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Photo-acoustic Tomography (PAT) is a hybrid imaging method which simultaneously
takes advantage of a high spatial resolution attributed to ultrasound and a rich con-
trast provided by optics. In PAT, the tissue is irradiated by electromagnetic waves
in the visible or near-infrared ranges. A portion of energy from the emitted pulses
is absorbed, and induces local pressures which propagate outwards as acoustic waves,
and are measured in time by ultrasound detectors. The objective is a reconstruction
of a distribution of optical absorption coefficient from the measured data. This inverse
problem involves two steps, the first of which is a reconstruction of the initial pressure
distribution from the measured data (PAT), and the second step is a reconstruction of
optical absorption coefficient from the initial pressure distribution (quantitative PAT).
Variational approaches are one of the robust methods for PAT, and are often solved
via an iterative implementation of a pair of forward and adjoint operators. In chapter
1, we present a detailed introduction for PAT. In chapter 2, a line search multi-grid
method is developed for improving the speed of image reconstruction using variational
approaches. We define the forward operator as a linear system of first order wave
equations that can be adapted to heterogeneous media, and account for an acoustic
attenuation following a frequency power law. We derive the adjoint of this operator
using an adjoint-then-discretise method. We numerically approximated the forward
and adjoint operators using a k-space pseudo-spectral method. In chapter 3, a con-
tinuous adjoint was derived for PAT of the brain. We considered a forward operator
that describes the propagation of acoustic waves for linear isotropic heterogeneous
and lossy elastic media with an acoustic attenuation following a frequency power law.
Using a k-space pseudospectral method for an approximation of the forward and ad-
joint operators, we analytically show that the derived continuous adjoint matches an
associated algebraic adjoint. In chapter 4, we solve a single-stage problem of qunati-
tative PAT for realistic acoustic media. The optical portion of the forward operator is
defined using a diffusion approximation (DA) model, and the acoustic portion is de-
scribed in the same way as chapter 2. We developed two inexact Newton approaches
for direct QPAT. Using these approaches, an associated nonlinear objective function
is minimised as a sequence of linearised problems using matrix-free Jacobian-based
methods.
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Chapter 1

Introduction

1.1 Introduction

Photo-acoustic tomography (PAT), which is also called Opto-acoustic tomography, is

an imaging modality for visualising anatomy and physiology of soft tissues in humans

and small animals [80]. This imaging technique combines useful features of light and

sound for imaging, the first of which provides a rich contrast and high versatility

for a quantitative detection of light absorbing biomolecules, and the latter retains a

high spatial resolution because of a low scattering of acoustic waves in tissue media,

compared to optical photons [42]. The most interesting absorbing biomolecules in

tissue media are hemoglobin, melanin, lipids, DNA-RNA, water and cytochromes [75].

The phenomenon of conversion of light to acoustic sound waves, namely Photoa-

coustic, was first reported by Bell in 1880 [11]. However, it took more than one century

for this physical phenomenon to evolve to an idea for biomedical imaging [48, 40, 30].

In PAT, a transparent tissue sample is irradiated by nano-second duration pulses of

electromagnetic waves, in the visible or near-infrared ranges [75]. (The latter is used

for depth imaging.) A portion of energy from the emitted optical photons is absorbed

or scattered by light absorbing structures (chromophores), and is partially converted

to heat through a nonradiative relaxation of the excited volume of tissue [75]. The

induced heat is proportional to an optical absorption coefficient and photon density at

the irradiated point. The generated heat causes a thermal expansion, which induces

a rapid local increase in pressure. The local pressure-rises then propagate outwards

14



CHAPTER 1. INTRODUCTION 15

as acoustic waves, and are detected in time by ultrasound detectors located on a de-

tection surface outside the sample. The inverse problem is to reconstruct an image of

the optical absorption coefficient, given the measured pressure at the boundary [61].

The physics of the PAT problem involves two steps, the first of which is the gen-

eration of absorbed optical energy, and the second is the propagation of the induced

local pressure as acoustic waves. Correspondingly, the inverse problem involves two

steps: an acoustic step for reconstructing an image of initial pressure distribution (or

absorbed optical energy) from a set of time series of pressure data at the boundary,

and an optical step for reconstruction of a quantitative image of optical absorption

coefficient using the calculated initial pressure distribution [61].

The acoustic portion of PAT can be fit into a class of Thermo-acoustic tomography

(TAT) techniques, in which a broad spectrum of electromagnetic waves, i.e., visible,

near-infrared or radio-frequency ranges, can be used for an induction of acoustic waves.

Therefore, the image reconstruction techniques for the acoustic portion of PAT and

TAT are equivalent.

In this chapter, we first introduce the image reconstruction techniques for the

acoustic portion of PAT/TAT, and then briefly explain the approaches for an extension

of the acoustic problem to quantitative photo-acoustic tomography, which combines

the optical and acoustic portions of the problem. Throughout this thesis, following

the existing literature in the field, the acoustic portion of the problem is referred to

as PAT, and the composite opto-acoustic problem is referred to as quantitative PAT

(QPAT).

In section 1.2, we summarise back-projection inversion algorithms for PAT that

are solved in a time domain using Green’s function approaches. In section 1.3, we

introduce back-projection algorithms that are solved in a frequency domain. These

approaches are often much more efficient than time-domain methods. In section 1.4,

we explain approaches for an extension of back-projection algorithms using Green’s

function techniques to acoustically heterogeneous media. In section 1.5, we introduce

the time reversal approach, which is known as the least restrictive approach among

non-iterative inversion algorithms for PAT, to the best of our knowledge. In section 1.6,

we explain iterative inversion algorithms, which are based on an iterative implemen-

tation of an operator modelling the propagation and measurement of photo-acoustic
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waves, and an associated back-projection (often adjoint) operator. (A common class

of these methods are variational approaches, which are used in our study.) In section

1.7, a numerical computation of an arising forward operator using a k-space pseudo-

spectral method is explained. Section 1.8 is devoted to the optimisation algorithms

we have used for solving the inverse problems of PAT arising in chapters 2 and 3. In

section 1.9, we introduce quantitative photo-acoustic tomography, and also explain

approaches for modelling the optical portion of this inverse problem. In section 1.10,

we outline the following chapters of the thesis. Finally, in section 1.11, we explain the

contributions of the candidate and supervisor for this thesis.

1.2 Time-domain back-projection algorithms for ho-

mogeneous media

In the context of TAT, the first image reconstruction techniques were based on local-

ising thermoacoustic sources via linear [26] or sector scans [45] of the tissue sample

using focused ultrasound detectors. In [76, 26], 2D reconstructions were performed

from multiple 1D images obtained from a linear scan of the sample using focused ul-

trasonic transducers. In [30], a synthetic weighted delay-and-sum algorithm was used

for a 3D reconstruction from multiple in-plane detections of acoustic waves. Apply-

ing a phased-array technique, the measured acoustic signals are temporally shifted in

order to compensate for the different transit times of acoustic waves [30].

The next class of image reconstruction techniques for PAT are based on back-

projection algorithms using Green’s function approaches. Before explaining the image

reconstruction techniques for PAT, we introduce the heat conduction equation

ρCp
∂

∂t
T (r, t)−∇ · (K∇T (r, t)) = H(r, T ), (1.1)

where K is the thermal diffusion coefficient, ρ is the ambient density, Cp is the specific

heat capacity, T (r, t) is the rise in the temperature because of the absorption of elec-

tromagnetic wave, and H(r, t) is the heat energy per unit volume and per unit time

deposited in the irradiated fluid.

Since the electromagnetic pulse duration is much shorter than the thermal diffu-

sion time, the diffusion term in the heat conduction equation is about six orders of
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magnitude less than the term corresponding to the time derivative of temperature,

and is thus neglected [81]. This assumption is called thermal confinement.

We now define the acoustic fields, which are a vector-valued acoustic displacement

u(r, t) and a scalar-valued acoustic pressure p(r, t), where r ∈ Rd is the spatial position

with d the number of spatial dimensions, and t denotes time. For an acoustically

homogeneous medium, the expansion equation is described by [78]

∇ · u(r, t) = −p(r, t)
ρc2

+ βT (r, t), (1.2)

where c is the sound speed, and β denotes the isobaric volume expansion coefficient.

In this section, we briefly summarise back-projection formulae using Green’s func-

tion approaches for solving the PAT problem in acoustically homogeneous media, i.e.,

c and ρ are constant with respect to r. To do this, we start with derivation of an

associated forward operator.

The propagation of the generated acoustic waves in an acoustically homogeneous

medium obeys a linear inviscid force equation [78]

ρ
∂2

∂t2
u(r, t) = −∇p(r, t). (1.3)

Using equations (1.1), (1.2) and (1.3), the propagation of acoustic waves induced by

an optical absorbed energy H(r, t) follows [78]

∇2p(r, t)− 1

c2

∂2

∂t2
p(r, t) = − β

Cp

∂

∂t
H(r, t). (1.4)

A general solution of (1.4) can be obtained in terms of Green’s functions using [17]

∇2G− 1

c2

∂2G

∂t2
= −δ(r − r′)δ(t− t′), (1.5)

where G is the free-space Green’s function. The Green’s function G in dimension d = 3

is

G (r, t; r′, t′) =
δ (|r − r′| − c(t− t′))

4π|r − r′|
. (1.6)

Using (1.6), the solution of (1.4) will be in the form [78]

p(r, t) =
β

4πCp

∫∫∫
1

|r − r′|
∂

∂t′
H(r′, t′) dr′

∣∣∣∣
t′=t−(|r−r′|/c)

. (1.7)
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Following [78], the heating function is now expressed as a product of a function of

absorbed energy in r and an illumination function in t. This yields

H(r, t) = H(r)Ĩ(t), (1.8)

where H(r) is the heat deposited in the fluid per unit volume, and Ĩ(t) is a temporal

illumination function. (For brevity, we used the same notations for H(r, t) and H(r).)

Plugging (1.8) into (1.7), for a given H(r), p(r, t) is calculated as

p(r, t) =
β

4πCp

∫∫∫
H(r′)

|r − r′|
∂

∂t′
Ĩ(t′) dr′

∣∣∣∣
t′=t−(|r−r′|/c)

. (1.9)

Under the condition of stress confinement, for which the duration of an absorption of

electromagnetic energy is much shorter than the time required by the sound to travel

across the heated volume, I(t) is assumed a Dirac delta function, i.e., I(t) = δ(t) [78].

Using this assumption, the pressure on a spherical detection surface defined by r = r0

will be in the form

p(r0, t) =
β

4πCp

∫∫∫
H(r)

δ′
(
t− |r0−r|

c

)
|r0 − r|

dr. (1.10)

An inverse problem associated with (1.10) is the calculation of the absorbed optical

energy H(r), given p(r0, t) for all r0 in some set. This amounts to the acoustic portion

of the inverse problem of QPAT, and is referred to as PAT in this thesis.

The relation between initial pressure and heat. Under an isochoric condition, i.e., the

time for absorption of the electromagnetic wave is much shorter than the time for a

change in density of the heated volume, the initial pressure distribution p0(r) follows

[17]

p(r, t = 0) = p0(r) = Γ(r)H(r), (1.11)

where Γ is Grüneisen parameter, and is defined by

Γ =
βc2

Cp
. (1.12)

1.2.1 Back-projection algorithm using spherical harmonics

In [78], a back-projection algorithm was developed for PAT using the spherical har-

monic function basis in a frequency domain [78]. Before explaining this approach, we
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introduce the temporal Fourier transform (FT) of p(r0, t) in the form

p̃(r0, w) =

∫ +∞

−∞
p(r0, t)e

iwtdt, (1.13)

where w denotes the temporal frequency, and i is the imaginary number. Also, an

inverse of the temporal FT is defined by

p(r0, t) =
1

2π

∫ +∞

−∞
p̃(r0, w)e−iwtdw. (1.14)

Using (1.13), taking an FT from both sides of (1.10), together with using the dispersion

relation for electromagnetic waves in vacuum (k = w/c), yields [78]

p̃(r0, w) = −iw β

Cp

∫∫∫
H(r)

eik|r0−r|

4π|r0 − r|
dr, (1.15)

where k denotes the spatial frequency (wavenumber) [78].

Now, we briefly introduce the principle of spherical harmonics, which will be used

later for derivation of the back-projection algorithm. A complete orthogonal integral

of spherical harmonic functions Y m
l (θ0, ϕ0) is defined by∫∫

Ω0

Y m
l (θ0, ϕ0)Y n

k
∗(θ0, ϕ0)dΩ0 = δl,k δm,n (1.16)

where dΩ0 = sin (θ0)dθ0dϕ0, and ∗ denotes the complex conjugate [78]. Here, θ ∈

(0, π] is the polar angle and ϕ0 ∈ (0, 2π] is the azimuthal angle. Also, the Legendre

polynomial is defined by [78]

Pl(n · n0) =
4π

2l + 1

+l∑
m=−l

Y m
l (θ, ϕ)Y m

l
∗(θ0, ϕ0), (1.17)

where the unit vectors n = r/r and n0 = r0/r0 are aligned by the directions θ, ϕ

and θ0, ϕ0, respectively [78]. Also, r = |r| and r0 = |r0|. Using a spherical harmonic

function basis, the following replacement is enforced to (1.15).

eik|r0−r|

4π|r0 − r|
=
ik

4π

+∞∑
l=0

(2l + 1) jl(kr)h
(1)
l (kr0)Pl(n · n0), (k > 0). (1.18)

Here, jl(·) and h
(1)
l (·) are spherical Bessel function and Hankel function of the first

kind, respectively [78]. By some calculations given in [78], an exact solution of H(r)

given p̃(r0, w) can be obtained using

H(r) =
Cp

2π2cβ

∫∫
Ω0

∫ +∞

0

p̃(r0, w) ·
+∞∑
m=0

(2m+ 1)jm(kr)

h
(1)
m (kr0)

Pm(n · n0) dk dΩ0. (1.19)
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For further details on derivation of this formula, the reader is referred to [78]. The

equation (1.19) gives an exact inverse solution of (1.10), but it is computationally ex-

pensive because it involves a summation of series which may be very slowly converging.

[78].

1.2.2 Modified (filtered) Back-projection algorithm

Since the low-frequency components of the photo-acoustic (PA) waves do not con-

tribute to the spatial resolution, they are not useful for imaging, and can be removed

by a filter. Because of this, the radius of the detection surface r0 is much larger than

the wavelengths of PA waves. Using this, an assumption |k|r0 � 1 is used to derive

an asymptotic form of the Hankel function as [78]

h(1)
m (kr0) ≈ 1

h
(2)
m (kr0)

(
1

(kr0)2
+O(

1

(kr0)4
)

)
, (1.20)

where h
(2)
l (·) is the spherical Hankel function of the second kind. Using (1.19) and

(1.20), H(r) can be approximated by the formula [78]

H(r) = − r2
0Cp

2πc3β

∫∫
Ω0

1

2π

∫ +∞

−∞
(−iw)p̃(r0, w) · e

−iw |r0−r|
c

|r0 − r|
dw dΩ0 (1.21)

By taking an inverse FT of p̃(r0, w) using (1.14), (1.21) can be solved the time domain.

This finally gives

H(r) = − r2
0Cp

2πc4β

∫∫
Ω0

1

t

∂p(r0, t)

∂t

∣∣∣∣
t=|r0−r|/c

dΩ0. (1.22)

Exact inversion formulae were also derived for a detection surface with planar and

cylindrical geometries. As opposed to the back-projection formula in (1.22), the in-

version formulae for these geometries are solved in a frequency domain. The reader is

referred to [81] for a planar detection surface, and to [84] for a cylindrical detection

surface.

1.2.3 Universal back-projection algorithm

In [79], a universal back-projection formula, which can be adapted to three detection

geometries, i.e, spherical, planar and cylindrical, is derived. Following [79], we apply
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an FT and its inverse using a variable t̄ = ct. By plugging (1.11) and the dispersion

relation into (1.15), an FT of p(r0, t̄) obeys

p̃(r0, k) = −ik
∫∫∫

G̃
(out)
k (r′, r0)p0(r′) dr′, (1.23)

where

G̃
(out)
k (r′, r0) =

eik|r
′−r0|

4π|r′ − r0|
. (1.24)

Using this, a back-projection formula for a spherical, planar or cylindrical (univer-

sal) detection surface S is derived, i.e., [79]

pb0(r) =
1

π

∫
S

∫ +∞

−∞
p̃(r0, k)

[
ns0 · ∇r0G̃

(in)
k (r, r0)

]
dk dS, (1.25)

where ns0 is the normal of surface S that points to the source, and ∇r0 is the gradient

with respect to variable r0. Also,

G̃
(in)
k (r, r0) =

e−ik|r−r0|

4π|r − r0|
. (1.26)

Taking an inverse FT of p̃(r0, k) gives an inverse formula in the time domain in the

form

pb0(r) = − 2

Ω̄0

∇ ·
∫
S

[
p(r0, t̄)

t̄

]
t̄=|r−r0|

ns0 dS0, (1.27)

where Ω̄0 is a solid angle of a full-view detection surface S0 with respect to a reconstruc-

tion point inside S0. (For a planar detection geometry, Ω0 = 2π, and for spherical and

cylindrical geometries, Ω0 = 4π). A similar approach was taken in [23] for a spherical

detection geometry. Equation (1.27) can be simplified to

pb0(r) =

∫
Ω0

b(r0, t̄ = |r − r0|)dΩ̄0/Ω̄0, (1.28)

where

b(r0, t̄) = 2p(r0, t̄)− 2t̄
∂p(r0, t̄)

∂t̄
(1.29)

is the back-projection term for the measured data at position r0, and dΩ̄0 is the solid

angle for a detection element dS0 with respect to a reconstruction point at position r,

and is defined by

dΩ̄0 =
dS0

|r − r0|2
·
[
ns0 ·

r − r0

|r − r0|
]
. (1.30)

From (1.30), dΩ̄0/Ω̄0 can be expressed as a weighting factor that weights the contri-

bution to reconstruction of the source at point r from a detection element dS0 [79].
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1.2.4 Far-field approximation for arbitrary detection surface

In biomedical applications, the detection surface may differ from the regular geometries

mentioned above. For instance, it may be required that the detection surface follows

the shape of the imaged organ in order to reduce the propagation distance of acoustic

waves as much as possible. This may be needed, for exmaple for minimising the

acoustic attenuation [13]. Note that the favourable attenuation of high frequency parts

of acoustic waves deteriorates the spatial resolution. To meet this requirement, a far-

field approximation of (1.22) that does not depend on the actual shape of the detection

surface was derived in [13]. This approach uses a Fraunhofer approximation of (1.15)

via enforcing a replacement |r0 − r| = r0 − r · r̂0 for the exponent, where r̂0 = r0/r0,

and a replacement |r0 − r| = r0 for the denominator. Using these replacements,

together with (1.11) and (1.12), (1.15) can be rewritten as

p̃(r0, w) ≈ − ik

4πc

eikr0

r0

∫
p0(r)e−ikr·r̂0 dr. (1.31)

Defining k := kr̂0, together with p̂0(k) :=
∫
p0(r)e−ik·rdr, gives

p̃(r0, w) ≈ − ik

4πc

eikr0

r0

p̂0(k). (1.32)

Equation (1.32) gives an operator that links the spatial FT of the absorbed energy

p0(r) in direction r̂0 to a one-dimensional temporal FT of the measured data p(r0, t).

Using the Fourier slice theorem for the classical Radon transform, the one-dimensional

FT of a function at k of a projection orthogonal to r̂0 is equal to the three dimensional

FT of the same function at kr̂0 [13]. Using this theorem, together with applying an

inverse of one-dimensional FT to (1.32), results in

p(r0, t) ≈
1

4πr0c

∂

∂t
g (r̂0, r0 − ct)

=
1

4πc

∂

∂t

(∫
r·r̂0=r0−ct

p0(r)

r0

dS(r)

)
,

(1.33)

where g (r̂0, r0 − ct) is a classical three-dimension Radon Transform of p0, i.e., an

integral of p0 over a plane with a normal vector r̂0 and distance r0− ct from the origin

[13]. Using the above and given p(r0, t), the inverse problem can be solved as follows:

1- Take a temporal FT for a calculation of p̃(r0, w).

2- Calculate p̂0(k) from p̃(r0, w) using (1.32).

3- Calculate p0(r) by taking an inverse spatial FT of p̂0(k).
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These steps can be combined in order to solve the inverse problem directly in a

time domain [13]. Using a classical Radon Tranform, a generalised inversion formula

can be obtained, i.e.,

p0(r) =
1

8π2

∫
S

g′′ (r̂0, r · r0) dΩ̄0(r̂0), (1.34)

where n(r0) is the normal vector at r0 that points outside the surface S, and dΩ̄0(r̂0) :=

n(r0) · r̂0dS/r
2
0 is the solid angle of the surface area element dS with respect to the

origin [13].

Using (1.33) and (1.34), an inversion formula can be obtained, i.e.,

p0(r) ≈ − 1

2πc

∫
S

r0
∂p(r0, t)

∂t

∣∣∣∣
ct=r0−r·r̂0

dΩ̄0(r̂0). (1.35)

Equation (1.35) gives an exact solution for any rotationally symmetric p0 with origin

as the centre of rotation. Equation (1.35) for any centre of rotation at position r inside

S follows

p0(r) ≈ − 1

2πc

∫
S

|r0 − r|
∂p(r0, t)

∂t

∣∣∣∣
ct=|r0−r|

dΩr(r0)

= − 1

2π

∫
S

t
∂p(r0, t)

∂t

∣∣∣∣
ct=|r0−r|

dΩ̄r(r0),

(1.36)

where dΩ̄r(r0) is the solid angle element for a detection surface element dS with respect

to a centre of rotation at r, and is approximated as

dΩr(r0) ≈ dS

|r0 − r|2
[
n(r0) · r0

|r0|
]
. (1.37)

This is derived using an approximation r � r0 to (1.30).

1.3 Frequency-domain techniques

Frequency-domain inversion approaches are based on solving the inverse problem in a

spatial and temporal frequency domain, and then transforming the solution back to

the original spatial and temporal domain. Using this approach for d = 3, the acoustic

field is expressed as an infinite sum of a product of functions [55]

p(r, t) =
∑
n

anf1,n(r1 := x) f2,n(r2 := y) f3,n(r3 := z)f4,n(t). (1.38)
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For the forward problem, the pressure field p(r, t) is known over d spatial Cartesian

coordinates at a time instant t = 0, whereas for the inverse problem, the pressure

field is known in two spatial Cartesian coordinates (detection surface) and over time

[55]. Using this approach, the forward problem is solved by a direct calculation of the

pressure field at a detection surface and over time using a decomposition of fields in

Cartesian coordinates in a spatial frequency domain, and the inverse problem is solved

by a direct reconstruction of the field in spatial coordinates at the time origin, given

p(r0, t) [55]. (See [41, 81] for planar detection surface, or [84] for cylindrical detection

surface.) Here, we restrict our attention on the planar detection geometry, because

this is more favourable than cylindrical geometry because of mathematical simplicity

and numerical efficiency [55]. The approach we will explain in the sequel has been

proposed in [17]. Using (1.6), (1.10), (1.11) and (1.12), the calculation of p(r, t) from

p0(r) can be expressed as

p(r, t) =
1

c2

∫
p0(r′)

∂G

∂t
(r, t; r′, t′) dr′. (1.39)

The k-space method uses an FT of the free-space Green’s function G with respect to

both r and t. Using equation (1.5), the Green’s function satisfies

−k2G(w,k) +
w2

c2
G(w,k) = −e−ik·r′eiwt′ , (1.40)

where k = (kx, ky, kz) is the wavenumber vector, and w is the temporal frequency.

Also, a spatio-temporal inverse FT of G(k, w) satisfies

G(r, t; r′, t′) =
1

(2π)4

∫ ∫
eik·(r−r

′)e−iw(t−t′)

k2 − (w/c)2
dwdk, (1.41)

where k = |k|. Using (1.41), the Green’s function is expressed as a sum of plane waves

with direction defined by k and temporal frequency w [17]. Now, we will take two

approaches for calculation of p(r, t) from p0(r) using (1.41).

1.3.1 Calculation of the pressure field everywhere at a single

time instant

In the first approach, the pressure field at a single time instant t is calculated in one

step as follows. An integral of (1.41) with respect to w using Cauchy’s residue theorem
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for handling the singularity of G, together with setting t′ = 0, gives for t > 0

G(r, t; r′) =
c

(2π)3

∫
sin(ckt)

k
eik·(r−r

′)dk, (1.42)

Plugging (1.42) into (1.39) gives

p(r, t) =
1

(2π)3

∫∫
p0(r′) cos(ckt)eik·(r−r

′)dk dr′. (1.43)

Using the above equation, p(r, t) can be calculated from p0(k) using

p(r, t) =
1

(2π)3

∫
p0(k) cos(ckt)eik·rdk, (1.44)

where p0(k) is calculated by

p0(k) =

∫
p0(r)e−ik·rdr. (1.45)

Using this approach, the pressure field at time t is directly calculated using the exact

time propagator cos(ckt) without a need for calculation of the field over time [17].

1.3.2 Calculation of time series of pressure field on a chosen

line or plane

The second model is useful for cases in which the time series of measurement is required

at only a number of points placed on a line or plane in the field, for example a

simulation of the signals measured by an array of detectors. To derive this model, we

remove singularities in the integrand in (1.41) via taking an integral over the vertical

component of k, rather than an integral over w [17]. Because of a decomposition of

Cartesian coordinates in a frequency domain, we will use separate integrals for kx, ky

and kz. This gives ∫
eik·(r−r′)e−iwt

(kz − ζ)(kz + ζ)
dkz, (1.46)

where,

ζ =

sgn(w) ((w/c)2 − k2
r)

1/2
, |w/c| ≥ kr

+i (k2
r − (w/c)2)

1/2
, |w/c| < kr

(1.47)
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with sgn(·) the signum function. Applying the Cauchy residue theorem for solving

(1.46) gives the Green’s function for t > 0 as

G(r, t; r′) =
iπ

(2π)4

∫∫∫ (
1

ζ

)
ei
[
kx(x−x′)+ky(y−y′)+ζ|z−z′|−wt

]
dw dkx dky. (1.48)

Equation (1.48) gives an expression of G as a sum of plane waves in x, y and t, whereas

in (1.42), G is expressed as a sum of plane waves in r = (x, y, z). Taking a temporal

derivative of G gives

∂G

∂t
=

π

(2π)4

∫∫∫ (
w

ζ

)
ei
[
kx(x−x′)+ky(y−y′)+ζ|z−z′|−wt

]
dw dkx dky. (1.49)

Plugging (1.49) into (1.39), p(r, t) is calculated as

p(r, t) =
1

16π3c2

∫
R3

∫∫∫ (
w

ζ

)
p0(r′)ei

[
kx(x−x′)+ky(y−y′)+ζ|z−z′|−wt

]
dw dkxdkydr

′.

(1.50)

Since (1.50) gives the pressure field on a z plane, we can set z = 0.

Case 1 (real ζ): For |w/c| ≥ kr,∫
|w|>ckr

∣∣∣∣wζ
∣∣∣∣eiζ|z−z′|e−iwt dw = 2<

{∫ +∞

ckr

(
w

ζ

)
eiζ|z−z

′|e−iwt dw

}
, (1.51)

where <{·} denotes the real part. Using z = 0, together with plugging (1.51) into

(1.50), gives

pprop(x, y, t) =
1

(2π)3c2
<
{∫ w=+∞

w=ckr

∫∫ (
w

ζ

)
p0(kx, ky, w)ei(kxx+kyy−wt)dkxdky dw

}
,

(1.52)

where pprop denotes the propagating plane waves, i.e., waves that propagate away from

the source, and arrive at the acoustic far field. Also, p0(kx, ky, w) is determined by an

interpolation from p0(kx, ky, ζ), which is calculated using

p0(kx, ky, ζ) =

∫∫∫
p0(r′)e−i(kxx

′+kyy′−ζ|z′|) dr′ (1.53)

The above equation can be modified in the form

p0(kx, ky, ζ) =

∫∫∫
p0(r′)e−i(kxx

′+kyy′) cos (ζ|z′|) dr′, (1.54)

Using this, the propagating plane waves can be written as a cosine transform in the

form

pprop(x, y, t) =
1

(2π)3c2

∫ w=+∞

w=ckr

∫∫ (
w

ζ

)
p0(kx, ky, w)ei(kxx+kyy) cos (wt)dkxdky dw.

(1.55)
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Case 2 (imaginary ζ): For|w/c| < kr, ζ is imaginary. Using this condition, the

integral over w will be in the form∫
|w|<ckr

∣∣∣∣wζ
∣∣∣∣eiζ|z−z′|e−iwt dw = −2i

∫ ckr

0

(
w

ζ

)
eiζ|z−z

′| sin (wt) dw. (1.56)

The same as in case 1, substituting (1.56) into (1.50), together with setting z = 0,

results in

pevan(x, y, t) =
−i

(2π)3c2

∫ w=ckr

w=0

∫∫ (
w

ζ

)
p0(kx, ky, w)ei(kxx+kyy) sin(wt)dkxdky dw,

(1.57)

where pevan denotes the evanescent plane waves, i.e., waves that decay exponentially

with z, and thus do not contribute to the field beyond a few wavelengths of the source.

However, they must be considered for the fields close to the source [17]. Also, using

the fact that ζ is purely imaginary for this case,

p0(kx, ky, ζ) =

∫∫∫
p0(r′)e−i(kxx

′+kyy′)e−|ζz
′| dr′. (1.58)

The inverse problem is to reconstruct p(x, y, z, t = 0), given p = p(x, y, t) in an

infinite plane z = 0 for all times t > 0. This can be done by inverting a cosine

transform in (1.55). (See [41]).

1.4 Effects of acoustic Heterogeneity

An important assumption for the inversion algorithms introduced above is that the

sound speed c is homogeneous, i.e., c is not varying with r. For many biological tissues,

this assumption is not exactly true. For example, the sound speed in female breast

varies by 15% [82]. The heterogeneity of sound speed may have deleterious effect on

the quality of reconstructed images. Because of refraction of rays passing a tissue

interface with a sound mismatch, the wavefronts are distorted in both amplitude and

phase [82]. Refractions may make a distortion in amplitude of wavefronts because of

an interference between multiple rays induced by refractions. Using a ray approach,

this implies that the waves from a point source may reach a single detection point from

different paths [82]. A distortion in phase is because of variations in the time-of-flight

(TOF) of rays that are induced by heterogeneities in the sound speed. For ultrasound



CHAPTER 1. INTRODUCTION 28

tomography (UT), it was shown that the amplitude distortion dominates the phase

distortion [87]. In contrast, for PAT, it was shown that for small-scale heterogeneities

(in the range of the wavelength of acoustic waves), the amplitude distortion of a wave-

front is negligible when the detection surface is sufficiently far from the heterogeneities.

Also, for large-scale heterogeneities, the multi-path interference induced by reflections

is negligible [82]. Using a ray approach, it was proven that no two rays from a source

inside a convex boundary can intersect each other following refractions at the bound-

ary. Although for biological tissues, the boundary between soft tissues may be quite

irregular and concave, the induced amplitude distortion is insignificant [82].

Let us define a point source r and a detection point r0. For the case of homogeneous

sound speed, an acoustic ray from point r reaches point r0 along the straight line r, r0.

For the case of heterogeneous sound speed, the ray from point r travels along the path

r, rb, r0, where rb is a refraction point at a tissue interface. The TOF along path

L(r, rb, r0) is defined by

tf (r, rb, r0) =

∫
L(r,rb,r0)

dr′′/c(r′′), (1.59)

where c(r′′) is the local sound speed at point r′′ positioned along a path L(r, rb, r0).

It was proven for a weakly heterogeneous medium that [82]

tf (r, r0) =

∫
L(r,r0)

dr′′/c(r′′) = tf (r, rb, r0) +O(ε2) (1.60)

for small value ε = (c(r′′)− c0)/c0, where c0 is a reference homogeneous sound speed

[82]. Using the approximation (1.60), the forward model defined in (1.10) can be

extended to acoustically heterogeneous media. This yields [82, 1]

phet(r0, t) =
β

4πCp

∫
H(r)

∂

∂t

δ (t− tf (r, r0))

|r0 − r|
dr, (1.61)

where the subscript phet denotes a heterogeneous medium. Equation (1.61) can be

written in an equivalent form [2, 1]

ghet(r0, t̄) =

∫
H(r)δ(t̄− ctf (r, r0))

ctf (r, r0)

|r0 − r|
dr, (1.62)

where ghet(r0, t̄) is a generalised Radon transform (GRT) ofH(r), and can be expressed

as an integration over non-spherical isochronous surfaces [2, 1, 47]. The relation be-

tween phet and ghet is described by[1]

ghet(r0, t̄ = c0t) =
4πCp
β

t

∫ t

0

phet(r0, t
′)dt′. (1.63)
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By using a heuristic layer-stripping procedure, it was shown that ghet possesses a two-

fold redundancy using the so-called half time functions

g
(1)
het(r0, t) =

ghet(r0, t), 0 6 t 6 tf (0, r0)

0, otherwise

g
(2)
het(r0, t) =

ghet(r0, t), tf (0, r0) 6 t 6∞

0, otherwise,

(1.64)

where tf (0, r0) is the TOF from the centre of rotation to the detection point r0 [86]. It

was shown that H(r) can be determined by either g
(1)
het or g

(2)
het [1]. Let us define H1

het(r)

and H2
het(r) as images obtained from half-time data g

(1)
het and g

(2)
het, respectively. In the

absence of finite sampling effects or measurement errors, H1
het(r) = H1

het(r) [86].

Now, we assume that the sound speed is piecewise constant, and the geometry

of interfaces is known. (This may be obtained from the PAT measurement data.)

Based on this, a finite-dimensional parameterisation is applied on c(r) using the vector

C =
[
c1, c2, ..., cn

]
with components the sound speed associated with each subregion

of the imaging medium. Given C, one obtains the two-fold redundant data g
(1)
C and

g
(2)
C . For a full-view data, i.e., specified for all points r0 on a closed measurement

surface S, and in the absence of data inconsistencies, these two sets of data must give

the half-time reconstructions H1
C(r) = H2

C(r) because of redundancy in data. Using

this, the objective is to calculate C that satisfies this equality [86]. In practical cases,

because of noise in data and finite sampling effects, we will obtain H1
C(r) ≈ H2

C(r).

Thus, C can be obtained by solving

argmin
C

F (C) := ‖H1
C(r)−H2

C(r)
]
‖. (1.65)

The solutionH(r) can be obtained by solving an inversion of equation (1.61) for a given

C∗ that has been obtained using (1.65). This may lead to an alternative reconstruction

of H and C [86].

1.4.1 Geometrical acoustic approximation

In the GRT model defined by (1.62), a first-order geometrical acoustic approximation

of travel times tf (r0, r) is used. This approximation was made using an assumption
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that acoustic rays travel along linear paths [82, 86]. In [47], an approach was proposed

for derivation of higher-order perturbations to travel times. Using this approch, the

effects of ray bending are also included in calculation of TOFs. In the sequel, we

briefly describe this approach. Let us define a heterogeneous sound speed map as a

perturbation to a homogeneous background c0 with a magnitude of perturbation ε.

This gives

c(r) = c0 + εc1(r). (1.66)

For an acoustically homogeneous medium with sound speed c0, applying a Fourier

transform on (1.5) gives an unperturbed Green’s function G0(r, r′, w) that satisfies a

Helmotz equation in the form(
∇2 +

w2

c2
0

)
G0(r, r′, w) = −δ(r − r′). (1.67)

In a same way, for an acoustically heterogeneous medium with sound speed c(r), a

generalised Green’s function G(r, r′, w) satisfies a Helmotz equation in the form [47](
∇2 +

w2

c2(r)

)
G(r, r′, w) = −δ(r − r′). (1.68)

A geometrical approximation is valid when the size of heterogeneities is much larger

than the wave-length, i.e., the sound speed does not change considerably over one

wavelength [47]. Using this assumption, the Green’s function for a heterogeneous

medium can be expressed as [47]

G(r, r′, w) =

(
g0 +

g1

ik
+

g2

(ik)2
+ ...

)
eiwτ(r,r′), (1.69)

where k is the wavenumber, and τ is called eikonal function. A zeroth-order approxi-

mation of (1.69) yields

G(r, r′, w) = g0(r, r′)eiwτ(r,r′). (1.70)

Using the above equation, together with a temporal FT of (1.61), gives

p(r, w) ≈ −iwβ
Cp

∫
H(r′)g0(r, r′)eiwtf (r,r′)dr′. (1.71)

Using (1.68), (1.69) and (1.70) gives in the limit λ→ 0 [47]

O(k2) :
[
∇rτ(r, r′)

]2
= c−2(r)

O(k1) : 2∇rτ · ∇rg0 + g0∇2
rτ = 0

O(k0) : ∇2
rg0(r, r′) = −δ(r − r′),

(1.72)
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where λ is the wavelength, and ∇r denotes the gradient with respect to r. The first

line of the above equation is called eikonal equation, and gives a general form of (1.59)

in the form [47]

τ(r, r′) =

∫
Lc(r,r′)

d(r′′)/c(r′′), (1.73)

where Lc(r, r
′) denotes an arc length along a curved path between r and r′. (Note

that this path is not necessarily straight line.) Based on the Fermat’s principle, the ray

trajectory follows a path that minimises the acoustic path length. For an acoustically

homogeneous medium, this is a straight line. For a medium with a low variation in

the sound speed, it was shown that with a first order approximation of perturbation,

this trajectory can be chosen to be the path along a reference ray that satisfies (1.73).

Additionally, the second line of (1.72) yields [47]

g0(r, r′) =
1

4π|r − r′|
e−

1
2

∫
Lc(r,r′) c(r

′′)(∇2τ) dr′′

=
1

4π|r − r′|

(
c(r)

c(r′)

)1/2 (1.74)

1.4.2 Higher-order geometrical acoustic approximation

Although the acoustic rays bend towards the region that has a lower sound speed,

such effects are not taken into account using a first-order perturbation to travel times

using (1.73). Motivated by this, in [47], higher-order perturbations to time travels

were included in the generalised Radon Transform equation. To do this, the travel

times are expressed as

τ(r, r′) = τ0(r, r′) + ετ1(r, r′) + ε2τ2(r, r′) + .... (1.75)

It was shown that [47]

τ0(r, r′) =

∫
L0

dr′′/c0, (1.76)

τ1(r, r′) = −
∫
L0

c1(r′′)

c2
0

dr′′ (1.77)

and

τ2(r, r′) =

∫
L0

c0

2

[
c2

1(r′′)

c4
0

− |∇τ1(r, r′)|2
]
dr′′, (1.78)

where L0 is the reference ray associated with the reference eikonal τ0(r, r′).
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1.5 Time reversal

In sections 1.2.4 and 1.4, we briefly explained the generalised Green’s function methods

that can address an irregularity of geometry of a detection surface or heterogeneity of

sound speed, respectively. The approaches that use Green’s functions are often based

on some specific assumptions, for example the region of support for the acoustic source

is inside the detection surface, or the effects of acoustic attenuation or variations in

ambient density on the shape, spectrum and amplitude of propagating acoustic waves

are neglected. Also, these approaches often cannot benefit from advances in modelling

acoustic wave propagation.

Motivated by this, a universal approach was proposed for PAT. This inversion

technique, which is called Time reversal (TR), is based on retransmitting the time

series of boundary data in a time reversed order. The TR method was first suggested

by [23] and [83], and was then used in many studies of PAT, e.g., [13]. Here, we explain

the TR approach for solving an inverse problem associated with a second-order photo-

acoustic wave equation in the form(
∇2 − 1

c2(r)

∂2p

∂t2

)
p(r, t) = 0, (r, t) ∈ Rd ×

[
0,∞

)
p(r, 0) = p0(r) = ΓH(r),

∂p

∂t
(r, 0) = 0,

(1.79)

where d denotes the dimension of the domain. The TR approach uses an assumption

that the source function p0(r) and the sound speed c(r) are sufficiently smooth. Also,

p0 is compactly supported. Let us denote the domain bounded by the detection surface

S by Ω ⊂ Rd. One advantage of the TR inversion approach is that p0 is not required

to be supported inside Ω, as opposed to the inversion approaches based on Green’s

function. The time reversal (TR) approach also uses the following assumptions:

1. The imaging region is bounded by a closed detection surface S.

2. The detection surface S is sufficiently dense and smooth.

3. The pressure field decays inside Ω when t→∞.

Based on the Huygen’s principle, for an odd d and homogeneous c, and for any

initial source p0 with a bounded support and any bounded domain Ω, there is a

finite time instant T for which the wave inside Ω vanishes for t > T [32, 31]. For

a non-trapping sound speed, the decay is sufficiently rapid, e.g., exponential for odd
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dimensions [32]. Note that the Huygen’s principle does not hold for an even d, or when

c is trapping.

Given a time-varying p(r0, t) recorded on an arbitrary detection surface S for time

t ∈ [0, T ], the inverse problem is the reconstruction of the initial pressure distribution

p0(r) inside Ω. This amounts to solving an initial boundary value problem (IBVP)

by applying p(r0, t) as a Dirichlet boundary condition in a time-reversed order. This

yields the field (
∇2 − 1

c2

∂2

∂t2

)
ptr(r, t) = 0, (r, t) ∈ Ω×

[
0, T

]
(1.80)

with initial values

ptr(r, 0) = 0,
∂ptr

∂t
(r, 0) = 0, r ∈ Ω, (1.81)

and Dirichlet boundary condition

ptr(r0, t)← p(r0, T − t), (r0, t) ∈ S ×
[
0, T

]
. (1.82)

Although the TR approach is based on the Huygen’s principle from a theoretical

point of view, this approach was also investigated numerically for cases in which the

Huygen’s principle does not hold, e.g., a 2D medium with variable sound speed [32, 31].

The main numerical results that have been reported in these studies are as follows.

1- Trapping variable sound speed. The quality of reconstructions significantly de-

pends on the cut-off time T . Also, for a circular detection geometry S, the interfaces

of source p0(r) that are normal to the radius of S cannot be stably reconstructed.

This is because wavefronts from a radial interface travel perpendicular to the radial

direction, and can be trapped. This implies that the singularity associated with a ra-

dial interface does not show up as a singularity in the measured data, and thus cannot

be fully reconstructed. This effect appears as blurriness of the radial interfaces in the

reconstructed image.

2- Erroneous sound speed. The PAT problem uses an assumption that the sound

speed is known. To meet this requirement, the sound speed is either assumed constant,

or may be obtained from adjunct imaging data such as ultrasound computed tomog-

raphy [44]. It was shown that using an erroneous sound speed deteriorates accuracy

for both amplitude and location of interfaces, the first of which is very important for

quantitative photo-acoustic tomography, i.e., the reconstruction of an image of optical

coefficients from measured pressure data [61].
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1.6 Model-based approaches

As discussed above, the TR approach is based on the assumption that the boundary

data is densely sampled on a detection surface that encloses the imaging region. This

condition does not hold in many biomedical applications of PAT because of a low

degree of freedom for positioning detectors. Additionally, the accuracy of the TR

approach is contingent on a sufficiently accurate estimation of the sound speed, which

is not practical for many biomedical applications, unless the information from adjunct

imaging modalities such as ultrasound or x-ray computed tomography is used [33,

44]. In general, practical difficulties such as a finite sampling, a limited-view or few-

view detection surface, errors in estimation of medium’s properties, or errors in data

measurement make the acoustic inverse problem ill-posed [34]. For these cases, model-

based iterative algorithms are used, in which the forward operator and an associated

back-projection operator (often the adjoint operator) are iteratively applied in order

to find p0 that minimises an error function, which is the discrepancy between the

measured data and a predicted data.

To do this, we use (1.79) in order to define an acoustic forward operator on a

continuous domain in the form

Λ : C∞0 → RNsNt ,

Λ[p0] =Mp(r, t), (r, t) ∈ Rd ×
[
0, T

]
g(rs, ts) = Λ[p0]

(1.83)

where M is an operator that at each time instant maps the pressure field to detector

positions rs and measurement time instants ts. Since the operator Λ is linear, its

discretisation can be written in a matrix form

P̂ = HP0 + η, (1.84)

where P̂ ∈ RNsNt is a stack of time series of measured data with Ns the number

of detectors and Nt the number of measurement time instants, and η denotes the

noise in data. Also P0 ∈ RNn is a discretised initial pressure distribution with Nn

the number of discretisation points. Additionally, H ∈ RNsNt×Nn is a linear operator

that represents a discretisation of the forward operator Λ. Note that throughout this

thesis, the Grüneisen parameter Γ is assumed to be 1, and thus the initial pressure

distribution is equal to the absorbed optical energy.
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Having defined a discrete formulation of the forward operator Λ, denoted by H, the

inverse problem is the calculation of P0 from P̂ using (1.84). Using model-based inver-

sion approaches, this inverse problem is solved using an alternative implementation of

a forward and back-projection (or adjoint) pair. In general, the model-based inversion

approaches for solving (1.84) can be categorised into convergent Neumann-series based

algorithms or optimisation approaches.

1.6.1 Convergent Neumann-series based approach

In [59], an explicit formula is derived based on a convergent Neumann-series approach

for cases in which data is measured (available) on the whole boundary. (The numerical

results for cases in which the data is available only on a part of the boundary have

also been reported [52].) The Neumann-series method uses a forward operator, and

a back-projection operator that is a modified variant of the time reversal operator

(equations (1.80), (1.81) and (1.82)), for which the pressure field is initialised by a

harmonic extension of boundary data g(r, T ).

Considering (1.83), the act of the left pseudo-inverse of Λ, denoted by Λ+, on

g ∈ RNs×Nt is defined by [59, 52]

Λ+g := p0(·), in Ω. (1.85)

If we assume that p0 is in an energy space, i.e., p0 ∈ HD(Ω), the operator Λ+ will

amount to a applying the TR approach using (1.80), (1.81) and (1.82), for which the

pressure field is initialised by a function φ that minimises the energy norm ‖ · ‖HD(Ω).

Using the Dirichlet principle, φ is a solution to an elliptic boundary value problem of

the form

∇φ(r) = 0 (1.86)

with boundary condition φ|S = g(·, T ), which satisfies compatibility conditions of first

order, i.e., g(·, T ) ∈ S × {T} is sufficiently smooth [59, 52]. Using this, we replace the

initialisation in (1.81) by

ptr(r, 0) = φ(r),
∂ptr

∂t
(r, 0) = 0, r ∈ Ω. (1.87)



CHAPTER 1. INTRODUCTION 36

For an odd N , a constant c and a sufficiently large T , we will have Λ+Λ = I, i.e., Λ+

is an actual inverse of Λ [52]. In practice, Λ+ satisfies

Λ+Λ = I −K, (1.88)

where K is an error operator, and satisfies

‖Kp0‖HD(Ω) 6 ‖p0‖HD(Ω),∀p0 ∈ HD(Ω), (1.89)

for any smooth c (trapping or non-trapping), and for any time T > 0. For a sufficiently

large T , the inequality is strict. Using this, the inverse problem of PAT can be solved

using

f =
∞∑
m=0

KmΛ+g, g := Λp0. (1.90)

For further details on the theory of the convergent Neumann-series algorithm,

specifically conditions for stability and convergence, the reader is referred to [59] and

[52].

1.6.2 Variational approaches

The variational approaches are based on an iterative minimisation of an error func-

tional f , which is often defined as an L2 norm of the discrepancy between the measured

data and a predicted (modelled) data. This leads to a minimisation problem of the

form

argmin
x

{
f(X) := ‖HX − P̂‖2

}
, (1.91)

where X is a discretised variant of a sought after initial pressure distribution p0.

Using Green’s functions methods, a large number of model-based approaches have

been proposed. These approaches are often based on storing a discretisation of the

Poisson’s integral (or its variant) in a matrix form, and using algebraic reconstruction

techniques for solving the arising minimisation problem. Using these approaches, an

iterative computation of the forward and adjoint operators is avoided at the expense

of storing a matrix representing the whole forward operator [19, 56]. A storage of the

forward matrix is practical for these cases, because the matrix that models a forward

operator using a Poisson’s integral is often sparse. This is due to the fact the acoustic
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signal measured at a specific point and a time instant depends only on a small portion

of the image [55]. Additionally, a representation of the forward operator as a sparse

matrix enables the application of fast inversion algorithms that utilise sparsity for

achieving a high numerical efficiency [56].

The ultimate goal of PAT is quantitative photo-acoustic tomography (QPAT), a

quantitative reconstruction of the optical absorption coefficient from a set of time se-

ries of pressure data. We will show in section 1.9 that the inverse problem of QPAT is

highly non-linear and ill-posed [61, 25, 24]. This indicates that any errors in modelling

the acoustic forward operator rapidly grow, and may dominate the signal data. This

motivates improving the accuracy of the acoustic forward operator as much as possi-

ble using numerical schemes that can be adapted to local acoustic properties of the

medium, i.e., variable sound speed and ambient density, and also account for attenua-

tion of acoustic waves. For this class of forward models, an integration of the associated

acoustic fields over time is required. This makes an explicit storage of the forward op-

erator impractical (See [34].) To avoid an explicit storage of a discretised forward

operator, we solve the minimisation problem (1.91) via an alternative implementation

of a pair of forward and adjoint operators in an iterative manner [34, 4, 3, 37]. (Note

that this also applies to convergent Neumann series approach.)

The arising iterative algorithm is computationally expensive [34, 37], but it can be

handled, for example by a fast implementation of reconstruction algorithms using the

advances on data casting and parallelisation using GPUs [65, 20, 73], or FPGA [85].

Some of advantages of using variational methods for PAT are as follows.

1- Variational algorithms can be adapted to different schemes for modelling the

forward problem, including techniques based on Green’s function methods [19, 56, 50,

12, 74] or those accounting for tissue realistic acoustic properties of the medium such

as heterogeneity of acoustic properties and attenuation [34, 37].

2- In a real-world setting, because of a finite size of detectors, an assumption that

the detection of the pressure field is point-wise (r0 ∈ S) fails. Therefore, it will be

advantageous if the geometrical effects of the detectors’ finite aperture are included in

the reconstruction [6, 72, 53, 55]. In addition, the detection process also depends on the

acoustic and electric impedance mismatch between the tissue and detectors [49, 54].

One advantage of using optimisation algorithms is that these effects can be included in
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the forward model, and accounted for in the inversion process, e.g. [53]. Additionally,

using variational approaches, it will be possible to compensate for modelling errors,

e.g., measurement errors, for the reconstruction [64].

3- For ill-posed problems of PAT, either stability or both uniqueness and stability

may fail. (See for example [52].) This implies that a large number of different sources

may produce boundary data sets that are close to the measured data [55]. Using

variational methods, it will be possible to either impose constraints [22, 34, 37], or

enforce regularisation [19, 50, 12, 74, 34, 37] on the initial pressure distribution in

order to stabilise the inverse problem.

It turns out that the shape, spectrum and amplitude of propagating acoustic waves

are dependent on the acoustic properties of biological tissues [18]. This motivates

using models for acoustic wave propagation that account for acoustic properties of

the medium, e.g., variations in the sound speed and ambient density, or acoustic

attenuation. To do this, here we define a forward operator for our PAT problem using

a linear system of three-coupled first-order wave equations. For a lossless acoustic

medium, this system of equations, which is equivalent to (1.79), is defined by [60, 69]

∂

∂t
u(r, t) = − 1

ρ0(r)
∇p(r, t)

∂

∂t
p(r, t) = −ρ0(r)∇ · u(r, t)

p(r, t) = c2(r)ρ(r, t),

(1.92)

with initial conditions

p(r, 0) = p0(r), u(r, 0) = 0, (1.93)

where u is the vector-valued particle velocity field, and ρ is the acoustic density field.

Additionally, ρ0(r) denotes the ambient density of medium. Here, the first equation

is the linearised equation of motion (conservation of momentum), the second equation

is the linearised equation of continuity (conservation of mass), and the third equation

represents the adiabatic equation of state [69].

To account for an absorption and dispersion following a frequency power law, the

third line in (1.92) is replaced by an alternative variant of equation of state including

two fractional Laplacian operators in the form [69]

p(r, t) = c2(r)

[
1− τ(r)

∂

∂t
(−∇2)y/2−1 − η(r)(−∇2)(y−1)/2

]
ρ(r, t), (1.94)
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where τ and η are absorption and dispersion proportionality coefficients, and y is a

power law exponent [66, 69]. We will give further details on this in chapters 2 and 4.

1.7 Numerical schemes for solving the forward op-

erator

As discussed in the previous section, model-based approaches are based on an itera-

tive implementation of the forward and adjoint operators. This requires an accurate,

yet efficient, modelling of the forward operator (and an associated adjoint). (See for

example [34].) The finite element (FE) method is a popular method for solving partial

differential equations (PDEs) because of a high accuracy and an adaptability to irregu-

lar shapes for source and heterogeneities. For an FE mesh with Nn nodes, the solution

is represented as a linear combination of Nn basis functions. Using this, the solution

of the forward operator amounts to a calculation of coefficients in terms of the basis

functions via solving an arising sparse linear equation often using Krylov methods. In

[39], an FE scheme is proposed for solving a Helmholtz variant of photo-acoustic wave

equation (cf. (1.67) and (1.68)), which is derived by applying a temporal Fourier trans-

form to (1.79). However, this numerical scheme is very expensive for high-resolution

3D PAT, as 10 nodes per wave-length are required for an accurate approximation of

the acoustic field.

1.7.1 Finite-difference time-domain methods

Finite difference time-domain (FDTD) methods, which are are based on an approxi-

mation of derivatives (in both space and time) using finite differences, are less flexible

than FE methods for handling the shape of heterogeneities, but are more popular for

PAT because of simplicity of their implementation. In [36], an FDTD method was

used for solving a system of first-order photo-acoustic wave equations that include

the second-order nonlinear terms and classical dissipative effects. Among the recent

applications, an FDTD method has been used for an approximation of a system of

elastic wave propagation that was used for an implementation of a pair of forward and

adjoint operators for PAT of the brain [46].
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Similar to FE methods, an accurate approximation of the acoustic wave propaga-

tion using FDTD methods requires 10 grid points per wave-length [18]. Therefore, an

approximation of high frequency parts of photo-acoustic waves requires a very dense

spatial grid [18].

Using FD schemes, the spatial gradient of a field is approximated by fitting a

polynomial to a number of points, and calculating the derivative of the polynomial

[18]. For example, using a first-order variant of FD schemes, the gradient is calculated

by fitting a straight line between two grid points [18]. Therefore, the FD schemes

use the local properties of the field for computing the gradient, and the accuracy of

estimation of the gradient is dependent on the order of the fitted polynomial.

1.7.2 K-space pseudo-spectral methods

Motivated by this fact, Pseudo-spectral (PS) techniques have been proposed, for which

the gradient at each point along each Cartesian coordinate is calculated by fitting a

Fourier series to all grid points on a line passing that point along that Cartesian

coordinate [18]. Using PS methods has two main advantages:

1- The gradient associated with each Cartesian coordinate can be calculated glob-

ally (for all points) using a Fast Fourier Transform (FFT) and its inverse.

2- Using FFT, a field is approximated as a finite sum of periodic functions, which

can be described by only two nodes per wave-length [60, 18]. This dramatically reduces

the mesh requirement for modelling the high-frequency parts of the acoustic field.

Using Fourier series for interpolating functions imposes a periodicity to the field.

This implies that the value of the field and its derivative at both ends of each row of

the grid are the same. Because of this, the waves leaving one side of the grid reenters

from the opposite side. This phenomenon is called wave wrapping [60].

To explain our used numerical scheme, we start with discretisation of medium’s

parameters and acoustic fields on a d ∈ {2, 3} dimensional uniform rectilinear grid.

The position of grid points is denoted by rζ with ζ = (ζ1, ..., ζd) ∈ {1, ..., N1} × ... ×

{1, ..., Nd} and Nn =
∏d

i=1Ni the total number of grid points. Discretised variants of

sound speed c and ambient density ρ0 are denote by c̄ and ρ̄0, respectively. We denote

a separation of grid in space along coordinate i by ∆ri and a separation in time by

∆t. Accordingly, we define a discretisation of the pressure field p at position ζ and
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time step n by p(ζ,n). We will also use v(i,ζ,n) and ρ(i,ζ,n) as discretised variants of the

vector-valued particle velocity v and acoustic density ρ with i signifying a dependence

on Cartesian coordinate i. (Note that ρ is a vector because of the way the PML is

implemented on the staggered grid [60].) For brevity, we use the same notations as the

continuous formulae for a discretisation of the spatial frequency (wavenumber) along

the coordinate i, and a discretisation of the magnitude of the wavenumber. These

satisfy

k =

(
d∑
i=1

k2
i

)1/2

. (1.95)

In a same way, the vector-valued wavenumber is denoted by k. We also hope i, which

denotes a Cartesian coordinate, is not confused with the imaginary number i.

Using PSTD methods, a second-order photo-acoustic wave equation defined by

(1.79) is transformed into a spatial frequency domain in the form [60]

∂2p(k, t)

∂t2
= −(c0k)2p(k, t). (1.96)

Here, we assumed a homogeneous medium, and c0 indicates an associated constant

reference sound speed [60, 18]. (ρ0 is not necessarily constant.) Also, p(k, t) is the

d dimensional spatial FT of the acoustic pressure field p(k, t). The same as FDTD

schemes, using PSTD methods, the temporal derivatives are approximated by finite

differences. Accordingly, applying a second-order finite-difference scheme for an ap-

proximation of (1.96) yields [60, 18]

p̄(ζ,n+1) − 2p̄(ζ,n) + p̄(ζ,n−1)

(∆t)2
= −c̄2

0F−1

[
k̄2F
[
p̄(ζ,n)

]]
, (1.97)

where c̄0 is a discretisation c0, and F and F−1 denote the discrete Fast Fourier Trans-

form (FFT) and its inverse, respectively.

For a lossless acoustic medium, the relation between the temporal frequency w

and spatial frequency k (wavenumber) satisfies w = ck [60, 18]. This is called the

analytic dispersion relation. Although this relation is exact for an analytic model,

it turns out that using numerical schemes for propagation of acoustic waves leads to

an error in approximation of the temporal frequency w. Using the relation c = w/k,

this also introduces an error in the sound speed, which is called numerical dispersion

error. By an approximation of the pressure field using a numerical integration of (1.97)
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over time, the numerical dispersion errors are accumulated in time, and deteriorate an

approximation of acoustic waves. The numerical dispersion errors can be mitigated

using higher-order temporal integration schemes [77].

It has been shown that for an acoustically homogeneous medium, the temporal

integrations can be computed without any dispersion errors using [43, 60, 18]

(
(∆t)2 sinc2(c̄0∆tk̄/2)

)−1

(
p̄(k,n+1) − 2p̄k,n) + p̄(k,n−1)

)
= −(c̄0k)2p̄(k,n), (1.98)

where sinc(X) = sin(X)/X. Using (1.98), the temporal iterations are done in a

wavenumber domain [43]. Alternatively, a discrete spatial inverse FT of (1.98) gives

an equivalent temporal iteration in real space in the form [60]

p̄(ζ,n+1) − 2p̄(ζ,n) + p̄(ζ,n−1)

(∆t)2
= −c̄2

0F−1

[
k2 sinc2(c̄0∆tk/2)F

[
p̄(ζ,n)

]]
. (1.99)

The equation (1.99) can be expressed as a modified variant of (1.97), where a Laplacian

operator (in a wavenumber domain) included in the right-hand-side of (1.97) has been

replaced by

∇̄2p̄(ζ,n) = −F−1

[
k2 sinc2(c̄0∆tk/2)F

[
p̄(ζ,n)

]]
, (1.100)

where the operator ∇̄2 (·) is called second-order k-space operator, and sinc2(c̄∆tk/2)

is a k-space correction to the spatial gradient [60].

The k-space operator can be extended to a system of three-coupled first-order wave

equations [60, 18]. To do this, the second-order k-space operator is factored into parts

corresponding to each Cartesian coordinate using (1.95).

It turns out that by staggering the grid in space and time, it will be possible to

improve accuracy and stability for discretisation of odd-order spatial and temporal

derivatives [60, 18]. Using a staggered spatial grid, a factorisation of (1.100) into

coordinates gives [60, 18]

∇̄2p̄(ζ,n) =
d∑
i=1

∂

∂r+
i

∂

∂r−i
p̄(ζ,n), (1.101)

where

∂
[
·
]

∂r±i
= F−1

[
ikie

±ki∆ri/2 sinc(c̄0∆tk/2)F
[
·
]]
. (1.102)
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Here, c̄0 is a discretisation of a reference (nominal) sound speed for a weakly heteroge-

neous medium [60, 18]. Following [60], here we briefly explain the advantages of using

a staggered spatial grid.

1- Using a fixed grid for approximation of a first-order spatial gradient, the coeffi-

cient ik (corresponding to a non-staggered grid) would have a discontinuity because of

a jump from minimum spatial frequency kmin = −π/∆r to maximum kmax = +π/∆r.

This discontinuity is the source of ringing (Gibbs) artefact [60]. The coefficients of the

form ike±ki∆ri/2 (corresponding to a staggered grid) removes this discontinuity, and

reduces artifacts when the wavefield is spatially undersampled [60].

2- An approximation of an odd-order spatial derivative using a staggered spatial

grid significantly improves the spatial frequency response for high frequency ranges.

For example, a spatial FT of an approximation of a first-order derivative of a field on a

staggered spatial grid is closer to an associated spatial FT of that field on a continuous

domain, compared to using a fixed grid [60]. Particularly, an approximation of the

first-order spatial derivative using (1.102) provides an ideal frequency response up to

the spatial Nyquist frequency π/∆r [60].

3- Using PSTD techniques, the spatial derivatives are computed as a finite sum

of sinusoidal functions. Sampling of these sinusoidal functions at the center of time

steps provides a better approximation than sampling at the ends of time steps (See

[60], figure 2(b)). Using a staggered temporal grid for an approximation of (1.92),

the temporal iterations are interleaved, i.e., the time derivative of the particle velocity

(resp. acoustic density) field is approximated as a function of the spatial gradient of

the acoustic density (resp. particle velocity) field [60, 18]. Note that using a staggered

temporal grid, dispersion errors may still occur for large time steps. These errors can

be minimised using a k-space correction to the spatial gradients, as discussed above

[60].

In general, using a k-space pseudo-spectral method for solving a system of photo-

acoustic wave equations defined by (1.92) provides exact temporal iterations (without

any dispersion error) for acoustically homogeneous media. Also, these approaches are

highly accurate for weakly heterogeneous media, and are unconditionally stable for

c(r) 6 c0 [60, 18].
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The k-space methods will also be able to improve the accuracy of temporal inte-

grations for media having sharp or high-contrast discontinuities in acoustic properties

(sound speed and density distribution), if an appropriate smoothing operator is applied

on the acoustic properties. (For further information, see the manual on the k-Wave

website [65].)

1.7.3 Stability criteria for k-space pseudo-spectral methods

Using a k-space method for a numerical implementation of (1.92), the algorithm is

stable under the condition

| sin (c̄0k∆t/2)| 6 c̄0

c̄
, (1.103)

where c̄0 is the reference sound speed. For an acoustically homogeneous medium,

by choosing c̄0 = c̄, the k-space method is unconditionally stable since the sinusoid

function on the left-hand side of (1.103) is always equal to 1.

In the k-wave manual [65], a PSTD method with and without a k-space correction

was applied on a homogeneous medium, and an analysis on the performance of the

k-space correction in reducing the numerical dispersion error was given. It has been

shown that the performance of the k-space method significantly depends on the choice

of the reference sound speed. Considering (1.100), the k-space method will match a

PSTD variant, if we choose c̄0 = 0. Also, for a choice of 0 < c̄0 < c̄ with c̄ the true

sound speed for a homogeneous medium, the k-space method provides a numerical

dispersion (phase speed) error smaller than a PSTD variant, until the dispersion error

becomes zero for c̄0 = c̄. For a choice of c̄0 > c̄, the dispersion error associated with

the k-space scheme exponentially grows, and becomes larger than the error due to the

PSTD scheme. (See figure 2.4 in the k-Wave manual [65].)

Considering this analysis, although by choosing c̄0 > c̄, the stability condition

(1.103) is strictly satisfied, the main advantage of the k-space schemes for minimising

dispersion errors will be lost. As discussed in the above paragraph, a choice of c̄0 < c̄

reduces the dispersion error, but it imposes a condition on the stability, i.e., ∆t must

be sufficiently small so that

∆t 6
2

c̄0kmax

sin−1
( c̄0

c̄

)
, (1.104)
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where kmax denotes the maximum wavenumber.

Based on this, for an acoustically heterogeneous medium, which amounts to the

replacement of c̄ by c̄ζ , the choice of c̄0 for the k-space scheme makes a trade-off be-

tween the stability and accuracy of the temporal iterations. For example, by choosing

c̄0 = max(c̄ζ), the algorithm will be unconditionally stable, but this requires choosing

a small ∆t in order to avoid corruption of the solution by the phase speed errors accu-

mulated in time. Conversely, a choice of c̄0 = min(c̄ζ) reduces the phase speed errors,

but it requires a small time step that satisfies a stability condition

∆t 6
2

c̄0kmax

sin−1

(
c̄0

max(c̄ζ)

)
. (1.105)

The stability of the k-space scheme may be expressed in terms of the Courant-Fredrichs-

Lewy (CFL) number. For a homogeneous medium, the CFL number is defined by the

ratio of the spatial distance a wave travels during a temporal iteration ∆t to the

separation distance ∆r, i.e.,

CFL =
c̄∆t

∆r
. (1.106)

A CFL number is used in order to express the stability condition independently from

the grid spacing. Therefore, the CFL number can be thought of a time step that only

depends on the numerical scheme, and not the spatial and temporal separation of the

grid. Using the stability condition in (1.104), the choice of the CFL number must

satisfy

CFL 6
2

π

(
c̄

c̄0

)
sin−1

( c̄0

c̄

)
, (1.107)

where we have used kmax = π/∆r. Based on the above, given the CFL number and

having defined our spatial grid, the time step can be chosen using

∆t =
CFL∆rmin

max(c̄ζ)
. (1.108)

For applying k-space pseudo-spectral methods on weakly heterogeneous media, a choice

of ∆t using (1.108) with a CFL number of 0.3 provides a good balance between accu-

racy and computational speed [65]. For further details on the accuracy and stability

of the k-space pseudo-spectral methods, the reader is referred to the manual on the

k-Wave website [65].
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1.8 Forward-Backward Splitting (FBS) methods for

PAT

Among gradient-based optimisation algorithms for minimisation of non-smooth convex

functions, Iterative Shrinkage Thresholding Algorithms (ISTA) are very popular for

solving the inverse problem of PAT, because they are computationally cheap regarding

speed and memory storage [9]. (For application of this class of methods in PAT, see

[4, 3, 34, 37].) Considering the minimisation problem (1.91) for an ill-conditioned H,

the associated objective function is not sufficiently meaningful, implying that there

exist a large number of solutions that minimise the objective function up to a level of

accuracy. The ill-posedness of the problem can be mitigated by replacing the original

ill-posed problem by a nearby well-posed problem, for which the solution is close

to the true solution of the original ill-posed problem. To do this, the solution is

constrained by enforcing a non-negativity constraint (using the fact that the initial

pressure distribution is non-negative) [22, 34], or a regularisation (penalty) function

R(X) is added to the objective function [34]. Using these, a constrained and regularised

variant of the minimisation problem (1.91) is defined by

argmin
X>0

{FC(X) := f(X) + 2λR(X)} , (1.109)

where as in (1.91)

f(X) = ‖HX − P̂‖2. (1.110)

Here, ‖ · ‖ is an Euclidean norm, and λ > 0 is a regularisation parameter, which makes

a balance between fidelity to measurements and fidelity to an assumption about the

true solution.

1.8.1 FBS methods

Here, an unconstrained form of (1.109) is of interest. This is derived by replacing

the non-negativity constraint by an indicator function on a non-negativity set C =

{X > 0} that is added to the objective function FC . Using this, an unconstrained

variant of the minimisation problem (1.109) will be in the form

argmin
X
{F (X) := f(X) + 2λ g(X)} , (1.111)
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where g(X) = 2λR(X) + δC(X) with

δC =

0, X > 0

+∞, X < 0.

(1.112)

Here, f : RNn → R is a continuously differentiable function with a Lipschitz continuous

gradient having a Lipschitz constant L > 0 that satisfies [9, 10]

‖∇f(X)−∇f(Y )‖ 6 L‖X − Y ‖ (1.113)

for every X, Y ∈ RNn . Additionally, g : RNn → R is a proper, closed, convex and

possibly non-smooth function. We now define the proximal operator associated with

function g as [10]

proxg(X, τ) := argmin
u

{
g(u) +

1

2τ
‖u−X‖2

}
. (1.114)

The proximal operator finds a point close to the minimiser of g in a neighborhood of

a starting point X. From the optimality condition of (1.111) and for any constant

τ > 0, an optimal solution X∗ satisfies [9]

0 ∈ τ∇f(X∗) + τ∂g(X∗), (1.115)

where ∂g denotes the sub-gradient of g. Using (1.115), the solution X∗ can be derived

from [9]

0 ∈ τ∇f(X∗)−X∗ +X∗ + τ∂g(X∗)

(I + τ∂g) (X∗) ∈ (I − τ∇f) (X∗).
(1.116)

This finally gives

X∗ = (I + τ∂g)−1 (I − τ∇f) (X∗). (1.117)

From (1.117), the solution x∗ can be obtained using a fixed point iterative scheme of

the form [9]

Xk = (I + τk∂g)−1 (I − τk∇f) (Xk−1), (τk > 0) (1.118)

with X0 ∈ RNn . The operator (I − τk∇f) (Xk−1) is a forward gradient-descent step

on f , starting from Xk−1 and moving along the direction −∇f (negative gradient)
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with a step-size τk [10, 27]. This operator amounts to a steepest descent step on f [9].

Additionally, the operator (I + τk∂g)−1 is a Backward gradient descent step, and can

be solved using [9]

(I + τ∂g)−1(X) ≡ proxg(X, τk), ∀X ∈ RNn . (1.119)

Using the above, the iteration (1.118) can be fit into a class of Forward-Backward

Splitting (FBS) methods for minimisation of a convex and possibly non-smooth func-

tion subject to constraints on the solution [9, 27]. Using Forward-Backward Splitting

methods, each iteration involves two steps, the first of which is a steepest descent step

on a smooth function f and the second step is a descent step on a possibly non-smooth

g [9]. This method is outlined in Algorithm 1.1 [9, 27].

Algorithm 1.1 FBS method

1: Initialise: X0 ∈ RNn

2: while Not converged do
3: X̂k = Xk−1 − τk∇f(Xk−1)
4: Xk = proxg(X̂k, τk)
5: end while

Here, for our PAT problem, the gradient of f is computed by

∇f(X) = 2HT
(
HX − P̂

)
, (1.120)

where the operators H and HT are discretised variants of the acoustic forward and

adjoint operators. Considering (1.120), the main cost of each iteration in Algorithm 1.1

is a computation of ∇f .

For cases in which the function g is separable, for example when g is an L1 norm,

the proximal operator can be solved separately for each component of X̂ as a one-

dimensional problem. Specifically, using g(X) = ‖X‖1, the proximal operator is sim-

plified into a Shrinkage Thresholding (ST) operator that satisfies [9, 10]

T : RNn → RNn

T (X,α)i = (|Xi| − α)+ sgn(Xi),
(1.121)

where α is a thresholding parameter, and sgn denotes the signum function. FBS ap-

proaches that use a proximal operator in the form (1.121) are called Iterative Shrinkage

Thresholding Algorithms (ISTA) [9, 10].
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Using a separable g, the main cost per iteration is the computation of a gradient

using (1.120), and the computational cost of solving the proximal operator is negli-

gible [37]. FBS algorithms (like ISTA) are very popular for large-scale linear inverse

problems, and thus have been widely used for the acoustic inverse problem of PAT

[4, 3, 34, 37].

The convergence of FBS algorithms is contingent on a certain stability bound on

the sequence τk. Accordingly, the step-size can be either assumed constant, or selected

adaptively using an appropriate backtracking line search [10]. Assuming a constant

step-size τk = τ for all k, it turns out that the convergence of the FBS algorithm is

guaranteed using a step-size

τ ∈
(

0,
2

Lmin

)
, (1.122)

where Lmin is the smallest Lipschitz constant of ∇f (cf. (1.113)) [9, 10, 27]. Using

(1.120), Lmin = 2‖HTH‖ = 2Smax

(
HTH

)
, where Smax (·) denotes the maximum eigen-

value [9, 10]. Therefore, the FBS algorithm will converge, if τ ∈
(
0, 1/Smax(HTH)

)
[9, 10].

Using a constant step-size τ = 1/L, the sequence Xk generated by Algorithm 1.1

satisfies [9, 10]

F (Xk)− F (X∗) 6
L‖X0 −X∗‖2

2k
(∀k > 1). (1.123)

Here, X∗ is a minimiser of function F , which is defined by (1.111). Considering (1.123),

an FBS algorithm that uses Algorithm 1.1 provides a sublinear rate of convergence for

function values F (Xk) [9, 10].

1.8.2 Accelerated FBS methods

The global rate of convergence for FBS algorithms can be significantly improved using

a specific linear combination of the previous two iterates at each iteration [9, 10]. An

outline of this method is given in Algorithm 1.2 [9, 10, 27].

It has been shown that using a constant τ = 1/L, the sequence Xk generated by

Algorithm 1.2 satisfies [9, 10]

F (Xk)− F (X∗) 6
2L‖X0 −X∗‖2

(k + 1)2
(∀k > 1). (1.124)
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Algorithm 1.2 Accelerated FBS method

1: Initialise: Y1 = X0 ∈ RNn , t1 = 1
2: while Not converged do
3: X̂k = Yk − τk∇f(Yk)
4: Xk = proxg(X̂k, τk)

5: tk+1 =
1+
√

1+4t2k
2

6: Yk+1 = Xk +
(
tk−1
tk+1

)
(Xk −Xk−1)

7: end while

This indicates that a worst-case rate of convergence for values F (Xk) provided by an

FBS approach that is accelerated using Algorithm 1.2 is quadratic. It is also worth

mentioning that the convergence of an FBS algorithm with a fixed step-size requires

τ ∈ (0, 2/Lmin), whereas an accelerated FBS algorithm will converge, if τ ∈ (0, 1/Lmin)

[16].

1.8.3 Total variation (TV) regularisation

Having defined a general form of the FBS algorithm and its accelerated variant, here we

will introduce our choice for function g and an associated proximal operator. Consid-

ering (1.111), here we are interested in total variation (TV) regularisation approaches,

which remove noise and produce sharp interfaces at the cost of removing small-scale

details in the reconstructed image [70]. This class of approaches are based on a min-

imisation of an integral of the gradient of the sought parameter distribution. In the

context of image denoising, a TV regularisation approach was proposed by Chambolle

based on a dual approach [14, 15]. Using this, a TV regularised variant of an FBS

algorithm (and an accelerated variant) was derived, in which the dual approach of

Chambolle was used for solving an associated proximal operator subject to a box con-

straint Xl 6 X 6 Xu with Xl and Xu the lower and upper bounds [9]. Using the dual

approach of Chambolle, the proximal operator involves a Shrinkage Thresholding (ST)

step [9]. Because of this, an FBS approach that uses the dual approach of Chambolle

can be fit into the class of ISTA approaches [10]. (See [4, 3, 34, 35] for applications in

PAT). Using the dual approach of Chambolle, the proximal operator included in the

FBS algorithm amounts to solving a denoising problem for an image that has been

already calculated by a forward gradient step (cf. Algorithms 1.1 and 1.2).

Given a noisy image f ∈ Rd, the denoising problem is to calculate u ∈ Ω (Ω ∈ Rd)
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from

f = u+ η, (1.125)

where η is the noise in the image. One way for solving the denoising problem (1.125)

is using the so-called Rudin-Osher-Fatemi (ROF) model [57]. The ROF minimisation

problem is defined as

u = arg min
u∈BV (Ω)

|u|BV =

∫
Ω

|∇u(r)|dr, (1.126)

subject to the constraints∫
Ω

u(r)dr =

∫
Ω

f(r)dr,

∫
Ω

|u(r)− f(r)|2dr = σ2. (1.127)

Here, r denotes the spatial space, ∇u is the gradient of u, and BV denotes the space

of images with a bounded variation. Also,

J (u) =

∫
Ω

|∇u(r)|dr (1.128)

is the total variation functional. Note that the constraints in (1.127) indicate that η

is independently and identically distributed as a Gaussian random variable with zero

mean and standard deviation σ [57]. An unconstrained variant of the ROF minimisa-

tion problem gives

u = arg min
u∈BV (Ω)

{
2J (u) + ν‖f − u‖2

L2
}
, (1.129)

where the first term is the TV functional, and the second term is a data fidelity norm

associated with the constraints in (1.127) with ν a Lagrangian multiplier. Note that

the coefficient 2 is multiplied by the first term in order to make (1.129) consistent with

(1.111).

Also note that a comparison between (1.111) and a non-negativity constrained variant

of (1.129) implies that ν ≡ 1/λ. This problem has a minimiser in the space of functions

with bounded variations u ∈ BV (Ω), if and only if u ∈ L1(Ω), and also

J (u) = sup
~ξ∈C1

c (Ω;Rd), |~ξ(r)|61

{∫
Ω

u(r)∇ · ~ξ(r)dr

}
<∞, ∀r ∈ Ω, (1.130)

where ∇ · ~ξ is the divergence of ξ with |~ξ| =
(∑d

i=1 ξ
2
i

)1/2

[70, 14].
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Using (1.126) and (1.127), (or alternatively (1.129)), an Euler-Lagrange equation can

be derived, i.e., [57]

u = f +
1

ν
∇ ·
(
∇u
|∇u|

)
. (1.131)

The non-differentiability of the right-hand-side of (1.131) can be handled by enforcing

an approximation |∇u| ≈
√
|∇u|2 + β, where β > 0 is a smoothing parameter [71].

Using (1.131), together with assuming u as a function of time t (as well as space), the

minimisation problem can be solved by [57]

∂u

∂t
= −∇ ·

(
∇u√
|∇u|2 + β

)
+ ν(u− f) (t > 0, r ∈ Ω) (1.132)

using an initialisation u|t=0 = u0 and a homogeneous Neumann boundary condition

∂u/∂n̂ = 0 with n̂ a vector normal to the surface ∂Ω. A spatial discretisation of (1.132)

gives a forward Euler time marching scheme [57, 71]. Using an appropriate step size

for the time integration, this scheme amounts to using a steepest descent algorithm,

and thus suffers from a slow asymptotic convergence rate [57, 71]. Using higher-order

methods such as nonlinear conjugate gradient or Newton’s method provides a better

rate of convergence for cases in which the objective function depends smoothly on

u using a sufficiently large β. However, the efficiency and accuracy are deteriorated

using a small β [71].

An alternative way is to linearise a fixed point iteration derived from the optimality

condition of (1.129) using the last iterate uk. This gives(
1 +

1

ν
L(uk)

)
uk+1 = f, k = 0, 1, ..., (1.133)

where

L(u)v = −∇ ·

(
1√

|∇u|2 + β
∇v

)
. (1.134)

Now, we define a discretisation of our TV minimisation problem. Let us define a

discretised image ū ∈ RNn with Nn = N1 × ... × Nd. Also let ζi ∈ {1, ..., Ni} de-

note the position of sampled points along Cartesian coordinates i ∈ {1, ..., d} as in

section 1.7. Using this, we define a discretised gradient operator D : RN1×...×Nd →

RN1−1×....Ni....×Nd × RN1×....Ni−1....×Nd × RN1×....Ni....×Nd−1 in the form

Dū =

(
(Dū)1, ..., (Dū)i, ..., (Dū)d

)
, (1.135)
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where, (Diū) is defined by

(Dū)i(ζ1,...,ζi,...,ζd) = ū(ζ1,...,ζi,...,ζd) − ū(ζ1,...,ζi+1,...,ζd), 1 6 ζi < Ni (1.136)

Using (1.135) and (1.136), a discretised TV function is defined by [14]

J(ū) =
∑

ζ1,,...,ζd

[
d∑
i=1

(
(Dū)i(ζ1,...,ζd)

)2

]1/2

. (1.137)

We also define the transpose of the gradient DT : RN1−1×....Ni....×Nd×RN1×....Ni−1....×Nd×

RN1×....Ni....×Nd−1 → RN1×...×Nd , which is defined by [14, 34]

DTX =
d∑
i=1

(DTX)i, (1.138)

where

(DTX)i(ζ1,...,ζi,...,ζd) =


X i

(ζ1,...,ζi,...,ζd) −X i
(ζ1,...,ζi−1,...,ζd), 1 < ζi < Ni

X i
(ζ1,...,ζi,...,ζd), ζi = 1

−X i
(ζ1,...,ζi−1,...,ζd), ζi = Ni.

(1.139)

To include a non-negativity constraint, we also define an operator for an orthogonal

projection to the set C = {X > 0} using [14, 9, 34]

(PC ū)(ζ1,...,ζd) = max
{

0, ū(ζ1,...,ζd)

}
(1.140)

Using the dual approach of Chambolle [14], we also define an operator Pp : RN1−1×....Ni....×Nd×

RN1×....Ni−1....×Nd×RN1×....Ni....×Nd−1 → RN1−1×....Ni....×Nd×RN1×....Ni−1....×Nd×RN1×....Ni....×Nd−1

in the form

PpX =
(

(Pp,1X1), ..., (Pp,iX i), ..., (Pp,dXd)
)
, (1.141)

where

(Pp,iX)(ζ1,...,ζd) =
X i

(ζ1,...,ζd)

max
{

1,
[∑d

i=1(X i
(ζ1,...,ζd))

2
]1/2} . (1.142)

Using the operators defined above and using a fixed τ = τk (∀k), we outline our

proximal operator using the dual approach of Chambolle in Algorithm 1.3 [9, 34]

. Here, the superscript k denotes the (inner) iteration number associated with our

proximal operator with ∗ the final iteration.
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Algorithm 1.3 Proximal operator proxg

(
X̂, τ k

)
1: Input: X̂ ∈ RN1−1×....Ni....×Nd × RN1×....Ni−1....×Nd × RN1×....Ni....×Nd−1, λ′ = λτ, d ∈
{2, 3}

2: Initialise: P 0 = 0N1−1×....Ni....×Nd × 0N1×....Ni−1....×Nd × 0N1×....Ni....×Nd−1

3: while Not converged do

4: P k = Pp
[
P k−1 + 1

2dλ′
D
(
PC
[
X̂ − 0.5λ′DTP k−1

]) ]
5: end while
6: X∗ = PC

(
X̂ − λDTP ∗

)
Algorithm 1.4 Accelerated proximal operator proxg

(
X̂, τ k

)
1: Input: X̂ ∈ RN1−1×....Ni....×Nd × RN1×....Ni−1....×Nd × RN1×....Ni....×Nd−1, λ′ = λτ, d ∈
{2, 3} , kmax, t

1 = 1
2: Initialise: Q1 = P 0 = 0N1−1×....Ni....×Nd × 0N1×....Ni−1....×Nd × 0N1×....Ni....×Nd−1

3: while Not converged do

4: P k = Pp
[
Qk + 1

2dλ′
D
(
PC
[
X̂ − 0.5λ′DTQk

]) ]
5: tk+1 = 1+

√
1+4tk2

2

6: Qk+1 = P k +
(
tk−1
tk+1

)
(P k − P k−1)

7: end while
8: X∗ = PC

[
X̂ − λDTP ∗

]
In a same way as Algorithm 1.2, an accelerated version for the proximal operator

defined in Algorithm 1.3 can be derived. This is outlined in Algorithm 1.4 [9, 34].

We terminate Algorithms 1.3 and 1.4 when

k > m ∩ ‖Xk −Xk−m‖ < εg, (1.143)

where εg is a terminating threshold, and m is a user-defined number of iterations. We

will define the stopping criteria for Algorithms 1.1 and 1.2 in chapters 2 and 3.

1.9 Optical problem

In the previous section, we explained the acoustic portion of photo-acoustic tomog-

raphy, which is a calculation of an initial pressure distribution (or absorbed optical

energy) from time series of measured pressure data at the boundary. We also discussed

iterative model-based approaches for solving ill-posed problems that arise for example

from a limited or few-view data set or an erroneous estimation of acoustic properties

[34, 37].
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The main goal of photo-acoustic tomography is a quantitative reconstruction of

a distribution of optical absorption coefficients from time series of boundary data

[28]. This is referred to as Quantitative photo-acoustic tomography (QPAT). This

involves two inverse problems, the former of which is a calculation of an image of

absorbed optical energy from measured pressure data, and the latter is a calculation

of the optical coefficients from a distribution of absorbed energy [24, 25, 28]. The

optical portion of the QPAT problem is highly nonlinear and ill-posed in the sense

of Hadamard [24, 28]. It was shown that this problem is non-unique for a single

optical source [7] or frequency [8]. These two inverse problems can be either solved

separately [25, 29, 61, 62], or combined as a direct composite problem [24, 28, 51]. The

latter approach has recently received much attention, because the optical coefficients,

as opposed to the absorbed optical energy, are independent from the used optical

source or frequency, and therefore, by solving a direct variant of the inverse problem,

it will be possible to improve stability of the inversion process using multi-source

[7, 25, 24, 51] or multi-frequency settings [8]. Another advantage of using a direct

composite form of QPAT is that both the optical and acoustic portions of the problem

can simultaneously use information about noise in data [51] and an assumption about

the true optical coefficients [24]. In contrast, by solving the optical and acoustic inverse

problems distinctly, the acoustic portion of the inverse problem cannot benefit from an

assumption about the optical coefficients, and also the optical portion of the inverse

problem fails to utilise information about noise in boundary data [24, 28, 51].

Using both approaches for the QPAT problem, the inverse problem is often solved

by model-based algorithms in order to deal with the nonlinearity and ill-condition of

an associated optical forward operator. The same as an acoustic inverse problem,

model-based approaches are based on modelling the physics of an optical problem.

1.9.1 Radiative Transfer Equation (RTE)

A very accurate model for simulating the propagation of optical photons is the Ra-

diative Transfer Equation (RTE). This model is a simplified version of a Transport

equation using an assumption that the particles undergo elastic collisions, i.e., the

energy of the particles does not change in collisions [63]. To explain the RTE model,

we define an optical domain Ωo ⊂ Ω, which is isotropic, i.e., the probability of the
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scattering between two directions depends only on the relative angle between two di-

rections. Also, we assume that the support of the optical medium Ωo is inside the

acoustic medium Ω.

Using RTE, the propagation of optical photons in a medium Ωo ⊂ Ω is defined by [63]

1

co(r)

∂φ(r, ŝ)

∂t
+ ŝ · ∇φ(r, ŝ) + (µs(r) + µa(r))φ(r, ŝ) =

µs(r)

∫
Sd−1

θ(ŝ · ŝ′)φ(r, ŝ′)dŝ′ + q(r, ŝ),

(1.144)

where co denotes the speed of light in tissue, µa and µs are the absorption and scattering

coefficients, φ(r, ŝ) is the radiance, and q(r, ŝ) is an internal source (inside Ωo). Also

θ(ŝ · ŝ′) is the scattering phase function, and describes the probability that a photon

with a direction ŝ′ has a direction ŝ after a scattering event. It satisfies [63]∫
Sd−1

θ(ŝ · ŝ′)dŝ =

∫
Sd−1

θ(ŝ · ŝ′)dŝ′ = 1. (1.145)

For an isotropic optical medium, the phase function can be described by a Henyey-

Greenstein scattering function in the form

θ(ŝ · ŝ′) =


1

2π
1−g2o

1+g2o−2go cos γ
, if d = 2

1
4π

1−g2o
(1+g2o−2go cos γ)3/2

, if d = 3.

(1.146)

Here, γ is the angle between directions ŝ and ŝ′, and −1 < go < 1 is the scattering

anisotropy factor, and describes the shape of the probability density [63].

Using a boundary source φ0(r, ŝ) (r ∈ ∂Ωo) which is nonzero at location of optical

sources, the boundary condition is defined by

φ(r, ŝ) = φ0(r, ŝ), r ∈ ∂Ωo, ŝ · n̂ < 0, (1.147)

where n̂ is an outward unit normal.

1.9.2 Diffusion Approximation (DA) to RTE

Although RTE is a very accurate model for simulating the propagation of light, it

requires a computation of the radiance in space and phase, and is thus computationally

very expensive. As a result, RTE is not practical for 3D QPAT [58]. A more efficient
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model for propagation of light in tissue media is provided by a diffusion approximation

(DA) to RTE. This can be derived by a P1 approximation to an expansion of the

radiance, source term and the phase function into series of spherical harmonics [63].

The P1 approximation is based on an assumption that the angular distribution of

the mentioned functions is uniform for a highly scattering medium. To introduce the

PDEs describing the DA model, we start with a definition of the photon density as

φ(r) =

∫
Sd−1

φ(r, ŝ) dŝ. (1.148)

We also define the photon current as

Jo(r) =

∫
Sd−1

ŝφ(r, ŝ) dŝ. (1.149)

Using a P1 approximation, the radiance is defined by [63]

φ(r, ŝ) ≈ 1

|Sd−1|
φ(r) +

d

|Sd−1|
ŝ · Jo(r). (1.150)

The same approximation for the source term gives

q(r, ŝ) ≈ 1

|Sd−1|
q0(r) +

d

|Sd−1|
ŝ · q1(r). (1.151)

Here, q0 and q1 are the isotropic and dipole components of an internal source, and are

respectively defined by [63]

q0(r) =

∫
Sd−1

q(r, ŝ) dŝ

q1(r) =

∫
Sd−1

ŝq(r, ŝ) dŝ.

(1.152)

In the same way, a P1 approximation of the scattering phase function yields

θ(ŝ · ŝ′) ≈ 1

|Sd−1|
g0 +

d

|Sd−1|
(ŝ · ŝ′)g1, (1.153)

where,

g0(r) =

∫
Sd−1

θ(ŝ · ŝ′) dŝ = 1

g1(r) =

∫
Sd−1

(ŝ · ŝ′)θ(ŝ · ŝ′) dŝ.
(1.154)

Using a Henyey-Greenstein scattering function (cf.(1.146)) yields g1 = go. Plugging

(1.153) into the first term in the right-hand-side of (1.144) gives [63]

µs(r)

∫
Sd−1

θ(ŝ · ŝ′)φ(r, ŝ′)dŝ′ = µs(r)
1

|Sd−1|
φ(r) + µs(r)

d

|Sd−1|
g1ŝ · Jo(r). (1.155)
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In the same way, plugging the approximations in (1.150) and (1.151) into the left-

hand-side of (1.144) yields

1

|sd−1|

(
1

co(r)

∂

∂t
+ ŝ · ∇+ µa(r)

)
φ(r) +

d

|Sd−1|

(
1

co(r)

∂

∂t
+ ŝ · ∇+ µa(r) + µ′s(r)

)
ŝ · Jo(r)

=
1

|sd−1|
q0(r) +

d

|sd−1|
ŝ · q1(r),

(1.156)

where, µ′s is the reduced scattering coefficient, and satisfies

µ′s = µs(1− g1). (1.157)

An integration of both sides of (1.156) over angular directions Sd−1 gives(
1

co(r)

∂

∂t
+ µa

)
φ(r) +∇ · Jo(r) = q0(r) (1.158)

Also, multiplying both sides of (1.156) with ŝ and an integration over angular directions

Sd−1, gives (
1

co(r)

∂

∂t
+ µa + µ′s

)
Jo(r) +

1

d
∇φ(r) = q1(r). (1.159)

For derivation of a DA model, we assume that the light source is isotropic (q1 = 0),

and also 1
co

∂Jo(r)
∂t

= 0. For the latter assumption, one uses the fact that µa � µs′ .

Applying these assumptions, (1.159) gives

Jo(r) = −κ(r)∇φ(r), (1.160)

where κ denotes the diffusion coefficient, and is in the form

κ(r) =
1

d (µa(r) + µ′s(r))−1 . (1.161)

Equation (1.160) is called Fick’s law [63]. Now, by plugging (1.160) into (1.158), the

DA form of RTE is derived. This is in the form

−∇ · κ(r)∇φ(r) + µaφ(r) +
1

co

∂φ(r)

∂t
= q0(r). (1.162)

Using the P1 approximation, the total inward-directed photon flux at a point r ∈ ∂Ω0

is defined by

Γ−(r) =

∫
ŝ·n̂<0

(ŝ · n̂)φ(r, ŝ)dŝ = γdφ(r)− 1

2
n̂ · Jo(r), (r ∈ ∂Ωo) (1.163)
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where γ2 = 1/π and γ3 = 1/4. In the same way, the total outward-directed photon

flux is defined by

Γ+(r) =

∫
ŝ·n̂>0

(ŝ · n̂)φ(r, ŝ)dŝ = γdφ(r) +
1

2
n̂ · Jo(r), (r ∈ ∂Ωo) (1.164)

In an absence of optical sources at the boundary, we have

Γ−(r) = 0 (r ∈ Ωo). (1.165)

Using this assumption, together with plugging the Fick’s law into (1.163), gives a

boundary condition in the form

φ(r) +
1

2γd
κ
∂φ(r)

∂n̂
= 0, r ∈ ∂Ωo. (1.166)

Additionally, reflections may occur at the boundary because of different refractive

indices between the tissue and the surrounding medium. To account for these effects,

(1.165) is replaced by

Γ−(r) = RoΓ+(r) (r ∈ Ωo), (1.167)

where Ro is the reflection coefficient at the boundary ∂Ωo. Plugging (1.163) and

(1.164) into (1.167) gives

φ(r) +
1

2γd
κ(r)A∂φ(r)

∂n̂
= 0, r ∈ ∂Ωo. (1.168)

where A is the coefficient associated with the mismatched refractive indices, and

satisfies

A =
1 +Ro

1−Ro

. (1.169)

Using DA, an optical (external) source is also enforced to the boundary condition in

order to simulate an optical illumination. For optical tomography or QPAT, this can

be defined either as a collimated, or diffuse source. Using a diffusive source model,

which is more common for QPAT [63], the boundary condition is modified as

φ(r) +
1

2γd
κ(r)A∂φ(r)

∂n̂
=
Is
γd
, r ∈ ∂Ωo, (1.170)

where Is denotes an inward-directed diffusive boundary current. Note that Is is

nonzero at the position of optical sources. Equation (1.170), which is called a Robin



CHAPTER 1. INTRODUCTION 60

boundary condition, has been widely used as a boundary condition for simulating the

light illumination on tissue media [63].

Using a steady state variant of the DA model (1.162) using ∂φ(r)/∂t = 0, together

with an assumption of no internal source q0(r) = 0, yields

−∇ · κ(r)∇φ(r) + µa(r)φ(r) = 0, r ∈ Ωo (1.171)

Equation (1.171), together with the boundary condition (1.170), gives a system of

coupled PDEs for modelling illumination and propagation of optical photons for QPAT

[61, 62].

The absorbed optical energy, which is equal to the initial pressure distribution under

an assumption Γ(r) = 1, is defined by

H(r) = µa(r)φ(r). (1.172)

The most common numerical approach for approximation of this system of equations

is Finite element method (FEM) [63], and is also used in our study. An FEM approach

is applied on a variational form of these equations. For further details on a numerical

implementation of (1.171) and boundary condition (1.170), the reader is referred to

chapter 4.

Considering (1.172), together with the fact that φ also depends on µa, the depen-

dence of H on µa is highly non-linear [24, 25]. Because of this, together with the

fact that tissue media are highly scattering, the inverse problem of solving the optical

coefficients µa and µ′s from H is a highly-nonlinear and ill-posed problem [61, 62].

We emphasise that the parameter of interest for QPAT is only the absorption coef-

ficient µa, but the forward operator is also dependent on µ′s, which is not available

in practice. Therefore, a simultaneous reconstruction of µa and µ′s is often indicated

for QPAT [61, 51]. An alternative inverse problem has also been considered in many

studies, for which a simultaneous reconstruction of µa and κ is of interest [24, 25, 29].

In this thesis, we used the latter approach for solving the inverse problem of QPAT

(cf. chapter 4).
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1.10 Outline of thesis

This thesis has been written in a journal (alternative) format. Here, the main rea-

sons for choosing this format are briefly explained. At the time of a decision on this

format, the candidate and supervisor felt that the obtained analytic and numerical

results might be of interest to researchers working in the related fields, and a presenta-

tion of the obtained results for larger related communities might be more appropriate.

Therefore, the candidate preferred to put more time on publishing the obtained results

in some peer-reviewed journals, and to write a thesis as a collection of the papers.

Chapters 2 and 3 of this thesis are identical copies of the corresponding published

papers in peer-reviewed journals. In addition, chapter 4 is an identical copy of a

manuscript accepted in a peer-reviewed journal. A paragraph has been included at

the beginning of chapters 2, 3 and 4 for referring to the corresponding published or

accepted papers. In addition, we provided a section, entitled Supplementary materials,

at the end of these chapters. These sections provide a link between the papers, and

also include some information that have not been embedded in the papers because of

space constraints. In chapter 5, we will present a summary of this thesis, and give

some discussions and suggestions for future works. Note that the contents of chapters

1 and 5, together with sections entitled Supplementary materials (cf. at the end of

chapters 2-4), have not been published or submitted for publication elsewhere, and

also we will not publish them elsewhere after the submission of this thesis. In the

sequel, we give a brief introduction for the following chapters.

1.10.1 Chapter 2: A multi-grid iterative method for photoa-

coustic tomography

To cope with a high computation cost due to the iterative nature of variational ap-

proaches for PAT, we develop a line-search multi-grid (MG) version of first-order

Forward-Backward Splitting (FBS) methods in order to improve the speed of image

reconstruction using this class of inversion approaches [37]. The forward operator we

consider for our PAT problem is defined using a system of three-coupled first-order

wave equations defined in (1.92) with the third equation replaced by an equation of

state accounting for an absorption and dispersion following a frequency power law, as
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defined in (1.94). Also, the initial values are set using (1.93).

As discussed in section 1.6, variational approaches are popular for PAT, because

they are tolerant in dealing with practical difficulties, e.g., errors in estimation of

medium’s properties, errors in data collection, and a limited-view or a few-view detec-

tion surface [34]. Variational approaches significantly improve the image reconstruc-

tion for PAT, but they are computationally very expensive because of a need for an

iterative implementation of the forward operator and an associated adjoint operator

[4]. As explained in section 1.8, among variational approaches for the acoustic inverse

problem of PAT (for cases in which we are interested in solving the optical and acoustic

inverse problems distinctly), FBS methods perform well regarding accuracy and speed

[34, 4, 3].

The forward gradient step in an FBS algorithm uses a steepest descent search

direction, which is a negative gradient of the smooth part of the objective function

(data fidelity norm) as a function of a forward operator and a corresponding adjoint

(cf. Algorithms 1.1 and 1.2). In [34], by deriving a matrix form of a numerical

implementation of our considered forward operator using a k-space pseudo-spectral

approach, an algebraic adjoint was proposed using a discretise-then-adjoint method.

In chapter 2, we will also derive an adjoint of this forward operator on a continuous

domain using an adjoint-then-discretise method. We shall show that in an absence of

absorption and dispersion effects, our derived continuous adjoint matches a continuous

adjoint that has been previously derived in [4] for lossless media. A continuous adjoint

can be expressed as a generalised variant of a corresponding disretised adjoint in the

sense that it is independent from numerical schemes for solving the forward and adjoint

pair [4], and thus any modifications in the forward modelling can be straightforwardly

incorporated into the optimisation framework.

We numerically approximate our forward and associated adjoint operators using

a k-space pseudo-spectral method, as explained in section 1.7. To do this, we use an

open-source toolbox, which is freely available on the k-Wave website [65, 68].

For an application of FBS methods on PAT, the main computational cost of each

iteration is because of the search direction (negative gradient) in the forward step, and

the cost of the proximal operator is negligible [37]. Motivated by this fact, instead

of a computation of the search direction at a target (fine) level for all iterations, we
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compute the search direction alternatively by deciding between a negative gradient

at a target level or alternatively an approximate error correction at a coarse level

[37]. From a practical point of view, our proposed MG algorithm performs well for

cases in which the coarse level has a spacing of grid points not larger than the spatial

distance of ultrasound detectors. By applying our forward operator on a lossy and

heterogeneous acoustic medium, together with a derivation of an associated adjoint on

a continuous domain, we will show that an application of our MG algorithm on two

levels improves the speed of reconstruction, compared to a fixed grid [37]. We use a

TV regularised variant of ISTA and FISTA, as explained in section 1.8. For each level,

the forward operator is applied on a smoothed version of initial pressure distribution,

and the acoustic properties (sound speed and density distributions) are also smoothed

in order to mitigate errors arising from finite sampling (See the manual on the k-Wave

website [65]).

1.10.2 Chapter 3: A continuous adjoint for photo-acoustic

tomography of the brain

An algebraic adjoint operator has been recently derived for variational approaches in

transcranial PAT using an isotropic heterogeneous elastic and lossy medium, for which

the acoustic absorption is described by a diffusive model which neglects the depen-

dency of absorption on temporal frequency [46]. This adjoint operator is algebraically

derived from a matrix form of a numerical computation of the forward operator using

a Finite difference time-domain (FDTD) method [46]. Motivated by this study [46],

we derive a continuous adjoint for transcranial PAT using an isotropic heterogeneous

elastic and lossy medium, for which the absorption and physical dispersion follow a

frequency power law using two fractional Laplacian operators [67], similar to (1.94).

For a numerical implementation of the forward operator, we modified an open-source

code that is available on the k-Wave toolbox [65] so that it includes two fractional

Laplacian operators in order to account for the frequency-dependent absorption and

dispersion effects (See [67]). We analytically show that by a numerical computation

of the forward and adjoint pair using a k-space pseudo-spectral method, our contin-

uous adjoint matches an associated discretised adjoint [38]. From a numerical point
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of view, we validate our derived continuous adjoint using an inner product test [38].

Using these forward and adjoint operators, we applied a variational approach using a

TV regularised variant of ISTA in order to iteratively solve our PAT problem for brain

imaging (cf. section 1.8).

1.10.3 Chapter 4: Direct quantitative photoacoustic tomog-

raphy for realistic acoustic media

A reconstruction of a distribution of the optical absorption coefficient from time se-

ries of pressure data, which is referred to as quantitative photo-acoustic tomography,

involves two inverse problems, namely acoustic and optical [28]. As explained at the

beginning of section 1.9, for a traditional variant of QPAT, these two inverse problems

are solved separately [61, 62], but it has been shown that solving the QPAT problem

directly using a composite opto-acoustic forward operator and an associated acousto-

optic adjoint operator improves the stability of the reconstruction [28, 24]. The reasons

have been explained in section 1.9 (See also section 1 in chapter 4.) To the best of our

knowledge, for existing studies on the direct composite problem of QPAT, the acoustic

portion of the forward operator is solved using methods based on Green’s function,

and an associated adjoint is derived using exact inversion formulae. (See [28, 24, 51].)

As mentioned before, these approaches are often based on assuming an acoustically

homogeneous and lossless medium, which does not hold for tissue media. Additionally,

the optical inverse problem of QPAT is highly nonlinear and ill-posed. Therefore, if the

acoustic heterogeneity or attenuation are not accounted for in modelling the acoustic

portion of the problem, the arising errors may be magnified by the small singular

values of the optical forward operator, and deteriorate the convergence of the inversion

algorithm.

Motivated by this fact, we solve the direct problem of QPAT using a composite

opto-acoustic forward operator, in which the acoustic portion solves a linear system of

PDEs using (1.92), which can be adapted to variations in acoustic properties, and uses

an equation of state defined by (1.94), which has two fractional Laplacian operators in

order to account for an acoustic absorption and dispersion following a frequency power

law [66]. The same as previous chapters, we use a k-space pseudo-spectral method for a
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numerical implementation of the acoustic forward operator using an open-source code

available on the k-wave website [65]. (Note that the acoustic portion of the forward

operator is the same as in chapter 2.) We also use the DA model explained in section

1.9.2 for solving the optical portion of the composite forward operator.

We use a discretise-then-adjoint method for deriving an associated acousto-optic

adjoint operator, which is an algebraic adjoint of the Fréchet derivative of the compos-

ite forward operator. The acoustic portion of our algebraic adjoint operator is novel in

the sense that we include the effects of PMLs in calculation of the adjoint, as opposed

to an algebraic adjoint derived in [34] for the same acoustic forward operator. Using

a finite element method (FEM) for a numerical implementation of the optical portion

of the forward operator, we analytically show that an adjoint of the Fréchet derivative

of the optical forward operator using an adjoint-then-discretise approach with a dis-

retisation using an L2 projection of the nodal values matches an algebraic adjoint of

Fréchet derivative of an associated discretised optical forward operator.

We use an inexact Newton method [21] for solving the direct problem of QPAT.

To do this, a nonlinear objective function is iteratively linearised, and an arising linear

system of equations, which amounts to a left multiplication of the inverse of Hessian

matrix by a vector of negative gradient, is solved using a preconditioned conjugate

gradient (PCG) method with a total variation matrix as a preconditioner [29]. For

solving each linearised subproblem, the Jacobian matrix and its transpose are com-

puted implicitly in order to handle memory issues. The regularisation is adjusted

implicitly by enforcing an early stopping criterion to each linearised subproblem. (See

[5].) Our numerical results show that the developed inexact Newton algorithm per-

forms better than non-linear gradient-based methods that use a Quasi-Newton search

direction. The nonlinear gradient-based methods that use a Quasi-Newton search di-

rection are popular for QPAT, e.g. [25, 24]. Specifically, using a TV regularisation, we

develop two inexact Newton methods using Lagged diffusivity (LD) and Primal Dual

Interior Point Method (PD-IPM), and compare them with a gradient-based method

that uses a limited-memory BFGS approach for computing a search direction and an

alternating direction method of multipliers (ADMM) for applying a TV regularisation.

(See [25, 24] for an application in QPAT and direct variant of QPAT, respectively.)
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1.10.4 Chapter 5: Conclusion, discussion and future works

In addition to conclusions and discussions given at the end of chapters 2-4, we will

present a summary of this thesis in chapter 5. This also includes some discussions

about the obtained numerical results. Furthermore, using the numerical results, we

will give some ideas and suggestions for future works.

Notations for the discretised forward operators

Here, we introduce the notations we use for the discretised forward operators in this

thesis. In chapter 2, the discretised forward operator has been denoted by H, and in

chapter 3, we will use H̄ for the discretised forward operator. In chapter 4, in which

the forward operator is a composite opto-acoustic map, we will use Ho and Ha for

the optical and acoustic portions of a discretisation of our composite forward operator

H. Throughout this thesis, we use the superscript ∗ for denoting the adjoint of an

operator for both continuous and discretised domains.

1.11 Contributions of the Supervisor/Candidate

The published papers that will be presented in the following chapters are the results of

collaborations between the PhD candidate and his supervisor. Here, the contributions

of the supervisor and candidate are clarified.

For chapter 2, an adjoint was calculated using an adjoint-then-discretise approach

(continuous adjoint) by the supervisor. The rest of this work including the numerical

experiments was done by the candidate, and he also used the advice and ideas provided

by the supervisor during this work.

For chapter 3, an adjoint using an adjoint-then-discretise approach was calculated

by the supervisor for lossless media. The derived continuous adjoint was extended

to lossy media by the candidate. This involved an incorporation of acoustic absorp-

tion and dispersion following a frequency power law in the forward operator and a

corresponding continuous adjoint operator. The candidate also derived the discretised

adjoint, and established a relation between the continuous and discretised adjoint. The
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rest of this work including the numerical experiments were done by the candidate. The

supervisor also applied some amendments to the paper before submission to a corre-

sponding journal. These amendments were applied in order to make the manuscript

concise and suitable for pulication in a mathematical journal. The supervisor also

provided useful suggestions and ideas during the work.

For chapter 4, the Fréchet derivative of the optical forward operator and its adjoint

on a continuous domain have been derived by the supervsior. He also gave some

advice to the candidate for an analytic derivation of a Primal-Dual Interior-Point-

Method (PD-IPM) algorithm for a total variation regularisation adapted to a nonlinear

optimisation problem. The candidate managed the rest of this work using advice and

guidance provided by the supervisor.
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Chapter 2

A multi-grid iterative method for

photoacoustic tomography

The content of this chapter has been published in: A. Javaherian and S. Holman.

A multi-grid iterative method for photoacoustic tomography. IEEE Transactions on

Medical Imaging, 36(3):696-706, March 2017.

Abstract

Inspired by the recent advances on minimizing nonsmooth or bound-constrained con-

vex functions on models using varying degrees of fidelity, we propose a line search

multi-grid (MG) method for full-wave iterative image reconstruction in photoacous-

tic tomography (PAT) in heterogeneous media. To compute the search direction at

each iteration, we decide between the gradient at the target level, or alternatively an

approximate error correction at a coarser level, relying on some predefined criteria.

To incorporate absorption and dispersion, we derive the analytical adjoint directly

from the first-order acoustic wave system. The effectiveness of the proposed method

is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm

(ISTA) and its accelerated variant (FISTA), which have been used in many studies

of image reconstruction in PAT. The results show the great potential of the proposed

method in improving speed of iterative image reconstruction.
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2.1 Introduction

Photoacoustic Tomography (PAT) is a hybrid imaging technique, which combines the

advantage of rich contrast attributed to optical imaging and high spatial resolution

brought up by ultrasound. Typically near-infrared pulses of light are used to irradiate

tissue, which are then absorbed preferentially as a function of the optical absorption

of the tissue. The absorbed energy produces local increases in pressure, which move

outwards because of the elasticity of soft tissues, and are then sampled temporally by

surface detectors [40].

To estimate the optical absorption distribution of the irradiated tissue from the

recorded surface data, one faces two distinct inverse problems, namely acoustic [38]

and optical [35]. To solve the acoustic inverse problem for media with relatively

homogeneous acoustic properties and simple detection surfaces, numerous methods

based on filtered back-projection [24, 44, 45] or eigenfunction expansion techniques

[46] have been proposed.

From a practical point of view, real-time 3D reconstruction has been provided for

photo-acoustic [48] and thermo-acoustic tomography [47] via 2D reconstruction of slices

of the sample, and composing the reconstructed slices into a volume image. Techniques

to reduce the effects of out-of-plane acoustic signals were successfully introduced in

[48], and in order to achieve the speeds required for real-time imaging reconstruction

was done by an onboard FPGA in [47]. In these cases, a dense and simple (circular)

detection geometry, as well as relatively homogeneous acoustic properties allow a one-

step image reconstruction based on a filtered backprojection algorithm [49].

TR is a more versatile inversion approach for PAT since it is practical for media

with heterogeneous acoustic properties and arbitrary detection geometries [38, 19, 18].

TR and the other inversion approaches mentioned above are inherently based on con-

tinuous models, and thus require the detection surface to be very dense and enclose

the object [19, 18]. This is problematic for 3D PAT especially in medical applications.

The dependance of shape, spectrum and amplitude of propagating acoustic waves on

the characteristic properties of tissue media impels enriching the image reconstruction

of PAT by simulation of tissue-realistic acoustic propagation [37]. To achieve this aim

here, the forward problem was solved by a first order acoustic system of three coupled
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equations which includes two fractional Laplacian operators in order to account sepa-

rately for absorption and dispersion according to a frequency power law [37]. The main

advantage of this acoustic wave propagation model is that it can be efficiently imple-

mented by the k-space pseudospectral method [10, 37] in which the spatial gradient

of field parameters is globally computed in frequency domain [34, 37].

To mitigate the effects of data incompleteness and noise, iterative methods are often

used, e.g., TR-based iterative algorithms [31, 32] or optimization techniques [42, 20].

Among a great number of optimization approaches, a total variation penalized variant

of FISTA [6, 5] has been very popular for iterative PAT [42, 20]. The key element

of these optimization approaches is the computation of the gradient of an objective

function in terms of the forward model and its adjoint. For heterogeneous media,

the adjoint was computed by a “discretize-then-adjoint” method in [20]. Recently,

an adjoint was derived for PAT, based on an “adjoint-then-discretize” method [3],

from the second order acoustic wave equation which does not include absorption and

dispersion. Instead, here the adjoint will be derived using the aforementioned system of

three coupled acoustic wave equations [37]. In the absence of absorption and dispersion

this matches the adjoint in [3].

In medical PAT, the compartmentalised distribution of chromophores composing

tissues induces step-like pressure discontinuities within absorbing regions, which make

the generated waves highly broadband [38]. To cover such a broad range of frequencies

in the reconstruction, very dense grids are needed which make iterative PAT computa-

tionally burdensome. To mitigate this problem, numerous methods have been proposed

to accelerate wave propagation models[11, 26, 2]. By recent advances on data casting

and parallelization using GPUs [12, 41, 36] or FPGA-based hardware implementation

of the reconstruction algorithms [47], wave propagation models were accelerated no-

tably. In the present work, we take a different approach, and look at a method to

improve the performance of the underlying algorithm.

In general, whenever a finite-dimensional optimization problem arises from an

infinite-dimensional continuous problem, it is possible to control the fidelity with which

the optimization model captures the underlying continuous problem [30]. In the case

that the arising discretized model is very large-scale, multi-grid (MG) schemes, which

exploit a hierarchy of discretized models (levels) of varying size, are very popular.
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A MG scheme for unconstrained smooth optimization problems was first proposed

by Nash [28], in which the information at the coarse level is utilized to compute the

search direction at the target level. This method was recently extended to compos-

ite convex functions involving a smooth term plus a non-smooth `1 term [30, 17],

relying on the recent theoretical advances on minimization of smoothable functions

[7]. Additionally, Nash’s method was recently extended to smooth bound-constrained

optimization [21].

To mitigate the burdensome computational requirements of iterative PAT, we pro-

pose a line search multi-grid method for full-wave iterative image reconstruction in

PAT so that at some iterations, a recursive search direction is computed by minimiz-

ing the objective function at some coarser levels. Here the proposed MG method is

applied to ISTA and FISTA on two levels, but it can be easily extended to other first

order methods such as Primal-Dual algorithms, or to more than two levels.

2.2 Background

2.2.1 Forward Problem

Lossless media

Acoustic propagation in lossless heterogeneous media can be described relying on three

coupled equations, i.e, equation of motion, equation of continuity, and adiabatic equa-

tion of state, respectively in the form [38]

∂u

∂t
(r, t) = − 1

ρ0(r)
∇p(r, t), (2.1)

∂ρ

∂t
(r, t) = −ρ0(r) ∇ · u(r, t), (2.2)

p(r, t) = c0(r)2ρ(r, t) (2.3)

with initial conditions

p(r, 0) = p0(r), u(r, 0) = 0. (2.4)

Here, p(r, t) denotes the acoustic pressure at position r ∈ Rd (d = 2 or 3), and time

t ∈ R+. Additionally, u(r, t) denotes the vector-valued acoustic particle velocity, c0(r)

denotes the varying sound speed, and ρ(r, t) and ρ0(r) represent the acoustic and

ambient densities, respectively.
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Lossy media

To simulate wave propagation in lossy media, a trade-off is typically needed between

agreement with experimental observations [33], meeting causality conditions [27, 23,

22], and efficiency of numerical computations [9, 37]. Over frequencies of generated

ultrasound waves in PAT, the absorption in tissue obeys a frequency power law in the

form

α = α0w
y, (2.5)

where α0 is the absorption coefficient in dB MHz−y cm−1, w is the angular frequency

in MHz, and y is the power law exponent [38].

Describing the wave attenuation as effects of viscosity and thermal conduction leads

to the so-called thermo-viscous attenuation model, which yields a frequency-squared

attenuation (y = 2). This model does not match the observed frequency dependence

of attenuation in tissues [33], and also violates the causality condition [23]. The at-

tenuation model was later described by a superposition of relaxation mechanisms [27].

This model meets the causality condition [23], and can be implemented efficiently by

the k-space method [34]. However, for simulating broadband acoustic propagation in

PAT, estimation of the distribution of relaxation parameters for each relaxation pro-

cess is troublesome. To account for the power law dependence on frequency evident

in biological tissue (1 < y < 1.5), a lossy wave equation based on temporal convo-

lution, the so-called Szabo’s model [33], was proposed, which was later rewritten as

a time-domain fractional derivative operator, e.g., [25, 8]. Szabos’s model has been

shown to be noncausal for y > 1 [23]. Furthermore, the time-domain convolution or

fractional derivative operators inherently require storing the complete pressure field at

previous times. A memory-efficient power law absorption model based on fractional

Laplacian operators was proposed in [9], and was then modified to incorporate the

dispersive sound speed [37]. This model can be easily incorporated into the k-space

pseudospectral method without storing the computed pressure field at previous time

steps [37], as opposed to classical absorption and dispersion models that involve time-

domain fractional operators. This model is very popular in PAT [38, 36, 37], and was

thus used in the present study.

Applying this model, the absorption and dispersion effects are incorporated into
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the wave propagation by adding two fractional Laplacian operators to the equation of

state in the form [37]

p(r, t) = c0(r)2
{

1− τ(r)
∂

∂t
(−∇2)

y
2
−1

− η(r)(−∇2)
y−1
2

}
ρ(r, t).

(2.6)

The absorption and dispersion proportionality coefficients, τ(r) and η(r) respectively,

are calculated by

τ(r) = −2α0c0(r)y−1, η(r) = 2α0c0(r)y tan(πy/2). (2.7)

A toolbox for modeling of acoustic wavefield propagation based on the k-space pseudo-

spectral method is freely available [36], and was used in this study.

Recently it has been shown that this attenuation model encounters some noncausal-

ity problems, since the corresponding equation of state (2.6) is nonlocal in space at

each time instant, and in addition the Green’s function of the resulting wave equations

does not have a finite wave front speed [22]. To maintain these causality conditions, the

state equation was spatially localized by enforcing a local time shift to the attenuation

model. This also leads to a Green’s function with a finite wave front speed, which is

known to be a strong causality condition for systems of wave equations [23, 22]. How-

ever, similar to classical lossy wave equations based on temporal fractional derivatives

[25, 8], the numerical implementation of this model is very expensive for 3D PAT.

2.2.2 Inverse Problem

The acoustic inverse problem is to estimate the initial pressure p0(r) inside a bounded

region Ω ⊂ Rd from the measurements pm(rs, t) taken at positions rs within an open

set Γ ⊂ Rd−1 from time t = 0 to T .

Time Reversal (TR)

Employing the time reversal method, pm(rs, t) is enforced as a Dirichlet boundary

condition in a time-reversed order, yielding

ptr(rs, t) = pm(rs, T − t). (2.8)
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Here, the time T is assumed to be sufficiently large so that all waves leave the medium,

yielding ptr(r, 0) = 0 [38]. This is, however, not exactly held for even dimensions or

heterogeneous media[19, 18]. It was shown that to account for the absorption and

physical dispersion in TR, the absorption term in (2.6) must be reversed in sign, while

the physical dispersion term remains unchanged [38].

Variational methods

The accuracy of inversion approaches, including TR, is limited for sub-sampled or noisy

data. In these cases, variational image reconstruction methods provide an effective

alternative [3, 20]. Let p0 denote the sought after initial pressure distribution, and

p̂ ∈ RM(M ∈ N) and ε denote the time series of measured data at sensors and the

corresponding noise, respectively. Additionally, let H represent the forward model

discussed in 2.2.1. We then have

p̂ = Hp0 + ε. (2.9)

Inferring p0 from p̂ amounts to solving a regularized least-square optimization problem

in the form

p = argmin
p0>0

1

2
‖Hp0 − p̂‖2 + λJ (p0). (2.10)

Here, λ > 0 is a regularization parameter, and J (p0) is a regularization functional that

can be used to impose a-priori information about the true solution. Here, regulariza-

tion functional J is taken to be total variation (TV) since it is very popular in PAT

because of accounting for feature edges in the reconstruction [2, 20]. Solving (2.10)

requires the computation of gradient of the objective function as a function of the

forward operator H and its adjoint H∗. Specifically in PAT, the main computational

cost of the minimization problem is the implementation of H and H∗, and the cost of

other steps is negligible in comparison. To derive the adjoint for the forward model

described in 2.2.1, a “discretize-then-adjoint” method was proposed, where the com-

putational steps of the discretized forward problem are explicitly reversed [20]. The

adjoint obtained by this strategy may not correspond exactly with a discretization of

the adjoint in the continuous domain. Very recently, a general analytic form of the

adjoint in PAT was derived [3], where the time-reversed pressure pm(rs, T − t) is added
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as a time-dependent mass source term s(r, t) to (2.2). In comparison, in the TR ap-

proach this is enforced as an explicit Dirichlet boundary condition [38]. However, the

method in [3] gives the adjoint using the second order acoustic equation, which does

not include absorption and dispersion. In order to include absorption and dispersion,

we will derive the adjoint using (2.1), (2.2) and (2.6).

2.3 Adjoint of the Three-Coupled First Order Wave

Propagation Equation

Similar to [3], the continuous forward operator is the map

H : C∞0 (Ω)→ RM ,

H[p0](r, t) =Mw(r, t)p(r, t),
(2.11)

where w(r, t) ∈ C∞0 (Γ× [0, T ]) restricts the pressure p(r, t) to the spatio-temporal field

accessible to the sensors, andM maps the accessible part of the pressure field into the

measured data at sensors p̂ ∈ RM . Like [3], we will assume that M∗ is given. Now,

we have H∗ = P∗M∗, where P∗ : C∞0 (Γ× [0, T ])→ C∞0 (Ω) is the adjoint of

P : C∞0 (Ω)→ C∞0 (Γ× [0, T ])

P [p0](r, t) = w(r, t)p(r, t).
(2.12)

Let us first define the time-reversed adjoint fields, p∗, u∗, ρ∗ by

∂u∗

∂t
(r, t) = − 1

ρ0(r)
∇p∗(r, t), (2.13)

∂ρ∗

∂t
(r, t) = ρ0(r)

(
−∇ · u∗(r, t) (2.14)

+ w(r, T − t)h(r, T − t)
)
,

p∗(r, t) = ρ0(r)
{

1− ∂

∂t
(−∇2)

y
2
−1τ(r) (2.15)

− (−∇2)
y−1
2 η(r)

}c0(r)2

ρ0(r)
ρ∗(r, t)

with initial conditions

p∗(r, 0) = 0, u∗(r, 0) = 0. (2.16)

By definition of the adjoint, for any h(r, t) ∈ C∞0 (Γ× [0, T ])∫ T

0

∫
Rd
P [p0](r, t) h(r, t) dr dt =

∫
Rd
p0(r) P∗[h](r) dr. (2.17)
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The claim is that

P∗[h](r) =
ρ∗(r, T )

ρ0(r)
. (2.18)

To prove this we start with (2.2), which yields

0 =

∫ T

0

∫
Rd

(
∂ρ

∂t
+ ρ0∇ · u

)
p∗(r, T − t)

ρ0

dr dt.

=

∫ T

0

∫
Rd

(
∂ρ

∂t
+ ρ0∇ · u

){
1− ∂

∂t
(−∇2)

y
2
−1τ

− (−∇2)
y−1
2 η
}
c2

0

ρ∗(r, T − t)
ρ0

dr dt.

(2.19)

where we also used (2.15) for the second equality, and suppressed the dependence on

(r, t) in some places for brevity. Now, the Laplacian −∇2 is self-adjoint, and so the

fractional powers of the Laplacian are as well and we can move them from acting on

c2
0ρ
∗/ρ0 to the first term as in integration-by-parts. This gives

0 =

∫ T

0

∫
Rd

[
∂

∂t
c2

0

{
1− η(−∇2)

y−1
2

}
ρ

]
ρ∗(r, T − t)

ρ0

−
[
c2

0τ
∂

∂t
(−∇2)

y
2
−1ρ

] ∂ρ∗

∂t
(r, T − t)
ρ0

+∇ · u p∗(r, T − t) dr dt.

(2.20)

Now we apply integration-by-parts to the terms on the first and third lines as well as

(2.6), and the initial conditions in (2.16), which together yield

0 =

∫ T

0

∫
Rd

p

ρ0

∂ρ∗

∂t
(r, T − t)− u · ∇p∗(r, T − t) dr dt

−
∫
Rd

[
c2

0

{
1− η(−∇2)

y−1
2

}
ρ(r, 0)

] ρ∗(r, T )

ρ0

dr.

(2.21)

Considering that ∂ρ
∂t

(r, 0) = −ρ0(r)∇ · u(r, 0) = 0 by (2.2), and in light of (2.6), we

have

c2
0

{
1− η(−∇2)

y−1
2

}
ρ(r, 0) = p0(r). (2.22)

Putting this into the previous formula finally gives∫
Rd
p0(r)

ρ∗(r, T )

ρ0(r)
dr =∫ T

0

∫
Rd

p

ρ0

∂ρ∗

∂t
(r, T − t)− u · ∇p∗(r, T − t) dr dt.

(2.23)

Putting (2.23) aside for a moment, we next use (2.1) which gives

0 =

∫ T

0

∫
Rd

(
ρ0
∂u

∂t
+∇p

)
· u∗(r, T − t) dr dt. (2.24)
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Applying integration-by-parts to both terms, and enforcing the initial conditions (2.4)

and (2.16) gives

0 =

∫ T

0

∫
Rd
ρ0 u ·

∂u∗

∂t
(r, T − t)− p ∇ · u∗(r, T − t) dr dt. (2.25)

Subtracting (2.25) from (2.23) and gathering on the right-hand-side the terms involving

p and u respectively in lines two and three of the next formula, we have∫
Rd
p0(r)

ρ∗(r, T )

ρ0(r)
dr =∫ T

0

∫
Rd

(
1

ρ0

∂ρ∗

∂t
(r, T − t) +∇ · u∗(r, T − t)

)
p dr dt

−
∫ T

0

∫
Rd

(
ρ0
∂u∗

∂t
(r, T − t) +∇p∗(r, T − t)

)
· u dr dt.

(2.26)

Now, by (2.14) the integrand in the second line above is equal to p(r, t)w(r, t)h(r, t),

and by (2.13) the third line is equal to zero. Therefore∫
Rd
p0(r)

ρ∗(r, T )

ρ0(r)
dr =

∫ T

0

∫
Rd
w(r, t)p(r, t)h(r, t) dr dt

=

∫ T

0

∫
Rd
P [p0](r, t) h(r, t) dr dt.

(2.27)

Finally, using (2.17), we see now that P∗[h](r) = ρ∗(r,T )
ρ0(r)

, and thus the claim (2.18)

about the adjoint is proven. Taking τ(r) = 0 and η(r) = 0 makes this adjoint the

same as that proposed in [3] for lossless media.

2.4 First-order Optimization Methods for PAT

The numerical implementation of the derived forward and adjoint operators requires

discretization of the models. Accordingly, the discretized variant of the sought after

initial pressure p0 is denoted by x ∈ RN(N ∈ N) with N the number of grid points, and

the discretized forward model linking x to data p̂ is denoted by H ∈ RM×N . Problem

(2.10) is in a class of non-smooth constrained convex minimization problems of the

form

argmin
x
{F (x) := f(x) + g(x)} . (2.28)

Here, f(x) = 1
2
‖Hx− p̂‖2 is a continuously differentiable function with Lipschitz con-

tinuous gradient having smallest Lipschitz constant Lf = σmax(H∗H), where σmax(.)
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stands for the largest singular value. The gradient of f is computed by

∇f(x) = H∗ (Hx− p̂) . (2.29)

Additionally, we take g(x) = λJ (x) + δC (x) where δC is the indicator function for the

set of constraints C = {x > 0}.

Applying the so-called forward-backward splitting method to a fixed point iterative

scheme arising from the optimality conditions of problem (2.28) gives the two-step

Iterative Shrinkage Thresholding Algorithm (ISTA) shown in Algorithm 2.1.

Algorithm 2.1 ISTA

1: Iteration 0: x0

2: Iteration k > 1:
3: zk = xk−1 − αk ∇f(xk−1)
4: xk = proxαk(g)(zk)
5: Output: x∗.

Here, line 3 is a forward gradient descent step [13], and is in a class of line search

techniques which utilize a steepest descent search direction −∇f(y) and step size αk

[6]. Applying ISTA, the convergence of the iterates xk to a minimizer x∗ of problem

(2.28) is proven if αk ∈ (0, 2/Lf ) [5]. To determine Lf , the largest singular value of

H∗H is computed iteratively by the power method [3]. Since Lf is independent to

the unknown x, it can be stored and used for all experiments done in a fixed setting

[2]. Otherwise, αk can be computed adaptively by backtracking line search techniques,

although this is inefficient for large-scale PAT problems. Additionally,

proxαk(g)(zk) := argmin
x

{
g(x) +

1

2αk
‖x− zk‖2

}
. (2.30)

is a backward gradient step, and is called the proximal map [13]. Similar to [20], here

the proximal map associated with the TV functional was computed based on a dual

approach given in [5].

The computational cost of performing the forward and adjoint solvers necessary to

compute ∇f on a grid of size Nx ·Ny ·Nz in Nt time steps is O(Nt ·Nx ·Ny ·Nz log(Nx ·

Ny · Nz)), whereas the computational cost of solving the proximal map by the dual

approach given in [5] is O(Nx ·Ny ·Nz). As a result, the major cost of each iteration

is the forward gradient step, while the cost of the proximal map in (2.30) is almost

negligible in comparison.
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An acceleration to ISTA is given by FISTA [6], which provides a global convergence

rate of O(1/
√
ε), compared to O(1/ε) for ISTA, where ε denotes the desired accuracy.

FISTA is outlined in Algorithm 2.2 [6].

Algorithm 2.2 FISTA

1: Iteration 0: y1 = x0, tk = 1 (θk = 0)
2: Iteration k > 1:
3: xk = PL(yk)

4: tk+1 =
1+
√

1+4tk2

2

5: θk = tk−1
tk+1

6: yk+1 = xk + θk (xk − xk−1)
7: Output: x∗

Here, operator PL(·) represents lines 3 and 4 in Algorithm 2.1. Note that replacing

line 5 by θk = 0 in Algorithm 2.2. gives yk+1 = xk, and reduces the algorithm to ISTA.

In the next section, the multi-grid algorithm will be described for a general algorithm

like FISTA but with line 5 possibly replaced. Thus an extension to ISTA or other

first-order optimization methods is straightforward. The convergence of sequence xk

provided by FISTA is proven when αk ∈ (0, 1/Lf ) [6]. For applications of ISTA in

iterative PAT, see [3], and for FISTA, see [20, 42].

2.5 Line search Multi-grid Optimization Method

To improve the speed of Algorithms 2.1 and 2.2, a multi-grid (MG) line search strategy

is adopted based on Nash’s well-known method [28] so that at each iteration the

algorithm decides between two possibilities: a direct search direction computed at the

target level, or alternatively a recursive search direction generated from some steps

taken at coarser levels.

Considering the computational cost of the forward and adjoint operators given in

section 2.4, the cost of performing them on a coarse grid with a size (Nx/2) · (Ny/2) ·

(Nz/2) in Nt/2 time steps is less than 1/16 the cost on the fine grid, as the time step

is changed proportionally to the spatial distance of grid points. Accordingly, for 2D

PAT, the computational cost of coarse forward and adjoint models is less than 1/8 the

cost on the fine model.
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2.5.1 First-order Coherence of Levels for Smooth Unconstrained

Optimization: An Extension to FISTA

We denote the level that supports the fine resolution, referred to here as the “target

level”, by subscript h and the next coarse level by h− 1. The transfer of information

from level h to h − 1 is done by restriction operator Ih−1
h . Conversely, prolongation

operator Ihh−1 is used to transfer information from level h− 1 to h.

To guarantee convergence on multiple levels, the first order optimality conditions

of the levels must match. To attain this, Nash [28] suggests adding a linear term to

the objective function at the next coarse level. We extend Nash’s method to FISTA so

that to compute a recursive search direction, starting from iteration yh,k at the target

level, we use as the objective function at the next coarse level h− 1

φh−1 (xh−1) = Fh−1 (xh−1) + 〈vh−1, xh−1〉, (2.31)

where vh−1 stands for

vh−1 = Ih−1
h ∇Fh (yh,k)−∇Fh−1 (xh−1,0) , (2.32)

with xh−1,0 = Ih−1
h yh,k the initial point at the next coarse level h − 1. Note that

yh−1,1 = xh−1,0 according to the initialization in Algorithm 2.2. In this way, the

gradient of the objective functions at the point of transfer between the two levels

matches so that

∇φh−1 (xh−1,0) = Ih−1
h ∇Fh (yh,k) . (2.33)

This property is called “first-order coherence” [28, 43, 30, 17].

2.5.2 Extension to Non-smooth Unconstrained Optimization

The approach given above is not applicable to non-smooth objective functions since

the computation of ∇F is not possible. From a theoretical point of view, an approach

for minimizing non-smooth functions via treating the problem as a sequence of smooth

problems has been considered. A global convergence rate of O(1/ε) was first estab-

lished for functions with so-called “explicit max-structure” [29], and was then extended

to the so-called “smoothable” functions [7].
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Recently, relying on the mentioned works, Nash’s multi-grid method was extended

to unconstrained composite functions involving a smooth term plus a nonsmooth `1

term. The convergence rate of ISTA on a multi-grid setting was established by [30].

Recently, an MG method with an optimal rate of convergence (O(1/
√
ε)) was proposed

[17]. This has been inspired by a modified variant of Nesterov’s acceleration technique,

where the problem is treated as a linear combination of primal gradient and mirror

descent steps [1]. The global convergence rate established by this MG method is

optimal, but the bound on the worst case convergence rate is greater than that of the

standard “gradient and mirror descent” algorithm in [1]. Note that in practice the

sequence xk provided by the “gradient and mirror descent” algorithm matches that

of FISTA on a fixed grid [1, 17]. However, as opposed to the MG variant of FISTA

proposed here, we observed that the MG algorithm proposed in [17] is not efficient in

PAT.

In order to use MG with FISTA, at yh,k, we smooth the TV penalty function in

the form

Jρ(yh,k) =
∑

n1,n2,n3

√
|(∇yh,k)n1,n2,n3 |

2 + ρ2 − ρ, (2.34)

where ρ is the smoothing parameter. The gradient of F is now computed as [39]

∇Fρ(yh,k) = H∗ (Hyh,k − p̂) − λ∇ ·

(
∇yh,k√

|∇yh,k|2 + ρ2

)
. (2.35)

The implementation of Nash’s method via computing vh−1 and minimizing φh−1 by

Eqs. (2.32) and (2.31) is now straightforward in the unconstrained case.

2.5.3 Extension to Constrained Convex Optimization

The coherence formula does not account for the bound constraint that is enforced in

the PAT problem. In general, very few studies exist in the literature to extend Nash’s

method to bound-constrained optimization, e.g., [15]. In [14], a method to deal with

bound constraints for MG optimization problems was proposed based on truncation

of the set of indices at which the constraints are active. In this method, the active

nodes on the fine level are fixed for the next coarse-grid correction. This truncation

scheme is very conservative, and thus makes the MG algorithm inefficient.

Recently an MG approach for smooth constrained optimization problems has been

developed via restriction of bound constraints, rather than the truncation of active
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set [21]. The restriction of constraints is done so that a feasible point remains feasible

after the coarse correction step. In our specific case, this MG approach is applied to

two levels, and a nonnegativity constraint is enforced globally to all nodes at the fine

level. Let Ih,i denote the union of indices at level h that locate at the same position

as, or neighbor to, index i at level h− 1. The restriction of constraints gives the lower

bound constraints ϕh−1 at level h− 1 in the form

(ϕh−1)i = (Ih−1
h xh,k)i −min{(xh)j|j ∈ Ih,i} (2.36)

This constraint is enforced to all iterates xh−1,k at the coarse level. Note that in

FISTA at the target level, the constraint is enforced to xh,k, whereas the transfer

between levels is done at yh,k.

2.5.4 Decision on Recursive Search Direction

At the beginning of each iteration k the algorithm decides whether to compute a re-

cursive search direction on the coarse level. This depends on the first-order optimality

condition at the current iterate yh,k at the two levels, as well as the distance between

the current iterate and the point ỹh at which the last recursive search direction was

performed [43, 30, 17]. In particular, a recursive search direction is used at yh,k if(∥∥Ih−1
h ∇Fρh(yh,k)

∥∥ > κ
∥∥∇Fρh(yh,k)∥∥) ∩

(‖yh,k − ỹh‖ > ϑ ‖ỹh‖ ∪ Kr = 0 ∪ Kd > qd) ,
(2.37)

where κ ∈
(
0,min(1,min

∥∥Ih−1
h

∥∥)
)
, ϑ ∈ (0, 1), and qd ∈ N are some predefined pa-

rameters, Kd is the number of consecutive iterations with direct search direction, and

Kr is the number of all iterations already performed with recursive search direction

[30, 17]. The first condition implies that a recursive search direction is not efficient

if the first-order optimality condition is almost satisfied at the starting point of the

coarse error correction, as this makes the minimization of the objective function at

the coarse level ineffective. Furthermore, the second condition implies that a recursive

search direction is not efficient if the current point yh,k is very close to the point ỹh

since it gives a result that is similar to what was obtained on the last recursive search

direction [43]. This condition is ignored if the algorithm has already performed no step

with a recursive search direction (Kr = 0), or many consecutive steps with a direct

search direction at the fine level, say greater than qd.
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2.5.5 Outline of the MG algorithm

In Algorithm 2.3, an MG variant of FISTA on two grids is outlined. Here, ∗ denotes

Algorithm 2.3 FISTA in MG framework

1: Iteration 0: yh,1 = xh,0, θk = 0, Kd = 0, Kr = 0
2: Iteration k > 1:
3: if k > 1 ∩ (2.37) holds then
4: Recursive search direction: Kd = 0, Kr = Kr + 1
5: xh−1,0 = Ih−1

h yh,k
6: vh−1 = Ih−1

h ∇Fρ(yh,k)−∇Fρ(xh−1,0)
7: compute ϕh−1 by (2.36)
8: compute φh−1 by (2.31)
9: xh−1,∗ = FISTA(h− 1, φh−1, xh−1,0, ϕh−1)
10: xh,k = yh,k + Ihh−1 (xh−1,∗ − xh−1,0)
11: else
12: Direct search direction: Kd = Kd + 1
13: xh,k = PL(yh,k)
14: end if
15: update θh,k
16: yh,k+1 = xh,k + θh,k (xh,k − xh,k−1)
17: Output: xh,∗

the last iteration at each level. Since φh−1 is smooth, at level h− 1 the proximal map

is reduced to a projection on the feasible set defined by ϕh−1. At each iteration with a

recursive search direction, the termination of the algorithm at the coarse level is done

whenever

φh−1,k − φh−1,k+1

max (φh,k, φh,k+1)
< εc ∪ ∗ > qc, (2.38)

where qc denotes the maximum permitted number of iterations at the coarse level, and

is applied to guarantee the efficiency of coarse error corrections. Similarly, at the fine

level the algorithm was terminated at iteration k if

Fh,k − Fh,k+1

max (Fh,k, Fh,k+1)
< εd. (2.39)

2.6 Numerical Results

Numerical studies were performed to investigate the effectiveness of the proposed

multi-grid strategy on performance of ISTA and FISTA for iterative image recon-

struction in PAT. To numerically solve the three-coupled first order acoustic wave
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equations, which were described in section 2.2.1, the K-Wave MATLAB toolbox was

used [36]. Additionally, to compute the gradient defined in (2.29) at each iteration

at each level, the adjoint operator H∗ was computed based on the “adjoint-then-

discretize” method (cf. section 2.3). The processor that was employed in this work is

an Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz with a RAM of 8.00 GB and a 64-bit

operating system (Windows 7, Microsoft).

2.6.1 2D PAT Simulation

A square grid with a size of 2.36×2.36cm2 was created, which is made up of 472×472

grid points evenly spaced with a separation distance of 5 × 10−2mm in both x and y

dimensions, supporting frequencies of up to 13.23MHz. To measure the propagated

wavefield, 200 point-wise pressure detectors were equidistantly placed along the left

half of a circle having a radius of 11mm so that π radians of the circle were covered by

the detectors. A PML having a thickness of 20 grid points and a maximum attenuation

coefficient of 2 nepers per grid point was added to each side of the simulated grid in

order to reduce spurious reflections at the boundaries [36].

Medium’s properties: Figures 2.1(a) and 2.1(b) show sound speed and density

maps that were used for reconstruction, respectively. The sound speed and density

for the inhomogeneity (vasculature) were set to those of blood, i.e., 1575 ms−1 and

1055 kgm−3, respectively, and the red color represents skin with a sound speed of

1730 ms−1 and a density of 1150 kgm−3. The background inside the detection surface

represents fat tissue with a sound speed of 1450 ms−1 and a density of 950 kgm−3, and

a sound speed of 1500 ms−1 and a density of 1000kgm−3 were considered for region

outside the detection surface to represent water. These maps were inspired by acoustic

properties in tissues given in [4]. Note that acoustic properties in realistic tissues are

often smoother than the simulated maps, and do not have sharp interfaces. However,

these sharp maps were provided in order to make a challenge for coarse error correction

in the MG method.

Furthermore, the absorption coefficient was set to 0.75 dB MHz−y cm−1 for the

whole medium, except the area that represents water, where it was set to 2×10−3 dB MHz−y cm−1.

The attenuation power law exponent was set to 1.5 for the entire medium.
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(a) (b)

(c) (d)

Figure 2.1: Medium’s properties for image reconstruction (a) sound speed (b) density,
and data generation (c) sound speed (d) density.

Since the exact maps are not readily available for reconstruction, data were gener-

ated from a more realistic phantom by contaminating the maps with a 35dB AWGN,

as well as shifting the “water-skin” and “skin-soft tissue” interfaces towards the centre

of the detection surface by 2% of radius of the circle. Figures 2.1(c) and 2.1(d) show

distributions of sound speed and density that were used for data generation, respec-

tively. To mitigate errors arising from aliasing, for all forward and adjoint models, the

acoustic properties were smoothed by the k-wave toolbox [36].

The phantom was created so that it simulates the pressure distribution of vessels

with a maximal amplitude of 2. Figure 2.2(a) displays the simulated phantom. To

avoid spurious oscillations in the computed pressure field, high frequencies of the initial

pressure distribution for each forward implementation were filtered by a self-adjoint

smoothing operator. This operator was then included in the adjoint (see [3]).

The computed time-dependent pressure field arriving at the sensors was then sam-

pled evenly in 2655 time steps. The interpolation of pressure field to sensors was

performed by the well-known linear method. The generated data was then contami-

nated with a 30 dB AWGN. In order to avoid inverse crime, the reconstruction was
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applied to a grid made up of 328 × 328 grid points, which supports a maximal fre-

quency of 10.07 MHz. The PML at each side of the grid was proportionally reduced

to 16 grid points. This grid will further be used as the “target grid” for our proposed

multi-grid algorithm.

Iterative methods : The iterative reconstruction was performed by TV-regularized

ISTA, i.e., Algorithm 2.1. The step size αk was chosen to be 2/Lf [5] computed by

the “power iteration” method, similar to [3, 2]. The regularization parameter was

heuristically set to λ = 1× 10−2.

The MG variant of ISTA, Algorithm 2.3 with FISTA replaced by ISTA, was then

employed to reconstruct images on two grids having sizes 328 × 328 and 164 × 164.

The algorithm was implemented by κ = 1/4, ϑ = 10−1, qd = 3, qc = 8, εd = 10−3

and εc = 10−2. The coarse model supports a maximal frequency half the fine grid, i.e.

5.038 MHz. For iterations at which a recursive search direction was computed, the TV

function was smoothed by ρ = 1× 10−2 as in (2.34). At the coarse level, the number

of grid points associated with the PML was halved so that the thickness of the PML

was the same as the target level. The sequences xk computed by the algorithms were

measured by the following parameters.

Relative Error (RE): This is defined at iteration k as

RE(xk) =
‖psol − pexact‖
‖pexact‖

× 100, (2.40)

where psol stands for the sequence xk interpolated back to the forward grid, and pexact

denotes the simulated phantom.

Norm of Residual (RES): This is defined at iteration k as

RES(xk) =
∥∥Axk − p̂∥∥ . (2.41)

Objective function (F ): This is defined at iteration k as a discretized variant of

(2.10) on the inverse grid. It should be noted that the efficiency of any optimization

algorithm, including the MG algorithm we are examining, should be evaluated using

the objective function.

Figure 2.2(b) shows the image reconstructed by TR, which has an RE of 68.95%.

Figure 2.3(a) shows RE of the images reconstructed by ISTA. To make a fair compari-

son between the competing algorithms, the image parameters were plotted versus CPU
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(a) (b)

Figure 2.2: 2D phantom. (a) Initial pressure distribution (b) image reconstructed by
TR.

time although the iterations are also shown as black dots. For the MG algorithm, the

iterations at which a recursive search direction was used are designated by hexagrams.

As seen in this figure, the fixed-grid algorithm was terminated after 4.87 × 103s (38

iterations), and finally reconstructed an image having an RE of 49.14%, whereas the

MG algorithm produced an image having an RE of 48.68% at 1.20 × 103s (6 itera-

tions). The MG algorithm was finally terminated after 2.07×103s (11 iterations), and

provided an image having an RE of 47.81%. Figure 2.3(b) shows RES in the same

way as RE.

Subsequently, FISTA and its MG variant were implemented on the same grids as

and with the same parameters as ISTA and MG ISTA, respectively, except that the

step size was chosen to be 1/Lf [6, 5]. Figures 2.3(c) and 2.3(d) display RE and

RES of sequences provided by FISTA, respectively. As shown in figure 2.3(c), FISTA

reconstructed a final image having an RE of 50.44% after 3.09 × 103s on a fixed grid

(24 iterations), while the MG variant of FISTA provided an image having an RE of

49.31% at 8.09 × 102s (4 iterations). The MG algorithm finally reached an RE of

47.87% at 1.46× 103s (8 iterations).

The objective function values corresponding to sequences computed by ISTA and

FISTA are shown in figure 2.4(a). This figure has been shown in a larger view around

the optimum in figure 2.4(b). As seen in these figures, FISTA converged more slowly

than ISTA at early iterations, but it was faster than ISTA around the optimum on

both fixed grid and two-level grids. ISTA has finally reached an objective function

having a value of 2.15× 102 at 4.87× 103s on a fixed grid, whereas it has reached an
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(a) (b)

(c) (d)

Figure 2.3: Evaluation of 2D images reconstructed on fixed grid (blue) and two-level
grid (red). ISTA: (a) RE (b) RES, and FISTA: (c) RE (d) RES.

(a) (b)

Figure 2.4: Convergence of ISTA on a fixed grid (black), ISTA on a two-level grid
(green), FISTA on a fixed grid (blue) and FISTA on a two-level grid (red) for the 2D
phantom. (a) objective function (b) larger view.

F of 2.12× 102 at 1.20× 103s on a two-level grid. This indicates that the MG variant

of ISTA was four times faster than the fixed-grid ISTA. The MG variant of ISTA has

finally reached an F of 2.10× 102 at 2.07× 103s. Applying FISTA on a fixed grid, the

algorithm was terminated at 3.09 × 103s with an F of 2.14 × 102, while FISTA on a

two-level grid has reached almost the same value at 9.37 × 102s (5 iterations). This

implies that FISTA on a two-level grid was almost three times faster than on a fixed

grid. MG FISTA was finally terminated at 1.46× 103s with an F of 2.10× 102.

Some of the reconstructed images have been shown in figure 2.5. The color scale

of each figure was set independently. It is clear that the MG variant of FISTA recon-

structed more accurate images in less times than the fixed-grid algorithm.
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(a) (b)

(c) (d)

Figure 2.5: 2D images reconstructed by FISTA. (a) Iteration 4 on a fixed grid (5.09×
102s) (b) Iteration 2 on a two-level grid (4.05 × 102s) (c) Iteration 8 on a fixed grid
(1.03× 103s) (d) Iteration 4 on a two-level grid (8.09× 102s).
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(a) (b)

(c) (d)

Figure 2.6: Medium’s properties for image reconstruction (a) sound speed (b) density,
and data generation (c) sound speed (d) density.

2.6.2 3D PAT Simulation

A 3D grid with a size of 1 × 1 × 0.25cm3 was created, made up of 160 × 160 × 40

grid points with a spatial spacing of 6.25× 10−2 mm, supporting a maximal frequency

of 10.36 MHz in all axes. To measure the propagated wavefield, 36 × 36 point-wise

pressure detectors were placed on the top surface of the grid (see [2]). A PML was

added to the grid in the same way as in section 2.6.1. The sound speed and density

maps were simulated inhomogeneous, as shown in figures 2.6(a) and 2.6(b), respec-

tively. From the top to bottom, the layers represent properties of water, skin and soft

tissue with sound speed and density values given in section 2.6.1 [4]. The sound speed

and density of vasculature were set the same as the 2D phantom as well.

To avoid inverse crime, for data generation these maps have been contaminated

with a 35dB AWGN, and the “water-skin” and “skin-soft tissue” interfaces were shifted

to the bottom by 3 grid points (18.75×10−2mm), as shown in figures 2.6(c) and 2.6(d).

To mitigate aliasing artifacts, for all forward and adjoint models, medium’s properties

were smoothed by the k-wave toolbox [36]. The absorption coefficient and power law

exponent of tissues were set the same as those in section 2.6.1.

The phantom that was already created for the 2D scenario was now placed obliquely

in the plane z = y/4. Figure 2.7(a) displays the simulated phantom from a top view,

and the sensors are shown by black dots. The computed pressure field was evenly

sampled in 914 time steps, and was linearly interpolated to the sensors. A 30dB

AWGN was then incorporated to the generated data.
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(a) (b)

Figure 2.7: 3D phantom. (a) Initial pressure distribution (b) image reconstructed by
TR.

The reconstruction was applied to a grid made up of 128 × 128 × 32 grid points,

supporting a maximal frequency of 9.28 MHz. Figure 2.7(b) displays the image re-

constructed by TR. This image has an RE of 87.98%. In our study, 3D visualizations

were done by Maximum Intensity Projection (MIP) method (see [20, 2]).

Iterative methods: The iterative reconstruction was performed by ISTA and FISTA.

The step sizes were chosen by power iteration method similarly to the algorithms in

section 2.6.1. The regularization parameter was heuristically chosen to be λ = 1×10−2.

The MG algorithms were then implemented to reconstruct images on two levels having

sizes 128×128×32 and 64×64×16. These algorithms were implemented by the same

parameters as in 2D scenario, except that κ was set to 1/8, i.e., size of the coarse grid

relative to the fine grid, and also the smoothing parameter ρ was set to 3× 10−2.

Figures 2.8(a) and 2.8(b) respectively, show RE and RES of the images recon-

structed by ISTA versus CPU time in the same way as in section 2.6.1. Figures 2.8(c)

and 2.8(d) display RE and RES of sequences provided by FISTA, respectively. As seen

in these figures, both ISTA and FISTA exhibited a better performance on a two-level

grid than on a fixed grid.

Fig. 2.9 shows F values versus CPU time for all the used algorithms. As shown

in this figure, the F value obtained by MG ISTA after 8.74 × 103s (9 iterations) was

less than the optimal value obtained by fixed-grid ISTA at 2.05× 104s (23 iterations).

This indicates that MG ISTA was 2.35 times faster than ISTA on a fixed grid.

Applying FISTA, the F value computed by the MG algorithm after 4.71 × 103s

(5 iterations) was less than the optimal value computed by the fixed-grid algorithm
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(a) (b)

(c) (d)

Figure 2.8: Evaluation of 3D images reconstructed on fixed grid (blue) and two-level
grid (red). ISTA: (a) RE (b) RES, and FISTA: (c) RE (d) RES.

Figure 2.9: Objective function values computed by ISTA on a fixed grid (black), ISTA
on a two-level grid (green), FISTA on a fixed grid (blue), and FISTA on a two-level
grid (red) for the 3D phantom.

at 1.42× 104s (16 iterations). This indicates that MG FISTA was almost three times

faster than FISTA on a fixed grid.

Furthermore, a comparison between ISTA and FISTA on a fixed grid indicates

that the convergence of ISTA was faster than FISTA at early iterations because of

using a step size greater than FISTA, but FISTA has finally provided almost the same

optimal F as ISTA in a less time. Applying the MG algorithms, MG ISTA was faster

than MG FISTA at early iterations, but MG FISTA converged better than MG ISTA

around the optimal point, and reached a lower F than MG ISTA in less time. MG

ISTA finally reached a value of 3.36 × 102 at 1.15 × 104s (12 iterations), while MG

FISTA was terminated at 8.59× 103s (9 iterations) with an F of 3.32× 103.

Figures 2.10(a) and 2.10(c) show images reconstructed by FISTA on the fixed

grid at iterations 6 and 16 (stopping point), respectively. Figures 2.10(b) and 2.10(d)
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display images reconstructed by MG FISTA at iterations 4 and 9 (stopping point). The

MIP visualization provided a different scaling for the reconstructed images, compared

to the simulated phantom (pexact). This different scaling as well as small scale noise do

not affect the evaluation of a human observer [2]. Thus the reconstructed images were

rescaled and thresholded before visualization according to [2]. This makes the colorbars

equal to that of the simulated phantom, and thus simplifies comparison between the

images with respect to the simulated phantom. Accordingly, the visualized image x̄ is

computed in the form

x̄ = thres

(
2

x

‖x‖∞
, 0.1

)
(2.42)

where,

thres(v, a) =

v, if v > a

0, else

. (2.43)

Here, a is a thresholding parameter, and the factor 2 in (2.42) accounts for the maxi-

mum amplitude of pexact.

2.7 Conclusion

We proposed a line search MG optimization approach for PAT. Applied on two grids,

our numerical results show that this strategy has improved the speed of ISTA 4 and

2.35 times, respectively in 2D and 3D scenarios. A better convergence than MG ISTA

was reached by MG FISTA, which was 3 times faster than fixed-grid FISTA in both

2D and 3D cases.

We derived the adjoint from a first order acoustic system of equations that includes

the absorption and dispersion. Our method for deriving the adjoint is in contrast to

the method used in [3], where the adjoint has been derived based on second order

acoustic wave equation, and thus does not include absorption and dispersion.

Further studies are needed to extend the proposed MG method to other popular

acoustic systems of equations, or other models for describing absorption and disper-

sion, e.g., [22]. The forward implementation of these acoustic systems is often more

expensive than the forward model used in our study, and thus solving the correspond-

ing iterative algorithms in a multi-grid setting can be very useful. Additionally, a



CHAPTER 2. A MULTI-GRID ITERATIVE METHOD FOR PAT 102

(a) (b)

(c) (d)

Figure 2.10: Visualization of 3D images reconstructed by FISTA. (a) Iteration 6 on a
fixed grid (5.34 × 103s) (b) Iteration 4 on a two-level grid (3.84 × 103s) (c) Iteration
16 on a fixed grid (1.42× 104s) (d) Iteration 9 on a two-level grid (8.59× 103s).
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direct method for quantitative PAT has recently received much attention, where the

forward model is treated as a coupled acoustic and optical model, and thus directly

links optical properties of medium to time series of acoustic boundary measurements

[16]. Quantitative PAT requires the joint reconstruction of optical absorption and

scattering coefficients. This makes the corresponding iterative reconstruction very

expensive. It is hoped that an extension of the proposed MG method to the direct

quantitative PAT can be useful for improving the reconstruction speed.
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2.A Supplementary Materials

In this chapter, we solved the inverse problem of PAT using a class of variational

approaches that are based on forward-backward splitting (FBS) methods. In this

thesis, we use FBS methods, when we consider only the acoustic portion of the inverse

problem (PAT). FBS methods are popular for application of variational approaches for

PAT (See [3] for ISTA, and [20, 2] for its accelerated variant (FISTA).) Further details

on FBS methods have been given in section 1.8. This approach involves a forward

gradient step, which enforces a descent direction on the smooth part of the objective

function, and a backward gradient step that enforces a descent direction on the non-

smooth part of the objective function, following a projection onto a non-negativity

constraint. The backward gradient step is often solved using a proximal operator

[6, 5]. In this thesis, we used a total variation (TV) functional for the non-smooth

term of the objective function, and the details for an associated proximal operator

have been given in section 1.8.3.
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2.A.1 Choosing a fixed step size for FBS methods

As explained in sections 2.4 and 1.8, using FBS methods, the step size α can be chosen

as a constant value for all iterations, or can be computed adaptively at each iteration

using backtracking line search techniques. Using backtracking line search methods,

for enforcing a descent direction on the objective function, many implementations

of the forward operator H and the adjoint operator H∗ may be required for each

iteration. This considerably increases the computational cost for an iterative image

reconstruction for PAT, and is impractical for large-scale problems. To avoid this,

following similar works in [3, 2], we used a fixed step size for all iterations. Choosing

a fixed step size for minimisation of a continuously differentiable function f with a

Lipschitz continuous gradient (cf. (2.28)) requires a knowledge of the smallest Lipschitz

constant Lf for the gradient, that is the largest singular value of H∗H. Using this,

the step size must satisfy αk ∈ (0, a/Lf ) for all k, where a = 2 for ISTA and a = 1

for FISTA [6, 5]. For PAT, an access to an explicit form of H and H∗ is not practical.

Therefore, following [3, 2], we used a power method for computation of Lf before

applying Algorithms 2.1 and 2.2.

Algorithm 2.4 Power method

1: Choose q0 ∈ RN

2: while k = 1 ∪ ‖qk − qk−1‖2 > ε do
3: pk = H∗Hqk−1

4: qk = pk

‖pk‖2
5: σk = (qk)

∗
H∗Hqk

6: end while
7: Output: σ∗.

Here, q0 represents a randomly chosen initial pressure distribution inside a volume

encompassed by the detectors, and is updated after each iteration of the power method.

Also, the superscript k denotes the iteration for the power method, and σ∗ denotes

the solution of the power method, which is very close to σmax, the largest singular

value of H∗H. (We hope that the subscript ∗ that denotes an optimal solution is

not confused with the superscript ∗ that denotes the adjoint of a matrix or vector.)

Additionally, ε is a user-adjusted parameter for terminating the algorithm. Note that

σ∗ is independent of the sought after initial pressure distribution, and can be stored

in a look-up table, and reused for all experiments with a fixed setting (cf. section 2.4)
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[2].

2.A.2 Methods for derivation of the adjoint operator (contin-

uous and discretised adjoint)

The approaches for derivation of the adjoint operator H∗ can be categorised into

adjoint-then-discretise or discretise-then-adjoint methods. In this thesis, an adjoint

that is derived using the first (resp. second) approach is referred to as continuous

(resp. algebraic (discretised)) adjoint.

The class of adjoint-then-discretise methods has been used in many studies of PAT,

e.g., [3, 2]. A continuous adjoint can be considered as a generalised variant of a corre-

sponding algebraic adjoint. The reason is that firstly a continuous adjoint, as opposed

to an algebraic adjoint, is independent of the numerical approaches for a discretisation

of H, and secondly if any modifications are applied on the forward operator H, the

applied modifications can be straightforwardly included in a continuous adjoint oper-

ator. For example, if we use an alternative approach to equation (2.6) for modelling

the acoustic attenuation, or if we use a different approach for a numerical approxi-

mation of the forward operator defined in section 2.2.1, the applied modification can

be directly applied on the continuous adjoint, using a same aproach as used for the

forward operator.

In contrast, using an algebraic (discretised) adjoint, applying any changes on the

forward operator may require a recalculation of the adjoint operator. However, con-

sidering the forward operator that is defined using (2.1), (2.2) and (2.6), an algebraic

adjoint satisfies an adjoint formula more accurately than using a continuous adjoint,

although both approaches produce almost the same solutions for the iterative PAT,

when we consider only the acoustic portion of the inverse problem, the same as chapter

2.

Since both approaches are poular for PAT, we used both methods in this thesis.

In chapter 2, a continuous adjoint, which is a generalised variant of a corresponding

algebraic adjoint, may better demonstrate the performance of the proposed multi-grid

method.

It is worth mentioning that the forward operator that is described in section 2.2.1
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will also be used in chapter 4 as the acoustic portion of a composite opto-acoustic

forward operator for quantitative PAT using a single-stage approach [16]. Since the

optical portion of the mentioned composite forward operator is highly nonlinear and

ill-conditioned, an small error in calculation of the acoustic adjoint may exponentially

grow during the inversion process, as opposed to our observation for the pure acoustic

portion of PAT. Because of this, in chapter 4, we will use a discretise-then-adjoint

approach for derivation of the adjoint.

2.A.3 Methods for modelling the forward operator for fluid

and solid media

One limitation for the forward operator described above is that it is accurate solely for

fluid media, because it does not account for generation and propagation of shear waves.

Indeed, for fluid media, these effects can be neglected, and therefore the forward model

used in chapter 2 is accurate sufficiently for an iterative PAT in soft tissues, for example

the breast. PAT has recently shown its potential for imaging of the brain. For this

case, the inverse problem of PAT is a reconstruction of an initial pressure distribution

inside the skull from a set of time series of pressure data that is measured outside

the skull. To solve this inverse problem using variational (iterative) approaches, the

forward operator and its adjoint must account for generation and propagation of the

shear waves within the skull. To account for these effects, in chapter 3, we define a

forward operator using a system of coupled equations that describe the propagation of

acoustic waves in linear isotropic heterogeneous and lossy elastic media. Additionally,

an acoustic absorption and dispersion obeying a frequency power law will be modelled

using fractional Laplacian operators, the same as the forward operator in chapter 2.

We will solve the inverse problem of PAT using this forward operator. Note that the

same as in chapter 2, we will consider only the acoustic portion of the inverse problem

of photo-acoustic tomography.
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Chapter 3

A continuous adjoint for

photoacoustic tomography of the

brain

The content of this chapter has been published in: A. Javaherian and S. Holman.

A continuous adjoint for photo-acoustic tomography of the brain. Inverse Problems,

34(8):085003, 2018.

Abstract

We present an optimisation framework for photo-acoustic tomography of brain based

on a system of coupled equations that describe the propagation of sound waves in

linear isotropic inhomogeneous and lossy elastic media with the absorption and phys-

ical dispersion following a frequency power law using fractional Laplacian operators.

The adjoint of the associated continuous forward operator is derived, and a numeri-

cal framework for computing this adjoint based on a k-space pseudo-spectral method

is presented. We analytically show that the derived continuous adjoint matches the

adjoint of an associated discretised forward operator. We include this adjoint in a

first-order positivity constrained optimisation algorithm that is regularised by total

variation minimisation, and show that the iterates monotonically converge to a min-

imiser of an objective function, even in the presence of some error in estimating the

physical parameters of the medium.
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3.1 Introduction

Quantitative Photo-acoustic Tomography (QPAT) is a hybrid imaging modality which

simultaneously takes advantage of the rich contrast attributed to optical imaging and

the high spatial resolution brought up by ultrasound. In this technique, short pulses

of near-infrared light are used to irradiate tissue. The energy from these pulses is

absorbed as a function of the optical absorption map of the tissue. This generates local

increases in pressure which propagate outwards as photo-acoustic (PA) waves, and are

then measured by broadband detectors placed at the surface. The inverse problem of

QPAT is to reconstruct the spatially varying optical absorption coefficient from the

recorded PA signals. This involves two inverse problems, namely acoustic and optical

[29]. The acoustic inverse problem is to reconstruct the initial pressure distribution

from the recorded PA signals, and the optical inverse problem is to recover optical

coefficients from the computed initial pressure map [29]. These two inverse problems

can be solved distinctly [16, 2, 17], or alternatively as a direct hybrid problem [9].

In this work we consider only the acoustic portion of the inverse problem which we

simply call Photo-acoustic Tomography (PAT).

Considering the acoustic inverse problem, Time reversal (TR) is a comprehensive

inversion approach for PAT since it can be used for media with heterogeneous acoustic

properties and arbitrary detection geometries [14, 13, 39]. However, this method is

based on a continuous domain with idealised conditions such as a closed detection

surface or exactly known medium’s properties [14], which do not hold in real cases.

Problems such as finite sampling, a limited accessible angle for detection surface, errors

in estimation of medium’s properties, or errors in data measurement make the acoustic

inverse problem ill-posed [16]. In these cases, model-based iterative methods are often

used, e.g., TR-based iterative techniques [28], or optimisation algorithms [16, 2, 17].

The optimisation approaches are often based on computation of the gradient of an

objective function in terms of a forward model and a corresponding adjoint model.

Using an explicit formulation of the adjoint operator, the convergence of an arising

iterative algorithm was established in Hilbert spaces using a Landweber algorithm

for media with inhomogeneous sound speed [4, 32], and was later improved using

Nesterov’s fast gradient and the CG methods [10].
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Because of the dependance of shape, spectrum and amplitude of PA signals on

physical properties of tissue media, it will be advantageous if the image reconstruction

in PAT is enriched by tissue-realistic models that account for the absorption behaviours

evident in tissues [36, 8, 30]. Among model-based iterative approaches for absorbing

media, the adjoint was computed by a “discretise-then-adjoint” method in [16], or by

an “adjoint-then-discretise” method in [17].

It is well-known that modelling the propagation of sound waves can be consider-

ably expedited compared to Finite difference time-domain (FDTD) methods by using

Pseudo-spectral time-domain (PSTD) methods. Applying these techniques, the spa-

tial gradients are computed in frequency domain, while the temporal gradients are

computed using finite difference methods, similar to FDTD techniques. The efficiency

of PSTD methods is because of a fast computation of the spatial gradients using Fast

Fourier Transforms (FFTs), as well as a dramatic relaxation in the mesh requirement

and time step [5, 6].

PAT has shown its potential for characterization of the vasculature in small animals

or within a few mm of the skin’s surface in humans [43]. Furthermore, PAT has been

utilised successfully for transcranial brain imaging in small animals [42, 23]. In these

cases, the effect of the skull on the propagation of PA waves is neglected because of

the low thickness of the skull (≈ 1 mm), and thus the image reconstruction is done

based on scalar acoustic wave equations [42, 23].

To account for aberration of PA signals because of the heterogeneous properties of

the skull, a subject-specific imaging model was proposed, where the inhomogeneity of

the skull is taken into account using adjunct information about the skull anatomy and

composition [15]. This information must be obtained from x-ray computed tomography

image data, or some other imaging modalities.

The application of PAT in transcranial brain imaging of humans is very lim-

ited since PA signals are aberrated to a high degree by absorption, scattering and

compressional-to-shear mode conversion effects due to the high thickness of the skull

(4mm-7mm). Similar to the scalar acoustic problem, the iterative methods for tran-

scranial brain imaging can be categorised into time-reversal (convergent Neumann-

series) [31, 20], or optimisation algorithms. Recently, an optimisation framework for
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transcranial PAT was proposed, where the forward problem describes the wave propa-

gation in a linear isotropic, heterogeneous and lossy elastic medium, and a correspond-

ing adjoint model is algebraically derived from the discretised forward operator, i.e.,

discretise-then-adjoint method [25]. This forward and adjoint pair was approximated

by a finite-difference time domain (FDTD) method using a fourth-order FD method

for computing the spatial gradient of fields. In addition, attenuation was described

by a diffusive model [27], which does not account for the dependency of the wavefield

attenuation on frequency, and assumes that the shear-to-compressional wave absorp-

tion ratio is proportional to the compressional-to-shear velocity ratio. The authors

mentioned that this absorption model is accurate on the condition that the induced

PA waves are sufficiently band-limited (cf. [25], section 2.1).

In PAT, the compartmentalised distribution of light absorbing molecules composing

tissues induces step-like discontinuities in the generated pressure field. As a result, the

generated PA waves are considerably more broadband than ultrasonic waves [39, 17].

Furthermore, the absorption of sound waves in many media such as tissues has been

experimentally shown to follow a frequency power law with a non-integer power, which

can be described by fractional derivatives [36, 37]. Classical attenuation models used

the fractional time derivatives, which are non-local in time, and thus require storing

the time history of field variables [24]. It has been established that the fractional time

derivatives can be replaced by fractional space derivatives, which are nonlocal in space

rather than time, and are thus more memory efficient [36, 37]. This is done using

the dispersion relation for lossless wave equation. The cost of this method is that the

spatially non-local operators violate causality [22].

In elastic solids, compressional and shear waves propagate at different speeds. As a

result, using the dispersion relation for describing fractional space derivatives requires

splitting the field variables into compressional and shear parts [37]. This is done using

a dyadic wave number tensor in the frequency domain [6, 37]. Additionally, by splitting

the fields, the numerical dispersion errors accumulated by the time integrations can

also be minimised via applying the k-space correction to the spatial gradients, which

allows larger time steps without loss of stability or accuracy in heterogeneous media

[34, 6].

Contribution. We consider a forward map in the PAT problem in which a system of
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coupled first-order equations describes the propagation of PA waves in linear isotropic,

heterogeneous and lossy elastic media, where the absorption and physical dispersion

follow a frequency-power law. We derive the adjoint of the PAT forward map in

this context. This adjoint, referred to here as the analytic viscoelastic adjoint, is

derived on a continuous domain, and is in the form of a system of partial differential

equations. We shall analytically show that a numerical computation of the derived

analytic viscoelastic adjoint using the k-space pseudo-spectral method matches the

algebraic adjoint of the associated forward model. By setting viscosity coefficients to

zero in our derived analytic (continuous) adjoint, the general form of the adjoint model

for lossless media is derived. This can be used as a basic model, when other existing

attenuation models are considered, e.g. [22, 21]. We emphasise that in the absence of

attenuation the difference between our adjoint model and that of [25] arises from the

different methods of discretisation of the spatial gradient. Our derived analytic adjoint

including attenuation effects is numerically validated using an adjoint test, and then

the forward and adjoint pair is included in a positivity constrained and total-variation

regularised solver based on the Iterative Shrinkage Thresholding algorithm (ISTA) [3]

for image reconstruction in 2D and 3D scenarios.

3.2 Acoustic wave propagation for viscoelastic me-

dia

Here, we briefly review the model we use for the propagation of acoustic waves in

viscoelastic media. For further details, the reader is referred to [37]. To do this,

we start with defining the associated fields, which are the particle displacement vector

ui(x, t), particle velocity vector vi(x, t) = dui(x, t)/dt, scalar pressure p(x, t) and stress

tensor σij(x, t), where x and t denote the position and time, respectively. We also define

the medium’s parameters, which are the Lamé elastic parameters µ(x) and λ(x), and

are related to the shear and compressional wave speeds, cs(x) and cp(x) respectively,

by the equations

µ = ρc2
s, λ = ρc2

p − 2µ, (3.1)
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where ρ(x) denotes the medium’s mass density (See [6]). In this section, for brevity

the dependence on x and t is neglected, and following [6] and [37], we use the Einstein

summation notation. We also define the strain tensor field as [6]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.2)

Using these, the deformation in an isotropic lossless elastic medium is described by

the relation between σ and ε in the form

σij = λδijεll + 2µεij. (3.3)

One method of incorporating attenuation is to modify the stress-strain relation (3.3)

as

σij = λδijεll + 2µεij + χδij
∂

∂t
εll + 2η

∂

∂t
εij, (3.4)

where χ and η denote the compressional and shear viscosity coefficients. The equation

(3.4) is called Kelvin-Voigt model. Plugging (3.2) into (3.4) gives [37]

∂σij
∂t

= λδij
∂vl
∂xl

+ µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ χδij

∂2vl
∂xl∂t

+ η

(
∂2vi
∂xj∂t

+
∂2vj
∂xi∂t

)
. (3.5)

Let us define the temporal frequency by ω. For low-frequency ranges, the Kelvin-Voigt

model describes an acoustic absorption proportional to ω2 and a constant sound speed

(no dispersion), whereas for high frequency ranges, both the absorption and dispersion

vary proportional to ω1/2 [37].

As discussed in section 3.1, experimental studies have shown that attenuation in

many materials of interests, including tissue media such as bone, is proportional to ωy

with y a non-integer between 0 and 2 [33]. Because of the broadband nature of PA

signals, as well as the high level of the attenuation in the skull, this behaviour cannot be

neglected. To account for the non-integer power law dependence, the integer temporal

derivatives in equations (3.4) and (3.5) can be replaced by fractional time derivatives

[12]. For an isotropic medium, this gives the fractional Kelvin-Voigt model in the form

[37]

σij = λδijεll + 2µεij + χδij
∂y−1

∂ty−1
εll + 2η

∂y−1

∂ty−1
εij, (3.6)

where

η = − 2ρc3
s

cos (πy/2)
α0,s, χ = −

2ρc3
p

cos (πy/2)
α0,p − 2η, (3.7)
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with α0,s and α0,p, respectively the attenuation coefficients pertaining to shear and

compressional waves in Np(rad/s)−ym−1 [37].

The temporal fractional derivatives in equation (3.6) are non-local in time, and thus

their numerical computation requires the storage of the time history of fields, which

is very computationally expensive. To overcome this problem, the dispersion formula

for lossless media, i.e., the relation between ω and spatial frequency k (ω ≈ ck) with c

the sound speed, is used to replace the fractional time derivatives by fractional space

derivatives, which are non-local in space, rather than time [37]. Using this method,

the fractional time derivative is written as two fractional Laplacian operators [36, 37].

This method provides a significant computational memory benefit, since at each

time step the wavefield at all spatial positions is readily accessible. The system of

viscoelastic wave equations enriched by fractional Laplacian operators can be used to

describe absorption and physical dispersion behaviours over a wide range of frequencies

and absorption values [37]. However, in elastic media since the compressional and shear

waves travel at different speeds, separate dispersion relations must be considered for

the compressional and shear parts of the wavefield. This requires that the particle

velocity field is split into the compressional and shear components [37]. Throughout

this work, superscripts p and s denote the compressional and shear parts of the fields,

respectively. vpi and vsi are calculated in the form

vpi = qp(vi) = F−1
{
k̂ik̂jF

{
vj
}}

vsi = qs(vi) = F−1
{

(δij − k̂ik̂j)F
{
vj
}}
,

(3.8)

where F represents the Fourier transform operator, and k̂ik̂j is the unit dyadic wavenum-

ber tensor with k̂i = ki/k the normalised wavenumber in direction i and k = (
∑

i k
2
i )

1/2

the magnitude of wavenumber. By splitting the particle velocity vector, the stress ten-

sor is updated distinctly for compressional and shear parts in the form

∂σp,sij
∂t

= λ

(
δij

∂

∂xl
vp,sl

)
+ µ

(
∂

∂xj
vp,si +

∂

∂xi
vp,sj

)
+ χ

(
δij

∂

∂xl

∂y−1
p,s

∂ty−1
vp,sl

)
+ η

(
∂

∂xj

∂y−1
p,s

∂ty−1
vp,si +

∂

∂xi

∂y−1
p,s

∂ty−1
vp,sj

)
.

(3.9)

Now, the fractional temporal derivatives in (3.9) can be replaced by fractional Lapla-

cian operators with different sound speed for the compressional and shear waves. To
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make this replacement, we introduce the operator

Lycp,s = cyp,s(−∇2)y/2. (3.10)

Using this notation and the comments above, we will be using the following definition

throughout the rest of this work including in (3.9) [37]

∂y−1
p,s

∂ty−1
vp,si = sin(πy/2)Ly−1

cp,s v
p,s
i − cos(πy/2)Ly−2

cp,s

1

ρ

∂

∂xj
σp,sij . (3.11)

We will make this replacement in our forward model. The continuous forward

model for the wave propagation is completed with the conservation of momentum

∂vi
∂t

=
1

ρ

∑
p,s

∂

∂xj
σp,sij . (3.12)

Note that in the second term of (3.11), following [37] ∂vp,si /∂t has been replaced by

the split terms of (3.12). This is done to avoid having to compute time differences in

the discretised model (cf. [37], section III).

Equations (3.9) and (3.12), together give a system of coupled partial differential

equations which describe the propagation of acoustic waves in linear isotropic, het-

erogeneous and lossy elastic media with an attenuation following the frequency power

law.

3.3 Continuous forward and adjoint operators

Let Ω ⊂ Rd be a d-dimensional open, bounded set containing the initial pressure. For

describing the measurement done by detectors, we define the operator G, which maps

the compressional part of the stress tensor field to the pressure field in the form

Gσp(x, t) = −1

d
δijσ

p
ij(x, t) = p(x, t). (3.13)

We also introduce the measurement operator M : L2(Rd)→ RNs , which at each time

instant tn maps the pressure field p to the measurements detected by all Ns detectors.

Each detector has a limited access to the pressure field, i.e., it measures the pressure

field over a small, finite volume of space, and the measurement takes a finite time T .

In the next definition we give the forward map for our inverse problem.
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Definition 3.1. We define the PAT forward operator using the viscoelastic model in

the form

Λ : C∞0 (Ω)→ RNsNt

(Λ[p0])tn =MGσp(tn),
(3.14)

where tn is a discretised representation of time t. Also, σp,sij and vi satisfy (3.9) and

(3.12) with initial conditions

σpij(x, 0) = −δijp0(x), σsij(x, 0) = 0, vi(x, 0) = 0. (3.15)

The inverse problem is to reconstruct an approximation of p0 given Λ[p0]. The forward

operator Λ is well-defined under fairly basic conditions such as cp > 0, cs > 0, ρ > 0,

y ∈ (0, 2) \ {1}, α0,s > 0, α0,p > 0, and all of the fields cp, cs, ρ, α0,s, and α0,p

infinitely differentiable (it is likely that weaker hypotheses such as cs ≥ 0, or some of

the fields non-smooth can be used as well). Intuitively the forward map is well-defined

as it models a physical process, and for more detail on this modelling we refer to [37].

Mathematically the given model for the forward map can be proven to be well-defined

by considering the system of equations formed by (3.9) and (3.12) as a linear evolution

equation for v, σp, and σs in the form

∂

∂t


v

σp

σs

 = A


v

σp

σs


for a linear operator A initially defined on C∞0 (Rn) functions. Considering A as an

unbounded linear operator on the appropriate L2 space with domain that depends on

y, we can apply the Hille-Phillips Theorem [11] to show that A generates a quasi-

contractive semi-group, which is what describes the evolution of the fields v, σp, and

σs. The main step in the application of this theorem is to prove that for γ > 0

sufficiently large

γ −A

maps from the domain of A onto the L2 space. It is in this step that the requirements

on the positivity of the parameters arise, as certain bilinear forms must be shown to

be coercive. Finally, the measurement operatorM must be chosen to be an appropri-

ate linear functional on L2(Ω), although this may also be relaxed to allow sampling

individual point values if p0 is assumed to be smooth.
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In the next Lemma, we will calculate the adjoint of Λ with respect to the L2 inner

product, i.e.,

Λ∗ : RNsNt → L2(Ω). (3.16)

For this, we need the adjoint of Lycp,s , i.e.,

Ly∗cp,s = (−∇2)y/2cyp,s, (3.17)

which is formal adjoint since −∇2 is self-adjoint. We assume that y is constant over

the entire medium in the same way as [37]. We also need the time reversal operator

R defined by

R[p](x, t) = p(x, T − t).

Lemma 3.1. The adjoint map Λ∗ can be calculated from Λ∗[P̂ ](x, t) = p∗0(r), where

p∗0 = −δijσp∗ij (x, T ), and σp,s∗ij and vp,s
∗

i satisfy the coupled equations

ρ
∂vi
∗

∂t
=
∑
p,s

qp,s

[(
∂

∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
))

+ sin(πy/2)L(y−1)∗
cp,s

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
))] (3.18)

vp,si
∗ = v∗i −

1

ρ
cos(πy/2)L(y−2)∗

cp,s

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
))

∂σpij
∗

∂t
=

1

2

(
∂vpi

∗

∂xj
+
∂vpj

∗

∂xi

)
+ (RG∗M∗P̂ )

∂σsij
∗

∂t
=

1

2

(
∂vsi

∗

∂xj
+
∂vsj

∗

∂xi

)
(3.19)

with initial conditions

σp,sij
∗(x, 0) = 0, v∗i (x, 0) = 0. (3.20)

Remark 3.1. Solutions for the set of equations (3.18) and (3.19) can be shown to exist

by a similar strategy as for the equations describing the evolution of the forward fields.

Proof. We will show that when σp,sij and vi satisfy equations (3.9), (3.12) and (3.15),

and also σp,s
∗

ij and v∗i satisfy (3.18), (3.19) and (3.20), then the forward map Λ and

adjoint Λ∗ must satisfy

〈Λ[p0], P̂ 〉RNsNt = 〈p0,Λ
∗[P̂ ]〉L2(Rd) (3.21)
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for any p0 ∈ C∞0 (Ω) and P̂ ∈ RNsNt . Because it will make calculations easier, we

first deal with the adjoint fields in a time reversed order (i.e. we make the change of

variable t 7→ T − t) and with v∗i replaced by −v∗i so that the initial conditions (3.20)

are actually final conditions σ∗ij(x, T ) = 0 and v∗i (x, T ) = 0. Accordingly, we have the

following relation between vi and the adjoint field v∗i∫ T

0

∫
Rd
ρ

(
∂vi
∂t
v∗i + vi

∂v∗i
∂t

)
dx dt = 0. (3.22)

Plugging (3.12) into the first integrand in the above equation gives∫ T

0

∫
Rd

∑
p,s

∂σp,sij
∂xj

v∗i + ρvi
∂v∗i
∂t

dx dt = 0. (3.23)

Integrating-by-parts, and using that σp,sij → 0 at infinity, we end up with∫ T

0

∫
Rd

∑
p,s

−σp,sij
1

2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)
+ ρvi

∂v∗i
∂t

dx dt = 0. (3.24)

In the above equation, we also used the symmetry of the stress tensor σp,sij = σp,sji .

Now we apply the same procedure to the stress tensor. Using the final conditions

σp,s∗ij (x, T ) = 0 yields∫ T

0

∫
Rd

∂σpij
∂t

σpij
∗ + σpij

∂σpij
∗

∂t
dx dt =

∫
R3

p0 σ
p
ii
∗(x, 0) dx = −〈p0,Λ

∗[P̂ ]〉L2(Rd). (3.25)

and ∫ T

0

∫
Rd

∂σsij
∂t

σsij
∗ + σsij

∂σsij
∗

∂t
dx dt = 0. (3.26)

Now, plugging (3.9) into the first integrands in the left-hand sides of (3.25) and (3.26)

and then adding these two equations results in∫ T

0

∫
Rd

∑
p,s

[(
λδij

∂vp,sl
∂xl

+ µ
(∂vp,si
∂xj

+
∂vp,sj
∂xi

)
+ χ

(
δij

∂

∂xl

∂y−1
p,s

∂ty−1
vp,sl

)
+ η
( ∂

∂xj

∂y−1
p,s

∂ty−1
vp,si +

∂

∂xi

∂y−1
p,s

∂ty−1
vp,sj

))
σp,sij

∗ + σp,sij
∂σp,sij

∗

∂t

]
dx dt = −〈p0,Λ

∗[P̂ ]〉L2(Rd).

(3.27)

Taking integration-by-parts to the first term in the bracket in the above equation,

together with the fact that σij
∗ is symmetric, gives∫ T

0

∫
Rd

∑
p,s

[
−

(
∂

∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
)

+
∂

∂xi

(
χσp,sll

∗
) ∂y−1

p,s

∂ty−1

+ 2
∂

∂xj

(
ησp,sij

∗
) ∂y−1

p,s

∂ty−1

)
vp,si + σp,sij

∂σp,sij
∗

∂t

]
dx dt = −〈p0,Λ

∗[P̂ ]〉L2(Rd).

(3.28)
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Now, adding equations (3.24) and (3.28) yields∫ T

0

∫
Rd
ρvi

∂v∗i
∂t
−
∑
p,s

[ ∂
∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
)

+

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
)) ∂y−1

p,s

∂ty−1

]
vp,si

+
∑
p,s

[
∂σp,sij

∗

∂t
− 1

2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)]
σp,sij dx dt = −〈p0,Λ

∗[P̂ ]〉L2(Rd).

(3.29)

Now, plugging the fractional Laplacian operators defined in equation (3.11) into the

second line in equation (3.29), together with (3.8), yields∫ T

0

∫
Rd

(
ρ
∂v∗i
∂t
−
∑
p,s

[
∂

∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
)

+

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
))

sin(πy/2)Ly−1
cp,s

]
qp,s

)
vi

+
∑
p,s

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
))

cos(πy/2)Ly−2
cp,s

1

ρ

∂

∂xj
σp,sij

+
∑
p,s

[
∂σp,sij

∗

∂t
− 1

2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)]
σp,sij dx dt = −〈p0,Λ

∗[P̂ ]〉L2(Rd).

(3.30)

In the above equation, we also used the linearity of operator qp,s with respect to vi.

By taking integration-by-parts to the third line and using the symmetry of σp,sij in the

same way as the first integrand in (3.23), we can see from (3.19) that if the integral

in the first two lines of (3.30) is equal to zero, then (3.21) holds and the proof is

complete (recall again that relative to (3.18), we have reversed the time, and changed

v∗i to −v∗i ). So we now focus on the first two lines of (3.30) which we will denote I.

Considering that qp,s is self-adjoint yields

I =

∫ T

0

∫
Rd

[
ρ
∂v∗i
∂t
−
∑
p,s

qp,s
[(

∂

∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
))

+ sin(πy/2)L
(y−1)∗
cp,s

(
∂

∂xi

(
χσp,sll

∗
)

+ 2
∂p,s
∂xj

(
ησp,sij

∗
))]]

vi dx dt.

(3.31)

Since v∗i and σp,s∗ij satisfy (3.18) we can now see that in fact I = 0, and so the proof is

complete.
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Setting χ, η = 0 and ignoring the splitting operator results in the general form of the

adjoint for lossless media, which can be adapted to other attenuation models (see for

example [22, 21]).

3.4 Numerical computation

Having found an analytically exact method of computing the adjoint operator Λ∗ in the

previous section, we now consider in more detail the discretisation and computation

of the forward operator Λ and adjoint operator Λ∗. We denote the position of a given

grid point in Cartesian coordinates by xζ where ζ = (ζ1, ... , ζd) ∈ {1, ... , N1}× ... ×

{1, ... , Nd} with N =
∏d

i=1Ni the total number of grid points along d dimensions.

The grid spacing along the ith direction will be denoted by ∆xi. Also let n denote the

iteration corresponding to time tn = n∆t with n ∈ {−1, ..., Nt − 1}.

We discretise the spatial derivatives by a pseudo-spectral method. The k-space

correction is also applied to the spatial derivatives in order to minimise the numerical

dispersion errors due to the time integration. We approximate the fields on a uni-

form rectilinear grid staggered in space and time. It turns out that these staggered

configurations increase accuracy and stability for approximation of odd-order spatial

and temporal derivatives [34, 6]. Applying a k-space pseudo-spectral method on a

staggered grid, the spatial gradient in direction i will be in the form

∂p,s {·}
∂x±i

= F−1
{
iki sinc(Cp,s

0 k∆t/2)e±iki∆xi/2F {·}
}
, (3.32)

where, as opposed to (3.8), F and F−1 denote the discrete Fourier transform and its

inverse. Additionally, sinc(Cp,s
0 k∆t/2) is the k-space operator which enforces a k-space

correction to the gradient, where Cp,s
0 is the reference sound speed associated with the

compressional and shear parts of the fields. The reader is referred to [34, 6] for further

details on the k-space pseudo-spectral method.

To simulate wave propagation in an infinite domain using a computational grid

with limited size, it is necessary that the outward travelling waves that reach the edge

of the domain are absorbed by perfectly matched layers (PMLs) [6, 25]. Using PMLs,

the general evolution equation ∂R(x,t)
∂t

= β(x, t) is transformed into the form [34]

∂R(x, t)

∂t
+ αaR(x, t) = β(x, t), (3.33)



CHAPTER 3. A CONTINUOUS ADJOINT FOR PAT OF THE BRAIN 125

where αa is the attenuation coefficient associated with the PML, which is tapered

within the PML thickness at each side of the grid (cf. [6], Eq.(42)). This yields

∂ (eαatR(x, t))

∂t
= eαatβ(x, t). (3.34)

Using a staggered temporal grid, this is approximated as

eαa(t+∆t)R(xζ , t+ ∆t)− eαatR(xζ , t)

∆t
= eαa(t+∆t/2)β(xζ , t+ ∆t/2). (3.35)

This gives the update

R(xζ , t+ ∆t) = e−αa∆t/2
[
e−αa∆t/2R(xζ , t) + ∆tβ(xζ , t+ ∆t/2)

]
. (3.36)

Using direction-dependent PMLs, the field variables are split into directions along the

Cartesian coordinates m ∈ {1, ..., d} [6]. In the sequel, the directions associated with

PMLs are written to the left of the fields. We define the diagonal PML attenuation

matrices Am ∈ RN×N by

Am = diag(e−mαa∆t/2). (3.37)

Note that −mαa depends on the grid point here.

For the staggered temporal grid we consider also the time points tn+1/2 = n∆t +

∆t/2. To accommodate the staggered spatial grid we introduce the operators Ti which

shift the point x by ∆xi/2 in the ith coordinate, i.e., xi changes to xi+∆xi/2. We will

also use the same notation for the corresponding operator acting on functions defined

by

Tif(x) = f(Tix). (3.38)

The discretised particle velocity vector field is denoted by mv(i;ζ;n) ∈ Rd
m×Rd

i ×RN
ζ ×

RNt+1
n and is approximated on a staggered spatial grid as

mv(i;ζ;n) ≈ Ti mvi (xζ , tn) . (3.39)

The p and s parts of the discretised stress tensor field are denoted by mσ
p,s
(ij;ζ;n) ∈

Rd
m × Rd

i × Rd
j × RN

ζ × RNt+1
n and are approximated on a staggered grid as

mσ
p,s
(ij;ζ;n) ≈

mσ
p,s
ij (xζ , tn) if i = j

TiTj mσp,sij (xζ , tn) if i 6= j.

(3.40)
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Because of using a staggered grid, the unit dyadic tensor in (3.8) will be in the form

[6]

(k̂ik̂j)staggered = (k̂ik̂j)nonstaggered × ξij, (3.41)

where

ξij = e+i(ki∆xi−kj∆xj)/2 (3.42)

is the shifting operator with i standing for the imaginary number [6].

We also define

τ p,sdis = Cy−1
p,s sin (πy/2) (3.43)

τ p,sabs = Cy−2
p,s cos (πy/2) (3.44)

with Cp,s ∈ RN the discretised form of cp,s. Using a staggered grid, we define the

medium’s parameters as diagonal matrices of size N ×N in the form

ρ̄i = diag (Tiρ)

λ̄ = diag (λ)

µ̄ij =

diag (µ) if i = j

diag (TiTjµ) if i 6= j.

χ̄ = diag (χ)

η̄ij =

diag (η) if i = j

diag (TiTjη) if i 6= j.

τ̄i,dis = diag (Tiτdis)

τ̄i,abs = diag (Tiτabs)

(3.45)

where ρ, λ, µ, χ, and η on the right hand sides in (3.45) are the medium parameters

evaluated at the N grid points. In the formulas that follow for the discretised model,

these matrices are always understood to act on discretised fields in the index ζ corre-

sponding to the spatial grid.

We also introduce the N×N matrices discretising the relevant fractional Laplacian

operators as

Ȳdis = F−1
{
ky−1F{·}

}
Ȳabs = F−1

{
ky−2F{·}

}
.

(3.46)
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Finally, we define the following function which we will use to simplify some of the

formulas

h(i, j) =

+1 if i = j

−1 if i 6= j.

(3.47)

3.4.1 Forward model.

In the sequel, the approximation of the system of viscoelastic wave equations defined

by equations (3.9), (3.12) and (3.15) based on the details given above will be outlined.

It is worth mentioning that a code is available in the open-source k-Wave toolbox for

describing wave propagation in heterogeneous lossy elastic media based on equations

(3.5), (3.12) and (3.15) using the k-space pseudo-spectral method [35, 38]. As discussed

in section 3.2, the results of this code give an attenuation that is not evident in tissue

media [37]. Therefore, we modified the pre-existing k-Wave toolbox code so that

it includes two fractional Laplacian operators in order to account for absorption and

physical dispersion following the frequency power law. This code is outlined as follows.

While in the continuous model we assume the initial pressure is instantaneous, in

the discretised model we introduce the initial pressure at t = 0 to the forward model

as an additive source split over the time interval t ∈
[
− ∆t/2,+∆t/2

]
. For this,

p(t = 0) = 1 is approximated as P (n =
[
− 1/2 + 1/2

]
) = 1

∆t

[
0.5 0.5

]
(cf. [2],

Appendix B). Considering this, together with (3.15) and dividing the source by PML

directions, gives a source in the form

ms(ij;ζ;n+1/2) =

−
δij

2d∆t
SP0 n = −1, 0

0 otherwise,

(3.48)

where P0 denotes the discretised form of p0, and S is a symmetric smoothing operator

that is used for mitigating unexpected oscillations in propagation of the initial pressure

P0 (For further details, the reader is referred to [2], Appendix B).

Start at iterate n = −1 with initial conditions mσ
p,s
(ij;ζ;n=−1) = 0 and mv(i;ζ,n=−3/2) = 0,

and terminate at iterate n = Nt − 2.
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1. Update the particle velocity field:

mv(i;ζ;n+ 1
2

) = Am

[
Am mv(i;ζ;n− 1

2
) +

∆t

ρ̄i

∑
p,s

∂p,s

∂x
h(i,m)
m

σp,s(im;ζ;n)

]

v(i;ζ;n+ 1
2

) =
d∑

m=1

mv(i;ζ;n+ 1
2

).

(3.49)

2. Split the particle velocity field into compressional and shear parts:

vp,s
(i;ζ;n+ 1

2
)

= Qp,sv(i;ζ;n+ 1
2

). (3.50)

Here, Qp,s denotes the discretised form of functions qp,s defined in (3.8).

3. Update the stress tensor field:

mσ
p,s
(ij;ζ;n+1) = Am

[
Am mσ

p,s
(ij;ζ;n) + ∆t

[
λ̄δij

∂p,s
∂x−m

vp,s
(m;ζ;n+ 1

2
)

+ µ̄ij

(
δmj

∂p,s

∂x
−h(i,j)
j

vp,s
(i;ζ;n+ 1

2
)
+ δmi

∂p,s

∂x
−h(i,j)
i

vp,s
(j;ζ;n+ 1

2
)

)
+ χ̄δij

∂p,s
∂x−m

(
τ̄ p,sm,dis Ȳdis v

p,s

(m;ζ;n+ 1
2

)
− τ̄ p,sm,abs Ȳabs ∂tv

p,s
(m;ζ;n+1/2)

)
+ η̄ijδmj

∂p,s

∂x
−h(i,j)
j

(
τ̄ p,si,dis Ȳdis v

p,s

(i;ζ;n+ 1
2

)
− τ̄ p,si,abs Ȳabs ∂tv

p,s
(i;ζ;n+1/2)

)
+ η̄ijδmi

∂p,s

∂x
−h(i,j)
i

(
τ̄ p,sj,dis Ȳdis v

p,s

(j;ζ;n+ 1
2

)
− τ̄ p,sj,abs Ȳabs ∂tv

p,s
(j;ζ;n+1/2)

)]]
.

(3.51)

where

∂tv
p,s
(i;ζ;n+1/2) =

d∑
m=1

Am
1

ρ̄i

∂p,s

∂x
h(i,m)
m

σp,s(im;ζ;n) (3.52)

4. Add source:

mσ
p
(ij;ζ;n+1) ← mσ

p
(ij;ζ;n+1) + ∆t ms(ij;ζ;n+1/2)

σp,s(ij;ζ;n+1) =
d∑

m=1

mσ
p,s
(ij;ζ;n+1).

(3.53)

5. Compute the pressure field and map it to detected data at ultrasound detectors:

We use G and M for denoting the discretised variants of G and M. Correspondingly,

at each iterate the pressure field is computed by

p(ζ;n+1) = Gσp(ij;ζ;n+1) = −1

d

d∑
l,m=1

mσ
p
(ll;ζ;n+1), (3.54)



CHAPTER 3. A CONTINUOUS ADJOINT FOR PAT OF THE BRAIN 129

and is then interpolated to ultrasound detectors using trilinear interpolation [2, 25],

i.e.,

P̂n+1 = Mp(ζ;n+1), (3.55)

where M ∈ RNs×N is a map from the pressure at grid points to the pressure measured

by the detectors, and P̂n ∈ RNs is the vector of measured pressure data at iteration

n = 0, ..., Nt − 1.

3.4.2 Analytic adjoint model

The continuous adjoint model defined by equations (3.18), (3.19) and (3.20) are solved

numerically as follows. For brevity, we ignore the superscript ∗ for denoting the adjoint

fields in the discretised case. Before defining the time stepping procedure for the

adjoint, we first define the additive source. To account for splitting of P0 over the first

two temporal iterations in the forward model (cf. equation (3.48)), we define the order

reversed adjoint measured data in the form [2]

P̂ adj
n+1/2 =

1

2∆t


P̂Nt−1, n = −1

P̂Nt−n−1 + P̂Nt−n−2, n = 0, ..., Nt − 2

P̂0, n = Nt − 1

. (3.56)

The adjoint measured data is mapped from ultrasound detector positions to an additive

source that is defined at grid points using

ms(ij;ζ;n+1/2) = GTMT P̂ adj
n+1/2, (3.57)

where

GT = −1m ⊗
δij
d
. (3.58)

Start at iterate n = −1 with initial conditions mσ(ij;ζ;n=−1) = 0 and mv(i;ζ,n=−3/2) = 0,

and terminate at iterate n = Nt − 2.
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1. Update the particle velocity field:

mv(i;ζ;n+ 1
2

) = Am

[
Am mv(i;ζ;n− 1

2
)

+
∆t

ρ̄i

[∑
p,s

d∑
j=1

Qp,s
[ ∂p,s
∂x+

i

(
λ̄ iσ

p,s
(jj;ζ;n)

)
+ 2

∂p,s

∂x
h(i,j)
j

(µ̄ij jσ
p,s
(ij;ζ;n))

+ Ȳdis τ̄
p,s
i,dis

(
∂p,s
∂x+

i

(
χ̄ iσ

p,s
(jj;ζ;n)

)
+ 2

∂p,s

∂x
h(i,j)
j

(η̄ij jσ
p,s
(ij;ζ;n))

)]]]
(3.59)

2. Add the absorption term to the particle velocity field:

mvp,s
(i;ζ;n+ 1

2
)

=m v(i;ζ;n+ 1
2

)

− Am
1

ρ̄i

d∑
j=1

Ȳabs τ̄
p,s
i,abs

(
∂p,s
∂x+

i

(
χ̄ iσ

p,s
(jj;ζ;n)

)
+ 2

∂p,s

∂x
h(i,j)
j

(η̄ij jσ
p,s
(ij;ζ;n))

)
(3.60)

Note that we are not using the summation convention in these formulas.

3. Update the stress tensor field:

mσ
p,s
(ij;ζ;n+1) = Am

[
Am mσ

p,s
(ij;ζ;n) +

∆t

2

( ∂p,s

∂x
−h(i,j)
j

jv
p,s

(i;ζ;n+ 1
2

)
+

∂p,s

∂x
−h(i,j)
i

iv
p,s

(j;ζ;n+ 1
2

)

)]
(3.61)

4. Add source:

mσ
p
(ij;ζ;n+1) ← mσ

p
(ij;ζ;n+1) + ∆t ms(ij;ζ;n+1/2) (3.62)

5. Compute the pressure field at final iterate and apply smoothing :

p(ζ;n=Nt−1) = −S

(
1

d

d∑
l,m=1

mσ
p
(ll;ζ;n=Nt−1)

)
. (3.63)

3.5 Adjoint for discretised viscoelastic forward model

In this section, we will calculate the adjoint of the viscoelastic forward model Λ defined

by (3.9), (3.12) and initial conditions in (3.15) based on the discretise-then-adjoint

method. To do this, we consider the discretised equations (3.49) and (3.51) in a

matrix form. Accordingly, let the particle velocity vector v̄n−1/2 ∈ RNd2 at each time

step be made up of the components mv(i;ζ;n−1/2) ∈ RN (i,m ∈ {1, ..., d}). Let us also
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define the stress tensor as vector σ̄n ∈ R12N(d = 2) or σ̄n ∈ R30N(d = 3) composed of

the components mσ
p,s
(ij;ζ,n) ∈ RN (i, j,m ∈ {1, ..., d}). Note that for the latter, we used

the symmetry of σij, together with the fact that mσij = 0 if m /∈ {i, j} [6] to reduce

the number of degrees of freedom.

We also define Xn ∈ R39N (3D case) as a stack of the particle velocity and stress

fields at time step n in the form Xn =
[ (
v̄n−1/2

)T
(σ̄n)T

]T
. Let also S ∈ R39NNt×N

give a map from the discretised initial pressure P0 ∈ RN to an additive source (cf.

(3.48)), which we will write as

S = SP0 ∈ R39NNt . (3.64)

We will also write Sn+1/2 = SnP0 for the source at time step n. In particular Sn = 0

except when n = −1 or 0. The time sequence of fields at steps (n ∈ {−1, ..., Nt − 2})

is then given by

Xn+1 = TXn + Sn+1/2, (3.65)

where T ∈ R39N×39N implements (3.49) and (3.51), and X−1 = 0 (cf. section 3.4.1).

Here for brevity the operators Sn are given using (3.48) multiplied by ∆t, and thus

multiplication by ∆t is neglected in the second term of (3.65). We will look in more

detail at the matrix T later in section 3.5.1. Finally, we introduce a measurement

matrix M ∈ RNs×39N that at each time step maps the field Xn to the measured data

at the sensors (i.e. implements formulas (3.54) and (3.55)). Note that M for the

discretised formulae is defined not the same as for the continuous formulae. We first

consider the map from the source S to the measurements.

Definition 3.2. The map H : R39NNt → RNsNt is defined by

P̂ = HS, P̂n =MXn (n ∈ {0, ..., Nt − 1}), P̂ =
[
P̂n+1

]Nt−2

n=−1
, (3.66)

where Xn is updated by (3.65) with initial condition X−1 = 0, and P̂ ∈ RNsNt is the

time series stack of measured data at iterates n ∈ {0, ..., Nt − 1}.

In the next lemma, we show how to compute the adjoint of H. Note that in fact this

lemma applies more generally for the adjoint of any discretised problem taking the

form described here.
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Lemma 3.2. The adjoint H∗ of H defined in definition 3.2 is given by

[
X∗n
]Nt−2

n=−1
= H∗P̂ ∈ R39NNt , X∗Nt−1 = 0, X∗n−1 = T ∗X∗n +M∗P̂n (n ∈ {0, ..., Nt − 1}).

(3.67)

Proof. Let us assume that Xn satisfies (3.65) with initial condition X−1 = 0, and X∗n

satisfies the last two equations in (3.67). Then using the conditions X−1 = 0 and

X∗Nt−1 = 0 we have

Nt−2∑
n=−1

(Xn+1 −Xn) ·X∗n =
Nt−1∑
n=0

Xn · (X∗n−1 −X∗n).

Then applying (3.65) on the left and (3.67) on the right we have

Nt−2∑
n=−1

(TXn −Xn + Sn+1/2) ·X∗n =
Nt−1∑
n=0

Xn · (T ∗X∗n −X∗n +M∗P̂n).

Rearranging this slightly gives

Nt−2∑
n=−1

(TXn −Xn) ·X∗n +
Nt−2∑
n=−1

Sn+1/2 ·X∗n =
Nt−1∑
n=0

(TXn −Xn) ·X∗n +
Nt−1∑
n=0

(MXn) · P̂n.

Applying again the conditions X−1 = 0 and X∗Nt−1 = 0 we see that

Nt−2∑
n=−1

Sn+1/2 ·X∗n =
Nt−1∑
n=0

(MXn) · P̂n

which is equivalent to 〈S,H∗P̂ 〉RNNt = 〈HS, P̂ 〉RNsNt , and so completes the proof.

The forward map actually defined in section 3.4.1 is

H S,

and so the adjoint is

S∗ H∗.

If we incorporate a time reversal, which amounts to changing X∗n 7→ X∗Nt−2−n in

Lemma 3.2, as well as including S∗, we obtain the following corollary which gives the

full method of calculating the adjoint in our case incorporating time reversal. The

sum in (3.68) is actually just two terms which can also be used to explain (3.56) if we

commute the summing operation with the computation of X∗.
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Corollary 3.1. S∗H∗ can be computed as

S∗H∗P̂ =
Nt−2∑
n=−1

S∗nX∗Nt−2−n (3.68)

where X∗n is determined by

X∗−1 = 0, X∗n+1 = T ∗X∗n +M∗P̂Nt−2−n (n ∈ {−1, ... , Nt − 2}). (3.69)

3.5.1 The Matrices T and T ∗

In this section we write the matrices T and T ∗ explicitly using the forward model pre-

sented in section 3.4.1 to show how multiplication by each of them may be computed.

Considering corollary 3.1, we define the adjoint measured data for the discretised ad-

joint as P̄ adj
n+1/2 = ∆tP̂ adj

n+1/2. To start we can write (3.49) and (3.51) in the condensed

forms

v̄n+ 1
2

= Av
[
Av v̄n− 1

2
+ Φσ̄n

]
, (3.70)

and

σ̄n+1 = Aσ
[
Aσσ̄n + Ψdisv̄n+ 1

2
−Ψabsσ̄n

]
+ θSn+1/2 (3.71)

where θ is a sparse matrix that maps Sn+1/2 to the space of vector σ̄n. Also Av, Aσ,

Φ, Ψdis, and Ψabs are matrices that will be described in more detail below although

for now we note that Av and Aσ are both diagonal. Based on this we see that T can

be written as the following product of matrices in block form

T =

 Iv 0

AσΨdis Aσ(Aσ −Ψabs)

A2
v AvΦ

0 Iσ

 (3.72)

where Iv and Iσ are the identity matrices. From (3.72) we have

T ∗ =

 A2
v 0

Φ∗Av Iσ

Iv Ψ∗disAσ

0 (Aσ −Ψ∗abs)Aσ

 . (3.73)

Using Corollary 3.1, the above equation gives the updates for the adjoint problem as

v̄n+1/2 = A2
v

(
v̄n−1/2 + Ψ∗disAσσ̄n

)
σ̄n+1 = A2

σσ̄n + Φ∗(Av)
−1v̄n+1/2 −Ψ∗absAσσ̄n + θ′

∗M∗P̄ adj
n+1/2,

(3.74)
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where θ′ is a sparse matrix mapping the space of vector σ̄n to the space of vector Xn.

Defining σ̃ = Aσσ̄ and ṽ = Avv̄ gives

ṽn+1/2 = Av
(
Avṽn−1/2 + Ψ∗disσ̃n

)
σ̃n+1 = Aσ

(
Aσσ̃n + Φ∗ṽn+1/2 −Ψ∗absσ̃n

)
+ θ′

∗M∗P̄ adj
n+1/2.

(3.75)

Now let us consider the matrices Av3, Aσ, Φ, Ψdis, and Ψabs. First we note that Av

and Aσ can be found from (3.37). Though the others can be read off from (3.49) and

(3.51), we will write them down explicitly here in order to show how we can explicitly

calculate multiplication by their adjoints as required in (3.73).

Toward this goal, let us define the k-space discretised gradient operator

∇±(m,i)
p,s

=
∂p,s

∂x
±h(m,i)
i

, (3.76)

which is defined by (3.32). Note that the superscript p, s accounts for Cp,s
0 used in the

k-space method (see (3.32)). Here we are considering ∇±(m,i)
p,s

to be an N ×N matrix,

and based on (3.32) and the unitarity of the discrete Fourier transform we see that(
∇±(m,i)

p,s
)∗

= −∇∓(m,i)
p,s
. (3.77)

Using a pseudo-spectral method without k-space correction, the gradient operator is

the same for compressional and shear parts of the fields, and thus this superscript

would not be required in that case. We will also need the symmetrisation operator S

acting in the ij indices defined by

S[a]ij =
aij + aji

2
. (3.78)

We apply S to objects having more indices, but specify that it always acts on the pair

ij.

In (3.70), the action of matrix Φ ∈ R9N×30N on σ̄ can be written as

m(Φσ̄)i =
∑
p,s

m(Φ′σ̄)
p,s
i , (3.79)

where from (3.49) and the second line in (3.53),

m(Φ′σ̄)
p,s
i =

∆t

ρ̄i

(
∇+

(i,m)

p,s
) d∑
m′=1

m′σ̄
p,s
im . (3.80)
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Here and in what follows we do not include the spatial index ζ explicitly, but un-

derstand that for every value of the other indices (i and m here) we have a vector

of dimension N , and that the discretised gradient and multiplication by 1/ρ̄i are im-

plemented as operators acting on this spatial index. Thus, from (3.75) and using

(3.77),

m(Φ
∗
ṽ)
p,s

ij = −∆t S
[(
∇−(i,j)

p,s
) 1

ρ̄i
j ṽi

]
. (3.81)

The symmetrisation S must be added since this should map into the space of symmetric

tensors.

Next, from (3.51), together with the second line in (3.49), the operator Ψdis ∈

R30N×9N acts on v̄ by

m(Ψdisv̄)p,sij = ∆t

[
δij

[
λ̄
(
∇−(m,m)

p,s
)

+ χ̄
(
∇−(m,m)

p,s
)
τ̄ p,sm,disȲdis

]
Qp,s

d∑
m′=1

m′ v̄m

+ 2 S

[[
µ̄ij δmj

(
∇−(i,j)

p,s
)

+ η̄ij δmj

(
∇−(i,j)

p,s
)
τ̄ p,si,dis Ȳdis

]
Qp,s

d∑
m′=1

m′ v̄i

]] (3.82)

From this we can find the formula for the action of the adjoint in (3.75) as

m(Ψ∗disσ̃)i = −∆t
∑
p,s

d∑
j=1

Qp,s

[[(
∇+

(i,i)

p,s
)
λ̄+ Ȳdisτ̄

p,s
i,dis

(
∇+

(i,i)

p,s
)
χ̄

]
iσ̃
p,s
jj

+ 2

[(
∇+

(i,j)

p,s
)
µ̄ij + Ȳdisτ̄

p,s
i,dis

(
∇+

(i,j)

p,s
)
η̄ij

]
jσ̃

p,s
ij

]
.

(3.83)

Additionally, from (3.51), (3.52) and (3.80), in (3.71) the operator Ψabs ∈ R30N×30N

acts on σ̄ by

m(Ψabsσ̄)p,sij = m

(
Ψ′abs

( 1

∆t

) d∑
m′=1

Am′m′(Φ
′σ̄)

)p,s

ij

, (3.84)

which is actually the action of Ψ′abs on ∂tv̄ using (3.51) in the form

m(Ψ′abs∂tv̄)
p,s
ij = ∆t

[
δijχ̄

(
∇−(m,m)

p,s
)
τ̄ p,sm,absȲabs∂t v̄

p,s
m

+ 2 S η̄ij δmj
(
∇−(i,j)

p,s
)
τ̄ p,si,abs Ȳabs∂t v̄

p,s
i

] (3.85)

Using (3.75), the action of the adjoint is then given by

m(Ψ∗absσ̃)p,sij =m (
1

∆t
Φ′
∗
AmΨ′

∗

absσ̃)p,sij , (3.86)
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where

m(Ψ′
∗

absσ̃)
p,s

i = −∆t
d∑
j=1

Ȳabsτ̄
p,s
i,abs

[(
∇+

(i,i)

p,s
)
χ̄ iσ̃

p,s
jj + 2

(
∇+

(i,j)

p,s
)
η̄ij jσ̃

p,s
ij

]
. (3.87)

Finally, plugging (3.86) into the second line in (3.75), together with using (3.79), gives

ṽn+1/2 = Av
(
Avṽn−1/2 + Ψ∗disσ̃n

)
ṽn+1/2 = 1p,s ⊗ ṽn+1/2 −

1

∆t
Av
(
Ψ′
∗

absσ̃n
)p,s

σ̃n+1 = Aσ
(
Aσσ̃n + Φ′

∗
ṽn+1/2

)
+ θ′

∗M∗P̄ adj
n+1/2,

(3.88)

where, 1p,s⊗ represents the adjoint of
∑

p,s included in Φ, and thus as opposed to

ṽn+1/2 ∈ RNd2 , ṽn+1/2 ∈ R2Nd2 is composed of the compressional and shear compo-

nents. Equation (3.88) gives the same formulae as in section 3.4.2. This indicates that

using a k-space pseudo-spectral method the numerical computation of the continuous

forward operator Λ and adjoint Λ∗ matches the discretised forward operator H̄ = HS

and the corresponding algebraic adjoint H̄∗ = S∗H∗, respectively.

3.6 First-order Optimisation Methods for PAT

We incorporate the forward and adjoint pair in an inverse solver based on the Iterative

Shrinkage Thresholding Algorithm (ISTA), which is popular in PAT, e.g. [2, 17]. A

fast variant of this algorithm has also been used in PAT [1, 16, 17]. Let the discretised

variant of the sought after initial pressure (P0) be denoted by P ∈ RN . The inverse

problem of inferring P0 from P̂ can be fit into a general class of non-smooth constrained

convex minimisation problems of the form

argmin
P
{F (P ) := f(P ) + g(P )} , (3.89)

where f(P ) = 1
2

∥∥∥H̄P − P̂∥∥∥2

is a continuously differentiable function with Lipschitz

continuous gradient having smallest Lipschitz constant Lf = Simax(H̄∗H̄) with Simax(.)

the largest singular value. The gradient of f is computed by

∇f(P ) = H̄∗
(
H̄P − P̂

)
. (3.90)

Using a total variation (TV) regularised variant of ISTA, we take g(P ) = λrJ (P ) +

δC (P ), where J (P ) represents a TV penalty functional, λr denotes the regularisation
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parameter, and δC is an indicator function for the set of constraints C = {P > 0}

[7, 3].

Applying the so-called forward-backward splitting method to a fixed point iterative

scheme arising from the optimality conditions of problem (3.89) gives two steps at each

iteration k of the optimisation algorithm. The first step uses a steepest descent search

direction −∇f(P k−1) and step size Γk in the form

Y k = P k−1 − Γk ∇f(P k−1), (3.91)

and is called the forward gradient descent step [7, 3]. Applying ISTA, the iterates

P k converge to a minimiser P ∗ of problem (3.89) if Γk ∈ (0, 2/Lf ) [3]. Here, Lf , the

largest singular value of H̄∗H̄, is computed iteratively by the power method following

[2, 1, 17]. Since Lf is independent of the unknown P0, it can be stored and used for

all experiments done in a fixed setting [1].

The second step is a proximal map in the form

proxΓk(g)(Y k) := argmin
P

{
g(P ) +

1

2Γk
∥∥P − Y k

∥∥2
}
, (3.92)

and is called backward gradient step [7]. Following [16, 2], here the proximal map

is computed based on Chambolle’s dual approach (See [3]). In our study, we will

terminate ISTA if the following criterion is satisfied:

k > 1 ∩ 1− F k

F k−1
< ε. (3.93)

Here, ε is a stopping tolerance, and is chosen close to zero.

3.7 Numerical results

The numerical implementation of a system of coupled first-order equations that de-

scribe the propagation of PA waves in linear isotropic elastic and lossy media based

on an absorption following the classical Kelvin-Voigt model (3.4) is available on the

k-Wave website [35, 38]. This code is based on a pseudo-spectral time-domain method

[6]. For a numerical implementation of the forward problem, we modified this code so

that it includes the absorption and physical dispersion following the frequency power

law, using the splitting technique, as discussed in section 3.4.1 [37]. We also developed
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a code for implementation of our continuous adjoint, as discussed in section 3.4.2. We

then showed that this adjoint matches the algebraic adjoint of the associated discre-

tised forward operator. To validate the adjoint model, (3.21) was first used to check if

the inner-product test is satisfied for any initial pressure P0 and data P̂ . We then per-

formed reconstructions from simulated data in both 2D and 3D settings as described

below.

3.7.1 2D phantom

Computational grid

we used a computational grid with a size of 14 × 14 cm2 to simulate the size of the

superior surface of the skull.

Data generation: To simulate the propagation of wavefields, the computational grid

was made up of 472× 472 grid points equidistantly spaced with a separation distance

of 2.9661 × 10−2 cm along both Cartesian coordinates. This computational grid was

enclosed by a PML having a thickness of 20 grid points and a maximum attenuation

coefficient of 2 nepers per grid point so that a good trade-off between mitigating

spurious wave wrapping at the boundaries and reflection of waves at the edge of the

PML was made [34]. The propagated pressure field was measured in time by 200

detectors that were evenly placed aligned by the top half of periphery of a circle

having a radius of r = 6.8cm so that π radians were covered by the detectors. The

skull was simulated with semi-circular interfaces with distances of 0.85r and 0.95r

to the center of the semi-circle so that it has an even thickness of 6.8mm. This has

provided an even radial distance of 3.4mm between the outer edge of the skull and the

detectors.

Image reconstruction: To avoid an inverse crime for discretisation [18], the image

reconstruction was done on a grid made up of 328× 328 grid points which are placed

evenly with a separation distance of 4.2683×10−2 cm along both Cartesian coordinates.

The thickness of the PML was reduced to 16 grid points.
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Physical parameters

The maps corresponding to the medium’s mass density ρ, compressional wave propaga-

tion speed cp and shear wave propagation speed cs were shown in figures 3.1(a), 3.1(b)

and 3.1(c), respectively. The colour scales are shown to the right of each map, where

the blue colour represents the physical parameters of soft tissue with cp = 1500 ms−1,

cs = 0 ms−1 and ρ = 1000 kgm−3, and the red colour represents the skull with

cp = 3000 ms−1, cs = 1500 ms−1 and ρ = 1850 kgm−3. These parameters were cho-

sen following [25]. The absorption coefficients were set to α0,p = 10 dBMHz−ycm−1

and α0,s = 20 dBMHz−ycm−1 in the skull, and α0,p = 0.75 dBMHz−ycm−1 and

α0,s = 0.5 dBMHz−ycm−1 in the soft tissue. Note that we assumed absorption co-

efficients associated with the skull greater than the experimental values obtained in

[41] (cf. Table 1 in [37]). Following [37], the exponent factor was assumed constant

across the entire medium, and was set to y = 1.4.

Validation of adjoint

The inner-product test is a useful checking method, which estimates the accuracy

of implementation of the adjoint operator. Using the setting described above, we

numerically measured the accuracy of the computed adjoint model using the inner-

product formula in (3.21). To do this, we used a randomly selected vector for P̂ ,

together with an initial pressure distribution P0 in the form of a circular disk with a

radius of 0.8r, where the values at each point of the disk are chosen randomly. The

relative difference between the left-hand and right-hand sides of (3.21) was averaged

between 10 attempts. This gives values 7.43× 10−5 and 8.71× 10−6 for the grids used

for image reconstruction and data generation, respectively. Our observations showed

us that with an increase in density of the grid, the inner-product test is satisfied with

a higher order of accuracy.

Simulation setting

To evaluate the performance of the forward and adjoint pair for image reconstruction,

we considered two scenarios as follows.

Scenario1: In general, the inverse problem in PAT is based on the assumption
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that the physical parameters of the medium are known. In our first experiment, we

used the maps in figures 3.1(a), 3.1(b) and 3.1(c) as physical parameters for both data

generation and image reconstruction. This implies that we have an exact knowledge of

the physical parameters. Since this assumption does not hold in practical cases, this is

considered as an inverse crime [18]. Using these maps, the grid used for data generation

supports a maximal frequency up to 2.5286 MHz for propagation of compressional

waves through the entire medium and shear waves within the skull.

Scenario 2: In the second experiment, we avoided an inverse crime in estimating

medium’s parameters by using different maps for data generation and image recon-

struction. Correspondingly, for generating data we contaminated the maps in figures

3.1(a), 3.1(b) and 3.1(c) with a 30dB Additive White Gaussian Noise (AWGN). The

contaminated maps are displayed in figures 3.1(d), 3.1(e) and 3.1(f). For image recon-

struction, we assumed the contaminated maps are not readily available, and thus we

used the clean maps. Using the noise contaminated maps for data generation, the as-

sociated grid supports maximal frequency up to 2.2047 MHz for propagation of shear

waves within the skull and 2.1889 MHz for compressional waves through the entire

medium. In these figures, the location of ultrasound detectors has been shown by the

green semi-circle.

The grid used for image reconstruction supports a maximal frequency of 1.7571 MHz

for compressional waves through the entire medium and shear waves within the skull.

We created the initial pressure map with a maximal amplitude of 2, as shown in figure

3.2(a). For both scenarios, a CFL of 0.3 was sufficient to guarantee the stability of

the forward and adjoint models. Accordingly, the computed pressure wavefield was

recorded in 4451 time steps, and interpolated to the detectors using linear interpo-

lation [35]. The generated data (for both scenarios) were then contaminated with a

30dB AWGN.

Image reconstruction

We first reconstructed an image corresponding to each scenario using the time reversal

method. This was performed using k-Wave toolbox [35, 38]. According to [39], a

filtering of the absorption and dispersion terms in the spatial frequency domain may

be required to ensure the stability of TR. Here, to make a fair comparison between
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Figure 3.1: 2D phantom. Exact physical maps: (a) ρ (b) cp (b) cs, and noise-
contaminated physical maps: (d) ρ (e) cp (f) cs.

TR and ISTA, we applied TR optimistically on a non-absorbing medium with α0,p,s =

0. The images reconstructed by TR for scenarios 1 and 2 are displayed in figures

3.2(b) and 3.2(d), respectively. The computed forward and adjoint operators were

then incorporated into the inverse solver discussed in section 3.6. The regularisation

parameter was empirically set to λr = 1×10−2. A step size of Γk = 1.8/Lf was chosen

and used for all iterations k. Here, Lf was computed by the power iteration method

[2, 1, 17]. The iterates of power iteration algorithm converged to Lf after around 15

iterations. Using ISTA, the iterates are initialised by zero, and the algorithm was

terminated using the stopping tolerance ε = 1× 10−4. Figures 3.2(c) and 3.2(e) show

an image of the final iterate computed by ISTA for scenarios 1 and 2, respectively.

The computed sequence of iterates was measured by two parameters:

(1) Relative Error (RE):

RE(P k) =

∥∥∥P k − P̃phantom

∥∥∥
2∥∥∥P̃phantom

∥∥∥
2

× 100, (3.94)

where P k denotes the update at iteration k, and P̃phantom denotes the initial pressure

distribution in the phantom interpolated to the grid used for image reconstruction.

(2) Objective function (F (P k)): (cf. section 3.6, (3.89)).
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Figure 3.2: 2D phantom. (a) initial pressure map, and reconstructed images using
exact physical parameters (inverse crime): (b) TR (α0,p,s = 0) (c) ISTA, and erroneous
physical parameters: (d) TR (α0,p,s = 0) (e) ISTA.
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Observations

Figures 3.3(a) and 3.3(b) show RE and objective function values of iterates computed

by ISTA versus the iteration number k, respectively. Figure 3.3(c) shows F from a large

view around the stopping point. In these figures, the blue and red plots, respectively

correspond to scenarios 1 and 2. Our numerical observations for the two mentioned

scenarios are as follows.

Scenario 1: Both RE and F monotonically decreased, and the stopping criterion was

satisfied at iteration 55. The RE and F reached values of 42.19% and 87.24 at the

final iteration, respectively. The final iteration pertains to the image shown in figure

3.2(c). From figures 3.3(b) and 3.3(c), ISTA has reduced F almost 95%.

Scenario 2: In scenario 2 when we avoided the inverse crime in estimating physical

parameters, a monotonic reduction in both RE and F was observed, and the stopping

criterion was satisfied at iteration 51. As shown in figures 3.3(a) and 3.3(b), RE and

F reached values of 44.29% and 93.52 at the final iteration, which corresponds to the

image shown in figure 3.2(e).

These figures indicate that in presence of an error in estimating physical parame-

ters, the inverse solver was sufficiently tolerant to reconstruct almost the same image

as using the exact physical maps.

3.7.2 3D phantom

Computational grid

This grid was created as a rectangular cuboid with a size of 14× 14× 3.5 cm3 so that

it simulates the size of a superior volume of the skull.

Data generation: The grid was made up of 160 × 160 × 40 grid points with a spatial

separation of 8.75× 10−2 cm along all Cartesian coordinates. Each surface of this grid

was enclosed by a PML with 20 grid points, and an attenuation coefficient with a max-

imum value of 2 nepers per grid point was tapered within the PML [34]. The pressure

field was measured by 62 × 62 point-wise detectors, which were placed equidistantly

on the top surface of the grid. The skull was simulated so that its top and bottom

surfaces are aligned by the third and tenth horizontal planes of the grid points from

the top surface of the cube. This has provided a thickness of 6.1mm for the skull, as
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Figure 3.3: 2D phantom. (a) Relative Error (RE) (b) objective function (F) (c) F
around the stopping point.

well as a distance of 1.75mm between the top surface of the skull and the detection

plane.

Image reconstruction: Here, an inverse crime for discretisation was avoided by using

a grid with different size, made up of 128× 128× 32 grid points which are positioned

with a spatial separation of 1.1mm along all Cartesian coordinates. Proportional to

a reduction in size of the computational grid, we reduced the thickness of the PML

to 16 grid points. Because of using a coarser computational grid, the thickness of the

skull had to be reduced to 5.5mm with the top and bottom edges aligning the third

and eighth horizontal planes of the grid points, respectively from the top surface of

the grid.

Physical parameters

Figures 3.4(a), 3.4(b) and 3.4(c), respectively show the maps associated with the mass

density, and the propagation speed of compressional and shear waves. As shown in

these figures, the physical parameters of the medium are simulated the same as the

2D phantom.
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Validation of adjoint

We used an inner-product test based on (3.21) in order to numerically evaluate the

accuracy of the computed adjoint model. To do this, we used a randomly selected vec-

tor for P̂ , together with a randomly chosen initial pressure distribution P0 supported

in a cuboid region below the skull. This is the region below the 10th (resp. 12th)

horizontal plane from the top surface of the grid for image reconstruction (resp. data

generation). The mean relative difference between the left-hand and right-hand sides

of (3.21) among 10 attempts was 2.21 × 10−4 and 3.47 × 10−5 for the grids used for

image reconstruction and data generation, respectively.

Simulation setting

For image reconstruction, two scenarios were considered:

Scenario 1: The maps that are displayed in figures 3.4(a), 3.4(b) and 3.4(c) were

used for both data generation and image reconstruction. As discussed above, this is

an inverse crime in estimating physical parameters, although because of the shift of

soft tissue-skull interfaces between the fine and coarse grids, the inverse crime has

been avoided to some degree. Using these maps, the grid used for data generation

supports a maximal frequency of 8.7514 × 105Hz for compressional waves across the

entire medium and for shear waves propagated through the skull.

Scenario 2: In addition to the shifting error in physical parameters because of the

discretisation, these maps have been contaminated with a 30dB AWGN noise for data

generation, whereas the reconstruction is done using the clean maps. This induces an

error in estimating physical parameters, as they are not available exactly for image

reconstruction. Using the noise contaminated maps, the grid used for data generation

supports maximal frequencies up to 7.2018× 105Hz and 7.4143× 105Hz for compres-

sional waves across the entire grid and shear waves within the skull, respectively.

The grid used for image reconstruction supports a maximal frequency of 6.8571×

105Hz for compressional waves through the entire medium and shear waves propagated

through the skull. For simulating the initial pressure map, the phantom used for the

2D scenario was placed obliquely inside the grid in a way in which the initial pressure

distribution associated with the phantom is compactly supported in the soft tissue.

Figure 3.5(a) shows the simulated phantom from a top view. Here, all 3D images
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Figure 3.4: 3D phantom. Exact physical maps: (a) ρ (b) cp (b) cs.

including phantom are displayed from a top view using maximum intensity projection

technique. Using a CFL of 0.3, the simulated pressure wavefield was recorded in 1532

time steps, and interpolated to the detectors using trilinear interpolation [25]. Similar

to the 2D phantom, the vector of generated data P̂ was contaminated with a 30dB

AWGN for both scenarios.

Image reconstruction

We first reconstructed an image for each scenario using TR, which is available on

the k-Wave website [35, 38]. The images reconstructed by TR for scenarios 1 and 2

are shown in figures 3.5(b) and 3.5(d), respectively. Using ISTA, the reconstruction

parameters were chosen the same as for the 2D case. We used the power iteration

method for computing Lf . Figures 3.5(c) and 3.5(e) show an image of the final iterate
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Figure 3.5: 3D phantom. (a) initial pressure map, and reconstructed images using
exact physical parameters (inverse crime): (b) TR (α0,p,s = 0) (c) ISTA, and erroneous
physical parameters: (d) TR (α0,p,s = 0) (e) ISTA.

computed by ISTA for scenarios 1 and 2, respectively. A comparison between these

two images indicates that using erroneous physical maps has led to a slight blurriness

in the reconstructed image. Note that here the inverse crime has been avoided by

exaggeration compared to real cases.

Observations

Figure 3.6(a) shows the RE of the computed iterates versus iteration number. Addi-

tionally, figure 3.6(b) shows the objective function values versus the iteration number

around the terminating point. These plots have been displayed using the same colours

as for the 2D phantom. From these, our observations for the two discussed scenarios

are as follows.
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Figure 3.6: 3D phantom. (a) Relative Error (RE) (b) a large view of objective function
F around the stopping point.

Scenario 1: Both RE and F monotonically decreased until the iteration 54 at which

the stopping criterion was satisfied. The final iterate, which is shown in figure 3.5(c),

has an RE of 41.13% and an F of 1.19× 103.

Scenario 2: Using the noise contaminated physical maps for data generation, a mono-

tonic reduction for RE and F is observed again, and the terminating criterion was

satisfied at iteration 56. The final reconstructed image, which is shown in figure 3.5(e),

has an RE of 48.44% and an F of 1.20× 103.

3.8 Discussion and conclusion

In this work, we derived the adjoint of the continuous map defined in (3.14) and (3.15),

which describes the propagation of PA waves in linear isotropic viscoelastic media with

the absorption and physical dispersion following a frequency power law. Our derived

continuous adjoint is a generalised version of the discretised adjoint in [25] in the sense

that it can be adapted to any discretisation scheme, and has been extended to include

an attenuation evident in tissue media [37]. We analytically showed that a numerical

computation of our continuous adjoint using a k-space pseudo-spectral method matches

the algebraic adjoint of an associated discretised map defined by (3.64) and (3.66).

From a numerical point of view, it was shown that this forward and adjoint pair

satisfies the inner-product formula in (3.21). This pair was then incorporated in a

positivity constrained optimisation algorithm based on ISTA that is regularised by

the TV denoising approach of Chambolle [3]. We preferred to test the derived forward

and adjoint operators on a classical inverse solver (cf. [2, 17] for the application of

ISTA in PAT), although this poses some limitations such as a low speed of convergence.
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The convergence can be improved by using a fast version of ISTA (FISTA) [16, 1, 17].

In addition, an iterative enhancement of solutions based on a Bregman iteration [26]

may be useful when the collected data is compressively sampled. A Bregman iteration

algorithm using FISTA has been successfully applied for this case [1].

In both 2D and 3D cases, the iterates monotonically converged to a minimiser of

an objective function, and the final reconstructed image was close to the ground truth

image. In the presence of an error in estimating physical parameters, the iterates

monotonically converge again, but the iterate at the stopping point was slightly less

accurate than using the exact physical parameters. This loss of accuracy cannot be

detected by eye in the 2D scenario, as shown in figure 3.2(e). However, for the 3D

scenario, figure 3.5(e) shows that an error in estimating physical parameters has led to

a slight blurriness in the reconstructed image, compared to using exact physical maps.

Note that in the 3D scenario for the grid used for data generation, in addition to a 30

dB noise added to the physical maps, the skull’s thickness is 0.6mm larger than the

grid for image reconstruction.

In addition, for the 2D scenario, as shown in figures 3.2(c) and 3.2(e), the recon-

structed images have some blurriness in regions close to the skull. We believe that

this can be attributed to the full internal reflection of wavefronts nearly tangent to

the skull, and agrees with theoretical predictions of stability for inversion found in [31]

using methods of microlocal analysis. In essence, the blurred region close to the skull

is not fully resolved because the wavefronts emanating from that region do not reach

the detectors (Note that the geometry of skull in our study is not realistic). To fully

understand this a more delicate study on the relation between the theoretical analysis

of [31] and PAT of the brain using optimisation algorithms may be needed.

The simplified geometries of the skull we used in our simulations look sufficient to

provide an insight on the performance of the derived adjoint, but the geometry and

composition of the skull in real cases are much more complicated than our simulations

[15]. In addition, in practical cases, to extract all information available from the mea-

sured data, the maximal frequency supported by the computational grid must match

the maximal frequency that is detectable by detectors [39]. This dramatically increases

the computational demands regarding storage space and speed, but it can be handled

using GPU accelerated computing [19], or Field-programmable gate array (FPGA)
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[40]. The 3D detection setting in our study simulated a planar Fabry-Pérot (FP) pho-

toacoustic scanner, which requires several minutes to collect time series of data from

PA wavefields [1]. Further studies can be done to apply our adjoint assisted optimi-

sation algorithm on ultra-fast PAT acquisition systems that utilise spatio-temporal

sub-sampled data [1].

Using our derived adjoint, an extension of the PAT problem of brain to direct

quantitative PAT (QPAT), a direct estimation of the optical parameters inside the

skull from the acoustic data collected outside the skull, would be a very interesting

topic. The arising opto-elastic inverse problem is more challenging than the opto-

acoustic problem [9] because of the high optical absorption and scattering of the skull

and low degrees of freedom for optical illumination. This limits the applicability of

multi-source QPAT, which is necessary for uniqueness of the problem when we use a

single-frequency optical excitation.
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3.9 Appendix

In this appendix, we will show that the adjoint operator can be put into the form

of a system of coupled partial differential equations, in the same way as the forward

operator, and the update of particle velocity field is actually a sum of the adjoint of

absorption and dispersion terms enforced to the stress tensor field.

Continuous adjoint: This is derived by plugging the first formula in (3.19) into
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(3.18)

ρ
∂vi

p,s∗

∂t
=
∑
p,s

qp,s

(
∂

∂xi

(
λσp,sll

∗
)

+ 2
∂

∂xj

(
µσp,sij

∗
))

+

(∑
p,s

qp,s sin(πy/2)L(y−1)∗
cp,s − cos(πy/2)L(y−2)∗

cp,s

∂

∂t

)( ∂

∂xi

(
χσp,sll

∗
)

+ 2
∂

∂xj

(
ησp,sij

∗
))
(3.95)

Discretised adjoint: In (3.88), plugging the second line into the first line yields

ṽn+1/2 = Av

(
Avṽn−1/2 + Ψ∗disσ̃n −

1

∆t

((
Ψ′
∗

absσ̃n
)p,s − A2

v

(
Ψ′
∗

absσ̃n−1

)p,s))
. (3.96)

The numerical computation of (3.95) is the same as (3.96), except how the PML

acts on the temporal gradient of the stress tensor field. These formulae require an

explicit computation of the temporal gradient of the stress tensor using finite difference

schemes. To avoid this, we used the formulae (3.18) and (3.19) (resp. (3.88)) for the

continuous (resp. discretised) adjoint, which are computed the same, as discussed in

sections 3.4 and 3.5, respectively.

3.A Supplementary Materials

In this chapter, we considered the inverse problem of PAT for a reconstruction of

the initial pressure distribution inside the skull from a set of time series of measured

data that is measured outide the skull. To account for generation and propagation

of shear waves within the skull, the forward operator was defined as a linear system

of viso-elastic equations. We considered an isotropic heterogeneous lossy and elastic

medium with an acoustic attenuation following a frequency power law.

Variational approaches often use an iterative implementation of the forward oper-

ator and its adjoint. We derived an adjoint using an adjoint-then-discretise approach

(continuous adjoint). We used a k-space pseudospectral method for a discretisation of

the forward operator and its adjoint. We showed that a discretisation of the contin-

uous adjoint operator using a k-space pseudo-spectral method matches an algebraic

adjoint of an associated discretised forward operator. Therefore, the numerical re-

sults in chapter 3 can be considered as derived by both adjoint-then-discretise and

discretise-then-adjoint approaches.
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3.A.1 Further details about the measurement operator

Continuous forward operator M

From a physical point of view, the detectors have a limited access to the pressure field.

They have access to the pressure field p(x, t) only within a sequence of short intervals

of times t′n ⊂ (0, T ) (n ∈ {0, ..., Nt − 1}), which corresponds to the temporal response

of detectors, and a small and finite volume of space Γ ∈ Rd, which is a union of small

volumes Γs around the position of detectors. We denote the position of the detector

Ds by xs (s ∈ {1, ..., Ns}). Because of the temporal response of detectors, the detector

measures a temporal average of p(x, t) over the time periods t′n. In this chapter, we

denote the pressure field p(x, t) that is temporally averaged over time periods tn′ by

p(x, tn).

Using this, we will provide further details about the measurement operator M :

L2(Rd)→ RNs , which at each time step n maps the pressure field p(x, tn) ∈ L2(Rd) to

P̂n ∈ RNs , a vector of discretised measurements detected at Ns detectors at time step

n. We define this operator in the form

M : L2
(
Rd
)
→ RNs

P̂s,n = (M[p])s,n =

∫
x∈Γ

b(xs, x) p(x, tn)dx.
(3.97)

Here, the operatorM is a weighted averaging operator, and averages the pressure field

over the set Γ using the weighting coefficients b(xs, x). Also, P̂s,n is a component of

the vector P̂n that is measured by the detector Ds (cf. (3.55)).

The weighting coefficients b(xs, x) are dependent on the method we use for mod-

elling the detectors. As an example, if we simply average the pressure field over the

set Γs, these coefficients are defined as

b(xs, x) =
1

m(Γs)
χΓs(x), (3.98)

where,

χΓs(x) =

1, x ∈ Γs

0, x /∈ Γs.

(3.99)

Also, m(Γs) is defined as

m(Γs) =

∫
Γs

dx. (3.100)
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Continuous adjoint operator M∗

Having defined our continuous measurement operator M, we now derive the adjoint

of this operator. Using (3.97), together with (3.98), our adjoint measurement operator

will be in the form

M∗ : RNs → L2(Rd)

M∗[P̂n] =
Ns∑
s=1

1

m(Γs)
χΓs(x)P̂s,n.

(3.101)

The second line in (3.101) can be expressed as a backprojection of P̂n,s using the

weighting coefficient b̄(xs, x) and a summation of the backprojected values over all

detectors.

Discretised forward operator M

Here, we explain the method we used for a numerical approximation of the measure-

ment operatorM. As explained in step 5 in section 3.4.1, we used a trilinear interpo-

lation method for an approximation ofM. We remind that we have used P(ζ;n) ∈ RN

for representing a discretisation of p(x, t) (cf. section 3.4). Here, we also emphasise

that throughout this thesis, following [2, 1], we assumed the geometry of the detectors

as points. It is also worth mentioning that for a numerical approximation of M, we

used the k-Wave toolbox [38].

We start with a representation of the set Γ for our discretised operator. To do this,

we choose a portion of the grid points that encompass small volumes in a neighborhood

of the position xs of the detectors. Using a trilinear interpolation, which we have used

in this chapter, a triangulation is enforced on the chosen grid points. In a next step,

for each detector, we choose a triangle (tetrahedron) that encompasses the point xs,

and denote it by Ts. We denote the vertices of Ts by xsl (l ∈ {1, .., d + 1}). Here, we

refer to a triangle (tetrahedron) as voxel.

Having defined a discretised representation for the set Γ, we now approximate the

operatorM (cf. equation (3.97)). If we assume that the volume of the set Γs is much

smaller than the volume of the voxel Ts, (M[p])s,n can be defined as an averaging

operator over the set Γs in the form

(M[p])s,n =
1

m(Γs)

∫
Γs

p(x, tn)dx ≈ p(xs, tn). (3.102)
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Here, we also assumed that p(x, tn) is not varying rapidly over each voxel. Using

(3.102), it makes sense to approximate (M[p])s,n by an interpolation from the grid

points to the detector position xs.

For an interpolation, we numerically calculated the Barycentric coordinates of xs

with respect to the vertices xsl , which correspond to the voxel Ts. We denote the

Barycentric coordinate for the vertex l (l = {1, ..., d}) of the voxel Ts by bsl . Using the

above definitions, the pressure measured by the detector Ds (at point xs located inside

the voxel Ts) at time step n is approximated using a linear and convex combination

of the pressure values at the corresponding vertices xsl in the form

P̂s,n =
d+1∑
l=1

bslP(ζsl ;n), (3.103)

where bsl > 0 and
∑d+1

l=1 b
s
l = 1. Using the above steps, we now define our discretised

measurement operator M, which has been defined in step 5 in section 3.4, and satisfies

P̂n = MP(ζ;n) (cf. (3.55) ).

Here, the operator M is a sparse matrix, and each row Ms ∈ R1×N includes d + 1

nonzero values, which are bsl (l ∈ {1, ..., d + 1}), and are located at the columns

corresponding to the indices of xsl in the computational grid.

Discretisation of the continuous measurement operator M∗

Using an adjoint-then-discretise approach for a discretisation of M∗, because the ad-

joint map should map to the dual space L2(Rd)∗, it makes sense to discretise (3.101)

in the same way as the forward measurement operator (3.97), which can also be con-

sidered as an element of L2(Rd)∗. Using this fact, a discretisation of M∗ gives the

same formula as an algebraic adjoint M∗, which is equivalent to using a discretise-

then-adjoint approach. Therefore, in this chapter, we used M∗ as an adjoint for the

measurement operator using both discretise-then-adjoint and adjoint-then-discretise

approaches.

Using a discretisation of our derived measurement operator (M) and its adjoint

(M∗), in the next section, we will give further details about our algebaric adjoint

acoustic operator, and how it gives the same formulae as a discretisation of our con-

tinuous adjoint acoustic operator.
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3.A.2 Further details about our acoustic discretised adjoint

In the sequel, we will give further details about the formulae that have been derived

for the algebraic adjoint (equation (3.88)), and show that this gives the same formulae

as in section 3.4.2, i.e., the numercal computation of the continuous adjoint operator.

We start with the first line in (3.88). Let us define the components of vectors ṽn−1/2

and σ̃n in the form mṽ(i;ζ;n−1/2) ∈ RN and mσ̃(i;ζ;n) ∈ RN , where i,m ∈ {1, ..., d}, ζ and

n have been defined in section (3.4). Note that as opposed to components of vector

v̄n−1/2 and σ̄n (cf. the beginning of section 3.5), we have used the same notation for

these vector and their components.

Considering the discretised k-space gradient operator in (3.76), together with equa-

tion (3.83), the first line of (3.88) yields

mṽ(i;ζ;n+ 1
2

) = Am

[
Am mṽ(i;ζ;n− 1

2
)

−∆t
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i
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)
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∂x
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j

(µ̄ij jσ̃
p,s
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(
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i

(
χ̄ iσ̃

p,s
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)
+ 2
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j

(η̄ij jσ̃
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)]]]
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(3.104)

where we remind that h(i, j) has been defined in (3.47).

In the same way, a restriction of the second line in equation (3.88) to the component

mṽp,s
(i;ζ;n+ 1

2
)

gives

mṽp,s
(i;ζ;n+ 1

2
)
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(3.105)

where we have used (3.87).

For the third line in (3.88), considering (3.81) and the symmterisation operator in

(3.78), a restriction of the third line in (3.88) to mσ̃
p,s
(ij;ζ;n) gives

mσ̃
p,s
(ij;ζ;n+1) = Am

[
Am mσ̃
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2
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1
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iṽ
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2

)

)
+ GTMT P̂Nt−2−n

]
(n ∈ {−1, ..., Nt − 2})

(3.106)
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where the last term has been derived from equation (3.69) in Corollary 3.1, together

with the fact that the operatorMθ′ (cf. the last term of the third line in (3.88)) is an

implementation of equations (3.54) and (3.55).

For the last iteration, using an adjoint of the operator Sn (cf. (3.48)), the right-

hand-side in equation (3.68) in Corollary 3.1 gives

p(ζ;n=Nt−1) = S

(
−δij
d

(
d∑

m=1

mσ̃
p
(ij;ζ,n=Nt−1)

))
= −S

(
1

d

d∑
l,m=1

mσ̃
p
(ll;ζ;n=Nt−1)

)
,

(3.107)

together with a replacement of the last term in the right-hand-side of equation (3.106)

with GTMT p̂adj
n+1/2. (This gives an additive source the same as (3.56) and (3.57) in

section 3.4.2). Note that here, using the linearity of the operator H∗, we have enforced

the factor 1/2 in (3.48) and the summing operator in (3.68) on P̂ , rather than H∗.

Now, we enforce the replacement mv̌p,si = − 1
ρ̄i mṽp,si (m ∈ {1, ..., d}) in equations

(3.104), (3.105) and (3.106). Using this replacement, (3.104) gives the same formula

as (3.59), (3.105) is the same as (3.60), and (3.106) is equivalent to (3.61) and (3.62).

Also, (3.107) is equivalent to (3.63). Therefore, an adjoint of our discretised operator

gives the same formula as a discretisation of our continuous adjoint, as explained in

section 3.4.2.

3.A.3 A connection to chapter 4

The main goal of PAT is a qunatitative reconstruction of a distribution of optical

absorption coefficient. In chapter 2 and 3, we dealt with the pure acoustic portion of

this inverse problem. This is a reconstruction of the initial pressure distribution from

a set of time series of pressure data that is measured on the boundary, and is referred

to here as photo-acoustic tomography (PAT). In chapter 2, we solved this inverse

problem using a system of three-coupled first order wave equations that describe the

propagation of photo-acoustic waves in inhomogeneous and lossy fluid media (cf. 1.7).

In chapter 3, we solved the inverse problem of PAT using a system of coupled photo-

acoustic wave equations that describe the propagation of acoustic waves in linear

isotropic heterogeneous and lossy elastic media. For both systems, we modelled an

absorption and physical dispersion following a frequency-power law using fractional

Laplacian operators.
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For the acoustic forward operator associated with lossy fluid media, we derived a

continuous adjoint in chapter 2. We remind that a continuous adjoint can be considered

as a generalised variant of a discretised (algebraic) adjoint, and is independent of

the numerical scheme used for discretisation of the forward operator. In chapter 3,

for an acoustic forward operator associated with lossy elestic media, we derived the

same formulae for an associated adjoint using adjoint-then-discretise or discretise-then-

adjoint methods.

In the next chapter, we extend the inverse problem of PAT for lossy heterogeneous

and fluid media to a single-stage variant of qunatitative PAT, a direct reconstruction of

optical attenuation coefficients from a set of acoustic data that is measured in time on

the boundary. To do this, the forward problem will be defined using a composite opto-

acoustic operator, which includes an optical operator (Ho) and an acoustic operator

(Ha). The operator Ho will be formed as a discretisation of a Diffusion Approximation

(DA) model (cf. section 1.9.2) using a Galerkin Finite element method. The operator

Ha will be defined and discretised using the same method as chapter 2. In contrast to

the pure acoustic problem (cf. chapter 2), for a single-stage inverse problem of QPAT,

the optical forward operator (Ho) is non-linear and ill-conditioned. Therefore, for

practical studies, any errors in modelling the acoustic forward operator or an associated

adjoint operator may grow during the inversion process. Motivated by these, we will

extend this hybrid inverse problem to realistic acoustic media in order to minimise the

modelling errors, and also we will use an algebraic acoustic adjoint, because this adjoint

satisfies an adjoint test more accurately than a corresponding continuous adjoint. We

emphasise that for the acoustic forward operator used in chapter 2 and 4, both adjoint-

then-discretise [2, 1] and discretise-then-adjoint [16] approaches have been widely used

for the inverse problem of PAT (the acoustic portion of QPAT).
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Chapter 4

Direct quantitative photoacoustic

tomography for realistic acoustic

media

At the time of submission of this thesis, the content of this chapter has been accepted

for publication in the journal of Inverse Problems, Special Issue on Variational Methods

and Effective Algorithms for Imaging and Vision. The authors of the accepted paper

are A. Javaherian and S. Holman.

Abstract

Quantitative photo-acoustic tomography (QPAT) seeks to reconstruct a distribution

of optical attenuation coefficients inside a sample from a set of time series of pressure

data that is measured outside the sample. The associated inverse problems involve

two steps, namely acoustic and optical, which can be solved separately or as a direct

composite problem. We adopt the latter approach for realistic acoustic media that

possess heterogeneous and often not accurately known distributions for sound speed

and ambient density, as well as an attenuation following a frequency power law that

is evident in tissue media. We use a Diffusion Approximation (DA) model for the

optical portion of the problem. We solve the corresponding composite inverse problem

using three total variation (TV) regularised optimisation approaches. Accordingly,

we develop two Krylov-subspace inexact-Newton algorithms that utilise the Jacobian

163
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matrix in a matrix-free manner in order to handle the computational cost. Addition-

ally, we use a gradient-based algorithm that computes a search direction using the

L-BFGS method, and applies a TV regularisation based on the Alternating Direction

Method of Multipliers (ADMM) as a benchmark, because this method is popular for

QPAT and direct QPAT. The results indicate the superiority of the developed inexact

Newton algorithms over gradient-based Quasi-Newton approaches for a comparable

computational complexity.

4.1 Introduction

Quantitative photo-acoustic Tomography (QPAT) is a steadily growing hybrid imaging

paradigm that simultaneously takes advantage of the high spatial resolution provided

by ultrasound imaging and the rich contrast attributed to optical imaging [48]. Typ-

ically, nanosecond-duration pulses of electromagnetic energy, in the visible or near-

infrared ranges, are used to irridiate a sample. Depending on the optical properties of

the sample, a fraction of the optical energy is absorbed, and converted into heat [50].

The generated heat induces a local increase in pressure via thermo-elastic expansion

effects [50]. Because of the elasticity of soft tissues, the locally induced pressures prop-

agate outwards as acoustic waves, and carry information about the optical properties

of the sample to the surface. These acoustic waves are measured in time by ultrasound

sensors located outside the surface of the sample [48]. Given a set of time series of

data at the boundary, the objective in QPAT is to calculate a quantitative image of a

distribution of optical absorption coefficients of the sample [48].

QPAT involves two distinct inverse problems, namely acoustic and optical. The

acoustic inverse problem, often referred to as PAT, seeks to reconstruct a distribution

of the spatially varying initial pressure from the boundary data. This is a linear in-

verse problem, for which a vast number of reconstruction methods are available [34].

For acoustically homogeneous media, there are exact inversion methods, e.g., back-

projection [51, 52, 9, 28], or frequency-domain techniques [53, 55]. Time reversal (TR)

is a less restrictive approach since it can be adapted to heterogeneous acoustic media

and arbitrary detection surfaces [17, 54, 9, 23, 24]. Model-based iterative inversion

approaches, in which the discrepancy between modeled data and the measured data is
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iteratively reduced, are also widely used in ill-posed cases that arise from data incom-

pleteness, modelling errors, finite sampling or noise [25]. The iterative methods can be

categorised into convergent Neumann-series methods [39, 33] or variational (optimisa-

tion) approaches [49, 25, 15, 7, 21]. Further, the results of [39] show uniqueness and

stability of recovery of the initial pressure distribution from data taken on an open

subset of the boundary over a sufficiently long time. This result does not include the

absorption and dispersion that we have included in our model. As far as we are aware,

uniqueness for recovery of the initial pressure in the situation considered in this paper,

including realistic absorption and dispersion, variable acoustic parameters, and data

on only part of the boundary, is open.

The optical inverse problem is devoted to further reconstruction of an image of

distributions of optical absorption and scattering coefficients from a recovered initial

pressure distribution. This is a highly nonlinear and ill-posed inverse problem, and is

commonly solved by iterative model-based approaches [41, 42, 19]. Using model-based

approaches for solving these two inverse problems, an accurate, yet efficient, modelling

of the associated physical processes is required [43].

A very accurate model for propagation of light is the Radiative Transfer Equation

(RTE), which has been used for the optical portion of 2D QPAT, e.g. [41, 35, 20].

An analysis of the optical inverse problem of QPAT using RTE has been given in

[3]. Since RTE is computationally very expensive, the applicability of this method

for 3D QPAT is very limited. A Diffusion Approximation (DA) of the RTE is more

efficient than RTE [43], and is thus more practical for 3D QPAT. In this study, we use

the DA for modelling the optical portion of the inverse problem. The DA model is

sufficienly accurate when the medium is highly scattering and the scattering is near-

isotropic [43]. The DA has been widely used as a light propagation model for QPAT

[41, 42, 32, 19, 22].

The DA model is defined as a function of optical absorption and scattering co-

efficients. It turns out that the recovery of both these coefficients from one optical

source and wavelength is non-unique [6]. To have uniqueness for the inversion, three

approaches are used, i.e., the assumption of the scattering coefficient as known [12],

using more than one optical wavelength [5, 11, 32], or using more than one optical
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source [4, 19, 18]. In this study the latter approach is used. We note that [4] es-

tablished uniqueness of recovery, as well as a Hölder stability result, for the optical

absorption and scattering, assuming the Gruneisen parameter (see equation (4.3) be-

low) is known and some regularity requirements are satisfied, given two well-chosen

optical sources. Furthermore, [4] also showed that even using additional sources it is

not possible to determine all three of the optical absorption, scattering, and Gruneisen

parameter.

For modelling the acoustic portion of the problem, the dependence of shape, spec-

trum and amplitude of propagating acoustic waves on properties of the medium [13],

together with the highly nonlinear and ill-conditioned nature of the optical portion of

the forward operator, motivates enriching the QPAT problem by simulation of tissue-

realistic acoustic properties. To incorporate these effects, we use an acoustic model

based on a linear system of three-coupled first-order wave equations which can be

adapted to spatially varying sound speed and density [40, 13], and include two frac-

tional Laplacian operators in order to account separately for acoustic absorption and

dispersion following a frequency power law, which is evident in tissue media [46, 45].

For a numerical implementation of this acoustic model, we use a k-space pseudo-

spectral method, which is popular for iterative PAT because of the high efficiency

arising from a requirement of only two grid points per wave-length for defining a field,

and a fast computation of the spatial gradient in the frequency domain [40, 13].

For realistic problems of QPAT, for example, when data are available merely on a

part of the boundary, or when acoustic properties of the medium are not known exactly,

the reconstruction of initial pressure distribution using the acoustic portion of the in-

verse problem is not sufficiently accurate to further serve as data for the optical inverse

problem [18]. It turns out that a direct estimation of the optical coefficients from time

series of measured data, referred to here as direct QPAT, is more stable than classical

variants of QPAT, in which the two inverse problems are solved distinctly. The direct

QPAT has thus recently received much attention, where the forward operator is defined

using a composite opto-acoustic model [20, 18, 31]. Using direct QPAT, it will be pos-

sible to incorporate prior information about the optical parameters into the acoustic

inverse problem [18], and mutually the optical inverse problem can utilise information

about noise included in the boundary acoustic data [31]. Additionally, the acoustic
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portion of the inverse problem can benefit from multi-source (resp. multi-wavelength)

configurations, since the optical coefficients (resp. chromophore concentrations), as

opposed to the initial pressure distribution, are independent of the changes in optical

illumination (resp. wavelength) [16].

In [37, 38], a linear Born approximation of the DA model based on a Green’s

function approach is coupled with an acoustic model that uses a free-space Green’s

function method in order to directly reconstruct perturbations in the optical absorption

and diffusion coefficients from time series of measured acoustic data. A simultaneous

reconstruction of perturbations in optical absorption coefficient and sound speed given

an optical scattering coefficient was also studied using a Born approximation [16]. To

the best of our knowledge, existing studies for the direct variant of QPAT have been

so far limited to homogeneous and non-attenuating acoustic media, and the acoustic

portion of the forward operator and its adjoint are computed based on exact formulae

using Green’s function approaches [20, 18, 31].

The optimisation approaches for QPAT can be categorised into linearised (Jacobian-

based) or nonlinear (gradient-based) approaches. A majority of Jacobian-based meth-

ods for the optical portion of QPAT can be fit into a class of Gauss-Newton methods

[36]. For application of these methods to classical (resp. direct) QPAT, see [41, 42, 32]

(resp. [31]). These studies utilise an explicit form of the Jacobian matrix. For di-

rect QPAT, because of a very large size of time series of measured data, an explicit

computation and storage of the Jacobian matrix is very expensive [31].

To avoid this problem, nonlinear gradient-based approaches have received much

interest for the direct problem of QPAT [19, 18]. A majority of these approaches

use a search direction based on Quasi-Newton methods which utilise only gradient

information for an approximation of the Hessian matrix, and are thus memory-efficient

[19, 18]. The computation of the gradient for direct QPAT is based on an opto-acoustic

forward operator and an acousto-optic adjoint of the Fréchet derivative of the forward

operator [20]. A memory-efficient Quasi-Newton method is Limited-memory BFGS

(L-BFGS), for which the inverse of Hessian matrix is approximated using the gradient

information stored in a user-adjusted number of iterations. Using a total variation

(TV) regularisation approach based on an Alternating Direction Method of Multipliers

(ADMM), L-BFGS has been used for computing an associated search direction for the
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classical QPAT [19] and direct QPAT [18].

Contribution. Here, we develop two preconditioned inexact Newton (Newton-

Krylov) algorithms for solving the direct problem of QPAT. In our first approach, the

residual function is iteratively linearised, and each linearised subproblem is solved using

a subspace Krylov method in a matrix-free manner, for which a total variation matrix is

used as a preconditioner for accelerating the convergence of the Krylov method. We use

the Preconditioned Conjugate Gradient (PCG) as the Krylov method, for which a TV-

based preconditioning is applied using the Lagged Diffusivity (LD) method [47]. Our

second approach uses two linearisations, the first of which is enforced to the nonlinear

residual function, and the second is applied in order to handle the nonlinearity of a TV

functional using a Primal-Dual Interior Point Method (PD-IPM). Using this approach,

for each linearisation of the residual function, a sequence of normal equations is derived,

and is solved using a subspace Krylov method in a matrix-free manner. We solve the

arising normal equations using a PCG method, but we emphasise that an extension to

other Krylov methods, e.g. a preconditioned variant of LSQR [2], is straightforward.

We implement our algorithms by assuming tissue realistic but erroneous properties

for the acoustic medium with a limited-view setting for boundary measurements. We

model the acoustic portion of the forward operator using a linear system of three-

coupled first-order wave equations that can be adapted to heterogeneous media and

account for acoustic absorption and dispersion following a frequency power law using

two fractional Laplacians [45]. This acoustic model is very popular for PAT since it

simulates an acoustic attenuation that is evident in many materials of interest including

tissues [45]. To the best of our knowledge, this is the first study for direct QPAT that

uses an acoustic model that accounts for tissue-realistic acoustic properties of the

medium. For the acoustic portion of the problem, we include the action of perfectly

matched layers (PMLs) in calculation of the adjoint operator. To the best of our

knowledge, these effects have not been accounted for in existing studies (See [25]).

It is worth mentioning that a singular value decomposition (SVD) analysis on the

acoustic forward operator we use has shown that as time steps increase some of the

singular values of the forward operator become very small [46], and make the acoustic

forward operator ill-conditioned. However, the use of an acoustically realistic forward

operator may be necessary for direct QPAT, since the optical portion of the forward
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operator is highly nonlinear and ill-conditioned, and thus errors in acoustic modelling

may quickly grow in the inversion process, and dominate signal data.

Our numerical results show that the developed preconditioned Newton-Krylov opti-

misation algorithms perform much better than nonlinear Quasi-Newton methods that

have been used in existing studies for direct QPAT. The algorithm we use as a bench-

mark utilises a TV regularisation based on an ADMM method, together with a search

direction using an L-BFGS method. (See [19, 18] for application on classical QPAT

and direct QPAT, respectively).

4.2 Direct QPAT on a continuous domain

In this section, we define our forward operator as a composite map on a continuous

domain.

4.2.1 Modelling the optical portion of the problem

The time scale for propagation of acoustic waves is on the order of a micro-second,

which is three orders of magnitude larger than the time-scale for illumination, propaga-

tion and absorption of light. Therefore, the generated pressure distribution is regarded

as instantaneous for the acoustic problem, and is referred to as initial pressure distri-

bution p0. One way to define a forward operator for our QPAT problem is to combine

the physics of the optical and acoustic portions of the problem using a simple compo-

sition of two maps, one modelling propagation and absorption of optical photons and

the other modelling propagation of acoustic waves [20].

Accordingly, let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω and

d ∈ {2, 3} the spatial dimension. Additionally, let φ ∈ H1(Ω) denote the photon

density. For modelling the propagation of light, we use a time-independent variant of

DA equations with the well-known Robin boundary condition [41]. This is written as

−∇ · κ(r)∇φ(r) + µ(r)φ(r) = 0, r ∈ Ω

φ(r) +
1

2γd
κ(r)

∂φ(r)

∂n̂
= I/γd, r ∈ ∂Ω,

(4.1)

where µ(r), κ(r) ∈ L∞+ (Ω) denote the positive-valued optical absorption and diffusion

coefficients, respectively. Here, r denotes the spatial position. Additionally, γd is a
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dimension-dependent factor (γ2 = 1/π and γ3 = 1/4), n̂ is an outward unit normal,

and I is an inward directed diffuse boundary current [29, 43]. Following the absorption

of photons, a spatially varying heating field h(r) is generated in the form

h[κ, µ, I](r) = µ(r)φ[κ, µ, I](r). (4.2)

Because of thermo-elastic expansion effects, the induced spatially varying heating field

causes an instant local increase in pressure that follows

p0(r) =

Γ(r)h(r), r ∈ Ω

0, r ∈ Rd\Ω,
(4.3)

where Γ is the Gruneisen parameter, and describes the efficiency of conversion of

heat into pressure [20]. Here, we assume Γ(r) constant and rescaled to 1, and thus

p0(r) = h(r) [20].

4.2.2 Modelling the acoustic portion of the problem

We use a linear system of three-coupled first-order equations for describing the prop-

agation of acoustic wavefields in an acoustically heterogeneous and lossy medium

[46, 45]. To explain this, we define our fields, which are the acoustic pressure field

p(r, t), particle velocity vector v(r, t) and acoustic density ρ(r, t), where r ∈ Rd and

t ∈ [0,∞) denote the spatial position and time. Additionally, we define the medium’s

acoustic parameters as sound speed c0(r), ambient density ρ0(r), attenuation coeffi-

cient α0(r), and frequency power law exponent y. The acoustic wavefield propagation

is now modeled by three equations, i.e., linearised equation of motion (conservation of

momentum)
∂v

∂t
(r, t) = − 1

ρ0(r)
∇p(r, t), (4.4)

linearised equation of continuity (conservation of mass)

∂ρ

∂t
(r, t) = −ρ0(r)∇ · v(r, t), (4.5)

and equation of state

p(r, t) = c0(r)2
{

1− τ(r)
∂

∂t
(−∇2)

y
2
−1

− η(r)(−∇2)
y−1
2

}
ρ(r, t)

(4.6)
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with initial conditions

p(r, 0) = p0(r), v(r, 0) = 0. (4.7)

Here, τ(r) and η(r) are, respectively the absorption and dispersion proportionality

coefficients, and are given by

τ(r) = −2α0(r)c0(r)y−1, η(r) = 2α0(r)c0(r)y tan(πy/2). (4.8)

4.2.3 Opto-acoustic forward operator

Having given the models for describing the optical and acoustic portions of the forward

operator, we now define our opto-acoustic forward operator. To do this, we also

require the measurement operator M, which at each time step maps the pressure

p(r, t) to the measured data at sensors. The time series of acoustic data are denoted by

P̂ ∈ RNsNt with Ns, Nt ∈ N the number of detectors and the number of measurement

time instants, respectively.

Definition 4.1. For a fixed illumination I, the optical portion of the forward operator

is a nonlinear map in the form

Λo : L∞+ (Ω)× L∞+ (Ω)→ L2(Ω)

Λo[κ, µ](r) = h(r),
(4.9)

where h(r) is given by (4.2). Also, the acoustic portion of the forward operator is a

linear map in the form [1]

Λa : L2(Ω)→ RNsNt ,

Λa[p0](r, t) =Mp(r, t).
(4.10)

Using (4.9) and (4.10), the coupled opto-acoustic forward operator is defined by the

composite map Λ, i.e.,

Λ : L∞+ (Ω)× L∞+ (Ω)→ RNsNt ,

Λ[κ, µ] = Λa

[
Λo[κ, µ]

]
.

(4.11)

We note that, as already mentioned in the introduction, by the results of [39] and [4]

if we consider a non-discretised version of the measurements, eliminate the absorption
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and dispersion from our acoustic model, and add some regularity requirements on

the parameters, then the forward map becomes injective. Injectivity in our situation,

either with non-discretised measurements or discretised κ and µ is, to our knowledge,

an open problem. However we will not consider this in the current paper, but rather

focus on numerical methods.

4.2.4 Model-based approach for inverse problem

The inverse problem of direct QPAT is a simultaneous reconstruction of µ, κ from

P̂ = Λ[κ, µ]. Applying a model-based approach for solving this problem, the objective

is to minimise an error functional, the sum of squared differences between modeled data

and the measured data via an iterative adjustment of the unknown optical coefficients

µ, κ. Using Nq optical illuminations, the error functional is defined by [18]

ε(κ, µ) =
1

2

Nq∑
q=1

∥∥∥Λq[κ, µ]− P̂q
∥∥∥2

2
, (4.12)

where, q indexes a set of Nq illuminations Iq with corresponding acoustic data P̂q [18].

We combine the unknown parameters as x = [κ, µ] ∈ L∞+ (Ω)× L∞+ (Ω).

Let DxΛ denote the Fréchet derivative of the forward operator at x. The Fréchet

derivative of ε at x is given by

Dxε =

Nq∑
q=1

D∗xΛq

(
Λq[x]− P̂q

)
. (4.13)

Here, D∗xΛ denotes the adjoint of the Fréchet derivative of the forward operator, and

is given by

D∗xΛ[P̂ ] = D∗xΛo[Λ
∗
a[P̂ ]], (4.14)

where Λ∗a denotes the adjoint of the linear acoustic forward operator Λa (4.10) and

D∗xΛo represents the adjoint of the Fréchet derivative of the optical forward operator

(4.9) both with respect to the L2(Ω) inner product. Formulae for Λ∗a can be found in

[26], while for D∗xΛo we have the next lemma.

Lemma 4.1. Let us denote the solution of (4.1) for the fixed illumination I, diffusion

κ0 and absorption µ0 by φ0. Then the Fréchet derivative of the optical portion of the
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forward operator DxΛo at x0 = [κ0, µ0] applied to the perturbations δκ and δµ is given

by

D[κ0, µ0]Λo

 δκ

δµ

 = δµ(r)φ0(r) + µ0(r)δφ(r), (4.15)

where δφ(r) satisfies

−∇ · κ0(r)∇δφ(r) + µ0(r)δφ(r) = ∇ · δκ(r)∇φ0(r)− δµ(r)φ0(r), r ∈ Ω

δφ(r) +
1

2γd
κ0(r)

∂δφ(r)

∂n̂
= − 1

2γd
δκ(r)

∂φ0(r)

∂n̂
, r ∈ ∂Ω.

(4.16)

The adjoint map D∗xΛo can then be calculated from

D[κ0, µ0]∗Λoh(r) =

 ∇φ0(r) · ∇h̃(r)

φ0(r)h̃(r) + φ0(r)h(r)

 , (4.17)

where the adjoint field h̃(r) satisfies

−∇ · κ0(r)∇h̃(r) + µ0(r)h̃(r) = −µ0(r)h(r), r ∈ Ω

h̃(r) +
1

2γd
κ0(r)

∂h̃(r)

∂n̂
= 0, r ∈ ∂Ω.

(4.18)

Lemma 4.1 can be proven using integration by parts.

4.3 Numerical computation

4.3.1 Numerical computation of the optical operators (Λo,

DxΛo and D∗xΛo )

Variational formulae

We use a first-order Galerkin finite element method (FEM) for approximation of the

optical portion of our QPAT problem. For an approximation of Λo, a variational form

of (4.1) is derived, i.e.,∫
Ω

µ0φ0ν dr +

∫
Ω

κ0∇φ0 · ∇ν dr + 2γd

∫
∂Ω

φ0ν ds =

∫
∂Ω

2Isν ds, (4.19)

where ν ∈ H1(Ω) is a test function. Additionally, for an approximation of the Fréchet

derivative operator DxΛo using FEM, a variational form of (4.16) is derived, i.e.,∫
Ω

µ0δφνdr +

∫
Ω

κ0∇δφ · ∇νdr + 2γd

∫
∂Ω

δφνds = −
∫

Ω

δκ∇φ0 · ∇νdr −
∫

Ω

δµφ0νdr.

(4.20)
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In the same way, for an approximation of D∗xΛo, a variational form of (4.18) is obtained,

i.e., ∫
Ω

µ0h̃νdr +

∫
Ω

κ0∇h̃ · ∇νdr + 2γd

∫
∂Ω

h̃νds = −
∫

Ω

µ0hνdr. (4.21)

Discretisation of optical coefficients and fields

Let T denote a triangulation of Ω with Ne elements, i.e., T =
{
tj | j = 1, ..., Ne

}
.

Applying an approximation using FEM, we discretise the optical coefficients in a

piecewise-constant basis {χj = 1tj | j = 1, ... , Ne}. Using this, the optical fields

are approximated as [41]

κ0(r) ≈ κe(r) =
Ne∑
j=1

κ̂jχj(r)

µ0(r) ≈ µe(r) =
Ne∑
j=1

µ̂jχj(r),

(4.22)

where κ̂j and µ̂j denote the discretised absorption and diffusion coefficients at element

tj. Additionally, φ0(r) is approximated in a piecewise-linear basis {ϕk | k = 1, ... , Nn}

in the form

φ0(r) ≈ φh0(r) =
Nn∑
k=1

Φ0,kϕk(r), (4.23)

where Φ0,k denotes the discretised photon density at node k, andNn is the total number

of nodes. We also approximate the adjoint field h̃(r) in a piecewise-linear basis as

h̃(r) ≈ h̃h(r) =
Nn∑
k=1

H̃kϕk(r). (4.24)

In the sequel, a field that is discretised at nodes as in (4.23) and (4.24) (resp. elements

as in (4.22)) is called a nodal (resp. elemental) vector. In the same way as the

continuous formulae, we use δ for signifying a perturbation in a discretised coefficient

or field.

Matrix form of variational formulae

For a discretisation of the problem, a matrix form of the variational formulae in section

4.3.1 is derived. [43, 41]. To do this, we define a system matrix Ao in the form

Ao[κ
e, µe] = K[κe] + C[µe] +R (4.25)
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with

Kkp[κ
e] =

∫
Ω

κe∇ϕk · ∇ϕp dr

Ckp[µ
e] =

∫
Ω

µeϕkϕp dr

Rkp = 2γd

∫
∂Ω

ϕkϕp ds

Gp =

∫
∂Ω

2Isϕp ds,

(4.26)

where p, k = 1, ..., Nn denote nodal indices. We also define matrix Aδ,o in the form

Aδ,o[δκ
e, δµe] = K[δκe] + C[δµe]. (4.27)

Using the above, we now define the discretised optical forward operators. We stress

that this definition is setting the notation for the discretised operators, which will be

described in detail below.

Definition 4.2. A discretisation of the optical forward operator Λo gives a map from a

vector space of discretised (elemental) optical coefficients to a vector space of discre-

tised (elemental) heating field coefficients in the form

Ho : RNe × RNe → RNe

H = Ho[κ̂, µ̂].
(4.28)

Additionally, a discretisation of the Fréchet derivative operator DxΛo at X = [κ̂, µ̂]

applied on perturbation δX = [δκ̂, δµ̂] gives

Jo : RNe × RNe → RNe

δH = Jo[κ̂, µ̂]

 δκ̂

δµ̂

 .
(4.29)

Now, we give further details on these operators.

Discretised forward operator Ho[κ0, µ0]

Plugging (4.23) into (4.19), together with taking ν(r) to be a basis function ϕp(r),

gives a linear system

Ao[κ
e, µe]Φ0 = G. (4.30)
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Using this, the heating field is approximated in a piecewise constant basis as [41, 19, 18]

H = µ̂ ◦ IΦ. (4.31)

Here, ◦ denotes an element-wise product and I is a node-to-element map. For I we

use the L2 orthogonal projection from the space of nodal representations to elemental

representations. The action of I on a nodal vector θ restricted at element j is in the

form

(Iθ)j =
1

d+ 1

∑
p∈`(j)

θp (4.32)

where p denotes the nodal index, and `(j) is a set of d + 1 nodes that correspond to

element j. We also define I+ as a map from the space of elemental vectors to nodal

vectors. The action of I+ on an elemental vector Θ restricted at node p is given by

(
I+Θ

)
p

=
Ne∑
j=1

Θj

∫
tj

ϕp(r)dr =
1

d+ 1

∑
j∈l(p)

SjΘj, (4.33)

where S is the vector of volume of elements, and l(p) is the set of elements that are

connected to node p. Also note that from (4.32) and (4.33), I+Θ = IT (S ◦Θ), where

T denotes the transpose. In the sequel, we will use the notation X = [κ̂, µ̂] and

δX = [δκ̂, δµ̂].

The matrix-free action of Jo[X] on perturbation δX

Here, we explain how the action of Jo[X] on a perturbation δX is approximated in

a matrix-free manner. To do this, we approximate the perturbation field δφ(r) in a

piecewise-linear basis in the same way as (4.23). Plugging the nodal vector δΦ into

(4.20) gives a linear system for calculation of δΦ in the form

Ao[κ
e, µe]δΦ = −Aδ,o[δκ

e, δµe]Φ0, (4.34)

where Φ0 has been computed using (4.30). Finally, the perturbation in the heating

field δH is computed as

δH = δµ̂ ◦ IΦ0 + µ̂ ◦ IδΦ. (4.35)
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The matrix-free action of J∗o[X] on H

Here we explain how the action of the adjoint of Fréchet derivative J∗o on an elemental

vector H can be approximated using an adjoint-then-discretise method. Plugging H̃

from (4.24) into the variational form of the adjoint formula (4.21) gives a linear system

in the form

A0[κe, µe]H̃ = −G, (4.36)

where

G = I+(µ̂0 ◦H). (4.37)

Finally, given the nodal vectors H̃ and Φ0, we will approximate the action of the

adjoint using (4.17). For this we must choose how to calculate the products that

appear in (4.17), and then how to project onto the space of elemental vectors. To do

this, we will also use the matrices

∂Ao

∂κ̂j
=

∫
tj

∇ϕk · ∇ϕp dr (4.38)

and

∂Ao

∂µ̂j
=

∫
tj

ϕkϕp dr. (4.39)

If the products in (4.17) are calculated by first multiplying the nodal functions,

and then using an L2-orthogonal projection on the space of elemental functions, then

for the discretisation of the adjoint we have

J∗o(H)j =

 1
Sj
H̃T ∂Ao

∂κ̂j
Φ0

1
Sj
H̃T ∂Ao

∂µ̂j
Φ0 +HT (IΦ0)

 . (4.40)

Remark 4.1. Using a discretise-then-adjoint method, the adjoint of Fréchet derivative

of the optical forward operator will be in the form (cf. [18], eq. (27))

J∗o,dis(H)j =

 [
(IA−1

o )T (µ̂0 ◦H)
]T (−∂Ao

∂κ̂j

)
Φ0[

(IA−1
o )T (µ̂0 ◦H)

]T (−∂Ao

∂µ̂j

)
Φ0 +HT (IΦ0)

 . (4.41)

From (4.36), (4.37) and the fact that I+Θ = IT (S ◦Θ) using (4.33), it can be shown

that (4.41) matches (4.40).
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Remark 4.2. From a theoretical point of view, it is perhaps more natural to make the

projections from nodal to elemental representations in the L∞ norm since κ, µ ∈ L∞+ .

The κ component of the adjoint, i.e., ∇φ0(r) · ∇h̃(r), is constant at each element, and

thus the L∞ projection is the same as the L2 orthogonal projection. However, the two

terms included in the µ component of the adjoint, i.e., φ0(r)h(r) + φ0(r)h̃(r), will be

different if L∞ projection is used. Our simulation experiment showed us that an L∞

projection gives almost the same reconstruction as the L2-orthogonal projection, but

dramatically increases the computational cost. Therefore, we used the L2-orthogonal

projection for approximation of the unknown optical coefficients.

4.3.2 Numerical computation of the acoustic operators (Λa

and its adjoint)

Here, for a numerical computation of the acoustic portion of the problem, we used a

k-space pseudo-spectral time-domain (PSTD) method [40, 13]. Applying this method,

the spatial gradients are approximated in a frequency domain using a Fast Fourier

Transform (FFT), and the temporal gradients are approximated using finite difference

schemes [40, 13].

Discretisation of acoustic fields

We approximate the acoustic forward and adjoint operators on a uniform rectilinear

grid staggered in space and time [40]. We denote the position of a given grid point in

Cartesian coordinates by rζ , where ζ = (ζ1, ..., ζd) ∈ {1, ... , N1}× ...×{1, ..., Nd} with

N =
∏d

i=1Ni the total number of grid points. We denote the grid separation along

direction i by ∆ri. The time accessible to detectors, i.e., t ∈ (0, T ), is sampled with

a temporal separation of ∆t so that the time step n corresponds to the time instant

tn = n∆t. To accommodate a staggered spatial grid, we introduce operator Ti, which

shifts the point r by ∆ri/2 in coordinate i, and acts on a field as

Tif(r) = f(Tir). (4.42)

To accommodate a staggered temporal grid, we shift the field at time tn by −∆t/2,

i.e., tn−1/2 = n∆t−∆t/2. Based on the above, the discretised particle velocity vector
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at time step n is denoted by v(i;ζ;n−1/2) ∈ Rd
i × RN

ζ × RNt+1
n . This approximates the

actual velocity on the staggered spatial grid as

v(i;ζ;n−1/2) ≈ Tivi(rζ , tn−1/2). (4.43)

We also approximate the acoustic density as ρ(i;ζ;n) ≈ ρi(rζ , tn) ∈ Rd
i × RN

ζ × RNt+1
n

and the scalar pressure as p(ζ;n) ≈ p(rζ , tn) ∈ RN
ζ ×RNt+1

n . (Note that acoustic density

is not a physical vector, but it is changed to a vector to accommodate the numerical

method.)

Discretisation of medium’s acoustic properties

We define a discretised variant of acoustic parameters as diagonal matrices of size

N ×N acting on the spatial index ζ of acoustic fields. We denote a discretised variant

of c0(r) by c̄. Also, an approximation of the ambient density ρ0(r) is denoted by ρ̄.

We also define ρ0(r) on a spatial grid staggered in coordinate i by ρ̄i.

Additionally, we define a discretised variant of the absorption and dispersion pro-

portionality coefficients as τ̄ and η̄, respectively. Also, a discretisation of the associated

fractional Laplacian operators N ×N is given by

Yabs = F−1
{
ky−2F{·}

}
, Ydis = F−1

{
ky−1F{·}

}
, (4.44)

where F and F−1 denote the FFT and its inverse, respectively. Applying the k-space

pseudo-spectral method on a staggered spatial grid, the spatial gradient in coordinate

i is in the form

∂{·}
∂r±i

= F−1
{
ikie

±iki∆ri/2sinc (c̄refk∆t/2)F{·}
}
, (4.45)

where sinc(c̄refk∆t)/2 enforces a k-space correction to the spatial gradient using a refer-

ence sound speed c̄ref in order to minimise the numerical dispersion errors accumulated

by the temporal integrations [40]. For further details on the k-space pseudo-spectral

method, see [40, 13].

Because of the computation of the spatial derivatives via an FFT, wave wrapping

may occur, i.e., the acoustic waves leaving one side of the grid reenter the opposite side.

To avoid wave wrapping, an absorbing boundary condition, referred to as perfectly

matched layer (PML), is added to each side of the grid. Here, the action of a PML on
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a field in coordinate i is denoted by Ai ∈ RN×N . This is defined as [40]

Ai = diag
(
e−αa,i∆t/2

)
, (4.46)

where αa,i is the attenuation enforced by the PML in coordinate i.

Having defined a discretisation of the optical forward operator, as well as acous-

tic fields and medium, we now complete the definition of our discretised composite

operator.

Definition 4.3. A discretisation of the composite opto-acoustic forward operator Λ

gives a map from optical coefficients to a set of time series of measured data in the

form

H : RNe × RNe → RNsNt

P̂ = HaHo[X],
(4.47)

where Ho and Ha represent the discretised optical and acoustic forward operators,

respectively. Also, an operator representing a discretisation of the Fréchet derivative

of the forward operator DXΛ is defined by

J : RNe × RNe → RNsNt

δP̂ = HaJo[X]δX.
(4.48)

Using (4.48), we will use as a discretisation of the adjoint of Frećhet derivative operator

the map

J∗ : RNsNt → RNe × RNe

∂X = J∗o[X]H∗a
(
∂P̂
)
.

(4.49)

Numerical computation of the acoustic forward operator Ha

We now explain a discretisation of the acoustic forward operator (Ha). We will use this

later for calculation of the acoustic adjoint operator. For a numerical implementation

of the acoustic forward operator given by (4.4), (4.5), (4.6) and (4.7) using a k-space

pseudo-spectral method, we used an open-source code, which is freely available on the

k-Wave website [44].

Using this code, the discretised initial pressure distribution at t = 0, denoted by P0

is applied as an injection of mass, referred to as additive source. To do this, P0 must
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be split over two time steps n = {−1/2,+1/2}. (cf. [1], Appendix B, or the k-Wave

manual [44]). This gives a source in coordinate i as [1]

s(i;ζ;n+1/2) =


1

2d∆t c̄2
SP0 n = −1, 0

0 otherwise,

(4.50)

where S is a symmetric smoothing operator that is applied in order to mitigate un-

expected oscillations of P0. (cf. the k-Wave manual in [44]). Additionally, since si is

added to the mass equation, a factor 1
∆t c̄2

has been applied in order to account for

the conversion of units from pressure to the time rate of density (cf. [1], Appendix B,

or the k-Wave manual in [44]). Using the definitions given above, the calculation of

Ha proceeds as follows.

Start at iterate n = −1 with initial conditions p(ζ;n=−1) = 0, v(i;ζ;n=−3/2) = 0 and

ρ(i;ζ;n=−1) = 0, and terminate at iterate n = Nt − 2.

1. Update the particle velocity vector field (conservation of momentum (4.4)):

v(i;ζ;n+ 1
2

) = Ai

[
Ai v(i;ζ;n− 1

2
) −

∆t

ρ̄i

∂

∂r+
i

p(ζ;n)

]
. (4.51)

2. Update the acoustic density field (conservation of mass (4.5)) also adding source:

ρ(i;ζ;n+1) = Ai

[
Ai ρ(i;ζ;n) −∆tρ̄

∂

∂r−i
v(i;ζ;n+ 1

2
)

]
+ ∆t s(i;ζ;n+1/2). (4.52)

3. Update the scalar pressure field (equation of state (4.6)):

p(ζ;n+1) = c̄2

[
(IN − η̄Ydis)

d∑
i=1

ρ(i;ζ;n+1) + τ̄Yabs

d∑
i=1

Aiρ̄
∂

∂r−i
v(i;ζ;n+ 1

2
)

]
(4.53)

where IN denotes an identity matrix of size N ×N , and the last term is actually the

action of τ̄Yabs on
∑d

i=1
∂
∂t
ρ(i;ζ;n+1), and is derived from (4.52).

4. Compute the measured pressure at detectors: This is defined using

P̂n+1 = Mp(ζ;n+1), (4.54)

where M denotes a discretised variant ofM (cf. section 4.2.3), and includes an inter-

polation operator for mapping the acoustic pressure field from grid points to position

of ultrasound detectors. It is worth mentioning that M also depends on the size and

properties of detectors. These effects are neglected in our study by assuming the

detectors sample the pressure pointwise.
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A discretise-then-adjoint method for derivation of the acoustic adjoint op-

erator

Having defined a discretisation of the acoustic forward operator (Ha), we now explain

how to calculate the acoustic adjoint operator (H∗a) using a discretise-then-adjoint

method. The derivation of H∗a in this section is a modification to the study of [25]

in the sense that the effects of the PMLs and an additive source are incorporated in

calculation of the adjoint. Additionally, in contrast to [25], we will represent H∗a as a

discretised linear system of PDEs, the same as our representation for Ha [25].

To derive this adjoint, a matrix form of Ha must be derived using the details given

in section 4.3.2. To do this, we start with definition of diagonal matrices C = c̄2 ∈

RN×N and Q ∈ RdN×dN with diagonal a d-times stack of diagonals of ρ̄ ∈ RN×N .

Also, we define a diagonal matrix Qs ∈ RdN×dN with diagonal a stack of diagonals of

ρ̄i, (i ∈ {1, ..., d}). We will also use A ∈ RdN×dN as a diagonal matrix with diagonal

a stack of diagonals of Ai (i ∈ {1, ..., d}).

We now define a stack of coordinate-dependent particle velocity and acoustic den-

sity fields v(i;ζ,n) ∈ RN , ρ(i;ζ,n) ∈ RN (i ∈ {1, ..., d}) as v̄n−1/2 ∈ RdN and ρ̄n ∈ RdN ,

respectively. We also define p̄n = p(ζ,n) ∈ RN . A stack of all these vector fields yields

z̄n = {v̄Tn−1/2 ρ̄
T
n p̄

T
n}T ∈ R(2d+1)N at time step n.

Also, let S ∈ R(2d+1)NNt×N be the map from the discretised sought after initial

pressure P0 to an additive source S. In particular, at time step n, Sn+1/2 = SnP0,

where

SnP0 = ∆t Izs s(i;ζ;n+1/2) = Izs1i ⊗
(

1

2dC

)
SP0 for n = −1, 0, (4.55)

and SnP0 = 0 for n 6= −1, 0. Here, s(i;ζ;n+1/2) has been derived from (4.50), and

1i⊗ ∈ RdN×N is the adjoint of
∑d

i=1 ∈ RN×dN , which is the operator which sums over

index i. Also, from (4.52) and (4.53), Izs ∈ R(2d+1)N×dN is the map from s(i;ζ;n+1/2) to

z̄n in the form

Izs =


0dN×dN

IdN×dN

C
(

(IN − η̄Ydis)
∑d

i=1

)
N×dN

 . (4.56)

We now introduce an operator T ∈ R(2d+1)N×(2d+1)N for defining a discretised formula
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for the time sequence of fields as

z̄n+1 = T z̄n + Sn+1/2. (4.57)

Additionally, we introduce a measurement matrix M = MIpz with Ipz ∈ RN×(2d+1)N

the projection from the space of z̄n to the space of p̄n. Based on this, we now define

our discretised acoustic forward operator.

Definition 4.4. The discretised acoustic forward operator is defined by

Ha : RN → RNsNt (4.58)

Ha = HTS, (4.59)

where HT : R(2d+1)NNt → RNsNt satisfies

P̂ = HTS, P̂n = M z̄n (n ∈ {0, ..., Nt − 1}), P̂ =
[
P̂n+1

]Nt−2

n=−1
. (4.60)

Here, z̄n is determined by (4.57) with initial condition z̄−1 = 0, and P̂ ∈ RNsNt is a

time-series stack of measured data at iterates n ∈ {0, ..., Nt − 1}.

Lemma 4.2. The action of the adjoint operator

H∗a : RNsNt → RN , (4.61)

H∗a = S∗H∗T , (4.62)

on P̂ , where P0 = H∗aP̂ , is given by

P0 =
Nt−2∑
n=−1

S∗nz̄∗Nt−2−n, (4.63)

where z̄∗n is determined by

z̄∗−1 = 0, z̄∗n+1 = T ∗z̄∗n +M ∗P̂Nt−2−n (n ∈ {−1, ... , Nt − 2}). (4.64)

Proof. We have given the proof in [27], Lemma 2 and Corollary 1.

Note that in the case we are considering the sum in (4.63) is actually just two terms.

By commuting n = −1, 0 in (4.55) with M using the fact that the forward operator
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is linear, we define a source for our acoustic adjoint operator as

sadj
n+1/2 = M∗


P̂Nt−1, n = −1

P̂Nt−n−1 + P̂Nt−n−2, n = 0, ..., Nt − 2

P̂0, n = Nt − 1.

(4.65)

From (4.65), equation (4.64) in Lemma 4.2 can be modified as

z̄∗−1 = 0, z̄∗n+1 = T ∗z̄∗n + Sadj
n+1/2 (n ∈ {−1, ... , Nt − 2}), (4.66)

where

Sadj
n+1/2 = (Ipz )∗ sadj

n+1/2. (4.67)

Now, we derive a matrix form of T and T ∗ using the forward model presented in section

4.3.2 to show how multiplication by each of them may be computed. We also denote

a matrix form of the k-space spatial gradient in (4.45) as

∇±i =
∂

∂r±i
∈ RN×N . (4.68)

Using this, we will use Φ ∈ RdN×dN and Ψ ∈ RdN×dN composed of submatrices

(Φ)ij = −∆t δij∇+
j (4.69)

and

(Ψ)ij = −∆t δij∇−j . (4.70)

To make the notation more compact we also introduce matrices D,E ∈ RN×dN and

G ∈ RN×N whose actions are given by

Dv̄ = C

(
IN − η̄Ydis − τ̄

Yabs

∆t

) d∑
i=1

(AQΨA2v̄)i (4.71)

Eρ̄ = C (IN − η̄Ydis)
d∑
i=1

(A2ρ̄)i (4.72)

Gp̄ = C

(
IN − η̄Ydis − τ̄

Yabs

∆t

) d∑
i=1

(AQΨAQ−1
s Φ1i ⊗ p̄)i (4.73)
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The matrix T is then given, in block form, by

T =


A2 0 AQ−1

s Φ1i⊗

AQΨA2 A2 AQΨAQ−1
s Φ1i⊗

D E G

 . (4.74)

From (4.74), the adjoint operator T ∗ will be in the form

T ∗ =


A2 A2Ψ∗QA D∗

0 A2 E∗∑d
i=1 Φ∗Q−1

s A
∑d

i=1 Φ∗Q−1
s AΨ∗QA G∗

 . (4.75)

From (4.75) and using (4.56), (4.66) and (4.67), as well as calculating the adjoints of

D, E and G from (4.71), (4.72), and (4.73), the time sequence of adjoint fields is given

iteratively by

ρ̄n+1 = A2 [ρ̄n + 1i ⊗ (IN − Ydisη̄)Cp̄n]

v̄n+1/2 = A2

[
v̄n−1/2 + Ψ∗QA−1

(
ρ̄n+1 − A21i ⊗

Yabs

∆t
τ̄Cp̄n

)]
p̄n+1 =

(
d∑
i=1

Φ∗Q−1
s A−1v̄n+1/2

)
+ sadj

n+1/2

p̄sol = ϑ

(
d∑
i=1

1i ⊗ (IN − Ydisη̄)Cp̄n+1 + ρ̄n+1

)
(n = Nt − 2),

(4.76)

where p̄sol := H∗a(P̂ ), and ϑ = S
(

1
2dC

)
using (4.55). Now, applying the replacements

ρ̂n+1 = QA−1ρ̄n+1 and v̂n+1 = (AQs)
−1v̄n+1/2, together with Φ∗ = −Ψ and Ψ∗ = −Φ,

gives

ρ̂n+1 = A [Aρ̂n +Q1i ⊗ (IN − Ydisη̄)Cp̄n]

v̂n+1/2 = A

[
Av̂n−1/2 −Q−1

s Φ

(
ρ̂n+1 −QA1i ⊗

Yabs

∆t
τ̄Cp̄n

)]
p̄n+1 =

(
d∑
i=1

−Ψv̂n+1/2

)
+ sadj

n+1/2

p̄sol = ϑ

(
d∑
i=1

1i ⊗ (IN − Ydisη̄)Cp̄n+1 + AQ−1ρ̂n+1

)
(n = Nt − 2).

(4.77)

Our numerical experiments showed that an operator H∗a that is calculated using a

discretise-then-adjoint method (4.77) satisfies an adjoint test with a higher accuracy

than using an adjoint-then-discretise method used in [26]. Therefore, we used (4.77)

for the acoustic adjoint operator.
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4.4 Iterative model-based approaches for the direct

problem of QPAT

Having defined a discretisation of opto-acoustic forward operator H, the Fréchet deriva-

tive operator J, and its adjoint J∗, we now explain the iterative approaches we will use

for minimisation of (4.12).

Considering (4.2), the dependence of heating field h on κ, µ is nonlinear. Further-

more, because of high scattering of light in tissue media, simultaneous reconstruction

of κ, µ from h can be highly ill-posed. As a result, a minimisation of (4.12) is a non-

convex, nonlinear and ill-posed inverse problem. It has been shown that simultaneous

reconstruction of κ and µ using a single optical excitation, i.e., Nq = 1, does not have

a unique solution [4]. However, the uniqueness and stability, in appropriate norms, of

this inverse problem using Nq > 1 optical excitations under some geometric constraints

has been established [4]. It is also worth mentioning that using our forward acous-

tic operator, which can be adapted to acoustically heterogeneous and lossy media,

the direct problem of QPAT is more ill-posed than existing studies, for which spheri-

cal mean Radon transform or Green’s function techniques have been used for solving

the acoustic portion of the forward operator using an acoustically homogeneous and

lossless medium, which does not hold in practice [20, 18, 31].

Remark 4.3. Since the magnitude of κ̂ is often 1 to 2 orders of magnitude greater than

µ̂, we follow [19, 18] and minimise ε (cf. (4.12)) with respect to scaled coefficients

X̄ = [κ̄(κ̂), µ̄(κ̂)]T . (4.78)

We will use two types of scaling. For the method described in section 4.5.1 we use a

linear scaling (see (4.99)) while for the methods described in sections 4.5.2 and 4.5.2

we use logarithmic scaling (see (4.100)). In our numerical experiments the method of

section 4.5.1 did not converge with logarithmic scaling.

Using these, we now consider a minimisation problem with respect to a scaled vector

of optical coefficients X̄ in the form

X̄∗ = argmin
X̄l6X̄6X̄u

ε(X̄) = argmin
X̄l6X̄6X̄u

1

2

Nq∑
q=1

∥∥∥Hq[X[X̄]]− P̂q
∥∥∥2

2
, (4.79)
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where ε is a non-convex, nonlinear and smooth function. Also, X̄ has been constrained

by a lower bound X̄l and an upper bound X̄u. Here, X̄l and X̄u are vectors with the

same size as X̄, and X̄l 6 X̄ 6 X̄u indicates that
(
X̄
)
j
>
(
X̄l

)
j

and
(
X̄
)
j
6
(
X̄u

)
j

for

all components j of these vectors. Note that here, we choose
(
X̄l

)
j

and
(
X̄u

)
j

fixed

for all components j.

We will take two main approaches for solving (4.79), the first of which is a direct

minimisation of the nonlinear objective function using a Quasi-Newton approach, and

the second is to solve the minimsation problem as a sequence of convex and linearised

subproblems using a matrix-free Jacobian-based method. We now explain these ap-

proaches.

A fixed point iteration arising from the optimality conditions of ε gives a sequence

X̄k+1 = X̄k + αkdk, (4.80)

where dk is a search direction for iteration k, and αk is a step size along search direc-

tion dk. (Throughout this manuscript, a subscript (resp. superscript) k indicates an

iteration for an inner (resp. outer) loop.)

4.4.1 Newton’s methods

From the second-order optimality condition for minimising ε, the Newton search di-

rection, is derived using

dk = −H−1
k ∇εk. (4.81)

Here, ∇εk is the first-order derivative of ε at X̄k, and is computed using

∇εk =

Nq∑
q=1

∂X

∂X̄
[X̄k] J∗q[Xk]

(
Hq[Xk]− P̂q

)
, (4.82)

andHk, is the second-order derivative of ε (the Hessian matrix). Using a Gauss-Newton

method, the Hessian matrix is approximated using

Hk =

Nq∑
q=1

∂X

∂X̄
[X̄k] J∗q[Xk]Jq[Xk]

∂X

∂X̄
[X̄k], (4.83)

where a term including the second-order derivatives of Hq has been neglected as com-

pared to the exact Hessian. A class of approaches that utilise (4.81) for minimisation
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of ε are called Newton’s method. Although Newton’s methods benefit from a quadratic

(optimal) rate of convergence, they pose some practical limitations for QPAT, i.e.,

a) The computation, storage and inversion of the Hessian matrix is expensive. To

address this problem, an implicit inversion of Hk using an explicit form of J and J∗

has been used in the context of diffuse optical tomography [36].

b) The size of the discretised heating field H, which represents the output of the

optical portion of the discretised forward operator, is on the same order as the size of

unknown parameters (cf. (4.28)). It has been shown that an explicit computation of

the matrix Jo (resp. J) requires at least Ns + Ne times implementation of Ho (resp.

H) (See [19], page 11).

c) Considering the time series of measured data P̂ , which is of size NsNt, the

Jacobian matrix J is dense, and thus a storage of J is impractical.

We will later explain how we have addressed these challenges using an inexact

Newton method.

4.4.2 Nonlinear gradient-based methods

An alternative to Newton’s method is using gradient-based Quasi-Newton approaches,

for which Hk is not computed explicitly, but is approximated using solely information

included in the first-order gradients ∇ε possibly at previous steps. Additionally, an

inversion of Hk can be avoided using a direct approximation of H−1
k , for which the so-

called BFGS method is often used. Since H−1
k is a dense matrix, and BFGS method

poses challenges regarding memory, a limited-memory variant of BFGS (L-BFGS)

method is used [19, 18]. Using L-BFGS, H−1
k is updated using the most recent m pairs

of (s,y) given by

sk = X̄k − X̄k−1

yk = ∇εk −∇εk−1.
(4.84)

(In our study, we empirically use m = 5.) We will also use ρk = 1/yTk sk, and an initial

guess for the Hessian matrix in the form

H−1
k,0 =

sTk−1yk−1

yTk−1yk−1

I, (4.85)



CHAPTER 4. DIRECT QPAT FOR REALISTIC ACOUSTIC MEDIA 189

where I is the identity matrix. By applying L-BFGS method to the constrained

minimisation problem (4.79), the search direction dk is computed using Algorithm 4.1.

(See [19] and [18] for applications on QPAT and direct QPAT.)

Algorithm 4.1 L-BFGS (search direction): inner iteration k

1: Input: ∇εk,H−1
k,0

2: Initialise: q = ∇εk
3: for i = k − 1, k − 2, ..., k −m do
4: αi = ρis

T
i q

5: q = q −αiyi
6: end for
7: r = H−1

k,0q
8: for i = k −m, k −m+ 1, ..., k − 1 do
9: r = r + si

(
αi − ρiyTi r

)
10: end for
11: dk = −r.

From the First-order Karush Kuhn Tucker (KKT) conditions associated with the

constraint on X̄, dk is projected onto the feasible region using (See [18], equation (37))

dk =


−X̄l, if X̄k + dk 6 X̄l

dk, if X̄l < X̄k + dk < X̄u

−X̄u, if X̄k + dk > X̄u.

(4.86)

Using dk given by (4.86), the step size in (4.80) is chosen by a standard backtracking

line search satisfying the Wolfe conditions as well as the constraints

ε(X̄k + αkdk) 6 ε(X̄k) + c1αkd
T
k∇ε(X̄k)

dTk∇ε(X̄k + αkdk) > c2d
T
k∇ε(X̄k),

(4.87)

together with enforcing the bounds associated with the constraint, i.e.,

X̄l 6 X̄k + αkdk 6 X̄u. (4.88)

(See [19, 18].) In (4.87), 0 < c1 < c2 < 1 are user-defined parameters. Applying these

conditions, αk is chosen using a backtracking line search, as given in Algorithm 4.2.

Here, τ < 1 is a user-defined parameter.
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Algorithm 4.2 Backtracking Line Search: inner iteration k

1: Input: c1, c2, τ , X̄l, X̄u

2: Initialise: α0 = 1
3: while (4.87) or (4.88) are not satisfied do
4: α = τα
5: end while
6: αk = α∗.

4.5 Total Variation (TV) regularisation

To mitigate the ill-posedness of the problem, a regularisation functional must be added

to the data fidelity term in (4.79) [19, 18]. This results in a minimisation problem in

the form

X̄∗ = arg min
X̄l6X̄6X̄u

{
F := ε[X̄] + λJ [X̄]

}
, (4.89)

where J [X̄] and λ, respectively denote the regularisation functional and the regularisa-

tion parameter, the latter of which makes a balance between a fidelity to the measured

data P̂ and to a priori knowledge about the true solution. In our study, based on an

assumption that the optical coefficients are piecewise constant with sharp edges, we

use J [X̄] := R[κ̄] +R[µ̄], where R[u] is a discretisation of the Total-Variation (TV)

functional ∫
Ω

|∇u|dr (4.90)

with u either κ̄ or µ̄. Using (4.90),

J [X̄] = ‖DX̄‖1 (4.91)

with

D =

 Dκ̄ 0Nl×Ne

0Nl×Ne Dµ̄

 . (4.92)

Here, Du ∈ RNl×Ne is a sparse matrix with Ne and Nl the total number of elements

and the total number of internal edges between elements, respectively. Each row

Du
l ∈ R1×Ne (l ∈ {1, ..., Nl}) has two nonzero components at indices j1 and j2, which

correspond to two elements connected by the internal edge l. These have values al
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and −al with al the length (or area) of internal edge l [8]. Using this, the gradient of

J (X̄) is a nonlinear operator in the form

∇J : R2Ne → R2Ne

∇J [X̄] = M [X̄]X̄,
(4.93)

where M(X̄) is given by

M [X̄] = DTC[X̄]D (4.94)

with C(X̄) a diagonal matrix

C[X̄] = diag
(
(|DX̄|2 + β)−1/2

)
. (4.95)

Here, the smoothing parameter β is added in order to make∇J [X̄] differentiable. Hav-

ing defined our regularisation functional, we now explain the minimisation approaches

we use for solving the direct problem of QPAT.

4.5.1 TV regularisation using Alternating Direction Method

of Multipliers (ADMM)

Two major issues for minimisation of F is the nonlinearity of ∇J [X̄] and a loss of

accuracy due to the smoothing parameter β. Note that a small value for β may

deteriorate the convergence [47]. One way for addressing these difficulties is to use a

slack variable for shifting the gradient of ‖DX̄‖1 out of the non-differentiable region

and penalising the applied shift. To do this, the Augmented Lagrangian is introduced

which, following [19, 18], may be further rewritten as

FA(W, X̄) = %

(
1

2
‖DX̄ −W + Uw‖2

2 + ν‖W‖1

)
+

Nq∑
q=1

1

2
‖Hq[X(X̄)]− P̂q + Up,q‖2

2,

(4.96)

where ν and % are constants and Uw and Up,q are rescaled Lagrange multipliers. Min-

imisation of F is then accomplished by alternating minimisation of (4.96) in W and

X̄, and updating of the Lagrange multipliers, using Algorithm 4.3. In Algorithm 4.3,

Tolout is a terminating threshold, and X∗ denotes an optimal solution. The line 4 in

Algorithm 4.3 is a minimisation of the first term in (4.96) with respect to W , and can
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Algorithm 4.3 Gradient-based Quasi-Newton method using ADMM

1: Input: P̂q, (q ∈ {1, ..., Nq})
2: Initialise: X0,W 0 = 0
3: while ‖∇X̄FA

(
X̄k,W k

)
‖ > Tolout do

4: W k+1 = arg min
W

FA
(
X̄k,W

)
5: X̄k+1 = arg min

X̄l6X̄6X̄u

FA
(
X̄,W k+1

)
6: Uk+1

w = Uk
w +DX̄k+1 −W k+1

7: Uk+1
p,q = Uk

p,q + Hq[X
k+1]− P̂q (∀q)

8: Output: X∗

9: end while

be calculated exactly using a scalar-wise Shrinkage formula of the form

W k+1 = max
{
|DX̄k + Uk

w| − ν, 0
}

sgn(DX̄k + Uk
w). (4.97)

Additionally, the line 5 in this algorithm is a minimisation of FA at W k+1 with respect

to X̄, and is done using L-BFGS algorithm, as explained in section 4.4.2. Note that

we should replace ε by FA, and we hope this is not confusing for the reader. To do

this, the first-order derivative of FA with respect to X̄ at inner iteration k is computed

using

∇X̄FA = %DT
(
DX̄ −W + Uw

)
+

Nq∑
q=1

∂X

∂X̄
[X̄]J∗q[X]

(
Hq[X]− P̂q + UPq

)
. (4.98)

For this method we use a linear scaling

X̄ =

κ̄
µ̄

 =

 κ̂
mean(κ̂0)

µ̂
mean(µ̂0)

 (4.99)

where the dominators are the mean value of initial guesses κ̂0 and µ̂0.

4.5.2 Linearised matrix-free Jacobian-based method

In this section, we explain two methods that we use for solving the problem (4.79) as

a sequence of linearised subproblems. Here, we will make a balance between recon-

struction of κ̂ and µ̂ by using the logarithmic rescaling

X̄ = log
X

X0
, (4.100)

which also implicitly enforces positivity on κ̂ and µ̂. Note that in (4.100), the division

X/X0 and the Logarithm operator are understood elementwise. Additionaly, we set
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X̄l = −∞ and X̄u = +∞. This gives a non-constrained form of the problem. Our

numerical results showed that enforcing bounds on the solutions is not required because

of a good stability provided by these approaches. Also, X0 denotes an initial guess.

Accordingly, given an iterate X̄k and a point X̄ in a neighborhood of X̄k, the

forward operator H is linearised using an approximation

H(X̄) ≈ H(X̄k) + J[Xk]
∂X

∂X̄
[X̄k](X̄ − X̄k). (4.101)

Applying the approximation (4.101) on the problem (4.79) yields the minimisation

problem

dk = argmin
d

1

2

Nq∑
q=1

∥∥∥∥Jq[Xk]
∂X

∂X̄
[X̄k]d−

(
P̂q −Hq[X

k]
)∥∥∥∥2

2

, (4.102)

where we have changed from X̄ to d = X̄ − X̄k in the minimisation. Note that

we have used k as a superscript in order to indicate a linearised subproblem (outer

iteration), as opposed to a subscript in (4.81) that indicates an inner iteration. The

k-th linearised subproblem (4.102) gives a normal equation in the form of

Hkdk = −∇εk, (4.103)

where ∇εk and Hk are obtained from (4.82) and (4.83), respectively. The normal

equation (4.103) is a variant of (4.81), for which Hk is approximated using a Gauss-

Newton method. Here, to avoid a storage of J, we solve each linearised subproblem

(4.103) using a Krylov subspace method in a matrix-free manner, for which implicit

forms of operators J and J∗ are used.

As discussed in section 4.4.1, Newton’s methods converge rapidly, but solving a

normal equation with a high accuracy for each linearisation is very expensive. From

a theoretical point of view, using Krylov methods, the total number of iterations for

reaching a minimiser is on the same order of the number of unknowns. Therefore, we

solve (4.103) roughly using a loose stopping tolerance, i.e.,

Hkd̃k = −∇εk + vk, ‖vk‖2/‖∇εk‖2 6 ηk, (4.104)

where d̃k denotes a rough solution. It has been shown that under assumptions thatHk

is symmetric and positive definite, the solutions d̃k are sufficiently small and ηk < 1,

the local convergence is guaranteed using a step size αk = 1 (cf. [14], section 2).
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A class of approaches that use (4.104) for minimisation of (4.79) are called Inexact

Newton’s methods [14]. In the sequel, we use dk, rather than d̃k, for indicating a rough

solution of (4.104), and we hope this is not confusing for the readers.

Lagged diffusivity (LD) method with priorconditioning

As discussed above, for our direct QPAT problem, the Hessian matrices Hk are ill-

conditioned. Therefore, a regularisation functional must be added in order to stabilise

the problem. Our first approach for an inclusion of TV regularisation in (4.104) is based

on solving (4.89) via an iterative linearisation of an associated objective function F .

Strictly speaking, we first add the regularisation functional to an original nonlinear

problem, and then the linearisations are applied to a regularised form of a nonlinear

objective function. The k-th linearisation of the data fidelity term ε using (4.102),

together with ∇J [X̄] defined by (4.93), gives a TV regularised variant of (4.104) in

the form

Hkdk + λM [X̄]X̄ = −∇εk. (4.105)

Let us denote an initial guess for k-th subproblem by X̄k
0 , which is calculated using

the previous linearised subproblem k − 1. One way for addressing the nonlinearity of

M [X̄]X̄ (cf. (4.94)) is replacing M [X̄] by Mk = M [X̄k
0 ]. This gives a normal equation

in the form

(
Hk + λMk

)
dk = −∇εk − λMkX̄k

0 . (4.106)

Linearisation of M using the above equation is called the Lagged Diffusivity (LD)

method [47]. (See [22] for an application of LD on the purely optical problem of

QPAT.) Our method now is to follow [2] in order to convert (4.106) into a similar

problem in which the regularisation is obtained by early termination of an iterative

method rather than tuning of parameter λ. First, since Mk may only be positive

semi-definite we approximate it by Mk
γ = Mk + γI. Replacing Mk by Mk

γ in (4.106)

we next multiply by (Mk
γ )−1 so that (4.106) becomes

(
(Mk

γ )−1Hk + λI
)
dk = −(Mk

γ )−1∇εk − λX̄k
0 (4.107)
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Applying Krylov methods for solving (4.106), the iterates lie in a subspace [2]

K(Mk
γ )−1Hk+λI = K(Mk

γ )−1Hk = span

{
−
(
(Mk

γ )−1Hk
)i∈{0,...,ikmax−1} (

(Mk
γ )−1∇εk + λX̄k

0

)}
,

(4.108)

where ikmax is the maximum number of iterations for the Krylov method. Our numerical

experience shows that using small values for λ, the term λX̄k
0 will have a small effect,

and indeed we drop this in our method by taking λ = 0.

Using this approach for applying regularisation on a normal equation is called

priorconditioning. Note that in this approach we adjust the regularisation by imax. In

contrast to an empirical choice for the regularisation parameter λ, which requires a

recomputation of the problem, imax can be implicitly controlled by a stopping tolerance

[2]. Using the above, our subproblem is to solve a priorconditioned variant of (4.106)

in the form

(Mk
γ )−1Hkdk = −(Mk

γ )−1∇εk. (4.109)

It turns out that (4.109) provides a better convergence than (4.106) since the structure

of the prior is directly included in the Jacobian matrix [2]. Here, we solve (4.109) using

the Preconditioned Conjugate Gradient (PCG) method, as outlined in Algorithm 4.4.

Algorithm 4.4 PCG algorithm for solving linearised subproblem k

1: Input: ∇εk,Hk,Mk
γ

2: Initialise: i = 0, X̄0 = 0
3: r0 = −∇εk
4: Solve Mk

γ z0 = r0

5: d0 = z0

6: while i < imax ∩
(
i < im ∪ 1− rTi zi

rTi−imzi−im
> Tolin

)
do

7: αi =
rTi zi

dTi Hkdi
8: X̄i+1 = X̄i +αidi
9: ri+1 = ri −αiHkdi
10: Solve Mk

γ zi+1 = ri+1

11: βi =
rTi+1zi+1

rTi zi

12: di+1 = zi+1 + βidi
13: end while
14: Output: dk

We will terminate Algorithm 4.4 if i > im with im a user-adjusted number of inner

iterations, and a relative reduction in rTi zi during im inner iterations becomes less than
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a user-adjusted threshold Tolin. Also, the PCG algorithm is unconditionally stopped

whenever i > imax.

Remark 4.4. Each inner iteration of the PCG loop involves an implicit inversion of

the sparse matrix Mk
γ (See [2]). For the direct QPAT, the cost of an inversion of Mk

γ

is negligible, compared to an implementation of the Jacobian and its transpose.

Using the LD method, together with a logarithmic scaling, our inexact Newton

algorithm is outlined in Algorithm 4.5.

Algorithm 4.5 Inexact Newton method using LD

1: Input: P̂q (q ∈ {1, ..., Nq})
2: Initialise: k = 0, X0

3: while k = 0 ∪ 1− εk

εk−1 > Tolout do
4: Apply linearisation on (4.89)
5: Compute dk from (4.109) using Algorithm 4.4
6: Compute X̄k+1 using (4.80) and αk = 1
7: Xk+1 = X0eX̄

k+1

8: end while
9: Output: X∗

Primal-Dual Interior-Point-Method (PD-IPM)

A technique for linearisation of M was developed using a primal-dual method, and

was shown to give better convergence than the LD method, especially for small values

of β [10]. In [10], the PD-IPM technique was used for enforcing TV regularisation

when inverting a linear blurring operator. In contrast to our first approach using

the LD method, here we first linearise the data fidelity function, and then add a TV

regularisation function to each linearised subproblem using the PD-IPM approach.

Using this, we iteratively solve a TV regularised variant of the linearised subproblem

(4.102) in the form

dk = argmin
d

1

2

Nq∑
q=1

∥∥∥∥Jq[Xk
0 ]
∂X

∂X̄
[X̄k

0 ]d−
(
P̂q −Hq[X

k
0 ]
)∥∥∥∥2

2

+ λ‖Dd‖1. (4.110)

The main idea for linearisation of the nonlinear M (cf. (4.94) and (4.95)) using the

PD-IPM approach is introducing a dual parameter χ = C[d]Dd ∈ R2Nl . This gives a
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system of coupled nonlinear PDEs for subproblem k in the form

λDTχ+Hd−
Nq∑
q=1

∂X

∂X̄
[X̄0]J∗q[X0]

(
P̂q −Hq[X0]

)
= g(χ, d) = 0

C−1[d]χ−Dd = f(χ, d) = 0,

(4.111)

where we have removed the superscripts indicating subproblem k for brevity. A lin-

earisation of this system with respect to (χ, d) givesC−1[d] −
(
I − C[d]χ(Dd)T

)
D

λDT H

δχ
δd

 =

−f(χ, d)

−g(χ, d)

 (4.112)

Here, we have used the derivative of the terms in the left-hand-sides of (4.111) with

respect to χ and d, and the fact that C−1[d] = diag
(
(|Dd|2 + β)1/2

)
from (4.95). If we

make the replacement χ = C[d]Dd, then the above linearised system gives decoupled

equations[
λDTC[dk′ ]

(
I − C[dk′ ]χk′(Ddk′)

T
)
D +H

]
δdk′

=− λM(dk′) +

Nq∑
q=1

∂X

∂X̄
[X̄0]J∗q[X0]

(
P̂q −Hq[X0]− Jq[X0]

∂X

∂X̄
[X̄0]dk′

) (4.113)

and

δχk′ = C[dk′ ]
(
I − C[dk′ ]χk′(Ddk′)

T
)
Dδdk′ − χk′ + C[dk′ ]Ddk′ , (4.114)

where the subscript k′ indicates an inner sub-subproblem. The same as the LD method,

we solve a priorconditioned form of (4.113) with λ = 0, i.e.,

M̃−1
γ,k′Hδdk′ = −M̃−1

γ,k′∇ε̃k′ , (4.115)

where

M̃γ,k′ = DTC[dk′ ]
(
I − C[dk′ ]χk′(Ddk′)

T
)
D + γI, (4.116)

and −∇ε̃k′ is actually the second term in the right-hand-side of (4.113). Here, the

subscript k′ indicates the fact that for each linearised subproblem k (superscript), we

solve a sequence of sub-subproblems (4.114) and (4.115) using an update of dk′ , Mγ,k′

and ∇ε̃k′ . The developed inexact Newton method using a TV regularisation based on

the PD-IPM approach is outlined in Algorithm 4.6. We use step sizes αk′ = 1 and
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Algorithm 4.6 Inexact Newton method using PD-IPM

1: Input: P̂q (q ∈ {1, ..., Nq})
2: Initialise: k = 0, X0

3: while k = 0 ∪ 1− εk

εk−1 > Tolout do
4: Apply linearisation and derive the objective function in (4.110)
5: Initialise: X̄k

0 , d0 = 0, χ0 = 0

6: while k′ < k′max ∩
(
k′ = 0 ∪ 1− rk′,∗

rk′−1,∗
> Tolmed

)
do

7: Compute δdk′ from (4.115) using Algorithm 4.4
8: dk′+1 = dk′ + αk′δdk′
9: Compute δχk′ using (4.114)
10: χk′+1 = χk′ + sk′δχk′
11: end while
12: Compute X̄k+1 using (4.80) and αk = 1
13: Xk+1 = X0eX̄

k+1

14: end while
15: Output: X∗

αk = 1 for all k′ and k, respectively. The step size sk′ is described below the algorithm

(see (4.117)).

Here, each iteration k′ amounts to solving a PCG loop. The optimal r provided by

each PCG loop k′ is denoted by rk′,∗. Using this, we terminate each outer subproblem

k using a stopping criterion given in line 6 in Algorithm 4.6. This stopping criterion

uses a stopping threshold Tolmed.

Additionally, following [8], we choose sk′ using a step length rule. Using this ap-

proach, we choose

sk′ = min (1, ϕ∗) δχk′ . (4.117)

Here, ϕ∗ is the largest ϕ that satisfies a feasibility condition

(|χk′ + ϕδχk′ |)j 6 1, ∀j = 1, ..., 2Nl, (4.118)

where j denotes the index of components of χ.

4.6 Numerical results

The TV regularised minimisation approaches that have been explained in section 4.5,

i.e., ADMM, LD and PD-IPM, were used for a simultaneous reconstruction of images

of optical absorption coefficient µ and diffusion coefficient κ for 2D and 3D phantoms.



CHAPTER 4. DIRECT QPAT FOR REALISTIC ACOUSTIC MEDIA 199

4.6.1 2D phantom

The 2D simulation was performed on a square domain [−5,+4.92]× [−5,+4.92] mm2.

Optical excitation

Four different optical excitation patterns were used, i.e., Nq = 4. For each optical

excitation q, we used a discretisation of an inward directed diffuse boundary current

Is,q (J/mm) that obeys

Is,q(r) =

1, r ∈ ιq

0, r ∈ ∂Ω\ιq,
(4.119)

where ιq ⊂ ∂Ω denotes the source position for optical excitation q, and was set each

side of the square for each optical excitation (cf. the second line in equation (4.1)).

Discretisation for data generation

For generation of time series of boundary data, the square domain was discretised using

a grid with 128× 128 nodes and an even separation distance of 7.81× 10−2mm along

both Cartesian coordiantes. For the optical portion of the problem, a triangulation

was applied so that each two finite elements form a pixel, and the centre of the pixel

matches an associated node on the acoustic grid. For the acoustic portion of the

problem, to mitigate wave wrapping [40], a perfectly matched layer (PML) having a

thickness of 20 grid points and a maximum attenuation coefficient of 2 nepers per

grid point was added to each side of the grid. The propagated wavefield was detected

in 1017 time steps using 158 detectors that are equidistantly placed on the left and

top sides of the computational grid, as shown in figure 4.1. A 30 dB Additive White

Gaussian Noise (AWGN) was then added to the simulated data.

Discretisation for image reconstruction

To avoid an inverse crime for discretisation, the image reconstruction was done using

a computational grid made up of 80 × 80 nodes with an even separation distance of

1.25× 10−1mm.
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Table 4.1: The minimal and maximal values for acoustic properties of the 2D phantom.

c0(ms−1) ρ0(kgm−3)
min max min max

Data generation 1.129× 103 1.902× 103 0.620× 103 1.390× 103

Image reconstruction 1.276× 103 1.725× 103 0.750× 103 1.250× 103

Acoustic properties

To the best of our knowledge, our manuscript reports the first results on the direct

QPAT for realistic acoustic media, for which acoustic characteristics of tissue media

such as heterogeneity and attenuation are taken into account.

In addition, PAT and QPAT use an assumption that the acoustic properties of the

medium are known. This assumption does not hold in practical cases. For example,

it has been shown that the acoustic properties of the breast vary up to 15 %. These

variations are often not exactly known for reconstruction. As a result, using the same

acoustic properties for data generation and image reconstruction may be an inverse

crime. To avoid this, for data generation, we corrupted the acoustic properties of the

medium with 30 dB AWGN noise. Figures 4.1(a) and 4.1(b) show the contaminated

distributions of sound speed (c0) and ambient density (ρ0) for data generation, respec-

tively. The minimal and maximal values of these maps are given in the top row of

Table 4.1. Using these values, the computational grid for data generation supports a

maximal frequency up to 7.223 MHz. (See the k-Wave manual [44].) Also, in figures

4.1(a) and 4.1(b), the position of detectors is shown by the black circles matching the

left and top sides of the grid.

For image reconstruction, we used the clean maps that are shown in figures 4.1(c)

and 4.1(d). The minimal and maximal values of these maps are given in the bottom

row of Table 4.1. Using these acoustic maps, the grid for image reconstruction supports

a maximal frequency up to 5.101 MHz. From Table 4.1, the incorporated noise has

provided a 10-15% relative discrepancy between the acoustic properties used for data

generation and image reconstruction.

Furthermore, the acoustic medium was assumed attenuating, where acoustic ab-

sorption and dispersion follow a frequency power law [46]. Accordingly, we used a

constant attenuation coefficient α0 = 0.75 dB MHz−y cm−1 and an exponent factor

y = 1.5 for both data generation and image reconstruction (cf. (4.8)). These values
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Figure 4.1: Acoustic properties for 2D case. Data generation: (a) c0 (b) ρ0, and image
reconstruction: (c) c0 (d) ρ0.

were chosen so that they approximately simulate the acoustic attenuation properties

of the breast.

Optical phantom

We simulate the distributions of optical coefficients so that they follow the optical

properties of soft tissues in the sense that they often possess a broad range of values

for the optical coefficients. Our numerical experience showed that this is a challenge

for image reconstruction, although this issue has been neglected in many of studies of

QPAT. The reader is referred to [31] for a study on the direct QPAT, in which this issue

has been considered. Accordingly, we simulate a distribution for optical absorption

coefficient with 20 values within a range µ ∈ [0.025, 0.325] mm−1 with a background

0.075 mm−1. Also, a distribution for the diffusion coefficient is simulated so that it

has 6 values within a range κ ∈ [0.2, 0.4] mm−1 with a background 0.3 mm−1. Figures

4.2(a) and 4.2(b) show the map for µ and κ, respectively.
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Image reconstruction

We initialised all algorithms using values 1.2 times more than the mean of optical

coefficients for the associated phantoms.

ADMM. The ADMM approach (cf. Algorithm 4.3) was applied for a simultaneous

reconstruction of µ and κ. Since ADMM is our benchmark method, the associated

parameters were chosen very carefully in order to obtain the best possible image. The

line 5 in Algorithm 4.3 is a minimisation of FA (cf. (4.96)) with respect to X̄ using the

L-BFGS algorithm given in Algorithm 4.1. The L-BFGS algorithm uses a backtracking

line search given in Algorithm 4.2 with c1 = 1 × 10−4, c2 = 0.9 and τ = 0.25. Also,

we set % = 1 (cf.(4.96)), and ν = 1 × 10−3 for the Shrinkage operator (4.97). We

terminated the ADMM algorithm using Tolout = 1× 10−2 (cf. Algorithm 4.3).

LD. The LD method was applied using Algorithm 4.5. Using this algorithm, each

linearised subproblem is solved using a PCG loop (cf. Algorithm 4.4) by setting

imax = 30, im = 5, and Tolin = 0. The latter parameter implies that we terminate

each PCG loop, if

i > imax ∪
(
i > im ∩ rTi zi > r

T
i−imzi−im

)
. (4.120)

Note that we observed a nonmonotone convergence for iterates of each PCG loop

(inner iterations) in regions close to an optimal solution X∗, but the sequence ε(Xk)

always monotonically converged to ε(X∗) using αk = 1. (We suggest using an Armijo

condition for the outer iterations, although we observed that a nonmonotonic reduction

in iterates of the PCG loop associated with outer iteration k is sufficient for providing

a descent search direction, i.e., ε(Xk+1) < ε(Xk)). The TV preconditioner was applied

using γ = 1× 10−6 and β = 2× 10−5. Our LD algorithm was stopped using Tolout =

1× 10−3 (cf. Algorithm 4.5).

PD-IPM. The PD-IPM technique was applied using Algorithm 4.6. Because of

applying two layers of linearisation, each of the outer linearised problems are solved

using a sequence of inner linearised subproblems. For solving a normal equation as-

sociated with each inner linearised subproblem, we terminated each PCG algorithm

using the same parameters as in the LD method. The TV preconditioner was applied

using γ = 1× 10−6 and β = 1× 10−6.

We terminated each outer linearised suproblem using a threshold Tolmed = 1×10−3
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and k′max = 20 (cf. Algorithm 4.6). Our PD-IPM was terminated using a stopping

threshold Tolout = 1× 10−3.

Evaluation of image reconstruction

The criterion that we use for measuring the convergence of sequence Xk to a ground

truth image (phantom) is Relative Error (RE), which is calculated as

RE(uk) = 100× ‖u
k − uphantom‖2

‖uphantom‖2

. (4.121)

Here, uk is the solution for either κ or µ at outer iteration k that is interpolated back

to the grid for data generation (phantom). Also, the superscript phantom indicates

the distribution of optical coeffcients for the phantom.

We also consider ε(Xk) as the second criterion for convergence (cf. (4.79)).

Observations

ADMM. Using the parameters given in section 4.6.1, the ADMM algorithm was

stopped after outer iteration 6. The final reconstructed images for the optical ab-

sorption coefficient µ and diffusion coefficient κ are shown in figures 4.2(c) and 4.2(d),

respectively. Figure 4.3(a) shows the RE of sequence computed by the ADMM algo-

rithm at outer iterations.

LD. For the LD algorithm, the associated stopping criterion was satisfied after

outer iteration 30. Figures 4.2(e) and 4.2(f) show the final reconstructed images for

µ and κ, respectively. Figure 4.3(b) shows the RE of the iterates provided by LD for

outer iterations k. The computed values for ε(Xk) are shown in figure 4.4(a). This

figure is shown from an enlarged view around the optimal solution in figure 4.4(b). As

shown in these figures, ε monotonically converges to a minimiser for all outer iterations

using our choice for the step size αk = 1 (∀k).

PD-IPM. The stopping criterion for the PD-IPM algorithm was satisfied after 4

outer iterations. The final reconstructed images for µ and κ are shown in figures 4.2(g)

and 4.2(h), respectively. Figure 4.3(c) shows the RE of solutions (optical coefficients)

computed by the PD-IPM algorithm for outer iterations k. Figure 4.4(c) shows the

obtained values for ε(Xk). This figure is shown from an enlarged view around the

optimal solution in figure 4.4(d). As shown in these figures, our choices for the step



CHAPTER 4. DIRECT QPAT FOR REALISTIC ACOUSTIC MEDIA 204

sizes associated with outer (resp. inner) subproblems, which are αk = 1 (resp. αk′ = 1),

provided a monotonic reduction for values of εk (resp. εk′) for all iterations.

Remark 4.5. Using PD-IPM, for both outer and inner linearised subproblems, the

first step is a compuation of associated ε and the gradient ∇ε (cf. Algorithm 4.6).

As a result, using a line search for compuation of αk and αk′ , e.g., a backtracking

line search using Wolfe conditions, is straightforward, and does not impose additional

computational cost. However, our numerical experience showed that a reduction in

rTi zi provided by the PCG loops (cf. Algorithm 4.4) is sufficient for a monotonic

reduction of the objective function without using a line search.
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Figure 4.2: Optical coefficients for 2D case. Phantom: (a) absorption coefficient µ (b)
diffusion coefficient κ. The images reconstructed by ADMM: (c) µ (d) κ, LD: (e) µ
(f) κ, and PD-IPM: (g) µ (h) κ.
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Figure 4.3: RE versus outer iteration k for 2D case: (a) ADMM (b) LD (c) PD-IPM.

Table 4.2: RE(%) of the final reconstructed images for 2D case.

Methods µ κ
ADMM 11.1882 11.5316

LD 9.8799 8.6899
PD-IPM 9.8513 8.6547

Table 4.2 shows the RE values for the final reconstructed images shown in figure 4.2.

4.6.2 3D phantom

We performed our 3D simulation on a cubic domain [−5, 5]× [−5, 5]× [−5, 5] mm3.

Optical excitation

We used three optical excitation patterns, i.e., Nq = 3. For each optical excitation q,

we used a discretisation of an inward directed diffuse boundary current Is,q (J/mm2)

that obeys (4.119) with ιq ⊂ ∂Ω two confronting faces of the grid, i.e. the left-right,

posterior-anterior, and bottom-top faces.
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Figure 4.4: ε versus outer iteration k for 2D case. (a) LD (b) LD from an enlarged
view around the optimal point (c) PD-IPM (d) PD-IPM from an enlarged view around
the optimal point.

Discretisation for data generation

For data generation, the cubic domain was discretised using a grid with 37× 37× 37

nodes and an even separation distance of 2.78 × 10−1mm along all Cartesian coor-

dinates. For the optical portion of the problem, an FE mesh was simulated so that

each set of six tetrahedral voxels forms a cubic pixel with a centre matching an asso-

ciated node on the acoustic grid. For the acoustic portion of the problem, we added

a perfectly matched layer (PML) with a thickness of 8 grid points and a maximum

attenuation coefficient of 2 nepers per grid point. The acoustic wavefield was detected

in 292 time instants using 2145 detectors that are equidistantly placed on two (the left

and posterior) faces of the grid. A 30 dB Additive White Gaussian Noise (AWGN)

was then added to the simulated data.

Discretisation for image reconstruction

For image reconstruction, we avoided an inverse crime for discretisation by using a

grid made up of 33×33×33 nodes with a homogeneous separation distance of 3.125×

10−1mm along all Cartesian coordinates.
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Table 4.3: The minimal and maximal values for acoustic properties of the 3D phantom.

c0(ms−1) ρ0(kgm−3)
min max min max

Data generation 1.186× 103 2.077× 103 0.853× 103 1.374× 103

Image reconstruction 1.390× 103 1.897× 103 0.956× 103 1.252× 103

Acoustic properties

As discussed in section 4.6.1, to avoid an inverse crime for acoustic properties of the

medium, we corrupted the sound speed and ambient density with 30 dB AWGN noise

for simulation of data, whereas we used the clean acoustic maps for image reconstruc-

tion. Table 4.3 shows the minimial and maximal values for these maps. Using this

table, the grid for data generation (resp. image reconstruction) supports a maximal

frequency of 2.0766 MHz (resp. 2.156 MHz). The distributions of the sound speed and

ambient density for the 3D phantom for data generation (resp. image reconstruction)

are shown from a top view in figures 4.5(a) and 4.5(b) (resp. 4.5(c) and 4.5(d)), respec-

tively. Additionally, the acoustic attenuation coefficient and the associated exponent

factor (cf. equation (4.8)) was simulated the same as the 2D phantom.

Optical phantom

The left columns in figures 4.6(a) and 4.6(b) show the distributions of µ and κ for

the 3D phantom, respectively. The images are obtained in horizontal planes (slices)

z = {3, 2, 1, 0,−1,−2,−3} mm, and the colorbars are shown to the right of images.

Image reconstruction

All algorithms were initialised using values 1.2 times more than the mean of optical

coefficients for the 3D phantoms.

ADMM. The parameters for an implementation of the ADMM algorithm were

chosen carefully in order to obtain almost the best possible image. All these parameres

match our choices for the 2D phantom.

LD. For an implementation of the LD algorithm, the arising linearised subproblems

were solved using a PCG algorithm with the same parameters as the 2D phantom,

except that for stopping each PCG loop, we used im = 3. The TV preconditioner M

was applied using γ = 1×10−8 and β = 1×10−6. We stopped our LD algorithm using
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Figure 4.5: Acoustic properties for 3D case from a top view. Data generation: (a) c0

(b) ρ0, and image reconstruction: (c) c0 (d) ρ0.

Tolout = 1× 10−3.

PD-IPM. For an implementation of the PD-IPM algorithm, each outer linearised

problem was solved using a sequence of inner linearised subproblems. The TV pre-

conditioner was applied using γ = 1 × 10−8 and β = 1 × 10−8. For termination of

each PCG loop associated with each inner linearised problem, we used im = 2 and

imax = 30 (cf. Algorithm 4.4). We also terminated each outer linearised subproblem

using k′max = 25 and Tolmed = 1× 10−3. Also, our PD-IPM algorithm was terminated

using a stopping threshold Tolout = 1× 10−3.

Observations

ADMM. The stopping criterion for the ADMM algorithm was satisfied after outer

iteration 7. In figures 4.6(a) and 4.6(b), the second columns (from the left side) show

the final reconstructed images for µ and κ, respectively. These images are shown using

horizonal slices the same as the first columns for the phantom. Figure 4.7(a) shows the

RE of solutions computed by the ADMM algorithm for µ and κ at outer iterations.

LD. The LD algorithm was terminated after 10 iterations. The final reconstructed
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Table 4.4: RE(%) of the final reconstructed images for 3D case.

Methods µ κ
ADMM 14.0210 11.3598

LD 11.4718 8.1426
PD-IPM 11.0694 7.9647

images for µ and κ are shown in the 3rd columns of figures 4.6(a) and 4.6(b), respec-

tively. The images are shown in the same way as the ADMM method. Figure 4.7(b)

shows the RE of the solutions computed by LD for outer iterations k. The computed

values for ε(Xk) are shown in figure 4.8(a), and 4.8(b) from an enlarged view around

the optimal point. As shown in these figures, ε monotonically converges to a minimiser

for all outer iterations.

PD-IPM. The stopping criterion for the PD-IPM algorithm was satisfied after 6

outer iterations. The final reconstructed images for µ and κ are shown in the 4th

columns of figures 4.6(a) and 4.6(b), respectively. Figure 4.7(c) shows the RE of

solutions (optical coefficients) computed by the PD-IPM algorithm for outer iterations

k. Figures 4.8(c) and 4.8(d) show the obtained values for ε(Xk). As shown in these

figures, our choices for the step sizes associated with outer (resp. inner) subproblems,

i.e., αk = 1 (resp. αk′ = 1), provided a monotonic reduction for εk (resp. εk′).

Table 4.4 shows the RE values for the final reconstructed images shown in figure 4.6.

4.7 Discussion

In the previous section, we numerically evaluated the performance of the used iterative

algorithms for a direct problem of QPAT for realistic acoustic media. In this section,

we give further details on our numerical results.

The quality of images reconstructed by the ADMM algorithm was sensitive to

choices for % and Tolout, and thus these parameters were chosen very carefully. This

leads to several repetition of the entire reconstruction. For example, by using a smaller

Tolout (further proceeding of the iterations), the RE values started to increase. One

way for avoiding this may be increasing the amount of regularisation via an increase

in %, but our numerical experience shows that choosing greater values for % negatively

affects the convergence of the algorithm. As shown in the second columns in figure 4.6,
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Figure 4.6: Optical coefficients for 3D case. (a) µ, from the left to right: phantom,
ADMM, LD and PD-IPM. (b) κ, from the left to right: phantom, ADMM, LD and
PD-IPM.
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Figure 4.7: RE versus outer iteration k for 3D case. (a) ADMM (b) LD (c) PD-IPM.
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Figure 4.8: ε versus outer iteration k for 3D case. (a) LD (b) LD from an enlarged
view around the optimal point (c) PD-IPM (d) PD-IPM from an enlarged view around
the optimal point.



CHAPTER 4. DIRECT QPAT FOR REALISTIC ACOUSTIC MEDIA 213

the reconstructed image for µ includes a high level of artifact, and also the ADMM

algorithm failed to produce an accurate image for κ. (Note that better images were

reconstructed using ADMM for 2D case.) The poor performance of the ADMM algo-

rithm, especially in 3D case, may be because of assuming a high level of errors in the

acoustic properties, as shown in figures 4.1 and 4.5.

The LD algorithm was not sensitive to γ, Tolin and Tolout. Both ε and RE will

proceed with a monotonic reduction, if we choose smaller values for Tolout. This is

indicated by figures 4.4(b) and 4.8(b). However, the convergence of the LD algorithm

will be deteriorated, if we use very small values for β, for example the values that we

used for the PD-IPM algorithm.

Our numerical experience showed that the PD-IPM algorithm was also not sensitive

to choices for γ, Tolin, Tolmed and Tolout. (For example, by choosing Tolmed = 0,

the performance of the algorithm is almost the same.) Additionally, this algorithm

converged well using very small values for β.

Regarding the computational cost, the ADMM algorithm reconstructed final im-

ages using 100-150 gradient-based iterations for both 2D and 3D cases. (Note that

each iteration involves at least an implementation of the forward operator and the

adjoint of the Jacobian matrix.) Note also that for ADMM, as discussed in the first

paragraph of this section, using a smaller stopping threshold deteriorates the quality of

reconstructed images. The LD and PD-IPM approaches produced the final images in

150-200 inner iterations. Note that the major cost of each inner iteration for the PCG

loop involves an implicit implementation of the Jacobian matrix and its transpose,

and has almost the same computational cost as the gradient.

For a direct problem of QPAT for realistic acoustic media with an error in estima-

tion of acoustic properties, our numerical results show that the developed matrix-free

Jacobian-based inexact-Newton methods outperform gradient-based approaches that

utilise a search direction using Quasi-Newton approaches like the L-BFGS method

[19, 18], at the same time does not impose a large computational cost due to an

explicit construction of the Jacobian matrix [31].

Our next goal is an extension of multi-source QPAT to multi-spectral QPAT [5],

which is more practical for biomedical cases, especially when a limited view is acces-

sible for optical excitations. A simultaneous reconstruction of the optical coefficients
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and the sound speed using adjunct information obtained from ultrasound computed

tomography may be promising for improving the quality of reconstructed images [30].
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4.A Supplementary materials

In this section, we will provide further details about some formulae in this chapter.

These details have not been embedded in the paper because of space constraints.

4.A.1 A proof for Lemma 4.1

Here, we prove that the adjoint of the Fréchet derivative of the optical forward operator

satisfies equations (4.17) and (4.18) in Lemma 4.1.

Proof. Here, for brevity, the dependence on r is neglected. Applying integration-by-

parts using the divergence theorem to the first line in (4.17) gives

∫
Ω

 ∇φ0 · ∇h̃

φ0h̃+ φ0h

 ·
 δκ

δµ

 dr

=

∫
Ω

−(∇ · δκ∇φ0) h̃+ φ0 h̃ δµ+ φ0 h δµ dr

+

∫
∂Ω

δκ h̃
∂φ0

∂n̂
ds

(4.122)

By the assumption that δφ satisfies (4.16), the right-hand-side of the above equation

can be rewritten as∫
Ω

(∇ · κ0∇δφ− µ0 δφ) h̃+ φ0 h δµ dr +

∫
∂Ω

δκ h̃
∂φ0

∂n̂
ds. (4.123)
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Applying integration-by-parts two times using the divergence theorem shows that

(4.123) is equal to ∫
Ω

(∇ · κ0∇h̃− µ0 h̃) δφ+ φ0 h δµ dr

+

∫
∂Ω

δκ h̃
∂φ0

∂n̂
+ κ0 h̃

∂δφ

∂n̂
− κ0 δφ

∂h̃

∂n̂
ds.

(4.124)

By the assumption that h̃ satisfies (4.18), (4.124) is equal to∫
Ω

(µ0 δφ+ φ0 δµ) h dr

+

∫
∂Ω

δκ h̃
∂φ0

∂n̂
+ κ0 h̃

∂δφ

∂n̂
− κ0 δφ

∂h̃

∂n̂
ds.

(4.125)

Using the boundary condition in (4.16), the integrand in the second line in (4.125)

yields

−2γdδφ

(
h̃+

1

2γd
κ0
∂h̃

∂n̂

)
, (4.126)

which is equal to zero using the boundary condition in (4.18). This proves the adjoint

is as claimed.

4.A.2 Discretisation of J∗o using an adjoint-then-discretise ap-

proach

Here, we provide further details about a discretisation of the adjoint of the Fréchet

derivative of the optical forward operator using an adjoint-then-discretise approach

(cf. (4.40)). We will prove that using an adjoint-then-discretise approach, if we ap-

proximate the products in (4.17) by first multiplying the nodal functions and then

using an L2-orthogonal projection on the space of elemental functions, then a discreti-

sation of the adjoint will give equation (4.40). We also remind that a discretisation of

the adjoint of the Fréchet derivative of the optical forward operator using the adjoint-

then-discretise approach given in this chapter (cf. (4.40)) gives the same formula as a

corresponding discretised adjoint (cf. (4.41)) [18].

Proof. For any f ∈ L2(Ω), the L2-orthogonal projection of f onto the span of {χj} is

defined by

f ≈ f e =
Ne∑
j=1

f̂jχj.
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Then since {χj/S1/2
j } is an L2-orthonormal set, the coefficients f̂j are given by

f̂j =
1

Sj

∫
tj

f(r) dr, (4.127)

where tj is the element j. Now, let us consider the first line of the adjoint given by

formula (4.17), which is ∇φ0 · ∇h̃. In the discretization, φ0 (resp. h̃) is approximated

in a piecewise linear basis as φh (resp. h̃h), as shown in (4.23) (resp.(4.24)). Using

these, the coefficients associated with the L2-orthonormal projection of ∇φh0 ·∇h̃h onto

the span of {χj} will be

( ̂∇φh0 · ∇h̃h)j =
1

Sj

∫
tj

∇φh0(r) · ∇h̃h(r)dr

=
1

Sj

Nn∑
k,p=1

∫
tj

∇ϕk(r) · ∇ϕp(r)dr H̃kΦ0,p,

(4.128)

Plugging (4.38) into (4.128) gives

( ̂∇φh0 · ∇h̃h)j =
1

Sj

Nn∑
k,p=1

∂Ao,kp

∂κ̂j
H̃kΦ0,p. (4.129)

This proves that the first component of the adjoint is as claimed.

Now let us consider the first term in the second line of the adjoint in (4.17). As

above, a projection of φh0 · h̃h onto the span of
{
χj
}

yields

(φ̂h0 · h̃h)j =
1

Sj

∫
tj

φh0(r)h̃h(r) dr

=
1

Sj

Nn∑
k,p=1

∫
tj

ϕk(r)ϕp(r) dr H̃kΦ0,p.

(4.130)

Plugging (4.39) into (4.130) gives

(φ̂h0 · h̃h)j =
1

Sj

Nn∑
k,p=1

∂Ao,kp

∂µ̂j
H̃kΦ0,p. (4.131)

For the second term in the second line of the adjoint, having defined the elemental

vector H, together with an approximation of φ0 at element j, gives

Hj(φ̂h0)j = Hj
1

Sj

∫
tj

φh0(r) dr

= Hj
1

Sj

Nn∑
k=1

∫
tj

ϕk(r) dr Φk

= Hj (IΦ)j ,

(4.132)

and hence the proof is completed.
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4.A.3 The reconstructed images from a larger view

Because a visual comparison between the reconstructed images shown in figures 4.2

and 4.6 may be difficult for the reader, we visualise these reconstructed images from a

larger view. Accordingly, figures 4.9 and 4.10 show the reconstructed images in figures

4.2 and 4.6 from a larger view.
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Figure 4.9: A visualisation of figure 4.2 from a larger view. Optical coefficients for 2D
case. Phantom: (a) absorption coefficient µ (b) diffusion coefficient κ. The images
reconstructed by ADMM: (c) µ (d) κ, LD: (e) µ (f) κ, and PD-IPM: (g) µ (h) κ.
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(a)
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(b)

Figure 4.10: A visualisation of figure 4.6 from a larger view. Optical coefficients for
3D case. (a) µ, from the left to right: phantom, ADMM, LD and PD-IPM. (b) κ,
from the left to right: phantom, ADMM, LD and PD-IPM.
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Chapter 5

Conclusion, discussion and future

works

In this thesis, we dealt with variational approaches for photo-acoustic tomography

(PAT) and quantitative photo-acoustic tomography (QPAT). Variational approaches

are among the robust methods for solving the inverse problem of PAT because of their

ability in coping with the ill-posedness of the problem. Considering PAT (the acoustic

portion of QPAT), an ill-posedness may arise, for example because of errors in estima-

tion of medium’s acoustic properties or a few-view or limited-view detection surface

[17]. Among variational approaches that have been used for the pure acoustic problem

of PAT, gradient-based methods that use forward-backward splitting methods, are

very popular, because they are cheaper than second-order methods regarding memory

space and computational cost [17, 2, 1].

Because of the compartmentalised distribution of light absorbing molecules in tis-

sue media, the generated ultrasound waves are broadband [27]. For modelling gener-

ation and propagation of such broadband acoustic waves, very dense computational

grids must be used. This makes an application of variational methods for PAT very

challenging, because the associated algorithms are iterative.

In chapter 2, to mitigate the computational cost of variational approaches for the

acoustic inverse problem of PAT, we proposed a line-search multi-grid (MG) algorithm

using the well-known Nash’s method [21]. The objective function we considered is a

sum of a data fidelity function, which is smooth, and is an L2 norm of the discrepancy

between a pair of modelled and measured sets of times series of boundary data, and
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a total variation (TV) functional, which is nonsmooth [9, 8]. We also enforced a non-

negativity constraint using the fact that the initial pressure distribution cannot be

negative [17].

At each iteration, our MG algorithm decides between a direct search direction on

a finer (target) grid, or alternatively a recursive search direction that is computed

via a minimisation of the objective function on a coarser level. When the algorithm

decides to compute a recursive search direction, the objective function is transferred

to a coarser level using the Nash’s technique [21]. The Nash’s method was originally

developed for minimisation of smooth functions, so we approximated the TV functional

(the non-smooth part of the objective function) with a smoothed variant. We also used

a method proposed in [20] for transferring the non-negativity constraint to a coarser

level. Our developed MG algorithm was adapted to FBS methods, i.e., ISTA and

FISTA [9, 8]. Using both algorithms, an application of the proposed MG method

significantly improved the speed of image reconstruction [18].

Our MG algorithm is limited to FBS algorithms. An extension of MG optimisa-

tion methods to other popular classes of variational approaches for PAT, for example

subspace-Krylov methods like PCG algorithm [16], may need further attention. In

addition, our MG algorithm is limited to the acoustic inverse problem of PAT, but

the objective of PAT is a reconstruction of optical attenuation coefficients (QPAT).

Therefore, an extension of MG algorithms to a single-stage variant of QPAT may be

promising, because an inverse problem of QPAT for biomedical applications are often

very large-scale. For a single-stage variant of QPAT, the forward operator is a com-

posite operator including a nonlinear and ill-conditioned operator for modelling the

optical portion of the problem and a linear operator for modelling the acoustic portion

of the problem [15]. This makes an application of MG optimisation approaches for

QPAT more challenging than PAT.

In chapter 3, we used variational approaches for photo-acoustic tomography of

the brain. An associated inverse problem is a reconstruction of the initial pressure

distribution inside the skull from a set of time series of pressure data that is measured

outside the skull. The photo-acoustic forward operator that has been used in chapter

2 describes the propagation of acoustic waves solely for lossy fluid media, and does

not account for generation and propagation of shear waves within solid media like the
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skull. Therefore, to account for propagation of shear waves, we used a system of photo-

acoustic wave equations that describe the propagation of acoustic waves in linear,

isotropic and elastic media, and consider an acoustic absorption and dispersion that

obey a frequency power law using fractional Laplacians [26], the same as in chapter 2

[25]. We derived a corresponding adjoint using an adjoint-then-discretise method [19].

We used a k-space pseudospectral method for discretisation of the forward and adjoint

operators [24, 10, 11], as described in section 1.7. Using this discretisation approach,

we analytically showed that a discretisation of our derived continuous adjoint matches

an algebraic adjoint of a corresponding discretised forward operator [19]. From a

numerical point of view, we verified a discretisation of our derived adjoint operator

using a discretisation of an inner product formula, which was already used for an

analytic calculation of our continuous adjoint operator.

For modelling the acoustic absorption and dispersion, a computation of the frac-

tional Laplacian operators using a k-space pseudospectral method is more efficient than

solving the associated fractional temporal derivatives. However, fractional Laplacian

operators use a dispersion formula, i.e., w ≈ ck with w the angular frequency, c the

sound speed and k the spatial wavenumber [26]. Since the compressional and shear

parts of acoustic waves propagate at different sound speeds c, different dispersion for-

mulae must be used. This increases the computational cost for computation of the

forward and adjoint operators almost twice.

Since photo-acoustic waves are highly broadband, very dense grids must be used

for modelling the high frequency components of the generated ultrasound waves. As

a result, developing more efficient methods for describing the attenuation of acoustic

waves in lossy elastic media can be useful for practical cases [14]. One advantage

of using a continuous adjoint is that an inclusion of any modifications applied on the

forward problem in the adjoint operator will be straightforward, and does not require a

recalculation of the adjoint operator [19]. Also, a continuous adjoint is independent of

the method used for discretisation of the forward and adjoint operators [2]. Therefore,

the derived continuous adjoint may be valid for any discretisation schemes that will

be developed in future.

We tested the performance of our forward and adjoint operators using a classical

algorithm like ISTA. More efficient and tolerant algorithms can be used for solving



CHAPTER 5. CONCLUSION, DISCUSSION AND FUTURE WORKS 234

the inverse problem of PAT in lossy elastic media. For example, an inclusion of our

developed forward and adjoint pair in accelerated variants of FBS algorithms like

FISTA [9, 8], or Krylov subspace methods, e.g., PCG [16] or LSQR [3], may be useful

for improving the speed of image reconstruction.

In addition, the geometry and acoustic properties of the skull may not be known

precisely for real cases. To account for this challenge in our simulations, in addition

to avoid a classical inverse crime for discretisation of the domain, we used different

acoustic properties for data generation and image reconstruction, together with a shift

in soft tissue-skull interfaces. Further studies are required for a minimisation of errors

in modelling acoustic properties. For example, using adjunct imaging modalities like

ultrasound computed tomography (USCT) for a reconstruction of the sound speed be-

fore or during the image reconstruction for PAT, or using x-ray computed tomography

for a determination of the geometry of the skull may be promising.

In chapter 4, we dealt with variational approaches for quantitative photo-acoustic

tomography (QPAT). QPAT involves two inverse problems, namely acoustic and op-

tical. In a classical variant of QPAT, these two inverse problems are solved separately

[23, 13]. Using this class of approaches, an acoustic portion of the inverse problem is

first solved in order to reconstruct an initial pressure distribution from a set of time

series of boundary data, and the solution is used as data for the optical portion of

the inverse problem. For cases the acoustic portion of QPAT is ill-posed, for example

because of errors in modelling the acoustic properties or a limited-view detection sur-

face, the solution of the acoustic inverse problem will not be accurate sufficiently to

act as data for the optical portion of the inverse problem [15, 12]. Because the optical

portion of the forward operator is nonlinear and ill-posed, this error may grow during

the inversion process.

In recent years, a single-stage reconstruction of the optical attenuation coefficients

from the boundary pressure data has attracted much attention [15]. One advantage

of using a single-stage approach is that the acoustic portion of the inverse problem

benefits from a priori knowledge about the optical attenuation coefficients, the same

as the optical portion. Additionally, the optical portion of the inverse problem benefits

from approaches for modelling noise in the boundary data, the same as the acoustic

inverse problem. Furthermore, to mitigate the ill-posedness of the inverse problem
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of QPAT, multi-source [5] or multi-wavelength [6] settings are often used. Because

applying any changes in the optical sources or wavelengths will change the induced

initial pressure distribution, the acoustic portion of the inverse problem will fail to

benefit from using muti-source or multi-wavelength settings, if the acoustic and optical

portions of the inverse problem are solved separately, as opposed to a single-stage

variant of QPAT [15, 12].

In chapter 4, we solved a single-stage variant of QPAT for heterogeneous and lossy

acoustic media. For the optical portion of the forward operator, we used a Diffusion

Approximation (DA) [7] to Radiative Transfer Equation (RTE) [4], because this model

is more efficient than RTE regarding the computational cost. For the acoustic portion

of the forward operator, we used a model that has been used in chapter 2 for our MG

algorithm. To the best of our knowledge, existing studies for the single-stage problem

of QPAT has been limited to homogeneous and lossless media, and have been solved

by explicit inversion formulae [15, 12, 22]. Assuming a simplified acoustic medium for

a biomedical application of direct QPAT may not be accurate, because this neglects

a dependence of the propagation of acoustic waves on the characteristic properties of

tissue media [10]. The arising error may not deteriorate the solution for a well-posed

acoustic inverse problem of PAT, but for direct QPAT, this error may be significantly

amplified by the optical portion of the forward operator, which is nonlinear and ill-

conditioned. Motivated by this, we included the system of coupled first-order wave

equations that has already been used in chapter 2 in our composite forward operator

for direct QPAT. Using this, we simulated a heterogeneous and lossy acoustic medium

with an absorption and physical dispersion that follow a frequency power law [25].

Since the heterogeneous acoustic properties of tissue media are not precisely accessible

for image reconstruction, we avoided an inverse crime for medium’s properties via an

inclusion of a 30 dB noise in the acoustic properties for data generation.

The same as in chapter 2, we used a k-space pseudospectral method for the dis-

cretisation of the acoustic forward operator (cf. section 1.7). We also used a first-order

finite element method for discretisation of a DA approximation that has been used for

modelling the optical portion of the problem. To mitigate the ill-posedness of the

problem, we used a multi-source setting for optical illuminations. Accordingly, we

used four illuminations for a 2D phantom and three illuminations for a 3D phantom.
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Using realistic and erroneous acoustic properties makes a single-stage inverse prob-

lem of QPAT more ill-posed than in [12] and [22]. A gradient-based quasi-Newton

approach that uses an LBFGS method for approximation of the inverse of the Hessian

matrix, and is regularised using a total variation approach in a framework based on an

Alternating Direction Method of Multipliers (ADMM) algorithm, has been success-

fully applied for a 2D problem of single-stage QPAT [12]. We used this algorithm as

a benchmark for our study. Although this algorithm converges well for the phantom

used in [12], our numerical results show that this approach is not sufficiently accurate,

when we use our acoustic forward operator for modelling propagation of acoustic waves

in a medium with heterogeneous and erroneous sound speed and ambient density.

Correspondingly, we developed two inexact Newton algorithms for a single-stage

problem of QPAT for realistic acoustic media. Our numerical results showed that

our developed algorithms reconstruct more accurate images than nonlinear gradient-

based algorithms using ADMM approach (our benchmark), for heterogeneous and

lossy acoustic media. Note that our considered inverse problem is more ill-posed than

existing studies, because we included an error in estimation of the acoustic properties,

and also we used a limited view for detection of pressure data on the boundary. We

applied these in order to make our simulations closer to a practical problem.

In our first developed approach, the residual function is iteratively linearised, and

each linearised subproblem is solved using a linear preconsitioned conjugate gradient

(PCG) algorithm, for which we used a matrix-free Jacobian based method. Also, a

discretisation of a total variation functional that is updated using a Lagged Diffusivity

(LD) approach [28] was used as a preconditioner [3]. The Jacobian matrix and an

associated adjoint are computed implicitly as a discretisation of the Fréchet derivative

of our composite forward operator and its adjoint. Our second proposed approach is

an extension to our first approach, for which the objective function is linearised in two

steps, the first of which is applied on the data fidelity function, and the second is used

in order to handle the nonlinearity of a TV function using a PD-IPM approach.

In this thesis, we used PCG for solving each linearised subproblem for simplicity,

but using more advanced krylov subspace methods such as LSQR [3] may be promis-

ing. As shown in section 4.6, the developed algorithms produced more accurate images

than an LBFGS-based ADMM method (our benchmark). Also, we showed that our
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developed preconditioned inexact Newton algorithms are less sensitive to changes in

the reconstruction parameters, which are often chosen heuristically. Indeed, a high

sensitivity of the solution to the ad-hoc reconstruction parameters may lead to inac-

curate images, and thus a recalculation of the inverse problem may be required.

In addition, in our study, we stabilised the inverse problem of direct QPAT using a

multi-source setting for optical illuminations, but using a multi-wavelength setting may

be more practical for real cases, because the whole boundary may not be accessible

for optical illuminations in medical applications. As a result, an extension of our

developed algorithms to a muti-frequency variant of a single-stage inverse problem of

QPAT looks promising [6].
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