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Abstract 

Neurological damage often results in motor impairments and reductions in 

individuals’ functional abilities, particularly when the upper limbs are affected. Many 

individuals fail to achieve potential recovery of hand function due to insufficient volume of 

arm-hand training. Robotic rehabilitation has been proposed as an adjunct to physical 

therapy to meet this shortfall. However, it may be the case that functional recovery is also 

limited by practice. It has been observed that advances in motor control theory, mostly 

arising from computational modelling of behavioural data, have not been integrated in 

rehabilitation practice. The relatively new field of rehabilitation robotics presents a perfect 

application and testbed for principles of motor theory. Moreover, one specific motor 

theory, perceptual control theory (Powers, 1973, 2008), has been identified as architecture 

for designing robotic control architectures (Young, 2018).  

In this thesis, we commence a research agenda that aims to test the proof-of-

principle of PCT to inform robotic motor rehabilitation. The thesis consists of five original 

research reports. Two systematic reviews were conducted. The first aims to establish 

whether end-effector devices for arm and hand rehabilitation are efficacious in reducing 

impairment and improving functional outcomes. Findings suggested that device training 

may be efficacious for acute, subacute and chronic stroke patients. Thus it was determined 

that a research agenda which aimed to inform device development through motor theory 

was justified. A second systematic review evaluated the research literature regarding PCT 

models of manual tracking performance, in order to determine the extent to which PCT can 

account for motor performance in the task. Several key limitations in the PCT modelling 

literature were found. These limitations were investigated in a series of tracking 

experiments in which PCT models were optimised to, and simulated individual 

performance. 

In the first experiment, we developed a test for model individual-specificity. This 

was applied to PCT models and it was found that optimised PCT models simulated 

performance at validation (one-week later) with a higher degree of accuracy than a general 

PCT model. This demonstrates that the PCT model can discriminate between individual 

control characteristics. In the second experiment, we aimed to establish the effect of delay 

on model performance as it was not clear whether PCT models could compensate for long 

feedback delays that are present in the central nervous system. Four PCT model 
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architectures were compared. The standard PCT position control model showed a reduction 

in model fit to anticipatory tracking behaviour at increasing delays. Conversely, models 

that controlled a novel perceptual variable (integrated motion representations) showed no 

such cost to performance at longer delays. Thus, given the appropriate controlled 

perceptual variable, PCT models can compensate for sensorimotor delays in motor 

performance. In the final experiment we aimed to investigate the generalisability of the 

model to a different task conditions. We evaluated whether the most superior model from 

the previous experiment could make individual-specific predictions (as per the first 

experiment), when individuals tracked sinusoidal and pseudorandom targets at different 

speeds with a new apparatus (steering wheel). The model was found to generalise well 

across task constraints. 

In sum, the thesis develops a control model that can characterise and simulate 

individual performance over a range of task constraints. In the process, we addressed 

several important limitations in the evidence base for PCT. The implications of these 

advancements for the fields of motor control, and rehabilitation, are discussed in the 

concluding chapter. The aim of future work will be to implement the novel PCT 

architecture within the control algorithm for a robotic device for motor rehabilitation.
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Chapter 1: Introduction 

1.1 Chapter outline  

This thesis aims to investigate the proof-of-principle for perceptual control 

applications to robotic rehabilitation. This chapter sets out the rationale for the aim and 

objectives of the thesis. First, I discuss motor control problems in neurological conditions 

(1.2). Following this, in section 1.3, neuroplasticity, cortical reorganisation, and the scope 

for functional recovery are examined. Neurorehabilitation is reviewed within the context of 

motor control (1.4). The case for robotic rehabilitation for motor relearning is made in the 

following section (1.5). Subsequently, principles from motor control theory are presented 

(1.6). The argument is made that specific challenges within rehabilitation robotics may be 

addressed by considering insights from motor control theory, and in particular, perceptual 

control theory (1.7). In the last section a research agenda is outlined which aims to apply 

this theory to robotic rehabilitation. This section also sets out the objectives of the current 

thesis, which aims to begin investigation within this research agenda (1.8). 

1.2 Neurological problems that affect action control 

1.2.1 Neurological Issues 

 Disorders of the Central Nervous System (CNS) can result in severe and persistent 

physical disability. Stroke is the most prevalent neurological disorder: over 100,000 

individuals have a stroke per year in the UK alone (Stroke Association, 2018). The 

estimated burden in cost of stroke to society in the UK is £23 billion (Patel et al., 2017). 

Spinal Cord Injury, Traumatic Brain Injury (TBI), Cerebral Palsy (CP), Parkinson’s 

Disease (PD) and Multiple Sclerosis (MS) are several other common neurological causes 

of physical disability. Neurological damage that results in the loss of functional use of a 

limb, or limbs can be particularly disabling because it can affect an individual’s ability to 

complete Activities of Daily Living (ADL) such as dressing or washing. Due to the higher 

prevalence of stroke than other neurological conditions, much research in motor 

impairment and rehabilitation is focused on this group. 

 Physical disability is a loss of functional ability and independence (World Health 

Organization, 2001). Following neurological damage, common motor impairments include 

paresis (weakness or partial loss of movement), plegia (total loss of movement), hyper-

reflexia and contracture (causes of muscle stiffness), tremor (involuntary oscillatory 
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muscle contraction), and apraxia (difficulties with motor planning and preparation). These 

are often associated with focal or distributed neurological damage affecting motor areas. 

The size and topogrophy of CNS lesions are related to the severity of impairment (Cheung 

et al., 2015). Sensation and control of the body parts in the brain hemispheres are contra-

lateralised, thus a focal lesion to one hemisphere, as is usually the case in stroke, typically 

results in asymmetric impairment (Feydy et al., 2002). In stroke, three quarters of affected 

individuals report upper limb paresis (Stroke Association, 2018). Impairments may be 

further compounded by deconditioning from inactivity during hospitalisation (Rabadi, 

2007), as well as to learned non-use of the affected limb (reliance on the unaffected limb) 

during recovery (Edward Taub, Uswatte, & Pidikiti, 1999). In addition to motor 

impairments, neurological damage often results in cognitive and sensory impairments. 

Sensory and perceptual impairments may interact with motor impairments and contribute 

significantly to physical disability (Tecchio et al., 2006). 

 Sensory impairments may be observed in multiple modalities, and are estimated to 

affect between 40 and 65% of individuals with stroke (Carey, Matyas, & Oke, 1993; 

Connell, Lincoln, & Radford, 2008). For example, tactile and proprioceptive impairments 

are common and may be associated with stroke severity and paresis (Mary et al., 2015; 

Tyson, Hanley, Chillala, Selley, & Tallis, 2008). Impairments in vision (Pollock et al., 

2011) and balance (Tyson, Hanley, Chillala, Selley, & Tallis, 2006) are also common. 

Some studies have found correlations between the presences of sensory deficits in multiple 

modalities (Mary et al., 2015; Vallar, Antonucci, Guariglia, & Pizzamiglio, 1993); indeed, 

lesions to secondary sensory and associative areas may result in impairments in integrated 

perception such as apraxia, visuospatial neglect, and balance disorders (Mary et al., 2015; 

Smania, Picelli, Gandolfi, Fiaschi, & Tinazzi, 2008). Sensory and perceptual impairments 

have been shown to have a detrimental effect on motor learning (Vidoni & Boyd, 2009). 

Critically, individuals with comorbid perceptual and motor impairments experience slower 

and more limited functional recovery than those with no perceptual impairments (Carey et 

al., 1993; Mary et al., 2015; Smania et al., 2008; Tyson et al., 2008). 

 Groups of individuals with the same neurological diagnosis, lesion site or severity 

may still have heterogeneous symptoms, impairments, and abilities (Kwakkel, Kollen, & 

Wagenaar, 1999). This may be due to differences in latent functional localization, age-

related reductions in neural plasticity (the capacity for cortical reorganisation), and a range 

of other person-specific factors (Öneş, Yalçinkaya, Toklu, & Çağlar, 2009). 
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1.2.2 Plasticity, cortical reorganisation, and the scope for functional recovery 

 Spontaneous full functional recovery is possible only for a small minority of 

individuals (Ekusheva & Damulin, 2015). Like impairments, recovery outcomes are 

heterogeneous and difficult to predict (Kwakkel et al., 1999). The potential for recovery 

may depend on many factors, including those stated in the previous section (1.2.1) but 

hinges on the propensity of the brain to undergo cortical reorganisation. Cortical 

reorganisation is the process of structural alteration of brain matter via deafferention of 

existing neural pathways, and generation of new interneural pathways via Hebbian 

processes (Ekusheva & Damulin, 2015). Neuroplasticity refers to the extent to which a 

brain is able to tolerate changes in cortical structure due to cortical reorganisation. 

Neuroplasticity decreases across the life span (Kleim & Jones, 2008). 

 Cortical reorganisation is proposed to underpin learning (Bütefisch, Kleiser, & 

Seitz, 2006). Sensory and motor cortices in adults are somato-topically organised (Carey et 

al., 1993; Rossini et al., 2007). This means that afferent and efferent signals from body 

units project to specific regions of the sensorimotor cortex, and functions are localised 

there (Pizzella, Tecchio, Romani, & Rossini, 1999). As a result of functional localisation, 

focal lesions may impair sensation or movement at specific body sites (Bütefisch et al., 

2006; Grefkes & Fink, 2014). Cortical reorganisation in regions adjacent to the lesioned 

site may facilitate localisation of the function to spared cortical regions which may not 

have previously been involved (Bütefisch et al., 2006; Chen, Cohen, & Hallett, 2002; 

Rossini et al., 2007); promoting functional recovery. 

 There is substantial evidence for cortical reorganisation following neurological 

infarct from neuroimaging studies (Grefkes & Fink, 2014; Ward, 2006). Following focal 

brain lesions such as in stroke or TBI, spikes in neural activity are observed in the cortical 

regions surrounding the damaged site during motor task performance (Calautti, Leroy, 

Guincestre, & Baron, 2003; Chen et al., 2002). These activations tend to reduce during 

recovery, presumably as the individual localizes function to spared cortical regions 

(Kwakkel et al., 1999). In chronic stroke patients (six months or more post-stroke) with a 

secondary motor area lesion, activation in non-lesioned secondary motor areas was 

inversely correlated with functional recovery of the hand (Rossini et al., 2007; Ward & 

Frackowiak, 2006). This indicates that large-scale cortical reorganisation may be a short-

term adaptive mechanism following neurologic injury. The pattern of spontaneous 
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recovery following stroke supports this conclusion as functional recovery tends to plateau 

between 6 months to a year post stroke onset, with most recovery occurring in the first 3 

months (Dobkin, 2018). Recovery of hand function plateaus around one year (Andrews, 

Brocklehurst, Richards, & Laycock, 1981). Whilst studies of motor impaired individuals 

tend to focus on cortical reorganisation in motor areas and the cerebellum, reorganisation is 

not limited to these areas (Bütefisch et al., 2006; Ward & Frackowiak, 2006). 

 Sensory cortical areas also undergo cortical reorganisation in parallel to motor 

cortical reorganisation following lesions to motor areas (Suminski, Tkach, Fagg, & 

Hatsopoulos, 2010; Tecchio et al., 2006). This is not surprising given the dependence of 

motor skills on perceptual input (and vice versa), the degree of cortical connectivity 

between motor and sensory areas (Bütefisch et al., 2006; Ward & Frackowiak, 2006), and 

the likelihood of sensory impairment following neurologic injury (Carey et al., 1993; 

Connell et al., 2008; Smania et al., 2008; Tyson et al., 2008). Therefore it has been 

proposed that sensory cortical reorganisation is fundamental to motor relearning (Ekusheva 

& Damulin, 2015). This conclusion is supported by evidence of poorer functional motor 

outcomes of those with sensory and perceptual impairments (Greenhalgh, Long, Flynn, & 

Tyson, 2008; Tyson et al., 2008). This understanding of the neural mechanism of motor 

learning underpins methods of rehabilitation of motor impairment and functional abilities. 

Use of an affected limb will stimulate increased activation in both sensory and motor areas 

(Rossini et al., 2007). These areas will consequently undergo cortical reorganisation which 

may facilitate recovery of limb function (Sun et al., 2013). Neurorehabilitation is used to 

promote neuroplasticity and cortical reorganisation by practice and training. 

1.3  Neurorehabilitation 

1.3.1 Principles 

 Neurorehabilitation is typically a multidisciplinary approach that aims to promote 

recovery following neurological damage (Kwakkel et al., 1999; Langhorne, Coupar, & 

Pollock, 2009). It may involve motor rehabilitation, cognitive and memory work, speech 

and language therapy, occupational therapy (OT) and a host of other approaches (Turner-

Stokes, Nair, Sedki, Disler, & Wade, 2005). Physical therapy (PT) and OT are used to 

reduce motor impairment and improve functional use of the affected limb(s) (Langhorne et 

al., 2009). Three core principles of training have consistently been demonstrated to 
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promote positive outcomes in motor rehabilitation: repetition, intensity, and specificity 

(Kwakkel et al., 1999).  

 Task-specificity refers to the benefit of training motor skills rather than mere use 

of the affected limb. In healthy humans, movements are executed to achieve perceptual 

goals. Therefore motor learning may be facilitated by training goal-directed movements 

rather than ambiguous movements (Kleim & Jones, 2008). However this is not easy to 

achieve. Many approaches improve muscular activation patterns and other impairments but 

do not result in functional improvements in ADL performance (Kwakkel et al., 1999). 

Whereas the literature indicates practice of a specific ADL activity results in improvements 

in ability to complete that task but rarely generalises to other activities and tasks (Kwakkel, 

Kollen, & Krebs, 2008; Kwakkel et al., 1999; Langhorne, Bernhardt, & Kwakkel, 2011; 

Langhorne et al., 2009). On a cortical level, repetition of skilled movement synergies leads 

to increased corticospinal plasticity-related activation relative to repetition of unskilled 

movements (Kleim & Jones, 2008; Ward, 2006). However, training in one task does not 

improve abilities in other tasks, even if they share similar movements (Kwakkel et al., 

1999). Practice should also be repetitive and of high intensity (Kwakkel et al., 1999; 

Kwakkel, Kollen, & Lindeman, 2004; Langhorne et al., 2011, 2009). Activity in the 

cortical regions surrounding the infarct will result from movement of the affected limb. 

During movement repetition, co-activation of neural circuitry will increase the number and 

strength of connections between cortical motor and sensory regions (Ekusheva & Damulin, 

2015). Importantly, repetition must not be replicative (Kwakkel et al., 1999). For instance, 

picking a glass up from different random locations, or using a variety of glasses and cups, 

is preferable to repeating exactly the same movement. Altering the constraints of a task 

should improve generalised ability across exemplars of the same task. Intensity of training 

ensures that cortical reorganisation is sustained. Thus high intensity, repetitive, and task-

specific practice should promote cortical reorganisation of sensorimotor networks that will 

support lasting improvements in performance of a specific functional task.  

 Typically early training is encouraged as it tends to lead to better functional 

outcomes than later onset rehabilitative training, with most improvements occurring in the 

acute phase (Hayward & Brauer, 2015). This may stem from the increased neuroplasticity 

immediately following stroke onset (Calautti, Leroy, Guincestre, & Baron, 2003; Chen et 

al., 2002). It must be considered that in alongside the importance of promoting 



26 
 

reorganisation to relearn lost skills, non-use may further impair performance as muscle 

tone may be reduced with inactivity (Lambercy, 2009), and because non-use exacerbates 

loss of function by repurposing of neural networks to other functional tasks via cortical 

reorganisation (Kleim & Jones, 2008). Therefore training may not just promote relearning 

but also attenuate degradation of existing neural networks. 

 Despite the application of the above principles in rehabilitation, treatment effects 

over and above those that result from spontaneous recovery are relatively small (Kwakkel, 

Kollen, & Twisk, 2006). It is likely that recovery is highly dependent on the extent of 

cerebral damage and the ability of the brain to spontaneously recover. However, it may 

also be the case that current rehabilitation practice falls short of meeting individuals’ 

functional potential. A number of factors that may contribute to this shortfall are 

considered in the next section. 

1.3.2 Challenges 

 Trends in rehabilitation practice tend to be informed by ‘what works’, rather than 

by theoretical principles in motor control and learning (Carr & Shepherd, 1989). 

Rehabilitation methods tend to focus on movement practice under the assumption that 

reproducing movements will lead to neurological change in favour of increased 

functionality (Rossini et al., 2007). However, there is limited evidence to suggest what 

exactly is learned in a given task, and how movements are coordinated in the moment to 

meet these goals (Kwakkel et al., 2004). Theory and findings in motor control may 

elucidate mechanisms of change and inform practice. Indeed it has been proposed that “a 

better theoretical understanding of the underlying mechanisms of disordered movement co-

ordination, and perception and action in general, could ultimately lead to the development 

of new therapies and more effective rehabilitation strategies” (page 385, Kwakkel et al., 

1999). Given that action is oriented toward perceptual goals, and the evidence that sensory 

and perceptual impairments play a role in maintaining motor impairments and disability 

(Meyer, Karttunen, Thijs, Feys, & Verheyden, 2014), perceptual aspects of motor control 

and impairment appear important. Indeed, visual perception training for individuals with 

neglect may be one training approach in rehabilitation results in transfer across multiple 

tasks (Webster et al., 1984). However, there is insufficient evidence that visual perception 

training is efficacious for visual field deficits in general, or improves ADL performance 

(Pollock et al., 2014). 
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 In the UK, an ageing population is contributing to an increased demand or 

requirement for rehabilitation (Truelsen et al., 2006). Consequently, primary rehabilitation 

programmes are becoming shorter (Richards, Hanson, Wellborn, & Sethi, 2008). In the 

inpatient setting, individuals may be in receipt of several different types of rehabilitation; 

with a focus on restoring walking abilities to improve their mobility (Hayward & Brauer, 

2015). In the UK, typically very little time is spent on arm-hand practice (Connell, 

McMahon, Eng, & Watkins, 2014). A high dose of arm-hand practice is recommended but 

this dosage is rarely met (Hayward & Brauer, 2015). The current dosage has been 

described as low intensity, and may not be sufficient to meet optimal potential outcomes 

(Connell et al., 2014). In outpatient settings, patients are encouraged to practice arm-hand 

skills in their own time, although instructions and support are often insufficient (Connell et 

al., 2014). In addition, adherence to home training programmes is not well quantified and 

may be negatively affected by low motivation (Jurkiewicz, Marzolini, & Oh, 2011). 

Individuals may prefer to use their unaffected arm to complete tasks (Edward Taub et al., 

1999), or use their affected arm in a way that they would not have prior to stroke onset 

(Langhorne et al., 2011). This may be less effortful or frustrating than practicing and 

failing at tasks with the affected limb. However, as mentioned previously, learned non-use 

may compound this issue and reduce the ability to recover function in the affected limb 

(Edward Taub et al., 1999). A second problem for outpatients is access. Individuals may 

need to visit their treatment centre several times per week but may be unable to drive or 

have limited mobility (Hayward & Brauer, 2015; Turner-Stokes et al., 2005). This presents 

an obstacle for accessing therapies and may further reduce the total amount of time 

individuals receive therapy, and thus the volume of practice they receive. Again, this may 

limit the extent of functional recovery.  

 Alternative rehabilitation methods, such as Robotic Training (RT), may be used as 

an adjunct to occupational and physical therapy to address these shortfalls. 

1.4  Robotic neurorehabilitation 

1.4.1 Rationale and methods 

 Robotic neurorehabilitation devices have been proposed as an adjunct to PT and 

OT to enable patients to attain the massed practice necessary for neuroplasticity and 

recovery (Hsieh et al., 2011; Krebs, Dipietro, Volpe, & Hogan, 2003; Krebs, Hogan, 

Aisen, & Volpe, 1998; Kutner, Zhang, Butler, Wolf, & Alberts, 2010; Weightman et al., 
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2011). Such devices can precisely apply assistive or resistive forces to individuals whilst 

they complete a motor task (Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, & 

Leonhardt, 2014). It has therefore been proposed that robotic devices could be used within 

the home for intensive task practice (without direct therapist supervision), or within the 

clinic where a therapist might supervise multiple patients interacting with the robots 

(Linder, Reiss, et al., 2013; Linder, Rosenfeldt, et al., 2013; Reinkensmeyer, Pang, Nessler, 

& Painter, 2002; Sivan et al., 2014; Standen et al., 2011; Weightman et al., 2011). Thus 

robotic devices may present a platform to improve access to physical therapy. Robots 

typically use virtual environments and games which are thought to increase attention and 

motivation, and may promote adherence to home-based training programmes (Nijenhuis et 

al., 2015). Robotic devices enable patients with little or no ability to produce movements to 

practice high-intensity therapy. An additional advantage is that kinematic measurements 

relating to movement parameters and task performance can be collected during training 

(Babaiasl, Mahdioun, Jaryani, & Yazdani, 2015; Reinkensmeyer et al., 2002; 

Timmermans, Seelen, Willmann, & Kingma, 2009; van Delden, Peper, Kwakkel, & Beek, 

2012; Wu et al., 2012). Some robots and tasks can also provide enhanced sensory 

feedback, such as tactile sensory information via haptics or visual/auditory feedback via 

the computer interface, or apply forces that therapists could not (Maciejasz et al., 2014).  

 Robotic devices are typically connected to a computer (Maciejasz et al., 2014). 

Control algorithms in computer software define the training schedule of assistive and 

resistive forces applied to the limb (Marchal-Crespo & Reinkensmeyer, 2009). Usually 

device training is accompanied by a virtual game which trains discrete or continuous 

movements. For instance, a discrete task could involve separate reaching movements to 

move a virtual hand to grasp apples and return them to a basket. An example of a 

continuous task might be sustained tracking movements such those used when driving. 

Virtual environments give a task-specific context and serves to make the training more 

enjoyable and may promote attention and engagement (Huang & Krakauer, 2009; 

Maciejasz et al., 2014; Patton & Mussa-Ivaldi, 2004; Takahashi, Der-Yeghiaian, Le, 

Motiwala, & Cramer, 2008). The parameters of games can be adapted to make the task 

more or less challenging; as can the magnitude of assistive force or resistive force supplied 

by the device. These changes allow the training to be catered to the individual such that the 

optimum level of challenge is achieved (Marchal-Crespo & Reinkensmeyer, 2009). 
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 Devices can be split into two broad categories: exoskeletons and end-effectors 

(Maciejasz et al., 2014). Exoskeletons are devices with motors that are mechanically 

aligned with the joints of the body, such that the motors produce torque (rotational force) at 

these joints to assist movement. These devices typically support many Degrees of Freedom 

(DoF) in movement. These may be controlled simultaneously to allow users to practice 

complex synergistic task movements. Exoskeletons may even be controlled by 

electromyographic (EMG) signals derived from measurement by dermal electrodes (Hu et 

al., 2008; Li, Hu, Tong, & Member, 2008; Takaiwa, Noritsugu, Ito, & Sasaki, 2011). 

Whereas end-effector devices have a single point of contact, usually with the most distal 

section of the user’s limb, such as a joystick setup where the hand holds the handle. End-

effector devices are typically simpler than exoskeletons, comprising fewer motors and 

supporting fewer DoF (Maciejasz et al., 2014). Additionally, because exoskeletons provide 

torque at joints, they can constrain the individual’s movement to biomechanically optimal 

and safe trajectories (Lo & Xie, 2012). However, this constraint may impede learning 

because trajectories may be replicated during repetitive practice. Furthermore, these 

constraints are not present without the exoskeleton and this may mean learnt skills are not 

easily executed without the device. End-effectors do not constrain movements, therefore 

individuals must find their own solution in a task, and may develop compensatory 

movements that can translate to use after training. There is some evidence that end-effector 

devices lead to better functional outcomes than exoskeletons in lower limb rehabilitation 

(Chua, Culpan, & Menon, 2016). 

1.4.2 Evidence 

 Several systematic reviews have been conducted with the aim of establishing 

whether rehabilitation devices are efficacious in reducing impairment and promoting 

functional recovery. For upper limb rehabilitation, reviews found that RT reduced 

impairment in the hemiparetic limb in stroke patients (Kwakkel et al., 2008; Prange, 

Jannink, Groothuis-Oudshoorn, Catharina Hermens, & Ijzerman, 2006). A similar pattern 

was found in a review of upper limb RT for children with CP (Chen & Howard, 2014). 

However, evidence for translation to functional recovery or ADL performance was more 

limited, often by low quality evidence (Mehrholz, Pohl, Platz, Kugler, & Elsner, 2015). 

These reviews included many devices that trained only the proximal upper limb (shoulder 

and elbow), and included both exoskeleton and end-effector devices. One review of distal 

upper limb RT found both reductions in impairment and improvements in functional 
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abilities with some devices (Balasubramanian, Klein, & Burdet, 2010). It may be the case 

the distal upper limb training promotes recovery to a greater extent than proximal training. 

RT, particularly of the distal upper limb, may be a promising adjunct to therapist-based 

rehabilitation methods. The efficacy of end-effector devices for hand rehabilitation will be 

reviewed and discussed in Chapter 3. 

1.4.3 Challenges 

 Despite the evidence that devices may be efficacious as an adjunct to therapist-

based rehabilitation, robotic devices have rarely been used outside of research studies. One 

simple explanation is that their development only began over the last decade, there are 

currently very few commercially available devices (Babaiasl et al., 2015; Lo & Xie, 2012; 

van Delden et al., 2012). However it may also be the case that health service providers 

have concerns about cost, safety, training and maintenance. Cost analyses tend to report 

very small benefits to robotic therapy over conventional therapies when long-term care is 

considered (Wagner et al., 2011). Moreover, commercial production should bring down the 

unit price and maintenance cost, making devices more affordable for health services 

(Maciejasz et al., 2014). As end-effector devices tend to be mechanically simpler than 

exoskeletons, end-effectors are typically smaller, easier to set up and significantly cheaper, 

with simpler control algorithms. End-effectors are likely more suitable for home-based 

rehabilitation and implementation in health services than exoskeletons (Balasubramanian 

et al., 2010). These devices may present a solution to the shortfall in practice of functional 

arm-hand movements noted in the previous section (1.4), particularly if they can be set up 

in service users’ homes (Balasubramanian et al., 2010; Kwakkel et al., 2008). Not only 

would this increase access to the therapy but also the volume of practice that could be 

achieved. 

 In addition to pragmatic considerations, the previously considered challenges in 

neurorehabilitation also apply with robotic devices. Yet robotic devices may present an 

opportunity to address these challenges. It was previously mentioned that rehabilitation 

outcomes may be improved by better understanding the mechanism of action control in 

both healthy and impaired populations. Robotic platforms with computer peripherals have 

been used to test these mechanisms within the motor control literature (Gollee, Gawthrop, 

Lakie, & Loram, 2017; Inoue & Sakaguchi, 2014; Khoramshahi, Shukla, & Billard, 2014; 

Poulton, 1952a; Schlesinger, Porter, & Russell, 2013; Stepp & Turvey, 2017; Yu, 

Gillespie, Freudenberg, & Cook, 2014). As these systems enable accurate measurement of 
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kinematic data and task performance they can also be useful tools for deriving models of 

what and how individuals control in these tasks, and elucidating the mechanism of motor 

learning. These insights may be applied to the rehabilitation setting. Firstly, this knowledge 

could inform the design of robotic devices and peripherals (Kwakkel et al., 2008). 

Moreover, in impaired individuals, task performance and kinematic data could be used for 

assessment purposes offline by therapists to quantify disordered movement and inform 

their prognosis via predictive statistical models (Allen et al., 2007; Au, Lei, Oishi, & 

McKeown, 2010; Oishi, Ashoori, & McKeown, 2010; Oishi, Talebifard, & McKeown, 

2011). Behavioural data may be used to track the progress of individuals on-line and adapt 

the amount of assistance or resistance to best suit the individual at that point in time, via 

adaptive control algorithms (Marchal-Crespo & Reinkensmeyer, 2009).  

 In the next section, the motor control literature is reviewed through a 

rehabilitation lens, with a view to reconcile accounts of motor behaviour and learning 

across these fields. Specifically, this section aims to identify the principles that underpin 

currently efficacious practices, and identify those that might advance understanding and 

practice in rehabilitation. 

1.5  Insights from motor control 

1.5.1 Motor redundancy and the Uncontrolled Manifold 

 Motor control is the study of how the CNS and body produce movement. The 

human body comprises many joints and muscles, and therefore a very large number of 

biomechanical Degrees of Freedom (DoF) (Scholz & Schöner, 1999). Consequently, 

actions for any motor task are completed differently on each repetition, as a near-infinite 

number of different combinations of muscle forces and joint angles are possible. This was 

first observed by Nikolai Bernstein in the 1920s in his cyclographic studies of repetition of 

a practiced motor task (Carpenter, 1968): hitting a chisel with a hammer. The movement 

trajectory of the arm segments and hammer varied with every strike, yet the hammer 

reliably hit the chisel. Bernstein termed this ‘repetition without repetition’, to describe how 

the pattern of joint angles, muscle forces and trajectories differ whilst the task goal is 

consistently achieved. 

 These numerous DoF have been both described as redundant and abundant. 

‘Redundant DoF’ recognises the inherent challenge of action selection in the face of many 

options (motor redundancy). ‘Abundant DoF’ instead recognises the flexibility that this 
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affords the motor system in completing task-oriented action. These two perspectives 

remain relevant to contemporary motor theories, which must propose a solution for how 

the CNS selects action whilst preserving this flexibility. Numerous findings suggest that 

the CNS restricts certain DoF whilst others can vary freely (Hogan & Flash, 1987; 

Morasso, 1981; Soechting & Lacquaniti, 1981). For example, during reaching movements 

to different points, hand trajectories were found to be regular, quasilinear, and had bell-

shaped velocity profiles, whereas the observed trajectories at other joints varied in irregular 

patterns (Morasso, 1981). This has led authors to propose the Uncontrolled Manifold 

hypothesis (UCM; Scholz & Schöner, 1999). The UCM states that the CNS selects a 

combination of elements that achieves stability in a performance variable (the variable 

characterising the goal), while allowing other kinematic or anatomical DoF to vary (M. 

Latash, Scholz, & Schoner, 2002). This would reduce the complexity of action selection as 

fewer DoF must be specified by the CNS. Optimal Feedback Control Theory (OFCT; 

Todorov, 2004; Todorov & Jordan, 2002) proposes that elemental solutions are estimated 

on-line during trajectory execution through statistical optimisation of a cost function. A 

cost function specifies a time-integral value that is minimised during optimisation. For 

example, minimum jerk describes optimisation of trajectory control by minimising the rate 

of change of acceleration (Todorov, 2004). Under the OFCT proposal, action planning and 

execution are not separate processes, and this further reduces the complexity of 

determining trajectory control.  

 The fundamental insight that individuals control task-relevant variables may qualify 

principles of neurorehabilitation. Firstly, practice of unskilled movements may not result in 

transfer to improved task performance because the required movements for a given task 

vary based on the initial conditions. Instead, training is required to adaptively coordinate 

different movements to achieve this goal. Consequently, the principle that task-specific 

practice should be repetitive, but not replicative, is explained by the fact that humans do 

not replicate the same movements exactly even when the goal and task conditions are the 

same. Importantly, the focus on goals or task-invariances in movement suggests a 

perceptual basis of action control. A group of theories divert from action selection 

completely by proposing that actions (outputs) are not controlled at all; instead, individuals 

control (or predict) inputs. This is presented as an alternate solution to the problem of 

action selection. These theories will be described in the next section (1.6.2.) but also 

conform to a task-centred view of action control.  
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1.5.2 A shared representation of perception and action 

Emerging from the concept of goal-oriented action is the proposal that action and 

perception share a common representation within the CNS. This is the basis of the 

ideomotor principle, first proposed by William James in 1890, and advanced in a 

contemporary form by Prinz and Hommel (Hommel, 2009; Prinz, 1997). Indeed this is 

supported by reciprocal connections between motor and sensory areas (Friston, Mattout, & 

Kilner, 2011). According to the ideomotor principle, actions are coded in terms of action 

effects (perceptual results) and thus the two share a common neural substrate (Prinz, 1990). 

This is proposed to enable humans to learn to produce action based on associations 

between previous actions and action effects (Hommel, 2009). The opposite is also 

proposed; that actions are motivated by recalling action effects. However, the ideomotor 

interpretation is limited because actions vary to achieve the same action effect - the 

problem of motor redundancy (see section 1.6.1). Moreover, there can be no strict 

association between an action and its effect as the latter will vary depending on initial 

conditions and disturbances including those caused by muscle interactions (Feldman, 

Goussev, Sangole, & Levin, 2007). 

Perceptual control theory (PCT; Powers, 1973, 2008; Powers, Clark, & McFarland, 

1960; Powers, Clark, & McFarland, 1960) proposes instead that actions are varied control 

perceptions. The theory proposes a hierarchy of perceptual control units that operates as a 

two-way cascade (Powers et al., 1960). Perceptual signals flow up the hierarchy via 

bottom-up projections. Superordinate units provide top-down projections which convey 

reference signals to units below: desired perceptual states. At each unit, this reference 

signal is compared to incoming perceptual signals (Powers, 1973). This comparison yields 

an error term that results in the specification of a top-down reference value for the unit 

below. Each unit possesses an input function and an output function. The input function 

integrates perceptions from lower units into the input perceptual signal to be controlled at 

the current level. The output function transforms the error term into the reference signal to 

the unit below, and therefore defines the magnitude of output relative to a change in input. 

Units at the lowest level produce action and thus, output functions at this level transform 

perceptual error into output. Action is the method used to reduce perceptual error, rather 

than a controlled quantity itself (Powers, 1973, 2008). The challenge of motor redundancy 

is avoided because the DoF are not controlled; rather perceptions are controlled by varying 

these DoF.  
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Active Inference (AI; Adams, Shipp, & Friston, 2013; Brown, Friston, & 

Bestmann, 2011; Friston et al., 2011; Perrinet, Adams, & Friston, 2014), also proposes a 

shared representation of action in perceptual coordinates. The theory is rooted in Hermann 

von Helmholtz’s unconscious inference: the idea that rather than a bottom-up receiver of 

sensory information, the CNS makes inferences (predictions) about the cause of sensory 

information (top-down). This concept is formalized in predictive coding (see Clark, 2013), 

for a review). In predictive coding, the primary function of the CNS is to optimise top-

down hypotheses about its sensory input using bottom-up prediction errors in a multi-layer 

hierarchy (Clark, 2013). The AI theory attempts to integrate action control within this 

framework. In this conception, action is driven by the motivation to reduce error in 

predictions of future sensory inputs. Top-down signals in the AI account are predictions of 

proprioceptive input (sensations regarding body parts in the spatial frame). Bottom-up 

projections are prediction errors, propagated upward to alter priors in order to improve 

future predictions of proprioceptive input. Action is conceived as the use of reflex arcs to 

resample sensory information to minimise prediction errors. Thus the key difference 

between PCT and AI is the locus and function of error correction. In PCT, error correction 

occurs at each level to reduce the error between the controlled perception and the 

perceptual goal. In AI, the error correction is proposed to update the prediction of sensory 

input or ‘internal model’, and thus operates between levels. 

In both PCT and AI, error can be reduced either by changing the way in which the 

environment is sampled (action), or changing top-down signals (references or predictions). 

It should be noted that, as in PCT and AI the downward projections are specifications of 

sensory inputs and not motor commands, these are context-independent (Adams et al., 

2013). That is, they do not take account of contextual factors such as muscle length or 

external load. Therefore, these signals must be converted to context-dependent motor 

commands by corticospinal neurons to produce torque at joints. Because of this, 

descending signals are predictions of sensory effects; there is no action selection per se.  

These perspectives highlight the perceptual nature of action control and therefore 

the need to quantify perceptual intentions or goals within a given task. All three theories 

break down the classical distinction between perception and action. The implications of 

these proposals for motor rehabilitation are wide-ranging. One implication is that the long-

perceived functional differentiation of the motor and sensory cortices may be in question 

(Friston, Daunizeau, Kilner, & Kiebel, 2010). By extension, the distinction between 
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sensory and motor impairment becomes less clear. Within a given task it may be necessary 

to establish which perceptual variables are controlled (or predicted, in AI) rather than 

characterising the movement pattern itself. Critically, it is these perceptions that are learnt, 

rather than the actions that produce it; thus motor learning might be reframed as perceptual 

learning. 

1.5.3 Referent Control 

Goal attainment is dependent on quantifying the value of the goal to be achieved, in 

addition to having the means to achieve it. Central to the definition of the reference signal 

in PCT is that it represents individuals’ intentions (Marken, 2013a). PCT recognises that in 

any task there are many different perceptions that may be controlled (Powers, 1978, 1989). 

Consequently, an individual may control many different perceptual variables 

simultaneously, and switch control from one variable to another (Powers, 1978). It should 

be recognised therefore that two individuals may approach the same task by controlling 

different perceptions or similar perceptions but at different reference values (Bourbon, 

Copeland, Dyer, Harman, & Mosley, 1990; Powers, 1989). This idea underpins 

heterogeneity in performance and learning. Consequently, PCT proposes the functional 

modelling methodology (Mansell & Huddy, 2018; Runkel, 2007). The aim of this 

methodology is to determine which perceptions an individual is controlling in a given task 

(Runkel, 1990), and model their individual performance (Mansell & Huddy, 2018). This 

may be a useful methodology to apply within rehabilitation as it explicitly attempts to 

quantify the inherent heterogeneity of control. Models may be applied to elucidate 

individual learning. Moreover, PCT proposes that perceptual control operates at all levels 

of individual functioning, not simply perception and action (Powers, 1973). For example, 

PCT has been applied to mental health and wellbeing in the form of Method of Levels 

psychotherapy (Carey, 2006; Carey, 2008; Powers et al., 2011). Given the impact of 

neurological damage on cognitive and emotional functioning, as well as physical 

functioning, such a holistic theoretical approach may be valuable. Therefore the theory 

may be a useful framework for understanding and approaching multidisciplinary aspects of 

neurological recovery.  

1.5.4 The role of negative feedback 

Negative feedback describes the process of keeping a system in an equilibrium state 

by dynamically reducing error between a set point (reference) and the current state. It is 
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ubiquitous in engineering control applications such as servo control, thermostats, and 

cruise control systems. In living organisms, negative feedback operates throughout the 

body in regulatory functions such as homeostasis (Turrigiano, 2007). The cybernetics 

movement first applied these principles to purposeful behaviour (Rosenblueth, Wiener, & 

Bigelow, 1943). In action control, perception guides action, which in turn, alters sensory 

inputs and perceptions. Thus sensory information regarding the results of action is a 

feedback arc (Wiener, 1948). Contemporary theoretical accounts of action control 

incorporate some aspect of negative feedback control for error minimisation.  

In PCT, negative feedback control is the fundamental operation of controlling 

perceptual input. Within each control unit, negative feedback control is applied to maintain 

perceptual input at the reference value (Powers, 1973). Error at the lowest level motivates 

action, which does not cease until error is reduced to a stable minimum. Error in 

superordinate levels motivates change in the value of the reference signal to the unit below. 

In other motor control theories, such as AI and OFCT, negative feedback is used in 

conjunction with prediction as a mechanism of error minimisation (Friston et al., 2011; 

Todorov & Jordan, 2002b; Wolpert, 2007). Bottom-up prediction error in AI forms a sort 

of ‘internal’ feedback on the accuracy of top-down predictions. These prediction errors 

encode the extent to which input differs from its expected value. If the input matches the 

prediction, no prediction error signal is sent up the hierarchy (Adams et al., 2013). This is 

in contrast to PCT in which integrated perceptual inputs are consistently projected up the 

hierarchy (Powers, 1973). OFCT builds on classical control theory by proposing that a cost 

function is used to derive the optimal feedback control law for a given task through inverse 

predictive models (Todorov, 2004).  

Feedback is thus a critical component of action execution. Feedback control has a 

unique role in altering action on-line as a result of sensory error, and enables compensation 

for disturbances that occur during movement execution. However, receiving and 

processing sensory feedback for coordinating action takes time (Keele & Posner, 1968), 

which necessitates that action produced in relation to incoming sensory information is 

delayed (Scott, 2008). Additionally the interval of the delay at each hierarchical level may 

differ (Marken, Mansell, & Khatib, 2013), and so timing in complex motor actions must 

account for these irregularities (Rohde & Ernst, 2016). This presents a challenge for 

feedback control approaches because delays in processing feedback information must be 

compensated within the CNS, so that executed movements are appropriate for current 
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sensory inputs (Hollerbach, 1982). AI and OFCT propose that prediction provides this 

compensation mechanism. In PCT the effect of sensorimotor delays on action may be 

mitigated by hierarchical perceptual processing (Powers, 1973). At each ascending 

hierarchical level, units control more complex, long-term, and integrated perceptual 

variables (Powers et al., 1960). Descending reference signals may specify future-oriented 

reference values. Mechanisms of prediction will be considered in the following section 

(1.6.5). 

1.5.5 Motor (perceptual) learning, prediction and optimisation 

Prediction in OFCT and AI use a similar Bayesian statistical computation to 

optimise predictions (Wolpert, 1997, 2007). However, in AI predictions are solely 

‘feedforward’, whilst OFCT also implements ‘inverse’ predictions. Feedforward refers to 

the prediction of sensory outcomes. For example, corollary discharge (a copy of the 

outgoing motor command) may be used to estimate of the future position of the limb 

(Grush, 2004; Wolpert, 2007). This prediction may be compared to the resulting sensory 

input, which produces a prediction error term. This error term serves two functions. Firstly, 

the subtraction of prediction error from predictions may enable disambiguation of the 

cause of changes in sensory input (external or movement driven). Second, the error term 

can be used to update the accuracy of predictions in the future (perceptual learning) 

(Friston et al., 2011).  

OFCT also utilises prediction and prediction error. However, rather than 

feedforward predictions of future sensory input, an inverse model is proposed to compute 

the required motor commands to achieve a desired sensory result (action effect), 

effectively formalising the ideomotor principle of action production (see section 1.6.2). 

This has the advantage of enabling movements to be produced in the absence of feedback, 

such as for movements to visual targets that are shorter than the feedback processing time 

(Wolpert, 1997). In this conception, trajectory computation is an on-line process that 

calculates the optimal solution given a cost function (Todorov, 2004; Todorov & Jordan, 

2002).  

PCT instead proposes an additional control system, distinct from the perceptual 

hierarchy, with projections to the units within the hierarchy. The reorganising system 

receives as input intrinsic error input signals, which quantify deviation from a set of 

biologically pre-programmed reference states (Powers, 2008; Powers et al., 1960). In 
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simulations this intrinsic error signal is derived from a measure of global error in the 

hierarchy (Powers, 2008). When error exceeds a certain threshold for a sufficient amount 

of time the reorganising system begins to make alterations to the reference values and 

parameters of the units in the perceptual hierarchy, mostly in a trial and error manner. 

Changes continue until the intrinsic error returns to a sub-threshold value. New control 

units may also be developed from the ‘uncommitted neurons’ (Powers et al., 1960). As 

reorganisation is more trial and error, and inherently structural, it may account for large-

scale changes such as those observed in child development and motor relearning following 

extensive neurological injury. Parameter optimisation within existing control networks 

may lead to smaller changes associated with skill learning though practice in healthy 

adults.  

The perceptual basis of motor learning in motor theories has evident parallels with 

the pattern of cortical reorganisation following neurologic injury. This restructuring of the 

sensory and motor areas demonstrates the core dependency of motor control on perceptual 

inputs. Motor theory might suggest that functional recovery of task-oriented control may 

be reframed as a perceptual learning process rather than one of relearning movement 

patterns. This would explain why repetitive movement practice alone is not sufficient for 

improvement in ADL performance. Instead, task-oriented practice is required to learn 

which perceptual variables must be successfully controlled for task completion. In 

addition, the development of compensatory strategies following neurologic impairment 

might be expected given that they are adaptive solutions that achieve perceptual goals, and 

given constraints on movement arising from impairments. The exact method by which 

motor learning mechanisms act to bring about functional change can be considered to 

involve restructuring damaged hierarchies. This might involve selecting and optimising the 

appropriate perceptual references (or predictions), selecting appropriate cost functions, 

optimising the parameters of existing control structures to achieve stable control, or 

creating entirely new control structures by large scale cortical reorganisation. 

1.6  Summary and synthesis 

 Neurological damage often results in heterogeneous impairments in movement 

(Kwakkel et al., 2008, 1999; Turner-Stokes et al., 2005). Impairments, particularly in arm-

hand function, affect the ability of individuals to perform ADL and limit their 

independence and quality of life (Adamson, Beswick, & Ebrahim, 2004; Andrews et al., 

1981; Hunter & Crome, 2002; Langhorne et al., 2011; Ward & Frackowiak, 2006). While 
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spontaneous recovery of function is observed in the months following damage, few 

individuals with upper limb hemiparesis regain functional use of their hand (Dobkin, 

2018). Sensory and perceptual impairments are common in individuals with motor 

impairments, and functional recovery of motor function is more limited in individuals who 

also experience sensory impairments (Connell et al., 2008; Tyson et al., 2008). This is not 

surprising given the neural interdependence of these sensory and motor systems (Mackay 

& Crammond, 1989; Pizzella et al., 1999; Tecchio et al., 2006).  

 Contemporary motor theories propose a common representation of perception and 

action in the brain (Friston et al., 2010; Friston et al., 2011; Powers, 1973, 2008; Prinz, 

1997). This is based on the conception that motor action is directed toward producing and 

controlling sensory input, rather than shaping motor output. If this view is correct, motor 

recovery should be highly dependent on learning which perceptions must be controlled in a 

given task. This process might be better defined as perceptual learning rather than motor 

learning (Friston et al., 2012). This interpretation is supported by findings in 

neurorehabilitation. Cerebral neuroimaging following motor lesion shows that cortical 

reorganisation is not limited to motor cortical regions but also occurs in spared sensory 

regions (Rossini et al., 2007; Ward & Frackowiak, 2006). In addition, movement practice 

with the hemiparetic limb tends only to promote functional gains when task-oriented 

(Langhorne et al., 2011, 2009; Van Peppen et al., 2004), suggesting individuals learn how 

to produce and control task-relevant perceptions in a task rather than reproduce a specific 

pattern of movements.  

 In practice, motor rehabilitation may fall short of potential recovery outcomes 

because individuals simply do not receive a sufficient volume of arm-hand training in 

either inpatient or outpatient settings (Hayward, Barker, & Brauer, 2010; Richards et al., 

2008). In addition to task-orientation, practice should be high-intensity and repetitive (Bell, 

Wolke, Ortez, Jones, & Kerr, 2015; Langhorne et al., 2011, 2009; Turner-Stokes et al., 

2005). This requires a pragmatic solution: an easily accessible training platform that 

individuals can use in their own time. One potential adjunct to therapy that might enable 

users to increase the volume of task-relevant practice is RT, particularly if devices could be 

set up within the user’s home (Wu, 2013; Kan, Huq, Hoey, Goetschalckx, & Mihailidis, 

2011; Poli, Morone, Rosati, & Masiero, 2013; Weightman et al., 2011). Of the available 

device types, end-effector devices seem the most suitable option as they are simpler, easier 
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to move and set up, and more cost effective than other device types, and support ADL task-

oriented (Balasubramanian et al., 2010; Maciejasz et al., 2014). However, few are currently 

commercially available and while there is substantial evidence that they can reduce motor 

impairment, there is more limited evidence that they promote functional recovery in terms 

of increased ADL performance (Chen & Howard, 2014; Kwakkel et al., 2008; Prange et 

al., 2006). However, devices for distal upper limb training may be more efficacious for 

improving ADL performance, due to the involvement of the distal upper limb in most ADL 

tasks (Sivan, O’Connor, Makower, Levesley, & Bhakta, 2011), particularly if devices train 

closely emulate movements required in ADL tasks. Beyond the development of efficacious 

training devices, neurorehabilitation practice may benefit by developing training that is 

informed by contemporary findings in motor control theory.   

 Neurorehabilitation theory recognises the critical role of structural changes to CNS 

organisation on recovery of function and skills, and neuroimaging studies are beginning to 

elucidate this process (Cheung et al., 2015; Rossini et al., 2007; Ward, 2006). In addition, 

motor control theory provides mechanistic accounts of underlying neural processes which 

may be disrupted in individuals with neurological damage. Computational models of 

movement have been leveraged to test these hypothesised mechanisms. Early models were 

descriptive - transfer functions derived from measured data to characterise the response of 

the human motor system (Craik, 1947; Kreifeldt, 1965; Navas & Stark, 1968). In 

comparison, contemporary models are often based on theoretical accounts and are used to 

simulate specific characteristics and mirror the hierarchical functional architecture of the 

CNS. Prominent examples of such theoretical models are PCT, OFCT and AI.  

 OFCT and AI models have demonstrated how forward and inverse probabilistic 

models can account for optimal and smooth action trajectories in the face of sensor and 

neuronal noise (Todorov, 2004a; Brown et al., 2011). AI models have simulated 

oculomotor pursuit tracking to simulate anticipatory eye movements during occlusion of a 

visual target (Adams, Perrinet, & Friston, 2012). These formulations account for how 

neural noise is attenuated in sensorimotor systems. For example, in AI, top-down 

predictions regulate synaptic weights for bottom-up error signals according to the 

uncertainty (distribution of the error). This may yet prove to be critical for rehabilitation 

because sensorimotor noise may be amplified following neurologic injury and age 

(Hasson, Gelina, & Woo, 2016). PCT simulations have demonstrated that hierarchical and 

parallel control can account for simultaneous control of multiple DoF (Marken, 1986), and 
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elucidated how varying reference values can give account for changes in motor responses 

when intentions, or the dynamics of the feedback function are altered (Marken & Powers, 

1989; Powers, 1978). These studies will be reviewed in a Chapter 4. One benefit of PCT is 

that it expounds a method to identify which perceptions are controlled by an individual in a 

given task: the test for the controlled variable (TCV; Runkel, 1990). This confers a 

practicable benefit for rehabilitation robotics. That is, as perception and action are 

purported to share common representation within the CNS (Section 1.5.2.), it follows that 

individuals must learn (or relearn) to control task-critical perceptual variables.  

 Another specific advantage of the computational modelling approach for the field 

of motor rehabilitation is that individual characteristics can be parameterised via 

optimisation to individual performance. This method has a strong precedent in cognitive 

and behavioural neuroscience, such as in reinforcement learning (Will, Rutledge, 

Moutoussis, & Dolan, 2017), AI (Adams et al., 2012), OFCT (Haruno & Wolpert, 2005), 

and PCT (Bourbon, Copeland, Dyer, Harman, & Mosley, 1990a). In robotic rehabilitation, 

it has been proposed that parameters of performance can be measured and model on an 

individual basis and used to assess impairment (Allen et al., 2007; Au et al., 2010; Oishi et 

al., 2011), and may be used to determine the schedule of training and level of assistance 

on-line via adaptive algorithms (Marchal-crespo, Novak, Zimmerman, Lambercy, & 

Gassert, 2015) in visuomotor tracking tasks. This may be achieved most readily with 

theoretically-driven computational models rather than descriptive transfer function models 

as parameters attempt to map to CNS functional architecture. Leveraging theoretically-

driven computational models, paired with end-effector rehabilitation devices and 

visuomotor tasks may therefore enable personalised therapeutic gains. Kinematic 

(regarding movement parameters) and task performance based data may be collected with 

the devices (Maciejasz et al., 2014), these data may then be used to optimise computational 

models to manipulate task constraints, feedback and assistance. This may be necessary due 

to the heterogeneity of impairment and recovery following neurological damage (Kwakkel 

et al., 2008, 1999; Turner-Stokes et al., 2005). Developing such algorithms to assess 

impairment, performance and parameters of movement would require fitting computational 

models to individual task performance.  PCT may be uniquely placed to be integrated with 

robotics in this manner as it has been proposed as a foundational generalised architecture 

for the development of robotics, and has been validated in simple tests of robotic and 

control, such as the inverted pendulum, multi-joint arms, and autonomous vehicles 
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(Young, 2017). However, several critical limitations may pose a barrier to the application 

of PCT computational models to inform robotic rehabilitation (Chapter 4). In this thesis we 

attempt to investigate these research questions. 

 One specific limitation to current computational models is that while they areoften 

optimised to human performance and validated with individual data, no formal tests of 

individual-specificity of computational models have been conducted. That is, the benefit of 

individualised models over general models has not been quantified. Thus it is unclear 

whether individual models may be reliably used to predict individual performance and 

therefore be harnessed to produce adaptive algorithms to improve performance. Second, 

sensorimotor delays in the CNS must be compensated to produce accurately-timed 

movements (Rohde & Ernst, 2016; Scott, 2008), yet PCT models have typically not 

incorporated analogues of these delays within computational models. It has not been 

systematically investigated how these delays might impact model performance, nor 

whether PCT models can compensate delays during object tracking. Perceptual 

anticipation (Poulton, 1952a, 1952b) poses am additional, but related problem for the PCT 

model. Movements that take account of future target displacement, in addition to intrinsic 

sensorimotor delays, have been simulated previously by models with a forward component 

(Foulkes & Miall, 2000). It is unclear whether perceptual anticipation could be simulated 

with hierarchical feedback controllers. Finally, PCT models must be shown to generalise 

across task constraints and apparatus to be implemented across different rehabilitation 

devices and tasks, using the same fundamental principles. 

1.7 Research agenda and thesis outline 

 In the current thesis we commenced a research agenda to aim to inform robotic 

rehabilitation of arm-hand skills through computational modelling of motor control. We 

decided to focus on one particular motor theory, PCT for the reasons outlined in the 

previous section. The overarching aim of the research agenda was to develop a 

computational model that could account for individual human performance in a tracking 

task based on principles of perceptual control theory. This model would then be 

implemented in an adaptive algorithm for an end-effector device for arm-hand 

rehabilitation, From this aim a number of key objectives were identified. These are split 

into three phases, summarised in Figure 1.1. This thesis aimed to complete phases one and 

two. 
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 In the first phase, we conducted two systematic reviews to consider existing 

research that laid the foundations of the current project. The first review aimed to establish 

whether end-effector devices for restoring hand function are efficacious. The review 

determined that there was evidence that this approach to rehabilitation actually promotes 

recovery in people with motor disabilities following neurological damage, and therefore 

that it is a promising technology for development in the manner outlined above. A second 

objective was to evaluate the state of the evidence for perceptual control models in the 

extant literature of tracking studies in healthy adults. This clarified that the PCT 

computational models were well suited to simulating healthy human tracking performance. 

Limitations of the evidence base for PCT computational models of tracking were 

identified, these were: a) The lack of a test of, or evidence for, the individual-specificity of 

computational models optimised to individual human data; b) Sensorimotor delays have 

not been sufficiently implemented within PCT models, and the effect of such delays on 

performance has not been evaluated; c) PCT models have not simulated human 

anticipatory tracking behaviour.  

 In phase two, the limitations in the PCT evidence base identified in phase one were 

investigated further to develop a model that could comprehensively simulate human 

tracking performance. This model would then be implemented within an adaptive 

algorithm for end-effector rehabilitation device in phase three. Phase two consisted of a 

series of manual tracking experiments with software simulations that made a number of 

novel contributions to the tracking-modelling literature.  

 The first experimental study (Chapter 5) develops a novel method for evaluating the 

individual specificity of computational models and demonstrated that an individually-

optimised PCT model could simulate performance with a greater degree of accuracy than a 

general PCT model.  

 The second experiment (Chapter 6) aimed to determine whether PCT feedback 

models could compensate for sensorimotor delays and simulate anticipatory behaviour. We 

developed and tested several PCT feedback architectures, utilising visual position and 

velocity information, and systematically increased the delay parameter within the PCT 

models to determine the effect that this would have on model fit performance. We found 

that the deleterious effect of increasing delay on model simulation accuracy could be 

mitigated by fitting a feedback models which controlled a representation of global motion 
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(velocity and position) rather than position alone. This demonstrates the sufficiency of the 

PCT architecture for delay compensation and anticipatory behaviour provided the 

appropriate perceptual variable is controlled. The methodology of evaluating the model fit 

at a range of delay values was also a novel contribution. 

 In the final experiment (Chapter 7) the superior model from Chapter 6 was 

optimised to individual tracking data and the test of individual-specificity developed in 

Chapter 5 was applied. This aimed to replicate the findings of Chapter 5 with a model of 

anticipatory performance. Several changes were made to the experimental procedure to 

additionally test the generalisability of the model across task constraints. 

 At the end of phase two (and of the thesis) we had a novel, improved, perceptual 

control model for implementation in a control algorithm for a rehabilitation device. 

 Phase three represents intended future work that aims toward implementing and 

testing a control algorithm for an end-effector device and evaluate the device with healthy 

and neurologically impaired populations. The device, driven by the PCT adaptive 

algorithm, should accurately track targets in order that it can provide assistance to a user 

while they attempt to track the target. Objectives in this phase of the agenda would focus 

on evaluating whether assistance or challenge can improve performance in healthy adults, 

and whether the device can simulate an individual’s tracking movements. Key to the 

realisation of these goals would be to develop a learning algorithm such that the model 

optimises to track accurately (or track like the individual tracks).The final stages would 

involve safety and feasibility testing with the device, and finally evaluations with samples 

of individuals with motor impairments following neurologic injury. 

 In the current thesis, I present five chapters of original research that complete the 

first two phases of the research agenda. 
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Figure 1.1 Summary diagram of the research agenda 
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Chapter 2: General Method 

2.1 Systematic review methods 

2.1.1 Systematic review and meta-analysis of end-effector, distal upper-limb 

rehabilitation devices 

 End-effector distal upper-limb devices were chosen as the focus of the review for 

two reasons. Firstly, end-effector devices are low-cost peripherals with a proven safety 

record and a small footprint that are easily integrated with standard desktop computers. 

Thus they are good candidates for uptake in health services for home- and clinic- based 

training. Secondly, perceptual control models have previously been tested in tracking 

experiments with handheld devices such as joysticks and handles, as well as computerised 

mice. These models would therefore be well suited for simulating human interaction with 

such devices, and could also be used as controllers to drive these devices via force 

feedback.  

We elected to use the systematic review approach. Systematic reviews allow for 

large amounts of research data to be condensed and synthesised into a palatable format, 

drawing robust conclusions based on high-quality research whilst filtering out redundant or 

low-quality findings (Mulrow, 1994). This method was suitable as there are many robotic 

devices for rehabilitation with very varied designs (Maciejasz et al., 2014). The systematic 

inclusion of devices and studies based on tight inclusion and exclusion criteria would 

enable the selection of a homogenous group of devices from which efficacy could be most 

robustly evaluated. Moreover, robotic rehabilitation devices differ widely in their level of 

development and implementation. Very few devices are commercially available or have 

undergone thorough testing in high-quality efficacy studies. Thus evaluating the 

methodological quality in terms of risk of bias is a necessary condition to assessing the 

efficacy of the devices. This is a fundamental aspect of the systematic review process 

which acts to control for conflation of conclusions from unreliable or invalid sources 

(Higgins et al., 2011; Smith, Devane, Begley, & Clarke, 2011). The most frequent outcome 

measure in the included studies was the Fugl-Meyer Upper Extremity Assessment (FMA; 

Fugl-Meyer, Jääskö, Leyman, Olsson, & Steglind, 1975), which was thus used in the meta-

analysis to quantify the efficacy of hand and wrist rehabilitation with these devices, whilst 

controlling for methodological quality and sample size.  
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Unfortunately, very shortly prior to submission of the article to the intended journal 

(Journal of Neurorengineering and Rehabilitation), a very similar review was published 

(Veerbeek, Langbroek-Amersfoort, van Wegen, Meskers, & Kwakkel, 2016), which 

curtailed our ability to publish as we had intended. The review, as it was written for 

submission of JNER, is included in the thesis in Chapter 3. 

2.1.2 Systematic review of the tracking modelling studies in perceptual control 

theory 

Perceptual control theory was determined to be the most suitable theoretical 

mechanism to model human behaviour in the tracking task (for the rationale, see Chapter 

1). Thus a systematic narrative review of modelling studies using perceptual control theory 

was necessary to evaluate the state of the evidence before conducting further experiments 

in the field. This would generate hypotheses and experimental designs that advance the 

research agenda to fill gaps in the existing literature and avoid hypotheses that have 

already been addressed. Addressing these issues would extend the evidence base to justify 

and enable the application of PCT models to rehabilitation devices. Moreover, it would 

provide methodological guidance and inform model building.  

The review method was chosen for the same reasons as in the first review (Chapter 

3). That is, the systematic narrative review method enables some confidence that all the 

relevant literature is included and evaluated. It was decided that a narrative review would 

be appropriate because of the range of hypotheses and experimental designs that would 

allow theoretically important themes to emerge. This is useful both because it aids 

comprehension of the results and their relevance, but also because it enables the state of the 

evidence to be evaluated across studies, that is, the extent to which each of the theoretical 

principles of the theory has been tested and received support. 

2.2 Experimental methods 

2.2.1 Tracking paradigm 

Perceptual control has been most extensively tested within the tracking paradigm 

(Bourbon, 1996, 1999; Bourbon, Copeland, Dyer, Harman, & Mosley, 1990; Marken & 

Powers, 1989; Marken, 1986; Marken, 2013; Marken, 1991; Pavloski, Barron, & Hogue, 

1990; Powers, 1978, 1989). As previously mentioned, the research agenda intended to ‘fill 

gaps’ in the research literature in order to derive a model that could drive an adaptive end-

effector device for motor rehabilitation. Thus we also used the tracking paradigm. 
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Computerised tracking is a powerful experimental paradigm because it allows input signals 

and behaviours that occur in continuous time to be measured precisely and subsequently 

analysed (Powers, 1978). Moreover, the input signals and effector feedback function can 

be manipulated to alter the task. The temporal resolution of measurement is sufficiently 

high to capture relevant aspects of behaviour (Abdel-Malek & Marmarelis, 1988). The 

resultant data structure comprises momentary target positions, cursor positions, and time in 

sample intervals. These data can be easily extracted, analysed, and modelled in software 

environments such as Matlab.  

Despite the tight experimental control offered by the tracking paradigm, the 

phenomenon under study in the task is critical to human performance (Bourbon & Powers, 

1999). Visual tracking is fundamental to any process that relies on continuous visual 

perception, such as movement coordination (Rosenbaum, 1975). Manual tracking 

underpins object interception and avoidance, hand-eye coordination, and human-machine 

interaction such as steering to avoid obstacles whilst driving (Proteau, Roujoula, & 

Messier, 2009). The latter example is very relevant here as the output that an individual 

makes with his or her body does not match directly to the perceptual results. Instead a 

transformation occurs between the movements of the steering wheel and the movement of 

the vehicle (Gerisch, Staude, Wolf, & Bauch, 2013). This adds an extra level of complexity 

compared to tasks such as catching with one’s hands, where the output actions actually 

determine the perceptual result (Marken, 2005). Many transformations such as these exist 

with tool use. These highlight the fact that the environmental feedback path lies not within 

the individual, but within his or her environment (Marken & Powers, 1989). Yet this does 

not affect the quality of the control of the individual’s perception, as demonstrated by high 

performance in tracking tasks (Bourbon, 1996; Bourbon et al., 1990; Marken & Powers, 

1989; Powers, 1978, 1989).  

The tracking software used to collect data was the same for the first two 

experimental papers (Chapters 5 and 6), but a different program was used in Chapter 7. 

These will be outlined and compared in the following sections. 

TrackAnalyze 

TrackAnalyze is a piece of computer software that was built for running 

demonstrations of perceptual control by William T. Powers and Bruce Abbott in 2008 

(Powers, 2008). The program is coded in Object Pascal and runs on post-1995 Windows 
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Operating Systems. The code generates two separate windows.One window is used to run 

and collect experimental tracking data. A second window is used to import tracking data 

files, which can then be simulated in this window with a Position Control Model (PCM). 

Two adaptions to the program code were made by Bruce Abbott for our experiments. One 

enabled sinusoid signals to be generated and tracked. The second enabled the joystick to 

interface with the program.  

Data collection window 

 The data collection window (Figure 2.1) allowed up to 15 one minute trials to be 

completed consecutively. Radio buttons allowed the experimenter to change the target 

pattern and difficulty level (speed) between ten signals that were generated upon opening 

the program (as outlined in Chapters 4 and 5). If consecutive trials were run the parameters 

of the models and the fit statistics, along with the target and cursor data would be saved to 

file automatically. 

Figure 2.1 Screenshot of the data collection window: TrackAnalyze 

 

Data analysis window 

 Model fitting could be conducted in the data analysis window (Figure 2.2). In this 

window, trial data could be loaded and a PCM could be optimised either manually, or by 

an automatic fitting routine. This optimisation algorithm was based on the principles of 
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reorganisation in PCT. Parameters were independently altered to minimise the Root Mean 

Square Error (RMSE) value between the model-simulated cursor position and the human 

cursor position. The process changed each parameter recursively in the following order: 

Output gain, reference value, loop delay, damping constant. If a change increased the error, 

the next change would occur in the opposite direction. The magnitude of changes would 

decrease over multiple adaptations in the same direction. This was repeated 20 times for 

each parameter in the set, and then the set would be repeated five times with the final 

parameters as the initial conditions. The optimisation algorithm would cease if the change 

in error was smaller than a threshold tolerance level or after the five set iterations. The 

screen displayed graphs showing target and cursor time series across the one-minute trial 

being analysed. The upper graph contained the target time series (red), the participant 

cursor (green), along with the error (black) between the target and cursor. This error term, 

averaged over the course of the trial and scaled for the screen size is reported as the 

Tracking % RMSE. The lower graph displayed the participant cursor (green) and model-

simulated cursor (blue), along with the error between the two cursors over time (black). 

This error term was used to calculate the model % RMSE value, which characterised the fit 

of the model cursor to the participant cursor. The maximum on-screen displacement was 

19 cm for both the cursor and target. 
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Figure 2.2 Screenshot of the data analysis window: TrackAnalyze

 

TrackAnalyze contained some features that made data analysis difficult and time 

consuming. First, it did not store or export the model-simulated cursor trace; the output 

files only contained target and participant cursor positions. This restricted data analysis 

with the program. Second, whilst an optimisation algorithm could be used to fit the human 

tracking data currently loaded in the analysis window, it was not possible to load another 

set of parameters easily; often these had to be entered manually, which was time-

consuming. This was necessary when fitting the individual model (average parameters 

from training) to test block data to validate the models, and for the self-aggregate analysis. 

With regards to the second study, particular problems arose with TrackAnalyze 

because only the PCM could be selected, and all parameters were free in optimisation and 

could not be fixed at a value during optimisation. These reasons prompted the use of 

Matlab for data extraction, modelling, optimisation and preliminary data analysis in 

Chapter 6. TrackAnalyze was also difficult to edit as it was programmed in Object Pascal. 

For the final experimental study (Chapter 7), we required a tracking program that was 

compatible with the steering wheel, and easier access to change the program code to alter 

the design of the experiment.  
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Finally, the optimisation algorithm did not run for a very large enough number of 

iterations and was very sensitive to local minima in the parameter landscape. Whilst this 

may not have been a problem for the four-parameter PCM, increasing the number of 

parameters may have challenged this optimisation algorithm and produced inadequate fits. 

The optimisation algorithm chosen for the subsequent experiments, the inbuilt Matlab 

function lsqnonlin, was significantly more powerful. 

Custom tracking software 

 For Chapter 7, a second piece of tracking software was used (Figure 2.3). This was 

developed by Dr. Li, the computer programmer for the School of Psychological Sciences, 

in VisualStudio (C++). This program was developed based on my instructions in order to 

address several limitations with the TrackAnalyze program; liaison and feedback ensured 

that it fit the specifications that I set out. Firstly, it enabled the use of the ThrustMaster 

T300RS steering wheel rather than the SideWinder 2 joysticks that were used in the 

previous chapters. Secondly, the orientation of the tracking experiment was changed from 

vertical (y) to horizontal (x) as it better represented the perceptual results of moving a 

steering wheel in driving. Thirdly, the program allowed more flexibility to adapt tracking 

task constraints. The researcher could switch target characteristics ‘on the fly’. Single 

sinusoid signals could be added together such that multiple sum-of-sines (pseudorandom) 

signals could be created. The fundamental frequency of the signal (the frequency of the 

lowest frequency component sinusoid) could be adapted to alter the speed the target moved 

at and therefore the difficulty, in a systematic way. The program sampled the target and 

cursor positions every 26 ms over each one-minute trial. No analysis window was present 

in this software so all modelling and data analyses were conducted in Matlab. Thus 

tracking data were exported to .csv files that would be imported into Matlab which had the 

functionality for model building. Throughout the project, models were adapted by Dr Li 

for this purpose within the software application, based on the instructions of the candidate. 

These can be identified in Figure Z by the radio buttons reading PCT Position-Velocity 

Parallel and PCT Velocity-Position series. 

The maximum displacement of the cursor was 30.5 cm, the maximum displacement 

of the target was 28.5 cm.  
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Figure 2.3 Screenshot of the data collection window: custom tracking software 

 

2.2.2 Individual modelling approach 

 Perceptual control theory promotes the use of the functional modelling approach, 

the aim of which is to establish the variables which the individual is controlling during a 

task, and predict their individual behaviour (Mansell & Huddy, 2018; Runkel, 1990). This 

is in stark contrast to the general linear model approach which aims to ascertain the 

relationship between an independent variable manipulation and a measured dependent 

variable across a group of individuals (Nelder & Wedderburn, 1972). Whilst the latter 

approach requires large sample sizes for sufficient power to generalise principles to 

populations, the functional modelling approach requires only one participant but a large 

volume of repeated measures data from that individual (Runkel, 2007).  

In the functional modelling approach, a perceptual variable is hypothesised to be 

under control by a dynamical process, the mechanism of which is formalised in a 

computational model (Mansell & Huddy, 2018). The model is then optimised on a subset 

of the individual’s data such that the parameters are determined that best fit that 

individual’s performance. This model can then be validated with a second subset of the 

individual’s data to establish whether the model makes accurate predictions of the 

individual’s behaviour. Visual inspection of the model and human outputs side-by-side 

provides a test for face validity, whilst model simulation accuracy statistics can be 

produced (correlation coefficient or Root Mean Square Error (RMSE) to compare models 
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(Powers, 2008). The approach has two main advantages compared to group statistical 

modelling.  

Firstly, models dynamically simulate the participant’s behaviour during the task. 

This enables hypothesised mechanisms to be tested. If a model does not fit well, then it is 

unlikely that the variable included the model is the one the participant is controlling 

(Marken, 2014). Thus, whilst modelling does not allow us to be sure that the model 

replicates the mechanism that the participant uses, it can help to establish which models are 

unlikely candidates of the control process during the task. This is more powerful than 

statistical modelling of behavioural data with which one may learn of an association 

between inputs at the sample level, or even to estimate the output B given a specific value 

of input A, but does not indicate the mechanism (control law) by which the inputs interact.  

A second advantage of the functional modelling approach is the inherent inclusion 

of individual differences in control characteristics and performance (Mansell & Huddy, 

2018). Conversely, a general model cannot make specific predictions about individual 

behaviour. Predictions made by the individual modelling approach tend to be extremely 

highly accurate; approximately 98% of variance in individual behaviour can be accounted 

for by the model, even when the model is fitted to new targets (Bourbon, 1996; Bourbon et 

al., 1990). However, the individual modelling approach does not preclude group statistical 

analysis. Fitting individual models can be collated and analysed on a group level; allowing 

the advantages of both methods to be utilised. Both methods were used in tandem 

throughout the experimental work in this thesis (Chapters 5, 6 and 7). Group statistical 

analyses of individual model parameters were also conducted (Chapters 5 and 7). 

I learned the individual modelling approach to pursuit tracking via the 

TrackAnalyze demonstration and materials of Living Control Systems III: The Fact of 

Control (Powers, 2008), in addition to self-directed reading of the PCT literature. The 

primary supervisor, Warren Mansell provided extensive support in the conceptual 

background to testing PCT. Many additional questions were addressed in correspondence 

with academics who work in PCT; notably, Dr. Abbott, Dr. Marken, Dr. Taylor and Prof. 

McClelland. Coding mathematical models and analysis scripts (Chapters 5 and 6) required 

additional learning, particularly of mathematics, control systems and programming in 

Matlab. I attended undergraduate mathematics modules (two semesters) and received 

regular tuition from Dr. Brown throughout the second year (approximately two hours per 
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week). These sessions covered foundational control systems work, differential and 

difference equations, optimisation, system identification, and provided an initial 

introduction to Matlab. Unfortunately this tuition was brought to an end prematurely as Dr. 

Brown took sick leave. Therefore the remainder of learning, particularly in Matlab, was 

self-directed.  

For Chapters 6 and 7, I extracted all tracking data from the tracking software as 

.csv files. I developed Matlab scripts to handle, extract and enter the data. I developed and 

wrote the computational models and analysis scripts. 

2.2.3 Models of pursuit tracking 

The foundational model used throughout the studies to model tracking performance 

was the PCM implemented in the analysis section of TrackAnalyze and adapted 

(unchanged) for use in Matlab. The PCM had four parameters (three free parameters when 

loop delay was constrained in Chapter 6). These were output gain, reference value and 

damping constant, in addition to loop delay. 

I piloted a number of additional models to find a model that would adequately 

simulate tracking for sinusoid targets in Chapter 6. These models were assessed by four 

criteria: 

a) Biological feasibility regarding sensorimotor delays 

b) Adherence to principles of perceptual control theory 

c) Parsimony (fewest parameters) 

d) Model simulation accuracy (lowest would be best) 

The methodology for testing the pilot models was to build alternative models, and 

optimise the model to the pilot data that was collected prior to data collection to test for 

bugs in the task and flaws in the experimental protocol. Five pilot participants’ data were 

used. The pilot models would then be validated with data from a second data collection 

session. To meet criterion a, the models must have simulated performance as accurately, or 

more accurately than the PCM when model delays were 100 ms or above. This was 

assessed visually. Model simulation accuracy was also compared to the standard PCM. If 

overall control was substantially worse than the PCM, the pilot model was discarded. 

Alternate models piloted were: 
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1) Proportional Integral Derivative (PID) position control (4 free parameters, 5 with 

loop delay) 

PID control systems are abundant in control engineering applications. In fact, the 

perceptual control model is a Proportional Integral (PI) controller, a variant of the PID 

control that does not include a derivative component. The derivative component estimates 

the future rate of change of the error term based on its current rate of change and attempts 

to smooth the rate of change in the error to zero. This could potentially compensate for the 

effect of delay on performance. However, in practice the derivative component is very 

sensitive and can cause control instabilities. The piloted model did not produce accurate 

simulations of tracking performance at a biologically feasible delay value, only at 

particularly low delays (similar to regular PCT PI control) and was therefore rejected. 

2) Parallel control of position of velocity (6 free parameters, 7 with loop delay) 

In another pilot model, target-cursor position difference and target-cursor velocity 

difference were used as distinct inputs to two separate parallel controllers. Both controllers 

had a separate constant reference value, where the ideal reference values would be zero 

and zero respectively, but in practice were non-zero when fit to human performance. This 

model was consistent with perceptual control theory and gave very similar fits to the PCM 

while tracking pseudorandom and sinusoid targets. Thus it did not simulate sinusoid 

tracking accurately at longer delay values, and thus was not a suitable alternative model to 

the PCM and was rejected. 

3) Hierarchical Control Model (HCM; 4 free parameters, 5 with loop delay) 

Hierarchical models have a precedent in the PCT literature (Kennaway, 2004; 

Marken, 1986; Marken & Powers, 1989; Marken, 1990). The HCM is essentially the same 

as parallel control of the two perceptual variables, except that one control output (position) 

becomes the reference for the control output of the system below (velocity controller). This 

architecture was included in Chapter 6 as one of the comparison models. The HCM 

produced almost identical results to the parallel model outlined above. Whilst it did 

demonstrate marginal improvements relative to the PCM at longer delays when fitted to 

sinusoid tracking, simulation accuracy reduced as a function of increasing delay values 

similar to the PCM. This model was used in Chapter 6. 
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4) Position control plus target extrapolation (PEM; 4 free parameters, 5 with loop 

delay) 

 The PEM was included in Chapter 6. In this model, target velocity was measured 

with a delay. This velocity value was multiplied by a gain factor and added to the 

measured target position. This yielded an extrapolated target position. This extrapolated 

target position is taken from the delayed measured cursor position to form the error term 

for a usual PCM. Thus the extrapolation gain factor determines how far ahead or behind 

the target the model tracks and can be optimised separately for each individual. This model 

provides a similar fit to pseudorandom tracking performance compared to the PCM 

without extrapolation. For sinusoid targets, this model compares favourably to the PCM as 

the model simulation error does not increase significantly over the range of constrained 

delay values (See Chapter 6). This model was therefore a good alternative model to the 

PCM, as it fulfilled all the criteria and was implemented in the Chapter 6. 

5) Hierarchical control with linear extrapolation of target position as the controlled 

variable (HEM; 5 free parameters, 6 with loop delay) 

This architecture subsumes the theoretical propositions of the previous two models; 

that position and velocity inputs are integrated into an extrapolated position estimate and 

inputted to the position control unit, and, that the position control unit output is the 

reference for a downstream motor unit that outputs a velocity vector. In this model, a 

position extrapolation unit provides the reference value for a velocity control unit below it. 

This model implemented in both Chapters 6 and 7. 

2.3 Experimental designs 

2.3.1 Chapters 5 & 6 

The data collection for the experiments in Chapters 5 and 6 was conducted within 

the same collection cycle. The primary hypothesis was originally to test the individual 

specificity of the models. However a secondary hypothesis was to establish whether a 

simple PCM could fit targets that were both unpredictable and highly predictable. I 

intended to optimise the models on one target type and fit to either the same target type or 

the other target type. Thus four conditions were included: one in which targets were 

pseudorandom in all three blocks, one in which sinusoid targets were tracked in all three 

blocks, and two conditions in which one target type was used in the first two blocks 
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(session 1), but the other target type was tracked in the third block (session 2). Participants 

were randomly allocated to experimental conditions. The study included a difficulty 

titration procedure to ensure that participants tracked at approximately the same level of 

error to attempt to diminish the confounding effect of tracking performance on differential 

model fit. The experiment was run with TrackAnalyze and the Sidewinder Force Feedback 

2 joystick (see later). 

It became apparent during the analysis that participants’ behaviour was 

qualitatively different when tracking pseudorandom and sinusoid targets, and that the PCM 

comprised very different parameter estimates for the two targets. Moreover, during the 

write up of these results we realised that the article aimed to address two broadly different 

groups of hypotheses. One group concerned individual specificity of the models, and the 

other concerned target predictability and model delays. My supervisors and I came to the 

conclusion that it would be best to split these into two separate research articles to enhance 

both readability and impact. Thus one study (Chapter 5) was conducted on individual 

specificity of the models in condition 1 (pseudorandom-pseudorandom). In Chapter 5, 

models were optimised to block 1 data (15 trials), and validated with block 2 and 3 data 

(15 trials each). 

 A second study (Chapter 6) investigated the disparity between parameters in 

models of sinusoid and pseudorandom tracking and thus used the two switching conditions 

(sinusoid-pseudorandom and pseudorandom-sinusoid). Block 1 was considered practice. 

Participants tracked different target types in blocks 2 and 3. In block 2 models were 

optimised to trials 6, 8, 10, 12, and 14, and validated on trials 7, 9, 11, 13, and 15. The 

same format was followed in block 3 for the other target type.  

As previously mentioned, there were originally two hypotheses: whether models 

could show individual specificity, and whether models could simulate tracking of both 

predictable and unpredictable target patterns. Given the complexity of the two separate 

topics, we decided to split this into two research articles (Chapters 5 and 6) which would 

address each of these in turn and cross-reference each other. 

2.3.2 Chapter 7 

The experimental design was much the same in Chapter 7, although we attempted 

to address a number of key limitations with the first experimental design. The experimental 

procedure was still in the form of three blocks of data collection separated by one week. In 
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this experiment, the speed of the target (fundamental frequency of the signal) was 

manipulated experimentally in a repeated measures fashion. Thus all participants tracked 

targets at the same difficulty levels. Secondly, the tracking software was designed such that 

each participant tracked the same set of target patterns. This contrasts with TrackAnalyze, 

which generates a new set of 10 pseudorandom target signals each time the program is 

opened. These adaptations served to minimise contributions to individual model 

parameters from task design.  

The design for this experiment also comprised some additional aspects that have 

resulted in the acquisition of research data that has not been written up in paper format yet 

but allows for some additional tests of the theoretical models. This consisted of tracking 

data on unpredictable step input signals, and for sinusoid signals with a visual occlusion. 

The reason for collecting these is to, in future, draw further comparisons between feedback 

and prediction accounts of tracking behaviour. Irregular step input signals should enable 

only a position control strategy because there is no velocity or acceleration information 

available to the user. Although the time step is kept constant (1s) the user cannot predict 

the direction or size of the target ‘jump’. In contrast, tracking over a visual occlusion of the 

predictable sinusoid target does not allow for position, velocity or acceleration comparison 

between the target and cursor. Thus the individual must use a stored representation of the 

target trajectory to maintain performance. Occlusion studies indicate that participants tend 

to track the amplitude of a predictable target accurately but tend to produce cursor 

movements at a non-constant phase relationship with the target (Fine, Ward, & Amazeen, 

2014). That is, their tracking movements become increasingly phase delayed over the 

occluded duration. Models should be able to account for performance within both these 

conditions. 

To advance the research agenda to apply PCT models to rehabilitation requires a 

test of whether a computational model can drive a device to replicate human tracking 

performance. We have made substantial progress with this aim within the PhD project. 

Initially, we attempted this with the force feedback joystick. This proved very difficult 

because the force required for a comparable displacement of cursor position increases as a 

function of angular deviation from 90 degrees (upright) joystick position. The force 

requirements can therefore be considered non-linear. This poses a significant challenge for 

models. We switched to a one DoF device, a steering wheel and linear force requirements. 
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Models can currently drive the steering wheel to produce cursor movements in real time 

that visually approximate human-like performance in the tracking task. However, these 

have to be optimised manually. 

2.4 Apparatus  

2.4.1 Microsoft Sidewinder Force Feedback 2 Joystick 

 The force feedback joystick was acquired because of its low cost, and easy 

compatibility with TrackAnalyze. A picture of the joystick is shown in Figure 2.4. 

Moreover, it is a powered end-effector, and such joysticks have been adapted into assistive 

rehabilitation device (Preston et al., 2014). Tracking can be performed with a mouse, but 

computer mice do not contain force feedback capabilities and thus there was no possible 

translation to rehabilitation robotics.  

Figure 2.4 Image of the Microsoft Sidewinder Force Feedback 2 Joystick 

 

 

 The joystick had a number of limitations for use in tracking experiments. Firstly, it 

had some inherent stickiness in the centre that tended to cause a minor perturbation to 

movements when crossing the centre line that affected the cursor trace. Whilst this was the 

same across all participants and conditions, it could affect model fitting. In a general sense, 

the joystick is not wholly appropriate for the task because it has two degrees of freedom 
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whilst the tracking task we used had only one. Therefore any displacements on the 

horizontal axis were not recorded, even when these may have had an effect on cursor 

position in the measured axis.  

The extended aim of the research programme was to develop an assistive 

rehabilitation device, which would need to be driven by the computational models to track 

accurately. As the joystick rotates on a ball, there is a non-linear relationship between 

joystick position and the force required to move the joystick. At the poles of the range of 

movement the joystick experiences substantially more inertia than when it is positioned 

directly over the centre of the ball. This is problematic for the control model, which does 

not explicitly account for the non-linear dynamics of the joystick. For the second data 

collection cycle we opted to use a force feedback steering wheel. 

2.4.2 ThrustMaster T300RS Force feedback steering wheel 

 The steering wheel cost £250 (figure 2.5). Two units were acquired, one for 

participant testing and one for software development. The steering wheel range of 

movement was 1080 degrees and the maximum torque output is 4 newton metres. 

Figure 2.5 Image of the ThrustMaster T300RS steering wheel 
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 The steering wheel conferred several advantages over the joystick. Firstly, there 

was no stickiness when the steering wheel was rotated; in fact the movement across the 

whole range was much smoother than with the joystick. This should eliminate a higher 

proportion of noise that is not due to the individual’s dynamics. Secondly, as a one DoF 

device, it was restricted simply to rotation on the central axis. This meant that all 

movement was recorded in the one-dimensional tracking task. Third, the steering wheel 

could apply sufficient torque to produce movements of the wheel whilst the participant was 

holding it, and thus could potentially be used to provide assistive force as per the aim to 

develop a control algorithm for a rehabilitation robot. Finally, steering wheel and joystick 

manipulation require a very different array of movements to produce the same on-screen 

cursor displacement. By changing the device we would be able to demonstrate the model 

could generalise across different task constraints (horizontal tracking with the steering 

wheel). This would support the hypothesis that the individual was controlling a perceptual 

relationship (target-cursor alignment) but that the task constraints and actual produced 

movements in the task were inconsequential. 

 Moving to a single DoF device was assumed to alleviate some of the difficulties 

that we experienced in attempting to use computational models to drive the device. Piloting 

established that this was correct; models were more accurate when controlling the steering 

wheel than when they controlled the joystick. This may both be due to the increased 

smoothness of the steering wheel and the linear relationship between output torque and 

cursor position. 

2.5 Data extraction 

 The data were extracted manually in Chapter 5. This was incredibly time-intensive. 

In Chapters 5 and 6, data were extracted via Matlab. The recorded cursor and target 

positions for each trial were sequentially loaded into Matlab and the models were 

optimised to the data at each of a given range of delay values determined by an integer 

number of samples. All fit statistics were generated at this stage and stored in excel files 

along with the parameter values at each value of delay. 

 In Chapter 6, the best fitting model for each delay was selected (lowest model 

simulation error) to form the individual model. These model parameters were then plugged 

in during the model validation stage. The model validation scripts would fit models with 

these parameters to the validation data. Spectral analysis was conducted with participant 
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target signals, cursors, and model-simulated cursors at 200 ms. Finally, all resulting data 

were outputted to excel files in a format appropriate for import into SPSS and other 

statistical software packages. The whole process was automated from a central master 

script.  

 In Chapter 7, there was an additional stage of extraction due to the number of 

different target types used, and the validation of models to trials in different blocks. The 

models were optimised to individual performance at each of the delay values for each trial. 

These were then extracted by a separate script to derive the best fitting individual model 

for each target type. This file would be automatically pasted into the folders containing the 

validation files for that individual, such that the model validation scripts had access to the 

model parameters. Once more, the whole modelling and optimisation process was 

automated, and the final output was a large excel sheet with model fit data for both models 

for all target types. Spectral analysis was also conducted to establish the amplitude ratio 

and phase delay of the cursor relative to the target and the model-simulated cursor relative 

to the participant cursor for each optimum model. 

 In Chapter 7 there was an additional master script. This utilised the extracted 

individual model parameters from the files in the first block folders, and ran the validation 

procedure with these parameters for every individual’s validation data. This process was 

also entirely automated. 

2.6 Statistical analyses 

Statistical analyses were conducted in either SPSS or Stata. SPSS was used for 

running ANOVAs with average data. However, given that each participant had many 

repeated measurements within each block, where appropriate a mixed model was used 

such that all data could be analysed for each individual, this was conducted in Stata. 

Choice of statistical analyses are broken down by paper in the next section 

2.6.1 Chapter 3 

 A meta-analysis was conducted to determine the overall efficacy of the robots on 

Fugl-Meyer Upper Extremity scores. This required extraction of the relevant statistics from 

the articles where they were available, and transforming effect sizes into the same measure 

(Cohen’s d). Following this, the effect sizes had to be weighted based on their sample size. 

The plots were generated in RevMan 5. 
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2.6.2 Chapter 5 

This experiment focused on individual differences and individual specificity of the 

models. Thus the analyses selected addressed these hypotheses. Two separate measures of 

internal consistency were used; intra-class correlations and Cronbach’s alpha. The former 

used the whole dataset whilst the latter used average data. Both methods were used to 

ensure that the high intra-individual consistency in average measurements also applied 

across individual trials.  

It was not initially clear which statistical method would be most appropriate to 

detect individual differences in parameter estimates. In a meeting with the statistician, Dr 

Emsley, the potential use of linear mixed regression with participant as a random effect 

variable was discussed. A follow-up intra-class correlation would have established the 

proportion of variance that was accounted for by the participant variable. Ultimately this 

methodology was not used because of the precedent in the literature to investigate 

individual differences in parameters using an independent groups ANOVA with participant 

as an independent variable (Viviani, Campadelli, & Mounoud, 1987). We replicated this 

analysis within our sample for each of the model parameters. 

An analysis was run to establish whether each individual’s data were more 

accurately simulated by a model of their previous performance or by a general model (self-

aggregate analysis). This was conducted with a repeated measures ANOVA. Dr. Emsley, 

advised using weighted averages of model fit statistics to account for large variability in 

model fit between individual models that comprised the aggregate ‘aggregate’ models 

further details are found in Chapter 5.  

2.6.3 Chapter 6 

In the second experimental study, we collected model fit data across a range of loop 

delay values for each participant. This posed a potential issue for statistical analysis 

because it would be unwieldly to test for differences between every delay value for each 

target and model. Initially we collected data for only 6 values of loop delay (17 ms, 50 ms, 

100 ms, 150 ms, 200 ms and 300 ms). The article was written up such that in Experiment 

1, ANOVAs and post-hoc t tests determined where statistical differences existed between 

every delay value. This determined that the 200 ms delay formed the optimum fit for 

pseudorandom targets. This replicated the estimated delay during tracking from previous 

studies ms (Khoramshahi, Shukla, & Billard, 2014; Parker et al., 2017; Viviani & 

Mounoud, 1987; Yu, Gillespie, Freudenberg, & Cook, 2014) , and the mean loop delays 
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estimated for pseudorandom tracking in our first study (Chapter 4). Thus 200 ms was 

selected for further comparisons of the different models in Experiment 2 of Chapter 6. A 

repeated measures ANOVA was conducted for each target type, including the different 

models, and simulation accuracy was compared at 200 ms, and 17 ms. Further the 

difference in accuracy between 17 ms and 200 ms within each model was assessed. 

When the paper was sent to the collaborator (Dr. Abbott) in March 2018, he raised 

concerns over the model architectures in Experiment 2. A lengthy period of discussion and 

piloting ensued to select alternate model architectures for the position model which would 

be more appropriate. Once the candidate model architectures were decided upon (April 

2018), the data had to be remodelled. At this point, I had completed modelling for the next 

study (Chapter 7) and had advanced my programming skills further. When remodelling the 

results (end April 2018), I adapted the scripts to improve efficiency and altered several 

aspects of the modelling procedure. One significant change was the addition of statistical 

criteria to disambiguate the contributions of timing and amplitude errors to overall RMS 

error between two signals. Three parameters were calculated: Amplitude ratio, phase, and 

coherence.  

First, time series signals were converted to the frequency domain by fourier 

transform. This transform determines the ratio of excited frequencies in a given signal 

(spectral power). Signals can then be compared within frequency bands. For example, a 

sinusoid target signal at .01 Hz in the time domain would produce a spike in the frequency 

domain at around .01 Hz. The participant’s cursor signal can then be compared with the 

target signal at this frequency. The magnitude of the real part of the power at a given 

frequency is the amplitude of the signal at that frequency. The relative amplitude of two 

signals at .01 Hz gives the amplitude ratio: the difference in magnitude of the target 

sinusoid and the movements of the cursor at that approximate frequency. The imaginary 

part of the number gives the phase. Phase represents any asynchrony between two signals 

at the frequency of interest. This is an angle, usually expressed in radians. In the current 

studies I converted this to a phase delay in time (ms) in order to express the tracking delay 

or advance relative to the target. Coherence is calculated by correlating the signals within 

the frequency domain, and thus gives an accuracy statistic, the relationship between the 

two signals across the range of frequencies present in the target signal, for example. 
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These three statistics enabled the independent characterisation of overshoot and 

undershoot (amplitude ratio) and time delays (phase delays) between target signals, cursor 

signals and model-simulated cursor signals. These statistics were calculated in Chapters 6 

and 7 alongside RMSE. 

In addition, the number of loop delay values over which the RMSE values were 

computed was extended in Chapter 6 to eleven values: 17 ms, 50 ms, 100 ms, 150 ms, 200 

ms, 250 ms, 300 ms, 350 ms, 400 ms, 450 ms, 500 ms. Whilst this improved the 

methodological clarity of the study, it increased the complexity of the statistical analysis. 

Thus I opted to change the analysis method. A quadratic mixed effects regression model 

was used, where delay value was the predictor variable, model simulation error was the 

outcome variable and participant number was a random effect. This had two advantages. 

Firstly it enabled all data to be used rather than simply the average data for each 

participant. Second, it would result in the pattern of fit across delay values to be 

established without requiring numerous comparison t-tests to be conducted, which would 

have increased the likelihood of type I errors. Conversely, any correction would hugely 

increase the likelihood of type II errors. Following the regression models, comparison t-

tests were conducted only for differences at 17 ms and 200 ms, for the reasons described in 

the previous paragraph. This method was used throughout the chapter and both regression 

equations and mean data were presented in graph format. 

To conduct this quadratic mixed regression model, I adapted the guidance given by 

Dr. Emsley for a potential analysis in the previous chapter. I had learned to use Stata at that 

time and applied this knowledge to the current problem. 

2.6.4 Chapter 7 

This article used similar statistical methods as Chapter 5 with a few critical 

differences. First, model accuracy statistics (including phase and amplitude ratio estimates) 

were computed with one set of model parameters per participant. This set was the 

optimised to reduce model RMSE to a minimum value. In addition, the repeated measures 

ANOVAs only contained one independent variable in the study; block. In Chapter 7, three 

additional independent variables were added. Firstly, sinusoid targets were also modelled 

in addition to pseudorandom targets. Difficulty level was a second additional independent 

variable. Finally, there were two models rather than a single model. The resultant 

ANOVAs were thus large, three-way or four-way ANOVAs. The method of breaking 
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down interactions into smaller ANOVAs was followed. The parameter regression was 

conducted in the same way as in Chapter 5. However, unlike in Chapter 5, we did not have 

optimisation data for all three blocks, therefore regression of parameter values and model 

fit could only be conducted within block 1. 

2.6.5 Limitations of statistical analyses 

In the first experiment (Chapter 4) we could not generate correlations in addition to 

model simulation Root Mean Square Error (RMSE) because the TrackAnalyze program 

did not output the simulated cursor positions nor provide a correlation coefficient in the 

readout. Ideally, in modelling, authors should report both correlation coefficients and a 

measure of error because it would be possible to have a highly correlated model that 

produces high error in fit, and similarly also possible to have a poorly correlated model 

with a reasonable fit (if there is a lot of signal noise). When data were analysed in Matlab 

in the second and third experiments (Chapters 5 and 6), this shortcoming was addressed by 

reporting correlation coefficients.  

An additional statistical issue arose in difficulty titration procedure in the first study 

(Chapter 4). This procedure meant that participant’s tracked targets at different difficulty 

levels (target speeds) dependent on their ability in the task. This added a potential 

confound to the analysis as different speeds at the difficulty levels may have affected 

model parameters, inflating the individual differences between participants at different 

speed levels. This confound was ameliorated by running additional identical analyses on a 

subgroup that contained all the participants that completed the task at the middle difficulty 

(13 individuals). In Chapter 5, all 24 participants completed the experiment on the same 

difficulty level (difficulty level 2), this avoided the potential confound. In the final 

experimental study (Chapter 7), no difficulty titration procedure was used as difficulty 

level was manipulated (by adapting the fundamental frequency of sinusoid and 

pseudorandom signals).  

2.7 Summary of methodologies used 

This thesis reports three tracking studies and two systematic reviews. I personally 

conducted the literature search and screening for the first systematic review (Chapter 2), 

along with all extraction and analysis. For the second review, I conducted the literature 

search. Andrew Willett (summer intern undergraduate psychology) assisted in screening of 



68 
 

the abstracts and full texts against the inclusion and exclusion criteria. I completed all 

extraction and analysis. 

In both the first and second experimental studies (Chapters 5 and 6), the data were 

collected at the same time (80 participants). I collected all participant data using a program 

(TrackAnalyze) developed by Bruce Abbott and William Powers. This program was 

adapted by Bruce Abbott for these experiments. For the first experimental study only one 

of the four conditions (20 participants) were analysed. I conducted all the modelling within 

this program and ran statistical analyses in SPSS.  

For the second experiment, two more conditions were used (40 participants). This 

left on condition (20 participants’ data) that have not been analysed. I modelled the data in 

Matlab and analysed the data in SPSS and Stata.  

The data for the final tracking experiment I collected participant data in a program 

developed by Dr Li. Data were collected on four different target types. Two of these 

(pseudorandom and sinusoid) were modelled and analysed for all 24 participants and 

reported in the paper. The remaining data for the other two targets (step signal and sinusoid 

with occlusion) are not reported in the thesis but I intend to analyse in future articles. I 

modelled the data in Matlab and analysed the data in SPSS.  

I wrote all articles of the thesis. Comments and edits were suggested by the authors 

of each manuscript, and I made the corrections. Additional work was conducted to pilot the 

use of models in driving the force feedback steering wheel, this is not been reported within 

the thesis but we intend to write future research articles on this. Together, this work 

provides the foundational work towards development of an adaptive controller for an end-

effector upper limb rehabilitation device, inspired by PCT.
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3.1 Abstract 

Aim: To assess the efficacy of distal end-effector training for reducing hand impairment 

and increasing functional abilities in patients with neurological conditions. 

Methods: A systematic review was conducted in Scopus, PubMed, and IEEE Xplore up to 

December 2016. Studies were included that trained three or more individuals with 

neurological diagnosis with a distal end-effector device and data on one on more clinical 

outcome measure. All studies evaluated for risk of bias using the Cochrane risk of bias 

tool. A meta-analysis was conducted, pooling Fugl-Meyer test of Upper Extrimity (FM-

UE) scores across six randomised control trials of training with the BiManuTrack device. 

Results: Twenty-three clinical studies (eight devices) were included. Nine studies were 

Randomised control trials (RCT), 13 were uncontrolled pilot studies, and one was an 

uncontrolled randomised comparative trial. The participant pool was totalled 389 

participants; 371 of these were adults stroke patients, 18 were children with Cerebral Palsy 

(CP). RCTs presented low risk of bias and consistently reported reductions in arm and 

hand impairment following training, and functional improvements as measured by self-

report activity and participation measures. The meta-analysis showed no overall benefit of 

RT over conventional therapeutic methods. The pilot studies were assessed to have a high 

risk of bias. These also reported reductions in impairment and several studies report 

functional improvements. The studies varied widely in intervention length, and intensity. 

Clinical outcome measures were varied and many of the pilot studies did not include a 

follow-up.  

 Conclusion: There is strong evidence that distal upper limb, end-effector, RT can be 

efficacious in reducing impairment in stroke patients of all stages. There is some evidence 

that training improves functional outcomes for stroke patients. There is not a sufficient 

literature of trails to draw conclusions regarding efficacy in populations other than stroke.
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3.2 Introduction  

Neurological conditions such as stroke, CP, MS, spinal cord injury (SCI), and PD 

often result in profound motor impairments such as plegia, paresis, and spasticity, apraxia 

and coordination deficits, often in addition to sensory deficits and cognitive symptoms. 

The incidence of these conditions is very high, and incurs considerable economic and 

personal cost. In the UK over 200 individuals out of every 100,000 are diagnosed with 

having their first stroke every year in the UK (MacDonald, 2000), amounting to 

approximately 130,000 new diagnoses per year. The direct and indirect costs associated 

total to £7bn per annum in UK for stroke alone (MacDonald, 2000). Motor impairments 

frequently affect individuals’ ability to perform ADL impacting their independence and 

quality of life (Bamdad, Zarshenas, & Auais, 2015; Imms, 2008; Ingall, 2004; Maher, 

Hons, Williams, Physio, & Cert, 2007). Dextrous movement of the wrist and hand is 

critical to performing such actions, yet impairments of the hand are both common and 

persistent (Timmermans, Seelen, Willmann, & Kingma, 2009). While individuals may 

recover function naturally, physical and occupational therapy are employed to facilitate 

recovery of motor abilities and maintain such abilities from deterioration. 

Whilst it has been extensively demonstrated that repetition, intensity and task-

specificity in active movement practice are key to optimal motor rehabilitation outcomes 

(Feys et al., 2004; Langhorne et al., 2011, 2009; Van Peppen et al., 2004), providing this 

level of high-intensity practice often requires one-to-one physical therapy and is labour-

intensive and costly for health services (Barreca, Wolf, Fasoli, & Bohannon, 2003). Due to 

time and labour constraints services are stretched; Inpatient stroke survivors receive on 

average only 4 minutes of arm-hand training during rehabilitation therapy sessions, five 

times per week (Hayward & Brauer, 2015). 

Robotic rehabilitation training provides an interactive and engaging platform for 

patients to practise movements safely with minimal therapist supervision, and could 

potentially be used as an adjunct to PT to enable patients to accumulate more practice than 

would usually be possible, potentially at reduced cost as robots become cheaper and more 

widely available (Wagner et al., 2011). A large number of devices have been developed 

(Maciejasz et al., 2014). There is growing evidence for the therapeutic benefit of such 

robotic devices for UL rehabilitation in stroke patients.  



72 
 

A number of systematic reviews of randomised control trials (RCTs) with 

commercialised robotic devices have been conducted that have shown that UL robotic 

devices can improve motor outcomes (Prange et al., 2006), (Kwakkel et al., 2008). 

Proximal upper limb (UL) rehabilitation in stroke patients found that RT is effective in 

reducing proximal UL impairment. However, these improvements do not generalise to the 

distal UL (hand and wrist), or improved users’ ability to perform ADL (Basteris et al., 

2014; Kwakkel et al., 2008). In contrast, RT of the distal UL can generalise to the proximal 

UL and reduce whole-arm motor impairment (Buttefisch, Hummelsheim, & Denzler, 1995; 

Krebs et al., 2007; Lambercy et al., 2011; Takahashi, Der-Yeghiaian, Le, Motiwala, & 

Cramer, 2008a) which may facilitate functional improvements due to the key role of the 

hand in everyday tasks (Sivan et al., 2011). Consequently, many devices to train the hand 

and wrist have been developed. 

Exoskeleton and modular devices tend to support a large range of individual or 

synergistic movements throughout the whole limb and have a large number of degrees of 

freedom (DoF). Due to their complexity they tend to be expensive and take a long time to 

set up. Whilst commercialised modular and end-effector devices such as ArmeoPower and 

the MIT-Manus (inMotion) have been rigorously tested and shown to be efficacious, these 

devices have not been adopted by health services. This is likely due to the high cost of 

purchasing and maintaining devices. In contrast, end-effector devices tend to have fewer 

DoF and support a specific functional, task-oriented movement. These tend to be cheaper 

than exoskeletons and easier to use, with a smaller footprint. Comparisons of devices 

findings in lower limb RT have found end-effector devices to be of greater benefit than 

exoskeleton devices in improving gait in stroke patients (Mehrholz, Elsner, Werner, 

Kugler, & Pohl, 2013; Mehrholz & Pohl, 2012). It could be that as end-effectors do not 

constrain DoF at joints and therefore allows the patient to ‘teach themselves’ the muscle-

joint configurations that enable them to complete tasks effectively, which might transfer to 

task performance when not using the robot. Distal UL end-effectors may therefore be a 

more suitable and efficacious adjunct to therapist-based interventions in the home or clinic 

(Balasubramanian et al., 2010; Brackenridge, Bradnam, Lennon, Costi, & Hobbs, 2016).  

Previous reviews of distal UL RT have considered both end-effector, modular and 

exoskeleton systems and have only investigated efficacy in stroke patients 

(Balasubramanian et al., 2010; Lum, Godfrey, Brokaw, Holley, & Nichols, 2012). This 

scoping review aims to assess the efficacy of currently tested end-effector robotic devices 
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that have been used for distal UL rehabilitation in patients with motor impairments across 

neurological diagnoses. We have three focused research questions: 1) Are distal end-

effector devices suitable for those with motor problems due to a neurological condition 

other than stroke? 2) Does distal end-effector RT reduce impairment in the distal and 

proximal upper limb in stroke patients? 3) Does distal end-effector RT lead to improved 

functional abilities in stroke patients as measured by activity/participation outcome 

measures? 

3.3 Method 

3.3.1 Literature Search 

A literature search was conducted in the Scopus, PubMed, and IEEE Xplore 

databases to identify end-effector devices that have been used for distal upper extremity 

rehabilitation in clinical trials published between 1990 and 2016
1
 The following MeSH 

search terms were used: robot*, rehabilit*, train*, assist*, and hand, wrist, OR 

upper+extremity, upper+limb, distal. Reference and citation searches of selected papers 

were conducted to identify further studies suitable for inclusion. Articles were included if 

they fit the following criteria: (1) study used an end effector robotic or mechanical 

rehabilitation device to train distal upper limb movements, (2) Study assessed clinical 

outcome measures over the intervention period (pre-test, post-test design, (3) study used 

samples of three or more individuals with upper extremity motor impairment as a result of 

a neurological condition. RCTs comparing RT with occupational or physical therapy or a 

control therapy were included. Articles were excluded if: (1) the device used was not 

electrically or mechanically actuated, or required neural measurement or stimulation, (2) 

device was not an end-effector device (exoskeletons, modular devices, orthoses, gloves). In 

addition, comparative articles were excluded if (3) the comparisons were between 

individual robotic therapy and a non-control therapy, (4) the article was published in a 

language other than English. 

Database searches and abstract screening were conducted by the first author (MP). 

Where any uncertainty regarding a device or study inclusion existed, inclusion decisions 

were decided by all authors. Data were extracted by the first author. Device design 

                                                           
1
 The database search was conducted a second time in September 2018 by the first author. 

These results are reported separately as their interpretation could be biased by the findings 

of the present review. 
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features, study design features, samples, training modalities and intervention protocol, 

assessment schedule, statistical methods, and clinical outcome data were extracted and 

tabulated.  

3.3.2 Data Analysis 

Risk of bias assessment 

The first author assessed the risk of bias for each study included in the review using 

the Cochrane risk of bias assessment tool (Higgins et al., 2011); designed to give an 

indication which studies are more methodologically robust, and which findings should be 

interpreted with caution. The following risk criteria were evaluated: Sequence generation, 

allocation concealment, outcome assessor blinding, incomplete outcome data, selective 

reporting of outcome data. Two items from the tool were removed from the original 

checklist as they were not relevant to the selected studies: Blinding of participants and 

personnel, blinding of patient-reported outcomes. For each study, risk of bias on any one 

criterion was rated as either: high, low or unclear. N/A was reported where criteria were 

not relevant to study design.  

Analysis 

A pooled quantitative analysis will be conducted to compare the efficacy of training 

with robotic therapy against control treatments for each device which has been tested in 

multiple RCTs. As not all selected studies will include a control group, an additional 

narrative analysis of study designs, interventions, devices and outcomes will be provided.  

3.4 Results 

3.4.1 Results of the search 

The literature search identified 3,581 records, of which 307 were screened for 

inclusion. Of these, 28 articles fit the inclusion criteria and were selected for the review. 

This yielded 23 clinical studies of eight devices. These studies could be further categorised 

into RCTs comparing the effects of robotic therapy with conventional therapist based 

interventions (nine studies), one uncontrolled randomised comparative trial, and pre-post 

training efficacy comparisons within a single patient group (13 studies). Figure 3.1 shows 

A PRISMA flowchart of the data extraction process  
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Literature search update 2018 

 A second literature search in September 2018 identified 1303 articles after 

duplicates were removed. Of these 55 underwent abstract screening. Two articles were 

deemed to fit the inclusion criteria. These are briefly summarised below but not included in 

the review as to do so could introduce bias. 

One study trained six subacute stroke patients with the Amadeo hand rehabilitation 

system with a virtual reality environment three days per week for six weeks (Huang, 

Naghdy, Du, Naghdy, & Murray, 2017). They found significant reductions improvement in 

FMA and MAS at post-test.  

A second study used the CR2 haptic device, a reconfigurable end-effector 

manipulator that trained forearm pronation and supination, and wrist flexion, extension, 

adduction and abduction (Khor et al., 2017). Seven subacute to acute stroke patients were 

trained with the device for 6 weeks. Improvements in the FMA and range of movement 

were observed at post-test. 

The findings of these studies corroborate the finding of the review that distal RT 

reduces upper limb impairment in stroke patients. However, the studies did not collect data 

on clinical outcomes relating to activity and participation. No conclusion can be drawn 

regarding efficacy of training for improving functional abilities on the basis of these 

articles. Follow-up assessments were not conducted in either study. 
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Figure 3.1 PRISMA flowchart detailing data extraction process 
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Designs 

There was large variability in the design of the included studies; nine were 

comparative studies of which eight were true RCTs comparing the effects of an 

established, commercialised robotic therapy device with conventional therapist based 

interventions. The other 14 studies were pre-post intervention efficacy comparisons within 

a single patient group. Table 3.1 is a summary table of study designs. 

Participants and sample sizes 

The total number of participants across all studies was 389 including 371 adults 

with stroke and 18 children with CP. Of the participants with stroke: 286 were in the 

chronic phase of stroke recovery and were enrolled in 14 studies, 33 subacute phase 

patients were enrolled in four studies, and 27 acute phase patients were enrolled across two 

studies. One study of eight did not report participants’ stroke recovery phase (Yeh, Lee, 

Chan, Chen, & Rizzo, 2014), another included 17 participants from both the subacute and 

chronic stages (Hwang, Seong, & Son, 2012). The average age of stroke participants 

enrolled across studies was approximately 60; however the range was very large and often 

not reported. Across studies that reported gender, 218 stroke participants were male and 

114 female. There was heterogeneity in the severity of baseline motor impairment across 

studies; studies had different exclusion criteria relating to sensory and cognitive deficits, 

aphasia and additional motor impairments. 

The remaining participants were 18 children with CP, enrolled in a single study 

(Weightman et al., 2011) and had a median age of seven and a half. Sample sizes across 

the studies varied largely, with RCTs tending to enrol a larger number of participants than 

pre-post intervention studies with a single treatment group. These tended to have fewer 

than 10 participants
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Interventions 

Table 3.2.presents a summary of interventions and study findings. There was large 

variability both the duration and period of robotic and control training, and the training 

protocol used. The duration of training programmes across the selected studies ranged 

from 20-105 minutes per session, three to five sessions per week, for up to eight weeks. 

Studies averaged four weeks of training. 

Whilst RT mostly involved performing repetitive movements, the specific 

movements trained depended on those supported by each device. Training sessions often 

began with passive movement of the user’s arm or hand and developed to active-assistive 

or resistive repetitive movement training with the device. Training was often achieved 

through a series of interactive virtual reality games or tasks. 

Control therapy protocols also differed, though tended to use conventional OT 

techniques such as weight bearing, stretching, muscle strengthening, balance, fine motor 

skills training, bilateral motor tasks and functional task training.  

Training protocols across studies of the same device tended to be homogenous. 

Some studies allowed participants to undergo other treatments and interventions outside of 

the training protocol, whilst others did not allow this. 

Devices 

The eight end-effector devices selected varied widely in mechanical design, 

however tended toward few DoF (Table 3.3), few motors and a small footprint; as might be 

expected of end-effector devices. The HIFE and Wrist Manipulator devices train only a 

single flexion and extension movement of the individual finger and the wrist respectively, 

whilst other devices allow the user to switch between multiple supported movements (the 

Bi-Manu-Track and ReachMAN devices), or support multiple simultaneous or synergistic 

movements (Haptic Knob, Novint Falcon, and the RSAMD).  

Five of the devices supported functional or task-related movements, particularly 

those that support dextrous hand skills such as hand grasp (Amadeo, Haptic Knob), knob 

twisting (Haptic Knob, BiManuTrack, and eating movements (ReachMAN) and tend to 

have virtual reality games that relate to ADL activities. The other devices aimed to restore 

anatomical range of movement at single or multiple joints (not related to any specific 
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functional task). Only one device, the Bi-Manu-Track (Stefan Hesse, Schulte-Tigges, 

Konrad, Bardeleben, & Werner, 2003), enabled simultaneous bilateral movements. The Bi-

Manu-Track, Amadeo, and Novint Falcon are commercially available devices. 

Clinical outcome measures 

The total number of clinical outcome measures used across the studies was 26. We 

aimed to simplify the interpretation of these outcome measures by categorising them 

according to the World Health Organisation (WHO) International Classification of 

Functioning, Disability and Health (ICF) criteria (World Health Organisation, 2001). We 

therefore split outcome measures into behavioural measures of activity/participation or 

impairment; patient self-reported measures of activity/participation; listed in Table 3.4. 

No single outcome measure was assessed in all studies. The FMA was used the 

most commonly used clinical outcome measure; participants were assessed on the FMA in 

17 of the 22 studies. One study assessed outcome measures every day over the training 

period, 12 studies assessed outcomes at the start and end of the intervention period, three 

studies assessed outcomes at the start, midterm and end of the intervention, six studies 

assessed outcomes at the start and end of the intervention and conducted follow up 

assessments at four to eight weeks post intervention end.
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Table 3.4 Clinical outcome measures used across studies 

Clinical Outcome Measures used in selected studies 

Behavioural measures of 

activity/participation 

Behavioural measures of 

impairment 

Self-report measures of 

activity/participation 

Action Research Arm Test 

(ARAT; Carroll, 1965) 

Ashworth Scale (AS; Ashworth, 

1964) 

Modified Ashworth Scale (MAS) 

(Bohannon & Smith, 1987) 

ABILHAND (Penta, Tesio, 

Arnould, Zancan, & 

Thonnard, 2015)  

Box and Blocks Test (BBT; 

Cromwell et al., 1960) 

Chedoke-McMaster Stroke Hand 

Impairment Inventory (CM) 

(Gowland et al., 1993) 

ABILHAND-Kids 

(ABILHAND-K; Arnould, 

Penta, Renders, & Thonnard, 

2004) 

Functional Test of the 

Hemiparetic Upper 

Extremity (FTHUE; 

Wilson, Baker, & 

Craddock, 1984) 

Fugl-Meyer Test for the Upper 

Extremity (FMA; Fugl-Meyer et 

al., 1975) 

Barthel Index (BI; Mahoney 

& Barthel, 1965) 

Jebsen Taylor Hand Test 

(JTHT; Jebsen, Taylor, 

Trieschmann, Trotter, & 

Howard, 1969) 

Motor Assessment Scale (MSc; 

Carr, Shepherd, Nordholm, & 

Lynne, 1985) 

Canadian Occupational 

Performance Measure 

(COPM; Law et al., 1990) 

Manual Ability Measure-36 

(MAM; Chen & Bode, 

2010) 

Motor Power Score (MPS; Aisen 

et al., 1997) 

Functional Independence 

Measure (FIM; Granger, 

Hamilton, Keith, Zielezny, & 

Sherwin, 1986) 

Nine Hole Peg Test (NHPT; 

Wade, 1992) 

Motor Status Score (MSS; Aisen 

et al., 1997) 

Motor Activity Log (MAL; 

Taub et al., 1993) 

Test Evaluant les Membres 

Superieurs des Personnes 

Agees (TEMPA; Chen & 

Bode, 2010) 

Motricity Index (MI; Collin & 

Wade, 1990) 

Stroke Impact Scale (SIS; 

Duncan, Bode, Min Lai, & 

Perera, 2003) 
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Clinical Outcome Measures used in selected studies 

Behavioural measures of 

activity/participation 

Behavioural measures of 

impairment 

Self-report measures of 

activity/participation 

Wolf Motor Function Test 

(WMFT; Wolf, Lecraw, 

Barton, & Jann, 1989) 

Medical Research Council Test 

of Muscle Strength (MRC; 

(Paternostro-Sluga et al., 2008) 

 

Rivermead Mobility Index 

(RMI; Collen, Wade, Robb, 

& Bradshaw, 1991) 

National Institutes of Health 

Stroke Scale (NIHSS; Goldstein 

et al., 1989) 

 

Rivermead Motor 

Assessment (RMA; Lincoln 

& Leadbitter, 1979) 
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3.4.2 Risk of bias in included studies 

 Table 3.5 displays a summary table of detailing the risk of bias in included studies 

on each of the measures. Figure 3.2 displays the risk of bias graph. 

Allocation 

This criterion could only be relevantly applied to the RCTs included. Whilst 

participant allocation was randomised in all the RCTs using random number tables, 

allocations could not be concealed from therapists delivering the intervention or 

researchers in all cases. This was particularly evident in one RCT (Orihuela-espina et al., 

2016), in which the authors note that allocation concealment was not possible due to the 

open-plan environment in which the intervention was delivered, and therefore represented 

a high risk of bias. Two RCTs did not explicitly mention whether participant allocation 

was concealed and therefore risk of bias was regarded as unclear (Sale, Franceschini, et al., 

2014; Yang, Lin, Chen, Wu, & Chen, 2012). All studies that were not RCTs were rated 

high risk of bias as the one sample research design (lacking a control group, random 

allocation, and concealment) is highly prone to bias. 

Blinding 

Given the nature of the interventions, it would not be possible for therapists 

delivering or participants receiving the therapy to be blinded, however participants were 

often blinded to the research hypotheses and assessor blinding should be possible. In many 

cases the outcome assessments were made by an independent therapist, blinded to research 

protocol and allocations, in only one of the RCTs was this not the case (Orihuela-espina et 

al., 2016). Eight of the 13 proof of concept trials did not report whether the assessors were 

independent of the research time or blinded to the allocations and were rated unclear risk 

of bias (Colombo et al., 2005a, 2005b, 2007; Pinter, Pegritz, Pargfrieder, Reiter, Wurm, 

Gattringer, Linderl-madrutter, et al., 2013; Stein et al., 2011; Weightman et al., 2011; Yeh 

et al., 2014; Yeong et al., 2010), in the remaining five studies the assessors were blinded 

and received the rating of low risk of bias (Lambercy et al., 2009, 2011; Mali et al., 2006; 

Metzger et al., 2014; Sale et al., 2012). 

Incomplete outcome data 

Outcome data were complete in all but four of the studies. Three of these studies 

were large RCTs in which the risk of bias due to attrition was addressed in the statistical 

analysis, we therefore rated the risk of bias was consequently regarded as low (Hsieh et al., 
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2012; Hwang et al., 2012; Wu et al., 2013). In the other study (Weightman et al., 2011), 

the single drop out was deemed unlikely to affect the results. In one study, participant 

dropout was not reported and could not be determined from the data presentation, and so 

risk of bias was determined to be unclear (Mali et al., 2006). 

Selective reporting 

All clinical outcomes stated in study method sections were reported in 21 studies, 

representing a low risk of bias. One study reported results of a single subscale of the FIM 

that had been assessed (Mali et al., 2006), and consequently received a high risk of bias 

rating. In another study, a proportion of the data fell below the effective range of the tests 

and were not reported (Yeong et al., 2010) 
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Table 3.5 Summary risk of bias table  
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Hsieh et al. (2011) 1 Y CS 
     

Liao et al. (2012) 1 Y CS 
     

Wu et al. (2012) 1 Y CS 
     

Hsieh et al. (2012) 1 Y CS 
     

Wu et al. (2013) 1 Y CS 
     

Yang et al. (2012) 1 Y CS 
     

Hwang et al. (2012) 2 Y S 
     

Sale et al. (2014) 2 Y AS 
 

 

   

Orihuela-Espina et al. (2016) 2 Y SA 
     

Hesse et al. (2003) 1 Y SA 
  

   

Lambercy et al. (2009) 3 N CS 
  

   

Lambercy et al. (2011) 3 N CS 
  

   

Metzger et al. (2014) 3 N SA 
  

   

Sale et al. (2012) 2 N AS 
  

   

Stein et al. (2011) 2 N CS 
     

Pinter et al. (2013) 2 N SA 
     

Yeh et al. (2014) 4 N S 
     

Weightman et al. (2011) 5 N CP 
  

 

  

Colombo et al. (2005) 6 N CS 
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Colombo et al. (2005b) 6 N CS 
     

Colombo et al. (2007) 6 N CS 
     

Yeong et al. (2010) 7 N SA 
     

Mali, Goljar, and Munih 

(2006) 

8 N CS 
     

Note.  - Low risk of bias,  - High risk of bias,  - Unclear risk of bias, CS – 

Chronic Stroke, SA – Subacute stroke, AS – Acute stroke, S – Stroke recovery stage 

undefined, CP - Cerebral Palsy, Y – Yes, N – No 

 

Figure 3.2 Risk of bias graph 
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3.4.3 Effects of interventions 

Efficacy across RCTs 

Nine RCTs were selected that tested the efficacy of distal UL training with the end 

–effector devices. Across these studies, training was associated with improved clinical 

outcomes across the ICF domains. Findings demonstrated reductions in impairment in both 

distal and proximal sections of the UL (FMA, MI; Hsieh et al., 2012; Hwang et al., 

improvements in UL strength (MRC; Hsieh et al., 2012), reductions in UL spasticity 

(MAS; Hsieh et al., 2011; Sale, Mazzoleni, et al., 2014), and improvements in functional 

ability and manual dexterity (BB, JTHT, SIS, MAL; Hsieh et al., 2011; Hwang et al., 2012; 

Sale, Mazzoleni, et al., 2014). These improvements were maintained at follow up 

assessments (Sale, Mazzoleni, et al., 2014). 

When recovery assisted with RT with the device was compared with recovery due 

to control conventional OT approaches, RT typically led to greater reductions in 

impairment (FMA; Hsieh et al., 2011; Hsieh et al., 2012; Liao, Wu, Hsieh, Lin, & Chang, 

2012; Orihuela-espina et al., 2016; Yang et al., 2012), strength (MRC; Yang et al., 2012), 

and ability and ADL performance (ABILHAND , SIS; Liao et al., 2012; Wu et al., 2012). 

Three RCTs investigated whether higher training intensity or dosage led to 

improved clinical outcomes. In these studies, the higher intensity groups showed improved 

gains in recovery (Hsieh et al., 2011; Hsieh et al., 2012; Hwang et al., 2012). 

Meta-analysis of training effect 

The included RCTs compared the effects of training with the BiManuTrack (six 

studies) or Amadeo devices (two studies) against control therapy. Five of the 

BiManuTrack RCTs measured FMA improvement over the intervention period. We 

conducted a pooled comparison across these studies of FMA improvement between 

participants who received training with the BiManuTrack and those in the control therapy 

conditions. The average effect was not significant, showing no significant difference in 

reduction in motor impairment between groups (Figure 3.3). The two Amadeo studies did 

not measure the same clinical outcomes and so a pooled analysis could not be made.  
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Figure 3.3 Forest plot of improvement in FMA: BiManuTrack versus CT 

 

Efficacy across pilot studies 

In pilot studies comparing efficacy of RT in a single sample, training of the distal 

UL with the selected end-effector devices consistently resulted in a reduction in motor 

impairment in the distal, and often proximal, upper limb demonstrated by significant 

improvements in FMA (Colombo et al., 2005b, 2005a, 2007, Lambercy et al., 2009, 2011; 

Stein et al., 2011) and MI (Lambercy et al., 2011; Pinter, Pegritz, Pargfrieder, Reiter, 

Wurm, Gattringer, Linderl-Madrutter, et al., 2013) and MRC (Sale et al., 2012). In 

addition, there is some evidence that training with the devices reduced spasticity as 

measured by the AS/MAS (Lambercy et al., 2011), and increased strength (Sale et al., 

2012). There was consistent evidence to suggest that these reductions in impairment may 

translate to improvements in ability and activity as measured by JTHT (Stein et al., 2011), 

BBT (Yeh et al., 2014), MAL (Stein et al., 2011), COPM (Weightman et al., 2011) and 

TEMPA (Yeh et al., 2014).  

Impact of stroke recovery phase 

Significant improvements in clinical outcome measures were observed across all 

stroke recovery phases when training with robotic devices. Two studies trained acute 

stroke patients with the Amadeo device and found improvements in outcome measures 

across both the impairment, and activity and participation level domains (Sale, Mazzoleni, 

et al., 2014; Sale et al., 2012). Similarly, significant and non-significant improvements 

were found across outcome measures in studies of subacute patients (Hwang et al., 2012; 

Pinter, Pegritz, Pargfrieder, Reiter, Wurm, Gattringer, Linderl-madrutter, et al., 2013). 

Most studies used samples of individuals with chronic stroke and demonstrated 

considerable gains. 
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3.5 Discussion 

This scoping review aimed to evaluate the state of the evidence for distal end-

effector RT for the functional restoration of the hand and wrist in individuals with UL 

disability. The review included 22 studies of RT with clinical samples totalling 389 

participants. We found only one study that investigated the effects of training with one of 

these devices in a non-stroke population, which was CP (Weightman et al., 2011).  

3.5.1 Randomised control trials 

Nine of the included studies were RCTs comparing either RT with BiManuTrack or 

Amadeo device with a control conventional therapy in stroke patients. These were 

generally of high methodological quality; eight with a low risk of bias in all key domains 

identified by the Cochrane risk of bias tool (Higgins et al., 2011). These studies showed 

consistent reductions in motor impairment in both distal and proximal sections of the UL 

and improvements in activity and participation outcomes across all stroke phases. 

Improvements were retained in the two studies that conducted follow-up assessments. Two 

studies in this review directly tested the hypothesis that training effects are dose-

dependent. Both found that increased duration or intensity of training led to improved 

motor outcomes (Hsieh et al., 2011; Hwang et al., 2012), as could be predicted based on 

previous review findings (Prange et al., 2006). If robotic therapy was used as an adjunct to 

therapist-based therapy in the home or clinic environment to increase the dosage of 

training this may result in improved motor and functional outcomes (Lum et al., 2012). 

Improvements were typically larger in subacute and acute patients trained with the 

Amadeo device than in the patients with chronic stroke trained with the BiManuTrack. 

Whilst we cannot draw a definitive conclusion, recovery rate exponentially decays 

following brain trauma so patients in the acute/subacute recovery phase generally exhibit 

accelerated recovery over those the chronic phase, It is likely that the RT simply facilitated 

this recovery. 

Meta-analysis of RCTs with the BiManuTrack showed no difference in efficacy 

between RT and CT. There is no reason to expect that RT should produce improvements 

beyond that of therapist-based methods of equal duration or intensity (Kwakkel et al., 

2008). Consequently, it should not be expected that RT should surpass the efficacy of 

conventional approaches. Whilst the meta-analysis showed no difference in efficacy of RT 

over conventional therapy, the pooled sample size was not sufficient to assess non-

inferiority or equivalence so conclusions must be tentative. Equivalent or not, patients 
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receive a limited, suboptimal volume of practice of UL movements in the clinical setting 

(Hayward & Brauer, 2015); robotic rehabilitation devices have the potential to complement 

conventional therapist based interventions by increasing the dosage of repetitive movement 

practice beyond the level that can be achieved in the clinic alone. 

3.5.2 Uncontrolled pilot studies 

The other 13 studies were uncontrolled pilot studies, typically assessed as having a 

higher risk of bias. These studies demonstrated consistent reductions in impairment of the 

UL and some evidence of improved outcomes in the activity and participation domain for 

stroke patients, retained at follow up in the four studies that conducted these assessments. 

However, these latter studies typically had very low sample sizes. Reported gains are 

therefore likely to be understated as studies were underpowered to find clinically 

significant improvements, particularly in measures of activity and participation. However, 

without inclusion of a control group, it we are unable to discriminate effects due to training 

from those due to natural recovery. This is of particular concern in studies of acute and 

subacute stroke patients in which natural recovery might account for a large proportion of 

improvements. Only one study tested RT in a non-stroke population (CP) (Weightman et 

al., 2011). Therefore we are unable to draw conclusions of the efficacy RT in this 

population.  

3.5.3 General discussion 

Across studies there was evidence for a reduction in motor impairment associated 

with RT and evidence of functional improvements. These findings are consistent with 

other studies of distal UL RT which found a reduction in motor impairment in the affected 

arm and preliminary evidence of increased activity and functional use of the upper limb 

(Balasubramanian et al., 2010). In contrast, systematic reviews of proximal UL RT have 

found no such improvements in activity and participation measures (Kwakkel et al., 2008; 

Prange et al., 2006). This difference may be attributable to the crucial role of the hand in 

ADL tasks (Faria-Fortini, Michaelsen, Cassiano, & Teixeira-Salmela, 2011). Whilst RT for 

the hand and wrist reduced impairment and spasticity in both distal and proximal sections 

of the upper limb (Hesse et al., 2003; Hwang et al., 2012; Buttefisch et al., 1995; Krebs et 

al., 2007; Takahashi et al., 2008), proximal training tended only to reduce impairment in 

the elbow and shoulder but not in the hand and wrist (Kwakkel et al., 2008; Prange et al., 

2006), thereby limiting translation to ADL abilities. It is currently unknown why distal RT 
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reduces proximal UL impairment. It may be the case because end-effector training of the 

hand and wrist indirectly trains the shoulder and elbow when using the device, specifically 

when the upper arm is not restrained or stabilised (Hesse et al., 2005; Lambercy et al., 

2009; Lambercy et al., 2011) or due to increased use of the proximal UL outside of training 

as distal training increases the functionality and use of the affected arm in everyday tasks 

(Balasubramanian et al., 2010). 

Whilst distal UL RT seems to be efficacious in improving motor and functional 

outcomes, the efficacy of any single device (with the exception of the BiManuTrack and 

Amadeo) cannot be established due to the aforementioned limitations inherent to the 

testing conditions of the uncontrolled pilot studies. The quality of the evidence for training 

with the Amadeo and BiManuTrack systems is high and we can draw robust conclusions of 

their efficacy. 

Of the 23 studies, only six studies conducted follow up assessments necessary to 

preclude gains due to practice effects and the outcome measures used across studies were 

inconsistent. Frequently studies were underpowered. Addressing these limitations in future 

research would require the inclusion of a control group and sufficient sample sizes to allow 

clinically important change in activity and participation measures to be detected is crucial 

for establishing the efficacy of developed devices. Assessments should include at least one 

measure for each of the ICF domains (World Health Organisation, 2001) and conduct 

follow-up assessments.  

Only one of the included studies addressed RT in a non-stroke population. Whilst a 

small number of research groups are applying rehabilitation robotics to individuals with CP 

(Chen & Howard, 2014; Meyer-Heim & van Hedel, 2013), MS (Basteris et al., 2011; 

Casadio, Sanguineti, Solaro, & Morasso, 2007; Feys et al., 2009; Octavia, Feys, & Coninx, 

2015; Vergaro et al., 2010), and CSI (Chen & Howard, 2014; Cortes et al., 2013; 

Vanmulken, Spooren, Bongers, & Seelen, 2015; Zariffa et al., 2012), there is currently 

insufficient evidence to determine whether RT would be efficacious in these populations, 

this should be a research priority. 

Due to the broad range of device designs, it is unclear which design features are 

key to promoting such improvements. Whilst future research should draw comparisons 

between designs and their ability to promote motor and functional recovery, efforts should 

concentrate on developing devices that are cheap to produce, with a small footprint and 
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ease of use by patients and care professionals as this will be key to their adoption by health 

services, either in the home or clinic environment. 

3.5.4 Conclusion 

  We have presented a review of end-effector devices for hand and wrist 

rehabilitation across neurological conditions. Individuals across the acute, subacute, and 

chronic stages of stroke recovery who received RT with the selected devices showed 

consistent reductions in motor impairment in both distal and proximal sections of the UL. 

In addition, the review found some evidence that RT resulted in an improvement in activity 

and participation outcomes across all stroke phases. Whilst distal UL RT with end-

effectors seems efficacious, it is unclear which specific device features are key to 

promoting recovery of UL function. We only find one end-effector device that has been 

tested in a non-stroke population. Research priorities should include: 

i) Comparisons of efficacy of rehabilitation robots across neurological 

populations other than stroke 

ii) Development of end-effector devices focusing on ease of implementation to 

health services (low cost, ease of use, low maintenance) 

iii) Cost analysis comparing robotic therapy with conventional therapy 

approaches 
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4.1 Abstract 

 Objective: The aim of the review was to present a systematic review of the 

findings of experimental studies of manual tracking performance, simulated with models 

based on perceptual control theory (PCT). 

 Methods: A literature search was conducted within the PsychInfo, Scopus, Web of 

Science and Science Direct databases. This compiled all peer-reviewed journal articles that 

simulated individual manual tracking data using a PCT model. Articles were included if 

they simulated human manual tracking data with a computational model based on PCT, 

although studies with neuro-atypical samples were excluded. To supplement this search, 

reference lists of included articles were also searched for related publications. A narrative 

review of the tracking studies was conducted alongside a qualitative assessment of their 

methodological quality. 

 Results: Thirteen studies (N = 53 participants) met the inclusion criteria and were 

reviewed. The review found that analyses of tracking performance suggest that individuals 

act as negative feedback control systems to control their perceptions against disturbances. 

In addition, individuals intentions and control strategies can be characterised within 

parameters of control models. There was some evidence that perceptual control models 

could emulate tracking in multiple Degrees of Freedom (DoF). Several theoretical 

principles were not modelled within tracking studies, such as PCTs mechanism of learning, 

known as reorganisation. Models were not fit to tracking performance for target types other 

than smoothly varying pseudorandom signals. 

Conclusions: The studies support a negative feedback control explanation of 

manual tracking. However, the models must be tested across more varied task designs to 

address remaining critiques. One such critique might be that feedback is too slow to 

account for anticipatory behaviour. Another may be that software implementations may not 

explain the dynamics of interacting in a physical environment. Implementing the software 

models into robotic systems would test the robustness of these theoretical models. We 

recommend future research directions and set methodological guidelines for PCT 

computational modelling experiments. 

 



118 
 

4.2 Introduction 

The mechanism of motor control has been the subject of investigation across the 

domains of physiology, biomechanics, neuroscience and psychology for many years. Since 

their inception, behaviourist and cognitivist accounts of motor control expounded a linear 

causative model whereby stimuli motivated actions (Bourbon & Powers, 1999). This basic 

view of linear causality was challenged by demonstrations that action is dynamically 

controlled and thus the motor system may be viewed as a servo-control mechanism in 

which movements result from dynamical, negative feedback error correction (Craik, 1947). 

This led to a line of enquiry in which the system was characterised and modelled with 

transfer functions (Navas & Stark, 1968; Neilson, Neilson, & O’Dwyer, 1988; Noble, Fitts, 

& Warren, 1955; Poulton, 1952a). In many contemporary accounts, feedback control 

operates alongside prediction (Friston et al., 2011; Miall & Wolpert, 1996). This could 

provide solutions to issues with movement timing and delays (Wolpert, Miall, & Kawato, 

1998), and motor learning (Brown et al., 2011; Wolpert, Ghahramani, & Flanagan, 2001). 

However, predictive accounts must overcome a significant challenge: non-linearity in the 

neurophysiological mapping of inputs to outputs makes forward and inverse predictions 

computationally intensive (Latash, 2012; Scott, 2008). The complexity of action selection 

is amplified further when applied to multi degree-of-freedom biomechanical systems with 

intersegmental dependencies, such as human limbs (Wolpert, 1997), as the computations 

may become intractable. An alternative hypothesis reverses the control problem. Rather 

than predicting actions, humans control their perceptions; this is the central tenet of 

perceptual control theory (PCT; Powers, 1973).  

PCT does not require predictions of motor output. Instead, perceptual inputs are 

maintained at desired (reference) states via negative feedback processes (Powers, 1973; 

Powers et al., 1960). These reference states quantify individual perceptual goals (Marken, 

2013a). Actions are varied as necessary to achieve these goals (Powers, 1973), particularly 

in the face of disturbances. Complex behaviour emerges from a hierarchy of control units. 

At each level of the hierarchy there are many single control units each controlling different 

perceptual variables. The hierarchy operates as a two-way cascade. Bottom-up projections 

between hierarchical levels carry increasingly integrated perceptual information to 

superordinate levels. Top-down projections set the reference value (perceptual goal) for 

units in subordinate levels of the hierarchy. At any single control unit, comparison of 

reference value and incoming perceptual signal yields an error term. This error term is 
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amplified to form the top-down projection to the control unit below. At the lowest 

hierarchical level, physical outputs produce movements that alter the environment in which 

the organism is situated. This changes the pattern of sensory stimulation. Thus the 

feedback effect via the environment closes the loop. In the perceptual hierarchy, learning is 

enacted by a reorganising system which projects to units in the hierarchy (Powers et al., 

1960a). When an error term crosses a threshold value and persists, the reorganising system 

will alter the organisation of the hierarchy, properties, and parameters of the control units 

in a trial-and-error fashion until control is re-established and error reduces. 

Powers introduced PCT in two papers in 1960 (Powers et al., 1960a, 1960b), and 

later expanded the theory (Powers, 1973). However, its first experimental demonstration 

was published in 1978 (Powers, 1978). In this seminal paper, Powers laid the foundations 

for analysing individual intentions in manual tracking tasks (Box 1). The paper formalised 

a perceptual control model of behaviour in a manual tracking task (Box 2), demonstrating 

the primary principle of the theory; that perceptual variables are controlled to internally 

specified reference goal states by negative feedback control. Control theory predicts that a 

disturbance applied to the cursor in the task should be compensated by behaviour to 

maintain the variable in this goal state. This hypothesis has been supported as an almost 

perfect negative correlation between a disturbance applied to the cursor and the 

individual’s handle movements has been found in a series of compensatory tracking 

experiments (Marken, 1980; Powers, 1978). Conversely, very low correlations are 

observed between the input (cursor position) and the participant’s control movements 

(Marken, 1980; Powers, 1978); thus supporting the hypothesis that individuals vary actions 

to control their perceptions during manual tracking. 

Although correlational analyses of tracking behaviour provide clear evidence to 

support the core principle of perceptual control, correlations do not elucidate the 

mechanism by which these perceptions are controlled. To uncover this mechanism, PCT 

advocates the functional modelling approach (Mansell & Huddy, 2018; Runkel, 2007). 

Under the approach, the researcher first makes an inference of which perceptual variable is 

controlled in the task, and applying disturbances to the variable. If the variable is under 

control, the individual will maintain it within a goal state. In this case the expected effect 

of the disturbance will not be observed. This process is the test for the controlled variable 

(TCV; Runkel, 1990). Once a possible controlled variable has been identified, a 
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mechanistic hypothesis can be tested by constructing a computational model. The fit of this 

model to an individual‘s tracking data can be assessed. Multiple models may be compared 

for their fit to the data and compared. Since Power’s demonstration of the individual as a 

perceptual control system (Powers, 1978), he and other researchers have used the 

functional modelling method to further test the principles claims of PCT.  

Models have been extended to account for control of multiple perceptual variables 

simultaneously through hierarchical control (Marken, 1986; Marken, 1991). Others have 

attempted to determine individuals’ intentions (reference values) and quantify individual 

differences in tracking performance and parameters (Bourbon et al., 1990; Parker et al., 

2017; Powers, 1978, 1989). However, some critiques of the theory have not yet been 

addressed. For example, that due to the intrinsic delays in processing sensory feedback in 

the CNS, feedback must be too slow of coordination of fast movements (Desmurget & 

Grafton, 2000; Hollerbach, 1982). Although PCT offers a theoretical explanation for delay 

compensation through hierarchical control, this proposal has not been tested with a 

computational model. Similarly, PCT’s learning mechanism, reorganisation, is well 

developed conceptually but is yet to be modelled with human experimental data. These 

limitations may explain why PCT has not achieved the status of a mainstream 

contemporary theory of action control. As a review of the evidence for PCT in tracking 

studies has not been conducted, the extent to which principles of PCT and its critiques have 

been addressed is not clear. 

The current article reports a systematic scoping review of PCT modelling studies in 

manual tracking experiments. The review has three objectives: 1) To collate and 

summarise the findings within the PCT tracking literature, 2) To evaluate the 

methodologies of existing studies, and 3) To identify investigative priorities for future 

research, and 4) To relate findings to other contemporary approaches to action control.  
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Box 1 The tracking paradigm 

Experiments evaluating PCT mostly use a continuous-time manual tracking paradigm. This 

is because perceptual control is a dynamic process. To study continuous control, the task 

must supply continuous data. The tracking paradigm can be easily manipulated to make 

inferences about intention in behaviour, and models can be developed and compared to test 

for hypothesised controlled variables. 

There are two typical variants of the tracking paradigm: compensatory and pursuit 

tracking. In compensatory tracking, the target marks remain stationary in the centre of the 

screen whilst in pursuit tracking (Figure 4.1), the target signal varies over the course of the 

trial. The cursor position in both setups is determined by the position of the joystick, 

linearly scaled to the screen pixels. In some versions of the tasks the cursor position is also 

affected by a computer generated disturbance signal. 

Common patterns for both target signals in pursuit tasks, and disturbances in both tasks, 

include triangular waves, sinusoids and pseudorandom signals.  

All studies included in this review use a variation of either one of these task designs. 

Notable variations include tracking in two dimensions (Marken, 1991) and multi-cursor 

displays (Marken, 1986; Powers, 1978).



122 
 

Figure 4.1 Diagram of a computerised pursuit tracking task 

 

Note the depicted task uses a sinusoid target signal and a pseudorandom disturbance to 

cursor movement. Adapted from Parker et al. (in preparation) 
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Box 2 Basic architecture of a perceptual control model of tracking performance 

The standard perceptual control model of tracking consists of a single control unit (Figure 

4.2). The input to the control unit is the distance between the cursor and target marks as its 

input. The input function transforms this input into a perceptual signal. The model 

compares this perceptual signal to a reference signal. The value of the reference signal is 

dependent on the intended distance between the cursor and target. Subtraction of the input 

signal from the reference signal gives an error term. This error term is transformed into an 

output signal via the output function. The effect of the output on the environment, and 

therefore the controlled perceptual variable, is mediated by the environment function. The 

environment function in the tracking case represents the relation between the output signal 

and its effect on the controlled variable, the target-cursor distance. The change in this 

controlled variable is then fed back into the control system as input. 

In a typical PCT model of a control unit there are four parameters, which may be fixed or 

free parameters for optimisation. 

Loop Gain: This parameter is a constant that proportionally multiplies the error term 

(constant of proportional integration). According to the theory, each of the functions 

(input, output and environment) would have an associated gain. In models, the loop gain 

represents the sum of the gains at these functions and is usually placed in the output 

function. 

Reference Value: The reference value is a constant that specifies the target-cursor distance 

that the model intends to maintain. This represents the perceptual goal of the participant in 

the task. For example, if the participant was instructed to keep the target and cursor 

aligned, the model reference value should be close to zero.  

Note that in PCT the reference signal of a living organism is dynamic and internally-

specified (top-down projections from higher control units). This is not readily apparent 

when a single control unit is modelled in this manner. 

Leak Rate or Slowing Factor: The slowing factor sets the rate of the leak of the leaky 

integrator. The leaky integrator is a type of low-pass filter which ensures that a proportion 

of the output is ‘leaked’ at each iteration of the loop. 
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Loop Delay: Delays exist in the CNS which necessitate that action is coordinated based on 

outdated (previously sampled) sensory information. The model may include a delay 

interval. The loop delay value specifies the interval required for changes to input to 

circulate round the loop, back to input. 

 In some of the included experiments, the models have been expanded by adding further 

control units in a parallel or hierarchical structure. 

Figure 4.2 Single unit PCM architecture and equation. 

 

Adapted from Parker et al. (in preparation).
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4.3 Method 

4.3.1 Literature search  

The literature search was conducted in the Scopus, PsychInfo, Science Direct and 

Web of Science databases by the first author (MP). The search terms were “Perceptual 

control theory” OR “control theory” OR “control system theory” AND model AND 

tracking. A citation search was also conducted on Powers’ seminal 1978 paper. Studies 

were included if they fulfilled the following criteria: 

a) They were studies of manual tracking (one or two dimensions) 

b) There was a perceptual control model of a single individual 

c) The sample included one or more neurotypical adult participant 

Only peer reviewed articles and book chapters were included. 

4.3.2 Article screening 

 Article screening was conducted in the Covidence
2
 software package. Title and 

abstract screening was conducted by the first and second authors. The first and second 

authors conducted full text screening of the articles that remained after title and abstract 

screening.  

4.3.3 Data extraction and analysis 

 Data were extracted from the included studies by the first and second authors. Data 

included study hypotheses, samples, and details of the tracking task used. A narrative 

review was conducted by the first author. Articles grouped according to the principles of 

PCT that were tested. A narrative assessment of methodological quality was conducted by 

the first author against criteria outlined in the following section. The narrative format was 

chosen because no existing assessment tool was deemed appropriate given the 

heterogeneity of study methodologies. 

4.3.4 Assessment of Methodological Quality  

 The custom methodological quality assessment considers methodological standards 

for experimental design in psychology, as well as accepted standards for control system 

design and evaluation. 

                                                           
2
 Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. 
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Participants 

 It is regarded as good practice to make power calculations to determine the number 

of participants required to have sufficient power to draw generalisable conclusions from 

the data (Button et al., 2013). The need for this has become more apparent since the 

recognition of a replication crisis within behavioural sciences (Pashler & Wagenmakers, 

2012). Required sample sizes will necessarily differ depending on the experimental design. 

In repeated measures designs, such as those typically used in individual modelling studies, 

models must be tested on their fit to that same individual’s behaviour. This reduces the 

number of required participants (Dupont & Plummer, 1990). A long run-in or practice 

period is generally desirable to establish that the participant’s performance has stabilized 

asymptotically (Parker et al., 2017; Powers, 1989). Notable exceptions are studies in which 

motor learning is the focus of investigation. 

Models 

 The design and selection of models should consider a number of key factors. 

Critically, models should be parsimonious (Konishi & Kitagawa, 2007); model parameters 

should therefore be evaluated for their uncertainties and contribution to model fit (García, 

Prett, & Morari, 1989). When comparing models, improvements in accuracy should be 

balanced against increases in the number of parameters. This is because model accuracy 

will improve as a function of the increase in the number of parameters (Konishi & 

Kitagawa, 2007), making models susceptible to overfitting at the expense of generalisation 

to new datasets (Konishi & Kitagawa, 2007). If multiple models have been designed, 

models can be compared with the Aikake Information Criterion (AIC; Akaike, 1974) or 

Bayesian Information Criterion (BIC; Schwarz, 1978) which both assess the fit to data 

based on likelihood but account for the number of parameters of the model.  

Parameter optimisation and model validation 

Parameter optimisation is used to find the best fitting model parameters for a 

dataset. Optimisation methods range from manual techniques to sophisticated algorithmic 

solutions. Optimisation methods should be powerful enough to account for the number of 

parameters and their interactions. As the number of parameters increases, so too does the 

complexity of the landscape. Optimisation algorithms may get trapped in local minima 

(Lindfield & Penny, 2017), which may result in suboptimal parameter selection (Bäck & 

Schwefel, 1993). For generalisability, models should be optimised on an array of data. This 

may reduce the likelihood of selecting anomalous parameter values. Computational 
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advances in recent years have yielded a number of powerful optimisation approaches 

(Lindfield & Penny, 2017). These are easy to implement in software packages such as 

MatLab. Examples are genetic algorithms (Grefenstette, 1986) and least squares algorithms 

(Luenberger, 1968), and simulated annealing. 

It is also essential that models undergo validation on a second to avoid inflation in 

estimates of the fit to the data (Lillacci & Khammash, 2010; Oberkampf, Trucano, & 

Hirsch, 2004). In striving for a higher accuracy of fit to the training data, one might model 

specific aspects of that trial that do not generalise to other trials (Busemeyer & Wang, 

2000).  

Accuracy metrics 

 The model’s behaviour should visually emulate participant behaviour on inspection 

of the data. Quantitative metrics should also be used to assess the fit (Luenberger, 1968). 

Several metrics are available including correlations, R
2
, Sum of Squared Error (SSE) and 

Root Mean Square Error (RMSE) and others (Pitt, Myung, & Zhang, 2002). Additionally, 

frequency analysis may be used to determine the magnitude ratio, and phase difference 

between two signals; allowing for disambiguation of tracking error (Cofré Lizama, 

Pijnappels, Reeves, Verschueren, & Van Dieën, 2013; Inoue & Sakaguchi, 2014; Ishida & 

Sawada, 2004; Yu et al., 2014). Phase difference calculates any lead or lags of the cursor 

relative to the target (timing difference) and may be expressed as phase angle or in time. 

Amplitude ratios calculate errors in reproducing the displacement of the target with the 

cursor. Generalisability quotients can be reported for model selection that penalize models 

for complexity to control for overfitting (Busemeyer & Wang, 2000; Forster, 2000; Pitt et 

al., 2002). Tasks may be employed in which humans do not reach a performance ceiling. If 

the model can replicate imperfect performance this may be a better determinant of model 

validity than simulating perfect performance.  

4.4 Results 

 The literature and citation search identified 193 articles. A flowchart of the data 

extraction process can be found in Figure 4.3. Following the screening process, 13 articles 

were found to fit the inclusion criteria and were thus included within the review. Table 1 

presents a summary of the included studies and their experimental designs. Table 2 

displays the tabulated results of the methodological quality assessment. 
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Figure 4.3 PRISMA flowchart of data extraction process 
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4.4.1 Hypotheses 

 The hypotheses of the articles can be broadly categorized into six groups. Some 

articles contained a number of hypotheses that cut across the groups; in those cases the 

experiment number is specified in brackets. These numbers correspond to those in Table 

4.1.  

Five studies explicitly tested the principle that the individual acts as a negative 

feedback control system. Two compensatory tracking studies hypothesised that the 

correlation between the input (cursor position) and the movements produced by the 

participant (output) would be very low; whilst disturbances to the cursor position would be 

highly negatively correlated with the movements of the participant (Marken & Horth, 

2011; Powers, 1978). Three studies compared the fit of open-loop and closed-loop negative 

feedback PCT models to tracking behaviour under different test conditions (Bourbon & 

Powers, 1999; Marken & Powers, 1989; Marken, 2013b). The authors hypothesised that 

PCT models would more accurately emulate participant behaviour than open loop models 

under these task conditions. 

Three studies applied the test for the controlled variable (TCV; (Marken, 1988b; 

Runkel, 1990). In tracking the TCV assesses which aspect of the display was controlled by 

the participant (Marken, 1986; Marken, 2014; Powers, 1978). Often these studies utilised 

the stability factor, which calculates the ratio of observed to expected cursor variance and 

measures the likelihood that a given cursor relationship is under control by a participant. 

Two studies attempted to explicitly test the relevance of an internally specified 

reference value. One hypothesised that when the participant attempted to control at a 

variable reference (changing over a single trial), the reference could be reverse calculated 

from their outputs (Experiment 2 of Powers (1989)). Another hypothesised that the 

reference value parameter would be consistent over time and uniquely contribute to model 

fit variance (Parker et al., 2017). In three studies a non-zero reference value was included 

as an optimised parameter that, along with gain or other parameters, was used to simulate 

later performance (Bourbon, 1996b; Bourbon et al., 1990b; Parker et al., 2017), and two in 

which participants were required to hold a constant or smoothly varying non-zero reference 

value and it was hypothesised that the model would accurately emulate this (Marken & 

Powers, 1989 (Experiment 3); Powers, 1978). 
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Two studies investigated simultaneous control of multiple degrees of freedom. 

These studies implemented hierarchical and parallel control models. The first study 

hypothesised that the participant could coordinate coherent action with two handles 

(Marken, 1986), independently compensating for disturbances (Experiment 1); second, that 

this ability could be maintained despite interaction forces (Experiment 2); and third, that it 

may appear, from an observer’s perspective, that two cursors move as a functional group 

and may therefore be controlled by a single paddle (one DoF), when in fact the cursors are 

controlled independently and simultaneously (Experiment 3). In the second article, it was 

hypothesised that both dimensions in a two dimensional tracking task are controlled 

independently even in the case where it would be possible to control them with a single 

degree of freedom (Marken, 1991). 

Three studies attempted to evaluate the degree to which PCT models show 

individual specificity. Two studies hypothesised that model fit to individual participant 

performance would still be very accurate if the individual was tested either one year 

(Bourbon et al., 1990) or five years later (Bourbon, 1996). One study hypothesised that 

models optimised to an individual’s performance would more accurately simulate their 

performance than would a general model (Parker et al., 2017). 

A final study investigated reorganisation (Pavloski et al., 1990). The authors 

hypothesised that reorganisation could be quantified within long tracking trials by changes 

in the loop gain parameter. 

4.4.2 Participants 

 The total of 53 participants served across studies. Studies tended to have small 

sample sizes. In five studies a single author of the article was the only participant 

(Bourbon, 1996, 1999; Marken, 2013b; Powers, 1978, 1989). The largest reported sample 

size was 20 participants (Parker et al., 2017). 

4.4.3 Models and model parameters 

Nine studies implemented single position control unit architecture, in which the 

controlled perceptual variable was the difference in position between the cursor and target 

(see Table 4.1). One study implemented a single control loop that instead controlled the 

visual angle between the cursor and target (Marken, 2014). Two studies implemented 

hierarchical architectures in which a position control unit was the subordinate unit (Marken 

& Powers, 1989; Marken, 1986). One study implemented a parallel architecture of two 
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position control units (Marken, 1991). Three studies included a comparison with an open 

loop model (Bourbon & Powers, 1999; Marken & Powers, 1989; Marken, 2013b; Powers, 

1978).  

All closed loop models contained a loop gain parameter. A sensory delay was 

implemented in three studies (Parker et al., 2017): in two of these this was implemented 

post-hoc as a phase delay to the resultant model data rather than as a parameter of the 

model (Marken, 2013b; Pavloski et al., 1990). A leaky integrator output was implemented 

in six models. In five of the six studies this was implemented as a slowing factor (Table 

4.1) which acted to reduce the change in output per iteration. In one model the leaky 

integration was implemented by a damping constant that acted to proportionally reduce the 

current output before adding the new output on the current iteration (Parker et al., 2017). 

Reference values were optimised as a free parameter in four studies (Bourbon, 1996, 1999; 

Bourbon et al., 1990; Parker et al., 2017). In seven studies, the reference value was 

assumed to maintain a zero difference between cursor and target. All models implemented 

a loop gain. For hierarchical model in Marken’s 1986 paper, and the parallel model in his 

1991 paper, gains and slowing factors were implemented in each unit of the architectures 

(Marken, 1986; Marken, 1991). In the other paper with a hierarchical model, the slowing 

factor was only included in the unit at the lower level (Marken & Powers, 1989). One 

study evaluated the significance of the parameters of the models in predicting the model 

output (Parker et al., 2017). 

4.4.4 Apparatus 

 The tracking apparatus used varied across studies. Seven studies used a 

computerised handle, four studies used a mouse, one used a joystick and one used two 

game paddles. 

4.4.5 Parameter Optimisation and Model Validation 

 Models were predominantly optimised manually (Table 4.2), by an iterative 

pseudorandom selection process (Monte Carlo). Powers employed a simple iterative 

heuristic optimisation procedure for the gain and slowing factor in one paper (Powers, 

1989). In another, a computational optimisation procedure was used as part of the 

TrackAnalyze program (Powers, 2008). This optimisation method was based on the E. Coli 

optimisation process implemented in a demonstration in the Living Control Systems III 
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software suite (Powers, 2008). Trials usually lasted 40 seconds or one minute. The longest 

was six minutes. The number of trials and practice trials are given in Table 4.2. 

Model validation with new data was conducted in three of the 12 included studies 

(Bourbon, 1996; Bourbon et al., 1990; Parker et al., 2017). In these studies models were 

validated on new data collected a few minutes after collection of the optimisation data 

(Bourbon et al., 1990), one week later (Parker et al., 2017), one year later (Bourbon et al., 

1990), or after five years (Bourbon, 1996). In all these studies the number and length of 

trials was specified and can be found in Table 4.2.
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4.4.6 Experimental designs and findings 

 Study designs and findings are summarised within the framework of principles 

outlined in the previous section. 

The individual as a negative feedback control system 

 Two compensatory tracking experiments with a pseudorandom disturbance to 

cursor position reported correlations between the recorded variables (Marken & Horth, 

2011; Powers, 1978). The correlation between cursor and handle movements fell between 

0 and .1, whereas correlations between disturbance and output tend to be in the region of -

.98 (Marken & Horth, 2011; Powers, 1978). Marken and Horth (2011) included a number 

of difficulty levels, which resulted in widely variable tracking performance (See Table 

4.1). 

Three studies compared closed-loop, negative feedback models to open loop 

models in a pursuit tracking task (Bourbon & Powers, 1999; Marken & Powers, 1989; 

Marken, 2013b). Contrary to the perceptual control model which views behaviour as the 

control of perceptual input, the open loop model views behaviour as directly caused by the 

input (target position). In the 1999 study, the target moved in a regular (experiment 1), or 

irregular (experiments 2 and 3) triangular wave pattern. In the first two experiments the 

cursor position was determined only by handle movements. In the third experiment, the 

cursor position was jointly determined by handle movements and a pseudorandom 

disturbance. Three models tracked the target in each condition and simulated cursor traces 

were plotted against the participant’s. Two of the models were linear causal (open loop) 

models whilst the third was a PCM. One linear model failed to track the target accurately 

when the target velocity became unpredictable (condition 2). When the disturbance was 

introduced, both linear models failed because they did not compensate for the disturbance 

(condition 3). The control model compensated for the disturbance and tracked the target in 

all conditions. The authors concluded that participants use negative feedback control to 

compensate for disturbances and track unpredictably moving targets. 

In experiment 2 of the 1989 study (Marken & Powers, 1989), the feedback 

connection between the handle movements and the cursor movements was reversed at 

intervals during the tracking trial. This resulted in a temporary runaway of the participant’s 

cursor in the direction opposite to the target that lasted approximately 500 ms before the 

participants reversed their handle movements to continue tracking accurately. The authors 
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conducted an open loop analysis of this these data. Under the open loop assumption, they 

predicted that the target and cursor movements would correlate throughout this period. 

That is, the target movement would determine the participant’s cursor movements if it was 

the cause of their behaviour. This was not the case. The correlation between the target and 

cursor was significantly lower than the correlation between the PCT model-simulated 

cursor and the cursor movements produced by the participant in this situation (.91 and .95 

respectively). The authors concluded that following the switch in direction of the handle’s 

effect on the cursor position, the participant changed their control strategy to restore the 

negative feedback relationship. 

In one article (Marken, 2013b) a position control and an open loop model were 

compared for their fit to tracking data in three conditions. The first was a standard 

compensatory tracking design (closed loop task), the second was a tracking reaction time 

task (open loop), and the third was the reaction time task (open loop) with a disturbance to 

cursor position (closed loop). The closed loop models fit the tracking behaviour of the 

participant more accurately than the open-loop models in the closed loop conditions 

(experiments 1 and 3). In the open loop experiment both models performed equally well 

(Table 4.1). 

Test for the controlled variable 

 The first three experiments presented in Powers’ 1978 paper used the compensatory 

paradigm with a pseudorandom disturbance. In each experiment the participant was 

instructed to hold a different relationship between the cursors and the target. Thus the 

participant had to alter their reference value between experiments. In the first experiment, 

the participant was instructed to keep the cursor aligned with the target. In the second 

experiment, a fixed non-zero reference was kept with the cursor. In the third experiment 

the participant was instructed to keep the cursor alternately above or below the cursor by 2 

cm. The change followed presentation of a cue. The fourth experiment was not relevant to 

the TCV. In the fifth experiment, a four cursor tracking paradigm was used in which the 

handle affected the position of cursors one and three in the opposite direction to cursors 

two and four. The participant was asked to stabilize one of the cursors, and each cursor 

moved according to a separate pseudorandom disturbance. Powers calculated the stability 

factor to determine the quality of control in the first three experiments, and to determine 

which cursor was under the control of the participant in experiment 5. The stability factor 

calculates the ratio of observed cursor variance to expected cursor variance (Equation 1) 
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where the expected variance is determined by the effect that a known disturbance would 

have on the cursor if uncontrolled by the participant. A low negative value indicates the 

variable is under control, a value around 0 indicates no control. Negative integers 

approximate the number of standard deviations away from no control the participant is 

exhibiting.  

In the first three experiments of Powers (1978) the stability factor ranged from -4 to 

-9, indicating the participant exerted control over the target-cursor relationship. In the fifth 

experiment the stability factor was in the same range for the controlled cursor, for the 

uncontrolled cursor S was in the range of -1 to 1, indicating no control. Powers therefore 

demonstrated that the stability factor can be used to determine which aspect of the display 

the participant is controlling in the task. 

In another study, a novel three cursor task was used in which the game paddles 

affected two of the three cursors (Marken, 1986). In the first experiment, the position of 

cursor one was determined jointly by game paddle one and a pseudorandom disturbance; 

the position of cursor two was determined jointly by game paddle two and a separate 

pseudorandom disturbance. The position of cursor three was determined only by another 

pseudorandom disturbance. Participants were instructed to keep a constant distance 

between the three cursors. The stability factor was used to demonstrate the relationship 

between cursors, rather than the position of any one cursor, was the object of control. The 

stability factor for the controlled variable (distance between cursors one and two, and 

between cursors two and three) for the six participants had an average stability factor of 

approximately -11.04 and -10.70 respectively. Stability factors for cursors one and two 

were -1.04 and -1.07 respectively. This was taken to show that the relationships between 

the cursors, rather than the cursor positions themselves, were the controlled quantities in 

the task. The stability factor was used to assess the quality of control in the other two 

experiments of this paper; these experiments are summarised in the section entitled 

‘Control of simultaneous degrees of freedom’. 

 In one study, the TCV was applied to the tracking scenario by fitting two alternate 

models, a position control and an angle control model (Marken, 2014). The target followed 

a pseudorandom pattern. There was no cursor disturbance. The distance separating the 

cursor and target was manipulated experimentally to affect one variable (angle), but not the 

other (distance). It was hypothesised that if angle was the controlled variable, then 
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performance should suffer as a function of the distance between the cursor and target. This 

was observed to be the case. A version of the TCV where the controlled variable is tested 

by model simulation was used. The distance control model did not show the decrement to 

performance that the participant exhibited as a function of increasing separation between 

the cursor and target, whereas the angle control model did. The angle control model 

resulted in a more accurate fit to the human data; particularly at larger separation values. 

The author concluded that this demonstrated that visual target-cursor angle, rather than 

visual target-cursor distance, was the controlled variable in this task. 

The importance of an internally-specified reference value 

 In contrast to other control theoretic approaches, PCT specifies that the intended 

state of a controlled variable is internally-specified in the reference value (Powers, 1973; 

Powers et al., 1960a). In seven of the included studies, the reference value was set to zero 

(see Table 4.2) based on the assumption that if the participants are instructed to align the 

target and cursor the reference value would be zero. However a key prediction of the 

theory is that this value can take alternate values based on the individual’s intention. Six 

studies investigated tracking with non-zero reference values.  

In another study, the Powers attempted to simulate tracking with a varying 

reference value (Powers, 1989). This study used the standard compensatory tracking 

paradigm with a pseudorandom disturbance to cursor position. In the middle section of the 

tracking trial the participant was asked to move the cursor in a variable relationship with 

the target. This resulted in behaviour that, to an observer, would seem random. However, 

Powers estimated this time-varying reference signal and then simulated the section of 

tracking with a PCT model with this estimated reference signal. The estimated reference 

signal was inferred from the error signal (the time integral of the handle position), and the 

hypothetical perceptual signal by reverse-engineering from the observed cursor position 

via the model equation. The addition of the perceptual signal and error signal yielded a 

time-variable reference signal (series of reference values). This value was implemented in 

the model. Consequently, the model replicated the behaviour of the participant almost 

exactly; r = .998. Powers concluded that individuals’ intentions are encoded in the 

reference value, and this can be determined via the PCT model, even when their intentions 

are not to keep the target and cursor aligned.  
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 Five studies claimed to provide evidence that the reference signal does take non-

zero reference values; even in cases where the participant is instructed to keep the cursor 

and target aligned (Bourbon, 1996; Bourbon et al., 1990; Marken, 1986; Parker et al., 

2017; Powers, 1978). In the two Bourbon studies, the reference value parameter was 

optimised for each individual. The parameters took on different, non-zero values between 

individuals and allowed for specific predictions to be made of individual’s performance 

over one (Bourbon et al., 1990) and five years (Bourbon, 1996). In another study, an 

analysis of individual differences in parameter values was conducted. Significant 

individual differences were found in the estimates of all parameters including the reference 

value. Moreover, high consistency was observed in each individual participant’s parameter 

estimates over one week. A stepwise regression analysis of the contribution of each 

parameter to model simulation accuracy demonstrated that the reference value parameter 

made a significant unique contribution to the model fit. The authors concluded that the 

reference value parameter is an essential element of the control scheme and is integral to 

predictions of individual behaviour. Please see the section on individual specificity for a 

summary of the research findings of these three studies. 

Simultaneous control of multiple degrees of freedom and hierarchical control 

 Two studies developed models that simulated human performance under conditions 

requiring simultaneous control of multiple degrees of freedom (Marken, 1986; Marken, 

1991). Experiment 1 of Marken’s 1986 study was previously described in a previous 

section (Test for the Controlled Variable). In an extension of this paradigm within the same 

paper (Experiments 2 and 3; Marken, 1986), the game paddles had crossover effects on the 

two cursors. That is, the participant had to compensate for the effects of disturbances to 

one paddle caused by their movement with the other paddle. Participants could keep a 

fixed distance between the three cursors. Marken concluded that this demonstrates 

coordinated action with two limbs at endpoint, and is analogous to controlling two degrees 

of freedom in the same limb with intersegmental interaction forces, such as the forearm 

and upper arm (Marken, 1986). A hierarchical PCT model was constructed which 

accurately simulated the behaviour of the participant in all three experiments. This 

hierarchical model consisted of four control units, two on a subordinate level and two on a 

superordinate level. The subordinate units were position controllers and the higher level 

units determined the dynamic reference values for these subordinate units based on the 

required direction of movement of the three cursors. This enabled the model to 
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dynamically alter the two cursors to maintain the given relations between the three cursors. 

In simulations, the model cursor and participant cursor were extremely highly correlated (r 

= .98). 

Another study implemented a two-dimensional compensatory tracking task 

(Marken, 1991).The position of the cursor was controlled by mouse movements. In one 

version of the task the movement of the mouse in one dimension resulted in a disturbance 

to the controlled perception in the other dimension as a side effect. The resultant cursor 

movements were diagonal, thus it seemed as if the participant was controlling a single 

degree of freedom. A model of two separate control units, each controlling cursor position 

in a dimension, at the same perceptual level, accurately simulated the movements of the 

participants in the task. This indicated that a single apparatus could be moved variably, to 

control two separate perceptual degrees of freedom.  

Individual Specificity 

Three studies attempted to investigate the predictive capacity of individual models. 

Two related studies investigated the consistency in predictions of individual models over 

one and five years respectively (Bourbon, 1996; Bourbon et al., 1990). In these pursuit 

experiments, models of performance were constructed when participants tracked triangular 

waves of a constant velocity. Models were then fit to a new validation dataset when 

participants tracked the similar targets (experiments 1 and 2), or pseudorandom targets 

(experiment 3), whilst a pseudorandom disturbance also affected cursor position. These 

studies demonstrated that over one and five years, participant’s models could make 

extremely accurate predictions of their tracking movements to new targets.  

One study tested the individual-specificity of model fits to pursuit tracking 

performance (Parker et al., 2017). All targets were pseudorandom and there was no 

disturbance to the cursor. Models were fit to data collected at one time point and fit to new 

data collected immediately after, or one week later. It was found that the estimated 

parameters of models optimised to participant performance across three blocks showed 

high consistency, in addition to significant individual differences between participant’s 

parameters. Moreover, a PCT model optimised to each individual’s training data (block 1) 

accurately simulated those individuals’ tracking data in the other blocks. Moreover, models 

more accurately fit the individual from whose data they were optimised than an aggregate 
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model of the other participants; the authors concluded that PCT models show individual 

specificity in predictions. 

Reorganisation 

 A single study aimed to investigate the effect of learning on performance (Pavloski 

et al., 1990). The study consisted of two experiments. In the first, a standard compensatory 

tracking paradigm was used. One participant completed six minutes of continuous tracking 

and an estimate of the value of the loop gain was estimated for each one-second segment. 

The analysis demonstrated that this parameter value increased as a function of time as the 

individual learned. In the second experiment a dual task paradigm was used in which 

participants had to complete a numerical tracking task simultaneously with compensatory 

manual tracking task. One participant with practice at the task could engage in both 

simultaneously with visible decrement to performance. The other participant, who had had 

less practice, split their attention between both tasks. The authors interpreted this finding to 

demonstrate that participant one had reorganised to build a superordinate control unit that 

enabled simultaneous control of both tasks whilst the other participant had not. 

Accuracy metrics 

 Reporting of tracking performance and model fit was inconsistent across the studies 

both in terms of the accuracy metrics used, and the detail in which these were reported 

(Table 4.1). Tracking accuracy was reported in the Root Mean Square Error (RMSE) 

between the participant cursor and the target across runs in four studies. These ranged from 

2% to 50% of the total target displacement and depended on the difficulty of the target or 

disturbance (fundamental frequency). Three studies reported the quality of control by the 

participant using the stability factor; stability ranged from -4 to -12, indicating varying 

ability to compensate disturbances and exhibit high control. Two studies gave the error in 

pixels (an unstandardised measure). Tracking performance was not reported in five studies.  

 Model simulation accuracy was assessed by the correlation or RMSE between the 

model-simulated cursor movements and the participant cursor. Correlations were reported 

in six studies and ranged from r = .961-.999 for PCT models. Four studies reported RMSE 

scaled to target/disturbance maximum displacement. Values ranged from 1.12% - 10%. 

Two studies did not report a single accuracy metric and instead relied on visual inspection 

of the target, cursor and model cursor time series. No studies reported magnitude ratio or 

phase statistics. 
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 No studies reported other accuracy metrics which may have been more informative, 

such as phase and amplitude. 

4.4.7  Methodological quality of the included studies 

 A summary table of the methodological quality of the studies is provided in Table 

4.2. This includes the key criteria that were assessed: Samples and power calculations, 

model characteristics, optimisation and validation procedures. Accuracy metrics are 

reported in Table 4.1. 

Participants 

 Many of the included studies aimed to demonstrate that a simple control process 

underlies some behaviour that may appear to be caused by a manipulation of the task or 

instructions. This conclusion was drawn from the visual similarity (and correlation) 

between the cursor movements the participants made and the model-simulated cursor 

movements. As these demonstrations had very small sample sizes and reported only 

descriptive statistics, this constitutes considerable risk of bias. This risk of bias is reduced 

with increasing sample size so those studies that had 6, 9, 10 and 20 comprise relatively 

lower risk. None of the studies conducted a priori power calculations.  

Whilst each study reported that participants were practiced at the task, the volume 

of practice is reported only in 3 studies (Table 4.2). In several studies the author was the 

only participant (Bourbon, 1996, 1999; Marken, 2013b; Powers, 1978, 1989). These 

participants may be expected to have had an extremely high volume of practice. It is 

possible that participants were not sufficiently well practiced for performance to have 

stabilised in studies in which only a few minutes of practice were given (Table 4.2). 

However, a lower volume of practice would be more likely to introduce a negative bias to 

measures of model simulation accuracy whereas increased practice is unlikely to affect 

simulation error due to performance asymptote.  

Models 

 In all studies, the models developed were theoretically grounded and had few 

parameters which were decided a priori based on the theorised architecture.  It is therefore 

unlikely models were over fit. PCT Model equations were reported in detail in the articles. 

However, of the three studies that compared open-loop models with control models, the 

open-loop models were underspecified in two studies (Bourbon & Powers, 1999; Marken 

& Powers, 1989). In studies that compared models, none used an information criterion to 
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account for the number of free parameters when measuring simulation accuracy. This may 

have affected the findings of studies, penalising models with fewer parameters (open loop 

models typically), and benefitting hierarchical models (as every added control loop adds 

several free parameters).  

Parameter optimisation and validation 

 Studies typically did not separate optimisation and validation trials. In such cases, 

model simulation accuracy was reported for the trial or trials on which the parameters were 

optimised. This is poor methodological practice and likely led to positively biased 

accuracy measures (Table 4.2). Four studies validated models with separate trial data 

(Bourbon, 1996a; Bourbon et al., 1990; Marken & Powers, 1989; Parker et al., 2017). In all 

but one study (Parker et al., 2017), manual parameter estimation routines were applied. 

This is only likely to be more problematic for models with larger numbers of parameters, 

such as the hierarchical models. This may have negatively biased accuracy for these 

simulations.  

Accuracy metrics 

 Accuracy metrics were applied and reported inconsistently, which made 

interpreting simulation accuracy difficult. Five studies did not report a measure tracking 

performance and one additional study reported RMSE in pixels rather than as distance or 

as a percentage of target displacement or screen size (Table 4.2). It is therefore difficult to 

establish whether the model simulation accuracy is high because the model fits well or 

because the participant performed very accurately. No studies disambiguated errors in 

amplitude production from those in timing, preferring more general simulation accuracy 

statistics such as correlation coefficients and RMSE.  

4.5 Discussion 

 This review aimed to summarise the state of the evidence for principles of 

perceptual control in modelling studies of manual tracking performance. Thirteen tracking-

modelling studies were identified that investigated various theoretical principles of the 

theory. The extent to which these principles were supported within studies varied widely. 

For example, one core principle, that individuals control their perceptions via negative 

feedback, has been supported by many studies using several methods. Other elements of 

the theory, namely reorganisation, have not been investigated or demonstrated 

comprehensively within PCT tracking studies. Another aim of the review was to critique 
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the methodologies of the included studies. In the following sections we first discuss the 

methodological quality of the included studies. Subsequently, we evaluate the strength of 

the evidence for each of the theorized elements of PCT and indicating shortcomings and 

future research priorities. 

4.5.1 Methodological quality of the included studies 

Participants 

According to the perceptual control methodology the functional modelling 

approach (Mansell & Huddy, 2018; Runkel, 2007) aims to make claims about individuals 

rather than groups of participants. It is therefore necessary to gather a large volume of data 

for each individual participant, so that a model can be fit to an individual’s performance. 

The ultimate test of the theory is the extent to which the model can account for the 

individual’s behaviour (Mansell & Huddy, 2018). Although studies did not conduct a 

priori power calculations and typically had very small sample sizes, the single case or 

small sample designs of the included studies may have been appropriate for determining 

each individual’s control strategy. This is evidenced by the very high (significant) model 

fit accuracy reported in the studies, which give support for the PCT model as mechanism 

of tracking performance within the studied individuals. Findings are consistently replicated 

across studies investigating a similar hypothesis, establishing that findings are 

generalisable across studied individuals. However, such individuals were often authors or 

participants familiar with the task and the theory.  

 It cannot be taken for granted that the model would fit as accurately for all 

individuals. Experiments with larger samples could elucidate whether this was the case. 

Crucially, experiments should use the functional modelling approach. The alternative, 

applying inferential statistics to observed data, can produce ambiguous and incorrect 

relationships when researchers do not take account of the dynamic and intentional basis of 

behaviour (Powers, 1990). Model fit data should be collected and then inferential statistics 

then used to establish whether the model architecture can fit many participants’ behaviour 

as accurately. The functional modelling approach does not preclude the use of a group 

statistical approach. 

Inferential statistics could also be used for model selection. One limitation of the 

included studies is that although they provide a model fit statistic, this is often ambiguous 

without a standard with which to compare it. Whilst a high model fit value demonstrates 
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that the model can account for a large proportion of the variance in the participant’s 

behaviour, this might simply reflect the participant’s good tracking performance. That is, a 

model that fits the target accurately would be a good fit to a well-practiced participant’s 

tracking movements. Comparing multiple models for their fit to the participant’s behaviour 

enables researchers to dispose of models with inferior fits and localise on a solution. This 

methodology was demonstrated in one study (Marken, 2014), which compared two PCT 

models to determine which perceptual variable was controlled in the task (angle or 

position).  

Optimisation and validation  

In the included studies there was inconsistent reporting of the number of practice, 

optimisation and validation trials. This makes it difficult to assess whether a sufficient 

volume of data were collected for each participant and the level of experience the 

participants had with the task. This ambiguity also makes replication difficult.  

With regard to optimisation procedures, PCT proposes its own optimisation method 

for altering elements of the perceptual hierarchy to enhance control: the reorganisation 

algorithm (Powers et al., 1960b). This has not been explicitly modelled within the included 

tracking studies. In fact, only one of the included studies used a computational 

optimisation algorithm. Despite this, models tended to accurately simulate tracking 

performances. This may be because the models usually comprised only two or three 

parameters (Table 4.2) and thus may have operated accurately under a broad range of 

parameter values. However, for models with a larger number of parameters, such as the 

hierarchical models, it is critical that a powerful parameter optimisation method is used. A 

larger number of non-independent parameters results in a complex parameter space and 

optimisation can easily get caught in local minima. Using a systematic optimisation 

approach is desirable for both validity and replicability (Lindfield & Penny, 2017). The E. 

Coli method used has been described and the code is freely available
3
. However, this 

process has few iterations and this may result in suboptimal fits. This is not likely to be a 

problem for models with few parameters such as the canonical PCT model.  

Only three models were validated with new data that the model was not trained on. 

This may have resulted in inflation of the model fit to participant performance. This should 

                                                           
3
 The Living Control Systems suite can be downloaded at: http://www.billpct.org, the accompanying book is 

called Living Control Systems III: The Fact of Control  

http://www.billpct.org/
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be taken into account when interpreting the model fit statistics. Future studies should 

separate model optimisation and validation trials. 

Accuracy metrics 

The correlation coefficients were very large in the included tracking studies, 

indicating that the models demonstrated the same general pattern of tracking as the 

participants. Although this shows a high degree of similarity between the movements of 

the model and participants’ cursors, the correlation coefficient is not best suited to 

detecting error that results from a constant offset in position or time (phase delay). It may 

be useful for studies to report a measure of residual error metrics that are sensitive to such 

constant displacements in addition to the correlation coefficient. Critically, characteristic 

errors such as overshoots and constant phase delays should be produced by the models 

when simulating performance. This could be confirmed by calculation of magnitude ratio 

and phase difference (Cofré Lizama et al., 2013; Inoue & Sakaguchi, 2014; Ishida & 

Sawada, 2004; Yu et al., 2014). These criteria would disambiguate errors in timing due to 

neural feedback delays, and those that result from applying an inappropriate force when 

tracking targets. 

Summary of methodological quality 

 Many of the principles of PCT have been tested in a series of single cases or small 

samples. Thus many of the foundational theoretical principles have been evidenced in a 

number of separate studies, which have been replicated. However, some specific 

hypotheses have not been tested in multiple experiments. Therefore, whilst findings of an 

individual study may be significant, they have not been shown to generalise across a pool 

of participants (e.g. reorganisation). This should be taken into account when interpreting 

the findings. In addition, most studies did not meet the criteria set out in Section 4.3.4. 

Specifically, reported accuracy metrics may be somewhat inflated as a result of reporting 

fit statistics to optimisation trials rather than validating models with separate datasets. 

Future experiments should aim use larger samples and follow more rigorous validation and 

verification procedures. Finally, it is recommended that correlations are reported alongside 

a measure of residual error. In the following section the findings of the studies are 

discussed in relation to the identified theoretical themes.  

4.5.2 State of the evidence for fundamental principles of perceptual control theory 

The individual as a negative feedback control system 
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 The studies extensively demonstrate the necessity of negative feedback in tracking. 

This is intuitively evidenced by the control movements observed during tracking of 

pseudorandom targets in pursuit tracking. Specifically, the correlations that show 

participants maintain alignment with the target in compensatory paradigms by acting 

against unseen disturbances (Marken, 1980; Marken & Horth, 2011; Powers, 1978). In the 

real world disturbances may act at multiple levels of the perceptual hierarchy 

simultaneously, and in different modalities. For example, whilst driving a vehicle, wind 

and other vehicles will act as separate tactile and visual disturbances that must be 

compensated simultaneously to stay on the road. Indeed any motor plan would be 

destabilized by disturbances that occur during action execution (Bourbon & Powers, 1999); 

particularly in cases where these are indistinguishable from the participant’s own 

movements, such as in compensatory tracking tasks (Powers, 1978, 1989). This is not the 

case for purely open loop models which are unable to compensate for disturbances during 

movement, as demonstrated by model comparisons (Bourbon & Powers, 1999; Marken & 

Powers, 1989). However, whilst negative feedback is necessary in such conditions, this 

does not preclude an open loop or feedforward process within action control. Indeed, most 

contemporary theories of motor control propose hybrid models that comprise both 

feedback and predictive components and thus cannot be reduced to the open loop model 

(Adams et al., 2013; Friston et al., 2011; Wolpert, Ghahramani, & Jordan, 1995; Wolpert 

& Kawato, 1998). Authors claim that prediction is necessary because feedback control 

necessarily acts in a delayed fashion and thus cannot account for movement control shorter 

than the feedback delay period (Desmurget & Grafton, 2000).  

In order to test whether a predictive component is necessary within action control, 

studies need to test perceptual control models under conditions in which prediction is 

possible, or even necessary. In such cases, participants tend to make use of target 

predictability to anticipate the target movement when tracking periodic targets. This is in 

contrast to participant tracking of unpredictable signals, where participants exhibit a delay 

of approximately 180 ms-450 ms (Abdel-Malek & Marmarelis, 1988; Noble, Fitts, & 

Warren, 1955; Parker et al., 2017; Stark, Iida, & Willis, 1961), depending on the type of 

target tracked. Perceptual control models of tracking have thus far only been tested in 

unpredictable conditions, except in the first experiment of the Bourbon study where 

participants tracked a triangular wave of constant velocity with no disturbance to the cursor 

position (Bourbon et al., 1990b). In this case, the perceptual control model performed 
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slightly less accurately than the open loop model (Bourbon & Powers, 1999). This 

difference in accuracy is likely due to the control model ‘reacting’ to the target movement 

and therefore producing a small response delay, whereas the open loop model tracked 

without such delay. In fact, the superiority of the open loop models in this case was likely 

artificially reduced by the fact that the PCT model did not include a delay parameter. If an 

appropriate loop delay was introduced into the model, the model should track with an 

appropriate response delay relative to the target trace (Abdel-Malek & Marmarelis, 1990; 

Neilson, Neilson, & O’Dwyer, 1993) and produce significantly higher error.  

In fact, only one of the studies included a delay as a parameter within the PCT 

model. In this study the loop delay was estimated to be around 180 ms when participants 

tracked pseudorandom signals (Parker et al., 2017). This represents an estimate for 

individuals’ sensorimotor delay in tracking, and corroborates other estimates (Abdel-Malek 

& Marmarelis, 1988, 1990; Hill, 2009; Hill & Raab, 2005; Noble et al., 1955). As delays 

are intrinsic to the CNS, appropriate delay values should be maintained in models that 

track predictable targets, even if participants’ actual track on or ahead of target (without a 

phase delay). This would pose a significant challenge for the PCM as this model (with an 

incorporated delay) cannot track any target without a phase delay in the response. Thus in 

the case where the target signal is periodic, such as a sine wave, constant velocity 

triangular wave, or circle or ellipse in the two dimensional case, where the participant 

tracks without a phase delay (Poulton, 1952b, 1952a; Viviani & Mounoud, 1990), a more 

complex model is required.  

One PCT solution is that anticipatory behaviour may be an emergent property of 

hierarchical control (Powers, 1973). That is, integration of sensory signals from lower level 

units enables control of higher order variables. Downstream reference signals would 

specify an updated estimate for the position controller that accounts for the sensory delay. 

A prototype for such a model was suggested in a conference paper by Martin Taylor 

(Taylor, 1995). In this model, target signal velocity is estimated and fed into a PCM via the 

reference value, such that the position controller effectively tracks to an estimate of the 

target position ahead of where the target actually is, based on an extrapolation of the target 

velocity, thereby compensating for sensory delays. Such hierarchical control systems must 

be tested for their fit to tracking behaviour under predictable conditions. This would 

determine whether feedback control architectures can simulate anticipatory movements of 

participants in the task whilst retaining a biologically feasible estimate of sensory delay. In 
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a more extreme case, tracking situations could be envisaged where there is no available 

visual information for feedback control, for example, during visual occlusion of a moving 

target (Rosenbaum, 1975). If the target is moving in an unpredictable fashion, the 

participant would be unable to track the target during occlusion (highlighting the necessity 

of perceptual feedback for successful control). However, if the target moved in a periodic 

fashion, but becomes occluded for some interval, then the participant is able to track to a 

memory of the target pattern in the absence of visual information, but produces significant 

phase error and amplitude reduction (Fine et al., 2014). This phase error indicates a loss of 

synchronisation of the cursor and target in time. The presence of this error indicates that 

memory-based prediction is insufficient for accurate tracking. However, the fact that 

participants are still able to track the general pattern of the input signal over the occlusion 

indicates that the participant is able to extrapolate or recall target movements prior to 

occlusion to produce a similar pattern (Miall, Weir, & Stein, 1993; Stenger, Thayananthan, 

Torr, & Cipolla, 2006; Zago, Iosa, Maffei, & Lacquaniti, 2010). This may be explained by 

the imagination mode in PCT (Powers, 1973; Powers et al., 1960b). This involves a control 

unit at one level receiving a simulated, rather than actual, input from memory by feeding a 

downstream reference value from that unit into its input function (breaking the hierarchical 

cascade of perceptual information). Whist the imagination mode has never been tested 

experimentally with computational models of tracking, it has recently been implemented in 

a computational model of self-efficacy (Vancouver & Purl, 2017). 

Testing for controlled variables 

The TCV has been established to be useful in determining which aspect of a display 

is the variable controlled by the participant (Marken, 1986; Marken, 2014; Powers, 1978). 

Moreover, the comparative study of angle control and PCM (Marken, 2014) demonstrates 

that it can be used for model testing by manipulating a variable (target-cursor separation) 

that should affect one controlled variable (angle) but not the other (position). Comparing 

the pattern of results for the participant and the models shows which model is more likely 

to be correct. It has been proposed that this could also be used to investigate the 

contribution of levels in a hierarchical model. The basic idea would be to apply 

disturbances to potential controlled variables at different levels of the hierarchy. A 

disturbance at a higher level should take longer to be responded to than that of a lower 

level (Powers et al., 1960b). Thus observing the effect of this disturbance on behaviour 

may reveal the hierarchical level of the controlled variable. Evidence that this is the case 
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comes from a study where participants could control three different aspects of the same 

display with a single response, a key press (Marken, Mansell, & Khatib, 2013). Higher 

order perceptual variables produced longer reaction times. In the case of predictable 

targets, where participants may be extracting phase and amplitude information (course 

anticipation) or extrapolating position with velocity, these would operate at hierarchically 

different levels. A disturbance to one of these variables (e.g. a step change to the phase or 

velocity) should lead to different a longer response delay in the participant’s tracking 

performance, which could enable differentiation of which strategy was used in the task. 

The importance of the internally-specified reference value 

Once the controlled variable has been established, such as by the TCV, the specific 

value to which the participant attempts to control the perceptual variable must too be 

established: the reference value. The reference value is a key concept within PCT. It is 

essential because it quantifies the intentional goal of the individual within the same 

quantitative unit in which the perceptual input to that loop is specified (Powers, 1978). 

This enables a direct error calculation to be made for each controlled variable. In the task, 

participants are usually instructed to align the cursor with the target, which represents the 

experimenter specifying the reference value that the participant should keep. Thus, in many 

experiments, the reference value within a model was fixed at the integer zero (zero 

difference between the target and cursor). Provided that the participants followed the 

instructions of the experimenter this gave a relatively accurate model fit to the tracking 

data (Bourbon, 1996; Bourbon et al., 199; Pavloski et al., 1990; Powers, 1978, 1989). 

However, studies that included a reference value parameter demonstrated that even when 

instructed to keep the cursor and target aligned, estimates of participants’ reference values 

took non-zero values (Bourbon, 1996; Bourbon et al., 1990; Parker et al., 2017; Powers, 

1978, 1989). Whilst models often only included a single position control unit, the theory 

posits that this unit is situated within a hierarchy of control units (Powers, 1973; Powers et 

al., 1960a, 1960b). Based on the theory, the reference value should be dynamically altered 

by units above. Therefore, it is a key limitation to assume a zero valued reference, 

particularly given that PCT attempts to make predictions of individual performance and the 

reference makes a unique contribution to model fit and differs between individuals (Parker 

et al., 2017). It may be more theoretically accurate to use a dynamic reference value in 

such tasks. One example of this is in Martin Taylor’s velocity position model, in which the 

position controller assumes that the reference signal to the position controller is coming 
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from a unit above that integrates target velocity (Taylor, 1995). Thus whilst this unit is not 

included in the diagram, a velocity input signal is combined with a constant position 

reference value and multiplied by a gain such that this produces a dynamic reference signal 

to the position controller below. 

Individual specificity  

The PCM has been shown to demonstrate individual specificity of predictions for 

pseudorandom targets with similar parameters (Parker et al., 2017). As is the case in the 

PCT literature, this has not been shown for any other types of target. Moreover, the extent 

to which an individual’s model parameters would generalise across different target 

waveforms is unknown. It’s likely that altering the properties of the waveform would have 

an effect upon the parameter estimates. However, it is not obvious whether individual 

differences scale such that someone who exhibits low gain relative to the norm would 

exhibit lower gain than their peers when tested on a faster signal. Model parameters would 

be altered during learning, with higher variance at the start of training toward the end; 

performance likely follows this pattern also. It could be the case that the authors 

inadvertently modelled differential learning rates and that individuals converge on an 

optimum parameter set. 

Simultaneous control of multiple degrees of freedom and embodied simulation 

 The included studies have made an attempt to demonstrate how PCT could be 

applied to more complex control problems such as simultaneous control of two degrees of 

freedom in action (Marken & Powers, 1989; Marken, 1991; Powers, 1978). These give 

some insight into how parallel perceptual controllers can produce independent outputs 

whilst coordinated by hierarchical control units. These are very limited cases. Software 

simulations simplify the control problem as they assume that the lower level systems 

organise themselves to produce the behaviour, and they ignore any dynamical constraints 

and interactions between degrees of freedom that occur in physically realised movements. 

For example, with a single level PCM the position vector is directly translated to cursor 

position in the task (Powers, 2008). In humans, this signal must be translated to torque at 

joints at lowest levels of the hierarchy, and account for interaction forces between limb 

segments, this likely requires many transformations (Feldman et al., 2007; Todorov & 

Jordan, 2002; Wolpert, 1997). Synergistic movements requiring multiple joints must be 

produced through parallel and hierarchical control. Indeed, Powers produced a model of a 
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virtual model of a three DoF human arm (Powers, 1999). This model has been 

implemented in a three DoF robotic arm that can compensate for visual and pressure 

disturbances to maintain endpoint position
4
. 

The environmental function in the software simulation considers that the output has 

a one-to-one relationship with the cursor position that it determines. The physical 

environment operates within a set of physical laws. These, in combination with a limb and 

body with inherent constraints, and the dynamical properties of the tracking apparatus, 

must determine how this control law manifests in the measured behavioural output and 

consequent perceptual input. Making inferences about the mechanism from the cursor 

movement is consequently a tricky business. How much of the overshoot after the reversal 

in direction of the target is a result of the CNS delays, and how much is due to inertial 

forces at the limb during movement execution? Consider that the handle or joystick has 

certain dynamical properties and may exhibit stickiness; this may produce noise in 

measured output such as high frequency behaviour which is not encoded in the motor 

command to the limb. Behaviour may be over-fit by models if these processes are 

aggregated into the output function at the PCM. 

An additional simplification occurs at the input function. The input function in PCT 

models assumes a one-to-one matching of input signal and perceptual signal. This ignores 

the myriad of bottom up processes inherent in extracting and processing retinal and 

proprioceptive inputs hierarchically in the sensory cortices to ascertain complex 

perceptions such as the relative difference in position between the cursor and target. One 

way to address these assumptions is to build robotic devices with sensors and effectors 

which actually transform visual inputs into movements and interact with the tracking 

apparatus in real time. This may enable researchers to ascertain which processes operate at 

which hierarchical levels and better understand these functions. 

Motor learning: reorganisation  

Motor learning has not been elucidated within PCT tracking experiments. Whilst 

‘reorganisation’ is PCT’s explanation for motor learning (Powers, 1973; Powers et al., 

1960a, 1960b), this has not been implemented in tracking models as an optimisation 

procedure. In contrast, other theoretical models can exhibit learning, for example via 

Bayesian inference (Adams et al., 2012). Whilst these show how existing control units can 

                                                           
4 https://www.youtube.com/watch?v=wQ6FGeSjN9c 
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be optimised adaptively, they do not describe the developmental process of producing 

hierarchies in the absence of an existing control mechanism for a specific motor skill. In 

PCT, the reorganisation system is said to have inputs that are genetically determined 

intrinsic references (Powers et al., 1960a). The reorganisation system projects to the 

control units within a hierarchy and samples the error at those units, and is able to alter 

their functions if intrinsic error rises beyond a threshold (Powers, 1973). This way, 

learning in any particular unit may not be taking place if there is no intrinsic error. When 

the intrinsic error reaches some threshold, the reorganisation system kicks in and begins to 

alter the properties of the hierarchy in a trial-and-error fashion. This may involve acquiring 

new control units or reconnecting, via downstream references, existing control units within 

the hierarchy to produce a new functional pathway (Powers et al., 1960b). Thus, different 

theories make alternate hypotheses about the role of prediction and motor learning. Model 

comparisons could provide valuable insights; the tracking environment is a good test bed 

for such comparisons.  

The reorganisation algorithm has not been investigated in much detail in these 

tracking experiments, and has never been explicitly modelled within the tracking task. 

Outside the tracking literature, models of reorganisation have been implemented, for 

example, for the optimisation of the three DoF virtual arm model mentioned previously 

(Powers, 2008). In this model, the hierarchical organisation was fixed. The reorganisation 

procedure altered the parameters and references for the control units. A reorganisation 

model has not been developed which actively produces perceptual hierarchies for any task.  

Generalisability 

The theory has been evaluated through models in a variety of different tracking 

tasks, which demonstrates the generalisability of the principles of perceptual control across 

task constraints. Some notable examples of differing task constraints are disturbance speed 

(Marken & Horth, 2011), dimension of tracking (horizontal or vertical), multiple tracking 

dimensions (Marken, 1986; Marken, 1991), and multiple different tracking apparatus 

including handles, joysticks, game paddles and computerised mice. One study utilised two 

apparatus simultaneously (Marken, 1986). Tracking is an ecologically valid activity 

requiring sensory integration, timing and multi-joint dynamics. The ability of humans to 

accurately track stimuli in these different conditions, despite disturbances, shows the 

robustness and adaptiveness of the human body and CNS. Similarly, the propensity for 
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PCT models to accurately simulate the behaviour of participants across these task 

constraints, even though the required movements change between targets, tasks and 

apparatus, is strong evidence that negative feedback perceptual control underpins human 

performance. However, no PCT models have been constructed of tracking predictable 

environments with delays, such as tracking of sinusoids, triangular waves or circles or 

ellipses in two dimensions, as mentioned previously in the article. 

The PCT model does generalise to other perceptuo-motor tasks. For example, 

tracking experiments in the auditory domain demonstrate the same principles of negative 

feedback in perceptual control
5
. In three dimensions, perceptual control systems have been 

applied to catching and the outfielder problem (Marken, 2001; Marken, 2005; Shaffer, 

Marken, Dolgov, & Maynor, 2015). The TCV was applied to determine the controlled 

visual field variables in catching through head mounted camera footage (Marken, 2005). 

These hypothesised controlled optical variables are lateral angle and vertical angular 

velocity. A PCT computer model was developed which would simulate catching a ball in a 

three dimensional space by controlling these variables at constant values by moving across 

the virtual field (Marken, 2001). This resulted in the model being in the right position to 

catch the ball and showed running trajectories that look visually similar to those produced 

by humans catching real balls. This model was demonstrated to fit behaviour when 

participants caught objects thrown to themselves (Shaffer et al., 2015), and moved in 

unpredictable trajectories (Shaffer, Marken, Dolgov, & Maynor, 2013). There are other 

domains to which tracking models could be usefully applied, such as in driving, and flying 

with steering wheels and joysticks respectively. 

Other than analysis and modelling of human data, perceptual control has been 

demonstrated in animals and can be used to control robotic devices. Heather Bell and 

colleagues conducted a behavioural analysis of food protection behaviour in rats (Bell & 

Pellis, 2011). These animals are observed to engage in complex dodging and bobbing 

behaviour when attempting to avoid other rats from stealing food pellets. The animals 

attempted to keep a constant inter-animal distance by altering their behavioural outputs. 

This is reflected by no correlation between the distance between the attacking rat and the 

food pellet (controlled variable) and the behaviour of the attacking rat (disturbance), yet a 

correlation between the disturbance and the behaviour of the rat (compensatory 

                                                           
5 http://www.mindreadings.com/ControlDemo/AudioControl.html 



 
 

165 

movements). This of course is the same pattern of correlations found in tracking. The 

disturbance in a compensatory task is negatively correlated with output whilst the 

perception is not correlated with the disturbance (Powers, 1978). PCT also demonstrates 

promise as a control algorithm for robotic devices (Young, 2017). This adds additional 

complexity than in the software models. Sensor data has to be filtered for noise and 

movements must compensate for physical disturbances that affect movement coordination. 

4.5.3 Conclusions 

 In the current article we conducted a narrative systematic review of the tracking 

literature in PCT to establish the state-of-the-evidence for the theory and identify future 

research directions. The review established that a large body of evidence exists, over 

multiple studies, that human tracking involves control of perceptual variables in intended 

states against possible disturbances. Preliminary evidence exists that PCT models can 

make individual-specific predictions. Despite assertions that negative feedback is sufficient 

to explain tracking behaviour, the model has not been adequately compared with a 

contemporary hybrid motor control theory including a feedforward element. Thus 

feedforward control cannot be excluded as a possibility, particularly as no PCT tracking 

studies have investigated tracking behaviour in predictable conditions. PCT is just 

beginning to test how the well-defined computer models can control multiple DoF devices 

in physical environments. Key to successful implementation in this regard will be powerful 

development and optimisation tools; reorganisation may provide an avenue for 

constructing complex working hierarchies. 
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Chapter 5: Perceptual Control Models of Pursuit Manual Tracking 

Demonstrate Individual Specificity and Parameter Consistency 
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5.1 Abstract 

Computational models that simulate individuals’ movements in pursuit tracking 

tasks have been used to elucidate human motor control. Whilst there is evidence that 

individuals’ demonstrate idiosyncratic control tracking strategies it remains to be 

established whether models can be sensitive to these idiosyncrasies. Perceptual control 

theory (PCT; Powers, 1973) provides a unique model architecture with an internally set 

reference value parameter, and can be optimised to fit an individual’s tracking behaviour. 

The current study investigated whether a PCT Position Control Model (PCM) could show 

temporal stability and individual-specificity over time. Twenty adults completed three 

blocks of 15 one minute pursuit tracking trials; two blocks (training and post-training) 

were completed in one session and the third was completed after one week (follow-up). 

The target moved in a one dimensional pseudorandom pattern. The PCM was optimised to 

the training data using a least-squares algorithm, and validated with data from post-training 

and follow-up. We found significant inter-individual variability (partial η
2
: .464-.697) and 

intra-individual consistency (Cronbach’s α: .880-.976) in parameter estimates. Polynomial 

regression revealed that all model parameters, including the reference value parameter, 

contribute to simulation accuracy. Participants’ tracking performances were significantly 

more accurately simulated by models developed from their own tracking data than by 

models developed from other participants’ data. We conclude that the PCM can be 

optimised to simulate the performance of an individual and that the test-retest reliability of 

individual models is a necessary criterion for evaluating computational models of human 

performance.
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5.2 Introduction 

The ability to control visual and proprioceptive variables underpins all human 

manual skills. Tracking tasks, in which an end-effector (joystick or handle) is used to keep 

a cursor aligned with a target that changes position over time (Poulton, 1952; Poulton, 

1974), have thus figured prominently in research studies of motor control and human-

computer interaction. System identification approaches, applied to tracking behaviour, 

have led to the development of general computational models of the human operator 

(Levison, Baron, & Kleinman, 1969; McRuer & Jex, 1967). However, it has been 

established that humans display idiosyncratic invariants in some movement parameters 

(Morasso, 1981). These characteristic individual ‘traits’ should be evident between 

individual’s manual tracking behaviour that show temporal stability within individuals. 

Below we review the evidence for such idiosyncrasies in individual tracking performance 

and outline a model, derived from perceptual control theory (Powers, 1973), which is 

capable of capturing these idiosyncrasies. The current study explores the potential for this 

computational model to individually characterise twenty individual’s control strategies and 

differentially simulate their performance. 

Time-series and frequency analysis of individual performance in pursuit tracking 

indicates that manual tracking performance is dependent on a number of factors. In the first 

instance, tracking strategies are partly determined by task constraints such as the frequency 

of the target signal (Neilson, Neilson, & O’Dwyer, 1993) and the motion pattern of the 

target; for instance whether targets move in sinusoidal or pseudorandom patterns 

(Notterman & Tufano, 1980; Viviani & Mounoud, 1990). Individuals also demonstrate 

large individual differences in tracking strategies and performance due to user-related 

factors including the volume of task practice (Notterman & Tufano, 1980), previous 

joystick experience (Joseph & Willingham, 2000), and age (Jagacinski, Liao, & Fayyad, 

1995; Liao, Jagacinski, & Greenberg, 1997). Differences are even more evident in the 

tracking behaviour of individuals with motor deficits, such as the characteristic 

impairments of people with Parkinson’s disease (PD). People with PD tend to undershoot 

the target peaks and demonstrate increased pursuit latencies relative to control participants 

(Abdel-Malek, Markham, Marmarelis, & Marmarelis, 1988; Flowers, 1978). Constructing 

dynamical models of pursuit tracking performance in healthy and atypical populations 

have helped to elucidate the nature of individual differences in tracking. 
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In healthy populations, dynamical models optimised to the data of individual 

participants demonstrate that idiosyncrasies in tracking performance can be reflected in 

estimated model gains and time constants (Abdel-Malek & Marmarelis, 1988; Viviani, 

Campadelli, & Mounoud, 1987; Viviani & Mounoud, 1990). Computational models of 

pursuit performance in people with Parkinson’s Disease have shown that patterns of 

parameter estimates reflect their specific impairments in motor planning and execution. 

The characteristic target undershoot is quantified in the model by overdamped output 

(Abdel-Malek et al., 1988; Au et al., 2010) relative to control participants, and timing 

issues are evident in delays and velocity control gains (Viviani, Burkhard, Chiuvé, 

Dell’Acqua, & Vindras, 2009). Analysis of these parameters (gains, delays and damping 

constants), optimised to individual performance enable discrimination between samples of 

people with Parkinson’s in receipt of medication, those who are non-medicated, and 

controls, despite the absence of a difference overall task accuracy between the groups (Au 

et al., 2010; Oishi et al., 2010). Whilst many studies found that models accurately 

simulated the tracking behaviour of individuals in model validation tests in both typical 

(Abdel-Malek & Marmarelis, 1988; Aiman Abdel-Malek & Marmarelis, 1990; Marken, 

1991; Powers, 1978; Viviani et al., 1987; Viviani & Mounoud, 1990), and Parkinson’s 

(Aiman Abdel-Malek et al., 1988; Au et al., 2010; Oishi et al., 2010; Oishi, Talebifard, & 

McKeown, 2011; Viviani et al., 2009) samples, there is a paucity of research studies that 

validate models with data collected at a later time point. This is problematic because the 

accuracy, and therefore usefulness, of a model must be dependent on the individual’s 

control strategy remaining stable over time in a well-practiced individual. Whilst this has 

not been specifically modelled in tracking studies, there is some indication from studies of 

motor performance that control strategies might show temporal stability.  

It has been established that there exist movement parameters that are invariant over 

repeated movement performances within participants, despite overall variability in 

produced movements and individual differences between participants; such as velocity 

profiles and hand tangential velocity in reaching movements (Morasso, 1981) and 

movement trajectories in pointing and joint angle-velocity ratios in pointing (Soechting & 

Lacquaniti, 1981). However there have been few studies testing whether this is the case in 

tracking experiments over repeated occasions. In one study, participants tracked a 

sinusoidal signal at a single frequency over ten days, the variability in their pursuit velocity 

profiles reduced as the variability in their error decreased, assessed by correlation 
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coefficient between trials each day (Franks, Wilberg, & Fishburne, 1982), indicating that 

participants learned a particular control strategy. Another study showed that participants 

produced individual, characteristic direction-velocity distribution ‘ensembles’ in tracking 

of two dimensional sinusoidal targets, that persisted over a range of target frequencies 

(Miyake, Loslever, & Hancock, 2001); participants could be differentiated by these 

ensembles. While these studies suggest that intra-individual consistencies in tracking 

strategies may exist, we found only two studies that explicitly that optimised models to 

participants’ behaviour at one time point, and validated the model with data collected at a 

second time point (Bourbon, 1996b; Bourbon et al., 1990b). These studies found strong 

correlations (r = .98) between the model-simulated cursor movements and the participants 

own cursor movements. These studies had small sample sizes; five participants over one 

year (Bourbon et al., 1990b), and a single case (the author) over five years (Bourbon, 

1996b). Whilst models accurately simulated the participant from which they were 

developed over this time period, the authors did not measure intra-individual consistency 

or individual differences in parameter estimates over the repeated testing sessions. These 

studies used a computational architecture, derived from perceptual control theory (Powers, 

1973), which purports to have the potential to differentially simulate individual 

performance in healthy participants (Bourbon, 1996b). 

Perceptual control theory (PCT; Powers, 1973) derived from conceptual principles 

and therefore the functions of model parameters on which individuals should differ are pre-

specified and relate to specific aspects of the individual’s control strategy, in contrast to 

other models identified via system identification. The tracking model comprises the gains, 

delays and damping parameters common to other theories, in addition to another, unique 

parameter; the reference value. This parameter represents the goal specification for the 

control system and in PCT is set within the controlling system rather than from outside it 

(Mansell & Marken, 2015), as PCT provides a model of a purposeful system (W. T. 

Powers, 1978). Whilst other theories would assume this goal specification would be zero 

within the constraints of the tracking task as participants are instructed to keep the cursor 

and target aligned, this is not the case when models including a reference value parameter 

are optimised to individual performance (Mansell & Marken, 2015). In fact, estimated 

reference parameters frequently hold a non-zero value (Powers, 1978, 1989). The addition 

of this control parameter may improve the simulation accuracy of models to individual’s 

validation data and allow discrimination between individuals as their specific goal 
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specification must be a core feature of their control strategy. Whilst PCMs have been 

frequently demonstrated to simulate individual performance to a high degree of accuracy in 

well-practised participants (Bourbon, 1996b; Bourbon et al., 1990; Powers, 1978, 1989), 

the nature of the relationship between PCM parameters and performance remains to be 

elucidated. Moreover, whilst the findings of Bourbon et al. (Bourbon, 1996b; Bourbon et 

al., 1990b) suggest that individuals might show differing and consistent patterns of control 

parameters over time, this has not been directly tested. It remains to be demonstrated 

whether PCT can be used to differentially simulate individual performance.  

The current study aimed to examine the estimated control parameters of a PCM 

optimised to individual’s performance over one week, and elucidate the relationship 

between individual parameters and model simulation accuracy. We trained a PCM on each 

participant’s pursuit movements during a tracking task and examined the reliability of 

estimated parameter values for each participant and individual differences between 

participant’s models over one week, and investigated the nature of the relationship between 

estimated control parameter values and model accuracy. To determine whether models 

were individual-specific, we additionally tested whether these models could make 

idiographic predictions of a participant’s own pursuit movements after one week 

(validation) and whether these ‘self’ simulations were superior in accuracy to the 

predictions of general, aggregate model, that had not been optimised to the participant’s 

data. We hypothesised: 1) Parameter estimates of an individual’s computational model will 

remain stable over time (one week). 2) There will be differences in parameter estimates 

between individuals. 3) Estimated parameters are suspected to hold quadratic relationship 

with model simulation error as the participants are presumed to converge on optimal 

parameters in the task. The reference value parameter will increase the variance explained 

by the regression model when added to the model consisting of the other parameters. 4) 

The models generated from an individual’s parameter estimates during training will 

accurately simulate that individual’s tracking movements even after one week has elapsed. 

5) A participant’s tracking data will be more accurately simulated by the participant’s own 

model than by other participants’ models. We expect that the difference will be small but 

consistent given that we would expect participants to converge on an optimal control 

strategy for this task. 
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5.3 Method 

5.3.1 Design 

The experiment required twenty participants to complete ‘runs’ of a pursuit 

tracking task (Figure 5.2, panel B). For each ‘run’, the participant continuously tracked a 

target moving in a pseudorandom pattern for one minute. Target and cursor positions were 

recorded every 16.7 ms. Participants completed three blocks of pursuit tracking runs over 

two sessions, separated by one week (Figure 1). The first session consisted of a difficulty 

titration procedure (explained in full in the procedure section below), followed by the first 

block of 15 ‘training runs’ (from which the model was derived) and the second block of 15 

‘post-training runs’ (which were the benchmark for model validation). In the second 

session, at least one week after the first, participants completed the third block of 15 

‘follow-up runs’ (second validation).  

Each participant’s training runs were used to generate an individual model, which 

simulated their cursor movements during the post-training and follow-up runs (Figure 5.1). 

The participants’ tracking accuracy was assessed by root mean square error (RMSE) 

between the target and cursor movements over the one minute run, expressed as a 

percentage of the total target excursion range (track RMSE). A second RMSE value 

quantified the accuracy of the fit of the model-simulated cursor movements to the 

participant’s actual cursor movements for each run; this was also expressed as a percentage 

of total target excursion range (model RMSE).
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Figure 5.1 Flow diagram of experiment design 

 

5.3.2 Participants 

Twenty healthy volunteers were recruited through the University of Manchester 

volunteer database. Participants were excluded if they had impaired, uncorrected vision or 

any diagnosis of neurological problems of motor control. Participants were financially 

reimbursed or, if students, awarded course credits for their participation. Ethical approval 

was granted by the university research ethics committee. We only identified one study with 

a comparable analysis to ours. They confirmed the individual differences in parameter 

estimates of a model in a sample of 10 participants (Viviani et al., 1987). This article did 

not provide sufficient methodological detail for a power analysis. More recent studies of 
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idiosyncrasies in pursuit tracking used 12 participants (Miyake et al., 2001), or groups of 

20 or fewer participants (Oishi et al., 2010; Viviani et al., 2009) but did not conduct a 

similar analysis. As our primary aim in this article was to determine whether parameter 

estimates and simulation accuracy were temporally stable within individuals, it was crucial 

that we collect enough data from each participant. Therefore we selected a sample size of 

20 participants based on previous studies of this kind, and collected tracking data from 45 

runs for each participant (though participants completed 62 runs in total) over two sessions. 

5.3.3 Apparatus 

TrackAnalyze 

The pursuit tracking task used was the TrackAnalyze program, part of the Living 

Control Systems III: The Fact of Control suite (Powers, 2008). In the task, the participant 

uses a Microsoft Sidewinder Force Feedback 2 joystick (J) to keep a cursor (C) aligned 

with a moving target (T) in one dimension (Figure 5.2, B). The cursor is a green horizontal 

bar (black in Figure 5.2) and the target marks are two red horizontal bars (grey in Figure 

5.2). The participant was asked to keep the green cursor positioned between the red bars. 

Both the target and cursor could move only in the vertical dimension. The joystick 

positions were sampled and scaled such that joystick position and cursor position had a 

directly proportional relationship (C proportional to J). A computer algorithm used a 

pseudo-random number generator and smoothing routine to produce the pseudorandom 

target time series. The algorithm generates values in the time series by multiplying a 

random number (rectangular distribution with mean 0 and range ±0.5), by 20,000 yielding 

a number between ±10,000. Each number is divided one of five smoothing factors (64, 32, 

16, 8 and 4, respectively) and added to the previous value. Thus each successive value is a 

weighted sum of all previous values. The resultant time series is smoothed a further two 

times using the same smoothing factor. Finally, target time series were rescaled to the 

excursion permitted for the target in screen pixels. The five smoothing factors determined 

the rate of change of the target time-series; targets with a higher rate of change were more 

difficult to track, and therefore as smoothing factor value decreased (64, 32, 16, 8, and 4), 

the assigned difficulty level of a run increased (1, 2, 3, 4, and 5). The values of the 

smoothing factor were derived through results from an experimental pilot in which these 

values gave a large range of error rates centred on 3% error. This error threshold was 

chosen to be low because high tracking performance is desirable for model fitting, but the 

task should not be so easy that participants reach a performance ceiling. Each run 
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completed by each participant used a new pseudorandom time-series generated at the 

difficulty level specified by the experimenter. 

The PCM used in this program is adapted from Perceptual Control Theory (PCT; 

Powers, 1973; Powers et al., 1960; Powers et al., 1960). PCT is a biologically plausible 

theory of behaviour, with roots in control systems theory. It states that organisms control 

their perceptions at referent goal states by varying their motor behaviour. This is 

implemented by a negative-feedback architecture comprising the organism, the 

environmental variable that it desires to control (the controlled variable), and the feedback 

path (Marken, 2014). These are encapsulated in the four functions of the control 

architecture: the input function, the comparator function and the output function and the 

environment (feedback) function. These functions have associated parameters, such as 

delays and gains, which are pre-specified in PCT.  

These parameters are the key to individual differences as parameter values are 

optimised as an individual learns. One parameter, the reference value, represents the 

desired state of the controlled variable, which is compared to the current perception of the 

controlled variable. These parameters, embedded in functions, determine the dynamic 

relationship between input and output, and due to feedback, the effect of this output on 

system input. Thus motor output is a purposeful effort to reduce any difference between 

the perceived current state of the controlled environmental variable (such as the distance 

between a held cup of tea and one’s mouth when drinking), and the desired perceptual state 

of that variable (the cup to one’s lips) (Powers, 1973). In pursuit tracking, a participant 

senses the discrepancy between the cursor and the target, and compares this difference to a 

desired perceptual relationship (target-cursor alignment), acting to eliminate this error 

through varying joystick movements. 

In the PCM of the participant in the tracking task (Figure 5.2, A) the input function 

(i) senses the controlled variable (target-cursor distance) and translates this to a perceptual 

signal (p; the perceived difference between the target (T) and cursor (C); see equation 1 

below:  

(5.1)  TCp   
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The comparator function (co) compares this perceptual signal (p) to the reference 

signal (r), the desired state of the controlled variable, and results in an error signal (e); see 

equation 2: 

(5.2)  pre   

The error signal (e) drives the output at the output function (o). This output, in the 

model, is the simulated joystick position, which determines the cursor position. Calculation 

of the new output o(t) of the control unit is determined in the program by the following 

formula, which contains a leaky integrator to counteract the accumulation of output over 

successive iterations (equation 3): 

(5.3) 
ttoKteKtoto do  ))1()(()1()( 
 

Where Δt is the time increment on each iteration (0.017 ms), o(t-1) is the value of 

the output at the previous iteration and e(t – τ) is the error with loop delay (τ) samples. The 

model has four alterable parameters: the reference value (r), loop delay (τ), output gain 

(Ko), and damping constant (Kd). The reference value specifies the desired distance 

between cursor and the target that the model is aiming to achieve. It is a positive or 

negative integer, expressed in pixels. The loop delay parameter is an estimate of the lag, in 

samples, of the cursor behind the target over the run. The output gain is a constant that 

proportionally amplifies the output, estimated from the velocity at which e is cancelled. 

The damping constant sets the leakage rate of the leaky integrator. It is therefore a constant 

that multiplies the previous output reduce its effect in the calculation of the current output, 

damping the response of the model. Whilst in the organic controller the input function (i), 

output function (o) and environment function (f) would have also have associated gains; 

the model simplifies these by setting both input and environment function gains to the 

integer 1. Therefore the output gain represents the total loop gain for the system, and the 

equation for the environment function is: 

(5.4) 1/)()( totC   

A simulation of a PCM with adaptable gains for all three functions can be found in 

Living Control Systems III: The fact of control (Powers, 2008). 

Parameters are estimated via an optimisation routine in which each parameter in 

turn is varied recursively to increase the goodness of fit between model-simulated cursor 
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and actual cursor positions, assessed by a least-squares procedure repeated 20 times or 

until a minimum root-mean-square error (RMSE) change is achieved. Parameters are each 

fitted in this way in the order: output gain (Ko), reference value (r), loop delay (τ), then 

damping constant (Kd). This order is replicated five times with the latest estimations for 

each parameter used as initial values for the next recursive loop. The order in which the 

parameters are fitted was arrived at empirically (Powers, 2008). Further details of the PCM 

and TrackAnalyze program can be found in the appendices of Living Control Systems III: 

The Fact of Control (Powers, 2008). 
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Figure 5.2 Experimental set up and typical tracking trial 

 

A shows how the computational model takes feedback of cursor-target positional error as 

an input and compares this distance to the desired reference distance (r) between target 

(T) and cursor (C), producing a positional error term (e) that drives an output response 

determined by the computational model parameters and previous outputs which determines 

cursor position via the environment function. As the gain value for the environment 

function is set to 1, the output wholly determines cursor position (C). B shows the 

experimental set up from the perspective of the participant. Joystick position is altered to 

move the cursor (C) in the vertical dimension and target marks (T) move according to a 

pseudorandom pattern. C shows typical results of a one minute run completed by a 

participant. Target (T): grey line, cursor (C): black line. 

Edinburgh handedness inventory 

For completeness in characterising the demographics of our sample, we collected 

data on the handedness of participants. For this the Edinburgh Handedness Inventory short 

form (Veale, 2014; Appendix B) was used. It is a four-item questionnaire in which 

participants indicate which hand they would usually use to complete everyday activities on 
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a five point Likert type scale ranging from always left to always right. A global score 

indicates whether the individual is left handed, mixed handed or right handed. 

5.3.4 Procedure 

In the first session, participants read the instruction sheet explaining the pursuit 

tracking task, and gave informed consent to take part. Then they completed the Edinburgh 

Handedness Inventory and performed two practice runs to familiarise themselves with the 

pursuit tracking task. Participants completed a difficulty titration procedure, the purpose of 

which was to ensure that each participant was well practiced at the task, and to standardise 

the tracking error rate across the sample of participants. The latter was necessary because 

the accuracy in the fit of the simulated cursor movements to the actual cursor movements 

(model RMSE) was affected by the accuracy of the fit in actual cursor movements to the 

target pattern (tracking RMSE) for the run being modelled. Thus the variability in task 

performance was reduced by standardising the error rate which enabled greater 

comparability of model simulation accuracy between individuals. Participants completed 

sets of three runs over the five different target difficulty levels (determined by the 

smoothing factors). The highest difficulty level at which the participant produced a 

tracking RMSE error below 3% on all three runs was selected for the duration of that 

participant’s experiment. This procedure ensured that the task was equally difficult for 

each participant despite individual differences in participants’ performances. The threshold 

3% scaled tracking RMSE was decided as this was a typical error rate in pursuit tracking 

(Powers, 1978, 2008). 

Following difficulty titration, participants started the 15 training runs, and after 

these, the 15 post-training runs. One week later, at the start of Session 2, participants 

received task instructions again and completed 15 follow-up runs. The design is 

summarised in Figure 5.1. For each run in each of the three blocks, a new pseudorandom 

target time-series was generated. Participants were thus administered different target time 

series from one another, and no participant completed the same target time series more 

than once. 

5.3.5 Analyses 

Prior to analysis, outliers were excluded from the dataset. This was necessary to 

control for tracking error as model fitting accuracy is extremely sensitive to participants’ 

initial tracking errors. A priori, we planned to exclude participants if the mean tracking 
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error for each participant was higher than three standard deviations above the mean 

tracking error of the participant sample. All analyses were conducted using data analysis 

package IBM SPSS 22.  

Analyses of intra-individual consistency and inter-individual differences 

We conducted Cronbach’s alpha tests (Cronbach, 1951) for each parameter to 

determine whether participants’ parameter estimates were stable trial-to-trial, and over one 

week. Parameter estimates were generated for each run in all three blocks, totalling 45 

estimates of each parameter for each participant. In addition, a mean measurement, 

absolute-agreement, two-way mixed effects model was used to calculate the intra-class 

correlation coefficient for each parameter. The analysis was replicated in the subgroup of 

13 participants that completed the task at difficulty level 2. 

We conducted a factorial ANOVA for each of the four parameters (τ, Ko, Kd, r) to 

determine whether the parameter estimates differed between participants, replicating a 

previous analysis which tested the individual differences in parameter estimates of a model 

in a sample of 10 participants (Viviani et al., 1987). In our factorial design, participant was 

an independent group factor with 20 levels (as there were 20 participants). Block was a 

repeated measures factor with three levels; training, post-training and follow-up. To 

determine whether any inter-individual differences in parameters were due to participants 

tracking targets at different difficulty levels (due to the difficulty titration procedure) we 

conducted a subgroup analysis on the data from the participants that completed the task at 

the most common difficulty level (difficulty 2, n = 13). 

Contribution of parameters to model accuracy 

To investigate the nature of the relationship between the estimated parameter 

values and the accuracy of that model in simulating the participant’s movements (across 

runs, blocks and individuals), we conducted a polynomial regression analysis with each of 

the model parameters as the predictor variables and model RMSE as the outcome variable. 

This stepwise analysis aimed to reveal whether the relationship followed a linear, quadratic 

or cubic pattern. The most appropriate model would be indicated by whether the R
2
 change 

significantly improved as the polynomial order increased. 

Following selection of an appropriate regression model order (quadratic), a second 

stepwise regression was conducted to determine the contribution of each parameter to the 

quadratic model. Parameters were added in a stepwise fashion; parameters were added in 
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descending order of occurrence in tracking control models: output gain, loop delay, 

damping constant, and finally reference value. We opted to add the reference value last 

because we wished to test whether this parameter is essential to accurate model 

performance. In PCT, in contrast to other theories, this parameter is set from within the 

system and can take non-zero values (Mansell & Marken, 2015). Adding this parameter to 

the regression model last would determine whether it contributed significantly to model 

accuracy after all other parameters had been added, and therefore whether this parameter 

improved the control model. 

It was thought that as participants completed the task at different difficulty levels 

this might confound the regressions as the different task constraints may influence 

parameter optima and show different distributions. Consequently we repeated the above 

analyses within the subgroup. 

Accuracy of individual computational models 

An individual model was developed for each participant by taking the mean of the 

estimates for each parameter across the 15 runs of the training block. To test whether these 

individual models accurately simulated the participant’s tracking movements at post-

training and follow-up (validation), we compared each participant’s cursor positions as 

simulated by the model during the post-training and follow-up runs to the same 

participant’s actual cursor positions during these blocks; the model RMSE. 

Individual specificity of the computational models 

To test the hypothesis that a participant’s tracking data would be more accurately 

simulated by the participant’s individual model than by other participants’ models we 

analysed and compared the simulation accuracy of each individual computational model to 

the tracking data of all individuals. For each participant, a model (generated during the 

training runs) simulated that participant’s tracking movements during the post-training and 

follow-up runs, resulting in an average model RMSE value for each time point (‘self’). To 

generate the ‘aggregate’ data, all 19 other models simulated the participant’s tracking runs 

in the post-training and follow-up blocks. Within each block, this yielded a mean error rate 

(model RMSE) fit for each of the 19 models to the tracking data in each block, and a 

standard deviation of the error around this mean. For each tracking dataset in both the post-

training and follow-up blocks, the weighted mean of all other models to that participant’s 



182 
 

tracking data was calculated, resulting in an aggregate model RMSE for each block 

(‘aggregate’).  

 For each block, the mean RMSE fit for each ‘aggregate’ model was weighted 

according to the reciprocal of the standard deviation of each ‘aggregate’ model fit to the 15 

tracking runs. Larger standard deviations in model fits were therefore assigned smaller 

weights. This measure was taken to control for large standard deviations in simulation 

error relative to mean error rates across the 15 simulated runs which would likely be the 

case where participants’ tracking performance across the 15 runs were highly variable, 

resulting in highly variable accuracy in model fits. The weighted averages were calculated 

with the following equation 4:  
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Where xweighted is the aggregate RMSE to each individual’s tracking runs in each 

block, x is the mean RMSE when each model simulated the 15 tracking runs in that block, 

and w is the weight allocated to each mean as a function of the standard deviation around 

the mean RMSE within each block. 

To compare the simulation accuracy of self and aggregate models, we conducted a 

2x2 repeated measures ANOVA. The first repeated factor was model type: self (average 

model RMSE for participants own models against their own behavioural data) vs. 

aggregate (aggregate weighted average model RMSE for all other participants to the 

behavioural data of the individual being tested). The second repeated measures factor was 

block and had two levels: post-training and follow-up. 

The same analysis was conducted with the sample subgroup that included only 

participants tested on the most common difficulty level (difficulty 2, 13 participants), to 

determine whether any differences between ‘self’ and ‘aggregate’ model fits were an 

artefact of the participants tracking at different difficulty levels. 

5.4 Results 

Complete data were collected from 20 participants, five of who were male and 

fifteen female. Sixteen participants were right handed, four were mixed handed. Mean age 

was 23.8 years (SD = 6.59 years).  
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There were no outliers among participant data; all participants’ data were included 

in the analysis. Tracking and model RMSE were positively skewed. Following a log 

transformation a normal distribution was observed in participant tracking and model 

RMSE. The number of participants that completed the experiment at each difficulty level 

was as follows: difficulty 1, four participants; difficulty 2, 13 participants; difficulty 3, 

three participants. 

5.4.1 Analyses of intra-individual consistency and inter-individual differences 

Cronbach’s Alpha coefficients for consistency in estimated parameter values were 

0.921 (subgroup: 0.858) for loop delay, 0.976 (subgroup 0.886) for output gain, 0.880 

(subgroup 0.852) for damping constant and 0.920 (subgroup 0.810) for reference value, 

indicating that all parameter estimates were highly consistent within individuals over the 

course of the experiment. Results of the intra-class correlations can be found in Table 5.1. 

Examination of lower bounds of the confidence interval for each parameter, following the 

interpretation guidelines of McGraw and Wong (McGraw & Wong, 1996) indicated output 

gain showed good reliability, whilst loop delay, damping constant and reference value 

showed moderate reliability, the same pattern of results were observed in the subgroup 

intra-class correlation analysis.
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Table 5.1 Intra-Class correlation coefficients for each of the parameters 

Average 

measures 

Intraclass 

Correlation 

95% Confidence Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 
F df1 df2 p 

Loop delay .881 .751 .949 8.34 19 38 <.001 

Output Gain .914 .820 .963 11.75 19 38 <.001 

Damping 

Constant .866 .717 .943 8.34 19 38 <.001 

Reference 

Value .824 .628 .925 5.50 19 38 <.001 

Note Intra-class correlation used average-rating, absolute-agreement, two-way mixed-

effects model

 The ANOVAs indicated significant differences in all parameters between 

participants across blocks. In the sub-analysis this was also found to be the case. 

Interactions between the factors of participant and block were also significant (Table 5.2). 

Post-hoc one-way ANOVAs within each block revealed individual differences in 

parameter estimates between participants within each block for all parameters. Inspection 

of effect sizes in Table 5.2 revealed that the largest individual differences between 

participants were in estimates of output gain (Ko). Figure 5.3 shows four graphs; each 

showing the mean and 95% confidence interval of parameter estimates of the loop delay (τ) 

and output gain (Ko), damping constant (Kd) and reference value (r) for each participant. 

Both inter-individual variability and intra-individual consistency can be observed, this 

pattern is pronounced in the output gain condition where both intra-individual consistency, 

and inter-individual variability are highest. 
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Figure 5.3 Error bar plots showing the mean value and standard deviations of parameter 

estimates across all trials for each participant.  

A Loop delay (τ), B Output gain (Ko), C Damping constant (Kd) and D Reference value (r).  
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Table 5.2 Results of the 2 x 3 factorial analyses and associated post-hoc ANOVAs for 

each parameter 

Factor df1 df2 F p 
Partial 

η
2
 

Loop delay (τ) 
     

Participant 19 277 12.62 < .001* .464 

Block 2 554 1.29 0.277 .005 

Interaction 38 554 1.98 < .001* .120 

Post-hoc: training 

Participant 19 299 8.77 <.001* 
 

Post-hoc: post-training 

Participant 19 298 3.46 <.001* 
 

Post-hoc: follow-up 

Participant 19 297 7.75 <.001* 
 

Output Gain (Ko)           

Participant 19 277 33.6 < .001* .697 

Block 2 554 5.63 .004* .020 

Interaction 38 554 4.18 <.001* .223 

Post-hoc: training 

Participant 19 299 18.47 <.001* 
 

Post-hoc: post-training 

Participant 19 298 11.75 <.001* 
 

Post-hoc: follow-up 

Participant 19 297 20.15 <.001* 
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Factor df1 df2 F P 
Partial 

η
2
 

Damping Constant 

(Kd) 
          

Participant 19 277 21.39 < .001* .595 

Block 2 554 6.26 .002* .022 

Interaction 38 554 1.48 .036* .092 

Post-hoc: training 

Participant 19 299 5.3 <.001* 
 

Post-hoc: post-training 

Participant 19 298 5.86 <.001* 
 

Post-hoc: follow-up 

Participant 19 297 7.9 <.001* 
 

Reference Value (r)           

Participant 19 277 15.71 < .001* .519 

Block 2 554 0.44 0.645 .002 

Interaction 38 554 2.85 <.001* .163 

Post-hoc: training 

Participant 19 299 8.99 <.001* 
 

Post-hoc: post-training 

Participant 19 298 6.06 <.001* 
 

Post-hoc: follow-up 

Participant 19 297 6.61 <.001*   
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5.4.2 Contributions of parameters to model accuracy 

Stepwise regressions were conducted to determine whether a linear, quadratic or 

cubic model best fit the available data. The results of the model fit can be found in Table 

5.3. Examination of the R
2 

change values associated with the models revealed that the 

quadratic equation accounted for a significantly more of the variance in accuracy than did 

the linear model. The cubic equation also made a significant contribution to the regression 

fit. However the R
2
 change was very small and the F value was reduced relative to the 

quadratic model and inspection of the data plots (not reproduced in this article) showed 

that the third order curves did not deviate from the general path of the second order curves. 

We therefore opted to use a quadratic model for the stepwise regression to determine 

parameter contributions. 

Table 5.3 Comparison of polynomial regression models where parameters predict model 

accuracy  

Model F P R R
2
 

Change statistics 

R
2
 Change p 

1 Linear 44.18 >.001 .407 0.165 - - 

2 Quadratic 75.11 >.001 .635 0.404 .238 >.001 

3 Cubic 51.75 >.001 .642 0.413 .009 .009 

Note. All model parameters were used as predictors. 

Investigation of the contribution of each parameter to the quadratic model revealed 

that the addition of each parameter as a predictor of model performance increased the R
2
 fit 

significantly (Table 5.4); this was also the case if we conducted the analysis as a cubic 

regression. Tests of multicollinearity revealed that parameters fell within the acceptable 

range; with guidelines stating a variance inflation factor (VIF) threshold of 5-10 as a cut-

off (Craney & Surles, 2002). VIF: Output gain, 1.081; Loop delay, 1.086; Damping 

constant, 1.087, Reference value 1.099. 

Both analyses were repeated in the subgroup of 13 individuals that completed the 

experiment at difficulty level 2. This yielded the same pattern of findings: significant R
2
 

change for cubic over quadratic over linear models, and parameters contributed 

significantly to regression model accuracy for both quadratic and cubic models. 
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Table 5.4 Stepwise regression to determine parameter contribution to model accuracy 

5.4.3 Accuracy of individual computational models  

The average simulation error (model RMSE) when the 20 models generated from 

data at training simulated the cursor movements of the participant from which they were 

derived (‘self’) at post-training was 2.05% (SD = 0.37), 95%CI [1.88 – 2.22]; and 1.82% 

(SD = 0.38), 95%CI [1.64 – 1.99] at follow up. These values were in the same range as the 

error rate as that when models simulated the tracking runs on which the models were 

trained; the mean model RMSE when training models simulated training data was 1.85% 

(SD = 0.48%). 

5.4.4 Individual specificity of the computational models 

We hypothesised that models would be individual specific, that is, a model of a 

participant’s performance would simulate that participant’s tracking movements more 

accurately than models generated from other participant’s tracking. The mean model 

RMSE of aggregate models to participants actual tracking data at post-training was 2.11% 

(SD = 0.35), 95%CI [1.94 – 2.27]; and 1.91% (SD = 0.42), 95%CI [1.71 – 2.11] at follow-

up. 

The 2 x 2 repeated measures ANOVA revealed that the main effect of model was 

significant F(1, 19) = 5.76, p = .027, partial η2 = .232; self-model fits were more accurate 

than the aggregate model fits. The main effect of block was also significant F(1, 19) = 8.45, p 

Model Predictors F P R R
2
 

Change Statistics 

R
2 

Change P 

Output Gain 23.91 <.001 .273 .074 .074 <.001 

Output Gain, Loop delay 34.87 <.001 .436 .190 .116 <.001 

Output Gain, Loop delay, 

Damping Constant 
56.53 <.001 .604 .365 .174 <.001 

Output Gain, Loop delay, 

Damping Constant, Reference 

Value 

51.75 <.001 .642 .413 .048 <.001 
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= .009, partial η
2 

= .308; models generated during training more accurately fit the follow-

up data than the post-training data. There was no interaction between model and block. 

Within the subgroup, the mean simulation accuracy when 13 models fit to self-

tracking data was 1.92% (SD = 0.29), 95%CI [1.76 – 2.10] at post-training; and 1.71% (SD 

= 0.25), 95%CI [1.55 – 1.87] at follow-up. The mean accuracy when the aggregate models 

fit tracking data was 2.01% (SD = 0.30), 95%CI [1.82 – 2.19] at post-training; and 1.77% 

(SD = 0.23), 95%CI [1.62 – 1.91] at follow-up. The subgroup 2 x 2 repeated measures 

ANOVA (13 participants) resulted in the same pattern of findings; firstly, a significant 

main effect of model F(1,12) = 25.59, p < .001, partial η2 = .681, self-models showed 

reduced error relative to aggregate models. The effect of block was also significant F(1,12) = 

11.19, p = .006, partial η2 = .483. Models more accurately fit follow-up than post-training 

data. There was no interaction between model and block. 

5.5 Discussion 

We found that when model parameters were estimated directly from participant 

pursuit tracking of pseudorandom targets, these estimated parameter values were consistent 

over time within individuals but varied between individuals. These parameters accounted 

for a large proportion of the variance in model simulation accuracy and shared a 

curvilinear relationship. Moreover, when models generated from a participant’s pursuit 

tracking data at one time point simulated their performance at a later time point (model 

validation), these simulations were highly accurate, even after one week. Finally we 

demonstrated that a model produced from an individual’s performance more accurately 

simulated the cursor movements of that participant than did aggregate models.  

5.5.1 Analyses of intra-individual consistency and inter-individual differences 

The results support our hypothesis that parameter estimates would be consistent 

over time within participants. This was demonstrated by the high internal consistency in 

parameter estimates over the training, post-training and follow-up blocks within 

participants according to Cronbach’s Alpha coefficients, and moderate to high intra-class 

correlation coefficients. This indicated that control parameters remained stable over one 

week for each participant. Factorial analyses conducted in this study found individual 

differences in parameter estimates. These findings support similar findings of individual 

differences in estimated model parameters between individuals (Viviani et al., 1987) that 

constitute robust idiosyncratic pursuit tracking strategies (Franks et al., 1982; Miyake et 
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al., 2001). The current study demonstrated that such differences persisted even when data 

were collected over one week, evidence that control parameters remain stable over time 

within an individual. A model architecture could be parameterised to characterise 

individual’s strategies in the pursuit tracking task, even though the movements required for 

tracking the pseudorandom target varied between trials. Interestingly, output gain was the 

most variable parameter between individuals, and had the highest consistency within 

individuals. Consequently, it had the most discriminatory power and was the strongest 

indicator of an individual’s control strategy. It is unclear from this experiment alone 

whether this is a task-specific parameter or alternatively whether a higher estimated output 

gain in tracking tasks would be associated with a higher output gain in other task 

paradigms.  

5.5.2 Contribution of parameters to model accuracy 

We hypothesised that estimated parameters for each run would share a quadratic 

relationship with the model simulation error when those parameters were used to fit the 

tracking data. Investigation of the nature of the relationship revealed that the parameters 

did share a curvilinear relationship with model simulation error. Both the addition of 

quadratic (second order), and cubic (third order) regression parameters improved the fit to 

the data significantly; the second order regression model resulted in a large improvement 

over the fit of the linear regression model and whilst third order regression model only 

negligibly (though significantly) increased in fit to the data over the second order 

regression model. The presence of such curvilinear peaks in simulation accuracy for each 

parameter indicates that there may be an optimal control strategy in the task on which 

skilled trackers are converging, thus these optima in parameter space are identified by the 

reorganisation algorithm when control models are optimised to the tracking data. 

When each of the parameters were added in a stepwise fashion to determine their 

individual contribution to performance, each addition improved the fit to the model fit to 

tracking performance. The addition of damping constant provided the largest improvement 

to model fit. The addition of the reference value parameter to the regression model after all 

other parameters had been entered yielded a significant increase in the proportion of 

variance in simulation accuracy explained by the regression model. This indicates that the 

unique PCT reference parameter made an individual contribution to explaining the 

variance in performance. Whilst the reference value might be assumed to be zero as the 

task requires participants to minimise position error between the target and cursor, it 
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remains a key parameter in the control model and demonstrates that referent perceptual 

goals are fundamental in motor performance and should be included within control models. 

5.5.3 Accuracy of individual computational models  

Model simulation error was very low at both post-training and follow-up. In fact, 

simulation error was lower when models simulated follow-up data than post-training data, 

despite the temporal proximity of training and post-training data collection. As participant 

tracking error was also increased at post-training relative to follow-up we suggest that this 

increase in error might be due to participant fatigue as they had to complete more than 30 

one minute runs in succession, and that this increased tracking error reduced the model 

simulation accuracy as a consequence. Notwithstanding this difference in model simulation 

accuracy between post-training and follow-up, we might reasonably expect that the model 

would have been most accurate in simulating the tracking data on which it was trained as 

when simulating the cursor movements of participants in the post-training and follow-up 

blocks models encountered new target patterns. However, in this study the simulation error 

rate across training, post-training and follow-up were virtually the same. This would 

appear to provide strong evidence that the parameters are trait-like features of the 

individual independent of target movements. This supports the hypothesis that models 

generated from an individual’s performance during training highly accurately simulated 

their later tracking movements. These findings are consistent with previous reports that 

dynamical models accurately simulate human control movements in pursuit tracking tasks 

(Abdel-Malek & Marmarelis, 1988; Powers, 1978, 1989; Viviani et al., 1987), even when 

models are validated with data from a later testing session (Bourbon, 1996b; Bourbon et 

al., 1990b).  

5.5.4 Tests of individual specificity of the models 

To establish whether models were individual-specific, we tested each model’s 

simulation accuracy to participants own data and the data of other individuals. We found 

that, although the difference was small in magnitude, participants’ own models 

consistently simulated their own data more accurately than did aggregate models. This 

difference was maintained and in fact increased when the analysis was repeated in the 

subgroup of participants who completed the task at the same difficulty level, indicating that 

the difference in simulation accuracy by self and aggregate models was not as a result of 

participants tracking under different task constraints. Thus model parameters optimised 

from participants’ data at one time point can be used to simulate that individual’s 
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performance one week later, with higher accuracy than a model not optimised to that 

individual. This is an impressive feat when considering the robustness of the model to 

differences in human tracking and is, to our knowledge, the first formal test of individual 

model specificity.  

Whilst previous studies have highlighted the individual differences between control 

strategies utilised by individuals in tracking tasks, the current study demonstrates that 

models optimised to individual tracking data can characterise these idiosyncratic strategies 

that persist over time in individuals practiced in such tasks. Tests of replicability within an 

individual should be a benchmark validity criterion evaluating models of human behaviour 

(Smith & Conrey, 2007), as it is in other fields of psychology in which trait-level 

constructs are measured. In such cases, it is recognised that in order for hypothesised task- 

and individual-specific factors to be valid they must demonstrate test-retest reliability 

(Chaplin, John, & Goldberg, 1988; Oppenheim & Oppenheim, 1992). 

Individual models of pursuit tracking performance may find applications in the 

assessment and treatment of motor deficits following neurologic injury. The pioneering 

research in analysis of estimated model parameters for people with Parkinson’s (Abdel-

Malek et al., 1988; Au et al., 2010; Oishi et al., 2010, 2011) indicates that models might be 

used to assess bradykinesia and other deficits in this group (Allen et al., 2007). In 

therapeutic settings, upper-limb assistive robotic devices provide force assistance in upper 

limb movements to those with neurological motor impairments, often during virtual-reality 

pursuit tracking tasks (Maciejasz et al., 2014). Whilst assistive robotics often collect 

kinematic data which may help to assess symptom severity, individual models may be 

critical for delivering idiosyncratic rehabilitation regimes to people with neurological 

conditions. These individuals exhibit heterogeneous symptoms and outcomes (Kwakkel et 

al., 2004; Reinkensmeyer, Emken, & Cramer, 2004) and may use different motor strategies 

at different points in the recovery process (Fitts, 1964). Individual models may be useful to 

identify and treat specific deficits through tailored assistance or resistance control regimes 

(Marchal-Crespo & Reinkensmeyer, 2009). 

5.5.5 Strengths and limitations 

This first formal test of individual-specificity over time has found that PCMs could 

provide idiographic simulations of human behaviour in pursuit tracking tasks. However, 

the magnitude of the difference between idiographic and general models was small. The 
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most likely explanation for this is that the parameter estimates are affected by the task 

constraints, and so participants converged on an optimum strategy in this task. This is 

supported by the finding that different target motion patterns and different target 

frequencies elicit characteristic tracking profiles and estimated model parameters in 

participants (Abdel-Malek & Marmarelis, 1988; Poulton, 1952b; Viviani & Mounoud, 

1990). We used a limited range of low target velocities in this experiment, and this resulted 

in participants achieving a near-ceiling performance. Higher velocity target movements 

would be necessary to comprehensively test individuals’ transient dynamics (Abdel-Malek 

& Marmarelis, 1990), which might expose further individual differences. The frequency 

content of targets could be controlled in future experiments by summation of sinusoids of 

different frequencies to ensure a sufficiently wide bandwidth within each pursuit run in 

future studies (Roth, Zhuang, Stamper, Fortune, & Cowan, 2011). In the current study, we 

manipulated of the rate of change of the target to be tracked between different participants 

in order to be sure that the difference between model simulation performances was not a 

result of their different levels of ability and therefore tracking accuracy. However, this 

introduced a potential confound; participants completing the task under different task 

constraints (difficulty levels) could account for differences in parameter estimates, as has 

been reported in previous studies (Neilson et al., 1993; Notterman & Tufano, 1980; Viviani 

& Mounoud, 1990). We therefore undertook repeated our analyses with a subgroup of 13 

participants who completed tracking runs at a similar accuracy level to one another and 

under the same task constraints (difficulty level 2). All main hypotheses were confirmed in 

the analyses of subgroup data providing evidence that the pattern of results attained was 

not a consequence of either potential confound. 

The model architecture used in this study was a simple first-order PCM with state 

delay, a single PCT control unit (Powers, 1973, 1978, 2008). This was chosen because it 

had been previously shown to accurately simulate motor perceptuo-motor behaviour during 

a tracking task (Bourbon, 1996; Bourbon et al., 1990; Marken, 1991; Powers, 1978, 1989, 

2008) and had a biologically feasible conceptual foundation (Powers, 1973). However, it is 

by no means a comprehensive model of human motor control. Rather it attempts to 

demonstrate that parameterisation of such control architectures is useful to discriminate 

and simulate individual performance, regardless of whether they accurately specify how 

this would be achieved within human sensory and motor systems. It therefore goes without 

saying that other model architectures may be more appropriate or accurate in simulating 
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both neurologically atypical and healthy individuals. System identification can be used to 

find the best-fitting model, for example (Neilson et al., 1993; Oishi et al., 2010, 2011). In 

addition, there are known relationships between the non-independent parameters of the 

PCT control loop. For example loop delay and output gain are negatively correlated, at 

high values of delay, high output gain produces an oscillatory response. Damping constant 

and output gain share a positive relationship; higher output gains require higher damping 

constants to avoid oscillatory behaviour. Whilst beyond the focus of this article, these 

relationships have implications for model fitting as different optimisation routines (order 

and method, number of iterations) might affect the efficiency of the search of the 

parameter space and consequently result in different parameter value combinations. 

Critically, whilst we investigated pursuit tracking in one-dimension, application to 

assistive robotics for neurorehabilitation would require extension to two- and three-

dimensional tracking tasks and different target movement patterns (Engel & Soechting, 

2000; Marken, 1991; Viviani et al., 1987; Viviani & Mounoud, 1990). Moreover, control 

of other perceptual variables may increase simulation accuracy, such as target-cursor angle 

(Marken, 2014) or target-cursor velocity difference (Johnson, Howe, & Chang, 2013; 

Proteau & Masson, 1997; Viviani et al., 1987; Viviani & Mounoud, 1990). Future studies 

should aim to elucidate individual control strategies under different task constraints, and 

their stability over time, particularly in populations with neurological conditions. 

5.5.6 Conclusions 

In summary, we demonstrated that a negative-feedback computational model 

architecture can be optimised to characterise and accurately simulate an individual’s 

tracking data over time. Estimated control parameters were highly consistent over time, 

whilst individual differences in control strategies were discriminated by the computational 

model. All model parameters contributed to the accuracy of PCMs to fit human tracking 

data. Moreover, even when the target patterns differ from trial to trial, individual 

computational models very accurately simulate the movements of the individual from 

which they were derived. We argue that establishing the test-retest reliability in parameter 

estimates and simulation accuracy should be an essential criterion for computational 

models of human performance.
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6.1 Abstract 

The existence of intrinsic sensorimotor delays dictates that humans act on outdated 

sensory inputs. Models of action control must account for delay compensation in 

anticipatory behaviour. The current study evaluates four models to determine whether this 

can be achieved through negative feedback and sensory integration. Twenty-nine 

participants completed two blocks of 15 trials of a pursuit tracking task. The predictability 

of the target signals was either high (sinusoid) or limited (pseudorandom). Four models 

were compared fit to the tracking data when the loop delay parameter, representing 

sensorimotor delay in the participants, was constrained to values between 17 ms and 500 

ms.  

Participants tracked pseudorandom targets with phase delays of approximately 150 

ms. The models simulated pseudorandom tracking performance equally well, with optima 

around a loop delay of 150 - 250 ms; a feasible value given estimates of sensorimotor 

delays. For sinusoid targets participants displayed a shorter phase delay relative to the 

target (~50 ms), indicating anticipatory tracking. Two of the models (PCM and HCM) 

simulated sinusoid tracking fit most accurately when loop delays were unfeasibly short; 

accuracy decreased as a function of increasing delay. In contrast, models that extrapolated 

the future target position (PEM and HEM) maintained accuracy across the full range of 

loop delay values without clear optima. Extrapolating target position may enable feedback 

models to compensate for detrimental effects of sensory delays on performance.  

We conclude that when tracking continuous signals, humans may integrate position 

and velocity information. This may then be used to compensate for delays in action control 

and engage in anticipatory behaviour.
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6.2 Introduction 

Sensorimotor delays accumulate as a result of delays in afferent and efferent signal 

transmission, and central processing (Carlton, 1981; Smith & Bowen, 1980; Smith, 

McCrary, & Smith, 1960). In action control, visual and proprioceptive signals must be 

integrated in the cortex (Crevecoeur, Munoz, & Scott, 2016; Pizzella et al., 1999). Efferent 

signals must compensate for the longer feedback delays associated with distal motor 

responses by generating appropriate muscle forces and accounting for limb inertia 

(Desmurget et al., 1999). Consequently, humans act on outdated sensory inputs (Carlton, 

1981; Stepp, 2009; Wolpert, Ghahramani, & Flanagan, 2001). This may pose a significant 

issue for feedback in action control, for ‘if the system is changing rapidly, then by the time 

a feedback signal has been used to modify the motor commands, the system will have 

evolved to a new state for which the corrective signal is inappropriate’ (Hollerbach, 1982). 

The CNS must therefore compensate sensorimotor delays in order to produce well-timed 

anticipatory movements such as in object interception and avoidance (Brenner & Smeets, 

2015; Dessing, Oostwoud Wijdenes, Peper, & Beek, 2009). 

An ongoing reaching movement can be altered based on delayed visual feedback 

within 100 ms to 150 ms (Brenner & Smeets, 2015; Day & Lyon, 2000; Foulkes & Miall, 

2000; Franklin & Wolpert, 2008; Saunders & Knill, 2005). However, measured delays 

when arm movements are generated from standstill may be considerably longer than this. 

For example, in manual tracking experiments, an input consisting of series of steps of 

irregular amplitude and timing evoke transient responses that are initiated only after a 

‘pure’ delay of 200 ms-450 ms. These movements reach steady-state after approximately 

one second (Abdel-Malek & Marmarelis, 1990; Navas & Stark, 1968). For these target 

signals, the target position change is both unpredictable and instantaneous. Therefore 

visual and proprioceptive feedback information provide the only sensory basis for action 

(Kreifeldt, 1965). It is highly likely that the visual-sensory aspect of the sensorimotor delay 

is the same across both discrete reaching-type movements and manual tracking tasks. 

However, in manual tracking, the requirement of generating movement from standstill may 

add to this pure sensorimotor delay, thus resulting in the longer 200 ms lower estimate. In 

contrast to transient manual tracking, tracking in the steady-state with smoothly time-

varying signals, there may be a smaller contribution of motor coordination delays because 

the limb is already moving.  
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During manual pursuit of a smoothly varying target signal, participants exhibit a 

phase delay relative to the target signal. For pseudorandom or sum-of-sines inputs, this 

phase delay is observed to be in the region of 180 - 200 ms (Khoramshahi, Shukla, & 

Billard, 2014; Parker et al., 2017; Viviani & Mounoud, 1987; Yu, Gillespie, Freudenberg, 

& Cook, 2014), but increases as a function of increasing input bandwidth (Abdel-Malek & 

Marmarelis, 1988; Neilson, Neilson, & O’Dwyer, 1993). This indicates a reduction in 

ability to utilise visual feedback information at high frequencies. Within the range of 

frequencies that participants track accurately (0 - 0.7 Hz) tracking behaviour can be 

simulated with a PCM. In the PCM calculates output based on the positional difference 

between the cursor and target (Abdel-Malek & Marmarelis, 1990; Levison et al., 1969; 

Viviani et al., 1987). Models have been demonstrated to characterise individual 

performance (Bourbon, 1996b; Bourbon et al., 1990b; Parker et al., 2017), and compensate 

for disturbances on-line (Marken, 1991; Powers, 1978, 1989). Critically, the constant phase 

delay in tracking movements can be simulated by including a loop delay parameter 

(Gerisch et al., 2013; Khoramshahi et al., 2014; Parker et al., 2017; Viviani et al., 1987). 

This parameter specifies the theoretical sensorimotor delay within the model. However, a 

model controlling target cursor distance includes no method to mitigate the effect of this 

sensorimotor delay to simulate anticipatory tracking behaviour.  

Anticipatory manual tracking behaviour is observed when participants track target 

signals that are periodic (Poulton, 1952a, 1952b), such as simple sinusoid signals or 

periodic step signals. When participants track these signals, phase delay is attenuated 

almost entirely (Poulton, 1952b; Stark, Iida, & Willis, 1961; Stepp, 2009; Stepp & Turvey, 

2017; Viviani & Mounoud, 1990). This is termed tracking with zero phase delay. 

However, it should be noted that participants may not exhibit constant zero-phase tracking 

but alternating, small, phase advances and phase delays relative to the target signal, that 

average around zero (Inoue & Sakaguchi, 2014; Neilson, Neilson, & O’Dwyer, 1988; 

Vercher & Gauthier, 1992; Gollee, Gawthrop, Lakie, & Loram, 2017). When tracking in 

zero-phase, the contribution of the sensorimotor delay to phase delay is evidently 

attenuated. It might be expected that this attenuation should not be possible to simulate 

with a PCM, as this would produce a phase delay at least the length of the loop delay 

parameter. A plausible model of how humans produce zero-phase tracking for sinusoid 

targets would indicate that the CNS compensates sensorimotor delays by utilising 

additional sensory information, either by perceptual integration or prediction (Miall, Weir, 
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& Stein, 1993; Stepp, 2009; Viviani & Mounoud, 1990; Voss, McCandliss, Ghajar, & Suh, 

2007).  

In addition to target and cursor position, delayed visual motion information is also 

present during tracking and is likely used alongside position information. During smooth 

pursuit eye tracking, the extra-striate Middle Temporal (MT) and Medial Superior 

Temporal (MST) cortical brain areas actively encode local motion information from the 

visual field and integrate this into global motion patterns (Averbeck, 2004; Lisberger, 

Morris, & Tychsen, 1987). This may be integrated with position information to extrapolate 

current inputs at specific position-velocity integrated sites (Buneo & Andersen, 2006). In 

MT and MST, velocity information is extracted within 100 - 200 ms following stimulus 

presentation (Bennett, Orban de Xivry, Barnes, & Lefèvre, 2007) a feedback delay 

comparable to the extraction of visual position information. No populations of neurons 

have been found that systematically encode acceleration information (Lisberger & 

Movshon, 1999). Target acceleration may be derived mathematically from the rate velocity 

across a population of neurons sensitive to target velocity (Lisberger & Movshon, 1999). 

However, this cognitive process may add substantially to the central processing delay 

(Bennett et al., 2007), so the sensorimotor delay for control of acceleration may be longer 

than for velocity or position. This is supported by the finding of a higher discrimination 

threshold for target acceleration than for target velocity, which results in reduced 

sensitivity to acceleration in visual smooth pursuit (Watamaniuk & Heinen, 2003). 

Velocity may be used for extrapolation as the feedback delay for acceleration may be too 

long to be used for sensorimotor delay compensation.  

Target extrapolation from velocity signals would require delayed target position 

and velocity signals to be integrated into a single control variable: extrapolated position. 

The difference between this extrapolated target position and the cursor position would be 

the controlled variable within a feedback controller. There are many indications that 

humans use an extrapolation in a range of different object tracking situations, in both eye 

tracking (Barnes & Collins, 2008; Bennett et al., 2007; Khoei, Masson, & Perrinet, 2013; 

Lisberger & Movshon, 1999; Mrotek & Soechting, 2007) and manual interception 

(Brenner & Smeets, 2015; Brouwer, Brenner, & Smeets, 2002; Dessing et al., 2009). In 

manual tracking, if the target is occluded for a short duration (less than 200 ms), 

participants seem to use delayed feedback of velocity and position from prior to the 

occlusion to extrapolate the target trajectory in the absence of visual feedback (Fine et al., 
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2014). It is therefore expected that individuals may extrapolate target position during 

tracking non-occluded targets as this information is available and may be used to 

compensate for sensorimotor delays. It should be possible to construct computational 

feedback control models that utilise both target velocity and position information to track 

predictable targets with zero latency. Alternatively, target-cursor velocity difference could 

form a separate error signal to be controlled simultaneously to target-cursor position. 

Support for this hypothesis comes from studies that indicate that target position, velocity 

and even acceleration may be controlled independently (Krauzlis & Lisberger, 1994). In 

such a model, two systems could work in parallel where the output signal is a weighted 

sum of the two system outputs or in a hierarchical fashion where one system outputs the 

reference value (set point) for the subordinate control system (Marken, 1986; Marken & 

Powers, 1989; Powers, 1999). Delayed visual feedback regarding target and cursor velocity 

may be used as a control signal available and used to compensate for delays when tracking 

predictable stimuli (Viviani et al., 1987; Viviani & Mounoud, 1990). These models may 

result in improved accuracy and emulation of zero phase delay tracking for periodic signals 

whilst using only delayed sensory input. 

In the current experiment, we aimed to characterise tracking performance for two 

different target types - sinusoid and pseudorandom - and to develop and compare the fit of 

four computational models to individual tracking performance. The first model, used as a 

baseline comparison, was a Position Control Model (PCM; Parker et al., 2017; Powers, 

2008). The second was a Hierarchical Control Model (HCM) which utilised controlled 

target-cursor position and target-cursor velocity simultaneously. The third model was a 

Position Extrapolation Model (PEM). This controlled for the difference between a position 

extrapolation estimate and the cursor. The final model comprised both simultaneous 

hierarchical control and position extrapolation - the Hierarchical Extrapolation Model 

(HEM). Model parameters were optimised at 11 delay values that ranged between 17 ms 

and 500 ms. Regarding tracking performance, we expected that participants would track 

sinusoids with a higher accuracy, and lower phase delay than pseudorandom targets. We 

made the following hypotheses: 

1) Sinusoid targets would be tracked more accurately than pseudorandom targets, 

and low difficulty targets more accurately than high difficulty targets 

2) The PCM would most accurately fit pseudorandom tracking at around 200 ms 

as this was the estimated delay for pseudorandom targets in previous studies 
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(Abdel-Malek & Marmarelis, 1990; Khoramshahi et al., 2014; Parker et al., 

2017; Viviani et al., 1987).  

3) The PCM would most accurately simulate sinusoid tracking at 17 ms, relative 

to longer delays, as it would not compensate for the model loop delay. 

4) Regarding the HCM, PEM and HEM, we did not expect the simulation 

accuracy to differ from that of the PCM model for pseudorandom targets. 

However, we expected that these other models (not PCM) may simulate 

sinusoid tracking more accurately than the PCM, particularly at longer loop 

delays.  

6.3 Method 

6.3.1 Design 

In the experiment, participants completed three blocks of 15 trials of a 

computerised visuo-manual pursuit tracking task (Figure 6.1). In Block 1 was for practice, 

block 2 and 3 were test blocks. Each trial required the participant to move a cursor to track 

a target that moved continuously in the vertical dimension on a computer screen. Each trial 

lasted for one minute. All three blocks were completed in a single experimental session. 

Participants were randomly allocated to one of two conditions. In the first condition 

Pseudorandom-Sinusoid (PS), participants tracked pseudorandom movements of the 

targets in blocks one and two, and tracked sinusoidal targets in block three. In the second 

condition, Sinusoid-Pseudorandom (SP), participants tracked sinusoidal targets in blocks 

one and two, and pseudorandom targets in block three.  

For each trial, the accuracy of each participant’s tracking was assessed by the Root 

Mean Square Error (RMSE) between the target positions and actual cursor positions over 

the one minute trial. Block 1 trials were practice trials to ensure that participants had 

reached asymptote performance. Participants completed 15 practice trials on the target type 

they would be tracking in the first test block; pseudorandom for participants in the PS 

condition and sinusoidal for those in the SP condition. In the two test blocks, trials 1-5 

were considered additional practice trials. Trials 6-15 were analysed (and later used to 

optimise and validate models). Even-numbered trials (6, 8, 10, 12, and 14) were 

optimisation trials while odd-numbered trials (7, 9, 11, 13, and 15) were validation trials.
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Figure 6.1 Computerised pursuit manual tracking task set up

 

 

The participant is instructed to keep the Target marks (red) and Cursor marks (green) 

aligned during a one minute trial. The Participant controls the joystick to affect cursor 

position. The target marks move according to a target signal. The target signal is either 

sinusoidal or pseudorandom
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6.3.2 Participants 

Thirty adult volunteers were recruited through the university volunteer database 

and were reimbursed monetarily or with course credits for their participation in the 

experiment. On the basis of our exclusion criteria, individuals were unable to participate if 

they had been formerly diagnosed neurological motor control impairments, or uncorrected 

visual impairments. However no recruited individuals fulfilled these criteria and as such all 

recruited individuals participated in the study. Ethical approval was granted by the 

university ethics committee. Informed consent was mandatory for participation in the 

experiment.  

Participant data were collected within the same recruitment cycle as a previous 

study (Parker et al., 2017). This data collection cycle recruited 80 participants to four 

experimental conditions. The previous study analysed data from one condition (20 

participants). The current study used a portion of data from two other conditions (40 

participants). Of these 40 participants, 30 fit the criteria to be involved within this 

experiment as all must have completed the practice trials at the same difficulty level. Due 

to this split in the experimental data between two separate research articles with different 

hypotheses, no power analysis was conducted for the current article. However, the sample 

size for the current experiment is substantially larger than comparable and recently 

published manual tracking and modelling studies which used between 10 and 22 

participants (Gollee, Gawthrop, Lakie, & Loram, 2017; Inoue & Sakaguchi, 2014; Stepp & 

Turvey, 2017; Viviani et al., 1987). 

6.3.3 Apparatus 

Visuo-manual pursuit tracking task 

The manual tracking data were collected in the TrackAnalyze software application 

(Powers, 2008). In the experiment, the participant was asked to track a target that moved 

vertically on a computer screen using a joystick to keep a cursor aligned with a target. In 

the task, targets moved in a smoothly varying pseudorandom or sinusoidal target pattern.  

Pseudorandom target time series were generated by a computer algorithm. The 

algorithm initialised three variables (D1, D2 and D3) to 0. Random numbers were 

generated between 0 and 1 (Rand), normalised around zero. These pseudorandom numbers 

were smoothed by dividing each component number by one of five smoothing factors (64, 
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32, 16, 8, and 4, respectively). These smoothing factors determine the difficulty of the task 

by altering the rate of change of the target. This process is displayed in Equation 1: 

(1) D1t = D1t-1 + (Rand – 0.5)/Smooth 

This process was repeated a further twice: 

(2) D2t = D2(t-1) + (D1t – D2(t-1))/Smooth 

(3) D3t = D3(t-1) + (D2t – D3(t-1))/Smooth 

The D3 values were then scaled to have a range of -500 to 500 and mean 0. The purpose of 

this was to rescale the numbers to screen size in pixels. Sinusoid targets required no 

smoothing. Difficulty was manipulated by changing the frequency of the sinusoid. This is 

computed in the following manner: 

(4) Dt = sin(t*2*pi/Slowing) 

(5) Dt = Dt * Range/2 

The slowing factors were 120, 240, 480, 960, and 1920, or 2, 4, 8, 16, and 32 cycles per 

minute. Equation 5 normalised the sinewave to vary between -500 and 500 screen pixels, 

similar to the pseudorandom targets. This range of 1000 pixels accounted for 19 cm of on 

screen displacement. 

The cursor and target positions were sampled every 1/60
th

 of a second (~16.67 ms). 

At the end of each one minute trial the sampled cursor and target positions were saved to a 

tab delimited text file.  

Joystick 

The joystick that the participants controlled was a Microsoft Sidewinder Force 

Feedback 2 computerised joystick. The force feedback functionality was turned off such 

that participants tracked without force cantering. Performing across the full range of 

motion of the joystick did not require large trunk movements to be made but mostly 

shoulder and elbow movements. The angle of the joystick determined the position of the 

cursor on the screen, the full range of movement of the joystick was scaled the maximum 

displacement of the cursor on the screen.  

6.3.4 Procedure 

Participants first completed the Edinburgh Handedness Inventory (Veale, 2014). 

Participants read the written instructions for the manual tracking task and were given the 

opportunity to ask questions. Participants completed one practice trial on each of the target 

patterns, following which they completed 15 practice tracking runs according to the 
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condition to which they were assigned (Block 1). Participants then completed the first test 

block using the same type of target that they had tracked in practice (Block 2). A five 

minute break followed the end of Block 2. The second test block was then completed 

(Block 3). This involved 15 tracking trials of the target type that was not tracked in the 

previous two blocks. The pseudorandom pattern differed for each trial for each participant. 

6.3.5 Analysis: Tracking 

The key tracking accuracy criterion used was Root Mean Square Error (RMSE). 

This measured the average deviation of the participant’s cursor from the target during the 

one minute trial; lower scores represented more accurate fits. We compared participants’ 

tracking accuracy on the two target types across the two conditions. A mixed-measures 

ANOVA was conducted in which average target-cursor RMSE across ten trials of each test 

block was the dependent variable. These ten trials consisted of the five optimisation trials 

and the five validation trials. The repeated measures variable was target type and had two 

levels: pseudorandom and sinusoid. The independent group factor was participant 

condition, and had two levels: Pseudorandom-Sinusoid and Sinusoid-Pseudorandom. 

RMSE values do not enable the discrimination of errors due to timing and those 

due to reproduced signal magnitude. As we aimed to investigate the role of sensorimotor 

delays on phase delays this would be essential. We therefore calculated phase delay: the 

average delay of the cursor relative to the target across the trial. In addition, we calculated 

the amplitude ratio between the target and cursor, alongside signal coherence. Coherence is 

the correlation coefficient of the two signals in the frequency domain. All three measures 

were calculated by spectral analysis of the target and cursor signals. 

The spectral analysis was conducted according to the procedure of a previous paper 

(Cofré Lizama et al., 2013), with several minor adaptations. We designed custom software 

for this purpose within Mathworks Matlab v2018a. This software used the Welch 

algorithm with a window length of .25 times the length of the signal, and an overlap of .9 

times the window length. Signals were zero-padded to achieve a bin resolution in the 

frequency domain of .02Hz. In practice this required a scaling factor of 1.25 times the 

original target signal length, an effective change in the sampling rate from 1/60 to 1/75. As 

sinusoid targets comprised a single frequency (.062435 Hz) measures were calculated at 

this frequency only. For pseudorandom targets, the three largest power values in the 

frequency domain were averaged for each measure. The value of .75 times this mean 
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determined the lower cut-off frequency, and therefore defined the band of frequencies over 

which the measures were calculated. Any values between the mean of maximum scores 

and the frequency cut-off were averaged to determine the value of that measure for the 

trials (Cofré Lizama et al., 2013). 

True zero phase delay tracking would give a phase delay value of zero. A positive 

value would show that the cursor is, in general, advanced of the target in time. A negative 

value would represent a phase delay; the cursor lagging the target in time. Perfect 

alignment in signal magnitude would give an amplitude ratio of 1. Values above one show 

an increase in cursor amplitude relative to the target. Coherence estimates are bounded 

(maximum correlation coefficient =1). Amplitude ratios and coherence values are not 

affected by phase delay.  

 The phase delay, amplitude ratio and coherence measures were each evaluated in a 

paired t-test in which the independent variable was target (pseudorandom or sinusoid).  

All data manipulation and analyses were completed in Mathworks MatLab and 

IBM SPSS 22. 

6.4 Data Modelling 

Four computational models were developed. These models were trained on the 

optimisation trial data and fit to the validation trial data. 

6.4.1 Model architectures 

Position control model (PCM) 

The standard computational model used for comparison in this experiment was the 

standard tracking model proposed by Perceptual Control Theory (PCT; Powers, 1973, 

2008). An identical PCM was reported in our previous study (Parker et al., 2017). This 

model iteratively computed outputs every sample. The current sample in the equations is 

denoted by (t). A diagram of the model can be seen in Figure 6.2.  

The model input was the difference in position of the target (T) and cursor (C), this 

is the input signal (iD), Equation 1: 

(6.1) iD = T - C 
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As the input gain was set to 1, the perceptual signal (pD) to the system remained 

equivalent to the input signal, though was sampled with a loop delay (τ samples). Equation 

6.2: 

(6.2) pD = T(t- τ) – C(t – τ)  

The perceptual signal was compared to the reference signal (r), which represents 

the intended difference to be kept between the target and cursor. It might be expected that 

the value of the reference signal was zero as participants were instructed to maintain a 

distance of zero. The comparison yields the error term e (Equation 6.3): 

(6.3) eD = rD – pD 

This error signal was fed into the output function where the output (o) was 

computed via the following equation: 

(6.4)  o(t) = o(t-1) + (KoD * eD – Kd * o(t-1) )* dt 

In this equation o(t) is the current output and o(t-1) is the output at the previous 

iteration of the model. KoD is the output gain which represents a factor that the difference 

e is scaled to amplify the response. Given that the input and environment function gains are 

set to the integer 1, the loop gain represents the total loop gain for the control unit. Kd is 

the damping constant which is the gain for the leaky integrator and determines the 

proportion of the response that is lost per iteration. The sample rate, dt was 1/60 seconds ~ 

17 ms. The loop delay parameter (τ) determined the input sampling delay in number of 

samples. This parameter was specified manually and thus was not a free parameter for 

optimisation. The output of the system determined cursor position (C(t)) directly as the 

environment function gain is unity: 

(6.5) C(t) = o(t)/1



 

209 
 

Figure 6.2 Diagram of the PCM 
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Position Extrapolation Model (PEM) 

 The PEM was identical to the position control except that the controlled variable 

was not the distance between the delayed target position and the delayed cursor position. In 

this model, the perceptual signal was the difference between an extrapolated target position 

and the delayed cursor position. The extrapolated target position was calculated at the input 

function by computing a delayed estimate of the target velocity, and multiplying this with 

an additional gain parameter (Kx). Finally, this product was summed with the delayed 

measured target position. Optimisation of the gain parameter (Kx) would scale the velocity 

estimate such that it counteracted the delay in measurement of the target signal, estimating 

a target position that approximated the current or immediate future target position.  

 Decomposing the PEM as was done for the PCM in Experiment 1, the input to the 

PEM was therefore: 

(6.6) iD = T-C 

The perceptual signal added the estimated target velocity, multiplied by the 

parameter Kx, to the target position, and subtracted the cursor position. Thus the perceptual 

signal (pV) was: 

(6.7) pD = ((T (t - τ))+ (Kx*((T (t - τ) – T (t- (τ + s))/ s))) - C (t - τ) 

All the further equations of the PEM were identical to those in the PCM. The error 

signal (eD) of the parallel model is given by Equation 6.8: 

(6.8) eD = rD – pD    

The output was determined by the error signal and the output function. The latter 

transformed the error signal (eD) into the output signal (oD), by Equation 6.9: 

(6.9) oD = (o(t-1) + ((KoD* eD) – (o(t-1) * Kd)) * dt 

The output determined the cursor position via the environment function, which had 

a gain of 1: 

(6.10) C(t) = o(t)/1 

Hierarchical control model (HCM) 

The hierarchical model was formed of two PCT control units, one controlling 

visual target-cursor position, and one controlling target-cursor velocity. However the 

output is computed in a serial manner where the position control unit is the superordinate 
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unit and the subordinate unit controls velocity. Therefore the output of the position control 

unit is the reference value for the velocity control unit below it, and the output of the 

velocity control unit is the output of the integrated system (cursor position). Consequently, 

the velocity reference value (rV) is not a free parameter for optimisation and instead 

changes dynamically throughout control system operation. The equation for computation 

of the distance reference (rV). 

The superordinate position unit simply comprised an output gain (KoD) and this 

multiplied the error signal (eD) which was calculated by the difference between the 

position reference (rD) and the perceptual signal (pD): 

(6.11)  eD = rD – pD 

Thus the velocity reference (rV) is computed: 

(6.12)  rV = KoD * eD 

The velocity unit had two free parameters: velocity output gain (KoV), and damping 

constant (Kd). The value of loop delay parameter (τ) was constrained experimentally and 

always took the same value for both the position and velocity control units. 

As target-cursor velocity was the controlled variable of the latter control unit, the 

inputs to the velocity unit were the target and cursor velocities. The input function 

determined that these were calculated as the change in position between the position 

measurement at the given loop delay (τ), and at the loop delay plus a constant (s) The 

constant had to be low enough not to confound the effect of loop delay, but high enough to 

smooth velocity calculation for the cursor output (which was noisy). Piloting determined 

that when s was set to the integer three for all velocity equations for all participants, this 

provided suitable stability. 

The equation for the input to the velocity control unit (iV) was therefore: 

(6.13)  iV = TV – CV 

The perceptual signal (pV) was: 

(6.14) pV = ((T (t - τ) – T (t- (τ + s))/ s) - ((C (t - τ) – C(t- (τ + s))/ s) 

The error signal (eV) of the parallel model is given by Equation 6.15. 

(6.15) 𝑒𝑉 =  𝑟𝑉 –  𝑝𝑉  
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The output is determined by the error signal and the output function. The latter 

transformed the error signal (eV) into the output signal (oV) of the hierarchical model. 

(6.16) oV = o(t-1) + (KoV * eV – o(t-1) * Kd) * dt 

This determined the simulated cursor position (C(t)), via the environment function. 

(6.17) C(t) = o(t)/1 

Hierarchical Extrapolation Model (HEM) 

The final model architecture incorporated both position extrapolation and 

hierarchical control of position and velocity (Figure 5). The HEM thus follows Equations 

6.6 through 6.8, and 6.12 through 6.17. The model contained five free parameters: One 

extrapolation gain (KX), position reference value (rD), output gains for the position and 

velocity controllers (KoD and KoV respectively), and a damping constant (Kd). Figure 5 

graphically depicts the HEM. Figure 6.3 depicts the HEM architecture.  
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Figure 6.3 Diagram of the HEM architecture 
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6.4.2 Model delays 

We aimed to test the model robustly over a range of loop delay values. Thus, loop 

delay values were selected with reference to estimates of central processing latencies, 

identified by Event Related Potentials (ERPs) in response to the presentation of visual 

stimuli in humans. The delay values were selected that covered a range durations cantering 

on estimates of peak activation in brain areas that have been identified as critical to spatial 

processing, and sensorimotor areas implicated in planning, preparation and execution of 

movement. 

We wished the shortest loop delay to be below the biologically plausible threshold 

for perceptual feedback regarding visual stimuli, 17 ms was selected as this represented 

one sample; the minimum delay to which the model could be constrained in the program. 

This is substantially shorter than the time taken for the stimulus to be registered in the 

visual cortex. Signals arrive from the optical nerve at the Lateral Geniculate Nucleus 

(LGN) and are projected to the primary visual cortex, where extra-retinal processing of the 

visual information takes place. Onset of activation in areas V1, V2 and V3 of the visual 

cortex occurs at approximately 30 ms (Foxe & Simpson, 2002). Cells in the Middle 

Temporal (MT) and Medial Superior Temporal (MST) areas of the primary visual cortex 

respond to and code the direction and velocity of stimulus movement (Lisberger & 

Movshon, 1999). Onset of activation in these follows V1 activation by approximately 10 

ms in humans and monkeys (Foxe & Simpson, 2002; Schmolesky et al., 1998). Activation 

in the visual cortex peaks around 60 ms following stimulus onset (Kruse, Dannenberg, 

Kleiser, & Hoffmann, 2002), MT and MST represent the gateway to the dorsal stream 

(sometimes called the ‘where’ pathway), which continues processing of spatial and motion 

information thus 50 ms was selected as our second loop delay value.  

In the dorsal stream, the MT and MST areas project to the Posterior Parietal Cortex 

(PPC) and frontal areas, and subsequently premotor and motor areas. The frontal areas are 

implicated mostly in attention and executive control (onset latencies 60 ms, peaks 60 ms to 

90 ms; (Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002; Martínez et al., 1999). The 

function of the PPC is the integration of spatial and motion information (Hill & Raab, 

2005). The PPC is the most likely candidate for the brain location where relative position 

and velocity judgements concerning the target and cursor might take place during manual 

tracking (Hill & Raab, 2005).The PPC has been implicated in coding feedback-dependent 

computations of movement error which are used to correct movement trajectories online 
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(Desmurget et al., 1999; Gréa et al., 2002). Activation onset occurs at approximately 80 ms 

and peaks after 100 ms. Therefore 100 ms was selected as the third loop delay value. 

The PPC projects to the Supplementary Motor Area (SMA) and to the motor 

cortices. Recurrent activations throughout the dorsal stream occur during movement 

preparation and execution such that “100–400 ms is commonly needed for information 

processing prior to response output in humans.” (Foxe & Simpson, 2002). Pure 

sensorimotor delays in movement to an unexpected stimulus from static are typically in the 

region of 180-200 ms, whilst response times for continuous stimuli are often much shorter, 

in the region of 180 ms (Hill & Raab, 2005; Parker et al., 2017). Consequently, we selected 

equally-spaced values between 100 ms and a liberal high end loop delay value of 500 ms.  

 Thus the selected loop delay (τ) values were 17 ms, 50 ms, 100 ms, 150 ms, 200 

ms, 250 ms, 300 ms, 350 ms, 400 ms, 450 ms, and 500 ms. The model was optimised to 

participant tracking data at each of these separate loop delay values. 

6.4.3 Model optimisation and selection 

Excepting the loop delay value (τ), all other model parameters were free parameters 

for optimisation. The parameters of the model were optimised with the MatLab function 

‘lsqnonlin’, a non-linear least squares algorithm. The maximum number of iterations was 

set to 2000, and the function tolerance to 1 x 10
-8

. The initial conditions and boundaries for 

parameter optimisation were: Position and velocity output gains (KoD, KoV), 1 [1, 500]; 

position and velocity damping constants (Kd), 0 [0, 1]; reference values (rD), 0 [-500, 

500]; and extrapolation gains (Kx), 0 [0, 50]. 

For optimisation trials, the parameters of the computational model were optimised 

to each trial at each of 11 delay values. The set of model parameter values that resulted in 

the best fit to the cursor movements was selected as the individual model for that specific 

delay value for each participant. These 11 parameter combinations were used for model 

validation at each of the delay values.  

6.4.4 Model validation 

Validation trial data were simulated and the accuracy of fit to the individual’s 

movements was assessed at each of the loop delay values. Statistical outliers in model fit 

were identified as RMSE values for a validation trial being three or more standard 

deviations above the mean error rate for that participant at that loop delay value. For any 
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outlying data, the next best-fitting model parameters from optimisation would be selected 

and used to simulate the validation data again. This process would continue till model fit 

statistics were no longer outlying. In practice, outliers occurred infrequently and in all the 

second best parameter combination did not produce outliers. 

6.4.5 Model analysis 

Model simulation accuracy was assessed by RMSE between the simulated cursor 

signal and the participant’s actual cursor signal. 

For each target type, a mixed model regression analysis was conducted. The 

outcome variable was model-simulated cursor RMSE and loop delay was the predictor 

variable. We included Participant as a random effect (both slope and intercept). This 

analysis enabled modelling of the whole dataset rather than the average model simulation 

error value for each individual across the five trials for each target. Both linear and 

quadratic mixed models were tested for their fit to the data. 

 Following regression analysis, ten comparison t-tests were conducted to compare 

across delays within targets, and between targets at specific constrained delay values. For 

each target type, the model simulation error at loop delays of 17 ms, and 200 ms were 

compared. The loop delay of 17 ms was chosen because it represented the minimum tested 

loop delay and it was considered an implausible value for the sensorimotor delay in manual 

tracking. The second loop delay value, 200 ms, was chosen because it was the closest delay 

value to the estimates of sensorimotor delays in manual pursuit (Abdel-Malek & 

Marmarelis, 1988; Khoramshahi et al., 2014; Parker et al., 2017; Viviani et al., 1987; Yu et 

al., 2014) 

 Model simulation error was also compared between models at these loop delay 

values 200 ms to establish whether differences existed in the pattern of tracking results. A 

Bonferroni correction was applied for ten comparisons; p < .005 for significance. 

Using the same spectral analysis methods applied to tracking performance, we 

calculated the amplitude ratio, phase delay and coherence between the simulated cursor 

and target, and the simulated cursor and participant cursor. The statistics were calculated at 

a loop delay of 200 ms. These statistics were used to determine whether the model-

simulated cursor differed significantly from participants’ cursors in its phase delay, 

amplitude ratio and coherence. One-sample t-tests were run with each statistic. For 
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amplitude ratio and coherence, the test value was 1, which represents a perfect match of 

amplitude and coherence. For phase delay, the test value was 0, representing perfect match 

to the cursor signal in time (no phase delay or advance). For each set of four one-sample t-

tests the bonferonni-corrected criterion value was p = .013. 

The same analyses were conducted for both optimisation data and validation data. 

Only results for validation data are presented in this article because validation trials 

provide a more robust test of the models as target signals are not identical to those that the 

model was trained on (Oberkampf et al., 2004). 

6.5 Results 

6.5.1 Tracking performance 

  One participant was excluded from the analysis as their target to cursor RMSE was 

larger than three standard deviations above the mean when tracking both pseudorandom 

and sinusoid targets. Twenty-nine participants’ data were analysed. Participant cursor-

target RMSE, optimal model cursor-target RMSE and participant model cursor-participant 

cursor RMSE were positively skewed. Log transformations were applied to mean statistics. 

Demographic and tracking error statistics are displayed alongside tracking accuracy 

statistics in Table 6.1. Figure 6.4 displays time series graphs of typical pseudorandom and 

sinusoid tracking trials.

Table 6.1 Descriptive statistics of participant demographic and tracking data 

Condition 

 Age Sex Handedness Track RMSE 

N 

Mean 

(SD) 

Male/ 

Female 

Right/Mixed/ 

Left 

Pseudorandom 

Mean (SD) 

Sinusoid 

 Mean (SD) 

Pseudorandom-

Sinusoid 14 

22.21 

(3.72) 5/9 13/1/1 28.86 (6.99) 27.85 (4.95) 

Sinusoid-

Pseudorandom 15 

21.34 

(2.44) 2/13 13/0/2 29.57 (6.77) 27.67 (6.99) 
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The 2*2 mixed ANOVA of tracking accuracy (RMSE) revealed no difference in 

tracking error between sinusoid and pseudorandom targets; F(1,27) = 0.99, p = 0.328, partial 

eta
2
 = .035. The main effect of condition was not significant; F(1,26) = 0.19, p = .892, partial 

eta
2 

= .001. There was no interaction between condition and target type, F(1,27) = .093, p = 

.762, partial eta
2 

=.003. Therefore practice with only one target type did not later tracking 

accuracy on either target type in the test phase. The condition variable was thus excluded 

from further analyses of performance.  

Table 6.2 displays the means and standard deviations for the measures derived by 

spectral analysis: Phase delay, amplitude ratio, and coherence. Participants tracked 

pseudorandom targets with a significantly longer phase delay than sinusoid targets; t(28) = 

9.50, p < .001. The amplitude ratio during tracking of pseudorandom signals was higher 

than that of sinusoid targets; t(28) = 3.03, p = .005. Target and cursor signals were equally 

coherent for both target types; t(28) = 1.53, p = .138.  

Table 6.2 Spectral analysis statistics 

Target Type 

Phase Delay Amplitude Ratio Coherence 

Mean (SD) Mean (SD) Mean (SD) 

Pseudorandom -159.40 (59.82) 0.99 (0.01) .986 (.006) 

Sinusoid -53.31 (37.35) 0.97 (0.02) .992 (.010) 

Note that amplitude ratio cannot exceed the value 1 in this experiment as the maximum 

cursor displacement is equal to amplitude of the sinusoid
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6.5.2 Model validation 

Model validation trials were almost all simulated without outliers. There were 

several exceptions. Following optimisation and model selection, only one participant’s 

PCM produced outlying model fit data for any validation trials. This occurred at a loop 

delay of 400 ms for all five of the validation trials. The HCM generated outlying model 

simulation error statistics for four participants for all five validation trials. Three of these at 

the loop delay 350 ms, and one was at 400 ms. One participant’s model generated outlying 

model simulation error statistics for the HEM at 400 ms. All outliers were adequately 

replaced by simulation with the next best fitting model parameters from optimisation for 

that participant.  

Pseudorandom targets 

Figure 6.5 displays a 15 s segment of a pseudorandom tracking trial, the PCM and 

HEM simulated cursors shown for comparison. The simulations displayed were those with 

a loop delay of 200 ms. Optimal model parameters for pseudorandom targets at each loop 

delay value are shown in Appendix C. 

All regression models showed a quadratic relationship between loop delay and 

model simulation error (Figure 6.6). The regression statistics can be found in Appendix E. 

Delay was a significant predictor of model simulation error in all models. The optima of 

the quadratic functions were approximately 150 ms for the PCM model, and 200 ms for the 

HCM, PEM, and HEM models. The mean data demonstrated optima at 200 ms for the 

PCM and HCM, and 250 ms for the PEM and HEM models. The gradient of increase in 

model simulation error after these optima was steepest for the PCM, then the PEM, then 

the HCM, and finally the HEM. 

For all models, model simulation error was lower at a loop delay of 200 ms than it 

was at 17 ms. For the PCM, t(28) = 5.51, p < .001; for the HCM, t(28) = 10.51, p < .001; for 

the PEM, t(28) = 13.58, p < .001; for the HEM model, t(28) = 13.69, p < .001. Thus the loop 

delay value of 200 ms gave a better fit to manual tracking data than shorter one. 

Model simulation error was evaluated between the models when loop delays were 

constrained to 200 ms. There was no difference in model simulation error for 

pseudorandom targets: PCM vs. HCM, t(28) = 1.50, p = .144; PCM vs. PEM, t(28) = 0.94, p 

= .354; PCM vs. HEM, t(28) = 2.05, p = .050; HCM vs. PEM, t(28) = 0.81, p = .426; HCM 

vs. HEM, t(28) = 1.89, p = .069; PEM vs. HEM, t(28) = 1.34, p = .193 
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For both the PCM and HCM, there was no significant phase delay or advance of the 

simulated cursors relative to the participant cursors; PCM, t(28) = 0.79, p = .436; HCM, t(28) 

= 0.62, p = .539. In contrast, the PEM and HEM simulated cursors were significantly phase 

advanced when compared with the participant cursors; PEM, t(28) = 4.04, p = .001; HEM, 

t(28) = 3.76, p = .001. 

The amplitude ratio was not significantly different from 1 for any model; PCM, t(28) 

= 0.23, p = .823; PEM, t(28) = 0.90, p = .378; HCM, t(28) = 0.18, p = .860; HEM, t(28) = 1.15, 

p = .259. In contrast, coherence was significantly lower than zero for all models; PCM, t(28) 

= 3.76, p = .001; PEM, t(28) = 3.82, p = .001; HCM; t(28) = 3.66, p = .001; HEM, t(28) = 3.66, 

p = .001. Table 6.6 displays the means and standard deviations in the phase delay, 

amplitude ratio and coherence statistics for pseudorandom targets 
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Sinusoid targets 

Figure 6.7 displays a 15 s segment of a typical sinusoid trial, and PCM and HEM 

model-simulated cursors. These models were those optimised with a loop delay of 200 ms. 

The optimal parameters for each delay value can be found in Appendix D. 

For sinusoid targets, model simulation error increased as a function of loop delay in 

a quadratic relationship from zero milliseconds for both the PCM and HCM. The PEM and 

HEM regression models were not significant in either linear or quadratic form (quadratics 

shown in Figure 6.8). Thus increases in loop delay did not reduce the accuracy of the 

model fit to tracking data. The regression statistics can be found in Appendix F. 

For the PCM, error was significantly lower at 17 ms than it was at 200 ms, t(28) = 

3.83, p = .001. The same difference was observed in the HCM; though this did not reach 

significance when accounting for multiple comparisons; t(28) = 2.09, p =. 046. For the PEM 

and HEM there was no difference in simulation accuracy between 17 ms and 200 ms; t(28) 

= 1.41, p = .171, and t(28) = 1.43, p = .163 respectively. 

Comparisons of model fit when models were constrained to a loop delay of 200 ms 

indicated no difference between the PCM and HCM; t(28) = 1.46, p < .155. However, both 

the PEM and HEM showed a reduction in error relative to the PCM; t(28) = 3.77, p < .001, 

and t(28) = 3.87, p < .001. Similarly, the PEM and HEM showed reduced error relative to 

the HCM; t(28) = 3.86, p < .001, and t(28) = 4.75, p < .001. No difference in model 

simulation error was observed between PEM and HEM; t(28) = 0.12, p = .908.  
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The one-sample t-test of phase delay statistics showed that the PCM model and 

HCM simulated cursor was significantly delayed in phase relative to the participant cursor; 

PCM, t(28) = 9.54, p < .001; HCM, t(28) = 9.72, p < .001. In contrast, there was no difference 

in phase between the simulated and participant cursors for PEM and HEM models; PEM, 

t(28) = 0.42, p = .677; HEM, t(28) = 0.92, p = .366. 

Amplitude ratios were not significantly different from 1 for the PCM and HCM 

models; t(28) = 0.76, p = .452; HCM, t(28) = 1.20, p = .240. Amplitude ratios were 

significantly above 1 for the PEM and HEM models; PEM, t(28) = 3.35, p = .002; HEM, 

t(28) = 3.12, p = .004. This indicated that PEM and HEM models produced higher 

amplitudes than the participants did. 

Coherence between the simulated cursor and the participant’s cursor was 

significantly lower than 1 for all models; PCM, t(28) = 3.39, p = .002; PEM, 3.39, p = .002; 

HCM, t(28) = 3.39, p = .002; HEM, t(28) = 3.39, p = .002. Thus the simulated cursor was 

significantly different from a perfect linear correlation in the frequency domain for all 

models.  

Table 6.7 reports the amplitude ratios, phase delays and coherence estimates for 

model-simulated cursors during sinusoid tracking. 
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6.6 Discussion 

6.6.1 Tracking accuracy 

Participants were able to track targets accurately that moved in both pseudorandom 

and sinusoid movement patterns. Additional practice did not improve nor hinder 

performance, indicating that the participants were reaching performance asymptote and 

thus no longer learning. Similarly, switching from one target type to another did not seem 

to interfere with performance on the second target type, though it may be that task switch 

and learning effects were flushed out by the end of the five practice trials at the start of the 

second test block.  

Critically, participants were observed to exhibit reduced phase delays when 

tracking sinusoid targets relative to tracking pseudorandom target signals. This supports 

the interpretation that individuals engage in anticipation whilst tracking sinusoid target 

signals (Gollee et al., 2017; Inoue & Sakaguchi, 2014; Khoramshahi et al., 2014; Neilson 

et al., 1993; Parker et al., 2017; Poulton, 1952a, 1952b; Stepp & Turvey, 2017; Viviani & 

Mounoud, 1990). However, sinusoid tracking has been described as zero-phase delay 

tracking, this is not observed to be the case in our experiment. The average delay over 

trials for sinusoid targets was ~50 ms. However, as this phase delay is at least 30 - 50 ms 

shorter than the shortest sensorimotor and visual feedback processing time estimates 

(Brenner & Smeets, 2015; Day & Lyon, 2000; Foulkes & Miall, 2000; Franklin & 

Wolpert, 2008; Saunders & Knill, 2005) sinusoid tracking in this experiment is certainly 

anticipatory. In contrast, pseudorandom tracking performance was within the estimated 

sensorimotor delay range: approximately 150 ms; though was close to the minimum of the 

expected range of values (Khoramshahi, Shukla, & Billard, 2014; Viviani, Campadelli & 

Mounoud, 1987; Yu, Gillespie, Freudenberg, & Cook, 2014). 

It was expected that participants would track sinusoids more accurately than 

pseudorandom target signals given the degree of predictability of the target signal. We did 

not find a significant difference in tracking performance (RMSE) between the two target 

types, though a trend in the hypothesised direction was observed. It is likely that the 

reduced sample size in this analysis (due to the between groups comparison) was 

underpowered to find all but large effects. There was no significant difference in coherence 

estimates, although there was a trend towards improved performance for sinusoid targets.  
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The spectral analysis statistics clarify the null difference between pseudorandom 

and sinusoid tracking performance. Firstly, although the maximum displacement of the 

target signals on-screen was equal (1000 pixels), the sinusoid always had this amplitude, 

whilst, in practice, the pseudorandom signal rarely made such large displacements. This 

may have contributed to amplitude errors for the sinusoid targets. This is supported by the 

finding of a higher amplitude ratio for pseudorandom targets than for sinusoid targets. 

Participants tracked with lower amplitude (undershoot) for sinusoid targets. This may have 

mitigated the improvement in overall fit conferred the reduced phase delay. In future 

experiments, pseudorandom and sinusoid target signals may be made to have equal 

average displacement (rather than maximum displacement). Alternatively, signal velocity 

or frequency may be altered. 

 Graphs of tracking data allow several of observations to be highlighted regarding 

trends in tracking data (Figure 6.4). Firstly, the phase delay can be seen to be observed to 

be longer, on average, for pseudorandom targets than for sinusoid targets. This is 

confirmed by the phase statistics discussed previously. Secondly, the phase relationship 

between the cursor and target typically alternates between phase advance particularly 

during target deceleration and phase delay during target acceleration for both targets. This 

is consistent with extrapolation based on delayed motion information. If, for example, the 

delayed estimate of target velocity is lower than the actual velocity (as is the case during 

target acceleration), the phase delay would increase as the cursor moves too slowly. The 

opposite would be the case for target deceleration, and would cause significant overshoot 

when the target stops or changes direction. Finally, the jump in cursor position around zero 

pixels may indicate centre stickiness in the joystick.  

6.6.2 Model simulation accuracy 

Pseudorandom targets 

We had hypothesised that for all models, the simulation error for pseudorandom 

targets would be lowest when loop delays were in the region of 200 ms because estimates 

of the sensorimotor delay in manual tracking in previous experiments approximated this 

value (Khoramshahi, Shukla, & Billard, 2014; Parker et al., 2017; Viviani & Mounoud, 

1987; Yu, Gillespie, Freudenberg, & Cook, 2014). The PCM did not support this, as the 

optimum model fit was produced at a loop delay of 150 ms. This indicated that 

sensorimotor delay may be shorter than 200 ms, consistent with estimates of sensorimotor 
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delays in reaching experiments (Brenner & Smeets, 2015; Day & Lyon, 2000; Foulkes & 

Miall, 2000; Franklin & Wolpert, 2008; Saunders & Knill, 2005).  

The three extended models fit pseudorandom tracking performance most accurately 

at loop delays of 200 ms or above. However, the PEM and HEM maintained low model 

simulation error at loop delay values longer than 200 ms, which indicates that extrapolation 

may mitigate the deleterious effect to performance associated with using longer loop 

delays in the other models. This maintained performance at longer delays may be due to 

phase delay compensation. This is supported by the finding of a significant phase advance 

for the simulated cursor of PEM and HEM models relative to the participant’s cursor at 

200 ms which indicates that the PEM and HEM models were over-compensating the loop 

delay. In contrast, no phase advance or delay was found for the PCM and HCM models. 

This is strong evidence that extrapolation can be used to compensate for sensorimotor 

delays. However, whether participants use extrapolation during pseudorandom tracking is 

difficult to determine given the equivalence of the model fits to pseudorandom targets at 

200 ms loop delays.  

It remains to be established whether participants use target extrapolation when 

tracking pseudorandom targets. However, it is clear that it is possible for models as the 

velocity of the target gives some indication of its future position. Despite this, the longer 

phase delay when participants track pseudorandom targets (~160 ms), relative to sinusoid 

targets (~50 ms) seems to indicate that participants do not compensate for phase delay to 

the same extent as they do when tracking sinusoid targets. In fact, even positional feedback 

control this may enable a small amount of sensorimotor delays compensation. This can be 

observed in the data as whilst participants tracked with a phase delay of 160 ms, the PCM 

and HCM reproduced this phase delay (no phase difference between simulated cursor and 

participant cursor) when the loop delay was 200 ms. This indicates that the models 

compensated approximately 40 ms of sensorimotor delay via positional feedback control 

only.  

Sinusoid targets 

 For sinusoid targets, the lowest error in simulation was observed when PCM loop 

delays were minimal (17 ms). Simulation error increased as a function of increasing loop 

delay and thus was significantly higher when the model simulated tracking with a loop 

delay of 200 ms. This 17 ms optimum is substantially shorter than the shortest estimates of 
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sensorimotor delay (Brenner & Smeets, 2015; Saunders & Knill, 2005). This may indicate 

that participants may use a mechanism other than position control when tracking sinusoid 

targets. The phase delay in PCM simulation relative to the participant cursor (~60 ms) 

provides further evidence to this conclusion. We hypothesised that utilising target or cursor 

velocity information in control schemes may enable models to compensate for 200 ms loop 

delays and simulate zero-phase delay tacking.  

One model, the HCM, used the difference between target and cursor velocities as 

an additional control signal, within a hierarchical control structure. The HCM performed 

similarly to the PCM. It showed a similar decrease in simulation accuracy for sinusoids as 

loop delays increased. Like the position control strategy, hierarchical control of velocity 

and position does not seem provide sufficient compensation if the loop delay is 200 ms. 

However, it should be noted that at this loop delay the PCM and HCM both produced an 

approximate 120 ms phase delay behind the target and therefore compensated 80 ms of the 

loop delay. Position control and hierarchical position and velocity control may not account 

for anticipatory tracking of sinusoids if sensorimotor delays are in the region of 200 ms. 

However, models may better simulate sinusoid tracking data at 100 - 150 ms loop delays. 

Such reduced loop delays might be expected to reduce the phase delay difference between 

the simulated cursor and cursor.  

The HCM controlled similar inputs to another architecture used in a two-

dimensional tracking study (Viviani & Mounoud, 1990). In contrast to our findings, their 

model could emulate anticipatory tracking (zero-phase). However, Viviani’s model did not 

use delayed inputs, but rather than inputs from imminent future target trajectory. This may 

explain why it could engage in anticipatory tracking behaviour. In order to elucidate the 

mechanism of anticipation in the task, models should use only delayed inputs. 

The other two models developed in the current study were the PEM and HEM. 

These models integrated delayed target velocity information with delayed position 

information to estimate an extrapolated target position. This extrapolated position, minus 

the cursor position, was used as a control input. In contrast to the PCM and HCM, the 

simulated cursors of the extrapolation models did not exhibit a phase delay relative to the 

participant’s cursor when loop delays were constrained to 200 ms. Moreover, these models 

maintained simulation accuracy across the full range of loop delay values with no clear 

optima. It might be considered therefore that position extrapolation is a potential 
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mechanism that could underpin anticipatory sinusoid tracking. This interpretation adheres 

with suggestions that participants can extrapolate the target trajectory to account for 

feedback and central processing delays into the near future and use this as an input for the 

error correction (Brenner & Smeets, 2015; Brouwer, Brenner, & Smeets, 2002; Dessing et 

al., 2009; Lisberger et al., 1987; Mrotek & Soechting, 2007; Pavel, Cunningham, & Stone, 

1992; Soechting, Rao, & Juveli, 2010).  

It is also possible that participants use a different control strategy when tracking 

sinusoid targets. Participants may be able to change their control strategy to emulate the 

shape of target pattern in the sinusoid condition. This would not be possible in the 

pseudorandom condition as the target amplitude and frequency are irregular. Poulton called 

this course anticipation (Poulton, 1952a). There is some evidence that humans may do this, 

particularly when targets move very quickly. (Leist, Freund, & Cohen, 1987) found that in 

a sinusoid tracking task the eyes can only track smoothly up to a frequency of 1Hz and 

velocities of 60deg/s, but above 2Hz the eyes stop moving altogether. Participants cannot 

track the target at these speeds with their eyes and maintain a coherent visual image. 

Despite this, participants may be able to continue tracking with their arm by changing 

control strategy to simply match the frequency and amplitude of a periodic target.  

6.6.3 General Discussion 

It is unclear why participants tracking pseudorandom signals do not track with a 

phase delay as short in duration to the, though it appears that phase delays increase with 

both signal complexity (as in the current experiment), and with frequency (Neilson et al., 

1993). In the current study, the acceleration and velocity of the target are reliable indicators 

of the future position of the target leading up until the target stops prior to potential 

directional switch. In addition, the direction the target takes following the switch point is 

predictable for the sinusoid target. However, for pseudorandom targets, the next target 

movement vector could be in either direction and cannot be determined by the participant 

in advance of the switch point. This may contribute to participants’ inability to use of 

anticipatory strategies. This conclusion is supported by the findings of another study which 

found that when a change in target direction was predictable, participants showed an 

‘anticipatory’ positive peak in SMA activity that averaged 170 ms before the target 

changed direction (Hill & Raab, 2005). However, when the change could not be 

determined from the target trajectory, this peak shifted to follow the change in direction 

and tracking latencies were increased (Hill, 2009). Whilst the tracking latencies cannot be 
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directly compared with the current study (Hill and colleagues’ studies used a two-

dimensional tracking task with different parameters), it is apparent that as the target 

predictability increases, the processing of information relevant to the change in direction is 

shifted earlier and tracking latencies are reduced. This early positive ERP may represent 

early use of target velocity to estimate future target position or directional switch. Another 

possible explanation for the difference in phase delay between tracking of sinusoid and 

pseudorandom targets may be due to shorter average time between directional switches for 

pseudorandom targets than for sinusoids. For high frequencies this may be too short 

relative to the duration of the feedback delay to extrapolate position or use another 

anticipatory mechanism. When the target changes direction frequently or accelerates 

quickly, delayed velocity measurements would become unusable. Thus, it may be the case 

that velocity control could be utilised by humans when tracking pseudorandom targets that 

vary only at very low target velocities.  

These possibilities could be tested by altering the characteristics of the input signal 

and observing changes in human and model behaviour; for instance by increasing or 

decreasing the velocity of the target, adding high frequency noise and increasing jerk, or 

altering the feedback function. The test for the controlled variable (TCV; Marken & 

Mansell, 2013; Marken, 2005, 2014) provides explicit instruction in how to manipulate 

environmental variables to determine which are under control. This could be applied to 

human control systems in the tracking task. Nevertheless, the existence of a single, 

generalisable solution to the tracking problem is unrealistic. More likely, healthy humans, 

with their array of sensory inputs, memory and cognitive abilities, can learn and adapt to 

perform accurately under different task demands. For very noisy signals for example, 

target extrapolation as conceived in this article would be of little use. However, averaging 

velocity inputs over 200 ms duration, for example, would have the effect of smoothing the 

noise, and thus reducing oscillations in output. 

6.6.4 Limitations 

In the current article we aimed to establish the effect of changing sensorimotor 

delay on model fit performance. To achieve this we altered the loop delay of the models 

and simulated performance at 50 ms intervals between 17 ms and 500 ms. Although this 

gave insight into how model accuracy evolves over a range of implausible and plausible 

delay values, we did not compare the fit of the models at all these points because this 

would require too large a number of statistical tests. We also did not characterise the phase 



236 
 

delays reproduced by the models at each of these delays. Consequently, it is difficult to 

answer several key questions. Firstly, we were unable to establish whether the PCM (and 

HCM) could reproduce participants’ sinusoid tracking latencies if delays were shorter than 

200 ms but still within a biologically plausible range (100 ms and above). Secondly, we 

could not determine whether the PEM and HEM models simulate the tracking latency of 

pseudorandom targets more accurately if they were optimised to longer delays; above 200 

ms. Finally, we cannot determine the true optima for model simulation accuracy as the 

loop delay interval was approximately 50 ms. In future it may be preferable to resample the 

data to a 1 ms resolution and find the true optimum for each model, and compare models at 

their optima.  

The finding that the amplitude ratio of PEM and HEM simulated cursors to the 

participant cursor was higher than 1 indicates that the models overshot the targets at the 

point at which the target switches. It is likely that this is a statistical artefact of the 

experimental design as the maximum displacement of the cursor was the same as the 

amplitude of the sinusoid. This can be observed in Figure 6.2, where the cursor reaches 

500 pixels above the target but does not exceed this value. This is an issue because if a 

participant’s cursor had been moving with high velocity toward the switching point, it 

would have likely overshot the target due to inertia if they joystick. However, the upper 

limit on the displacement of the cursor (and joystick) precluded the possibility that 

participants’ cursors overshot the target at the switch point. This would not have been 

observed so often in pseudorandom tracking because the amplitude of the target would not 

frequently reach the maximum displacement. Thus models do not have a higher amplitude 

ratio than the participant in the pseudorandom condition. 

In a biological system, optimisation is ongoing and not discrete. Parameter values 

would never be stable and in fact would be dynamically varying, albeit slowly toward 

performance asymptote. In this study, optimisation operated over five single trials and the 

best fitting parameters were selected to form a static individual model of practised 

performance. These trials were non-consecutive such that any effect of trial order on 

participant performance and estimated model parameters was minimised. Furthermore, any 

software model is determinedly a simplification of the operation of the human controller. 

The models in this paper suggest a mechanism for a perceptual process, rather than 

specifying how control signals are translated to movement. In these models, the control 

signal directly specified cursor position. Other PCT models have been developed that 
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control virtual joints (Kennaway, 2004; Powers, 1999), arms (Powers, 2008), and robotic 

arms via negative feedback processes, incurring the additional benefit of being resistant to 

perturbations. In a future study we intend to test whether the PCT reorganisation algorithm 

can be used to optimise the PCT models developed in these experiments to drive a force-

feedback steering wheel in pursuit tracking. 

In future, researchers should aim to produce models that can simulate human 

tracking during target occlusion (tracking in the absence of visual feedback) and 

unpredictable step input signals, to further differentiate between tracking strategies of 

predictable and unpredictable targets. In studies of occlusion, it is more likely that stored 

representations of the target are utilised to extrapolate the trajectory beyond that which is 

used when perceiving target velocity and controlling cursor velocity. 

6.6.5 Conclusion 

We aimed to test whether feedback control systems could adequately account for 

observed behaviour when humans track both predictable and unpredictable targets whilst 

maintaining biologically-feasible sensory feedback duration. We found that models that 

controlled both the position and velocity of a cursor using delayed target information could 

suitably account for both a) tracking of pseudorandom targets with delayed latencies, and 

b) tracking of sinusoid targets with zero phase delay.  
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7.1 Abstract 

 Due to intrinsic sensorimotor delays in the CNS, humans tend to exhibit movement 

delays in response to stimuli. However, when target movements are predictable, humans 

can often compensate for these sensorimotor delays and track without a delay. In a 

previous study, a computational model was developed that could simulate continuous 

manual tracking behaviour for both predictable and unpredictable targets while a model 

loop delay, characterising human sensorimotor delay, was constrained to 200 ms (Parker et 

al., in preparation). The current study aimed to conduct further evaluations of this model, 

the Hierarchical Extrapolation Model (HEM), using a Position Control Model (PCM) as a 

baseline comparison. Firstly, the models were tested across target types with different 

difficulty levels (determined by the fundamental frequency of the signal). Second, models 

were validated for temporal consistency with new targets tracked after one week. Third, a 

different apparatus was used; a steering wheel – altering the required movements and 

feedback path. Fourth, models were explicitly tested for the accuracy of their individual 

predictions, against a general model (aggregate of other individual models). Twenty-four 

neuro-typical adult participants completed three blocks of 16 one-minute trials over one 

week (two in one session, and a final block after one week). Each block comprised 

pseudorandom and sinusoid targets of high and low difficulty. Models were optimised to 

individual tracking performance in block one and validated with data from blocks two and 

three. The findings of the previous study were successfully replicated with the new 

apparatus. We found that models accurately simulated performance on all target types and 

difficulties, even after one week had elapsed (3.26 - 6.03% root mean square error, r = .969 

- .996). Models showed individual specificity in their predictions: individual models fit 

significantly more accurately than aggregate models. The HEM model is a good candidate 

model of smooth pursuit manual tracking. Such individual models may find application in 

the rehabilitation domain. 
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7.2 Introduction 

During task-oriented movement, humans display very low variance in task–relevant 

parameters, such as end-point hand position, whilst variability in non-task-critical 

parameters, such as shoulder and elbow joint angles, is much higher (Latash et al., 2002; 

Scholz & Schöner, 1999). This difference may be explained by control of task-critical 

perceptions. Conversely, non-task-critical parameters may be free to vary (Latash et al., 

2002). This confers flexibility as these parameters can be altered continuously to 

consistently achieve stability in the task-critical perception across contexts, and 

compensate for disturbances. In well-practiced individuals this consistency can be 

observed in the parameters of perceptual control systems (Bourbon, 1996; Bourbon, 

Copeland, Dyer, Harman, & Mosley, 1990). Between individuals, differences in 

performance may arise due to differences in task goals, alongside physiological differences 

such as reductions in sensor acuity and reaction time with age (Krampe, 2002; Liao, 

Jagacinski, & Greenberg, 1997), and volume of relevant task practice (Noble et al., 1955; 

Notterman & Tufano, 1980). It might be expected that general models derived from 

averaging responses across multiple participants may not capture these idiosyncrasies. This 

method may impede progress in understanding and predicting individual functioning 

(Mansell & Huddy, 2018). An alternative, the functional modelling approach (Runkel, 

2007), aims to construct and test mathematically-specified models of individual 

participants. 

The functional modelling approach (Mansell & Huddy, 2018; Runkel, 2007) begins 

with an inference about which perceptual variables the individual is controlling in a task. A 

model is then constructed based on the inferred control process and optimised to an 

individual’s task data. The model then simulates another dataset from that participant and 

the fit of the data to the individual’s behaviour can be assessed. The approach has mostly 

been used to study motor control in visuo-manual tasks as these produce large quantities of 

continuous behavioural data for model fitting. Constructing models of individual 

performance may enable superior predictions of individual behaviour and performance in 

future trials than general models (Mansell & Huddy, 2018; Parker et al., 2017). Many such 

general computational models have been developed to specify task variables that are 

controlled and their mechanisms (Abdel-Malek & Marmarelis, 1988, 1990; Levison, 

Baron, & Kleinman, 1969; McRuer & Jex, 1967; Stepp & Turvey, 2017; Viviani, 

Campadelli, & Mounoud, 1987; Viviani & Mounoud, 1990). However, perceptual control 
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theory (Powers, 1973; Powers et al., 1960; Powers et al., 1960), using the functional 

modelling approach, may be uniquely placed to produce accurate fits to individual human 

behaviour.  

Perceptual control theory (PCT) proposes that individuals behave in order to 

achieve perceptual goals (Powers, 1973, 2008; Powers et al., 1960). The CNS is proposed 

to operate as a hierarchy of perceptual control units (Powers et al., 1960). Each control unit 

attempts to maintain a controlled perceptual variable at a reference (goal) value. The 

reference value is specified by the reference signal, a top-down projection linking the 

output of one control unit to the unit below. This reference value is compared to an 

incoming perceptual signal, yielding an error term. This error term drives output (and 

consequently the reference signal for the unit below). At the lowest level of the hierarchy, 

the output motivates an action. The action has an effect on the environment, which changes 

the inputs to the hierarchy (closed loop control). As individual humans differ in their 

motivations and goals, so do their references. That is, both the perceptual variables 

individuals control in a task as well as the reference values to which the same variable is 

controlled. The latter has been demonstrated in tracking studies where the model reference 

parameter shows individual differences and consistency (Bourbon, 1996b; Bourbon & 

Powers, 1999; Parker et al., 2017). The dynamic nature of the control system enables 

flexibility in tracking different targets, and accounting for disturbances. The parameters of 

models can be adjusted based on task demands. 

In the tracking domain, PCT computational models have accurately simulated the 

behaviour of individual participants (Bourbon, 1996, 1999; Bourbon et al., 1990; Marken, 

1991; Powers, 1978, 2008). In fact, models could still fit individual participant 

performance if tested on new data collected from that participant after one or five years 

(Bourbon, 1996b; Bourbon et al., 1990b). In a recent study we tested whether models, 

optimised to individual performance, would show individual-specificity in their predictions 

of tracking performance (Parker et al., 2017). Specifically, we hypothesised that each 

individual participant’s tracking performance would be more accurately simulated by a 

model optimised to their data than by a general model derived from parameters averaged 

across all participants. This prediction was confirmed. This demonstrated that estimates of 

a participant’s control parameters characterised their individual control strategy and could 

be used to predict their performance.  
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In the Parker et al. (2017) study, participants tracked only one type of target: 

pseudorandom input signals. There is evidence that tracking performance differs 

qualitatively between complex targets, such as pseudorandom targets, and those that move 

in periodic or regular patterns, like simple sinusoids. For example, individuals track 

pseudorandom targets with a phase delay of approximately 180 ms, which is presumed to 

arise from sensorimotor delays in processing of stimuli in the CNS (Abdel-Malek & 

Marmarelis, 1988, 1990; Bekey, 1962; Hill & Raab, 2005; Neilson et al., 1993; Viviani & 

Mounoud, 1990). However, no such tracking delay is exhibited with sinusoid targets delay 

(Neilson et al., 1993; Poulton, 1952b, 1952a; Stark et al., 1961; Vercher & Gauthier, 1992; 

Viviani & Mounoud, 1990). This has been described as zero-phase delay tracking (Inoue & 

Sakaguchi, 2014; Yu et al., 2014), in which the cursor may alternate between slight phase 

advance and phase delay (Inoue & Sakaguchi, 2014). The reduction in tracking delay for 

sinusoid targets is thought to be underpinned by anticipatory strategies which act to 

compensate for sensorimotor delays (Inoue & Sakaguchi, 2014; Khoramshahi et al., 2014; 

Poulton, 1952a, 1952b; Yu et al., 2014). The PCT Position Control Model (PCM), whilst 

showing individual specificity in predictions for pseudorandom targets, was not expected 

to accurately simulate performance for sinusoid signals. 

In a second study, we extended the PCT control model to account for anticipatory 

tracking of sinusoid signals (Parker et al., in preparation).As we had expected, the PCM 

could not sufficiently compensate for delays when these were fixed within the model at 

biologically plausible duration. We adapted the PCM to enable it to extrapolate the target 

position from the target’s previous position and velocity (Khoei et al., 2013; Pavel et al., 

1992; Zago et al., 2010). In contrast to the PCM, the adapted model could simulate zero 

phase delay tracking of sinusoid targets accurately in the presence of sensorimotor delays. 

It was concluded that control of extrapolated position is a plausible mechanism for 

compensating sensorimotor delay and may underpin anticipation in manual tracking. 

However, the study had a number of limitations. 

Firstly, the adapted models were validated only with data collected in the same 

experimental session. This is unlike the first study in which the PCM was validated on new 

pseudorandom data collected one week later (Parker et al., 2017). Therefore it is unclear 

whether the adapted model shows individual specificity in parameters or predictions for 

tracking of sinusoid targets. Secondly, in both of the above studies each participant tracked 

a different set of randomly generated target signals. We could not directly compare 
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between participants on the same target signals or compare individual model predictions on 

the same target patterns. Thirdly, substantial evidence exists that individual tracking 

characteristics are affected by target speed. In studies of tracking behaviour when 

individuals track sum-of-sinusoid targets of increasing bandwidth, the phase delay is 

reduced and the gain increases (Abdel-Malek & Marmarelis, 1988; Neilson et al., 1993). It 

is possible that the HEM is suitable for tracking target signals only of the specific 

bandwidth studied, but would not generalise to targets that moved more quickly. A robust 

model would accurately simulate human tracking performance across different task 

constraints.  

The current study aimed to address these shortcomings and establish whether the 

model could generalise across different task constraints such as target difficulty (speed) 

and across apparatus, and produce accurate predictions of behaviour over time. Participants 

tracked sinusoid and pseudorandom targets in three blocks in two sessions separated by 

one week. The methodology was very similar to previous studies (Parker et al. 2017; in 

preparation) with a few critical differences. Firstly, the tracking apparatus was a steering 

wheel rather than a joystick, and the target moved horizontally rather than vertically. 

Second, both target types (sinusoid and pseudorandom) were tested at two difficulty levels 

(one faster, one slower). Third, participants each tracked the same combination of target 

signals (in a counterbalanced order) so that tracking performance and models could be 

directly compared across participants. Crucially, model simulation accuracy was assessed 

over one week to establish whether models robustly accounted for individual control 

characteristics. We hypothesised that participants would track sinusoids more accurately 

than pseudorandom targets, and low difficulty targets more accurately than high difficulty 

targets. We wished to test whether the PCT internal reference value would contribute 

unique variance to simulation accuracy for both models in all targets. With regards to 

model simulation accuracy, we hypothesised that there would be no difference in PCM and 

HEM simulation accuracy for pseudorandom targets. However, that the HEM would 

provide a superior fit to sinusoid tracking data than the PCM. Similarly, we predicted that 

the HEM would match the tracking phase delay and amplitude of participants’ cursors 

more accurately than the PCM for sinusoid targets, but there would be no difference for 

pseudorandom targets. We hypothesised that each participant’s tracking data (validation) 

would be more accurately simulated by their own optimised model than the general 
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(aggregate) model. Finally, we expected that these models would generalise to the new 

apparatus, the steering wheel. 

7.3 Method 

7.3.1 Design 

In the experiment, participants used a steering wheel to complete one-minute trials 

of a pursuit tracking task. In the task, participants had to control the position of a cursor to 

align it with a target signal that moved in a sinusoid or pseudorandom (sum-of-sines) 

pattern in the horizontal direction (Figure 7.1). Participants completed three blocks of 20 

trials each. The first 16 trials of each block comprised four sinusoid trials at low difficulty, 

four trials sinusoid trials at a high difficulty, four pseudorandom trials at a low difficulty 

and four pseudorandom trials at a higher difficulty. The order of these sets was 

counterbalanced such that each of the 24 participants completed a different order. The 

counterbalancing order was randomly assigned to each participant in each block; thus 

participants didn’t complete the set of sixteen runs in the same order each block. 

The other four trials in each block consisted of two sinusoid trials - one each at high 

and one at low difficulty - with a period of target occlusion in the last 20% of the trial, and 

two step input signals. These final four trials will be analysed in a separate research article. 

These four runs were always completed after the 16 counterbalanced trials. 

The first two blocks were completed in a single one-hour session. The first block 

was the training block. Two sets of 96 computer models (one for each target type for each 

participant) were optimised to the tracking data of participants in this block. Half of the 96 

models were PCMs; the other half were HEMs (These models were developed and are 

outlined in the previous study; Parker et al. (in preparation). The second block comprised 

the first validation set; the optimised models tracked the target signals and these simulated 

cursor movements were compared to those of the participant from which the model was 

derived. The resultant fit was assessed by Root Mean Square Error (RMSE). This 

determined how accurately each model simulated the cursor movements of the participants. 

A third block was completed in a second session at least one week after the first session. 

This block was a second validation and was used to determine whether the models reliably 

simulated each individual’s performance. Every trial that the participants completed was 

seeded with a different random number such that the pattern was differed (pseudorandom 

trials), or the starting direction of the target signal was randomised (simple sinusoid trials). 
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Participants tracked the same target signals though in a different order. This enabled direct 

comparisons of tracking accuracy.  

7.3.2 Participants 

Twenty-four healthy adult participants were recruited from the university. Ethical 

approval for the study was granted by the University ethics committee. Undergraduate 

student participants were compensated for their participation with course credits. 

Participants were excluded if they had any diagnosis of an uncorrected visual impairment 

or any diagnosed motor impairments. 

In a previous study in which we investigated individual specificity of PCM with the 

same analysis as we intended in the current study (self-aggregate). In the previous study 

the sample size was 20 participants (Parker et al., 2017), and the analysis was a two–way 

repeated measures ANOVA with block and model (self-aggregate) as independent 

variables. The main effect of self-other was significant with an effect size (partial eta2) of 

.232, f=.550 (SPSS). We conducted an a priori power calculation with this effect size to 

determine the required sample size for sufficient power (.8) in the current experiment 

(G*Power 3.1.9.2). This indicated that a sample size of 24 participants was required. This 

was the number of possible variants of the order (four conditions), thus 24 participants 

were selected to perfectly counterbalance the order. This compares favourably to other 

similar studies which used between 12 and 20 participants (Soechting, Rao, & Juveli, 

2010; Viviani et al., 1987; Viviani & Mounoud, 1990; Voss, McCandliss, Ghajar, & Suh, 

2007). 
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Figure 7.1 Diagram of the task and hypothesised mechanism of control in the participant 

 

7.3.3 Apparatus 

Tracking task 

The manual pursuit task was conducted in a custom software application. This was 

necessary to support the apparatus used (steering wheel). In the task, participants moved 

the steering wheel to control the visual position of a green cursor mark to align it with a red 

target mark as the target that moved horizontally across the screen in either a simple 

sinusoid or pseudorandom (sum-of-sines) pattern that lasted for one minute. The 

characteristics of the signal were altered by manipulating its fundamental frequency and 

the number of sine and cosine signals that were summed. Sinusoid signals comprised a 

constant term at zero and a single sine with a random coefficient, the number of cycles 

within the one minute run was determined by the frequency of the signal, either 0.0925 Hz 

(low difficulty) or 0.185 Hz (high difficulty). Pseudorandom signals were created by a 

Fourier transform, and comprised 10 sines and 10 cosines, each with a random coefficient, 

in addition to a constant (always zero). The difficulty of the signal was determined by the 



 

247 
 

fundamental frequency of the transform. This was also either .0925 Hz (low difficulty) or 

.185 Hz (high difficulty). As the fundamental frequency was the lowest frequency 

component, the average frequency was higher for pseudorandom targets than sinusoid 

targets. The maximum displacement of the cursor on the screen was 30.5 cm. The 

maximum displacement of the target (and the amplitude of the sinusoid target) was 28.5 

cm. 

The positions of the target and cursor were sampled every 26 ms and recorded in an 

output comma separated file. Data were extracted and analysed in Mathworks Matlab, 

where all model optimisation and simulation was conducted. Statistical analyses were 

conducted in IBM SPSS 22. 

Force-feedback steering wheel 

The ThrustMaster T300RS is a force feedback steering wheel with 1080 degrees of 

rotation. This full rotational range was used, thus a full 540 degree movement from the 

centreline to either side would reach the maximum displacement of the cursor on the left or 

right of the screen (15.25 cm from centreline in either direction). The wheel had a 28 cm 

diameter and a brushless motor provided force-feedback capabilities (force centring).  

7.3.4 Procedure 

Participants were instructed to read the written instructions for the task and any questions 

regarding the apparatus and task were answered by the experimenter. Participants then 

completed a practice trial on each of the target types in the order; pseudorandom low 

difficulty, sinusoid low difficulty, pseudorandom high difficulty, sinusoid high difficulty. 

Participants then completed the first block of trials which consisted of four sets of four 

trials in a counterbalanced order. These four sets were pseudorandom low difficulty, 

pseudorandom high difficulty, sinusoid low difficulty and sinusoid high difficulty.  

 Participants then had a five minutes break in which they completed the Edinburgh 

Handedness Inventory short form (Veale, 2014) prior to completing the second block of 

trials. This was identical to the first block of trials. The first four sets of trials were again 

completed in a counterbalanced order. Following completion of these trials the first 

experimental session ended. 

After at least one week, the participant returned for the second experimental 

session. The participant completed a final block of 20 trials (block 3). The block structure 
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was identical to the previous two blocks except that the first four sets of trials (16 trials) 

were completed in a separate counterbalanced order. Trials in all three blocks were seeded 

with a different random number such that target signals followed a different pattern in each 

case for pseudorandom and step signal trials, and differed in the starting direction for 

sinusoid targets and occluded sinusoids. The seed numbers were the same for each 

participant such that each participant completed the same target patterns, but each 

participant encountered no two pseudorandom trials with the same pattern.  

7.3.5 Modelling procedure 

Computational models 

Two computational model architectures were used, both adapted from previous 

experiments (Parker et al. 2017; in preparation). The first was a canonical PCT PCM, 

adapted from Living Control Systems III demo suite (Powers, 2008), which was adapted in 

Matlab in the previous experiments (Parker et al, 2017, Parker et al., in preparation). The 

second model was a previously developed Hierarchical model with a position extrapolation 

unit and a velocity control unit (HEM; Parker et al., in preparation). A diagram of the PCM 

can be found in Figure 7.2, and a diagram of the HEM in Figure 7.3. 
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Figure 7.2 Diagram of the PCM 

 



250 
 

F
ig

u
re 7

.3
 D

iag
ram

 o
f th

e H
E

M
 

 



 

251 
 

Model optimisation 

 Models were optimised using the non-linear least squares ‘lsqnonlin’ function in 

Matlab. The function tolerance was set to 1x10
-8

 and the maximum number of iterations 

performed was 2000. The initial conditions and boundaries for optimisation for each 

parameter were: output gains, 1 with boundaries [0, 500], damping constants 0 [0, 1], 

reference values 0 [-500, 500]. The loop delay could take only integer values in a number 

of samples and was optimised with a minimum of seven samples (182 ms), as this was the 

closest number of samples to the minimum biologically feasible estimate of the 

sensorimotor and central processing delays in tracking in previous modelling experiments 

(182 ms; Parker et al. 2017; in preparation). Model parameters were optimised for each 

trial, for each target and difficulty level (16 trials) for each participant. The optimal model 

for each target and difficulty level combination was selected by the lowest produced model 

simulation error value (RMSE).  

Model validation 

 Optimal parameter combinations for each target and difficulty level combination 

were used to validate models in trials in blocks two and three (16 trials each, four for each 

target and difficulty combination). Any outliers were identified as model fit values more 

than three standard deviations above the mean for that participant, within that target type 

and difficulty level. Trials would then be simulated again with the second best fitting 

parameter combination from optimisation. This would be continued until no outlying data 

were produced.  

7.3.6 Analyses 

Tracking Accuracy 

We conducted a repeated measures ANOVA to test the hypothesis that sinusoid 

targets were tracked more accurately than pseudorandom targets, low difficulty targets 

more accurately than high difficulty targets. The independent variables were block (three 

levels), target type (two levels; pseudorandom and sinusoid) and difficulty (two levels; low 

difficulty and high difficulty). We investigated any interactions by breaking down this 

ANOVA by block and investigating the effects of target and difficulty. 

Amplitude ratio and phase delay 

Spectral analysis was used to generate secondary statistics that characterised 

tracking performance. These statistics were: the average phase difference, in milliseconds, 
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between the target signal and the participant cursor; and the amplitude ratio between the 

cursor and target displacement over the trial. The analysis replicated the analysis 

conducted in a previous article (Parker et al., in preparation) and was based on an analysis 

described in another article (Cofré Lizama et al., 2013). The analysis was conducted using 

custom software, designed in Matlab and adapted from the previous experiment (Parker et 

al., in preparation). The software used the cpsd and pwelch (Welch) functions which 

estimate the cross-power spectral density and power spectral density of a signal using the 

Welch method with overlapping segmentation (Hamming windows). The window length 

was .25 multiplied by the trial length (samples), and the overlap was 0.9 multiplied by the 

window length. Target and cursor signals were zero padded to attain a 0.02 Hz resolution. 

The procedure is documented in the previous paper (Parker et al. in preparation).  

To characterise the errors made by participants when tracking the different targets, 

we employed one-sample t-tests. These aimed to determine whether there were significant 

amplitude and phase differences between the different target types and difficulty levels. If 

the cursor matched the amplitude of the target perfectly the amplitude would equal 1. In 

contrast, no phase delay of the cursor relative to the target would give a value of 0. Thus 

these values were determined to be the thresholds for the one-sample t-tests. Values of 

amplitude ratio and phase delay of the cursor were averaged across the three blocks.  

Contributions of parameters to individual model fit 

 Each parameter of the model was assessed for its contribution to model simulation 

accuracy. Reference value was added last to establish whether the internally specified 

reference value would contribute uniquely to variance above the other model parameters. 

Thus regressions were conducted with the parameters from optimisation trials (block one) 

as predictor variables (coefficients), and model simulation error for that trial as the 

outcome variable. Based on a previous experiment (Parker et al., 2017), parameters were 

expected to hold a quadratic or cubic relationship with model simulation error so 

polynomial regression was performed. Quadratic regression statistics are reported for each 

of the target and difficulty level combinations. The change in r square value when 

reference value was added indicated whether the internally-set reference value parameter 

was key to the model fit (separate significant contribution to explained variance). Akaike 

Information Criterion values (AIC; Akaike, 1974) determined which model best accounted 

for the data when controlling for the number of coefficients in the regression model. 
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Model simulation accuracy 

With regards to model accuracy in block one (optimisation), a repeated measures 

ANOVA was conducted to investigate whether models accurately simulated participant 

tracking data for the different targets across the difficulty levels. Thus, the repeated 

measures independent variables were model (two levels, position control and hierarchical), 

target type (two levels; pseudorandom and sinusoid), and difficulty (low and high).  

For blocks 2 and 3 (model validation), the same analysis was conducted with 

‘block’ as an additional repeated measures independent variable. Thus the ANOVA had 

four independent variables: block, model, target type and difficulty, each with two levels.  

We collected phase delay, amplitude ratio and coherence data characterising the fit 

between the model and the participant cursor. A perfect match of amplitude would equal 

an amplitude ratio of 1. A perfect match to the phase delay that the participant produced 

would equal 0. Therefore we conducted a series of paired t-tests to determine whether the 

phase delay differed significantly between models. If a difference was found, and the 

models produced statistics the same direction from the threshold, this difference indicated 

that one model was matching the participant cursor more accurately. 

Test of individual specificity of the model 

  An analysis of individual specificity was conducted. This required each individual 

model from the optimisation data to simulate each participant’s tracking trials in validation 

blocks (blocks two and three). Each participant’s individual model fit to their own 

validation data (self-fit) was compared to the aggregate of the fit of each of the other 23 

individuals (aggregate fit). Thus an ANOVA was conducted with four repeated measures 

independent variables: Model type (two levels; self and aggregate), Block (two levels; 

blocks 2 and 3), target type (two levels; pseudorandom and sinusoid), and target difficulty 

(two levels; low difficulty and high difficulty). The dependent variable was model 

simulation error (RMSE). 

7.4 Results 

 Twenty-four individuals participated. Their mean age was 20 (SD = 1.89). Twenty 

participants were female and four were male. Twenty-one participants were right-handed, 

two mixed-handed and one was left handed (assessed via Edinburgh Handedness 

Inventory). No outliers were found in tracking data and all were included in the analysis. 
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No outliers were found in model data and therefore no outlier procedure to simulate data 

with second-best parameters was conducted for any participant model data. 

7.4.1 Tracking accuracy 

Figures 7.4 and 7.5 show typical tracking data for each of target. All tracking data 

were normally distributed.  
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In the thee-way ANOVA investigating differences in tracking accuracy, there was a 

three way interaction between block, target type and difficulty (Table 7.1). Table 7.2 

displays the two-way ANOVAs following the three-way interaction. For the two-way 

ANOVA within pseudorandom targets, there was an interaction between block and 

difficulty and this was also the case within sinusoid targets. Therefore, for low difficulty 

targets of both target types, tracking error reduced across blocks. However, for high 

difficulty pseudorandom targets, tracking error increased between blocks 1 and 2, but 

decreased from 2 to 3. For high difficulty sinusoid targets, error decreased between blocks 

1 and 2, but not significantly between blocks 2 and 3. These patterns can be observed in 

Figure 7.6, where the error bars indicate the repeated measures 95% confidence interval for 

the mean. 

Table 7.1 Three-way ANOVA of tracking accuracy 

ANOVA Effect Trend DoF F P partial η2 

Three-way Block Linear 2, 46 50.88 <.001 0.689 

 

Target 

 

1, 23 142.05 <.001 0.861 

 

Difficulty 

 

1, 23 166.92 <.001 0.879 

 

Block x Target 

 

2, 46 6.24 0.004 0.213 

 

Block x Difficulty 

 

2, 46 26.11 <.001 0.532 

 

Target x B41Difficulty 

 

1, 23 11.52 <.001 0.334 

  

Black x Target x 

Difficulty   1, 23 8.79 0.001 0.276 
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Table 7.2 Two-way ANOVAs investigating tracking accuracy 

ANOVA Effect (trend) DoF F p partial η2 

Two-way within 

Pseudorandom Targets Block (Quadratic) 2, 46 31.68 <.001 .579 

 

Difficulty 1, 23 111.22 <.001 .829 

 

Block x Difficulty 2, 46 24.64 <.001 .517 

Two-way within Sinusoid 

Targets Block (Linear) 2, 46 20.81 <.001 .247 

 

Difficulty 1, 23 99.02 <.001 .812 

 

Block x Difficulty 2, 46 5.94 .005 .205 

Two-way within Low 

Difficulty Block (Quadratic) 2, 46 11.31 <.001 .330 

 

Target 1,23 103.20 <.001 .818 

 

Block x Difficulty 1, 23 0.78 .463 .033 

Two-way within High 

Difficulty Block (Quadratic) 2, 46 56.11 <.001 .709 

 

Target 1, 23 87.73 <.001 .792 

 

Block x Difficulty 1, 23 9.87 <.001 .300 

Two-way within Block 1 Target 1, 23 88.67 <.001 .794 

 

Difficulty 1, 23 125.26 <.001 .845 

 

Target x Difficulty 1, 23 1.50 .234 .061 

Two-way within Block 2 Target 1, 23 71.45 <.001 .756 

 

Difficulty 1, 23 134.55 <.001 .854 

 

Target x Difficulty 1, 23 21.08 <.001 .478 

Two-way within Block 3 Target 1, 23 66.83 <.001 .744 

 

Difficulty 1, 23 42.99 <.001 .651 

  Target x Difficulty 1, 23 0.01 .926 .001 

Note. DoF refers to the degrees of freedom regarding each F value
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Figure 7.6 Mean participant tracking error for different target types and difficulty levels 

for each block 

 
 

Within low difficulty targets, there were main effects of block (quadratic) and 

target type, but no interaction. Tracking error was lower for sinusoid targets than for 

pseudorandom targets and decreased over consecutive blocks. Within high difficulty 

targets, there was a significant quadratic interaction between block and target. This 

indicated that for high difficulty targets, sinusoids were tracked more accurately than 

pseudorandom targets only in blocks 1 and 2, but not in block 3 (Figure 7.6). 

When block 1 was considered separately, there were main effects of target type and 

difficulty on tracking performance, but no interaction. Thus, in the first block, sinusoid 

targets were tracked more accurately than pseudorandom targets and low difficulty targets 

were tracked more accurately than high difficulty targets. 

In block 2, there was a significant interaction between target type and difficulty. 

Sinusoids of low difficulty were tracked with lower error than pseudorandom targets of 



260 
 

high difficulty, but there was no difference in tracking error between pseudorandom targets 

of low difficulty and sinusoids of high difficulty (Figure 7.6). 

In block 3, there were main effects of target type and difficulty, and no interaction. 

Participants tracked sinusoid targets with less error than pseudorandom targets, and tracked 

targets of low difficulty with lower error than high difficulty targets.  

Figure 7.7 displays means and standard errors of the amplitude ratio and phase 

delay between participant cursors and targets. For phase delay, participant cursors tracked 

low difficulty pseudorandom, high difficulty pseudorandom and high difficulty sinusoid 

targets with a significant phase delay; low difficulty pseudorandom, t(23) = 10.25, p < .001; 

high difficulty pseudorandom,  t(23) = 11.88, p < .001; high difficulty sinusoid, t(23) = 7.46, p 

< .001. Participant cursors did not exhibit phase delay for low difficulty sinusoid targets, 

t(23) = 1.36, p = .118.  

The amplitude of the cursors were significantly lower than the amplitude of the 

target for sinusoid targets, but not for pseudorandom targets; low difficulty sinusoid 

targets, t(23)  = 2.20, p = .038; high difficulty sinusoid targets, t(23) = 2.49, p = .020; low 

difficulty pseudorandom targets t(23) = 1.78, p = .089; high difficulty pseudorandom targets; 

t(23) = 1.57, p = .131. 
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7.4.2 Contribution of parameters to model fit 

Table 7.3 and Table 7.4 provide summary statistics of the raw PCM and HEM 

model parameters at optimisation are for each target type and difficulty level combination 

Table 7.3 Summary statistics for the parameters of the PCM model during optimisation 

Target Loop Delay (ms) Position Gain  

Position 

Damping 

Position 

Reference 

  M SD M SD M SD M SD 

P1 201.23 36.23 11.16 2.64 0.50 0.50 0.64 0.45 

P2 219.38 55.55 10.22 3.32 0.42 0.49 1.67 1.49 

S1 182.27 2.67 13.26 1.46 0.47 0.48 0.27 0.34 

S2 182.27 2.67 13.36 1.53 0.76 0.42 0.75 0.44 

Note. Loop delay could take a minimum value of 182 ms based on previous estimates of 

sensorimotor delays in tracking (Section 7.3.5).
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Inspection of the regression R
2
 and AIC values showed that parameter values shared a 

quadratic relationship with model fit when quadratic and linear models were compared. 

Tables 7.5 and 7.6 display the respective statistics for the quadratic regression models. We 

predicted that reference value parameters would contribute uniquely to the variance in 

regression models. As hypothesised, for the PCM, the R
2
 change was significant when 

reference value was finally added to the regression model for pseudorandom low difficulty 

targets, and sinusoid targets of both low and high difficulty (Table 7.5). For the HCM, this 

was the case for pseudorandom targets but not sinusoid targets (Table 7.6). 
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7.4.3 Model simulation accuracy 

Optimisation: Block 1 

Figure 7.8 presents the means and repeated measures error bars of the differences in model 

fit by target type and difficulty within block 1. There were significant main effects of 

model (position control or hierarchical), target type, and difficulty. There were significant 

interactions between model and target type, and target type and difficulty, but no other 

interactions. Thus the accuracy of the model fit was affected by the target type but not the 

difficulty level. Table 7.7 reports the three-way ANOVA of model simulation accuracy in 

Block 1, and the two-way ANOVA investigating the interaction in which difficulty levels 

were factored together. In this ANOVA, the main effects of model and target type were 

significant. There was no interaction. The HEM simulated both sinusoid and 

pseudorandom targets with lower error than the PCM. Sinusoid targets were fitted more 

accurately than pseudorandom targets by both models (Figure 7.8). 
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Figure 7.8 Model simulation errors at optimisation for the different targets and difficulty 

levels (block 1) 
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Table 7.7 ANOVAs of model simulation accuracy in Block 1 

ANOVA Effect DoF F p 

partial 

η
2
 

Three-way Model 1, 23 24.93 <.001 0.52 

 

Target Type 1, 23 16.32 <.001 0.415 

 

Difficulty 1, 23 248.91 <.001 0.915 

 

Model x Target Type 1, 23 17.87 <.001 0.437 

 

Target x Difficulty 1, 23 5.09 0.034 0.181 

 

Model x Difficulty 1, 23 0.077 0.391 0.032 

 

Model x Target x 

Difficulty 1, 23 1.09 0.307 0.045 

Two-way with 

Difficulty factored 

together Model 1, 23 6.05 0.022 0.208 

 

Target Type 1, 23 7.99 0.01 0.258 

 

Model x Target 1, 23 1.782 0.195 0.072 
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The models differed significantly in how well they matched the phase delay that the 

participant produced (Figure 7.9). The HEM significantly more closely matched the phase 

delay for three of the target types; pseudorandom low difficulty targets, t(22) = 2.45, p = 

.023, low difficulty sinusoids, t(22) = 9.31, p < .001, and high difficulty sinusoids, t(23) = 

2.59, p = .016. The PCM more closely matched the target for high difficulty pseudorandom 

targets; t(22) = 5.18, p < .001.  

The HEM model more closely matched the amplitude that the participant produced 

for all target types and difficulty levels at optimisation (Figure 7.10): pseudorandom low 

difficulty targets; t(22) = 5.48, p < .001; high difficulty pseudorandom targets, t(22) = 7.00, p 

< .001; low difficulty sinusoid targets, t(22) = 3.44, p = .002; and high difficulty sinusoid 

targets, t(23) = 3.68, p = .001. The HEM more accurately emulated the phase and amplitude 

with which the participant tracked targets at optimisation. 
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Validation: Blocks 2 and 3 

Table 7.9 displays the four-way analyses of model simulation error across 

validations (blocks 2 and 3). All main effects were significant. Four interactions were 

significant: model and target type, block and difficulty, target type and difficulty, and 

block, model and target type (three-way). The other interactions were not significant. 

 

Table 7.9 Four-way ANOVA of model simulation error across the two validation blocks 

ANOVA Effect DoF F P 

partial 

η
2
 

Four-way Block 1, 23 20.26 <.001 .468 

 

Model 1, 23 23.88 <.001 .509 

 

Target Type 1, 23 5.88 .024 .203 

 

Difficulty 1, 23 103.11 <.001 .818 

 

Model x Target Type 1, 23 16.51 <.001 .418 

 

Block x Difficulty 1, 23 31.12 <.001 .418 

 

Target x Difficulty 1, 23 6.26 .020 .214 

 

Block x Model x Target Type 1, 23 4.82 .038 .173 

 

Block x Model 1, 23 0.71 .409 .030 

 

Block x Target Type 1, 23 0.65 .429 .027 

 

Model x Difficulty 1, 23 2.23 .149 .088 

 

Block x Model and Difficulty 1, 23 0.09 .773 .004 

 

Block x Target Type x Difficulty 1, 23 2.68 .115 .104 

  

Block x Model x Target Type x 

Difficulty 1, 23 1.49 .235 .061 

 

Table 7.10 reports the three-way analyses of model simulation error in block 2, and 

the two-way analysis with difficulty levels factored together. In the three-way ANOVA, 

the main effects of model, target type, and difficulty were significant; as was the 

interaction between model and target type.  

In the two-way ANOVA with difficulty levels factored together, there was a 

significant interaction. This indicated that for pseudorandom targets there was no 

improvement in tracking error for the HEM over the PCM. However, for sinusoid targets, 

the HEM resulted in significantly lower error than the PCM (Figure 7.11).
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Table 7.10 Three-way and two-way analyses of model simulation accuracy in block 2 

ANOVA Effect DoF F p 
partial 

η
2
 

Three-way 

Model 1, 23 16.08 < .001 .411 

Target Type 1, 23 5.58 .027 .195 

Difficulty 1, 23 140.83 < .001 .860 

Model x Target Type 1, 23 18.63 < .001 .447 

Model x Difficulty 1, 23 1.34 .260 .055 

Target x Difficulty 1, 23 1.21 .283 .050 

Model x Target Type x Difficulty 1, 23 1.10 .305 .046 

Two-way, 

Difficulty Levels 

factored together 

Model 1, 23 16.08 .001 .411 

Target 1, 23 5.58 .027 .195 

Target x Model 1, 23 18.63 < .001 .447 
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Figure 7.11 Model simulation errors for block 2 validation trials 
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Table 7.11 displays the results of the three-way and two-way ANOVAs for block 3. 

In the three-way ANOVA, two main effects were significant; model and difficulty. The 

main effect of target was not significant. Two interactions were significant; model and 

target, and target and difficulty. In the two-way ANOVA that investigated the model and 

target interaction with difficulty level factored together, the interaction between model and 

target was significant. Within pseudorandom targets, there was no difference in simulation 

error between the PCM and HEM. However, for sinusoid targets the HEM simulated 

tracking with significantly reduced error relative to the PCM (Figure 7.12).  

 

Table 7.11 Three-way and two-way analyses of model simulation accuracy in block 3 

ANOVA Effect DoF F p 
partial 

η
2
 

Three-way  

Model 1, 23 27.84 < .001 .548 

Difficulty 1, 23 34.85 < .001 .602 

Target 1, 23 1.81 .191 .073 

Model x Target 1, 23 10.46 .004 .313 

Target x Difficulty 1, 23 8.33 .008 .266 

Model x Difficulty  1, 23 2.71 .113 .106 

Model x Target x 

Difficulty 
1, 23 1.67 .209 .068 

Two-way, Difficulty Levels 

factored together 

Model 1, 23 27.84 < .001 .548 

Target 1, 23 1.81 .191 .073 

Model x Target 1, 23 10.46 .004 .313 
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Figure 7.12 Model simulation errors for block 3 validation trials 
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Figures 7.9 and 7.10, presented earlier, report the amplitude ratio and phase 

statistics for model-simulated cursors relative to participants’ cursors in blocks 2 and 3. In 

block 2, the HEM model more accurately matched the phase of the cursor for three of the 

targets: low difficulty pseudorandom, t(23)  = 2.59, p = .016; low difficulty sinusoid targets, 

t(23) = 10.07, p < .001; and high difficulty sinusoid targets, t(23) = 8.16, p < .001. For high 

difficulty pseudorandom targets, there was a significant difference between the phase 

produced by the two targets, but the HEM was phase advanced whereas the PEM was 

delayed, thus no reasonable conclusion could be drawn regarding which matched the 

participant cursor more closely; t(23) = 7.92, p < .001. In block 3, both models showed a 

phase delay for all targets, but the HEM model provided a significantly closer match to the 

cursor phase for three targets; high difficulty pseudorandom, t(23) = 7.00, p < .001; low 

difficulty sinusoid, t(23) = 10.23, p < .001; and high difficulty sinusoid t(23) = 8.23, p < .001. 

The phase difference was not significant for pseudorandom low difficulty targets, t(23) = 

1.61, p = .121. 

The amplitude ratios for the HEM simulated cursor were significantly closer to 1 

than for the PCM in all targets in block 2: Low difficulty pseudorandom, t(23) = 2.54, p = 

.019; high difficulty pseudorandom, t(23) = 3.23, p = .004; low difficulty sinusoid; t(23)  = 

2.57, p = .017; high difficulty sinusoid, t(23) = 2.89, p = .008. This was also the case in 

block 3: pseudorandom low difficulty, t(23) = 3.23, p = .007; pseudorandom high difficulty, 

t(23) = 7.01, p < .001; sinusoid low difficulty, t(23) = 3.81, p = .001; high difficulty sinusoid, 

t(23) = 2.87, p = .009.
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7.4.4 Test of individual specificity 

 Summary statistics are presented in Figure 7.13 (block 2) and Figure 7.14 (block 3). 

In line with predictions, in the four-way ANOVA, self-models simulated tracking data 

more accurately than aggregate models (main effect of model type); F(1,23) = 22.43, p < 

.001, partial η
2 

= .494. There were also significant main effects of target type; F(1,23) = 

26.99, p < .001, partial η
2 

= .540; difficulty, F(1,23) = 81.21, p < .001, partial η
2 

= .779; and 

block, F(1,23) = 15.11, p = .001, partial η
2 

= .396.  

Two interactions were significant; target and difficulty, F(1,23) = 34.78, p < .001, partial η
2 

= 

.602; and block, model type, target type and difficulty (four-way), F(1,23) = 5.59, p = .027, 

partial η
2 

= .196. No other interaction was significant; p = .209 - .631. 

 The four-way interaction was investigated to determine whether the predicted effect 

was qualified by the other independent variables. The four-way interaction could be 

qualified by a three-way interaction within sinusoid targets only. However, this could not 

be further qualified as no statistically significant two-way interactions (p > .05) were found 

when analysing levels of model or difficulty separately. However, the interaction when 

sinusoid targets were compared at high difficulty (block by model ANOVA) produced a 

trend towards significance in the two-way interaction, F(1,23) = 3.82, p = .063, partial η
2 

= 

.142. This difference can be observed in Figures 7.13 and 7.14 through comparison of the 

difference between self and aggregate model fits to high difficulty sinusoid targets. The 

main effect of model (self or aggregate) was significant in every ANOVA, indicating that 

it was not qualified by the interactions. Thus the prediction that self-models would show a 

superior fit to aggregate-models was confirmed. 
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Figure 7.13 Model simulation accuracy of self and aggregate models to participant 

tracking data in each of the four target type and difficulty level pairings: Block 2 
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Figure 7.14 Model simulation accuracy of self and aggregate models to participant 

tracking data in each of the four target type and difficulty level pairings: Block 3 
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7.5 Discussion 

7.5.1 Summary of findings 

Tracking performance varied between target types and difficulty levels. Although 

accuracy was worse for higher difficulty targets within each target type, low difficulty 

pseudorandom targets were tracked with a similar accuracy to high difficulty sinusoid 

targets. There was an observed learning effect across blocks within each target and 

difficulty level combination. Participants tracked all targets but the low difficulty sinusoid 

with a phase delay. Cursor amplitudes were significantly below that of the targets for 

sinusoid targets, but not pseudorandom targets (though the average amplitude ratios were, 

on average higher for sinusoid targets than pseudorandom targets). 

The prediction that the HEM would simulate sinusoid targets more accurately than 

PCM was supported across all three blocks. There was no difference in simulation 

accuracy between the models for pseudorandom targets at model validation, but the HEM 

simulated pseudorandom targets more accurately than PCM at optimisation (block 1). The 

HEM matched the phase delay and amplitude of the participants’ cursors more accurately 

than the PCM for pseudorandom targets of low difficulty and sinusoids of both high and 

low difficulties. For the HEM, it was generally found that individual models simulated 

performance more accurately than models derived from other participants’ tracking 

performance In other words, an individual’s tracking movements for new target signals (of 

the same difficulty and type) could be predicted by their individual model with superior 

accuracy to a model of aggregated performance across individuals. This test was not 

conducted for the PCM as this was done in a previous paper (Parker et al., 2017).  

7.5.2 Contribution of the reference value to model simulation accuracy 

 We hypothesised that the model reference values would contribute uniquely to the 

accuracy of the simulations of both pseudorandom and sinusoid tracking performance at 

both difficulty levels. The findings supported this prediction for simulations of low 

difficulty pseudorandom targets with the PCM. In addition, the quadratic regression model 

that included all parameters significantly predicted model fit. This was the same pattern of 

findings observed for low difficulty pseudorandom targets in the previous experiment 

(Parker et al., 2017). Taken together, the studies indicate that the individual-specific 

internally-specified reference signal is critical to individual PCMs of tracking performance 

for this target.  
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The current study extended this analysis to high difficulty pseudorandom targets, 

and also to another target type, sinusoid signals, at both high and low difficulty levels. The 

reference value of the PCM was not found to contribute uniquely to model fit to high 

difficulty pseudorandom targets. However, the reference value did contribute uniquely to 

model fit for sinusoid targets of both difficulty levels. This pattern of findings indicates 

that the position reference parameter is critical for model fits across target types. However, 

the absence of the finding within high difficulty pseudorandom targets may indicate that 

reference values were less consistent across trials for this target type and difficulty, and 

therefore not strong predictors of performance. This would indicate that participants were 

unable to keep the cursor in a tight and constant relationship with the target, perhaps due to 

difficulty of the task. Alternatively, it might indicate that participants learned to improve 

their performance over successive trials and this might have been associated with a change 

in the position reference over time. 

In the HEM, the position reference significantly contributed to the model fit for 

pseudorandom targets but not for sinusoid targets. Given the different pattern of findings 

across target types for each model, we can deduce that a difference between the models, 

rather than the target patterns, led to the contradictory findings. The main difference 

between the models is that the PCM is a single-unit architecture and the HEM model is a 

two-unit hierarchy. Therefore, the HEM model comprises two reference values whilst the 

PCM has just one. In the HEM model, the reference value to the position control unit 

(superordinate unit) is a free parameter for optimisation. This reference therefore takes a 

constant value. In contrast, the reference value to the velocity control unit (subordinate 

unit) dynamically varies over the course of a trial. Only the constant position reference is 

included within the regression model for HEM targets. A proportion of the variance in fit 

may therefore be accounted for by the velocity reference value in the HEM.  

7.5.3 Model simulation accuracy 

During optimisation, both sinusoid and pseudorandom targets were simulated more 

accurately by the HEM than the PCM. However, at validation (blocks 2 and 3), 

pseudorandom targets were simulated equally accurately by the PCM and the HEM. In 

contrast, sinusoid targets were simulated significantly more accurately by the HEM. This 

corroborates previous work (Parker et al., in preparation), and additionally demonstrates 

temporal consistency of the fit. That is, models retain high accuracy when simulating new 

targets tracked by the same participant one week later. The accuracy of the models over 
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time were similar to other studies of temporal consistency in the fit of PCM to tracking 

performance over one year (Bourbon et al., 1990b) and five years (Bourbon, 1996b). 

Regardless of the target type and difficulty level, HEMs seem to remain highly accurate in 

simulating the participant’s performance. 

The superior fit of the HEM compared to the PCM supports the general hypothesis 

that humans utilise both position and velocity inputs when tracking targets (Barnes & 

Asselman, 1991; Dessing, Peper, Bullock, & Beek, 2005; Fine et al., 2014; Hill, 2009; Hill 

& Raab, 2005; Krauzlis & Lisberger, 1994; Poulton, 1952b; Rosenbaum, 1975; Viviani et 

al., 1987; Viviani & Mounoud, 1990). Therefore it may be the case that participants utilise 

target velocity to compensate for sensorimotor delays when the target position when the 

motion of the target affords this (Khoramshahi et al., 2014; Yu et al., 2014). An example of 

a signal that would not afford this would be a step input signal. In a step signal, position 

change is instantaneous and therefore there is no change in velocity. In contrast, the target 

types used in this experiment could support both position extrapolation and velocity 

control because of the dependency between target velocity and position.  

While velocity may be used during tracking of both targets, it appears that target 

extrapolation may be used to a greater degree during tracking of sinusoid targets than 

pseudorandom targets. This is evidenced within the model parameters of the HEM. For the 

HEM, loop delays were longer for sinusoid targets than pseudorandom targets (Table 7.4). 

Despite longer loop delays, the phase delay between simulated cursors and targets were 

shorter for sinusoid signals (these phase delays can be derived simply by addition of the 

tracking phase delays in Figure 7.7 and the model phase delays in Figure 7.9). 

Consequently the delay compensation is much larger for sinusoid signals than for 

pseudorandom signals, which would require a longer extrapolation. This is supported by 

the finding of larger extrapolation gain parameter estimates for sinusoid targets than for 

pseudorandom targets in the HEM model. Increases in this parameter value would increase 

the magnitude of the extrapolation, and consequently the magnitude of the delay 

compensation. 

7.5.4 Individual specificity of the HEM 

 We hypothesised that the HEM would show individual specificity in predictions of 

tracking performance for each target type and difficulty level. This hypothesis was 

supported as we found that the HEM, optimised to an individual’s training data, more 
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accurately simulated that individual’s validation data than did the general model. This was 

the case even for new targets that the participant tracked one week later. These findings 

replicated those of a previous study (Parker et al., 2017) which found that the PCM made 

individual-specific predictions of pseudorandom (low difficulty) tracking performance. 

Thus, like the PCM in that study (Parker et al., 2017), the HEM can make individual 

predictions of participant behaviour across target types and difficulty, which remain 

accurate over time. This supports previous evidence that control characteristics and 

parameters can be stable over time (Bourbon, 1996; Bourbon et al., 1990; Franks & 

Stanley, 1991; Miyake, Loslever, & Hancock, 2001).  

Individual models may find application within the rehabilitation setting. Models 

may be used to identify or assess impairments within such populations (Allen et al., 2007; 

Oishi et al., 2010, 2011). Models may also be implemented to drive assistive robotic 

devices for physical therapy, many of which use tracking-type tasks within virtual 

environments (Maciejasz et al., 2014).  

7.5.5 Model generalisability  

In the current study the tracking apparatus was a steering wheel and the task 

required individuals to track on screen in the horizontal dimension. This was a departure 

from our previous experiments in which the experimental setup was a vertical tracking task 

with a joystick (Parker et al. 2017; 2018). Despite these differences, the key findings of the 

previous papers were replicated and extended. Thus, the models can robustly generalise to 

new physical environments in addition to target characteristics such as the complexity of 

the signal and its difficulty (speed). This is interesting because the movements required by 

the participant to control the cursor are very different between the steering wheel and 

joystick. Steering wheel rotation requires shoulder abduction and adduction in addition to 

pronation and supination of the forearm, whilst moving the joystick requires mostly elbow 

and wrist flexion and extension. Whilst the models in this paper do not attempt to account 

for the mechanism of muscle and joint action specifically, the model is equally able to 

account for the behaviour of the participant in both task designs. This indicates a 

perceptual and task-oriented basis to behaviour, whereby voluntary action is oriented 

toward reliably producing perceptual goals (target-cursor alignment in this case), where the 

physical means of achieving that end is only relevant insomuch as it achieves this goal 

(Marken, Mansell, & Khatib, 2013).  
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7.5.6 Limitations 

An effect of practice was observed for all targets; that is, tracking performance 

improved for all targets between the first block and the third block one week later. 

However the pattern of improvement differed for different targets and difficulty levels. 

Whilst learning effects were not the focus of the paper, differing rates of improvement in 

tracking performance would have affected the fit of individual models. If participants are 

learning throughout the experiment, then their control characteristics (and parameters) may 

change between blocks. This would reduce the accuracy of the model fit in later blocks. 

This is most likely to be the case for high difficulty targets of both target types, as these 

showed the largest performance gains from blocks 1 to 3, and the largest changes in phase 

and amplitude ratio (though inter-block differences were not tested statistically). We 

controlled for learning in a previous experiment (Parker et al., 2017) by having a larger 

number of practice trials and changing the target difficulty (speed) for different individuals 

to produce a coherent error rate across individuals. This added a confound to detection of 

individual differences as task constraints were not the same for all individuals, and this 

may have affected parameter values and fits. This confound was avoided in the current 

experiment as target difficulty was manipulated experimentally, as one aim of the current 

experiment was to investigate model simulation differences for different target difficulties 

(speeds).  

In the experiment we limited the models to a minimum loop delay value of 182 ms 

during optimisation. This was based on previous findings of loop delay optima in the 

region of 150 – 200 ms for PCM with pseudorandom targets, and approximately 250 ms 

for HEM (Parker et al. 2017, in preparation). The 182 ms value was a compromise between 

these estimates. However, this may have disadvantaged the PCM when simulating sinusoid 

targets as the optimised loop delays averaged to around this lower limit (Table 7.3). It is 

likely that the PCM would have produced better fits at shorter loop delays for sinusoid 

targets had this not been prevented. Although 180 ms is a plausible estimate of the 

sensorimotor delay in tracking, it is also plausible that visual feedback information may be 

used after about 100 – 150 ms (Brenner & Smeets, 2015; Day & Lyon, 2000; Foulkes & 

Miall, 2000; Franklin & Wolpert, 2008; Saunders & Knill, 2005). Future studies might use 

100 ms as a threshold for loop delay during optimisations as a liberal estimate. 

The HEM demonstrated an improved fit to sinusoid tracking relative to the PCM in 

all blocks. However, whilst sinusoid targets were modelled more accurately than 
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pseudorandom targets with the HEM, the tracking accuracy for sinusoids was substantially 

higher than for pseudorandom targets to begin with. In fact, the improvement in HEM fit 

over tracking accuracy was substantially larger for pseudorandom targets than for 

sinusoids. This may indicate that there are aspects of the control strategy participants use 

when tracking sinusoids that are not accounted for even by the HEM. It is possible that 

participants use another strategy such as replicating the pattern of displacement over a 

cycle. This latter approach has been termed course anticipation (Poulton, 1952a). There are 

a number of studies that indicate that this method may be used to track objects once the 

participant realises the periodicity of the target signal (Bahill & McDonald, 1983; Leist et 

al., 1987). In addition, intermittent sampling models that generate ballistic movements 

(Gawthrop & Wang, 2011; Gollee et al., 2017; Inoue & Sakaguchi, 2014) have been 

proposed that may account for discontinuities in the trace , such as the inconsistency in 

phase delay during tracking of sinusoid targets (Inoue & Sakaguchi, 2014).  

7.5.7 Conclusion 

 The current article we aimed to test the individual-specificity of a HEM of pursuit 

performance developed in a previous study (Parker et al., in preparation). The model can 

compensate for sensorimotor delays when tracking sinusoid targets. The model 

demonstrated temporal consistency in predictions of individual performance under 

different target conditions. Individual models fit data more accurately than did general 

models. Thus the HEM can both generalise across a range of task constraints and over 

time. The individual modelling approach facilitates robust testing of hypothesised 

mechanisms. 
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Chapter 8: General Discussion 

8.1 Chapter overview 

This chapter will provide an overall, general discussion in relation to the body of 

work presented within this thesis. First, its overarching aim will be stated; followed by 

specific key objectives and specific hypotheses. In section 8.3, the findings of each thesis 

chapter are summarised in relation to these objectives and hypotheses; in section 8.4, 

overall strengths and limitations of the research presented in this thesis are discussed. In 

section 8.5 recommendations for future research priorities are made, framed within the 

present aims. The first subsection addresses further evaluations of the proof-of-principle of 

PCT. The second subsection addresses research priorities toward the development of an 

adaptive robotic device for motor rehabilitation. Finally, overarching conclusions for the 

thesis as a whole are presented in section 8.6.  

8.2 Thesis aim 

The aim of this thesis was to test the proof-of-concept for applying PCT to upper 

limb motor rehabilitation. The objectives followed directly from this aim, and the thesis is 

organised around these objectives. This research agenda, including both completed and 

projected future objectives, is outlined in Figure 8.1. Those objectives that are addressed 

within this thesis are highlighted in green.  
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Figure 8.1 Research agenda 

Note. Phases one and two of the research agenda were completed within this thesis 

8.3 Objectives, hypotheses and findings 

8.3.1 Is RT with distal upper limb rehabilitation devices efficacious? 

The primary focus of the scoping systematic review and meta-analysis presented in 

Chapter 3 was to address the efficacy of distal upper limb RT. Efficacy was defined as 

significant gains in clinical outcome measures categorised by domains of the World Health 

Organisation (WHO) International Classification of Functioning, Disability and Health 

(ICF; WHO, 2001). The categories were measures of impairment, and measures of activity 

and participation.  

Hypothesis 1.a Training with a device will be efficacious for improving function 

following neurological conditions other than stroke. 

The review identified only a single study that fit the inclusion criteria to evaluate 

the efficacy of distal UL training in a non-stroke population (Weightman et al., 2011).The 

sample was 18 children with CP. Whilst a number of kinematic variables improved, data 

were only collected on one clinical outcome measure; the COPM (Law et al., 1990). This 

was a self-report measure of activity and participation, on which the children showed 
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significant gains. This suggests that device training may be feasible for this population. 

However, the lack of behavioural outcome measures or a control group of CP participants 

which did not undergo RT, in addition to the small overall sample, would make any 

judgement of efficacy would be premature. We could not find any other studies with 

samples of participants with neurological conditions other than stroke, who had received 

distal end-effector RT. Evidently we must conclude that it is currently unclear whether 

training would be suitable for populations other than stroke and CP. 

Hypothesis 1.b Distal end-effector RT reduces impairment in the distal and proximal 

upper limb in stroke patients. 

Two devices, the AMADEO and BiManuTrack, have undergone methodologically 

rigorous efficacy evaluations in randomised controlled trials (RCTs). In these studies, 

training with the AMADEO and BiManuTrack devices consistently resulted in reductions 

in impairment. The efficacy of training with the BiManuTrack relative to usual CT was 

evaluated in a meta-analysis. The clinical outcome measure was the FMA (Fugl-Meyer et 

al., 1975). The overall effect was non-significant, indicating that training with the 

BiManuTrack was equally efficacious in reducing impairment as CT. A number of other 

studies, mostly proof-of-concept, assessed impairment outcome measures in stroke 

populations receiving RT. These studies mostly found significant reductions in impairment 

measures. Those studies that did not find reductions in impairment did not have large 

enough samples to conduct statistical tests. In studies that reported reductions in 

impairment and had a follow up period, training gains were maintained at follow-up. 

Hypothesis 1.c Distal end-effector RT leads to improved functional abilities in stroke 

patients as measured by activity/participation outcome measures. 

 The evidence for functional improvements with RT was assessed by activity and 

participation measures. There was some evidence of clinical improvement in these 

measures in RCTs. There was less consistent evidence of functional gains in proof-of-

concept studies. It was concluded that the preliminary evidence suggests RT training can 

be efficacious in facilitating functional recovery in stroke patients. Functional imrovements 

were maintained in follow-up assessments. 

Synthesis 

With regard to the objective (8.3.1), findings indicated distal upper limb training 

can be reduce impairments and may facilitate functional recovery in stroke patients. In 
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non-stroke populations, the number and quality of studies of distal upper limb training was 

insufficient to draw conclusions regarding efficacy. Most devices have not been evaluated 

in RCTs; trials are mainly early-stage pilot studies and comprise high risk of bias. Distal 

upper limb RT should be considered a potential technology for enhancing rehabilitation 

outcomes in stroke patients. As the range of training protocols differed widely between 

studies it is unclear which aspects of device or study design best promote functional 

recovery. However, it should be noted that reviews of proximal (elbow and shoulder) 

upper limb training report no improvements in functional outcome measures (Prange et al., 

2006). This may be because distal training results in reduction in impairment throughout 

the whole upper limb (Hsieh et al., 2018; Mazzoleni, Tran, Dario, & Posteraro, 2018; 

Balasubramanian et al., 2010) while proximal training is specific to shoulder and elbow 

only. Conversely, proximal training does not generalise to reductions in distal upper limb 

impairment (Prange et al., 2006). This difference is likely due to the indirect use of the 

proximal upper limb in distal upper limb training. Therefore distal upper limb training may 

be more beneficial than proximal upper limb training. However, it should be noted that 

many more studies have trialled proximal upper limb RT than distal RT.  

Further research should aim to establish which specific distal upper limb 

movements are most useful to patients. It may be the case that this depends on the 

individual’s specific impairments. Some movements may be identified as important by 

service users (Weightman et al., 2010). Devices could support movements that are critical 

to many Activities of Daily Living (ADL). For example, pronation and supination are used 

when turning knobs, opening doors and using cutlery (Lambercy et al., 2007). Although 

wrist adduction and abduction is used in few tasks and may be compensated for by other 

movements.  

An additional question regards whether devices should use assistive or resistive 

strategies. Assistive devices apply force in the desired direction during a task. Resistive 

devices create force disturbances that must be compensated by the individual or amplify 

error to challenge the user to increase their effort. There is supporting evidence for both 

strategies (Marchal-Crespo & Reinkensmeyer, 2009). It may be the case that different 

strategies would more appropriate and useful at different points in the training program. 

Further device development considerations will be addressed in Section 8.5.  
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8.3.2 What is the state of the evidence for the PCT models in manual tracking 

studies? 

PCT is a unifying theory of the behaviour of living systems (see Chapter 1 for 

summary). The theory proposes that individuals control their perceptions (Powers, 1973). 

Within this framework actions are varied via negative feedback to maintain perceptual 

variables at referent states (Powers et al., 1960). PCT has mostly been tested within manual 

tracking tasks. In these experiments the goal has been broadly to demonstrate specific 

theoretical principles by building a model and evaluating its fit to participant behaviour: 

the functional modelling approach (Mansell & Huddy, 2018; Runkel, 1990). The 

systematic review reported in Chapter 4 attempted to synthesise the findings of these 

experiments in relation to the core principles of the theory. In so doing, we identified those 

principles that required further evaluation. These became further thesis objectives and are 

addressed in experimental Chapters 5, 6 and 7. This section discusses the state of the 

evidence for PCT in manual tracking studies prior to those presented in this thesis. Note 

that the experiment reported in Chapter 5 was one of the studies reviewed in Chapter 4.  

All of the included studies demonstrated that humans exhibit negative feedback 

control during manual tracking. Movements of the cursor in the task served to keep the 

cursor and target within a desired relationship with one another. The strongest evidence for 

this came from studies in which dynamic visual disturbances were applied to the cursor 

position (Marken, 2013; Marken & Horth, 2011; Powers, 1978, 1989). These unseen 

disturbances were compensated for by the individual’s tracking movements. One limitation 

of the PCT literature is that PCT models did not include a parameter that estimated central 

delays. This limited the explanatory power of the PCT models. Moreover, it has been 

demonstrated in tracking studies outside of the PCT literature that humans exhibit 

anticipatory behaviour when tracking periodic targets (Poulton, 1952b, 1952a). Despite 

this, PCT models had primarily been tested with pseudorandom target and disturbance 

signals. There was no evidence that anticipatory behaviour could be modelled by 

perceptual feedback alone. 

Several studies used the Test for the Controlled Variable (TCV; Marken, 2013; 

Runkel, 2007) to establish which perceptual variables participants were controlling. This 

was achieved by applying disturbances to different variables and measuring which 

disturbance was compensated for most effectively (indicating control). Most studies 

hypothesised that participants aimed to maintain a visual distance between a cursor and 
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another cursor or target. One study found that individuals may control visual angle rather 

than position (Marken, 2013). 

PCT states that an individual’s intentions can be quantified within the reference 

value model parameter. Experiments showed that participants could alter this reference 

during the task (Bourbon, 1996; Bourbon et al., 1990; Powers, 1978, 1989). and models, 

endowed with this reference value, would accurately simulate that individual’s behaviour 

(Powers, 1989). 

Following from the previous point, individuals were able to maintain a perceptual 

variable in a desired ‘referent’ state. These referent states often specified alignment 

between the target and cursor. In the most persuasive evidence these reference states were 

a constant non-zero value or a dynamically changing value (Marken, 2014; Powers, 1989). 

However it had not been formally tested whether reference values were critical to model 

performance in cases where the target and cursor were aligned. This became a research 

objective for this thesis. 

PCT expounds a functional modelling approach (Runkel, 1990; Runkel, 2007). 

Models are constructed of individual participants and aim to simulate that individual’s 

behaviour with high accuracy. There was ample evidence that models fit individual 

performances for pseudorandom targets and disturbances (Bourbon, 1996; Bourbon et al., 

1990; Marken & Horth, 2011; Powers, 1978, 1989). However, there was limited evidence 

that models captured individuals’ control characteristics. Two studies measured model 

simulation accuracy over one and five years (Bourbon, 1996; Bourbon et al., 1990) and 

found parameters were still predictive of performance after this time. There had been no 

formal test of whether models demonstrated individual specificity, except for the study 

presented in Chapter 5.  

There was some evidence that multiple degrees of freedom in the task or apparatus 

could be controlled simultaneously (Marken, 1986; Marken, 1991). This came from studies 

in which parallel control units operated in tandem, or in a hierarchical arrangement to 

control multiple perceptual variables simultaneously. 

Additionally, no studies had explicitly modelled reorganisation, the learning 

algorithm proposed by PCT, although one study aimed to investigate increase in model 

gain over time as a proxy for reorganisation (Pavloski et al., 1990). Nor had PCT been 

used to emulate movements in a physical tracking environment.  

The review also identified several methodological issues that were present in the 

majority of PCT tracking studies.  
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Synthesis 

We found that many of the core principles of PCT were supported by research 

evidence. However, we also identified some key principles that had not been conclusively 

tested. These became research objectives, which we evaluated through experimental 

tracking and modelling studies within the thesis. These objectives were: 

1) To determine which variables participant control during manual pursuit tracking. 

2) To investigate whether the reference value, unique to PCT, was critical to model fit 

performance. This was evaluated in the experiments reported in Chapters 5 and 7. 

3) To formally test the assumption that models were individual-specific. This 

assumption is central to the functional modelling approach which aims to construct 

models of individual performance (Mansell & Huddy, 2018). Two experiments 

formally evaluated this objective and are reported in Chapters 5 and 7. 

4) To implement delays in PCT models and measure the effect of altering this delay 

parameter on model fit. Importantly, it was necessary to model tracking of periodic 

targets (such as sinusoids), as participants exhibit zero latency tracking for such 

targets (Poulton, 1952b; Stark et al., 1961; Stepp, 2009; Stepp & Turvey, 2017; P 

Viviani & Mounoud, 1990), We investigated how a model only using negative 

feedback could emulate zero-latency tracking whilst maintaining a biologically 

feasible duration of central delay. Chapter 6 reports an experiment investigating the 

role of delays in model fit. Chapters 6 and 7 report studies in which sinusoid 

tracking performances are fit by PCT models. 

5) To investigate the generalisability of PCT models across tracking task conditions. 

The studies reported in Chapters 6 and 7 extended the conditions under which 

models had been tested. 

The experiments designed to meet these objectives evaluated the proof-of-principle 

of PCT as a motor control theory. It would also have further implications for our 

overarching objective; to develop an adaptive robotic rehabilitation device. The results of 

these tests would determine whether it was possible to construct models of individual 

performance across different tracking contexts. The adaptive controller must identify the 

individual’s control characteristics, in order to adapt to their training requirements. Thus 

we needed to know whether models were individual specific (objective two). In addition, 

the steering wheel was chosen as the candidate device to implement the controller. It was 

therefore necessary to test whether the model was a good model of tracking performance 
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for different types of signals (objective three) and for horizontally moving targets of 

different speeds with a steering wheel (objective four). 

Critically, we did not include studies that used models that were not based on PCT. 

However, such a review would have been too broad as there is a very large literature using 

tracking paradigms. Different models tend to have been developed based on observation of 

a specific aspect of tracking behaviour. For example, models have been constructed that 

intermittently produce (ballistic) movements when the error in position or another variable 

exceeds a threshold (Gollee et al., 2017; Inoue & Sakaguchi, 2014; Miall et al., 1993). It 

would be useful to draw comparisons between models such as these and those based on 

PCT. However, comparisons should take the form of experimental studies in which models 

are compared on accuracy and tracking characteristics, rather than a qualitative narrative 

review. 

8.3.3 What are the controlled variables in manual tracking? 

 In the manual tracking task there are many perceptual inputs that may be the basis 

of coordinated movement to maintain alignment between the target and cursor. 

Instantaneous target cursor distance might be considered the simplest explanation. Indeed, 

many models controlling cursor-target distance have been evaluated both within, and 

outside PCT. This section examines the range of perceptual inputs which may be 

controlled within the task. 

Hypothesis 3.a The controlled variable is target-cursor distance 

 The very first manual tracking studies attempted to characterise human 

performance in the task, typically using frequency analyses to build transfer functions that 

approximated the dynamics of the ‘human operator’ (Noble et al., 1955; Poulton, 1952b, 

1952a; Stark et al., 1961; Vince, 1948). This methodology lent heavily from control 

engineering and cybernetics, conceptualizing the human operator as a control system. 

Models were built to try and simulate human tracking performance. The input to this type 

of control architecture was the distance error between target and cursor (Bekey, 1962; 

Kreifeldt, 1965; Levison et al., 1969; McRuer & Jex, 1967; Navas & Stark, 1968). The 

PCT conceptualisation of the model, which included a reference value independent of the 

driving (input) signal that was thought to be internally-specified, and a leaky integrator to 

damp the response across trials, was published in 1978 (Powers, 1978). This basic model 

was expanded and evaluated in many subsequent studies. These studies were reviewed in 



298 
 

Chapter 4. Ten of the models reviewed used a single unit position control scheme (see 

Chapter 4), which used the immediate previous target and cursor inputs to coordinate 

cursor movements. Across these studies these models were shown to robustly simulate 

pursuit performance for pseudorandom targets and compensatory tasks with pseudorandom 

disturbances with a high degree of accuracy (R
2 

≈ .98). This was argued to provide strong 

evidence that individuals controlled the perceptual variable of target cursor distance. 

Despite this evidence there are several reasons to think that the controlled variable is not 

simply the distance between the target and cursor on the previous time sample.  

Firstly, one must consider that sensorimotor delays are intrinsic to the CNS (see 

Chapters 5 and 6). This necessitates that it is not immediate-previous sensory inputs which 

are basis of a current control action, but substantially delayed inputs. These delays are 

estimated to have a minimum duration of 100 ms. In Chapter 5, we report an experiment in 

which we used a PCM to simulate pseudorandom tracking data. However, we implemented 

a loop delay which was optimised alongside the other model parameters to account for the 

sensorimotor delay in manual movements to visual targets. Tracking performance could 

still be accurately simulated by this model when loop delays were in the region of 160 ms 

and above, supporting the interpretation that positional difference was a controlled variable 

in pseudorandom tracking. 

A more damning criticism comes from the observation that individuals do not 

display long phase delays when tracking targets that move in a predictable pattern 

(Poulton, 1952b; Stark et al., 1961; Stepp, 2009; Stepp & Turvey, 2017; Viviani & 

Mounoud, 1990). In conjunction with the previous point this poses a series problem for the 

position control hypothesis because it might be assumed that with a long loop delay 

(sensorimotor delay), the model would not be able to emulate tracking without producing a 

phase delay in the response. However, it should be noted that PCT, and also within the free 

energy or AI formulation, the perceptual world is organised hierarchically (Adams et al., 

2013; Friston et al., 2009; Marken, 1986; Powers et al., 1960). Within these theories, any 

task might involve a number of different perceptual variables controlled (or predicted in 

the case of AI) simultaneously. To propose that an individual controls a single perception 

within a task is likely a reduction. A number of models have been proposed that control, 

and combine, multiple perceptual variables during tracking and other visuomanual tasks. 
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Hypothesis 3.b Manual tracking involves simultaneous control of multiple controlled 

variables 

 The tracking review included three studies that modelled simultaneous perceptual 

control (Marken, 1986; Marken & Powers, 1989; Marken, 1991). Two of these studies 

used a hierarchical architecture in an attempt to account for changes in task design during 

manual tracking of pseudorandom targets. In one of these studies, Marken and Powers 

demonstrated that additional hierarchical units, tuned to likely disturbances could account 

for and mitigate the effects of these disturbances that a single position control unit would 

not (Marken & Powers, 1989). The disturbance in question was a switch of the directional 

feedback relation between output and cursor. This demonstrates that two units can operate 

simultaneously to produce an adaptive output.  

As mentioned under the previous hypothesis, periodic targets pose a particular 

challenge for position control because of intrinsic sensorimotor delays which make it 

improbable that this method is used during ‘anticipatory’ tracking. In Chapter 6 we 

constructed three additional models, the PEM, HCM and HEM. Two of these models used 

simultaneous hierarchical control, and one did not. These models were compared with the 

PCM in their ability to simulate individual participants’ cursor movements for sinusoid and 

pseudorandom targets. We found that hierarchical control of target-cursor position and 

velocity difference could not adequately account for the sensorimotor delay compensation 

observed in tracking of sinusoid targets. However, the PEM and HEM, which used an 

extrapolated target position (integrated perceptual signal) could track more accurately at 

feasible delay values and did not result in a significant phase delay relative to the 

participant’s cursor. From these findings it might be concluded that whilst position 

information is vital, position may not be the only controlled variable in manual tracking. 

Individuals may use motion information during tracking in addition to position feedback 

information. The findings of Chapter 7 further supported this conclusion as the HEM, 

which controlled extrapolated position and velocity simultaneously, simulated the 

amplitude and phase delay of participant cursors more accurately than the PCM and 

resulted in reduced simulation error. 

Synthesis 

 The question of which perceptual variables are controlled within a specific task has 

a complex answer. It is likely not the case that in any single task there is a particular 

controlled perceptual variable. Manual tracking is no different. In the current thesis we 
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present and examine several possibilities: position control on immediate previous sensory 

information (Chapter 4), position control with modelled sensorimotor delays (Chapter 5, 6 

and 7), hierarchical velocity and position control (Chapter 6), position extrapolation 

(Chapter 6), and hierarchical velocity and position extrapolation (Chapters 6 and 7). The 

HEM model consistently performed well across task constraints (Chapter 7) and was 

robust to many values of loop delay for both pseudorandom and sinusoid target types in 

Chapter 6. It may be considered that motion extrapolation is integral to visuomanual 

tracking. This conclusion is supported by neurological evidence of global motion 

processing (de la Malla, Smeets, & Brenner, 2018; Khoei et al., 2013; Newsome & Paré, 

1988), in addition to evidence from smooth pursuit eye movements (Bennet & Barnes, 

2003; Bennett et al., 2007; Mrotek & Soechting, 2007; Zago et al., 2010), manual tracking 

and object interception (Bosco, Delle Monache, & Lacquaniti, 2012; Brenner & Smeets, 

2015; De La Malla, Smeets, & Brenner, 2017; Fine et al., 2014). However, a range of 

different models have been proposed that control different inputs and outputs. The fact that 

many models have been developed that can account for aspects of tracking performance 

suggests that there are multiple strategies that may be used track targets, participants may 

use any of these or even switch between them. A number of other tracking models are 

discussed in Chapters 6 and 7. 

8.3.4 Is the PCT reference value critical to model performance? 

The internally-specified reference signal is proposed to encode the state of the 

controlled perceptual variable within the control unit (Powers, 1973, 2008): the reference 

value. This has a functional role in PCT because control units are proposed to operate in 

hierarchies. Output signals of control units at one level become the reference values for the 

control units at the subordinate level. In complex systems with more than one control unit, 

the reference signal to the subordinate unit varies to satisfy or maintain control in the 

superordinate unit. This definition of the reference value is unique to PCT and 

distinguishes it from other negative feedback control models for which the reference 

originates outside of the system (Powers, 1973). It is therefore important to establish 

whether the reference value parameter can encode intentions and whether the parameter 

contributes to the fit of the PCT models to experimental data. If so, this would support a 

PCT interpretation of behaviour.  
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Hypothesis 4.a The reference value encodes intentions in the tracking task 

 As mentioned in the previous section, visual distance between the target and cursor 

is most commonly hypothesised to be the controlled variable (see section 8.3.4). The 

review in Chapter 4 established that in most studies the participants were instructed to keep 

the cursor aligned with the target as best they could (reference = zero). However, four 

studies demonstrated that the reference value could vary over the course of a trial, if the 

user was instructed to hold a different relationship (Marken & Powers, 1989; Marken, 

2013; Powers, 1978, 1989). Models, endowed with the right reference values, would 

accurately simulate individual performance under these conditions. This demonstrates how 

crucial the reference value parameter is for models of performance. 

Even in tasks in which the instruction to participants was to keep alignment 

between the target and cursor, individuals tended to exhibit a preference over a trial. This 

preference is expressed in the reference value for that trial (Bourbon et al., 1990b). In 

Chapter 5 we found just this. We observed consistent non-zero reference values when 

some participants were asked to keep the target and cursor aligned. This can be observed in 

Figure 5.3 of that Chapter. No single individual averaged more than four pixels below the 

target or two pixels above the target. However, for 11 of the 20 participants, a consistent 

offset one or other side of zero was observed. This supports the interpretation that 

reference values were structured. This could be interpreted as reflecting an intentional 

preference, or a perceptual bias. Non-zero reference values were also found in Chapters 6 

and 7, though it was unclear whether there was a pattern either way. 

Hypothesis 4.b PCT reference values will contribute significantly to model fit 

In the same chapter (Chapter 5) we attempted to establish whether the reference 

parameter contributed to model performance. A significant proportion of the variance in 

PCM accuracy was uniquely accounted for by the reference signal parameter (Table 5.4). 

This indicated that the reference parameter quantified a tracking offset and that 

characterising this offset improves the model simulation. We repeated the regression 

analysis in Chapter 7 for the PCM and HEM models for the four targets. Reference values 

were broadly found to significantly predict model fit (Tables 7.5 and 7.6). In light of the 

findings in Chapters 5 and 7, across reference values were established to account for 

variance in model fit for both pseudorandom and sinusoid targets. 
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Synthesis 

The chapters within this thesis provide compelling evidence that the internally-

specified reference parameter captures an important aspect of tracking performance. In 

tasks in which the instruction is to keep the cursor on-target, it is unclear whether non-zero 

reference values reflect a perceptual bias. However, it should be interpreted that 

participants intended to keep a zero reference value, but were unable to exactly match this, 

and showed a small bias in one or other direction. Nonetheless, the regression models in 

Chapters 5 and 7 indicate that the reference parameter value is integral to model fit when 

simulating tracking data with computational models. This indicates that even small 

displacements relative to the target may contribute to tracking error in the controlling 

system. This analysis had not been conducted before in PCT tracking studies. The results 

support the proposal that individuals’ control variables to referent states. It is useful to note 

that cursor data could be detrended for analysis, which would likely remove this perceptual 

bias from the data. This detrending is necessary for frequency analysis. In our experiments, 

we conducted detrending for frequency analysis after modelling the data in order that we 

captured these tracking characteristics within the model. 

 In Chapter 7, the analysis also provides evidence for hierarchical control because 

the position reference value to the HEM model was found to account for variance in the 

output, even when the output of the entire system was transformed through a second, 

dynamic, reference value. This provides evidence that cascade control exists in a hierarchy 

of control systems. That is, the model fit does not simply result from the operation of the 

unit on the lowest level. In this respect, Chapter 7 provides evidence for hierarchical 

control as a means to produce behaviour. 

8.3.5 Do PCT models of tracking performance demonstrate individual specificity? 

The PCT research method is the functional modelling approach (Mansell & Huddy, 

2018; Runkel, 1990). The aim of this approach is to identify the variables which 

individual’s control using the TCV, and construct a model and test the fit of this model to 

their performance. This is predicated on the assumption that individuals differ in the way 

they carry out the task. Specifically, PCT assumes that individual participants may control 

different perceptual variables (Marken, 1988; Marken, Mansell, & Khatib, 2013), or the 

same variables at different reference values (see previous Section 8.3.4).  
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Hypothesis 5.a Model parameters characterise individual control characteristics 

In Chapter 5, we tested the hypothesis that the PCM could characterise individual 

performance for pseudorandom target signals. We found high intra-individual consistency 

in parameter estimates over a one-week period. We found that these parameter estimates 

differed significantly between individuals. All PCM parameters significantly contributed to 

the fit of the model to pseudorandom targets. Thus, individual control characteristics for 

pseudorandom tracking were captured within the PCM parameters. In Chapter 7, 

participants tracked sinusoid targets in addition to pseudorandom targets. The parameters 

of the PCM, and the HEM contributed to the overall fit of the models to tracking data. 

However, the pattern of individual parameter significance was unclear. The two models 

will be considered in turn, reference values will not be considered here because they have 

been addressed under the previous objective (Section 8.3.2).  

For the PCM, there were two significant patterns in parameter significance. The 

output gain was a significant predictor of performance for all models. This was also the 

case in Chapter 5 and corroborates the finding of that study: that the output gain parameter 

was most idiosyncratic. However, in contrast to the findings of the regression in Chapter 5, 

damping constants and delays were not significant predictors of model fit in Chapter 7. 

This was true even for targets most similar in characteristics to those used in Chapter 5, the 

low difficulty pseudorandom target. Comparing across the studies, the proportion of 

variance explained by the regression model was substantially larger in Chapter 5 than in 

Chapter 7. These differences may have resulted from differences in the volume of data 

from which conclusions were drawn. In Chapter 5, 45 trials were used for the regression 

for each participant. In Chapter 7, just four trials were used from each participant on each 

target. Thus the regression model in Chapter 7 may be somewhat underpowered for 

assessing individual parameter contributions. 

If this is the case, this issue may be amplified in the regression model for the HEM 

as the regression model included a larger number of predictors (model parameters). Indeed, 

the pattern of significant results was incoherent for many parameters. Unlike the PCM, the 

position output gain was not found to contribute significantly for any target. This may be 

additionally explained by the presence of three different gains in the model which interact 

and compete for variance. It may be the case that the parameter regression is unsuitable for 

assessing the contributions of parameters within a hierarchical structure. 
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Hypothesis 5.b Individual models predict individual participant performance 

In Chapter 5, the PCM made accurate predictions performance, even after one 

week. To test whether these predictions were individual-specific, we conducted a novel 

analysis, comparing the fit of individual models to the fit of general (aggregate models). 

We found that models accurately predicted individual performance. Fits of individual ‘self’ 

models to that individuals’ tracking data were significantly more accurate than those of 

aggregate models. 

In Chapter 6, we developed three alternative models to the PCM. We evaluated the 

fit of the models to pseudorandom targets with a loop delay of 200 ms (a biologically 

plausible sensorimomtor delay value). There was no significant difference in the accuracy 

of fit between the three models. This established that humans, in general, do not seem to 

rely heavily on velocity information when tracking targets that move in pseudorandom 

patterns. A position control strategy may therefore be adequate for tracking pseudorandom 

targets. Considered alongside the observation that the estimated parameters of the PCM are 

individual specific (Chapter 5), this may indicate that the PCM parameters adequately 

predict individual performance. We will consider an alternate explanation in a later section. 

In Chapter 6, we also modelled tracking performance for sinusoid targets. For these 

targets, velocity integration models simulated performance more accurately than the PCM. 

The additional parameters of these models (the extrapolation gain and velocity control 

gain) may enable them to characterise elements of the tracking strategy that the PCM did 

not. The values of these parameters were optimised for each individual. We could not 

evaluate the accuracy of individual models over time, as the validation data were collected 

within the same session as the optimisation data.  

In the follow-up study reported in Chapter 7, we tested the accuracy of the models 

to validation data collected one week after the training data. The findings of this study 

replicated those presented in Chapter 6. The PCM simulated pseudorandom tracking with 

similar accuracy to the HEM model. It also supported the conclusion that the HEM model 

was a more accurate model of sinusoid tracking performance; even after one week had 

elapsed. The ‘self-aggregate’ analysis of Chapter 7 demonstrated that individual models 

could account for variance in individual performance one week later with a greater degree 

of accuracy to an ‘aggregate’ model. Thus the HEM model was established to make 

individual-specific predictions of performance.  

Both the PCM and HEM model were shown to demonstrate individual specificity 

for pseudorandom targets when compared to the PCM and HEM. For sinusoid targets the 



 

305 
 

HEM model and PEM were superior in modelling the general strategy used by participants. 

The HEM model predicted individual performance for sinusoid targets. 

Synthesis 

It is clear that individual differences do exist and can be parameterised (Chapter 5). 

Individual models yield an improvement in fit over general models, even when simulating 

validation data collected one week later (Chapters 5 and 7). This novel finding provides 

evidence for the utility of the functional modelling approach used in PCT research 

(Mansell & Huddy, 2018; Runkel, 1990). This methodology may be utilised across the 

behavioural sciences to remediate issues concerning replicability (Mansell & Huddy, 

2018), as internal consistency measures are inherent to the functional modelling approach. 

Evaluations of individual specificity may be a useful criterion for model evaluation. 

 An additional benefit of individual modelling is in its potential application. Indeed 

it is the objective of this research agenda to apply individual models within the 

rehabilitation device. Computerised tracking tasks and games have already been 

implemented in passive and active devices to collect kinematic data, with a view to using 

these quantitative measures to detect impairments and inform individual rehabilitation 

programmes (Maciejasz et al., 2014). Further studies have attempted to detect impairments 

in Parkinson’s Disease (PD) with computational models of tracking performance (Abdel-

Malek et al., 1988; Allen et al., 2007; Au et al., 2010; Oishi et al., 2010, 2011; Paolo 

Viviani et al., 2009).  

One potential challenge to applying PCT in this manner regards whether 

impairments can be characterised within the existing model parameters. We have 

demonstrated that PCT models can characterise healthy human performance in tracking. 

However, it is unclear whether PCT model parameters would be able to capture specific 

control characteristics and impairments from tracking performances by neuro-atypical 

participants. Whilst we have not conducted experiments with such participants, others have 

simulated tracking data of people with PD and shown that the model parameters can 

effectively capture characteristic impairments in these populations. For example the 

models of PD participants tend to be overdamped relative to those of healthy participants 

(Au et al., 2010; Oishi et al., 2011). Another study modelled eye tracking behaviour of 

people with a diagnosis of schizophrenia over short occlusions (Adams et al., 2012). These 

authors showed that relative to neuro-typical participants, individuals with schizophrenia 
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exhibited difficulties in anticipating the target displacement over the occluded period. This 

was interpreted as representing a lack of integration of prior expectation and was modelled 

in an AI model. While uncommon, such studies of tracking in neuro-atypical population 

demonstrate that models may be able to capture impairments within existing parameter 

estimates. The extrapolation models proposed in this thesis may be able to simulate the 

pattern of results in these previous studies. For example, the variance in accuracy of 

participants’ tracking over short occlusions could be simulated by manipulating the 

extrapolation gain parameter. This parameter represents the extent to which participants 

extrapolate target position, which may be interpreted as the extent to which they can 

anticipate future target positions. 

The next steps in the application of individual models to rehabilitation should 

involve using models during tasks rather than modelling the data after the task is 

completed. In this project we aimed to make the first steps toward developing a model that 

could be implemented in a device. Indeed, the next steps in the current research project aim 

to test the ability for the models we have developed to drive an end-effector device. This 

future work is documented further in Section 8.5.2. 

8.3.6 Can PCT models incorporating delays account for tracking behaviour for 

predictable and unpredictable targets? 

Biological plausibility should be considered when designing theoretical models of 

human behaviour. This is particularly relevant for computational models as the fit to 

experimental data will always improve with additional parameters (Busemeyer & Wang, 

2000; Forster, 2000). Human neurophysiology necessitates delays in afferent and efferent 

signal transmission, in addition to processing delays in hierarchically organised cortical 

and subcortical brain areas (Carlton, 1981; Carlton, 1992; Scott, 2016). These sensorimotor 

delays are fundamental to the operation of the CNS and should be represented in the 

parameters of models of human motor performance. Delay compensation can be observed 

when humans engage in anticipatory movement (Kowler, Martins, & Pavel, 1979; Noble et 

al., 1955; Poulton, 1952a; Stepp & Turvey, 2015, 2017). The mechanism of compensation 

is a focus for scientific debate and research (Scott, 2016). We aimed to model the role of 

sensorimotor delays in manual tracking and the mechanism by which humans compensate 

for delays during anticipatory tracking of periodic targets.  
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Hypothesis 6.a A PCT model with a delay can simulate pseudorandom tracking 

performance 

In the systematic review of the tracking literature (Chapter 4), we found that PCT 

modelling studies did not include a parameter that characterised sensorimotor delays. Two 

studies phase-shifted the target pattern post-hoc to account for these delays (Marken, 2013; 

Pavloski et al., 1990). This left a substantial explanatory gap, as it was unclear whether 

PCT models would accurately simulate tracking behaviour when delays were included. All 

three experimental papers in this thesis (Chapters 5, 6 and 7) included a delay parameter. 

In Chapters 5 and 7, delays were optimised as a free parameter. In Chapter 5 this could 

take a value between 0 ms and 1 second in 17 ms intervals. In Chapter 7, the parameter 

could take a minimum value of approximately 182 ms and a maximum of 500 ms. In 

Chapter 6 models were optimised at 11 delay values that ranged from 17 ms to 500 ms. 

 When humans track pseudorandom or sum-of-sines targets they exhibit a phase 

delay in their response (Abdel-Malek & Marmarelis, 1988). This phase delay results from 

internal sensorimotor delays involved in action execution, with an estimated duration of 

between 100 ms and 250 ms (see Chapter 6 for summary). Sensorimotor delays have been 

found to vary between individuals (Viviani et al., 1987). In Chapter 5, we optimised PCMs 

with an internal sensorimotor delay parameter to pseudorandom tracking performance. 

Optimal delay estimates differed between individuals, ranging from 140 ms to 240 ms and 

averaged 180 ms across participants. Thus, our findings support the estimates in the 

literature. This range resulted in the best fits to tracking data; therefore the PCM 

demonstrated biological plausibility with regard to sensorimotor delays.  

In Chapter 6, the phase delay for pseudorandom targets was approximately 150 ms. 

The PCM was compared with three alternative models for the fit to these target data. These 

models utilised velocity information in addition to position information. All models 

simulated pseudorandom tracking performance equally well up to the previously identified 

biologically plausible delay estimate of 200 ms, though HEM models produced a phase 

advance for these targets relative to the participant cursor whereas the PCM did not. For 

longer delays, the PEM and HEM models showed improved performance relative to the 

PCM. This suggests that the models are biologically plausible with respect to delays. 

Chapter 7 showed a similar pattern of results as Chapter 6. Low and high difficulty 

pseudorandom targets were both as accurately simulated by the PCM as the HEM. 

However, the optimal delay durations of the HEM model (which extrapolated position) 

were longer than those for the PCM (Tables 7.3 and 7.4). The HEM model more accurately 
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simulated the phase delay for pseudorandom targets than the PCM. This is likely because 

in this study the models were compared at their parameter optima (with a lower limit of 

182 ms), the optimum HEM loop delay was over 400 ms; twice the value on which it was 

compared in Chapter 6, which may explain the phase advance observed for the 

extrapolation models in that experiment when fit to tracking cursors for pseudorandom 

targets. 

Hypothesis 6.b A PCT model with a delay parameter can simulate sinusoid tracking 

performance by utilising velocity information 

Periodic patterns such as single sinusoids are typically tracked without a phase 

delay in steady state (Poulton, 1952b, 1952a; Stepp & Turvey, 2017; Viviani & Mounoud, 

1990). Average phase delays in our experiments for sinusoid targets were in the range of 

14 to 55 ms. Humans must utilise additional information (either immediately from the 

display, or stored in memory) to compensate for the CNS delay (see Chapter 6). A single 

unit PCM cannot achieve zero latency tracking with a delay because, in the steady state, 

increasing the delay value increases the number of samples of phase delay in the response. 

This was evidenced in Chapter 6 when the PCM simulated sinusoid tracking most 

accurately when delays were at a minimum value. Simulation error increased as a function 

of increasing delay. For the HCM (without extrapolation) this same principle extended to 

the velocity control loop. That is, increasing the delay will have increased the phase delay 

of the response, increasing error in fit. 

This was not the case with the extrapolation models. Linear extrapolation of the 

target position based on its velocity, and a gain factor, enabled the model to compensate 

for the sensorimotor delays and track with zero phase delay. This led to improved 

performance at the critical delay value of 200 ms and longer durations. The PCM and 

HCM models showed a significant phase delay relative to the participant cursor whereas 

the PEM and HEM did not. This shows that the PEM and HEM captured a qualitative 

aspect of tracking behaviour that the other models do not. That is, they typical overshoot 

and phase delay during target deceleration, and cursor catch-up and overtake it during 

target acceleration.  

Thus in Chapter 6, the PCM and HCM were not sufficient to account for sinusoid 

tracking when sensorimotor delays were present. In contrast, models that extrapolated 

target position were able to emulate zero-latency tracking with a biologically plausible 

delay estimate. These findings were replicated in Chapter 7. The HEM consistently fit 
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sinusoid tracking more accurately than the PCM. However, the loop delay parameters were 

constrained to a minimum of 182 ms. This was done for several reasons. Firstly, this was 

the approximated the average loop delay in optimised models in Chapter 5. Secondly, the 

sample rate (26 ms) would not allow a 200 ms loop delay, therefore we decided to take a 

more liberal estimate (182 ms) rather than a more conservative one (208 ms). This limit 

likely negatively affected the PCM accuracy and phase compensation. In future it may be a 

fairer test of the models to use the lowest sensorimotor delay estimate of 100 ms. However, 

the fact that the HEM more accurately simulated the phase delay and amplitude ratio of the 

participant cursor, and did so with an optimised loop delay value of over 400 ms provides 

evidence that that delay compensation can be achieved in a biologically plausible manner 

by perceptual extrapolation over long sensorimotor delays. 

Synthesis 

Position extrapolation is a biologically feasible process that can generalise across 

the smoothly varying continuous targets that individuals would track in the physical world. 

The model provides face validity in emulating zero phase delay tracking movements for 

periodic sinusoid targets whilst maintaining central delay values. For pseudorandom 

targets a position control strategy may be used with delays of approximately 200 ms. 

Extrapolation may preserve performance at longer delay values. It may be the case that 

position extrapolation is used when tracking pseudorandom signals, for a number of 

reasons.  

Firstly, it is unlikely that participants use different strategies for different target 

types (see section 8.3.3), particularly when the same information is available. 

Extrapolation is a general strategy that can be used when tracking any smoothly varying 

target. Secondly, the phase delay can be shorter in duration than the estimated 

sensorimotor delay even for pseudorandom, as evidenced in both Chapters 6 and 7 for both 

models. Thirdly, phase delay increases linearly with increasing bandwidth of a sum-of-

sines (pseudorandom) target signal (Neilson et al., 1993), this effect is observed in Chapter 

7 where high difficulty targets of each target type produced longer tracking phase delays. 

This indicates that delay compensation reduces as a function of target frequency. As 

frequency increases, the coherence between the delayed velocity measurement and the 

current target velocity should decrease. This would reduce the accuracy and usability of 

position extrapolation. Consequently, increases in target frequency may result in overuse 

of a position control strategies, increasing the phase delay. 
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Alternative methods may be plausible, some of which are discussed in Chapter 7, 

such as matching the frequency and amplitude of a sinusoid or elliptical target. However, 

no clear neurophysiological analogue or substrate for determining relative frequency was 

found; nor an identified threshold for how long extraction of frequency information might 

take. Another possibility is that humans may be able to utilise a phase detector and 

oscillator in a phase locked loop (Voss, 2000). Phase difference could be estimated from 

positional difference. 

8.3.7 Do PCT models generalise across task designs and apparatus? 

The PCT model should generalise across task designs and across different 

apparatus. This is evaluated as a bi-product of testing the theory. However it is particularly 

relevant given our intended application to a robotic device with computerised tracking 

task. 

Chapter 4 documents a number of studies that test the generalisability of the PCM 

across task designs and apparatus; though largely for pseudorandom target and disturbance 

patterns. The PCT model was demonstrated to emulate participant behaviour in pursuit and 

compensatory tasks, in both horizontal and vertical dimensions (and simultaneously), with 

handles, computerised mice and other apparatus. In Chapter 4 we argue that there is limited 

evidence that PCT models can generalise to robotic control. Whilst some devices have 

been produced (see Chapter 4 for summary), there are few published studies demonstrating 

their performance.  

In the experimental Chapters, the generalisability of the model was tested as we 

altered the task and apparatus. In Chapter 5, the PCM accurately simulated pseudorandom 

target tracking with a computerised joystick.  

In Chapter 6, we extended the model to enable it to emulate human tracking of 

sinusoids when accounting for sensorimotor delays. In Chapter 7 we demonstrated that one 

extended model could simulate performance for sinusoids and pseudorandom targets when 

participants tracked targets with a new apparatus (steering wheel) and across the different 

target difficulty levels (speeds). Thus it seems reasonable to expect that the model could 

generalise performance on a range of tracking task set ups, albeit with different parameters. 

The next steps in the research agenda intend to test the models’ predictive capabilities with 

irregular step input signals and occluded sinusoid signals (this will be discussed in a later 

section). 

Synthesis 
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PCT models have been shown to simulate performance across many tracking 

environments and apparatus. PCT models have also been applied in domains outside of 

tracking. One key challenge will be to test whether PCT generalises to device control in 

physical environments, either in tracking or in other tasks (see Chapter 4).  

 In the current thesis we did not apply disturbances during target tracking. 

Disturbances can take the form of visual disturbances to cursor position; as are often 

implemented in other PCT tracking studies (see Chapter 4), or force disturbances applied 

to the apparatus during tracking. Findings from many studies have demonstrated that the 

PCM can compensate for visual disturbances  (; Marken, 1986; Marken, 1991; Powers, 

1978). Indeed, this is a primary justification for feedback control (Powers, 1978). There is 

no discernible reason why this would not be the case with models that extrapolate target 

position, although for completeness this should be evaluated.  

Visual disturbances in the literature have been mostly pseudorandom (Marken, 

1986; Powers, 1978, 1989). However there may be a specific benefit to applying step 

changes to hypothetical controlled variables (either in the input target signal or disturbance 

signal). This stems from the proposal that control units at different hierarchical levels 

operate at different time constants (Marken, 1990; Powers, 1999). So, if a step change is 

applied to the velocity of a signal for example, this should be compensated by the velocity 

control system with a specific time constant. If this time constant is longer than that for the 

elimination of error in visual position, then this would indicate that velocity is integrated at 

a superordinate level in the hierarchy relative to position. No difference in delay would 

indicate that the two systems operate on the same hierarchical level (in parallel). This 

would help to elucidate the organisation or architecture of control in tracking. 

8.4 Summary of findings and key contributions 

Together the thesis comprises five chapters of original research which make several 

key contributions to the fields of psychology and rehabilitation.  

At the time of writing Chapter 3, previous research had highlighted distal upper 

limb end-effector devices as a research priority for two reasons. First, end-effector devices 

are more practical than alternative devices for rehabilitation due to their simplicity, size 

and cost (Balasubramanian et al., 2010; Brackenridge, Bradnam, Lennon, Costi, & Hobbs, 

2016). Second, results had indicated that reductions in impairment due to distal upper limb 

training may generalise to improved functional ability  (Sivan et al., 2011). Despite this 

priority, there had been no published review of these devices. Thus the review filled an 
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important gap in the rehabilitation research literature. However, at the time of submission, 

another group published a very similar article (Veerbeek et al., 2016). This highlights that 

at that time such a review was needed, and may have been a critical and relevant 

contribution to the literature had we been able to publish the work. 

Chapter 4 represented the first systematic critique of the PCT modelling literature. 

This was needed as many studies had been conducted, over a long period of time. The 

studies varied in model design, methodology, and methodological quality. The review 

highlighted critical limitations of the current evidence base for PCT, summarised in 

Section 8.3.2. Several of these became research objectives for the current thesis. Others, 

such as the observation that the PCT architecture does not comprise a mechanism for 

attenuating the effect of neural noise remain research priorities for further research 

(discussed further in Section  8.5.2). This review should assist researchers in comparing 

PCT with other theoretical models of motor control, and may motivate further research to 

address the current limitations of the PCT model. 

Chapter 5 develops a methodological tool for evaluating whether optimised 

computational models can make idiosyncratic predictions about human performance. This 

is particularly useful as computational models of behaviour as modern computational 

methods have enabled psychological research to move from frequentist statistical tests of 

normative behaviour to predictions of performance that take account of individual 

differences. Many recent examples of such models exist in cognitive science (for example: 

Bartlema, Lee, Wetzels, & Vanpaemel, 2014; Lee & Webb, 2005) and in motor control 

(for example: Foulkes & Miall, 2000; Miall & Jackson, 2006). The methodology offered in 

Chapter 5 enables researchers to quantify the difference in the predictive power of 

individually-parameterised models and general models. Individual models such as these 

may, in future, be used for practical benefit to assess motor or perceptual impairments or 

biases, which would not be evident simply from a metric of performance accuracy (Allen 

et al., 2007; Oishi et al., 2010). This is evident as models attempt to separate and 

independently parameterise the component processes that result in a performance variable. 

Thus, measuring the reliability and robustness of predictions from these individual 

parameters, as we have done here, is a valuable procedure. Whilst the method was applied 

only to PCT models within this experiment, this methodology can be applied to evaluate 

models across all fields within the behavioural sciences. In Chapter 5, individually-

optimised PCT models were shown to simulate performance more accurately than general 
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models, providing evidence that PCT models can capture individual control characteristics 

within a relatively small number of parameters. 

Chapter 6 uses another novel methodology; evaluating model performance over a 

range of fixed delay values rather than optimising delay as a fixed parameter. This 

methodology is useful because it enables hypothesised sensorimotor delay compensation 

mechanisms to be evaluated. This method may be used in a similar manner to test other 

computational models that make continuous or time-sensitive predictions of human 

performance, such as models of oculomotor behaviour or reaction time. This is particularly 

evident for models of anticipatory performance as movements initiated prior the feedback 

delay time. For example, in visuomotor tasks in which participants utilise the regularity of 

stimulus onset delays, patterns in spatial location, or other cues to orient movement prior to 

stimulus onset. Indeed, this was the case in the tracking study addressed in this Chapter. 

The specific limitation of the previously proposed PCT architecture is that position 

feedback cannot account for anticipatory tracking movements. It was necessary to 

introduce feedback control on a novel perceptual signal: extrapolated position. This is a 

departure from other motor theories that rely on a forward, probabilistic model to produce 

anticipatory behaviour (Adams et al., 2012; Perrinet et al., 2014). This architecture is 

relatively simpler, and conforms to known characteristics of the visual cortex: dual 

encoding of object position and velocity (Krauzlis & Lisberger, 1994; Lisberger et al., 

1987), representation of global motion vectors (Aina, Elliveau, Oziers, & Effiro, 1998). 

Using extrapolation, the model is capable of preserving simulation accuracy to human 

anticipatory tracking data at increasingly long delay values. This shows that the model, like 

humans, can engage in anticipatory tracking performance. The model provides evidence 

against the hypothesis that forward predictions are necessary to compensate for 

sensorimotor delays or produce anticipatory motor behaviour, an often-cited justification 

for forward models (Michel Desmurget & Grafton, 2000). The developed model could be 

adapted for simulation of performance in other motor tasks, including ocular smooth 

pursuit. 

Chapter 7 replicated and extended the findings of the previous two chapters. We 

found that the best-fitting model from Chapter 6 could compensate for delays and produce 

anticipatory tracking performance at different target frequencies, and that the model could 

make idiosyncratic predictions of performance with greater accuracy than general models 



314 
 

for all target types. These generalisability tests are a significant validation step for the 

model, and for the individual-specificity test methodology developed in Chapter 5. 

 Taken together this thesis addresses several limitations of the PCT literature, but 

also develops useful methodological tools to be applied across the behavioural sciences. 

Set within the research agenda, the thesis aims to highlight the potential for motor control 

theory to inform rehabilitation via the application of computational models and takes the 

first steps toward this aim. 

8.5 Limitations 

8.5.1 Tracking and modelling methodology  

The first limitation regards the sampling rate for the model simulations. As the 

sampling rates of the tracking programs were 17 ms and 26ms, data were modelled with 

this sampling delay. However, this is unrealistically low for the sampling rate of the CNS; 

it would have been possible to interpolate the target and cursor signals. This could be 

achieved by zero padding in the frequency domain and applying the Inverse Fast Fourier 

Transform (IFFT) to generate an interpolated signal in the time domain (similar to how I 

up-sampled via zero padding in the time domain to get a high frequency resolution in the 

spectral analysis). This would have allowed us to run the simulations with a sample rate of 

1 ms. Had this been performed, it would be possible to find the true optimum delay value 

by optimising models at 1ms intervals between 1 ms and 500 ms. However, the author’s 

mathematical and programming skills were not sufficiently advanced at this time to have 

done this. In addition, as access to sufficient computing power was not available, running 

such simulations would have been a very lengthy process with the resources available. 

However, given it would have improved the fidelity of the results, it is certainly something 

to consider in the future 

The bandwidth of the input signals was very low across all studies, even for the 

high difficulty target patterns in Chapter 7. We could have used signals that excited more 

frequencies. For sinusoids, this could be a sinusoid of single amplitude that changes 

frequency over the course of the trial. For pseudorandom targets this could be a Fourier 

series comprising sinusoids of a broader range of frequencies than in our current study. 

From this tracking data, we could have made more general proposals about performance. 

However, the analysis would have been more difficult. We would have had to conduct 

frequency analysis and perform calculations on subsets of the data that fall into component 
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frequencies of the input signal. As parameters are dependent on task constraints, models 

would have to be fit at excited frequencies on the power spectrum. 

In Chapter 5, participants’ tracking performance was worse for pseudorandom 

targets in the second block (post-training) than the first (training). This runs counter to the 

expectation that, if anything, participant performance should improve as a result of 

practice. This decrement to performance may be the result of reduced attention or effort in 

the second block. Participants had only a short break between blocks (if they chose to take 

it at all), and the experiment was very repetitive as the target type and basic frequency was 

constant across all the trials. This comparison could not be made in Chapter 6 as 

participants tracked different target types in each block. In Chapter 7 a relative reduction in 

performance was not found for any target type between blocks and 2. Conversely, 

performance tended to improve between experimental blocks. Participants may have 

remained attentive because the target type and difficulty level changed frequently within 

blocks and a questionnaire broke up blocks 1 and 2.  

One potential limitation is that the models simulated performance for a whole trial, 

using only the initial cursor positions of the participant. Whilst this shows that models are 

very capable of tracking the targets in a similar manner to participants, it would also be 

possible to compare how well the model fit specific sections of target trace given certain 

initial conditions based on the movements of the participant cursor. For example, given a 

series of cursor data points immediately before a target switch, how accurately would the 

model fit the behaviour at the switch point. This might show at which specific points the 

model was most accurate and give insights toward improving models. A similar exercise 

may be considered for calculation of phase and amplitude ratios. It is clear that phase 

differs over the course of a trial, and this may be structured rather than Gaussian, 

particularly for sinusoid targets. Characterising how phase changes during different points 

in tracking trials may allow for better models to be constructed. 

8.5.2 Computational models 

In this thesis, only models based on PCT were designed and tested. It was not our 

objective to compare PCT models with other motor theoretical models within the tracking 

task. However it should be considered whether the findings of this thesis are consistent 

with the predictions of other approaches. Therefore, a number of other theoretical models 

are compared with PCT below, based on their predictions. 
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With regard to reference values, referent states are not unique to PCT. However, 

the references within each theory refer to different constructs. In the Equilibrium Point 

hypothesis (EP; Shadmehr, 1998) these refer to frames of reference, a shift in the 

equilibrium point throughout a trajectory that would alter the parameters of the system 

(Feldman, 2015). This, in turn, alters the properties of the law-constrained variables such 

as muscle torques (Feldman et al., 2007; Feldman & Levin, 1995). This accounts for the 

lack of resistive postural forces in response to voluntary action control (Feldman, 2015). In 

PCT, the reference signals directly quantify intentional states of controlled perceptual 

variables (Powers, 1973; Powers, 1999). As PCT claims to apply universally, these 

controlled variables may extend far beyond perceptual variables closely associated with 

action; such as higher order variables (Powers, 1973). Whilst authors in PCT have 

described how torque may be produced at the limb to control perceptual distance (Powers, 

1999), the PCT models implemented in this thesis are not inconsistent with an EP 

explanation of referent action. The models used in this thesis output positional coordinate 

reference. There is a linear relation between the output coordinates and the resultant model 

cursor position. There is no specification of how this output is translated to actual 

movements. Therefore it is possible that the reference position shifts an equilibrium point. 

This could result in changes in the parameters of the physical system and therefore the 

manner in which it operates under physical laws, resulting in the appropriate torques.  

 With regard to sensorimotor delays, contemporary theories invoke internal models 

which produce state estimates for future inputs (Wolpert, 1997). In AI, a hierarchy of 

control units is proposed that is not dissimilar to PCT (Brown et al., 2011; Friston et al., 

2009). However, rather than reference signals, downward projections are predictions of 

future inputs (Adams et al., 2013). Predictions are validated against prediction errors which 

are projected back up the hierarchy such that predictions can be optimised. Minimising 

prediction error equates to free energy minimisation (Brown et al., 2011). Applied to the 

extrapolation scenario, this mechanism could extrapolate target and cursor position, and 

then assess the accuracy of the extrapolation. The resulting prediction error would be used 

to improve the accuracy of future extrapolations. This would equate to a dynamically 

varying the extrapolation gain during a trial. Models based on AI should enable 

compensation of the sensorimotor delay during tracking. It is not clear whether 

participants’ extrapolations are optimised in this way. One might assume that if predictions 

were optimal then the participants would exhibit a constant zero-phase delay during 

sinusoid tracking. Alternatively, if extrapolations are not optimised dynamically, 
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participants may exhibit alternate phase lead (during target deceleration) and phase lag 

(during target acceleration). The latter is observed in the data, which might suggest that 

extrapolations are not optimised in this way. However, no analysis has been conducted to 

confirm this. 

OFCT proposes that the CNS approximates the optimal feedback control law based 

on the task at hand (Todorov & Jordan, 2002). This involves minimising a cost function by 

online calculation of possible action effects and selection of an appropriate trajectory 

(Todorov, 2004; Todorov & Jordan, 2002). The theory adequately simulates a range of 

movement trajectories that humans take in real tasks, and could no doubt produce accurate 

simulations of the data presented in this thesis. The main issue is whether it is plausible 

that the CNS is able to compute the optimal solution to a task from the practically infinite 

number of possible trajectories (given motor redundancy).  

One significant limitation of the experimental work in this thesis is we did not did 

attempt to explain how sensorimotor and neural noise are attenuated during tracking. 

Sensors and actuators in living systems are noisy (Barlow & Kaushal, 1987). This noise 

must be filtered out in order to produce accurate and smooth movements (Scott, 2008). In 

the experimental work reported in this thesis, models operated in a noise-free environment 

(no uncertainty regarding the location of the target or cursor). It is likely that if noise were 

introduced via the addition of Guassian error in the perceptual signal, this would pose a 

significant challenge to the PCT models. No PCT implementations have been tested with 

noisy input data, nor has any mechanism for attenuating this noise been suggested within 

PCT. The development of a mechanistic explanation within PCT must be a priority.  

One suitable mechanism for noise attenuation in action control is Bayesian 

inference (Friston et al., 2010). Bayesian inference recursively predicts the next state, 

given a probability distribution of previous states (prior). When a new observation is made 

the probability of attaining this observation, given the prior, is calculated (likelihood). This 

is used to update the posterior distribution which becomes the prior used to estimate the 

state in the next recursive step. This is applied in AI (Adams et al., 2012; Brown et al., 

2011; Perrinet et al., 2014) to optimise predictions of proprioceptive input (see Section 

1.5.2). In addition, Bayesian filters, such as the Kalman filter (Kalman & Bucy, 1961) have 

been applied in computational models of movement to improve the accuracy of control 

outputs by reducing the discrepancy between predicted states and measurements, taking 

account of the reliability of the measurements. Kalman filtering is used in optimal control 

solutions to motor problems (Todorov, 2004a; Todorov & Jordan, 2002b), including 
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manual tracking in which it has proven a robust method for attenuating the effect of noise 

on performance (Hoff & Arbib, 1993; Miall & Wolpert, 1996; Saunders & Knill, 2004). 

However, although humans produce near optimal trajectories, it is unclear whether the 

CNS can compute optimal control solutions like this (Markkula, Boer, Romano, & Merat, 

2018).  

It may be possible that simpler, less powerful weighted average methods might be 

applicable, that do not require as many assumptions. For example, increasing the interval 

over which velocity is calculated within proposed PCT model would give a measurement 

more robust to sensor noise (provided a Guassian distribution of noise). However, target 

acceleration would make calculations over longer intervals inaccurate. Thus the optimal 

balance of noise reduction and relevant measurement must be found. This is the advantage 

of the Bayesian inference method in which the prior distribution is centred on the 

immediate previous measurement, but also sets a gain that optimally controls the relative 

contribution of the prediction based on the distribution of the measurement error.  

Another  alternative explanation sees human sensorimotor control as intermittent 

rather than continuous. In this view, a ballistic movement is initiated once the error (or 

time since the last movement) has exceeded a threshold (Gawthrop & Wang, 2011; Gollee 

et al., 2017; van de Kamp, Gawthrop, Gollee, & Loram, 2013). This hypothesis has 

recently been extended by a model which combines classical control theoretic foundations 

and incorporates prediction error-based evidence accumulation thresholds, and motor 

primitives (Markkula et al., 2018). Motor primitives are defined as a repertoire of 

stereotyped movement patterns that are scaled and combined, and are thus independent of 

mass (Giszter, 2015). The model performs well in tracking in the presence of sensor and 

motor noise (Markkula et al., 2018), and may be an appropriate alternative mechanism to 

compensate noise that does not rely on optimal control principles. Indeed, the mechanisms 

outlined above may prove useful when considering how PCT models might simulate neural 

noise attenuation. This would improve the biological plausibility of the theory. 

Critically, the models implemented in this thesis aim to simulate the perceptual 

process. They do not offer an explanation for how motor execution is achieved. They 

attempt to determine which perceptual variables are controlled in the task but not how this 

control is achieved biomechanically. Thus we cannot make assertions regarding the 

mechanism based on our findings. However, the position extrapolation strategy proposed 

in this thesis appears to simulate the most fundamental aspects of the participant’s tracking 

movements, with a very simple and biologically feasible scheme. Indeed, a key criticism of 
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negative feedback control approach has been that the presence of sensory delays 

invalidates the control command. As we have shown, this is not necessarily the case. If the 

right perceptual variable is controlled to a reference value, sensory delays can be 

compensated without an internal model. 

In the hierarchical models implemented in this thesis, the delay values at each level 

were equivalent. This is an intentional simplification. Ascending levels of the PCT 

hierarchy are proposed to operate at longer delays than subordinate units (Marken, 1990; 

Powers, 1999). In this way, the reference values for subordinate control units vary faster 

than those in the level above, and therefore have time to meet their respective reference 

values. It is uncertain how this simplification may have affected the operation of the 

hierarchical models in these experiments.  

It would also be possible to extrapolate cursor position using the same linear 

method (Pavel et al., 1992); this could then be compared with extrapolated target position 

in the position controller. This is justified by the same evidence that supports target 

extrapolation (Fine et al., 2014; Khoei et al., 2013; Makin, Poliakoff, Chen, & Stewart, 

2008; Pavel et al., 1992; Rosenbaum, 1975; Zago et al., 2010). However, this was not 

implemented as we wished to differentiate motor prediction from emergent predictive 

behaviour through sensory integration. PCT proposes that perceptions, not actions, are 

controlled. As described in the introduction (Chapter 1), this differentiates PCT from other 

contemporary motor theories which state that forward or inverse internal models are used 

to predict either the effect of action from the motor command (Adams et al., 2013; Brown 

et al., 2011), or derive the appropriate motor command from the action effect (Wolpert, 

Ghahramani, & Jordan, 1995; Wolpert & Kawato, 1998). Cursor extrapolation could be the 

result of a perceptual process (summation of visual representations of velocity and 

position), but could also be explained by motor prediction approaches. That is, that the 

extrapolated cursor position is a prediction of the future position of the cursor based on an 

efference copy of the motor command to the arm (Desmurget & Grafton, 2000; Grush, 

2004). Thus, we did not implement cursor extrapolation in models, as we aimed to 

demonstrate that delay compensation was in the tracking task was a result of a perceptual 

process rather than via internal feedback (motor prediction). 
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8.6 Future research suggestions 

8.6.1 Concerning objectives of the thesis: Proof-of-principle for Perceptual Control 

Theory 

The immediate research priority is to systematically evaluate whether the HEM 

model can simulate the data that we have collected that has not been analysed within this 

thesis which were collected on two target signal types: irregular steps and sinusoids with a 

visual occlusion for the last 20% of the trace. These were chosen to elucidate the 

distinction between anticipation or prediction and position feedback. For irregular step 

signals, there is no change in target velocity or acceleration. Instead, there is an 

instantaneous position change in an unknown direction (though the timing of each step is 

constant). We expect that models can therefore use only a position control strategy (the 

extrapolation gain would become zero in the HEM model).  

A pilot analysis shows that the PCM model has face validity in characterising 

performance as it appears to replicate the characteristics of the movement (Figure 8.2). 

Moreover, the simulation accuracy in this example data is comparable to model fits to 

sinusoid and pseudorandom targets. In the depicted trials, model simulation error rates 

(RMSE) were 53.34 (top) and 36.46 (bottom), comparatively, participant tracking errors 

195.65 (top) and 163.32. Thus whilst participants may produce larger errors in tracking, 

model fit values may be in a similar range to those for smoother target signals. I have 

conducted no statistical analyses on step signal data; these results are purely for 

demonstrative purposes. 

In the case of step signals, participants would not be able to use extrapolation 

because the velocity is constant until an instantaneous step appears. Individuals must only 

use a position control strategy (the extrapolation gain is reduced to zero). In this task we 

would predict no benefit in accuracy for models that utilise velocity over the standard 

PCM. A second reason to test the model on these targets arises because others have 

hypothesised that for discrete movements to unexpected targets, the feedback gain 

increases to the midpoint of the trajectory and decreases toward the end of the trajectory 

(Dimitriou, Wolpert, & Franklin, 2013), producing a bell-shaped velocity profile (Hogan & 

Flash, 1987). This is not represented in PCT models in this thesis. In these models, the 

output gain is static as a result of the optimisation procedure. However, the value of gain 

parameters (and other parameters) is proposed to vary during motor learning. This is very 

different to the prediction that the parameters change rapidly during movement based on 
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the current task state (Crevecoeur & Scott, 2014; Scott, 2013). This should be built into 

future models.
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Visual occlusions during sinusoid tracking pose a different challenge. Over the 

target occlusion, the participant receives no visual input for the target position over the 

occluded period. Despite this, participants can continue to track the target using their 

memory of the previous target trajectory, although with some decrement to performance 

over the occluded period (as shown in Figure 8.3). For short occlusions of a few hundred 

milliseconds, the extrapolation strategy might reasonably accurately emulate the 

participant’s behaviour. When the target disappears then the model would continue to track 

for the duration of the delay parameter following occlusion (as the model is using previous 

input). For longer occlusions in which whole cycles of the sinusoid are occluded (Figure 

8.3), the extrapolation model would not adequately capture this behaviour. A 

computational model of occluded tracking performance would require longer term storage 

of the frequency and amplitude of the target signal which must be used as inputs to the 

system; albeit with some error of recall or memory ‘noise’. It would be interesting to 

establish whether participants consistently over- or under- represent the target trajectory at 

different sinusoid speeds.  



324 
 

                 

F
ig

u
re 8

.3
 G

rap
h
s o

f o
f a h

ig
h
 an

d
 a lo

w
 d

ifficu
lty

 sin
u
so

id
 targ

et o
cclu

sio
n
 trial. D

ep
icted

 seg
m

en
ts are 2

0
 s in

 d
u
ratio

n
 w

ith
 an

 o
cclu

sio
n
 

b
eg

in
n
in

g
 at 1

0
 s (4

2
 s o

n
 g

rap
h
 ax

es) 

 



 

325 
 

As mentioned in an earlier section (8.4.2), it would be useful to compare different 

theoretical models with PCT models within the tracking environment. The tracking task 

could use a range of target patterns, perhaps in two dimensions. This would enable 

functional evaluations of the merits of different theoretical models. 

8.6.2 Toward development of a device for rehabilitation 

The current project intended to test the proof of principle for PCT to be applied to a 

robotic rehabilitation device (Figure 8.1). We have extensively demonstrated that a model 

can characterise and simulate healthy human performance in a one-dimensional task with a 

one DoF device (joystick y dimension or steering wheel rotation). However, a number of 

key considerations must be addressed in further research studies if the model is to be 

applied in this setting. 

 The first question is whether a PCT model can drive a device to track a target 

accurately. We have developed a model that will drive a force feedback steering wheel to 

track a target in one dimension, with the type and difficulty level of tracking signals 

presented in this thesis. Pilot data appear to show that it can track with comparable 

accuracy to a healthy human participant (Figure 8.4). In the depicted trials the tracking 

error produced by the model were 46.35 (pseudorandom high difficulty) and 35.25 

(sinusoid high difficulty). These are substantially more accurate than human RMSE errors 

for these targets, which averaged around 80 (pseudorandom high difficulty) and 50 

(sinusoid high difficulty) respectively (Figure 7.6). However, we have not trained the 

model with a systematic optimisation method, or algorithm, and therefore cannot currently 

establish the maximum accuracy of the model when tracking targets. Nor have we 

collected enough data to make statistical comparisons. Even if the model is as accurate (or 

more accurate) than participants, it is unclear whether it tracks in the same way. Phase and 

amplitude ratio comparisons would elucidate this.  

We chose the steering wheel used in this study because it could produce enough 

torque to turn the force feedback steering wheel whilst a human participant was using it 

(see device specifications, Chapter 2). However we have not, to date, attempted to evaluate 

whether the model can drive the steering wheel to track accurately when a human is 

exerting force on the steering wheel. The steering wheel must be able to do this in order to 

assist or resist individuals in tracking the target accurately.
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One intended aim of the research agenda is to establish whether we can emulate individual 

performance, with the model-driven steering wheel, in the same manner as we have 

demonstrated with the software models. This would require extensive optimisation of the 

model to find parameters that characterise the individual’s control characteristics, rather 

than finding an optimal parameter combination for tracking accuracy (see earlier point 

regarding characterising impaired performance, Section 8.3.2). This would require real-

time optimisation. That is, the steering wheel would have to track the target many times 

and alter its parameters until it most accurately simulates that individual’s tracking 

performance for the target. We have not yet produced an optimisation algorithm that will 

do this. However, models of optimisation based on the PCT reorganisation algorithm have 

been demonstrated within software and hardware environments. For example, a 

reorganisation algorithm was developed for real-time reorganisation of a virtual robotic 

arm (Powers, 2008).  

Critical to rehabilitation device development is whether the device training is 

efficacious, in terms of reducing impairment, but also improving functional abilities and 

increasing use of affected limbs (see Chapter 3). In the review of tracking devices for hand 

and wrist training (Chapter 3), we established that devices that train distal upper limb 

movements may be more effective than those training proximal upper limb movements. 

We used two devices in the experiments presented within this thesis: a joystick and a 

steering wheel. Whilst both devices support shoulder movements in a number of 

dimensions, the steering wheel primarily supports forearm pronation and supination. On 

the other hand, the joystick supports some wrist and elbow flexion and extension if used in 

the forward/backward (y) axis; and forearm pronation and supination in the left/right (x) 

axis. Whilst the latter can clearly train more different movement DoF, this is not the only 

relevant consideration. 

Firstly, the range of movement may be important and is much more restricted with 

the joystick than with the steering wheel. (See device specifications; section 2.4). 

Secondly, authors have suggested that devices may be more effective at improving 

functional and activity related outcomes if they train ADL-relevant movements 

(Balasubramanian, Colombo, Sterpi, Sanguineti, & Burdet, 2012). The steering wheel has 

the obvious application to driving, whereas the possible applications for the joystick are 

less clear However, the current tracking task is not task-relevant and thus the tracking 

environment may be adapted: for example with pick and place reaching tasks with the 

joystick or with driving simulations with the steering wheel. The latter may be particularly 
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beneficial to enhancing road safety. Training may benefit individuals before they embark 

on relearning driving in real vehicles. In addition, the steering wheel supports both uni-

manual and synchronous bimanual training, whilst the joystick supports only uni-manual 

training. It is important to consider whether bimanual training confers additional benefits 

relative to uni-manual training; a systematic review and meta-analysis of bimanual devices 

concluded that there is insufficient evidence to suggest that bimanual training conferred 

additional benefit over uni-manual training. However there were only a small number of 

studies of methodological quality and sufficient sample size from which to draw such 

conclusions (van Delden et al., 2012). Judging which device would be more appropriate for 

rehabilitation is a difficult task and there may be no clear answer. Most likely, it would be 

dependent on the needs of the individual using the device. That said, the joystick supports 

a larger range of movements, particularly if used in both dimensions at once (with a two-

dimensional tracking task).  

8.7 Conclusions 

This thesis completed the first two phases of a research agenda oriented towards 

testing the proof-of-principle of applying PCT to robotic rehabilitation. Integrating theory 

with application required a multidisciplinary research agenda. This was predicated on the 

development and testing of a handheld robotic rehabilitation device, used in a tracking 

environment and driven by an adaptive PCT-based controller. As this was a completely 

novel application of the theory, the preliminary steps were to assess both the efficacy of 

robotic devices for hand rehabilitation, and to evaluate the state of the evidence for PCT 

models within tracking experiments. In the first phase we completed two systematic 

reviews. In a first systematic review we found that RT reduced impairment in the upper 

limb and increased functional abilities for stroke patients. Thus we concluded that distal 

upper limb RT is a promising approach for neurorehabilitation. The second review 

indicated that most PCT tracking studies fit a canonical PCM to performance. This model 

performed well in replicating tracking behaviour for pseudorandom targets and 

disturbances. However, it did not include any delay, nor was there evidence of fit to 

anticipatory behaviour. Whilst the theory promoted a functional (individual) modelling 

approach, it had not been assessed whether models’ predictions were individual-specific.  

In three experimental chapters we addressed these objectives by constructing 

models of individual tracking performance, and completed phase two of the research 

agenda. Addressing the objectives, we distilled a model, based on PCT that would be 
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biologically plausible, functionally generalisable and individual-specific. This model could 

then be implemented to drive the robotic device. The outcome was a model that 

extrapolated position by using velocity information within a hierarchical control structure. 

This model generalised across target types and speeds, replicating individual participant 

behaviour in the tracking task whilst maintaining biologically feasible sensorimotor delay 

duration. This demonstrated the utility of the perceptual control approach to tracking. 

Future work will intend to implement this model within a robotic device. The device would 

assist or resist an individual’s movements in a tracking environment, adapting to their 

needs based on their individual control characteristics. We intend to evaluate the potential 

for neurorehabilitation with this device as per the outlined research agenda. 
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