: Cloned buggy code detector,” in Proceedings of

the 34th International Conference on Software Engineering. IEEE Press, 2012,
pp. 310–320.

[61] J. F. Islam, M. Mondal, and C. K. Roy, “Bug replication in code clones: An em-
pirical study,” in 2016 IEEE 23rd International Conference on Software Analy-

sis, Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 68–78.

[62] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software clones,” in
2011 27th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2011, pp. 273–282.

BIBLIOGRAPHY 201

[63] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug-proneness and late propa-
gation tendency of code clones: A comparative study on different clone types,”
Journal of Systems and Software, vol. 144, pp. 41–59, 2018.

[64] S. Xie, F. Khomh, and Y. Zou, “An empirical study of the fault-proneness of
clone mutation and clone migration,” in 2013 10th Working Conference on Min-

ing Software Repositories (MSR). IEEE, 2013, pp. 149–158.

[65] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related bugs,” in
Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering. ACM, 2007, pp. 55–64.

[66] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate
tree-based detection of code clones,” in Proceedings of the 29th international

conference on Software Engineering. IEEE Computer Society, 2007, pp. 96–
105.

[67] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, and
E. Lee, “Experience of finding inconsistently-changed bugs in code clones
of mobile software,” in 2012 6th International Workshop on Software Clones

(IWSC). IEEE, 2012, pp. 94–95.

[68] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen,
“Recurring bug fixes in object-oriented programs,” in Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering-Volume 1.
ACM, 2010, pp. 315–324.

[69] A. Fish, T. L. Nguyen, and M. Song, “Clonemap: A clone-aware code inspec-
tion tool in evolving software,” in 2018 IEEE International Conference on Elec-

tro/Information Technology (EIT). IEEE, 2018, pp. 0368–0372.

[70] D. Steidl and N. Göde, “Feature-based detection of bugs in clones,” in 2013 7th

International Workshop on Software Clones (IWSC). IEEE, 2013, pp. 76–82.

[71] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[72] F. Arcelli Fontana, M. Zanoni, A. Ranchetti, and D. Ranchetti, “Software clone
detection and refactoring,” ISRN Software Engineering, vol. 2013, 2013.

202 BIBLIOGRAPHY

[73] H. Min and Z. L. Ping, “Survey on software clone detection research,” in Pro-

ceedings of the 2019 3rd International Conference on Management Engineer-

ing, Software Engineering and Service Sciences. ACM, 2019, pp. 9–16.

[74] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone man-
agement: Past, present, and future (keynote paper),” in Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolu-

tion Week-IEEE Conference on. IEEE, 2014, pp. 18–33.

[75] R. Koschke, “Survey of research on software clones,” in Dagstuhl Seminar Pro-

ceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[76] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization,” in Program

Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference on.
IEEE, 2008, pp. 172–181.

[77] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone de-
tection by string matching,” Journal of Software Maintenance and Evolution:

Research and Practice, vol. 18, no. 1, pp. 37–58, 2006.

[78] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: a token based
large-gap clone detector,” in Proceedings of the 40th International Conference

on Software Engineering. ACM, 2018, pp. 1066–1077.

[79] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcerercc:
scaling code clone detection to big-code,” in Software Engineering (ICSE), 2016

IEEE/ACM 38th International Conference on. IEEE, 2016, pp. 1157–1168.

[80] N. Göde and R. Koschke, “Incremental clone detection,” in Software Main-

tenance and Reengineering, 2009. CSMR’09. 13th European Conference on.
IEEE, 2009, pp. 219–228.

[81] R. Falke, P. Frenzel, and R. Koschke, “Clone detection using abstract syntax
suffix trees,” in 2006 13th Working Conference on Reverse Engineering. IEEE,
2006, pp. 253–262.

[82] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto, “Incremental code clone
detection: A pdg-based approach,” in Reverse Engineering (WCRE), 2011 18th

Working Conference on. IEEE, 2011, pp. 3–12.

BIBLIOGRAPHY 203

[83] J. Krinke, “Identifying similar code with program dependence graphs,” in Re-

verse Engineering, 2001. Proceedings. Eighth Working Conference on. IEEE,
2001, pp. 301–309.

[84] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: detection of software plagia-
rism by program dependence graph analysis,” in Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2006, pp. 872–881.

[85] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic detection
of function clones in a software system using metrics.” in icsm, vol. 96, 1996, p.
244.

[86] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B. V. Saranya, “Detec-
tion of type-1 and type-2 code clones using textual analysis and metrics,” in
Recent Trends in Information, Telecommunication and Computing (ITC), 2010

International Conference on. IEEE, 2010, pp. 241–243.

[87] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” in Pro-

ceedings of the 30th international conference on Software engineering. ACM,
2008, pp. 321–330.

[88] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest com-
mon subsequences,” Communications of the ACM, vol. 20, no. 5, pp. 350–353,
1977.

[89] R. Tajima, M. Nagura, and S. Takada, “Detecting functionally similar code
within the same project,” in 2018 IEEE 12th International Workshop on Soft-

ware Clones (IWSC). IEEE, 2018, pp. 51–57.

[90] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in source
code,” in International static analysis symposium. Springer, 2001, pp. 40–56.

[91] H. W. Alomari and M. Stephan, “Towards slice-based semantic clone detection,”
in 2018 IEEE 12th International Workshop on Software Clones (IWSC). IEEE,
2018, pp. 58–59.

[92] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and O. Meqdadi,
“srcslice: very efficient and scalable forward static slicing,” Journal of Software:

Evolution and Process, vol. 26, no. 11, pp. 931–961, 2014.

204 BIBLIOGRAPHY

[93] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “Orbs:
Language-independent program slicing,” in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 109–120.

[94] Z. F. Fang and P. Lam, “Identifying test refactoring candidates with assertion
fingerprints,” in Proceedings of the Principles and Practices of Programming

on The Java Platform. ACM, 2015, pp. 125–137.

[95] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara, “Code
relatives: detecting similarly behaving software,” in Proceedings of the 2016

24th ACM SIGSOFT International Symposium on Foundations of Software En-

gineering. ACM, 2016, pp. 702–714.

[96] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[97] Google, “Google code jam,” 2016, last accessed 27 September 2019. [Online].
Available: https://codingcompetitions.withgoogle.com/codejam

[98] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: Dynamic
similarity testing for program binaries and components.” USENIX, 2014.

[99] Y. Ishii, T. Watanabe, M. Akiyama, and T. Mori, “Clone or relative?: Under-
standing the origins of similar android apps,” in Proceedings of the 2016 ACM

on International Workshop on Security And Privacy Analytics. ACM, 2016,
pp. 25–32.

[100] J. Park, D. Son, D. Kang, J. Choi, and G. Jeon, “Software similarity analysis
based on dynamic stack usage patterns,” in Proceedings of the 2015 Conference

on research in adaptive and convergent systems. ACM, 2015, pp. 285–290.

[101] A. Aiken, “Moss: A system for detecting software plagiarism,” http://www. cs.

berkeley. edu/˜ aiken/moss. html, 2004.

[102] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code frag-
ments via random testing,” in Proceedings of the eighteenth international sym-

posium on Software testing and analysis. ACM, 2009, pp. 81–92.

[103] F.-H. Su, J. Bell, G. Kaiser, and S. Sethumadhavan, “Identifying functionally

https://codingcompetitions.withgoogle.com/codejam

BIBLIOGRAPHY 205

similar code in complex codebases,” in Program Comprehension (ICPC), 2016

IEEE 24th International Conference on. IEEE, 2016, pp. 1–10.

[104] R. ELVA, “Detecting semantic method clones in java code using method ioe-
behavior,” Ph.D. dissertation, University of Central Florida Orlando, Florida,
2013.

[105] F. A. Fontana, M. Zanoni, and F. Zanoni, “A duplicated code refactoring advi-
sor,” in International Conference on Agile Software Development. Springer,
2015, pp. 3–14.

[106] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler, “Auto-
matic clone recommendation for refactoring based on the present and the past,”
in 2018 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2018, pp. 115–126.

[107] W. Wang and M. W. Godfrey, “Recommending clones for refactoring using de-
sign, context, and history,” in Software Maintenance and Evolution (ICSME),

2014 IEEE International Conference on. IEEE, 2014, pp. 331–340.

[108] M. Mandal, C. K. Roy, and K. A. Schneider, “Automatic ranking of clones
for refactoring through mining association rules,” in Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evo-

lution Week-IEEE Conference on. IEEE, 2014, pp. 114–123.

[109] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the refactorabil-
ity of software clones,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1055–1090, 2015.

[110] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactoring with lambda
expressions,” in Proceedings of the 39th International Conference on Software

Engineering. IEEE Press, 2017, pp. 60–70.

[111] N. Volanschi, “Stereo: editing clones refactored as code generators,” in 2018

IEEE International Conference on Software Maintenance and Evolution (IC-

SME). IEEE, 2018, pp. 595–604.

[112] Z. Chen, Y.-W. Kwon, and M. Song, “Clone refactoring inspection by sum-
marizing clone refactorings and detecting inconsistent changes during software
evolution,” Journal of Software: Evolution and Process, vol. 30, no. 10, p.
e1951, 2018.

206 BIBLIOGRAPHY

[113] R.-G. Urma, M. Fusco, and A. Mycroft, Java 8 in action. Manning publica-
tions, 2014.

[114] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok, “Refactoring test
code,” in Proceedings of the 2nd international conference on extreme program-

ming and flexible processes in software engineering (XP2001), 2001, pp. 92–95.

[115] J. Zhao, “Automatic refactoring for renamed clones in test code,” Master’s the-
sis, University of Waterloo, 2018.

[116] D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta, “Jdeodorant: clone refac-
toring,” in 2016 IEEE/ACM 38th International Conference on Software Engi-

neering Companion (ICSE-C). IEEE, 2016, pp. 613–616.

[117] H. Neukirchen, B. Zeiss, J. Grabowski, P. Baker, and D. Evans, “Quality assur-
ance for ttcn-3 test specifications,” Software Testing, Verification and Reliability,
vol. 18, no. 2, pp. 71–97, 2008.

[118] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software Testing, Verification and Reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[119] A. M. Smith, J. Geiger, G. M. Kapfhammer, and M. L. Soffa, “Test suite
reduction and prioritization with call trees,” in Proceedings of the twenty-

second IEEE/ACM international conference on Automated software engineer-

ing. ACM, 2007, pp. 539–540.

[120] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the
size of a test suite,” ACM Transactions on Software Engineering and Methodol-

ogy (TOSEM), vol. 2, no. 3, pp. 270–285, 1993.

[121] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Jtop: Managing ju-
nit test cases in absence of coverage information,” in Proceedings of the

2009 IEEE/ACM International Conference on Automated Software Engineer-

ing. IEEE Computer Society, 2009, pp. 677–679.

[122] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test minimization,”
2018.

[123] B. Hauptmann, E. Juergens, and V. Woinke, “Generating refactoring proposals
to remove clones from automated system tests,” in Proceedings of the 2015

BIBLIOGRAPHY 207

IEEE 23rd International Conference on Program Comprehension. IEEE Press,
2015, pp. 115–124.

[124] M. Fewster and D. Graham, Software test automation: effective use of test exe-

cution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

[125] C. G. Nevill-Manning, “Inferring sequential structure,” Ph.D. dissertation, Cite-
seer, 1996.

[126] P. Devaki, S. Thummalapenta, N. Singhania, and S. Sinha, “Efficient and flexi-
ble gui test execution via test merging,” in Proceedings of the 2013 International

Symposium on Software Testing and Analysis. ACM, 2013, pp. 34–44.

[127] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Havas, and T. Gyimóthy,
“Beyond code coveragean approach for test suite assessment and improvement,”
in 2015 IEEE Eighth International Conference on Software Testing, Verification

and Validation Workshops (ICSTW). IEEE, 2015, pp. 1–7.

[128] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “Auto-
matic test case generation: What if test code quality matters?” in Proceedings

of the 25th International Symposium on Software Testing and Analysis. ACM,
2016, pp. 130–141.

[129] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[130] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions on

Software Engineering, vol. 39, no. 2, pp. 276–291, 2012.

[131] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling readabil-
ity to improve unit tests,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering. ACM, 2015, pp. 107–118.

[132] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas, and P. Braun, “Hunt-
ing for smells in natural language tests,” in Proceedings of the 2013 Interna-

tional Conference on Software Engineering. IEEE Press, 2013, pp. 1217–1220.

[133] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality assurance
with requirements smells,” Journal of Systems and Software, vol. 123, pp. 190–
213, 2017.

208 BIBLIOGRAPHY

[134] G. Oliveira, S. Marczak, and C. Moralles, “How to evaluate bdd scenarios’ qual-
ity?” in Proceedings of the XXXIII Brazilian Symposium on Software Engineer-

ing. ACM, 2019, pp. 481–490.

[135] IIBA, A Guide to the Business Analysis Body of Knowledge (Babok Guide).

International Institute of Business Analysis, 2015.

[136] K. Brennan et al., A Guide to the Business Analysis Body of Knowledge. Iiba,
2009.

[137] M. Cohn, User stories applied: For agile software development. Addison-
Wesley Professional, 2004.

[138] M. Diepenbeck, M. Soeken, D. Grobe, and R. Drechsler, “Towards automatic
scenario generation from coverage information,” in 2013 8th International

Workshop on Automation of Software Test (AST). IEEE, 2013, pp. 82–88.

[139] M. Irshad, “Assessing reusability in automated acceptance tests,” Ph.D. disser-
tation, Blekinge Tekniska Högskola, 2018.

[140] L. Amar and J. Coffey, “Measuring the benefits of software reuse-examining
three different approaches to software reuse,” Dr Dobbs Journal, vol. 30, no. 6,
pp. 73–76, 2005.

[141] M. Landhauer and A. Genaid, “Connecting user stories and code for test devel-
opment,” in 2012 Third International Workshop on Recommendation Systems

for Software Engineering (RSSE). IEEE, 2012, pp. 33–37.

[142] A. Z. Yang, D. A. da Costa, and Y. Zou, “Predicting co-changes between func-
tionality specifications and source code in behavior driven development,” in Pro-

ceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 2019, pp. 534–544.

[143] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,
“The stanford corenlp natural language processing toolkit,” in Proceedings of

52nd annual meeting of the association for computational linguistics: system

demonstrations, 2014, pp. 55–60.

[144] M. Pawlan, “Essentials of the java programming language,” Sun Developers

Network Tutorials & Code Camps, 1999.

BIBLIOGRAPHY 209

[145] B. Li and L. Han, “Distance weighted cosine similarity measure for text classi-
fication,” in International Conference on Intelligent Data Engineering and Au-

tomated Learning. Springer, 2013, pp. 611–618.

[146] R. Forests, “by leo breiman,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[147] G. Kondrak, “N-gram similarity and distance,” in International symposium on

string processing and information retrieval. Springer, 2005, pp. 115–126.

[148] E. Juergens, F. Deissenboeck, and B. Hummel, “Clone detection beyond copy
& paste,” in Proc. of the 3rd International Workshop on Software Clones, 2009.

[149] R. D. Fricker Jr, “Sampling Methods for Online Surveys,” The SAGE Handbook

of Online Research Methods, p. 162, 2016.

[150] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and T. Zim-
mermann, “Quantifying developers’ adoption of security tools,” in Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
2015, pp. 260–271.

[151] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on auto-
mated fault localization,” in Proceedings of the 25th International Symposium

on Software Testing and Analysis. ACM, 2016, pp. 165–176.

[152] specsolutions, “Bdd addict newsletter,” 2019, last accessed 25 June 2019.
[Online]. Available: https://www.specsolutions.eu/news/bddaddict/

[153] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative

research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[154] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical, step-by-
step guide for learning and teaching scholars.” AISHE-J: The All Ireland Journal

of Teaching and Learning in Higher Education, vol. 9, no. 3, 2017.

[155] J. Iivari and M. Huisman, “The relationship between organizational culture and
the deployment of systems development methodologies,” MIS Quarterly, pp.
35–58, 2007.

[156] J. Iivari and J. Maansaari, “The usage of systems development methods: are we
stuck to old practices?” Information and software technology, vol. 40, no. 9, pp.
501–510, 1998.

https://www.specsolutions.eu/news/bddaddict/

210 BIBLIOGRAPHY

[157] CollabNet VersionOne, “13th Annual State of Agile Report,” 2019, last
accessed 6 October 2020. [Online]. Available: https://stateofagile.com

[158] ——, “14th Annual State of Agile Report,” 2020, last accessed 6 October 2020.
[Online]. Available: https://stateofagile.com

[159] M. Senapathi, M. Drury, and A. Srinivasan, “Agile usage: Refining a theoretical
model.” in PACIS, 2013, p. 43.

[160] M. Senapathi and M. L. Drury-Grogan, “Refining a model for sustained usage of
agile methodologies,” Journal of Systems and Software, vol. 132, pp. 298–316,
2017.

[161] M. Senapathi and A. Srinivasan, “An empirical investigation of the factors af-
fecting agile usage,” in Proceedings of the 18th international conference on

evaluation and assessment in software engineering. ACM, 2014, p. 10.

[162] L. Vijayasarathy and D. Turk, “Agile software development: A survey of early
adopters,” Journal of Information Technology Management, vol. 19, no. 2, pp.
1–8, 2008.

[163] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan, “How good are my
tests?” in Proceedings of the 8th Workshop on Emerging Trends in Software

Metrics. IEEE Press, 2017, pp. 9–14.

[164] D. Gonzalez, J. Santos, A. Popovich, M. Mirakhorli, and M. Nagappan, “A
large-scale study on the usage of testing patterns that address maintainability
attributes: patterns for ease of modification, diagnoses, and comprehension,” in
Proceedings of the 14th International Conference on Mining Software Reposi-

tories. IEEE Press, 2017, pp. 391–401.

[165] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen, and J. Grabowski, “Ap-
plying the iso 9126 quality model to test specifications,” Software Engineering,
vol. 15, no. 6, pp. 231–242, 2007.

[166] M. Greiler, A. Van Deursen, and A. Zaidman, “Measuring test case similarity to
support test suite understanding,” Objects, Models, Components, Patterns, pp.
91–107, 2012.

[167] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia, “On

https://stateofagile.com
https://stateofagile.com

BIBLIOGRAPHY 211

the diffusion of test smells in automatically generated test code: An empiri-
cal study,” in Proceedings of the 9th International Workshop on Search-Based

Software Testing. ACM, 2016, pp. 5–14.

[168] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test debt,”
in Trends in Software Testing. Springer, 2017, pp. 1–17.

[169] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall, “The impact
of test case summaries on bug fixing performance: An empirical investigation,”
in Proceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 547–558.

[170] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with descriptive
names or: Would you name your children thing1 and thing2?” in Proceedings

of the 26th International Symposium on Software Testing and Analysis, 2017,
pp. 57–67.

[171] M. S. Greiler, “Test suite comprehension for modular and dynamic systems,”
2013.

[172] M. Greiler, A. Zaidman, A. v. Deursen, and M.-A. Storey, “Strategies for avoid-
ing text fixture smells during software evolution,” in Proceedings of the 10th

Working Conference on Mining Software Repositories. IEEE Press, 2013, pp.
387–396.

[173] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs in test
code,” in Software Maintenance and Evolution (ICSME), 2015 IEEE Interna-

tional Conference on. IEEE, 2015, pp. 101–110.

[174] R. Ramler, M. Moser, and J. Pichler, “Automated static analysis of unit test
code,” in Software Analysis, Evolution, and Reengineering (SANER), 2016

IEEE 23rd International Conference on, vol. 2. IEEE, 2016, pp. 25–28.

[175] M. Waterloo, S. Person, and S. Elbaum, “Test analysis: Searching for faults
in tests (n),” in Automated Software Engineering (ASE), 2015 30th IEEE/ACM

International Conference on. IEEE, 2015, pp. 149–154.

[176] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic execution,”
in Proceedings of the 19th international symposium on Software testing and

analysis. ACM, 2010, pp. 207–218.

212 BIBLIOGRAPHY

[177] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert: Suggesting repairs
for broken unit tests,” in Proceedings of the 2009 IEEE/ACM International Con-

ference on Automated Software Engineering. IEEE Computer Society, 2009,
pp. 433–444.

[178] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web application
test repair,” in Proceedings of the First International Workshop on End-to-End

Test Script Engineering. ACM, 2011, pp. 24–29.

[179] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An incremental ap-
proach for repairing record-replay tests of web applications,” in Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2016, pp. 751–762.

[180] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities of test-
suite evolution,” in Proceedings of the ACM SIGSOFT 20th International Sym-

posium on the Foundations of Software Engineering. ACM, 2012, p. 33.

[181] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani, “Effective regression
test case selection: A systematic literature review,” ACM Computing Surveys

(CSUR), vol. 50, no. 2, p. 29, 2017.

[182] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and V. Chang, “A
survey on test suite reduction frameworks and tools,” International Journal of

Information Management, vol. 36, no. 6, pp. 963–975, 2016.

[183] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping study,”
Software Quality Journal, vol. 21, no. 3, pp. 445–478, 2013.

[184] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen, “Mining soft-
ware repositories to study co-evolution of production & test code,” in Soft-

ware Testing, Verification, and Validation, 2008 1st International Conference

on. IEEE, 2008, pp. 220–229.

[185] A. Rodrigues and A. Dias-Neto, “Relevance and impact of critical factors of suc-
cess in software test automation lifecycle: A survey,” in Proceedings of the 1st

Brazilian Symposium on Systematic and Automated Software Testing. ACM,
2016, p. 6.

BIBLIOGRAPHY 213

[186] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors limiting industrial adop-
tion of test driven development: A systematic review,” in Software Testing, Veri-

fication and Validation (ICST), 2011 IEEE Fourth International Conference on.
IEEE, 2011, pp. 337–346.

[187] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for detecting redun-
dant object-oriented unit tests,” in Proceedings of the 19th IEEE international

conference on Automated software engineering. IEEE Computer Society, 2004,
pp. 196–205.

[188] D. Kulak and H. Li, “Getting coaching that really helps,” in The Journey to

Enterprise Agility. Springer, 2017, pp. 197–209.

[189] A. Baah, Agile Quality Assurance: Deliver Quality Software-Providing Great

Business Value. BookBaby, 2017.

[190] M. Sidman, “Symmetry and equivalence relations in behavior,” Cognitive Stud-

ies, vol. 15, no. 3, pp. 322–332, 2008.

[191] E. Juergens, F. Deissenboeck, and B. Hummel, “Code similarities beyond copy
& paste,” in 2010 14th European Conference on Software Maintenance and

Reengineering. IEEE, 2010, pp. 78–87.

[192] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detec-
tion using abstract syntax trees,” in Software Maintenance, 1998. Proceedings.,

International Conference on. IEEE, 1998, pp. 368–377.

[193] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and
evaluation of clone detection tools,” IEEE Transactions on software engineer-

ing, vol. 33, no. 9, pp. 577–591, 2007.

[194] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, “Challenges of
the dynamic detection of functionally similar code fragments,” in 2012 16th

European Conference on Software Maintenance and Reengineering. IEEE,
2012, pp. 299–308.

[195] A. Okolnychy and K. Foegen, “A Study of Tools for Behavior-Driven Develop-
ment,” Software Construction Research Group, Faculty of Mathematics, Com-
puter Science, and Natural Sciences, Rwthaachen University, Germany, Tech.
Rep. FsSE/CTRelEng 2016, February 2016.

214 BIBLIOGRAPHY

[196] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu, “Xquery 1.0: An xml query language,” 2002.

[197] S. Bazrafshan and R. Koschke, “An empirical study of clone removals,” in 2013

IEEE International Conference on Software Maintenance. IEEE, 2013, pp.
50–59.

[198] G. Oliveira and S. Marczak, “On the empirical evaluation of bdd scenarios qual-
ity: preliminary findings of an empirical study,” in 2017 IEEE 25th International

Requirements Engineering Conference Workshops (REW). IEEE, 2017, pp.
299–302.

[199] ——, “On the understanding of bdd scenarios quality: Preliminary practitioners
opinions,” in International Working Conference on Requirements Engineering:

Foundation for Software Quality. Springer, 2018, pp. 290–296.

[200] J. Shore et al., The Art of Agile Development: Pragmatic guide to agile software

development. ” O’Reilly Media, Inc.”, 2007.

[201] R. Cochran, C. Vaughn, R. Anderson, and J. Patterson, “cuke sniffer,”
https://github.com/r-cochran/cuke sniffer, 2012.

[202] J. Nielsen, T. Clemmensen, and C. Yssing, “Getting access to what goes on in
people’s heads?: reflections on the think-aloud technique,” in Proceedings of

the second Nordic conference on Human-computer interaction. ACM, 2002,
pp. 101–110.

Appendix A

A Survey on BDD Use by Software
Engineering Teams and the Challenges
of Duplication in BDD Specifications

A.1 Survey Questions

Q1: How would you characterise your organisation? (Options: Public; Private;
Voluntary (eg Charities); Other, please specify)

Q2: How would you describe the frequency of BDD use in your organisation

currently? (Options: Used on all projects; Used on some projects; Used on a
few pilot projects; Not used on any current project; Other(s), please specify)

Q3: Which of the following best summarises the use of BDD in your organisation

currently? (Options: Used as a mandatory tool; Used as an optional tool; Not
used at all; Other(s), please specify)

Q4: How would you describe plans to use BDD in your organisation in the

future? (Options: It will be used as a key tool on all projects; It will be used
as an optional tool on some projects; It will continue to be used on a few pilot
projects; We do not plan to use it on any future project; Other(s), please specify)

Q5: In general, how does your organisation regard BDD as a tool for software

215

216APPENDIX A. A SURVEY ON BDD USE BY SOFTWARE ENGINEERING TEAMS AND THE CHALLENGES OF DUPLICATION IN BDD SPECIFICATIONS

development? (Options:Very Important; Important; Unimportant; Very Unim-
portant; Other, please specify)

Q6: If you currently use BDD/ATDD (Acceptance Test-Driven Development),

what tools does your organisation use? (tick all that apply) (Options: Cucum-
ber; FitNesse; JBehave; Concordion; Spock; easyb; Specflow; Other(s), please
specify)1

Q7: In your opinion, what do you think are the benefits of using BDD in a

software project? (tick all that apply) (Options: Software specifications are
expressed in domain-specific terms, and thus can be easily understood by end
users; Specifications can be executed to confirm correctness or reveal problem-
atic software behaviour(s); Code intention can be easily understood by mainte-
nance developers; Attention is paid to validation and proper handling of data;
Could produce better APIs since it emphasizes writing testable code; Improves
communication between various project stakeholders; Other(s), please specify)

Q8: In your opinion, what do you think are the challenges of using BDD to de-

velop software systems? (tick all that apply) (Options: Its use changes the team’s
traditional approach to software development, and that can be challenging; It in-
volves a steep learning curve; Its benefits are hard to quantify; It can lower team
productivity; Other(s), please specify)

Q9: What is the typical number of scenarios on the individual systems you work

with? (Options: less than 100; 100-1000; 1001-10000; More than 10000 ; Other,
please specify)2

Q10: In our research, we are looking at the issue of duplication in BDD spec-

ifications, and the problems and challenges this causes for stakeholders. By

duplication, we refer to BDD specifications in which some functionality is spec-

ified multiple times, by different scenarios. Select all the statements below that

you think could be associated to the presence of duplication in BDD specifica-

tions. (Options: Execution of BDD suites take longer to complete than neces-
sary; Specifications can become difficult to understand in full; Specifications can

1Strictly speaking, some of these are more properly termed Acceptance Test Driven Development
(ATDD) tools, but they were included because of the close relationship and interaction between BDD
and ATDD.

2To provide context for the maintenance challenges reported, we asked for information about the
typical sizes of the BDD suites used and managed by the respondents.

A.2. CODES AND THEMES FROM THE CHALLENGES REPORTED BY BDD PRACTITIONERS217

become difficult to extend and change (leading potentially to frozen functional-
ity); Other(s), please specify)

Q11: How would you describe the presence of duplication in any of your BDD

specifications? (Options: Present in all our projects that use BDD; Present in
some of our projects that use BDD; Could be present in all or some of our
projects that use BDD, but we have never paid attention to it; Other(s), please
specify)

Q12: Please indicate the extent to which duplication is present in any of your

BDD specifications (Options: Present to a problematic extent; Present to a man-
ageable extent; Could be present to any extent, but we have never paid attention
to it; Other(s), please specify)

Q13: How do you detect and manage duplication in your BDD specifications?

(Options: We perform manual inspection to detect duplication, and thereafter
decide how to manage the duplicates we detect; We appreciate the need to detect
and manage duplication, but we have decided to live with it, given the possi-
ble complexity of the detection and management process; We do not regard the
presence of duplication as a problem; Other(s), please specify)

Q14: Please tell us about any other issues regarding your use of BDD that have

not been covered in the earlier questions (Free Text)

Q15: Name (Free Text)

Q16: Email (Free Text)

Q17: Job Title (Free Text)

Q18: Organisation Name (Free Text)

A.2 Codes and Themes from the Challenges Reported
by BDD Practitioners

This appendix presents the codes assigned to the various BDD challenges reported by
respondents (Table A.1), and the sorting of codes to form themes (Table A.2).

218A
PPE

N
D

IX
A

.
A

SU
RV

E
Y

O
N

B
D

D
U

SE
B

Y
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

T
E

A
M

S
A

N
D

T
H

E
C

H
A

L
L

E
N

G
E

S
O

F
D

U
PL

IC
A

T
IO

N
IN

B
D

D
SPE

C
IFIC

A
T

IO
N

S
Table A.1: Codes for the challenges facing respondent BDD practitioners

Respondent Reported BDD Challenge Code

R2 “ Needing to involve Business and final users” Involvement of domain experts and end users

R10 “Difficult to have the just enough. Difficult to write clear Gherkin Scnarios (Scenarios)” Adequate and clear scenarios

R12 “It’s a simple concept but can be hard to get right. Many people make the

assumption it’s about test automation and try to use like a scripting tool and

the project ends in failure”

Improper practice of BDD

R19 “it does not succeed at being legible to colleagues outside of software engi-

neering departments”

make non-developers read tests

R20 “Make other non developers read tests. So far I have used BDD for couple

of years and even though idea behind it good, people who are not involved in

testing are also not interesting in test cases no matter how easy to read they

are.”

make non-developers read tests

R23 “As with other kinds of testing, the best way to learn is from somebody who

has experience. Thus just by downloading a framework, reading a bit and

trying, one can produce tests which value is disputable.”

-Lack of training and coaching
-Improper practice of BDD

R24 “Dsnger (Danger) of confusing the mechanics (automation, written specifi-

cations) with the intention (knowledge sharing, structured conversations, dis-

covery of edge cases), focusing too much on the former.”

Improper practice of BDD

A
.2.

C
O

D
E

S
A

N
D

T
H

E
M

E
S

FR
O

M
T

H
E

C
H

A
L

L
E

N
G

E
S

R
E

PO
R

T
E

D
B

Y
B

D
D

PR
A

C
T

IT
IO

N
E

R
S219

R29 “Once the gherkin syntax is well known, stakeholders tend to skip ahead, re-

ducing the benefits of the specification workshop”

Improper practice of BDD

R34 “Its hard to find someone who really understand what should be tested by BDD

therefore a bunch of developer has negative experience about it. Probably

there is no a comprehensive material on the internet that can explain every

aspect of BDD.”

-Improper understanding of BDD
- Scarcity of BDD training material

R37 “BDD test scenarios still have to be a valid code” Additional code

R49 “Stakeholders don’t write specs. Textual specs are too expensive to maintain

long-term”

-stakeholders non-involvement
-Hard to maintain BDD specs

R60 “Productivity is initially (first 6 months) lowered. Beyond that productivity is

increased. Every project has a greater setup cost, say 1-3 days to put BDD

tooling in place. Hence it is not worth while for trivial projects.”

Initial setup costs

R65 “requires design skills often absent or not valued” - Absence or inapplication of skills

R70 “Sometimes writing the fixtures requires huge effort and cost” High setup efforts and costs

R72 “BDD practices “by the book” often force domain experts to waste their time

and insights trying to think like developers/testers, instead of expressing their

needs. Real-world examples often have overwhelming details”

Impose structured thinking on domain experts
and end users

R73 “All the usual challenges in getting automated testing running and main-

tained”

All challenges in automated test suites

220A
PPE

N
D

IX
A

.
A

SU
RV

E
Y

O
N

B
D

D
U

SE
B

Y
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

T
E

A
M

S
A

N
D

T
H

E
C

H
A

L
L

E
N

G
E

S
O

F
D

U
PL

IC
A

T
IO

N
IN

B
D

D
SPE

C
IFIC

A
T

IO
N

S
R75 “In my experience, product, business analyst dont even read bdd test, let alone

modify, write them in user stories. Using bdd tools that enable writing tests

in human language end up being an overhead. We just write functional tests

using JUnit by using readable names in business language.”

-make non-developers write and read tests
-Tools overhead

A
.2.

C
O

D
E

S
A

N
D

T
H

E
M

E
S

FR
O

M
T

H
E

C
H

A
L

L
E

N
G

E
S

R
E

PO
R

T
E

D
B

Y
B

D
D

PR
A

C
T

IT
IO

N
E

R
S221

R18 “BDD tests are heavyweight for developers to use: well written tests are

almost always easier to read and run unless you have a very extensive DSL.

Writing the DSL is overhead on engineering team so it frequently falls to QA

roles. This can result in a poorly written DSL but more importantly it means

DSL knowledge moves to the QA team. Eventually it becomes another silo,

and a bad one at that. ”

“My past BDD experience was in another company in which QA was

all manual testers with no programming background. We tried to formalize

the manual testing checklist using Salad (Lettuce + a webdriver DSL) with

the intent to simplify webdriver testing to the point that QA could write their

own tests. Over time I became less confident that this could work, tests were

very brittle and manual QA types had limited ability to investigate. ”

“I have read success stories where managers wrote BDD tests and I

think this is actually the critical piece: Organisation leadership must show

tangible buy-in in the form of regular interaction/writing. Thoughtless

delegation to QA results in long-term rot, delegate to engineering results in

acrimony as engineers wonder why they can’t use a real language. Without

manager buy-in BDD is a pointless layer to test through.”

-Extra load for developers in creating DSL
-Creating a DSL understandable to both devel-
opers and QAs
-Limited programming skills for some QAs
-Brittle and hard to maintain tests
-support from management

222A
PPE

N
D

IX
A

.
A

SU
RV

E
Y

O
N

B
D

D
U

SE
B

Y
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

T
E

A
M

S
A

N
D

T
H

E
C

H
A

L
L

E
N

G
E

S
O

F
D

U
PL

IC
A

T
IO

N
IN

B
D

D
SPE

C
IFIC

A
T

IO
N

S
R20 “BDD add unnecessary layer of maintaining specification and make them still

readable with clean code.”

-Additional layer of code that requires main-
tatance

R24 “Extension of answer to 10: Stakeholders “writing” scenarios on their own

for “improved efficiency”, thereby completely missing the main benefit of BDD

- establishing shared understanding.”

Collaboration between stakeholders

R27 “Stability of user-interface testing frameworks cause problems, and a lack

of established standards to handle translating between specification actions...”

“Additionally, the difficulty of getting junior developers to understand

XPath tends to make adoption difficult, especially when the immediate costs

are more apparent than the long term benefits”

-Unstable frameworks
-Lack of standards to guide translation of natu-
ral language specs to implementation details
-Lack of skills
-Initial setup costs

R28 “BDD is often associated with slow suites. The difficulty of managing du-

plication is proportional to that slowness. Therefore, as BDD scales, in my

opinion it is crucial to find ways to run slow scenarios fast, either by reducing

their scope, or by running them against multiple configurations of the system

covered by the scenarios.”

- Longer suites execution times
-duplication management difficulty
-Lack of mechanisms to reduce suites execution
times

R30 “Writing full specs is to much for non developers. And developers prefer to

write testcases as code, not gerkin. So we end up not doing bdd at all”

-Make non-developers write specs
-Developers writing specs as code

R36 “...the complexity of the test software needed to support BDD is often as high

as the software under test, and the business unit owners never end up writing

tests anyway...”

-Complexity of software to support BDD
-Diffulty in making non-developers write specs

A
.2.

C
O

D
E

S
A

N
D

T
H

E
M

E
S

FR
O

M
T

H
E

C
H

A
L

L
E

N
G

E
S

R
E

PO
R

T
E

D
B

Y
B

D
D

PR
A

C
T

IT
IO

N
E

R
S223

R39 “Writing feature specs at the correct level of abstraction” deciding scenario abstraction levels

R45 “Poor tooling” Poor tooling

R65 “there are very few sources about the structuring of *information* and the

conveyance of semantic intent (e.g. e-prime / crispness index). secondly

the limitations between using natural language to describe certain analytical

problems (the use of labels).”

-Scarcity of training material
-Limitation of natural language on some analyt-
ical problems

R67 “Main issue when applying BDD, it to find time to do the three amigos work-

shop, it is not a tool issue but more a people one”

Collaboration between stakeholders

R73 “Some developers don’t like the duplication that an be created with having

BDD separate to unit tests. BDD can also get out of hand and become far too

technical and indecipherable by users”

-Additional layer of tests
-Hard to understand and maintain

R74 “Not everyone likes having their specs in such strong conjunction with the

sourcecode, some business people rather be vague but personally I think that

is because they either are not sure or want to change their mind later. Telling

them that changing their mind later is fine, but now I need precise specs,

doesn’t always work.”

specs in strong conjuction with code

224A
PPE

N
D

IX
A

.
A

SU
RV

E
Y

O
N

B
D

D
U

SE
B

Y
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

T
E

A
M

S
A

N
D

T
H

E
C

H
A

L
L

E
N

G
E

S
O

F
D

U
PL

IC
A

T
IO

N
IN

B
D

D
SPE

C
IFIC

A
T

IO
N

S
Table A.2: BDD challenges: themes with related codes

S/n Theme Code

1 Collaboration between stakeholders

Involvement of domain experts and end users

Improper practice of BDD

Improper practice of BDD

Improper practice of BDD

Improper practice of BDD

stakeholders non-involvement

Ignoring stakeholders collaboration

Collaboration between stakeholders

Creating a DSL understandable to both developers and QAs

Developers writing specs as code

2 Make non-developers read and write tests

make non-developers read tests

make non-developers read tests

Impose structured thinking on domain experts and end users

make non-developers write and read tests

A
.2.

C
O

D
E

S
A

N
D

T
H

E
M

E
S

FR
O

M
T

H
E

C
H

A
L

L
E

N
G

E
S

R
E

PO
R

T
E

D
B

Y
B

D
D

PR
A

C
T

IT
IO

N
E

R
S225

Make non-developers write specs

Diffulty in making non-developers write specs

3 Training and coaching

Lack of training and coaching

Improper understanding of BDD

Scarcity of BDD training material

Absence or inapplication of skills

Scarcity of training material

Lack of skills

4 Comprehensibility, extensibility and maintainability of tests

Hard to maintain BDD specs

All challenges in automated test suites

Brittle and hard to maintain tests

Longer suites execution times

duplication management difficulty

Lack of mechanisms to reduce suites

Hard to understand and maintain

Additional layer of tests

226A
PPE

N
D

IX
A

.
A

SU
RV

E
Y

O
N

B
D

D
U

SE
B

Y
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

T
E

A
M

S
A

N
D

T
H

E
C

H
A

L
L

E
N

G
E

S
O

F
D

U
PL

IC
A

T
IO

N
IN

B
D

D
SPE

C
IFIC

A
T

IO
N

S
Additional code

Additional layer of code that requires maintatance

5 Setup costs

Initial setup costs

High setup efforts and costs

Initial setup costs

Extra load for developers in creating DSL

6 Tools and Sotware

Tools overhead

Unstable frameworks

Complexity of software to support BDD

Poor tooling

7 Miscellaneous

Adequate and clear scenarios

Limited programming skills for some QAs

support from management

Lack of standards to guide translation of natural language specs
to implementation details

A
.2.

C
O

D
E

S
A

N
D

T
H

E
M

E
S

FR
O

M
T

H
E

C
H

A
L

L
E

N
G

E
S

R
E

PO
R

T
E

D
B

Y
B

D
D

PR
A

C
T

IT
IO

N
E

R
S227

deciding scenario abstraction levels

Limitation of natural language on some analytical problems

specs in strong conjuction with code

Appendix B

Sample Duplicate Report

B.1 Example duplication report

Figure B.1: Example duplication report from our tool

228

Appendix C

Sample Remove Suggestions

C.1 Sample remove suggestions

Figure C.1: Sample duplicate removal suggestions based on conservation of steps

229

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Dedication
	Introduction
	Behaviour Driven Development
	The Problem
	Hypothesis and Research Questions
	Thesis Contributions
	Publication Activity
	Thesis Organisation

	Literature Review
	Terminology
	Terminology on Duplication
	Other Terminology

	Duplication in Software Systems
	Evidence of Duplication in Real World Systems
	Causes of Duplication in Software Systems
	Upsides and Downsides of Duplication in Software Systems

	Duplication Detection
	Static analysis approaches
	Dynamic analysis approaches
	Combination of static and dynamic analysis approaches

	Duplication Removal
	Refactoring of duplicates in production code
	Removing duplication in test code
	Test Suite Reduction
	Removing duplication in natural language tests
	Assessing the quality of tests and requirements

	Analysis and Improvement of BDD Specifications
	Research Gap
	Summary

	Challenges and Opportunities for Maintaining BDD Suites
	Introduction
	Study Design
	Survey Design
	Recruitment of Respondents
	Survey Respondents and Data Analysis Approach
	Ethical Considerations

	Results
	RQ1. Extent of Active Use of BDD
	RQ2. Perceived Benefits and Challenges Involved in Using BDD
	RQ3. Challenges of Maintaining BDD Specifications
	RQ4. Duplication in BDD Suites

	Discussion
	Research Opportunities
	Threats to Validity
	Summary

	Benchmark Development
	Introduction
	Semantically Equivalent Scenarios
	Benchmark Development
	Context
	The Host Systems
	Duplicates between Original Scenarios
	Duplicate Injection

	Summary

	Detecting Duplicate Scenarios in BDD Suites
	Introduction
	The Duplicate Detection Problem in BDD
	Existing Tools
	Tools Selection
	Tools Configuration and Experiment Setup
	Results and Discussion

	Detecting Duplicate Scenarios
	Hypothesis
	Overall Duplicate Detection Framework
	Definitions of Key Terms
	Using Default Traces to Detect Duplicate Scenarios
	Using Essential Traces to Detect Duplicate Scenarios
	Algorithm and Implementation

	Evaluation
	Experiment Design
	Results
	Discussion

	Summary

	Quality-Oriented Removal of Duplicate Scenarios in BDD Suites
	Introduction
	BDD Suite Quality Principles
	Aspects of Quality in BDD Specifications
	Principle of Conservation of Steps
	Principle of Conservation of Domain Vocabulary
	Principle of Elimination of Technical Vocabulary
	Principle of Conservation of Proper Abstraction

	Community Support for the Quality Principles
	Survey Design
	Ethical Considerations
	Respondents and Data Analysis
	Results
	Conclusions from the Survey

	Operationalization of BDD Quality Principles
	Assessing Conservation of Steps
	Assessing Conservation of Domain Vocabulary
	Assessing Elimination of Technical Vocabulary
	Assessing Conservation of Proper Abstraction
	Implementation

	Evaluation
	Context and Research Questions
	Lab Experiment: Design, Results and Discussion
	Industry Experiment: Design, Results and Discussion

	Threats to Validity
	Summary

	Conclusions and Future Work
	Summary of Research Contributions
	Answers to the Research Questions
	Future Work
	Future work on duplicate detection in BDD
	Future work on quality of BDD specifications
	Future work for BDD as a whole

	Bibliography
	A Survey on BDD Use by Software Engineering Teams and the Challenges of Duplication in BDD Specifications
	Survey Questions
	Codes and Themes from the Challenges Reported by BDD Practitioners

	Sample Duplicate Report
	Example duplication report

	Sample Remove Suggestions
	Sample remove suggestions

