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ABSTRACT 

The main intellectual contribution of this thesis consists of three self-contained essays. These 

essays are preceded by an introduction and literature review (chapters 1 and 2), and their results 

summarised in a concluding chapter 6. In the core essays, which constitute chapters 3-5 inclusive 

of the thesis, I test the empirical implications of two market microstructure invariance (MMI) 

principles first proposed by Kyle and Obizhaeva (2016b). The market setting I choose analyses 

trades in FTSE 100 index constituent stocks for the period between January 2007 and December 

2009, a period which incorporates both the 2008-09 financial crisis and the introduction of 

alternative trading platforms for FTSE 100 stocks 

The chapter 3 examines the MMI of bets, as applied to trades, in FTSE 100 index constituent 

stocks. To link bets and trades the thesis formulates an extended version of ITI model by 

Andersen et al. (2018) motivated by the MMI model (Kyle and Obizhaeva, 2016b). The model 

accounts for the level of trade intermediation and order shredding. I empirically test the model’s 

trading activity prediction on trade data using panel estimation methodologies. I find that for 

highly capitalized stocks, trade counts yield the predicted 2/3 proportionality relationship to 

trading activity. Further investigations, using alternative notions of trading activity proposed by 

Clark (1973) and Ané and Geman (2000) reveal the predicted proportionality only for large trade-

size stocks. 

The chapter 4 develops the analysis of the earlier chapter by investigating the market 

microstructure invariance proposition in FTSE 100 constituent stocks at the level of individual 

stocks, using four different notions of trading activity. I find that the notion of trading activity 

proposed by Clark (1973) reveals the predicted 2/3 proportionality number for the majority of 

stocks. This result is consistent even when the first and last minutes of active trading in the 

market are excluded. Invariance models yield a 1/2 proportionality between the log values of 

trade counts and trading activity, whereas the intraday trading patterns in the specific market, the 

magnitude of trade size and its correlation with the volatility partly explain this value. Based on 

this, I show that analysis on a year by year, pre-crisis and in-crisis sample do not suggest a unified 

order flow composition across stocks.  

The chapter 5 focuses on the MMI of transaction costs. I empirically test the respective 

predictions using three common proxies for transaction costs, namely quoted, effective, realized 

spreads on FTSE 100 stock trading data. As predicted by market microstructure invariance, I find 

that a -1/3 proportionality is present in average daily patterns in our sample for all three proxies 

of transaction costs, with larger trades having a negative impact on this proportionality when the 

underlying variables are estimated as intraday averages. My results suggest that market 

fragmentation does not impact the estimated invariance coefficients, though trading activity and 

volume traded on alternative platforms are negatively correlated with the percentage transaction 

costs on LSE per unit of volatility. Finally, the invariance prediction holds for a consolidated 

market, but the lower reduction in the realised spreads may suggest a greater impact of large 

trades in the alternative platforms or the fact that only few market makers benefit from an 

increase in trading activity.  
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CHAPTER 1 

Introduction 

1.1 Motivation 

There is an on-going debate in the market microstructure literature addressing the optimal 

approach to model how order flow imbalances move prices and to develop more efficient 

measures of liquidity. Although the outcome of this debate is critical for our comprehension of 

how financial markets operate, developing models of security price dynamics and forecasting, as 

well as accurate liquidity estimators is indeed challenging. In recent years, although developments 

continue to occur in the literature, there is neither a consolidated framework to construct 

empirical measures for order flow imbalances, nor one which generates accurate forecasts 

regarding how price impact is differentiated across securities. 

Various theoretical papers in market microstructure model trading are based on game theory and 

adopt a set of specific assumptions about both the characteristics and participants of the trading 

mechanism, as well as the information diffusion process. Some of these papers develop their 

theoretical models based on the concept of adverse selection, first discussed by Bagehot (Jack 

Treynor) (1971). Representative studies include but are not limited to Kyle (1985), Glosten and 

Milgrom (1985), Admati and Pfleiderer (1988) and Back and Baruch (2004). Other studies focus 

on inventory risks associated with trading such as Stoll (1978), Ho and Stoll (1981), Ho and Stoll 

(1983), O'Hara and Oldfield (1986), Grossman and Miller (1988) and Campbell and Kyle (1993). 

Several papers combine the idea of information asymmetry with order-processing costs or 

inventory risks, including Grossman and Stiglitz (1980), Easley and O'Hara (1987), Easley and 

O'Hara (1992) and Wang (1993). All these theoretical papers provide different perspectives as to 

how order flow imbalances move prices. However, drawing inferences regarding accurate 

empirical predictions from the respective models is difficult, and thus their empirical testing 

becomes challenging. As a result, the empirical proxies, for testing the relationship between price 

changes, order flow imbalances and their connection to stock characteristics are imperfect (e.g. 

Breen et al. (2002)). 

Market microstructure invariance (MMI from here after) is a theory introduced by Kyle and 

Obizhaeva (2016b) that attempts to bridge the gap between theoretical market microstructure 

models and their empirical counterparts by imposing both “cross-sectional restrictions” and 
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“time-series restrictions” that facilitate the empirical assessment of the former and also the 

implementation of liquidity measures that are contingent on order flow imbalances. Based on the 

idea of trading games, first described by Bagehot (Jack Treynor) (1971), Kyle and Obizhaeva 

(2016b) argue that trading a security is a game that involves a risk transfer from one market 

participant to another. Given that market participants trade many different securities, they play 

many different trading games simultaneously. These risk transfers are defined as “bets” which are 

“decisions to obtain or relinquish a long-term position of a certain size in a certain security, with each decision 

distributed approximately independently of other similar decisions” (Kyle and Obizhaeva, 2016b, p.1349). 

The trading games across securities are played in business time and the risk involved is asset-

specific, with small or no correlation with market risk. MMI theory suggests that microstructure 

characteristics remain constant when examined from the perspective of an appropriate asset-

specific business time clock that ticks at the arrival rate of bets in the market. 

The idea of business-time is not novel. Mandelbrot and Taylor (1967) and Clark (1973) are among  

the first to discuss the notion of business time, a concept of time that is connected to the rate of 

arrival of trades or trading volume, in which price dynamics approximately follow a Brownian 

motion process. Other studies, such as Jones et al. (1994), Hasbrouck (1999) and Ané and Geman 

(2000) also investigate the nature of the appropriate business clock that describes what happens to 

the assets in their respective datasets. Based on the idea of “bets”, MMI theory moves the 

discussion a step forward and links business time to the arrival rate of bets in the market, 

measuring trading activity as the product of expected dollar volume and returns volatility, and 

providing exact predictions of how microstructure characteristics relating to risk transfers vary 

with the specified trading activity. In a way, MMI theory attempts to apply appropriate scaling 

laws to different trading games played in different markets (e.g. an active and inactive market) so 

that they become fundamentally equivalent, and the same set of rules can be used to describe 

what actually happens in financial markets.  

These precise predictions are implied by two core principles of MMI theory, the invariance of 

bets and the invariance of transaction costs that I empirically examine in this thesis. In a sense 

they are empirically testable formulas relating order frequency, order size and transaction costs to 

functions of observable volume and volatility. Investigating whether these predictions hold across 

different assets, time and markets is very important. If indeed they hold, they can serve as useful 

metrics for practitioners, as a benchmark for assessing arguments regarding high frequency 

trading, market collapses and liquidity estimation for researchers, and a “road-map” for regulators 
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and policy makers. Until now, there are very few papers that examine the aforementioned 

predictions in the context of different securities and different markets. Kyle et al. (2012) examine 

invariance using daily data on news articles, Kyle et al. (2016) and Bae et al. (2016) investigate 

whether invariance holds for trades in US and Korean stocks, respectively. Andersen et al. (2018) 

test the invariance hypothesis in higher frequencies for trades in the S&P E-mini futures market 

by introducing Intraday Trading Invariance (ITI henceforth) as a purely empirical hypothesis 

motivated by MMI theory. Benzaquen et al. (2016) provide evidence for invariance in US stocks 

and futures contracts and propose an alternative definition of invariance and Kyle and Obizhaeva 

(2016a) examine invariance in data on trades for Russian stocks.  

1.2 Research Focus and Contributions 

Until now there is not any formal investigation of invariance in European markets and more 

specifically the UK equity market, which is one of Europe’s largest and most liquid markets. 

Additionally, current empirical investigations of invariance principles use either daily frequency 

data or tick by tick data recorded in a way that does not accurately capture the evolution of 

trading in the selected market. This thesis aims to bridge this gap in the literature and contribute 

further to the empirical investigation of invariance, the validation of invariance principles, and the 

precision of empirical estimates. I also endeavour to provide potential explanations for the 

reasons why deviations from the invariance principles, if any, occur. At the same time, the thesis 

also contributes to the time deformation literature, which proposes that price changes follow 

different distributions in calendar and business time, and to the existing literature related to 

market microstructure invariance and related scaling laws. The thesis consists of three self-

contained essays, which test the empirical implications of the two invariance principles as 

introduced by MMI theory, using trading data from FTSE 100 index stocks between January 2007 

and December 2009. It is important to note that the dataset I employ records trades in the order 

in which they are executed. This enables me to draw inferences for invariance principles with 

respect to the actual trading process and characteristics of the market under investigation. Also, 

the choice of this sample period is deliberate, as it enables me to analyse whether either market 

fragmentation, arising from the introduction of alternative trading platforms, or the 2008-2009 

financial crisis impact on the invariance properties of the FTSE 100 market. I now proceed to 

briefly summarise the research focus and specific contributions of each chapter.  

The first essay investigates the invariance of bets and the consequent empirical prediction of an 

inherent proportionality between the number of bets and bet activity. Specifically, following 
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Andersen et al. (2018), it examines whether the number of trades concerning FSTE 100 is 

proportional to trading activity in the power of 2/3. The essay departs from Andersen et al. 

(2018) in the manner that connects the MMI theory for bets to transaction counts in smaller 

intervals. Based on the assumption that bets and their actual trades are linked in a nonlinear 

manner, I contribute by introducing an extended invariance relationship between the number of 

trades and trading activity, motivated by the MMI invariance relationship for bets. This 

relationship incorporates the potential effect of order shredding and intermediation structures. I 

argue that a bet arriving in the market may be shredded into multiple trades in a non-linear 

manner and intermediated more than once until it is fully executed as a trade, something may 

affect the estimated proportionality. This modification is important as it also enables the empirical 

specification to accommodate the specific way in which my specific transaction dataset records 

executed trades. I show that the stipulated 2/3 proportionality proposed by MMI theory and 

implied empirically be ITI theory is a special case of this modified invariance model, when 

assuming a linear relationship between bets and trades.  

Based on the amended invariance model and using panel regression specifications incorporating 

two-way fixed effects, I conduct empirical tests for the invariance proportionality between the 

number of trades and trading activity against the null hypothesis of 2/3. I compare the findings 

from both the Kyle and Obizhaeva (2016b) and Andersen et al. (2016) invariance model 

specifications to two well-known alternatives in the literature, implied by Clark (1973) and Ané 

and Geman (2000), respectively. I express the latter in invariance terms so that their coefficient 

estimates are directly comparable with each other. I also examine whether the investigated 

proportionality is affected by stock characteristics such as market capitalization, trade size, trading 

volume and the number of trades. Generally, I find that the invariance proportionality results may 

be partly driven by the intraday dynamics of trading activity. When I apply the Kyle and 

Obizhaeva (2016b) and Andersen et al. (2016) invariance specifications the entire sample, I 

estimate the proportionality power coefficient to be closer to 0.6 rather than the expected value of 

2/3. However, I do find that large and medium capitalization stocks (on average) exhibit the MMI 

predicted power of 2/3 proportionality between the number of trades and trading activity. Also, 

when controlling for trade size, large trade size stocks yield the predicted 2/3 proportionality 

when I use number of trades as a measure of trading activity, in the spirit of Ané and Geman 

(2000). I also find that order shredding can potentially explain deviations from the theoretical 

invariance proportionality as well as differences in the coefficient estimates between groups of 

stocks that are based on stock characteristics. I also argue that deviations from the predicted 2/3 
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proportionality may arise from a higher degree of trade intermediation, market fragmentation or 

the fundamental conceptual difference between trades and bets.  

The second essay of this thesis contributes by examining the same empirical prediction of 

invariance of bets but at an individual stock level. I conduct regression for each stock against the 

null hypothesis of the invariance prediction of a 2/3 proportionality. The aim is both to 

investigate whether FTSE 100 stocks individually exhibit any common proportionality between 

trade counts and trading activity and also to identify whether this proportionality is similar to that 

suggested by ITI theory. In this respect, I test which notions of trading activity and their 

respective models specified in invariance terms, better describes the intraday patterns of LSE and 

microstructure properties of my dataset, and predicts more accurately any common invariance 

proportionality. The definitions of trading activity I use here are the same as in the first essay (i.e. 

those based on Clark (1973), Ané and Geman (2000), Kyle and Obizhaeva (2016b) and Andersen 

et al. (2016)).  

I show that LSE trading venue is characterized by an L-shaped/reverse J-shaped pattern in 

realised volatility and a four-humped pattern in trading volume for the period under analysis. This 

contrasts with Werner and Kleidon (1996), Abhyankar et al. (1997) and Cai et al. (2004) who 

report a U-shape pattern in volatility and a two-humped pattern in trading volume, respectively. I 

find that the model which is based on notion of trading activity implied by Clark (1973) accurately 

confirms the expected 2/3 proportionality between the number of trades and trading activity for 

70% of the stocks when averages across days are used as estimators for the underlying variables. 

This result is consistent even if the minutes that are characterised by extreme volatility and 

increases in trading volume, trade counts and trade size are excluded. However, the model fails to 

predict the specific proportionality for stocks that are characterised by high on average volatility. 

The use of intraday averages leads to lower estimates of proportionality for all notions of trading 

activity, likely due to measurement errors and sampling variation which bias the coefficients 

estimates.  

Both models that are based on definitions of trading activity as suggested by in Kyle and 

Obizhaeva (2016b) and Andersen et al. (2016) predict 1/2 invariance proportionality for 86% of 

the stocks.  These differences in the estimated proportionalities across models may be partly 

driven by intraday trading patterns, the magnitude of trade size which has a different impact on 

the models I investigate or the positive correlation between trade size and volatility in business 

time in the first/last 10 minutes. Based on the extended invariance model, I argue that the 1/2 
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proportionality value implies that bets in the futures markets investigate by Andersen et al. (2018) 

are larger than bets in stocks and thus are shredded into more pieces (assuming that on average 

bets shredded into same size trades in these two markets). I also discuss the view that orders are 

shredded more in the period between the first/last 10 minutes of active trading. Year by year 

analysis on the 1/2  proportionality indicates that there is no unified order flow pattern for all 

stocks, and that stock and/or industry specific characteristics are important for traders when 

choosing the trade size. The results for pre-crisis and in-crisis periods are similar, especially for 

the leading stocks in the FTSE 100 in terms of market capitalization. Local currency (GBP) trade 

size appears to be an important factor in explaining deviations from the 1/2 proportionality 

between the two periods.  

The third essay in the thesis contributes to the literature by testing the empirical predictions linked 

to the second invariance principle, the invariance of transaction costs, on our sample of FTSE100 

index stocks. This is the first comprehensive test of this principle in the literature. Specifically, I 

examine whether the percentage transaction costs per unit of volatility for FTSE 100 stock trades 

is proportional to trading activity in the power of -1/3. This is the first time that the specific 

prediction is investigated for trades in equity markets. Following Kyle and Obizhaeva (2016a), in 

order to connect bets to trades, I use their assertion that there exists a proportionality between the 

number of trades and bets, provided that tick and minimum trade size or other microstructure 

elements are distributed across stocks so that their impact on trading is identical. I complement 

the work of Kyle and Obizhaeva (2016a) which employs a database of Russian stocks, on the 

basis of which they test a different transaction cost invariance prediction, using different proxies 

for transaction costs. Specifically, I employ the effective and realized spreads in addition to the 

quoted bid-ask spread. Given the extent of market fragmentation for FTSE 100 equities which 

changes over the sample period, I also contribute to the literature by being the first study to 

research the extent to which the dispersion of trading activity and the volumes traded in 

alternative platforms affect the transaction costs and their stipulated proportionality with trading 

activity. Finally, I further explore this idea by constructing a hypothetical consolidated market 

framework, where a market participant has simultaneous access to different platforms.    

The empirical results indicate that the invariance prediction of a -1/3 proportionality is present in 

average daily patterns in my sample for all three proxies of transaction costs I employ. All 

measured spreads decrease more during specific 5-minute time intervals across days than within 

specific days, providing that returns volatility is constant. I argue that larger trades appear to have 
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a negative impact on proportionality, and this is more apparent within specific days rather than 

across the same 5-minutes intervals on different trading days. Moreover, I find that market 

fragmentation does not statistically affect the significance of the estimated invariance coefficients, 

though there exists a negative correlation between trading activity and volume traded on 

alternative platforms with the percentage transaction costs on the LSE per unit of volatility. 

Among the alternative platforms, trading activity on Chi-X has the highest negative correlation 

with LSE percentage transaction costs. Finally, when I treat the platforms as a hypothetical 

consolidated market, the results do not change significantly; however, the estimated invariance 

coefficients are lower when realized spreads are used as the proxy for transaction costs. Similar to 

Bessembinder and Kaufman (1997) and Boehmer and Boehmer (2003), I maintain that this is an 

indication of the greater impact of large trades on the alternative platforms, and/or similar to 

Degryse et al. (2015), that not all market makers take advantage of increases in liquidity generated 

by  the increase in trading activity.   

1.3 Thesis Outline 

This thesis consists of three self-contained essays. Each essay has a separate introduction, data 

section, methodology, set of empirical results, conclusion and reference sections, as well as 

exclusive sections appropriate for the focus of each essay. The tables, figures and graphs are 

numbered independently for each essay, whereas the footnotes, equations and models are 

numbered in sequence from the beginning of the thesis. The same formatting rules apply for the 

titles and subtitles of each essay. Given that all the essays investigate MMI theory, a separate 

literature review chapter is included as chapter 2 in the thesis to set the context for the subsequent 

analysis. 

The remainder of the thesis is structured as follows. Chapter 2 discusses the relevant literature 

that is linked to market microstructure invariance, as well as the invariance principles on which 

the essays are based. Chapter 3 presents the first essay, which investigates the empirical 

predictions of invariance of bets for trades, using panel regressions and different notions of 

trading activity. Chapter 4 continues by investigating the same invariance implication for 

individual stocks and its dependence on the intraday patterns of LSE, its differentiation during the 

respective years in the period under analysis, the impact of the 2008-2009 financial crisis, and the 

opening and closing minutes of trading. Chapter 5 investigates the empirical prediction of the 

invariance of transaction costs proposition and the potential impact of market fragmentation due 

to the introduction of alternative trading platforms on the proportionality between percentage 
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transaction costs per unit of volatility and trading activity. Chapter 6 provides a brief conclusion 

of the main findings of the thesis.   

Finally, I note that in the following essays I use “we” and “our” instead of “I” and “my”, 

respectively to reflect that each individual essay is linked to research papers which are co-authored 

with my supervisors Professor Michael Bowe and Dr. Sarah Zhang at Alliance Manchester 

Business School. 
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CHAPTER 2 

Literature Review 

2.1 Market microstructure invariance  

Market microstructure invariance (MMI) is a theory, as well as a scaling and modelling principle, 

developed by Kyle and Obizhaeva (2016b). MMI is based on the idea of trading games between 

market participants which are intended to transfer risks, which they define as “bets”, first 

described by Bagehot (Jack Treynor) (1971). These “bets” are “decisions to obtain or relinquish a long-

term position of a certain size in a certain security, with each decision distributed approximately independently of 

other similar decisions” (Kyle and Obizhaeva, 2016b, p.1349). In reality, a bet can be executed either 

in its entirety or by sequentially placing orders in the course of one or more trading intervals. 

MMI theory maintains that microstructure characteristics which vary across stocks and time can 

remain constant when we examine them using a suitable asset-specific business-time scale. Based 

on this novel idea of bets, Kyle and Obizhaeva (2016b) argue that the arrival rate of bets in the 

market measures the rate at which business time changes for a specific asset (i.e. market velocity). 

 MMI theory consists of two principles, the invariance of bets and the invariance of transaction 

costs. Both principles generate empirically testable predictions, which are derived from simple 

expressions for order frequency, order size and transaction costs defined as functions of 

observable volume and volatility (the specific elements underlying each principle are explained in 

the respective chapters of the thesis). The invariance of bets argues that “the distribution of the dollar 

risk transferred by a bet in units of business time is the same across asset  j   and time t , in the sense that there 

exists a random variable I such that for any asset and time, the distribution of risk transfers jtI  is market 

microstructure invariant” (Kyle and Obizhaeva, 2016b, p.1352). Intuitively,  jtI   is the scaled size of 

the bet, which according to Kyle and Obizhaeva (2016) can be defined as the signed standard 

deviation of dollar mark-to-market gains or losses (i.e. the product of the currency value of risk 

transferred by the bet per unit of business time). The second principle, the invariance of 

transaction costs, states that “the dollar expected transaction cost of executing a bet is the same function of the 

size of the bet when its size is measured as the dollar risk it transfers in units of business time, in the sense that 

there exists a function ( )BC I  such that for any asset j  and time t , the dollar transaction-cost function 
, ( )B jtC I is 

a market microstructure invariant” (Kyle and Obizhaeva, 2016b, pp.1354-1355) . Intuitively, this 
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means that the expected costs of executing two bets that lay in the same percentile of the bet size 

distribution, but having different currency sizes, must be the same in dollars, because “they both 

transfer the same amount of risk per stock-specific unit of business time” (Kyle and Obizhaeva, 2016b, p. 

1355).  

Figure 1-Market microstructure invariance principles in graphical representation  
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Figure 1 graphically illustrates the main idea of MMI theory and the invariance principles. 

Consider the example of two stocks, which I denote small and large. In calendar time, the 

distributions of bet sizes for small and large stocks are quite different, as depicted in the 

respective graphs.  However, if we transform the bet size Q into I, based on the invariance of 

bets, the distributions become the same for these two stocks. Intuitively, bets that occupy the 
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same realized value of  jtI  ). In addition, based on the invariance of transaction costs, the 

transaction cost associated with executing the respective bets will be also the same.  

The theoretical principles of MMI together with the consequent empirical predictions attempt to 

bridge a perceived gap in market microstructure between the theoretical models which address 

the manner in which order flow imbalances move prices and their subsequent empirical testing. 

These empirical predictions can also potentially serve as useful metrics for practitioners and 

researchers, as a benchmark for assessing arguments regarding high frequency trading, market 

collapses and liquidity estimation, and as a “road-map” for regulators and policy makers. In this 

sense, MMI theory is connected to the time deformation and microstructure literature that 

examines trading behaviour in financial markets and the connections between trading variables 

and transaction costs. In the following sections, I briefly summarize the most important papers 

which are representative of these specific areas.           

2.2 Time deformation literature  

The time deformation literature begins with the intuition that execution of individual trades leads 

to microscopic, normally and independently distributed, price fluctuations that are incremental to 

daily price changes. More specifically, every time new information becomes available, the variables 

of trading activity, most importantly the number of trades, the trading volume, the transaction 

rate1, and the quote revision frequency shift with a consequent impact on prices. Engle (2000) 

explains that the arrival rate of information represents the speed at which business/economic 

time passes, and that a blunt measure of this rate is obtained when transaction times and prices 

are analysed simultaneously. Intuitively, given that price changes follow high-kurtosis 

distributions2, the observed fat tails can be interpreted from the perspective of a business clock 

that ticks at different velocities compared to a real time “wall-clock” to allow for differentiation of 

trade execution speed across defined time periods (Kyle and Obizhaeva, 2011). 

2.2.1 Measuring time deformation: Pareto distributions 

Mandelbrot and Taylor (1967) are one of the first to examine the distribution of stock price 

changes (i.e. price volatility) by measuring time in volume of transactions. They argue that price 

changes have stable Pareto (power-law) distributions during defined calendar time intervals and 

                                                           
1 Time between trades is defined as the reciprocal of the transaction rate 
2 Distributions with sharper peak around mean and fatter tails as compared to normal distribution 
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Gaussian distributions when these fixed intervals are measured in transactions time3. In a similar 

fashion to Mandelbrot and Taylor (1967), Gopikrishnan et al. (1998) analyse the probability 

distribution of stock price movements and deduce that they display asymptotic Pareto 

distributions with an exponent close to 3. Moving one step forward, Plerou et al. (2000)maintain 

that price fluctuations follow a complicated diffusion process. In this process, the diffusion 

constant is related to the number of transactions within a specific time interval and the variance of 

price fluctuations for all transactions. The number of transactions and the variance of price 

fluctuations between consecutive trades follow a power law distribution with a mean value of the 

exponent around 3. Provided that market impact is linear in trade size4 and trades are i.i.d., the 

authors suggest that the Pareto distribution tails of price movements are attributable only to 

variance, whereas the number of transactions is responsible for any long-range correlations of 

volatility.  

Gabaix et al. (2006b) identify a dependence of empirical price changes on the square-root price 

impact of i.i.d. trades, based on a specific version of a model introduced by Torre and Ferrari 

(1998)5. They maintain that the estimation of price impact and its connection to order size is 

problematic due to the joint endogeneity of order flow and returns6. Bouchaud et al. (2009) 

examine a different empirical predictions concerning volume and market impact and suggest that 

order flow is a “highly persistent long-memory process7” as large orders are split over long periods until 

fully executed in the presence of low revealed market liquidity. They assert that market impact 

may stem from random fluctuation in supply and demand, which may or may not be endogenous 

or informed, and that information from external news plays a secondary role in price formation. 

2.2.2 Mixture of distribution Hypothesis 

Other business time papers differentiate themselves from the approach which relies on Pareto 

distributions. Several papers investigate the “mixture” of distributions hypothesis (MDH) as a 

joint hypothesis linking returns and volume. Generally, these theories introduce an explicit way to 

model the impact of information on prices and volume by expressing the respective variables as a 

function of the arrival rate of information in the market. Clark (1973) suggests that the number of 

                                                           
3 Mandelbrot and Taylor (1967) reach this conclusion by introducing for the first time the concept of  subordination 
(i.e. a time change stochastic process inside another stochastic process)  when modelling financial returns 
4 Prices move upward or downward proportionally to the trade size 
5 Zhang (1999) and Gabaix et al.(2003) also propose a model with square-root price impact.  
6 Loeb (1983) allows for the exogeneity of order flow by using bids on various size blocks of stock. Both Torre 

(1997) and Grinold and Kahn (1999) mention square root price impact fits best this type of data.  
7 Autocorrelation in order flow decays very slowly 
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minor price innovations per day exhibits a log-normal distribution and that both volume and price 

innovations are triggered by the same information arrival process8. Assuming an identical 

distribution of distinctive price increments, he argues that return variance is proportional to 

trading volume when using the latter as an approximate transactions time clock. Both, Epps and 

Epps (1976) and Westerfield (1977) confirm this proportionality, though they underline that the 

theory of stable Paretian distributions proposed by Mandelbrot and Taylor (1967) cannot be ruled 

out. 

Tauchen and Pitts (1983a) add that the positive relation between returns variance and trading 

volume is subject to a fixed number of traders9, while  Harris (1987) maintains that prices and 

volume unfold homogenous rates in business time10. Gallant et al. (1992), using a non-

semiparametric specification, report a positive relationship between volatility and volume, both 

conditional on their past observations. Richardson and Smith (1994), introduce a direct test for 

the MDH and examine different distributional properties for the rate of information flow. They 

conclude that the bivariate distribution of price changes and volume is not as strong as previous 

studies suggest, and that the distributional properties of the information flow rate approach those 

of log-normal distribution. Andersen (1996) incorporates the market microstructure setting of 

Glosten and Milgrom (1985) into a modified version of the MDH, arguing that the full dynamic 

representation of the stochastic volatility process for the rate at which information arrives in the 

market performs better as compared to the standard MDH11. Bollerslev and Jubinski (1999), 

report that volume-volatility pairs for stocks which trade in the S&P 100 Composite index exhibit 

long-run hyperbolic rates of decay, consistent with a MDH in which the information arrival 

process has long-memory characteristics. Finally, Liesenfeld (2001) generalises the MDH standard 

model by allowing both the number of information arrivals and the sensitivity to new information 

to be dynamic over time. The revised model more accurately explains stock price fluctuations, 

whereas trading volume appears to be mainly affected by the information arrivals count.  

                                                           
8 Clark (1973) implies that movements in returns are caused by a joint distribution between trading volume and prices 
conditional on current information 
9 This assumption is rational for mature markets. If the number of traders is evolving, then the average trading 
volume grows in a linear fashion with the number of traders.   
10 Harris (1986) shows that the relationship between returns variance and trading volume is also present in the cross-

section of stocks.  
11 The main difference between the modified and standard version of MDH relates to the trading volume 
specification. The modified MDH includes a constant term that captures any noise or liquidity elements related to 
trading and changes the distribution to a conditional Poisson instead of a normal distribution.     
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2.2.3 Time deformation and market events 

Hasbrouck (1999) approaches time deformation as a common feature embedded in the rate at 

which markets process events such as orders, quote or trade frequency occur. While time 

deformation defined in this way can only be estimated dependent upon a specified time horizon, 

the author finds a positive correlation in the long-term, although there is no persistent 

proportionality in the count intensities for different types of events. Jones et al. (1994) discover 

that the number of transaction per se, and not their size (i.e. volume), creates daily volatility. They 

state that the volume does not contain any extra information additional to that included in the 

trades count. In line with Jones et al. (1994), Ané and Geman (2000) report that the aggregate 

number of trades is a better business time clock than volume for generating independently and 

identically distributed Gaussian intraday returns. Dufour and Engle (2000), based on the VAR 

specification of Hasbrouck (1991), analyse the impact of time duration between successive 

transactions on the process of price formation. Their findings indicate that whenever these 

waiting times decline, trades have a greater impact on prices, the latter adjust faster to trade-

related information, and the positive serial correlation of signed trades increases. Finally, they 

claim that active markets, where the increased participation of informed traders leads to high 

trading activity, are illiquid. 

2.3 Transaction costs and market microstructure 

2.3.1 On transaction costs 

There is an extensive microstructure literature focusing on transaction costs, their measures, as 

well as their role in the trading process and their relation to market liquidity, price discovery and 

generally market quality. Foucault et al. (2013) argue that trading costs are an important 

dimension of market liquidity and can be decomposed into two main elements. The first, explicit 

element includes costs such as broker commissions, transaction taxes, trading fees related to the 

specific platform, and clearing and settlement fees. These are costs that the final investor has to 

pay to carry out the transaction and are easy to measure. In recent years, increased competition 

between intermediaries, and technological advances related to trading have decreased considerably 

such explicit transaction costs. The second element is the implicit transaction cost element, and 

refers to costs that stem from the illiquidity of the market, such as delay costs, impact costs and 

other costs that are occurring within the transaction process. This is the category which 

professionals analyse before placing an order and researchers primarily focus on when 
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investigating market liquidity and other important market characteristics. However, accurately 

measuring this type of costs is not an easy task, due either to the lack of requisite data or 

imperfect transaction cost measurement and models. 

The most commonly used measures of implicit trading costs are based on quotes posted by 

market makers in each trading venue. They are known as spread measures and include quoted, 

effective and realised spreads. The quoted spread is customarily defined as the difference between 

the best ask and bid price at a specific point in time. It measures the execution cost of an 

immediate round-trip transaction and is a good indicator of illiquidity for those trades that are 

small enough to be entirely executed at the best bid and ask quotes. Some papers prefer to use the 

half quoted spread when they focus on the execution costs per trade (e.g. Huang and Stoll, 1996, 

Bessembinder and Kaufman, 1997) or a normalised version by dividing the quoted spread by the 

midpoint. Microstructure literature documents that quoted spread reflects the available liquidity at 

a specific point in time for a round-trip transaction (Foucault et al., 2013), the market maker’s 

compensation for offering immediacy (Fleming et al., 1996), order-processing costs (Stoll, 1985), 

inventory costs (Stoll, 1978; Amihud and Mendelson, 1980, Ho and Stoll, 1983) and losses to 

informed traders (Copeland and Galai, 1983, Glosten and Milgrom, 1985). 

The effective spread is customarily defined as twice the absolute difference between the price at 

which a market order is executed and the midprice between the best ask and bid price at the exact 

point in time before trade execution. In a sense the effective spread is an approximation of the 

total price impact of a trade (or else slippage). It captures the price adjustment caused by trades 

with a size exceeding the maximum trade size which a market maker can accommodate without 

revising their quotes12 (Fleming et al., 1996, Boehmer and Boehmer, 2003).  Several papers prefer 

to use the effective half spread (e.g. Lee, 1993, Huang and Stoll, 1996) and account also for the 

direction of the order (positive for purchases and negative for sells) while others define the 

effective spread as a percentage of the midquote. As Foucault et al. (2013) highlight, the impact 

estimated by the effective spread is always positive, reflecting the limited liquidity in the market. 

Also the effective spread tends to increase with the trade size because larger market orders are 

often executed at less auspicious prices.   

Both quoted and effective spreads assess the cost that a trader pays when placing a market order, 

and thus estimate transaction costs from the perspective of a liquidity demander. If the liquidity 

                                                           
12 In other words, they account for order executions that occur deeper in the book (i.e. not at the best bid and ask 
prices) 
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supplier takes immediately the opposite side of the trade this cost can be considered to be their 

gain. However, in reality this interpretation is problematic as market orders may apply long-term 

pressure on security prices, which in turn move against the liquidity suppliers. Consequently, the 

liquidity supplier will not realise the effective or quoted spread but the difference between the 

execution price and the price at which the trade is liquidated (Huang and Stoll, 1996, Foucault et 

al., 2013). This difference (gain for liquidity provider and cost for liquidity taker) is less than what 

the effective and quoted spreads imply if, after the execution of the trade, prices move in the 

direction of the trade due to price adjustments (moving up for purchases or down for sells). The 

magnitude of this impact also indicates market liquidity and depth, and can contribute 

significantly to the cost that a market participant faces when trading. Also, it is well documented 

that these price adjustments are a result of adverse selection, as the market participants that take 

the other side of the trade will demand compensation to account for the likelihood of any private 

information being incorporated in the trade (see for example, Glosten and Milgrom, 1985, Kyle, 

1985)  

The realised spread is a measure of transaction costs that takes into account this price impact. It is 

customarily defined as twice the difference between the execution price and the midpoint between 

best ask and bid prices a certain time point after trade execution, after taking into account the 

direction of the trade (positive for purchases and negative for sells). The time instant in which the 

midpoint is calculated should be long enough after the initial transaction so that both bid and ask 

quotes have adapted to account for the price impact of the trade13. As with quoted and effective 

spreads, several papers prefer to use the realised half spread. The realised spread can also be 

considered as an approximation for the temporary price impact of a trade, interpreted as market-

making profits net of adverse selection costs, but not order-processing, inventory and other costs 

associated with the trade (Bessembinder and Kaufman, 1997, Boehmer and Boehmer, 2003). In 

addition, (half) the difference between effective and realised spreads is used as a proxy for the 

permanent price impact and information content of a trade (Huang and Stoll, 1996, Boehmer and 

Boehmer, 2003). Apparently, the effective spread is equal to the realised spread plus the 

difference between the respective midpoints, that at a specific time point after the trade and that 

in the instant before the trade. If the change in the midpoints is positively correlated with the 

direction of the trade, the realised spread is always smaller than the effective spread. In a sense, if 

the effective spread is too small, then liquidity suppliers may experience losses. Thus, the effective 

                                                           
13 In active markets this time instant is often set to five minutes after the initial transaction.   
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spread should be high enough to at least compensate liquidity suppliers for any price adjustments 

that move the market against them following the trade. 

2.3.2 Alternative measures of transaction costs  

Although these three measures of transaction costs are widely used by professionals and 

researchers to assess market liquidity, there are other alternatives measures and models. For 

example, in the absence of information regarding quotes, the closing or opening price, or the 

volume-weighted average price (VWAP) for trades that occur during the time interval of interest. 

Other measures are developed based on the idea of price impact, namely as the coefficient of a 

regression between the change of the midpoint during a specified interval and the signed trade 

imbalance between all executed buy and sell trades during this interval14  (Foucault et al., 2013). 

Stoll (2000) uses a variation of this method, including in the regression the previous day’s trade 

imbalance to determine whether prices will bounce back the following day. He states that the 

estimated coefficient is a measure of the sensitivity of quote changes over a specific time interval 

to the imbalance over that interval. He reports a positive price impact, statistically significant for 

63.1% of the stocks in NYSE/AMSE and 71.2% in Nasdaq, an insignificant reversal and a 

variability of the coefficient across stocks (e.g. higher market capitalisation stocks have lower 

coefficients). When signed trades are not available, Hasbrouck (2007) suggests an alternative 

method by running a regression of the absolute value of price changes against the total trading 

volume over the same interval. The coefficient of that regression can be interpreted as the 

sensitivity of price changes to trading volume. This method is in the spirit of the well-known 

illiquidity ratio introduced by Amihud (2002), as the ratio of the absolute return of a stock to the 

trading volume over a specified period. An illiquid market for the specific stock will be 

characterized by a low Amihud ratio15. 

However, using trading volume or the ratio of trading volume to market capitalisation in order to 

estimate liquidity, and thus indirectly as a proxy for transaction costs, is not always optimal for 

every market. This is because such trading variables are likely to also increase at times when new 

information arrives in the market, a period that is also associated with higher volatility, and in turn 

with wider bid-ask spreads. Fleming (2003) reports that trading volume and trading frequency (i.e. 

number of trades executed) are poor proxies for liquidity for US Treasury securities. In that 

respect, some studies of transaction costs and liquidity propose non-trading measures. For 

                                                           
14 The reciprocal of this coefficient can be considered to be an indication of the market depth 
15 Thus higher transaction costs for trading the stock  
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example, Lesmond et al. (1999) and Bekaert et al. (2007) use the proportion of days with zero 

returns as a proxy of illiquidity, based on the idea that no trading may mean no changes in 

prices16. Lesmond (2005) and Bekaert et al. (2007) demonstrate that this estimator is positively 

correlated with bid-ask spreads and negatively correlated with trading volume.  

Another way to measure transaction costs when quote prices are unavailable is to use only trade 

prices, and more specifically the covariance of returns. Roll (1984) is the first to propose such a 

measure for the effective bid-ask spread, based on the idea of bid-ask bounce and the consequent 

negative autocorrelation in trade-to-trade returns. Roll’s measure, as it is known, is a function of 

the autocovariance of returns and is subject to distinct assumptions concerning the order arrival 

process. Any deviations from these assumptions will lead to a biased estimate of the effective bid-

ask spread. Hasbrouck (2002) suggests two different approaches to estimating Roll’s measure, 

using the GMM method or Bayesian techniques.  Hasbrouck (2009) finds that the resulting 

estimator, based on daily closing prices, is a good proxy for more accurate measures that are 

based on higher frequencies17. In the spirit of Roll’s measure, Holden (2009) develops a proxy for 

the effective spread, the “effective tick” based on the idea of observable prices clustering at 

specific ticks solely due to bid-ask spreads. Another estimator for the effective spread is suggested 

by Lesmond et al. (1999), and is known as the LOT measure. This maximum likelihood estimator 

is based on the assumption that informed trading occurs during non-zero-return days and is 

absent in zero-return days.  

All the aforementioned measures of transaction costs are static as they do not take into account 

the possibility that larger orders often split into smaller trades, and are executed with a delay 

during the course of trading, sometimes over several days or even longer. If we consider the 

possibility of adverse price movements, this delay might be costly for the trader and can 

potentially lead to a cancelation of part of the initial order, which induces an extra opportunity 

costs. To account for this, Perold (1988) proposes a comprehensive measure for transaction costs 

that includes the opportunity cost due to delayed, partial or unexecuted orders, market impact, 

commission and other fees. This measure is known as “implementation shortfall” and consists of 

two components, the execution cost and the opportunity cost. Intuitively, this measure is the 

difference between the performance of an actual portfolio and a hypothetical “paper” portfolio 

                                                           
16 If there is no trading the informed traders may have to pay a trade cost greater than the price change that their 
information suggests.  
17 Goyenko et al. (2009) comparing different effective and released spread and price impact measure also conclude 

that both monthly and annual low-frequency measures capture high-frequency measures of transaction costs 
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which includes securities whose trades are executed immediately and at the prevailing quote 

midpoint prices. Deciding upon a trading strategy that can minimise this shortfall is very 

important for market participants, and several papers try to provide a more comprehensive 

analysis of how this can be achieved (see for example Bertsimas and Lo (1998) and Kissell et al. 

(2003)).      

2.3.3 Determinants of the bid-ask spread  

The measures of transaction costs described in the previous sub-sections can also be considered 

to be measures of trading friction. In this sense, trading friction is either the time needed to 

execute  a trade of a certain size  (Lippman and McCall, 1986), or the compensation required for 

an immediate transaction (Demsetz, 1968). According to Stoll (2000) these two approaches 

converge, because the compensation for an immediate transaction is the payment to the 

counterparty to this transaction to convince them to buy or sell the asset immediately, and then 

unwind their position based on their strategy. Given that the bid-ask spread is an important 

measure of market friction18 and an important component of liquidity, understanding the 

determinants of the magnitude of the spread is very important not only to researchers, but also to 

practitioners and policy makers.  

Market microstructure literature explains that bid-ask spread mainly exist due to the costs of 

liquidity provision, such as order processing costs, adverse selection costs and inventory risk 

(Stoll, 1978, O'Hara, 1995, Foucault et al., 1997, Madhavan, 2000). Earlier market microstructure 

papers, such as Demsetz (1968),  argue that the spread indicates the compensation for the 

suppliers of trading immediacy that includes the cost for any resources they use, the unwanted 

inventory risk and their market power. Christie and Schultz (1994) and Christie et al. (1994) 

provide empirical results regarding dealer’s market power in NASDAQ, while other 

representative theoretical papers include Garman (1976), Stoll (1978), Amihud and Mendelson 

(1980), Cohen et al. (1981), Ho and Stoll (1981), Ho and Stoll (1983) and Laux (1995).  

Other studies on market microstructure claim that the spread is the value of the information lost 

to traders who can time the market or possess superior information. So, based on this idea, the 

spread is not a measure of the cost of supplying immediacy, but rather an estimate of wealth 

redistribution from some traders to others. Copeland and Galai (1983) define the bid-ask spread 

as the difference between revenues that the market maker is expected to earn from liquidity-

                                                           
18 Stoll (2000) contends that both quoted and effective spreads are measures of total market friction 
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motivated traders and losses they except to incur from trading against information-motivated 

traders. They argue that the spread exists as a compensation for supplying quotes, and we can 

view this cost as equivalent to writing an option to those traders that are well informed and who 

are able to execute the option upon the arrival of new information in the market, and before the 

quotes are revised.  They conclude that the bid-ask spread is a positive function of the price level 

and the return variance, a negative function of the estimates of market activity, depth, and 

continuity, and is also negatively correlated with the degree of competition. However, the most 

accepted view supporting the “informational” nature of the spread is the one that accepts the 

existence of adverse selection arising from information asymmetry. This stream of literature is 

based on the idea that well informed traders try to take advantage of any mispricing by market 

makers, and as a consequence market makers will incur loses whenever they trade with these types 

of traders. As a result, to avoid loses, the market makers must generate revenue from trading 

against other traders, which causes them to increase their bid-ask spread.19.  This is a well-known 

example of the adverse selection phenomena, and was first noted by Bagehot (Jack Treynor) 

(1971). When informed traders buy or sell stocks based on their private information, their orders 

actually convey this information to the rest of the market. Other market participants, who are able 

to observe this order flow, will revise their expectations concerning the “true” value of the 

security (Foucault et al., 2013).  

One of the earliest models for the spread that makes the aforementioned distinction is suggested 

by Glosten and Milgrom (1985).  Their model concerns a pure dealership market in which all 

orders are market orders, and the specialist accommodates the arrival of two types of trader, 

namely informed traders and purely liquidity (or noise) traders. Their findings suggest that adverse 

selection alone can explain the existence of spread, whereas the magnitude of the spread is subject 

to how many informed or liquidity traders arrive in the market, the information quality possessed 

by informed traders, and the supply and demand elasticity among the liquidity traders. They also 

show that the spread declines on average throughout the day, due to the informativeness of trade 

prices.  The paper by Kyle (1985) is another important study that analyses how trade prices react 

to order size (i.e. determinants of market depth) and in turn how this affects the transaction costs. 

This paper develops a model of trading in the presence of information asymmetry with a risk 

neutral informed trader, a random noise trader and a competitive risk neutral market maker. This 

model takes into account different properties of transaction costs, market tightness, depth, and 

resiliency. The model shows that the price impact of orders increases with their size, and it is 

                                                           
19 Theoretically one can claim that bid-ask spread is also the result of market makers’ being risk averse 
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inversely proportional to the amount of private information and proportional to the amount of 

noise trading. He concludes that in equilibrium, market depth remain constant over time, whereas 

all information is incorporated in the prices by the end of trading. 

Other papers combine the idea of information asymmetry with the presence of order-processing 

costs or inventory risks, and/or relax the hypotheses concerning perfect competition, market 

orders, risk neutrality, and market structure. Easley and O'Hara (1987) propose an extension  to 

Glosten and Milgrom’s model by introducing the possibility of informed market participants 

trading multiple trade sizes, Easley and O'Hara (1992) include the possibility of no change in the 

value of the asset traded, Bloomfield et al. (2005) show by means of  experiments that informed 

traders will use both market and limit orders if they are able to do so, and  Calcagno and Lovo 

(2006) theoretically examine the competition among dealers in terms of its impact on the price. 

Both Bloomfield et al. (2005) and Calcagno and Lovo (2006) argue that it is the posted quotes and 

not only order flow that contain information. Hasbrouck (1988) states that the effect of inventory 

management means that the  impact of trades on quote revisions is inconclusive, although large 

trades contain more information than small trades. Vayanos (1999) provides an analysis on the 

effect that this information may have on adverse selection20.        

Foucault et al. (2013) emphasise that the way to understand the significance of adverse selection, 

order-processing costs and inventory risk, which all affect the transaction costs, is to run 

regressions of price changes against order flow, in other words price impact regressions. The 

precise specification of these regressions is subject to assumptions regarding the nature of 

illiquidity and the order arrival process. For example if part of the order processing costs has a 

fixed component, then the market maker may want to offer better quotes for larger trades. De 

Jong et al. (1996) find that in Paris Bourse, the adverse selection component of the bid-ask spread 

increase slightly with the order size on average, but the order-processing component decreases. 

Huang and Stoll (1997) report for NYSE that the order-processing component accounts for the 

majority of the bid-ask spread, and that adverse selection component does not increase with the 

trade size in contrast to the predictions of Kyle (1985). Madhavan et al. (1997) note that on the 

NYSE, the adverse selection component exhibits a downward trend (it is high at the beginning of 

active trading and then decreases) in contrast to the operating cost component. They argue that 

this indicates an increase in the bargaining power of the market makers as trading approaches the 

closing period of the trading day.  Based on the idea that inventory costs actually deplete over the 

                                                           
20 Some other important studies include the papers by   Admati and Pfleiderer (1988), Klemperer and Meyer (1989), 
Madhavan (1992), Glosten (1994), Biais et al. (1998) and Biais et al. (2000).   
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course of trading day, as market makers will have taken steps to reduce their risk to an acceptable 

level by gradually unwinding their positions, Hasbrouck (1991) measures the long-last price effect 

of the information content of trades, and states that the total price impact of a trade is higher in 

securities with lower market capitalization, suggesting that these stocks suffer more for 

information asymmetry. In the same spirit, Bouchaud et al. (2009) argue that under normal 

conditions, the main determinant of the spread in liquid, competitive and electronic markets (i.e. 

in markets where both order processing and inventory costs should be low) is the impact induced 

by adverse selection. They show that in electronic markets, both limit and market orders are 

approximately symmetrical (none of them is more favourable) and competition in the electronic 

market is enough to compress the spread towards its lowest value. Thus, in these markets, any 

changes in the spread can be attributed to the impact which is linearly related to the spread.  

A central theme of the aforementioned literature is that it highlights two important issues. First, 

estimating a fully specified time deformation model for stock market dynamics is a challenging 

undertaking. A number of the relevant papers suggest using infinite variance distributions for 

price innovations; others use distributions with finite variance. The results of investigations into 

the nature of the distribution which best describes price changes are inconclusive. Also, studies 

based on the MDH suggest different ways of approximating the mixing variable in the relevant 

subordinate stochastic processes. While trading volume or the number of trades are the prevailing 

proxies, both are considered to be somewhat imperfect. The aforementioned papers analyse only 

volume or price changes, not both, in the context of business time. Thus, their simultaneous 

inclusion in a time series model is not undertaken. Second, developing models that analyse the 

determinants of transaction costs is also a demanding proposition. The papers mentioned above 

constitute a small, but I believe a representative fraction of microstructure papers that attempt 

this task. However, given the tendency towards an increase in trading activity since the advent of 

electronic markets, I believe that adverse selection considerations and the consequent impact they 

have on securities markets, appears to be the most logical route along which to develop models of 

transaction costs.  The introduction of the notion of market microstructure invariance and the 

consequent empirical predictions for bets and transaction costs by Kyle and Obizhaeva (2016b) 

aims to resolve these two critical issues. The following chapters of the thesis provide empirical 

evidence regarding these two invariance principles for trades in FTSE 100 constituent stocks, 

examining the validity of the MMI principles and aiming to provide plausible explanations for any 

observed deviations.  
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CHAPTER 3 

Market Microstructure Invariance in the FTSE 100 

Abstract 

We examine market microstructure invariance (MMI) trading relationships in FTSE 100 

constituent stocks. We formulate an extended version of ITI model proposed by Andersen et al. 

(2018) as motivated by the original MMI model (Kyle and Obizhaeva, 2016b). The model 

proposes a non-linear relationship between bets with the introduction of an order shredding 

factor. We empirically test the model’s trading activity prediction on trade data. We find that for 

highly capitalized stocks, trade counts yield the predicted 2/3 proportionality relationship to 

trading activity. Further investigation using alternative notions of trading activity proposed by 

Clark (1973) and Ané and Geman (2000) reveals the predicted proportionality for large trade-size 

stocks only. Any deviations from the stipulated 2/3 proportionality can potentially be explained 

by our extended invariance model.  
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3.1 Introduction 

Market microstructure invariance (Kyle and Obizhaeva, 2016b; henceforth MMI) proposes that 

individual capital markets operate in a distinct business time21 scale during which risk transfers 

occur. Rather than undertaking the customary analysis of the association between trading volume 

and business time, MMI investigates the relationship between the class of asset-specific risk 

transfers having little or no correlation with market risk (which MMI denotes as bets), and 

business time. In particular, Kyle and Obizhaeva (2016b) examine the relationship between 

trading activity, defined as the product of trading volume and return volatility in business time, 

and a variety of market microstructure characteristics, namely order size, order arrival rate, price 

impact, bid-ask spreads and price resilience. Intuitively, MMI proposes that such market 

microstructure characteristics remain approximately constant for all assets when estimated in 

business time. Their formulation leads to the MMI principle termed the “invariance of bets” 

which postulates that “the distribution of dollar risk transferred by a bet is the same when the 

dollar risk is measured in units of business time” (Kyle and Obizhaeva, 2016, p.1346). The 

empirical implication of this hypothesis is that the number of bets should be proportional to the 

two-thirds power of trading activity. 

MMI is ultimately an empirical proposition, but bets are not directly observable. However, 

Andersen et al. (2018) find compelling results in line with a benchmark MMI invariance 

hypothesis, suitably amended to analyse trading data from the E-mini S&P 500 futures market, at 

both the intraday and daily level. We extend the analyses of both Kyle and Obizhaeva (2016) on 

MMI and Andersen et al. (2018) on intraday trading invariance, investigating their implications in 

an equity market context, specifically for FTSE 100 constituent stocks trading on the London 

Stock Exchange (LSE). The chapter contributes to the literature as follows. First, we introduce an 

extension to the model in Andersen et al. (2018) which is motivated by the original MMI model 

specification of the invariance of bets. Our modification assumes that the number of bets may 

relate to the number of trades in a non-linear manner, including order shredding as one 

component. Importantly, it also enables us to adapt to the specific manner in which our 

                                                           
21 Business time is also referred to as operational time, economic time or information time. According to Hasbrouck 
(1999), “time deformation” invokes a differentiation between business time, in which a particular system develops, 
and calendar time in which someone observes it. The concept of using alternative time references when estimating 
trading activity is a salient feature of the empirical market microstructure literature which aggregates data over real 
time spans that incorporate shifting intervals of business time. The estimated returns over these periods are expected 
to follow combinations of business time distributions. Bochner (1955) proposes that time deformation can be 
specified in terms of subordinated stochastic processes, whereas Clark (1973) and Tauchen and Pitts (1983) express 
the relationship between business and calendar time as a function of latent or observed variables. 
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transaction dataset records executed trades and account for the potential impact of fragmentation 

and order slicing. Second, using panel regression specifications, we employ this extended 

invariance model to conduct the initial empirical test for individual traded equities of an 

invariance relationship between the number of trades and trading activity. Our tests analyse the 

entire subset of 70 equities which remain constituents of the FTSE 100 stocks trading on the LSE 

during our sample period from 2007 to 2009. We compare the findings from both the Kyle and 

Obizhaeva (2016b) and Andersen et al. (2016) invariance specifications to two well-known 

alternatives in the literature, implied by Clark (1973) and Ané and Geman (2000), respectively. 

Both Clark (1973) and Ané and Geman (2000) are advocates of the “mixtures of distributions 

hypothesis” (MDH) which “assumes that events important to the pricing of a security occur at a random, not 

uniform, rate through time” (Harris, 1987, p.127). While Clark (1973) utilizes trading volume as their 

notion of trading activity, Ané and Geman (2000) propose the number of trades as a “better 

stochastic clock than […] volume”.  

Our principal empirical findings are as follows. We confirm the intraday trading invariance 

relationship as predicted by Andersen et al. (2018) in our sample of FTSE 100 stocks for some 

sub samples. Specifically, highly capitalized in our sample stocks on average exhibit the MMI 

predicted power of 2/3 proportionality between the number of trades and trading activity. This 

finding appears to be robust to both stock and time fixed effects. Large trade size stocks yield the 

predicted 2/3 proportionality if we apply number of trades as a measure of trading activity, in the 

spirit of Ané and Geman (2000). In particular for both MMI models by Kyle and Obizhaeva 

(2016b) and Andersen et al. (2016), we find the proportionality power coefficient to be closer to 

0.6 rather than the expected value of 2/3. Results from tests of both the MDH hypotheses 

proposed by Clark (1973) and Ané and Geman (2000) diverge from the predicted 2/3 

proportionality. They also demonstrate significant variation in the relationship between the 

number of trades and the adapted versions of trading activity when the stocks are clustered 

according to various inherent characteristics, such as market capitalisation, number of trades, 

trading volume and trade size. In contrast, when we apply the trading activity measure proposed 

by Kyle and Obizhaeva (2016) we find generally smaller variation in the invariance relationship 

across these differing stock clusters. Moreover, any variation that we do observe can be explained 

using the extended invariance model that we introduce. 

Our results are in contrast to Benzaquen et al. (2016) who are able to confirm the empirical 

predictions of MMI for both U.S. futures and U.S. stock markets. As their analysed markets and 
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time period differs from ours, the results might be different. Furthermore, as we confirm the 

MMI predictions for highly capitalized stocks, this might point towards cross-sectional differences 

of chosen stocks and markets. Finally, as Benzaquen et al. (2016) do not provide further details of 

their data sources, their sample might not suffer from the data reporting issues as ours (i.e. that 

liquidity demanding orders might be represented as multiple trades due to matching against 

several passive limit orders), which we discussed above. The differences in results illustrate the 

need to study MMI further on different markets and for different datasets and, where appropriate, 

to provide adjustments for institutional, instrument and data characteristics as we do in this 

chapter. 

Finally, this chapter contributes to the existing time deformation literature, which proposes that 

price changes follow different distributions in calendar and business time. This literature analyses 

which family of distributions best describes variations in returns and their relationship with other 

variables of trading activity, especially trading volume (measured either in trade counts or the 

number of securities traded). Certain authors such as Mandelbrot and Taylor (1967) and 

Bouchaud et al. (2009) argue that price changes follow a (stable) Pareto-type distribution in 

calendar time and alternative distributions in business time.  MMI relates closely to this body of 

literature, which links order arrival rates to business time rather than trading volume. Alternative 

perspectives assume that “price changes are sampled from a set of distributions that are characterized by 

different variances” (Karpoff, 1987, p.115), i.e. a “mixture of distributions hypothesis” (MDH). Proponents 

of this view include Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983b), Harris 

(1987), Gallant et al. (1992) and Andersen (1996), among others. In particular, Clark (1973) 

advocates a link between business time and trading volume. In contrast, due to the documented 

connection with price volatility, Jones et al. (1994), Ané and Geman (2000), Dufour and Engle 

(2000) maintain that the number of trades rather than trading volume provide a better proxy for 

business time. This chapter extends the scope of this existing analysis by exploring the 

simultaneous relationship between return volatility and measures of trading activity, as formulated 

by MMI (Kyle and Obizhaeva, 2016b) and Andersen et al. (2016).  

The chapter proceeds as follows. Section 3.2 formulates the generalized theoretical invariance 

model. Section 3.3 outlines the methodology and the main and alternative empirical hypotheses. 

Section 3.4 highlights the characteristics and descriptive statistics of our dataset. Section 3.5 

presents and discusses the empirical results. Section 3.6 concludes. 
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3.2 Model  

3.2.1 The Kyle and Obizhaeva (2016) benchmark model  

MMI complements existing theoretical models of market microstructure grounded in the notion 

that order flow imbalances generate price fluctuations, and which proceed to develop measures of 

market depth or liquidity. MMI postulates that “the distribution of the dollar risk transferred by a 

bet is the same when the dollar risk is measured in units of business time” (Kyle and Obizhaeva, 

2016p, p.1346)22.  Currently, there is neither a consolidated framework to construct empirical 

measures for order flow imbalances, nor one which provides forecasts relating to the 

differentiation of price impact across stocks. As a result, existing empirical proxies for testing the 

relationship between price changes, order flow imbalances and their connection to stock 

characteristics are imperfect (e.g. Breen et al. (2002)). The MMI attempts to bridge the gap 

between theoretical market microstructure models and their empirical counterparts by imposing 

“cross-sectional restrictions” and “time series restrictions” that facilitate both the empirical 

assessment of the former and the implementation of liquidity measures that are contingent on 

order flow imbalances. 

The formulation of MMI by Kyle and Obizhaeva (2016b) assumes that over short calendar time 

intervals, the arrival rate of bets (asset-specific risk transfers) in the market is random. Denote the 

expected arrival rate of bets in asset j  at time t  by jt . This bet arrival rate jt  measures market 

velocity, and together with the distribution of bet size, varies with trading activity. We represent 

(signed) bet size by the probability distribution of a random variable 
jtQ  (number of shares), 

taking a positive (negative) sign for purchases (sales), where { } 0E Q  . Kyle and Obizhaeva 

(2016b) specify that that the average unit of bet volume  :jt jt jtV E Q   results in jt  units of 

total trading volume V  (which is 1jt   units of intermediation volume per unit of bet volume). 

It follows that the value of jt , termed the volume multiplier, captures the number of times that a 

bet is intermediated until the order conveying the bet is fully executed. Consequently, the 

expected total market trading volume in asset j at time t is given by: 

 :
2

jt

jt jt jtV E Q


     (1) 

                                                           
22 MMI proposes two invariance principles: the “invariance of bets” and the “invariance of transactions costs” (Kyle 
and Obizhaeva, 2016b). We only consider the invariance of bets in this chapter. 
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where  jtE Q  is the average bet size. We divide the volume multiplier by two to ensure that a 

buy-bet matched with a sell-bet, counts as one unit of volume. On this basis, the “expected bet 

volume” in shares per unit of time, jtV , is: 

  2
:jt jt jt jt

jt

V E Q V


       (2) 

If the volume multiplier, jt  is known, then using equation (2) generates the unobservable bet 

volume, jtV  from knowledge of trading volume, jtV .  

During time interval t, stock price fluctuations in asset j generate a percentage variance in returns, 

denoted by 
2

jt . A fraction, 0 ≤
2

jt  ≤ 1, of asset price variation is attributable to information-

based price updating in the absence of trading, while the remaining portion, 
2

jt = 1 - 
2

jt ,  occurs 

in response to order flow imbalances arising during trading. If order flow imbalances arise solely 

from bets, we can define the resulting “bet volatility” as: 

jt jt jt      (3) 

where jt  is the standard deviation of returns that stem from bet order flow imbalances. 

Equation (3) indicates that bet volatility, jt  can be inferred from the volatility of returns, jt , if 

the volatility multiplier, jt , is known. Finally, if jtP  represents the price of asset j (stock) price at 

time t,23 then bet volatility in asset j at time t is given by: 

jt jt jt jt jtP P       (4) 

To facilitate the empirical implementation of MMI, Kyle and Obizhaeva (2016b) make certain 

identifying assumptions. Specifically, they assume that the volume multiplier jt , and volatility 

multipliers, jt , are constant across assets j  and through time t , so jt   and jt  , 

However, they underline that assuming that volume and volatility multipliers are constants is not 

important to understand MMI theoretically. Thus, they proceed by making the following 

restrictions: first, they stipulate a single market maker, so the volume multiplier, 2  ; second, 

they maintain that return volatility stems only from bets, so the volatility multiplier is 2  . 

                                                           
23 This analysis uses UK traded equities, so asset prices, return volatility, bet volume, volatility and mark-to-market 
values are all denominated in pounds sterling.  
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Intuitively, this means that expected bet volume equals expected market volume,   ̅        and 

bet volatility becomes identical to return volatility   ̅       .  

The first invariance hypothesis, “invariance of bets” maintains that: “the distribution of risk (in local 

currency units) transferred by a bet in units of business time is the same across asset j and time t, in the sense that 

there exists a random variable I  such that for any j and t, the distribution of risk transfers jtI  is a market 

microstructure invariant 
d

jtI I  ,” (Kyle and Obizhaeva, 2016p, p 1352).   

The return volatility in one unit of business time (
1/2

jt jt jtP     ) multiplied by the distribution of 

signed bet size ( jtQ ), measures both the direction and size of the risk transferred by a bet per unit 

of business time (Kyle and Obizhaeva, 2016b). Intuitively, this means that in one unit of business 

time (
1

jt 
), a bet of size (

jt jtP Q ) generates a standard deviation of mark-to-market gains or losses 

equal to 
1/2| |jt jt jt jtP Q      . The amount of risk that a bet transfers per unit of business time, the 

invariance equation for bets, can be expressed as follows:  

1/2
:

d
jt

jt jt jt

jt

I I P Q



   

 (5) 

Representing “bet activity” jtW , as the product of (the value of) expected bet volume, jt jtP V  

and bet volatility jt , then using equation (2) yields:
 

 :jt jt jt jt jt jt jt jtW P V P E Q           (6)  
 

Combining equation (6) with equation (5), we derive the following empirical implication of the 

invariance of bets: 

       jt jt jt jt

jt jt

W E I E Q W E I
P






    


2/3 2/3
2/3 1/3 1

 ,   (7) 

Bets are submitted as orders and executed as trades but are not directly observable, as order 

splitting occurs and a single bet may be implemented over several trading periods. Trade and 

quote data indicate executed trades which represent a part, but not necessarily the entirety, of a 

bet. Consequently, Kyle and Obizhaeva (2016b) derive the empirical implications of MMI based 
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on a definition of trading activity, defined as the product of the expected price, jtP , returns 

volatility, jt  and observed trading volume, jtV  : 

:jt jt jt jtW P V     (8)  

Intuitively, jtW  is the standard deviation of mark-to-market gains or losses on the expected 

trading volume during one unit of calendar time, and comprises a measure of “total risk transfer” 

per unit of calendar time. Trading activity relates to bet activity through the following equality24:  

2
jt jtW W




   (9) 

Kyle and Obizhaeva (2016b) note that equation (7), which describes the implied MMI 

composition of order flow, incorporates empirical implications of invariance for both the bet 

arrival rate jt
 
and bet size distribution 

jtQ . Intuitively, they imply that if bet activity jtW  

increases by one percent, then the bet arrival rate jt  increases by 2/3 of one percent and the bet 

size distribution 
jtQ  moves higher by 1/3 of one percent. The intuition they provide is 

straightforward. On the basis that calendar time volatility, jt , remains unchanged, if the bet 

arrival rate jt  accelerates by a factor of 4, then volatility per unit of business time 
1/2

jt jt    

decreases by a factor of 2. Consequently, for the distribution of jtI  to remain invariant, the bet 

size 
jtQ  must increase by a factor of 2. The implication is that as bet activity increases, the 

number of bets should increase twice as fast as their size for the distribution of jtI  to remain 

invariant.  

In order to test the empirical implications of MMI, Andersen et al. (2018) apply a linear 

representation of invariance by taking the logarithm of equation (5). They further facilitate the 

empirical tests of invariance by equating the arrival rate of bets, γ, with the number of trades, N, 

and bet activity with trading activity. In a sense, they introduce Intraday Trading Invariance (ITI) 

by assuming that similar relationships that apply for bets hold also for trades occurring over 

shorter intervals. However, they argue that this assumption may not be valid in practice and that 

ITI is a purely empirical hypothesis that is motivated by MMI theory and the respective invariance 

                                                           
24 A proof of equation (9) is given in Appendix AI-1 
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relationships for bets.  We discuss the dataset used by Andersen et al. (2018) and the justification 

for these simplifications, as well as implications for our own dataset in the Section 3.6.  

3.2.2 An Extension to Invariance Model 

Following Andersen et al. (2018), in order to provide empirical evidence relating to the MMI, we 

also use available market data to examine the relationship between the number of trades and 

trading activity. As previously explained, Kyle and Obizhaeva (2016b) argue that assuming that 

volume multiplier jt  and volatility multiplier jt  remain constant is important for empirically 

examine invariance relationships. They argue that it is a reasonable approximation in their setting 

of portfolio transitions that they use as a proxy for bets.  While this assumption may hold during 

short time periods and in certain concentrated markets, we argue that stock markets are likely to 

feel the impact of fragmentation and order shredding compared to other markets. This caution is 

particularly important when testing invariance relationships for trades. Therefore, this leads us to 

expect certain differences in our empirical results from those in Andersen et al. (2018), who 

examine invariance relationships for transactions in E-mini S&P 500 futures contracts market.  

Consequently, we propose an extension to the model in Andersen et al. (2018). We argue that the 

number of bets may relate to the number of trades in a non-linear manner, so that N , which 

will affect the slope coefficient directly. Specifically, we assume bets are shredded in an 

exponential manner, so 
1/ , implying 

1/N  . On the basis of this assumption we incorporate 

this feature onto equation (5), so that  

jt

jt jt jt

jt

I P Q
N


  

/
:

2
 (10) 

 

where   represents an order shredding factor, such that 0  , jtN  is the expected number of 

trades for asset j  at time interval t ; all other variables are as previously defined. 

Equation (10) is subject to the same set of assumption and restrictions as specified explicitly in 

Andersen et al. (2018)25. As in Andersen et al. (2018), here it is also important to highlight the 

difference between equation (5) and (10) in that the former refers to bets, whereas the later refers 

to trades. Equation (10) is a purely empirical hypothesis, distinct from equation (5), though 

motivated by the invariance of bets. However, it deviates from the ITI framework, in that it is 

                                                           
25 Briefly it is assumed that the active traders have knowledge reagarding the current volatility and number of trades, 
and “consequently they adjust their trades so that to control the risk associated with the change in their asset portfolios. In effect, trade size 
is random, but “drawn” from a distribution that ensures the invariance relationship holds” (Andersen et al., 2018, p. 10) 
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based on the assumption that the number of bets may relate to the number of trades in a non-

linear manner. We argue that this assumption is reasonable, as in reality, it is hard to identify bets 

in order flow and we don’t know much about order shredding algorithms used by traders. In a 

sense, it may be thought of as some approximation to the way trading currently takes place in 

financial markets. It follows that for 1  , equation (8) becomes similar to ITI invariance 

relationship as introduced in Andersen et al. (2016).   

Given equation (10), the expression for trading activity in (6) yields the following expression for 

asset j  during time t :  

:jt jt jt jt jt jt jt jt jt jt jt jtW P V P Q P Q N              (11) 

where  :jt jtQ E Q  and jtN  is the expected number of trades in asset j  at time t .  

The equation (11) can be further expressed in terms of trading activity jtW  given the equation (9) 

as follows26: 

2
jt jt jt jt jtW P N Q 


      (12) 

Letting  :I E I , the mean of the invariant distribution, I , and taking expectations using 

equation (10), produces the following equation for any asset j , at time t:27 

    /2

jt

jt jt

jt

E I P E Q
N


   . (13) 

Solving (13) for  jtE Q  gives, 

1 1 1 /2

jt jt jt jtQ I P N         (14) 

Substituting from equation (14) into equation (12) for jtQ  generates the expression for the 

invariance of bets in trading terms arising from our generalized invariance model, namely: 

                                                           
26 A proof of equation (12) is given in Appendix AI-2 and equation (15) in Appendix AI-3.  Note that here we use the 

identifying assumption that expected bet volume is given by  : jt jtV N E Q   

27 Expectations are taken only for the variables I  and Q  that represent random variables, all other variables 

represent by definition an expected value.  
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3 /2

2 jt

jt

W
I

N 




     (15) 

As I  has an invariant distribution, its constant mean I  is independent of trading activity, jtW , 

the volume multiplier,  , the fraction of trading activity arising from order imbalances,  , and 

the expected number of trades (trade arrival rate), jtN . Equation (15) implies that jtN  is 

proportional to 2/32
jtW 


  and constitutes the basis of the empirical tests of invariance we 

undertake in section 3. 

Importantly, note that if the introduced order shredding factor 1  , then equation (15) 

becomes:  

3/2

jt

jt

W
I

N
  (16) 

which corresponds precisely to the invariance relationship suggested by Kyle and Obizhaeva 

(2016b) for bets, and by Andersen et al. (2016) in their empirical analysis of trades on the E-mini 

S&P 500 futures market. 

3.3 Methodology 

3.3.1 Main Hypothesis 

The relationship in equation (15) constitutes the basis of our empirical tests of the invariance 

hypothesis reformulated to apply to trades. Following Andersen et al. (2016), we apply logs and 

take expectations of equation (10) to obtain the linear representation:28 

1
{log } log

2 2

jt

jt jt jt

s
E I p q n        (17) 

where jtp  is the log of price; jtq  is the expected value of jtq  , the log of  signed trade size, 
jtQ ; 

jts  denotes the  log value of return volatility 
2

jt  ; and jtn  is the log of the number of trades jtN . 

                                                           
28 As MMI implies an invariant distribution of I , using logarithms of means or means of logarithms for the relevant 
variables of trading activity only makes a marginal difference. For example, we could take logarithms in Equation (14) 
and continue with the model’s derivation. However, following Andersen et al. (2016), we first estimate the logarithms 
of variables and then their means. A proof of the following equations (18) and (19) is given in Appendix AI-4. 
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Solving equation (17) for jtn  and jtq  yields the following two expressions, which hold across 

time and stocks. Together, they characterize the empirical implications of the invariance of trades.  

1

2

3
jt jtn c w


    (18) 

2

1

3 2

jt

jt jt jt

s
q c w p     (19) 

where 
jw 

 is the logarithm of trading activity, and the constants 1c  and 2c  in equations (18) and 

(19) are given by:  

1

2 2
log log {log }

3
c E I

 

    
     

    

and  2

2 1 2
{log } log log

3 3
c E I 



 
    

 
 

Based on equation (18), an increase in   implies both a lower slope coefficient and a reduced 

level of order shredding. We further empirically test this hypothesis in Section 3.5.2.2 and include 

a discussion of the role of order shredding when interpreting our results in Section 3.6  

 Moving a step forward, high frequency measures of the trading variables t , tN  and tV  are 

customarily noisy, as noted by Andersen et al. (2016). To test for an invariance relationship 

between the number of trades and trading activity requires these trading variables to be directly 

observable. We divide our sample of 1,.......,d D  trading days into 1,......,t T  minute non-

overlapping intervals (we analyse 5 minute intervals) within each day.  This results in a 

modification of equations (10), (17) and (18) as follows: 

d
jdt

jdt jdt jdt

jdt

I I P Q
N


   

/
:

2
 (20) 

1
{log } log

2 2

jdt

jdt jdt jdt

s
E I p q n        (21)    

1

2
:

3
jdt jdtn c w


   (22) 

where jdtP  is the average price for asset j over interval t  of day d , jdtQ (number of shares) is the 

average trade size for asset j during internal t  of day d , jdt  is the volatility of returns for asset j

during interval t  of day d  given information prior to time t , is the number of trades during 

interval t  of day d , and ,  ,  jdt jdt jdtp q s  and jdtn  are the logs of the respective variables 
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As in Andersen et al. (2016), synergies between the trading strategies of market participants imply 

that the distribution of I  retains MMI characteristics (i.e. i.i.d. across time). Consequently, jdtI  

and {log }jdtE I  in equations (20) and (21) remain constant either during a day, d , or given time 

interval, t . As trading participants actively acquire real-time information on the state of the 

market, they form unbiased expectations of the number of transactions, jdtN  , trading volume, 

jdtV , and volatility, jdt , over the next time interval (variables are aggregated over 5-minute time 

intervals). Given these expectations, market participants then select a trade size, jdtQ , reflecting 

their immediate trading requirements, conditioning on the prevailing market cirnumstances.  As 

realized values may differ from a priori expectations, we require robust estimators for the number 

of trades, the volatility of returns and the trading volume in order to accurately test the trading 

invariance hypothesis. We aggregate the logarithms of these 5-minutes observations and average 

their values across days to mitigate the effect of sampling variation and measurement error.  Any 

remaining intraday fluctuations subsequent to aggregation indicate fluctuations in market 

expectations.  

Let jdtx   represent the log of the underlying trading variable, either trade count n , average trade 

size q , trading volume  , realized volatility s , or trading activity w , for asset j for interval t  of 

day d  that observe in transactions data. The interday average value of this variable observation, 

for this specific time interval, taken over the entire D days in the sample, is given by:  

1

1 D

jt jdt

d

x x
D 

   ,  1,......,t D   (23) 

Alternatively, we can calculate the average of the relevant trading variable for all intraday intervals 

of length t  within a given trading day d , as: 

1

1 T

jd jdt

t

x x
T 

  , 1,......,d T  (24) 

where there are T intervals, each of length t, in trading day d.  

Following Andersen et al. (2001), we calculate realized volatility jdt  from 10-second returns. We 

obtain prices in each 10-second time interval by taking the average of the respective log bid and 

log ask quotes. As tick-by-tick data is not generally reported in continuously-spaced distinct time 

points, on occasion we obtain the required midpoints by linearly interpolating between the 

previous and next available midpoint. We compute returns from bid and ask quotes not from 
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trade prices. This avoids the effects of bid–ask bounce and stale prices that may bias the realized 

volatility estimator (Zhou, 1996, Andersen et al., 2000). We estimate “continuously-compounded 

returns” using the difference between the 10th and 1st ranked midpoints in each 10-second time 

interval which accounts for microstructure noise. The realized volatility jdt  estimator for each 5-

minutes interval is then defined as the sum of squared 10-second returns (i.e. 30 squared returns 

per 5 minutes). We remove from the sample those 5-minutes intervals during which the realized 

volatility is zero. In contrast to Andersen et al. (2016), there are no 5-minutes intervals without 

trades that we need to exclude from our sample. The total fraction of omitted observations across 

all stocks is 5.5%.29  While the resulting estimator suffers from potential measurement error in 

relation to actual local volatility, we improve its overall accuracy by summing across different 5-

minutes intervals in line with the “error diversification principle” adopted by Andersen et al. 

(2016).   

3.3.2 Empirical Analysis: Market Microstructure Invariance and Alternative Hypotheses  

The benchmark empirical hypothesis we investigate, the invariance of trades, proposes a 

proportionality between the number of trades jn  and trading activity jw  and is given in equation 

(22). We now formulate and test two variants of this invariance proposition, comparing our 

findings with an invariance representation of two well-known alternative models in the literature 

developed by Clark (1973) and Ané and Geman (2000), the MDH-V and MDH-N respectively, 

which utilize different concepts of business time. These models are briefly discussed in section 1. 

Here we summarize their distinctive properties and derive appropriate empirical formulations. 

The baseline invariance models we estimate are both derived from equation (22). They differ only 

in their measurement of the trading activity variable, jkw . In its general form, this is given by: 

2
:

3

n

jk jk jkn c w u


     (25) 

where k  represents either different intraday intervals (i.e. ,  1,.....,k t t T  ) or distinct trading 

days ( i.e. ,  1,.....,k d t D  ) for asset j , and 
n

jku  are the regression residuals. Inspection 

reveals this to be the empirical analogue of the formulation in equation (22).  

                                                           
29 We also estimate the underlying variables for one-minute intervals, as lower frequency estimators may exhibit 
upward bias. However, the number of one-minute intervals we exclude from our analysis greatly exceeds the number 
excluded from the lower frequency, 5-minutes intervals. As omitting more information renders less precise 
coefficients estimates, we report estimates using the 5-minute frequency. 
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Model 1: Invariance (Kyle and Obizhaeva, 2016b) 

The first invariance model defines trading activity as introduced by Kyle and Obizhaeva (2016b). 

This is given in equation (8), such that the log of trading activity jkw  is equal to

1
:

2
jk jk jk jkw p s   , and it restricts 1  . In this case, equation (25) becomes (26): 

2

3

n

jk jk jkn c w u    (26) 

and the trade arrival rate is proportional to trading activity in a specific ratio, namely 2/3. 

Model 2: Trading Invariance (Andersen et al., 2016) 

The “intraday” trading invariance model of Andersen et al. (2016) investigates whether the 

invariance of bets can be applied to trades. Tick by tick data on E-mini S&P 500 futures contracts 

is used to test the specification. The formulation of the general test equation imposes similar 

restrictions on equation (25) as the Kyle and Obizhaeva (2016b) formulation. It differs from the 

latter model in that the definition of trading activity omits the price interaction term from 

equation (10), so that the log of trading activity jkw  in this formulation equals 
1

:
2

jk jk jkw s  , 

the product of expected trading volume and returns volatility. Again note that given the 

restrictions imposed, the trade arrival rate is proportional to trading activity in the same specific 

ratio, 2/3, as in Model 1. 

Model 3: Mixture Distribution Hypothesis-Volume, MDH-V, (Clark, 1973) 

The alternative models we explore also examine the relationship between trading activity and 

return volatility, but utilize alternative notions of business time to that proposed by MMI. 

Specifically, Clark (1973) investigates the relationship between trading volume and returns 

volatility, concluding that expected trading volume is directly proportional to return variation (i.e. 

(
2

jdt jdtV ) and acts as a proxy for the business time clock. This proportionality can be expressed 

in log terms as: jdt jdt jdt jdts c c n q      enabling us to specify the following alternative 

empirical proposition using a similar representation as in equation (25). Following Andersen et al. 

(2016) and the respective derivation yields the following model:  
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2 3

3 2

n

jk jk jk jkn c w q u
 

    
 

 (27) 

Model 4: Mixture Distribution Hypothesis-Number of Trades, MDH-N, (Ané and 

Geman, 2000) 

In contrast to both MMI and Clark (1973), others maintain that the number of trades (trade 

count) is a better proxy for business time. Building on earlier work by Jones et al. (1994), Ané and 

Geman (2000) report a significant relationship between the number of trades and returns 

variation. The resulting empirical hypothesis indicates that the expected number of trades is 

proportional to return variation (i.e.     
      ), a proportionality which can be written in log 

terms as: dt dts c n  . This leads to our second alternative to the main MMI hypothesis which in 

the manner of equation (25) following Andersen et al. (2016) and the respective derivation we 

represent as: 

2

3

n

jk jk jk jkn c w q u       (28) 

Finally, the intraday invariance equation (20) reveals that if expected trade size ( jdtQ ) is constant, 

there is a proportionality between both expected return volatility and trade count (
2

jdt jdtN ) 

and expected return volatility and trading volume (
2

jdt jdtV ). In this case, the formulations of 

Clark (1973), Ané and Geman (2000) and intraday trading invariance become equivalent. In 

contrast, if variations in trade size and variations in return volatility and number of trades are 

correlated, the aforementioned proportionality disappears. This outcome is more likely if traders 

actively control for their risk exposures in business time, which in turn leads to a systematic 

variation of trade size with both volume and volatility. In this situation, the theories will exhibit 

contrasting empirical implications.  

We proceed to examine the existence of an invariance relationship between the number of trades 

and the various proposed definitions of trading activity given by equations (26), (27), and (28) 

outlined above. The empirical implications of this formulation of the equations are that on the 

basis of the different definitions of the trading activity variable, jkw , the estimated regression 

coefficient should be 2 / 3   for every model, thereby facilitating comparisons. Our main 

empirical objectives are twofold: first, to investigate whether this hypothesized invariance 



51 

 

proportionality holds on average, and second to determine which, if any, of the different notions 

of trading activity can predict it more accurately. We undertake the analysis on variables estimated 

both as averages across days (interday) and as intraday averages, described in detail section 3.5     

3.4 The FTSE 100 Data 

We use time-stamped tick data from Thomson Reuters Tick History for the 70 constituent stocks 

of the FTSE 100 index which trade on the LSE (see list of stocks in Appendix II-Table A1) and 

remain constituents of the FTSE 100 throughout the sample period. The dataset includes tick-by-

tick information on the best available bid and ask quotes, transaction prices, and trading volume 

(in shares), for the 3 years between 1st January 2007 and 31st December 2009. We focus on the 

continuous trading period on the LSE from 8 a.m. to 4.30 p.m., Monday to Friday. We exclude 30 

days that correspond to holidays or other days with reduced trading activity arising from reduced 

trading hours. This leads to a total of 754 trading days. 

We further divide each trading day into 102 intervals of 5 minute duration. In each interval, we 

aggregate the observations for trading volume V , number of trades N and average trade size Q    

so our estimates relate to five-minute values. We compute the realized return volatility,  , for 

each 5-minutes interval following the approach explained in subsection 3.1. We apply two 

aggregation methods which focus on the trading patterns across days (interday) and within a day 

(intraday). For the 5-minute averages across days, we estimate averages of 5 minute intervals using 

equation (23), aggregate the respective values across 754 trading days and divide by 102 (the 

number of 5-minute intervals per trading day). For the 5-minute intraday averages, we estimate 

averages of 5 minute intervals using equation (24) across the 102 intervals of 5-minute duration 

during each trading day and then divide by 754, the number of trading days. The descriptive 

statistics for the 5-minutes averages across days are reported in Table 1.30 

[Table 1 in here] 

From the descriptive statistics of the overall sample in Panel A, Table 1, we note that the sample 

stocks trade comparably frequently, with an average of about 48 trades per 5 minute interval, a 

trading volume of 15 traded shares, and an average trade size of 3 shares. The companies are 

                                                           
30 The statistics are quantitatively very similar for the 5-minute intraday averages. We report the latter in Appendix II, 
Table A2. 
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relatively large with an average market capitalization of 17 billion GBP.31 To account for any 

differential impact of market capitalization on invariance, we classify the 70 stocks into 3 groups 

based on their market capitalizations using monthly values from the LSPD database as provided 

by WRDS. The list of sample stocks and 3 market cap groups are listed in Appendix II, Table A1. 

We use two different classification methods: the first classification yields groups of similar size (23 

stocks in the high Mcap group, Mkt1, 23 stocks in the medium Mcap group, Mkt2, and 24 stocks 

in the lowest Mcap group, Mkt3), while the second classification results in groups that each 

account for an equal proportion (33%) of the total 3-years market capitalization average 

(PropMkt1, PropMkt2, PropMkt3). In the latter classification, the high Mcap group (PropMkt1) 

consists only of the top 5 stocks, whose individual market capitalization is very high when 

compared to the other stocks, and the medium Mcap group (PropMkt2) of the 13 highest 

capitalized stocks after the top 5. We present the descriptive statistics for the three market cap 

groups and the group of top 5 stocks with the highest market capitalization in Table 1, Panel B. 

We can see that the classification by market capitalization results in the  high Mcap group (Mkt1) 

having the highest number of trades, trading volume, and trade size, while the low Mcap group 

(Mkt3) has the lowest average taken over these measures. However, the groups have a similar 

average volatility of around 0.3. Analysing the high proportion Mcap group (PropMkt1) separately 

indicates that this group has quite distinct values, with more than double the trading volume and 

trade size even when compared to the high Mcap (Mkt1) group. 

The descriptive statistics of the model variables Trades (N), Volume (V), Trade Size (Q), Price 

(P), and Volatility (σ) for each individual stock are presented in Appendix II, Table A3, for 5-

minutes averages across days, and in Appendix II, Table A4, for 5-minutes intraday averages. We 

report the stocks in order of their market capitalization, with BP having the highest and IHG the 

lowest market capitalization. The mean values in Table A3 indicate that the average number of 

trades ranges from 19.83 to 126.98, with ABF having the lowest, and BLT the highest number of 

average trades. Average trading volume ranges from 12.26 (in 1000 shares) to 1915.94 (in 1000 

shares) and average trade size ranges from 0.48 (in 1000 shares) to 23.05 (in 1000 shares), with 

VOD having both the highest average trading volume and trade size. In that respect VOD (which 

is also included in the PropMkt1 group) seems somewhat distinctive as compared to the other 

stocks. Finally, average annualized volatility ranges from 0.20 to 0.54, with ABF having the lowest, 

                                                           
31 Comparing our sample statistics with those from the E-mini futures in Andersen et al. (2016), the average number 
of trades is approximately 1/15 of the trade count in their sample of E-mini futures. The average volatility of 0.3 is 
similar to the value of 0.26 in Andersen et al. (2016). 
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and RBS the highest, annualized volatility. In particular, the top three stocks in term of average 

annualized volatility belong to the banking sector. As we incorporate the 2008/09 financial crisis 

in the sample, this may be unsurprising.  

Comparing values between Table A3 and Table A4, individual stocks exhibit minor differences in 

their means for all variables. We observe the largest mean differences for the number of trades 

and trading volume, and they are especially pronounced for the 23 stocks with the greatest market 

capitalization. However, the standard deviation of variables differs considerably between the two 

sets of averages. For the majority of the stocks, the numbers of trades, trading volume and trade 

size exhibit a higher standard deviation using intraday averages for their estimation.  These 

differences are consistent with the existence of significant intraday trading patterns, which 

influence the model’s variables in a more pronounced fashion than when we compare the same 

effects during the same 5-minute intervals across trading days. 

3.5 Empirical Results 

3.5.1 Analysis of Proportionality of Trade Count and Trading Activity 

This section discusses the empirical results of panel regressions analysing the proportionality 

between number of trades and the different definitions of trading activity, introduced by Kyle and 

Obizhaeva (2016b), Andersen et al. (2016), Clark (1973) and Ané and Geman (2000), respectively. 

To control both for time and stock effects, we include two-way fixed effects when estimating 

equations (26), (27), and (28). Next, we investigate model differences in the invariance coefficients 

when we classify stocks in groups based on market capitalization, trade size, trading volume and 

number of trades. This will reveal the extent to which these characteristics, if any, affect the 

invariance proportionality. Ultimately, this approach will verify whether the theoretical 2/3 

invariance proportionality for bets applies also to trades on average and reveal which of the four 

models best captures the market microstructure properties in this specific market. 

The two-way fixed effects (stock and time) model we employ has the following form: 

 ( {1,.......,102} or {1,.......,754}; {1,.......,70})it it itn a w t t i              (29) 

where itn  is the logarithm of number of trades for stock i at 5-minutes interval t and itw  is the 

logarithm of trading activity for stock i at 5-minutes interval t, defined by equations (26), (27), and 

(28) respectively; it  are error terms assumed to be independently distributed across stocks. The 
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number of trades and trading activity are either averages across days (with  1, ,754t   trading 

days) or intraday averages (with  1, ,102t   intraday intervals) as estimated by equations (23) and 

(24), respectively.  

[Table 2 in here] 

Table 2 Panel A, presents the coefficient estimates of the OLS regression model given in equation 

(29) for the four different definitions of trading activity, as specified in Models 1-4, using 

aggregation across days. Similarly, Panel B depicts the coefficients when we use intraday averages. 

In both sets of averages (across days and intraday), the null hypothesis for 2 / 3   is rejected at a 

0.1% significance level. Specifically, for the results on averages across days in Panel A, the 

invariance model (Model 1) and its modification (Model 2) both estimate a lower average 

proportionality between number of trades and trading activity than invariance theory suggests. In 

contrast, Model 3 (MDH-V) and Model 4 (MDH-N) yield coefficients that exceed the expected 

2/3 proportionality. Comparing the differences between the coefficient estimates of the four 

models and 2/3, we conclude that Model 4 has the smallest absolute difference of 0.0508, while 

Model 3 yields the largest difference of 0.0731. In addition, the results for Model 1 and Model 2 

suggest that including prices does not influence the average proportionality estimate when 

measured as an average across days. 

As shown in Table 2 Panel B, using intraday instead of across day averages leads to lower 

coefficient estimates for all models. Model 1 (invariance) and Model 4 (MDH-N) produce almost 

identical average proportionalities; as do Model 2 (trading invariance) and Model 4 (MDH-V) 

specifications. We attribute the coefficient differences when variables are averaged across days 

rather than intraday to the presence of different time and stock fixed effects. In particular, we 

maintain that time fixed effects are more pronounced using intraday averages due to documented 

intraday trading patterns.  The inference is that the invariance proportionality results may be 

partly driven by the intraday dynamics of trading activity.32  

In summary, there is a significant difference in results between the two invariance models and the 

MDH-N and MDH-V models, according to the definition of trading activity we adopt. Moreover, 

the estimated relationship between the number of trades and trading activity varies significantly 

from the models’ predicted values. Using across day averages, the MDH-N model (Model 4) 

yields the closest estimate to the theoretical 2/3 relationship predicted between trading activity 

                                                           
32 The results are qualitatively similar for the analysis using intraday averages. We report these additional results in the 
Appendix II, Table A5 and discuss them together in Section 5.3.  
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and number of trades. However, we note that both invariance models yield smaller standard 

errors for average invariance coefficient estimates as compared to the other two models, 

independent of the estimation method we employ for the underlying variables. Thus, the trading 

activity definitions generated by the two invariance models may provide more robust results on 

the relationship between trading activity and number of trades than the alternatives. The main 

difference between the models is the role trade size plays in their respective measure of trading 

activity. Moreover, the fact that the invariance models exhibit different slope coefficients 

compared to MDH models gives us reason to infer that trade size appears to be non-constant. In 

summary, a significant difference in results is apparent between the invariance and both the 

MDH-N and MDH-V models, which differ according to the definition of trading activity they 

adopt.  

Andersen et al. (2016) argue that trade size, as well as other cross-sectional characteristics, may 

play a significant role in proportionality estimates. We further analyse the invariance relationships 

for different subsamples, selected on the basis of market capitalization, trade size and trading 

activity to offer further insight into the factors affecting the relationship between the number of 

trades and trading activity. 

3.5.2 Cross-Sectional Analysis of a Proportionality between Trade Counts and Trading Activity 

3.5.2.1 Influence of Market Capitalization 

To provide insight into the different factors influencing  the proportionality between trade counts 

and trading activity, we examine the invariance proportionality for various groups of stock 

characteristics, namely market capitalization, trade size, trading volume and trade counts, and test 

for differential effects across these group clusters. We begin by investigating the impact of market 

capitalization on the relationship between trade counts and trading activity. In section 4, we 

classify the 70 stocks into 3 groups Mkt1 (high), Mkt2 (medium) and Mkt3 (low) based on their 

market capitalization. Subsequently, we estimate OLS regressions based on the following 

modification to the model in equation (32):  

1 2 2 3 3:  it it it it itn a w MKT w MKT w               (30) 

where itn  is the logarithm of number of trades for stock i at 5-minutes interval t, itw  is the 

logarithm of trading activity for stock  i  at 5-minutes interval t, defined by equations (26), (27), 

and (28), respectively; it  are the error terms assumed to be independently  distributed across 
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stocks; MKTj (j = 2,3) is  a market capitalization dummy variable for “medium” capitalization (j = 

2), and “low” capitalization (j = 3) stocks, respectively, taking a value of 1 if the stock belongs to 

the relevant  group and zero otherwise.33  

Classification according to market capitalization groups yields some revealing results, which we 

present in Table 3. In the invariance models 1 and 2, we find that the proportionality between 

trade count and trading activity lies closest to the predicted 2/3 for those stocks in the high 

market capitalization (Mkt1) group, with the proportionality estimates always being lower in both 

the medium Mcap (Mkt2) and low Mcap (Mkt3) groups. However, we still reject the hypothesis of 

2 / 3   in all four model specifications. However, the slope coefficient estimates are 

economically very close to 2/3 which invariance theory suggests.   

[Table 3 in here] 

We earlier indicated that we compile three further groupings of stocks, each of which contributes 

33% of the overall FTSE 100 market capitalization. We conduct a further analysis based on this 

classification. Table 4 presents the results. We are unable to reject the null hypothesis of 

1 2 / 3   in the large (PropMkt1) and medium cap (PropMkt2) stock groups in either the 

invariance model (Model 1) or the trading invariance model (Model 2), thereby providing support 

for MMI. It appears the inherent stock characteristics of these two groups more closely conform 

to the requirements of MMI than the remaining stocks in the “small” cap group.  Moreover, 

Panel A of Table 4 indicates the proportionality coefficient estimate for the “small” cap group is 

statistically significantly below the “large” cap group for all models. No significant differences are 

found between the invariance model (Model 1) and the trading invariance model (Model 2) with 

respect to the invariance proportionality estimates for “large” or “medium” cap stocks, while both 

the MDH-V and MDH-N models indicate that proportionality coefficient for the “medium” cap 

group is lower on average when compared to the “large” cap group    

[Table 4 in here] 

In summary, we believe that classifying stocks by market capitalization groups provides interesting 

insights into the proportionality relationships between trade counts and trading activity for 

                                                           
33  We do not estimate independent coefficients on 

2MKT and 
3MKT  standalone dummy variables as they are 

subsumed by stock fixed effects, analyzing only the respective dummy variable interaction terms with the logarithm 

of trading activity, 
itw .    
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different stocks. We further discuss the specific results and their potential interpretation in the 

following Section 3.5.3.  

3.5.2.2  Influence of Trade Size, Trading Volume, and Number of Trades 

This section examines the influence of trading volume, number of trades, and trade size on the 

documented invariance proportionality. Based on the average value of these specific 

characteristics, we classify the 70 stocks into two groups which we term high and low, employing 

an indicator dummy variable to distinguish between stocks in high and low characteristic groups.34 

The OLS regressions utilize the following variation of the model in equation (29): 

 1 2:  it it it itn a w Xw             (31) 

where itn  is the logarithm of number of trades for stock i  at 5-minutes interval t, itw  is the 

logarithm of trading activity for stock  i  at 5-minute interval t, defined by equations (26), (27), and 

(28) respectively, it  are the error terms assumed to be independently distributed across stocks, 

X  represents a dummy variable set equal to 1 if a stock is a low value group member of a 

characteristic group  based on trading volume (TVol ),  number of trades ( NTrades ), or trade 

size (TSize ), respectively, and zero otherwise.35  

Tables 5, 6 and 7, respectively, present the coefficient estimates we obtain from the OLS 

regressions which analyse the three constituent characteristic groups, namely differences in 

trading volume, number of trades and trade size, for each of the four models.  

[Table 5 in here] 

Table 5 reports the coefficient estimates for the group classification based on trading volume         

(TVol ). The null hypothesis for 1 2 / 3   is rejected in all four models at 0.1% significance level. 

Furthermore, there is no evidence of any significant differences in proportionality coefficients 

across the different groups of stock classifications.  Qualitatively, stocks that belong to the group 

with low trading volume appear to yield smaller coefficient estimates for the invariance models 

and higher for MDH models compared to those in the large trading volume group, though those 

differences are insignificant in most cases. Overall, this finding for the trading volume 

classification is consistent with the invariant proportionality prediction of MMI.  Following the 

                                                           
34 The high average group incorporates stocks above the 85% percentile measure for these characteristics, whose 
variation within this top 15% group is comparable to that in the lower 85% for the three chosen characteristics.  
35 We cannot estimate the coefficients on any standalone dummy variables as they are subsumed by stock fixed 
effects. So we estimate only the respective interaction terms with the logarithm of trading activity. 
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discussion in Section 3.4, while we can infer a positive relationship between trading volume, trade 

count, and market capitalization, the proportionality effects the market capitalization groups 

capture are not manifest across trading volume segmented groups.  

[Table 6 in here] 

The estimates from the trade count (NTrades) classification in Table 6 once again reject the null 

hypothesis of 1 2 / 3   in all four models. With the exception of the MDH-V model, all models 

report that stocks with lower trade counts evidence lower proportionality coefficients as 

compared to those with higher average trade counts. The estimates obtained by trade count 

classification are both qualitatively and quantitatively similar to the estimates we present in table 5 

based on market capitalization, although the results differ from those we obtain based on the 

trading volume classification. As trade size constitutes the link between the trade count and trade 

volume measures, our results also point towards an important role for trade size in establishing 

any proportionality relationship between trade counts and trading activity. 

[Table 7 in here] 

Finally, Table 7 presents the results subsequent to stock classification by trade size (TSize). An 

inability to reject the null hypothesis of 1 2 / 3  in the MDH-N model (Model 4), indicates that 

large trade size stocks exhibit the trade flow composition  implied by MMI on the assumption 

that the number of trades is proportional to returns variance. The other three models all reject the 

null hypothesis of 1 2 / 3  . As invariance theory predicts no statistical difference in the 

proportionality between large and small trade size groups, the estimates from both the invariance 

model (Model 1) and the trading invariance model (Model 2) corroborate the theory and are 

consistent with our expectations. However, there is a positive significant difference for the small 

trade size stocks in both the MDH-V and MDH-N models. As smaller trade sizes would generally 

imply a higher degree of intermediation and a smaller amount of risk transfer per trade, the 

positive difference between large and small trade size groups in these two models contrasts with 

our prior expectations. What is apparent from the descriptive statistics we present in Table 1 and 

in Appendix II, Table A3 and A4, is that trade sizes does not correlate with either market 

capitalization or trading volume, so while the effects it captures play an important role, the nature 

of this role differs from that incorporated in the latter two variables. 

Qualitatively, particularly in the MMI specification, larger trade size stocks universally exhibit 

smaller regression coefficients as compared to small trade size stocks, thereby violating underlying 
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model assumptions. Following our discussion of order shredding in Section 2.2, we associate 

smaller slope coefficients with a lower level of order shredding, leading us to conjecture that 

smaller trade sizes may be a result of a higher level of order shredding in these stocks. Thus, our 

finding of larger coefficient estimates in smaller trade sizes is consistent with the notion of higher 

levels of order shredding for small trade size stocks. In a sense, this confirms our initial 

hypothesis for the extended invariance model in (10).   

In summary, we document that the stock characteristics we use in order to classify different 

groups of stocks affect the estimates of invariance coefficients. While we cannot confirm the 

precise 2/3 theoretical proportionality suggested by Kyle and Obizhaeva (2016b) for all stocks, in 

most models our invariance estimates are close to 0.6 and appear generally robust to stock 

classifications based upon trading volume and trade size.  Restricting the analysis to the larger 

market capitalization stocks, we are able to closely approximate the predicted 2/3 proportionality 

using both invariance model specifications, and also in the MDH-N model for stocks with large 

trade size. Overall, there is a significant difference between the invariance models (Model 1 and 2) 

and the MDH models (Models 3 and 4) in terms of the invariance coefficient estimates. 

Generally, the invariance models (MDH models) yield consistently lower (higher) coefficient 

estimates than the 2/3 proportionality predicted in Kyle and Obizhaeva (2016b). 

3.6 Discussion 

The hypotheses in the preceding empirical analysis all assume that following Kyle and Obizhaeva 

(2016b), the volume multiplier is 2   and the volatility multiplier is 1  . Andersen et al 

(2018) use the same set of assumptions to investigate the proportionality between trade counts 

and trading activity in the E-mini S&P 500 futures market, though they clearly argue that their ITI 

hypothesis is distinct and purely empirical compared to MMI, while motived by the later. Our 

dataset is similar in nature to that Andersen et al. (2018) employ, in that we obtain tick-by-tick 

data for trades and quotes. However, one significant difference in the two datasets concerns the 

manner in which they report trades. The dataset in Andersen et al. (2018) reports trades as the 

executable portion of an initiated order. An incoming order can be executed against different 

passive orders at different price levels, but the data only records the portion executed at the best 

price level. Although Andersen (2018) argue that due to the high level of liquidity and depth at the 

market, the unexecuted portion of orders would be negligible, this may decrease the trade size in 

some instances of market illiquidity. In general, this aggregation would approximate the definition 
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of a bet quite closely and justifies the assumption that the volume multiplier is 2   and that the 

same invariance relationships that hold for bets can also potentially hold for trades occurring over 

shorter intervals. However, order slicing (or order shredding) strategies by both the active and 

passive traders can generally make it difficult to unravel the initial bet from historical trade data. 

In contrast, our dataset has limitations when measuring the magnitude of bets. It records any 

liquidity demanding order executed against multiple passive limit orders as separate trades, so it 

captures supply-side intermediation. This contrasts with the dataset used by Andersen et al. (2018) 

which adopts the perspective of the active trader placing the executable order rather than 

capturing any intermediation at the trade execution stage. Thus, our dataset may have a tendency 

to inflate the number of trades and deflate trade size amounts from the levels that theoretical 

invariance concepts suggest. However, our dataset captures all trades, which can convey different 

insights. It is important to note that trades in our dataset are not individual bets. Therefore, the 

assumption that the volume multiplier 2   and the volatility multiplier 1   would not be 

expected to hold for all transactions and across stocks, which affects the intercept and possibly 

also the slope coefficient. In addition, our analysis provides insight into other factors, such as 

trade size and number of trades, which may influence the relationship between the number of 

trades and trading activity. As all these factors are affected by order shredding or intermediation 

activity, they can also underpin a rational explanation for the fact that some of our empirical 

coefficient estimates can deviate from the stipulated 2/3 invariance proportionality.  

In order to incorporate activities such as order shredding or trade intermediation, we contend that 

our extended invariance model provides one solution to formulating empirical tests of invariance 

proportionality using trade data. We introduce the order shredding factor   to the specification 

of invariance as introduced in Andersen et al. (2018). Following Andersen et al. (2018) and their 

assumptions on ITI, our extended model is a purely empirical hypothesis that yields a 

proportionality of 2 / 3 , which  Consequently, equals 2/3 when we impose a linear relationship 

between bets and trades as implied by Andersen et al. (2018). We argue that our model generates 

empirical estimates from trade and quote data, enabling us to draw certain inferences on the 

relationship between predicted invariance proportionality coefficients and trading activity.  

Our empirical estimates of the invariance models for the highest market capitalization group of 

stocks yield the MMI predicted 2/3 proportionality on average, but also indicate a lower 

proportionality coefficient for “low” market capitalization stocks, when using averages across 

days. Both MMI and ITI  assume an average of one market maker per bet/trade and that return 
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volatility stems primarily from order flow imbalances caused by bets/trades rather than public 

information, such as news announcements, respectively. Our results, independent of the criterion 

for classification and the trading activity notion we employ, imply that these assumptions appear 

to be more representative of trading in “high” and rather than “low” capitalization stocks and 

may arise from greater liquidity and depth at the top of the limit-order book. In a sense this may 

indicate that “large” market cap stocks are more liquid compared to “low” market cap stocks. 

However, based on our extended invariance model, “low” market cap stocks yield lower 

coefficient estimates, which is associated with lower level of order shredding. On one hand this 

implies that these stocks are not illiquid as traders on average are able to execute orders without 

having to shred them. On the other hand, this result may suggest that bets in large stocks are 

probably larger than bets in small stocks and so these bets in large stocks are shredded into more 

pieces than bets in small stocks (e.g. if for simplicity we assume a market in which all bets are 

simply shredded into 100-share trades). 

Coefficient estimates based on volume groups are lower (higher) than invariance theory suggests 

for invariance (MDH) models. Based on our extended invariance model, qualitatively, stocks that 

belong to the group with low trading volume are subject to slightly lower level of order shredding 

on average. Qualitatively similar are the results for transaction counts groups, with those stocks in 

the lower number of trades group, exhibiting lower level of order shredding on average. We argue 

that both results are economically reasonable as orders for stocks with thin volumes (either 

measured by trading volume or number of trades) are expected to be accommodated without the 

need for order shredding. In addition, small trade size stocks yield higher slope coefficients, 

possibly due to the presence of higher levels of order shredding serving to decrease trade size for 

these stocks. This is consistent with the initial hypothesis of our extended invariance model. 

Higher slope coefficients for lower trade size stocks are present independent of the notion of 

trading activity used. Nevertheless, large trade size stocks exhibit the trade flow composition 

implied by MMI on the assumption that the number of trades is proportional to returns variance. 

In summary, the coefficient estimates when grouping stocks based on major stock characteristics 

such as trading volume, number of trades and trade size differ from the stipulated 2/3 

proportionality partly because of the present of order shredding in the specific market we 

investigate.           

The interpretation we place on the invariance coefficients based on the extended invariance 

model with order shredding component complements the framework introduced by Kyle and 
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Obizhaeva (2016b) and that by Andersen et al. (2018). Potentially, another reason for the 

deviation from the theoretical 2/3 proportionality, assuming that calendar time volatility is 

constant, is that any change in the number of trades is not followed by changes in trade size of the 

requisite magnitude. Note that invariance theory suggests that bet size is perfectly negatively 

correlated with volatility in business time (i.e. calendar time volatility divided by the square root of 

the bet arrival rate). However, this correlation may not hold for every trade (which are not bets) 

leading to a possible deviation from the predicted 2/3 proportionality. Examining the correlations 

between the underlying variables and their impact on the proportionality is an interesting topic for 

future research. 

Moreover, Andersen et al. (2016) suggests any analysis of the type we conduct is also undertaken 

using intraday averages as well as across day averages. For robustness we undertake this procedure 

and present the results in Appendix II, Table A5. Employing intraday averages leads to generally 

lower coefficient estimates than using across day averages, and the null hypothesis of 2 / 3   is 

rejected for all models and all classifications. With respect to the different classifications applied, 

the proportionality is higher for low capitalization, low volume, low trade count and small trade 

size stocks. We conjecture that the lower proportionality we obtain using intraday averages partly 

arises from the different time and stock fixed effects present in the data. Daily trading patterns for 

stock trading activity are extensively documented in the literature. For certain stocks, orders might 

be shredded/intermediated more often in certain time periods within a daily interval. Note that 

that our time period includes also both the financial crisis (which significantly affects price, 

volatility and trading volume in FTSE 100 constituent assets), as well as a significant increase in 

AT activity (which might lower the trade size), which may have a negative impact on the 

estimated coefficients. Also, there may be considerable measurement error in the trading activity 

variables, as well as structural difference between the data samples and the underlying market 

environments which may negatively impact upon the proportionality coefficient estimates 

compared to Andersen et al. (2016). 

Finally, it is important to underline the difference in our empirical design compared to that 

employed in Andersen et al. (2018). Their dataset and its inherent characteristics as explained in 

the previous paragraphs allow also for the empirical investigation of ITI with a model that has 

different parameter predictions for different notions of trading activity (Andersen et al., 2018, 

p11, equation (4)). This facilitates the comparison between ITI and other well-known alternatives 

in the literature, namely MDH-V implied by Clark (1973) and MDH-N implied by Ané and 
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Geman (2000). In contrast, given our dataset, this design will not have the desirable properties so 

that enable us to appropriately compare different notions of trading activity and determine which 

best predicts the hypothesized invariance proportionality between the number of trades and 

trading activity. Therefore, here we prefer to follow Andersen et al. (2016) and have identical 

predictions for different regressions that correspond to different notions of trading activity. We 

argue that this design is more appropriate for the way our dataset reports trades and conveys 

different insights compared to Andersen et al. (2018).       

3.7 Conclusion 

This chapter examines the empirical predictions of MMI principles using trading data from FTSE 

100 index constituent stocks. We propose an extended invariance model for trades to compare 

four different notions of trading activity based on the model introduced by Andersen at al. (2018) 

for trades. Our analysis is motived by MMI proposed in Kyle and Obizhaeva (2016b) using an 

empirical variation for trades as introduced by Andersen et al. (2018).   

Our extension aims to accommodate empirical relationships documented in the stock market, and 

trading reporting conventions used in the majority of available databases. In the extended model, 

we introduce a factor to account for the order shredding that is present in stock markets arguing 

that bets and trades are connected in a non-linear manner. Based on this model , we infer that any 

lower estimated proportionality, such as we find for “low” market capitalization and trade count 

stocks, may arise from a higher/lower degree of order shredding/trade intermediation as 

compared to the original MMI introduced by Kyle and Obizhaeva (2016b) and ITI suggested by 

Andersen et al. (2018).    

Our empirical analysis uses panel specifications and indicates that only the largest stocks in terms 

of market capitalization exhibit the stipulated 2/3 proportionality between trade counts and 

trading activity, defining the latter as in Kyle and Obizhaeva (2016b) and Andersen et al. (2016). 

When we measure trading activity following Ané and Geman (2000), it is large trade size stocks 

that yield the predicted 2/3 proportionality on average. Independently of testing for the predicted 

2/3 proportionality, our results suggest that highly capitalized stocks exhibit higher 

proportionality coefficients for all definitions of trading activity. We proceed to analyse certain 

cross-sectional characteristics which might potentially impact upon proportionality estimates in 

either direction. Classification by trading volume does not seem to influence the estimates of 
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proportionality, while all models except the MDH-V indicate that stocks with larger trade counts 

exhibit higher measures of proportionality.   

Overall, our results provide some empirical support to MMI principles, especially in relation to 

large capitalization stocks. Furthermore, we provide a framework for further research which may 

reveal whether the individual characteristics and idiosyncratic risks of different securities and 

markets influence measures of predicted invariance relationships. It would be interesting to 

investigate further whether price, tick and lot sizes as stock characteristics have an impact on the 

invariance proportionality suggested by MMI theory. For example, while the influence of price 

may prove to be a mechanical relationship (e.g. Andersen et al. (2016) do not include it in their 

definition of trading activity), the classifications based on tick size may be more economically 

complex considering the difference in tick size regimes in different markets. Finally, given the 

existing level of market fragmentation in stock trading, future analysis could focus upon whether 

the introduction of different trading platforms affects invariance proportionality and if measures 

differ between more traditional liquidity measures and those liquidity and price impact variables 

suggested by MMI theory. 
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Table 1 

Descriptive Statistics (5-minutes averages across days) 

We estimate 5-minutes averages using equation (23), then aggregate the respective values across 

754 trading days (entire sample) and divide by 102 (the number of 5-minutes intervals during 

which the stocks trade daily) to obtain the mean for each stock.. Then we calculate the variable 

mean for each group. The number of trades (N) is the average trade count, volume (V) is the 

average number of shares (in thousands), trade size (Q) is the average number of shares per trade 

(in thousands) and price (P) is the average GBP price, all per 5-minute interval. Volatility (σ) is 

calculated from 10 second returns and annualized using the following formula,σ =σ 252 8.5 12annual  

, where 252 are trading days per year, 8.5 is the number of active trading hours on the LSE, and 

12 is the number of hourly 5-minute intervals. Market capitalization (in million GBP) of each 

group is from monthly stock data. Panel A presents the statistics for the entire sample of 70 

stocks. Mkt1, 2, 3 represent the statistics for the largest 23 (Mkt1), the next 23 (Mkt2) and the 

smallest 24 (Mkt3) stocks ranked by market capitalization, Ex Mkt represents the top 5 stocks 

with the highest market capitalization.  

Panel A: Overall Sample 

 Mean  Std Dev Max Min 

Trades N 48.05 34.13 255.78 10.71 
Trading Volume V 15.47 29.19 43.06 7.49 
Trade Size Q 2.99 3.41 52.53 0.38 
Price P 8.91 7.04 35.89 1.05 
Volatility σ 0.3 0.17 2.67 0.14 
Market Cap 17,310 21,325 102,918 2,606 

Panel B: Market Capitalization Groups 

 Mkt1 Mkt2 Mkt3 Ex Mkt 

 Mean  
Std 
Dev Mean  

Std 
Dev Mean  

Std 
Dev Mean  Std Dev 

Trades N 77.9 41.99 37.17 15.87 29.87 12.97 85.95 45.49 
Tr.Volume V 289.71 465.38 118.89 96.38 59.61 65.95 627.44 757.47 
Trade Size Q 3.54 4.92 3.38 2.37 2.09 2.04 7.45 8.16 
Price P 13.74 8.79 4.98 2.66 8.03 5.1 8.93 5.7 
Volatility σ 0.32 0.19 0.29 0.15 0.3 0.16 0.25 0.13 
Market Cap 39,635 25,003 8,893 3,361 3,981 930 82,060 18,279 
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Table 2 

Average Proportionality between Trade Counts and Trading Activity 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity. Estimates use the model in equation (29). Across day averages in Panel A are 

from equation (23), and intraday averages in Panel B from equation (24). The trading activity 

measures are from Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), 

MDH-V, Clark (1973) (Model 3) and MDH-N, Ané and Geman (2000) (Model 4). All 

specifications include both stock and time fixed effects. Coefficients are tested against the null 

hypothesis, 
0 : 2 / 3H   . We report two-way clustered robust standard errors (with the use of 

heteroscedasticity-corrected covariance matrices) in parenthesis for the coefficient estimates. *, **, 

and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Estimation based on across days averages 

 Model 1 Model 2 Model 3 Model 4 

Constant , a   
   -0.3293*** 

(0.0332) 
    1.3702*** 

(0.0234) 
    6.0623*** 

(0.0080) 
    3.5300*** 

     (0.0111) 

Invariance Coeff.,    
    0.5948*** 

(0.0164) 
    0.5957*** 

(0.0161) 
     0.7398*** 

(0.0220) 
    0.7175*** 

     (0.0200) 
2R   0.9964 0.9965 0.9958       0.9968 

Panel B: Estimation based on intraday averages 

 Model 1 Model 2 Model 3 Model 4 

Constant , a   
    0.9594*** 

(0.0226) 

    2.4396*** 

(0.0258) 

    4.8291*** 

(0.0277) 

    3.7293*** 

    (0.0232) 

Invariance Coeff.,    
     0.4621*** 

(0.0160) 

    0.3909*** 

(0.0225) 

    0.3865*** 

(0.0464) 

    0.4659*** 

   (0.0409) 
2R   0.9328 0.9046 0.8933     0.9215 
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Table 3 

Proportionality between Trade Counts and Trading Activity by Market Cap Groups 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity, and those relating to the interaction of the two market capitalization dummies, 

(medium) and   (low), with the various trading activity measures, using the model in equation (30). 

The trading activity measures are from Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. 

(2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, Ané and Geman (2000) (Model 

4). Estimates for the underlying variables use averages across days from equation (23). All 

specifications include both stock and time fixed effects. Coefficients are tested against the null 

hypothesis, 
0 1: 2 / 3H   . We report two-way clustered robust standard errors (with the use of 

heteroscedasticity-corrected covariance matrices) in parenthesis for the coefficient estimates. *, **, 

and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

 Model 1  Model 2  Model 3  Model 4 

Constant , c    -0.0464* 

(0.0225) 

     1.14766*** 

(0.0158) 

      6.5127*** 

(0.0198) 

      3.9773*** 

(0.0057) 

Invariance Coeff.,

    

   0.6236** 

(0.0159) 

    0.6236** 

(0.0158) 

      0.7562*** 

(0.0201) 

      0.7391*** 

(0.0181) 

2 itMKT w      -0.0413*** 

 (0.0091) 

     -0.0395*** 

 (0.0091) 

     -0.0317*** 

(0.0123) 

    -0.0361*** 

(0.0106) 

3 itMKT w      -0.0490*** 

(0.0071) 

     -0.0484*** 

(0.0073) 

   -0.0273** 

(0.0066) 

     -0.0371*** 

(0.0062) 
2R   0.9969  0.9969  0.9960  0.9970 
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Table 4 

Proportionality between Trade Counts and Trading Activity by Market Capitalization 

Contribution (PropMKTi) Group 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity, and those relating to the interaction of the two market capitalization dummies,   

(medium) and   (low) cap groups, with the various trading activity measures, using the model in 

equation (30). The trading activity measures are from Kyle and Obizhaeva (2016b) (Model 1), 

Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, Ané and Geman 

(2000) (Model 4). Estimates for the underlying variables use averages across days from equation 

(23). All specifications include both stock and time fixed effects. Coefficients are tested against 

the null hypothesis, 
0 1: 2 / 3H   . We report two-way clustered robust standard errors (with the 

use of heteroscedasticity-corrected covariance matrices) in parenthesis for the coefficient 

estimates. *, **, and *** denote significance at the 5%, 1%, and 0.1% level, respectively.            

 Model 1  Model 2  Model 3  Model 4 

Constant , a   -0.0365 

(0.0225) 

      1.1565*** 

(0.0158) 

      6.5022*** 

(0.0190) 

      3.9817*** 

(0.0055) 

Invariance Coeff.,    0.6339 

(0.0169) 

 0.6341 

(0.0170) 

      0.7836*** 

(0.0210) 

      0.7586*** 

(0.0191) 

2 itPropMKT w  -0.0178 

(0.0123) 

 -0.0173 

(0.0127) 

     -0.0420*** 

(0.0104) 

   -0.0323** 

(0.0111) 

3 itPropMKT w      -0.0592*** 

(0.0102) 

     -0.0583*** 

(0.0104) 

     -0.0576*** 

(0.0095) 

     -0.0582*** 

(0.0099) 
2R   0.9964  0.9969  0.9960  0.9970 
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Table 5 

Proportionality between Trade Counts and Trading Activity by Trade Volume Group 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity, and those relating to the term interacting the trading volume dummy,  , with the 

various trading activity measures, using the model in equation (31). The trading activity measures 

are from Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, 

Clark (1973) (Model 3) and MDH-N, Ané and Geman (2000) (Model 4). Estimates for the 

underlying variables use averages across days from equation (23). All specifications include both 

stock and time fixed effects. Coefficients are tested against the null hypothesis, 
0 1: 2 / 3H   . We 

report two-way clustered robust standard errors (with the use of heteroscedasticity-corrected 

covariance matrices) in parenthesis for the coefficient estimates. *, **, and *** denote significance 

at the 5%, 1%, and 0.1% level, respectively.      

 Model 1  Model 2  Model 3  Model 4 

Constant , a     -0.1407*** 

(0.0237) 

     1.0925*** 

(0.0167) 

      6.5765*** 

(0.0191) 

      3.9993*** 

(0.0057) 

Invariance Coeff.,       0.6011** 

(0.0216) 

   0.6052** 

(0.0213) 

      0.7304*** 

(0.0306) 

      0.7137*** 

(0.0278) 

itTVol w    -0.0081 

(0.0140) 

     -0.0119 

(0.0141) 

 0.0128 

(0.0183) 

 0.0051 

(0.0168) 
2R   0.9964  0.9965  0.9959  0.9968 
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Table 6 

Proportionality between Trade Counts and Trading Activity by Trade Count Group 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity, and those relating to the term interacting the trade counts dummy,  , with the 

various trading activity measures, using the model in equation (31). The trading activity measures 

are from Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, 

Clark (1973) (Model 3) and MDH-N, Ané and Geman (2000) (Model 4). Estimates for the 

underlying variables use averages across days from equation (23). All specifications include both 

stock and time fixed effects. Coefficients are tested against the null hypothesis, 
0 1: 2 / 3H   . We 

report two-way clustered robust standard errors (with the use of heteroscedasticity-corrected 

covariance matrices) in parenthesis for the coefficient estimates. *, **, and *** denote significance 

at the 5%, 1%, and 0.1% level, respectively.     

 Model 1 Model 2 Model 3 Model 4 

Constant , a   
   -0.0694*** 

(0.0230) 

    1.1368*** 

(0.0161) 

     6.5293*** 

(0.0193) 

     3.9898*** 

(0.0056) 

Invariance Coeff.,    
 0.6281* 

(0.0165) 

 0.6297* 

(0.0164) 

     0.7527*** 

(0.0220) 

     0.7376*** 

(0.0198) 

itNTrades w  
   -0.0470*** 

(0.0099) 

   -0.0478*** 

(0.0103) 

      -0.0207 

(0.0111) 

  -0.0307** 

(0.0102) 
2R   0.9967 0.9967 0.9959 0.9969 
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Table 7 

Proportionality between Trade Counts and Trading Activity by Trade Size Group 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity, and those relating to the term interacting the trade size dummy,  , with the various 

trading activity measures, using the model in equation (31). The trading activity measures are from 

Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) 

(Model 3) and MDH-N, Ané and Geman (2000) (Model 4). Estimates for the underlying variables 

use averages across days from equation (23). All specifications include both stock and time fixed 

effects. Coefficients are tested against the null hypothesis, 
0 1: 2 / 3H   . We report two-way 

clustered robust standard errors (with the use of heteroscedasticity-corrected covariance matrices) 

in parenthesis for the coefficient estimates. *, **, and *** denote significance at the 5%, 1%, and 

0.1% level, respectively.      

 Model 1 Model 2 Model 3 Model 4 

Constant , a   
   -0.1870*** 

(0.0235) 

    1.0654*** 

(0.0166) 

    6.6187*** 

(0.0188) 

    4.0087*** 

(0.0060) 

Invariance Coeff.,    
   0.5752*** 

(0.0206) 

     0.5779*** 

(0.0203) 

    0.7095*** 

(0.0292) 

0.6903 

(0.0261) 

itTSize w  
0.0260 

(0.0152) 

0.0232 

(0.0153) 

  0.0435* 

(0.0196) 

 0.0382* 

(0.0178) 
2R   0.9965 0.9965 0.9960 0.9969 
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 Appendix I 

 
Proof of Propositions in the text 

 
AI-1. Relationship between expected bet and trading activity 

From the specification of bet volume we know that: 

2 2
:jt jt jt jt jt jt jt jtV V P V V P 
 

          (A1) 

Trading volatility in currency units is given by: 

jt jt jt jtP P       (A2)  

Combining equations (A1) and (A2), we obtain:  

2 2
  jt jt jt jt jt jt jt jt jtP V V P P V    

 
              (A3) 

From the definitions of expected bet (and trading) activity from (3) it can be inferred that: 

2
jt jtW W




   

AI-2. Expressing expected bet activity at any interval t  in terms of total volume jtV , price 

jtP , volatility 
jt

  and expected trading activity jtW   

From the specification of expected bet activity we know that: 

:  jt jt jtW P V     (A4) 

If now we substitute for total volume jtV , price jtP   and volatility 
jt

, then: 

 jt jt jt jt jtW P N E Q        (A5) 

Finally, using the relationship between expected bet and trading activity: 

2
jt jt jt jt jtW P N Q 


    

 

where   :jt jtQ E Q   

AI-3. Invariance relationship in terms of trading activity jtW  and number of bets jtN   

We have shown that: 

2
jt jt jt jt jtW P N Q 


      (A6) 

We know that,  
1 1 1 /2

jtjt jt jtQ I P N         (A7) 

Combining the two relationships, and solving for I: 

3

2

2 jt

jt

W
I

N





   (A8) 
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AI-4. Invariance relationships in logs (proportionality between trading activity and 
number of bets and between trading activity and bet size) 

Our specification for trading invariance states that:  

jt

jt jt jt

jt

I P Q
N


  

/2
 (A9) 

Applying logarithms and expectations then: 

1
{log } log

2 2

jt

jt jt jt

s
E I p q n        (A10) 

where : logjt jtp P , : logjt jtq Q , 
2: logjt jts  , : logjt jtn N ,  : logjt jtq E q  

Solving for jtq : 

1
{log } log

2 2

jt

jt jt jt

s
q E I p n        (A11) 

 
Taking logarithms of the relationship in (A6),  

2
: log

2

jt

jt jt jt jt

s
p n q w



 
      

 
 (A12) 

where : logjt jtp P , : logjt jtq Q , 
2: logjt jts  , : logjt jtn N ,  : logjt jtq E q  

 

Substituting jtq  in (A12) from (A11) we obtain the invariance expression for jtn  : 

1

2
:

3
jt jtn c w


    (A13) 

where 
1

2 2
log log {log }

3
c E I

 

    
     

    

    

Similarly, in order to obtain the invariance expression for jtq , we for substitute jtn  in equation 

(A11) from the expression in (A13): 

 1

1 2
{log } log

2 2 2

jt

jt jt jt

s
q E I p c w 



 
        

 
 

1 2 2 2 2 1 2
{log } log log log {log }

2 2 3 3 3 2 3

jt

jt jt jt

s
q E I p E I w   

    

  
           

  
 

 

 
1 1 1 2 1

1 {log } 1 log log
3 3 3 3 2

jt

jt jt jt

s
q E I w p



    
            
     

 

 
2 1 2 1

{log } log log
3 3 3 2

jt

jt jt jt

s
q E I w p



 
       

 
 

2

1

3 2

jt

jt jt jt

s
q c w p     (A14) 

where  2

2 1 2
{log } log log

3 3
c E I 
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Appendix II 

Table A1 - Sample Stocks 

LARGE CAPITALIZATION STOCKS 

Stock Abbreviation 

BP  BP 
HSBC HOLDINGS  HSBA 
VODAFONE VOD 
GLAXOSMITHKLINE  GSK 
ROYAL DUTCH SHELL  RDSA 
RIO TINTO  RIO 
ASTRAZENECA  AZN 
ROYAL BANK OF SCOTLAND GROUP RBS 
BRITISH AMERICAN TOBACCO  BATS 
BG GROUP  BG 
ANGLO AMERICAN  AAL 
BHP BILLITON  BLT 
BARCLAYS BARC 
TESCO TSCO 
XSTRATA XTA 
DIAGEO DGE 
LLOYDS TSB GROUP LLOY 
STANDARD CHARTERED  STAN 
UNILEVER  ULVR 
RECKITT BENCKISER  RB 
SABMILLER SAB 
NATIONAL GRID PLC NG 
IMPERIAL TOBACCO GROUP PLC IMT 

MEDIUM CAPITALIZATION STOCKS 

Stock Abbreviation 

BT GROUP BT 
AVIVA PLC AV 
PRUDENTIAL PLC PRU 
BAE SYSTEMS PLC BAE 
CENTRICA PLC CNA 
SCOTTISH & SOUTHERN ENERGY SSE 
CADBURY SCHWEPPES CBRY 
BSB GROUP BSY 
MAN GROUP PLC EMG 
ROLLS-ROYCE HOLDINGS PLC RR 
MORRISON  (WM) SUPERMARKETS MRW 
MARKS & SPENCER GROUP MKS 
SAINSBURY (J) SBRY 
WPP PLC WPP 
REED ELSEVIER REL 
LEGAL & GENERAL GROUP LGEN 
COMPASS GROUP CPG 
ASSOCIATED BRITISH FOODS ABF 
LAND SECURITIES GROUP LAND 
OLD MUTUAL PLC OML 
ANTOFAGASTA ANTO 
PEARSON PSON 
SHIRE PLC SHP 
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LOW CAPITALIZATION STOCKS 

Stock Abbreviation 

STANDARD LIFE SL 
INTERNATIONAL POWER PLC IPR 
KAZAKHMYS KAZ 
UNITED UTILITIES UU 
SMITH & NEPHEW SN 
EXPERIAN GROUP EXPN 
BRITISH LAND CO PLC BLND 
VEDANTA RESOURCES VED 
ROYAL & SUN ALLIANCE INS. RSA 
CAPITA GROUP CPI 
KINGFISHER KGF 
CARNIVAL PLC CCL 
CABLE AND WIRELESS CW 
SMITHS GROUP  SMIN 
LIBERTY INTERNATIONAL LII 
NEXT NXT 
JOHNSON MATTHEY PLC JMAT 
BRITISH AIRWAYS BAY 
ICAP IAP 
SEVERN TRENT PLC SVT 
HAMMERSON HMSO 
SAGE GROUP PLC SGE 
REXAM PLC REX 
INTERCONTINENTAL HOTELS GROUP IHG 

Source: Thomson Reuters Tick History 
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Table A2  

Descriptive Statistics based on 5-minutes intraday averages 

We estimate 5-minutes averages using equation (24), then aggregate the  respective values across 

the102, 5-minutes intervals during which the stocks trade every day, and then divide by 754 (the 

total number of trading days) to obtain the mean for each stock. Then we calculate the variable 

mean for each group. The number of trades (N) is the average trade count, volume (V) is the 

average number of shares (in thousands), trade size (Q) is the average number of shares per trade 

(in thousands) and price (P) is the average GBP price, all per 5-minute interval. Volatility (σ) is 

calculated from 10 second returns and annualized using the following formula,σ =σ 252 8.5 12annual  

, where 252 are trading days per year, 8.5 is the number of active trading hours on LSE, and 12 is 

the number of hourly 5-minute intervals. Market capitalization (in million GBP) of each group is 

from monthly stock data. Panel A presents the statistics for the entire sample of 70 stocks. Mkt1, 

2, 3 represent the statistics for the largest 23 (Mkt1), the next 23 (Mkt2) and the smallest 24 

(Mkt3) stocks ranked by market capitalization, Ex Mkt represents the top 5 stocks with the 

highest market capitalization. 

Panel A: Overall Sample 

 Mean  Std Dev Max Min 

Trades N 48.08 37.67 795.52 5.23 
Trading Volume V 154.81 344.6 11300.55 1716.65 
Trade Size Q 3 5.4 307.67 0.176 
Price P 8.9 7.75 85.4 0.11 
Volatility σ 0.3 0.25 22 0.07 

Panel B: Market Capitalization Groups 

 Mkt1 Mkt2 Mkt3 Ex Mkt 

 Mean 
Std 
Dev Mean 

Std 
Dev Mean 

Std 
Dev Mean 

Std 
Dev 

Trades N 78 49.18 37.18 17.94 29.85 14.42 86.08 50.09 

Tr.Volume V 
290.1

6 
557.08 118.87 123.89 59.54 79.82 628.15 895.84 

Trade Size Q 3.55 7.49 3.38 4.09 2.09 3.74 7.45 13.59 
Price P 13.74 9.98 4.98 3.07 8.03 5.73 8.93 5.82 
Volatility σ 0.31 0.33 0.29 0.19 0.29 0.21 0.25 0.15 
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Table A3 

Descriptive Statistics per Stock using 5-minutes averages across days 

This table indicates the average values of number of trades, volume, trade size, price and 

volatility, separately for each stock and aggregated as 5-minute averages across days. Stocks are 

ranked based on their market capitalization. For the average across days, the 5-minutes averages 

are calculated using equation (23), aggregated across 754 trading days (entire sample) and then 

divided by 102 (number of 5-minutes intervals per trading day). The number of trades (N) is the 

average trade count, volume (V) is the average number of shares (in thousands), trade size (Q) is 

the average number of shares per trade (in thousands) and price (P) is the average GBP price, all 

per 5-minute interval.. Volatility (σ) is calculated from 10 second returns and annualized using 

the following formula,σ =σ 252 8.5 12annual   , where 252 are trading days per year, 8.5 is the 

number of active trading hours on the LSE, and 12 is the number of hourly, 5-minute intervals. 

 Mean Standard Deviation 

 
Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

BP 100.57 563.2 6.35 5.41 0.26 41.54 242.28 0.72 0.01 0.14 

HSBA 112.59 466.91 4.62 7.63 0.27 42.4 187.89 0.66 0.03 0.12 

VOD 105.16 1915.94 23.05 1.45 0.27 41.35 771.86 10.56 0.003 0.17 

GSK 76.68 156.79 2.17 12.22 0.23 30.63 67.34 0.42 0.02 0.11 

RDSA 34.76 48.98 1.59 17.95 0.22 14.76 23.09 0.39 0.02 0.11 

RIO 120.62 83.18 0.76 35.68 0.42 45.77 37.4 0.18 0.03 0.23 

AZN 73.42 59.39 0.86 25.15 0.22 27.86 22.4 0.13 0.01 0.18 

RBS 102.04 950.82 9.91 4.58 0.54 29.71 341.36 1.07 0.87 0.3 

BATS 57.45 56.59 1.22 17.6 0.23 21.38 22.8 0.4 0.02 0.09 

BG 60.29 106.5 2.01 9.85 0.31 21.02 37.46 0.32 0.01 0.13 

AAL 101.02 74.65 0.79 24.27 0.4 31.86 23.22 0.12 0.09 0.16 

BLT 126.98 191.98 1.86 14.55 0.4 52.72 100.86 1.5 0.03 0.2 

BARC 120.32 632.79 5.63 4.26 0.48 39.79 213.29 1.14 0.02 0.22 

TSCO 69.47 267.45 4.38 3.98 0.23 25.06 105.58 2.86 0.003 0.13 

XTA 103.49 109.35 1.09 22.02 0.46 31.27 37.53 0.16 0.05 0.22 

DGE 52.1 88.98 1.94 9.78 0.24 21.59 50.04 0.77 0.09 0.09 

LLOY 90.92 608.18 6.66 3.2 0.49 28.17 204.02 1.92 0.01 0.23 

STAN 62.34 72.99 1.32 14.16 0.38 19.92 24.62 0.31 0.03 0.19 

ULVR 46.86 48.24 1.21 15.66 0.23 18.84 17.92 0.27 0.12 0.11 

RB 48.09 21.34 0.48 27.5 0.21 17.47 8.74 0.09 0.02 0.09 

SAB 39.59 42.69 1.2 12.35 0.27 13.15 15.02 0.28 0.02 0.11 

NG 40.41 85.15 2.23 6.9 0.22 15 34.7 0.5 0.01 0.09 

IMT 46.54 32.23 0.86 19.94 0.24 16.56 12.45 0.7 0.06 0.09 

BT 47.48 361.02 7.71 2.07 0.27 17.57 140.03 1.81 0.01 0.12 

AV 47.13 108.29 2.29 5.42 0.37 16.24 38.07 0.32 0.01 0.14 

PRU 52.24 134.9 2.78 5.73 0.38 18.51 44.85 0.73 0.03 0.16 

BA 51.19 161.74 3.42 4.1 0.26 17.64 62.76 0.57 0.01 0.12 

CNA 40.87 161.86 4.25 3.08 0.24 15.34 62.45 0.97 0.005 0.1 

SSE 34.7 32.95 1.03 13.38 0.23 11.78 11.85 0.23 0.01 0.08 

CBRY 34.96 90.7 2.9 6.09 0.25 15.61 40.6 0.63 0.01 0.1 

BSY 33.54 84.6 3.18 5.35 0.25 13.55 105.22 6.39 0.01 0.1 
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Table A3 - continued 

 

 Mean Standard Deviation 

 
Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

EMG 40.23 121.93 3.23 4.37 0.36 13.92 50.02 0.67 0.01 0.17 

RR 37.61 99.01 2.78 4.26 0.28 13.65 38.66 0.36 0.01 0.18 

MRW 33.89 142.39 4.39 2.78 0.25 12.19 52.65 0.57 0.001 0.1 

MKS 42.74 134.34 3.12 4.3 0.31 14.39 45.92 0.38 0.01 0.12 

SBRY 31.39 117.39 4.36 3.94 0.26 11.75 44.1 2.06 0.01 0.13 

WPP 40.27 76.23 2.08 5.65 0.28 16.14 34.4 0.33 0.01 0.12 

REL 38.68 68.39 2.1 5.63 0.24 14.38 25.45 0.4 0.004 0.11 

LGEN 34.67 292.41 8.92 1.06 0.39 11.9 100.22 2.18 0.003 0.16 

CPG 36.32 114.25 3.5 3.37 0.26 13.17 50.14 0.94 0.01 0.1 

ABF 19.83 19.47 1.05 8.01 0.2 7.9 7.82 0.21 0.01 0.09 

LAND 36.92 34.37 0.95 12.53 0.3 12.69 12.54 0.13 0.03 0.13 

OML 33.84 221.76 7.56 1.16 0.39 10.33 71.55 3.01 0.004 0.2 

ANTO 36.48 49.34 1.44 6.24 0.43 13.05 18.9 0.2 0.0001 0.19 

PSON 32 44.52 1.48 7.19 0.25 12.52 17.33 0.32 0.02 0.14 

SHP 30.44 35.83 1.26 10.09 0.25 13.31 15.84 0.4 0.02 0.11 

SL 20.32 55.29 3 2.44 0.36 6.86 21.03 0.73 0.004 0.13 

IPR 33.68 88.81 2.79 3.51 0.26 11.97 34.25 0.38 0.01 0.12 

KAZ 33.43 32.67 1.05 10.49 0.47 33.43 12.87 0.21 0.02 0.24 

UU 31.03 42.57 1.44 6.39 0.21 13.54 18 0.25 0.04 0.08 

SN 28.58 48.77 1.84 5.62 0.24 11.25 20.76 0.43 0.01 0.23 

EXPN 25.17 53.45 2.28 4.74 0.27 9.55 22.59 0.4 0.01 0.1 

BLND 40.69 50.88 1.3 8.43 0.32 13.71 18.61 0.2 0.01 0.14 

VED 38.29 32.45 0.87 16.11 0.43 12.34 70.04 1.25 0.03 0.18 

RSA 28.36 171.07 6.42 1.39 0.3 10.14 62.57 1.42 0.002 0.12 

CPI 24.06 26.95 1.31 6.94 0.23 9.31 10.33 0.41 0.004 0.09 

KGF 40.49 224.63 6.68 1.79 0.33 15.67 88.01 3.12 0.05 0.14 

CCL 32.63 15.7 0.49 19.8 0.28 19.6 9.42 0.11 0.05 0.14 

CW 30.96 179.74 6.41 1.6 0.25 13.32 83.86 2.24 0.003 0.11 

SMIN 23.71 25.07 1.19 9.53 0.24 9.3 10.1 0.62 0.15 0.09 

LII 24.93 22.56 0.94 8.29 0.3 7.36 7.03 0.15 0.03 0.14 

NXT 36.86 26.18 0.7 15.72 0.31 11.97 8.78 0.1 0.03 0.12 

JMAT 24.5 12.26 0.52 14.98 0.27 10.06 4.76 0.08 0.02 0.14 

BAY 40.38 141.47 3.49 2.8 0.37 13.17 51.94 0.45 0.01 0.16 

IAP 25.87 39.98 1.73 4.7 0.34 9.25 14.92 0.39 0.02 0.14 

SVT 24.16 14.15 0.63 12.8 0.22 9.98 5.68 0.12 0.06 0.09 

HMSO 27.22 29.95 1.16 8.79 0.33 9.57 11.41 0.23 0.03 0.16 

SGE 22.28 69.98 3.61 2.14 0.26 9 28.66 2.03 0.002 0.1 

REX 22.36 41.5 1.94 4.01 0.26 8.52 17.18 0.36 0.02 0.12 

IHG 24.5 28.16 1.17 8.47 0.3 9.28 11.6 0.22 0.04 0.19 

 

  



79 

 

Table A4 

Descriptive Statistics per Stock using 5-minute intraday averages 

This table indicates the average values of number of trades, volume, trade size, price and 

volatility, separately for each stock and aggregated as 5-minute averages intraday. The stocks are 

ranked based on their market capitalization. For the intraday average, the 5-minutes averages are 

calculated using equation (24) and aggregated across 102, 5-minutes intervals per trading day, 

and then divided by 754, the total trading days in the sample. The number of trades (N) is the 

average trade count, volume (V) is the average number of shares (in thousands), trade size (Q) is 

the average number of shares per trade (in thousands) and price (P) is the average GBP price, all 

per 5-minute interval.. Volatility (σ) is calculated from 10 second returns and annualized using 

the following formula,σ =σ 252 8.5 12annual   , where 252 are trading days per year, 8.5 is the 

number of active trading hours on the LSE, and 12 is the number of hourly, 5-minute intervals. 

 Mean Standard Deviation 

 
Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

BP 100.62 563.41 6.34 5.41 0.26 42.51 304.04 4.16 0.48 0.16 

HSBA 112.91 468.47 4.72 7.63 0.26 59.15 257.62 2.84 1.53 0.16 

VOD 105.28 1917.35 23.04 1.45 0.27 45.24 1396.99 35.62 0.2 0.18 

GSK 76.79 157.04 2.17 12.22 0.23 31.13 104.88 1.43 1.18 0.12 

RDSA 34.79 49.08 1.59 17.94 0.22 14.55 27.37 1.21 1.78 0.13 

RIO 120.74 83.2 0.76 35.68 0.42 56.05 75.22 0.61 13.77 0.31 

AZN 73.49 59.42 0.86 25.15 0.22 29.25 36.41 0.6 2.77 0.21 

RBS 102.23 954.16 9.93 4.58 0.55 60.67 781.54 6.55 6.77 0.94 

BATS 57.49 56.6 1.22 17.6 0.23 31.2 42.11 1.54 1.41 0.12 

BG 60.35 106.6 2 9.85 0.31 23.63 53.42 1.33 1.75 0.16 

AAL 101.11 74.7 0.8 24.27 0.4 40.78 34.34 0.47 7.15 0.26 

BLT 127.11 192.11 1.88 14.55 0.4 57.36 205.13 4.33 2.87 0.25 

BARC 120.55 634.56 5.65 4.26 0.47 58.73 394.21 3.37 2.05 0.4 

TSCO 69.5 267.73 4.38 3.98 0.23 29.43 146.74 7.46 0.45 0.15 

XTA 103.63 109.44 1.1 22.01 0.46 46.8 71.84 0.55 12.7 0.29 

DGE 52.14 89.05 1.96 9.78 0.23 24.15 54.44 1.81 0.89 0.13 

LLOY 91 608.85 6.69 3.2 0.48 55.39 635.52 5.02 2.03 0.56 

STAN 62.48 73.21 1.32 14.16 0.38 28.8 48.9 1.15 3.16 0.46 

ULVR 46.9 48.26 1.22 15.67 0.23 22.79 30.71 1.05 1.54 0.12 

RB 48.08 21.34 0.48 27.51 0.21 21.83 10.67 0.3 1.75 0.12 

SAB 39.6 42.7 1.2 12.35 0.26 17.78 23.7 0.94 1.93 0.13 

NG 40.46 85.18 2.23 6.9 0.22 16.79 58.88 1.76 0.83 0.12 

IMT 46.55 32.3 0.87 19.93 0.24 24.36 25.76 2.33 3.19 0.12 

BT 47.54 361.45 7.7 2.06 0.27 20.17 223.94 4.69 0.86 0.13 

AV 47.16 108.36 2.29 5.42 0.36 18.87 58.36 0.86 1.83 0.25 

PRU 52.35 135.14 2.78 5.73 0.37 22.47 80.35 2.25 1.51 0.26 

BA 51.2 161.71 3.42 4.1 0.26 19.27 107.84 2.28 0.6 0.14 

CNA 40.88 161.84 4.24 3.07 0.24 17.59 95.18 3.21 0.55 0.12 

SSE 34.69 32.92 1.03 13.37 0.23 13.64 21.1 0.75 1.81 0.11 

CBRY 34.95 90.49 2.9 6.1 0.25 15.92 86.43 2.7 0.79 0.11 

BSY 33.47 84.33 3.18 5.36 0.24 16.29 286.66 17.84 0.83 0.13 
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Table A4 - continued 

 

 Mean Standard Deviation 

 
Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

Trades 
(N) 

Volume 
(V) 

Trade 
Size 
(Q)  

Price 
(P) 

Volatility 
(σ) 

EMG 40.24 121.94 3.23 4.37 0.36 17.61 89.22 2.43 1.49 0.23 

RR 37.63 99.01 2.79 4.26 0.28 14.19 52.99 1.67 0.83 0.22 

MRW 33.91 142.24 4.38 2.78 0.25 14.04 94.88 2.75 0.23 0.12 

MKS 42.75 134.41 3.12 4.3 0.3 19.58 91.77 1.47 1.72 0.18 

SBRY 31.37 117.37 4.48 3.94 0.26 16.86 164.78 7.75 1.02 0.15 

WPP 40.26 76.18 2.08 5.65 0.27 17.94 36.35 1.17 1.3 0.14 

REL 38.68 68.41 2.11 5.63 0.24 19.58 42.45 1.82 0.68 0.13 

LGEN 34.68 292.25 8.9 1.06 0.38 15.21 178.96 5.87 0.38 0.25 

CPG 36.32 114.25 3.52 3.38 0.26 14.59 79.56 3.42 0.35 0.14 

ABF 19.83 19.42 1.05 8.01 0.2 7.61 12.47 0.77 0.83 0.1 

LAND 36.94 34.4 0.96 12.51 0.3 13.99 16.75 0.35 5.55 0.14 

OML 33.84 221.69 7.55 1.16 0.39 13.93 112.18 8.07 0.45 0.31 

ANTO 36.48 49.37 1.44 6.24 0.43 12.46 26.39 0.94 1.51 0.26 

PSON 31.97 44.46 1.48 7.2 0.24 13.15 25.57 0.98 0.9 0.16 

SHP 30.4 35.69 1.26 10.1 0.24 13.48 27.29 1.33 1.43 0.11 

SL 20.3 55.33 3.01 2.44 0.35 9.5 36.23 2.78 0.49 0.25 

IPR 33.66 88.76 2.81 3.51 0.26 13.9 47.3 1.52 0.86 0.14 

KAZ 33.4 32.69 1.05 10.49 0.46 13.32 29.48 1.02 4.44 0.3 

UU 31.08 42.65 1.44 6.38 0.21 12.39 25.21 0.88 1.11 0.11 

SN 28.57 48.73 1.84 5.62 0.24 13.12 28.91 1.32 0.66 0.42 

EXPN 25.14 53.24 2.27 4.75 0.27 11.68 39.91 1.74 0.88 0.15 

BLND 40.68 50.88 1.3 8.42 0.31 15.72 23.65 0.54 3.97 0.15 

VED 38.28 32.46 0.87 16.1 0.43 15.56 182.57 3.44 5.79 0.22 

RSA 28.31 170.53 6.41 1.39 0.29 13.19 118.1 4.11 0.14 0.17 

CPI 23.98 26.9 1.32 6.94 0.23 12.09 20.13 1.64 0.38 0.13 

KGF 40.5 224.6 6.68 1.79 0.33 18.67 159.57 12.34 0.53 0.18 

CCL 32.7 15.71 0.5 19.8 0.28 13.61 9.25 0.31 3.79 0.14 

CW 30.93 179.48 6.42 1.6 0.25 14.15 130.85 7.4 0.19 0.12 

SMIN 23.71 24.97 1.18 9.52 0.24 9.2 21.34 1.9 1.41 0.12 

LII 24.9 22.55 0.94 8.28 0.29 9.7 11.91 0.51 3.24 0.15 

NXT 36.81 26.13 0.7 15.73 0.31 15.83 15.32 0.33 4.24 0.19 

JMAT 24.5 12.25 0.52 14.97 0.27 10.1 7.5 0.29 3.17 0.17 

BAY 40.36 141.37 3.49 2.8 0.37 17.28 77.17 1.46 1.34 0.23 

IAP 25.83 39.92 1.74 4.69 0.33 13.87 26.92 1.39 1.17 0.25 

SVT 24.14 14.14 0.63 12.78 0.22 10.95 8.25 0.44 1.89 0.11 

HMSO 27.2 29.94 1.17 8.77 0.33 10.57 16.66 0.8 4.47 0.19 

SGE 22.26 69.76 3.6 2.14 0.25 9.17 45.86 5.73 0.31 0.12 

REX 22.34 41.43 1.94 4.01 0.26 9.33 28.1 1.25 1.01 0.14 

IHG 24.48 28.1 1.16 8.47 0.3 9.71 21.7 1.05 2.56 0.26 
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Table A5 

Proportionality between Trade Count and Trading Activity using 5-minutes intraday 

averages 

This table reports the coefficient estimates from OLS regressions for different definitions of 

trading activity and different groups of stocks as defined in section 5.2, using intraday averages 

as defined in equation (24). The results in panels (A) through (E) using intraday averages, have 

a direct correspondence to those previously reported in Tables (3) through (7), which use 

across day averages as defined in equation (23). The trading activity measures are from Kyle 

and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) 

(Model 3) and MDH-N, Ané and Geman (2000) (Model 4). All specifications include both 

stock and time fixed effects. Coefficients are tested against the null hypothesis 
0 1: 2 / 3H   . 

Two-way clustered robust standard errors (with the use of heteroscedasticity-corrected 

covariance matrices) are reported in parenthesis only for the coefficient estimates. *, **, and 

*** denote significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Proportionality between Trade Counts and Trading Activity by Market Cap Groups 

 Model 1  Model 2  Model 3   Model 4 

Constant , a   
     0.6989*** 

(0.0225) 

      1.6860*** 

(0.0258) 

       4.4929*** 

 (0.0303) 

   3.5299*** 

 (0.0239) 

Invariance Coeff.,    
     0.4564*** 

(0.0213) 

      0.3739*** 

(0.0351) 

 0.36102*** 

(0.0603) 

   0.4467*** 

 (0.0588) 

2 itMKT w  
       -0.0017 

(0.0213) 

         0.0174 

(0.0274) 

 0.0472 

(0.0421) 

  0.0308 

 (0.0450) 

3 itMKT w  
        0.0169 

(0.0213) 

 0.0341 

(0.0275) 

        0.0480 

(0.0424) 

   0.0328 

(0.0441) 
2R   0.9329  0.9050  0.8942  0.9218 

 

Panel B: Proportionality between Trade Counts and Trading Activity by Market Cap 
Contribution (PropMcap) Group 

  Model 1  Model 2  Model 3  Model 4  

Constant , a   
      0.7171*** 

(0.0217) 

      1.6942*** 

(0.0254) 

      4.5521*** 

(0.0293) 

      3.5553*** 

(0.0236) 

Invariance Coeff.,    
      0.3874*** 

(0.0307) 

      0.3555*** 

(0.0343) 

      0.4332*** 

(0.0283) 

      0.5060*** 

(0.0277) 

2 itPropMKT w  
   0.0701* 

(0.0329) 

        -0.0030 

(0.0428) 

  -0.1087* 

(0.0452) 

  -0.0956* 

(0.0473) 

3 itPropMKT w  
    0.0816** 

(0.0292) 

 0.0521 

(0.0308) 

        -0.0143 

(0.0155) 

        -0.0179 

(0.0178) 
2R    0.9334  0.9057  0.8961  0.9231 
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Panel C: Proportionality between Trade Counts and Trading Activity by Trade Volume Group 

  Model 1  Model 2  Model 3  Model 4  

Constant , a   
      0.6762*** 

(0.0215) 

     1.6832*** 

(0.0251) 

     4.5797*** 

(0.0290) 

     3.5823*** 

(0.0233) 

 

Invariance Coeff.,    
      0.3953*** 

(0.0250) 

     0.3052*** 

(0.0343) 

     0.2995*** 

(0.0658) 

     0.3752*** 

(0.0621) 

 

itTVol w  
      0.0857*** 

(0.0214) 

      0.1149*** 

(0.0282) 

  0.1250* 

(0.0538) 

  0.1249* 

(0.0513) 

 

2R    0.9345  0.9081  0.8971  0.9249  

 

Panel D: Proportionality between Trade Counts and Trading Activity by Trade Count Group 

  Model 1  Model 2  Model 3  Model 4  

Constant , a   
      0.7206*** 

(0.0217) 

     1.6957*** 

(0.0252) 

      4.5583*** 

(0.0290) 

      3.5570*** 

(0.0235) 

 

Invariance Coeff.,    
      0.4232*** 

(0.0272) 

      0.3187*** 

(0.0391) 

      0.3070*** 

(0.0667) 

      0.3921*** 

(0.0686) 

 

itNTrades w  
 0.0465 

(0.0244) 

    0.0941** 

(0.0331) 

  0.1134* 

(0.0538) 

 0.0978 

(0.0295) 

 

2R    0.9332  0.9069  0.8966  0.9235  

 

Panel E: Proportionality between Trade Counts and Trading Activity by Trade Size Group 

  Model 1  Model 2  Model 3  Model 4  

Constant , a   
      0.6467*** 

(0.0213) 

      1.6757*** 

(0.0249) 

     4.6751*** 

(0.0286) 

     3.3603*** 

(0.0229) 

 

Invariance Coeff.,    
      0.3834*** 

(0.0216) 

      0.2952*** 

(0.0297) 

      0.2761*** 

(0.0519) 

     0.3513*** 

(0.0482) 

 

itTSize w  
      0.1068*** 

(0.0186) 

      0.1328*** 

(0.0247) 

      0.1651*** 

(0.0416) 

     0.1665*** 

(0.0390) 

 

2R    0.9357  0.9095  0.9001  0.9278  
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CHAPTER 4 

Invariance of trades and LSE intraday patterns 

Abstract 

We investigate market microstructure invariance relationships for each individual stock in 

FTSE 100 index using four different notions of trading activity. When averages across days are 

used, the notion of trading activity that implies proportionality between trading volume and 

returns variance suggests that number of trades are proportional to the respective trading 

activity in the power of 2/3 for most stocks. The invariance model accurately predicts a 

different proportionality between the log values of trade counts and trading activity of 1/2 

value. Intraday trading patterns in the specific market, the magnitude of trade size and its 

correlation with the volatility partly explain this value.    
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4.1 Introduction     

In this chapter we further examine empirically invariance principles on trades for FTSE 100 

stocks traded on London Stock Exchange using the same dataset as in Chapter 3. Specifically, 

in this chapter we extend the work in Chapter 3 by investigating whether FTSE 100 stocks 

individually exhibit any common proportionality between trade counts and trading activity 

based on the generalised invariance model we develop in chapter 3. Our contribution is 

threefold. First, we test which of four different notion of trading activity and their respective 

models specified on invariance terms better describes the intraday patterns of LSE and 

microstructure properties of our dataset and predicts more accurately common invariance 

proportionality across FTSE 100 stocks. The definitions of trading activity we use are those 

introduced by Clark (1973), Ané and Geman (2000), Kyle and Obizhaeva (2016b) and 

Andersen et al. (2016), which we outline in chapter 3. Second, we split the sample into smaller 

time periods based on the end of each of the three substantive years in the period under 

analysis. This enables us to do two things: first, to distinguish proportionality relationships 

existing at the beginning, during, and at the end of the 2007-08 financial crisis; second, we can 

now account for how the introduction of alternative trading platforms for LSE traded stocks 

affects the measured invariance relationships. Given that market microstructure invariance 

argues that invariance principles hold across time and assets, our goal is to investigate whether 

invariance predictions continue to hold in different subsamples for all stocks, or if they do not 

hold, the  extent to which the invariance coefficient estimates change for different stocks. In 

this sense, the choice of the specific subsamples is intuitive, and aims at capturing any potential 

effects of the financial crisis or changes in the trading patterns for LSE stocks. Finally, given 

the intraday patterns of LSE, we provide evidence on how the exclusion of minutes with 

extreme volatility, those manifesting increased trading volume, trade counts and trade size, as 

well as a positive correlation between trade size and volatility in business time, affect the 

invariance coefficients estimated by different models, each of which is based on distinct notion 

of trading activity.  

Our principal empirical findings are as follows. The LSE is characterised by extreme realised 

volatility at the opening. This may indicate a less efficient price discovery process due to less 

homogeneous beliefs regarding the direction of prices. Also, during the first minutes of active 

trading, trade size appears to be higher. At the closing of active trading, increases in trading 

volume, trade counts and realised volatility reveal an attempt by traders to unwind their 
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positions and/or rebalance their portfolios. When averages across days are used and all 

minutes of active trading are included, the notion of trading activity that implies a 

proportionality between trading volume and returns variance more accurately predicts the 

stipulated 2/3 proportionality between the number of trades and trading activity for 70% of 

the stocks, except those with high on average volatility. This result is consistent even if the 

minutes that are characterised by extreme volatility and increases in trading volume, trade 

counts and trade size are excluded. The use of intraday averages leads to lower estimates of 

proportionality for all notions of trading activity, likely due to measurement errors and 

sampling variation which bias the coefficients estimates.  

However, we find that the invariance models predict a 1/2 proportionality for 86% of the 

stocks. These differences in the estimated proportionalities across models may be partly driven 

by the magnitude of trade size which has a different impact on the models we investigate. 

Based on our extended invariance model, the 1/2 proportionality value implies that bets in the 

futures markets are larger than bets in stocks and thus are shredded into more pieces assuming 

that on average bets shredded into same size trades in these two markets. Results also suggest 

that the specific proportionality is partly driven by the positive correlation between trade size 

and volatility in business time in the first/last 10 minutes and that orders are shredded more in 

the period between the first/last 10 minutes of active trading. When we examine this 

invariance relationship for each year in our sample, we find that invariance model does not 

indicate a unified order flow pattern for all stocks, and that stock and/or industry specific 

characteristics are important for traders when they choose the order size or shred their orders. 

The results for pre-crisis and in-crisis periods are similar, especially for those stocks that 

belong on the top of FTSE 100 in terms of market capitalisation. Stocks for which the 1/2 

proportionality does not hold in any of the two periods are characterised by the highest or 

lowest GBP trade size during the pre-crisis period. The direction and magnitude of changes in 

the underlying variables appears to be critical in determining whether the proportionality will 

differ between pre-crisis and in-crisis periods.  

The remainder of the chapter proceeds as follows. Section 2 reviews the intraday patterns of 

London Stock Exchange. Section 3 explains the methodology and the main and alternative 

empirical hypotheses. Section 4 concerns with the data and descriptive statistics regarding the 

underlying variables. Section presents and discusses the main empirical results. Section 7 

focuses on the empirical results in relation to smaller sub-periods. Section 7 concludes. 
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4.2 Intraday patterns of the London Stock Exchange 

In order to investigate the invariance relationships between the number of trades and trading 

activity for each individual stock in high frequencies, it is important to analyse the intraday 

patterns of the UK equity market and more specifically that of London Stock Exchange. 

Understanding the way trading takes place on the LSE and the extent to which intraday 

patterns affect the behaviour of the underlying variables in our model is crucial in explaining 

the individual invariance coefficients. In the following paragraphs, we discuss the changes that 

LSE has undergone in terms market organisation, the pre- and post-trading services offered, 

and LSE rules regarding market participants.   

4.2.1 During 1980s36   

The first steps towards the new era of trading on the LSE began in the early 1980s. During this 

period, the LSE undergoes a series of reforms. One major change is the introduction of the 

Unlisted Securities Market (USM)37 in November 1981. The aim of the USM is to provide 

small sized UK companies with a market where their securities can trade. Until that point LSE 

had been unwilling to grant full quotation on the main market to this type of companies, due 

to their size, associated business risk and absence of an acceptable earnings record. As a result, 

new and small companies struggled to raise equity capital to finance their business and growth, 

and mergers or acquisitions by larger companies are often the only viable solution. The USM, 

despite its inherent risks38, offers a trading forum to these companies, contributing significantly 

to the growth in the British economy. Another major change is the design of a new index in 

cooperation with the Financial Times, which would replace the FT Index. The new index, 

known today as FTSE 100, started operating in January 1984 (Michie, 1999). 

Although these two major changes improve the status of LSE, they are not enough to cope 

with the impending aftermath of the suppression of fixed commissions and single capacity, 

and the introduction of statutory financial regulation (SROs), known as “Big Bang”. A new 

trading system that would ensure functionality of the market after the “Big Bang” was 

necessary. By 21 October 1986, along with the information network, TOPIC, and the 

settlement system, TALISMAN, a new screen-based trading system, named SEAQ (Stock 

                                                           
36 Michie (1999) provides an excellent review of the history of LSE from its opening until the 2000s.  
37 USM belongs to the main market, although defined as separate part thereof.   
38 Due to limited turnover, a few investors could control new issuance and the market could easily be 
manipulated. 



87 

 

Exchange Automated Quotation), became ready for operation, imitating the one used by 

NASDAQ. TOPIC was used as the base for this new system, which was qualified to manage 8 

or 9 transactions a second, slightly slower than NASDAQ.  At the time of the “Big Bang” date, 

27th of October 1986, SEAQ operated smoothly. However, TOPIC fails twice due to 

overloading. The success of SEAQ at this point is such that gradually trading shifts from the 

traditional trading-floor (Michie, 1999). 

Despite its similarities with the NASDAQ trading system, SEAQ has several exclusive 

features. First, market makers are required to post two-sided quotes during the Mandatory 

Quote Period (MQP), for the securities that they are registered to trade. They also have to 

guarantee to deal at these quotes with all members, and fully disclose their transactions 

(Abhyankar et al., 1997, Demarchi and Foucault, 2000). These prices are binding for a 

Nominal Market Size (NMS), decided by the LSE39. Under the new system market makers 

qualify for stamp duty relief, short-selling accommodation and access to the Inter-Dealer 

Brokers' system (IDB). Second, at least until early 1990s, institutional investors dominate 

trading on the LSE40, contrasting with the more retail-based market of NASDAQ. 

Consequently, the predominant characteristic of order-flow on LSE is the fact that large sparse 

trades occur on only one side of the market41. Finally, the trading system in LSE includes two 

periods outside MQP, one before its opening and one after its closing. In contrast, the trading 

system in NASDAQ does not allow for such periods (Abhyankar et al., 1997)     

4.2.2 During 1990s 

In the years following Big Bang, the LSE has to face unanticipated challenges and solve 

emerging problems regarding its trading that the initial success of SEAQ never foreshadows. 

In the established new regime, transactions settlement proved to be a major issue for the stock 

exchange, with the existing paperless settlement system, TALISMAN, being unable to handle 

the overwhelming volume of business42. Also, by the end of 1987, the quality of price 

information SEAQ is delivering appeared to be below requisite market standards. Given that 

the electronic market is becoming an integral part of securities trading on London, both SEAQ 

                                                           
39 Abhyankar et al. (1997) report that in 1991 the NMP depended on customer turnover in each stock over the 
previous twelve months, expressed in a number of shares, and ranged from 500 to 200,000 shares 
40 Abhyankar et al. (1997) report that around 60% of trades came from institutional investors.    
41 However, given that both trading systems are quote-driven, market makers in both stock exchanges come up 
against a more fragmented order flow compared to that in a specialist system (e.g. that of NYSE) 
42 As Miclie (1999) states, until then time settlement takes place only after the end of the fortnightly account and 
not after the transaction actually occurs. As a result, the amount of transactions that are not cleared is predicted to 
be between £3 to £4 billion in August 1987   
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and TALISMAN need to be upgraded. In this new financial environment, LSE gradually starts 

to lose its crucial role in the British financial system, while it has to cope with the escalating 

competition from other stock exchanges. The attempt to exert further control over the 

securities market by both the governments and central banks make things even more 

complicated. In the UK, the statutory bodies responsible for regulating LSE seek to expand 

their influence to all its operational features. During the 1990s all the provisional rules and 

member privileges that grant LSE a competitive advantage gradually cease to exist. In addition, 

one by one, the functions (both regulatory and trading related) that the stock exchange 

historically performs are being undertaken by other bodies, forcefully modified, or sold.  As a 

result, the responsibility of the LSE is confined to an arguably43 difficult task, namely supplying 

an organised market, regulated by rules imposed by external bodies in order to minimise 

trading risks (Michie, 1999). 

The most tangible examples of these changes are those concerned with two main income 

resources of LSE: information and settlement services. The former are provided, as 

mentioned, through TOPIC and the latter through TALISMAN. The increasing competition 

in the information gathering and provision landscape, as well as the considerable investments 

by other electronic providers, obligates the stock exchange to sell TOPIC to REUTERS in 

December 1994 and offload its trade confirmation service, SEQUAL. The situation is quite 

different with respect to settlement services, which LSE is forced to relinquish, not because of 

competition, but rather because of its failure to deliver the required standards. After the early 

1980s, the stock exchange is already attempting to replace TALISMAN with TAURUS, a 

better settlement system. This undertaking stops in 1984 due to resistance from external bodies 

that provide the same services. The replacement activity resumes in 1987, but further delays 

and the failure of the LSE to design a settlement system that allows for the new trading 

conditions, leads to the project being dropped in 1993. Instead, a 10-days rolling settlement 

system is initiated in 1994 and then replaced by a 5-days rolling settlement system in 1995; 

however, there is still the need for a more modern settlement system. To satisfy this need, the 

Bank of England launches a new system, CREST, in 1996, which can manage up to 170,000 

transactions a day. The new system replaces TALISMAN by the third quarter of 1997 (Michie, 

1999).  

                                                           
43 Trading was changing, the speed of transactions became higher and the magnitude of  turnover greater  
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The loss of these services, although reducing the revenues of stock exchange at this date, 

creates a great opportunity: LSE could now focus on the critical role of providing an organized 

international securities market. The existing quote-driven trading system, however, is not 

adequate for this endeavour and needs to be replaced by an order-driven system in which 

orders could be executed and matched electronically via a central computer without further 

intermediation. The necessity for this change becomes apparent after the crash of 1987, when 

the disadvantages of the system in place are uncovered. For example, during Black Monday the 

less actively traded stocks are not as marketable as before and thus with the declining turnover, 

market makers cannot post close bid and ask quotes. The widening of bid-ask spreads44 

disheartens investors from trading in these stocks leading to a vicious circle. Similarly, market-

makers are more often picked off in highly actively traded stocks. As a result, many major 

companies either abandon market-making or decide to trade only in a sub-set of stocks that 

they consider less risky or quote even wider spreads, actions that compound the situation 

(Michie, 1999).  

Except for the obvious need to introduce better rules and regulations45, as well as an upgraded 

electronic trading system, LSE has to find the right balance between the needs and 

requirements of market makers and those of brokers/dealers and other market participants. 

On the one hand, the idea of a specialist system is out of the question because that would 

favour only the market makers. On the other hand, an order-driven system, despite certain 

obvious benefits, will potentially entail the risk of less liquid markets, and thus risk depriving 

the LSE of an important competitive advantage. However, externally, the increasing domestic 

competition, due to the new regulatory framework and technological convergence, and 

internally, the realisation that market-making in many securities simultaneously can be costly, 

open the route for the switch to an order-driven system. At the beginning of the fourth quarter 

of 1997, the new order-driven trading system, SETS (Stock Exchange Trading Service), is 

introduced, replacing SEAQ for all FTSE 100 stocks, as well as roughly 30 more stocks 

(Michie, 1999, Demarchi and Foucault, 2000).   

The change from a dealer’s market to an order-driven one is anything but smooth. Initially, 

only a third of all trades execute through SETS, while the majority still trade with the market 

makers and/or the Retail Services Providers to avoid the abnormal prices observed at the 

                                                           
44 Miclie (1999) discloses that the bid-ask spreads before 1987 were around 3%, whereas in 1990 they fluctuate 
between 1000 to 2000 bps.   
45 Demanded not only by the new market conditions, but also by government bodies (e.g. the Office of Fair 
Trading) that want to minimise the possibility of anti-competitive practices   
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opening and closing of the trading day in SETS (Michie, 1999). Demarchi and Foucault (2000) 

highlight that until the second half of 1998, only orders of medium size are executed via SETS 

(less than 10 NMS46). Indicative of this picture is the fact that SETS accounts for almost 70% 

of small-sized, and approximately 50% of medium-sized transactions, while transactions 

greater than 20 NMS generally take place outside SETS (Board and Wells, 1998). That intrinsic 

market fragmentation in a sense handicaps the liquidity of SETS. To deal with the situation, in 

late 1990s, LSE increases the NMS to 20, initiated a new way of computing the closing price47 

and modifies the structure of the call auction that takes place before the opening of the trading 

day. In the new setting, all registered members of LSE have the option to trade outside the 

central limit order book (Demarchi and Foucault, 2000). Despite these drawbacks, SETS offers 

market participants the option of splitting their orders swiftly, improved competition for 

smaller and medium trades and providing lower trading costs and more pre-trade transparency 

(Gemmill, 1998, Michie, 1999, Demarchi and Foucault, 2000). 

Progressively, the stock exchange begins to focuses on its core functions aiming to drop all the 

remaining services which other bodies can provide more efficiently, are outside its current 

scope, or in which it has failed to succeed. Nevertheless, its attempt to shut down the USM in 

199348 generates much opposition, not only from market participants, but also from the UK 

government. As a result, the stock exchange replaces USM with AIM (Alternative Investment 

Market) in June 1995. This new market for small companies inherits the risks of the previous 

one, mainly because LSE cannot apply the same set of rules and regulations that it has in place 

for large companies. Despite the continuous criticism by the government and media, as well as 

the competition from similar markets for small companies, such as OFEX and EASDAQ, 

AIM gradually became a successful trading forum where smaller companies can raise funds 

cheaply and investors can trade in potential growth stocks (Michie, 1999).           

                                                           
46 Nominal Market Size (NMS) is measured in shares and varies depending on the liquidity of each stock. Initially 
it represents at least 2% of the average trading volume in each specific stock. With the introduction of MiFID I 
the NMS stops being controlled by LSE and is set at an EU level. According to ESMA (2014, p. 51), “under 
MiFID I, the average daily turnover (ADT) is used to determine when an order should be considered to be large 
in scale compared to normal market size. The ADT is calculated by dividing the yearly turnover by the number of 
trading days and this calculation is made for each share on an annual basis. The shares are grouped within five 
different classes and the result of the annual ADT calculation determines whether the share should be reclassified 
and moved to another class. The higher the ADT, the higher the minimum threshold for the large in scale waiver 
is”.   
47 “A weighted average of the transaction prices in the last 10 minutes of trading day” (Demarchi and Foucault, 
2000, p. 83). Now, LSE defines the closing price as the last price at the time the market closes (based on the 
results of the closing auction or the midprice of the best bid and offer prices at the time the market closes).  
48 Initially LSE tries to open the market to more small companies, relaxing the rules for a full quotation, but this 
attempt is not successful.   
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4.2.3 From 2000s until the present 

Entering the millennium, LSE starts to establish its dominance in the UK stock market, 

improve its current services and expand operations in other financial products such as ETFs. 

The first decade of the 21st century is characterised by several unique features. First, fixed 

income securities, currency and commodities gradually become popular among investors. 

Second, the emergence of private electronic platforms and OTC derivatives trading make it 

more difficult for the traditional exchanges to generate earnings (Augar, 2016). Finally, the 

introduction of algorithmic trading underlines the need for new regulations and for a 

considerable upgrade in the electronic trading systems of the stock exchanges, to ensure 

market stability and transparency, offer speed to the new types of trader, and protect slower 

traders from being picked-off. For example, LSE introduces circuit breakers to restrain the 

illiquidity at fixed intervals and the automatic execution of trades at any price. This allows for a 

cooling-off period and help market participants to cope with the unexplained volatility that 

caused uncertainty (Foresight, 2012). 

Around the world major stock exchanges began merging with each other in an attempt to offer 

better services and win a greater market share. In order for London Stock Exchange to remain 

in a leading position, actions are required, not only in terms of new products, services and 

customers, but also investment in new technologies. To cover the first need, LSE merged with 

Borsa Italiana in the fourth quarter of 2007, establishing the LSE Group, with the goal of 

diversifying the provision of its products and its customer base (Willey, 2007)49. The following 

years found LSE participating in several mergers, acquisitions and joint ventures with other 

stock exchanges to strengthen its position. Most important was the acquisition of 60% stake in 

Turquoise in 2009. In addition, the stock exchange constantly improved the services and 

trading venues provided to market participants. Table 1 summarises the characteristics of each 

offered service to date and Figure 1 presents the current trading process in SETS, the main 

limit order book of LSE.               

Except the stock exchange’s expansion in size and services, the relaxation of restrictions and 

other changes in the trading landscape after the introduction of MiFID I, along with the 

growing trend of algorithmic trading and hedge funds, created another need. For LSE to 

remain competitive, a technologically advanced electronic trading system that would offer 

speed in trading, facilitate the execution of trades and increase system capacity was is crucial. 

                                                           
49 LSE had previously rejected takeover by NASDAQ 
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Accordingly, LSE launches TradElect in 2007, a trading system capable of trading in 10ms on 

average, as compared to the previous 140ms and handling 3000 trades per second 

(MacDonald, 2007). For a year the new Microsoft-based system performs efficiently, with a 

real reduction in latency up to 6ms and a significant increase in the number of trades per day. 

For these reasons, the LSE plans to allow more stocks to trade via the new system, to increase 

its capacity in terms of messages per second, and improve connectivity and functionality (LSE, 

2008). 

However, the unanticipated crash of TredElect for more than 7 hours in September 2008, in a 

day during which high volumes are expected, casts shadows over the previous proven ability of 

the trading system. Despite attempts to initiate improvements, LSE recognises that the 

performance of TredElect, given its operating costs, is not as high as expected. Despite the 

initial thoughts to design a new in-house built trading system, LSE decides to replace 

TredElect with Millennium Exchange, a Linux-based system, after the acquisition of the 

company that designed it in 2009. By 2011, Millennium Exchange fully replaces TredElect, 

offering members ultra-low latency, superior functionality and flexibility. This is the trading 

system which LSE currently uses, while it has sold its technology to other stock exchanges 

around the world. LSE continues to be one of the world’s leading stock exchanges, constantly 

introducing new venues and upgrading its services to provide market participants with 

unrivalled speed, transparency and flexibility.   

[Table 1 in here] 

[Figure 1 in here] 

4.3 Methodology 

This chapter incorporates the invariance model for trades we introduce in Chapter 3 as an 

extension of intraday trading invariance (ITI) model introduced by Andersen et al. (2018) and 

motivated by the market microstructure invariance (MMI) theory for bets suggested by Kyle 

and Obizhaeva (2016b). This is described in equation (10). The empirical methodology is also 

quite similar to the previous chapter. Specifically, to account for the common noise that the 

variables measuring expected trading t , tN  and tV  have in high frequencies, we aggregate the 

logarithms of 5-minutes observations for these variables and average across days based on 
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equation (23) and intraday based on the equation in (24)50 in a similar fashion to the previous 

chapter. In order to investigate the empirical proportionality between the number of trades and 

trading activity
 
for the individual stocks in our sample, we employ the same four different 

notions of trading activity as in Chapter 3, namely: those suggested by Kyle and Obizhaeva 

(2016b), Andersen et al. (2016), Clark (1973) and Ané and Geman (2000) with the respective 

models given in (26), (27) and (28).     

Following Andersen et al. (2018) and the respective restrictions for ITI in this chapter we test 

the following null and alternative hypotheses: 

0 : 2 / 3H    , 1 : 2 / 3H     

The models relating to the various notions of trading activity on which our analysis is based 

take the following form: 

Mode1 (Kyle and Obizhaeva (2016b):  
2

:
3

n

jk jk jkn c w u     (32) 

Model 2 (Andersen et al. (2016):  
,

2
:

3

n

jk a jk jkn c w u    (33) 

Model 3 Clark (1973): 
2 3

3 2

n

jk jk jk jkn c w q u
 

    
 

  (34) 

Model 4 Ané and Geman (2000):   
2

3

n

jk jk jk jkn c w q u      (35) 

In contrast to Chapter 3, where we estimate an average proportionality between the number of 

trades and trading activity, while controlling for any stock and time fixed effects with panel 

regressions, in this chapter we focus on the proportionality between number of trades and 

trading activity for individual stocks. We use OLS regressions for each stock in our sample, 

based on the four models presented above. First, we investigate whether the stipulated 2/3 

proportionality between the number of trades and trading activity holds in the FTSE 100 

equity market. Second, we seek to determine which of the four models best captures the 

market microstructure properties in the specific market context. We do that by employing both 

                                                           
50 Following previous work on invariance in high frequencies we calculate the realised volatility jdt   from 10-

second returns 
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averages across days, based on equation (23), and intraday averages based on equation (24), as 

estimators for the underlying variables.     

4.4 Data and Descriptive statistics 

In this section, we discuss the intraday innovations in realized volatility,  ,  trading volume, 

V , number of trades, N , and average trade size, Q . These variables, which are pivotal 

components of the invariance model, are influenced by the unique features of the LSE stock 

market during the period under analysis. As already explained, understanding these 

characteristics and their potential impact on the invariance relationships is important in 

interpreting any proportionality between the number of trades and trading activity.  

This chapter uses the same dataset as in Chapter 3. Specifically, time-stamped tick data is 

obtained from Thomson Reuters Tick History for 70 stocks trading on the London Stock 

Exchange and also listed in the FTSE 100 (Appendix-Table A1). The dataset includes tick-by-

tick information on the best available bid and ask quotes, transaction prices, and trading 

volume (in shares), for 3 years between 1st January 2007 and 31st December 2009. We select 

only the stocks that remain constituents of the FTSE 100 throughout the sample period. Our 

selection procedure ensures that we eliminate any potential survivorship bias that may impact 

the results. To reveal any potential impact of market capitalisation on invariance, we classify 

the 70 stocks which remain constituents of the FTSE 100 throughout the sample period, into 3 

groups on the basis of their market capitalisations51. Each group accounts for approximately 

33% of the total 3-years market capitalization average52. 
 

We consider trades for these stocks during the time span the London Stock Exchange is open 

for continuous trading, namely from 8am to 4.30pm, Monday to Friday. We exclude from the 

sample the 30 days that correspond to holidays or other days with reduced trading activity 

arising from reduced trading hours. This leads to a total of 754 trading days. Each trading day 

is further divided into 102, 5-minute intervals. In each of these intervals, we aggregate the 

observations for trading volume V , number of trades N and average trade size Q  so that we 

                                                           
51 We estimate the average market capitalization for each stocks using monthly values from LSPD database as 
provided by WRDS  
52 In Chapter 3 we use also an extra classification based on market capitalisation, ranking stocks based on their 
market capitalisation and then creating 3 groups of stocks with similar number of stocks in each group. As their 
results for average proportionality between the number of trades and trading activity are quite similar between the 
two different approaches of grouping stocks based on market capitalisation, here we only report one of them.   
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estimate their five-minute values. The realised return volatility   for each 5-minutes interval is 

computed from 10-second returns following Andersen et al. (2016). 

4.4.1 Intraday Volatility  

Various financial papers document a U-Shaped intraday pattern of returns volatility in stock 

markets. Wood et al. (1985), Jain and Joh (1988) and McInish and Wood (1990) examine the 

NYSE market and  show that returns volatility of stocks traded follow a U-Shaped pattern. 

Brock and Kleidon (1992) and Foster and Viswanathan (1993) also find the same pattern in 

returns volatility of NYSE stocks. Stoll and Whaley (1990) confirm that volatility is higher at 

the opening of NYSE market in all common stocks traded and argue that it is more 

pronounced for high-volume stocks. However, they assert that the prices observed during the 

first minutes of trading tend to reverse later in the day. Madhavan et al. (1997) discover the 

same U-Shaped pattern in returns volatility of NYSE stocks, although the volatility of ask 

prices tends to decrease throughout the day.  

Lockwood and Linn (1990) provide evidence that the variances of hourly intraday returns in 

the Dow Jones Industrial Average decline from the opening till early afternoon and increase 

after that point. Hamao and Hasbrouck (1995) state that returns volatility has a U-shape in 

Tokyo Stock Exchange traded stocks. However, George and Hwang (1995) explain that 

returns volatility is only high for a small number of high actively traded stocks, while Chang et 

al. (1993) do not record high returns volatility in the opening minutes. Choe and Shin (1993) 

claim that returns volatility is higher in the morning and afternoon period than in the closing 

minutes of the same market. In addition, Chan et al. (1995) prove that returns volatility in 

NASDAQ stocks follows a U-Shaped pattern. Werner and Kleidon (1996), Abhyankar et al. 

(1997) and Cai et al. (2004) also observe U-shaped pattern in the returns volatility of LSE 

stocks. Yet,  Andersen et al. (2000) discover two independent U-shaped patterns in the returns 

volatility of  Nikkei 225 index that can be connected to information asymmetry around the 

opening and closing of the market in the morning and afternoon.  

The fact that no complete consensus exists in the literature is demonstrated by the  number of 

papers that document that returns volatility is heavier at the opening of the stock exchanges 

than the closing, so that its pattern resembles more an L-shape rather than U-Shape. For 

example, Fleming and Remolona (1999), Tian and Guo (2007),  Eaves and Williams (2007), 

Pascual and Veredas (2009) and Glezakos et al. (2011) all support the L-shaped pattern in 
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returns volatility of the markets they investigate. Similarly, other studies report that returns 

volatility follows a reverse J-shape pattern which is similar to the L-shaped one. For instance, 

Ozenbas (2006) argues that this pattern is present not only in NYSE and NASDAQ, but also 

in LSE, Deutsche Boerse and Euronext,  Hussain (2011) finds the same for DAX between 

200nd 2005, whereas Harju and Hussain (2011) shows that this patters in returns volatility 

exists in FTSE 100, XDAX30, SMI and CAC40. 

In this chapter, we estimate realised returns volatility as the sum of squared returns over 10s 

for every 5-minutes interval over the trading day for all 70 FTSE 100 stocks. We then average 

the volatility estimate for each 5-minute interval across all 754 trading days, so that we obtain 

102 five minutes realised volatility observations for each stock. Returns are calculated by 

linearly interpolating from the average of two closest log bid and log ask prices, as in Andersen 

et al. (2001). 

Graph 1 presents the estimated intraday realized volatilities for all stocks in the sample. 

Returns volatility for the majority of the stocks follows an L-shaped/reverse J-shaped pattern 

and not a U-shape. This confirms with the conclusions of Werner and Kleidon (1996), 

Abhyankar et al. (1997) and Cai et al. (2004) that all examine the same market. Volatility is 

higher at the opening and decreases gradually throughout the day. Spikes during US 

macroeconomic announcements at 13.30 and after the opening of US stock market at 15:00 

are apparent for all stocks53. A possible explanation is that price discovery is less efficient at the 

morning opening because during this period there are more heterogeneous opinions regarding 

the direction of prices after the preceding non-trading hours. In a sense, this reflects the more 

pronounced difference in the way market participants interpret the aggregated overnight 

information and subsequently incorporate the information into their quoted prices. As far as 

the closing minutes are concerned, the spike in returns volatility can be attributed to market 

participants attempting to unwind their positions/rebalance their portfolios before the closing 

auction. Finally, the fact that returns volatility is not very high at the closing of the market, so 

that it exhibits a U-shaped pattern, likely suggests that TredElect, the electronic system (see the 

previous section), improves  price discovery during the trading day, so prices remain less 

volatile than previous studies suggest. 

[Graph 1 in here] 

                                                           
53 Other spikes for some stocks are obvious at certain time intervals. This can be attributed to stock specific 
characteristics which are outside the scope of this chapter. Here we investigate the presence of a common pattern 
in the data that will help interpret any invariance proportionality.      
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4.4.2 Intraday Trading Volume 

Several papers investigating the intraday patterns of trading activity variables contend that 

trading volume exhibits also a U-Shaped pattern. In papers analysing the NYSE, Jain and Joh 

(1988), Brock and Kleidon (1992), Gerety and Mulherin (1992) and Foster and Viswanathan 

(1993) all present evidence that trading volume (number of shares traded) exhibits a U-shape 

during trading day. According to Gerety and Mulherin (1992) overnight volatility is responsible 

for this pattern in trading volume of NYSE stocks, whereas as reported by Atkins and Basu 

(1995) public announcements after trading appear also to contribute to this pattern. Chan et al. 

(1995) provide evidence of a similar volume pattern on for NASDAQ stocks. In contrast,   

Werner and Kleidon (1996) and Abhyankar et al. (1997) document a two-humped pattern in 

trading volume, with peaks at 9:00am and 3:00pm, while the market is open for active trading 

from 8:30am to 4.30pm London time. Ellul et al. (2002) and Cai et al. (2004) display similar 

results for the pattern in the volume of stocks traded in SETS, with a spike around mid-

morning and a growing volume trend after the opening of US markets until the closing of 

active trading.   

Similar to the process we undertake for realised volatility, trading volume is averaged for each 

5-minutes interval across all 754 trading days. Graph 2 depicts the pattern of trading volume 

for all 70 FTSE 100 socks in the sample. In contrast to Werner and Kleidon (1996), 

Abhyankar et al. (1997), Ellul et al. (2002) and Cai et al. (2004) that report a two-humped 

pattern, our analysis actually indicates a four-humped pattern in trading volume. Corroborating 

Ellul et al. (2002) and Cai et al. (2004), there is a spike around 10:15 that reflects market 

response to UK macroeconomic announcements such as average earnings, industrial 

production, producer price index, retail sales, retail price index and others54. This spike can also 

be attributed to the Exchange Delivery Settlement Price auction for FTSE 100 Index Options 

contracts and FTSE 100 Index Futures contracts that takes place between 10.10am-10.15 am55. 

In addition, trading volume increases steadily after 14:30, when the US stock market opens, 

until the close of active trading on the LSE. However, two more peaks are present in our 

dataset: the lowest occurs around 12:00 and the other around 13:30. The former can be 

connected to the opening of FOREX market trading in New York and the second to US 

macroeconomic announcements including GDP, retail sales, PPI and CPI, trade balance index 

of leading indicators and others (Andersen et al., 2003). The discrepancies in the documented 

                                                           
54 Note that important macroeconomic announcement become available to journalists around 9.30 am  
55 More information about the specific auction is provide in Figure 1 
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pattern as compared to previous papers might stem from changes in the way trading takes 

place on the LSE.  The period under analysis also differs from that in other papers in a 

meaningful way.  Werner and Kleidon (1996) and Abhyankar et al. (1997) both analyse 

variables of trading activity in SEAQ, whereas Ellul et al. (2002) and Cai et al. (2004) look at 

SETS. As explained previously, after 2007 LSE replaced SETS with TradElect, which offered 

higher speed, increased flexibility and better functionality. In addition, these changes 

accommodate the emergence of algorithmic traders at the beginning of the 2000s. The 

accessibility and speed of the new trading system could possibly allow market participants to 

more quickly react to, and incorporate in their quotes, any new information arriving in the 

market around the two aforementioned spikes.   

[Graph 2 in here] 

4.4.3 Intraday Number of trades and trade size 

Some literature contends that trade counts, the number of trades, also follows a U-Shaped 

pattern within the trading day. For example, Jain and Joh (1988), Chan et al. (1995) and Blau et 

al. (2009) suggest that there exists a U-Shaped pattern in the number of trades on both the 

NYSE and NASDAQ. In our analysis, we estimate trade counts for each 5-minute interval by 

averaging the corresponding observations across 754 trading days. It is apparent from Graph 3 

that the number of trades for the 70 FTSE 100 stocks does not exhibit this U-shaped pattern, 

but the resulting pattern rather resembles that for trading volume, at least in the period after 

12:00. For the majority of stocks, trade counts first accentuate in the five minutes after the 

opening of the market. The peak in the trading volume which occurs at around 10:15 is not 

accompanied by a similar spike in the number of trades. However, following the trading 

volume pattern, there exist two considerable spikes at 13.30 when US macroeconomic 

indicators are announced and at 14.30, when the US stock market opens. Graph 4 displays the 

trade size for 70 FTSE 100 as an average for each 5-minute interval across 754 trading days. 

Despite some individual spikes or bottoms during the trading day, which can be attributed to 

stock specific characteristics, trade size is high mainly at the opening and is somewhat less 

clearly elevated at the closing of the market. Nevertheless, the pattern of trade size, in 

conjunction with the patterns in the number of trades, volume and volatility yields some 

interesting observations.    
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First, it is obvious that for the majority of the stocks at the opening, market participants trade 

more shares with each order, despite the high returns volatility in the first minutes of trading. 

In line with Amihud and Mendelson (1987) this possibly suggests that at the opening, traders 

have a higher possibility of executing their order at price better than their limit price as 

compared to the rest of trading day, and thus they trade more shares. According to Atkins and 

Basu (1995) and Barclay and Hendershott (2003) this evidence may reflect the information 

advantage of some traders stemming from information asymmetry in the pre-open auction 

and/or accumulated fresh information that becomes available overnight. French and Roll 

(1986) also highlight that return volatility can be considered as a blunt measure of risk and an 

implied measure of the level of information. That could also explain why returns volatility is 

high per trade, trade size and volume mainly around the time the market opens. 

Second, the aforementioned trading pattern is less apparent during the period surrounding the 

closing of the market. At this time, more orders are executed, but evidence a smaller number 

of shares bought or sold per order as compared to the opening period. This is consistent with 

Amihud and Mendelson (1987) who find that trading volume at the opening is higher on 

average. Stoll and Whaley (1990) underline that this pattern is more obvious for low-volume 

stocks. However, for most stocks trade size increases slightly in the last 5 to 10 minutes. This 

trading pattern, primarily present at the opening, is identical to “intraday stealth trading” 

reported by Chakravarty (2001), Barclay and Warner (1993) and Blau et al. (2009). Traders that 

are informed prefer to buy/sell more shares per trade (i.e. transfer large trade sizes) when 

trading volume is higher (e.g. at the opening/closing of the market) so that they cloak their 

information advantage. For the same reason, during periods of low volume, they prefer to split 

their orders into more trades. Earlier, Kyle (1985) argues that aggressive trading, or order 

shredding, is a characteristic of informed traders, whereas Admati and Pfleiderer (1988) allege 

that informed traders prefer to trade during periods of high liquidity and volume. In recent 

years, algorithmic trading has made the aforementioned trading strategies easier to implement.           

Finally, the information related explanations of the trading behaviour at the opening probably 

also applies to trading behaviour around 10.15, when UK macroeconomic announcements 

become available. Trade counts decrease, while trade size and volume increase around this 

time, although returns volatility remains almost unchanged for most stocks. The latter can be 

explained by the fact that this type of information is publicly announced and is available to 

everyone, and not simply to a select number of traders, as is more likely at the opening and 
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closing. In contrast, this is not the case when US macroeconomic indicators are announced 

around 13:30 or when the US stock market opens for trading at 14:30. During these periods, 

there is a considerable increase in the number of trades for all stocks, a smaller increase in 

trading volume and returns volatility, and a decrease in trade size. Intuitively, this means that 

during these periods market participants trade more, but they buy or sell smaller amount of 

shares per trade. This is similar to the pattern Andersen et al. (2016) report for the E-mini S&P 

500 futures contract market.          

[Graph 3 in here] 

[Graph 4 in here] 

4.5 Main Empirical Results 

Having established the intraday trading patterns of London Stock Exchange during the period 

under analysis, in this section we focus on estimation of the invariance coefficients for each 

stock in our sample. Table A2 in Appendix shows the results of OLS regressions for different 

notion of trading activity based on the models in equations (32), (33), (34) and (35), 

respectively. The underlying variables are averages of observations for the same 5-minutes 

interval56 across all trading days in the sample, as defined by equation (23). The invariance 

model (Model 1) and the alterative (Model 2) reject the null hypothesis of 0 : 2 / 3H    

proportionality between the transaction counts and trading activity, for all stocks at 0.1% 

significance level. In contrast, the MDH models indicate that for some stocks the investigated 

invariance relationship cannot be rejected. Table 2 summarizes some important descriptive 

statistics for the overall estimated invariance coefficients for the individual stocks which we 

report in Table 3. Specifically, the MDH-V model (Model 3) predicts the required 2/3 

proportionality for 49 stocks (70% of the sample), whereas the MDH-N model (Model 4) 

exhibits the specific 2/3 relationship for 16 of these stocks. The average and median estimated 

value for the invariance coefficients is approximately 1/2 for both invariance models with a 

standard deviation around 0.03 for both. 

                                                           
56 As explained, intervals with zero realised volatility or zero number of trades are excluded from the analysis. 
Here we report only 5-minutes intervals results, because the percentage of exclusions in 1-minute intervals is 
greater and thus the estimation becomes less accurate.  In contrast to Andersen et al. (2016) that report similar 
invariance relationships for 1-minute and 5-minutes intervals, we find that in our sample the relationship between 
the number of trades and trading activity is not consistent in 1-minute intervals. The reason is most likely that 
FTSE 100 stocks are less actively traded compared to the E-mini S&P future contracts used in Andersen et al. 
(2016).   
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[Table 2 in here] 

The average value of invariance coefficients for MDH-V (Model 3) is 0.6316 with a standard 

deviation of 0.04, whereas for the MDH-N model the average value is 0.5873 with a standard 

deviation of around 0.04. Given the values of adjusted R-squared in Table A2 in Appendix, it 

appears that the MDH-V model better fits the data for all stocks as compared to other models, 

albeit the standard errors of invariance coefficients are slightly smaller. Analysing the results 

further, we note that MDH-N model predicts 2/3 proportionality only for the lower 

capitalization stocks. In contrast with the average invariance coefficients based on the panel 

regressions reported in Chapter 3, the coefficient estimates for individual stocks are smaller in 

each respective model. This finding highlights the potential presence of fixed effects that lower 

the proportionality between the number of trades and trading activity, independently of the 

definition used for the latter. Taking into account the notion of trading activity implied by each 

model, the stipulated 2/3 invariance proportionality is present in transactions for the specific 

stocks and period we investigate when we consider the notion of trading activity that implies a 

proportionality between trading volume and returns variance. The 2/3 invariance 

proportionality is also present for some stocks when the notion of trading activity that implies 

a proportionality between trade counts and returns variance is used 

Proceeding, we conduct similar analysis for the models in (32), (33), (34) and (35), but now 

using intraday averages as estimators of the underlying variables, defined by equation in (24). 

Table A3 in Appendix summarizes the results of the OLS regressions for all four models. 

Analogous to the results reported in Chapter 3 employing panel specifications for intraday 

averages, the null hypothesis of 2 / 3   is rejected for all four models at a 0.1% significance 

level, while in all models the coefficient estimates for the majority of the stocks are higher than 

the average coefficients in the respective panels. This is most apparent for the alternative 

invariance (Model 2) and MDH-V models (Model 3). At this point, when we consider also the 

differences in coefficient estimates between individual stocks and panels when averages are 

estimated across days, the above result highlights that stock fixed effects have a negative 

impact on the proportionality between the numbers of trades and trading activity57. The 

adjusted R-squared is higher for the MDH models as compared to the invariance models. 

Allegedly, the value of the standard deviation of trade size, when it is estimated as an intraday 

average, may be a potential reason why the adjusted R-squared is lower in invariance models. 

                                                           
57 Chapter 3 highlights that stock effects are more pronounced when averaging across days than intraday.  
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The variation in this variable across stocks can also explain the substantial difference among 

the resulting coefficients estimates in the invariance models. In similar fashion to the results in 

Table A2, the coefficient estimates for the same stock vary considerably between the 

invariance and MDH models58. Also, including or excluding price in the definition of trading 

activity has a more significant impact on the invariance coefficients, when the underlying 

variables are estimated as intraday averages. Although the impact of price may be mechanical, 

the fact that the coefficients are lower and do not converge to a value that is constant across all 

stocks in the sample, when the underlying variables are intraday averages, is intriguing. A 

possible explanation is that innovations in the underlying variables for some stocks are more 

apparent when averaging intraday than across days and this may affect the coefficient 

estimates.  

To further examine invariance theory in the context of different definitions of trading activity, 

we plot the logarithm of trade counts ( tn ) against the logarithm of trading activity ( tw ) for all 

four models under investigation. Figures 2 and 3 present the scatterplots between the number 

of trades and trading activity of all stocks for invariance and MDH models respectively. Note 

that x-axis in each scatterplot represents a different notion of trading activity, whereas y-axis 

(logarithm of trade counts) is the same for all scatterplots. The variables are averages of 5-

minutes interval across all days based on equation (23). For each respective graph, the solid red 

line represents a line with 2/3 slope as suggested by invariance theory, whereas the blue 

dashed-dot line corresponds to a line with 1/2 slope based on the majority of the invariance 

coefficients for Models 1 and 2 in Table A2. The diamond symbol depicts the stocks with 

high-, the cross those with medium- and the circle those with low market capitalisations. 

Upon inspection of Figures 2 and 3, it is apparent that Model 1 (invariance model) yields pairs 

of trade counts and trading activity for all stocks that are less dispersed compared to the other 

three models. Given the differences between the four notion of trading activity we use, price 

and trade size appear to play an important role in investigating the microstructure properties of 

our sample in the invariance framework. In all graphs, points that appear to be outliers (right 

hand side of the graphs) overwhelmingly refer to the first 5 minutes of trading activity in LSE. 

As we described in the previous section, during these minutes trade counts increase, while 

trading volume, volatility and trade size are considerably high and gradually decrease quickly in 

the subsequent 5-minutes intervals. This leads to an extreme value of the trading activity, 

                                                           
58 The only difference is that all coefficients are lower compared to those produced when averaging across days 
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independently of the definition we employ. Also, it is apparent that the fitted 2/3 solid red line, 

better fits the data points in the graphs for Models 3 and 4. Intuitively, changing the intercept 

of the solid red line would reveal that it coincides with the individual regression lines estimated 

for the MDH-V model (Model 3) for 49 out of 70 stocks, and for 16 out of 70 stocks in the 

MDH-N model (Model 4). In contrast, the fitted blue dashed-dot line with a slope of 1/2 

better fits the data points in the graphs for both Model 1 and 2, reflecting the fact the 

invariance coefficient estimates for the majority of stocks are closer to this value when using 

their respective trading activity definitions (see Table A2).  

[Figure 2 in here] 

[Figure 3 in here] 

In summary, using averages across days as estimators for underlying variables, we are able to 

confirm a 2/3 invariance proportionality between trade counts and trading activity, when  

examining invariance relationships for trades at the level of individual stocks in FTSE 100. In 

contrast to Andersen et al. (2018) and Benzaquen et al. (2016), the specific value is only 

predicted for 70% of the stocks when we use the notion of trading activity as suggested by 

Clark (1973) and for 23% of the stocks (i.e. mainly the low market cap stocks) when we use the 

notion of trading activity as suggested by Ané and Geman (2000). Apparently, in the ITI 

framework, MDH-V model more precisely predicts the investigated invariance relationship in 

our sample for the period under investigation at the level of individual stocks. However, it fails 

to do so for stocks with high average volatility (see Table A3-Appenix II-Chapter 3). This 

finding is in contrast to the findings in Chapter 3, where we use panel specifications, and 

potentially indicates that fixed effects play an important role when examining invariance 

relationships.  

In addition, similar to Chapter 3, none of the employed models can accurately predict the 2/3 

proportionality when we use intraday averages as estimators for the underlying variables. This 

is also in contrast to Andersen et al. (2016) who are able to confirm the stipulated invariance 

relationship in the time series dimension. However, closer inspection reveals that there are 

groups of stocks that converge to certain proportionality values between the number of trades 

and trading activity. Certainly, all the coefficients estimates in Table A3 (Appendix) are lower 

when compared to those we present in Table A2 (Appendix), for all stocks and trading activity 

definitions. One reason is that averaging observations intraday reveals certain problems in 
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terms of measurement error and sampling variation which may serve to bias the coefficients 

estimates. Intuitively, there are innovations in market expectations concerning the nature of 

the underlying variables that are more pronounced during each trading day than across days, 

and this affects the invariance proportionality. Another reason may be the institutional 

structure of the specific market and the way trading takes place (how and when traders prefer 

to shred their orders, when algorithmic traders or informed market participants trade). Finally, 

intraday averages exhibit more upward bias for days that include more intervals with zero 

trades and/or zero realized volatility, and thus the estimates of the invariance coefficients are 

less accurate.    

Nevertheless, it is interesting the fact that invariance models (Model 1 & 2) are able to predict 

a fairly precise proportionality between trade counts and trading activity that is not 2/3 but 

rather 1/2 for 86% of the stocks in our sample, when we use averages across days. For the 

remaining 10 stocks, the invariance models do not predict 1/2 proportionality, though the 

invariance coefficients remain quite close to 1/2 for the majority of these stocks. This may 

reflect stock specific characteristics, a complete discussion of which is beyond the intended 

scope of this chapter. From Table 2, it is also obvious that predicted coefficients especially by 

invariance model (Model 1) have smaller standard deviation (i.e. more stocks compared to 

other models converge to 1/2 proportionality between trade counts and trading activity). This 

can be confirmed by the fact that Model 1 yields pairs of trade counts and trading activity for 

all stocks that are less dispersed compared to the other three models (see Figure 1 & 2). We 

further investigate and attempt to explain this difference in proportionalities in the following 

sections. 

4.6 A theoretical interpretation of different proportionalities  

The interpretation of all the above results follows the ITI framework and the respective 

assumptions, as motivated by MMI theory for bets. In Chapter 3, we explain how ITI is 

connected to MMI theory and justify the logic behind this connection. An assumption that is 

made by both Kyle and Obizhaeva (2016b) and Andersen et al. (2018) in their respective 

samples is that volume multiplier is 2   and volatility multiplier is 1  . Generally, this 

assumption of constant multipliers may hold during short time periods and in certain 

concentrated markets. But the specific market we investigate is likely to feel the impact of 
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fragmentation and order shredding which as we show in Chapter 3 can affect the invariance 

coefficient estimates on average.  

One potential reason for the lower proportionality that the invariance models estimate may be 

the way our dataset reports trades. Andersen et al. (2018) base their analysis on a similar set of 

assumptions, though distinct, to MMI theory in their empirical tests of ITI in the E-mini S&P 

500 futures contract market, because their dataset facilitates this connection. Specifically, the 

way their dataset reports trades (aggregation of ticks for each price level) makes it possible to 

infer equivalent invariance relationships for trades as for bets. Although, this facilitates the 

empirical testing of invariance principles for trades, in line with Chapter 3, we argue that this 

approach does not capture how trading takes place in every market. For example, ticks at the 

same price level might refer to a different bet, or ticks from the same bet might be executed in 

different price levels. Thomson Reuters Tick History does not report the aggregate ticks for 

each price level, and thus trade counts also reflect the order flow stemming from 

intermediation on the supply side. Specifically, our dataset reports trades as they arrive and are 

executed in the market in the manner described by the trading example for an individual stock 

in Figure 4. This feature may indeed hamper the empirical tests of invariance as suggested by 

Kyle and Obizhaeva (2016b) and Andersen et al. (2018), because transaction counts will appear 

inflated and trade sizes smaller in comparison to the levels that invariance as a concept implies.  

[Figure 4 in here] 

Trade size is an important component of the invariance theory. While the MDH-N model 

excludes trade size, the MDH-V includes trade size in the denominator of the trading activity 

measure, while it is present in the numerator for MMI and ITI, interacting with the number of 

trades. This leads to the possibility that the difference in coefficient estimates across the 

models arise mainly from the varying influence of trade size on the trading activity measure. 

This effect of the trade size may be futher exarcebated by the fact that for stocks trading on 

the LSE there is a threshold size for large orders, compared to NMS, which is unique to each 

stock. Specifically, having a threshold for the maximum order size might cause a bet to 

intermediate more often than the initial assumptions suggest or cause an order to be shredded 

across different days. Thus, when examining invariance principles from the perspective of the 

subsequent trades this may have an impact on the invariance proportionality estimates.  
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Another potential reason why Models 1 and 2 do not exhibit the theoretical 2/3 invariance 

proportionality is that innovations in trade counts are not followed by innovations in trade size 

of the requisite magnitude when calendar time volatility is assumed to be constant, as ITI 

theory by Andersen et al. (2018) implies. Specifically, motivated by MMI theory, ITI suggests 

that business time volatility (i.e. calendar time volatility divided by the square root of the trade 

arrival rate) is perfectly negatively correlated with trade size. Our extended invariance model in 

(10) implies that for any order shredding factor 1  , trades do not perfectly reflect bets (i.e. 

there isn’t a linear relationship), and thus this perfectly negative correlation may not be present 

in every trade, leading to a lower proportionality between trade counts and trading activity (we 

further examine this in the next section). However, given that the coefficient estimates for 

invariance models suggest a different proportionality the model in (10) implies a perfectly 

negative correlation between volatility in business time and trade size with an order shredding 

factor of 1.33  . This is actually greater than 1   which Andersen et al. (2018) accepts 

when testing for ITI in trades regarding S&P 500 futures contracts market. If we accept that 

invariance theory holds empirically for trades, comparing the two markets this intuitively 

suggests that across the intraday pattern, orders regarding stocks in FTSE 100 are shredded 

less on average compared to orders in the S&P 500 future contracts market. Given that futures 

markets are more liquid in principle compared to stock markets, this finding is interesting. 

However, in the MMI theory framework, this implies that bets in the futures market, 

investigated by Andersen et al. (2018), are larger than bets in stocks traded in FTSE 100 and 

thus are shredded into more pieces if we accept that on average bets shredded into same size 

trades.  

In a sense some of these factors as discussed above are capture by the fixed effects when we 

use panels in Chapter 3. This can potentially explain why there are differences in the 

coefficient estimates when we investigate invariance relationships for individual stocks and the 

market as a whole. We proceed by examining the role that the opening and closing minutes 

play to the invariance relationship between the number of trades and trading activity, given 

that these minutes are characterized by extreme volatility and increases in trading volume, trade 

counts and trade size, as well as different correlation than the correlation that invariance theory 

implies for the underlying variables. Hereafter we focus only on averages across days as 

estimators for the underlying variables, given that the intraday averages are less accurate 

independent of the model employed, for reasons we explain before.   
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4.7 Invariance when first/last 10 minutes of trading are excluded 

Until now we have examined the invariance relationship in high frequencies using tick by tick 

data for 70 FTSE 100 stocks including trades from the opening (8:00am) till the closing 

(4.30pm) of active trading in London Stock Exchange(LSE). The main purpose here is to 

examine whether excluding these minutes will affect the proportionality between the number 

of trades and trading activity that we get when all active trading hours are included. Based on 

the analysis of the intraday patterns, the microstructure properties of the underlying variable 

and the analysis on the entire sample it is clear that trading has different characteristics mainly 

at the opening and closing of the market compared to the rest period. The behaviour of 

variables of trading activity potentially induces noise to the results of invariance in our sample. 

This noise stems mainly from high returns volatility and volume in the first minutes, as well as 

high number of trades and volume in the last minutes of active trading. Consequently, the 

trade size, which is important variable in the invariance framework, is also affected.  

For these reasons, invariance relationships between the number of trades and trading activity is 

investigated in a sample that does not include the first and last 10 minutes of trading. Results 

of the OLS regressions regarding all four notion of trading activity are represented by the 

models in equations (32), (33), (34) and (35) are reported in Table A4 (Appendix). The 

underlying variables are averages of respective observations for 5-minutes intervals across all 

days as defined by equation (23). Following the assumptions for ITI in the previous tests, the 

null ( 0 : 2 / 3H   ) and alternative ( 0 : 2 / 3H   ) hypotheses are similar to those for the 

entire sample. Removing the first and last 10 minutes of active trading from our sample leads 

to an increase of invariance coefficients for all models. This effect is more pronounced for the 

invariance models (Models 1 and 2), for which coefficients estimates have increased around 

14% on average. The increase in the proportionality between trade counts and trading activity 

is smaller for MDH models (4.4% and 7.5% on average for Model 3 and Model 4, 

respectively). Also, all models appear to fit the data better (i.e. adjusted R-squared are higher 

for all stocks) compared to when the entire trading day is included in the analysis. Table 3 

reports a summary of the coefficients estimates of Table A4. The null hypothesis for 

0 : 2 / 3H    is still rejected for almost all the stocks by the invariance models, though 

coefficient estimates approach this value more than when all minutes of trading are included. 

Both models (Model 1 and 2) predict 2/3 invariance proportionality for 5.71% of the stocks. 

The average and median coefficients estimates are higher than those we report in Table 2. On 
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the contrary, the exclusion of trading minutes does not have a significant impact on the MDH-

V model (Model 3) other than slightly increasing the average and median coefficient values.  

This is not the case for the MDH-N model (Model 4) which appears now to predict the 

required proportionality for more stocks (57.14%). These results again suggest that the extreme 

volatility and increased trade size which is apparent at the opening of active trading have a 

considerable negative impact on the invariance coefficients estimated by the invariance models 

and the MDH-N model59. The same reasoning, albeit its influence is somewhat diminished, 

applies to the increased volatility, trading volume and number of trades the market experiences 

at the close of active trading60. Although there are some changes in terms of which stock 

exhibits or do not exhibit the required invariance coefficient, the MDH-V model is still able to 

predict 2/3 proportionally for the majority of the stocks. This indicates that the specific model 

is not noticeably affected by the extreme values of the underlying variables at the opening and 

closing of the active trading. Overall, if we treat the invariance proportionality as an indicator 

of liquidity, the results for all models show that liquidity improves during the trading day, while 

it is lower in the first and last 10 minutes of trading activity. 

[Table 3 in here] 

Another potential explanation as to why there is a manifest increase in the value of coefficients 

estimated by the invariance models lies in the correlation between trade size and volatility in 

business time (volatility divided by the square root of trade counts). As we previously explain, 

MMI theory implies that there is a perfect negative correlation between the bet size and 

volatility in business time as long as calendar time volatility remains constant. In a similar 

fashion ITI theory suggest similar correlation for trade size and volatility in business time. 

Table A5 in Appendix depicts the correlation between the trade size and volatility in business 

time for all 70 stocks, in the first and last 10 and 15 minutes, both in the entire sample and 

excluding the opening and closing 10 or 15 minutes. Using all trading minutes, the correlation 

is positive for all but one stock (SL) with the highest being 0.8470 (BLT) and the lowest in 

absolute terms 0.0324 (IMT). There is also a strong positive correlation for the majority of the 

                                                           
59 Given that the MDH-N model excludes trade size in the notion of trading activity, the results imply mainly the 
impact of extreme volatility on the estimates of the specific model.  
60 We have contacted similar analysis by excluding only the first 10 minutes of active trading and the results do 
not vary considerably. This suggests that the behavior of the underlying variables at the opening have a greater 
impact on invariance proportionality than that at the closing of active trading.    
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stocks in the first and last 10 minutes of active trading61. Excluding these minutes, the positive 

correlation decreases. Indeed, many more stocks now exhibit a negative correlation between 

trade size and volatility in business time. The highest value for the correlation is now 0.4161 

(HSBA) and the lowest in absolute terms is 0.0034 (EMG).  

On the basis of the extended invariance model in (10), assuming that 1  (i.e. the model is 

similar to ITI theory), this change in the direction of the correlation, from positive to negative 

together with the decrease in the values of the positive correlations, may partially explain why 

the invariance coefficients significantly increase when we exclude the first/last 10 minutes. If 

we assume 1  , as it is the case for the entire sample, results also indicate that orders in 

stocks for FTSE 100 are shredded more in minutes following the opening 10 minutes and 

before the closing 10 minutes. Specifically, as the invariance estimates for Model 1 & 2 increase 

when we exclude the first/last 10 minutes of trading activity,   becomes smaller compared to 

the entire sample (i.e. the estimated proportionality is now 7/12), but still greater than 1. This 

implies increase level of order shredding in the minutes between the first/last 10 minutes of 

active trading. This finding also corresponds to the results we depict in the relevant graphs, 

both for the number of trades (Graph 3) and trade size (Graph 4).  

In summary, excluding the first/last 10 minutes of trading activity yield some interesting 

results. The MDH-V model can still predict a 2/3 proportionally for the majority of the stocks, 

whereas the MDH-N model can now predict the required proportionality for more stocks. In 

contrast, the coefficient estimates for the invariance models are increased, converging towards 

a value of 7/12.  In the invariance universe, changes in trading activity are followed by changes 

in the number of trades and shifts in the distribution of trade size in a specific proportional 

way (i.e. 2/3 and 1/3, respectively). Results on the entire sample reveal that this proportionality 

for the majority of the stocks is 1/2 (i.e. according to invariance that implies 1/2 change in the 

number of trades and 1/2 shift in the distribution of trade size). We argue that on top of all the 

other reasons stemming from intraday patterns, the way that our dataset reports trades and the 

fact that trades are not bets, this revealed proportionality is partly driven by the positive 

correlation between trade size and volatility in business time in the first/last 10 minutes. 

Excluding those minutes leads to a negative, or at least a less positive correlation between trade 

                                                           
61 Table A5 reports perfect positive/negative correlations for the first/last 10 minutes, but this is due to the fact 
we include fewer observations. When we add in another 5 minutes, the correlations are no longer perfect. 
However, this does not change the strong positive correlation for the majority of the stocks for the specific 
minutes under consideration.  Also, the results are similar when we exclude 10 or 15 minutes. In this chapter we 
chose to exclude the first/last 10 minutes when estimating the invariance coefficients. 
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size and volatility in business time for all stocks and thus to a shift in the proportionality more 

towards the number of trades than trade size with an increase in trading activity. Based on our 

extended invariance model this also indicates an increase in the level of order shredding after 

the first 10 minutes and before the last 10 minutes of trading activity. Intuitively, this suggests 

that in the 10 first/last minutes traders buy/sell more stocks per trade as trading activity 

increases than they do during the remaining minutes of trading day.  

From the analysis until this point it is apparent that MDH-V model best describes the 

invariance properties in our sample as proposed by ITI theory. However, particularly the 

invariance model (Model 1) as motivated by Kyle and Obizhaeva (2016b) predicts a different 

proportionality which we partly explain in the previous sections. To further investigate this 

finding, i.e. the 1/2 proportionality between the number of trades and trading activity, we 

proceed to conduct some further tests across subsample periods. The main goal is to examine 

the extent to which yearly characteristics and/or the financial crisis play a role in the specific 

estimated invariance proportionality existing between the number of trades and trading 

activity.  

4.8 Invariance in subsample periods 

4.8.1 Year by Year Analysis 

First we divide our sample into the three separate years for which we have data and examine 

the relationship between the number of trades and trading activity. The goal here is to check 

whether the estimated 1/2 proportionality when we use the entire sample also holds for each 

individual year. Intuitively, this test will reveal whether the implied order flow composition 

remains the same across shorter time periods. Full results of the OLS regressions based on the 

model (25), including the constant term, standard errors and adjusted R-squared for the three 

substantive years are presented in Table A6 in the Appendix. The underlying variables are 

interday averages of respective observations for 5-minutes intervals across all days in the 

sample, as defined by equation (23). Given the proportionality that Model 1 predicts in the 

previous analysis, the null hypothesis is 0 : 1/ 2H   . Table 4 reports only the invariance 

coefficients of 70 FTSE stocks for the entire period as depicted in Table A2 (Appendix) and 

for 2007, 2008 and 2009 from Table A6 (Appendix), respectively. Coefficients in bold indicate 

that we cannot reject the null hypothesis for 0 : 1/ 2H   . Estimates of invariance 

proportionality drops in value for 34 of the stocks between 2007 and 2008 and for 44 stocks 
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between 2008 and 2009. However, the proportionality between the number of trades and 

trading activity is not significantly different from 1/2 for 45 stocks during all three years and at 

least for one year for all stocks. Also, the constant term is significantly different from zero for 

almost all stocks only in 2009, while in the other two years it is not significant for the majority 

of the stocks.   

[Table 4 in here] 

Taking into account the coefficients when the whole sample period is used, it appears that the 

1/2 proportionality is close to the average of the acquired proportionalities for the respective 

years. Interestingly, the invariance coefficient for all stocks in the high capitalisation group 

deviates from 1/2 at least during one of the substantive years. Based on the assumption of 1/2 

invariance proportionality and the implied composition of trade size and number of trades, the 

findings do not suggest a unified order flow pattern for all stocks, but rather indicate that 

traders are affected by stock and/or industry specific characteristics when deciding their order 

size or how to shred their orders, at least for the period under analysis. That would partly 

explain why the invariance coefficients for some stocks increase/decrease across years. In 

addition, as we explain changes regarding the class of large trade waiver (i.e. by how much an 

order is allowed to exceed the NMS) to which a stock belongs due to MiFID I, based on a 

stock’s average daily turnover calculated on an annual basis, may also potentially explain the 

change in the invariance coefficient estimates. For example, an increase in the size of an order 

which is allowed for a specific stock may lead to large orders or executed trades and thus 

higher measures of trading activity. In turn, whether this increase in trading activity is 

proportional or not to an increase in the number of trades can potentially affect the respective 

invariance coefficients62. However, over the entire sample period, any such differences 

between the three years do not manifest themselves, and overall the implied order-flow 

composition is the same (i.e. 1/2 proportionality) for the majority of the stocks.   

4.8.2 Pre-Crisis and After Crisis Analysis 

To further investigate the estimated 1/2 proportionality between trade counts and trading 

activity, we divide the sample into two periods: a pre-crisis period between 1st January 2007 

and 30th June 2008 and an in-crisis period between 1st of July 2008 and 31st of December 2009. 

                                                           
62 Investigating the extent at which NMS plays a role in the invariance coefficient estimates and whether it can 
potentially explain the 1/2 proportionality between trade counts and trading activity is a very interesting topic for 
future research.    
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Given the period of the analysis, the main purpose here is to check whether the outbreak and 

duration of the 2008-09 financial crisis leads to a different proportionality. We choose July 

2008 as our break point as the third quarter of 2008 appears to be an appropriate time in terms 

of the extent to which the 2008 global financial crisis starts to have an impact on the UK 

economy (real GDP reduction, the emergence of a credit crunch, a decrease in major 

economic indicators, and the FSTE 100 index’s sharpest drop since its creation).We report the 

full results of the OLS regressions, based on the model (25), including the constant term, 

standard errors and adjusted R-squared for both pre-crisis and in-crisis periods in Table A7 in 

the Appendix. To make the analysis easier, we present only the invariance coefficients for 70 

FTSE 100 stocks, both during pre-crisis and in-crisis periods, in Table 5. The underlying 

variables are averages of respective observations for 5-minutes intervals across all days in the 

sample, as defined by equations (23). 

[Table 5 in here] 

First, the results reveal that for 46 stocks, the requisite 1/2 proportionality is present in both 

pre-crisis and in-crisis period, while for 3 stocks the respective coefficient is not 1/2 during 

either periods. All 49 stocks exhibit the same relationship between trade counts and trading 

activity as when the entire period is examined. This pattern does not hold for the remaining 21 

stocks in our sample, for which there is a change in either accepting or rejecting a null 

hypothesis for 0 : 1/ 2H    between the two periods. Specifically, the null hypothesis for 

0 : 1/ 2H    is rejected for pre-crisis period for 15 of these stocks, whereas the exact opposite 

holds for the remaining 6 stocks. Upon inspection of Table 4, it is apparent that there is a 

change in the statistical significance of the invariance coefficients between pre-crisis and in-

crisis period for all the stocks that belong to the high market cap group. There is also a 

reduction in the coefficient estimation values for the majority of the stocks that do not exhibit 

1/2 proportionality in any of the two periods. The majority of the specific stocks are 

characterised by the highest/lowest GBP-denominated trade size ( P Q  ) during the pre-crisis 

period.   

The changes in the coefficients between the pre-crisis and in-crisis periods are independent of 

the significance of the coefficients tested against the null hypothesis of 0 : 1/ 2H   . 

Specifically, even if the coefficient estimates do not reject the null hypothesis in both periods, 

they may exhibit a decline or an increase for some stocks between the two periods. Also, these 
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changes alone are not enough to explain the fact that for some stocks, the proportionality 

between the number of trades and trading activity is not significantly different from 1/2 in 

both periods, while for others it does not. On the contrary, what appear to be important is the 

direction, as well as the magnitude of the increase/decrease in the underlying variables or the 

way that market participants trade in the specific stocks (e.g. how and when they split their 

orders).     

4.9 Conclusion  

In this chapter we examine invariance relationships for trades regarding individual stocks that 

remain FTSE 100 constituents throughout our 2007-2009 sample period. For this purpose we 

employ four different notion of trading activity based on the generalised invariance model we 

propose in Chapter 3. However, here we do not focus on the average proportionality between 

the number of trades and trading activity, but rather investigate the invariance principles 

separately for each stock.  

Analysing the intraday patterns of London Stock Exchange, we find that realised volatility is 

extremely high during the first 5 minutes of active trading, spikes at the time of UK 

macroeconomic announcements, the opening of the New York FOREX market, around US 

macroeconomic announcements and the opening of the US stock market, whereas it also 

increases slightly at the closing. Price discovery appears to be less efficient at the morning 

opening, because during this period there are more heterogeneous opinions regarding the 

direction of prices after non-trading hours. It also appears that market participants attempt to 

unwind their positions and/or rebalance their portfolios before the closing auction. Trading 

volume has a four-humped pattern during the period under analysis, whereas market 

participants trade more shares within each order for the majority of the stocks at the opening. 

Both trading volume and number of trades spike considerably during the US macroeconomic 

announcements and the opening of the US stock market.  

The results of the OLS regressions show that the MDH-V model more accurately predicts the 

2/3 proportionality between the number of trades and trading activity for 70% of the stocks 

stipulated by ITI invariance theory as motivated by the MMI theory. Intuitively, based on the 

MDH theory introduced by Clark (1973), this suggests that for these specific stocks, the 

trading volume is proportional to the returns variance. This result is also consistent when we 

exclude from the sample the first/last 10 minutes of trading activity which are characterised by 
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extreme volatility and increases in trading volume, trade counts and trade size, as well as 

different correlation than the correlation  that invariance theory implies for the underlying 

variables. However, the model fails to predict 2/3 proportionality for those stocks that have 

high on average volatility. In addition, none of the employed models can accurately predict the 

2/3 proportionality when we use intraday averages as estimators for the underlying variables 

mainly due to measurement error and sampling variation and /or the institutional structure of 

the market and intraday trading patterns. 

However, we find that the invariance models are able to predict a fairly precise proportionality 

between trade counts and trading activity that is not 2/3 but rather 1/2 for 86% of the stocks 

in our sample, when we use averages across days. This proportionality may be a feature of our 

dataset or the specific market or driven by the magnitude of trade size which has a different 

impact on the models we investigate.  The latter may be further exacerbated by the fact that 

for stocks trading on the LSE there is a threshold size for large orders, compared to NMS, 

which is unique to each stock. Based on our extended invariance model and the stipulated 

proportionality by MMI and ITI theories, the 1/2 proportionality value implies that bets in the 

futures market, investigated by Andersen et al. (2018), are larger than bets in stocks traded in 

FTSE 100 and thus are shredded into more pieces if we accept that on average bets shredded 

into same size trades in these two markets.   

We also show that this proportionality is partly driven by the positive correlation between 

trade size and volatility in business time in the first/last 10 minutes. Excluding these minutes 

from the analysis leads to an increase in the coefficient estimates predicted by invariance 

models that now converge to a value of 7/12. On the basis of the extended invariance model 

this finding implies increased level of order shredding in the minutes between the first/last 10 

minutes of active trading. Further analysis on the specific proportionality value on a year per 

year basis does not suggest a unified order flow pattern for all stocks, but rather indicates that 

traders are affected by stock and/or industry specific characteristics when deciding their order 

size or how to shred their orders, at least for the period under analysis. The change of 

coefficient estimates for some stocks from one year to another may be driven by changes in 

the maximum allowed order size relative to NMS that is unique for each stock and is calculated 

annually.  These differences are no longer manifest when we use the entire sample in the 

estimation. The results also indicate a change in the statistical significance of the invariance 

coefficient between the pre-crisis and in-crisis periods for all the stocks that belong to the high 
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market cap group. Also, the direction and magnitude of the increase/decrease in the 

underlying variables between the pre-crisis and in-crisis periods determine any changes in 

proportionality.  

At this point it is important to underline once more that the analysis in this chapter, similar to 

Chapter 3, concerns itself with trades, which are different from the concept of bets on which 

the MMI theory by Kyle and Obizhaeva (2016b) is built. Also, significant differences exist in 

the way that trades are reported in the dataset between the LSE and the E-mini S&P500 

futures contract market, which means  the results are not directly comparable with those in 

Andersen et al. (2018). However, given that trades are components of bets, this research is 

complementary to other papers discussing invariance theory and provides a different 

interpretation of the invariance proportionality for trades regarding individual stocks. The 

chapter also attempts to link it to the intraday patterns of specific equity market. Given the 

increasing level of market fragmentation which is appearing in global stock markets, it should 

be interesting to examine in future research the extent to which stock and industry 

characteristics, as well as the introduction of different trading platforms, affect invariance 

principles, and intuitively liquidity across various platforms.   
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Table 1- Main domestic trading services of London Stock Exchange  

SETS 

The main electronic order book of London Stock Exchange. This is an order-driven electronic 

market that accommodates also the provision of liquidity by market makers and guarantees 2-

way prices. Trading in SETS includes FTSE100, FTSE250 and FTSE Small Cap Index 

constituents, Exchange Traded Funds, Exchange Trading Products and  liquid AIM, Irish and 

London Standard listed securities. The type of orders supported in SETS are passive orders, 

stop orders, stop limit orders, hidden limit orders, mid-price pegged orders and executable 

quotes. There are two clearers available pre and post trading and counterparty protection for 

the market participants. The trading process in SETS is depicted in Figure 1. LSE also operates 

a version of SETS on a modified trading cycle that supports Securitised Derivatives 

SETSqx 

Stock Exchange Electronic Trading Service-quotes and crosses is a trading forum for securities 

that are less liquid than those traded on SETS. It is a non-electronic quote-driven market for 

market makers, while it includes 5 electronic auctions a day at 08:00, 9:00, 11:00, 2pm and 

4:35pm. It supports named or anonymous electronic orders, which are cleared centrally. 

SETSqx supports two types of order book model contingent on the security having registered 

market makers who provide non-electronic quotes.   

SEAQ  

The non-electronically service for executing quotes of London Stock Exchange. This trading 

venue allows market makers to post quotes in AIM securities (not traded on SETS or SETSqx) 

and a number of fixed interest securities. 

Source: London Stock Exchange  
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Figure 1-Trading process in SETS 
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Graph 1 

Realised Volatility  

Realised volatility for all 70 stocks in the sample as average across days based on the equation (23). For each substantive 5-minutes interval over the trading day the realised 

volatility is estimated as the sum of squared returns over 10s during the specific time span.  

 

 



119 

 

Graph 2 

Trading Volume  

Trading volume for all 70 stocks in the sample as average across days based on the equation (23) 
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Graph 3 

Number of Trades 

Number of trades for all 70 stocks in the sample as average across days based on the equation (23) 



121 
 

Graph 4 

Trade size 

Trade size for all 70 stocks in the sample as average across days based on the equation (23) 
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Table 2 

Invariance coefficients for estimation using averages across days 

This table reports the number and percentage of stocks for which the 4 models under 

investigation can predict the 2/3 proportionality between the number of trades and trading 

activity as suggested by invariance theory. Also, it presents the average, standard deviation and 

median of the invariance coefficients estimates for four notion of trading activity. The 

different notions of trading activity are those introduced by Kyle and Obizhaeva (2016) (Model 

1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, Ané and 

Geman (2000) (Model 4). 

 Model 1 Model 2 Model 3 Model 4 

No of Stocks with 2/3 
proportionality 

0 0 49 16 

% of Stocks with 2/3 
proportionality 

0% 0% 70% 22.86% 

Average  0.5071 0.5096 0.6316 0.5873 
Std. Dev.  0.0330 0.0322 0.0418 0.0377 
Median  0.5077 0.5107 0.6366 0.5892 
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Figure 2-Scatterplot for averages across days 

Scatterplot of the logarithm of trade counts against the logarithm of trading activity. Model 1 represents the 

invariance model as introduced by  Kyle and Obizhaeva (2016b) and Model 2 the alternative invariance model 

suggested by Andersen et al. (2016). The variables are averages of 5-minutes interval across all days. For each 

respective trading activity notion, the solid red line represents a line with 2/3 slope, as implied by invariance 

theory, and the blue dashed-dot line corresponds to line with 1/2 slope.    

Model 1 

 

Model 2 
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Figure 3-Scatterplot for averages across days 

Scatterplot of the logarithm of trade counts against the logarithm of trading activity. Model 3 refers to the notion 
of trading activity introduced by Clark (1973) and Model 4 the notion suggested by (Ané and Geman (2000)). The 
variables are averages of 5-minutes interval across all days. For each respective trading activity notion, the solid 
red line represents a line with 2/3 slope, as implied by invariance theory, and the blue dashed-dot line 
corresponds to line with 1/2 slope.    

Model 3 

 

Model 4 
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Figure 4-Trading example on FTSE 100 (Individual stock) 
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Table 3 

Invariance coefficients for estimations across days 

This table reports the number and percentage of stocks for which the 4 models under 

investigation can predict the 2/3 proportionality between the number of trades and trading 

activity when the first and last 10 minutes of activity trading are excluded. Also, it presents the 

average, standard deviation and median of the invariance coefficients estimates for four notion of 

trading activity. The different notions of trading activity are those introduced by Kyle and 

Obizhaeva (2016) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) (Model 3) 

and MDH-N, Ané and Geman (2000) (Model 4).  

 Model 1 Model 2 Model 3 Model 4 

No of Stocks with 2/3 
proportionality 

4 4 48 40 

% of Stocks with 2/3 
proportionality 

5.71% 5.71% 68.57% 57.14% 

Average  0.5768 0.5794 0.6593 0.6311 
Std. Dev.  0.0348 0.0340 0.0399 0.0370 
Median  0.5795 0.5833 0.6661 0.6378 
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Table 4 
Invariance Proportionalities 

This table reports the invariance proportionalities estimates of OLS regressions for 70 FTSE 100 stocks based on the model (25), for the entire sample period and the 

respective 3 years, 2007, 2008 and 2009 

 

 BP HSBA VOD GSK RDSA RIO AZN RBS BATS BG 

Full Sample 0.5332 0.5160 0.4764 0.5404 0.5415 0.5117 0.5072 0.4327 0.5190 0.4848 
Year2007 0.5751 0.5584 0.4386 0.5714 0.5289 0.4934 0.5085 0.4844 0.5436 0.5032 
Year2008 0.5485 0.5167 0.4734 0.5311 0.5443 0.5039 0.5151 0.4473 0.5032 0.4679 
Year2009 0.5257 0.5083 0.5087 0.5281 0.5532 0.5288 0.4983 0.3727 0.5133 0.4952 

 AAL BLT BARC TSCO XTA DGE LLOY STAN ULVR RB 

Full Sample 0.4941 0.5616 0.4965 0.4678 0.4757 0.5166 0.4836 0.4742 0.5387 0.4825 
Year2007 0.4685 0.5306 0.5032 0.4789 0.4517 0.4643 0.5213 0.4644 0.5306 0.4845 
Year2008 0.4736 0.5664 0.5053 0.4653 0.4449 0.5086 0.4952 0.4593 0.5301 0.4812 
Year2009 0.5336 0.5815 0.4883 0.4683 0.5208 0.5465 0.4546 0.4985 0.5530 0.4819 

 SAB NG IMT BT AV PRU BAE CNA SSE CBRY 

Full Sample 0.4995 0.5240 0.4984 0.4395 0.4858 0.5185 0.4621 0.5081 0.5191 0.5606 
Year2007 0.5083 0.4996 0.4931 0.4950 0.4996 0.5145 0.4472 0.4995 0.4957 0.5601 
Year2008 0.5062 0.5276 0.4912 0.5078 0.5071 0.5276 0.4688 0.5493 0.5056 0.5595 
Year2009 0.4898 0.5240 0.5083 0.3578 0.4594 0.5120 0.4747 0.4798 0.5463 0.5438 
 BSY EMG RR MRW MKS SBRY WPP REL LGEN CPG 

Full Sample 0.5379 0.4693 0.4940 0.5160 0.5023 0.5008 0.5225 0.5219 0.4603 0.5028 
Year2007 0.5499 0.4874 0.4929 0.5010 0.5032 0.4797 0.5230 0.5422 0.5454 0.4959 
Year2008 0.5656 0.4645 0.5246 0.5199 0.5051 0.5259 0.5514 0.5349 0.4135 0.5132 
Year2009 0.5005 0.4624 0.4795 0.5221 0.5058 0.4997 0.4972 0.5069 0.4410 0.4984 

 ABF LAND OML ANTO PSON SHP SL IPR KAZ UU 

Full Sample 0.5568 0.4951 0.4066 0.4953 0.5408 0.5252 0.5073 0.5036 0.4611 0.5546 
Year2007 0.6215 0.4895 0.4531 0.4889 0.5406 0.5248 0.5070 0.4963 0.4578 0.5490 
Year2008 0.5622 0.5222 0.3767 0.4758 0.5533 0.5142 0.5586 0.5159 0.4552 0.5687 
Year2009 0.4941 0.4675 0.3889 0.5192 0.5271 0.5292 0.4529 0.4979 0.4792 0.5356 

 SN EXPN BLND VED RSA CPI KGF CCL CW SMIN 

Full Sample 0.5218 0.5140 0.4839 0.4776 0.4754 0.5592 0.5084 0.5603 0.5368 0.5171 
Year2007 0.5415 0.4755 0.5019 0.4629 0.5660 0.5805 0.5376 0.5275 0.4963 0.5150 
Year2008 0.5396 0.5509 0.4778 0.4797 0.5387 0.5880 0.5318 0.5633 0.5919 0.5177 
Year2009 0.4900 0.5003 0.4764 0.4882 0.3451 0.5081 0.4734 0.5750 0.4885 0.5168 

 LII NXT JMAT BAY IAP SVT HMSO SGE REX IHG 

Full Sample 0.4777 0.5025 0.5579 0.4631 0.5295 0.5708 0.5054 0.5503 0.5158 0.5225 
Year2007 0.5076 0.5134 0.5721 0.4475 0.5814 0.5632 0.5579 0.6206 0.5920 0.5344 
Year2008 0.4789 0.4967 0.5828 0.4816 0.5395 0.5971 0.5225 0.5802 0.5054 0.5265 
Year2009 0.4569 0.5018 0.5270 0.4656 0.4809 0.5386 0.4578 0.4876 0.4895 0.5089 
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Table 5 

Invariance Coefficients for pre-crisis (Jan 2007- Jun 2008) and in-crisis (Jul 2008-Dec 

2009) periods 

This table reports the invariance proportionalities estimates of OLS regressions for 70 FTSE 

100 stocks based on the model (25), for pre-crisis (Jan 2007- Jun 2008) and in-crisis (Jul 2008-

Dec 2009) periods 

 BP HSBA VOD GSK RDSA RIO AZN 

Pre-Crisis 0.5614 0.5417 0.4514 0.5649 0.5203 0.4885 0.5141 
In-Crisis 0.5389 0.5115 0.5012 0.5286 0.5616 0.5299 0.5044 

 RBS BATS BG AAL BLT BARC TSCO 

Pre-Crisis 0.4767 0.5312 0.4914 0.4634 0.5386 0.5009 0.4730 
In-Crisis 0.3948 0.5102 0.4882 0.5215 0.5823 0.4956 0.4705 

 XTA DGE LLOY STAN ULVR RB SAB 

Pre-Crisis 0.4474 0.4732 0.5015 0.4732 0.5280 0.4927 0.5125 
In-Crisis 0.4987 0.5465 0.4754 0.4797 0.5492 0.4743 0.4922 

 NG IMT BT AV PRU BAE CNA 

Pre-Crisis 0.5199 0.4992 0.5102 0.5135 0.5263 0.4528 0.5288 
In-Crisis 0.5269 0.4994 0.4022 0.4674 0.5143 0.4756 0.4958 

 SSE CBRY BSY EMG RR MRW MKS 

Pre-Crisis 0.5102 0.5614 0.5632 0.4881 0.500 0.5105 0.5051 
In-Crisis 0.5300 0.5583 0.5229 0.4562 0.4935 0.5232 0.5081 

 SBRY WPP REL LGEN CPG ABF LAND 

Pre-Crisis 0.5020 0.5423 0.5493 0.5066 0.5108 0.6198 0.4938 
In-Crisis 0.5060 0.5094 0.5114 0.4308 0.5023 0.5152 0.4954 

 OML ANTO PSON SHP SL IPR KAZ 

Pre-Crisis 0.4504 0.4922 0.5509 0.5200 0.5560 0.5114 0.4640 
In-Crisis 0.3807 0.5040 0.5369 0.5318 0.4653 0.4995 0.4690 

 UU SN EXPN BLND VED RSA CPI 

Pre-Crisis 0.5769 0.5538 0.5146 0.501 0.4744 0.5807 0.5973 
In-Crisis 0.5363 0.5037 0.5135 0.4742 0.4807 0.3999 0.5306 

 KGF CCL CW SMIN LII NXT JMAT 

Pre-Crisis 0.5410 0.5419 0.5359 0.5293 0.5007 0.5085 0.5928 
In-Crisis 0.4956 0.5741 0.5267 0.5112 0.4641 0.5012 0.5348 

 BAY IAP SVT HMSO SGE REX IHG 

Pre-Crisis 0.4528 0.5798 0.5868 0.5602 0.6293 0.5775 0.5497 
In-Crisis 0.4755 0.4955 0.5589 0.4722 0.5064 0.4906 0.5072 
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Appendix 

Table A1 

Table A1- Stocks and their abbreviations 

LARGE CAPITALISATION STOCKS 

Stock Abbreviation 

BP  BP 
HSBC HOLDINGS  HSBA 
VODAFONE VOD 
GLAXOSMITHKLINE  GSK 
ROYAL DUTCH SHELL  RDSA 

MEDIUM CAPITALISATION STOCKS 

Stock Abbreviation 

RIO TINTO  RIO 
ASTRAZENECA  AZN 
ROYAL BANK OF SCOTLAND GROUP RBS 
BRITISH AMERICAN TOBACCO  BATS 
BG GROUP  BG 
ANGLO AMERICAN  AAL 
BHP BILLITON  BLT 
BARCLAYS BARC 
TESCO TSCO 
XSTRATA XTA 
DIAGEO DGE 
LLOYDS TSB GROUP LLOY 
STANDARD CHARTERED  STAN 

LOW CAPITALISATION STOCKS 

Stock Abbreviation 

UNILEVER  ULVR 
RECKITT BENCKISER  RB 
SABMILLER SAB 
NATIONAL GRID PLC NG 
IMPERIAL TOBACCO GROUP PLC IMT 
BT GROUP BT 
AVIVA PLC AV 
PRUDENTIAL PLC PRU 
BAE SYSTEMS PLC BAE 
CENTRICA PLC CNA 
SCOTTISH & SOUTHERN ENERGY SSE 
CADBURY SCHWEPPES CBRY 
BSB GROUP BSY 
MAN GROUP PLC EMG 
ROLLS-ROYCE HOLDINGS PLC RR 
MORRISON  (WM) SUPERMARKETS MRW 
MARKS & SPENCER GROUP MKS 
SAINSBURY (J) SBRY 
WPP PLC WPP 
REED ELSEVIER REL 
LEGAL & GENERAL GROUP LGEN 
COMPASS GROUP CPG 
ASSOCIATED BRITISH FOODS ABF 
LAND SECURITIES GROUP LAND 
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OLD MUTUAL PLC OML 
ANTOFAGASTA ANTO 
PEARSON PSON 
SHIRE PLC SHP 
STANDARD LIFE SL 
INTERNATIONAL POWER PLC IPR 
KAZAKHMYS KAZ 
UNITED UTILITIES UU 
SMITH & NEPHEW SN 
EXPERIAN GROUP EXPN 
BRITISH LAND CO PLC BLND 
VEDANTA RESOURCES VED 
ROYAL & SUN ALLIANCE INS. RSA 
CAPITA GROUP CPI 
KINGFISHER KGF 
CARNIVAL PLC CCL 
CABLE AND WIRELESS CW 
SMITHS GROUP  SMIN 
LIBERTY INTERNATIONAL LII 
NEXT NXT 
JOHNSON MATTHEY PLC JMAT 
BRITISH AIRWAYS BAY 
ICAP IAP 
SEVERN TRENT PLC SVT 
HAMMERSON HMSO 
SAGE GROUP PLC SGE 
REXAM PLC REX 
INTERCONTINENTAL HOTELS GROUP IHG 

Source: Thomson Reuters Tick History 
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Table A2 

OLS regression results (5-minutes averages across days) 

This table reports the coefficient estimates from OLS regressions for different definitions of trading activity based on the models in (32), (33), 

(34) and (35) when underlying variables are estimated as averages across days based on equation (23). The different notions of trading activity are 

those introduced by Kyle and Obizhaeva (2016b)  (Model 1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, 

(Ané and Geman (2000)) (Model 4). The volume multiplier is assumed to be  2   and the volatility multiplier 1  . Coefficients are tested 

against the null hypothesis 
0 : 2 / 3H   . *, **, and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

         Model 1           Model 2         Model 3         Model 4 

 Stocks c β  ̅2 c β  ̅2 c β  ̅2 c β  ̅2 

H
ig

h
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

BP 
 

 0.2504 
(0.1462) 

 0.5332*** 
(0.0187) 

0.8896  1.1362*** 
(0.1150) 

 0.5347*** 
(0.0187) 

0.8902  7.5877*** 
(0.0804) 

 0.6690 
(0.0168) 

0.9399  4.0743*** 
(0.0154) 

 0.5623*** 
(0.0240) 

0.8439 

HSBA 
 

 0.3935* 
(0.1520) 

 0.5160*** 
(0.0193) 

0.8765  1.4039*** 
(0.1144) 

 0.5196*** 
(0.0194) 

0.8766  7.2885*** 
(0.0597) 

 0.6594 
(0.0138) 

0.9578  4.6022*** 
(0.0096) 

 0.6110*** 
(0.0157) 

0.9378 

VOD 
 

 0.8486*** 
(0.1725) 

 0.4764*** 
(0.0228) 

0.8122  1.0129*** 
(0.1645) 

 0.4774*** 
(0.0228) 

0.8126  8.5409*** 
(0.1342) 

 0.6199* 
(0.0202) 

0.9028   5.5183*** 
(0.0423) 

 0.5682*** 
(0.0214) 

0.8746 

GSK 
 

 0.2551 
(0.1604) 

 0.5404*** 
(0.0224) 

0.8525  1.5974*** 
(0.1052) 

 0.5416*** 
(0.0224) 

0.8525  6.5978*** 
(0.0786) 

 0.6525 
(0.0205) 

0.9093  4.2107*** 
(0.0119) 

 0.6144* 
(0.0210) 

0.8939 

RDSA 
 

-0.1489 
(0.1155) 

 0.5415*** 
(0.0186) 

0.8932  1.4115*** 
(0.0625) 

 0.5416*** 
(0.0186) 

0.8933  6.0388*** 
(0.0679) 

 0.6755 
(0.0159) 

0.9468  3.6655*** 
(0.0164) 

 0.6285* 
(0.0168) 

0.9330 

M
e
d

iu
m

 M
a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

RIO 
 

 0.3926** 
(0.1439) 

 0.5117*** 
(0.0178) 

0.8910  2.1812*** 
(0.0819) 

 0.5121*** 
(0.0178) 

0.8915  5.3713*** 
(0.0214) 

 0.6167*** 
(0.0141) 

0.9497  3.4927*** 
(0.0288) 

 0.5810*** 
(0.0154) 

0.9337 

AZN 
 

 0.5922*** 
(0.1699) 

 0.5072*** 
(0.0249) 

0.8036  2.2243*** 
(0.0904) 

 0.5072*** 
(0.0249) 

0.8037  5.8308*** 
(0.0614) 

 0.6298 
(0.0212) 

0.8973  3.8224*** 
(0.0152) 

 0.5875*** 
(0.0227) 

0.8684 

RBS 
 

 1.0986*** 
(0.1332) 

 0.4327*** 
(0.0177) 

0.8549  1.3610*** 
(0.1222) 

 0.4328*** 
(0.0177) 

0.8555  7.2511*** 
(0.1153) 

 0.5082*** 
(0.0200) 

0.8642  4.9764*** 
(0.0274) 

 0.4816*** 
(0.0191) 

0.8632 

BATS 
 

 0.4641** 
(0.1545) 

 0.5190*** 
(0.0241) 

0.8203  1.9534*** 
(0.0859) 

 0.5185*** 
(0.0242) 

0.8199  5.9586*** 
(0.0814) 

 0.6342 
(0.0233) 

0.8797  3.8753*** 
(0.0134) 

 0.5944** 
(0.0236) 

0.8629 

BG 
 

 0.5392** 
(0.1726) 

 0.4848*** 
(0.0251) 

0.7872  1.6493*** 
(0.1154) 

 0.4831*** 
(0.0250) 

0.7872  6.2738*** 
(0.0936) 

 0.6039** 
(0.0233) 

0.8692  4.0743*** 
(0.0154) 

 0.5623*** 
(0.0240) 

0.8439 

AAL 
 

 0.5623*** 
(0.1589) 

 0.4941*** 
(0.0206) 

0.8507  2.1072*** 
(0.0943) 

 0.4952*** 
(0.0205) 

0.8522  5.5229*** 
(0.0325) 

 0.5857*** 
(0.0159) 

0.9309  3.6712*** 
(0.0240) 

 0.5562*** 
(0.0176) 

0.9085 

BLT 
 

 0.0149 
(0.1547) 

 0.5617*** 
(0.0191) 

0.8955  1.5071*** 
(0.1039) 

 0.5618*** 
(0.0190) 

0.8963  6.2400*** 
(0.0330) 

 0.6488 
(0.0124) 

0.9645  3.9559*** 
(0.0167) 

 0.6222** 
(0.0146) 

0.9474 

BARC 
 

 0.5685** 
(0.1721) 

 0.4965*** 
(0.0216) 

0.8390  1.1534*** 
(0.1449) 

 0.5050*** 
(0.0217) 

0.8423  7.1882*** 
(0.0836) 

 0.5888*** 
(0.0183) 

0.9115  4.7257*** 
(0.0132) 

 0.5585*** 
(0.0194) 

0.8910 

TSCO  0.9498***  0.4678*** 0.7776  1.5828***  0.4694*** 0.7781  7.2622***  0.5970*** 0.8574  4.8089***  0.5505*** 0.8321 
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 (0.1631) (0.0249) (0.1295) (0.0249) (0.1326) (0.0242) (0.0383) (0.0246) 
XTA 
 

 0.6532*** 
(0.1560) 

 0.4757*** 
(0.0200) 

0.8488  2.0083*** 
(0.0983) 

 0.4770*** 
(0.0198) 

0.8516  5.7101*** 
(0.0420) 

 0.5903*** 
(0.0179) 

0.9150  3.7701*** 
(0.0225) 

 0.5499*** 
(0.0187) 

0.8953 

DGE 
 

 0.4703** 
(0.1486) 

 0.5166*** 
(0.0234) 

0.8280  1.6331*** 
(0.0960) 

 0.5190*** 
(0.0234) 

0.8290  6.6387*** 
(0.1045) 

 0.6711 
(0.0240) 

0.8856  4.2144*** 
(0.0222) 

 0.6159* 
(0.0236) 

0.8710 

LLOY 
 

 0.7095*** 
(0.1762) 

 0.4836*** 
(0.0242) 

0.7973  0.9860*** 
(0.1594) 

 0.5024*** 
(0.0247) 

0.8032  7.3995*** 
(0.1162) 

 0.5899*** 
(0.0214) 

0.8822  4.8709*** 
(0.0289) 

 0.5545*** 
(0.0225) 

0.8576 

STAN 
 

 0.6020*** 
(0.1482) 

 0.4742*** 
(0.0216) 

0.8261  1.8347*** 
(0.0919) 

 0.4761*** 
(0.0216) 

0.8273  5.8269*** 
(0.0592) 

 0.5927*** 
(0.0174) 

0.9198  3.8172*** 
(0.0106) 

 0.5524*** 
(0.0191) 

0.8925 

L
o

w
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

ULVR 
 

 0.2352 
(0.1725) 

 0.5387*** 
(0.0280) 

0.7851  1.7144*** 
(0.0963) 

 0.5388*** 
(0.0280) 

0.7849  6.0208*** 
(0.0879) 

 0.6480 
(0.0227) 

0.8893  3.8507*** 
(0.0185) 

 0.6124* 
(0.0248) 

0.8579 

RB 
 

 0.7844*** 
(0.1606) 

 0.4825*** 
(0.0276) 

0.7506  2.3830*** 
(0.0703) 

 0.4825*** 
(0.0276) 

0.7505  5.4711*** 
(0.0813) 

 0.6375 
(0.0269) 

0.8470  3.6072*** 
(0.0147) 

 0.5833** 
(0.0272) 

0.8193 

SAB 
 

 0.4217** 
(0.1570) 

 0.4995*** 
(0.0263) 

0.7811  1.6673*** 
(0.0919) 

 0.5004*** 
(0.0263) 

0.7815  5.9543*** 
(0.1076) 

 0.6223 
(0.0260) 

0.8502  3.8334*** 
(0.0239) 

 0.5786** 
(0.0262) 

0.8287 

NG 
 

 0.4093* 
(0.1652) 

 0.5240*** 
(0.0280) 

0.7755  1.4215*** 
(0.1117) 

 0.5233*** 
(0.0281) 

0.7745  6.7241*** 
(0.1422) 

 0.6372 
(0.0279) 

0.8379  4.3425*** 
(0.0422) 

 0.5987* 
(0.0279) 

0.8203 

IMT 
 

 0.5763** 
(0.1713) 

 0.4984*** 
(0.0289) 

0.7456  2.0613*** 
(0.0860) 

 0.4984*** 
(0.0290) 

0.7452  5.7184*** 
(0.1064) 

 0.6449 
(0.0308) 

0.8122  3.7002*** 
(0.0179) 

 0.5929* 
(0.0301) 

0.7936 

BT 
 

 0.9623*** 
(0.1505) 

 0.4395*** 
(0.0247) 

0.7572  1.1823*** 
(0.1369) 

 0.4477*** 
(0.0249) 

0.7608  7.3064*** 
(0.1683) 

 0.5368*** 
(0.0244) 

0.8267  4.9099*** 
(0.0646) 

 0.5034*** 
(0.0246) 

0.8060 

AV 
 

 0.5555** 
(0.1659) 

 0.4858*** 
(0.0265) 

0.7691  1.3004*** 
(0.1238) 

 0.4938*** 
(0.0265) 

0.7742  6.5680*** 
(0.1179) 

 0.5955*** 
(0.0234) 

0.8646  4.2888*** 
(0.0337) 

 0.5583*** 
(0.0247) 

0.8351 

PRU 
 

 0.2642 
(0.1685) 

 0.5185*** 
(0.0256) 

0.8019  1.1255*** 
(0.1252) 

 0.5224*** 
(0.0256) 

0.8044  6.6241*** 
(0.1031) 

 0.6150* 
(0.0213) 

0.8922  4.2611*** 
(0.0267) 

 0.5835*** 
(0.0229) 

0.8652 

BAE 
 

 0.8742*** 
(0.1555) 

 0.4621*** 
(0.0255) 

0.7649  1.5183*** 
(0.1201) 

 0.4626*** 
(0.0255) 

0.7653  7.0026*** 
(0.1472) 

 0.6002* 
(0.0265) 

0.8351  4.5962*** 
(0.0456) 

 0.5499*** 
(0.0262) 

0.8136 

CNA 
 

 0.5347** 
(0.1699) 

 0.5081*** 
(0.0295) 

0.7458  1.0941*** 
(0.1374) 

 0.5084*** 
(0.0294) 

0.7467  7.3172*** 
(0.1807) 

 0.6186 
(0.0288) 

0.8199  4.7626*** 
(0.0671) 

 0.5820** 
(0.0290) 

0.7992 

SSE 
 

 0.3919* 
(0.1741) 

 0.5191*** 
(0.0309) 

0.7356  1.7397*** 
(0.0947) 

 0.5176*** 
(0.0309) 

0.7344  6.0697*** 
(0.1314) 

 0.6610 
(0.0312) 

0.8158  3.8680*** 
(0.0320) 

 0.6135 
(0.0310) 

0.7946 

CBRY 
 

 0.0565 
(0.1486) 

 0.5606*** 
(0.0257) 

0.8243  1.0559*** 
(0.1030) 

 0.5624*** 
(0.0258) 

0.8248  7.0706*** 
(0.1369) 

 0.7085 
(0.0254) 

0.8847  4.3613*** 
(0.0447) 

 0.6552 
(0.0256) 

0.8666 

BSY 
 

 0.2809 
(0.1559) 

 0.5379*** 
(0.0284) 

0.7802  1.1548*** 
(0.1093) 

 0.5421*** 
(0.0284) 

0.7829  7.0770*** 
(0.1485) 

 0.6941 
(0.0266) 

0.8706  4.4225*** 
(0.0538) 

 0.6385 
(0.0274) 

0.8428 

EMG 
 

 0.5831*** 
(0.1590) 

 0.4693*** 
(0.0266) 

0.7549  1.2215*** 
(0.1223) 

 0.4727*** 
(0.0266) 

0.7576  6.6741*** 
(0.1487) 

 0.5972* 
(0.0268) 

0.8306  4.3119*** 
(0.0479) 

 0.5513*** 
(0.0268) 

0.8068 

RR 
 

 0.5538*** 
(0.1523) 

 0.4940*** 
(0.0269) 

0.7693  1.2439*** 
(0.1144) 

 0.4968*** 
(0.0269) 

0.7712  6.8617*** 
(0.1606) 

 0.6171 
(0.0280) 

0.8277  4.4432*** 
(0.0554) 

 0.5732*** 
(0.0276) 

0.8102 

MRW  0.4132*  0.5160*** 0.7295  0.9361***  0.5166*** 0.7302  7.4854***  0.6529 0.8174  4.7583***  0.6052* 0.7903 
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 (0.1728) (0.0312) (0.1411) (0.0312) (0.1993) (0.0307) (0.0785) (0.0310) 
MKS 
 

 0.4631** 
(0.1695) 

 0.5023*** 
(0.0283) 

0.7570  1.1132*** 
(0.1312) 

 0.5095*** 
(0.0283) 

0.7623  6.9053*** 
(0.1561) 

 0.6107* 
(0.0276) 

0.8291  4.4764*** 
(0.0515) 

 0.5736** 
(0.0278) 

0.8074 

SBRY 
 

 0.4816** 
(0.1544) 

 0.5008*** 
(0.0291) 

0.7451  1.1174*** 
(0.1163) 

 0.5069*** 
(0.0291) 

0.7498  7.0326*** 
(0.1832) 

 0.6366 
(0.0297) 

0.8193  4.4979*** 
(0.0710) 

 0.5885** 
(0.0295) 

0.7968 

WPP 
 

 0.4037* 
(0.1580) 

 0.5225*** 
(0.0274) 

0.7825  1.2671*** 
(0.1123) 

 0.5275*** 
(0.0274) 

0.7852  6.8596*** 
(0.1530) 

 0.6630 
(0.0292) 

0.8359  4.3589*** 
(0.0472) 

 0.6119 
(0.0285) 

0.8198 

REL 
 

 0.4601** 
(0.1554) 

 0.5219*** 
(0.0282) 

0.7720  1.3477*** 
(0.1076) 

 0.5239*** 
(0.0282) 

0.7729  6.7419*** 
(0.1480) 

 0.6405 
(0.0276) 

0.8420  4.3600*** 
(0.0505) 

 0.5995* 
(0.0278) 

0.8210 

LGEN 
 

 0.7370*** 
(0.1722) 

 0.4603*** 
(0.0315) 

0.6784  0.6717*** 
(0.1732) 

 0.4684*** 
(0.0314) 

0.6869  7.3751*** 
(0.2407) 

 0.5368*** 
(0.0312) 

0.7453  4.9393*** 
(0.1055) 

 0.5114*** 
(0.0313) 

0.7247 

CPG 
 

 0.5632** 
(0.1710) 

 0.5028*** 
(0.0311) 

0.7211  1.1717*** 
(0.1338) 

 0.5029*** 
(0.0311) 

0.7207  7.3629*** 
(0.1911) 

 0.6703 
(0.0316) 

0.8168  4.6590*** 
(0.0711) 

 0.6106 
(0.0315) 

0.7880 

ABF 
 

 0.3058* 
(0.1324) 

 0.5568*** 
(0.0311) 

0.7603  1.4583*** 
(0.0692) 

 0.5574*** 
(0.0310) 

0.7611  6.4131*** 
(0.1840) 

 0.6789 
(0.0331) 

0.8062  4.1117*** 
(0.0755) 

 0.6378 
(0.0322) 

0.7953 

LAND 
 

 0.4832* 
(0.1887) 

 0.4951*** 
(0.0330) 

0.6899  1.6713*** 
(0.1100) 

 0.4960*** 
(0.0329) 

0.6911  5.9818*** 
(0.1328) 

 0.6404 
(0.0316) 

0.8028  3.8281*** 
(0.0330) 

 0.5898* 
(0.0323) 

0.7670 

OML 
 

 1.0858*** 
(0.1422) 

 0.4066*** 
(0.0270) 

0.6906  1.0738*** 
(0.1407) 

 0.4122*** 
(0.0270) 

0.6973  6.9604*** 
(0.2058) 

 0.4961*** 
(0.0272) 

0.7672  4.7446*** 
(0.0910) 

 0.4653*** 
(0.0272) 

0.7432 

ANTO 
 

 0.4204* 
(0.1631) 

 0.4953*** 
(0.0279) 

0.7565  1.3129*** 
(0.1131) 

 0.4953*** 
(0.0279) 

0.7567  6.2035*** 
(0.1297) 

 0.6284 
(0.0278) 

0.8343  3.9625*** 
(0.0360) 

 0.5799* 
(0.0281) 

0.8085 

PSON 
 

 0.3100 
(0.1689) 

 0.5408*** 
(0.0319) 

0.7397  1.3645*** 
(0.1071) 

 0.5427*** 
(0.0319) 

0.7407  6.5589*** 
(0.1540) 

 0.6628 
(0.0299) 

0.8296  4.1944*** 
(0.0535) 

 0.6224 
(0.0306) 

0.8032 

SHP 
 

 0.3222* 
(0.1262) 

 0.5252*** 
(0.0238) 

0.8283  1.5198*** 
(0.0725) 

 0.5275*** 
(0.0238) 

0.8297  6.2963*** 
(0.1311) 

 0.6789 
(0.0275) 

0.8574  3.9554*** 
(0.0396) 

 0.6217 
(0.0259) 

0.8504 

SL 
 

 0.3625** 
(0.1122) 

 0.5073*** 
(0.0246) 

0.8079  0.7818*** 
(0.0908) 

 0.5119*** 
(0.0245) 

0.8122  6.8661*** 
(0.2048) 

 0.6169 
(0.0300) 

0.8072  4.4168*** 
(0.0852) 

 0.5787** 
(0.0277) 

0.8121 

IPR 
 

 0.5509** 
(0.1661) 

 0.5036*** 
(0.0314) 

0.7175  1.1670*** 
(0.1279) 

 0.5036*** 
(0.0313) 

0.7180  7.0715*** 
(0.2012) 

 0.6316 
(0.0327) 

0.7864  4.5685*** 
(0.0771) 

 0.5866* 
(0.0323) 

0.7656 

KAZ 
 

 0.5216* 
(0.1652) 

 0.4611*** 
(0.0284) 

0.7217  1.5267*** 
(0.1028) 

 0.4642*** 
(0.0284) 

0.7255  5.5762*** 
(0.1240) 

 0.5831*** 
(0.0301) 

0.7881  3.6204*** 
(0.0282) 

 0.5385*** 
(0.0296) 

0.7662 

UU 
 

 0.3645* 
(0.1455) 

 0.5546*** 
(0.0288) 

0.7861  1.3778*** 
(0.0932) 

 0.5557*** 
(0.0287) 

0.7875  6.7696*** 
(0.1407) 

 0.6715 
(0.0260) 

0.8686  4.3632*** 
(0.0542) 

 0.6320 
(0.0271) 

0.8437 

SN 
 

 0.4287** 
(0.1415) 

 0.5218*** 
(0.0280) 

0.7742  1.3192*** 
(0.0939) 

 0.5231*** 
(0.0280) 

0.7756  6.7350*** 
(0.1877) 

 0.6526 
(0.0331) 

0.7937  4.3154*** 
(0.0672) 

 0.6055* 
(0.0310) 

0.7905 

EXPN 
 

 0.3629** 
(0.1210) 

 0.5140*** 
(0.0244) 

0.8141  1.1287*** 
(0.0839) 

 0.5192*** 
(0.0243) 

0.8185  6.8161*** 
(0.1895) 

 0.6604 
(0.0318) 

0.8102  4.3012*** 
(0.0680) 

 0.6072* 
(0.0285) 

0.8173 

BLND 
 

 0.6183** 
(0.1907) 

 0.4839*** 
(0.0331) 

0.6788  1.5671*** 
(0.1249) 

 0.4897*** 
(0.0330) 

0.6841  6.2882*** 
(0.1541) 

 0.6322 
(0.0335) 

0.7785  4.0538*** 
(0.0418) 

 0.5787* 
(0.0336) 

0.7459 

VED 
 

 0.4278* 
(0.1640) 

 0.4777*** 
(0.0269) 

0.7564  1.7138*** 
(0.0919) 

 0.4780*** 
(0.0269) 

0.7572  5.3351*** 
(0.0898) 

 0.5994* 
(0.0265) 

0.8355  3.4438*** 
(0.0155) 

 0.5555*** 
(0.0268) 

0.8094 
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 RSA 
 

 0.6872*** 
(0.1848) 

 0.4754*** 
(0.0375) 

0.6129  0.8317*** 
(0.1729) 

 0.4767*** 
(0.0375) 

0.6144  7.6914*** 
(0.2811) 

 0.6136 
(0.0368) 

0.7329  4.9687*** 
(0.1302) 

 0.5665** 
(0.0373) 

0.6947 

CPI 
 

 0.2848* 
(0.1365) 

 0.5592*** 
(0.0297) 

0.7774  1.3652*** 
(0.0799) 

 0.5598*** 
(0.0298) 

0.7775  6.6179*** 
(0.1567) 

 0.6987 
(0.0288) 

0.8535  4.1982*** 
(0.0627) 

 0.6524 
(0.0290) 

0.8338 

KGF 
 

 0.5359** 
(0.1729) 

 0.5084*** 
(0.0305) 

0.7321  0.7574*** 
(0.1572) 

 0.5164*** 
(0.0306) 

0.7382  7.6890*** 
(0.2113) 

 0.6360 
(0.0312) 

0.8041  4.9470*** 
(0.0832) 

 0.5910* 
(0.0310) 

0.7819 

CCL 
 

 0.1610 
(0.1149) 

 0.5603*** 
(0.0220) 

0.8653  1.8201*** 
(0.0518) 

 0.5609*** 
(0.0220) 

0.8653  5.5254*** 
(0.0824) 

 0.6838 
(0.0223) 

0.9028  3.4936*** 
(0.0230) 

 0.6387 
(0.0222) 

0.8910 

CW 
 

 0.4006** 
(0.1455) 

 0.5368*** 
(0.0288) 

0.7740  0.6482*** 
(0.1323) 

 0.5367*** 
(0.0288) 

0.7740  8.1603*** 
(0.2367) 

 0.6846 
(0.0319) 

0.8203  5.1510*** 
(0.1019) 

 0.6307 
(0.0307) 

0.8071 

SMIN 
 

 0.3998** 
(0.1414) 

 0.5171*** 
(0.0297) 

0.7493  1.5518*** 
(0.0758) 

 0.5186*** 
(0.0296) 

0.7519  6.2387*** 
(0.1521) 

 0.6795 
(0.0303) 

0.8330  3.9369*** 
(0.0554) 

 0.6228 
(0.0300) 

0.8099 

LII 
 

 0.5881*** 
(0.1635) 

 0.4777*** 
(0.0337) 

0.6650  1.5317*** 
(0.0962) 

 0.4833*** 
(0.0335) 

0.6721 5.9270*** 
(0.1829) 

 0.6078 
(0.0365) 

0.7321  3.8587*** 
(0.0633) 

 0.5615** 
(0.0355) 

0.7116 

NXT 
 

 0.4467* 
(0.1760) 

 0.5025*** 
(0.0311) 

0.7210  1.8032*** 
(0.0928) 

 0.5049*** 
(0.0311) 

0.7219  5.6150*** 
(0.1147) 

 0.6279 
(0.0306) 

0.8062  3.6302*** 
(0.0243) 

 0.5837** 
(0.0309) 

0.7789 

JMAT 
 

 0.2370 
(0.1438) 

 0.5579*** 
(0.0306) 

0.7668  1.7319*** 
(0.0634) 

 0.5581*** 
(0.0305) 

0.7677  5.5362*** 
(0.1287) 

 0.6460 
(0.0305) 

0.8156  3.5974*** 
(0.0415) 

 0.6170 
(0.0305) 

0.8021 

BAY 
 

 0.7084*** 
(0.1591) 

 0.4631*** 
(0.0275) 

0.7361  1.1002*** 
(0.1344) 

 0.4687*** 
(0.0276) 

0.7406  6.9734*** 
(0.1833) 

 0.5926* 
(0.0300) 

0.7937  4.5332*** 
(0.0645) 

 0.5441*** 
(0.0292) 

0.7742 

IAP 
 

 0.3433* 
(0.1314) 

 0.5295*** 
(0.0277) 

0.7832  1.1350*** 
(0.0901) 

 0.5315*** 
(0.0276) 

0.7851  6.4952*** 
(0.1938) 

 0.6366 
(0.0336) 

0.7801  4.1918*** 
(0.0725) 

 0.5991* 
(0.0312) 

0.7849 

SVT 
 

 0.2384 
(0.1391) 

 0.5708*** 
(0.0301) 

0.7798  1.6862*** 
(0.0640) 

 0.5704*** 
(0.0301) 

0.7803  5.9525*** 
(0.1316) 

 0.6849 
(0.0289) 

0.8476  3.8170*** 
(0.0464) 

 0.6470 
(0.0293) 

0.8285 

HMSO 
 

 0.3876* 
(0.1610) 

 0.5054*** 
(0.0314) 

0.7185  1.3862*** 
(0.0984) 

 0.5094*** 
(0.0313) 

0.7236  6.1154*** 
(0.1726) 

 0.6409 
(0.0349) 

0.7692  3.8991*** 
(0.0561) 

 0.5922* 
(0.0336) 

0.7546 

SGE 
 

 0.3446* 
(0.1346) 

 0.5503*** 
(0.0302) 

0.7663  0.7373*** 
(0.1122) 

 0.5539*** 
(0.0301) 

0.7700  7.5711*** 
(0.2226) 

 0.6767 
(0.0313) 

0.8218  4.8339*** 
(0.1018) 

 0.6329 
(0.0308) 

0.8063 

REX 
 

 0.4614*** 
(0.1292) 

 0.5158*** 
(0.0283) 

0.7659  1.1337*** 
(0.0914) 

 0.5205*** 
(0.0282) 

0.7713  6.8004*** 
(0.1997) 

 0.6448 
(0.0320) 

0.8004  4.3761*** 
(0.0819) 

 0.6004* 
(0.0304) 

0.7942 

IHG 
 

 0.2621 
(0.1369) 

 0.5225*** 
(0.0274) 

0.7825  1.3365*** 
(0.0805) 

 0.5266*** 
(0.0273) 

0.7860  6.0947*** 
(0.1653) 

 0.6484 
(0.0329) 

0.7932  3.8649*** 
(0.0542) 

 0.6022* 
(0.0307) 

0.7917 
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Table A3 

OLS regression results (5-minutes intraday averages) 

This table reports the coefficient estimates from OLS regressions for different definitions of trading activity based on the models in (32), (33), 

(34) and (35) when underlying variables are estimated as intraday averages based on equation (24). The different notions of trading activity are 

those introduced by Kyle and Obizhaeva (2016b) (Model 1), Andersen et al. (2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, 

(Ané and Geman (2000)) (Model 4). The volume multiplier is assumed to be  2   and the volatility multiplier 1  . Coefficients are tested 

against the null hypothesis 
0 : 2 / 3H   . *, **, and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

                                  Model 1                          Model 2                    Model 3      Model 4 

 Stocks c β  ̅2 c β  ̅2 c β  ̅2 c β  ̅2 

H
ig

h
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

BP 
 

 3.0513*** 
(0.1178) 

 0.1721*** 
(0.0150) 

0.1487  3.2228*** 
(0.0876) 

 0.1913*** 
(0.0141) 

0.1954  6.5533*** 
(0.0393) 

 0.4499*** 
(0.0081) 

0.8030  4.6915*** 
(0.0090) 

 0.5052*** 
(0.0107) 

0.7476 

HSBA 
 

 1.1397*** 
(0.1262) 

 0.4195*** 
(0.0160) 

0.4783  1.8247*** 
(0.0706) 

 0.4463*** 
(0.0119) 

0.6504  6.5743*** 
(0.0340) 

 0.4925*** 
(0.0077) 

0.8445  4.5888*** 
(0.0069) 

 0.5588*** 
(0.0085) 

0.8515 

VOD 
 

 2.7244*** 
(0.0990) 

 0.2244*** 
(0.0129) 

0.2851  2.6401*** 
(0.0903) 

 0.2472*** 
(0.0124) 

0.3462  7.2375*** 
(0.0514) 

 0.4228*** 
(0.0077) 

0.8004  5.2557*** 
(0.0193) 

 0.4365*** 
(0.0095) 

0.7362 

GSK 
 

 1.9048*** 
(0.0805) 

 0.3084*** 
(0.0112) 

0.5030  2.5938*** 
(0.0499) 

 0.3259*** 
(0.0105) 

0.5601  5.8938*** 
(0.0277) 

 0.4661*** 
(0.0071) 

0.8499  4.1930*** 
(0.0046) 

 0.5016*** 
(0.0067) 

0.8827 

RDSA 
 

 0.6979*** 
(0.0717) 

 0.4035*** 
(0.0115) 

0.6186  1.8806*** 
(0.0379) 

 0.3975*** 
(0.0112) 

0.6258  5.0143*** 
(0.0337) 

 0.4321*** 
(0.0078) 

0.8030  3.5650*** 
(0.0078) 

 0.4948*** 
(0.0071) 

0.8661 

M
e
d

iu
m

 M
a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

RIO 
 

 0.7446*** 
(0.0993) 

 0.4681*** 
(0.0123) 

0.6586  2.5806*** 
(0.0492) 

 0.4245*** 
(0.0106) 

0.6792  5.0208*** 
(0.0157) 

 0.3645*** 
(0.0094) 

0.6670  3.7341*** 
(0.0181) 

 0.4438*** 
(0.0093) 

0.7497 

AZN 
 

 1.5253*** 
(0.07160 

 0.3695*** 
(0.0105) 

0.6233  2.7992*** 
(0.0377) 

 0.3459*** 
(0.0103) 

0.6016  5.2414*** 
(0.0213) 

 0.4225*** 
(0.0072) 

0.8216  3.8617*** 
(0.0050) 

 0.4804*** 
(0.0061) 

0.8931 

RBS 
 

 1.9233*** 
(0.0560) 

 0.3218*** 
(0.0074) 

0.7169  2.8519*** 
(0.0747) 

 0.2148*** 
(0.0107) 

0.3503  5.3023*** 
(0.0457) 

 0.1693*** 
(0.0075) 

0.4017  4.6192*** 
(0.0170) 

 0.2163*** 
(0.0078) 

0.5030 

BATS 
 

 0.7738*** 
(0.0658) 

 0.4692*** 
(0.0103) 

0.7355  2.2105*** 
(0.0393) 

 0.4426*** 
(0.0109) 

0.6853  5.3492*** 
(0.0204) 

 0.4570*** 
(0.0057) 

0.8966  3.8604*** 
(0.0045) 

 0.5094*** 
(0.0050) 

0.9327 

BG 
 

 0.8335*** 
(0.0653) 

 0.4413*** 
(0.0095) 

0.7425  2.0145*** 
(0.0538) 

 0.4023*** 
(0.0116) 

0.6152  5.1747*** 
(0.0273) 

 0.3280*** 
(0.0066) 

0.7667  4.0178*** 
(0.0056) 

 0.4074*** 
(0.0059) 

0.8635 

AAL 
 

 0.6326*** 
(0.0850) 

 0.4849*** 
(0.0110) 

0.7209  2.3654*** 
(0.0388) 

 0.4386*** 
(0.0084) 

0.7841  5.3283*** 
(0.0163) 

 0.4872*** 
(0.0077) 

0.8423  3.6984*** 
(0.0103) 

 0.5344*** 
(0.0072) 

0.8808 

BLT 
 

 0.9224*** 
(0.1062) 

 0.4491*** 
(0.0131) 

0.6098  2.5438*** 
(0.0746) 

 0.3702*** 
(0.0136) 

0.4954  5.6137*** 
(0.0178) 

 0.4075*** 
(0.0064) 

0.8429  4.0733*** 
(0.0069) 

 0.5003*** 
(0.0055) 

0.9165 

BARC 
 

 0.8613*** 
(0.0955) 

 0.4588*** 
(0.0120) 

0.6608  1.9560*** 
(0.0626) 

 0.3840*** 
(0.0093) 

0.6923  7.1457*** 
(0.0557) 

 0.5802*** 
(0.0121) 

0.7540  4.7234*** 
(0.0097) 

 0.5638*** 
(0.0116) 

0.7591 

TSCO  1.6283***  0.3627*** 0.6134  2.0751***  0.3727*** 0.6835  6.4577***  0.4494*** 0.8525  4.6944***  0.4734*** 0.8658 
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 (0.0691) (0.0105) (0.0483) (0.0092) (0.0377) (0.0068) (0.0112) (0.0068) 
XTA 
 

 0.4033*** 
(0.1066) 

 0.5077*** 
(0.0136) 

0.6483  2.5555*** 
(0.0475) 

 0.3660*** 
(0.0094) 

0.6660  5.1170*** 
(0.0342) 

 0.3310*** 
(0.0139) 

0.4280  3.9136*** 
(0.0187) 

 0.4161*** 
(0.0141) 

0.5359 

DGE 
 

 1.1498*** 
(0.0639) 

 0.4076*** 
(0.0101) 

0.6858  2.0242*** 
(0.0367) 

 0.4207*** 
(0.0089) 

0.7472  5.5926*** 
(0.0314) 

 0.4294*** 
(0.0071) 

0.8299  4.1007*** 
(0.0071) 

 0.4730*** 
(0.0065) 

0.8750 

LLOY 
 

 0.6314*** 
(0.1103) 

 0.4923*** 
(0.0152) 

0.5836  1.7304*** 
(0.0586) 

 0.3863*** 
(0.0090) 

0.7080  5.5663*** 
(0.1020) 

 0.2538*** 
(0.0186) 

0.1973  4.6110*** 
(0.0272) 

 0.3497*** 
(0.0186) 

0.3196 

STAN 
 

 0.4513*** 
(0.0659) 

 0.4955*** 
(0.0096) 

0.7796  1.9215*** 
(0.0393) 

 0.4544*** 
(0.0092) 

0.7650  5.4943*** 
(0.0268) 

 0.4930*** 
(0.0077) 

0.8455  3.8181*** 
(0.0050) 

 0.5467*** 
(0.0062) 

0.9120 

L
o

w
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

ULVR 
 

 0.6573*** 
(0.0704) 

 0.4687*** 
(0.0114) 

0.6919  2.0168*** 
(0.0396) 

 0.4472*** 
(0.0114) 

0.6721  5.2751*** 
(0.0292) 

 0.4527*** 
(0.0074) 

0.8334  3.8118*** 
(0.0055) 

 0.5343*** 
(0.0058) 

0.9189 

RB 
 

 0.8102*** 
(0.0525) 

 0.4775*** 
(0.0090) 

0.7893  2.4465*** 
(0.0235) 

 0.4553*** 
(0.0090) 

0.7713  4.9285*** 
(0.0212) 

 0.4551*** 
(0.0068) 

0.8566  3.6022*** 
(0.0047) 

 0.5059*** 
(0.0057) 

0.9137 

SAB 
 

 0.5275*** 
(0.0602) 

 0.4805*** 
(0.0101) 

0.7516  1.9332*** 
(0.0345) 

 0.4213*** 
(0.0098) 

0.7122  5.4627*** 
(0.0335) 

 0.5026*** 
(0.0079) 

0.8417  3.8220*** 
(0.0063) 

 0.5637*** 
(0.0059) 

0.9235 

NG 
 

 0.9896*** 
(0.0475) 

 0.4251*** 
(0.0081) 

0.7868  1.7342*** 
(0.0311) 

 0.4437*** 
(0.0078) 

0.8114  5.5476*** 
(0.0440) 

 0.4051*** 
(0.0085) 

0.7513  4.1412*** 
(0.0116) 

 0.4557*** 
(0.0071) 

0.8447 

IMT 
 

 0.5419*** 
(0.0577) 

 0.5038*** 
(0.0097) 

0.7812  2.0730*** 
(0.0260) 

 0.4935*** 
(0.0086) 

0.8144  5.2798*** 
(0.0283) 

 0.5164*** 
(0.0080) 

0.8473  3.6884*** 
(0.0062) 

 0.5539*** 
(0.0070) 

0.8923 

BT 
 

 2.3158*** 
(0.0496) 

 0.2149*** 
(0.0080) 

0.4883  2.1673*** 
(0.0462) 

 0.2669*** 
(0.0083) 

0.5767  5.1095*** 
(0.0640) 

 0.2173*** 
(0.0092) 

0.4227  4.1829*** 
(0.0243) 

 0.2210*** 
(0.0088) 

0.4540 

AV 
 

 1.1058*** 
(0.0646) 

 0.3972*** 
(0.0103) 

0.6649  1.9628*** 
(0.0412) 

 0.3514*** 
(0.0088) 

0.6802  5.9325*** 
(0.0635) 

 0.4681*** 
(0.0126) 

0.6486  4.1841*** 
(0.0112) 

 0.4744*** 
(0.0112) 

0.7031 

PRU 
 

 0.5489*** 
(0.0566) 

 0.4745*** 
(0.0086) 

0.8020  1.5298*** 
(0.0355) 

 0.4389*** 
(0.0072) 

0.8308  6.1249*** 
(0.0443) 

 0.5110*** 
(0.0091) 

0.8084  4.2384*** 
(0.0082) 

 0.5608*** 
(0.0065) 

0.9076 

BAE 
 

 1.3930*** 
(0.0637) 

 0.3759*** 
(0.0104) 

0.6345  1.7609*** 
(0.0456) 

 0.4097*** 
(0.0096) 

0.7069  5.7830*** 
(0.0443) 

 0.3796*** 
(0.0079) 

0.7544  4.3777*** 
(0.0146) 

 0.4188*** 
(0.0079) 

0.7907 

CAN 
 

 1.1248*** 
(0.0489) 

 0.4041*** 
(0.0084) 

0.7527  1.4861*** 
(0.0368) 

 0.4226*** 
(0.0078) 

0.7940  6.0763*** 
(0.0536) 

 0.4205*** 
(0.0085) 

0.7649  4.4268*** 
(0.0191) 

 0.4347*** 
(0.0080) 

0.7972 

SSE 
 

 0.7836*** 
(0.0408) 

 0.4488*** 
(0.0073) 

0.8353  1.8584*** 
(0.0222) 

 0.4772*** 
(0.0072) 

0.8527  5.1582*** 
(0.0352) 

 0.4433*** 
(0.0082) 

0.7947  3.7495*** 
(0.0078) 

 0.4839*** 
(0.0066) 

0.8786 

CBRY 
 

 1.0122*** 
(0.0513) 

 0.3939*** 
(0.0089) 

0.7235  1.7623*** 
(0.0336) 

 0.3834*** 
(0.0084) 

0.7355  5.7650*** 
(0.0603) 

 0.4637*** 
(0.0111) 

0.6988  4.1629*** 
(0.0142) 

 0.5320*** 
(0.0078) 

0.8605 

BSY 
 

 0.8192*** 
(0.0596) 

 0.4359*** 
(0.0108) 

0.6824  1.5301*** 
(0.0350) 

 0.4400*** 
(0.0090) 

0.7588  6.1623*** 
(0.0513) 

 0.5296*** 
(0.0091) 

0.8195  4.3095*** 
(0.0145) 

 0.5800*** 
(0.0070) 

0.9013 

EMG 
 

 1.1180*** 
(0.0551) 

 0.3785*** 
(0.0091) 

0.6949  1.5451*** 
(0.0367) 

 0.4013*** 
(0.0079) 

0.7745  5.8849*** 
(0.0533) 

 0.4544*** 
(0.0096) 

0.7505  4.1547*** 
(0.0164) 

 0.4601*** 
(0.0087) 

0.7883 

RR 
 

 1.2317*** 
(0.0553) 

 0.3724*** 
(0.0097) 

0.6608  1.8629*** 
(0.0375) 

 0.3488*** 
(0.0087) 

0.6797  5.9374*** 
(0.0593) 

 0.4551*** 
(0.0103) 

0.7227  4.2683*** 
(0.0182) 

 0.4835*** 
(0.0089) 

0.7979 

MRW  1.2074***  0.3703*** 0.6908  1.5641***  0.3749*** 0.7072  6.1222***  0.4422*** 0.7436  4.4238***  0.4710*** 0.8211 
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 (0.0503) (0.0090) (0.0402) (0.0088) (0.0619) (0.0095) (0.0209) (0.0080) 
MKS 
 

 1.1892*** 
(0.0552) 

 0.3792*** 
(0.0092) 

0.6957  1.8138*** 
(0.0386) 

 0.3569*** 
(0.0082) 

0.7144  6.7046*** 
(0.0576) 

 0.5758*** 
(0.0101) 

0.8107  4.3708*** 
(0.0179) 

 0.5173*** 
(0.0094) 

0.8020 

SBRY 
 

 1.4151*** 
(0.0537) 

 0.3197*** 
(0.0100) 

0.5770  1.6426*** 
(0.0348) 

 0.3706*** 
(0.0086) 

0.7136  5.9587*** 
(0.0681) 

 0.4616*** 
(0.0110) 

0.7024  4.2210*** 
(0.0237) 

 0.4731*** 
(0.0096) 

0.7648 

WPP 
 

 0.7870*** 
(0.0730) 

 0.4542*** 
(0.0126) 

0.6315  1.5310*** 
(0.0357) 

 0.4615*** 
(0.0087) 

0.7893  6.2372*** 
(0.0472) 

 0.5437*** 
(0.0089) 

0.8308  4.2861*** 
(0.0154) 

 0.5669*** 
(0.0090) 

0.8405 

REL 
 

 1.0670*** 
(0.0794) 

 0.4081*** 
(0.0143) 

0.5184  1.5819*** 
(0.0491) 

 0.4579*** 
(0.0128) 

0.6299  5.6892*** 
(0.0540) 

 0.4437*** 
(0.0099) 

0.7268  4.1551*** 
(0.0205) 

 0.4844*** 
(0.0106) 

0.7344 

LGEN 
 

 1.0485*** 
(0.0635) 

 0.4001*** 
(0.0115) 

0.6163  1.4357*** 
(0.0727) 

 0.3280*** 
(0.0131) 

0.4542  6.5856*** 
(0.1123) 

 0.4353*** 
(0.0145) 

0.5437  4.7245*** 
(0.0449)  

 0.4499*** 
(0.0132) 

0.6057 

CPG 
 

 1.0523*** 
(0.0544) 

 0.4115*** 
(0.0099) 

0.6987  1.6876*** 
(0.0428) 

 0.3794*** 
(0.0099) 

0.6627  5.8328*** 
(0.0557) 

 0.4163*** 
(0.0091) 

0.7363  4.3461*** 
(0.0190) 

 0.4681*** 
(0.0081) 

0.8171 

ABF 
 

 0.8908*** 
(0.0365) 

 0.4178*** 
(0.0085) 

0.7610  1.7726*** 
(0.0199) 

 0.4107*** 
(0.0088) 

0.7449  5.3716*** 
(0.0648) 

 0.4902*** 
(0.0116) 

0.7046  3.8375*** 
(0.0220) 

 0.5166*** 
(0.0092) 

0.8088 

LAND 
 

 0.9391*** 
(0.0491) 

 0.4148*** 
(0.0086) 

0.7577  1.8647*** 
(0.0275) 

 0.4370*** 
(0.0082) 

0.7922  4.7773*** 
(0.0439) 

 0.3525*** 
(0.0103) 

0.6100  3.6493*** 
(0.0116) 

 0.3895*** 
(0.0096) 

0.6867 

OML 
 

 1.4002*** 
(0.0599) 

 0.3434*** 
(0.0113) 

0.5520  1.7479*** 
(0.0607) 

 0.2804*** 
(0.0115) 

0.4401  6.1391*** 
(0.0918) 

 0.3882*** 
(0.0121) 

0.5788  4.5076*** 
(0.0394) 

 0.3962*** 
(0.0116) 

0.6063 

ANTO 
 

 0.7058*** 
(0.0606) 

 0.4456*** 
(0.0104) 

0.7103  1.9279*** 
(0.0485) 

 0.3405*** 
(0.0119) 

0.5206  5.0519*** 
(0.0410) 

 0.3794*** 
(0.0087) 

0.7170  3.8216*** 
(0.0108) 

 0.4572*** 
(0.0078) 

0.8191 

PSON 
 

 0.7991*** 
(0.0473) 

 0.4477*** 
(0.0089) 

0.7705  1.7477*** 
(0.0273) 

 0.4268*** 
(0.0080) 

0.7890  5.7842*** 
(0.0462) 

 0.5114*** 
(0.0089) 

0.8149  4.0512*** 
(0.0134) 

 0.5352*** 
(0.0073) 

0.8758 

SHP 
 

 0.9805*** 
(0.0477) 

 0.3981*** 
(0.0090) 

0.7241  1.8604*** 
(0.0249) 

 0.4105*** 
(0.0081) 

0.7737  5.7153*** 
(0.0586) 

 0.5566*** 
(0.0122) 

0.7333  3.8713*** 
(0.0142) 

 0.5648*** 
(0.0090) 

0.8387 

SL 
 

 0.7192*** 
(0.0410) 

 0.4269*** 
(0.0089) 

0.7534  1.1130*** 
(0.0306) 

 0.4212*** 
(0.0081) 

0.7809  5.7365*** 
(0.0714) 

 0.4509*** 
(0.0103) 

0.7165  4.0938*** 
(0.0292) 

 0.4724*** 
(0.0092) 

0.7783 

IPR 
 

 0.9568*** 
(0.0475) 

 0.4258*** 
(0.0090) 

0.7505  1.5142*** 
(0.0403) 

 0.4168*** 
(0.0098) 

0.7052  5.9841*** 
(0.0573) 

 0.4542*** 
(0.0093) 

0.7613  4.3080*** 
(0.0206) 

 0.4752*** 
(0.0084) 

0.8103 

KAZ 
 

 0.1298*** 
(0.0583) 

 0.5281*** 
(0.0100) 

0.7865  1.9836*** 
(0.0411) 

 0.3351*** 
(0.0112) 

0.5444  4.8814*** 
(0.0441) 

 0.4139*** 
(0.0105) 

0.6732  3.5808*** 
(0.0107) 

 0.4914*** 
(0.0096) 

0.7769 

UU 
 

 1.3073*** 
(0.0449) 

 0.3658*** 
(0.0088) 

0.6952  1.7706*** 
(0.0271) 

 0.4313*** 
(0.0083) 

0.7827  5.2823*** 
(0.0516) 

 0.3953*** 
(0.0094) 

0.6993  3.9437*** 
(0.0181) 

 0.4138*** 
(0.0087) 

0.7503 

SN 
 

 0.9488*** 
(0.0469) 

 0.4163*** 
(0.0092) 

0.7292  1.5722*** 
(0.0279) 

 0.4445*** 
(0.0082) 

0.7943  5.8124*** 
(0.0472) 

 0.4900*** 
(0.0082) 

0.8249  4.0971*** 
(0.0168) 

 0.5034*** 
(0.0074) 

0.8590 

EXPN 
 

 0.8978*** 
(0.0501) 

 0.4033*** 
(0.0101) 

0.6810  1.5737*** 
(0.0313) 

 0.3870*** 
(0.0090) 

0.7121  5.9168*** 
(0.0631) 

 0.5092*** 
(0.0105) 

0.7574  4.1868*** 
(0.0193) 

 0.5589*** 
(0.0079) 

0.8690 

BLND 
 

 1.1965*** 
(0.0586) 

 0.3821*** 
(0.0101) 

0.6554  1.6694*** 
(0.0293) 

 0.4623*** 
(0.0077) 

0.8273  5.2802*** 
(0.0496) 

 0.4126*** 
(0.0107) 

0.6649  3.8645*** 
(0.0142) 

 0.4160*** 
(0.0103) 

0.6848 

VED 
 

 0.1273*** 
(0.0572) 

 0.5269*** 
(0.0094) 

0.8073  1.8463*** 
(0.0407) 

 0.4375*** 
(0.0118) 

0.6471  4.7576*** 
(0.0288) 

 0.4273*** 
(0.0083) 

0.7809  3.4308*** 
(0.0063) 

 0.4963*** 
(0.0074) 

0.8582 
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 RSA 
 

 1.7177*** 
(0.0418) 

 0.2627*** 
(0.0083) 

0.5713  1.7505*** 
(0.0394) 

 0.2741** 
(0.0083) 

0.5892  4.9855*** 
(0.0795) 

 0.2587*** 
(0.0103) 

0.4577  3.9644*** 
(0.0349) 

 0.2765*** 
(0.0096) 

0.5266 

CPI 
 

 0.7089*** 
(0.0371) 

 0.4650*** 
(0.0081) 

0.8155  1.6396*** 
(0.0218) 

 0.4532*** 
(0.0080) 

0.8096  5.4013*** 
(0.0428) 

 0.4739*** 
(0.0077) 

0.8333  3.9081*** 
(0.0142) 

 0.5132*** 
(0.0062) 

0.9017 

KGF 
 

 1.2444*** 
(0.0646) 

 0.3786*** 
(0.0113) 

0.5967  1.6478*** 
(0.0473) 

 0.3394*** 
(0.0091) 

0.6485  7.0319*** 
(0.0687) 

 0.5394*** 
(0.0101) 

0.7919  4.8197*** 
(0.0254) 

 0.5465*** 
(0.0093) 

0.8222 

CCL 
 

 0.8410*** 
(0.0452) 

 0.4284*** 
(0.0087) 

0.7643  2.1611*** 
(0.0181) 

 0.4059*** 
(0.0077) 

0.7871  4.9363*** 
(0.0371) 

 0.5208*** 
(0.0101) 

0.7801  3.4218*** 
(0.0079) 

 0.5341*** 
(0.0081) 

0.8512 

CW 
 

 1.2031*** 
(0.0504) 

 0.3736*** 
(0.0099) 

0.6540  1.3308*** 
(0.0451) 

 0.3834*** 
(0.0098) 

0.6725  6.2921*** 
(0.0703) 

 0.4325*** 
(0.0094) 

0.7383  4.5923*** 
(0.0290) 

 0.4614*** 
(0.0086) 

0.7944 

SMIN 
 

 0.9824*** 
(0.0377) 

 0.3923*** 
(0.0079) 

0.7684  1.8049*** 
(0.0194) 

 0.4152*** 
(0.0074) 

0.8074  5.0950*** 
(0.0562) 

 0.4498*** 
(0.0111) 

0.6862  3.7051*** 
(0.0161) 

 0.4901*** 
(0.0084) 

0.8187 

LII 
 

 1.0915*** 
(0.0478) 

 0.3721*** 
(0.0098) 

0.6582  1.6342*** 
(0.0247) 

 0.4471*** 
(0.0085) 

0.7853  4.9266*** 
(0.0560) 

 0.4078*** 
(0.0111) 

0.6425  3.5996*** 
(0.0195) 

 0.4130*** 
(0.0104) 

0.6773 

NXT 
 

 0.7927*** 
(0.0360) 

 0.4410*** 
(0.0063) 

0.8662  2.1801*** 
(0.0204) 

 0.3761*** 
(0.0066) 

0.8117  5.3527*** 
(0.0383) 

 0.5573*** 
(0.0101) 

0.8019  3.6146*** 
(0.0066) 

 0.5571*** 
(0.0068) 

0.8993 

JMAT 
 

 0.6334*** 
(0.0377) 

 0.4723*** 
(0.0080) 

0.8227  1.9306*** 
(0.0183) 

 0.4564*** 
(0.0086) 

0.7892  4.9749*** 
(0.0428) 

 0.5112*** 
(0.0101) 

0.7747  3.5204*** 
(0.0106) 

 0.5538*** 
(0.0074) 

0.8812 

BAY 
 

 1.1157*** 
(0.0460) 

 0.3912*** 
(0.0079) 

0.7650  1.4486*** 
(0.0411) 

 0.3966*** 
(0.0084) 

0.7490  6.1334*** 
(0.0646) 

 0.4551*** 
(0.0105) 

0.7130  4.3286*** 
(0.0209) 

 0.4504*** 
(0.0091) 

0.7641 

IAP 
 

 0.7126*** 
(0.0316) 

 0.4507*** 
(0.0066) 

0.8612  1.4634*** 
(0.0253) 

 0.4287*** 
(0.0076) 

0.8100  5.3659*** 
(0.0479) 

 0.4394*** 
(0.0082) 

0.7935  3.9016*** 
(0.0169) 

 0.4695*** 
(0.0068) 

0.8645 

SVT 
 

 0.7854*** 
(0.0350) 

 0.4502*** 
(0.0075) 

0.8254  1.8566*** 
(0.0168) 

 0.4848*** 
(0.0077) 

0.8397  4.8322*** 
(0.0416) 

 0.4369*** 
(0.0090) 

0.7585  3.5590*** 
(0.0130) 

 0.4734*** 
(0.0076) 

0.8375 

HMSO 
 

 1.2508*** 
(0.0539) 

 0.3348*** 
(0.0105) 

0.5765  1.7992*** 
(0.0284) 

 0.3758*** 
(0.0089) 

0.7031  4.3937*** 
(0.0596) 

 0.2920*** 
(0.0119) 

0.4434  3.4636*** 
(0.0206) 

 0.3201*** 
(0.0115) 

0.5079 

SGE 
 

 1.2614*** 
(0.0468) 

 0.3393*** 
(0.0104) 

0.5879  1.4367*** 
(0.0352) 

 0.3607*** 
(0.0093) 

0.6666  6.2777*** 
(0.0722) 

 0.4939*** 
(0.0101) 

0.7604  4.3625*** 
(0.0312) 

 0.4894*** 
(0.0093) 

0.7851 

REX 
 

 0.9682*** 
(0.0492) 

 0.4004*** 
(0.0107) 

0.6488  1.3954*** 
(0.0287) 

 0.4368*** 
(0.0088) 

0.7658  5.3405*** 
(0.0784) 

 0.4106*** 
(0.0125) 

0.5895  3.9437*** 
(0.0317) 

 0.4392*** 
(0.0115) 

0.6577 

IHG 
 

 0.8807*** 
(0.0445) 

 0.3966*** 
(0.0088) 

0.7280  1.6849*** 
(0.0229) 

 0.4054*** 
(0.0076) 

0.7897  5.8666*** 
(0.0525) 

 0.6028*** 
(0.0104) 

0.8163  3.7957*** 
(0.0154) 

 0.5626*** 
(0.0085) 

0.8522 



139 

 

Table A4 

OLS regression results when the first and last 10 minutes of active trading are excluded 

This table reports the coefficient estimates from OLS regressions for different definitions of trading activity based on the models in in (32), (33), 

(34) and (35) when the first and last 10 minutes of active trading are excluded. The underlying variables are estimated as averages across days 

based on equation (23). The different notions of trading activity are those introduced by Kyle and Obizhaeva (2016b)  (Model 1), Andersen et al. 

(2016) (Model 2), MDH-V, Clark (1973) (Model 3) and MDH-N, (Ané and Geman (2000)) (Model 4). The volume multiplier is assumed to be 

2   and the volatility multiplier 1  . Coefficients are tested against the null hypothesis 
0 : 2 / 3H   . *, **, and *** denote significance at the 

5%, 1%, and 0.1% level, respectively. 

  Model 1 Model 2 Model 3 Model 4 

 Stocks c β  ̅2 c β  ̅2 c β  ̅2 c β  ̅2 

H
ig

h
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

BP -0.1806 
(0.1131) 

 0.5898*** 
(0.0146) 

0.9441  0.7984*** 
(0.0884) 

0.5916*** 
(0.0145) 

0.9449 
 

 7.7186*** 
(0.0597) 

 0.6956* 
(0.0124) 

0.9701 
 

 4.7902*** 
(0.0101) 

 0.6596 
(0.0127) 

0.9652 
 

HSBA 
 

 -0.1338 
(0.1138) 

 0.5846*** 
(0.0146) 

0.9433  1.0067*** 
(0.0848) 

 0.5895*** 
(0.0146) 

0.9442  7.3810*** 
(0.0415) 

 0.6801 
(0.0095) 

0.9815  4.6191*** 
(0.0060) 

 0.6510 
(0.0102) 

0.9766 
 

VOD 
 

 0.2882* 
(0.1337) 

 0.5527*** 
(0.0178) 

0.9083  0.4784*** 
(0.1272) 

 0.5538*** 
(0.0178) 

0.9088 
 

 8.7728*** 
(0.1047) 

 0.6538 
(0.0157) 

0.9470 
 

 5.6249*** 
(0.0328) 

 0.6190** 
(0.0163) 

0.9369 
 

GSK 
 

 -0.3271 
(0.1154) 

 0.6240* 
(0.0162) 

0.9384 
 

 1.2216*** 
(0.0750) 

 0.6258* 
(0.0162) 

0.9388 
 

 6.7353*** 
(0.0619) 

 0.6867 
(0.0160) 

0.9500 
 

 4.2290*** 
(0.0083) 

 0.6664 
(0.0157) 

0.9487 
 

RDSA 
 

-0.5152*** 
(0.0873) 

 0.6031*** 
(0.0143) 

0.9486 
 

 1.2228*** 
(0.0466) 

 0.6031*** 
(0.0143) 

0.9486 
 

 6.1126*** 
(0.0480) 

 0.6924* 
(0.0112) 

0.9754 
 

 3.6974*** 
(0.0119) 

 0.6623 
(0.0120) 

0.9692 
 

M
e
d

iu
m

 M
a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

RIO 
 

 -0.0562 
(0.0930) 

 0.5690*** 
(0.0116) 

0.9612 
 

 1.9340*** 
(0.0526) 

 0.5690*** 
(0.0116) 

0.9612 
 

 5.4041*** 
(0.0135) 

 0.6375** 
(0.0088) 

0.9819 
 

 3.4399*** 
(0.0170) 

 0.6150*** 
(0.0094) 

0.9779 
 

AZN 
 

 0.0609*** 
(0.1276) 

 0.5879*** 
(0.0189) 

0.9088 
 

1.9526*** 
(0.0671) 

 0.5880*** 
(0.0189) 

0.9088 
 

 5.9373*** 
(0.0449) 

 0.6641 
(0.0153) 

0.9510 
 

 3.8155*** 
(0.0098) 

  0.6393 
 (0.0164) 

0.9398 
 

RBS 
 

 0.7059*** 
(0.1174) 

 0.4864*** 
(0.0158) 

0.9074 
 

 1.0111*** 
(0.1087) 

 0.4850*** 
(0.0159) 

0.9055 
 

 7.4958*** 
(0.1056) 

 0.5499*** 
(0.0182) 

0.9039 
 

 5.0452*** 
(0.0251) 

 0.5281*** 
(0.0171) 

0.9072 
 

BATS 
 

 -0.0300 
(0.1062) 

 0.5992*** 
(0.0168) 

0.9293 
 

 1.6894*** 
(0.0585) 

 0.5987*** 
(0.0168) 

0.9289 
 

 6.0793*** 
(0.0651) 

 0.6665 
(0.0185) 

0.9308 
 

 3.8961*** 
(0.0095) 

 0.6436 
(0.0177) 

0.9319 
 

BG 
 

 0.0004 
(0.1224) 

 0.5655*** 
(0.0180) 

0.9109 
 

 1.2980*** 
(0.0816) 

 0.5631*** 
(0.0179) 

0.9106 
 

 6.4281*** 
(0.0690) 

0.6404 
(0.0170) 

0.9360 
 

 4.1052*** 
(0.0109) 

 0.6152** 
(0.0172) 

0.9297 
 

AAL 
 

 0.0347 
(0.0999) 

 0.5643*** 
(0.0130) 

0.9508 
 

 1.8030*** 
(0.0590) 

 0.5648*** 
(0.0130) 

0.9512 
 

 5.5801*** 
(0.0197) 

 0.6120*** 
(0.0095) 

0.9772 
 

3.6276*** 
(0.0136) 

 0.5976*** 
(0.0103) 

0.9719 
 

BLT 
 

-0.4936*** 
(0.1040) 

 0.6262** 
(0.0129) 

0.9603 
 

 1.1738*** 
(0.0698) 

 0.6256** 
(0.0129) 

0.9603 
 

 6.2965*** 
(0.0200) 

 0.6689 
(0.0074) 

0.9882 
 

 3.9295*** 
(0.0094) 

 0.6574 
(0.0086) 

0.9835 
 

BARC 
 

 -0.0062 
(0.1321) 

 0.5706*** 
(0.0167) 

0.9229 
 

 0.6707*** 
(0.1107) 

 0.5797*** 
(0.0168) 

0.9250 
 

 7.3499*** 
(0.0620) 

 0.6230** 
(0.0134) 

0.9570 
 

 4.7536*** 
(0.0095) 

 0.6073*** 
(0.0142) 

0.9494 
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TSCO 
 

 0.4396*** 
(0.1208) 

 0.5485*** 
(0.0186) 

0.8995 
 

 1.1800*** 
(0.0952) 

 0.5507*** 
(0.0186) 

0.9005 
 

 7.4951*** 
(0.0995) 

 0.6379 
(0.0180) 

0.9280 
 

 4.9035*** 
(0.0288) 

 0.6068** 
(0.0181) 

0.9202 
 

XTA 
 

 0.1352 
(0.0970) 

 0.5439*** 
(0.0125) 

0.9511 
 

 1.6921*** 
(0.0610) 

 0.5438*** 
(0.0124) 

0.9517 
 

 5.7895*** 
(0.0254) 

0.6222*** 
(0.0107) 

0.9722 
 

 3.7299*** 
(0.0126) 

 0.5957*** 
(0.0110) 

0.9677 
 

DGE 
 

 0.0299 
(0.1056) 

 0.5888*** 
(0.0168) 

0.9267 
 

 1.3557*** 
(0.0673) 

 0.5913*** 
(0.0167) 

0.9280 
 

 6.8257*** 
(0.0804) 

 0.7119* 
(0.0183) 

0.9397 
 

 4.2694*** 
(0.0162) 

 0.6706 
(0.0169) 

0.9420 
 

LLOY 
 

 0.1472 
(0.1371) 

 0.5631*** 
(0.0190) 

0.9002 
 

 0.4626*** 
(0.1211) 

 0.5860*** 
(0.0190) 

0.9078 
 

 7.5835*** 
(0.0914) 

 0.6228*** 
(0.0167) 

0.9345 
 

 4.9392*** 
(0.0227) 

 0.6044*** 
(0.0173) 

0.9267 
 

STAN 
 

 0.0754  
(0.0987) 

 0.5536*** 
(0.0146) 

0.9371 
 

 1.5155*** 
(0.0606) 

 0.5556*** 
(0.0145) 

0.9379 
 

5.9248*** 
(0.0418) 

 0.6198*** 
(0.0122) 

0.9640 
 

 3.8255*** 
(0.0064) 

 0.5985*** 
(0.0127) 

0.9583 
 

L
o

w
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

ULVR 
 

-0.3105* 
(0.1232) 

 0.6305 
(0.0202) 

0.9092 
 

 1.4207*** 
(0.0681) 

 0.6307 
(0.0203) 

0.9090 
 

 6.1488*** 
(0.0642) 

 0.6792 
(0.0164) 

0.9462 
 

 3.8889*** 
(0.0131) 

 0.6644 
(0.0176) 

0.9364 
 

RB 
 

 0.2880** 
(0.1024) 

 0.5719*** 
(0.0178) 

0.9139 
 

 2.1827*** 
(0.0441) 

 0.5718*** 
(0.0178) 

0.9136 
 

 5.5324*** 
(0.0641) 

 0.6550 
(0.0210) 

0.9090 
 

 3.6230*** 
(0.0100) 

 0.6259* 
(0.0197) 

0.9126 
 

SAB 
 

-0.0200 
(0.0916) 

 0.5765*** 
(0.0155) 

0.9346 
 

 1.4175*** 
(0.0531) 

 0.5777*** 
(0.0155) 

0.9351 
 

 6.1239*** 
(0.0729) 

 0.6608 
(0.0174) 

0.9366 
 

 3.8868*** 
(0.0153) 

 0.6315* 
(0.0165) 

0.9380 
 

NG -0.1167 
(0.1118) 

 0.6168* 
(0.0192) 

0.9144 
 

 1.0744*** 
(0.0755) 

 0.6161* 
(0.0193) 

0.9133 
 

 6.9536*** 
(0.1054) 

 0.6800 
(0.0205) 

0.9189 
 

 4.4434*** 
(0.0305) 

 0.6592 
(0.0198) 

0.9196 
 

IMT 
 

 0.0714 
(0.1119) 

 0.5874*** 
(0.0191) 

0.9068 
 

 1.8212*** 
(0.0555) 

 0.5875*** 
(0.0192) 

0.9065 
 

 5.8301*** 
(0.0872) 

 0.6743 
(0.0250) 

0.8821 
 

 3.7306*** 
(0.0131) 

 0.6444 
(0.0226) 

0.8936 
 

BT 
 

 0.5744*** 
(0.1207) 

 0.5061*** 
(0.0201) 

0.8675 
 

 0.8237*** 
(0.1083) 

 0.5164*** 
(0.0200) 

0.8728 
 

 7.4990*** 
(0.1444) 

 0.5637*** 
(0.0208) 

0.8828 
 

 5.0250*** 
(0.0547) 

 0.5442*** 
(0.0205) 

0.8791 
 

AV 
 

 0.1422 
(0.1185) 

 0.5546*** 
(0.0191) 

0.8970 
 

 0.9955*** 
(0.0871) 

 0.5631*** 
(0.0189) 

0.9015 
 

 6.7015*** 
(0.0865) 

 0.6204** 
(0.0171) 

0.9315 
 

 4.3512*** 
(0.0246) 

 0.5986*** 
(0.0177) 

0.9220 
 

PRU 
 

-0.1302 
(0.1190) 

 0.5811*** 
(0.0183) 

0.9125 
 

 0.8369*** 
(0.0876) 

 0.5850*** 
(0.0181) 

0.9146 
 

 6.7450*** 
(0.0715) 

 0.6382 
(0.0146) 

0.9514 
 

 4.3106*** 
(0.0187) 

 0.6205** 
(0.0157) 

0.9416 
 

BAE 
 

 0.4163*** 
(0.1121) 

 0.5400*** 
(0.0186) 

0.8972 
 

 1.1692*** 
(0.0862) 

 0.5406*** 
(0.0185) 

0.8976 
 

 7.2414*** 
(0.1112) 

 0.6416 
(0.0199) 

0.9146 
 

 4.7015*** 
(0.0340) 

 0.6059** 
(0.0192) 

0.9113 
 

CNA 
 

 0.0681 
(0.1152) 

 0.5929*** 
(0.0202) 

0.8988 
 

 0.7224*** 
(0.0926) 

 0.5929*** 
(0.0201) 

0.8996 
 

 7.5202*** 
(0.1422) 

 0.6491 
(0.0226) 

0.8951 
 

 4.8885*** 
(0.0504) 

 0.6311 
(0.0214) 

0.8992 
 

SSE 
 

-0.0520 
(0.1024) 

 0.6017*** 
(0.0184) 

0.9171 
 

 1.5106*** 
(0.0555) 

 0.5999*** 
(0.0185) 

0.9157 
 

 6.1325*** 
(0.1013) 

 0.6734 
(0.0239) 

0.8910 
 

 3.9154*** 
(0.0227) 

 0.6497 
(0.0216) 

0.9031 
 

CBRY 
 

-0.4297*** 
(0.1003) 

 0.6487 
(0.0176) 

0.9334 
 

 0.7257*** 
(0.0687) 

 0.6511 
(0.0175) 

0.9343 
 

 7.3100*** 
(0.1069) 

 0.7510*** 
(0.0197) 

0.9374 
 

 4.4755*** 
(0.0332) 

 0.7152* 
(0.0186) 

0.9381 
 

BSY 
 

-0.1137 
(0.0951) 

 0.6138** 
(0.0175) 

0.9269 
 

 0.8849*** 
(0.0655) 

 0.6183** 
(0.0173) 

0.9295 
 

 7.2088*** 
(0.1021) 

 0.7157** 
(0.0182) 

0.9411 
 

 4.5156*** 
(0.0352) 

 0.6802 
(0.0177) 

0.9386 
 

EMG 
 

 0.1847 
(0.1063) 

 0.5391*** 
(0.0180) 

0.9028 
 

 0.9194*** 
(0.0807) 

 0.5428*** 
(0.0178) 

0.9054 
 

 6.8527*** 
(0.0190) 

 0.6276* 
(0.0268) 

0.9180 
 

 4.4022*** 
(0.0336) 

 0.5966*** 
(0.0185) 

0.9148 
 

RR 
 

 0.2169* 
(0.1003) 

 0.5569*** 
(0.0179) 

0.9089 
 

 0.9959*** 
(0.0746) 

 0.5599*** 
(0.0178) 

0.9107 
 

 7.0244*** 
(0.1176) 

 0.6435 
(0.0204) 

0.9114 
 

 4.5339*** 
(0.0394) 

 0.6130** 
(0.0193) 

0.9123 
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MRW 
 

-0.0351 
(0.1193) 

 0.6010** 
(0.0218) 

0.8868 
 

 0.5746*** 
(0.0970) 

 0.6015** 
(0.0217) 

0.8876 
 

7.7075*** 
(0.1479) 

 0.6852 
(0.0227) 

0.9041 
 

 4.9023*** 
(0.0567) 

 0.6570 
(0.0221) 

0.9011 
 

MKS 
 

 0.0937 
(0.1276) 

 0.5669*** 
(0.0215) 

0.8775 
 

 0.8290*** 
(0.0972) 

 0.5747*** 
(0.0212) 

0.8832 
 

 7.0997*** 
(0.1137) 

 0.6433 
(0.0200) 

0.9146 
 

 4.5682*** 
(0.0382) 

 0.6182* 
(0.0203) 

0.9049 
 

SBRY 
 

 0.0844*** 
(0.1074) 

 0.5801*** 
(0.0205) 

0.8917 
 

 0.8247*** 
(0.0795) 

 0.5862*** 
(0.0202) 

0.8963 
 

 7.2570*** 
(0.1313) 

 0.6709 
(0.0212) 

0.9119 
 

 4.6347*** 
(0.0504) 

 0.6400 
(0.0207) 

0.9079 
 

 WPP 
 

 0.0089 
(0.1056) 

 0.5946*** 
(0.0185) 

0.9141 
 

 0.9915*** 
(0.0738) 

 0.6003*** 
(0.0183) 

0.9171 
 

 7.0572*** 
(0.1113) 

 0.6986 
(0.0211) 

0.9187 
 

 4.4508*** 
(0.0337) 

 0.6612 
(0.0200) 

0.9185 
 

 REL 
 

 0.0186 
(0.1021) 

 0.6058** 
(0.0187) 

0.9150 
 

 1.0484*** 
(0.0700) 

 0.6082** 
(0.0187) 

0.9162 
 

 6.9411*** 
(0.1064) 

 0.6758 
(0.0197) 

0.9238 
 

 4.4653*** 
(0.0353) 

 0.6524 
(0.0191) 

0.9231 
 

LGEN 
 

 0.4794*** 
(0.1341) 

 0.5106*** 
(0.0248) 

0.8141 
 

 0.4176*** 
(0.1342) 

 0.5177*** 
(0.0246) 

0.8203 
 

 7.5219*** 
(0.1993) 

 0.5544*** 
(0.0257) 

0.8274 
 

 5.0486*** 
(0.0860) 

 0.5403*** 
(0.0253) 

0.8248 
 

 CPG 
 

 0.1572*** 
(0.1104) 

 0.5806*** 
(0.0203) 

0.8942 
 

 0.8591*** 
(0.0862) 

 0.5809*** 
(0.0203) 

0.8940 
 

 7.4758*** 
(0.1463) 

 0.6871 
(0.0240) 

0.8938 
 

 4.7599*** 
(0.0512) 

 0.6496 
(0.0224) 

0.8969 
 

 ABF 
 

 0.0662 
(0.0756) 

 0.6189** 
(0.0180) 

0.9243 
 

 1.3478*** 
(0.0389) 

 0.6194** 
(0.0179) 

0.9250 
 

 6.5193*** 
(0.1366) 

 0.6952 
(0.0244) 

0.8929 
 

 4.2041*** 
(0.0516) 

 0.6702 
(0.0217) 

0.9076 
 

 LAND 
 

 0.0385 
(0.1187) 

 0.5768*** 
(0.0210) 

0.8864 
 

 1.4238*** 
(0.0685) 

 0.5775*** 
(0.0209) 

0.8873 
 

 6.0786*** 
(0.0950) 

 0.6604 
(0.0224) 

0.8994 
 

 3.8811*** 
(0.0226) 

 0.6316 
(0.0217) 

0.8970 
 

 OML 
 

 0.7655*** 
(0.1011) 

 0.4711*** 
(0.0194) 

0.8581 
 

 0.7588*** 
(0.0993) 

 0.4762*** 
(0.0192) 

0.8632 
 

 7.1866*** 
(0.1617) 

 0.5246*** 
(0.0212) 

0.8626 
 

 4.8933*** 
(0.0694) 

 0.5064*** 
(0.0205) 

0.8627 
 

ANTO 
 

 0.1191 
(0.1068) 

 0.5505*** 
(0.0185) 

0.9017 
 

 1.1123*** 
(0.0739) 

 0.5501*** 
(0.0185) 

0.9013 
 

 6.3385*** 
(0.0901) 

 0.6546 
(0.0192) 

0.9228 
 

 4.0211*** 
(0.0246) 

 0.6172** 
(0.0188) 

0.9170 
 

PSON 
 

 -0.1427 
(0.1113) 

 0.6308 
(0.0212) 

0.9009 
 

 1.0875*** 
(0.0697) 

 0.6331 
(0.0212) 

0.9021 
 

 6.7139*** 
(0.1143) 

 0.6906 
(0.0220) 

0.9101 
 

 4.2909*** 
(0.0384) 

 0.6709 
(0.0216) 

0.9088 
 

 SHP 
 

-0.0240 
(0.0777) 

0.5949*** 
(0.0148) 

0.9431 
 

 1.3331*** 
(0.0438) 

 0.5973*** 
(0.0147) 

0.9444 
 

 6.5043*** 
(0.1023) 

 0.7199* 
(0.0213) 

0.9217 
 

 4.0454*** 
(0.0288) 

 0.6744 
(0.0185) 

0.9319 
 

 SL 
 

 0.1349 
(0.0800) 

 0.5607*** 
(0.0178) 

0.9113 
 

 0.6000*** 
(0.0636) 

 0.5654*** 
(0.0174) 

0.9155 
 

 7.1342*** 
(0.1688) 

 0.6545 
(0.0246) 

0.8797 
 

 4.5617*** 
(0.0675) 

 0.6222* 
(0.0217) 

0.8947 
 

 IPR 
 

 0.1287 
(0.1056) 

 0.5879*** 
(0.0202) 

0.8974 
 

 0.8484*** 
(0.0809) 

 0.5878*** 
(0.0201) 

0.8977 
 

 7.3105*** 
(0.1476) 

 0.6683 
(0.0239) 

0.8897 
 

 4.7117*** 
(0.0541) 

 0.6407 
(0.0223) 

0.8947 
 

 KAZ 
 

 0.2126 
(0.1088) 

 0.5175*** 
(0.0189) 

0.8854 
 

 1.3448*** 
(0.0672) 

 0.5198*** 
(0.0188) 

0.8872 
 

 5.7285*** 
(0.0817) 

 0.6170* 
(0.0197) 

0.9103 
 

 3.6699*** 
(0.0187) 

 0.5816*** 
(0.0193) 

0.9037 
 

UU 
 

 0.0500 
(0.0967) 

 0.6214* 
(0.0193) 

0.9141 
 

 1.1864*** 
(0.0611) 

 0.6223* 
(0.0192) 

0.9155 
 

 6.8776*** 
(0.1042) 

 0.6892 
(0.0191) 

0.9305 
 

 4.4448*** 
(0.0387) 

 0.6664 
(0.0190) 

0.9266 
 

 SN 
 

 0.0518 
(0.0912) 

 0.6011*** 
(0.0183) 

0.9176 
 

 1.0782*** 
(0.0598) 

 0.6023*** 
(0.0182) 

0.9189 
 

 7.0418*** 
(0.1444) 

 0.7042 
(0.0253) 

0.8889 
 

 4.4638*** 
(0.0492) 

 0.6681 
(0.0223) 

0.9022 
 

 EXPN 
 

 0.1414 
(0.0723) 

 0.5627*** 
(0.0148) 

0.9375 
 

 0.9815*** 
(0.0489) 

 0.5679*** 
(0.0144) 

0.9412 
 

 6.9649*** 
(0.1455) 

 0.6832 
(0.0243) 

0.8908 
 

 4.3933*** 
(0.0487) 

 0.6403 
(0.0202) 

0.9121 
 

BLND 
 

 0.1966 
(0.1307) 

 0.5610*** 
(0.0229) 

0.8610 
 

 1.2974*** 
(0.0840) 

 0.5675*** 
(0.0226) 

0.8669 
 

 6.4296*** 
(0.1117) 

 0.6601 
(0.0241) 

0.8851 
 

 4.1228*** 
(0.0299) 

 0.6250 
(0.0236) 

0.8785 
 

VED  0.1085  0.5331*** 0.9029  1.5448***  0.5331*** 0.9030  5.4424***  0.6279* 0.9326  3.4658***  0.5944*** 0.9242 
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 (0.1071) (0.0177)  (0.0596) (0.0177)  (0.0587) (0.0171)  (0.0099) (0.0173)  

 RSA 
 

 0.3806** 
(0.1300) 

 0.5425*** 
(0.0266) 

0.8100 
 

 0.5479*** 
(0.1214) 

 0.5435*** 
(0.0266) 

0.8110 
 

 7.7307*** 
(0.2252) 

 0.6169 
(0.0294) 

0.8195 
 

 5.0715*** 
(0.0996) 

 0.5914** 
(0.0283) 

0.8181 
 

 CPI 
 

 0.0429 
(0.0762) 

 0.6169** 
(0.0168) 

0.9330 
 

 1.2347*** 
(0.0441) 

 0.6177** 
(0.0168) 

0.9332 
 

 6.6455*** 
(0.1147) 

 0.7014 
(0.0210) 

0.9202 
 

 4.2573*** 
(0.0417) 

 0.6730 
(0.0190) 

0.9280 
 

 KGF 
 

 0.1594 
(0.1284) 

 0.5788*** 
(0.0229) 

0.8677 
 

 0.4145*** 
(0.1152) 

 0.5875*** 
(0.0227) 

0.8737 
 

 7.9056*** 
(0.1645) 

 0.6663 
(0.0242) 

0.8867 
 

 5.0807*** 
(0.0641) 

 0.6362 
(0.0236) 

0.8823 
 

 CCL 
 

-0.0054 
(0.0713) 

 0.5966*** 
(0.0138) 

0.9507 
 

 1.7612*** 
(0.0316) 

 0.5973*** 
(0.0138) 

0.9507 
 

 5.5993*** 
(0.0573) 

 0.7002* 
(0.0154) 

0.9554 
 

 3.5270*** 
(0.0154) 

 0.6625 
(0.0147) 

0.9546 
 

 CW 
 

 0.1965* 
(0.0933) 

 0.5820*** 
(0.0187) 

0.9090 
 

 0.4655*** 
(0.0848) 

 0.5818*** 
(0.0187) 

0.9088 
 

 8.2311*** 
(0.1794) 

 0.6920 
(0.0240) 

0.8951 
 

 5.2405*** 
(0.0731) 

 0.6525 
(0.0218) 

0.9024 
 

 SMIN 
 

 0.1075 
(0.0852) 

 0.5835*** 
(0.0181) 

0.9143 
 

 1.4086*** 
(0.0447) 

 0.5848*** 
(0.0179) 

0.9167 
 

 6.2868*** 
(0.1205) 

 0.6867 
(0.0238) 

0.8954 
 

 4.0004*** 
(0.0402) 

 0.6499 
(0.0214) 

0.9045 
 

LII 
 

 0.1602 
(0.1031) 

 0.5707*** 
(0.0215) 

0.8794 
 

 1.2900*** 
(0.0588) 

 0.5765*** 
(0.0209) 

0.8868 
 

 6.1664*** 
(0.1371) 

 0.6527 
(0.0272) 

0.8556 
 

 3.9833*** 
(0.0451) 

 0.6240 
(0.0249) 

0.8659 
 

NXT 
 

 0.1534 
(0.1161) 

 0.5578*** 
(0.0207) 

0.8824 
 

 1.6592*** 
(0.0606) 

 0.5603*** 
(0.0207) 

0.8830 
 

 5.6793*** 
(0.0813) 

 0.6419 
(0.0215) 

0.9015 
 

 3.6619*** 
(0.0168) 

 0.6126* 
(0.0211) 

0.8967 
 

 JMAT 
 

-0.0156 
(0.0879) 

 0.6169** 
(0.0189) 

0.9163 
 

 1.6378*** 
(0.0380) 

 0.6169** 
(0.0188) 

0.9169 
 

 5.6315*** 
(0.0910) 

 0.6651 
(0.0214) 

0.9085 
 

 3.6551*** 
(0.0282) 

 0.6495 
(0.0203) 

0.9130 
 

BAY 
 

 0.3934*** 
(0.1158) 

 0.5208*** 
(0.0203) 

0.8718 
 

 0.8357*** 
(0.0968) 

 0.5267*** 
(0.0201) 

0.8761 
 

 7.2271*** 
(0.1302) 

 0.6323 
(0.0212) 

0.9017 
 

 4.6490*** 
(0.0467) 

 0.5916*** 
(0.0208) 

0.8926 
 

IAP 
 

 0.1589** 
(0.0778) 

 0.5727*** 
(0.0166) 

0.9248 
 

 1.0167*** 
(0.0528) 

 0.5742*** 
(0.0165) 

0.9259 
 

 6.6797*** 
(0.1416) 

 0.6658 
(0.0244) 

0.9727 
 

 4.2869*** 
(0.0499) 

 0.6335 
(0.0212) 

0.9022 
 

 SVT 
 

 -0.0442 
(0.0836) 

 0.6373 
(0.0183) 

0.9256 
 

 1.5729*** 
(0.0378) 

 0.6365 
(0.0183) 

0.9258 
 

 6.0373*** 
(0.0948) 

 0.7007 
(0.0207) 

0.9222 
 

 3.8827*** 
(0.0315) 

 0.6800 
(0.0195) 

0.9258 
 

 HMSO 
 

 0.0742 
(0.1060) 

 0.5710*** 
(0.0209) 

0.8846 
 

 1.2054*** 
(0.0636) 

 0.5746*** 
(0.0206) 

0.8890 
 

 6.2576*** 
(0.1336) 

 0.6668 
(0.0268) 

0.8642 
 

 3.9802*** 
(0.0415) 

 0.6328 
(0.0244) 

0.8736 
 

 SGE 
 

 0.1345 
(0.0821) 

 0.6028*** 
(0.0186) 

0.9153 
 

 0.5669*** 
(0.0674) 

 0.6061** 
(0.0183) 

0.9184 
 

 7.6542*** 
(0.1593) 

 0.6864 
(0.0223) 

0.9068 
 

 4.9312*** 
(0.0691) 

 0.6575 
(0.0207) 

0.9120 
 

 REX 
 

 0.1741** 
(0.0763) 

 0.5840*** 
(0.0170) 

0.9243 
 

 0.9390*** 
(0.0525) 

 0.5881*** 
(0.0165) 

0.9291 
 

 6.9861*** 
(0.1570) 

 0.6724 
(0.0250) 

0.8815 
 

 4.5044*** 
(0.0591) 

 0.6427 
(0.0216) 

0.9008 
 

IHG 
 

 0.0278 
(0.0904) 

 0.5735*** 
(0.0183) 

0.9101 
 

 1.2091*** 
(0.0522) 

 0.5772*** 
(0.0181) 

0.9130 
 

 6.2785*** 
(0.1232) 

 0.6823 
(0.0244) 

0.8899 
 

 3.9497*** 
(0.0392) 

 0.6432 
(0.0218) 

0.7917 
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Table A5 

Correlations between trade size and volatility in business time (volatility divided by the square root of trade counts) 

Minutes AAL ABF ANTO AV AZN BAE BARC BATS BAY BG 

All 0.3441 0.2915 0.5142 0.6411 0.3328 0.3363 0.1933 0.0068 0.5370 0.3346 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9311 0.9981 0.8926 0.9502 0.9999 0.9386 0.9995 0.9651 0.9731 0.9723 
Last 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Last 15΄ 0.9867 0.9540 0.5703 0.8699 0.9674 0.9944 0.9999 0.8025 0.9765 0.3972 
First/Last 10΄ Excluded 0.0491 -0.0571 0.1500 0.1242 0.0999 0.1263 0.0205 -0.1054 0.1251 0.1647 
First/Last 15΄ Excluded 0.0328 0.0027 0.0559 0.1427 0.1285 0.1695 0.0290 -0.0756 0.1069 0.1981 

Minutes BLND BLT BP BT CBRY CCL CNA CPG CPI CW 

All 0.4405 0.8470 0.3134 0.2672 0.0996 0.6215 0.2653 0.2313 0.2442 0.1228 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9843 0.9950 0.9809 0.9933 0.9996 0.9838 0.9783 0.9869 0.9839 0.9924 
Last 10΄ 1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 1.0000 
Last 15΄ 0.9998 0.9943 0.5029 0.9930 -0.3430 0.9716 0.6013 0.8395 -0.6900 0.2046 
First/Last 10΄ Excluded 0.0880 0.1647 0.0929 -0.0594 -0.1236 -0.1978 -0.0117 -0.1414 -0.0303 -0.0252 
First/Last 15΄ Excluded 0.1597 0.1797 0.1460 -0.0353 -0.0864 -0.2226 0.0235 -0.1273 0.0236 0.0048 

Minutes DGE EMG EXPN GSK HMSO HSBA IAP IHG IMT IPR 

All 0.0773 0.4072 0.1410 0.1633 0.2992 0.5190 0.1235 0.1633 0.0324 0.4340 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9812 0.9986 0.5928 1.0000 0.9331 0.9568 0.5649 0.7055 0.9878 0.9163 
Last 10΄ 1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 
Last 15΄ 0.9757 0.9724 0.0386 0.8975 0.9086 0.8850 0.4265 0.9922 0.9873 -0.0847 
First/Last 10΄ Excluded 0.0745 0.0034 -0.0159 -0.0260 -0.0670 0.4161 -0.0913 0.1204 -0.0698 -0.0196 
First/Last 15΄ Excluded 0.1020 -0.0151 -0.1131 0.0285 -0.0897 0.4211 -0.0734 0.1075 -0.0651 -0.0929 

Minutes JMAT KAZ KGF LAND LGEN LII LLOY MKS MRW NG 

All 0.2917 0.1911 0.0452 0.6746 0.1965 0.4448 0.3926 0.3537 0.3585 0.2459 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9999 0.9631 0.9809 0.9810 0.9790 0.9760 0.8071 0.9597 0.9457 0.7744 
Last 10΄ -1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 1.0000 -1.0000 -1.0000 
Last 15΄ 0.3370 0.9739 0.7499 0.9810 0.9495 0.9003 0.3804 -0.0623 -0.0833 0.4605 
First/Last 10΄ Excluded -0.0343 0.0352 -0.0429 0.0705 0.0619 -0.1056 -0.0386 0.0159 0.0056 0.0478 
First/Last 15΄ Excluded 0.0493 0.0276 -0.0136 0.0471 0.0961 -0.0689 -0.0411 0.0437 -0.0115 0.1080 
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Minutes NXT OML PRU PSON RB RBS RDSA REL REX RIO 

All 0.6639 0.1608 0.6824 0.3206 0.5036 0.4047 0.1648 0.2165 0.3941 0.4461 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9985 0.9926 0.7482 0.9422 0.9935 0.7659 0.9973 0.9429 0.9970 0.9232 
Last 10΄ -1.0000 -1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Last 15΄ 0.2962 -0.9596 0.9869 0.7837 0.7931 0.9524 -0.8489 0.7815 0.9614 0.9735 
First/Last 10΄ Excluded 0.0737 0.1086 0.0440 0.1008 -0.0379 0.0930 -0.0467 0.0261 -0.1286 0.1560 
First/Last 15΄ Excluded 0.0597 0.1585 0.0511 0.0974 0.0113 0.0707 -0.0339 0.0609 -0.0623 0.1639 

Minutes RR RSA SAB SBRY SGE SHP SKY SL SMIN SN 

All 0.3522 0.6427 0.1928 0.1803 0.0605 0.1153 0.2638 -0.0430 0.1188 0.6242 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9846 0.9984 0.9974 0.7869 0.9284 0.9670 0.9761 0.9549 0.9908 0.9998 
Last 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 
Last 15΄ 0.9460 0.9918 0.9807 0.9930 0.9802 0.9159 -0.9980 0.4452 0.9587 0.8286 
First/Last 10΄ Excluded -0.2161 0.1146 -0.0873 -0.0715 -0.0338 -0.1141 -0.0115 -0.2154 -0.1572 -0.1792 
First/Last 15΄ Excluded -0.2119 0.1882 -0.0479 -0.1443 -0.0393 -0.1157 0.0111 -0.2131 -0.1572 -0.1279 

Minutes SSE STAN SVT TSCO ULVR UU VED VOD WPP XTA 

All 0.3363 0.1151 0.2795 0.2361 0.2247 0.4266 0.3484 0.0696 0.4686 0.4754 
First 10΄ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
First 15΄ 0.9675 0.9784 0.9928 0.9964 0.9869 0.9686 0.9883 0.9795 0.9795 0.9824 
Last 10΄ 1.0000 1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Last 15΄ 0.8227 0.9258 0.9948 0.9305 -0.2423 0.8714 0.9449 0.6929 0.9815 0.9933 
First/Last 10΄ Excluded -0.0218 -0.0561 0.1195 0.1888 0.0539 0.0947 0.0898 0.0239 -0.0498 0.1018 
First/Last 15΄ Excluded 0.0248 -0.0529 0.1673 0.2319 0.0864 0.1003 0.1160 0.0408 0.0015 0.0868 
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Table A6 

OLS regression results for each year 

This table reports the coefficient estimates for each substantive year in the sample (2007, 2008 and 2009) when underlying variables are estimated 

as averages across days based on equation (23). OLS regressions are based on the model in (25) which uses the definition of trading activity 

introduced by Kyle and Obizhaeva (2016b). Coefficients are tested against the null hypothesis 
0 : 1/ 2H   . *, **, and *** denote significance at 

the 5%, 1%, and 0.1% level, respectively.       

  2007 2008 2009 

 Stocks c β  ̅2 c β  ̅2 c β  ̅2 

H
ig

h
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

BP 
(4/7) 

    -0.5319*** 
(0.1054) 

    0.5751*** 
(0.0129) 

0.9516 0.0038 
(0.1607) 

    0.5485*** 
(0.0197) 

0.8847     0.7867*** 
(0.1703) 

0.5257 
(0.0236) 

0.8312 

HSBA 
(5/9) 

-0.2714 
 (0.1538) 

    0.5584*** 
(0.0197) 

0.8878 0.2983 
(0.1591) 

0.5167 
(0.0195) 

0.8737     0.8403*** 
(0.1471) 

0.5083 
(0.0190) 

0.8765 

VOD 
 

     0.7700*** 
(0.1593) 

     0.4386*** 
(0.0202) 

0.8226      0.8518*** 
(0.1686) 

0.4734 
(0.0213) 

0.8299     0.9612*** 
(0.1935) 

0.5087 
(0.0277) 

0.7696 

GSK 
(4/7) 

-0.2987* 
(0.1380) 

    0.5714*** 
(0.0184) 

0.9051 0.2598 
(0.1627) 

0.5311 
(0.0216) 

0.8568     0.6883*** 
(0.1761) 

0.5281 
(0.0269) 

0.7916 

RDSA 
(5/9) 

-0.2699* 
(0.1062) 

0.5289 
(0.0172) 

0.9036     -0.2309 
(0.1387) 

    0.5443*** 
(0.0210) 

0.8693 0.0377 
(0.1081) 

    0.5532*** 
(0.0186) 

0.8976 

M
e
d

iu
m

 M
a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

RIO 
(1/2) 

 0.3111* 
(0.1477) 

0.4934 
(0.0185) 

0.8754    0.4277** 
(0.1383) 

0.5039 
(0.0164) 

0.9028    0.5179** 
(0.1560) 

0.5288 
(0.0198) 

0.8756 

AZN 
 

  0.3509* 
(0.1607) 

0.5085 
(0.0234) 

0.8233  0.4854* 
(0.1864) 

0.5151 
(0.0258) 

0.7974     0.9253*** 
(0.1623) 

0.4983 
(0.0255) 

0.7910 

RBS 
(1/2) 

     0.4859*** 
(0.1263) 

0.4844 
(0.0160) 

0.9005     0.9687*** 
(0.1712) 

    0.4473*** 
(0.0206) 

0.8231     1.6891*** 
(0.1064) 

    0.3727*** 
(0.0168) 

0.8294 

BATS 
(5/9) 

0.0752 
(0.1395) 

0.5436 
(0.0227) 

0.8504    0.5643** 
(0.1695) 

0.5032 
(0.0244) 

0.8072      0.7284*** 
(0.1494) 

0.5133 
(0.0245) 

0.8121 

BG 
 

0.2933 
(0.1906) 

0.5032 
(0.0290) 

0.7480    0.6001** 
(0.1812) 

0.4679 
(0.0243) 

0.7856     0.6563*** 
(0.1481) 

0.4952 
(0.0224) 

0.8282 

AAL 
 

    0.5350** 
(0.1621) 

0.4685 
(0.0212) 

0.8283      0.7523*** 
(0.1588) 

0.4736 
(0.0196) 

0.8522    0.4681** 
(0.1598) 

0.5336 
(0.0215) 

0.8585 

BLT 
(5/9) 

     -0.0155 
(0.1266) 

0.5306 
(0.0158) 

0.9174     -0.0418 
(0.1569) 

    0.5664*** 
(0.0184) 

0.9037 0.1516 
(0.1806) 

    0.5815*** 
(0.0232) 

0.8617 

BARC 
 

0.2443 
(0.1524) 

0.5032 
(0.0193) 

0.8708  0.4612* 
(0.1882) 

0.5053 
(0.0228) 

0.8294     0.9214*** 
(0.1735) 

0.4883 
(0.0225) 

0.8231 

TSCO 
 

      0.6242*** 
(0.1352) 

0.4789 
(0.0205) 

0.8435     0.9332*** 
(0.1896) 

0.4653 
(0.0266) 

0.7512     1.2111*** 
(0.1609) 

0.4683 
(0.0269) 

0.7492 
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XTA      0.5654*** 
(0.1599) 

    0.4517*** 
(0.0209) 

0.8218     0.9376*** 
(0.1565) 

    0.4449*** 
(0.0192) 

0.8414     0.5467*** 
(0.1581) 

0.5208 
(0.0207) 

0.8624 

DGE 
 

    0.5976*** 
(0.1319) 

0.4643 
(0.0210) 

0.8289     0.4745*** 
(0.1548) 

0.5086 
(0.0224) 

0.8354    0.5357** 
(0.1663) 

0.5465 
(0.0285) 

0.7841 

LLOY 
 

0.1485 
(0.1371) 

0.5213 
(0.0195) 

0.8758    0.5447** 
(0.1964) 

0.4952 
(0.0256) 

0.7865     1.2506*** 
(0.1739) 

0.4546 
(0.0245) 

0.7733 

STAN 
 

  0.4694** 
(0.1785) 

0.4644 
(0.0264) 

0.7529     0.7492*** 
(0.1706) 

0.4593 
(0.0239) 

0.7852     0.5876*** 
(0.1109) 

0.4985 
(0.0167) 

0.8985 

L
o

w
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

ULVR 
(5/9) 

0.0260 
(0.1504) 

0.5306 
(0.0245) 

0.8221 0.3090 
(0.1953) 

0.5301 
(0.0295) 

0.7613 0.3810* 
(0.1671) 

0.5530 
(0.0292) 

0.7796 

RB     0.6107*** 
(0.1488) 

0.4845 
(0.0266) 

0.7657     0.7951*** 
(0.1773) 

0.4812 
(0.0280) 

0.7440     0.9439*** 
(0.1548) 

0.4819 
(0.0280) 

0.7447 

SAB 
 

0.1755 
(0.1613) 

0.5083 
(0.0275) 

0.7711 0.4031* 
(0.1716) 

0.5062 
(0.0266) 

0.7820     0.6357*** 
(0.1375) 

0.4898 
(0.0246) 

0.7965 

NG 
 

  0.4444** 
(0.1641) 

0.4996 
(0.0277) 

0.7632 0.3733* 
(0.1689) 

0.5276 
(0.0270) 

0.7910    0.5384** 
(0.1620) 

0.5240 
(0.0298) 

0.7535 

IMT 
 

0.3810* 
(0.1743) 

0.4931 
(0.0302) 

0.7248     0.7034*** 
(0.1866) 

0.4912 
(0.0290) 

0.7394     0.6649*** 
(0.1524) 

0.5083 
(0.0275) 

0.7708 

BT 
 

0.3795* 
(0.1503) 

0.4950 
(0.0230) 

0.8205 0.4048* 
(0.1804) 

0.5078 
(0.0268) 

0.7799     1.6658*** 
(0.1231) 

    0.3578*** 
(0.0242) 

0.6833 

AV 
 

0.4038* 
(0.1602) 

0.4996 
(0.0256) 

0.7901 0.2646 
(0.1824) 

0.5071 
(0.0281) 

0.7622     0.9244*** 
(0.1548) 

0.4594 
(0.0255) 

0.7628 

PRU 
 

0.1359 
(0.1618) 

0.5145 
(0.0244) 

0.8145 0.1806 
(0.1957) 

0.5276 
(0.0286) 

0.7712    0.4746** 
(0.1509) 

0.5120 
(0.0241) 

0.8165 

BAE 
 

    0.7361*** 
(0.1703) 

0.4472 
(0.0274) 

0.7251     0.8340*** 
(0.1704) 

0.4688 
(0.0264) 

0.7564     1.0215*** 
(0.1340) 

0.4747 
(0.0237) 

0.7991 

CNA 
 

   0.4857** 
(0.1811) 

0.4995 
(0.0312) 

0.7165 0.2238 
(0.1968) 

0.5493 
(0.0316) 

0.7487    0.8347*** 
(0.1345) 

0.4798 
(0.0255) 

0.7773 

SSE 
 

 0.4325* 
(0.1985) 

0.4957 
(0.0344) 

0.6712   0.4624** 
(0.1752) 

0.5056 
(0.0291) 

0.7485  0.3670* 
(0.1481) 

0.5463 
(0.0293) 

0.7740 

CBRY 
 

      -0.1822 
(0.1646) 

    0.5601*** 
(0.0266) 

0.8137 0.0704 
(0.1598) 

    0.5595*** 
(0.0267) 

0.8131   0.3879** 
(0.1188) 

0.5438 
(0.0233) 

0.8438 

BSY 
(5/9) 

      -0.0372 
(0.1485) 

0.5499 
(0.0265) 

0.8093 0.0873 
(0.1730) 

    0.5656*** 
(0.0291) 

0.7882     0.7247*** 
(0.1400) 

0.5005 
(0.0284) 

0.7545 

EMG 
 

0.2976 
(0.1581) 

0.4874 
(0.0256) 

0.7817   0.5260** 
(0.1658) 

0.4645 
(0.0258) 

0.7613     0.8705*** 
(0.1519) 

0.4624 
(0.0282) 

0.7263 

RR 
 

0.3834* 
(0.1594) 

0.4929 
(0.0279) 

0.7549 0.3178 
(0.1796) 

0.5246 
(0.0294) 

0.7581     0.8388*** 
(0.1225) 

0.4795 
(0.0236) 

0.8033 

MRW 
 

0.3082 
(0.1850) 

0.5010 
(0.0321) 

0.7066 0.3528 
(0.1880) 

0.5199 
(0.0314) 

0.7307     0.5989*** 
(0.1450) 

0.5221 
(0.0299) 

0.7505 
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 MKS 
 

0.2373 
(0.1802) 

0.5032 
(0.0291) 

0.7464 0.4352* 
(0.2143) 

0.5051 
(0.0328) 

0.7003     0.6533*** 
(0.1278) 

0.5058 
(0.0241) 

0.8126 

SBRY 
 

0.2756 
(0.1564) 

0.4797 
(0.0270) 

0.7565 0.3255 
(0.1844) 

0.5259 
(0.0326) 

0.7200     0.7752*** 
(0.1234) 

0.4997 
(0.0271) 

0.7709 

WPP 
 

0.1737 
(0.1487) 

0.5230 
(0.0257) 

0.8040 0.2166 
(0.1912) 

0.5514 
(0.0313) 

0.7545     0.7669*** 
(0.1363) 

0.4972 
(0.0252) 

0.7930 

REL 
(5/9) 

0.0487 
(0.1532) 

0.5422 
(0.0279) 

0.7885 0.3088 
(0.1746) 

0.5349 
(0.0296) 

0.7638     0.8750*** 
(0.1366) 

0.5069 
(0.0265) 

0.7829 

LGEN 
(5/9) 

0.2114 
(0.1871) 

0.5454 
(0.0334) 

0.7252     1.0468*** 
(0.1918) 

    0.4135*** 
(0.0346) 

0.5847     0.8274*** 
(0.1358) 

    0.4410*** 
(0.0256) 

0.7451 

CPG 0.4387* 
(0.1803) 

0.4959 
(0.0333) 

0.6863 0.4708* 
(0.1973) 

0.5132 
(0.0328) 

0.7070     0.7567*** 
(0.1384) 

0.4984 
(0.0272) 

0.7681 

ABF 
(3/5) 

      -0.0707 
(0.1400) 

0.6215 
(0.0319) 

0.7890 0.1982 
(0.1499) 

0.5622 
(0.0319) 

0.7546     0.7143*** 
(0.1007) 

0.4941 
(0.0274) 

0.7628 

LAND 
 

0.3971* 
(0.1877) 

0.4895 
(0.0318) 

0.7006       0.2541 
(0.2010) 

0.5222 
(0.0331) 

0.7102      0.8111*** 
(0.1698) 

0.4675 
(0.0327) 

0.6686 

OML 
 

    0.7472*** 
(0.1713) 

0.4531 
(0.0320) 

0.6637    1.2927*** 
(0.1594) 

    0.3767*** 
(0.0286) 

0.6311     1.2092*** 
(0.1062) 

    0.3889*** 
(0.0218) 

0.7582 

ANTO 
 

0.3642 
(0.1907) 

0.4889 
(0.0333) 

0.6805 0.4606* 
(0.1863) 

0.4758 
(0.0303) 

0.7085     0.4564*** 
(0.1269) 

0.5192 
(0.0225) 

0.8404 

PSON 
(5/9) 

0.1541 
(0.1815) 

0.5406 
(0.0341) 

0.7120 0.2028 
(0.1756) 

0.5533 
(0.0314) 

0.7542     0.5710*** 
(0.1489) 

0.5271 
(0.0299) 

0.7540 

SHP 
 

0.0983 
(0.1296) 

0.5248 
(0.0231) 

0.8367  0.4032* 
(0.1557) 

0.5141 
(0.0271) 

0.7799     0.4981*** 
(0.0984) 

0.5292 
(0.0216) 

0.8557 

SL 
 

  0.2911** 
(0.0996) 

0.5070 
(0.0223) 

0.8361      -0.0067 
(0.1357) 

    0.5586*** 
(0.0267) 

0.8122     0.7538*** 
(0.1083) 

0.4529 
(0.0260) 

0.7491 

IPR 
 

0.4842* 
(0.1924) 

0.4963 
(0.0359) 

0.6535   0.4767** 
(0.1762) 

0.5159 
(0.0307) 

0.7362     0.6855*** 
(0.1334) 

0.4979 
(0.0280) 

0.7573 

KAZ 
 

0.4064* 
(0.1881) 

0.4578 
(0.0339) 

0.6423  0.5455** 
(0.1898) 

0.4552 
(0.0316) 

0.6720     0.5542*** 
(0.1308) 

0.4792 
(0.0223) 

0.8201 

UU 
 

0.2326 
(0.1467) 

0.5490 
(0.0280) 

0.7910      0.1843 
(0.1643) 

    0.5687*** 
(0.0293) 

0.7882     0.7054*** 
(0.1221) 

0.5356 
(0.028) 

0.7822 

SN 
 

0.1534 
(0.1476) 

0.5415 
(0.0296) 

0.7676 0.2612 
(0.1662) 

0.5396 
(0.0293) 

0.7705     0.8139*** 
(0.1091) 

0.4900 
(0.0245) 

0.7981 

EXPN 
 

   0.3761** 
(0.1266) 

0.4755 
(0.0243) 

0.7914      0.1259 
(0.1425) 

0.5509 
(0.0273) 

0.8003     0.6494*** 
(0.1019) 

0.5003 
(0.0229) 

0.8255 

BLND 
 

0.2942 
(0.2024) 

0.5019 
(0.0332) 

0.6922   0.6174** 
(0.1945) 

0.4778 
(0.0321) 

0.6862     0.8978*** 
(0.1712) 

0.4764 
(0.0330) 

0.6723 

 VED 
 

 0.3489* 
(0.1672) 

0.4629 
(0.0285) 

0.7231 0.4621* 
(0.2005) 

0.4797 
(0.0309) 

0.7040     0.4797*** 
(0.1344) 

0.4882 
(0.0228) 

0.8194 

RSA 0.0709 0.5660 0.7067 0.2360 0.5387 0.6620     1.4448***     0.3451*** 0.5167 
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 (0.1917) (0.0362) (0.2088) (0.0382) (0.1342) (0.0331) 
CPI 
 

0.0458 
(0.1465) 

    0.5805*** 
(0.0321) 

0.7633 0.0974 
(0.1485) 

    0.5880*** 
(0.0293) 

0.7997     0.6737*** 
(0.1123) 

0.5081 
(0.0275) 

0.7718 

KGF 
 

0.1064 
(0.1787) 

0.5376 
(0.0313) 

0.7449 0.3518 
(0.2125) 

0.5318 
(0.0343) 

0.7030     0.9739*** 
(0.1319) 

0.4734 
(0.0259) 

0.7673 

CCL 
 

0.2297 
(0.1172) 

0.5275 
(0.0223) 

0.8470 0.0595 
(0.1311) 

    0.5633*** 
(0.0233) 

0.8523  0.2793** 
(0.1028) 

    0.5750*** 
(0.0214) 

0.8771 

CW 
 

    0.4285*** 
(0.1259) 

0.4963 
(0.0244) 

0.8033 0.0800 
(0.1686) 

   0.5919*** 
(0.0308) 

0.7850     0.8049*** 
(0.1414) 

0.4885 
(0.0314) 

0.7045 

SMIN 
 

0.2690 
(0.1635) 

0.5150 
(0.0317) 

0.7222 0.3390* 
(0.1424) 

0.5177 
(0.0283) 

0.7677     0.5866*** 
(0.1185) 

0.5168 
(0.0287) 

0.7623 

LII 
 

0.2828 
(0.1675) 

0.5076 
(0.0332) 

0.6968   0.4834** 
(0.1648) 

0.4789 
(0.0312) 

0.6992     0.9169*** 
(0.1473) 

0.4569 
(0.0345) 

0.6333 

NXT 
 

0.3251 
(0.2087) 

0.5134 
(0.0362) 

0.6646 0.4220* 
(0.1876) 

0.4967 
(0.0304) 

0.7252     0.5715*** 
(0.1361) 

0.5018 
(0.0269) 

0.7744 

JMAT 
(4/7) 

0.0505 
(0.1667) 

    0.5721*** 
(0.0343) 

0.7327 0.1314 
(0.1723) 

    0.5828*** 
(0.0335) 

0.7489     0.4583*** 
(0.1022) 

0.5270 
(0.0249) 

0.8154 

BAY 
 

    0.6912*** 
(0.1804) 

0.4475 
(0.0300) 

0.6868    0.4976** 
(0.1783) 

0.4816 
(0.0280) 

0.7445     0.8943*** 
(0.1289) 

0.4656 
(0.0259) 

0.7609 

IAP 
 

0.0728 
(0.1260) 

    0.5814*** 
(0.0281) 

0.8086 0.1930 
(0.1687) 

0.5395 
(0.0303) 

0.7581     0.6773*** 
(0.0969) 

0.4809 
(0.0233) 

0.8084 

SVT 
 

0.1816 
(0.1676) 

0.5632 
(0.0353) 

0.7150 0.0579 
(0.1485) 

    0.5971*** 
(0.0292) 

0.8048     0.5076*** 
(0.1055) 

0.5386 
(0.0264) 

0.8050 

HMSO 
 

      -0.0729 
(0.1964) 

0.5579 
(0.0363) 

0.6996 0.1640 
(0.1627) 

0.5225 
(0.0302) 

0.7473     0.9050*** 
(0.1298) 

0.4578 
(0.0282) 

0.7218 

SGE 
 

      -0.2579 
(0.1327) 

    0.6206*** 
(0.0277) 

0.8318 0.0871 
(0.1609) 

    0.5802*** 
(0.0328) 

0.7560     0.9090*** 
(0.1049) 

0.4876 
(0.0279) 

0.7510 

REX 
 

      -0.0393 
(0.1552) 

    0.5920*** 
(0.0329) 

0.7615   0.4145** 
(0.1500) 

0.5054 
(0.0313) 

0.7204     0.7833*** 
(0.0927) 

0.4895 
(0.0220) 

0.8305 

IHG 
 

      0.0445 
(0.1724) 

0.5344 
(0.0325) 

0.7279 0.1821 
(0.1397) 

0.5265 
(0.0265) 

0.7958     0.5288*** 
(0.1086) 

0.5089 
(0.0245) 

0.8103 
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Table A7 

OLS regression results for pre-crisis (Jan 207-Jun 2018) and in-crisis period (Jul 2018- Dec 2019) 

This table reports the coefficient estimates for pre-crisis and in-crisis periods when underlying variables are estimated as averages across days 

based on equation (23). OLS regressions are based on the model in (25) which uses the definition of trading activity introduced by Kyle and 

Obizhaeva (2016b). Coefficients are tested against the null hypothesis 
0 : 1/ 2H   . *, **, and *** denote significance at the 5%, 1%, and 0.1% 

level, respectively.      

  Pre-Crisis In-Crisis 

 Stocks c β  ̅2 c β  ̅2 

H
ig

h
 M

a
rk

e
t 

C
a
p

it
a
li

za
ti

o
n

 

BP 
 

  -0.3426** 
(0.1230) 

    0.5614*** 
(0.0152) 

0.9307   0.5218** 
(0.1673) 

0.5389 
(0.0220) 

0.8563 

HSBA 
 

        -0.0762 
(0.1592) 

 0.5417* 
(0.0202) 

0.8763    0.6754*** 
(0.1473) 

0.5115 
(0.0186) 

0.8822 

VOD 
 

     0.7762*** 
(0.1586) 

 0.4514* 
(0.0203) 

0.8299    0.9040*** 
(0.1883) 

0.5012 
(0.0255) 

0.7918 

GSK 
 

        -0.1974 
(0.1479) 

  0.5649** 
(0.0199) 

0.8890    0.5819*** 
(0.1713) 

0.5286 
(0.0247) 

0.8190 

RDSA 
 

        -0.1618 
(0.1232) 

0.5203 
(0.0199) 

0.8715          -0.1333 
(0.1115) 

    0.5616*** 
(0.0180) 

0.9062 

M
e
d

iu
m

 M
a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

RIO 
 

   0.3983** 
(0.1452) 

0.4885 
(0.0180) 

0.8795   0.4273** 
(0.1466) 

0.5299 
(0.0181) 

0.8944 

AZN 
 

  0.3574* 
(0.1756) 

0.5141 
(0.0255) 

0.8010     0.7948*** 
(0.1643) 

0.5044 
(0.0244) 

0.8091 

RBS 
 

     0.6060*** 
(0.1395) 

0.4767 
(0.0172) 

0.8841     1.4946*** 
(0.1231) 

    0.3948*** 
(0.0178) 

0.8292 

BATS 
 

          0.2309 
(0.1503) 

0.5312 
(0.0239) 

0.8302    0.6689*** 
(0.1559) 

0.5102 
(0.0240) 

0.8172 

BG 
 

 0.3768* 
(0.1988) 

0.4914 
(0.0292) 

0.7364     0.6280*** 
(0.1524) 

0.4882 
(0.0219) 

0.8308 

AAL 
 

     0.6380*** 
(0.1614) 

0.4634 
(0.0208) 

0.8306   0.5138** 
(0.1581) 

0.5215 
(0.0206) 

0.8639 

BLT 
 

0.0053 
(0.1366) 

 0.5386* 
(0.0169) 

0.9099 0.0414 
(0.1721) 

    0.5823*** 
(0.0212) 

0.8819 

BARC 
 

 0.3701* 
(0.1671) 

0.5009 
(0.0207) 

0.8523     0.7318*** 
(0.1776) 

0.4956 
(0.0226) 

0.8265 
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TSCO 
 

    0.7238*** 
(0.1574) 

0.4730 
(0.0235) 

0.8001     1.1113*** 
(0.1683) 

0.4705 
(0.0262) 

0.7615 

XTA      0.6841*** 
(0.1671) 

 0.4474* 
(0.0215) 

0.8109     0.6618*** 
(0.1483) 

0.4987 
(0.0189) 

0.8732 

DGE 
 

    0.5864*** 
(0.1393) 

0.4732 
(0.0216) 

0.8259   0.4347** 
(0.1637) 

0.5465 
(0.0261) 

0.8121 

LLOY 
 

 0.3960* 
(0.1660) 

0.5015 
(0.0229) 

0.8258     0.9382*** 
(0.1805) 

0.4754 
(0.0247) 

0.7847 

STAN 
 

   0.4899** 
(0.1798) 

0.4732 
(0.0262) 

0.7631     0.6789*** 
(0.1268) 

0.4797 
(0.0185) 

0.8689 

L
o

w
 M

a
rk

e
t 

C
a
p

it
a
li

z
a
ti

o
n

 

ULVR 
 

     0.1317*** 
(0.1663) 

0.5280 
(0.0268) 

0.7937 0.3343 
(0.1783) 

0.5492 
(0.0292) 

0.7774 

RB 
 

     0.6007*** 
(0.1596) 

0.4927 
(0.0277) 

0.7569     0.9556*** 
(0.1617) 

0.4743 
(0.0275) 

0.7455 

SAB 
 

          0.2197 
(0.1694) 

0.5125 
(0.0281) 

0.7663     0.5846*** 
(0.1459) 

0.4922 
(0.0246) 

0.7981 

NG 
 

  0.3665* 
(0.1689) 

0.5199 
(0.0283) 

0.7687   0.4605** 
(0.1639) 

0.5269 
(0.0281) 

0.7764 

IMT 
 

 0.4474* 
(0.1820) 

0.4992 
(0.0309) 

0.7200     0.6947*** 
(0.1639) 

0.4994 
(0.0275) 

0.7651 

BT 
 

          0.2839 
(0.1690) 

0.5102 
(0.0256) 

0.7967     1.3607*** 
(0.1372) 

    0.4022*** 
(0.0243) 

0.7297 

AV 
 

          0.2992 
(0.1731) 

0.5135 
(0.0274) 

0.7763     0.7451*** 
(0.1584) 

    0.4674*** 
(0.0254) 

0.7694 

PRU 
 

          0.1029 
(0.1814) 

0.5263 
(0.0271) 

0.7890  0.3975* 
(0.1586) 

0.5143 
(0.0246) 

0.8124 

BAE 
 

     0.7825*** 
(0.1794) 

0.4528 
(0.0286) 

0.7116     0.9389*** 
(0.1396) 

0.4756 
(0.0234) 

0.8030 

CNA 
 

0.3328 
(0.1913) 

0.5288 
(0.0327) 

0.7208     0.6825*** 
(0.1525) 

0.4958 
(0.0268) 

0.7715 

SSE 
 

  0.3859* 
(0.1918) 

0.5102 
(0.0331) 

0.7005  0.3920* 
(0.1603) 

0.5300 
(0.0294) 

0.7630 

CBRY 
 

        -0.1012 
(0.1713) 

 0.5614* 
(0.0280) 

0.7991 0.2250 
(0.1286) 

 0.5583* 
(0.0237) 

0.8456 

BSY 
 

        -0.0536 
(0.1553) 

 0.5632* 
(0.0276) 

0.8042     0.5352*** 
(0.1551) 

0.5229 
(0.0288) 

0.7646 

EMG 0.3077 0.4881 0.7839     0.8103*** 0.4562 0.7337 
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 (0.1570) (0.0255) (0.1589) (0.0273) 
RR 
 

 0.3903* 
(0.1721) 

0.5000 
(0.0295) 

0.7397     0.6762*** 
(0.1386) 

0.4935 
(0.0252) 

0.7917 

MRW 
 

0.3121 
(0.1953) 

0.5105 
(0.0336) 

0.6945   0.5000** 
(0.1558) 

0.5232 
(0.0295) 

0.7567 

 MKS 
 

0.3342 
(0.2153) 

0.5051 
(0.0342) 

0.6826     0.5345*** 
(0.1408) 

0.5081 
(0.0246) 

0.8082 

SBRY 
 

0.2712 
(0.1733) 

0.5020 
(0.0307) 

0.7248    0.6358*** 
(0.1401) 

0.5060 
(0.0279) 

0.7640 

WPP 
 

0.1152 
(0.1627) 

0.5423 
(0.0280) 

0.7878     0.6438*** 
(0.1535) 

0.5094 
(0.0268) 

0.7814 

REL 
 

0.0716 
(0.1658) 

0.5493 
(0.0297) 

0.7717     0.7324*** 
(0.1447) 

0.5114 
(0.0265) 

0.7858 

LGEN 
 

 0.5206* 
(0.2111) 

0.5066 
(0.0373) 

0.6447     0.8530*** 
(0.1414) 

 0.4308* 
(0.0266) 

0.7215 

CPG  0.4319* 
(0.2010) 

0.5108 
(0.0361) 

0.6637     0.6442*** 
(0.1483) 

0.5023 
(0.0272) 

0.7712 

ABF 
 

        -0.0387 
(0.1527) 

     0.6198*** 
(0.0337) 

0.7696    0.5297*** 
(0.1104) 

0.5152 
(0.0276) 

0.7749 

LAND 
 

 0.3929* 
(0.1981) 

0.4938 
(0.0334) 

0.6826   0.5790** 
(0.1792) 

0.4954 
(0.0324) 

0.6973 

OML 
 

     0.8213*** 
(0.1770) 

0.4504 
(0.0325) 

0.6542     1.2415*** 
(0.1137) 

    0.3807*** 
(0.0223) 

0.7421 

ANTO 
 

0.3820 
(0.2020) 

0.4922 
(0.0344) 

0.6682   0.4257** 
(0.1353) 

0.5040 
(0.0233) 

0.8228 

PSON 
 

0.1447 
(0.1898) 

0.5509 
(0.0357) 

0.7016   0.4396** 
(0.1513) 

0.5369 
(0.0286) 

0.7762 

SHP 
 

0.2341 
(0.1491) 

0.5200 
(0.0259) 

0.7987   0.4036** 
(0.1102) 

0.5318 
(0.0225) 

0.8465 

SL 
 

0.0727 
(0.1052) 

0.5560 
(0.0225) 

0.8580     0.6034*** 
(0.1188) 

0.4653 
(0.0266) 

0.7516 

IPR 
 

 0.4375* 
(0.1905) 

0.5114 
(0.0350) 

0.6778     0.6418*** 
(0.1466) 

0.4995 
(0.0285) 

0.7525 

KAZ 
 

 0.4248* 
(0.2048) 

0.4640 
(0.0358) 

0.6235     0.5531*** 
(0.1373) 

0.4690 
(0.0233) 

0.8003 

UU 
 

0.0910 
(0.1532) 

   0.5769** 
(0.0289) 

0.7972     0.6024*** 
(0.1364) 

0.5363 
(0.0282) 

0.7813 
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SN 
 

0.1024 
(0.1625) 

0.5538 
(0.0312) 

0.7572     0.6725*** 
(0.1231) 

0.5037 
(0.0251) 

0.7988 

EXPN 
 

0.2134 
(0.1291) 

0.5146 
(0.0251) 

0.8059    0.5045*** 
(0.1163) 

0.5135 
(0.0243) 

0.8152 

BLND 
 

0.3475 
(0.2068) 

0.5010 
(0.0340) 

0.6813     0.8313*** 
(0.1755) 

0.4742 
(0.0320) 

0.6839 

 VED 
 

0.3288 
(0.1802) 

0.4744 
(0.0296) 

0.7175     0.5261*** 
(0.1512) 

0.4807 
(0.0249) 

0.7870 

RSA 
 

0.0172 
(0.2008) 

 0.5807* 
(0.0379) 

0.6984     1.1362*** 
(0.1602) 

   0.3999** 
(0.0349) 

0.5639 

CPI 
 

        -0.0003 
(0.1485) 

   0.5973** 
(0.0320) 

0.7752     0.5180*** 
(0.1256) 

0.5306 
(0.0277) 

0.7839 

KGF 
 

0.1698 
(0.2051) 

0.5410 
(0.0351) 

0.7008     0.7620*** 
(0.1496) 

0.4956 
(0.0272) 

0.7666 

CCL 
 

0.1674 
(0.1212) 

0.5419 
(0.0228) 

0.8477 0.1801 
(0.1121) 

     0.5741*** 
(0.0218) 

0.8731 

CW 
 

 0.2924* 
(0.1383) 

0.5359 
(0.0266) 

0.8008     0.5566*** 
(0.1532) 

0.5267 
(0.0313) 

0.7367 

SMIN 
 

0.2401 
(0.1636) 

0.5293 
(0.0325) 

0.7233     0.5175*** 
(0.1231) 

0.5112 
(0.0273) 

0.7759 

LII 
 

0.3346 
(0.1750) 

0.5007 
(0.0341) 

0.6797     0.7773*** 
(0.1513) 

0.4641 
(0.0328) 

0.6632 

NXT 
 

0.3529 
(0.2142) 

0.5085 
(0.0368) 

0.6535     0.5128*** 
(0.1462) 

0.5012 
(0.0265) 

0.7793 

JMAT 
 

        -0.0094 
(0.1652) 

   0.5928** 
(0.0335) 

0.7556    0.4139** 
(0.1252) 

0.5348 
(0.0279) 

0.7834 

BAY 
 

    0.6692*** 
(0.1905) 

0.4528 
(0.0312) 

0.6757     0.7382*** 
(0.1372) 

0.4755 
(0.0252) 

0.7788 

IAP 
 

0.0413 
(0.1434) 

   0.5798** 
(0.0296) 

0.7908     0.5572*** 
(0.1174) 

0.4955 
(0.0252) 

0.7932 

SVT 
 

0.0865 
(0.1642) 

0.5868* 
(0.0344) 

0.7421   0.3645** 
(0.1196) 

 0.5589* 
(0.0268) 

0.8113 

HMSO 
 

        -0.0802 
(0.1867) 

0.5602 
(0.0350) 

0.7168     0.7177*** 
(0.1397) 

0.4722 
(0.0284) 

0.7321 

SGE 
 

        -0.2738 
(0.1471) 

    0.6293*** 
(0.0304) 

0.8087     0.7316*** 
(0.1185) 

0.5064 
(0.0286) 

0.7552 

REX 0.0766  0.5775* 0.7118     0.6578*** 0.4906 0.8279 
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 (0.1706) (0.0365) (0.0995) (0.0222) 
IHG 
 

0.0095 
(0.1719) 

0.5497 
(0.0327) 

0.7363     0.4397*** 
(0.1121) 

0.5072 
(0.0236) 

0.8208 
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CHAPTER 5 

Invariance of transaction costs in the FTSE 100  

Abstract 

We examine market microstructure invariance (MMI) principle for transaction costs in FTSE 

100 constituent stocks. We empirically test the MMI predictions concerning the invariance of 

transaction costs using three common proxies for transaction costs, namely quoted, effective, 

realized spread on trade data. We find that the predicted  -1/3 proportionality is present in 

average daily patterns in our sample for all three proxies of transaction costs, with larger trades 

having a negative impact on this proportionality when the underlying variables are estimated as 

intraday averages. Market fragmentation does not impact the estimated invariance coefficients, 

though it may lead to a further reduction of percentage transaction costs on LSE per unit of 

volatility. Finally, the invariance prediction holds for a consolidated market, but the lower 

reduction in the realised spreads suggests a greater impact of large trades in the alternative 

platforms, and is also consistent with the view that only few market makers benefit from an 

increase in trading activity.  
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5.1 Introduction  

Measuring market liquidity, which I define as the facility with which an order arriving in the 

market can be executed in a timely fashion at a price close to the fundamental value of the 

relevant security, can be an elusive undertaking. From this definition, it follows that the more 

the actual trade execution price deviates from the securities fundamental price, the more 

illiquid the underlying market. Market liquidity can vary across securities and through time, and 

understanding the determinants of such time variation is of vital importance for market 

participants and policy makers. When market liquidity decreases, investors are unable to 

purchase and sell an asset at similar prices, especially when they are considering transacting in 

larger trade sizes, and thus they are paying larger trading costs in order to undertake round-trip 

transactions. Such a market is characterised by wider bid-ask spreads. Practitioners may incur 

losses if market liquidity suddenly shrinks due to the resulting impact on their portfolio 

returns. Professionals that provide security trading services are constantly seeking the 

market/trading venue with the highest liquidity or attempting to time their trades to minimise 

their trading costs. Therefore, developing measures which efficiently capture market liquidity is 

a key for the fluent operation of financial markets and designing appropriate trading 

regulations.      

Measuring market liquidity is not easily undertaking, as it involves several dimensions, inter alia 

trading costs, depth, and execution speed among others. However, most commentators agree 

that direct trading costs are an important component which enters into an accurate assessment 

of market illiquidity, so quantifying such costs, and ascertaining how they change in response 

to variation in important trading characteristics exhibited by the underlying assets, becomes an 

important undertaking for market participants. There exists an extensive microstructure 

literature focusing on transaction costs, their measures, as well as their role in the trading 

process and their relation to market liquidity, price discovery and generally market quality. I 

selectively survey this extensive literature in chapter 2 of this thesis. This explains that bid-ask 

spread, one of the most commonly used direct measures of transaction costs, mainly exist due 

to liquidity provision costs such as order processing costs, adverse selection costs and 

inventory risk (Stoll (1978), O'Hara, 1995, Foucault et al., 1997, Madhavan, 2000). Elements of 

the spread can also be seen as providing compensation for immediacy (Demsetz, 1968).  

Based on one important determinant of the spread, namely adverse selection costs, Glosten 

and Milgrom (1985) develop a theoretical model for a pure dealership market, on the basis of 
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which they show that adverse selection costs alone can explain the existence of a spread. Kyle 

(1985) develops a theoretical model that is based on information asymmetry, and discusses 

how trade prices react to order size (determinants of market depth) and in turn how this 

affects transaction costs. Other papers combine the idea of information asymmetry with order-

processing costs or inventory risks and/or relax assumptions relating to competitive 

conditions, market orders, risk neutrality, and market structure (Easley and O'Hara, 1987, 

Admati and Pfleiderer, 1988, Hasbrouck, 1988, Klemperer and Meyer, 1989, Easley and 

O'Hara, 1992, Madhavan, 1992, Biais et al., 1998, Bloomfield et al., 2005, Calcagno and Lovo, 

2006). De Jong et al. (1996) find that on the Paris Bourse, the adverse selection component of 

the bid-ask spread increases slightly with order size, but the order-processing component 

decreases. Using NYSE data, Huang and Stoll (1997) report that the order-processing 

component accounts for the majority of the bid-ask spread, and that the adverse selection 

component does not increase with the trade size in contrast with the prediction of Kyle (1985).  

Madhavan et al. (1997) note that on the NYSE, the adverse selection component exhibits a 

downward trend through the trading day (high at the beginning of active trading and then 

decreasing) in contrast to the operating cost component. In the same spirit, Bouchaud et al. 

(2009) argue that under normal trading conditions, the main determinant of the spread in 

liquid, competitive and electronic market (i.e. markets where both order processing and 

inventory costs should be low) is the impact induced by adverse selection. 

The aforementioned papers constitute a small but representative fraction of microstructure 

papers that analyse transaction costs, the trading process and liquidity determination. We 

maintain that given the tendency to increased trading activity on electronic markets, adverse 

selection considerations and the consequent impact it has on securities markets, appears to be 

the most logical route along which to develop models analysing the determinants of 

transaction costs. Based on the MMI approach and the idea of bets (i.e. risk transfers) and their 

consequent market impact due to adverse selection introduced by Kyle and Obizhaeva 

(2016b), Kyle and Obizhaeva (2016a) propose a novel way to construct transaction costs 

models to measure such market impact costs using scaling laws. They demonstrate that these 

scaling laws, at least approximately, match empirical patterns in the trading behaviour of 

Russian stocks.  

In this chapter, based on the invariance concept and the proposed scaling laws for transaction 

costs, we investigate the empirical predictions of MMI in a different equity market context 
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than Kyle and Obizhaeva (2016a), specifically for FTSE 100 constituent stocks trading on the 

London Stock Exchange (LSE). The chapter contributes to the literature as follows. First, we 

investigate the proportionality between transaction costs per unit of volatility and trading 

activity as suggested by MMI theory for trades on the subset of 70 equities which remain 

constituents of the FTSE 100 stocks trading on the LSE during our sample period. As far as 

we know this is the first study in the literature to investigate this specific empirical invariance 

prediction in equity markets63. For the purposes of this chapter, following Kyle and Obizhaeva 

(2016a), we conjecture that there exists a proportionality between the number of trades and 

bets, provided that tick and minimum trade size or other microstructure elements adjust across 

stocks so that they have an identical impact on trading.  

Second, we examine the stipulated invariance proportionality using different proxies for 

transaction costs. Specifically, apart from the quoted bid-ask spread which  Kyle and 

Obizhaeva (2016a) also use, we employ both effective and realised spreads in order to capture 

different aspects of transaction costs and test whether the theoretical proportionality between 

the transaction costs per unit of volatility and trading activity in the power of -1/3 holds. 

Third, we investigate whether the MMI empirical prediction changes when we account for 

trading activity and volume traded on alternative trading platforms for the same stocks, and we 

account for their impact of market fragmentation on transaction costs in the invariance 

framework. We further explore this idea in a hypothetical consolidated market where a market 

participant has simultaneous access to different trading platforms.   

Our principal empirical findings are as follows. The -1/3 proportionality between percentage 

transaction costs per unit of volatility and trading activity, as indicated by the transaction cost 

microstructure invariance prediction,  is present in daily patterns on average in our sample for 

all three proxies of transaction costs. Spreads become narrower with an increase in trading 

activity during specific 5-minute time intervals than within specific days provided that returns 

volatility is constant. Larger trades have a negative impact on the proportionality when 

underlying variables are estimated as intraday averages, whereas they are more likely to occur 

during specific days rather than specific 5-minutes intervals across trading days. Market 

fragmentation does not change the statistical significance of estimated invariance coefficients, 

though it may lead to a further reduction of the percentage transaction costs on LSE per unit 

of volatility. Trading activity and volume traded on Chi-X have the greatest impact on LSE 

                                                           
63 We confront the same data issues that we face in the previous chapters. Please refer to the introduction in 
Chapter 3 for more information  
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percentage transaction costs. Moreover, invariance proportionality also holds for the 

consolidated market. However, the lower reduction in the realised spreads we observe for a 

given increase in trading activity may suggest a greater impact of large trades in the alternative 

platforms, or alternatively that only a few market makers are able to benefit from the increase 

in trading activity. 

Finally, this chapter contributes to the existing literature relating to market microstructure 

invariance and the related scaling laws, as well as to the discussion concerning the extent to 

which its empirical predictions hold across different market settings. Related papers include 

Kyle and Obizhaeva (2016a), Kyle and Obizhaeva (2016b), Kyle et al. (2016), Bae et al. (2016), 

Kyle et al. (2014) and Andersen et al. (2016). Our results complement those of microstructure 

research which discusses the components, measures and models of transaction costs, and also 

studies which investigate transaction costs in the presence of market fragmentation. Relevant 

studies include the papers by Battalio (1997), Battalio et al. (1997), Bessembinder and Kaufman 

(1997), Battalio et al. (1998), Battalio and Holden (2001), Boehmer and Boehmer (2003),  

Degryse et al. (2015) and Gresse (2017) who analyses market fragmentation and its impact on 

transaction costs). 

The remainder of the chapter proceeds as follows. Section 2 briefly summarizes the theoretical 

background for the development of a transaction cost model and the invariance of transaction 

costs, as suggested in Kyle and Obizhaeva (2016a). Section 3 explains the methodology and the 

main empirical hypothesis. Section 4 concerns with the data and descriptive statistics regarding 

the underlying variables and presents the empirical results of the analysis. Section 5 concludes. 

5.2 Theoretical background 

5.2.1 On the development of a transaction cost model 

In practice trading stocks or other securities can be expensive. Kyle and Obizhaeva (2016a) 

assume that jtG  denotes the price impact cost of executing a bet of size jtQ   in asset j  at time 

t . They make the identifying assumption that jtG  is a function of (i.e. depends on) bet size 

jtQ  (units of shares), the share price jtP  (units of local currency per share), the trading volume 

jtV  (units of shares/day), the returns variance 2

jt  (units per day) and the average cost in local 

currency units of executing the bet BC  (units of local currency). It follows that: 
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2: ( , , , , )jt jt jt jt jt BG g Q P V C   (36)        

In practice, the quantity jtG  is dimensionless (i.e. a number), measured in bps, with 0jtG  . 

Moreover,  jtG
 
is a function only of its parameters64  and not any other characteristics of asset 

j  at time t . So, any proposed model of transaction costs should take into account the above 

restrictions. Dimensional analysis highlights the importance of the units used being consistent. 

In the above equation all underlying arguments are measured in units of currency, shares or 

time. According to the Buckingham π theorem any physically valid function with N  variables, 

even if its form is unknown, it can be rewritten as a combination of N K  dimensionless 

parameters formulated from the original variables, where K  is the number of physical 

dimensions involved. Given that the function (36) involves 3 dimension and 5 physical 

variables then it follows that:        

1 2( , )
jt jtjtG g     (37) 

where 
1 jt

  and 
2 jt

  are two dimensionless parameters ( 5 3 2N K    )  

Kyle and Obizhaeva (2016a) propose that these two dimensionless variables, 
1 jt jtL   and 

2 jt jtZ  ,  are defined as: 

2

2
: ,     : ,    ( , )

a

jt jt jt jt

jt jt jt jt jt

jt B jt B

m P V P Q
L Z G g L Z

C L C

   
      

  (38)  

where 2m  is a dimensionless constant and a  is an exponent. Initially a  does not play any 

significant role given that jtL  is a dimensionless parameter. 

Kyle and Obizhaeva (2016a) refine further their proposed trading cost model with the 

introduction of a conservation law in the form of leverage neutrality. The idea behind leverage 

neutrality is quite simple and intuitive, drawing inferences from the capital structure theorem 

of Modigliani and Miller (1958). Specifically, adding cash or riskless debt in the “package” of 

risky asset traded, should not affect the percentage cost jtG  of trading the risky asset65. More 

formally, if a stock is levered up by a factor of A , following  a cash dividend payment of 

                                                           
64 That is why the function in (37) is defined as g  and not jtg   

65 Leverage changes (i.e. changes in the debt/equity ratio of a firm) should not have an impact on the economics 

of the risk transfer as described by a bet of jtQ  shares.       
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1(1 ) jtA P  (units of local currency), which is financed with cash or riskless debt, then the 

variables that potentially can affect jtG  will change as presented in Table 1:  

[Table 1 in here] 

Substituting the variables in Table 1 into the expression for jtL  and setting 1/ 3a   reveal that 

if the stock is levered by a factor of A , the dimensionless parameter jtL  becomes /jtL A , 

which in turn means the dimensionless parameter jtZ  remains unchanged. It follows that the 

percentage cost jtG of executing a bet with size jtQ  will also change by a factor of A 66.     

Therefore, imposing the restriction of leverage neutrality suggests that for any A , the function 

f  should be homogeneous, so that: 

1 1( , ) ( , ) (1, ) ( , )
jtA L

jt jt jt jt jt jt jt jt jtg A L Z A f L Z L f Z g L Z G


           (39) 

Then for a univariate function f  which is defined as ( ) : (1, )jt jtf Z g Z , the percentage cost 

function jtG  can be written as: 

1/3
2

2

1
( ),    : ,     :

jt jt jt jt

jt jt jt jt

jt jt B jt B

m P V P Q
G f Z L Z

L C L C

   
      

  (40)    

Given the initial identifying assumption of the parameters that may affect jtG  in (36), the 

equations for jtL  and jtZ  in (38) and the scaling and constraints implied by dimensional 

analysis and  leverage neutrality, the transaction cost function in (40) takes a more general 

specification: 

1/3 1/3
2 2

2

2 2
( , , , , )

jt B jt B jt jt

jt jt jt jt jt B

jt jt jt jt B

C C P Q
G g Q P V C f

m P V m P V C

 


     
                 

   (41) 

If bet size jtQ  is assumed to be a random variable, which takes positive values for purchases 

and negative for sells, with   0jtE Q  , and the dimensionless constant 
2m  is chosen in a way 

                                                           
66 This is because the cost (in currency units) of executing this bet does not change while the value (in currency 

units) of the bet changes inversely proportionally with jtP , from jt jtP Q  to  /jt jtP A Q   
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that   1jtE Z  , then jtZ  can be viewed as “scaled bet size”67 . Also taking expectations of the 

equation for jtZ  in (41) indicates that the parameter 1/ jtL  is actually a ratio of the average 

cost in local currency units 
BC  and to average value of the bet in local currency units 

 jt jtE P Q as shown in equation (42). Kyle and Obizhaeva (2016a) argue that 1/ jtL
 
estimates 

the “value-weighted expected market impact cost” of a bet as a ratio of value traded in local 

currency units. In this sense it can be treated as an “illiquidity index”, with its inverse serving as a 

“liquidity indicator”68: 

 
 

 
1/3

2

2

1
1

jt BB
jt jt jt jt B

jt jt jtjt jt

CC
E Z E P Q L C

L m P VE P Q

 
          

  (42) 

The expression (42) suggests that more liquid markets are associated with more bets of larger 

sizes. In addition, from the definition of the number of bets  /jt jt jtV E Q   as introduced 

in in Kyle and Obizhaeva (2016b) and the definitions of both jtL  and jtZ  it can be inferred 

that  as liquidity increases the number of bets increases twice as fast as compared to their size: 

2 2

2

jt jt

jt

L

m





     (43)          

The equation (43) indicates that there exists a proportionality between the illiquidity measure 

1/ jtL  and the returns volatility in one unit of business time 1/2/jt jt   , the latter describing the 

price movement caused by the arrival of each bet in the market.  

Utilising the definition of trading activity from Kyle and Obizhaeva (2016b), namely the 

product of trading volume and returns volatility69 denoted in local currency units, 

:jt jt jt jtW P V    , the definitions of 1/ jtL  in (42) and jt  in (43) can be rewritten as follows: 

                                                           

67 This is because it expresses the bet size jtQ  as a multiple of the average unsigned bet size  jtE Q   

68 The definition of 1/ jtL  implied in equation (42) is similar to that suggested in Kyle and Obizhaeva (2016b). In 

a sense, the scaling constant 2m  accounts for the volume multiplier  , the volatility multiplier   , the average 

amount of risk in local currency units a bet transfers per unit of business time,  E I  , so that we can directly 

use the trading volume jtV  and returns variance 
2

jt  when we refer to bets.  

69 Trading activity can be considered as a measure of the total risk transferred per day. It is leverage neutral and is 
measured in local currency units per time to the power of 3/2.   
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1/3 2/32
1

,     
jt jt

jt jt

jt

m W W

L C mC
 



   
     

  

  (44) 

5.2.2 Market microstructure invariance contribution 

The idea of developing models with the use of dimensional analysis and conservation laws, 

such as leverage neutrality, is an interesting approach that opens limitless possibilities for 

market microstructure literature. However, any model will require measures for its underlying 

variables in order to yield valid empirical predictions. For example in the case of the theoretical 

transaction cost model (41), variables such as the price of the security jtP , the trading volume 

jtV  and returns variance 2

jt   constitute asset characteristics that can be directly acquired or 

estimated with data that is publicly available. In contrast, the bet size jtQ  is only known to the 

respective trader that initiates the transaction and is therefore, private information. As for the 

transaction cost estimates, some can easily be obtained or estimated, such as the bid-ask 

spreads, while others require access to confidential information. What is also difficult to 

capture is how the dimensionless parameters 2m  and BC  may or may not remain constant 

across different assets.  

Kyle and Obizhaeva (2016b) introduce market microstructure invariance theory as the 

empirical hypotheses that when bet sizes are estimated as risks that bets transfer in business 

time, both the risks and the transaction costs in local currency units that are associated with 

these bets remain constant. Based on these invariance principles, Kyle and Obizhaeva (2016a) 

argue that the value in currency units of the cost BC  and the scaling variable 2m  remain 

constant across both time and securities. The former principle is based on the insight that the 

allocation of resources across time and assets by market participants is such that BC  is 

balanced, and the latter principle is based on the conjecture that information signals on which 

the sizes of a bet are decided, do not vary across time and securities. Intuitively, the 

aforementioned invariant variables can potentially assist in connecting the microscopic and 

macroscopic properties of trading in an asset.  For example if these invariance principles hold 

in a specific market then the liquidity index in (40) becomes a measure that is directly 

proportional to volume (in local current units) per unit of returns variance to the power of 1/3 

and can be readily estimated from publicly available data. This aligns with the general belief of 

traders that transaction costs are higher in markets with low volume and high volatility. MMI 
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also provides an alternative to other well-known liquidity measures such as those developed in 

Amihud (2002) and Pástor and Stambaugh (2003), and is somewhat similar to the definition of 

“market temperature”70 in Derman (2002), where “temperature” is actually the product of 

calendar-time volatility and square root of trading frequency (number of intrinsic-time ticks 

that occur for a stock). In analogous fashion, the illiquidity measure in (44) is proportional to 

trading activity in the power of 1/3 per unit or returns volatility.  

However, market microstructure invariance does not suggest a specific functional form for the 

function f  in equation (41). Assuming as in Kyle and Obizhaeva (2016a) that f  is a power 

function of the form ( )jt jtf Z Z


   with the constant 0  , then for different values of 

 , we can obtain the following special cases from equation (40) that are all consistent with 

invariance: 

1. Proportional transaction cost ( 0  ): 

1
,      jt

jt

G consant
L

      (45) 

2. Linear market impact cost ( 1  ): 
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3. Square-root market impact cost ( 1/ 2  ): 

1/2
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  (47) 

The liner market impact model aligns closely with the ideas formulated in price-impact models 

that are contingent on adverse section (e.g. Kyle (1985)), whereas the square root specification 

is in accordance with the empirical findings presented in certain econophysics papers (e.g. (e.g. 

Gabaix et al. (2006a)). However, the functional form of the cost function may correspond to a 

higher power law as reported by Almgren et al. (2005). 

                                                           
70 The idea of market temperature is that stocks that trade more frequently (i.e. stocks that are hotter) in the short 
run will lead to a short-term expectation for greater returns.   
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5.3 Methodology 

The above analysis provides a way to investigate the invariance of transaction costs by testing 

its empirical implications as suggested by equations for the transaction costs model, the 

illiquidity measure and the number of bets. As in Chapter 3, the focus of this chapter, when 

examining the specific invariance principle, is on trades rather than bets. MMI theory is based 

on the concept of bets, and such bets are difficult to observe in practice, as they are executed 

through sequences of smaller orders to reduce transaction costs. To test the invariance of 

transaction costs in higher frequencies (i.e. for transactions occurring in short intervals) certain 

operational assumptions are required. For the purposes of this chapter, in similar fashion to 

Kyle and Obizhaeva (2016a), we conjecture that there exists a proportionality between the 

number of trades and bets, provided that tick and minimum trade size or other microstructure 

elements adjust across stocks so that they have an identical impact on trading. As in Andersen 

et al. (2018) we argue that this condition that allows for testing invariance relationships for 

trades is strict and may not be valid in practice. However, it is a purely empirical hypothesis 

that is directly motivated by the invariance of transaction costs for bets and the MMI theory, as 

introduced by Kyle and Obizhaeva (2016b).   

Therefore, to fix things let jtTC  denote the transaction cost in local currency units for 

executing a trade in asset j  at time t . Provided that the underlying assumptions for the 

connection between bets and trades holds, an empirical implication/hypothesis of invariance 

for trades is given by substituting for 1/ L  in (45) from definition in (44) and then applying 

logs: 

1
log log

3

jt

jt

jt jt

TC
c W

P 

 
    

   (48) 

Note that in accordance with dimensional analysis in the previous section, the transaction cost 

jtG  in equation (45) should be dimensionless. Therefore, jtTC  is divided by jtP  (in local 

currency units) to acquire the desired outcome as jt  is also in local currency units. Given that 

invariance suggests that the parameters BC  and 2m  remain constant across both time and 

assets, they have been moved from the definition of 1/ L into the constant term c  for the 

empirical estimation. The above equation (48) implies a proportionality between the 

transaction costs per unit of volatility and the trading activity in the power of 1/ 3 .  
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For the empirical analysis, we estimate the underlying variables in 5-minute intervals as in 

Chapter 3 of the thesis. Intervals with zero number of trades or zero volatility are excluded 

from the estimation71. Realised volatility is estimated as the sum of 10 second squared returns72 

over the specific time span. Furthermore, we introduce the following three commonly used 

proxies for the transaction cost, jtTC : 1) the quoted spread (in local currency units) which is 

defined as jt jt jtQS Ask Bid   following Boehmer and Boehmer (2003), 2) the effective 

spread (in local currency units) which is defined as  trade 2jt jt jtES I TP MP    following Lee 

(1993) and Huang and Stoll (1996) and  3) the realised spread (in local currency units) which is 

defined as  trade , 52 -t j tI TP MP   following Huang and Stoll (1996). Following the 

classification rule as introduced by Lee and Ready (1991), if a trade registers above (below) the 

prevailing midpoint at that moment it is classified as buyer-initiated (seller-initiated).  To match 

each trade with respective quotes in both effective and realised spreads we employ similar 

approach as in Holden and Jacobsen (2014). We use the interpolated timing rule where each 

trade is matched with the quotes that prevail in the prior millisecond73, while we account for 

withdrawn quotes. For asset j  and time t  , jtAsk  is the best ask price (i.e. the lowest price at 

which a trader is willing to sell), jtBid  is the best bid price (i.e. the highest price at which a 

trader is willing to buy), jtMP  is the midpoint of the best bid and ask prices, tTP  is the trade 

price, , 5j tMP   is the midpoint of the best bid and ask prices 5 minutes after the execution of 

the trade and tradeI  is a trade indicator that takes +1 if the trade is a buy and -1 is the trade is a 

sell. All transaction costs proxies are estimated on a tick frequency and then averaged for each 

respective 5-minute interval.   

To mitigate the effects of sampling variation and any potential measurement errors we also 

aggregate the logarithms of the 5-minute observations regarding underlying variables and 

average their value intraday based on the following equation: 

                                                           
71 The 5-minute frequency is preferred compared to 1-minute as it yields less intervals with zero number of trades 
or zero volatility. In this way more information regarding the underlying variables is included rendering the 
coefficients estimates more accurate.  
72 Changes in the midpoints between the best bid and ask prices  
73 In contrast to Lee and Ready (1991) that uses 5-seconds frequency for matching, in order to avoid erroneous 
sequencing of quotes when classifying trades, we prefer to use the interpolated timing rule (millisecond matching), 
due to the prevalence of high-frequency trading in recent years.  
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1
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  , 1,......,d T      (49) 

where there are T  intervals of length t  in a trading day d  and jdv  represents the intraday 

average in logs of the relevant underlying variables. 

Alternatively, we can calculate the average of the relevant trading variables across days for each 

distinct 5-minute interval as: 

1

1 D

jt jdt

d

v v
D 

  ,  1,......,d D   (50) 

 

where there are D   intervals of length  t   over the entire sample of  D  days and jtv  represents 

the average across days in logs of the relevant underlying variables. 

Based on the approaches we outline above, the baseline model for the estimation of the 

invariance hypothesis in equations (48) takes the following form: 

n

jl jl jl jly c w u        (51) 

where l  represents either distinct trading days ( i.e. ,  1,.....,l d t D  ) or different intraday 

intervals ( ,  1,.....,l t t T  ) for asset j  and during this l  time span, jly  is average of 

logarithm of the percentage transaction cost per unit of volatility, jlw  is the average of 

logarithm of trading activity  and n

jlu  are the regression residuals.  

Based on the model in equation (51), we formally test the null hypothesis 0 : 1/ 3jlH     in 

this chapter using the aforementioned proxies for transaction costs.  

 5.4 Empirical Results 

5.4.1 Data and descriptive statistics 

To examine the invariance relationship  in equation (51) we use time-stamped tick data we 

obtain from Thomson Reuters Tick History for the 70 constituent stocks of the FTSE 100 

index which trade on the LSE and remain constituents of the FTSE 100 throughout the 

sample period (see a complete list of stocks in Appendix I-Table A1). The dataset includes 

tick-by-tick information on the best available bid and ask quotes, transaction prices, and 

trading volume (in shares), for the 3 years between 1st January 2007 and 31st December 2009. 
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We focus on the continuous trading period on the LSE from 8am to 4.30pm, Monday to 

Friday. We exclude 30 days that correspond to holidays or other days with reduced trading 

activity arising from reduced trading hours. This leads to a total of 754 trading days. We 

further divide each trading day into 102 intervals of 5 minute duration. In each interval, we 

aggregate the observations for trading volume, number of trades and average trade size, price 

and transaction costs so our estimates relate to five-minute values.  

Table 2 reports the summary statistics for the sample of 70 FTSE 100 stocks. The market 

capitalisation ijMCap  is the 3-year average of monthly values from the LSPD database as 

provided by WRDS for each stock. The number of trades jtN , trading volume jtV   and GBP 

volume jt jtP V  are daily averages across 754 days for each respective stock. The transaction 

costs and percentage transaction costs are averages of the transaction costs and percentage 

transaction costs respectively at the end of each five minute interval. Returns volatility jt   is 

the daily average of the square-root of the sum of ten-second returns across 754 days for each 

respective stock. Market capitalisation average of the 70 FTSE 100 is 17.31 billion, with a 

range of 100.31 billion. The difference between the max and min market capitalisation stocks 

is an institutional characteristic of FTSE 100. Such difference is also apparent for the average 

number of trades, trading volume and GBP volume per day. The maximum average daily 

volatility is 0.055 and the minimum is 0.016 among the stocks of our sample. The average 

quoted spread ranges from 0.0011 to 0.0500 GBP and the average effective spreads vary from 

0.0016 to 0.0286, whereas their mean values are very similar across stocks. The average realised 

spread ranges from 0.0011 to 0.0127 across stocks and its mean is 0.0041, which are lower 

than the means of quoted and effective spreads as expected. The means of the average 

percentage quoted and effective spreads are 12.29 and 11.76 bps, respectively and higher than 

the mean of the average percentage realised spreads (5.54 bps) across stocks. The range of the 

average percentage quoted spread is approximately 15bps, that of average percentage effective 

spread 32bps and that of average percentage realised spread 19bps. Results indicate that for the 

period under analysis the trades are executed at the best bid and ask spreads most of the time, 

whereas there is an evident temporary price impact. The fact that effective spreads are a bit 

lower on average when compared to quoted spreads indicates that the market provides price 

improvement, namely actual transaction prices are better than quoted prices (a lower execution 

price than the ask for purchases and a higher execution price than the bid for sales).  
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[Table 2 in here] 

5.4.2 The London Stock Exchange Market 

As explained in the previous section to obtain robust estimates of the underlying variables for 

the analysis, we calculate an average of 5-minute observations across the 102 intervals during 

each of 754 trading days using equation (49) or an average of 5-minute observations across the 

754 days for each of 102 intervals using equation (50). These intraday averages serve as the 

observations for the investigation of the invariance hypothesis. To control for both time and 

stock effects, we employ the following two-way fixed effects model when estimating equation 

(54)74.  

 ( {1,.......,754}  {1,.......,102}; {1,.......,70})it it ity a w t or t i        (52) 

where for stock i  during a trading day t  (or time interval t ), ity  is the intraday (or across days) 

average logarithm of  the percentage transaction cost per unit of volatility. This is ( / )itQS P  

for percentage quoted spreads, ( / )itES P  for percentage effective spreads and ( / )itRS P  

for percentage realised spreads, itw  is the intraday (or across days) average of the logarithm of 

trading activity and it  are the error terms which are assumed to be independently distributed 

across stocks. 

Table 3, Panel A, presents the coefficient estimates of the OLS regression model specified in 

equation (52) for different definitions of trading costs when intraday averages are used (Model 

1 refers to quoted spreads, Model 2 refers to effective spreads and Model 3 refers to realised 

spreads). The invariance hypothesis that the proportionality coefficient   is equal to 1/ 3  is 

accepted by all three models. Using quoted spreads as a proxy for transaction costs yields 

estimations with the lowest standard errors. Results indicate that on average the percentage 

transaction costs per unit of volatility are proportional to trading activity to the power of 1/ 3  

per day. This is consistent with the findings reported in Kyle and Obizhaeva (2016b) for 

portfolio transitions regarding US stocks. Assuming that returns volatility remains constant, 

the coefficients estimates suggest that if trading activity increases by one unit the quoted, 

                                                           
74 Poolability test shows the presence of time and stock fixed effects. In contrast with Kyle and Obizhaeva 
(2016a) and Andersen et al. (2016) that employ a pooled model here we use a two-way fixed effects model.  
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effective and realised spreads should drop by 1/3 percent for the invariance of transaction 

costs to hold. 

Table 3, Panel B, presents the coefficient estimates when we use averages across days. All 

coefficients estimates are higher than the ones reported in Panel A, with the largest differences 

observed for the realised spreads. The null hypothesis for 1/ 3    is accepted when we 

employ the percentage effective costs as our proxy for transaction costs, although it is rejected 

at the 5% (1%) significance level when employing the percentage quoted (realised) spreads as a 

proxy for transaction costs in Model 1 (Model (3)), respectively. In the case of the percentage 

quoted spreads estimates, while the null hypothesis is rejected statistically, we believe that it 

still remains economically close to the predicted value of 1/ 3 , taking into account the 

standard error (0.0233) and the absolute difference between the coefficient estimate and that 

predicted by invariance theory is, 1/ 3) ( 0.3881) 0.0548    . As for the percentage realised 

spreads the difference between the coefficient estimate and that predicted by invariance theory 

is 1/ 3 ( 0.4009) 0.0676   
75. Assuming that returns volatility remains constant, the above 

results suggest that on average in a 5-minutes interval in our sample, if trading activity 

increases by one unit then the percentage transaction costs decrease, although it is only for 

percentage effective spread measure that proportionality is statistically significantly equal to the 

value predicted by invariance theory. 

 [Table 3 in here] 

Interestingly, whether we employ intraday or across day averages, the findings suggest that 

invariance theory always correctly implies an estimated inverse proportionality between the 

trading activity and percentage transaction costs per unit of volatility for the three different 

proxies of transaction costs. The fact that an increase in the average trading activity is followed 

by a more pronounced decrease in average percentage transaction costs in the same 5-minutes 

intervals across days rather than looking at the same time interval within days may also reveal 

certain features of market dynamics. Specifically, ceteris paribus market makers appear to 

revise their quotes with an increase in the trading activity more during certain specific 5-minute 

intervals of the trading day. If we adopt the view that the main components of the spread are 

inventory risk, order processing cost and adverse selection, the empirical results suggest that 

the impact of these risk parameters exhibits a more pronounced variation during the same 

                                                           
75 In a broad sense even this coefficient estimate can be seen as economically significant to what invariance theory 
predicts, given that the difference is between 0.0479 and 0.0873, if the standard error is included.   
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specific 5-minute intervals across days than within a specific trading day, and that an increase 

in average market liquidity will be followed by a greater reduction in their magnitude than that 

estimated when we average observations intraday. These results may be linked also to intraday 

trading dynamics, as some types of traders are known to be more active at certain times of the 

trading day. For example, if informed institutional investors/leveraged funds are more active, 

early morning or late afternoon, then the adverse selection and the risk exposure of markets 

and consequently the spreads will be larger at these times as well. Also, it is important to note 

that theoretical invariance relationships refer to bets and not trades. The assumption that there 

is a proportionality between bets and trades may not hold precisely as expected if a bet arriving 

in the market is split to different orders and trades re-allocated across different 5-minute 

intervals during a trading day. Also, the effect of an increase in the trading activity appears to 

be lower in the case of the effective spread indicating that during some days (or 5-minute 

intervals) there are large trades or hidden orders that will induce an increase in the midquote 

on average that will counter the decrease of the effective spread. Finally, if the increase in 

average trading activity exerts such an impact on the market, it may be that market makers are 

willing to reduce their profits, as measured by realised spread, on average both intraday or 

across days, in exchange of faster unwinding of their positions (more risk transfers).  

We proceed to further explore this conjecture by examining the role of large trades and their 

impact on the relationship between percentage transaction costs per unit of volatility and 

trading activity on LSE. We do this by including a dummy variable capturing large trade size in 

the model (52), where we define a large trade as one that lies above the 90th percentile of all 

executed trades in the sample period, measured in the number of shares traded. Our aim is to 

examine whether average (daily or 5-minutes) trade sizes for each stock that lie above 90th 

percentile76 of the trade size distribution of the sample have an impact on the specific 

invariance proportionality and towards which direction. For intraday averages the 90th 

percentile corresponds to a trade size of approximately 4540 shares, whereas for averages 

across days is slightly lower at approximately 4320 shares. To control for both time and stock 

effects, we use the following variation of the model in (52), and we investigate the null 

hypothesis of 
0 1: 1/ 3H    : 

1 2  ( {1,.......,754}  {1,.......,102}; {1,.......,70})it it it it ity a w TSize w t or t i         (53) 

                                                           
76 We believe that trade sizes that lie above the 90th percentile are extreme enough to capture any impact on the 
invariance proportionality.  
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where for stock i  during a trading day t  (or time interval t ), ity  is the intraday (or across days) 

average logarithm of  the percentage transaction cost per unit of volatility, namely: ( / )itQS P  

for percentage quoted spreads, ( / )itES P  for percentage effective spreads and ( / )itRS P  

for percentage realised spreads, itw  is the intraday (or across days) average of the logarithm of 

trading activity, itTSize  is dummy that takes 1 for average trade sizes (intraday or across days) 

that are above the 90th percentile and 0 otherwise77 and it  are the error terms assumed to be 

independently distributed across stocks. 

Results in Table 4 show that accounting for higher average trade sizes (i.e. large trades) have 

no significant impact upon the coefficient estimates either for intraday  (Panel A) or across 

days averages (Panel B). Consistent with Table 3, the null hypothesis is accepted by all three 

models in Panel A and only for effective spreads in Panel B. Results indicate that an increase in 

the trading activity that involves a large trade size is followed by a slightly lower reduction in 

percentage transaction costs across days on average, compared to those arising from smaller or 

medium trade sizes, provided that returns volatility remains constant. This result is expected as 

traders need to pay higher cost for executing larger trades. The measured difference in this 

effect between effective and realised spreads indicates the market impact of these large trades. 

It can be noted that it does not have a statistically significantly differential impact on the 

percentage transaction costs across 5-minutes intervals, although the impact of large trade sizes 

is positive on average for effective percentage trade costs. This may indicate that large trades 

occur more during specific days rather than during specific 5-minutes intervals each. This 

might be driven by the fact that order splitting may occur in only during specific days rather 

than the same 5-minutes intervals within each day based on the needs, information and 

strategy of the respective traders. In a similar fashion to Table 3 results, an increase in the 

trading activity involving any trade size is followed by a reduction of percentage transaction 

costs per unit of volatility of a greater magnitude in the same 5-minutes intervals across days 

rather than looking at the same time interval within days. 

[Table 4 in here] 

                                                           
77 We do not estimate the independent coefficient of a standalone dummy variable as it is subsumed by stock 
fixed effects. 
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5.4.3 Market Fragmentation 

The findings in the previous section provide our benchmark estimates for the validity of 

market microstructure invariance for transaction costs on the London Stock Exchange. We 

now proceed to examine whether the coefficient estimates are also influenced by the 

introduction of alternative trading platforms for the FTSE 100 stocks which occurs during the 

period under analysis. The implementation of the first directive on markets in financial 

instruments (MiFID I) in November 2007 allows for alternative trading platforms to co-exist 

along with the traditional regulated markets such as the London Stock Exchange. The ensuing 

market fragmentation and its potential impact on transaction costs, as well as the consequent 

decision of traders to divert their trades away from LSE towards these new platforms are 

potentially crucial factors we should consider when examining invariance relationships in the 

sample of FTSE stocks78.  

Prior to the introduction of MiFID I, trading in secondary market is concentrated on primary 

exchanges. MiFID I revokes the concentration rule for EU member states, thus allowing 

market participants to execute their transactions via different trading platforms together 

submitting orders to the traditional exchanges (Schacht et al., 2009; Gentile and Fioravanti, 

2011). The main aim of the specific directive is to enhance both market quality and integration. 

It attempts to do this by increasing the competition between various order-execution venues, 

by improving their transparency to the greatest degree possible and by creating a unified 

framework that guarantees the protection of investors (Degryse et al., 2015). In this context, 

MiFID 1 defines three categories of trading venues available to market participants: 1) 

Regulated Markets (RMs), 2) Multilateral Trading Facilities (MTFs) and 3) Systematic 

Internalizers (SIs).Trades that are executed outside these venues are considered OTC. Under 

MiFID I, RMs and MTFs are both multilateral trading systems with identical functionalities. 

Although both allow for primary listings, only RMs are given the legal authority to list 

regulated financial instruments. Consequently, this means MTFs mainly focus on other trading 

services, a function equivalent to trading networks (ECNs) in the U.S. The SIs are investment 

firms that can execute orders outside RMs and MTFs on their own accounts or against other 

clients’ orders. Under MiFID I, SIs are treated as mini-exchanges subject to certain pre- and 

post-trade transparency requirements (Gresse, 2017). 

                                                           
78 Due to lack of data we only report trading volume and number of trades after May 2008. However, we believe 
this is sufficient to provide a picture of how trading is split for FSTE 100 stocks across different trading 
categories and platforms.   
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MiFID I provides for best execution prices, with order execution policies being required to be 

published to the clients, and involving prompt client order-handling, and transparency 

obligations (Schacht et al., 2009). The introduction of this specific directive has certain 

implications for European financial markets. Indeed, MiFID I is the regulatory precursor 

which heralds:: 1) a steady fashion towards electronic trading across all asset classes, in 

particular equities; 2) the existing electronic order books and trading systems gradually 

becoming more efficient and attracting more investors 3) diversification in the reporting of 

transactions based on their size, help to reduce  market distortions; 4) data consolidation, 

providing a full picture of a given security’s liquidity; 5) increasing competition in the financial 

markets, not only in terms of the trading choices available to the investors, but also in terms of 

post-trade services.  

At the time of the study the main MTFs for FTSE 100 constituent stocks are Chi-X, BATS 

(Europe) and Turquoise. BATS Europe is launched on 31st October 2008 as subsidiary of the 

U.S. exchange BATS. Chi-X is initially a platform owned by broker Instinet and which merges 

with BATS in 2011, and from July 2007 it starts trading FTSE 100 constituent stocks. Finally, 

Turquoise opens on 22nd of September 2008 underwritten by a group of investment banks and 

is later acquired by the LSE at the end of 2009 (Gresse, 2017). Figure 1 shows the percentages 

of trading volume and number of trades across different trading categories available to market 

participants between May 2008 and December 2009. Our analysis focuses only on the lit order 

book where most volume is traded and where the highest number of trades occurs. However, 

it is important to note that a salient feature of the transactions during the specific period is that 

those occurring OTC involve a greater number of shares per trade than those occurring in 

other trading categories.  

Moving a step forward, Figure 2 presents the percentages of the lit order book trading volume 

and number of trades occurring across different trading platforms, both regulated markets and 

multilateral trading facilities, for FTSE 100 shares between May 2008 and December 2009. The 

London Stock Exchange attracts the majority of the volume traded (75.57%) and still has the 

highest number of trades (60.29%), followed by Chi-X, Turquoise and BATS, which are the 

three most active MTFs during the specific period.  

[Figure 1 in here] 

[Figure 2 in here] 
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Based on the above information we investigate the impact of trading market fragmentation on 

invariance principles. We decide to only use data from trading on Chi-X, Turquoise and BATS, 

which along with LSE, account for 99.45% of total trading volume and 98.76% of total 

number of trades for FTSE 100 during the period under review. Analogous to the LSE dataset, 

the data for the aforementioned platforms includes tick-by-tick information on the best 

available bid and ask quotes, transaction prices, and trading volume (in shares). The data for 

Chi-X spans a period between 7th April 2008 and 31st December 2009, for Turquoise 1st of 

September 2008 and 31st of December 2009 and for BATS between 7th November 2008 and 

31st December 200979.  We focus on the continuous trading period on the LSE from 8am to 

4.30pm, Monday to Friday. We exclude days that correspond to holidays or other days with 

less trading activity arising from a reduction in trading hours. This leads to a total of 437 

trading days for Chi-X, 336 days for Turquoise and 286 days for BATS.      

First, on the basis of equation (51), we investigate whether the simultaneous presence of 

alternative platforms affects the estimated invariance proportionality and the percentage 

transaction costs per unit of volatility on LSE. In this respect, we introduce two different 

proxies for market fragmentation. The first, Waltratio, is consistent with the invariance 

framework and is defined as the percentage of total trading activity in the alternative platforms 

to the total trading activity for a specific stock during a specified time interval. The second, 

Concratio  is similar to the Herfindahl-Hirschman Index for market 

concentration/fragmentation (see for example Weston (2000), Bennett and Wei (2006) and 

Gresse (2017)) and is defined as the percentage of total volume traded in the alternative 

platforms to total trading volume for a specific stock during a specified time interval. 

Coefficients estimates are based on the two-way fixed effects model in (54). We only include 

data on LSE after 7th April 2008, the first date we have information on trading activity on Chi-

X. We use both intraday and across days averages of 5-minutes observations for the underlying 

variables based on equations (49) and (50) and compare the resulting coefficient estimates with 

those obtained when only the trading activity on LSE is taken into account for the same time 

span:    

1 2  ( {1,......., 437} ; {1,.......,70})it it it ity a w t i           (54) 

                                                           
79 Although Chi-X started trading on FTSE 100 stocks in July 2007, we have data on this platform only from 
April 2008. Thus, we treat April 2008 as the date when Chi-X trades in FTSE 100 stocks can potentially have an 
impact on the LSE.  
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where for stock i  during a trading day t , ity  is the intraday (or across days) average of the 

logarithm of percentage transaction cost per unit of volatility, namely: ( / )itQS P  for 

percentage quoted spreads, ( / )itES P  for percentage effective spreads and ( / )itRS P  for 

percentage realised spreads, itw  is the intraday (or across days) average of the logarithm of 

trading activity, it  is the either the intraday (or across days) average of Waltratio or the 

intraday (or across days) of Concratio and it  are the error terms assumed to be independently 

distributed across stocks  

In Table 5, Panel A we present the results based on the model in (52), when only LSE trading 

activity is included. The coefficients estimates, either for intraday averages or averages across 

days for all three models are higher in value than those reported in Table 3, when the entire 

sample is used. However, the rejection or acceptance of null hypothesis for 1 1/ 3    remains 

the same in every individual case. Coefficient invariance estimates, in Panel B, when Waltratio 

is included in the model, are also similar, both for intraday and across days averages, although 

perhaps slightly more inflated, especially in the latter set. Economically, in terms of the values 

of the coefficients, this may be attributable to the ensuing competition between market makers 

in LSE and other platforms following market fragmentation. Statistically, our findings indicate 

that market fragmentation in relation to the specific FTSE 100 stocks, during the period under 

analysis, does not significantly impact, the invariance proportionality between the percentage 

transaction costs per unit of volatility and trading activity on LSE80. However, some specific 

features of our results are noteworthy. In particular, the results in Panel B reveal an interesting 

correlation between Waltratio and percentage transaction costs per unit of volatility on LSE. 

Specifically, in all the models and independently of the estimation method (i.e. intraday or 

across days averages), Waltratio is negatively correlated with the transaction costs per unit of 

volatility on LSE.  Intuitively, provided that returns volatility remains constant, Waltratio 

moves in the opposite direction than the direction of percentage transaction costs on LSE, on 

average during a 5-minutes interval or during a trading day.  

[Table 5 in here] 

                                                           
80 Similar appears to be the effect of financial crisis that is present in the specific time span 
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This finding is consistent with papers that investigate the relationship between market 

fragmentation and transaction costs (see for example (Gresse (2017)). Also, this negative 

correlation is more obvious when averages across days are used, indicating that this pattern is 

stronger on average during specific 5-minutes intervals as compared to specific trading days. 

As with the values of the estimated invariance coefficients, this correlation may be induced by 

the competition across platforms. Intuitively, as investors and their trades move to other 

platforms, LSE market makers will need to offer better spreads to attract traders or if the 

spreads offered in LSE are not better than other platforms trades will most likely move away 

from LSE.   

Our results remain very similar when we include Concratio instead of Waltratio, in the model 

in (54), as depicted in Table A2 in the Appendix. When intraday averages are used, all three 

models again accept the null hypothesis for a 1/ 3  proportionality between percentage 

transaction costs per unit of volatility and trading activity on LSE, whereas only Model 2 

(effective spreads) yields the predicted proportionality, when averages across days are 

employed. The values of the estimated invariance coefficients are very close to those reported 

in Table 5, Panel B. Again, market fragmentation does not appear to statistically affect the 

invariance proportionality independently of the estimation method. This suggests the 

underlying rationale is indeed robust to fragmentation considerations. We note that the 

negative correlation between Concratio and the LSE percentage transaction costs per unit of 

volatility is greater than that between Waltratio and the LSE percentage transaction costs per 

unit of volatility in all models and set of averages. Specifically, this negative correlation is 

greater by 0.30 to 0.45 compared to Waltratio and is stronger during specific 5-minutes 

intervals than within trading days for all percentage transaction costs proxies.          

To further examine the impact of fragmentation on the invariance principle and LSE 

percentage transaction costs, we repeat the same analysis, but now we include Waltratio for 

each respective platform instead of the total across all markets. We estimate the relationship 

arising from the model in (55). The data starts on 7th of November 2008, the date from which 

we have continuous data on trading for all platforms. We use again intraday or across days 

averages of 5-minutes observations for the underlying variables and compare coefficient 

estimates  with those we generate when only the trading activity on LSE is taken into account. 

We obtain the coefficient estimates from the following two-way fixed effects model: 
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1 2 3 4  

( {1,......., 286} ; {1,.......,70})

it it it it it ity a w chix bats turq

t i

            

   
 (55) 

where for stock i  during a trading day t , ity  is the intraday (or across days) average of the 

logarithm of percentage transaction cost per unit of volatility, namely: ( / )itQS P  for 

percentage quoted spreads, ( / )itES P  for percentage effective spreads and ( / )itRS P  for 

percentage realised spreads), itw  is the intraday (or across days) average of the logarithm of 

trading activity, itchix  is the intraday (or across days) average of Waltratio on Chi-X, itbats  

is the intraday (or across days) average of Waltratio, itturq  is the (or across days) intraday 

average of Waltratio on Turquoise  and it  are the error terms assumed to be independently 

distributed across stocks. 

The results based on the model in (55) using intraday averages are given in Table 6. Upon 

inspection of Panel A, which only considers LSE trading activity, the coefficient estimates 

remain close in terms of their value to those we report for the entire sample in Table 3, Panel 

A and those in Table 5, Panel A. Independent of the percentage transaction costs proxy we 

employ, the invariance coefficients remains statistically significantly equal to 1/ 3  for all three 

models. The coefficients are also qualitatively similar in magnitude to the previous estimates 

for averages across days (Table A3, Panel A in the Appendix). When we include Waltratio 

(Panel B) in the model, invariance coefficients are somewhat higher than those in Panel A, but 

the null hypothesis of 1/ 3    is still accepted by all three models. These findings are 

consistent with the results reported for Waltratio for total trading activity and volume across 

all alternative platforms, respectively. The null hypothesis is rejected for all models when 

averages across days are used (Table A3, Panel B, in the Appendix). 

[Table 6 in here] 

This implies that the average reduction in percentage transaction costs is stronger during 

specific 5-minutes intervals than trading days, when accounting for individual platform 

Waltratio81. However, economically the result is the same. In line with the results for 

                                                           
81 We understand that part of this increase may be caused by a bias induced in the model due to the inclusion of 
the extra variables. However, we do not think this is sufficient to explain the magnitude of the specific increase.   
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Waltratio we report in Table 5, market fragmentation does not appear to statistically impact 

the invariance proportionality, independently of the estimation method used.        

Nevertheless, both sets of findings, either those for intraday averages (Table 6, Panel B) or 

those analysing averages across days (Table A3, Panel B) suggest that Waltratio in Chi-X is 

more negatively correlated with the percentage transaction costs per unit of volatility on LSE 

compared to other platforms, except from the percentage realised spreads per unit of volatility 

on LSE, when we use averages across days. The latter appear to have slightly higher negative 

correlation with the Waltratio on Turquoise. On the contrary, the negative correlation 

between Waltratio of the remaining two platforms and percentage transaction costs on LSE 

varies with the estimation method for the underlying variables and the proxy for percentage 

transaction costs. Specifically, the percentage spreads per unit of volatility on LSE are 

negatively correlated on average with the trading activity on Turquoise, when we employ 

within days estimation; however, this relationship is significant only for percentage realised 

spreads when we use averages across days. Interestingly, the trading activity on BATS is not 

correlated with the percentage transaction costs per unit of volatility on LSE, except from the 

case when percentage realized spreads are employed as a proxy and averages across days is 

used as an estimation method. Summarizing the above results, trading on Chi-X appears to be 

more correlated with the percentage transaction costs on LSE due to the fact that the majority 

of the volume and number of trades occurring outside LSE go through the specific platform. 

Also, results suggest that trading activity on Turquoise is negatively correlated with LSE 

percentage transaction costs on average during specific days, whereas trading activity on BATS 

is only correlated with the LSE percentage realised spreads during specific 5-minutes intervals.   

5.4.4 Consolidated Market 

To this point, we test invariance in the context of one market, LSE, and examine how the 

trading activity and volume on alternative platforms affect the consequent empirical 

implications of microstructure invariance, as well as the percentage transaction costs on the 

LSE. This analysis, although somewhat intuitive, does not take into account the fact that 

market participants during the period under investigation have simultaneous access to all 

platforms on which to post orders (limit or market) for a specific stock. For example, a bet 

(and the consequent orders and trades) for a stock can arrive in LSE and another platform at 

the same time or orders linked to the same originating bet for a certain stock can 

simultaneously be placed in different platforms because of immediacy requirements. 
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Therefore, it may be interesting to examine invariance from the perspective of a hypothetical 

consolidated market and a “global” market investor who is connected to several trading 

venues. In this respect, we combine trades, trading volume and transaction costs of LSE, 

ChiX, BATS and Turquoise so that for each of the 70 stocks in our sample we create a dataset 

that includes all trading information at a millisecond frequency. The sample period is between 

January 2007 and December 2009. Specifically, for trades that occur at the same millisecond 

we use the average price and the total volume across platforms. The quoted spreads are then 

calculated as the differences between the best ask and best bid present during each millisecond 

across all competing markets. The effective spreads are estimated as twice the absolute 

difference between the average global trade price and the midpoint of the best ask and best bid 

quotes across all platforms. The realised spreads are computed as twice the difference between 

the global average trade price and the midpoint of the best ask and best bid across all 

platforms, 5 minutes after the trade takes place. They are positive for buy initiated and negative 

for sell initiated trades.  

To examine the two invariance principles we follow the same methodology for obtaining 

robust estimators for underlying variables. We first employ intraday averages (average of 5-

minute observations across the 102 intervals during each of 754 trading days) based on 

equation (49) and alternatively averages across days (average of 5-minute observations across 

754 days for each of 102 intervals) based on equation (50). The two-way fixed effects model 

for the invariance hypothesis in equation (51) has the following form: 

 ( {1,.......,754}  {1,.......,102}; {1,.......,70})it it itgy a gw t or t i        (56) 

where for stock i  during a trading day t  (or time interval t ), 
itgy  is the intraday (or across 

days) average logarithm of  the percentage consolidated transaction cost per unit of volatility, 

namely: ( / )itQS P  for consolidated percentage quoted spreads, ( / )itES P  for consolidated 

percentage effective spreads and ( / )itRS P  for consolidated percentage realised spreads, 

itgw  is the intraday (or across days) average of the logarithm of consolidated trading activity 

and 
it  are the error terms. 

We report invariance estimates for this consolidated market in Table 7. When we use intraday 

averages (Panel A), we accept the null hypothesis for 1/ 3    for the effective spreads 

(Model 2) and realised spreads (Model 3) on average. Using quoted spreads as a proxy for 

transaction costs (Model 1) leads us to reject the null hypothesis at 5% significance level, 
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although the value remains close in economic terms to that predicted by invariance, 

0.36200.3333 ( 0.) 0286   . All coefficients are qualitatively similar in terms of values to 

those we report in Table 3, Panel A when only the LSE market is considered, except from that 

those for the quoted spreads which is apparently higher in Table 7. This result may be 

attributable to differences between the quoted spreads for LSE and the consolidated market’s 

quoted spreads, as well as competition between market makers and the option a trader 

possesses to divert their trades to alternative platforms when they find better prices. 

Statistically, the effect of an increase in trading activity is the same for LSE and the 

consolidated market regarding percentage effective and realised spreads. However, 

economically, we see that the reduction in effective spreads on average is greater in the 

consolidated market. In turn, this implies that larger orders are also executed in the alternative 

platforms and the consolidated market depth is greater than LSE market alone. 

[Table 7 in here] 

Overall, the reduction in realised spreads in slightly lower on average in the consolidated 

market, which may indicate that market makers in the alternative platforms do not reduce their 

realised spreads as much as the LSE competitors, or in other words the market impact of 

trades may be greater in the alternative platforms. In contrast, when we use averages across 

days, coefficient estimates increase in comparison to those we report in Table 4, Panel B, and 

the null hypothesis is rejected for all models. This is consistent with findings regarding the LSE 

market, although the coefficients estimates for the consolidated market are inflated as 

compared to those we report in Table 3, Panel B. We observe the greatest difference in the 

quoted spreads and effective spreads. This shows that the average impact of a change in 

consolidated trading activity on the percentage transaction costs per unit of volatility is greater 

during specific 5-minutes intervals than during specific days. Finally, in both panels, the 

standard errors are lower than those we report for the LSE venue in Table 4.    

Finally, analogous to our analysis of the LSE market, we investigate whether large trades have a 

different impact on invariance proportionality in the consolidated market. For intraday 

averages the 90th percentile for the consolidated market corresponds to a trade size of 

approximately 4540 shares, very similar to the LSE market, whereas for averages across days it 

is lower, at approximately 4000 shares. Estimates are based on the following two-way fixed 

effects model:  
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1 2it it it it itgy a gw TSize gw       (57) 

( {1,.......,754}  {1,.......,102}; {1,.......,70})t or t i    

where for stock i  during trading day t  (or time interval t ), itgy  is the intraday (or across days) 

average logarithm of  the percentage consolidated transaction cost per unit of volatility, 

namely: ( / )itQS P  for consolidated percentage quoted spreads, ( / )itES P  for consolidated 

percentage effective spreads and ( / )itRS P  for consolidated percentage realised spreads, 

itgw  is the intraday (or across days) average of the logarithm of consolidated trading activity, 

itTSize  is a dummy that takes 1 for average trade sizes (the intraday or across days) that are 

above the 90th percentile and 0 otherwise  and it  are the error terms assumed to be 

independently distributed across stocks. 

The results for the consolidated market we present in Table 8 confirm that accounting for 

large trades does not significantly change the coefficient estimates. We accept the null 

hypothesis for the same model specifications as in Table 7 (all three models in Panel A and for 

the effective spread specification in Panel B). In similar vein to the findings for the LSE 

market, an increase in trading activity that involves larger trade sizes causes a slightly lower 

reduction in average percentage transaction costs across days as compared to that resulting 

from small or medium trade sizes, providing that returns volatility remains constant. In 

contrast, it does not have a statistically significantly different impact on the percentage 

transaction costs interday across the same a 5-minutes interval. However, this effect is positive 

only for effective spreads. As we explain earlier in relation to the LSE, this might imply that 

large trades happen more during specific days rather than being confined to the same specific 

5-minute time intervals every day. The results for the consolidated market indicate that this is a 

characteristic trading pattern for FTSE 100 stocks during the period under analysis.  

[Table 8 in here] 

5.5 Conclusion 

In this chapter we empirically investigate scaling laws concerning transaction costs based on 

microstructure invariance theory as proposed by Kyle and Obizhaeva (2016a) and provide tests 

of its underlying implications introduced by Kyle and Obizhaeva (2016b). Overall, our results 
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for share trading on the London Stock Exchange are supportive of the existence of the 

predicted proportionality between percentage transaction costs and trading activity proposed 

by invariance theory. The suggested scaling laws appear to match empirical patterns in the data 

for the majority of the trading activity during the period under analysis in our sample of FTSE 

100 stocks. Our results in general corroborate the empirical findings Kyle and Obizhaeva 

(2016a) report for their sample of Russian stocks.  

Specifically, using three different proxies for transaction costs, we find that invariance theory 

correctly implies an inverse proportionality between the trading activity and percentage 

transaction costs per unit of volatility for different proxies of transaction costs. The predicted 

invariance proportionality of -1/3 is present throughout the average daily patterns in our 

sample. Moreover, market makers on average offer better prices as trading activity increases 

during specific 5-minute intervals across days than within specific trading days, providing 

returns volatility is constant. Drawing inferences from the microstructure literature, our results 

suggest that the parameters of transaction costs such as inventory risk, order processing cost 

and adverse selection costs are reduced more during certain 5-minute trading intervals than 

other 5-minute intervals. An increase in the average daily trading activity involving larger trades 

leads to a smaller reduction in the average daily transaction costs per unit of volatility of the 

respective stocks. These larger trades tend to occur on average within particular days rather 

than the same specific 5-minutes interval across days. Market makers are willing to reduce their 

profits with an increase in trading activity on average, both across days or 5-minute intervals, in 

exchange for a faster unwinding of their positions (more risk transfers), thereby reducing their 

inventory risk. 

The statistical significance of the invariance proportionality results remains unaltered when we 

amend the model to include ratios of trading activity and volume as indicators of market 

fragmentation. However, results suggest that the trading activity (or volume) on the alternative 

platforms relative to the total trading activity (or volume) is negatively correlated with the 

percentage transaction costs on LSE, both during a 5-minutes interval or during a trading day, 

providing that return volatility remains constant. This finding is consistent with the view that 

competition between market venues affects transaction costs and the way trading takes place. 

This is also consistent with several microstructure papers that examine the effect of 

fragmentation on transaction costs, including Battalio (1997), Battalio et al. (1997), Battalio et 

al. (1998), Battalio and Holden (2001), Gresse (2017) and others. The highest negative 
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correlation appears to be between the trading activity on Chi-X and LSE percentage 

transaction costs, which is consistent with the observation that the majority of the volume and 

number of trades in the relevant shares occurring outside LSE goes through this specific 

platform. Turquoise trading is negatively correlated with LSE percentage transaction costs on 

average on particular days, whereas trading on BATS is only negatively correlated with LSE 

percentage realised spreads on average during the same specific 5-minutes interval every day. 

Results from analysis of the consolidated hypothetical market show that invariance 

proportionality still generally holds for different proxies of transaction costs, with estimates 

resembling those of the LSE. Although, invariance relationships hold in the consolidated data, 

the performance of MMI is relatively worse. This fact may potentially indicate that market 

fragmentation is an important factor to consider in the invariance framework for equity 

markets. Finally, the lower reduction in realised spreads, on average, in the consolidated market 

suggests that either the market impact of trades is greater in the alternative platforms or that 

not all market makers take advantage of increases in liquidity via the increase in trading activity 

(see for example Degryse et al. (2015)).    

Overall, our results provide evidence that invariance relationships and scaling laws regarding 

transaction costs and trading activity hold approximately in the sample under consideration. 

Further investigation as to whether the empirical predictions invariance proposes are valid in 

different periods or samples is warranted. Also examining other proxies for transaction costs 

and their empirical relationship to trading activity, or assuming a different price impact 

function may constitute a worthwhile task for future research. Finally, future papers may focus 

on investigating whether invariance predictions change when transaction costs are classified 

based on the trade size or other stock characteristics or when platform characteristics such as 

latency or high frequency trading are taken into account.    
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Table 1 

Changes in the underlying variables of transaction cost model for risky asset as a result of 

dividend pay-out 

Variables Description 

/jtP A   As the price of the share including dividend is conserved it follows that the price of 

the share without the dividend should be /jtP A  

jtQ   The bet size will not change as the risk transferred by a bet remains the same  

jtV   Trading volume will not change  

BC   The cost in local currency units of executing the bet remains the same as the cash 
dividend has zero risk 

2 2

jtA    The return variance increase as each share has the same risk in local currency units 

jt jtP      

 

Table 2 

Summary statistics for the sample of 70 FTSE 100 stocks (Average and Percentiles) 

The table summarises descriptive statistics of variables for the sample of 70 FTSE 100 stocks: GBP 

market capitalisation ijMCap (in billions), average number of trades jtN
 
per day, average trading volume 

jtV  (in millions) per day, average GBP trading volume jt jtP V  (in million pounds) per day, average daily 

returns volatility jt , average quoted, effective and realized spreads (in pounds), as well as their 

percentage versions (in hundredths of a percent).    

Variables Average Min p5 p50 p95 Max 

( )ijMCap pounds   17.31 2.61 2.9 7.05 70.83 102.92 

(   )jtN no of trades   4,869 1,961 2,225 3,846 11,814 12,921 

(   )jtV no of shares  15.72 1.23 1.77 7.54 63.00 195.06 

jt   0.025 0.016 0.017 0.022 0.041 0.055 

( )jt jtP V pounds  78.02 13.84 16.16 43.46 283.24 357.61 

( )jtQS pounds   0.0096 0.0011 0.0019 0.0070 0.0230 0.0500 

( )jtES pounds
 

0.0091 0.0016 0.0021 0.0070 0.0221 0.0286 

( )jtRS pounds
 

0.0041 0.0011 0.0012 0.0037 0.0089 0.0127 

/ ( )jt jtQS P bps  12.29 6.05 7.35 11.72 18.73 21.05 

/ ( )jt jtES P bps
 

11.76 5.58 7.07 11.06 17.81 37.59 

/ ( )jt jtRS P bps
 

5.54 2.23 2.91 5.00 9.00 20.61 
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Table 3 

Average Proportionality between Percentage Transaction Costs per unit of volatility and 

Trading Activity 

This table reports the coefficient estimates from OLS regressions for different definitions of trading 

costs based on the model in (52) using intraday averages based on equation (49) in panel A and 

averages across days based on equation (50) in panel B. Model 1 uses quoted spreads as a proxy for 

transaction costs, Model 2 uses effective spreads as proxies for transaction costs and Model 3 uses 

realised spreads as proxies for transaction costs. All specifications include stock and time fixed effects. 

Coefficients are tested against the null hypothesis 0 : 1/ 3H    . Two-way clustered robust standard 

errors (with the use of heteroscedasticity-corrected covariance matrices) are reported in parenthesis 

only for the coefficient estimates. *, **, and *** denote significance at the 5%, 1%, and 0.1% level, 

respectively.       

Panel A: Within-day estimates 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      1.5792*** 
(0.0255) 

    1.1161*** 
(0.0289) 

    1.0727*** 
(0.0369) 

Invariance Coef., 

  

               -0.3309 
(0.0265) 

             -0.2926 
(0.0287) 

              -0.3163 
(0.0361) 

2R  0.8386 0.8023 0.6535 

Panel B: Estimation based on 5-minutes intervals across days 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      2.3629*** 
(0.0356) 

    1.9446*** 
(0.0411) 

    2.4079*** 
(0.0626) 

Invariance Coef., 

  

               -0.3881* 
(0.0233) 

             -0.3504 
(0.0230) 

              -0.4009*** 
(0.0197) 

2R  0.9880 0.9793 0.9360 
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Table 4 

Average Proportionality between Percentage Transaction Costs per unit of volatility and 

Trading Activity when controlling for trade size 

This table reports the coefficient estimates from OLS regressions for different definitions of trading 

costs based on the model in equation (52) using intraday averages based on equation (49) in panel A 

and averages across days based on equation (50) in panel B. 2  is the coefficient of the interaction term 

of trading activity and a dummy that takes 1 for average trade sizes (the intraday or across days) that are 

above the 90th percentile and 0 otherwise. Model 1 uses quoted spreads as a proxy for transaction costs, 

Model 2 uses effective spreads as proxies for transaction costs and Model 3 uses realised spreads as 

proxies for transaction costs. All specifications include stock and time fixed effects. Coefficients are 

tested against the null hypothesis 0 : 1/ 3H    . Two-way clustered robust standard errors (with the 

use of heteroscedasticity-corrected covariance matrices) are reported in parenthesis only for the 

coefficient estimates. *, **, and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Within-day estimates 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      1.6614*** 
(0.0252) 

    1.2055*** 
(0.0286) 

    1.1298*** 
(0.0368) 

Invariance Coef., 

  

               -0.3441 
(0.0272) 

             -0.3070 
(0.0296) 

              -0.3256 
(0.0368) 

itTSize       0.0244*** 

(0.0052) 

    0.0263*** 

(0.0050) 

   0.0177*** 

(0.0034) 

2R  0.8434 0.8077 0.6560 

Panel B: Estimation based on 5-minutes intervals across days 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a       2.3512*** 
(0.0359) 

    1.9479*** 
(0.0415) 

    2.3702*** 
(0.0633) 

Invariance Coef., 1                -0.38677* 
(0.0235) 

             -0.3508 
(0.0235) 

              -0.3964*** 
(0.0191) 

2  -0.0014 

(0.0026) 

0.0004 

(0.0003) 

-0.0044 

(0.0026) 

2R  0.9880 0.9793 0.9361 
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Figure 1-Breakdown of trading volume and trades across market categories 

The graphs show the %trading volume and %trades across different trading categories available to 

market participants regarding the FTSE 100 between May 2008 and December 2009. LIT  refers to 

lit order book, DARK to dark pools, OTC to over-the-counter and SI  to systematic internalisers 
transactions.         

%Trading Volume per trading category %Trades per trading category 

  
Source: Fidessa 

Figure 2- Breakdown of lit trading volume and trades across platforms 

The graphs show the %trading volume and %trades of lit order book trading across different trading 

platforms regarding the FTSE 100 between May 2008 and December 2009.  

%Trading Volume per trading platform %Trades per trading platform 

  
Source: Fidessa 

  



188 

 

Table 5 

Invariance Proportionality while controlling for Waltratio 

Panel A shows the coefficients estimated when only the trading activity on LSE is considered between 

April 2008 and December 2009 based on the model in (52). Panel B shows the coefficients, when 

percentage of total trading activity occurring on the alternative platforms relative to total trading activity 

is included, based on the model in (54). Model 1 is based on quoted spreads, Model 2 on effective 

spreads and Model 3 on realised spreads as proxies for transaction costs. All specifications include 

stock and time fixed effects. Coefficients are tested against the null hypothesis 0 1: 1/ 3H    . Two-

way clustered robust standard errors (with the use of heteroscedasticity-corrected covariance matrices) 

are reported in parenthesis only for the coefficient estimates. *, **, and *** denote significance at the 

5%, 1%, and 0.1% level, respectively.       

Panel A: Estimation without the aggregate trading activity on alternative platforms  

Within-day estimates 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a      1.8642*** 
(0.0292) 

    1.4297*** 
(0.0331) 

    1.3786*** 
(0.0416) 

Invariance Coef.,                  -0.3812 
(0.0376) 

             -0.3524 
(0.0405) 

              -0.3782 
(0.0489) 

2R  0.8346 0.7824 0.6497 

Estimation based on 5-minutes intervals across days 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a      2.3839*** 
(0.0400) 

    1.8768*** 
(0.0470) 

     2.3705*** 
(0.0723) 

Invariance Coef.,                  -0.4086** 
(0.0271) 

             -0.3689 
(0.0286) 

              -0.4186** 
(0.0287) 

2R  0.9851 0.9753 0.9109 

Panel B: Estimation when aggregate trading activity on alternative platforms is included 

Within-day estimates 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a      2.1087*** 
(0.0308) 

    1.7647*** 
(0.0348) 

    1.5973*** 
(0.0440) 

Invariance Coef., 1  -0.3942 
(0.0381) 

-0.3702 
 (0.0408) 

-0.3899 
(0.0496) 

2   
    -0.4641*** 

(0.0846) 
    -0.6405*** 

(0.0959) 
    -0.4203*** 

(0.0720) 
2R  0.8374 0.7879 0.6522 

Estimation based on 5-minutes intervals across days 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a       2.7354*** 
(0.0482) 

     2.2762*** 
 (0.0569) 

     2.8267*** 
(0.0895) 

Invariance Coef., 1    -0.4299** 
(0.0295) 

-0.3930 
 (0.0311) 

   -0.4477*** 
(0.0313) 

2   
    -0.6992*** 

(0.1808) 
-0.7968 

 (0.2075) 
   -0.8649*** 

(0.1483) 

2R  0.9855 0.9758 0.9118 
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Table 6 

Invariance Proportionality while controlling for individual Waltratio (Within-day estimates) 

Results are based on intraday averages estimation for underlying variables based on equation in (49). 

Panel A shows the coefficients estimated when only the trading activity on LSE is considered between 

November 2008 and December 2009 based on the model in (52). Panel B shows the coefficients, when 

percentage of trading activity occurring on each respective alternative platform relative to total trading 

activity is included, based on the model in (55). Model 1 is based on quoted spreads, Model 2 on 

effective spreads and Model 3 on realised spreads as proxies for transaction costs. All specifications 

include stock and time fixed effects. Coefficients are tested against the null hypothesis 0 1: 1/ 3H    . 

Two-way clustered robust standard errors (with the use of heteroscedasticity-corrected covariance 

matrices) are reported in parenthesis only for the coefficient estimates. *, **, and *** denote 

significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Estimation without the aggregate trading activity on alternative platforms  

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a      1.9280*** 
(0.0330) 

    1.5229*** 
(0.0376) 

    1.4714*** 
(0.0471) 

Invariance Coef.,                  -0.3921 
(0.0501) 

             -0.3680 
(0.0376) 

              -0.3990 
(0.0630) 

2R  0.8320 0.7807 0.6473 

Panel B: Estimation when individual Waltratio is included 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a       2.3375*** 
(0.0377) 

     2.0837*** 
 (0.0426) 

     1.9325*** 
(0.0538) 

Invariance Coef., 1                 -0.4187 
(0.0526) 

-0.4045 
 (0.0560) 

                -0.4292 
(0.0669) 

2   
    -1.0264*** 

(0.2258) 
    -1.3871*** 

 (0.2409) 
   -1.0423*** 

(0.2248) 

3  
                0.1471 

(0.2943) 
0.1907 

(0.3330) 
-0.2402 
(0.2682) 

4  
  -0.5146** 

(0.1819) 
   -0.7456*** 

(0.2095) 
-0.4722* 
(0.1919) 

2R  0.8377 0.7916 0.6533 
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Table 7 

Average Proportionality between Percentage Transaction Costs per unit of volatility and 

Trading Activity for the consolidated market 

This table reports the coefficient estimates from OLS regressions for different definitions of trading 

costs for the consolidated market based on the model in equation (56) using intraday averages based on 

equation (49) in panel A and averages across days based on equation (50) in panel B. Model 1 uses 

quoted spreads as a proxy for transaction costs, Model 2 uses effective spreads as proxies for 

transaction costs and Model 3 uses realised spreads as proxies for transaction costs. All specifications 

include stock and time fixed effects. Coefficients are tested against the null hypothesis 0 : 1/ 3H    . 

Two-way clustered robust standard errors (with the use of heteroscedasticity-corrected covariance 

matrices) are reported in parenthesis only for the coefficient estimates. *, **, and *** denote 

significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Within-day estimates 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      2.1144*** 
(0.0289) 

    1.6244*** 
(0.0280) 

    1.5314*** 
(0.0331) 

Invariance Coef.,              -0.3620* 
(0.0131) 

             -0.3099 
(0.0137) 

              -0.3087 
(0.0167) 

2R  0.8124 0.8015 0.7009 

Panel B: Estimation base on across days averages  

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      3.0158*** 
(0.0327) 

    2.5917*** 
(0.0342) 

    2.7691*** 
(0.0513) 

Invariance Coef.,              -0.4333*** 
(0.0200) 

             -0.4030*** 
(0.0187) 

              -0.4235*** 
(0.0118) 

2R  0.9910 0.9874 0.9603 
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Table 8 

Average Proportionality between Percentage Transaction Costs per unit of volatility and 

Trading Activity for the consolidated market when controlling for trade size 

This table reports the coefficient estimates from OLS regressions for different definitions of trading 

costs for the consolidated market based on the model in equation (57) using intraday averages based on 

equation (49) in panel A and averages across days based on equation (50) in panel B. 2  is the 

coefficient of the interaction term of trading activity and a dummy that takes 1 for average trade sizes 

(the intraday or across days) that are above the 90th percentile and 0 otherwise. Model 1 uses quoted 

spreads as a proxy for transaction costs, Model 2 uses effective spreads as proxies for transaction costs 

and Model 3 uses realised spreads as proxies for transaction costs. All specifications include stock and 

time fixed effects. Coefficients are tested against the null hypothesis 0 : 1/ 3H    . Two-way clustered 

robust standard errors (with the use of heteroscedasticity-corrected covariance matrices) are reported in 

parenthesis only for the coefficient estimates. *, **, and *** denote significance at the 5%, 1%, and 

0.1% level, respectively.       

Panel A: Within-day estimates 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      2.1996*** 
(0.0284) 

    1.7026*** 
(0.0276) 

    1.5821*** 
(0.0331) 

Invariance Coef., 1             -0.3745** 
(0.0131) 

             -0.3213 
(0.0136) 

              -0.3162 
(0.0165) 

2       0.0297*** 
(0.0057) 

    0.0273*** 
(0.0062) 

   0.0179*** 
(0.0039) 

2R  0.8191 0.8078 0.7038 

Panel B: Estimation based on across days averages 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a       3.0110*** 
(0.0328) 

    2.5932*** 
(0.0343) 

    2.7628*** 
(0.0515) 

Invariance Coef., 1              -0.4327*** 
(0.0201) 

             -0.4032*** 
(0.0188) 

              -0.4227*** 
(0.0186) 

2                 -0.0013 

(0.0012) 

0.0004 

(0.0002) 

-0.0018 

(0.0023) 

2R  0.9910 0.9874 0.9603 
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Appendix 

Table A1:  Stocks and their abbreviations 

Stock Abbreviation Stock Abbreviation 

BP  BP BT GROUP BT 

HSBC HOLDINGS  HSBA AVIVA PLC AV 

VODAFONE VOD PRUDENTIAL PLC PRU 

GLAXOSMITHKLINE  GSK BAE SYSTEMS PLC BAE 

ROYAL DUTCH SHELL  RDSA CENTRICA PLC CNA 

RIO TINTO  RIO SCOTTISH & SOUTHERN ENERGY SSE 

ASTRAZENECA  AZN CADBURY SCHWEPPES CBRY 

ROYAL BANK OF SCOTLAND 
GROUP 

RBS BSB GROUP BSY 

BRITISH AMERICAN TOBACCO  BATS MAN GROUP PLC EMG 

BG GROUP  BG ROLLS-ROYCE HOLDINGS PLC RR 

ANGLO AMERICAN  AAL MORRISON  (WM) SUPERMARKETS MRW 

BHP BILLITON  BLT MARKS & SPENCER GROUP MKS 

BARCLAYS BARC SAINSBURY (J) SBRY 

TESCO TSCO WPP PLC WPP 

XSTRATA XTA REED ELSEVIER REL 

DIAGEO DGE LEGAL & GENERAL GROUP LGEN 

LLOYDS TSB GROUP LLOY COMPASS GROUP CPG 

STANDARD CHARTERED  STAN ASSOCIATED BRITISH FOODS ABF 

UNILEVER  ULVR LAND SECURITIES GROUP LAND 

RECKITT BENCKISER  RB OLD MUTUAL PLC OML 

SABMILLER SAB ANTOFAGASTA ANTO 

NATIONAL GRID PLC NG PEARSON PSON 

IMPERIAL TOBACCO GROUP 
PLC 

IMT SHIRE PLC SHP 

STANDARD LIFE SL BRITISH LAND CO PLC BLND 

INTERNATIONAL POWER PLC IPR VEDANTA RESOURCES VED 

KAZAKHMYS KAZ ROYAL & SUN ALLIANCE INS. RSA 

UNITED UTILITIES UU CAPITA GROUP CPI 

SMITH & NEPHEW SN KINGFISHER KGF 

EXPERIAN GROUP EXPN CARNIVAL PLC CCL 

CABLE AND WIRELESS CW JOHNSON MATTHEY PLC JMAT 

SMITHS GROUP  SMIN BRITISH AIRWAYS BAY 

LIBERTY INTERNATIONAL LII ICAP IAP 

NEXT NXT SEVERN TRENT PLC SVT 

HAMMERSON HMSO REXAM PLC REX 

SAGE GROUP PLC SGE INTERCONTINENTAL HOTELS GROUP IHG 

Source: Thomson Reuters Tick History 
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Table A2 

Invariance Proportionality while controlling for Concratio 

The table shows the coefficients, when the percentage of total volume traded on the alternative 

platforms relative to the total trading volume is included, based on the model in (53). Model 1 is based 

on quoted spreads, Model 2 on effective spreads and Model 3 on realised spreads as proxies for 

transaction costs. All specifications include stock and time fixed effects. Coefficients are tested against 

the null hypothesis 0 1: 1/ 3H    . Two-way clustered robust standard errors (with the use of 

heteroscedasticity-corrected covariance matrices) are reported in parenthesis only for the coefficient 

estimates. *, **, and *** denote significance at the 5%, 1%, and 0.1% level, respectively.       

Intraday Averages 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a      2.1434*** 
(0.0306) 

    1.7697*** 
(0.0346) 

    1.7292*** 
(0.0434) 

Invariance Coef., 1  -0.3947 
(0.0376) 

-0.3688 
 (0.0403) 

-0.3939 
(0.0491) 

2       -0.5834*** 
(0.1029) 

    -0.7130*** 
(0.1101) 

    -0.7719*** 
(0.1013) 

2R  0.8385 0.7885 0.6571 

Averages across days 

 Model 1: Quoted 

Spreads 

Model 2: Effective 

Spreads 

Model 3: Realised Spreads 

Constant , a       2.7409*** 
(0.0445) 

     2.2989*** 
 (0.0524) 

     2.7985*** 
(0.0830) 

Invariance Coef., 1    -0.4271** 
(0.0294) 

-0.3907 
 (0.0311) 

   -0.4407*** 
(0.0312) 

2       -1.0475*** 
(0.2301) 

-1.2398 
 (0.2568) 

   -1.1300*** 
(0.1936) 

2R  0.9857 0.9763 0.9122 
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Table A3 

Invariance Proportionality while controlling for individual Waltratio (Across days estimates) 

Results are based on averages across days estimation for underlying variables based on equation in (50). 

Panel A shows the coefficients estimated when only the trading activity on LSE is considered between 

November 2008 and December 2009 based on the model in (52). Panel B shows the coefficients, when 

percentage of trading activity occurring on each respective alternative platform relative to total trading 

activity is included, based on the model in (55). Model 1 is based on quoted spreads, Model 2 on 

effective spreads and Model 3 on realised spreads as proxies for transaction costs. All specifications 

include stock and time fixed effects. Coefficients are tested against the null hypothesis 0 1: 1/ 3H    . 

Two-way clustered robust standard errors (with the use of heteroscedasticity-corrected covariance 

matrices) are reported in parenthesis only for the coefficient estimates. *, **, and *** denote 

significance at the 5%, 1%, and 0.1% level, respectively.       

Panel A: Estimation without the aggregate trading activity on alternative platforms  

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a      2.4288*** 
(0.0425) 

    2.1402*** 
(0.0502) 

     2.5175*** 
(0.0783) 

Invariance Coef.,                  -0.4200*** 
(0.0309) 

             -0.3891 
(0.0328) 

              -0.4460** 
(0.0357) 

2R  0.9809 0.9690 0.8822 

Panel B: Estimation when individual Waltratio is included 

 Model 1: Quoted Spreads Model 2: Effective Spreads Model 3: Realised Spreads 

Constant , a       2.8842*** 
(0.0539) 

     2.5708*** 
 (0.0637) 

    3.2090*** 
(0.1020) 

Invariance Coef., 1     -0.4497*** 
(0.0353) 

 -0.4256* 
 (0.0372) 

   -0.4969*** 
(0.0403) 

2   
    -0.9992*** 

(0.2001) 
     -1.2212*** 

 (0.2234) 
   -1.0113*** 

(0.1805) 

3  
               -0.5875 

(0.3496) 
-0.5190 
(0.3872) 

   -1.2511*** 
(0.2990) 

4  
-0.2926 
(0.3944) 

-0.4349 
(0.4682) 

 -0.6869** 
(0.2527) 

2R  0.9816 0.9700 0.8842 
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CHAPTER 6 

Conclusion 

6.1 Remarks 

In this thesis I empirically examine certain key propositions derived from market 

microstructure invariance (MMI) theory, introduced by Kyle and Obizhaeva (2016b). I utilize 

data on trading in FTSE 100 index constituent stocks for the three year period between 2007 

and 2009 inclusive to conduct the analysis. Specifically, I empirically investigate the theoretical 

prediction of the existence of a proportionality between trade counts and trading activity, using 

both panel model specifications (Chapter 1) and then proceeding to examine the contribution 

of individual stock characteristics (Chapter 2). Subsequently, I turn my attention to a second 

implication of MMI, namely the existence of a designated proportionality between percentage 

transaction costs per unit of volatility and trading activity, again using panel model 

specifications (Chapter 3). In general, the empirical findings provide a significant degree of 

support for the empirical existence of both expected proportionality relationships.  

The first substantive chapter (chapter 3) introduces an extended formulation of the ITI model 

as introduced by Andersen et al. (2018) as motivated by the invariance of bets proposed in 

Kyle and Obizhaeva (2016b). Given the assumption that bets and trades are connected in a 

nonlinear manner, in contrast to Andersen et al. (2018) the model introduces an order 

shredding factor as a single component. Based on this extended model formulation, I argue 

that any deviations from the stipulated proportionality between trade counts and trading 

activity in the power of 2/3 can potentially be explained by higher (lower) degree of order 

shredding and potentially higher (lower) intermediation. Using four different notion of trading 

activity taken from the literature, namely those implied by Kyle and Obizhaeva (2016b), 

Andersen et al. (2016), Clark (1973) and Ané and Geman (2000), panel estimation 

specifications, I find that the theoretical 2/3 proportionality is: (i) linked more to intraday 

patterns rather than patterns evident across days, (ii) holds only for certain subsamples and (iii) 

depends on the definition of trading activity I employ. Specifically, classification of stocks in 

terms of their market capitalization reveals that only “large” and “medium” market cap stocks 

exhibit the stipulated 2/3 proportionality between trade counts and trading activity, when the 

latter is defined as in Kyle and Obizhaeva (2016b) and Andersen et al. (2016). Large trade size 
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stocks also yield the predicted 2/3 proportionality, but only when trading activity is based on 

the notion that the number of trades in proportional to returns variance, as suggested by Ané 

and Geman (2000). Results based on all trading activity definitions, except that implied by 

Clark (1973), suggest that stocks with larger trade counts exhibit higher measures of 

proportionality, while the magnitude of trading volume does not seem to impact upon 

estimates of proportionality coefficients.  

The second empirical chapter (chapter 4), examines the invariance proportionality between the 

number of trades and trading activity separately for each stock. The model based on the 

definition of trading activity implied by Clark (1973) (i.e. based on the idea that trading volume 

is proportional to the returns variance) generates estimates of the 2/3 power proportionality 

predicted by MMI theory for 70% of the stocks when averages across days are employed, 

except from those stocks with high on average volatility. This finding is consistent even when 

the first/last 10 minutes of trading activity are excluded from the analysis. However, the 

models of trading activity suggested by Kyle and Obizhaeva (2016b) and Andersen et al. 

(2016), respectively, predict a 1/2 invariance proportionality for 86% of the stocks. This 

proportionality is partly driven by the intraday trading patterns in LSE, the magnitude of trade 

size and its correlation with the volatility in business time. Based on the extended invariance 

model this value also implies that bets in S&P 500 E-mini future contracts market are larger 

than bets in stocks traded in FTSE 100 and thus are shredded into more pieces if we accept 

that on average bets shredded into same size trades in these two markets.  

Excluding the first/last 10 minutes of trading activity from the analysis leads to an increase in 

the coefficient estimates predicted by invariance models that now converge to a value of 7/12. 

On the basis of the extended invariance model this finding implies increased level of order 

shredding in the minutes between the first/last 10 minutes of active trading. Year by year 

analysis, based on the trading activity definition of MMI theory and the null hypothesis of 1/2, 

suggests that there is no unified order flow pattern for all stocks, but rather traders are affected 

by stock and/or industry specific characteristics when deciding upon the trade size. The impact 

of financial crisis on the proportionality values we investigate is more obvious for stocks that 

belong to the high market cap group. I believe that the deviations from the 1/2 proportionality 

value found for the enter sample are partially driven by the GBP trade size.  

The third chapter investigates the invariance of transaction costs as proposed by MMI, and the 

consequent empirical prediction of a proportionality between percentage transaction costs per 
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unit of volatility and trading activity. Complementing the previous work of Kyle and 

Obizhaeva (2016a) Russian stocks, I use three common proxies of transaction costs, inter alia: 

quoted spreads, effective spreads and realized spreads.  I find that the suggested scaling laws 

for transaction costs match patterns in the data regarding trades for FTSE 100 stocks on the 

LSE. In general, the results are in line with the empirical findings for Russian stocks in Kyle 

and Obizhaeva (2016a). The expected proportionality between percentage transaction costs per 

unit of volatility and trading activity to the power of -1/3, is present in daily patterns in the 

sample on average, whereas the percentage transaction costs fall more as trading activity 

increases during comparable 5-minute intervals across trading days rather than within 

particular days, providing returns volatility is constant. I discuss whether an increase in trading 

activity that involves trades with larger sizes leads to a smaller decrease in average daily 

transaction costs per unit of volatility and whether these trades are likely to happen on average 

within specific days rather than specific 5-minutes intervals across days. The reduction in 

percentage transaction costs per unit of volatility arising from increases in trading activity 

indicates that market makers may prefer to exchange profits for faster unwinding of their 

positions.  

The proportionality relationships linked to transaction costs remain robust to incorporating 

variables capturing ratios of trading activity and volume on alternative platforms which I use as 

indicators of market fragmentation. However, I find a negative correlation between percentage 

transaction costs on the LSE and trading activity (volume) on alternative platforms relative to 

total trading activity (total volume), assuming that returns volatility remains constant. This is 

consistent with the interpretation that market makers on LSE reduce their spreads when 

confronted with competition from alternative platforms. This finding is consistent with 

Battalio (1997), Battalio et al. (1997), Battalio et al. (1998), Battalio and Holden (2001), Gresse 

(2017) and other microstructure papers that examine the effect of fragmentation on 

transaction costs. Among the alternative platforms, I find the highest negative correlation to 

exist between the trading activity on Chi-X and LSE percentage transaction costs. The trading 

activity on Turquoise is negatively correlated with the LSE percentage transactions costs 

mostly within particular days, whereas that on BATS is negatively correlated with LSE 

percentage realised spreads during specific 5-minutes intervals of each trading day. Finally, I 

show that even if the stock market is treated as a consolidated market, invariance 

proportionality still approximately holds for different proxies of transaction costs, finding 

broadly similar results to those I report for the LSE alone. However, the fact that the 
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performance of MMI is relatively worse may potentially indicate that market fragmentation is 

an important factor to consider in the invariance framework for equity markets. Finally, I 

contend that the fact that there is a lower reduction in realized spreads on average in the 

consolidated market either reveals a greater impact of trades in the alternative platforms, or the 

fact that not all market makers take advantage of increases in liquidity as trading activity 

increases to reduce their quoted spreads (see for example Degryse et al. (2015)).    

6.2 Implications, Limitations and Future Research 

Market microstructure invariance (MMI) theory is one of the most novel ideas in market 

microstructure in recent years. The theory aims to provide a map of understanding the way 

financial markets operate and how order flow imbalances move prices, as well as facilitating 

the development of accurate measures of liquidity. 

This thesis contributes to the empirical investigation of MMI theory and the calibration of 

invariance predictions for equity markets, and provides explanations of deviations from the 

stipulated empirical predictions of invariance principles. First, the thesis shows that order 

shredding is a factor to consider when empirically investigating invariance and when explaining 

deviations from the empirical prediction of proportionality between trade counts and trading 

activity in the power of 2/3. Second, it reveals that this aforementioned proportionality holds 

on average when stock and time fixed effects are considered for certain group of stocks, which 

are formulated based on specific stock characteristics, and that the definition of trading activity 

is important. Third, it argues that intraday patterns of the market affect this proportionality for 

each individual stock and that trade size and its correlation with volatility in business time is an 

important determinant of proportionality estimates. Fourth, the thesis finds that the empirical 

prediction of an inherent proportionality relationship between percentage transaction costs per 

unit of volatility and trading activity is indeed accurate, and appears to be robust across 

different proxy measures of transaction costs. It also continues to hold when market 

fragmentation considerations are taken into account. Refining the invariance predictions for 

trades in equity market based on these findings is an important task for future research. Finally, 

this thesis and the underlying analysis contribute to the respective time deformation literature 

and market microstructure literature that explores the relationship between order flow 

imbalances and price innovations. 
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The invariance predictions implied by MMI principles are not expected to hold everywhere 

and anytime, but rather serve as an important benchmark. At this point it is important to 

underline that the thesis examines empirically MMI theory based on trades, which are different 

from the underlying concept of bets, on the basis of which the theory is formulated. 

Therefore, any deviations of the proportionalities I investigate from the values predicted by 

invariance values are only to be expected. Electronic order handling, regulatory changes, the 

introduction of different trading platforms all likely encourage the splitting of intended orders 

(bets) into several actual trades with more intermediation over time. This makes the empirical 

investigation of invariance principles for trades (intending to capture the theoretical invariance 

of bets) difficult at best. This problem is exacerbated by the way in which trades are recorded 

in the majority of available databases. Although this thesis provides a potential way to 

overcome this problem, further research exploring how bets manifest in trades is needed.  

The results of this thesis provide overall empirical evidence that the proposed microstructure 

invariance relationships especially those relating to the invariance of transaction costs, together 

with their  scaling laws hold approximately for trades. Further investigation of whether they 

continue to hold in different sample periods or for different types of securities and markets is 

paramount. In relation to the invariance of bets, using alternative econometric approaches 

instead of two way fixed effects models, while accounting for market frictions is a worthy task 

for future research. Finally, in relation to the invariance of transaction costs future research can 

focus on examining other proxies for transaction costs and their relationship to trading 

activity. This can be undertaken by assuming a different impact function, classifying 

transaction costs based on the trade size or other stock characteristics, or examining whether 

empirical predictions change when platform characteristics such as latency or high frequency 

trading are taken into account.    
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