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by a chaotic flow. The conventional theory for well-mixed systems
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tions for different interaction radii. Smaller interaction ranges makes

selection increasingly more local, and the fixation probability approaches
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interaction radius varies from R = 0.025 to R = 0.175 in inset. See

Section 2.6 for a description of the (parallel-shear) flow.) . . . . . . . . 59

2.2 Mixing properties of different planar flows. The first column

shows a graphical representation of the flow field for a selection of two-

dimensional flows (see Section 2.6). Velocity fields are periodic (modulo
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arrows represent this periodic switching. The second column shows the
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The fraction of time each pair of particles spend within interaction radius

from each other is shown as a connectivity matrix in the third column.

Results are from simulations. The fourth column shows the measured

link persistence, q1(t), as well as q0(t) and the asymptotic connectivity

q (see text). Convergence of q1 and q0 to a common value q indicates

that the flow mixes the system. . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Sets of neighbours of an individual at different moments in

time. The illustration shows the position of a group of particles as

they are moved by the flow. We highlight the time-dependent set of

neighbours of one particle. The sets of neighbours remain correlated in

the frames shown in the upper row. In the lower row, however, the sets

of neighbours are uncorrelated from frame to frame. . . . . . . . . . . 61
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2.4 Fixation probability as a function of connectivity. Varying the

interaction radius interpolates between neutral selection and the theory

based on complete graphs. The fast-flow theory applies throughout,

provided the flow mixes the particles well. The markers represent simula-

tion results for different flows and different interaction radii, resulting in

different connectivities, q. Predictions of the fast-flow theory [Eq. (2.2)]

are shown as the solid black line. The conventional well-mixed theory

[complete graph, Eq. (2.1)] is indicated by the filled circle at q = 1. The

dashed gray line is for guidance only, and shows the result for neutral

selection, φ = 1/N . (Mutant fitness r = 1.05, population size N = 100). 64

2.5 Fixation probability as a function of population size. On the

left-hand panel, the interaction radius R is fixed as the population size

is varied. This results in fixed connectivities, q, but the average number

of neighbours of each particle increases with N . On the right-hand

panel, the average number of neighbours, 〈k〉, was fixed by reducing

the interaction radius as the population size increases. Markers are

simulations for the parallel-shear flow. The conventional theory is shown

as the thick purple line. Dashed coloured lines are the predictions of the

fast-flow approach. The dashed gray line shows the result for neutral

selection. (r = 1.05, Da = 0.01 in both panels.) . . . . . . . . . . . . . 65

2.6 Applicability of the conventional well-mixed theory and the

fast-flow theory. Evolutionary processes (see text and Section 2.5.4)

and indication whether the predictions of the conventional theory for

well-mixed systems and of our fast-flow approach agree with simulations.

Capital letters in the acronyms for the different processes indicate the

presence of selection in the birth or death step. In Bd and Db competi-

tion is in the first step and therefore global. The conventional theory

for well-mixed systems applies. In bD and dB competition is in the

second step and therefore selection is local. In BD and DB competition

takes place in both steps (dual selection). In the latter four cases the

conventional theory fails. The fast-flow theory predicts simulation results

in all six cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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2.7 Test of the weak-selection approximation. The left panel shows

the fixation probability as a function of the connectivity q for different

mutant fitnesses. The central and right panel show the fixation probabil-

ity of a mutant with fitness r = 1.05 as a function of the population size

(q fixed in central panel, average degree 〈k〉 fixed on the right). Continu-

ous lines show the equations prior to the approximation [Eq. (2.13)], and

dashed lines show the equations after the approximation [Eq. (2.26)].

As can be seen, the approximation is valid for all system sizes, but is

sensitive at large fitnesses. . . . . . . . . . . . . . . . . . . . . . . . . 75

2.8 Fixation probability as a function of fitness for the different

update processes. Continuous thick lines show the conventional well-

mixed theory for processes with dual selection (light purple) or selection

in only one step (dark purple). Dashed lines show the fast-flow theory

for dual selection (red), or local selection (blue). We use d = 1/r. The

theoretical predictions for BD and DB are then indistinguishable on

the scale of the figure, and similarly for the pairs Bd-Db, and bD-dB

respectively. Simulation results are for the parallel-shear flow, with

Da = 0.01, R = 0.1 and N = 100. . . . . . . . . . . . . . . . . . . . . 77

2.9 Fixation time as a function of fitness for the different update

processes. Thick continuous lines represent the fixation times prior

to the approximation [Eqs. (2.30)]. We use d = 1/r and so db and bd

processes overlap. Dashed lines show the weak selection approximation

for birth-death processes, and dash-dotted lines for the death-birth pro-

cesses [Eqs. (2.32)]. The traditional complete-graph approach overlaps

with the global processes. Simulation results are plotted with circles

for birth-death processes, and triangles for death-birth processes, and

were obtained using the parallel-shear flow, with Da = 0.01, R = 0.1

and N = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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3.1 Illustration of the update rules. Each row represents one of the

different evolutionary update mechanisms. The columns indicate the

different steps of each evolutionary event. In column a) an individual is

chosen from the whole population; it can be ‘selected’ through competi-

tion by fitness (red shading), or ‘picked’ at random, irrespective of its

species (blue shading). This node is destined to either reproduce (pink

shading), or to be replaced (brown shading), as shown in column b).

Column c) indicates that one neighbour of this node is either selected

(red), or picked (blue). This second node is destined to reproduce (pink),

or to be replaced (brown), shown in column d). Column e) shows the

result of the evolutionary event; the node chosen to reproduce places

an offspring in place of the node chosen to die. Each row is composed

of one box of each colour; the sequence of the colours distinguishes

the different processes. From top to bottom, the rows correspond to:

(i) global birth-death process (Bd): an individual is selected from the

whole population to reproduce, and one of its neighbours is picked to

be replaced by the first individual’s offspring; (ii) global death-birth

process (Db): an individual is selected to die from the whole population,

and one of its neighbours is picked to place an offspring in its place; (iii)

local birth-death process (bD): an individual is picked from the whole

population to reproduce, and one of its neighbours is selected to die; (iv)

local death-birth process (dB): an individual is picked from the whole

population to die, and one of its neighbours is selected to reproduce. . 94

3.2 Fixation probability as a function of the flow speed for un-

restricted random initial positions (random geometric graphs,

RGGs). For the global death-birth process, increasing the flow speed

increases the fixation probability. The reverse is found for the remain-

ing three processes. Circle markers show fixation probabilities in the

fast-flow limit; square markers are results for fixed connected random

geometric graphs (CRGGs); see text for further details. The fixation

probabilities on a complete graph are shown for reference. . . . . . . . 96
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3.3 Fixed heterogeneous graphs amplify selection for birth-death

processes and suppress it for death-birth processes. The figure

shows the fixation probability of an invading mutant (φ), averaged over

static CRGGs. Data is shown relative to the corresponding fixation

probability on a complete graph (φCG). Regardless of the population

size, selection is amplified for Bd and bD processes, and suppressed for

Db and dB processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4 Significance of the degree of the initial mutant. The upper panel

shows the degree distribution, pk, of the ensemble of connected random

geometric graphs (CRGGs), obtained by placing N = 100 individuals

into the spatial domain 0 ≤ x, y ≤ 1 with uniform distribution, and using

an interaction radius R = 0.11 and periodic boundary conditions. The

lower panel shows the fixation probability obtained from simulating the

evolutionary process on these graphs, as a function of the degree of the

initial mutant. For the two death-birth processes the mutant’s success

is below the one on a complete graph if its degree is low, and above

φCG at high connectivity. The reverse is found for the two birth-death

processes. Data points have been connected as a visual guide. . . . . . 100

3.5 Comparison of fixation probability for simulations started from

unrestricted and connected random geometric graphs (RGGs

and CRGGs, respectively). The fixation probability as a function

of the flow speed is shown as thick lines for simulations started on

connected graphs; thin lines are for unrestricted initial positions (some

of this data is also shown in Fig. 3.2). Square markers indicate the

fixation probabilities on static CRGGs; see text for details. The fixation

probability on complete graphs is shown for reference. A minimum

of φ is found for the Db process; maxima are discernible for Bd and

bD when the dynamics are started from connected graphs. The effect

of amplification/suppression of selection at slow flow speeds is more

pronounced for simulations initialized from RGGs than from CRGGs. 103
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3.6 Fragmented initialization promotes the formation of clusters.

The main panel shows the average proportion of active links as the

evolutionary dynamics proceed. Thick lines correspond to simulations

started from connected graphs (CRGGs); thin dotted lines to simulations

initialized from unrestricted random positions (RGGs). The fraction of

active links is lower for RGGs, regardless of the evolutionary process.

Inset: Fixation probability of the mutant species, once there are i

mutants in the population. When mutants are a minority, a small

increase in their frequency greatly increases their fixation probability.

Conversely, reducing their numbers when they are a majority has only

minor effects on their chances of success. Simulations in the inset are

initialized from CRGGs. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Fixation probability at different flow speeds for simulations

started from a square lattice. For the global death-birth process a

minimum of fixation probability is found at intermediate flow speeds;

conversely, the global birth-death process shows a maximum. For the

local processes no extrema are found; instead varying the flow speed

interpolates monotonously between the behaviour on fixed lattices and

the limit of fast flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Component formation as flow destroys initial lattice configur-

ation. The average number of components (purple) and the average

degree (green) are plotted on the left axis; the average component size

(orange) is plotted on the right axis. The three phases of the motion

described in Sec. 3.5.1 of the Supplementary Information are shaded in

different colours. The grey dotted line at tq marks the end of the phase

in which the graph is quasi-isothermal. . . . . . . . . . . . . . . . . . . 111
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3.9 Network-renewal time measured from the persistence of links.

Continuous lines show the probability that two nodes, connected (purple)

or disconnected (green) at t0 are still connected/disconnected at time

t0 + t. The dashed grey line shows the asymptotic value; the time needed

for both probabilities (q1 and q0) to reach this value is the time it takes to

renew the network. Both quantities are within 0.1% of their asymptotic

value for the first time at tr ≈ 6.4, marked by a vertical dash-dotted

grey line in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.10 Identification of time scales and flow speeds for the different

evolutionary regimes. The time to mutant fixation is plotted for the

different evolutionary processes as a function of S. The flow speed at

which the quasi-isothermal regime ends (Sq) is identified as the speed

at which the mean time to fixation coincides with the time needed

to significantly disrupt the interaction network, obtained in Fig. 3.8.

Similarly, Sr is the flow speed at which the mean fixation time agrees

with the network renewal time, obtained in Fig. 3.9. . . . . . . . . . . 114

3.11 Identification of time scales and flow speeds for the different

evolutionary regimes. Fixation probability at different flow speeds

for simulations started from a square lattice are shown. Sq roughly

corresponds to the speed marking the end of the quasi-isothermal regime;

Sr is found to be of the same order of magnitude as the speed at the

extrema of fixation probability. . . . . . . . . . . . . . . . . . . . . . . 115

3.12 Wheel graphs. A) A sample wheel graph of size 10; B) A portion of a

wheel graph with two mutants on adjacent leaves, with Lact = 4; C) A

portion of a wheel graph with two mutants on non-adjacent leaves, with

Lact = 6. Active links are marked orange. For B and C, N − 6 wildtype

nodes are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.13 Fixation probability at different flow speeds for dual-selection

processes. The result for the complete graph is plotted as a reference.

Continuous lines correspond to simulations initialized from CRGGs,

dotted lines to unrestricted RGGs, and dashed lines to simulations

started from a lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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4.1 SIR model with heterogeneous susceptibility and infectivity.

The diagram illustrates the different processes described by the model.

New (susceptible) individuals are born at a rate κ, and they are assigned a

susceptibility of χi with probability pi. Susceptible individuals transition

to an infected state either by spontaneous infection or by contact with

any of the infected classes. The former process occurs with rate ξχi, if the

susceptible is of type Si. Conact infection occurs at a rate χiNB, where

NB is the total infective power of the population (see Eq. (4.3)). Once

infected, the individual is assigned an infectiousness βa with probability

qa. All infected individuals recover at the same rate ρ. At any stage,

individuals die with a rate κ. To keep the total population N constant,

deceased individuals are immediately replaced by a new susceptible

individual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Population dynamics. Time series of the population density of total

susceptible (panel (a)) and total infected individuals (panel (b)). Noise-

sustained oscillations are clearly seen. The insets show a zoom in on the

cycles. Labels A,B, . . . , E are for later purposes (see below). . . . . . . 134

4.3 Power spectral densities of the fluctuations of (a) Susceptible and (b)

Infected population for seven different examples of the model, generated

as explained in more detail in the text. In all cases theory and simulations

agree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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4.4 Verification of approximation (4.18) for the dominating fre-

quency of cycles. (a) Frequency f = ω/2π at the maximum of

the PSD, determined from Eqs. (S10) as a function of
√
χβ, for fixed κ.

The black dashed line corresponds to Eq. (4.18). Markers are from 200

different populations, each with 5 susceptible and 3 infected subgroups,

and with random choices of {pi, χi, qa, βa}. The values of χi and βa

were chosen from the interval 1.7 ± 1.6999995; qa and pi from a flat

distribution. This resulted in values of χ and β in the range 0.3 to 3.3,

and for χ2 and β2 in the range 0.1 to 10. (b) PSD of the total infected

population of different random distributions of {pi, χi, qa, βa}, with equal

values for χ and β, but different values of χ2 and β2. As a consequence

of Eqs. (4.18) and (4.19), the characteristic frequency is the same for all

such samples, but the height of the peak in the PSD varies considerably

(the amplitude of the oscillations changes with the square root of the

amplitude of the power spectra). The dashed grey line correspond to

the homogeneous model, i.e. K = M = 1. The vertical dotted line is a

visual aid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5 Verification of approximation (4.19) for the peak-height of the

spectral densities. Horizontal axes show the prediction of Eqs. (4.19)

for susceptibles (a), and infectives (b). On the vertical axis we show

the height at the peak of the spectra, as determined numerically from

Eqs. (4.31) in Section 4.8. Black dashed lines are the diagonal (‘y = x’),

and markers represent the populations described in Fig. 4.4. . . . . . . 141

4.6 Sharpness of the power spectra as a function of the product of the

mean susceptibilities and infectivities at birth/infection. Data is for the

populations described in Fig. 4.4 . . . . . . . . . . . . . . . . . . . . . . 142
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4.7 Stochastic cycles in subgroups of susceptibles and infectives.

We show the same simulation run as in Fig. 4.2, but now split up

into the different subgroups. Panels (a) and (b) show the number of

individuals in each susceptible and infective subgroup normalised by the

total population (N). In panels (c) and (d), we show the number of

individuals in each subgroup divided by the total number of susceptible

or infected individuals, respectively (NS and NI). Lines labelled A to

E refer to points in the cycles of the aggregate variables S, I shown in

Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.8 Power spectra of fluctuations for different subclasses of sus-

ceptibles and infectives. We use the same sample of the model

parameters {χi, pi, βa, qa} as in Fig. 4.3. Simulations are averaged over

multiple realizations of the stochastic dynamics, at fixed model para-

meters. The vertical dotted lines are for later purposes and mark the

locations at which the power spectra take values approximately equal to

half the maximum amplitude. . . . . . . . . . . . . . . . . . . . . . . . 144

4.9 Phase-lag of time series between different subgroups of sus-

ceptibles. Data is for the same setup as in Fig. 4.7. We show the

phase-lag between subgroups i and reference subgroup 1. Panel (a)

depicts the case in which time series are normalized with respect to the

total population, N ; in panel (b) input time series are normalized with

respect to the total number of susceptibles NS. As in Fig. 4.8, the ver-

tical dotted lines mark the half-width of the peaks in the corresponding

power spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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5.1 Sample trajectories and stationary distribution. Panels (a), (b),

(d) and (e) show single realizations of the model dynamics; the distribu-

tions in panels (c) and (f) are from an average over many realizations.

Panels (a) and (d) are for m = 2; (b) and (e) for m = 5; (c) and (f) for

m = 3. The upper panels (a)–(c) are for a population size of N = 50;

the system is frequently in states of full consensus. In the lower panels

(d)–(f) N = 500, and diversity of opinions is observed; states of consensus

are rarely visited. The imitation and mutation rates are uniform across

species; we use r = 1 and ε = 10−2/(m− 1). . . . . . . . . . . . . . . . 167

5.2 Illustration of the concepts of arrival and switching time. We

show the time line of a model with m ≥ 4 opinion states. Times at which

the system reaches a consensus state are marked above the time axis by

circled numbers. Times during which the system resides at a consensus

state are indicated as filled bars on the time axis. Between these times

the population is in mixed states. Arrivals at a new consensus state,

as defined in the text, are marked by stars below the time axis. The

switching time τ is the mean time between subsequent arrivals at new

consensus states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Stationary distribution of the model with homogeneous rates

across species. Panel (a) is for m = 2; panel (b) shows the marginal

distribution for single species for the model with m = 5. The different

curves are for different population sizes in the range N = 50 (top)

to N = 900 (bottom). Markers are from simulations; lines show the

analytical predicitions from the theory described in the text. Remaining

model parameters are r = 1, and ε = 10−2/(m− 1). . . . . . . . . . . . 173
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5.4 Phase diagram for the model with homogeneous rates. The

critical system size is plotted as a function of the number of strategies.

The continuous blue line is NL as calculated from Eq. (5.15), and the

purple continuous line shows NR as obtained from Eq. (5.16). The

remaining lines are from a diffusion approximation to the model, as

discussed in Appendix 5.7. Markers show results from simulations.

Mutation rates are ε = 10−2 in panel (a), and ε = 10−2/(m− 1) in panel

(b). We set r = 1 in both panels. . . . . . . . . . . . . . . . . . . . . . 175

5.5 Switching times in the model with homogeneous imitation and

mutation rates. The figure shows the switching time τ between con-

sensus states for different choices of the number of species m. Lines are

from Eq. (5.17), markers show simulation results. In all cases N = 100

and r = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.6 Marginals of the stationary distribution for the heterogeneous

multi-state noisy voter model. We show the distributions Pi(xi)

for the different individual species in a model with m = 5 for different

population sizes, as indicated in the figure. Markers represent simulation

results; lines are evaluations of Eq. (5.7), using the rates in Eq. (5.18)

with the approximation in Eq. (5.20). The choice of mutation and

imitation rates is as described in the text (see Sec. 5.5.2), using r = 1,

(m− 1)ε = 10−2, and δ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . 179

5.7 Phase diagram of the model with m = 5 species and hetero-

geneous rates. Upper and lower dashed lines show Nmax
L and Nmax

R ,

respectively; upper and lower dotted lines are Nmin
L and Nmin

R . Solid

lines are Nhom
L and Nhom

R (see text for definitions). Markers are from sim-

ulations (with H,N,O,M showing Nmax
L , Nmin

L , Nmax
R , Nmin

R , respectively).

Mutation and imitation rates for each species are chosen as described in

the text (see Sec. 5.5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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5.8 Switching times in the noisy voter model with heterogeneous

rates. Panel (a) shows the quantities t0→Ni for the different species

i = 1, . . . , 5 (bottom to top) in the model with m = 5. Panel (b)

shows the resulting switching time τ for models with m = 2, 3, 4, 5

species, from top to bottom. Lines are from the analytical approximation

[Eq. (5.13) with the rates as approximated in Eq. (5.20)]; markers are

from simulations. In all cases, N = 100, δ = 0.05; imitation and

mutation rates are distributed as described in Sec. 5.5.2, using r = 1

and ε as indicated on the horizontal axis. . . . . . . . . . . . . . . . . 181

6.1 Stationary probability distribution for each opinion in a multi-

state ranked noisy voter model. Sample stationary distributions of

a ranked noisy voter model are shown. In the model, 5 opinions are

possible. Individuals only transition from and to ‘neighbouring’ opinions

i± 1. Each line shows the probability with which the system is found

in a state in which Nxi individuals are of opinion i. From left to right,

the panels correspond to simulations with N = 20, 100 and 500. A

noise induced transition is observed. However, the dynamics of the

system are clearly different. The central species (orange), contains a

higher proportion of the population. The model is symmetric, so that

the species contiguous to the central one (green and blue) are equally

abundant to each other, but more so than the extremal opinions (red

and purple). In all panels, the mutation rate is ε = 0.01 for all species,

and the imitation rate is set to r = 1. . . . . . . . . . . . . . . . . . . 199
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Abstract
Noise has come to be accepted as a quintessential part of social and biological processes.
It has transcended the misconception of being an obstacle, which hinders our under-
standing of ‘true mechanisms’ hiding behind the randomness, and is now recognised as
the cause of many important phenomena. Different sources of noise exist, and their
combined effect is not trivial to understand. In this thesis, we contribute by studying
models which combine intrinsic and extrinsic noise. We consider systems with discrete
interacting components; as a consequence, they are subject to intrinsic noise. At the
same time, we explore how two sources of extrinsic noise modify the time evolution of
these models: motion, and agent-to-agent heterogeneity.

We investigate motion of individuals in a two dimensional setting. Members of
the population take positions in space and are moved by an external flow. The
position of agents defines an interaction graph, so the population is structured. The
interaction network is modified as the flow advects individuals in space. We choose an
evolutionary dynamics setting, and study how the changing population structure alters
the probability with which a mutant invades a population of wild-type individuals. We
find that seemingly subtle changes in the mechanics of evolution, which implement
birth and death events, can lead to significant changes in the mutant’s chances of
success. Therefore, we propose these differences can be used to identify the underlying
mechanism in a given experimental setting. Furthermore, we debate that the commonly
used term to describe the invasion process in unstructured populations, ‘well-mixed’, is
a misnomer, which must be used with care.

To study agent-to-agent heterogeneity we use models of epidemics and opinion
dynamics. For the latter we explore how the achievement, maintenance or alternation
of consensus are affected by the presence of more than two co-evolving opinions, with
potentially different conviction strengths. In the model of disease spread, we study
how heterogeneity in the susceptibility and infectiousness of individuals influences the
frequency and amplitude of outbreaks. In both models heterogeneity is represented by
an arbitrary number of compartments that describe the ‘type’ of the agents. To be
able to simplify the mathematical description of these systems, we approach them by
aggregating these compartments into bigger groups. In both cases, we find that this
marginalised description provides a good approximation of the model dynamics. We
are able to characterise the recurrence and severity of outbreaks using the aggregated
components; similarly, we provide an analytical description of the simplified opinion
dynamics, which is an approximation when conviction strengths differ, and exact when
they are homogeneous.
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Chapter 1

Introduction

All of the work presented in this thesis has the common goal of modelling social

or biological processes. We consider systems composed of discrete entities, such as

molecules, cells, or animals, which interact with one another. The discrete and probabi-

listic nature of these interactions gives rise to ‘noisy’ dynamics. For instance, the

encounters between predators and their prey are inherently random. Similarly, changes

in the concentration of the proteins that regulate gene transcription, the exchange of

opinions in social networks, mutations in cellular division, the spread of diseases, and

the evolution of language, for example, all happen in a non-deterministic fashion.

The mathematical tool with which these ‘noisy’ dynamics are described has come to

be known as ‘stochastic processes’, and has been a lively area of research since the end

of the 19th century. At that time, the interest focused on understanding the behaviour

and properties of gases and the random movement of pollen particles floating on water

[1, 2]. Since then, however, stochastic processes have found widely varying applications,

from finance to medicine, telecommunications and many others [3–7].

Describing these processes in full is often impossible due to their complexity. To

study them, therefore, we conceive of a simple representation of the system which

approximately reproduces the real-world dynamics, which we call models.

In this introduction, we outline the general principles that guide our choice of model

components, starting with the importance of including noise in the description of these

systems. Then, a brief overview of the technical tools needed for their mathematical

analysis is given. Finally, we introduce the specific models studied in the following

chapters, and make some comments on the structure and format of this thesis.
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Chapter 1. Introduction

1.1 The simpler the better

Statistical physics was born from the need to describe phenomena that are so complex

that a detailed and exact description of the entire system becomes impossible. To

be able to study them one must take a step back and, instead of being interested

in the microscopic detail of the behaviour of each molecule, describe the system as

a whole and characterize it through its macroscopic properties. After all, it is the

latter that we experience in day-to-day life; while standing in a room, we do not

worry about how many molecules bounce on our bodies or how fast, but we do feel

the temperature around us. The approach is successful when macroscopic quantities,

such as temperature, can be described using a simple microscopic model, like the

Maxwell-Boltzmann distribution.

One of the main tasks in statistical physics is to decide which elements are essential

in the description of a complex system. It is not always easy to see, however, which

macroscopic quantities are important and which are not. Similarly, it can be difficult to

choose microscopic components that can explain the phenomena we want to describe,

and to discard those which are less relevant. A good model needs to contain sufficient

detail to reproduce the desired dynamics, but at the same time be simple enough to be

mathematically tractable.

The dynamics of social and biological processes in which this thesis focus are

particularly complex. In order for a model to be simple, then, certain assumptions and

simplifications must be made. These assumptions are not always to the detriment of a

theory; in fact, they can be quite the opposite. In many cases, the simpler the model

the more insight is gained about the basic principles behind the process.

The success of this approach speaks for itself. Mechanistic models as the above

have allowed the scientific comunity to gain insight into the nature of financial markets

[8], the spread of diseases [9], and even biological evolution [10]. These are not merely

theoretical achievements; such models have proved crucial in the design and planning

of, for example, vaccination policies [11–14], public transport and traffic networks [15,

16], or crime prevention and patrolling programs [17, 18].
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1.2. The key ingredient: noise

1.2 The key ingredient: noise

When the system is composed of very large populations, the noise of stochastic processes

is typically so small that a deterministic description is all that is required. Models in

biology were only considered deterministically for many decades, and useful insights

have been obtained from them. The predator-prey Lotka-Volterra equations [19], for

example, have proved useful in modelling ecological systems, but in many cases they

fall short. For instance, they are unable to capture extinctions; particularly when

populations are small, predators can drive their prey to non-existence, even when the

deterministic model would lead one to believe that a stable equilibrium is attainable

[20, 21].

This thesis focuses on studying dynamics that arise due to the presence of noise.

Therefore, it is intentionally included in all our models and analysis. Noise is commonly

classified in two categories [22]:

Intrinsic noise reflects the stochastic dynamics that arise from the discrete nature

of the elements that make up the system. It is considered inalienable to the dynamics,

as it is introduced in the very definition of the process. Examples include the death

and birth of individuals, mutation, imitation, infenction and recovery. Intrinsic noise

has been shown to be useful in understanding many important phenomena, such as

sustained oscillations due to stochastic amplification [23–25], noise-induced transitions

[26–29], and extinction or evolution [10, 20, 30].

Extrinsic noise is, broadly, ‘the rest’ of the noise. It is often characterised as an

external or additional characteristic of the system. An example of this is a change in

the environment that controls the parameters of the model; when modelling bacteria,

for instance, applying antibiotics or changing the concentration of nutrients can modify

the reproduction and death rates of the model. The difference in the results between

‘identical’ experiments with variation in these external parameters is characterized as

extrinsic noise.

In the models studied in this thesis we explore the interplay between these two types

of noise. Extrinsic noise comes from many sources, but this work shall be restricted

to only two: agent-to-agent heterogeneity, and motion. While we will treat these as

extrinsic, the line that divides what is inherently part of the dynamics and what is an
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Chapter 1. Introduction

added component is naturally not as sharp as the categories above suggest. Part of the

aim of the work presented in the following chapters is to determine whether treating

these two characteristics as secondary is justifiable, or if they must be considered more

carefully.

Both motion and heterogeneity are ubiquitous in nature. At the same time, however,

how either of them influence stochastic dynamics is not well understood.

Heterogeneity. Broadly, two types of heterogeneity have received attention in the

literature. One of them is parametric heterogeneity; it describes variation accross

experiments in model parameters which are universal to all agents in the system (see

Fig. 1.1 (a)). This type of heterogeneity has been the focus of many studies (e.g.

refs. [31–36]), particularly in models of gene transcription. It allows one to explore

models where environments have different parameters, but where the environment is

the same for all the members of the population in each experiment.

Global changes in the model parameters are relevant for some particular applications,

but in many biological systems parameter variation is more localized. For example,

individual variations in factors such as host susceptibility and virus reproduction have

been observed [37]. For the modelling of epidemics, therefore, it is essential to determine

how this heterogeneity across individuals affects the dynamics. In other contexts, we

may consider that some individuals seek more actively to convince others of their

opinions, or that resistance to antibiotics varies among different strains of bacteria.

These examples are cases of a second type of heterogeneity, often referred to as

agent-to-agent heterogeneity. This describes variation at the level of individuals [see

Fig. 1.1 (b)]. Some studies do exist exploring heterogeneity in this form [38, 39],

but the overwhelming majority of research on the subject have been conducted in a

deterministic setting.

It may not be immediately obvious why agent-to-agent heterogeneity is considered

‘external’ to the system. To understand why this is the case, let us consider modelling

the spread of a disease in a population conformed by discrete entities. In order to do

this, one must take into account that two individuals have to meet in order for the

pathogen to spread. Therefore, the random encounters are considered intrinsic to the

model. One can assume, however, that all individuals get sick, spread the disease and
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1.2. The key ingredient: noise

(a) (b)Experiment 1 Experiment 2

Figure 1.1: Two types of heterogeneity. Parametric heterogeneity is shown in panel
(a); the environment that controls the model parameters changes from one experiment to
the next, but all agents observe the same environment. Agent-to-agent heterogeneity is
shown in panel (b); individuals have varying characteristics in a single experiment.

recover with similar probabilities to one another. In other words, that the population

is homogeneous. Heterogeneity, then, is considered an added component to the basic

model, and so it is regarded as extrinsic.

Other examples of added heterogeneity in models include the stochastic Kuramoto

model in the context of coupled oscillators [40–42]; this introduces noise on the order

parameter of the synchronization of different oscillators, which leads to metastable

states of full-synchronicity of the ensamble. Similarly, populations with a continuous

distribution of a trait, such as particle sizes, are studied as polydisperse systems [43–45];

this effectively introduces an infinite number of species, and leads to particular states

of order and mixing, known as phase equilibria. In the context of ecology, Random

Matrix Theory has also been successfully used [46–49], where the interaction rates of

different species in a food network are drawn from random distributions; the stability

of the system to extinction of one or more species is then studied.

Motion In social and biological processes individuals are, more often than not, in

motion. For example, our social circles are dynamic, plankton swims and is moved by

flows, animals migrate in search of mates, and commercial flights transport pathogens

across the world. Just as with heterogeneity, it is not always immediately obvious

why motion should be considered external to a system. Let us use an individual-based

model of evolution to exemplify why this is the case. For such a model one must take

into account that individuals attempting to reproduce need to interact with others,

both in competition for resources and because of the necessity of finding a mate.
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Chapter 1. Introduction

(a) (b) (c)

Figure 1.2: Examples of options for the implementation of motion. Migration
is shown in panel (a); an individual moves to a neighbouring site, therefore changing the
interaction network. An adaptive network is shown in panel (b); one end of a link is
moved to a different individual. Movement in space is shown in panels (c); individuals
take positions in space, and their interaction radius determines which individuals are
connected to each other. They then move in space, and the interaction network is
updated accordingly.

These interactions are then considered intrinsic to the model. The choice of which

individuals interact, however, can be assumed to be random. In other words, one can

assume that the population is unstructured. For movement to be considered there has

to be an underlying population structure, i.e., an interaction network that specifies

which individuals can interact with one another. This structure, and the possibility

of individuals to dynamically generate an interaction network through movement, are

considered an addition to the process; they are therefore thought of as extrinsic.

In models, motion can be implemented in several ways. A common way in which

it is included is in the form of ‘migration’ of individuals to neighbouring sites in the

network [50–52]. In these models the interaction network is static; individuals hop

from one node to another and in this way modify the events possible in the model

dynamics (see Fig. 1.2 (a)). An alternative that has also been considered is the use of

adaptive networks [53–56]. In this case it is not the individuals that move, but rather

the links connecting them that change (see Fig. 1.2 (b)).

The above models of motion can provide significant insight; however, they fall short

of describing the complexities and implications of individuals’ motion. Notably, they

neglect the finite interaction radius of agents. For example, the evolution of language

is constrained by the range with which the words can be spoken. Similarly, predators

can only look so far for their prey, and bacteria can only sense the concentration of

nutrients in their close surroundings.
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1.3. Technical introduction

In the study of motion, networks generated by the positions in space of the agents

of the model have, until recent years, received little attention [57–60]. In this context,

individuals are linked to each other if they are within the given interaction radius.

Motion changes the spatial location of the individuals, which in turn modifies the

interaction network (see Fig. 1.2 (c)).

This thesis addresses the above highlighted issues in the present state of the

art. We examine the implementation and implications of models with agent-to-agent

heterogeneity in two chapters, and two more chapters are dedicated to investigating

the consequences of motion in populations with finite interaction radius. The key set of

tools and techniques required to perform these studies are outlined in the next section.

1.3 Technical introduction

In this section we provide a brief overview of the mathematical tools we use throughout

this thesis. First, we look into the exact description of the stochastic processes and

the methods with which they can be directly studied. Then, we explore how and

why approximations to this exact description can be obtained. Finally, we outline the

terminology used for the description of interaction networks. Whenever more specific

mathematical tools are used, their description is given within each chapter.

1.3.1 Master equations

In this thesis we study individual-based models. That is, we study systems which are

composed of discrete entities, and whose states are determined by the composition of

the population and its interaction network. We assume for all our models that the

dynamics are Markovian [61, 62]; i.e., we approximate the systems as being completely

free of memory, such that the state into which they will evolve depends only on the

present state.

The systems described above can be mathematically described by a ‘master equation’

[21, 63, 64]. A master equation describes the time evolution of the probabilities with

which each discrete state of the system occurs.
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For a system with states described by n, the forward master equation is given by

∂

∂t
P (n, t|n0) =

∑
n′
Tn′→nP (n′, t|n0)−

∑
n′
Tn→n′P (n, t|n0), (1.1)

where P (n, t|n0) describes the probability that the system is in state n at time t, given

that it started at n0 at t = 0. The sums are, respectively, contributions to the inflow

and outflow of probability from and to the other states n′. The forward master equation

is written in form of sums over the possible ‘destinations’ of the system. Its elements

describe where the system can go.

Alternatively, the same system can be represented using the backward master

equation, given by

∂

∂t
P (n, t|n0) =

∑
n′
Tn0→n′ [P (n, t|n′)− P (n, t|n0)] . (1.2)

In the backward master equation P increases if by moving from state n0 into state n′

the system is more likely to reach n from there, than if it had stayed in state n. The

backward master equation is written in form of sums over the possible ‘origins’ of the

system. Its elements describe where the system can start from.

Both equations above describe the same dynamics, but are generally used with

different objectives in mind. The backward equation is most useful to determine,

for example, fixation probabilities or first-passage times. We will use this form in

Chapters 2, 3, and 5. The forward master equation, on the other hand, is used when

one intends to study a stationary probability distribution, or a system that equilibrates

around a fixed state. We will use this form in Chapters 4 and 5.

Exact solutions

Ideally, the solution to the master equation would be obtained directly. For many

systems this is not possible; only the simplest models are amenable to exact analytical

solution [21, 63, 64]. In these simple cases one can find the solution by inspection of a

recursion equation of the state space [21, 65].

As an example, let us consider a two-species birth-death process with fixed popula-

tion size N . The state space is defined by the number of individuals i of one of the

two species; the other species is composed of N − i individuals. Let T±i describe the

probability with which the system transitions from state i to state i± 1. Furthermore,

34



1.3. Technical introduction

let the states i = 0 and i = N be absorbing, so that T±0 = 0, T±N = 0. That is, once

these states are reached, the dynamics stop; if i = N , we say that the species has

reached fixation. Two questions are then commonly asked, namely, how likely this is

to happen, and how long it takes. We illustrate the answer to these questions below.

Fixation probability. We denote with φi the probability that the system will reach

fixation if it is currently in state i. The recursive equation that describes this process

is then1

φi = φi−1T
−
i +

(
1− T+

i + T−i
)
φi + φi+1T

+
i , (1.3)

and given that the boundary states are absorbing, one has φ0 = 0 and φN = 1. Using

these conditions one can solve the above equation for φi+1, for example, and write a

few terms explicitly to determine a pattern, thereby obtaining a closed form solution.

For the current example we find [66]

φi =
1 +∑i−1

j=1
∏j
k=1

T−
k

T+
k

1 +∑N−1
j=1

∏j
k=1

T−
k

T+
k

. (1.4)

This equation is the exact solution of the master equation; it involves no approximations.

Time to fixation. In a similar way, we could ask how many evolutionary steps are

needed (in average) to reach fixation. Using ti to denote the number of events necessary

to go from a state with i > 0 mutants to a fixed state i = N or i = 0, we can write for

the master equation

ti = 1 + ti−1T
−
i + ti+1T

+
i +

(
1− T+

i + T−i
)
ti, (1.5)

which after rewriting in terms of θi = ti − ti−1 (the average transition time from the

state i− 1 to i) and rearranging leads to the recursive equation

θi+1 = θiT
−
i − 1
T+
i

. (1.6)

Using t0 = tN = 0, and therefore θ1 = t1, we can obtain a closed form solution for θi.

Since the sum of this transition times amounts to the time to fixation, we also obtain

the solution for ti, which is given by [67]

ti = −
N∑

j=i+1
θj =

N−1∑
j=i

−t1 j∏
k=1

T−j
T+
j

+
j∑

k=1

1
T+
k

j∏
m=k+1

T−m
T+
m

 . (1.7)

1Note that the terms on the right hand side constitute a sum over the possible ‘origins’ of the
system; it is in the form of a backward master equation.
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This equation again does not involve approximations, and is therefore an exact solution

of the master equation.

Stationary distribution. Another common question when studying Markov pro-

cesses is what the stationary distribution is; that is, if the system is permitted to evolve

for a long time, what state is it likely to be found in? For the example above the

answer is simple: it is fixed in of the two species. If, however, random mutations are

added to the model, for example, transition between the two species without the need

of an interaction partner are possible; the absorbing states are thus eliminated and the

above question then becomes more meaningful.

To address this problem, the forward form of the master equation is used. The

stationary distribution P = {Pi} is found by setting the left hand side of Eq. (1.1) to

zero. For the current example, we then obtain

Pi
(
T−i + T+

i

)
= Pi+1T

−
i+1 + Pi−1T

+
i−1. (1.8)

As with the fixation probability and time, this can be re-arranged into a recursive

equation, which leads to the identification of the exact solution. Taking into account

that P−1 = 0, T−0 = 0, T+
N = 0, PN+1 = 0 and ∑Pi = 1, we obtain

Pi =
1 +

N∑
i=1

i∏
j=1

T+
j−1

T−j

−1
i∏

j=1

T+
j−1

T−j
. (1.9)

Importantly, T+
0 and T−N are non-zero due to the random mutations.

As in the other two cases, this solution is exact and valid for any population size.

Many systems result in recursive equations that cannot be closed, and this type of

approach is not possible. However, the systems studied in Chapters 2 and 5 are such

that they allow for these simple representations, and so we will use an approach similar

to the one described above.

1.3.2 Approximating the master equation

Under certain assumptions one can approximate the master equation using existing

mathematical methods. This can lead to analytical solutions, which facilitate insight

into the process at hand. Furthermore, even if the resulting expressions need to be

numerically solved, this tends to be less computationally intensive than directly solving
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the master equation; the stochastic differential equations that one can obtain from

these approximations can be approached using, for example, the Euler–Maruyama

method [68].

The approximations rely on the assumption that although the population is com-

posed of discrete individuals, there are many of them. Changes in the composition of

the population occur through single individuals, i.e., the size of a jump in the state

of the system is ±1; in contrast, the number of bacteria in a Petri dish, for example,

is overwhelming. The proportion of individuals xi = ni/N in each state can then be

treated as a continuous quantity2.

The assumption of large system sizes may be completely reasonable; when describing

epidemics, for example, one deals with cities or even countries, which imply large

populations. One must be careful, however, when attempting to extrapolate results

and use them on a local level.

Kramers–Moyal expansion

In the spirit of approximating population densities as a continuum, the Kramers–Moyal

expansion [21, 63, 64] is perhaps the most natural approach. It consists of a truncated

Taylor expansion of the master equation in powers of the inverse system size. In what

follows, we restrict the analysis to systems in which the transition between states

Tn′→n correspond to a decrease in nj and increase ni; we therefore use Tij to denote

the transition rates. Writing the master equation as a function of the proportion of

individuals we then have

∂

∂t
P (x, t) =

∑
i

∑
j

(
E−i E+

j − 1
)
Tij

P (x, t) , (1.10)

where we defined the step operators E±i by their action E±i P (x1, ..., xi, ..., xn, t) =

P
(
x1, ..., xi ± 1

N
, ..., xn, t

)
. Therefore, E−i E+

j P (x, t) describes a state with one less

individual of strategy i and one extra individual of strategy j compared to P (x, t).

The approximation proceeds by assuming that N � 1, and so these operators can

be expanded in powers of 1
N

,

E±i = 1± 1
N
∂xi

+ 1
2

1
N2∂

2
xi
± 1

3!
1
N3∂

3
xi

+ ... (1.11)

2In biological settings, the proportions of a population are often called frequencies; these should
not be mistaken for temporal frequencies.
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Introducing the above expansion into Eq. (1.10) leads to

∂

∂t
P (x, t) ≈

∑
i

∑
j

[ 1
N

(
∂xj
− ∂xi

)
+ 1

2
1
N2

(
∂xi
− ∂xj

)2
+O

( 1
N3

)]
Tij

P (x, t) .

(1.12)

If the series is truncated to leading order one obtains a Liouville equation, which

leads to the mean-field equations,

ẋ = f (x, t) , (1.13)

where f ∝ limN→∞ T
±(n)/N , and describes the deterministic drift of the system.

In the sub-leading order, a Fokker-Planck equation is obtained

∂

∂t
P (x, t) = −

N∑
i=1

∂

∂xi
[fi (x)P (x, t)] + 1

2

N∑
i=1

N∑
j=1

∂2

∂xixj
[Bij (x)P (x, t)] , (1.14)

where fi (x) is again the drift term, and Bij is known as the diffusion matrix; with

fi (x) = 0 and constant Bij, the above equation describes a diffusive system. It is Bij

which interests us, as it describes the noise of the process. In general, the Kramers–

Moyal expansion produces a Fokker-Planck equation with multiplicative noise; that is,

the noise can be a function of x.

Eq. (1.14) can be of use directly if, for example, one is interested in the stationary

probability distribution of the system. As in the case for the exact solution, this is

obtained by setting the left hand side of the equation to zero. For a one dimensional

system, like the one used as an example to obtain Eq. (1.9), this results in

0 = −2fPst + ∂

∂x
[BPst] , (1.15)

which is satisfied by Pst = exp
[´
x

2f−∂x[B]
B

]
, where the integral is not necessarily trivial.

As opposed to Eq. (1.9), this solution is only valid for large system sizes.

Van Kampen expansion

An alternative, related approximation, is known as the van Kampen system-size

expansion [21, 63, 64]. The method consists on approximating the dynamics by making

an ansatz of the form

x = f (x, t) + 1√
N
ξ(t). (1.16)
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where ξ is independent of x. The ansatz considers noise in the dynamics by including

a noise term (ξ) with an appropriate scaling of the population size (N−1/2). This

ensures that the variance of the stochastic variable is finite, but not vanishing. The

approximation is also known as the linear noise approximation.

One proceeds to write the master equation in terms of the new coordinates ξi.

Writing ∂ξi/∂t = −
√
Nẋi, we have

N
∂

∂t
P (x, t) = ∂

∂t
Π
(
ξ, t
)
−
√
N
∑
i

ẋi
∂

∂ξi
Π
(
ξ, t
)
, (1.17)

where we used Π to make the change of variable more explicit. Using Eq. (1.10) as a

start point, we first realise that the action of the step operators on the new variables

is E±i Π (ξ1, ..., ξi, ..., ξn, t) = Π
(
ξ1, ..., ξi ± 1√

N
, ..., ξn, t

)
. Expanding this in powers of

N1/2 leads to

E±i = 1± 1√
N
∂ξi

+ 1
2

1
N
∂2
ξi
± 1

3!
1

N3/2∂
3
ξi

+ ... (1.18)

Introducing the above equations into Eq. (1.10) we find

1
N

∂

∂t
Π
(
ξ, t
)
− 1√

N

∑
i

ẋi
∂

∂ξi
Π
(
ξ, t
)
≈ (1.19)∑

i

∑
j

[
1√
N

(
∂xj
− ∂xi

)
+ 1

2
1
N

(
∂xi
− ∂xj

)2
+O

( 1
N3/2

)]
Tij

Π
(
ξ, t
)
.

As in the Kramers–Moyal expansion, collecting the leading-order terms one can

extract the mean-field equations, and collecting the subleading-order terms results in a

Fokker-Planck equation. However, the van Kampen expansion results in Fokker-Planck

equations that contain additive noise only.

In many cases this linear-noise approximation is sufficient to describe the dynamics

and, if the original model contains additive noise only, both expansions result in the

same equations. In some ocasions, however, this is not the case, and details are lost by

doing the van Kampen expansion [21, 69].

Langevin equations

It is useful to remark the fact that the Fokker-Planck equation corresponds to a set of

stochastic differential equations, known as Langevin equations; these are of the form

ẋ (t) = f(x, t) + η(t) (1.20)
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where the correlation of the noise terms ηi is given by

〈ηi(t)ηj(t′)〉 = Bijδ (t− t′) . (1.21)

The Langevin equations encapsulate a continuous stochastic process which approximates

the original dynamics, described by the master equation. These permit the analytical

study of the noise terms. In the system studied in Chapter 4, for example, the

intrinsic noise produces stochastic quasi-cycles around the fixed point. Using the

Langevin equations, one can obtain analytical expressions that help us to determine

the periodicity and amplitude of these cycles.

Numerical solutions

If analytically solving the master equations is not possible, numerical solutions can be

obtained emplying Euler forward or other Runge–Kutta methods [70, 71]. However,

for large system sizes these methods can be computationally intensive, and also entail

approximations due to the implementation of the algorithms [71].

Another option is to explore the dynamics of the model through Monte Carlo

methods. The Gillespie algorithm and similar approaches [72–75] efficiently generate

individual trajectories of stochastic processes. The statistics of these trajectories can

help in understanding the model. However, one needs a large ensemble of realizations

in order to obtain useful information. Even if generating an individual trajectory is

very efficient, running thousands or millions of them makes the process very time

consuming.

Nonetheless, these methods involve no approximations to the dynamics and can be

particularly illuminating; visualization of single trajectories can provide some physical

intuition about the evolution of the system. Therefore, we will use them to test our

analytical results.

1.3.3 Networks

To be able to represent motion the use of interaction networks is necessary. In this

section we introduce the terminology relevant for this thesis, and illustrate it in Fig. 1.3.

Network/Graph. We will use these two words interchangeably. They are constituted

of nodes, and links that connect pairs of nodes.
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Network

Nodes

Links

Degree Temperature Components

Figure 1.3: A network and its elements. The terminology used to describe networks
is exemplified.

Node. Individuals in our models are represented in a network by nodes. We assume

they are point-like; as such, there is no spatial restriction for their positions. In all

diagrams, we represent nodes as circles. Two nodes are said to be neighbours if there

is a link connecting them.

Link. The purpose of graphs in this thesis is to describe which pairs of individuals

can interact. This is graphically represented by lines connecting pairs of nodes, termed

links. Throughout this thesis links are considered undirected; interactions can occur

between a connected pair of nodes, regardless of their order. For the sake of simplicity,

we also assume equal weights throughout; that is, events are equally likely to occur in

all links.

Degree. The degree k of a node describes the number of immediate neighbours of an

individual, i.e., how many links it has.

Temperature. The temperature s of a node is a measure of how potentially ‘active’ it

is. Since we only consider undirected, unweighted graphs, it can be defined as the sum

of the inverse degree of its immediate neighbours, i.e., s = ∑
i 1/ki, where i enumerates

the node’s neighbours, and ki is the degree of neighbour i.

Component. If there is at least one ‘path’ to connect every pair of nodes in a group,

the group of nodes and the links between them are collectively called a component.

This is sometimes emphasised by referring to them as connected components. A graph

may be composed of one or more components.
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1.3.4 Time scales of motion and mixing

In chapters 2 and 3 we will study populations stirred by flows, and how the speed of

the motion affects the evolution of the system. Two separate time scales interact in

this case: the rate of ‘interaction’ between individuals, and their ‘speed’ of movement.

Each of these time scales are not completely meaningful by themselves; rather, the

ratio of the two is the relevant quantity.

In-line with the literature we will describe this by the so-called Damköhler number

Da [76–78]; in the context of our model, the Damköhler number describes the ratio of

the time scales of the flow and the evolutionary process. The flows we use to stir the

population in space are periodic (up to a random phase), and so we use this period to

specify the time scale of the flow. The time interval between evolutionary events sets

the reaction rate, so we use a generation (N events, where N is the population size) as

an indicator of the time scale of the evolutionary process. The Damköhler number is

then given by

Da = T

N∆t . (1.22)

Large values of Da indicate that the flow is slow compared to evolution. With everything

else fixed, decreasing values of Da are equivalent to increasing the displacement of

individuals in space between evolutionary events.

The focus of this thesis is on flows that mimic chaotic motion; the correlation of

the position of two particles then decreases with time (see Fig. 2.2). This amounts to

effectively mixing the population. For very small Da, enough time elapses between

evolutionary events to completely re-shuffle the positions of the whole population. We

characterise this by a mixing time τ , which depends on the interaction radius of

individuals and the parameters of the flow (see Sec. 2.2.3).

The time scale τ describes the time needed to completely de-correlate the interaction

network of the population. That is, after flowing for τ units of time, the neighbours of

an individual are effectively sampled uniformly from the whole population, regardless

of who it was neighbours with before. For a fixed Da, increasing the interaction

radius of the individuals results on an increased mixing time τ . Alternatively, for fixed

interaction radii the mixing time increases as Da is also increased.

The relevance of this mixing time scale will become more evident in Chapter 2, where

42



1.4. Structure and format

‘well-stirred’ populations are studied, and the effect of mixing is explicitly explored.

1.4 Structure and format

This thesis follows the ‘journal format’ of the University of Manchester. The contents of

Chapters 2–5 are therefore in the form of papers. The articles in Chapters 2 and 4 have

been reviewed and published by Nature Scientific Reports [79, 80]. The contents of

Chapters 3 and 5 have been submitted to PLOS Computational Biology and Physical

Review E, respectively. Both are also publicly available on arXiv [81, 82].

The contents of each chapter are as close to their published/pre-print versions

as possible. However, they have been typeset to be in line with the format of the

rest of the thesis. This simplifies pagination, and will hopefully improve the reading

experience.

The papers are not presented in order of publication, but rather are arranged to

provide a logical progression across the material. Two of them address motion as a

source of extrinsic noise, while the other two focus on heterogeneity. We here briefly

summarize the contents in each of the following chapters.

Chapter 2: Stirring does not make populations well mixed [79]. Individual-

based models commonly assume that any individual can interact with any other at all

times because this greatly simplifies the mathematical description of models [21, 63].

In evolutionary dynamics, this set-up is commonly known as ‘well-mixed populations’

[83–85]. In more realistic models, however, the assumption of all-to-all interaction is

relaxed by the use of an interaction graph. If the interaction network connects all nodes

with every other node, it is said to be ‘complete’; this is the formal way of recovering

the all-to-all interaction. If the network is not complete, however, but is generated by

connecting nodes if they are within a given interaction radius, then one could naturally

ask how the movement of individuals changes the dynamics of the system. One could

wonder, for example, if the term ‘well-mixed’ used to describe complete interaction

graphs can actually be related to the movement of the population.

In this chapter we use this question as motivation, but we are also able to draw

more general conclusions. We use a simple evolutionary dynamics description of an
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invasion process; a single mutant, with a different ‘fitness’ from the resident population,

competes to reproduce (and not die), eventually either going extinct or reaching fixation.

At the same time, the population is moved by a flow. We assume that the flow is

very fast compared to the time between reproduction/death events, so that the system

can be considered ‘well-mixed’. The interaction graph for each evolutionary event

is then assumed to be generated by individuals taking random positions in space.

Using this, we obtain a mathematical description of the model in closed form. From

our analytical result, we extract an ‘effective’ fitness, which simplifies the equations

describing the model to the ones that would be obtained if the interaction graph was

complete. However, this effective fitness contains information about the particular

type of evolutionary process in use, which is lost when the analysis is done assuming a

complete-interaction graph.

Chapter 3: Motion, fixation probability and the choice of an evolutionary

process [81]. This chapter provides a logical continuation of the ideas of the previous

chapter. The same model is used, but the focus here is directly on the role of the speed

of the motion and how it may change the outcome of the evolutionary process. We

thereby abandon the assumption of very fast flows, but as a consequence our possibility

of giving a formal mathematical description of the process is hindered.

We therefore resort to exploring the model dynamics by means of Monte Carlo

simulations. Roughly, three flow-speed regimes can be identified. In the fast-flow limit,

the results obtained in the previous chapter are recovered. We compare the results in

the slow-flow limit with what is known from previous studies of evolutionary dynamics

on static networks. We find that the outcome of the invasion process in this regime is

strongly affected by the order of birth and death events. In order to understand the

results obtained at intermediate speeds, we further the results of ref. [86]; we justify

our argument both numerically and through an example set of graphs.

Chapter 4: The effects of heterogeneity on stochastic cycles in epidemics

[80]. This chapter marks a change of direction. While we still explore how extrinsic

noise interacts with intrinsically noisy systems, we now focus on individual-to-individual

heterogeneity, rather than motion. The field of epidemics provides an interesting

framework for this. Host heterogeneity has been reported [37], and the dynamics of
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infection and recovery are, as we have mentioned, intrinsically noisy.

In this article we use the well-known Susceptible-Infected-Recovered model [87], or

SIR for short. The original model takes its name from the fact that a population is

divided into those three categories; each individual transitions from one stage to the

next sequentially. Individuals may also die at any point, in which case they are replaced

by a new susceptible individual. Models like this are known to give rise to so-called

‘stochastic quasi-cycles’ [88]; the system equilibrates around a certain distribution of

the population in the three groups, and oscillates around this fixed point.

We introduce heterogeneity to the model by subdividing both the susceptible and

infected groups into sub-groups; each of these sub-groups gets infected or spreads

the disease at different rates. In reality, however, only the macroscopic groups are

observable; One can count the number of infected individuals, but measuring the

susceptibility or infectiousness of every individual in the population is impossible.

Therefore, we build our mathematical description around the aggregate of the sub-

groups, i.e., the total number of susceptible or infected individuals. We perform a van

Kampen system-size expansion to make the model dynamics analytically tractable,

and characterize stochastic quasi-cycles around the fixed point. We then use these

analytic results to explore which statistical properties of the original sub-groups are

most important for the description of the aggregate dynamics. For example, we ask

whether the frequency or amplitude of the cycles can be approximately described with

the mean susceptibility or infectiousness of individuals, or whether they depend on the

dynamic state of the system. In this way, we evaluate the importance of heterogeneity

as an ingredient in models of phenomena with stochastic quasi-cycles.

Chapter 5: Consensus and diversity in multi-state noisy voter models [82].

In this chapter we build upon the so called ‘noisy voter model’ [89]. In its original

formulation, the noisy voter model consists of a population in which individuals can

be of two types, which represent opinions, political alignments or spins, for example.

Members of the population interact in a pairwise manner; in each interaction one

individual imitates the type of the other. Additionally, random changes of the type

of an individual can occur, hence the term ‘noisy’. These systems are characterised

by multiplicative noise, which gives rise to a so-called ‘noise-driven transition’; as the
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population size is increased, the system moves from a bimodal to a unimodal stationary

distribution.

In our extension to this model we allow for multiple types; This allows multiple

opinions to compete at the same time, or multiple species to co-evolve. The charac-

teristic noise-driven transition observed in the two-state model are still seen in the

multi-state system. In order to be able to study this expanded model we construct

an effective system that reproduces the system dynamics from the point of view of a

single type; the members of all the other types are considered as a ‘the other’ group.

We then consider two cases. First, we assume that the imitation and mutation rates

of all types are equal. The effective model constructed from this homogeneous case

is simple enough to be solved exactly, and analytical expressions to characterize the

transition can be obtained. In the other case we consider a heterogeneous model, where

the different types have different imitation or mutation rates. To address this we

approximate the model by taking a weighted average of the characteristics that make

the different types heterogeneous, so that ‘the others’ can be considered as a single

type. We show that this approximation is sufficient to describe the overall behaviour

of the system to good accuracy. Most importantly, it enables us to get insight into the

effect of heterogeneity in this multi-state expansion of the noisy voter model.

The strategy used in this chapter is consistent with the one used in the previous

chapter; we describe a heterogeneous model through its aggregated sub-groups. However,

it differs in a few key aspects. For instance, the model we use in this chapter allows us

to use exact methods for the solution of the master equation, which was not possible

for the epidemics model. We also focus on a different aspect of the dynamics; in this

case, we look at noise-induced transitions [27, 69]. Furthermore, since we need not

rely on a system-size expansion, we are able to study populations of just a handful of

individuals. For small population sizes, intrinsic noise can completely dominate the

dynamics; as a consequence, the system may not tend to a stable fixed point. We

continue, however, in our aim to determine how important individual-to-individual

heterogeneity may be for stochastic population dynamics.

Chapter 6, Conclusions. Finally, here we provide a summary of the salient

features of Chapters 2, 3, 4, and 5. It is important to remark that because these are
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in the format of journal articles, each of them has its own conclusions. To prevent

repetition, in this final chapter we do not exhaustively list the findings of each of them.

Rather, we remark on the most relevant ones, and concentrate on the opportunities for

further work, for which the research presented here paves the way.
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does not make populations well mixed’, Scientific Reports 8 (1):4068, doi: 10.1038/
s41598-018-22062-w.
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Chapter 2. Stirring does not make populations well mixed

Abstract

In evolutionary dynamics, the notion of a ‘well-mixed’ population is usually as-

sociated with all-to-all interactions at all times. This assumption simplifies the

mathematics of evolutionary processes, and makes analytical solutions possible. At

the same time the term ‘well-mixed’ suggests that this situation can be achieved

by physically stirring the population. Using simulations of populations in chaotic

flows, we show that in most cases this is not true: conventional well-mixed theories

do not predict fixation probabilities correctly, regardless of how fast or thorough

the stirring is. We propose a new analytical description in the fast-flow limit.

This approach is valid for processes with global and local selection, and accurately

predicts the suppression of selection as competition becomes more local. It provides

a modelling tool for biological or social systems with individuals in motion.

2.1 Introduction

Population dynamics describes the changes of the composition of a group of individuals

over time. Broadly speaking, there are two modelling approaches. One involves well-

mixed populations, implying an all-to-all interaction. This is contrasted with structured

populations, or populations on networks. Mathematically, the interaction network of

well-mixed populations is often assumed to be a ‘complete graph’ (see e.g. [1–4]), i.e., a

network in which interaction links exist between any two individuals at all times. In the

context of epidemics, for example, an infection event can affect any of the susceptible

individuals in the population; in evolutionary dynamics, it indicates that competition

occurs between all members of the population. This effectively means that there is

no spatial structure at all, or at least that interaction is sufficiently long-range that

spatial structure is not relevant for the evolutionary process.

Assume we place a population of discrete individuals in a container and stir the

system. In an experimental situation this could be a bacterial population in a stirred-

tank reactor for example, or swimmers who move on their own accord [5–8]. One would

naturally think that a well-mixed system can be obtained in this way, provided the

stirring is sufficiently thorough, and that one waits long enough. We use computer
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2.1. Introduction

simulations and analytical theory to study this scenario. We take a finite population

and immerse it in different chaotic flows to mimic stirring. We focus on the situation in

which a single mutant invades this population, and ask when the theory for well-mixed

populations quantitatively predicts its chances of success. In the language of population

genetics, we study the probability of fixation [9].

Work has been done studying the fixation probability on fixed random graphs [1,

10] or adaptive networks [11, 12], where links are rewired to benefit individuals. Our

model is different, in that the changes of the interaction network are solely induced

by the flow, and cannot be controlled by the individuals at the nodes of the graph.

This is closer to what is studied in [13]. In the present paper, however, we focus on

frequency-independent selection, so our results cannot directly be compared to those

of [13].

Our simulations and analysis show that the predictions of the conventional theory

for well-mixed populations do not always capture the outcome of evolutionary processes

in stirred environments. Its validity seems not to be primarily a question of the nature

or speed of the stirring; instead, it is determined by the interaction range and the type

of evolutionary process. As a consequence we think the term ‘well-mixed’, which at

least suggests external stirring, needs to be used with care.

We present an analytical approach to describe stirred populations, in which we

abandon the assumption that the interaction graph is complete at all times. Instead,

we rely on a broader definition: a population is well mixed if every pair of individuals

interacts with the same probability [14–16]. This does not imply, however, that

competition occurs among all individuals at all times. At any one time particles take

positions in space and compete within an interaction radius. Any given individual

therefore competes only against a subset of individuals in the population. If the

population is stirred at sufficiently high rates, and if the flow is such that it ‘mixes’ all

parts of the system, the positions of the particles are random at each evolutionary step.

The possible interaction partners of a given individual are then effectively sampled

uniformly from the entire population, and any two individuals are equally likely to

interact. This process can be described analytically, and fixation probabilities can

be obtained. In contrast to the conventional theory for well-mixed populations, this

method accurately reproduces simulation results for stirred systems.
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Chapter 2. Stirring does not make populations well mixed

We show that the conventional theory is only valid for processes in which selection is

global, i.e., it occurs between all individuals in the population. The method presented

here, on the other hand, is also valid for local selection, or a combination of the

two. Since the details of the evolutionary dynamics in real-world systems are rarely

known with certainty, this flexibility makes our approach relevant for the modelling of

experiments where the interacting individuals are in motion.

2.2 Results and methods

2.2.1 Mathematical definition of well-mixed populations

It is fair to say that there is a consensus on what constitutes a well-mixed population

in mathematical models of evolutionary dynamics. In order to illustrate this, we focus

on stochastic dynamics in finite populations, and use a discrete-time process with

frequency-independent fitness. In the first instance we choose a so-called death-birth

update; this is sufficient to present our results. Other mechanics of evolution (for

example birth-death processes) are considered in Sections 2.4 and 2.5.

The population consists of N individuals; we assume that its size is constant over

time. Each individual can either be a mutant or a wildtype. The state of the population

at any point in time is characterised by the number of mutants, m; the number of

wildtypes is N − m. In a traditional well-mixed approach the actual positions of

the individuals in space are irrelevant, as everyone can interact with everyone else

at all times. There is then nothing else to know about the state of the population.

In the Moran model, evolution occurs through combined death-birth events. In each

event, one individual is picked at random, regardless of its type, and is removed from

the population. One of the remaining individuals is then selected for reproduction

and generates an offspring. Selection is based on fitness, and the offspring is of the

same species as its parent. We assume frequency-independent selection, and set the

fitness of wildtype individuals to one. The invading mutant has fitness r, which can be

smaller than one (for disadvantageous mutations) or greater than one (for advantageous

mutations). For r = 1 the process is neutral.

The dynamics proceed through a sequence of death-birth events until the mutants

have either gone extinct (m = 0), or reached fixation (m = N). When either has
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2.2. Results and methods

occurred the dynamics stop, as there is only one type of individual left in the population.

We focus on the probability, φ, for a single invading mutant to reach fixation. Using

the theory of Markov processes, an explicit mathematical expression can be found

for the fixation probability (see e.g. [9, 17–19]). The fixation probability depends on

the fitness of the mutant species, r, and the population size, N . For the death-birth

process one has [3, 20]

φ = c
1− r−1

1− r−cN , (2.1)

where c = (N − 1)/N for the process described above. We will refer to this as the

prediction of the conventional theory for well-mixed populations. If asked how to

calculate fixation probabilities in well-mixed populations, most evolutionary theorists

would likely point to results such as the one in Eq. (2.1). The details of the mathematical

expression may vary for different processes (for example c = 1 if self-replacement is

included, or if the selection is global), but they are all derived from the assumption of

an all-to-all interaction at all times.

Can this be achieved by stirring?

Despite the consensus on what constitutes a well-mixed population (mathematically),

it is in practice difficult to determine if a particular biological or social system is well

mixed. The term is used in the literature without much specificity. Common verbal

characterisations include the requirement that ‘all pairs of individuals interact with

the same probability’ (see e.g. [14–16, 21]), but how precisely this is to be interpreted

is often not said. For example, do all individuals have to be able to interact with each

other at all times? Or it is sufficient if all pairs interact with equal frequency over time?

In most cases no detailed explanation is offered how the complete interaction graph

leading to Eq. (2.1) would arise. The term attributed to this formalism—evolutionary

dynamics in ‘well-mixed’ populations—at the very least suggests that this all-to-all

interaction can be achieved through some type of external stirring or agitation. It is

this assumption that we challenge in this paper.
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2.2.2 Models of stirred populations

In order to model the effects of external stirring we assume that the population is

subject to a continuous-time flow, moving the individuals around in space [22–30]. For

example, one may imagine a population of bacteria in an aqueous environment, which

is being shaken or stirred mechanically [5–8]. We focus on two-dimensional systems;

this is sufficient to develop the main points we would like to make.

Each evolutionary death-birth event of the Moran process is executed as follows.

First, one individual in the population is chosen at random for removal; each individual

with equal probability 1/N . Then, its ‘neighbours’ (individuals within interaction

range R) compete to reproduce and fill the vacancy. This competition is decided by

fitness: assuming that n wildtypes and m mutants compete, the probability that the

reproducing individual is a wildtype is n/(n+mr), and the probability that a mutant

reproduces is mr/(n+mr). The offspring is created with the same type as the parent,

and is placed at the position of the individual that has been removed.

It remains to say how often evolutionary events take place relative to the timescale

of the flow. In-line with the literature we will describe this by the so-called Damköhler

number, Da (see e.g. [30–33]); in the context of our model, the Damköhler number

characterises the ratio of the time scales of the flow and the evolutionary process. In

our simulations, one evolutionary event occurs every 1/(NDa) time units. If Da is very

large, the flow is slow compared to evolution. The extreme case Da → ∞ describes

the ‘no-flow’ limit; on the timescale of the evolutionary dynamics, the positions of

the individuals are then static. A very small Damköhler number (Da� 1) indicates

that the flow is fast compared to evolution. If the conventional theory for well-mixed

populations is to apply to populations in a flow, then one would expect it to be in this

limit.

We performed simulations of the evolutionary process in different chaotic flows. The

velocity fields we use have a periodic time dependency. The time units are expressed in

units of the period of the flows, which we set to unity throughout. As an initial example,

we focus on the so-called periodic parallel-shear flow [34, 35] in two dimensions. In

this flow, particles move horizontally during the first half of the period, subject to

shear. In the second half, the motion is in vertical direction, again subject to shear.

A random phase, drawn every half period, leads to chaotic motion [34, 35]. We will
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2.2. Results and methods

discuss further flows below. Details of the flows, including the numerical methods we

used to simulate them, are described in Section 2.6.

Results of the simulations for the parallel shear flow are shown in the main panel of

Fig. 2.1. The thick purple line is the prediction of the conventional theory for well-mixed

systems. The markers represent simulation results for different Damköhler numbers.

For fixed mutant fitness, the data suggests that the fixation probability approaches a

limiting value as Da is decreased (the flow made faster). However, this limiting value

is not the one predicted by Eq. (2.1). This indicates that the conventional well-mixed

theory is not applicable, even for fast chaotic flows. As seen in Fig. 2.1 the approach to

fast-flow limit can be non-trivial. A more detailed study shows that the nature of this

approach depends on the exact nature of the evolutionary process and on the initial

conditions, among other things. The current paper focuses on the fast-flow limit itself,

but not on the details of how exactly this limit is approached. We next return
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Figure 2.1: Fixation probability of a single mutant in a population stirred
by a chaotic flow. The conventional theory for well-mixed systems [Eq. (2.1)] is shown
as a thick purple line. Markers represent simulation results. In the main panel, these are
shown for different Damköhler numbers. Reducing Da increases the flow speed relative to
the evolutionary process. The thin continuous lines represent results from the analytical
approach for fast flows [Eq. (2.2)]. The inset shows simulations for different interaction
radii. Smaller interaction ranges makes selection increasingly more local, and the fixation
probability approaches that of neutral selection, 1/N , shown for reference (dashed gray
line). (Population size N = 100; R = 0.1 in main panel; Da = 0.1 in the inset; interaction
radius varies from R = 0.025 to R = 0.175 in inset. See Section 2.6 for a description of
the (parallel-shear) flow.)
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Figure 2.2: Mixing properties of different planar flows. The first column shows
a graphical representation of the flow field for a selection of two-dimensional flows (see
Section 2.6). Velocity fields are periodic (modulo a random phase), and we use a period
of one throughout. Green and blue arrows represent this periodic switching. The second
column shows the stationary density of particles in space, as measured from simulations.
The fraction of time each pair of particles spend within interaction radius from each other
is shown as a connectivity matrix in the third column. Results are from simulations.
The fourth column shows the measured link persistence, q1(t), as well as q0(t) and the
asymptotic connectivity q (see text). Convergence of q1 and q0 to a common value q
indicates that the flow mixes the system.

to the commonly used verbal description of well-mixed populations, and determine

whether any pair of individuals interact with the same probability. Labelling particles

and tracking them as the flow proceeds we determine, for each pair, the proportion

of time they are within interaction range from each other. This yields a symmetric

connectivity matrix, shown in Fig. 2.2. Results indicate that, averaged over time, the

parallel-shear flow meets the verbal criterion of good mixing; each individual is equally

likely to interact with any other. Now, consider the sequence of times at which a

specific individual participates in evolutionary events, i.e., it is chosen to compete or
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Figure 2.3: Sets of neighbours of an individual at different moments in time.
The illustration shows the position of a group of particles as they are moved by the flow.
We highlight the time-dependent set of neighbours of one particle. The sets of neighbours
remain correlated in the frames shown in the upper row. In the lower row, however, the
sets of neighbours are uncorrelated from frame to frame.

to be replaced. In order for a system to be ‘well-mixed’ it is reasonable to require that

the sets of neighbours at the time of an event are uncorrelated from those at earlier

events. If this is not the case, the system has not been ‘mixed’ between the two events.

We illustrate this in Fig. 2.3. The top row shows snapshots taken at short intervals,

and demonstrates that the sets of neighbours of a particle remain correlated from one

frame to the next. If evolutionary steps were to happen on these timescales the system

cannot be said to be well mixed. If, on the other hand, evolutionary events occur with

lower frequency, the neighbours of a particle at the time of an event are uncorrelated

to those at earlier events. This is illustrated in the lower row. To characterise this

in more detail, we have measured the probability, q1(t), that two particles who were

within interaction radius at time t0 are also connected at time t0 + t. In the stationary

state, this is independent of t0. We refer to this quantity as the link persistence. We

also measured the probability that two particles who are not connected at an earlier

time are connected t units of time later, and denote this quantity by q0(t). Results are

shown in Fig. 2.2.

We write q for probability that two randomly selected individuals are within

interaction radius of each other, and refer to this as the connectivity. If a flow mixes

61



Chapter 2. Stirring does not make populations well mixed

the population well we expect that, eventually, the neighbours of a particle become

independent of its earlier neighbours. Then q0(t) and q1(t) both tend to q for large

enough t. Simulations indicate that this is the case for the parallel-shear flow (see

Fig. 2.2). This again confirms that the flow is mixing.

The timescale tx on which this regime is reached can be obtained from the simulation

data shown in Fig. 2.2. It is the point in time when q0 and q1 have converged to their

common asymptotic value, q. For the parallel-shear flow, as a broad order-of-magnitude

estimate, we use tx ≈ 5. Mixing thus occurs after approximately five periods with

our choice of parameters (see Section 2.6). The stationary particle density is uniform

for this flow and, therefore, the stationary value of q can readily be calculated. We

expect q = πR2/A, where A is the total area of the two-dimensional system and R the

interaction radius. In the parallel-shear flow example shown in Fig. 2.2 we have A = 1

and R = 0.15, consistent with the stationary value of q ≈ 0.07 observed in the figure.

2.2.3 Analytical description

If the typical time elapsing between evolutionary events involving a fixed particle is

larger than tx, we can assume that the neighbours of the particle are uncorrelated to

those in earlier events. This is not dissimilar to the approach of annealed random

networks [36, 37]. However, in our case, the interaction network is a random geometric

graph [38]. Based on the assumption of uncorrelated neighbourhoods an analytical

description can be constructed. In any evolutionary event, one particle is chosen at

random for removal. The neighbours of this particle are obtained by randomly sampling

the entire population; each particle is in the neighbourhood of the focal individual

with probability q. Those neighbours then compete to fill the vacancy. This allows us

to derive rates with which mutants replace wildtype individuals or vice-versa. From

these rates we then compute the probability for a single mutant to reach fixation; for

completeness we also compute times to fixation. Details of these calculations can be

found in Section 2.5.5. For r close to one (weak selection) we find

φ = 1− r̃−1

1− r̃−N , (2.2)

with r̃ = r + 〈1/k〉c(1 − r), and where 〈1/k〉c is the mean inverse degree among

individuals who have at least one neighbour. This object depends on the connectivity
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2.2. Results and methods

q, which in turn depends on the interaction radius R. The weak-selection limit of the

result for the complete graph [Eq. (2.1)] is recovered for q = 1. If the interaction radius

is small, and hence the interaction graph sparse (q → 0), one finds 〈1/k〉c ≈ 1, and

r̃ = 1, i.e., neutral selection. The finite connectivity of the dynamic interaction graph

acts as a suppressor of selection.

The prediction of Eq. (2.2) is shown in the main panel of Fig. 2.1 (solid black line),

and agrees with simulations for small Damköhler numbers (fast flows). In the inset of

the figure, we show the probability of fixation for different choices of the interaction

radius R for fast flows. In all cases, Eq. (2.2) is seen to describe simulations well. The

data demonstrates that, depending on the interaction radius, the fixation probability

can take any value between the result for neutral selection and the one predicted by

the conventional well-mixed theory.

It is important to ask how fast the flow must be for Eq. (2.2) to be valid. Our

approach requires that each individual experiences a newly sampled set of neighbours

at each event, uncorrelated from its interaction partners at earlier events. Broadly

speaking, our approach applies when the typical time τ between events involving a

particular individual is larger than the mixing time tx. The probability that any

particular individual is involved in a given evolutionary event can be estimated as

1/N + (1− 1/N)q. This means that any individual typically participates in an event

every τ = [Da(1 + q(N − 1))]−1 units of time. In the example of the parallel-shear

flow q ≈ 0.07. For a system with N = 100 individuals, τ > tx when Da . 0.025. If

this condition is met we expect Eq. (2.2) to apply. This is consistent with the data in

Fig. 2.1.

2.2.4 Robustness and applicability to different flow fields

In order to test our approach further we have simulated a range of different flows, as

illustrated in Fig. 2.2 and detailed further in Section 2.6. Similar to the parallel-shear

flow, the double-gyre flow mixes the system at sufficiently small Damköhler numbers

(uniform entries in the connectivity matrix; q0, q1 → q). The chaotic blinking-vortex

flow is approximately mixing. The non-chaotic blinking-vortex flow and the vortex-sink

flow are not mixing, as can be seen in Fig. 2.2. The connectivity matrix resulting from

these flows indicates clusters of particles which travel the system together; the set of
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Chapter 2. Stirring does not make populations well mixed

neighbours of any one particle can remain correlated indefinitely.

Results for the different flows are shown in Fig. 2.4. Different data points correspond

to different choices of the interaction radius, resulting in different connectivities q.

The conventional well-mixed theory is represented by the point q = 1; our approach

interpolates between this value and the one for neutral selection in the dilute limit q → 0.

The data in the figure demonstrates that Eq. (2.2) describes the fixation probability

accurately for the flows that are mixing. Even for the non-chaotic blinking-vortex and

vortex-sink flows it provides a good approximation.
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Figure 2.4: Fixation probability as a function of connectivity. Varying the
interaction radius interpolates between neutral selection and the theory based on complete
graphs. The fast-flow theory applies throughout, provided the flow mixes the particles
well. The markers represent simulation results for different flows and different interaction
radii, resulting in different connectivities, q. Predictions of the fast-flow theory [Eq. (2.2)]
are shown as the solid black line. The conventional well-mixed theory [complete graph,
Eq. (2.1)] is indicated by the filled circle at q = 1. The dashed gray line is for guidance
only, and shows the result for neutral selection, φ = 1/N . (Mutant fitness r = 1.05,
population size N = 100).

2.2.5 Dependence on the size of the population

We show the fixation probability for different population sizes in Fig. 2.5. In the

left panel we keep the connectivity q fixed; the average number of neighbours of

each individual is then 〈k〉 = (N − 1)q. Interestingly, this produces non-monotonic

behaviour as a function of N , with minimal fixation probability at a certain population

size. For small populations, the sampled neighbourhoods are so small that there is
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Figure 2.5: Fixation probability as a function of population size. On the left-
hand panel, the interaction radius R is fixed as the population size is varied. This results
in fixed connectivities, q, but the average number of neighbours of each particle increases
with N . On the right-hand panel, the average number of neighbours, 〈k〉, was fixed by
reducing the interaction radius as the population size increases. Markers are simulations
for the parallel-shear flow. The conventional theory is shown as the thick purple line.
Dashed coloured lines are the predictions of the fast-flow approach. The dashed gray
line shows the result for neutral selection. (r = 1.05, Da = 0.01 in both panels.)

virtually no competition. The outcome of evolutionary events is dominated by the

random composition of the set of neighbours of the removed individual, rather than

by fitness. Effectively this results in neutral selection. In this regime, fixation of a

single mutant becomes more difficult as N increases, and the fixation probability φ is a

decreasing function of N . For larger populations, neighbourhoods become large enough

to provide a statistically more representative sample of the entire population. Selection

becomes increasingly relevant, and the fixation probability of an advantageous mutation

increases. In the limit of very large populations, the neighbourhoods are a statistically

accurate sample of the entire population. Therefore, the traditional well-mixed theory,

based on complete graphs, is recovered. We note that 〈1/k〉c tends to zero in this limit,

so that r̃ = r; the predictions of Eqs. (2.1) and (2.2) then agree. In the right panel of

Fig. 2.5 the average number of neighbours, 〈k〉, is kept fixed instead. Interactions are

then always within local neighbourhoods, and the conventional complete-graph theory

does not apply, even in large populations.

2.3 Discussion

In the existing literature, well-mixed populations are almost always associated with

complete interaction graphs. Every member of the population is connected to every
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other member at all times. Competition and selection in an evolutionary event then

take place among all individuals. The term ‘well-mixed’ suggests that these conditions

can be achieved by stirring spatial systems. As we have shown, this is often not the

case. Quantitative differences between the predictions of the conventional theory and

simulations of stirred populations can be observed, even when the stirring is fast and

when all pairs of individuals are equally likely to interact. We have presented an

alternative approach, based on the assumption that any individual, at any one time,

interacts with a randomly selected subset of the population. We have demonstrated that

our analytical description accurately predicts simulation results, including situations

where the conventional theory does not.

So far we have only discussed one type of evolutionary dynamics: a death-birth

process. In the model we have described, no competition takes place when the individual

for removal is determined. The reproducing individual is selected from the neighbours

of the removed and proportional to fitness. This is known as ‘local selection’ and the

process is referred to as a local death-birth process [3, 20, 39]. We write dB where the

sequence of letters indicates that the death event occurs first and then the birth event,

and where the capital letter indicates that selection takes place when the reproducing

individual is chosen. Other variants are possible; for example, death-birth processes in

which selection only acts when the individual for removal is chosen. This is known as a

global death-birth process (Db). In very much the same way there are global and local

birth-death processes (Bd, bD) [20, 40]. Similarly selection can act at both the death

and birth stages (death-birth process with dual selection (DB) or birth-death process

with dual selection BD). We have tested the applicability of the conventional theory

and of our approach to all six different types of processes (see Section 2.5.4). We find

that the conventional theory for well-mixed systems is accurate for processes in which

selection only acts globally; a description based on a complete interaction graph is

then appropriate. The conventional theory becomes invalid, however, when selection

acts locally. As summarised in Fig. 2.6, the fast-flow approach we have developed

applies in all cases. If the interaction range is limited, individuals do not compete

against the entire population at any one time. Our analysis shows that this limited

connectivity suppresses selection. Therefore, the conventional theory for well-mixed

systems overestimates the fixation probability of advantageous mutants. Our results
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Figure 2.6: Applicability of the conven-
tional well-mixed theory and the fast-flow
theory. Evolutionary processes (see text and
Section 2.5.4) and indication whether the predic-
tions of the conventional theory for well-mixed
systems and of our fast-flow approach agree with
simulations. Capital letters in the acronyms for
the different processes indicate the presence of
selection in the birth or death step. In Bd and
Db competition is in the first step and therefore
global. The conventional theory for well-mixed
systems applies. In bD and dB competition is
in the second step and therefore selection is local.
In BD and DB competition takes place in both
steps (dual selection). In the latter four cases the
conventional theory fails. The fast-flow theory
predicts simulation results in all six cases.

also suggest that a disadvantageous mutant is more likely to reach fixation when it has

a small interaction radius. Similar results have recently been reported by Krieger et al.

[29] for structured populations with mobile individuals.

The exact mechanics of evolution and the interaction range of individuals in

biological or social systems are often difficult to determine. Mathematical modelling

approaches frequently rely on well-mixed populations, due to the fact that these have

analytical solutions. In some systems interaction may indeed occur over long distances,

for example through signalling, chemical trails or the production of public goods [41–44].

Established approaches based on complete interaction graphs are then appropriate.

Most systems, however, have a limited interaction range [21, 45], and as consequence

conventional well-mixed theories may not apply.

There is considerable theoretical work on the effects of local interactions in static

structured populations [2, 14, 21, 45, 46]. Expressions for the fixation probability of

invading mutants are known. However, populations in many social or biological systems

are moving and the interaction network is dynamic. The fast-flow approach provides a

tool that should prove useful for the modelling of situations in which individuals are in

motion.
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2.4 Appendix A: Evolutionary processes

Two types of processes are widely used in the literature to model evolutionary dynamics:

birth-death processes and death-birth processes. A birth-death process in a spatial

system or network occurs in two steps: first, an individual is chosen for reproduction

from the entire population; then, one of its neighbours is chosen, and is replaced by

an offspring of the first individual. In the second type of process, death-birth, the

individual chosen in step one is removed from the population, and one of its neighbours

is chosen to produce an offspring in the ‘vacant’ place. For clarity we stress again that

two particles in the spatial system are considered to be ‘neighbours’ if their distance is

less than the interaction radius.

Each of these steps may or may not include an element of selection. Selection

indicates that the choice of individual is based on fitness. Throughout our paper,

we focus only on frequency-independent selection, i.e., the fitness of each type of

individual only depends on the species it belongs to (mutant or wildtype), but not

on the composition of its neighbourhood. In the literature, the most widely used

update processes only include selection in the reproduction step. In principle, however,

each individual can carry two types of fitness [20]. One is reproductive fitness; when

competition occurs in the reproduction stage, it determines the probability that an

individual is picked. If selection occurs during the choice of an individual for removal,

we think of the resilience (against removal) as a ‘death fitness’. It plays the same role

as the reproduction fitness, but in the removal stage. Individuals with a higher ‘death

fitness’ are less likely to be chosen for removal. Without loss of generality, we set both

fitnesses of the wildtype to one. We write r for the mutant’s reproductive fitness, and

1/d for its death fitness. The quantity d then describes a propensity to die.

Six possible processes can then be considered. The first three are birth-death

processes. Selection can occur only in the birth step (Bd), only in the removal step

(bD), or in both (BD). Similarly, for death-birth processes one has Db, dB and DB.

Capital letters indicate that the step involves selection, and lower case letters indicate

the absence of selection.

It is important to stress that the first individual in each birth-death or death-birth

event is chosen from the entire population. If selection occurs at this step, this selection
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is global. The second individual is chosen among the neighbours of the first. Therefore,

if selection occurs in this phase, it is local selection.

The most general birth-death process involves selection in both steps (BD, r 6= 1,

d 6= 1). If d = 1, the birth-death process is of the type Bd. Selection takes place when

individuals are chosen from the entire population, and it is hence global selection. For

this reason, the process is also referred to as a global birth-death process. A dynamics

of the type bD is a local birth-death process process (r = 1). The nomenclature for

global and local death-birth processes is similar (Db denotes the global death-birth

process, and dB the local death-birth process, respectively).

2.5 Appendix B: The limit of fast flows

2.5.1 Setup and notation

A focal individual is chosen in step one of a birth-death or death-birth process. Inter-

action then occurs with one of its neighbours (particles within its interaction radius

R). In the limit of fast flow, we assume that this neighbourhood is sampled from the

entire population at random (excluding the focal individual). Each individual is in the

neighbourhood with probability q, and it is not a neighbour with probability 1− q.

The connectivity q will depend on the interaction radius. The parallel-shear flow, for

example, generates a uniform stationary density of particles. Therefore, any randomly

chosen individual will be a neighbour of the focal individual with probability q = πR2/A,

where A is the total area of the system. This assumes 0 < R < (Aπ)−1/2 and periodic

boundary conditions. For R ≥ (Aπ)−1/2 the network is fully connected (q = 1).

With these assumptions the degree distribution is binomial; the probability that

the focal individual has exactly k neighbours is

Pk =
(
N − 1
k

)
qk (1− q)N−1−k . (2.3)

Assume now that there are m mutants in the population and N −m wildtypes. If

the focal individual is a mutant, the probability that there are l mutants among its k

neighbours is

P (m)(l|k) =
(
k

l

)(
m− 1
N − 1

)l (
1− m− 1

N − 1

)k−l
. (2.4)
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Instead, if the focal individual is a wildtype the probability that l of its k neighbours

are mutants is

P (w)(l|k) =
(
k

l

)(
m

N − 1

)l (
1− m

N − 1

)k−l
. (2.5)

We next consider the situation in which k individuals compete (for example to

replace a removed individual). Assuming that l of the k individuals are mutants (with

fitness r) and k − l are wildtypes (with fitness one) we write gkl(r) for the probability

that a mutant is selected. We have

gkl(r) = lr

(k − l) + lr
. (2.6)

The quantity 1− gkl(r) is the probability that a wildtype is selected in this situation.

If selection acts during the removal step, the probability that the individual chosen for

removal is a mutant is gkl(d).

It is also useful to define

H(m)(r) =
N−1∑
k=1

k∑
l=0

Pk P
(m)(l|k)[1− gkl(r)],

H(w)(r) =
N−1∑
k=1

k∑
l=0

Pk P
(w)(l|k)gkl(r), (2.7)

where the double sums run over all neighbourhood compositions of the focal individual.

The quantity H(m) describes the probability with which a wildtype is selected among

the neighbours of a mutant focal individual, and H(w) the probability that a mutant is

selected from the neighbourhood of a wildtype.

In each death-birth or birth-death event, the number of mutants in the population

may increase by one (m→ m+ 1), decrease by one (m→ m− 1), or remain unchanged.

We write T+
m for the probability that m increases by one, and T−m for the probability

that m decreases by one. For birth-death processes we have

T+
m = mr

mr +N −m
×H(m)(d),

T−m = N −m
mr +N −m

×H(w)(d), (2.8)

where the fraction on the right-hand side in the expression for T+
m is the probability that

the individual selected for birth is a mutant, or that it is a wildtype in the expression

for T−m .
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For death-birth processes we have

T+
m = N −m

md+N −m
×H(w)(r),

T−m = md

md+N −m
×H(m)(r). (2.9)

2.5.2 Fixation probability

For any one-step process, the probability of fixation of a single mutant in a population

of size N can be written as [19]

φ = 1

1 +
N−1∑
j=1

j∏
m=1

γm

, (2.10)

where γm = T−m/T
+
m , sometimes known as the evolutionary drift.

For the BD and DB processes we have, respectively,

γBDm (r, d) = N −m
mr

H(w)(d)
H(m)(d) ,

γDBm (r, d) = md

N −m
H(m)(r)
H(w)(r) . (2.11)

We note that γBDm (r, d) =
[
γDBm (d, r)

]−1
.

Substituting Eqs. (2.11) into Eq. (2.10) yields the fixation probability for the two

types of processes:

φBD (r, d) = 1

1 +
N−1∑
j=1

j∏
m=1

N−m
mr

H(w)(d)
H(m)(d)

(2.12)

φDB (d, r) = 1

1 +
N−1∑
j=1

j∏
m=1

md
N−m

H(m)(r)
H(w)(r)

(2.13)

These closed-form expressions can readily be evaluated numerically.

For the global processes, there is no selection in the second step of evolutionary

events, and so the expressions for H(m) and H(w) simplify considerably. If followed

through, Eqs. (2.12) and (2.13) can be reduced to

φBD(r, d = 1) = φBd ≡
1− r−1

1− r−N ,

φDB(r = 1, d) = φDb ≡
1− d

1− dN , (2.14)
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which are the well-known results for the complete graph [19]. It is important to note

that these equations are for processes in which selection acts in the first stage of the

birth-death or death-birth events. This means that selection acts globally, and that all

N individuals in the population are in competition. The dB process used in the main

text is slightly different. In that model, selection does not act in the first stage of each

event, it acts in the second. Therefore, unless self-replacement is allowed, selection is

made among N − 1 individuals even if the interaction graph is complete (the entire

population, except the individual chosen in the first stage). This leads to a slightly

different expression, see e.g. Eq. (2.1), even though both processes have selection only

in the birth stage. As the system size increases, however, the difference between dB

and Bd on a complete graph becomes small, and so the result in Eq. (2.1) tends to

that in the first equation of (2.14).

The predictions for the local birth-death and death-birth processes (bD and dB)

do not reduce to expressions as simple as those in Eqs. (2.14). This is perhaps to be

expected from previous studies of local processes on static networks, which have shown

that the traditional well-mixed theory is only valid for a very narrow set of graphs [46].

2.5.3 Approximation in the limit of weak selection

We now proceed to simplify the expressions in Eqs. (2.12) and (2.13). We will focus

on the case of the DB process, but similar expressions can be obtained for BD upon

replacing d by r. We begin by simplifying the expressions for H(m) and H(w) in

Eqs. (2.7),

H(m)(d) =
N−1∑
k=1

Pk
k∑
l=0

(
k

l

)(
m− 1
N − 1

)l (
1− m− 1

N − 1

)k−l ( k − l
ld+ k − l

)
,

H(w)(d) =
N−1∑
k=1

Pk
k∑
l=0

(
k

l

)(
m

N − 1

)l (
1− m

N − 1

)k−l ( ld

ld+ k − l

)
. (2.15)

Since k−l
ld+k−l = 1− ld

ld+k−l , we only need to compute objects of the type∑k
l=0

(
k
l

)
xl(1− x)k−l

(
ld

ld+k−l

)
. We expand in powers of 1− d, and keeping only terms

to first order we obtain (after re-arranging terms)

ld

ld+ k − l
= 1 +

(
l

k
− 1

) ∞∑
i=0

(
l

k
(1− d)

)i

= l

k
d+

(
l

k

)2

(1− d) +O
(
(1− d)2

)
. (2.16)
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Using this approximation we find
k∑
l=0

(
k

l

)
xl (1− x)k−l

(
ld

ld+ k − l

)

=
k∑
l=0

(
k

l

)
xl (1− x)k−l

d l
k

+
(
l

k

)2

(1− d)
+O

(
(1− d)2

)

=d x+ (1− d)
(
x

k
+ x2 (k − 1)

k

)
+O

(
(1− d)2

)
=d x+ (1− d)x2 + (1− d) (x− x2)

k
+O

(
(1− d)2

)
. (2.17)

The expressions in Eqs. (2.15) can therefore be approximated as

H(m)(d) ≈
N−1∑
k=1

Pk

[
1− d

(
m− 1
N − 1

)
− (1− d)

(
m− 1
N − 1

)2

−1
k

(1− d)
((

m− 1
N − 1

)
−
(
m− 1
N − 1

)2
)

+ . . .

]

=
(
N −m
N − 1

)[(N−1∑
k=1

Pk

)
+ (1− d)

(
m− 1
N − 1

)(N−1∑
k=1

Pk
k − 1
k

)]
+O

(
(1− d)2

)
=
(
N −m
N − 1

)
qc

[
1 + (1− d)

(
m− 1
N − 1

)(
1−

〈
1
k

〉
c

)]
+O

(
(1− d)2

)
,

H(w)(d) ≈
N−1∑
k=1

Pk

d( m

N − 1

)
+ (1− d)

(
m

N − 1

)2
+

(1− d)
((

m
N−1

)
−
(

m
N−1

)2
)

k
+ . . .


=
(

m

N − 1

)[(N−1∑
k=1

Pk

)
− (1− d)

(
N −m− 1
N − 1

)(N−1∑
k=1

Pk
k − 1
k

)]
+O

(
(1− d)2

)
=
(

m

N − 1

)
qc

[
1 + (1− d)

(
N −m− 1
N − 1

)(
1−

〈
1
k

〉
c

)]
+O

(
(1− d)2

)
. (2.18)

In these expressions we have written

qc ≡
N−1∑
k=1

Pk = 1− P0 (2.19)

for the probability that a randomly chosen individual has at least one neighbour, and〈1
k

〉
c
≡ 1
qc

N−1∑
k=1

Pk
k
. (2.20)

This expression describes the average inverse degree of all nodes with at least one

neighbour.

Substituting Eqs. (2.18) into Eqs. (2.11), and again expanding in powers of d− 1

and r − 1, respectively, yields

γBD (r, d) = 1
r

[
1− (1− d) (1− 〈1/k〉c)

]
+O

(
(1− d)2

)
,

γDB (d, r) = d

[
1

1− (1− r) (1− 〈1/k〉c)

]
+O

(
(1− r)2

)
. (2.21)
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In contrast with Eqs. (2.11), the first-order expressions on the right-hand side are now

independent of m. It is therefore straightforward to evaluate the general expression for

the fixation probability of a single mutant [Eq. (2.10)]. For the BD process this leads

to

φBD (r, d) = 1

1 +
N−1∑
j=1

j∏
m=1

1
r

[
1− (1− d) (1− 〈1/k〉c)

]

=
1−

(
d+〈1/k〉c(1−d)

r

)
1−

(
d+〈1/k〉c(1−d)

r

)N , (2.22)

where we have neglected contributions of order (1− d)2 and higher.

In the case of the global process (Bd, d = 1), this reduces to Eq. (2.14). For the

local process (bD) we have r = 1, and so Eq. (2.22) reduces to

φBD (r = 1, d) = φbD = 1− d̃
1− d̃N

, (2.23)

with

d̃ = d+ 〈1/k〉c (1− d). (2.24)

Similarly, for the DB process we have (disregarding corrections of order (1− r)2

and higher)

φDB (d, r) = 1

1 +
N−1∑
j=1

j∏
m=1

d
(

1
1−(1−r)(1−〈1/k〉c)

)

=
1−

(
d

r+〈1/k〉c(1−r)

)
1−

(
d

r+〈1/k〉c(1−r)

)N . (2.25)

Setting r = 1 recovers the result for the global death-birth process (Db) in Eq. (2.14).

For the local process (dB) we have d = 1, and so Eq. (2.25) reduces to

φDB (1, r) = φdB = 1− r̃−1

1− r̃−N , (2.26)

with

r̃ = r + 〈1/k〉c (1− r). (2.27)

This corresponds to the local death-birth process (dB), and is the focus of the main

text [see Eq. (2.2)].
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To test the accuracy of the weak-selection approximation leading to Eq. (2.26) we

compare its predictions against that of the full expression of Eq. (2.13) in Fig. 2.7. In

the left-most pane, we plot the fixation probability as a function of the connectivity for

different mutant fitnesses. Since the approximation requires weak-selection, deviations

are expected when r is significantly different from one. In the other two panels, we show

the fixation probability as a function of the population size (see also Fig. 2.5), keeping

the connectivity q constant (central panel), or fixing the average number of neighbours

〈k〉 instead (panel on the right). As can be seen in the figure, the approximation

remains valid for any system size.
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Figure 2.7: Test of the weak-selection approximation. The left panel shows the
fixation probability as a function of the connectivity q for different mutant fitnesses. The
central and right panel show the fixation probability of a mutant with fitness r = 1.05 as
a function of the population size (q fixed in central panel, average degree 〈k〉 fixed on the
right). Continuous lines show the equations prior to the approximation [Eq. (2.13)], and
dashed lines show the equations after the approximation [Eq. (2.26)]. As can be seen,
the approximation is valid for all system sizes, but is sensitive at large fitnesses.

2.5.4 Validity of well-mixed and fast-flow theories for

the different evolutionary processes

In this section we comment on the applicability of the conventional well-mixed theory

and that of our approach to the six types of birth-death and death-birth processes briefly

discussed in the main text. Two individuals directly participate in each evolutionary

event. The first is chosen from the entire population, and the second from the neighbours

of the first individual. Two particles are ‘neighbours’ when the distance between them

is at most R (the interaction radius). The ordering (birth-death versus death-birth)
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indicates whether the individual that is chosen first is removed from the population

(death-birth) or whether it reproduces (birth-death). Capital letters in the acronyms

indicate whether selection takes place in each of the two steps, i.e., in BD and DB

processes, both steps involve selection, in Db and Bd only the first step (global

selection), and in dB and bD only the second step (local selection).

Global processes: Db and Bd
The global processes are obtained by setting r = 1 in a general death-birth process

(resulting in Db), or setting d = 1 in a general birth-death process (resulting in

Bd). Our approach for the fast-flow limit then reduces to the conventional well-mixed

theory, and the predictions for the fixation probability of a single mutant are those in

Eqs. (2.14). These agree well with simulations, as shown in Fig. 2.8 (compare crosses

and dark purple line). For simplicity we use d = 1/r; in this case the two equations in

Eqs. (2.14) are identical.

Local processes: dB and bD
The local processes are obtained by setting d = 1 in a general death-birth process

(resulting in dB), or setting r = 1 in a general birth-death process (resulting in bD).

For weak selection, the predictions from our theoretical approach for the fixation

probability of a single mutant is then given by Eq. (2.23) for bD, and Eq. (2.26) for

dB. These are different from the predictions of the conventional theory for well-mixed

systems, Eqs. (2.14). The simulation data (empty squares and circles) in Fig. 2.8 agree

with the predictions of Eqs. (2.23, 2.26), shown as a dashed blue line (for d = 1/r the

predictions of these two equations are indistinguishable on the scale of the graph). The

conventional theory (dark purple line) deviates from the simulation data.

Selection in both steps: DB and BD
In the DB and BD processes selection takes place in both steps. The predictions of

our approach are those of Eqs. (2.22) and (2.25) and are shown as a dashed red line in

Fig. 2.8 (for d = 1/r the predictions of the two equations are again indistinguishable

on the scale of the figre). They agree with the simulation results (solid triangles and

pentagons). The predictions of the complete-graph theory for the processes with dual

selection is also shown for comparison (light purple line).
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Figure 2.8: Fixation probability as a function of fitness for the different
update processes. Continuous thick lines show the conventional well-mixed theory for
processes with dual selection (light purple) or selection in only one step (dark purple).
Dashed lines show the fast-flow theory for dual selection (red), or local selection (blue).
We use d = 1/r. The theoretical predictions for BD and DB are then indistinguishable
on the scale of the figure, and similarly for the pairs Bd-Db, and bD-dB respectively.
Simulation results are for the parallel-shear flow, with Da = 0.01, R = 0.1 and N = 100.

2.5.5 Times to fixation

Another quantity of interest is the time it takes for a single mutant to reach fixation.

This is known as the conditional time to fixation, and is described in general by [47]

τ =
N−1∑
j=1

j∑
i=1

φi
T+
i

j∏
m=i+1

γm, (2.28)

where φi is the probability of fixation from state i, in turn given by

φi =
1 +

i−1∑
k=1

k∏
l=1

γl

1 +
N−1∑
k=1

k∏
l=1

γl

. (2.29)

Using γm as defined in Eqs. (2.11), the expression in Eq. (2.28) can be written

explicitly as

τBD =
N−1∑
j=1

j∑
i=1

1 +
i−1∑
k=1

k∏
l=1

N−l
lr

H(w)(d)
H(m)(d)

1 +
N−1∑
k=1

k∏
l=1

N−l
lr

H(w)(d)
H(m)(d)

∏j
m=i+1

N−m
mr

H(w)(d)
H(m)(d)

ir
ir+N−i ×H(m)(d)

,

τDB =
N−1∑
j=1

j∑
i=1

1 +
i−1∑
k=1

k∏
l=1

ld
N−l

H(m)(r)
H(w)(r)

1 +
N−1∑
k=1

k∏
l=1

ld
N−l

H(m)(r)
H(w)(r)

∏j
m=i+1

md
N−m

H(m)(r)
H(w)(r)

N−i
id+N−i ×H(w)(r)

, (2.30)
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with H(m) and H(w) defined as in Eqs. (2.7). These equations can be readily evaluated

numerically.

As with the fixation probabilities, we note that these expressions greatly simplify

for the global processes. Since competition takes place among the whole population,

the evolutionary drifts are simply given by γBdm (r, 1) = 1/r and γDbm (1, r) = d, which

results in conditional times to fixation of

τBd = (N − 1)
qcr (1− r−N)

N−1∑
j=1

j∑
i=1

(ir +N − i) (ri−j − r−j)
i (N − i) ,

τDb = (N − 1)
qc (1− dN)

N−1∑
j=1

j∑
i=1

(id+N − i) (dj−i − dj)
i (N − i) , (2.31)

with qc as defined in Eq. (2.19). A similar simplification is not possible for the local

processes, but we can make use of the weak selection approximation obtained for the

fixation probabilities.

Inserting Eqs. (2.18) and (2.21) into Eqs. (2.30) leads to

τBD = (N − 1)

qcr
[
1−

(
d̃
r

)N] N−1∑
j=1

j∑
i=1

(ir +N − i)
[(

d̃
r

)j−i
−
(
d̃
r

)j]
i (N − i)

[
1 + (1−d̃)(i−1)

N−1

] ,

τDB = (N − 1)

qc

[
1−

(
d
r̃

)N] N−1∑
j=1

j∑
i=1

(id+N − i)
[(

d
r̃

)j−i
−
(
d
r̃

)j]
i (N − i)

[
1 + (1−r̃)(N−i−1)

N−1

] , (2.32)

where we used the same notation of r̃ and d̃ as in Eqs. (2.27,2.24). It is straightforward

to see that the equations for the global processes are recovered by setting d = 1

(therefore d̃ = 1) for the BD process, and r = 1 (therefore r̃ = 1) for the DB process.

The predictions of Eqs. (2.30) and (2.32) are compared with simulation results in

Fig. 2.9. The conditional fixation times before the approximation are shown as thick

continuous lines. Note that since we set d = r−1, birth-death and death-birth processes

are indistinguishable in the scale of the graph. The dashed lines represent the weak

selection approximation. Note that d̃ = r̃−1 +O[(r− 1)2], and that the last term of the

denominator is different for birth-death and death-birth processes. Therefore, the two

update choices do not completely overlap for local and dual selection. For the global

processes the approximation recovers Eqs. (2.30), as expected.
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Figure 2.9: Fixation time as a function of fitness for the different update
processes. Thick continuous lines represent the fixation times prior to the approximation
[Eqs. (2.30)]. We use d = 1/r and so db and bd processes overlap. Dashed lines show
the weak selection approximation for birth-death processes, and dash-dotted lines for the
death-birth processes [Eqs. (2.32)]. The traditional complete-graph approach overlaps
with the global processes. Simulation results are plotted with circles for birth-death
processes, and triangles for death-birth processes, and were obtained using the parallel-
shear flow, with Da = 0.01, R = 0.1 and N = 100.

2.6 Appendix C: Description of the flows

To test our analytic predictions we have used a selection of different flows, as summarised

in Fig. 2.2. These are all planar flows and, as a consequence, an explicit time dependence

is necessary to allow for chaotic motion. Each flow is defined by a flow field, vx(x, y, t)

and vy(x, y, t). We treat the individuals in the population as Lagrangian particles; their

motion is governed by ẋ = vx(x, y, t), ẏ = vy(x, y, t). We write v = (vx, vy)

All flows we have used are periodic v(x, y, t+ T ) = v(x, y, t), where T is the period

(we use T = 1 throughout). The only exception is the parallel-shear flow, which

additionally involves a phase, randomly chosen at the beginning of each half period.

Details of the flows can be found in the literature [34, 35, 48–50]. We briefly describe

their main features below.

2.6.1 Parallel-Shear

In this flow, particles move in the domain 0 ≤ x, y ≤ 1, with periodic boundary

conditions.

For the first half of the period (nT ≤ t < nT +T/2), the particles move horizontally,
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with a velocity which depends on their vertical position. Specifically

vx(x, y, t) = Vmax sin (2πyt + φ) ,

vy(x, y, t) = 0. (2.33)

The constant pre-factor Vmax sets the overall magnitude of the flow. We use Vmax = 1.4.

The phase φ is drawn randomly from the interval [0, 2π) at the beginning of each half

period.

During the second half of each period [nT + T/2 ≤ t < (n + 1)T ], the particles

move vertically, with a velocity that depends on their horizontal position,

vx(x, y, t) = 0,

vy(x, y, t) = Vmax sin (2πxt + φ) . (2.34)

Within each half period the velocity of each particle is constant. In the first half of

each period numerical integration can therefore be carried out using

x(t+ ∆t) = x(t) + ∆t Vmax sin [2πyt + φ] , (2.35)

and in a similar way for the second half of each period.

The time step ∆t does not need to be kept small, so long as the end of the

half-period is not reached. In practice it is convenient to first schedule the times at

which evolutionary events occur (they occur at fixed intervals, calculated based on the

Damköhler number). At any one time, the time step ∆t can then be chosen as the

remaining time until the next evolutionary event or the end of the next half-period

(whichever is shorter). This generates a very efficient numerical integration scheme.

2.6.2 Double-Gyre

The spatial domain is now given by 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1. No particular boundary

conditions apply, as particles cannot leave the domain.

A clock-wise rotating gyre is centred on (0.5, 0.5), and a counter-clock-wise rotating

gyre on (1.5, 0.5). Each gyre rotates the particles in a spiral motion. In the absence of

further external driving there is no flow of particles across the line x = 1. However,

if the transport barrier between the two gyres is driven back and forth, particles can

move between the two spirals.
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The flow field is given by

vx(x, y, t) = πM sin
[
πa(t)x2 + πb(t)x

]
cos (πy) ,

vy(x, y, t) = πM [2a(t)x+ b(t)] cos
[
πa(t)x2 + πb(t)x

]
sin (πy) , (2.36)

where

a(t) = u0 sin 2πt
T
,

b(t) = 1− 2u0 sin 2πt
T
. (2.37)

The parameter M sets the amplitude of the flow around the gyres, and u0 controls

the movement of the barrier between the two gyres. We use M = 1.4 and u0 = 0.4.

We simulate the flow using an Euler scheme, with time step ∆t = 0.001.

2.6.3 Blinking Vortex-Vortex

The blinking vortex-vortex flow describes motion around two vortices which are ‘active’

during alternating times. For the first half of the period the particles rotate around a

vortex located at xc = −b, and for the second half of the period the centre of rotation

takes the position xc = b. In the simulations we use b = 0.25.

We first describe the motion of particles around a vortex with fixed centre at (xc, 0).

In this case the equations of motion are[35]

vx(x, y) = − Γy
x̃+ y2

vy(x, y) = Γx̃
x̃2 + y2 , (2.38)

where x̃(t) = x(t)− xc. This motion keeps the distance from the centre of the vortex

constant (r2 ≡ x̃2 + y2 = const), and results in an angular velocity ω = Γ/r2 which is

constant for each particle, but which depends on the distance from the vortex centre.

The tangential component of the velocity v is proportional to 1/r. The constant Γ sets

the scale of the flow velocity.

During each half-period (i.e., during rotations about a fixed vortex) the radial dis-

tance from the vortex centre remains constant. The motion is implemented conveniently

through application of a rotation matrix, x̃(t+ ∆t)

y(t+ ∆t)

 =

 cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)


 x̃(t)

y(t)

 , (2.39)
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where

∆θ = Γ
x̃2(t) + y2(t)∆t, (2.40)

is the rotation angle in time the interval ∆t. As in the parallel-shear flow, there is no

requirement to use a small time step ∆t; it can be chosen as the time until the end of

the next half-period or the time until the next evolutionary event (whichever comes

sooner).

Depending on the choice of parameters and the initial conditions, the blinking

vortex-vortex flow can either be chaotic or non-chaotic:

Chaotic For Γ & Γc = 0.14 the flow is chaotic[34]. The simulations for the chaotic

case shown in the main text correspond to Γ ≈ 0.2.

Non-Chaotic If Γ is below the critical value, the flow is not chaotic. Instead domains

separated by transport barriers are obtained[35]. The flow can then not be expected to

be well mixing. Simulations shown in the main text correspond to Γ ≈ 0.01.

Initially we place all particles in the region −0.24 ≤ x, y ≤ 0.24. The domain

in which the particles move is in principle not bounded. However, at long times all

particles in our simulations are found within a fixed bounded area.

2.6.4 Blinking Vortex-Sink

This flow is very similar to the blinking vortex-vortex flow, but one of the vortices is

replaced by a sink. When the sink is active particles are attracted towards its centre,

and there is no angular motion. Specifically, in polar coordinates this is of the form

θ̇ = 0,

ṙ = m

2πr , (2.41)

where r is the distance from the sink. This translates into d
dt
r2 = m/π.

The position of the particles is updated in the same way as in the blinking vortex-

vortex flow for the first half of the period. When the sink is active (second half of each

period), the numerical scheme involves resizing the radial distance from the sink by a
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factor λ. We write x̃(t) = x(t)− xs, where xs is the location of the sink. We then have

x̃(t+ ∆t) = λx̃(t)

y(t+ ∆t) = λy(t). (2.42)

The scale factor is

λ =
√

1− ∆tm
π (x̃2(t) + y2(t)) , (2.43)

if ∆t m ≤ π [x̃2(t) + y2(t)], and λ = 0 otherwise. The time step does not necessarily

need to be small; it can be chosen in the same way as in the parallel-shear and blinking

vortex-vortex flows.

The parameter m is the ‘pull’ strength of the sink. If m is very large, every node

will be inevitably pulled to the sink during the half period in which the sink is active.

The entire population will then be concentrated at (xs, 0). For sufficiently small m,

more interesting dynamics are obtained. In our simulations we use m = 0.03 and

xs = 0.25.

As in the Blinking Vortex-Vortex flow, the domain in which the particles move is

not bounded. However, we find that the stationary density is restricted to a finite area.
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[26] Károlyi, György et al. (2000), ‘Chaotic flow: The physics of species coexistence’, Proceed-
ings of the National Academy of Sciences 97 (25):13661–13665, doi: 10.1073/pnas.
240242797.
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Chapter 3. Motion, fixation probability and the choice of an evolutionary process

Abstract

Different evolutionary models are known to make disparate predictions for the

success of an invading mutant in some situations. For example, some evolutionary

mechanics lead to amplification of selection in structured populations, while others

suppress it. Here, we use computer simulations to study evolutionary populations

moved by flows, and show how the speed of this motion impacts the fixation

probability of an invading mutant. Flows of different speeds interpolate between

evolutionary dynamics on fixed heterogeneous graphs and in well-stirred populations.

We find that the motion has an active role in amplifying or suppressing selection,

accomplished by fragmenting and reconnecting the interaction graph. While

increasing flow speeds suppress selection for most evolutionary models, we identify

characteristic responses to flow for the different update rules we test. We suggest

these responses as a potential aid for choosing the most suitable update rule for a

given biological system.

3.1 Introduction

Over the years, different models have been proposed to describe evolutionary dynamics;

they all describe how populations composed of members of different species change

with time. These changes occur through death and birth events, and typically involve

competition between individuals [1–3]. The models differ in the order in which these

events are implemented and how competition takes place. For example, one distin-

guishes between ‘birth-death’ and ‘death-birth’ processes, or between global and local

selection [3–5]. Even though these seem to be relatively minor details, under certain

circumstances they can lead to rather disparate outcomes [4–6]. Choosing the right

evolutionary model for a given biological system is therefore of great importance, but

it is not a simple task.

There appears to be some tendency in the literature to simply choose one model

and not argue in detail whether, for example, a birth-death or a death-birth process

is better suited for the particular application at hand. While one could argue that

most of these models are so stylised that the subtle differences between them are
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unimportant, significant differences in their predicted outcomes make it desirable to

be able to distinguish between the options. This would enable one to make a more

informed choice, and to identify the model which best captures the known behaviour

of a given biological system.

In this paper we propose that such a possibility may exist if the members of the

population are advected by an external flow. Specifically, we focus on the stochastic

dynamics of a population initially composed only of wildtype individuals and a single

invading mutant. The mutant will either be eliminated or its offspring will take over the

population. We are interested in the latter outcome, and study the rate of successful

fixation. We show that the response of the fixation probability to the flow speed can

be very different for each evolutionary process. We speculate that this may be used

to discriminate between different stylised models. In some experimental settings flow

can be controlled externally, or situations without flow can be compared to those

with fast flows. Differences in fixation probabilities have been found in static versus

stirred populations of Escherichia coli for example [7–9]. If such data is available,

systematically studying the behaviour of different computational models of evolution

in flowing populations can help to select the update mechanism which best captures

the features of the biological system at hand.

The simplest approach to modelling stochastic evolution dispenses entirely with

the notion of space and population structure, and assumes that the only relevant

factors are the frequencies with which the different types of individuals are found in the

population [1–3]. Each individual in such an unstructured population can interact with

all other individuals at all times. To further simplify matters, birth and death events

are usually coupled, so that one is immediately followed by the other; this facilitates

the mathematical analysis, as it keeps the size of the population constant [1–3].

If individuals are distributed in space, and have a limited range of interaction, the

population becomes structured. Not every individual can interact with every other

individual at all times. It is then helpful to consider the interaction graph of the

population [10–29]. Nodes of these networks represent individuals, and links between

nodes stand for potential interactions. Birth and death events take place between

neighbouring nodes, that is, pairs of individuals connected by a link. The case of an

unstructured population is recovered if links exist between any two individuals at all
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times; the interaction graph is then said to be complete.

Population structure has the potential to change the dynamics of evolutionary

processes [10–29]. For example, species that would be selected against in an unstructured

population are found to organise in clusters on networks, and in this way they can

coexist with fitter types, or even eradicate the resident species. The time it takes for a

species to reach fixation can be reduced or increased on networks. Evolution on simple

graphs has been characterised mathematically (see for instance [28–33] and references

therein), but on more complicated networks the dynamics become much harder to

describe analytically.

Further complication arises if the members of the populations are in motion. The

interaction graph then becomes dynamic, making mathematical approaches more

difficult. At the same time motion is a ubiquitous feature of biological systems, for

example due to self-propulsion of microswimmers by means of flagella [34], or advection

of bacteria in a fluid environment [35].

Common ways of implementing motion in computer models include migration; in

such models individuals move to neighbouring sites on the interaction graph [36–42].

Alternatively, adaptive networks have been considered; in these the link connecting

two individuals is re-wired to a different individual, usually with preference for links

between individuals of similar types [43–47]. For further examples see also ref. [17] and

references therein. In this work, instead, we focus on populations that are not self-

propelled, and use the type of motion one could expect in dynamic gaseous or aqueous

environments. Specifically, the motion is due to a flow of the medium in which the

population resides. The movement is not constrained by the current interaction network,

and the interaction graph itself is dynamic. Evolutionary systems with this type of

motion have been studied comparatively little; existing work includes refs. [42, 48–55].

In ref. [56] we investigated stirred populations, and presented analytical solutions for

the limit of very fast flows. Naively, one would expect that the success of a mutant

under fast stirring is the same as the one on a complete graph, a situation also referred

to as ‘well mixed’ [13–15]. However, the results of ref. [56] showed that the fixation

probability of an invading mutant approaches a different limiting value for very fast

flows.

In this paper we investigate in more detail the effect of the flow speed on the
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fixation probability of invading mutants. In particular we also focus on intermediate

and slow flows. We find that the way in which the flow affects the success of mutants

depends on the choice of the evolutionary update rules. We identify three main

contributing factors: how well connected the initial mutant is with the rest of the

population, the opportunities mutants have to organise in clustered groups, and how

long individuals remain connected for as the flow moves them in space. These factors

are influenced by the speed of the flow and, depending on the evolutionary update

rule, they can either amplify or suppress selection relative to unstructured populations.

This suggests the response of the fixation probability to flow speed as an indicator of

the underlying evolutionary process. We think this can be a useful aid for choosing the

most appropriate evolutionary model for given biological applications.

3.2 Methods

We use the same setup as ref. [56], and consider a population of fixed size N composed

of individuals of two species (wildtype and mutant). Unless specified otherwise, we

use N = 100. Individuals take positions in space within the two-dimensional domain

0 ≤ x, y < 1 with periodic boundary conditions. Particles are subject to a continuous-

time flow, moving them around in space, and to evolutionary dynamics, which change

the frequencies of the two species in the population.

The motion of the particles is simulated through the so-called parallel shear flow [57,

58]; we discuss the validity of our results for different flow fields in Sec. 3.4. The velocity

field of this flow is periodic in time, except for a random phase described below. During

the first half of each period particles are moved vertically; the speed of each individual

depends on the horizontal component of their position. During the second half of the

period individuals move horizontally, with speeds dependent on their vertical positions.

We write vx(x, y, t) and vy(x, y, t) for the velocity components of a particle at position

(x, y) at time t. Specifically, we use

vy(x, y, t) = 0, vx(x, y, t) = Vmax sin [2πy + ψ] , for t ∈ [nT, nT + T/2),

vx(x, y, t) = 0, vy(x, y, t) = Vmax sin [2πx+ ψ] , for t ∈ [nT + T/2, (n+ 1)T ),

with n = 0, 1, 2, .... The constant Vmax sets the amplitude of the flow, and T the period.

The phase ψ is drawn randomly from the interval [0, 2π) at the beginning of each
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half-period. Due to this random phase, the flow mimics chaotic motion; the trajectories

of individuals who are initially close to each other diverge over time. At long times,

the distribution of individuals moved by this flow is uniform in space [57, 58].

The evolutionary process is implemented through coupled birth and death events.

The order in which reproduction and removal take place is important, and so we

will distinguish between birth-death and death-birth processes. The evolutionary

dynamics occur on an undirected interaction graph, dynamically generated by the flow.

Specifically, we will say that one individual is a neighbour of another if they are within

a distance R of each other.

Individuals are in continuous motion, but evolutionary events occur at discrete

times, t = ∆t, 2∆t, ... in our model. Simulations are then implemented as follows:

1. At t = 0, a population of N particles is placed into the spatial domain at

designated initial positions. These define an initial interaction graph. Of these

individuals, N − 1 are wildtype and one is a mutant. The mutant is chosen

uniformly at random from the population.

2. The individuals are moved by the flow for a time interval ∆t, leading to a new

interaction graph.

3. An individual is chosen from the entire population. In the case of a birth-death

process, it is designated to reproduce; for death-birth processes it is designated

to die.

4. One of the neighbours of this individual is chosen to be replaced (birth-death) or

to reproduce (death-birth).

5. The individual chosen for death adopts the species (wildtype or mutant) of the

reproducing individual.

6. Repeat from step 2.

In each evolutionary step two individuals are chosen. They can either be picked at

random or selected proportional to fitness. For the latter case we focus on frequency-

independent selection; we set the wildtype fitness to one, and write r for the fitness of

the mutant species. Consider for example a group of nw wildtype individuals and nm

mutants. A mutant would be selected to reproduce from this group with probability

rnm/(rnm + nw), or a wildtype with probability nw/(rnm + nw). If selection is for

death we proceed similarly, but with r replaced by 1/r. In this way, mutants are less
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likely to die than wildypes if r > 1. For r < 1 the mutant species is selected against.

The simulation results shown in this paper focus on advantageous mutants; we set

r = 1.05 throughout.

Selection proportional to fitness can take place either in step 3 of the above algorithm

(when an individual is chosen from the entire population) or in step 4 (when it is

chosen from the neighbours of an individual). We refer to these cases as global and

local selection, respectively. Since we distinguish between birth-death and death-birth

processes, four combinations are possible: global birth-death (Bd), global death-birth

(Db), local birth-death (bD) and local death-birth (dB). The capital letter in these

acronyms indicates that selection dependent on fitness occurs in the respective step. In

principle, one could also consider processes in which individuals are chosen proportional

to fitness in both steps of the algorithm (BD, DB) [4, 5]. In order to be able to

disentangle the effects that the flow has on fixation probabilities due to local or global

selection, we limit the discussion in the main text to scenarios in which selection acts

either globally or locally, but not both. The BD and DB processes are discussed in

Sec. 3.7.

We illustrate the different evolutionary processes in Fig. 3.1. The upper two rows

correspond to processes in which competition takes place among the entire population

(global selection). In the lower two rows the first node is picked irrespective of fitness,

and competition takes place only among the neighbours of this node (local selection).

A step-by-step description of each of the processes can be found in the figure caption.

One important characteristic of the flow is the typical timescale over which the set

of neighbours of a given individual is renewed. More precisely, the set of neighbours of

a given individual at time t, and at a later time t+ τ , will be uncorrelated provided τ

is sufficiently large (see ref. [56], and Sec. 3.5). This renewal time is in turn determined

by the parameters Vmax, T and R; following refs. [59, 60], we use Vmax = 1.4 and T = 1

throughout, and choose an interaction radius of R = 0.11.

This choice of parameters leads to an estimate for the network renewal time of

τ ≈ 6.4 (see Sec. 3.5 for details). That is, the set of neighbours of one individual at

one time is uncorrelated from its set of neighbours approximately six and a half flow

periods earlier. It remains to specify how frequent evolutionary events are, i.e. to

define the time step ∆t in the simulation described above. We treat this as a model
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Figure 3.1: Illustration of the update rules. Each row represents one of the
different evolutionary update mechanisms. The columns indicate the different steps of
each evolutionary event. In column a) an individual is chosen from the whole population;
it can be ‘selected’ through competition by fitness (red shading), or ‘picked’ at random,
irrespective of its species (blue shading). This node is destined to either reproduce (pink
shading), or to be replaced (brown shading), as shown in column b). Column c) indicates
that one neighbour of this node is either selected (red), or picked (blue). This second
node is destined to reproduce (pink), or to be replaced (brown), shown in column d).
Column e) shows the result of the evolutionary event; the node chosen to reproduce
places an offspring in place of the node chosen to die. Each row is composed of one box
of each colour; the sequence of the colours distinguishes the different processes. From top
to bottom, the rows correspond to: (i) global birth-death process (Bd): an individual is
selected from the whole population to reproduce, and one of its neighbours is picked to
be replaced by the first individual’s offspring; (ii) global death-birth process (Db): an
individual is selected to die from the whole population, and one of its neighbours is picked
to place an offspring in its place; (iii) local birth-death process (bD): an individual is
picked from the whole population to reproduce, and one of its neighbours is selected to
die; (iv) local death-birth process (dB): an individual is picked from the whole population
to die, and one of its neighbours is selected to reproduce.

parameter, and use S = N∆t/T to quantify the number of generations elapsed in one

flow period. Thus, S indicates the speed of the flow relative to that of evolution. For

small S, individuals move relatively little between evolutionary events (‘slow flow’).

Large values of S describe fast flows. From here on, we will refer to S as the speed of

the flow, and investigate the outcome of evolution for different choices of this parameter.

The flow speed S is understood throughout as relative to the rate of evolutionary
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events. We note that the inverse of S is related to the Damköhler number in fluid

dynamics [61–63].

3.3 Results

3.3.1 Effects of the flow speed on the fixation probability

We first address the case in which the initial coordinates of each individual are drawn

from a uniform distribution on the domain 0 ≤ x, y < 1. The initial interaction graph

is then a random geometric graph (RGG) [64].

For any non-zero flow rate (S > 0) any member of the population can eventually

interact with any other individual, even if they were not connected on the initial

interaction graph. This is due to the mixing properties of the flow, and means that

no individual can indefinitely remain isolated from the rest of the population. As

a consequence, the final outcome of the evolutionary process is either fixation or

extinction of the mutant.

The fixation probability, φ, for a beneficial mutation is depicted in Fig. 3.2 as

a function of the flow speed, S. We show simulation results for the four different

evolutionary processes bD, dB, Bd, and Db. Each data point is obtained from an

ensemble of realisations. For comparison, we also show the fixation probability on

a complete graph, φCG. By definition, φCG is independent of the flow speed, as all

individuals interact with all others at all times. On complete graphs the fixation

probability for global and local selection processes differ by a small amount [5].

Several interesting features can be observed in Fig. 3.2: For slow flows, the order of

reproduction and removal is found to have a strong effect on the fixation probability,

and it is less relevant whether selection takes place in the first or the second step of

each evolutionary event. For the local and global death-birth processes (dB, Db) the

fixation probability is lower than on a complete graph, as shown by the green and blue

lines in Fig. 3.2. Conversely, both Bd and bD show a higher fixation probability than

on complete graphs (red and purple lines).

In the limit of fast flows, however, the outcome of evolution is mostly determined

by whether selection is global or local, and not by the order of the reproduction and

removal events (birth-death vs. death-birth). Specifically, when selection acts locally
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Figure 3.2: Fixation probability as a function of the flow speed for unres-
tricted random initial positions (random geometric graphs, RGGs). For the
global death-birth process, increasing the flow speed increases the fixation probability.
The reverse is found for the remaining three processes. Circle markers show fixation
probabilities in the fast-flow limit; square markers are results for fixed connected random
geometric graphs (CRGGs); see text for further details. The fixation probabilities on a
complete graph are shown for reference.

the fixation probability of the mutant is lower than on a complete graph (purple and

blue lines). In contrast, when selection is global the fixation probability is the same as

on a complete graph (red and green lines).

These observations indicate unique responses of the fixation probability to the flow

speed for the different processes. For the Db process (continuous green line in Fig. 3.2)

the mutant’s probability of success increases with the speed of the flow. For the

Bd process (continuous red line), the fixation probability decreases with increased flow

speed, but is always greater than or equal to the one on a complete graph, φ ≥ φCG. In

contrast, the fixation probability for a dB process (dashed blue line) is always smaller

than φCG. Finally, for the bD process (dashed purple line) the fixation probability is

higher than on a complete graph when the flow is very slow, but decreases at higher

flow speeds and eventually becomes lower than on the complete graph. The bD process

is the only case in which we observe a transition from amplification to suppression of

selection (relative to the complete graph) as the flow speed is increased.

In order to gain some insight into these observations, we first describe the dynamics
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in the limit of fast flows, summarising the results of ref. [56]. Then we discuss the no-

flow limit, and subsequently the transition between the two extremes, at intermediate

flow speeds.

Fast-flow limit: evolution of well-stirred populations

When the flow is sufficiently fast the probability that any two particles are neighbours

at the time of an evolutionary event is the same, irrespective of whether they were

neighbours at the previous event or not [56]. In global processes selection takes

place when the first individual is chosen, i.e., competition acts amongst the whole

population. Then, a second individual is picked at random from the neighbours of this

first individual. Since any individual is equally likely to be neighbours of the individual

selected in the initial step, the second, random pick, is equivalent to a random pick

from the entire population. Therefore, in the limit of fast flows the fixation probability

of global processes coincides with the one on complete graphs, as observed in Fig. 3.2.

For local processes, on the other hand, in each evolutionary event the first individual

is chosen at random from the entire population, irrespective of fitness. Competition

then takes place between the neighbours of this individual. Although all members of

the population are equally likely to be part of this neighbourhood, at any one time

the group of neighbours is a random subset of the population. This subset may not

reflect the composition of the population as a whole, which can be shown to lead to

suppression of selection [56]. We briefly illustrate this for the case of a very small

interaction radius; the majority of individuals then have at most one neighbour at any

given time. Since this neighbour is the only contestant in local selection, fitness is

irrelevant. Therefore, as the interaction radius becomes small the fixation probability

of the mutant approaches the limit of neutral selection. When the interaction radius is

large, however, it is more likely that the group of neighbours is large as well, and that

population-wide frequencies are accurately represented. Therefore, the suppression

effect relative to the complete graph is reduced. If the interaction range is so large

that all individuals are connected with all other individuals at all times, a complete

interaction graph is recovered.

Analytical results can be obtained for all four processes in the limit of very fast

flows [56]. Predictions from this theoretical approach are shown as filled circles on the
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right edge of Fig. 3.2.

No-flow limit: evolution on static heterogeneous graphs

On the left-hand side of Fig. 3.2 the flow is so slow that the evolutionary dynamics

effectively take place on fixed graphs. Evolutionary processes on static graphs have

been widely discussed in the literature (see e.g. [15, 23, 29] and references therein).

The focus is often on characterizing specific graphs or graph structures, which either

amplify or suppress selection [65–67]. Notably, the authors of ref. [6] report that most

undirected graphs amplify selection for birth-death processes, but suppress selection

for death-birth processes. However, these findings are only given for relatively small

networks, and only for processes in which selection acts in the reproduction step

(Bd and dB).

In order to obtain a more complete picture, we measured in simulations the fixation

probability of a single mutant on networks of different sizes, averaged over different static

heterogeneous graphs. Each graph is generated by placing individuals at random in the

spatial domain (see Sec. 3.2), resulting in a random geometric interaction graph. It is

possible that a graph generated in this way consists of several disconnected components.

In the absence of flow, the mutant then cannot reach fixation. We therefore restrict

simulations to graphs with a single connected component and henceforth use the term

connected random geometric graphs (CRGGs). We present results for the different

evolutionary processes as a function of the size of the graph in Fig. 3.3.

The data shows that the average fixation probability of a single mutant on CRGGs is

higher than on the complete graph for birth-death processes, φ ≥ φCG. For death-birth

processes, on the other hand, φ ≤ φCG. This is in line with the results reported in ref. [6]

for small graphs. The data in Fig. 3.3 confirms that the amplification of selection (for

birth-death processes) or suppression (for death-birth processes) is present regardless

of the size of the network, if an average over many graphs is taken. The rightmost data

points in Fig. 3.3 correspond to a population of the same size as the one in Fig. 3.2.

Intuition regarding the amplification or suppression of selection on static networks

can be gained by studying the connectivity of the initial mutant (see refs. [20, 68–

71]). For death-birth processes, these studies find that the success of an advantageous

mutant increases with its degree; for birth-death processes, its success decreases with
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Figure 3.3: Fixed heterogeneous graphs amplify selection for birth-death
processes and suppress it for death-birth processes. The figure shows the fixation
probability of an invading mutant (φ), averaged over static CRGGs. Data is shown
relative to the corresponding fixation probability on a complete graph (φCG). Regardless
of the population size, selection is amplified for Bd and bD processes, and suppressed
for Db and dB processes.

connectivity. This can be understood in the following way: In each evolutionary event

two individuals are chosen, the first from the entire population, and the second as

a neighbour of the first. The degree of an individual does not affect its chances of

being chosen in the first step, irrespective of whether selection acts in this step or not.

However, the probability of being neighbours with the initial individual is higher for

well connected individuals than for individuals with a low degree. Under birth-death

processes, higher connectivity of the mutant therefore results in a higher chance of

being replaced. For death-birth processes it results in a higher chance of reproduction.

In the literature these predictions have been tested for Bd and dB processes [20,

68–71]. In the lower panel of Fig. 3.4 we verify that the argument extends to all four

evolutionary update rules defined above. We show, for CRGGs, the fixation probability

of a mutant, φk, as a function of its degree, k. For the global and local death-birth

processes (Db, dB) the mutant’s success is lower than on a complete graph when the

mutant is sparsely connected, but larger if it is highly connected; the reverse is found

for global and local birth-death processes (Bd, bD). These observations are consistent

with the above reasoning.

In our model, the initial mutant is chosen uniformly at random from the members
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Figure 3.4: Significance of the degree of the initial mutant. The upper panel
shows the degree distribution, pk, of the ensemble of connected random geometric graphs
(CRGGs), obtained by placing N = 100 individuals into the spatial domain 0 ≤ x, y ≤ 1
with uniform distribution, and using an interaction radius R = 0.11 and periodic boundary
conditions. The lower panel shows the fixation probability obtained from simulating the
evolutionary process on these graphs, as a function of the degree of the initial mutant.
For the two death-birth processes the mutant’s success is below the one on a complete
graph if its degree is low, and above φCG at high connectivity. The reverse is found for
the two birth-death processes. Data points have been connected as a visual guide.

of the population. The probability that it has degree k is thus determined by the

degree distribution of CRGGs. We write pk for the probability of a random node to

have degree k in such a graph, and show the degree distribution for networks of size

N = 100 in the upper panel of Fig. 3.4 for illustration. The overall probability of

fixation of a single mutant is then φ = ∑
k pkφk. Fixation probabilities obtained in

this way are shown as square markers in Fig. 3.2 and 3.3. The results reproduce the

amplification and suppression of selection (for birth-death or death-birth processes,

respectively) in the limit of slow flows. We attribute quantitative differences between

the markers and lines in Fig. 3.2 to effects of the non-zero flow and to the difference

in initial conditions; the data shown as lines is obtained from simulations of slowly

flowing populations in which the initial graph may consist of more than one component.

In Sec. 3.3.2 we will discuss the difference due to initial positions in more detail.
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Transition between fast-flow and no-flow limits

As seen above, the outcome of evolution in rapidly stirred populations is very different

to that on static interaction graphs. With fast flows, local competition leads to

suppression of selection; on the other hand, the success of a mutant is the same as on a

complete graph if selection is global. When there is no flow, the order of the birth and

death events in the evolutionary process is crucial. In this case, selection is amplified

for birth-death processes and suppressed for death-birth processes. At intermediate

flow speeds, a crossover between these two regimes is seen. We will now discuss this

transition in more detail.

On fixed heterogeneous graphs, the degree of the initial mutant determines whether

its chances of success are greater or smaller than on a complete graph. In the presence

of flow the interaction network constantly changes, and the number of neighbours

of any one individual thus varies over time. Classifying a member of the population

as highly or poorly connected is then at best possible over limited time windows. If

the flow is slow relative to evolution, many evolutionary events occur in such a time

window, and the evolutionary dynamics can conclude before the degrees of nodes

undergo significant changes. Therefore the amplification or suppression effect due to

the degree of the mutant can still be observed. For faster flows, however, the interaction

network changes so quickly that there is no clearly defined notion of a degree of an

individual on the time scale of evolution. The amplification or suppression effect set by

the initial heterogeneous network is then washed out.

At very fast flow speeds, the set of neighbours of the individual chosen in the first

step of an evolutionary update effectively becomes a group sampled at random from

the entire population. Therefore, suppression of selection sets in for local processes.

The fixation probability of global processes, on the other hand, approaches the one on

a complete graph, as described previously.

The main effects leading to the transition between the no-flow and the fast-flow

limits are thus the increasing variability (over time) of the degree of individuals, and

the random sampling of the group of individuals taking part in evolutionary events.

As a result of these two mechanisms, in Fig. 3.2 we see a smooth transition between

the two limits. The different responses of the fixation probability to the speed are a

consequence of the limiting behaviours for very slow and very fast flows.
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Although it is not immediately transparent from the results in Fig. 3.2, the flow has

further effects on the evolutionary process. For example, it removes the influence of the

initial positions of the individuals in space. Another important feature, particularly at

intermediate flow speeds, is that the evolutionary process takes place on slowly changing

heterogeneous graphs. The dynamic network constantly splits into disconnected

components, which later merge and form new components. This fragmentation promotes

the formation of ‘clusters’ — groups of nodes which are of the same species. This gives

rise to further amplification or suppression effects, depending on the details of the

evolutionary mechanics. In the following section, we explore these effects further.

3.3.2 Effects of the initial positions of individuals

Our model describes a population in constant motion. It is then natural to assume

that the positions of the individuals at the time the initial mutation occurs is drawn

from the stationary distribution of the flow. For the periodic parallel shear flow this is

the uniform distribution, used as an initial condition in the previous section. However,

exploring different starting positions allows us to gain further insight into the effect of

the flow on fixation probabilities.

Connected random geometric graphs (CRGGs)

The data shown as lines in Fig. 3.2 was obtained from simulations with random initial

positions (RGGs) and non-vanishing flows. For this setup the interaction graph may

not be connected, but fixation or extinction will still occur, provided there is non-zero

flow. In order to explore the no-flow limit, in Figs. 3.3 and 3.4 we focused on static

heterogeneous graphs instead; studying fixation in the strict absence of flow only makes

sense when the interaction graph consists of one single connected component, and so we

restricted the discussion to connected random geometric graphs (CRGGs). As a result,

comparison with the data in Fig. 3.2 is difficult; in particular, we note the quantitative

differences between the square markers, obtained from static connected graphs, and

the limiting values of the data shown as lines in Fig. 3.2, obtained from slowly moving

populations started from RGGs.

For comparison, we show data obtained from mobile populations, but started on
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Figure 3.5: Comparison of fixation probability for simulations started from
unrestricted and connected random geometric graphs (RGGs and CRGGs,
respectively). The fixation probability as a function of the flow speed is shown as
thick lines for simulations started on connected graphs; thin lines are for unrestricted
initial positions (some of this data is also shown in Fig. 3.2). Square markers indicate
the fixation probabilities on static CRGGs; see text for details. The fixation probability
on complete graphs is shown for reference. A minimum of φ is found for the Db process;
maxima are discernible for Bd and bD when the dynamics are started from connected
graphs. The effect of amplification/suppression of selection at slow flow speeds is more
pronounced for simulations initialized from RGGs than from CRGGs.

CRGGs, in Fig. 3.5. The limiting values of the fixation probabilities for very slow flows

(end of the tick lines on the left-hand side of the figure) now agree quantitatively with

those obtained from static CRGGs (square markers).

The simulation data from Fig. 3.2, from simulations with unrestricted random initial

positions, is also shown in Fig. 3.5 (thin lines). If the flow is sufficiently fast, initial

conditions are immaterial. On the contrary, for slow flows the fixation probability,

φ, for simulations started from unrestricted random graphs is different from that for

connected initial conditions. For birth-death processes, φ is greater for the unrestricted

case than for the connected one. The opposite is observed for death-birth processes.

This indicates that the initial condition can have a significant effect on the outcome

when then flow is slow.

As briefly mentioned before, the fragmented nature of the unrestricted setup can

isolate groups of nodes from the rest of the population. As the evolutionary dynamics

proceed, this promotes the formation of clusters, i.e. parts of the graph in which all
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Figure 3.6: Fragmented initialization promotes the formation of clusters. The
main panel shows the average proportion of active links as the evolutionary dynamics
proceed. Thick lines correspond to simulations started from connected graphs (CRGGs);
thin dotted lines to simulations initialized from unrestricted random positions (RGGs).
The fraction of active links is lower for RGGs, regardless of the evolutionary process.
Inset: Fixation probability of the mutant species, once there are i mutants in the
population. When mutants are a minority, a small increase in their frequency greatly
increases their fixation probability. Conversely, reducing their numbers when they are a
majority has only minor effects on their chances of success. Simulations in the inset are
initialized from CRGGs.

individuals are of the same species. The degree of clustering can be quantified through

the fraction of active links in the network, that is, the proportion of links between

mutants and wildtypes among all links in the graph, Lact/Ltot. A small fraction of

active links is an indicator of clustering. We show measurements of the fraction of

active links in Fig. 3.6 for both unrestricted and restricted random initial conditions

(thin dotted lines and thick continuous lines, respectively). The data indicates that

the fraction of active links is significantly larger when simulations are initialised on

CRGGs than when started on RGGs.

The amplification or suppression of selection (for birth-death and death-birth

processes, respectively) can then be supported by a similar argument to the one

presented for the degree of the initial mutant. A smaller number of active links has the

same effect as poor connectivity of the initial mutant; it does not affect the probability

that the individual chosen in the first step of the evolutionary process is a mutant or a

wildtype, but it reduces the probability that the individual chosen in the second step
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is of the opposite species (see also Sec. 3.6).

In the early stages of the evolutionary process mutants are a minority, and are

therefore less likely to be chosen in the initial step. A large number of active links then

increases the chances that the neighbour of the initial individual is a mutant. Under

birth-death processes this means that mutants are more likely to die; for death-birth

processes they have more opportunities to reproduce. Therefore, a connected initial

configuration (CRGGs), leading to a larger fraction of active links than arbitrary

RGGs, reduces the fixation probability of a mutant under birth-death processes, and

increases it for death-birth processes. This is in line with the results on the left-hand

side of Fig. 3.5; the fixation probabilities for RGGs (dotted lines) are higher than their

counterparts on CRGGs for birth-death processes (red and purple lines), but lower for

death-birth processes (green and blue lines).

This argument is only valid when mutants are less abundant than wildtypes. The

effect is reversed at later stages of the evolutionary process (if mutants become a

majority). However, the results presented in Fig. 3.5 suggest that there is a net

advantage for the mutant in having fewer active links, for birth-death processes, or in

having increased inter-species connectivity, for death-birth mechanics. The inset in

Fig. 3.6 helps to understand this further. It shows the conditional fixation probability

of the mutant species, given that a state with i mutants has been reached. The

shape of the curves indicates that increasing the number of mutants in the population

has stronger repercussions on the fixation probability when mutants are a minority

(i/N ≤ 0.5) than when they are the majority (i/N ≥ 0.5). For death-birth processes,

the selective effect due to increased active links drives the population composition to

states with approximately equal frequencies of the two species. However, the mutants

have more to gain (in terms of fixation probability) when their numbers are small than

what they may lose when they are abundant. For birth-death processes, on the other

hand, a large number active links acts in the opposite way; it hinders the spread of the

mutant species when they are a minority and encourages it once they are abundant.

Since more is lost in the early invasion than what can be gained at later stages, the

overall fixation probability is lower than when there are fewer active links. The net

effect of fragmentation (i.e., a reduced number of active links) is therefore amplification

of selection for birth-death processes, and suppression for death-birth update rules.

105



Chapter 3. Motion, fixation probability and the choice of an evolutionary process

The amplification/suppression effect caused by the fragmented nature of the network

can also be noticed at intermediate flow speeds. In this regime, the flow is sufficiently

fast to disrupt the initial network structure before the evolutionary process reaches

its conclusion (fixation or extinction of the mutant); disconnected components then

develop. At the same time the flow is also slow enough to allow the formation of

organised clusters of mutants and wildtypes through the evolutionary dynamics. Indeed,

for simulations started on connected graphs a minimum in the fixation probability

as a function of the flow speed is discernible for the Db process (thick green line in

Fig. 3.5), and we also notice a shallow maximum for the Bd and bD processes (thick

red and purple lines, respectively). The fragmentation from an initially connected

network increases the fixation probability for birth-death processes and decreases it

for death-birth processes. Movement of the population, and the resulting mixing

between evolutionary events counteracts this amplification or suppression, driving

fixation probabilities to their fast-flow limits. The balance of these two effects leads to

the extrema in Fig. 3.5.

Square lattice

Regular lattices are particularly convenient for the study of fixation probabilities. The

nodes are distributed equidistantly in space, and they all have the same number of

neighbours. This means that analytical results can be obtained in the absence of flows.

For example, the isothermal theorem [28] applies; the fixation probabilities of the global

birth-death and death-processes are the same as those for complete graphs; only small

deviations from φCG are expected for local-selection processes [5].

In order to relate the success of mutants in populations advected by flows to these

benchmark results, we show the outcome of simulations in which individuals are initially

placed on the nodes of a regular lattice in Fig. 3.7. Broadly, three different regimes

can be distinguished:

Quasi-isothermal regime. On the left-hand side of Fig. 3.7 (slow flows) fixation

probabilities for all processes are approximately the same as on complete graphs. This

is to be expected; in the limit of slow flows the evolutionary process concludes before

the lattice structure is modified. The interaction network remains regular and, in line
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Figure 3.7: Fixation probability at different flow speeds for simulations star-
ted from a square lattice. For the global death-birth process a minimum of fixation
probability is found at intermediate flow speeds; conversely, the global birth-death process
shows a maximum. For the local processes no extrema are found; instead varying the
flow speed interpolates monotonously between the behaviour on fixed lattices and the
limit of fast flows.

with the isothermal theorem, the fixation probability for global processes (continuous

lines) is the one known from complete graphs; results for local processes (dashed lines)

only differ slightly from φCG.

With the periodic parallel shear flow, this agreement extends to slow, but non-

vanishing flows. As described in Sec. 3.2, during the first half of each period the

flow moves the particles only vertically, with velocities dependent on their horizontal

position. This means that some elements of the initial lattice remain intact; for example

initial ‘columns’ of individuals (those with the same horizontal coordinate) move jointly.

There is then only limited variation in the degree of the nodes in the network, and

the interaction graph remains nearly regular. If fixation or extinction occurs before

the flow disrupts this quasi-isothermal structure, the predictions of the isothermal

theorem remain a good approximation. The flow speed above which this is no longer

the case can be estimated from a comparison of the the time until the lattice structure

is disrupted and the time-to-fixation; see Sec. 3.5 for further details.

Intermediate regime. At intermediate flow speeds the fixation probability for the

Bd process exhibits a maximum; a minimum is found for the Db process. These
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Chapter 3. Motion, fixation probability and the choice of an evolutionary process

features can be related to the amplification or suppression effects on heterogeneous

graphs, discussed in the previous sections. For intermediate flow speeds, the individuals’

motion is fast enough to distort the initial lattice structure before the evolutionary

process concludes. On the other hand the flow is also sufficiently slow so that evolution

has time to organise in clusters on the heterogeneous interaction network. Effectively

evolution takes place on a slowly moving heterogeneous graph. This heterogeneity,

in conjunction with the clustering of species, leads to amplification of selection for

birth-death processes and suppression for death-birth processes. When selection is local

this merely accelerates or delays the approach to the behaviour on complete graphs.

When selection is global, however, the minimum (for Db) and maximum (for Bd) are

generated. A rough estimate for the flow speed at which the extrema are seen can be

obtained by comparing the time-to-fixation of the mutant species with the network

renewal time; details can be found in Sec. 3.5.

Fast flow. In this regime the positions of individuals in space at each evolutionary

event are essentially random, and the set of neighbours of any one particle is uncorrelated

from an evolutionary event to the next one. The population is then ‘well-stirred’, and

the analytical predictions from ref. [56] apply.

3.4 Discussion

We studied evolutionary dynamics in populations immersed in flows. In computer

simulations, we measured the effect that the speed of the motion has on the success

of an invading mutant, and found that different evolutionary processes show distinct

responses of the fixation probability to the flow speed. Our results highlight the

importance of including motion in the modelling of evolutionary dynamics. Just as

population structure can generate amplification or suppression of selection, we find that

the flow can act against or in favour of mutant invasion. While the models we study are

stylised, we can identify general emerging principles. For instance, for the majority of

evolutionary processes we observe a decrease in fixation probability when populations

are in motion. This observation could be useful, for example, in industries where

mutations are detrimental for the desired product but beneficial to the mutant, such as

in microalgae, bacteria, fungi and yeast, relevant for the production of biodiesel [72–75].
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Another example are the features we found to dominate fixation probability in the

limits of very slow or very fast flows. If populations are mostly static in an experiment,

our results indicate that whether selection acts locally or globally is a more important

factor than the order of birth and death events. If an experiment involves populations

in motion, on the other hand, careful consideration has to be given whether to use a

birth-death or a death-birth process as a model, and it is less important in what step

of evolutionary events competition takes place.

We hypothesise that the characteristic responses to flow may be used as an aid for

choosing the most adequate update mechanism to model a given biological system.

Despite the fact that direct measurements of the success of a specific mutation are not

necessarily easy to perform, there is experimental evidence of differences in fixation

probabilities in static and in stirred populations [7–9]. In these studies, cultures of

E. coli were grown in a continuously stirred liquid medium, on Petri dishes, mixed

every 24 hours, and on static Petri dishes. The structure and cluster formation of the

cultures were found to have different dynamics under the different mixing conditions.

The authors of ref. [9], for example, find that the ability to adapt, as measured by

reproduction rates, is greater in the continuously-stirred case than in the case of only

occasional mixing. This suggests a lower fixation probability in the slowly moving

medium. Comparing this with our results, we speculate that a Db process might best

describe this biological system.

It is appropriate to briefly comment on the limitations of our study. For example,

we focused on the periodic parallel shear flow in our simulations. However, we note

that most features of the amplification or suppression of selection are not due to

particulars of the flow field. Instead they arise from the mixing of the population and

the heterogeneity of the interaction network. Both of these features can be expected

in most real flows, and we believe that the essence of our findings is relevant beyond

the exemplar of the shear flow. This is supported by observations in our earlier

work [56], in which we obtained analytic results for limit of fast flows and demonstrated

that these predictions are independent of many details of the flow field. Our study

is also limited to frequency-independent selection; natural extensions would include

more complex fitness functions to better model the experimental situation in ref. [8],

where frequency-dependent fitness was identified for completely static conditions. We
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are aware that our simulations are for relatively small populations; this is due to

computational costs associated with numerical experiments on a larger scale. Further

work may also be necessary to relax assumption of a fixed population size. This

may be useful to explore the effects of demographic stochasticity. On the other hand,

dilution techniques or resource-limited environments can be used in experiments to keep

the population approximately constant without significantly modifying the mutants’

chances of success [76].

Recent advances in technology make direct measurements of the fixation probability

of a specific mutation feasible [77]. We believe that this, together with computational

studies of different evolutionary models in varying conditions, can open up promising

routes to more informed choices of evolutionary mechanics for systems in evolutionary

biology.
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3.5 Appendix A: Identification of relevant timescales for

simulations started from regular lattices

In Sec. 3.3.2 of the main text we discuss the behaviour of the population when the

initial condition is a regular lattice. We identify three different regimes: fast flows,

intermediate flow speeds, and the quasi-isothermal regime. Here we discuss how these

regimes can be identified from the simulations, and show how the time scales for the

network renewal and quasi-isothermal regimes can be obtained. Simulations in this

section were all initialized from a square lattice. The flow is the periodic parallel shear

flow, with parameters as given in the main text.

3.5.1 End of quasi-isothermal regime

Fig. 3.8 shows the average number of components in the interaction graph, the average

size of each component, and the average degree in the network as a function of time.
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Figure 3.8: Component formation as flow destroys initial lattice configura-
tion. The average number of components (purple) and the average degree (green) are
plotted on the left axis; the average component size (orange) is plotted on the right axis.
The three phases of the motion described in Sec. 3.5.1 of the Supplementary Information
are shaded in different colours. The grey dotted line at tq marks the end of the phase in
which the graph is quasi-isothermal.

We observe three different phases:
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(i) At first, there is a very short interval (t . 0.05), in which there is only one

component of size N . The lattice interaction graph is still intact.

(ii) Next, for 0.05 . t . 0.55 we see an oscillating number of components; this

corresponds to a period in which movement is only vertical (for the most part).

Links between individuals with the same horizontal coordinate, i.e., within a

‘column’ of the original lattice, are not modified. The interaction graph is nearly

regular.

(iii) Following this, we see a sharp decline of the average degree. The network cannot

be considered isothermal any more, as fragmentation into heterogeneous separate

components has begun. All measured quantities approach their stationary asymp-

totic values (the figure shows an average over multiple runs). Initial positions are

washed out and the individuals take random positions in space.

We refer to the two initial stages (i) and (ii) as the ‘quasi-isothermal’ period. If

fixation (or extinction) is reached in most runs during this initial period, we expect

fixation probabilities close to the one on the complete graph. For the model parameters

in our simulations, phase (ii) ends at tq ≈ 0.55, shortly after the first half period of

the flow (T/2 = 0.5). This is marked with a dotted grey line in Fig. 3.8. We note that

the notion of the quasi-isothermal regime relies on the conservation of elements of the

regular lattice; this may not be the case in other flows, for example if the motion of

particles is not strictly vertical or horizontal. However, regardless of the type of flow, a

critical flow speed can be found, below which the evolutionary process concludes before

the lattice structure is significantly modified. Therefore, distinction of the regimes

remains broadly valid.

3.5.2 Network renewal time

The time needed for neighbourhoods of individuals to lose correlation defines the

renewal time, tr. To measure this we have looked at the persistence of links in the

network. As in ref. [56], we consider the probability that two nodes, connected at

time t0, are still connected at time t0 + t; we write q1 for this probability. Similarly

we also measure the probability that two individuals who are not connected at t0, are

neighbours at time t0 + t; we denote this probability by q0. In the stationary state (i.e.
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for large t0), the time, t, at which q0 ≈ q1 is a good estimate for the time it takes for

the network to be ‘renewed’. Results are shown in Fig. 3.9. For the parameters used

throughout this paper, we estimate the renewal time as tr ≈ 6.4; this is the first time,

t, for which both q0 and q1 are within 0.1% of their asymptotic value, q. Recalling that

the flow period is T = 1, this indicates that the set of neighbours of any one individual

in the population is uncorrelated from the set of neighbours of the same individual

approximately six and half periods earlier.
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Figure 3.9: Network-renewal time measured from the persistence of links.
Continuous lines show the probability that two nodes, connected (purple) or disconnected
(green) at t0 are still connected/disconnected at time t0 + t. The dashed grey line shows
the asymptotic value; the time needed for both probabilities (q1 and q0) to reach this
value is the time it takes to renew the network. Both quantities are within 0.1% of their
asymptotic value for the first time at tr ≈ 6.4, marked by a vertical dash-dotted grey
line in the inset.

3.5.3 Conversion into characteristic flow speeds

The times tq and tr can be used to obtain estimates of the characteristic flow speeds

separating the different regimes of dynamics described in the main text. These estimates

are obtained by comparing tq and tr to the time-to-fixation for different flow speeds, S.

This is shown in Fig. 3.10, where we plot the the time, t1, required for a single

mutant to reach fixation. Data is shown as a function of S. The network renewal time

tr is marked with a dash-dotted line on the vertical axis of the main panel, and tq is

marked with a dotted line on the vertical axis of the inset. The flow speeds for which

t1 = tq and t1 = tr define flow speeds Sq and Sr, respectively. Due to differences in

the mean fixation times, we note that the estimates for Sq and Sr vary between the
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Figure 3.10: Identification of time scales and flow speeds for the different
evolutionary regimes. The time to mutant fixation is plotted for the different evolu-
tionary processes as a function of S. The flow speed at which the quasi-isothermal regime
ends (Sq) is identified as the speed at which the mean time to fixation coincides with
the time needed to significantly disrupt the interaction network, obtained in Fig. 3.8.
Similarly, Sr is the flow speed at which the mean fixation time agrees with the network
renewal time, obtained in Fig. 3.9.

different evolutionary update rules.

These flow speeds are shown in the context of the fixation probability at different

flow speeds in Fig. 3.11. As expected, the Sq (grey dotted lines) marks the end of the

quasi-isothermal regime. For flow speeds S < Sq the mean time to fixation is shorter

than the time tq it takes the flow to significantly disrupt the initial lattice. This is the

quasi-isothermal regime. For S > Sq fixation is usually reached when the lattice has

been significantly distorted.

The grey dash-dotted lines in Fig. 3.11 correspond to Sr. The location of the extrema

of the fixation probability for Bd and Db processes are found at flow speeds of the same

order of magnitude as Sr. Similar observations were made for the time-to-consensus in

a voter model in [60].
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Figure 3.11: Identification of time scales and flow speeds for the different
evolutionary regimes. Fixation probability at different flow speeds for simulations
started from a square lattice are shown. Sq roughly corresponds to the speed marking
the end of the quasi-isothermal regime; Sr is found to be of the same order of magnitude
as the speed at the extrema of fixation probability.

3.6 Appendix B: Relevance of the number of active

links

The amplification or suppression of selection, observed when comparing the simulations

initialized from connected and unrestricted graphs, can be understood using an argument

analogous to the one in ref. [68]. The number of active links does not change the

probability with which a node is picked in the initial step of an evolutionary event, but

it does have an effect on the choice of the second individual.

Wheel graphs are convenient to illustrate this. They consist of a central node (hub),

connected to N − 1 nodes organized in a circle around it (leaves), where N is the

total size of the graph. The leaves are only connected to the hub and to their nearest

neighbours on the rim of the wheel (see Fig. 3.12 A). If two mutants are placed on a

graph of this type, their location affects the number of active links (Lact), even though

the total population size, the number of mutants and the degree of either mutants or

wildtypes in the population remain unchanged. This is shown in Fig. 3.12 B and C.
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Figure 3.12: Wheel graphs. A) A sample wheel graph of size 10; B) A portion of
a wheel graph with two mutants on adjacent leaves, with Lact = 4; C) A portion of a
wheel graph with two mutants on non-adjacent leaves, with Lact = 6. Active links are
marked orange. For B and C, N − 6 wildtype nodes are not shown.

When the two mutants are neighbours (B), the network has 4 active links. If they

are not neighbours (C), Lact = 6. To be able to have both settings one needs N ≥ 5.

In the two cases, both mutants have degree 3, and there are N − 3 wildtypes with

degree 3, and one with degree N − 1. The probability that a mutant is replaced by a

wildtype, however, is not the same for the two cases.

To see this, we focus on the case of neutral selection. We write pm,w for the

probability that, in a single evolutionary event, a mutant is chosen first and a wildtype

second. Similarly pw,m is the probability that a wildtype is chosen first and a mutant

second. We then look at the ratio Q = pm,w/pw,m, to determine which one of these is

more likely.

The probability that the individual picked in the first step is a mutant is pm = 2/N ;

for a wildtype, pw = (N − 2)/N . This is the case in both configurations, B and C in

Fig. 3.12. For configuration B we then have:

pBm,w = 2
N

[1
2

(2
3 + 2

3

)]
= 4

3N ,

pBw,m = N − 2
N

[ 1
N − 2

( 2
N − 1 + 21

3

)]
= 2
N

N + 2
3(N − 1) .

From this we find

QB =
4

3N
2
N

N+2
3(N−1)

= 2(N − 1)
N + 2 (3.1)
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For configuration C we find

pCm,w = 2
N

[1
2

(3
3 + 3

3

)]
= 2
N
,

pCw,m = N − 2
N

[ 1
N − 2

( 2
N − 1 + 41

3

)]
= 2
N

2N + 1
3(N − 1) ,

and hence

QC =
2
N

2
N

2N+1
3(N−1)

= 3(N − 1)
2N + 1 (3.2)

Comparing Eqs. (3.1) and (3.2), and assuming N ≥ 5, we find QB > QC , i.e., the

scenario with more active links (C) is more likely to result in events in which a wildtype

is picked first and a mutant second. For a death-birth process, this means that mutants

are more likely to reproduce, and for a birth-death process that they are more likely to

die. This is in line with the results obtained in Fig. 3.5 of the main text.

A further configuration on a the wheel graphs is possible, placing one of the

two mutants in the hub, which results in Lact = N . A similar analysis leads to

Q = (5N − 8)/[N(N − 1)], which is even smaller than QC . We note however that the

average degree of mutants and wildtypes in this scenario is different from those in the

other two settings.

3.7 Appendix C: Dual selection processes

As mentioned in Sec. 3.2, the most general process of the birth-death or death-birth

type is one that includes selection in both steps. In line with ref. [56], we call these

‘dual-selection’ processes; we label them BD and DB, respectively.

In this section, we present and discuss the simulation results for fixation probabilities

at different flow speeds for both dual-selection processes. These are shown in Fig. 3.13

for all configurations of initial positions studied in the main text: RGGs, CRGGs, and

the square lattice.

Naively, one could expect to be able to describe the response of the fixation

probabilities to the flow speed in dual-selection processes through a combination of

those observed for the corresponding global and local processes. That is, for BD one

would expect to see similar features as in Bd and bD, and the behaviour of DB could

be expected to show elements of that of Db and dB. For example, both BD and

DB involve local selection, and for fast flows we find that the resulting fixation
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Figure 3.13: Fixation probability at different flow speeds for dual-selection
processes. The result for the complete graph is plotted as a reference. Continuous lines
correspond to simulations initialized from CRGGs, dotted lines to unrestricted RGGs,
and dashed lines to simulations started from a lattice.

probability is lower than that of the complete graph, as is the case for both local

processes, bD and dB.

For slow flows we make the following observations:

Dual-selection birth-death process: For simulations initialized on RGGs and CRGGs,

the fixation probability of the BD process (dotted and continuous green lines in

Fig. 3.13) is above the one on complete graphs, as is the case for both Bd and bD (see

red and purple lines in Fig. 3.5).

If simulations are started from a lattice (dashed green line in Fig. 3.13), the fixation

probability of the BD process is slightly below φCG; this could also be expected, as

the isothermal theorem does not hold due to the presence of local selection; we note

that the fixation probability of the bD process is below that on a complete graph (see

purple dashed line in Fig. 3.7).

Interestingly, at slow flow speeds random initial positions act as an amplifier of

selection (compared to the complete graph) for the BD process, whereas suppression

of selection is observed for lattice initial positions.
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Dual-selection death-birth process: The fixation probability of the DB process in

simulations started on RGGs and CRGGs (dotted and continuous magenta lines in

Fig. 3.13) is well below φCG; we note that the mutant’s success for both Db and dB is

below that on a complete graph (see green and blue lines in Fig. 3.5), so it is not

surprising that the DB process shows this feature as well.

However, if simulations are started from a lattice (dashed magenta line in Fig. 3.13),

the fixation probability of the DB process is above φCG. This is different from both

the Db or dB processes, who both lead to φ ≤ φCG (see green and blue lines in

Fig. 3.7). This indicates that simple intuition may fail – features present in Db and

in dB processes may be altered when selection acts in both the death and the birth

step. This, we believe is an unexpected observation, which could be pursued in future

work. In particular it would be interesting to test when exactly such counter-intuitive

behaviour is found when combining local and global selection, i.e., for example, for

what types of graphs does this occur, and what common features do these graphs have?

We also note that, in contrast to the BD process, we find amplification of selection

for the DB process when starting from regular lattice and slow flow. For random initial

positions we find suppressed selection.
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in fluid flows: a dynamical systems approach, Imperial College Press, London, UK.
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Chapter 4. The effects of heterogeneity on stochastic cycles in epidemics

Abstract

Models of biological processes are often subject to different sources of noise. Devel-

oping an understanding of the combined effects of different types of uncertainty is

an open challenge. In this paper, we study a variant of the susceptible-infective-

recovered model of epidemic spread, which combines both agent-to-agent hetero-

geneity and intrinsic noise. We focus on epidemic cycles, driven by the stochasticity

of infection and recovery events, and study in detail how heterogeneity in susceptib-

ilities and propensities to pass on the disease affects these quasi-cycles. While the

system can only be described by a large hierarchical set of equations in the transient

regime, we derive a reduced closed set of equations for population-level quantities

in the stationary regime. We analytically obtain the spectra of quasi-cycles in the

linear-noise approximation. We find that the characteristic frequency of these cycles

is typically determined by population averages of susceptibilities and infectivities,

but that their amplitude depends on higher-order moments of the heterogeneity.

We also investigate the synchronisation properties and phase lag between different

groups of susceptible and infected individuals.

4.1 Introduction

It is now widely recognised that noise and uncertainty play an important role in

modelling biological systems. Traditional approaches to modelling phenomena in

biology[1] are often based on deterministic ordinary or partial differential equations,

and do not aim to describe stochasticity. In order to capture epistemic uncertainty,

static or dynamic noise variables are introduced in more modern mathematical biology.

This randomness reflects the lack of detailed knowledge about phenomena at finer scales

than described by the model at hand; any modelling approach necessarily operates

at a set scale (e.g. cell, individual, or population), and does not capture in detail

the processes at smaller scales. These are ‘emulated’ through effective randomness.

Different types of such noise are frequently found in models of biological phenomena,

including intrinsic demographic noise, extrinsic stochasticity, parameter uncertainty or

heterogeneity between different types of interacting entities [2, 3]. Some of these random
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variables are static and do not evolve in time, others are described by dynamic time-

dependent noise. Intrinsic noise, due to the stochastic dynamics of a system has lately

been the focus of many studies (see for example [4–6]). Extrinsic or parametric noise,

due to variations, heterogeneity or uncertainties in the parameters or the environment

surrounding the process, has received similar attention (e.g. [7–9]). To be able to

adequately describe biological systems, however, it may be necessary to account for

both these uncertainties which contribute to the noisy dynamics.

In the modelling of epidemics this is of particular importance. The infection

process, driven by serendipitous contacts, is inherently stochastic, and heterogeneity

in susceptibility to a disease or infectiousness of different individuals are known to

exist and play a role in viral spread. Genetic differences that result in heterogeneous

susceptibilities to a disease have been suggested to play an important role [10, 11],

and variation in viral reproduction from host to host have been observed in [12].

Behavioural, structural or contact differences between individuals are inevitable, but

we focus our study on the former type of heterogeneity. However, the better part of the

existing work focusing on heterogeneity of this type, does not explicitly seek to capture

demographic noise. Instead one often assumes infinite populations and deterministic

dynamics. This approach is often taken outside epidemics as well. Much existing work

studies individual sources of uncertainty, heterogeneity and noise in isolation, but not

their interacting together. A notable exception is the modelling of gene regulatory

networks, in which the interaction of intrinsic and extrinsic noise is actively studied,

see e.g. [13–15].

The effects of intrinsic noise have been recognised in recent years. In models

with demographic processes, for example, intrinsic stochasticity has been seen to

lead to sustained quasi-cycles [16–19] in parameter regimes in which a deterministic

model would converge to a stable fixed point. These quasi-cycles have been identified

not only in models of epidemic spread, but also in other instances of population

dynamics, including in genetic circuits, evolutionary systems and in game theory [20–

23]. Heterogeneity has been and is being considered in epidemics as well. Age structure

is studied for example in [24, 25], seasonally changing infection rates in [26, 27], variation

in infectivity and/or susceptibility are addressed in [28–32], spatial structure has been

approached in [33–36], and epidemics on static and dynamic networks are studied
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Chapter 4. The effects of heterogeneity on stochastic cycles in epidemics

in [7, 37–41]. Heterogeneity has been found to generate outbreaks that propagate

hierarchically [38, 42], grow faster than in homogeneous populations [39], and have a

lower total number of infected individuals [43, 44].

Much of this work, whether describing a well-mixed population, a compartmented

or structured one, is based on variants of the celebrated susceptible-infective-recovered

(SIR) model. They can be described either by deterministic differential equations, or as a

stochastic process involving a population of discrete individuals. In the former approach

the population is effectively assumed to be infinite, so that the timing of stochastic

infection, recovery or birth-death events ‘averages’ out, and smooth laws for the time

evolution of the population are obtained. The latter approach explicitly captures the

intrinsic randomness of infection, recovery and demographics. The population is taken

to be finite, and its state discrete. The model evolves through discrete events (e.g.

infections). In the simplest case this defines a Markovian random process, which often

can be analysed further mathematically, at least to a good approximation. Starting from

the master equation in a well-mixed population a set of stochastic differential equations

can be derived in the limit of large, but finite populations [45]. These can then be

studied further within the ‘linear-noise approximation’ (LNA) [46]. The mathematics

are tractable and the corresponding theory is now well established. While remarkably

powerful, this approach so far has mostly been used for well-mixed populations. The

linear-noise approximation has also been applied to networked systems with contact

heterogeneity (see e.g. [19, 47]), but progress is then much harder and often relies on

further moment-closure approximations.

The aim of our work is to introduce agent-to-agent heterogeneity into the SIR

dynamics in a finite well-mixed population. This provides a middle ground between

homogeneous well-mixed models and an explicitly networked population. At the

same time, we maintain tractability and are able to characterise stochastic effects in

finite populations via the linear-noise approximation. This allows us to systematically

investigate the combination of parameter heterogeneity and demographic noise. We

divide the population of agents into K different groups of susceptible individuals, where

members of different groups have different susceptibilities. Similarly, in our model

there are M classes of infective individuals, with each class representing a different

propensity to pass on the disease. This follows the lines of [32], but we explicitly focus
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on the combination of heterogeneity and intrinsic noise. Intrinsic stochasticity had not

been included in [32].

Our paper is organised as follows: In Sec. 4.2 we describe our model in detail. As a

baseline we then construct the deterministic rate equations in Sec. 4.3. They describe

the deterministic dynamics in the limit of infinite populations, and are required to

carry out the LNA. The most natural deterministic description will generally involve

K + M coupled non-linear equations (one for each subclass in the population). We

discuss when and how these can be reduced to a smaller set of equations for aggregate

quantities. In Sec. 4.4 we perform then the linear-noise approximation and use this

approximation to characterise the fluctuations about deterministic fixed points. In

particular we set up the theory to obtain the spectra of noise-driven quasi-cycles. Using

this theory we then present our main results in Sec. 4.5, where we investigate in detail

how the heterogeneity in the population affects the properties of stochastic outbreaks

of the disease. Finally, in Sec. 4.6 we summarize our findings.

4.2 Model

We use an extension of the standard SIR model [48], in a population of fixed size N .

Broadly, each individual can be of one of three types, susceptible (S), infective (I) or

recovered (R). The spreading of the disease is described by infection events. These

occur either through contact of a susceptible with an infective individual, as described

below, or through spontaneous infection. Individuals recover at rate ρ, and they die

at rate κ. The death rate is assumed to be independent of the disease status of an

individual. To keep the number of individuals in the population constant, any death

event is immediately followed by a birth of a new susceptible individual. This is of

course an assumption, valid for large enough populations so that fluctuations in the

overall size can be neglected. The assumption is mainly made for simplicity and is not

uncommon (see e.g. [16, 49, 50]).

We introduce heterogeneity by dividing the groups of susceptibles and infectives

into subclasses. We will write Si and Ia for these, with i = 1, . . . , K and a = 1, . . . ,M .

Individuals in subgroup Si have susceptibility χi to the disease, and infectives in class

Ia have infectiousness βa, which describes the propensity of the infective to pass on the
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Susceptible Infected Recovered

Figure 4.1: SIR model with heterogeneous susceptibility and infectivity. The
diagram illustrates the different processes described by the model. New (susceptible)
individuals are born at a rate κ, and they are assigned a susceptibility of χi with
probability pi. Susceptible individuals transition to an infected state either by spontaneous
infection or by contact with any of the infected classes. The former process occurs with
rate ξχi, if the susceptible is of type Si. Conact infection occurs at a rate χiNB, where
NB is the total infective power of the population (see Eq. (4.3)). Once infected, the
individual is assigned an infectiousness βa with probability qa. All infected individuals
recover at the same rate ρ. At any stage, individuals die with a rate κ. To keep the
total population N constant, deceased individuals are immediately replaced by a new
susceptible individual.

disease to susceptible individuals. We write ni for the number of individuals of type Si,

and ma for the number of individuals in class Ia.

The dynamics are illustrated in Fig. 4.1, and can be summarised in the following

reaction scheme:

Spontaneous infection: Si
ξχiqa−→ Ia

Infection by contact: Si + Ia
βaχiqb−→ Ia + Ib

Recovery: Ia
ρ−→ R (4.1)

Birth/Death: Sj
piκ−→ Si

Ia
piκ−→ Si

R
piκ−→ Si,

where {pi} and {qa} represent the probabilities of being assigned a susceptibility χi or

infectiousness βa at birth or upon infection, respectively. The first of these reactions

describes spontaneous infection, converting an individual in class Si into an individual

of type Ia. The per-capita rate of events of this type is ξχiqa, where ξ is an overall

inverse time scale for spontaneous infection, χi is the susceptibility of Si to the disease,
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and qa is the probability that the newly infected individual is in class Ia. Similarly,

the second reaction describes infection of an individual of type Si upon contact with

an individual of type Ia. The newly infected individual is in class Ib. Events of this

particular type occur with a rate proportional to βa (the propensity of Ia to spread the

disease), to χi (the susceptibility of Si) and to qb. The third reaction describes recovery,

and the final three reactions are birth/death events. The newly born individual is

assumed to be randomly placed into one of the classes Si (i = 1, . . . , K), occurring

with respective probability pi. We note that our model does not describe potential

correlations between the susceptibility of an individual and its infectivity after they

become infected; our focus is on heterogeneity of susceptibility due to physiological

factors, and not primarily due to contact patterns. Extensions to include correlations

can however be constructed among similar lines.

The model defines a continuous-time Markov process, and can be simulated straight-

forwardly using for example the celebrated Gillespie algorithm [51]. The starting point

for the analytical study of the model is the master equation. Our analysis below

will be based on approximating the solution to this master equation by performing

a system-size expansion [46] and linear-noise approximation, leading to a stochastic

differential equation describing the dynamics in the limit of large, but finite population

size. In order to do this it is useful to first introduce

χ =
∑
i

piχi, and X = 1
N

∑
i

χini. (4.2)

The quantity χ is the mean susceptibility of a newly born individual, whereas NX

describes the aggregate susceptibility of the population. Similarly we define

β =
∑
a

qaβa and B = 1
N

∑
a

βama, (4.3)

where β represents the mean infectivity of a newly infected individual, and NB the

total ‘infective power’ in the population. We note that χ and β are fixed in time, and

are properties of the distributions {pi, χi} and {qa, βi}. The quantities X and B, on

the other hand, are time-dependent and evolve as the composition of the population

changes.
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4.3 Deterministic analysis

4.3.1 Dynamics

In the limit of an infinite population the dynamics can be described by deterministic

equations for the quantities xi = limN→∞ ni/N , ya = limN→∞ma/N . They are given

by

ẋi = κpi − κxi − ξχixi − χixiB,

ẏa = ξqaX + qaXB − ρya − κya. (4.4)

These ordinary differential equations can be derived either by using direct mass-action

kinetics, or from the lowest-order expressions in an expansion of the master equation

in the inverse system size [46].

Ultimately we will mostly be interested in aggregate quantities, i.e. the total density

of susceptibles or infectives in the population, irrespective of what subclass they belong

to. We therefore introduce

S =
∑
i

xi and I =
∑
a

ya. (4.5)

From Eqs. (4.4) we find

Ṡ = κ− κS − ξX− BX,

İ = ξX + XB − ρI − κI. (4.6)

This system is not closed due to the presence of X and B on the right-hand side. These

quantities in turn evolve in time according to

Ẋ = κχ− κX− (ξ + B)
∑
i

χ2
ixi,

Ḃ = ξXβ + βXB − (ρ+ κ)B, (4.7)

which again does not close the set of equations, due to the presence of the term

X2(t) ≡
∑
i χ

2
ixi(t). Modulo normalisation and recalling that the {xi} are time-

dependent, this object is recognised as the second moment of the distribution of

susceptibilities among the group of susceptibles at time t. It cannot be determined

from Eqs. (4.6) and (4.7) alone. Instead we find

Ẋn = κχn − κXn − (ξ + B)Xn+1, (4.8)
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4.3. Deterministic analysis

where we have introduced χn = ∑
i piχ

n
i and Xn = ∑

i xiχ
n
i . This indicates that the

deterministic dynamics at the aggregate level is described by an infinite hierarchy of

equations. This set of equations does not close in the transient regime. However, as

we will see next, closure can be achieved assuming the system settles down to a fixed

point in the long run.

4.3.2 Fixed point

We proceed by a brief analysis of the fixed points of the deterministic dynamics. We

will label these by a star. They can be obtained by setting ẋi = 0 and ẏa = 0 in

Eqs. (4.4), leading to

x?i = κpi
κ+ (ξ + B?)χi

,

y?a = (ξ + B?)X?qa
ρ+ κ

. (4.9)

Similarly, we find the fixed points of the aggregate quantities S, I, X and B from

Eqs. (4.6,4.7). After re-arranging and using Eqs. (4.9) we arrive at

S? = 1− (ρ+ κ)
κ

B?

β
,

I? = B
?

β
,

X? = (ρ+ κ)
(ξ + B?)

B?

β
,

B? = βκ

(ρ+ κ)
∑
i

 χipi
κ

ξ+B? + χi

 . (4.10)

which is a closed set of equations, for a given set of parameters {pi, χi, qa, βa}.

We highlight that while the transient dynamics of the system described in terms

of the four macroscopic variables S, I, X and B generates an infinite hierarchy of

equations, potential fixed points can be uniquely described by a closed set of equations,

assuming that the distribution of susceptibilities at birth and of the propensity of newly

infected individuals to pass on the disease are known. In other words, the fixed point

can be obtained in terms of the model parameters {qa, βa} and {pi, χi}. While we

cannot provide an analytical proof that the deterministic system will always converge

to a fixed point, we note that, for the range of parameter used, we have not detected a

single case in which numerically integrating Eqs. (4.4) did not lead to a fixed point. In
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this context it is useful to point out that, in a homogeneous model, any combination of

susceptibility and infectivity within the range of parameters used here would lead to a

basic reproductive number above unity. For such models it is known that stable fixed

points are eventually reached [52].

4.4 Linear-noise approximation

We now proceed to analyse the effects of stochasticity in the model, with a particular

focus on the interaction between heterogeneity of individuals in the population and

the noise induced by the demographics of the finite system.

We illustrate these effects in Fig. 4.2, and show an example of both the deterministic

time-evolution of the system (thick continuous lines) and a realization of an individual-

based simulation (thin dashed lines); the latter illustrates the intrinsic stochasticity

of the process. Even after the deterministic model has reached a fixed point, the

individual-based model shows sustained oscillations around it. These oscillations arise

from a combination of complex eigenvalues of the underlying deterministic dynamics

and the presence of intrinsic noise coming from the Poissonian jump process of the

master equation. We will focus our attention on these stochasticity-driven periodic

outbreaks in the remainder of this article, and build on the mathematical analysis via

the linear-noise approximation [20]. In particular we will study how the heterogeneity

in the population affects the properties of these cycles.
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Figure 4.2: Population dynamics. Time series of the population density of total
susceptible (panel (a)) and total infected individuals (panel (b)). Noise-sustained
oscillations are clearly seen. The insets show a zoom in on the cycles. Labels A,B, . . . , E
are for later purposes (see below).
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4.4.1 Stochastic Dynamics

In order to carry out an analysis of the stochastic dynamics, we write ni/N = xi+x̃i/
√
N ,

and ma/N = ya + ỹa/
√
N , where xi(t) and ya(t) are the solutions of the deterministic

equations (4.4) and the quantities with a tilde describe the stochastic fluctuations

about the deterministic trajectory. The above ansatz reflects the anticipation that

these fluctuatons will have a relative magnitude of order N−1/2. We then carry out an

expansion in the inverse system size up to and including sub-leading order [46]. In the

fixed point regime of the deterministic dynamics we then arrive at

˙̃xi = −κx̃i − (ξ + B?)χix̃i − χix?i B̃ + ηi,

˙̃ya = qa
(
ξX̃ + X̃B? + X?B̃

)
− (ρ+ κ) ỹa + νa. (4.11)

The linear-noise approximation also applies during transients. All objects on the

right-hand side of Eqs. (4.11) then become time dependent. Since we ultimately focus

on the oscillations about deterministic fixed point, we have not made this more explicit.

The {ηi} and {νa} are Gaussian white noise variables, with variance and co-variance

(across components) as described in more detail in Section 4.7. Writing S̃ = ∑
i x̃i and

Ĩ = ∑
a ỹa we find the following dynamics of fluctuations at the aggregate level,

˙̃S = −κS̃ − (ξ + B?) X̃− X?B̃ +
∑
i

ηi,

˙̃I = (ξ + B?) X̃ + X?B̃ − (ρ+ κ)Ĩ +
∑
a

νa,

˙̃X = −κX̃− X?
2B̃ − (ξ + B?)

∑
i

χ2
i x̃i +

∑
i

χiηi,

˙̃B = (ξ + B?) βX̃ + βX?B̃ − (ρ+ κ) B̃ +
∑
a

βaνa. (4.12)

As in the deterministic analysis, this set of equations is not closed. It describes the

dynamics of fluctuations about the deterministic fixed point, but makes no assumption

of stationarity of the fluctuations (for example correlation functions need not be time

translation invariant). The lack of closure is due to the term ∑
i χ

2
i x̃i in the equation

for ˙̃X. However, as in Section 4.3.2, we will show below that a closed set of equations

in the stationary state (of fluctuations) can be derived.
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4.4.2 Fluctuation around the deterministic fixed point

We here show that although Eqs. (4.12) are not closed, we can explore noise-induced

oscillations around the deterministic fixed point. To this end we introduce the Fourier

transforms (with respect to time) of the variables x̃i and ỹa. We will denote these by

x̂i and ŷa. From the Langevin equations (4.11) we find, after re-arranging,

x̂i = −χix?i B̂ + η̂i
iω + κ+ (ξ + B?)χi

,

ŷa =

[
(ξ + B?) X̂ + X?B̂

]
qa + ν̂a

iω + ρ+ κ
. (4.13)

The noise variables {ηi} and {νa} are uncorrelated in time, and their variance and

correlation across components can be expressed in terms of known quantities (see

Eqs. (4.24) in Section 4.7). The variable ω is the conjugate of time under Fourier

transform. Similarly, we find the following for the relevant aggregate quantities,

Ŝ = 1
iω + κ

[
−iω +D

β
B̂ + 1

β

∑
a

βaν̂a +
∑
i

η̂i

]
,

Î = 1
iω +D

[
iω +D

β
B̂ − 1

β

∑
a

βaν̂a +
∑
a

ν̂a

]
,

X̂ = 1
βC

[
(iω + E) B̂ −

∑
a

βaν̂a

]
,

B̂ =
βC

∑
i

χiη̂i

iω+Ai
+∑

a
βaν̂a

iω + E + βCκ
∑
i

χ2
i pi

Ai(iω+Ai)

, (4.14)

where, for simplicity, we have introduced the notation

Ai = κ+ (ξ + B?)χi,

C = ξ + B?,

D = ρ+ κ,

E = ρ+ κ− βX?. (4.15)

Eqs. (4.14) constitute a closed set of equations for the Fourier transforms of the aggregate

fluctuations S̃, Ĩ , X̃ and B̃ in the stationary state. We thus make an observation similar

to that in Section 4.3: although we cannot describe the evolution of fluctuations in

the transient regime, we can derive a closed description of the statistics of fluctuations

about deterministic fixed points within the linear-noise approximation.
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4.4.3 Power Spectral Density

Eqs. (4.14) can be used describe the periodic cycles shown in Fig. 4.2; we will now

proceed to analyse these in more detail. Specifically we will use the above results to

compute the power spectral density (PSD) of fluctuations. This allows us to identify

the characteristic frequency of noise-driven epidemic cycles, and to infer information

about their amplitude.

The (average) power spectral density of a time series, z(t), generated from the

stochastic individual-based model is given by Pz(ω) = 〈|ẑ(ω)|2〉, where 〈· · ·〉 stands for

an average over realizations of the stochastic dynamics. The PSD can be computed

analytically for all individual signals xi, ya, and for the aggregate variables S, I, X

and B. The resulting expressions are lengthy; for completeness we provide them in

Section 4.8. As an illustration we here show the PSD of B,

PB(ω) =2X?C

|g|2

β2 − β
2
Cκ

D

∑
i

χipiAi
ω2 + A2

i


−

(
βCκ

)2

|g|2

∑
i,j

pipjχiχj(Ai + Aj)(ω2 + AiAj)
AiAj(ω2 + A2

i )(ω2 + A2
j)

 , (4.16)

with

|g|2 =
[
E + βCκ

∑
i

χ2
i pi

ω2 + A2
i

]2

+ ω2
[
1− βCκ

∑
i

χ2
i pi

Ai (ω2 + A2
i )

]2

. (4.17)

As detailed in Section 4.8, the power spectra of S, I and X can be expressed in terms of

that of B; many of the characteristics of the spectra of S, I and X are shared with those

of B, or directly related to it. We note that the RHS of Eq. (4.16) is proportional to

1/|g|2, and the same is the case for the spectral densities of X, S and I (see Eqs. (4.31) in

Section 4.8); as a result, some of the key properties of the power spectra are determined

by the behaviour of |g|2, as discussed in more detail below.

4.4.4 Test Against Simulations

To illustrate the model and test our analytical results, we sampled possible heterogen-

eous populations. Specifically, the simulations shown in Fig. 4.3 are for populations with

five susceptible and three infected subclasses. For each example, the probabilities {pi}

and {qa} were drawn at random from a flat distribution over the simplexes ∑i pi = 1
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Figure 4.3: Power spectral densities of the fluctuations of (a) Susceptible and (b)
Infected population for seven different examples of the model, generated as explained in
more detail in the text. In all cases theory and simulations agree.

and ∑a qa = 1. Susceptibilities and infectivities were assigned randomly in the intervals

0.5 ≤ χi ≤ 2.5 and 0.3 ≤ βa ≤ 1.3. Simulations are for N = 106, and the rates for

recovery, birth/death and immigration were set at ρ = 0.07 , κ = 5.5 × 10−5 and

ξ = 5× 10−6 respectively. The rates βa, ρ, κ and ξ have units of days−1, whereas χi
is dimensionless. The chosen rates are representative of childhood diseases such as

whooping cough, measles, rubella or chickenpox [53]. The resulting PSDs are shown

in Fig. 4.3. The continuous thick lines show the analytical result, and dashed lines

are obtained from simulations, as an average over realizations of the individual-based

model. As can be seen from the figure, the predictions of Eqs. (S10) precisely match

the results from simulations. In all figures, axes labelled ‘frequency’ show f = ω/2π,

and have units of days−1.

It is interesting to note that the power spectral density can remain non-zero at

ω = 0. A more detailed analysis reveals that its value is finite (i.e. not diverging);

there is no evidence of e.g. a delta-peak at ω = 0. This indicates that the area under

the overall correlation function of fluctuations is non-zero, but finite, and there is no

discernible shift of the overall stationary equilibrium (such a shift would result in a

diverging contribution to the power spectrum at ω = 0).

4.5 Consequences of Heterogeneity

Having established an analytical description of quasi-cycles, we now use this theory to

identify which properties of the distribution of pi, χi, qa and βa are most relevant for

138



4.5. Consequences of Heterogeneity

the characteristics of stochastic quasi-cycles in heterogeneous populations. Specifically,

we study how heterogeneity in the population affects the dominant frequency of quasi-

cycles, their amplitude and the sharpness of the spectra. We will then also discuss if

and how the different subgroups synchronise during the epidemic cycles.

4.5.1 Dominant Cycle Frequency

Numerical inspection of the different terms in the analytical solution of the PSDs

suggests that the dominating element is the factor 1/|g|2, as briefly indicated in

Sec. 4.4.3. The frequency for which |g|2 reaches its minimum roughly corresponds

to the dominant cycle frequency, ωd, in the PSDs. The minimum of |g|2 can be

found by differentiation of the expression in Eq. (4.17). Assuming that Cχi � κ we

further approximate the location of this minimum. This assumption is valid if infection

processes occur on a time scale which is much shorter than the life expectancy of an

individual. Further, we assume that ω � Ai, i.e. that a susceptible individual typically

lives through several epidemic events before it becomes infected. Both approximations

are intuitively plausible for childhood diseases, known to show periodic outbreaks [53].

Making these assumptions we find that the frequency for which |g|2 is minimal can be

approximated as

ωd ≈
√
κχβ. (4.18)

This implies that the characteristic frequency is determined (mostly) by the mean

susceptibility at birth and the mean infectivity at infection (χ and β) and the capacity

of replenishment of the susceptible pool (κ).

The validity of our approach is confirmed in Fig. 4.4(a), where we test the approx-

imation against simulations for a wide set of parameters. A perhaps more intuitive

representation of our result can be found in Fig. 4.4(b), where we show the power

spectra of several sample populations, each with different distributions of {pi, χi, qa, βa},

but all with the same first moments χ and β. As seen in the figure, this produces spectra

of different amplitudes but with the same characteristic frequency. For comparison we

include the homogeneous case K = M = 1.
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Figure 4.4: Verification of approximation (4.18) for the dominating frequency
of cycles. (a) Frequency f = ω/2π at the maximum of the PSD, determined from
Eqs. (S10) as a function of

√
χβ, for fixed κ. The black dashed line corresponds to

Eq. (4.18). Markers are from 200 different populations, each with 5 susceptible and 3
infected subgroups, and with random choices of {pi, χi, qa, βa}. The values of χi and βa
were chosen from the interval 1.7± 1.6999995; qa and pi from a flat distribution. This
resulted in values of χ and β in the range 0.3 to 3.3, and for χ2 and β2 in the range
0.1 to 10. (b) PSD of the total infected population of different random distributions of
{pi, χi, qa, βa}, with equal values for χ and β, but different values of χ2 and β2. As a
consequence of Eqs. (4.18) and (4.19), the characteristic frequency is the same for all
such samples, but the height of the peak in the PSD varies considerably (the amplitude
of the oscillations changes with the square root of the amplitude of the power spectra).
The dashed grey line correspond to the homogeneous model, i.e. K = M = 1. The
vertical dotted line is a visual aid.

4.5.2 Amplitude of Stochastic Cycles

While we have found above that the dominant frequency of stochastic cycles is largely

determined by the first moments χ and β, the results shown in Fig. 4.4(b) demonstrate

that this is not the case for the amplitude of the spectra at the dominant frequency. To

investigate this further we evaluate the analytic expressions for the PSDs in Eqs. (S10) at

the approximation of ωd in Eq. (4.18). Making the same assumptions as in Section 4.5.1,

we find that the height of the peak in the power spectra can be approximated as

PI (ωd) ≈
2 (ρ+ κ)[

(ρ+κ)ξ
B? + B?χ2

χ

]2
β2

β
3 ,

PS (ωd) ≈
(ρ+ κ)2

κχβ
PI (ωd) . (4.19)

We note the presence of the second moments χ2 and β2, unlike in Eq. (4.18). This

indicates that the spread of susceptibilities and infectivities is relevant to the size of the

fluctuations about the endemic equilibrium. We note that the case K = M = 1 in Fig.
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Figure 4.5: Verification of approximation (4.19) for the peak-height of the
spectral densities. Horizontal axes show the prediction of Eqs. (4.19) for susceptibles
(a), and infectives (b). On the vertical axis we show the height at the peak of the
spectra, as determined numerically from Eqs. (4.31) in Section 4.8. Black dashed lines
are the diagonal (‘y = x’), and markers represent the populations described in Fig. 4.4.

4.4 (b) is special, as it leads to zero variance of the disorder by construction. We have

experimented with the number of groups, K and M , and to a good approximation we

find that the number of groups only affects the height and location of the peak in the

spectrum through the mean and variance of the distributions of β and χ.

In Fig. 4.5 we plot results from the approximation in Eqs. (4.19) against the

maximum amplitude of spectra obtained numerically from the full expression (within

the LNA), see Eqs. (4.31) in Section 4.8. The data confirms that the approximation

is valid for a wide range of parameters. While we find slight deviations at large

amplitudes in the case of the infectives, the approximation is very robust for the

susceptible population.

4.5.3 Sharpness of the Spectra

We now turn to the sharpness of the peak in the PSDs. The sharper the peak, the closer

the stochastic outbreaks are to perfect cyclic behaviour. Conversely, cyclic behaviour is

less distinct if the peak in the spectrum is shallow. This has been described before as

the ‘coherence’ of the spectra [16]. As we will investigate a different notion of coherence

in Sec. 4.5.4 and in order to avoid confusion, we will refer to the concentration of power

near the peak of the spectrum as ‘sharpness’.

Following [16], we define the sharpness as the relative spectral power accumulated
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in an interval around the peak,

S =

ωd+∆ω´
ωd−∆ω

P(ω) dω

+∞́

−∞
P(ω) dω

. (4.20)

We compute the sharpness numerically, using the expressions in Eqs. (S10). In order

to evaluate the denominator in Eq. (4.20) we integrate up to an upper cutoff of

ωmax = π/100 days−1. In the numerator we use ∆ω = 0.05ωmax. The choice of ∆ω can

be illustrated using Fig. 4.4(b), where the sharpness S of the peak roughly corresponds

to the fraction of total power concentrated in the interval between frequencies of 0.0015

and 0.002 days−1.

In Fig. 4.6 we show the sharpness of spectra for 200 random populations (as

described in Fig 4.4). It is clear from the figure that there is a trend of increasing

sharpness as the product of the mean susceptibility and infectivity at birth approaches

unity (in the dimensions used here). The spread of the markers on the vertical

axis indicates that there are significant effects of heterogeneity. It proves difficult,

though, to find a functional dependence on higher moments of the distributions of

susceptibilities and/or infectivities which would further collapse the data. While we

do not show this data here in detail, we have also experimented with heterogeneity

drawn from several distributions (e.g. flat, normal, Gamma). Results suggest that – to

a good approximation – the functional shape of the spectra is determined by β, χ, β2

and χ2, i.e. by the first two moments of the heterogeneity. Higher-order features do

0.1
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0.3

0 2 4 6 8

Susceptible
Infected

Figure 4.6: Sharpness of the power spectra as a function of the product of the
mean susceptibilities and infectivities at birth/infection. Data is for the populations
described in Fig. 4.4
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not seem to play an important role. We have also tested the stronger property of full

collapse upon re-scaling by peak height and location of peak, i.e. whether there is a

scaling property of the type P(ω) = Pmax × f(ω/ωd). This appears not to be the case.

4.5.4 Synchronization between Subgroups

We have established so far that introducing heterogeneity leads to significant changes

in the quasi-cycles of the aggregate numbers of susceptible and infective individuals.

However, we have not yet said much about the dynamics of the individual subgroups.

In Fig. 4.7 we show the same example of sustained oscillations as in the inset of Fig. 4.2,

but instead of the total susceptible and infected population we now highlight the time

evolution of each of the subgroups.

In the upper two panels, (a) and (b), we show time series of the number of individuals

in each subgroup normalised by the total population size. More specifically, we show

susceptible subclasses (ni/N) in panel (a), and infective subclasses (ma/N) in panel (b).

For each of these, stochastic oscillations can be observed. These cycles are

pronounced for the case of the infective subgroups, panel (b), and more shallow for
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Figure 4.7: Stochastic cycles in subgroups of susceptibles and infectives. We
show the same simulation run as in Fig. 4.2, but now split up into the different subgroups.
Panels (a) and (b) show the number of individuals in each susceptible and infective
subgroup normalised by the total population (N). In panels (c) and (d), we show the
number of individuals in each subgroup divided by the total number of susceptible or
infected individuals, respectively (NS and NI). Lines labelled A to E refer to points in
the cycles of the aggregate variables S, I shown in Fig. 4.2.
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Figure 4.8: Power spectra of fluctuations for different subclasses of suscept-
ibles and infectives. We use the same sample of the model parameters {χi, pi, βa, qa}
as in Fig. 4.3. Simulations are averaged over multiple realizations of the stochastic
dynamics, at fixed model parameters. The vertical dotted lines are for later purposes
and mark the locations at which the power spectra take values approximately equal to
half the maximum amplitude.

the susceptibles, panel (a). This is to be expected, given that the total number of

susceptibles is more than an order of magnitude larger than those of the infectives (see

also Fig. 4.2). From Fig. 4.7 (a) and (b) it is clear that all subgroups undergo cycling

of roughly the same frequency. This is confirmed by the power spectra in Fig. 4.8.

We note that these statements rely on expressing number of individuals in each

class as a fraction of the total population, and not relative to the time-dependent

total number of susceptibles or infectives respectively. We contrast the above with

a representation in which we express the occupancy in each infective subgroup as

a fraction of the infectives only, and similarly for the susceptibles. To this end we

replot the simulation run shown in Fig. 4.7 (a) and (b), but now in terms of ni/(NS)

and ma/(NI), respectively. The quantities NS = ∑
j nj and NI = ∑

bmb are the

total number susceptible and infective individuals respectively, and they are time-

dependent themselves. Results are shown in Fig. 4.7(c) and (d). Although the overall

number of infectives, NI, undergoes the noise-driven cycles shown in Fig. 4.2, we find

no discernible structure within the group of infectives; the time series ma/(NI) in

Fig. 4.7(d) are essentially flat noisy lines. This is what one would expect, since the

allocation to each subgroup, Ia, of infectives is random when an individual is newly

infected, and the recovery rate is the same for all infective subgroups.

A more complex behaviour can be seen within the group of susceptibles. This group
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as a whole undergoes stochastic cycles (see Fig. 4.2), but an interesting structure is

observed within the group of susceptibles as well. The time series ni/(NS) in Fig. 4.7(c)

show cyclic behaviour, and – to a good approximation – any pair of these time series

is either in phase with each other, or they have a phase difference of ±π. To explore

the phase lag between the different time series we use the so-called complex coherence

function [54]. This technique relies on computing the cross-spectrum
〈
x̂i(ω)x̂∗j(ω)

〉
between time series xi(t) and xj(t). The phase lag is then obtained as

Lxixj
(ω) = tan−1 Im

〈
x̂i(ω)x̂∗j(ω)

〉
Re

〈
x̂i(ω)x̂∗j(ω)

〉 . (4.21)

We stress that the subscript ∗ denotes complex conjugation, and is not to be confused

with ?, used earlier to indicate fixed points of the deterministic dynamics. Eq. (4.21)

returns a phase lag for each spectral component, ω. Details can be found in Section 4.9.

The phase lag between the different groups of susceptible individuals is shown in

Fig. 4.9. The data in panel (a) corresponds to Fig. 4.7 (a). More precisely, in Fig. 4.9

(a) we pick the time series n1/N as a reference, and show the phase lag of all subgroups

ni/N with respect to this reference time series. We find that the phase lag for

frequencies around the dominant frequency in the power spectra is small, consistent

with Fig. 4.7 (a); all time series ni/N oscillate (roughly) in phase with each other. In

Fig. 4.9 (b) we repeat this procedure, but now taking the time series ni/(NS) as an

input, corresponding to Fig. 4.7 (c). One then finds a rather different picture; the
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Figure 4.9: Phase-lag of time series between different subgroups of suscept-
ibles. Data is for the same setup as in Fig. 4.7. We show the phase-lag between
subgroups i and reference subgroup 1. Panel (a) depicts the case in which time series
are normalized with respect to the total population, N ; in panel (b) input time series
are normalized with respect to the total number of susceptibles NS. As in Fig. 4.8, the
vertical dotted lines mark the half-width of the peaks in the corresponding power spectra.
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phase lag around the dominant frequency takes values either near zero, or close to ±π.

This indicates that the different classes of susceptible individuals fall into two groups.

The time series in either group are in phase with each other, and in anti-phase with

those in the respective other group. A closer inspection shows that these two groups

are formed by the time series i with x?i < S?/K and with x?i > S?/K respectively. This

behaviour in turn can be understood intuitively by revisiting Eqs. (4.9). Assuming

κ � (ξ + B?)χi for all i (a valid approximation for the cases analysed here), we

find x?i ∝ 1/χi, indicating that the more susceptible classes are less populated at the

deterministic fixed point than the less susceptible ones. During the increasing leg of a

stochastic cycle, we expect the number of newly infected individuals among class i to

be proportional to x?iχi, suggesting that all susceptible classes are depleted in equal

absolute numbers. This in turn means that subclasses with x?i > S?/K will represent

an even larger fraction of the susceptible population as the total susceptible population

decreases, while the subclasses with x?i < S?/K will represent a smaller fraction. This

is what is observed in Fig. 4.7 (c).

4.6 Conclusions

In summary, we have explored the SIR model in finite populations, including demo-

graphic processes and allowed for agent-to-agent heterogeneity in both the susceptibility

to a disease and the capacity to spread the disease. This system combines the effects of

intrinsic demographic stochasticity (due to random infection, recovery and birth-death

events), with quenched heterogeneity. The focus of our paper is to characterise the

interplay between these two types of stochasticity, and to investigate how the hetero-

geneity between individuals affects quasi-cycles driven by intrinsic noise. Our analysis

relies on the system-size expansion, which allows us to compute the properties of these

cycles analytically in the linear-noise approximation.

Our principal results can be summarised as follows: (i) In the deterministic limit of

infinite populations no closed set of equations for macroscopic quantities can be found

in the transient regime. Fixed points for aggregate quantities of this deterministic

dynamics can however be fully determined from a set of closed equations for the

total susceptible (S?) and infected (I?) population, and weighted averages of the

146



4.6. Conclusions

susceptibility (X?) and infectivity (B?). (ii) Similarly, the Langevin equations in the

linear-noise approximation do not close easily at the aggregate level, but a closed set of

equations for the spectra of fluctuations in S, I,X and B about the deterministic fixed

point can be found in the stationary state. These can be used to analytically describe

the stochastic oscillations about the fixed point. (iii) Within reasonable assumptions,

the characteristic frequency of the noise-driven oscillations is determined mostly by

the mean susceptibility and infectivity at birth or infection (χ and β). However, the

amplitude of the oscillations and the sharpness of peaks in the power spectra will

generally depend on the higher moments of the distribution of susceptibilities and

infectivities, in particular also on the agent-to-agent heterogeneity. (iv) Finally, the

number of individuals in the different subclasses of infectives and susceptibles undergo

stochastic cycles as well. If expressed in relation to the total population, these time

series are synchronised and in phase. Normalized against the time-dependent total

number of infectives, however, the different infective subclasses show no discernible

oscillatory behaviour. Using a similar normalization within the susceptible population,

we find that different subclasses are syncronized and either in phase with each other or

have a phase difference of ±π. These results are confirmed analytically. Regardless

of the normalization, we find that the periodic outbreaks do not follow a hierarchical

infection process, and all subgroups have similar absolute depletion/increase in absolute

numbers. This is in contrast to what has been reported in single outbreak studies [38,

42]. However, it is important to note that in this existing work the outbreak is tracked

in an initial transient period. Our results are valid after this period, at a deterministic

fixed point, where the susceptible population is distributed in inverse proportion to

their susceptibility (as explained above); this is a scenario different to the one studied

in [38, 42].

We think our results can be relevant for future work in several ways. First, our work

contributes to the ongoing discussion about when and how a model with heterogeneity

can be replaced or approximated by a homogeneous model. In previous studies, hetero-

geneous models were compared to homogeneous models with susceptibility equivalent to

the arithmetic [55] or harmonic mean [44] of the susceptibilities in the different groups.

More recently, the focus has been placed on equivalent basic reproduction numbers (R0)

[56]. In the heterogeneous model this requires estimating R0 based on, for example,
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the outbreak size, and therefore the comparison is not straightforward. Here we have

shown that all models within the class we have looked at and with equal values of χβ

generate periodic outbreaks with the same dominating frequency. This characteristic

frequency can be used to define a unique homogeneous model to which models of

varying degrees of heterogeneity can be compared. Furthermore, the dependence of

the spectra of oscillations on both the first and higher moments of the distribution

of heterogeneity might provide an avenue towards estimating how heterogeneous a

population is from the observation of epidemic cycles. Finally, the formalism we have

developed is versatile and can be applied to study quasi-cycles in other areas in which

heterogeneity might be relevant, for example in predator-prey dynamics or evolution

[20, 22, 57–60]. Our findings indicate that the frequency of quasi-cycles can, to a good

approximation, be obtained from the first moment of the distribution of heterogeneous

agent properties, but that their amplitude depends on higher moments of the disorder.

We expect similar behaviour in other heterogeneous systems with noise-driven cycles.

4.7 Appendix A: Linear-noise approximation

Carrying out the system-size expansion for the model with heterogeneity is tedious,

but straightforward and follows the lines of [46]. The final outcome is the linear-noise

approximation in Eqs. (4.11). The variables ηi and νa, represent Gaussian noise, with no

correlation in time, but with potential correlation between the different noise variables

at equal time. These noise variables can be decomposed as

ηi = −
∑
a

uia −
∑
ab

viab −
∑
k 6=i

xik +
∑
k 6=i

xki +
∑
a

yai + zi,

νa =
∑
i

uia +
∑
ib

viba − wa −
∑
i

yai, (4.22)

where, broadly speaking, each term on the right-hand side represents one possible type

of event in the microscopic model. For example, uia relates to spontaneous infection of

a susceptible individual of type Si, resulting in a newly infective of type Ia. Similarly,
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viab represents an event in which an individual of type Si is infected by an individual

of type Ia, and the newly infected is of type Ib. The variable wa relates to a recovery

event of an individual of type Ia, death of susceptible Si and simultaneous birth of

susceptible Sk is reflected by xik; death of an individual of type Ia and simultaenous

birth of susceptible Si is described by yai, and finally death of a recovered individual

and simultaneous birth of susceptible Si, by zi. The signs on the right-hand-side in

Eqs. (4.22) reflect the fact that each of these events may either increase or reduce the

number of individuals of type Si and Ia, respectively.

Each of the noise variables on the right-hand-side of Eqs. (4.22) are uncorrelated in

time, and they have no cross-correlations. Within the LNA their variances are set by

the corresponding reaction rates at the deterministic fixed point, i.e. we have

〈uia(t)uia(t′)〉 = ξχiqax
?
i δ(t− t′),

〈viab(t)viab(t′)〉 = βaχiqbx
?
i I
?
aδ(t− t′),

〈wa(t)wa(t′)〉 = ρI?aδ(t− t′),

〈xik(t)xik(t′)〉 = pkκx
?
i δ(t− t′),

〈yai(t)yai(t′)〉 = piκI
?
aδ(t− t′),

〈zi(t)zi(t′)〉 = (1− S? − I?) piκδ(t− t′). (4.23)

Using the shorthand introduced in Eqs. (15), we then find

〈ηi(t)ηj(t′)〉 = −κ2
(

1
Ai

+ 1
Aj

)
pipjδ(t− t′), for i 6= j,

〈ηi(t)ηi(t′)〉 = 2κ
(

1− κpi
Ai

)
piδ(t− t′),

〈νa(t)νb(t′)〉 = 0, for a 6= b

〈νa(t)νa(t′)〉 = 2CX?qaδ(t− t′),

〈ηi(t)νa(t′)〉 = −κC
(
χi
Ai

+ X?

D

)
piqaδ(t− t′), (4.24)

which are needed for the computation of the PSDs.
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4.8 Appendix B: Calculation of power spectra

We start from the result in Eqs. (4.14) in Section 4.4.2:

Ŝ(ω) = 1
iω + κ

[
−iω +D

β
B̂ + 1

β

∑
a

βaν̂a +
∑
i

η̂i

]
,

Î(ω) = 1
iω +D

[
iω +D

β
B̂ − 1

β

∑
a

βaν̂a +
∑
a

ν̂a

]
,

X̂(ω) = 1
βC

[
(iω + E) B̂ −

∑
a

βaν̂a

]
,

B̂(ω) =
βC

∑
i

χiη̂i

iω+Ai
+∑

a
βaν̂a

iω + E + βCκ
∑
i

χ2
i pi

Ai(iω+Ai)

. (4.25)

As an illustration let us now compute the power spectrum of B̂. To keep equations

manageable, we define

fi(ω) = βC
χi

(iω + Ai)
,

g(ω) = (iω + E) + βCκ
∑
i

χ2
i pi

Ai (iω + Ai)
, (4.26)

and so we write the Fourier transform of B̃ as

B̂(ω) =

∑
i
fiη̂i +∑

a
βaν̂a

g
, (4.27)

where fi, βa, η̂i and ν̂a are all functions of ω. We then find

PB(ω) =
〈(∑

i fiη̂i +∑
a βaν̂a

g

)(∑
i f
∗
i η̂i +∑

a βaν̂a
g∗

)〉

= 1
|g|2

∑
i,j

fif
∗
j 〈η̂iη̂j〉+

∑
i,b

fiβb 〈η̂iν̂b〉+
∑
a,j

f ∗j βa 〈η̂j ν̂a〉+
∑
a,b

βaβb 〈ν̂aν̂b〉


= 1
|g|2

∑
i

fif
∗
i 〈η̂iη̂i〉+

∑
i

∑
j 6=i

fif
∗
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∑
i,b

(fi + f ∗i ) βb 〈η̂iν̂b〉+
∑
a

β2
a 〈ν̂aν̂a〉

 . (4.28)

The notation ∗ denotes complex conjugation. Substituting the noise correlators from

Eqs. (4.24),

PB(ω) = 1
|g|2

2κ
∑
i

fif
∗
i pi − κ2∑

i,j

fif
∗
j

(
1
Ai

+ 1
Aj

)
pipj

−βκC
∑
i

(fi + f ∗i )
(
χi
Ai

+ φ?

D

)
pi + 2β2Cφ?

)
, (4.29)
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and, using Eq. (4.27), we find

PB(ω) =2φ?C
|g|2

β2 − β
2
Cκ

D

∑
i

χipiAi
ω2 + A2

i


−

(
βCκ

)2

|g|2
∑
i,j

χipiχjpj (Ai + Aj) (ω2 + AiAj)
AiAj(ω2 + A2

i )(ω2 + A2
j)

, (4.30)

which is the PSD of B, as also reported in Eq. (4.16) in the main text.

Following the same process, we can compute the PSD for the remaining quantities,

X, I and S. We do not report all details, but only the final results

PX(ω) = 1
β

2
C

[
2β2X? +

(
ω2 + E2

)(PB
C
− 4β2X?

|g|2

)]

+ 2κ
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∑
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i pi
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The power spectra of fluctuations for the individual subgroups of infectives and sus-

ceptibles are found as

Pxi
(ω) = 1

ω2 + A2
i

[(
κχipi
Ai

)2
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1− κpi
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)
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 , (4.32)

Pya(ω) =q2
aPI + 2CX?qa (1− qa)

ω2 +D2 . (4.33)

4.9 Appendix C: Phase Lag

In order to explore the the phase lag we use the so-called complex coherence function,

CCF ij, between subgroups i and j, defined as

CCF ij(ω) =

〈
x̂ix̂
∗
j

〉
√
〈x̂ix̂∗i 〉

〈
x̂jx̂∗j

〉 =
Pxixj√
Pxi
Pxj

, (4.34)

where x̂i and P are functions of ω.

For i 6= j this is in general a complex-valued function (of ω). The argument of

CCF ij, given by

Lxixj
(ω) = tan−1 Im CCF ij(ω)

Re CCF ij(ω) = tan−1 Im Pxixj
(ω)

Re Pxixj
(ω) , (4.35)

is known as the phase spectrum; it describes the phase-lag between the time series

xi(t) and xj(t) [61].

The cross spectra of the population in the susceptible classes normalized with

respect to the total population (xi = ni/N) is given by

Pxixj
(ω) =

〈
x̂ix̂
∗
j

〉
=
〈(
−χix?i B̂ + η̂i
iω + Ai

)−χjx?j B̂∗ + η̂j

−iω + Aj

〉 . (4.36)
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This can be written as

Pxixj
(ω) =(ω2 + AiAj)Wij − ω (Ai − Aj)Uij

(ω2 + A2
i )
(
ω2 + A2

j

)
+ i

(ω2 + AiAj)Uij + ω (Ai − Aj)Wij

(ω2 + A2
i )
(
ω2 + A2

j

) , (4.37)

where we introduced the notation

Uij(ω) = χjx
?
j Im

〈
η̂iB̂

〉
− χix?i Im

〈
η̂jB̂

〉
,

Wij(ω) =
(
χiχjx

?
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?
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)
PB + 〈η̂iη̂j〉 − χjx?jRe

〈
η̂iB̂

〉
− χix?iRe

〈
η̂jB̂

〉
. (4.38)

From these we obtain the phase lag as

Lxixj
(ω) = tan−1 ω (Ai − Aj)Wij + (ω2 + AiAj)Uij

(ω2 + AiAj)Wij − ω (Ai − Aj)Uij
, (4.39)

which yields the theoretical lines in Fig. 4.9a.

To explore the phase lag between the susceptible subgroups when normalized by the

total susceptible population (x′i = ni/NS), we first need to compute the cross-spectra

of the renormalized signals Px′ix′j (ω). As in Section 4.4.1, we start from the ansatz

ni
NS

= x′i + 1√
N
x̃′i. (4.40)

We then have
ni
NS

= ni/N

S
=
xi + 1√

N
x̃i

S + 1√
N
S̃
≡ x′i + 1√

N
x̃′i, (4.41)

and so (after expanding in 1/
√
N)

x̃′i = S? x̃i − x?i S̃
(S?)2 . (4.42)

In Fourier space this turns into

x̂′i = S? x̂i − x?i Ŝ
(S?)2 . (4.43)

For the cross spectra we then find

Px′ix′j (ω) =
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which can be rewritten as

Px′ix′j (ω) = 1
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. (4.45)
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We have introduced the notation Yij R = Re [Yij] and Yij I = Im [Yij] with

Yij(ω) =(ω2 + iω (κ− Aj) + κAj)κpi(
ω2 + A2

j

)
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{
κχjpj
Aj

(
DPB −

∑
a

βaRe
〈
ν̂aB̂

〉

−β
∑
k

Re
〈
η̂kB̂

〉)
ωIm

〈
η̂jB̂

〉
−DRe

〈
η̂jB̂

〉

−κβpj
[
C

(
χj
Aj

+ X?

D

)
− 2 + κ

Aj
+ κ

∑
k

(
pk
Ak

)]}

+ i
[ω2 + iω (κ− Aj) + κAj]κpi(

ω2 + A2
j

)
Ai[

κχjpj
Aj

(
ωPB +

∑
a

βaIm
〈
ν̂aB̂

〉
+ β

∑
k

Im
〈
η̂kB̂

〉)

−ωRe
〈
η̂jB̂

〉
−D Im

〈
η̂jB̂

〉 ]
. (4.46)

From these, we can find the phase-lag as

Lx′ix′j (ω) = tan−1
S?Im

[
Pxixj

]
− Yij I−Yji I

β(ω2+κ2)

S?Re
[
Pxixj

]
+ κ2pipj

S?AiAj
PS − Yij R+Yji R

β(ω2+κ2)

. (4.47)

This expression was used to obtain the analytical predictions shown in Fig. 4.9b.
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4.10 Appendix D: Table of Symbols

Defined
Meaning in Eqs.

Sy
m

bo
ls

N Total population size.
K Number of susceptible subgroups.
M Number of infective subgroups.
Si Susceptible subgroup i.
Ia Infective subgroup a.
ni Number of individuals of type Si.
ma Number of individuals in class Ia.
pi Probability of being assigned a susceptibility

χi at birth.
qa Probability of being assigned an infectiousness

βa upon infection.
χi Susceptibility of subgroup i.
βa Infectiousness of subgroup a.
ρ Recovery rate.
κ Death/birth rate.
ξ Spontaneous infection rate.
χ Mean susceptibility at birth. (2)
X Aggregate susceptibility of the population. (2)
β Mean infectiousness upon infection. (3)
B Total ‘infective power’ in the population. (3)
xi Fraction of susceptible individuals in

subgroup i in the limit of infinite system size.
ya Fraction of infected individuals in subgroup

a in the limit of infinite system size.
S Total density of susceptible individuals in

the population. (5)
I Total density of infective individuals in

the population. (5)
Xn Nth moment of the aggregate susceptibility.
χn Nth moment of susceptibilities at birth.

Ai, C, D, E Notation introduced to simplify equations. (15)
Pz Power spectral density of z. (16)
g Notation introduced to simplify equations. (17)
ωd Dominant cycle frequency. (18)
β2 Second moment of the infectiousness

assigned upon infection. (19)
S Sharpness of the PSD. (20)
Lz1z2 Phase lag between signals z1 and z2. (21)
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Meaning Defined in Eqs.
A

cc
en

ts

χ Expected value at birth or upon infection. (2), (3)
ẋ Deterministic evolution (time derivative). (4), (6), (7)
x? Deterministic fixed point. (9), (10)
x̃ Stochastic fluctuations about the deterministic

fixed point. (11), (12)
x̂ Fourier transform with respect to time. (13), (14)
x∗ Complex conjugate.
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[9] Lafuerza, Luis F. and Raúl Toral (2013), ‘On the effect of heterogeneity in stochastic
interacting-particle systems’, Scientific Reports 3 (1):1189, doi: 10.1038/srep01189.

[10] Bauch, Chris T. et al. (2005), ‘Dynamically Modeling SARS and Other Newly Emerging
Respiratory Illnesses’, Epidemiology 16 (6):791–801, doi: 10.1097/01.ede.0000181633.
80269.4c.

[11] Smith, David L. et al. (2005), ‘The entomological inoculation rate and Plasmodium
falciparum infection in African children’, Nature 438 (7067):492–495, doi: 10.1038/
nature04024.

[12] Heldt, Frank S. et al. (2015), ‘Single-cell analysis and stochastic modelling unveil large
cell-to-cell variability in influenza A virus infection’, Nature Communications 6:8938,
doi: 10.1038/ncomms9938.

156

https://doi.org/10.1007/b98868
https://doi.org/10.1007/978-1-4612-1158-7
https://doi.org/10.1126/science.1070919
https://doi.org/10.1038/nature02257
https://doi.org/10.1007/s10051-002-8996-y
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1038/srep01189
https://doi.org/10.1097/01.ede.0000181633.80269.4c
https://doi.org/10.1097/01.ede.0000181633.80269.4c
https://doi.org/10.1038/nature04024
https://doi.org/10.1038/nature04024
https://doi.org/10.1038/ncomms9938


Bibliography

[13] Scott, Matthew, Brian Ingalls and Mads Kærn (2006), ‘Estimations of intrinsic and
extrinsic noise in models of nonlinear genetic networks’, Chaos: An Interdisciplinary
Journal of Nonlinear Science 16 (2):026107, doi: 10.1063/1.2211787.

[14] Swain, Peter S., Michael B. Elowitz and Eric D. Siggia (2002), ‘Intrinsic and extrinsic
contributions to stochasticity in gene expression’, Proceedings of the National Academy
of Sciences 99 (20):12795–12800, doi: 10.1073/pnas.162041399.

[15] Hilfinger, Andreas and Johan Paulsson (2011), ‘Separating intrinsic from extrinsic
fluctuations in dynamic biological systems’, Proceedings of the National Academy of
Sciences 108 (29):12167–12172, doi: 10.1073/pnas.1018832108.

[16] Alonso, David, Alan J. McKane and Mercedes Pascual (2007), ‘Stochastic amplification
in epidemics’, Journal of The Royal Society Interface 4 (14):575–582, doi: 10.1098/
rsif.2006.0192.

[17] Olsen, Lars F. and William M. Schaffer (1990), ‘Chaos versus noisy periodicity: alternative
hypotheses for childhood epidemics’, Science 249 (4968):499–504, doi: 10.1126/
science.2382131.

[18] Black, Andrew J. et al. (2009), ‘Stochastic fluctuations in the susceptible-infective-
recovered model with distributed infectious periods’, Physical Review E 80 (2):021922,
doi: 10.1103/PhysRevE.80.021922.

[19] Rozhnova, Ganna and Ana Nunes (2009a), ‘Fluctuations and oscillations in a simple
epidemic model’, Physical Review E 79 (4):041922, doi: 10.1103/PhysRevE.79.041922.

[20] McKane, Alan J. and Timothy J. Newman (2005), ‘Predator-prey cycles from resonant
amplification of demographic stochasticity’, Physical Review Letters 94 (21):1–4, doi:
10.1103/PhysRevLett.94.218102.

[21] Bjørnstad, Ottar N. and Bryan T. Grenfell (2001), ‘Noisy clockwork: time series analysis
of population fluctuations in animals.’, Science 293 (5530):638–643, doi: 10.1126/
science.1062226.

[22] Bladon, Alex J., Tobias Galla and Alan J. McKane (2010), ‘Evolutionary dynamics,
intrinsic noise, and cycles of cooperation’, Physical Review E 81 (6):1–14, doi: 10.
1103/PhysRevE.81.066122.

[23] Samoilov, Michael, Sergey Plyasunov and Adam P. Arkin (2005), ‘Stochastic amplification
and signaling in enzymatic futile cycles through noise-induced bistability with oscillations’,
Proceedings of the National Academy of Sciences 102 (7):2310–2315, doi: 10.1073/
pnas.0406841102.

[24] Bolker, Benjamin M. and Bryan T. Grenfell (1993), ‘Chaos and biological complexity
in measles dynamics’, Proceedings of the Royal Society B: Biological Sciences 251
(1330):75–81, doi: 10.1098/rspb.1993.0011.

[25] Schenzle, Dieter (1984), ‘An age-structured model of pre- and post-vaccination measles
transmission’, Mathematical Medicine and Biology 1 (2):169–191, doi: 10.1093/imammb/
1.2.169.

[26] Earn, David J. D. et al. (2000), ‘A simple model for complex dynamical transitions in
epidemics’, Science 287 (5453):667–670, doi: 10.1126/science.287.5453.667.

[27] Stone, Lewi, Ronen Olinky and Amit Huppert (2007), ‘Seasonal dynamics of recurrent
epidemics’, Nature 446 (7135):533–536, doi: 10.1038/nature05638.

[28] Diekmann, Odo, Johan A. P. Heesterbeek and Johan A. J. Metz (1990), ‘On the definition
and the computation of the basic reproduction ratio R 0 in models for infectious diseases

157

https://doi.org/10.1063/1.2211787
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.1018832108
https://doi.org/10.1098/rsif.2006.0192
https://doi.org/10.1098/rsif.2006.0192
https://doi.org/10.1126/science.2382131
https://doi.org/10.1126/science.2382131
https://doi.org/10.1103/PhysRevE.80.021922
https://doi.org/10.1103/PhysRevE.79.041922
https://doi.org/10.1103/PhysRevLett.94.218102
https://doi.org/10.1126/science.1062226
https://doi.org/10.1126/science.1062226
https://doi.org/10.1103/PhysRevE.81.066122
https://doi.org/10.1103/PhysRevE.81.066122
https://doi.org/10.1073/pnas.0406841102
https://doi.org/10.1073/pnas.0406841102
https://doi.org/10.1098/rspb.1993.0011
https://doi.org/10.1093/imammb/1.2.169
https://doi.org/10.1093/imammb/1.2.169
https://doi.org/10.1126/science.287.5453.667
https://doi.org/10.1038/nature05638


Chapter 4. The effects of heterogeneity on stochastic cycles in epidemics

in heterogeneous populations’, Journal of Mathematical Biology 28 (4):365–382, doi:
10.1007/BF00178324.

[29] Hethcote, Herbert W. and James W. Van Ark (1987), ‘Epidemiological models for
heterogeneous populations: proportionate mixing, parameter estimation, and immun-
ization programs’, Mathematical Biosciences 84 (1):85–118, doi: 10.1016/0025-
5564(87)90044-7.

[30] Nold, Annett (1980), ‘Heterogeneity in disease-transmission modeling’, Mathematical
Biosciences 52 (3-4):227–240, doi: 10.1016/0025-5564(80)90069-3.

[31] Hickson, Roslyn I. and Mick G. Roberts (2014), ‘How population heterogeneity in
susceptibility and infectivity influences epidemic dynamics’, Journal of Theoretical
Biology 350:70–80, doi: 10.1016/j.jtbi.2014.01.014.

[32] Novozhilov, Artem S. (2012), ‘Epidemiological models with parametric heterogeneity: De-
terministic theory for closed populations’, Mathematical Modelling of Natural Phenomena
7 (3):147–167, doi: 10.1051/mmnp/20127310.

[33] Keeling, Matthew J. (1999), ‘The effects of local spatial structure on epidemiological
invasions’, Proceedings of the Royal Society B: Biological Sciences 266 (1421):859–867,
doi: 10.1098/rspb.1999.0716.

[34] Rohani, Pejman (1999), ‘Opposite patterns of synchrony in sympatric disease metapop-
ulations’, Science 286 (5441):968–971, doi: 10.1126/science.286.5441.968.

[35] Hagenaars, Thomas J., Christl A. Donnelly and Neil M. Ferguson (2004), ‘Spatial
heterogeneity and the persistence of infectious diseases’, Journal of Theoretical Biology
229 (3):349–359, doi: 10.1016/j.jtbi.2004.04.002.

[36] Yu, Jiajia, Daqing Jiang and Ningzhong Shi (2009), ‘Global stability of two-group SIR
model with random perturbation’, Journal of Mathematical Analysis and Applications
360 (1):235–244, doi: 10.1016/j.jmaa.2009.06.050.

[37] Colizza, Vittoria et al. (2006), ‘The role of the airline transportation network in the
prediction and predictability of global epidemics’, Proceedings of the National Academy
of Sciences 103 (7):2015–2020, doi: 10.1073/pnas.0510525103.
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Chapter 5

Consensus and diversity in

multi-state noisy voter models
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Chapter 5. Consensus and diversity in multi-state noisy voter models

Abstract

We study a variant of the voter model with multiple opinions; individuals can

imitate each other and also change their opinion randomly in mutation events.

We focus on the case of a population with all-to-all interaction. A noise-driven

transition between regimes with multi-modal and unimodal stationary distributions

is observed. In the former, the population is mostly in consensus states; in the

latter opinions are mixed. We derive an effective death-birth process, describing

the dynamics from the perspective of one of the opinions, and use it to analytically

compute marginals of the stationary distribution. These calculations are exact for

models with homogeneous imitation and mutation rates, and an approximation if

rates are heterogeneous. Our approach can be used to characterize the noise-driven

transition and to obtain mean switching times between consensus states.

5.1 Introduction

The Voter Model (VM) was initially introduced as a model for spatial conflict [1, 2].

In its most basic variant, the model describes a population of voters with pairwise

interactions. Each individual can be in one of two states. In an interaction, one

individual copies the state of another. If the population is finite, this process continues

until all individuals have reached the same state; no further dynamics are then possible.

This model has been studied in the context of different applications. For example,

variants of the VM have been used to describe autocatalytic reactions [3], herding in

financial markets [4], opinion dynamics [5], and the evolution of language [5, 6]. In the

context of biological evolution, the VM is closely related to the Moran process with

neutral selection [7]. In each of these applications the states an individual can take

represent different properties. They can be opinions on a given issue, trading behaviors

in a model of a financial market, or different species in a biological context.

Although the models used in these applications share common characteristics,

different research communities have focused on different aspects of the VM and its

applications. For the purpose of opinion dynamics, for example, one may be interested

in whether or not a population of agents reaches consensus and, if they do, how long
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this takes. In economics one may ask how copying of trading behaviour leads to herding,

and in the context of linguistics one might be interested in understanding how features

of languages spread and organise in space [8]. Applications of the VM include the use

to model actual elections [9].

The VM is also of interest from a point of view of statistical mechanics. The model

is similar to spin models in traditional statistical physics, except that it is defined

dynamically and not through an energy function. As such, the VM has become one

of the most studied models of non-equilibrium statistical physics. The two-state VM

in two dimensions has been shown to exhibit logarithmic coarsening [10]. This is in

contrast for example with Glauber dynamics for the Ising model, in which coarsening

is driven by surface tension and growth laws are algebraic. Multi-state voter models,

on the other hand, can show algebraic coarsening [11]. The traditional VM presents

an interesting class of dynamics, with two absorbing states and Z2-symmetry. It has

been shown to define its own universality class [10, 12], and field theories have been

devised to study its critical point [13]. A further aspect attracting attention in the

physics community has been the coupled dynamics of the voter model and interaction

networks between agents. Such co-evolutionary processes have, been shown to lead to

fragmentation transitions [14, 15], enriching the number and nature of the absorbing

states of the VM.

One interesting variant in the class of voter dynamics is the so-called ‘noisy voter

model’ [7]. The terminology might at first sound surprising – the process of opinion

changes through interaction in the original VM is already stochastic. However, it allows

for absorbing states, in which no further dynamics can occur.

What is meant by the term ‘noisy’ in this context is that, in addition to the

interaction with other individuals, random changes of opinion can occur; they do not

require interaction with another agent, and are sometimes also described as ‘mutations’.

These random changes drive the system away from consensus; there are no absorbing

states.

As a consequence, two effects compete in the noisy voter model: a drive towards

consensus through interaction, and spontaneous opinion changes promoting coexistence.

This leads to a transition between a regime in which the system is mostly ordered (i.e.,

all agents are of the same opinion), and another regime in which both opinions are
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represented in the system. This phenomenon is known as ‘noise-induced bistability’ and

has been investigated in the context of autocatalytic reactions, surface-reaction models,

decision making of insects, and biochemical reactions [16–22]. Recently, transitions of

this type have also been studied in noisy voter models on complex networks [23–25].

Most of the existing work on models of this type focuses on the case in which

individuals can take two different states; the transition is then between a phase in

which the stationary distribution of individuals is unimodal and another in which it is

bimodal; hence the term ‘noise-induced bistability’.

The aim of the present work is to generalise the model to the case of multiple

opinion states. In the absence of mutation there are then multiple absorbing states.

As we demonstrate, the inclusion of spontaneous state changes leads to noise-induced

multi-stability. We investigate this numerically and analytically. To do this, we

compute marginals of the stationary distribution of the model, as well as switching

times between the different consensus states. Our analysis focuses on the case of a

‘mean-field’ geometry, that is, a population in which all pairs of individuals can interact

at all times.

The remainder of the paper is organized as follows. In Sec. 5.2 we define the model

and introduce the general notation. In Sec. 5.3 we derive an effective master equation

for the dynamics of a single species and use it to describe marginals of the stationary

distribution of the multi-species model; closed-form analytical expressions are obtained.

This approach is exact if all species have the same imitation and mutation rates, and an

approximation otherwise. We also estimate switching times between different consensus

states. Sec. 5.4 focuses on the model with homogeneous imitation and mutation rates.

We obtain analytical predictions for its phase diagram and test these predictions against

simulations. In Sec. 5.5 we carry out a similar analysis for a multi-state model with

heterogeneous rates. Sec. 5.6 contains a discussion of our results and an outlook on

future work.
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5.2 Definition of the model and noise-induced

multi-stability

5.2.1 Model definition and notation

We consider a population of N individuals; each can be of one of m types (m ∈ N). In

the context of social dynamics these would represent different opinions; in evolutionary

biology they may stand for different species. Our aim is not to study a specific

application, but the general structure that emerges from multi-state noisy voter models;

we will therefore use the terms opinions, species and types interchangeably.

The population is unstructured, that is, any individual can interact with any other

member of the population at all times. We write ni for the number of individuals of

species i, where i ∈ {1, . . . ,m}; these variables vary as the population evolves. At each

time the state of the system is fully specified by the vector n = (n1, . . . , nm). The size

of the population is constant, i.e., we have ∑m
i=1 ni = N at all times; the state space is

a simplex in m-dimensions.

The dynamics of the model are defined by the following imitation and mutation

reactions:

Xi +Xj
rji−→ 2Xi

Xj
εji−→ Xi. (5.1)

The notation Xi represents an individual of species i, and the first reaction describes

the process in which an individual of opinion j imitates an individual of opinion i.

We write rji for the corresponding imitation rate; the exact interpretation of these

coefficients will be made more precise below in Eq. (5.3). In the context of evolutionary

dynamics reactions of this type represent a death-birth event: an individual of type

j dies, and is replaced by the offspring of an individual of species i. This offspring is

also of type i. To keep the model general, we allow this rate to depend on both species

involved, j and i.

The second reaction in Eq. (5.1) describes spontaneous changes of opinion, i.e.,

an individual of type j turns into an individual of type i. The rate with which this

process occurs is εji, where we again include possible dependence on j and i. In the

context of population dynamics it may be more realistic to incorporate mutation in
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the reproduction events; that is, one could consider models in which the offspring

of an individual does not necessarily belong to the same species as the parent. The

effect of both ways of introducing random state changes is similar though: they allow

departure from states in which the entire population is made up of individuals of one

single species. We will refer to instances of the second process in Eq. (5.1) as ‘mutation

events’.

The dynamics are defined in continuous time, and can be described by the master

equation

∂tP (n, t) =
m∑
i=1

m∑
j=1

(
E−1
i Ej − 1

)
[Tj→i(n)P (n, t)] , (5.2)

where P (n, t) is the probability of finding the population in state n at time t. We

have written Ei for the creation operator for individuals of species i; it is defined by

its action Eif(n1, . . . , ni, . . . , nm) = f(n1, . . . , ni + 1, . . . , nm) on functions f(n) of the

state of the population. The quantity Tj→i(n) is the rate with which individuals of

type j are converted into individuals of type i if the system is currently in state n;

these rates are given by

Tj→i(n) = rji
ninj
N

+ εjinj. (5.3)

We note that this is the overall rate for such events in the population, and not a

per capita rate. As it is common practice, the scaling with the population size, N , is

such that Tj→i = O(N). This ensures that O(N) events occur per unit time; in other

words, time is measured in generations, rather than individual events.

Among the states of the population there are states of complete consensus, in the

language of opinion dynamics. This is the case when ni = N for one opinion i, and

nj = 0 for all j 6= i. In the context of evolutionary dynamics these are monomorphic

states; one species has taken over the entire population. These consensus states are

not absorbing when mutation rates εji are non-zero. As we will discuss next, it is the

interplay between imitation, mutation and the associated intrinsic noise that generates

the interesting behaviour of the model.

5.2.2 Noise-induced multistability

Simulations of the model can be carried out efficiently using the standard Gillespie

algorithm [26, 27]. Different types of outcomes are illustrated in Fig. 5.1. We show the
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Figure 5.1: Sample trajectories and stationary distribution. Panels (a), (b), (d)
and (e) show single realizations of the model dynamics; the distributions in panels (c)
and (f) are from an average over many realizations. Panels (a) and (d) are for m = 2; (b)
and (e) for m = 5; (c) and (f) for m = 3. The upper panels (a)–(c) are for a population
size of N = 50; the system is frequently in states of full consensus. In the lower panels
(d)–(f) N = 500, and diversity of opinions is observed; states of consensus are rarely
visited. The imitation and mutation rates are uniform across species; we use r = 1 and
ε = 10−2/(m− 1).

time evolution of the fraction of individuals in each species, xi = ni/N , in individual

simulations of models with m = 2 and m = 5 species. In panels (a)–(c) the population is

of size N = 50, and the population is seen to visit states of complete consensus relatively

frequently. These are not permanent; instead, the population switches between different

consensus states. In panels (d)–(f) the population size is N = 500. Consensus may

occasionally be reached, but other than that the system is mostly found in states of

diversity, where different opinions are represented at fluctuating frequencies. Panels (c)

and (f) show the multi-modal and unimodal stationary distributions for a model with

m = 3.

5.3 Reduction to effective single-opinion dynamics

We proceed to characterise the multi-state noisy VM analytically. To do this, we

first derive an effective death-birth process for the individuals of a particular species.

We then study the shape of the stationary distribution resulting from these effective

dynamics. We also use the single-species dynamics to obtain information about typical

switching times between consensus states.
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5.3.1 Effective single-species master equation

We focus on a particular species i and the dynamics of the number of individuals ni
of this species. Events in the population dynamics convert individuals of one species

into individuals of another. Many of these events will not involve species i, and are

therefore not relevant for the effective dynamics of species i. In the following, we only

consider events which either increase or decrease ni.

The overall rate with which individuals are converted to species i is

T+
i (n) ≡

∑
j 6=i

Tj→i(n), (5.4)

where Tj→i(n) is the conversion rate from j to i, as defined in Eq. (5.3). Similarly, the

rate with which individuals of species i are converted into any other type is

T−i (n) ≡
∑
j 6=i

Ti→j(n). (5.5)

We note that these rates are in general not specified by ni alone; instead they depend

on the entire state vector n. The rates in Eqs. (5.4) and (5.5) by themselves, therefore,

do not describe a well-defined stochastic process for species i.

Inserting the definitions from Eq. (5.3) into the expressions in Eqs. (5.4) and (5.5),

one finds

T+
i (n) =

∑
j 6=i

(
rji
ninj
N

+ εjinj

)
,

T−i (n) =
∑
j 6=i

(
rij
ninj
N

+ εijni

)
. (5.6)

Our analysis in following sections is based on the assumption that we can formulate

a closed death-birth process for species i, with birth and death rates T±i (ni), dependent

only on ni. As we will describe below, an exact description of this form can be obtained

for the case of homogeneous rates across opinions (see Sec. 5.4). If the imitation or

mutation rates are heterogeneous this approach constitutes an approximation (see

Sec. 5.5).

5.3.2 Stationary distribution for individual opinions

At long times the m-species distribution P (n, t) becomes time-independent; we write

Pst(n) for the stationary distribution. In principle, this stationary distribution can be
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obtained from the linear set of equations for Pst, obtained by setting the right-hand

side of the master equation (5.2) to zero. In practice, it is very difficult to evaluate this

analytically. However, as we will describe next, we can obtain the marginal distributions

Pi(ni) = ∑
n−i

Pst(n) in some cases; the notation ∑n−i
. . . in this expression indicates

a sum over all variables n1, . . . , nm, except ni.

We assume that we can formulate a closed death-birth process for species i, with

birth and death rates T±i (ni). The stationary distribution of this process, is then the

marginal Pi, and it is given by

Pi(ni) =
∏ni
k=1

T+
i (k−1)
T−i (k)

1 +∑N
k=1

∏k
`=1

T+
i (`−1)
T−i (`)

. (5.7)

This expression for the marginal stationary distribution can be obtained by standard

methods from the backward master equation (see for example [28, 29]). We will test

these predictions against simulations for the homogeneous and heterogeneous noisy

voter models in Sections 5.4 and 5.5. In the figures and in Appendix 5.7 we express

the marginals of the stationary distribution in terms of xi = ni/N ; we then use the

notation Pi(xi).

5.3.3 Noise-induced transition

As discussed above, noisy voter models show a transition between parameter ranges

with unimodal and multi-modal stationary distributions. This transition is noise

induced, and occurs as the system size is varied. As a consequence, it is useful to

identify a critical population size Nc which separates the two types of outcomes. In

the case of only two species (m = 2) this is particularly straightforward, as there exists

a population size for which the stationary distribution becomes flat. This population

size has been used to define the transition point in refs. [20, 21]; see also [23].

In the multi-state case (m > 2) the situation is more complicated; the marginal

distributions for the {xi} do not assume a flat shape for any population size, as we

will discuss below. In order to characterise the transition, we therefore consider the

shape of the distribution Pi(ni) at the left and right boundaries of phase space, i.e.,

near ni = 0 and ni = N , respectively. Specifically we find the population sizes NL and

NR for which Pi(0) = Pi(1) and Pi(N − 1) = Pi(N), respectively. These can be used
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to separate the unimodal and multi-modal regimes. We will discuss this in more detail

for the homogeneous and heterogeneous multi-state models in Secs. 5.4 and 5.5.

5.3.4 Switching times between states of consensus

The system is said to have reached consensus on opinion i if ni = N , implying nj = 0 for

all j 6= i. We refer to this as consensus state i. If the population is not in a consensus

state, then at least two of the nj are non-zero, i.e., several opinions are represented in

the population; we call these situations mixed states. As shown in Fig. 5.1, the system

can transition between consensus states, with intermediate periods in mixed states. We

will refer to this as ‘switching’ between consensus states, and we proceed to calculate

the typical time between such switches.

In order to define switching times, we first introduce the concept of an ‘arrival’ at

a consensus state. We say that an arrival at consensus state i occurs at time t if the

system transitions from a mixed state into consensus state i at time t, and if the last

consensus state the population visited before t was not i. This is illustrated in Fig. 5.2.

We define the mean switching time τ as the average time that elapses between two

subsequent arrivals. By definition, these arrivals are at two different consensus states.

This is again illustrated in Fig. 5.2. The quantity τ−1 is the mean number of arrivals

per unit time.

In order to compute τ , we generalized the procedure used in ref. [21]. First, we

consider the mean time it takes a single species j to reach state nj = N starting from

not an
arrival

not an
arrival

1 3 3 32 4 4 1

Figure 5.2: Illustration of the concepts of arrival and switching time. We
show the time line of a model with m ≥ 4 opinion states. Times at which the system
reaches a consensus state are marked above the time axis by circled numbers. Times
during which the system resides at a consensus state are indicated as filled bars on the
time axis. Between these times the population is in mixed states. Arrivals at a new
consensus state, as defined in the text, are marked by stars below the time axis. The
switching time τ is the mean time between subsequent arrivals at new consensus states.
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nj = 0; we denote this time by t0→Nj . This is a standard hitting-time problem, and we

find [29, 30]

t0→Nj =
N−1∑
k=0

k∑
`=0

1
T+
j (`)

k∏
`′=`+1

T−j (`′)
T+
j (`′) . (5.8)

To proceed, we now assume that the population is currently in consensus state i.

The mean time it takes any of the species j 6= i to reach the state nj = N is then given

by t0→Nj . This expression is exact, provided closed-form processes can be formulated

for the individual species.

To be able to describe the switching time of the multi-state model, we now treat

the processes for each of the species j 6= i as independent. We associate each process

with a ‘clock’, and say that the clock for species j ‘ticks’ when nj = N . We assume

that the rate with which this happens is constant in time for each process, and given

by 1/t0→Nj . This is an approximation. First, due to the coupling of the different

species, the processes for the different types j are in general not independent. Second,

the distribution of waiting times until state nj = N is reached is not exponential for

one-step Markov processes of the type above; instead, the hitting time can be written

as the sum of multiple exponential random variables [31, 32].

Proceeding nevertheless with this approximation, the total rate for any of the

clocks j 6= i to tick (i.e., any species j 6= i to take over the population) is given by∑
j 6=i(t0→Nj )−1. As a consequence, we find the mean waiting time until any of the

consensus states j 6= i is reached as

τi = 1∑
j 6=i(t0→Nj )−1 . (5.9)

This approximates the average time for the system to reach any consensus state j 6= i,

if it is currently in consensus state i.

The mean time between two subsequent arrivals can then be written as

τ =
m∑
i=1

piτi, (5.10)

where pi denotes the proportion of the number of arrivals at consensus state i among

the total number of arrivals. In other words, of all arrivals the system makes, a fraction

pi occurs at consensus state i. Evidently, one has ∑m
i=1 pi = 1.

We now proceed to estimate the coefficients pi. To do this, we first consider

the typical time between two arrivals at the same consensus state i. This can be
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approximated as
↔
τ i ≡ τi + t0→Ni . (5.11)

This expression can be understood by first assuming that the population is in consensus

state i. The term τi in Eq. (5.11) is the mean time that elapses until the system reaches

any of the other consensus states, j 6= i. At that point there will be no individuals of

type i (ni = 0). The second term, t0→Ni , is the average time required to reach consensus

state i again.

The quantity pi in turn is proportional to the number of arrivals at i per unit time,

given by (↔τi)−1. With appropriate normalization, we find

pi = (↔τ i)−1∑m
j=1(↔τ j)−1

. (5.12)

To summarise, the overall switching time is obtained as

τ =
∑
i

 (↔τ i)−1[∑
j(
↔
τ j)−1

] [∑
j 6=i(t0→Nj )−1

]
 , (5.13)

using the expressions in Eqs. (5.8), (5.9), and (5.11).

5.4 Homogeneous model

We first consider the fully homogeneous set-up. If the rates are homogeneous across

species, i.e., if rij ≡ r and εij ≡ ε, the expressions in Eq. (5.6) reduce to

T+
i (ni) =ni(N − ni)

N
r + (N − ni)ε,

T−i (ni) =ni(N − ni)
N

r + ε(m− 1)ni. (5.14)

In particular, the T±i are now fully specified by ni alone. Species i undergoes a

well-defined death-birth process with rates given by Eq. (5.14). All species j 6= i,

can be lumped together into one ‘other species’ and there are N − ni individuals of

this other species. We note that no approximations have been made in deriving this

result. As far as the marginal process for any particular species i is concerned, the

dynamics effectively reduces to a two-species process, for which analytical descriptions

are available (see e.g. [28]). We will use these tools to calculate stationary distributions

for individual species, as well as switching times between consensus states.
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5.4. Homogeneous model

5.4.1 Marginals of the stationary distribution

For uniform rates, the marginal probability distributions Pi(ni) are identical across

species and can be obtained by using the rates from Eqs. (5.14) in Eq. (5.7). These

closed-form expressions can be evaluated numerically.

Results can be found in Fig. 5.3. In panel (a) we show the case of m = 2 species,

already discussed in refs. [20, 21]. This is shown mainly for comparison.

Given that n2 = N − n1, the model with two species is, by construction, described

by a single death-birth process. As seen in the figure, simulation results and theory

are in agreement. For N > Nc the resulting distribution is unimodal; for N < Nc a

bimodal shape is observed. At the critical population size N = Nc the distribution is

flat; this transition point is Nc = r/ε [20, 21]. The stationary distribution is symmetric

about x = 1/2 for all N .

In panel (b) of Fig. 5.3 we show the model with m = 5 opinion states. Again,

simulations and theoretical predictions are in agreement. As in the case of two states,

a transition from a unimodal to a bimodal marginal distribution is observed as the

population size is decreased. Bimodality in the marginal single-species distributions

indicates multi-modality in the state space of all m species, as illustrated in Fig. 5.1(c)

for m = 3. In contrast with the two-species case, the marginal distributions for the

abundances of individual species never becomes flat in Fig. 5.3(b). We also note that

the marginal distributions do not exhibit any particular symmetry, despite the fact

10 -8
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0 0.25 0.5 0.75 1

(a)
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Figure 5.3: Stationary distribution of the model with homogeneous rates
across species. Panel (a) is for m = 2; panel (b) shows the marginal distribution for
single species for the model with m = 5. The different curves are for different population
sizes in the range N = 50 (top) to N = 900 (bottom). Markers are from simulations;
lines show the analytical predicitions from the theory described in the text. Remaining
model parameters are r = 1, and ε = 10−2/(m− 1).
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Chapter 5. Consensus and diversity in multi-state noisy voter models

that the imitation and mutation rates are homogeneous across species.

5.4.2 Phase diagram

As mentioned in Sec. 5.3.3, we use the population sizes at which Pi(0) = Pi(1) or

Pi(N − 1) = Pi(N) to characterise the transition between the unimodal and multi-

modal regimes. The condition for the left edge, Pi(0) = Pi(1), translates into

T+
i (0) = T−i (1); using Eqs. (5.14) one finds the physical solution

NL =
[1 + ε̃tot] +

√
[1 + ε̃tot]2 − 4ε̃
2ε̃ , (5.15)

where we have written ε̃tot = (m− 1)ε/r, and ε̃ = ε/r.

Similarly, requiring Pi(N−1) = Pi(N) at the right edge yields T+
i (N−1) = T−(N),

from which we obtain

NR =
[1 + ε̃] +

√
[1 + ε̃]2 − 4ε̃tot

2ε̃tot
. (5.16)

For m = 2 this reduces to the result in refs. [20, 21], i.e., NL = NR = r/ε.

The resulting expressions for NL and NR only depend on the relative mutation

rate ε/r. This is due to the fact that, up to a re-scaling of time, the reaction rates

in Eq. (5.14) only depend on the ratio of ε and r. We also note that Eqs. (5.15) and

(5.16) are symmetric with respect to exchanging ε̃ and ε̃tot. This is a consequence of

the same symmetry in the pairs {T+(0), T−(N)} and {T−(1), T+(N − 1)}. We also

notice that NL ≈ ε̃−1 and NR ≈ (ε̃tot)−1 when ε/r � 1.

The phase diagram resulting from Eqs. (5.15) and (5.16) is depicted in Fig. 5.4.

We use r = 1 in both panels. In panel (a) we show the population sizes NR and NL as

a function of the number of species, m, at a fixed mutation rate ε. The upper solid

line indicates NL and the lower solid line is NR. Results from simulations are shown as

markers; as seen in the figure, theoretical predictions are in agreement with simulations.

We note that, in Fig. 5.4(a), NL is nearly flat as a function of the number of species

m. This is in line with the behaviour of NL ≈ r/ε for small mutation rates, and

can be further understood as follows. The shape of the stationary state distribution

near ni = 0 is largely determined by the frequency of mutation events that generate

new individuals of type i. This mutation rate is given by Nε; if ni = 0, each of the
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Figure 5.4: Phase diagram for the model with homogeneous rates. The critical
system size is plotted as a function of the number of strategies. The continuous blue
line is NL as calculated from Eq. (5.15), and the purple continuous line shows NR as
obtained from Eq. (5.16). The remaining lines are from a diffusion approximation to the
model, as discussed in Appendix 5.7. Markers show results from simulations. Mutation
rates are ε = 10−2 in panel (a), and ε = 10−2/(m− 1) in panel (b). We set r = 1 in both
panels.

N individuals in the population mutate into i with rate ε [see Eq. (5.14)]. This is

the case independently of the number of species m. Therefore, we expect NL to be

approximately independent of m, as seen in Fig. 5.4(a).

Near ni = N , however, the shape of the distribution is determined by the rate with

which individuals of type i mutate into any other species. If ni = N , each of the N

individuals mutates into any one of the species j 6= i with rate ε; the total rate of

mutation events out of species i is then Nε(m− 1) [see again Eq. (5.14)]. For fixed ε,

this total rate increases as either N or m− 1 are increased. Therefore, we expect NR to

be a decreasing function of m, which is confirmed in the phase diagram in Fig. 5.4(a).

This is again consistent with the behaviour NR ≈ r/[(m− 1)ε] for small mutation rates.

In panel (b) of Fig. 5.4 we show the phase diagram for the choice ε = 10−2/(m− 1),

i.e., for a fixed value of ε̃tot = 10−2. Recalling that an individual of any species undergoes

mutations to any of the other m− 1 species with rate ε, the total mutation rate for any

individual is constant with this choice, irrespective of the number of species m. The

model shows the same three phases as in Fig. 5.4(a), but the shape of the phase lines

changes. We now find that NL is nearly independent of m, whereas NR is a decreasing

function of m. This is consistent with the interpretation given above. The shape of

the distribution near the left edge is largely determined by T+
i (0) = 10−2N/(m− 1).

An increased value of m now requires a larger value of N to keep this rate constant.
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The shape of the distribution on the right edge is governed by T−i (N) = 10−2N ; this

quantity is now independent of the number of species, m.

Similar to [21], our approach so far has not involved any continuous approximation

of the discrete state space of the population. The analysis of ref. [20], on the other

hand, is based on a diffusion approximation to the dynamics of the two-state noisy

voter model. We have extended this approach to the multi-state case. The dashed and

dotted lines in both panels of Fig. 5.4 are the predictions for NL and NR obtained from

the diffusion approximation. The mathematical details are discussed in the Appendix.

The shape of Pi(ni) in the different regimes of Fig. 5.4 can be summarised as follows

[see also Fig. 5.3(b)]: For large populations (N > NL) the single-species distribution is

unimodal (light blue shading in Fig. 5.4), taking its maximum strictly in the interior

of the interval 0 < ni < N . For intermediate sizes (NR < N < NL, unshaded) the

distribution function is monotonously decreasing in ni, taking its maximum value at

ni = 0. Finally, for small populations (N < NR) the distribution for ni is multi-modal

(dark purple shading), with maxima at ni = 0 and ni = N .

5.4.3 Switching times

In the homogeneous case, the times t0→Nj in Eq. (5.8) are uniform across species; we

write t0→N for their common value. As a consequence, we find τi = t0→N/(m− 1) in

Eq. (5.9), and therefore the mean switching time is also given by

τ = t0→N

m− 1 . (5.17)

Theoretical predictions and results from simulations are compared in Fig. 5.5. We

show data for different choices of the number of species m; as before we use r = 1. To

allow a better comparison, we plot the switching time as a function of ε̃tot = (m− 1)ε.

This ensures that the total mutation rate any one species experiences is comparable

across the different values of m.

The diagram indicates that the switching time becomes smallest at intermediate

values of the mutation rate. This can be understood as follows. For small mutation

rates, the population will reside at consensus states for relatively long times; escape

from these states occurs through mutation. These long sojourn times at the consensus

state mean that the switching time, i.e., the typical time between arrivals, will also be
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Figure 5.5: Switching times in the
model with homogeneous imitation
and mutation rates. The figure shows
the switching time τ between consensus
states for different choices of the number
of species m. Lines are from Eq. (5.17),
markers show simulation results. In all
cases N = 100 and r = 1.

large. On the other hand, for large mutation rates the population spends most of its

time in the interior of phase space. This leads to long periods in which the population

does not visit any of the consensus states. As a consequence, the switching time will

also be large. The shortest switching times are thus seen in the intermediate range of

mutation rates, when neither of these effects dominate.

5.5 Heterogeneous model

We now turn to instances of the model in which the imitation and mutation rates are

not homogeneous across species. We limit the discussion to examples in which rji = rj

and εji = εj. The approach we develop can be extended to cover more general cases;

we briefly comment on this in Appendix 5.8.

The quantity rj describes the rate with which members of species j imitate any

other species, and εj is the rate with which individuals of type j spontaneously change

to any other type. In the context of opinion dynamics, large values of rj and εj thus

describe beliefs that are only weakly held. If rj and εj are low, on the other hand, then

j describes a strong view.

5.5.1 Analytical approximation

With the above choice of reaction rates, the transition rates T±i in Eq. (5.6) can be

written as

T+
i (n) = ni(N − ni)

N
〈r〉−i (n) + (N − ni) 〈ε〉−i (n),

T−i (n) = ni(N − ni)
N

ri + εini, (5.18)
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where

〈r〉−i (n) = 1
N − ni

∑
j 6=i

njrj, (5.19)

and similarly for 〈ε〉−i (n). These quantities are weighted averages over the imitation

and mutation rates of all species other than i; 〈r〉−i for example represents the mean

rate with which opinion i is imitated by any other species. We note that 〈r〉−i (n) and

〈ε〉−i (n) depend on the variables nj (j 6= i), i.e., on the entire state of the population.

As a consequence, no closed process can be formulated for individual species for the

heterogeneous model.

We therefore resort to an approximation. We replace all {nj} with {Nx∗j} in

Eq. (5.19); x∗j represents the proportion of individuals of species j at the fixed point of

the deterministic rate equations, i.e., the dynamics in the limit of infinite populations.

These can be obtained from a Kramers–Moyal expansion of the master equation (5.2),

as detailed in Appendix 5.7. We then define

r∗−i ≡
1

1− x∗i

∑
j 6=i

x∗jrj, (5.20)

and similarly for ε∗−i. Our approximation consists in replacing the stochastic quantities

〈r〉−i (n) and 〈ε〉−i (n) with r∗−i and ε∗−i, respectively, in Eq. (5.18). In this way we

find an approximate, but closed, effective process for species i. This can then be used

to obtain marginals of the stationary distribution and switching times, following the

procedure described in Sections 5.3.2 and 5.3.4.

5.5.2 Marginals of the stationary distribution

In order to test the accuracy of the approximations described above, we consider an ex-

ample with m = 5 species. We choose the imitation rates as rj = r[1− δ + (j − 1) 2δ
m−1 ],

for j = 1, . . . ,m, and similarly εj = ε[1− δ + (j − 1) 2δ
m−1 ] for the mutation rates. The

coefficients ε and r represent the mean rates (across species) and are model parameters.

This choice indicates that the rates {rj} and {εj} are equally spaced in the intervals

[(1 − δ)r, (1 + δ)r] and [(1 − δ)ε, (1 + δ)ε], respectively. The parameter δ therefore

describes the relative spread of these rates, and quantifies the degree of heterogeneity.

We note that species j = 1 has the lowest rates εj and rj among all species (it represents

a strong opinion), and species j = m the highest (it describes a weak opinion). We
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Figure 5.6: Marginals of the stationary distribution for the heterogeneous
multi-state noisy voter model. We show the distributions Pi(xi) for the different
individual species in a model with m = 5 for different population sizes, as indicated in
the figure. Markers represent simulation results; lines are evaluations of Eq. (5.7), using
the rates in Eq. (5.18) with the approximation in Eq. (5.20). The choice of mutation and
imitation rates is as described in the text (see Sec. 5.5.2), using r = 1, (m− 1)ε = 10−2,
and δ = 0.05.

restrict our analysis to relatively small values of δ; this avoids situations in which

the population spends most of its time in one single consensus state (the one of the

strongest opinion). In such cases, it is difficult to measure stationary distributions and

switching times in simulations.

The marginals of the resulting stationary distribution are shown in Fig. 5.6. In

panel (a) the population is relatively small (N = 50), panel (b) shows an intermediate

case (N = 250), and in panel (c) N = 900. As the population size is increased,

the marginal distributions change shape. Each marginal is bimodal for very small

populations [panel (a)]; in particular, the slope of each curve is negative near ni = 0,

and positive near ni = N . For larger populations the gradient near ni = N changes

sign when a critical size, NR,i, is reached [panel (b)], similar to what was found in the

homogeneous model. Notably though the population size at which this happens can

differ across the species, as indicated by the subscript i in NR,i. If the population size

is larger still, the gradient of the marginal distribution near ni = 0 will also change

sign [panel (c)]; this occurs at population sizes NL,i, which can again vary across the

different species. Mathematically, NL,i and NR,i can be defined using conditions similar

to those in Sec. 5.4.2; NL,i is the population size for which T+
i (0) = T−i (1), and NR,i is

defined as the population size for which T+
i (N − 1) = T−i (N).
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5.5.3 Phase diagram

In Fig. 5.6(a) the population size is such that N < NR,i for all i, so that all marginals

have bimodal shape. In panel (b) we have NR,i < N < NL,i for all i, and in panel (c)

the population is sufficiently large so that N > NL,i for all i.

The resulting phase diagram for the model with heterogeneous rates is shown in

Fig. 5.7. It exhibits the three different phases outlined above. For a given value of the

mean mutation rate, the marginal distributions for all species are unimodal if N > NL,i

for all i. On the other hand, if N < NR,i for all i then all marginals are bimodal. It

is useful to define Nmin
L ≡ miniNL,i, and Nmax

L ≡ maxiNL,i, and similarly for Nmin
R

and Nmax
R . We also define Nhom

L and Nhom
R as the corresponding quantities for the

homogeneous model, with ri ≡ r, εi ≡ ε for all i [see Eqs. (5.15) and (5.16)].
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Figure 5.7: Phase diagram of the model with m = 5 species and heterogen-
eous rates. Upper and lower dashed lines show Nmax

L and Nmax
R , respectively; upper and

lower dotted lines are Nmin
L and Nmin

R . Solid lines are Nhom
L and Nhom

R (see text for defin-
itions). Markers are from simulations (with H,N,O,M showing Nmax

L , Nmin
L , Nmax

R , Nmin
R ,

respectively). Mutation and imitation rates for each species are chosen as described in
the text (see Sec. 5.5.2).

In Fig. 5.7, we plot these quantities for different choices of m. The white unshaded

region shows population sizes for which Nmin
R < N < Nmax

L . Simulation results for

Nmin
R , Nmax

R , Nmin
L , and Nmax

L are also shown, and confirm the theoretical predictions.

5.5.4 Switching times

In Fig. 5.8 we demonstrate the accuracy of the analytical approximation in Eq. (5.13)

for the switching times in the model with heterogeneous rates. Panel (a) shows the

times t0→Ni for the different species i in the model with m = 5. Imitation and mutation
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rates were chosen as described in Sec. 5.5.2. As seen in the figure, the overall agreement

is reasonable, although not quantitatively accurate. This is not surprising, as the

approximation of Eq. (5.20) is a relatively severe intervention. Nevertheless, the

approximation accurately predicts the qualitative shape of t0→Ni as a function of the

mutation rate, as well as the ordering across species. We note that the different curves

in panel (a) show species i = 1, . . . , 5 from bottom to top. This is in-line with intuition:

individuals who are of opinion i = 5 are easily convinced of other opinions and are

likely to change their views spontaneously. It is therefore difficult for this opinion

to spread in the population; as a consequence t0→N5 is large. Individuals who are of

opinion i = 1, on the other hand, do not easily change to any other opinion; this leads

to a relatively small time t0→N1 .

In Fig. 5.8(b) we show the resulting switching time τ for the model with heterogen-

eous rates. Results are reported for models with different numbers of species, m, and

as a function of (m− 1)ε as in previous figures. In each case the switching time shows

a minimum as a function of the mean mutation rate, as in the homogenous model.

It is interesting to note that the switching time is found to decrease at a fixed

mutation rate (m− 1)ε when the number of species increases. To understand this, we

observe that the spacing between rates for different species is proportional to δ/(m−1);
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Figure 5.8: Switching times in the noisy voter model with heterogeneous
rates. Panel (a) shows the quantities t0→Ni for the different species i = 1, . . . , 5 (bottom
to top) in the model with m = 5. Panel (b) shows the resulting switching time τ for
models with m = 2, 3, 4, 5 species, from top to bottom. Lines are from the analytical
approximation [Eq. (5.13) with the rates as approximated in Eq. (5.20)]; markers are
from simulations. In all cases, N = 100, δ = 0.05; imitation and mutation rates are
distributed as described in Sec. 5.5.2, using r = 1 and ε as indicated on the horizontal
axis.
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see the definitions at the beginning of Sec. 5.5.2. At fixed δ species i = 1 is thus the

strongest opinion by a large margin when m is small. In the extreme case there are

only two opinions; one is a very strong view and the other very weak in comparison.

The population visits consensus on the stronger opinion frequently, and remains there

for relatively long times. This leads to long switching times. When there are more

species available (larger values of m) and δ is kept fixed, the opinion spectrum becomes

more finely spaced and the advantage of the most strongly held view is reduced. This

leads to a reduction in switching times.

A similar effect occurs when the parameter δ is varied keeping all other model

parameters fixed. This parameter controls the spread of the rates rj and εj. We find

in simulations that switching times increase with increasing spread δ. This is again

due to an increased advantage of the most strongly held opinion.

5.6 Summary and discussion

We have introduced a multi-state noisy voter model and studied its behaviour in a

population with all-to-all interaction. It can be seen as a stylised model of imitation

and mutation processes in opinion dynamics or evolution, for example. The model

shows a noise-driven transition between a state of diversity for large populations and

a mostly ordered state in small populations. In the diverse state multiple opinions

(or species) are present in the population at most times, and the resulting stationary

distribution is unimodal, with a peak in the interior of state space. The ordered regime

occurs for small population sizes; the system is frequently found in consensus states, in

which all individuals are of the same type. Switches between these consensus states are

possible, as the dynamics do not permit absorbing states for non-zero mutation rates.

The transition between the two types of behaviour is a consequence of the balance

of mutation effects, driving the system towards mixed states, and intrinsic noise due to

the discreteness of the population. Similar to what was reported in ref. [20] for the

model with two states, this noise is strongest in the interior of phase space, and drives

the system away from mixed states. The overall amplitude of this noise scales as N−1/2;

as a consequence consensus states are more likely in small populations, when the noise

is strong.
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While this general behavior is well-known in the two-species noisy voter model, our

analysis focuses on the case of multiple species, and specifically includes models with

heterogeneity in the properties of the different species. We find that the transition

persists, and we devise a method with which to calculate marginals of the multi-species

stationary distribution. Our approach is based on formulating a reduced stochastic

process for single species. This reduction is exact if imitation and mutation rates are

homogeneous across species; in the heterogeneous model it is an approximation. We use

the effective processes for individual species to obtain analytical results for marginals

of the stationary distribution of the model. This allows us to identify the population

sizes NL and NR, which characterise the transition from a unimodal to a multi-modal

stationary distribution. The effective dynamics for single species can also be used to

approximate the typical switching times between different consensus states.

There are some limitations to our work. The most severe restriction is that, in its

present form, the approach requires all-to-all interaction; this simplifies the analysis

greatly. It is an obvious challenge to extend the results we have obtained to multi-state

noisy voter models on lattices and more complex graphs. For example, it would be

interesting to see if and how our ideas can be combined with pair-approximation methods

used recently for noisy voter models in [25]. A further limitation of our approach

consists in its inability to capture correlations between species. The method focuses on

the marginal dynamics of individual species, and so by construction correlations are

not part of the analysis. In order to include these, one next step may be to consider

the effective dynamics of pairs of species, while lumping together the remaining species.

This would generate an effective three-species model; it is not immediately clear how

to proceed with the analytical calculation of joint distributions or switching times.

However, progress might be possible in the homogeneous case and exploiting symmetries,

similar for example to what has been done in the context of cyclic dynamics in [33, 34].

Despite these limitations, we believe our work can contribute to future research

in several ways. For example, the method of decoupling multi-species dynamics into

several effective single-species processes is likely to be applicable more widely. This

includes other models of opinion dynamics and language evolution. In many of these

instances evolution is ‘neutral’, i.e., no species has an intrinsic advantage over any

other. In such homogeneous models, an approach based on effective single-species
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processes can be expected to produce accurate results. On the other hand, there are

also situations in which heterogeneity is relevant, including evolutionary processes in

biology. The method we have put forward can then be useful as an approximation.
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5.7 Appendix A: Diffusion approximation

Insight into the model can be gained by approximating the discrete degrees of freedom

by continuous variables, and the stochasticity in the dynamics as Gaussian noise. This

is based on an expansion in the inverse size of the population, known as the diffusion

approximation in mathematical biology [35]. In this Appendix we briefly summarise

the outcome of this approximation for the multi-state noisy voter model.

5.7.1 Kramers–Moyal expansion and stochastic differential

equation

Formally, the approximation results in a set of coupled stochastic differential equations

(SDEs) for the variables xi = ni/N . These can be obtained by carrying out a Kramers–

Moyal expansion of the master equation (5.2) in the limit of large, but finite population

sizes N . Alternatively, these SDEs can also be written down using Kurtz’ theorem [36],

or Gillespie’s derivation of the chemical Langevin equation for reaction systems [37].

For the multi-state noisy VM, as defined by Eqs. (5.2) and (5.3), one obtains

ẋi = fi(x) + 1√
N
ξi(t), (5.21)
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where the {ξi(t)} are zero-average Gaussian noise variables, and where

fi(x) =
∑
j

[Tj→i(x)− Ti→j(x)]. (5.22)

We have introduced the notation Tj→i(x) ≡ Tj→i(Nx)/N . The fi(x) are commonly

referred to as ‘deterministic drift’ [38]. They describe the flow of the dynamics in the

limit of infinite populations, N →∞. In this limit intrinsic stochasticity reduces to zero,

due to the pre-factor N−1/2 in Eq. (5.21). The noise variables ξi(t) are uncorrelated in

time, but correlated across components. Writing

〈ξi(t)ξj(t′)〉 = Bij(x)δ(t− t′), (5.23)

one has, for example based on Kurtz’ theorem [36],

Bij(x) =



∑
k 6=i [Ti→k(x) + Tk→i(x)] if i = j

− [Tj→i(x) + Ti→j(x)] if i 6= j

. (5.24)

See also [39] for further details in a different context. We note that ∑j Bij = 0 for all i,

reflecting the fact that the total number of individuals in the population is constant.

In explicit form, one finds the drift terms for the multi-state noisy VM as follows,

fi(x) =
∑
j 6=i

[xixj(rij − rji) + εjixj − εijxi] , (5.25)

and the correlation matrix (across components) for the variables ξi(t) has entries

Bij(x) = −xixj (rij + rji)− εijxi − εjixj, (5.26)

for i 6= j, and

Bii(x) = −
∑
j 6=i

Bij(x). (5.27)

These results are valid both in the case of homogeneous and heterogeneous imitation

and mutation rates across species.

5.7.2 Homogeneous rates

We now focus on individual species in the model with homogeneous rates. The Fokker-

Planck equation governing the marginal distribution for species i is given by
∂Pi(xi)
∂t

=− ∂

∂xi
[fi(xi)Pi(xi)]

+ 1
2N

∂2

∂x2
i

[Bii(xi)Pi(xi)] , (5.28)
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where fi(xi) and Bii(xi) are found to depend only on xi in the homogeneous model.

This reduction is similar to the one observed for the transition rates T±i in Sec. 5.4.

We note that Eq. (5.28) can be obtained from a direct Kramers–Moyal expansion of

the master equation describing the death-birth process for species i, with rates as in

Eq. (5.14).

In explicit form we have

fi(xi) = ε(1−mxi), (5.29)

and

Bii(xi) = [ε(m− 2) + 2r(1− xi)]xi + ε. (5.30)

In the homogeneous model these are the same for all species.

The stationary solution of Eq. (5.28) is found as

Pi(xi) = Ci exp
[ˆ xi

0
dy

2fi(y)−N−1B′ii(y)
Bii(y)

]
, (5.31)

where B′ii(y) is the derivative of Bii(y) with respect to y, and where Ci is a constant

ensuring normalisation.

We note that the derivative of the marginal stationary distribution with respect to

xi is given by

P ′i(xi) = Ci
[
2fi(xi)−N−1B′ii(xi)

]
/Bii(xi). (5.32)

The conditions used to define NL and NR translate into P ′i(0) = 0 and P ′i(1) = 0,

respectively. We therefore find

NL = B′ii(0)
2fi(0) , NR = B′ii(1)

2fi(1) , (5.33)

within the diffusion approximation.

From Eq. (5.33) one then obtains

NL =2 + (m− 2)ε/r
2ε/r ,

NR =2− (m− 2)ε/r
2(m− 1)ε/r . (5.34)

Results from Eqs. (5.34) are shown as dashed lines in Fig. 5.4.

In the limit of small mutation rates, ε� r, we find

NL ≈
r

ε
, NR ≈

r

(m− 1)ε. (5.35)
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This reproduces the asymptotic behaviour of NL and NR in Eqs. (5.15) and (5.16).

The results given in this section are for the case of homogeneous rates; one can

then formulate a closed Fokker-Planck equation for the marginal distribution of single

species [Eq. (5.28)]. If the imitation and mutation rates vary across species, this is no

longer possible in exact form. However, an approximate closed Fokker-Planck equation

can be formulated for Pi, following the principles of Sec. 5.5.1. The approximation

consists of replacing xj, j 6= i, with the fixed point values x∗j of the deterministic

dynamics for infinite populations. The analog of Eqs. (5.33) can then be obtained

following the steps described above.

5.7.3 Further criterion to characterise the transition

In this section we briefly discuss a further method to identify the transition between

the regimes with unimodal and multi-modal stationary distributions. This is motivated

by the procedure used in [20]. We restrict the discussion to models with homogeneous

imitation and mutation rates across species.

The solution in Eq. (5.31) can be written in two equivalent forms,

P(x) = D [A± q(x)]∓2γα

B(x)1−γ(1±α) , (5.36)

where we have dropped the index i for simplicity, and where

A =
√(

ε

r

m− 2
2 + 1

)2
+ 2ε

r
,

q(x) =2x−
(
ε

r

m− 2
2 + 1

)
,

α =

(
ε
r

+ 2
m

) (
m−2

2

)
A

,

γ =Nm

2
ε

r
. (5.37)

The constant D in Eq. (5.36) ensures normalisation. We stress that both forms of P

in Eq. (5.36) describe the same mathematical expression. The purpose of giving both

representations will become clear below. We also note that the only dependence of

P(x) on N is in γ, and the only dependence on x is in q(x) and B(x).

In ref. [20] a similar form of the stationary distribution is obtained for the model

with two species; our result reduces to this known case when m = 2. We note that

the dependence on x in the numerator of Eq. (5.36) vanishes for m = 2, as α = 0 in
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this case. In ref. [20] the phase transition for the two-species model was identified as

the population size N for which the stationary distribution is flat; for m = 2, this is

equivalent to setting the exponent of B(x) in Eq. (5.36) to zero, leading to γ = 1, i.e.,

Nc = r/ε.

We propose a similar criterion to characterise the transition for the multi-state

model: we find the population size at which the exponent 1−γ(1±α) in the denominator

of Eq. (5.36) vanishes, notwithstanding the fact that a residual dependence on x remains

through q(x).

Proceeding on this basis, we use

γ (1± α)− 1 = 0 (5.38)

to characterise the population size associated with the transition between the unimodal

and multi-modal regimes. We note that solving Eq. (5.38) for N leads to two different

solutions, one for each choice of the sign in front of α. We label these as N±, and find

N− = 2r
mε

1
1− α, N+ = 2r

mε

1
1 + α

, (5.39)

which for ε/r � 1 simplifies to

N− ≈
r

ε
, N+ ≈

r

ε

1
m− 1 . (5.40)

To see this note that A ≈ 1, and α ≈ m−2
m

in this limit. Eqs. (5.40) reproduce the

asymptotic behaviour of the expressions for NL and NR in Eqs. (5.34) for ε/r � 1.

Results from Eqs. (5.39) are shown as dotted lines in Fig. 5.4.
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5.8 Appendix B: General heterogeneous model

We briefly address the model with general heterogeneous imitation and mutation rates,

rij and εij.

Using the transition rates in Eq. (5.3), the effective birth and death rates for species

i in Eq. (5.6) can be written as

T+
i (n) =ni(N − ni)

N
ρi(n) + (N − ni)µi(n),

T−i (n) =ni(N − ni)
N

λi(n) + ni(m− 1)νi, (5.41)

where

ρi(n) = 1
N − ni

∑
j 6=i

njrji,

µi(n) = 1
N − ni

∑
j 6=i

njεji,

λi(n) = 1
N − ni

∑
j 6=i

njrij,

νi = 1
m− 1

∑
j 6=i

εij. (5.42)

The averages ρi(n), µi(n) and λi(n) are similar to those in Eq. (5.19). The only

complication is a second index of the object which is being averaged. The object νi is

a uniform average of εij over all species j 6= i, and not dependent on the state n of the

population.

As in the main text, one can proceed by replacing ni/N with the values x∗i at

the deterministic fixed point. This approximation results in closed definitions for

death-birth processes for individual species i. These can then be analysed following

the same steps as in Sections 5.3.2 and 5.3.4.
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Chapter 6

Conclusions

This thesis has been concerned with studying stochastic processes, which describe the

time evolution of dynamics which are fundamentally noisy. We view this noise not as

a nuisance that prevents our understanding of the ‘true’ dynamics underneath, but as

the source of relevant and interesting phenomena. This perspective has proven useful

in many areas of research, and has opened a window to a better understanding of the

environment and society we live in.

Throughout the thesis, we have been interested in the interplay between extrinsic

and intrinsic noise. All our models consider systems composed of discrete individuals

which interact with one another. Due to their discrete nature, the dynamics of these

systems have intrinsic noise. Additionally, we focused on studying models which include

either motion or agent-to-agent heterogeneity; we have treated these characteristics as

sources of extrinsic noise.

In this chapter, we briefly summarise our findings on how heterogeneity and motion

influence the dynamics of models which are intrinsically noisy. Then, we outline areas

of opportunity to expand our work. These include expansions to the specific models

studied in the intermediate chapters and also prospects to combine the results obtained

across them. Finally, we conclude by remarking on the significance and applicability of

our findings with a broader view.
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6.1 Summary of results

The models studied in this thesis can be divided into two classes: those which include

motion, and those with heterogeneous populations. We here recapitulate the key

findings in these two categories.

6.1.1 Motion

Chapters 2 and 3 considered the evolutionary dynamics of mobile populations. In both

chapters we implemented motion by immersing the population in a flow, which ‘stirs’

individuals in space. We considered structured populations, where the contact network

is generated by connecting individuals within a given interaction radius from each

other. We obtained and compared results for different evolutionary processes, which

occur in two steps: reproduction, and death. The order in which these steps take place

differentiates birth-death and death-birth mechanisms. Whether individuals compete

in the first or second step distinguishes between global and local selection. Combining

the results from both chapters, we can confidently assert that:

Well-stirred is not well-mixed. In the literature, the term ‘well-mixed’ is often used

to refer to populations in which interactions can occur between any pair of individuals

[1–3]. We find, however, that the term is misleading, as it suggests that all-to-all

interaction dynamics would be recovered if the population is sufficiently stirred. In

Chapter 2 we showed that this is not the case. The analytical expression obtained

for the limit of fast flows evidences that the interaction radius of individuals, which

determines how well connected to the rest of the population they are, is a much more

important factor than the actual ‘mixing’.

Motion amplifies or suppresses selection at different flow speeds. We found

that the speed with which individuals move, relative to the rate of evolutionary events,

can lead to different effects on the fixation probability of an invading mutant: with

slow flows, selection is amplified for birth-death processes, whereas it is suppressed

for death-birth processes1; for fast flows, local selection leads to suppressed natural

selection, and global selection recovers the complete-graph result.
1Amplification of selection implies that the chances of success of an advantageous mutant are larger

than on a complete-interaction graph, while the fixation probability of a disadvantageous mutant are
smaller. Suppression of selection describes the opposite effect.
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The order of birth and death events is paramount at intermediate flow

speeds. The movement of the individuals makes the interaction network dynamic; it

gets fragmented and reconnected in a different way. In these conditions, species more

easily segregate, and clusters of a single type are formed. This reduces the number of

interaction paths, which ultimately results in the order of death and birth of individuals

being crucial to the evolutionary process.

Motion can help identify the underlying evolutionary mechanism. As shown

in Chapter 3, by studying how the speed of the flow changes the probability with

which a mutant successfully invades a population, one could identify the underlying

evolutionary mechanism.

On the whole, the movement of individuals substantially modifies the evolutionary

dynamics, for which we consider its inclusion in models essential; traditional static

models are inadequate for studying mobile populations. Furthermore, since we provide

analytical expressions to describe these systems, the incorporation of this type of

motion is made readily available for future use.

6.1.2 Heterogeneity

Chapters 4 and 5 addressed heterogeneity between individuals in the population.

The models in each of the two chapters differed in a few key aspects. For instance,

the population sizes considered in Chapter 5 are generally small, which makes the

effects of intrinsic noise dominant; the system then spends most of the time far

from the deterministic fixed point. In Chapter 4, on the other hand, we focused on

large populations; due to this, the system dynamics were localised around the fixed

point. Consequently, in the two chapters we studied two disparate phenomena. In

the noisy voter model (Chapter 5), a transition between uni-modal and multi-modal

stationary probability distributions is the focus. In the epidemics model (Chapter 4),

we concentrate on characterising the stochastic quasi-cycles around the fixed point.

Although the models in the two chapters were constructed with different objectives

in mind, in both cases heterogeneity was modelled in a similar way, i.e., by setting

up an arbitrary number of compartments to which individuals belong. In Chapter 4,

the susceptible and infected groups were divided into sub-groups, which account for
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different susceptibilities and infectiousness of individuals. In Chapter 5, we studied a

noisy voter model with multiple types, which can represent different species or opinions.

Using a large number of compartments can potentially make the models less amen-

able to analytic solution. The method with which we approached this complication

was similar in both models. We studied the dynamics of each system through the

aggregate of its components and obtained information about the original model via

the marginalised description. This reduced the dimensionality of the problem, and

analytical progress could be made. In Chapter 5, for example, this meant focusing

on one of the ‘opinions’, and consider the rest of the population as part of ‘the other’

group. In Chapter 4, on the other hand, we described the dynamics through the total

number of infected or susceptible individuals, instead of each of the sub-groups. With

this technique, we found that:

The frequency of stochastic quasi-cycles is well approximated by the mean

of the heterogeneous parameters. Analytical expressions to characterises the fre-

quency of oscillations around the fixed point were obtained in Chapter 4; these depend

only on the first moment of the heterogeneous parameters across sub-groups, which are

time independent — they depend only on the probabilities with which susceptibilities

are assigned at birth, or infectiousness upon contagion.

Marginal descriptions of heterogeneous models are a valuable tool. In both

chapters we aggregated the multiple compartments in the system into larger groups.

We made use of weighted averages to construct effective models that emulated the

original dynamics.

In Chapter 5, these weighted averages were used to ‘homogenize’ the aggregated types

that conform ‘the other’ opinion; weights were assigned according to the fixed points

of the corresponding mean-field dynamics. With this approximation, closed analytical

expressions were obtained to describe the state probability distribution at long times,

as well as the critical system size in which the transition between ordered and mixed

states occurs.

In Chapter 4, susceptible sub-groups were lumped into a macroscopic group, and simil-

arly for infected individuals. Also, a ‘total infective power’ and ‘aggregate susceptibility’

were defined, with weights corresponding to the population densities in each sub-group.

These two quantities permitted analytical progress, and were necessary to obtain the
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power spectral densities of the oscillations around the fixed point. They also featured

on the analytical expression obtained to approximate the amplitude of the outbreaks.

Heterogeneity has non-trivial effects on the macroscopic dynamics. We

found, for example, that the amplitude of the stochastic cycles in Chapter 4 depends

non-trivially on higher moments of the distribution of susceptibilities and infectiousness.

The amplitude of the cycles determines the size of outbreaks. Therefore, the model

dynamics are impossible to reproduce if heterogeneity is not carefully considered.

In the noisy voter model presented in Chapter 5 we found that the nature of the

noise-induced phase transition changes when more than two types are permitted, for

instance. Instead of a single critical system size that divides the unimodal and bimodal

regimes of the stationary distribution, as found in the two-state model, at least two

critical points are needed to characterize the transition in the multi-state model. One

is determined by the slope of the marginal stationary distributions at the right edge of

state-space, i.e., by the dynamics near states of consensus. The other is defined on the

left edge of state-space, and is characterized by the dynamics near states of extinction.

Overall, we find that the multiplicity of the states and the heterogeneity among them

have a significant impact on the macroscopic model dynamics. The tools and methods

presented in Chapters 4 and 5 facilitate the inclusion and analysis of heterogeneity,

and are applicable in a wider context.

6.2 Outlook

The research presented in this thesis provides ample opportunities to branch out. In

this section, we provide examples of direction in which further work could continue. We

divide these examples in two: those which arise if certain assumptions of the presented

models are relaxed, and those in which the results of both motion and heterogeneity

may become relevant.

6.2.1 Extending the models

The models studied throughout this thesis are intentionally minimalistic. Therefore,

there are many possible extensions to our models that could increase the applicability

of our results.
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For example, in all our models we assume a fixed population size. This assumption is

made for mathematical convinience, but it does not capture the fluctuating populations

observed in nature. Varying population sizes could be important in the models described

in Chapters 2 and 3; applicability of the results in these chapters to biological settings

would be more straightforward with this extension. Although it is possible to devise

laboratory settings in which the population remains approximately constant [4], a more

realistic model would assume births and deaths of individuals at separate rates. Models

of this type have been shown to signifficantly affect evolutionary dynamics, and the

demographic stochasticity in them can even lead to the extinction of both species in

the population [5].

Another potential extension to our models is the inclusion of frequency dependent

fitnesses. In Chapters 2 and 3 we assume that when individuals compete to reproduce

(or to not die) they have an inherent fitness, which is independent of their opponents

or surroundings; this is known as frequency independent fitnesses. This approximation

could limit the extent with which our results can be used in a wider context. In game

theoretical scenarios, for example, the fitness of individuals is, in general, dependent

on the interaction partners of each individual. This takes into account that ‘strategies’

are not equally successful in all circumstances. In the context of cooperation games,

defectors are much fitter when surrounded by cooperators than when among other

defectors [6]. Frequency dependent fitness has been reported in biological settings [7–9],

and so its inclusion is a natural next step of our work.

Further opportunities for augmentation to the models studied in this thesis include

the study of ranked multi-state noisy voter models. In ranked models the transition

between types is sequential; that is, type 2 can only change into type 1 or 3, but not 5,

for example. The contents of Chapter 5 are restricted to the simplest case, in which

imitation across opinions or strategies is performed independently of the ‘distance’

between them. However, this may not reflect important features of certain phenomena,

such as opinion formation or the evolution of language, where changes tend to occur

gradually. The phase transition observed in the multi-state noisy voter model is still

found in ranked models, but the behaviour of the system can change significantly (see

Fig. 6.1). Since transition between strategies needs to be sequential, intermediate

types are more often occupied than extremal opinions. This is a substantial change to
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Figure 6.1: Stationary probability distribution for each opinion in a multi-
state ranked noisy voter model. Sample stationary distributions of a ranked noisy
voter model are shown. In the model, 5 opinions are possible. Individuals only transition
from and to ‘neighbouring’ opinions i± 1. Each line shows the probability with which
the system is found in a state in which Nxi individuals are of opinion i. From left to
right, the panels correspond to simulations with N = 20, 100 and 500. A noise induced
transition is observed. However, the dynamics of the system are clearly different. The
central species (orange), contains a higher proportion of the population. The model is
symmetric, so that the species contiguous to the central one (green and blue) are equally
abundant to each other, but more so than the extremal opinions (red and purple). In all
panels, the mutation rate is ε = 0.01 for all species, and the imitation rate is set to r = 1.

the model dynamics, which should be interesting to study in more detail and has the

potential to be widely applicable.

Of similar importance would be to consider structured populations in the multi-state

noisy voter model. In Chapter 5 we consider a complete interaction graph; this makes

our mathematical description possible and provides an interesting first insight into

the dynamics of the model. As we have remarked on this thesis, however, population

structure can modify the dynamics. In two-species noisy voter models it has been

found to lead to a larger critical system syze [10].

The model of epidemics stuided in Chapter 4 also provides opportunities for

extension. One could consider models with correlation between the susceptibility and

infectiousness of individuals, for example. Neglecting such correlations facilitated a

mathematically tractable model, but decreases its universality. The lack of correlation

is justified for the study of, for example, varying pathogen resistance [11], where

individuals become infected with different rates, due to their distinct resistances. Once

infected, however, these differences need not determine their ability to spread the disease.

On the other hand, neglecting correlations is inadequate to simulate heterogeneity that

arises from a contact network. In this case, the better connected nodes are more likely

to get infected and more likely to spread the disease.
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Also, vaccination was not included in the epidemics model in Chapter 4. Although

this extension to the model would be minor, interesting questions could be answered,

such as how heterogeneity affects herd-immunity2.

6.2.2 Combining motion and heterogeneity

The previous section focused on extensions to the particular models presented in

this thesis. We have addressed motion and heterogeneity independently in order to

distinguish their effects. However, potential lines of research for which our work may

be relevant also include cases in which both noise sources are present. Motion and

agent-to-agent heterogeneity are ubiquitous in nature, and so occasions to explore them

in conjunction abound. For example, heterogeneous interaction radii of individuals

in moving populations have been explored in ref. [12], and populations with different

diffusion speeds in ref. [13].

There are many other yet unexplored areas of research that combine the two noise

sources. For instance, one could study the effect of motion on the periodicity of

outbreaks of a disease. We found in Chapters 2 and 3 that the movement of individuals

produces changes in both fixation probabilities and fixation times. It is reasonable

to expect that motion affects the spread of a pathogen [14] and so the frequency of

the stochastic cycles would be modified too. Furthermore, we observed that at some

speeds of motion clustering of species is promoted. This is likely to also be the case for

disease spreading, where heterogeneity between individuals in the population may play

a more prominent role. Therefore, both the frequency and amplitude of the stochastic

cycles may be changed.

However, it is important to stress that the evolutionary processes described in

Chapters 2 and 3 are different to the epidemics model in Chapter 4 in various aspects.

For instance, in the model of epidemics individuals transition from the susceptible to

the infected stage mostly through ‘contact’ between members of each group, whereas

the reverse only happens when infected individuals die, i.e., without the need of an

interaction. In the evolutionary processes studied in Chapters 2 and 3, on the other

hand, the system always evolves through pairwise interactions.
2In epidemics, herd-immunity is the term used to describe a population that, although partly

composed of susceptible individuals, is highly unlikely to be invaded by a pathogen, due to the number
of recovered (or vaccinated) individuals in the population.
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6.3 Closing remarks

Through the publications reproduced in this work and in the summary above we have

discussed the role of intrinsic and extrinsic noise sources in the particular process being

described in each chapter. However, the models used throughout the thesis are set up

in a way that makes them applicable to a wide variety of phenomena.

Chapter 4 uses an epidemic model, and we found that the characteristic frequency of the

stochastic cycles is accurately described by the mean of the heterogeneous parameters.

This can be used as a guide in other models with cycles of the same nature, such as

ecological processes or theoretical games [15–17].

Chapters 2 and 3 have a wide scope by design, due to the variety of evolutionary

update rules that are studied. The results have implications that go further than just

biological processes; the set-up is common to game-theoretical models in general, which

are used in the analysis and description of social dynamics and financial markets [18,

19], for example.

Finally, noisy voter models, like the one studied in Chapter 5, have proved useful in

modelling various physical and social systems, such as opinion dynamics, language

evolution, or magnetization. The use of more than two states is often avoided due to

the lack of mathematically tractable dynamics, which results in the need to rely on

numerical approaches. In the study of flocking dynamics, for example, two-state voter

models have been used [20]; however, multi-state models could much more accurately

describe changes in the direction of movement, and so our work could be of relevance.

Furthermore, the method used to extract information from the heterogeneous system

is amenable to application in other models. The underlying technique with which the

problem is approached, then, is valuable beyond the model under study.

Motion and agent-to-agent heterogeneity are common characteristics of complex

systems. The tools and techniques presented in this thesis can help to describe and

understand their impact on model dynamics. Therefore, we hope that the results

compiled in this thesis are not only seen as extensions of particular models, but that

the underlying methods are used more widely and help to further our understanding of

the complex world we live in.
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