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Refining technology has evolved considerably over the last century in 

response to the need for more energy-efficient processes. Crude oil 

distillation is a complex and energy-intensive process with a large number of 

degrees of freedom that interact. A crude oil distillation system comprises one 

or more complex distillation units with side strippers and pump-arounds, a 

preheat train (heat recovery system) and a furnace providing fired heating. In 

addition, pre-separation units may be introduced, where a preliminary 

separation of some low-boiling components is carried out at a relatively low 

temperature, reducing the high-temperature heating requirements of the 

process. Design of these complex, integrated systems is challenging due to a 

large number of degrees of freedom and process constraints involved. The 

high operating costs dominated by the need for fired heating in the furnace 

and the complexity of the crude oil distillation system motivates the 

development of systematic approaches for optimal system design. 

 

In this work, the design methodology is developed using simulation models in 

Aspen HYSYS v8.8; these models are linked to MATLAB R2016a through an 

interface that allows communication between the two software packages. A 

simulation file is created for two different configurations with and without a 

preflash unit upstream of the atmospheric column. Two optimisation-based 

design approaches are proposed, the first one extracts streams and column 

information needed to perform the optimisation directly from the simulation 

model in Aspen HYSYS while in the second approach, artificial neural 

networks (ANN) are developed to represent the distillation process. The 
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scope of the methodology consists of finding optimal operating and structural 

conditions for the crude oil distillation system that minimises hot utility 

demand in the furnace accounting for product quality and yield. Current 

design systematic methods have not focused on the role of preflash units.  

 

The strong interactions between the crude oil distillation unit, the preflash 

unit, and the heat recovery system make this a challenging optimisation case, 

especially because both operational and structural variables are to be 

optimised simultaneously. Therefore, a stochastic optimisation method (a 

genetic algorithm) is applied. As the simulation-optimisation approach is 

computationally intensive, it motivates the use of surrogate models that have 

the advantage of performing the optimisation of the system in less time (i.e. 4-

6 hours vs 1.6 hours). 

 

In industrial practice, heat integration is of prime importance for the energy-

efficient operation of crude oil distillation systems. This work applies pinch 

technology using the grand composite curve to evaluate the minimum heating 

and cooling requirements for each converged simulation rather than 

addressing detailed aspects of design and costing of the heat recovery 

system so that no details about investment costs and the complexity of the 

heat recovery system are taken into account. The novel optimisation-based 

design approach developed is extended to minimise fired heating demand. To 

date, no previous research studies focused on minimising the total fuel 

consumption of the system and the design or operation of crude oil distillation 

columns have been reported. 

 

Results obtained from industrially-relevant case studies indicate that 

introducing a preflash unit within a crude oil distillation system can reduce its 

energy demand by 14% to 16%. Using surrogate models, instead of rigorous 

models, considerably reduce the computational time (from 6.1 hours to 103 

seconds per each optimisation run for the case with a preflash). Excellent 
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agreement between the surrogate and rigorous models is also reported; 

rigorous optimised results vs ANN-optimised results for the case without a 

preflash unit are 44.5 MW and 44.6 MW respectively, demonstrating the 

effectiveness of the new approaches. On the other hand, it is demonstrated 

that minimising only the hot utility demand of the system does not give 

complete information about the demand for fired heating and it does not 

necessarily minimise the total fuel consumption of the system. 
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Chapter 1  

Introduction 
 

 

Petroleum refining industry has existed for around a century, it supplies a 

wide range of essential products to a variety of end-user markets. These 

products are manufactured from natural deposits of oil and gas located 

around the world. Both crude oil and gas are the major sources to meet world 

energy demand (Clews, 2016). 

An overall objective in a refinery is to add value to a crude oil feed through 

the production of fuels and materials at the lowest possible cost meeting 

product specifications. Separation processes constitute the initial processing 

stage in a refinery. Crude oil distillation is the core separation process in any 

refinery; it fractionates the crude oil into several distillation products according 

to their boiling points (Clews, 2016). 

This Chapter aims to give a brief introduction to the research topic addressed 

in this work; it is divided into four sections: first, the main features on crude oil 

distillation are presented, explaining some concepts and terminology that are 

used in this work. Second, the design of heat-integrated crude oil distillation 

systems is introduced. Third, research aim and objectives are outlined to 

conclude with a general Thesis overview.  
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1.1. Features on crude oil distillation 

 

Crude oil is a mixture of hydrocarbon compounds ranging in size from the 

methane, with one carbon atom to large compounds containing more than 

300 carbon atoms (Jones, 1995).  Crude oil extracted from natural reservoirs 

is a basic raw material for the petroleum industry; however, it has limited 

value in its natural state. There are many types of crude oils, each of them is 

categorised according to their density, the presence of impurities (sulphur 

content - the measure of total sulphur in the oil) and its location. High sulphur 

contents in oil make it ‘sour’ while low sulphur content in a crude oil makes it 

‘sweet’ (Kayode, 2010).  

 

Crude oil characterisation and cut points 

Crude oil characterisation is usually the first step taken to facilitate other 

calculations and the minimum requirements are: (a) whole crude True Boiling 

Point (TBP) curve, (b) whole crude American Petroleum Institute (API) gravity 

and (c) whole crude light-ends analysis (Watkins, 1979). Crude oil is 

characterised to provide a good representation of it during modelling. When 

modelling complex hydrocarbon mixtures within commercial simulation 

packages, the original mixture is substituted by a mixture comprising two 

different groups of components: the light-ends components and a group of 

pseudo-components (Eckert and Vaněk, 2005).  

Because of the complex composition, crude oil and petroleum fractions are 

usually characterised as a mixture of discrete pseudo-components (Nelson, 

1958). Each pseudo-component corresponds to several or more unknown 

actual hydrocarbons, and is assigned an average boiling point on the TBP 

distillation curve (Fahim et al., 2010). This allows crude oil to be treated as a 

defined multicomponent mixture. To simulate refining processes, the first step 

is to define a pseudo-component scheme to characterise the crude oil feed. 
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Data requirement and definition of the pseudo-components depend on the 

type of the refining process to be modelled. The composition of the crude oil 

is indicated in terms of bulk and distillation based-properties. Bulk properties 

refer to those taking the whole crude into account such as density and 

viscosity. Distillation-based properties refer to the bulk properties measured 

for small amounts of crude based on its boiling point i.e. density distributions 

and boiling points distributions (TBP, D86). The collection of bulk and 

distillation-based properties form a crude oil assay that indicates how much of 

a cut (or product) can be produced for a given crude (Chang et al., 2012). 

The pseudo-components for crude oil distillation units have to accurately 

characterise volatilities of the hydrocarbons in the crude oil feed in order to 

calculate vapour-liquid equilibrium in distillation columns (Chang et al., 2012). 

In order to define the number of pseudo-components, it is necessary to cut 

the entire boiling range of the crude oil into a number of ‘cut-point ranges’ 

which are used to define the pseudo-components. The determination of 

number of cuts is arbitrary. The number of pseudo-components for each cut 

point range can vary depending on the product range desired (Chang et al., 

2012). To maintain agreement with previous works (Chen, 2008; Ochoa-

Estopier, 2014; Enríquez-Gutiérrez, 2016; Ibrahim, 2018), 25 pseudo-

components are chosen to represent the crude oil boiling range in this work.  

Most commercial process simulators have the capability to generate pseudo-

components based on boiling-point ranges representing the oil fractions 

(Chang et al., 2012). Aspen HYSYS v8.8 is used in this work to carry out the 

characterisation of the crude oil. See Appendix F for a detailed explanation 

about how does Aspen HYSYS carries out the crude oil characterisation. 

An indicator of the composition of crude oil and the facility in which it can be 

processed is the density. The density of crude oil is measured using the 

American Petroleum Institute, API gravity, a method of measuring the
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density of petroleum compared to water; it is related to specific gravity as 

follows: 

𝐷𝑒𝑔𝑟𝑒𝑠𝑠 𝐴𝑃𝐼 =  (141.5 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦⁄ ) − 131.5            (1.1) 

Both specific gravity and API gravity are expressed relative to the density of 

water at 60°F (15.9°C). Lighter crudes are generally more valuable than 

heavier ones due to a greater volume of light components can be produced 

with less processing costs (Clews, 2016). 

To facilitate crude oil compounds identification, petroleum refining community 

adopted crude oil characterisation through crude oil assays. An assay is the 

product of laboratory tests that provide detailed physical and chemical 

analysis of crude oil (Clews, 2016).  A crude oil assay describes a specific 

crude oil type in terms of increasing boiling point temperatures at which 

specific parts of the crude oil evaporate. The first step in building a crude 

distillation model is the transformation of the crude oil assay data into 

petroleum pseudo-components or cuts. Figure 1.1 shows the boiling point 

curves for five distillation products light naphtha (LN), heavy naphtha (HN), 

light distillate (LD), heavy distillate (HD) and residue (RES).  

 

Figure 1.1 Product boiling point curves (adapted from Liebmann, 1996). 
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Figure 1.2 illustrates the region around the end point of a light product and the 

initial boiling point of a heavy product showing an overlap in temperatures, 

the width of this overlap is a measure for the quality of separation. The 

smaller the width of the overlap, the sharper the separation is.  The overlap is 

defined as the difference between the 5% point of the heavier product (T5H) 

and the 95% point of the lighter product (T95L), this is called the ‘5-95 gap’. 

The larger the value of this difference, the sharper the separation is between 

two adjacent products (Liebmann, 1996). 

A ‘cut point’ is defined by the volumetric yield point between two adjacent 

fractions and the corresponding temperature on the boiling point curve. This 

temperature is equal to the arithmetic mean of the end (T100) and initial (T0) 

boiling points of two products (Liebmann, 1996).  

 

Figure 1.2 Gap and cut point between crude distillation products (adapted from 
Liebmann, 1996).  

As single components of crude oil are not identified, properties defining the 

quality of a crude oil distillation product are found by a standardised test 

suchas the American Society for Testing and Materials, ASTM D86. 
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Crude oil distillation carries out the transformation of crude oil into useful 

products; it is a complex and energy-intensive process. The processing steps 

required for a particular refinery are mainly driven by the quality of the crude 

oil being processed and the product specifications of the products. Every 

refinery is different so that many possible refinery configurations can be found 

around the world.  

The next section presents a brief introduction about the design of heat-

integrated crude oil distillation systems. 

 

1.2. Design of heat-integrated crude oil distillation systems 

 

A typical crude oil distillation system, as illustrated in Figure 1.3 comprises a 

heat recovery network (two preheat trains where the crude oil is preheated 

and partially vaporised), an atmospheric furnace, a crude distillation unit 

equipped with a condenser (required to cool the naphtha product into a 

usable liquid form), one steam-injected side stripper, two reboiled side 

strippers which remove light components from side draws, and three pump-

arounds that pull a certain amount of liquid on a tray, cool it down by heat 

recovery and then return it to the column two or four stages above the 

withdrawal. Pump-arounds provide local reflux to the crude distillation unit, 

which does have a huge impact on the separation quality. They also create 

heat recovery opportunities between the distillation column and the heat 

recovery system. 

 

Side withdrawals are fed to side-strippers, which strip the lighter components 

and return them to the main tower (Liu, 2012). The main function of a side 

stripper is to improve the fractionation between a side distillate and the 

distillate drawn from above (Fraser, 2014). 

 

Steam is injected into the column at the bottom in order to enhance
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vaporisation and separation of the heavier components. The presence of the 

steam decreases the partial pressure of hydrocarbons so that they can be 

vaporised at lower temperatures.  

 

Figure 1.3 Crude oil distillation system. 

 

Crude oil is first pumped into a series of heat exchangers (preheat trains 1 

and 2) where heat is transferred from hot process streams to the cold crude 

oil. Next, it is sent to a furnace where the crude oil is heated up by exhaust of 

fuel combustion. Finally, crude is fed to the crude distillation unit (Liu, 2012). 

 

Table 1.1 illustrates column sections, stages and temperatures of the crude 

oil distillation column showed in Figure 1.3. 

 

The crude oil distillation unit has strong connections with its associated heat 

recovery system i.e. the hot streams (pump-arounds, condenser and 

distillation products streams, are heat-integrated with the cold streams, in 

particular with the crude oil feed. 
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Table 1.1 Column sections, stages and temperatures of a crude oil distillation 
column  

Column section Stage Temperature, °C 

1 1 93.7 

 9 146.5 

2 10 147.4 

 17 227.5 

3 18 238.6 

 27 304.9 

4 28 310.9 

 36 341.3 

5 37 341.3 

 41 335.1 

 

Duty of pump-arounds can be used as heating utility in other sections of the 

process. The rest of the energy requirements of the system are provided by 

fuel oil in the atmospheric furnace and cooling water.  

Even though the system is heat-integrated, it consumes fuel at the equivalent 

of 2% of the crude processed (Bagajewicz and Soto, 2001). Typically, energy 

usage is on the order of 10 to 200 MW per crude oil distillation unit. In order 

to maximise the recovery of atmospheric products, the crude oil distillation 

unit operates at high temperatures around 360ºC to 370ºC. Consequently, 

these units need large fired heaters (furnaces) to heat the raw crude (Fraser, 

2014). It should be noted that most of the energy necessary to carry out the 

distillation process is added in the fired heater. 

Heat integration is implemented within a crude oil distillation system to 

enhance its energy efficiency interchanging heat between hot streams that 

require cooling and cold streams that require heating.  

The interactions between the crude oil distillation process and the heat 

recovery system have a critical effect on the performance of the overall 



33 
  

process. These interactions are represented by the operating conditions of 

the crude oil distillation unit such as pump-around duties and temperature 

drops, steam flow rates, reflux ratio and column inlet temperature. There are 

many degrees of freedom (variables that have a significant impact on process 

operation and also that can be manipulated and measured in the plant) 

available for the design and operation of a crude oil distillation system. From 

a design perspective, it is important to take into account both structural and 

operational degrees of freedom (Ochoa-Estopier, 2014). 

Changing the operating conditions of a crude oil distillation system may 

benefit heat recovery opportunities in the heat exchanger network, HEN.  

Furthermore, modifying the column structure by adding a preflash unit does 

not only allow more capacity to be processed but also help the overall system 

to reduce its energy consumption increasing heat recovery opportunities 

(Gadalla, 2003). 

Preflash units are commonly placed upstream of the crude oil distillation unit 

as shown in Figure 1.4, aiming to debottleneck either the distillation column or 

the furnace. A preflash unit allows bypassing the preflashed vapour from the 

furnace and sending it to an appropriate location in the main column (Golden, 

1997).  In this way, it is possible to reduce the heat duty of the distillation unit 

and it also improves the hydraulic performance of the heat exchanger 

network (Feintuch, 1985). 
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Figure 1.4 Crude oil distillation system with a preflash unit. 

 

Implementing a preflash unit helps to remove light components of the crude 

oil mixture before entering in the fired heater. The main advantages of a 

preflash implementation will be discussed in Chapter 2.  

Design of heat-integrated crude oil distillation systems has attracted research 

interest due to the possibility to reduce their energy consumption by 

implementing new design methodologies. 

Main focus of early design methodologies (Nelson, 1958; Watkins, 1979; 

Jones, 1995) was to implement heuristics, engineering experience and 

empirical correlations that require trial and error and do not account for 

interactions within the system, i.e. design of the distillation column was 

performed first, followed by the design of the heat recovery network.  

Later research works (Suphanit, 1999; Gadalla, 2003; Rastogi, 2006; Chen, 

2008) followed the work of Liebmann (1996) proposing methodologies to
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address the design of heat-integrated crude oil distillation systems.  

Design methodologies based on rigorous models (Ji and Bagajewicz, 2002) 

and recent developments on surrogate models (Ochoa-Estopier and Jobson, 

2015; Ibrahim et al., 2018) have not included a pre-separation unit within the 

crude oil distillation system. Both rigorous and surrogate models have their 

own advantages and disadvantages, for instance, rigorous models tend to be 

accurate but they require large computational time. In addition, the 

implementation of rigorous models into optimisation frameworks is not as 

simple as it is when implementing surrogate models. In particular, artificial 

neural network models are able to represent the distillation process with 

accuracy and they are faster in convergence than rigorous models. On the 

other hand, there is a trade-off between model accuracy and computational 

effort which needs to be taken into account when implementing models into 

an optimisation framework (Ochoa-Estopier, 2014). 

Nowadays, new computational tools are leading to the development of 

sophisticated design methodologies that employ optimisation algorithms and 

models to facilitate the design of complex crude oil distillation systems.  

Reliable simulation modelling is of prime importance for a successful process 

evaluation. Within the modern petroleum industry, process simulation is 

widely used to design and to analyse the crude distillation unit performance. 

However, accurate simulation modelling requires a deep understanding and 

knowledge of the entire crude oil distillation process (Lee, et al., 2009).  

Hence, the development of new design methodologies for crude oil distillation 

systems with and without a pre-separation unit that enable a reduction in 

energy consumption and CO2 emissions can bring substantial benefits to the 

refining industry. Nevertheless, due to the high complexity of the system, it is 

challenging to develop optimisation-based design approaches that exploit 

interactions between the separation units and their associated heat recovery 

system simultaneously, while meeting product quality and quantity 

specifications. 
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1.3. Motivation 

 

Crude distillation is the oldest and most important part of any refinery, the 

distillation of crude provides refined products such as gasoline and diesel for 

direct sale and feed stocks to further processing. Recent emphasis has been 

highlighted in reducing energy consumption and CO2 emissions (Chang et al., 

2012).  Figure 1.5 illustrates the energy use by type of industry; petroleum 

refining is the highest energy consumer. 

 

 

Figure 1.5 Energy use by type of industry (Source: US Energy information 
administration, manufacturing energy consumption survey, 2010). 

 

Currently, research on how to reduce the energy consumption of atmospheric 

distillation units in a refinery has become a top priority. It is estimated that a 

crude oil distillation unit consumes 20-30% of the total energy required to 

separate a given crude into products. Therefore, it is critical to recover as 

much heat as possible from hot streams throughout the refinery to optimally
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heat and vaporise the crude oil (Chang et al., 2012). 

On the other hand, the atmospheric furnace is the main energy conversion 

equipment, it is estimated that about 1/3 of the comprehensive energy 

consumption of refinery conversion and consumption is achieved through the 

furnace; thereby, increasing refinery furnace efficiency has become a main 

priority within the refining industry (Ping et al., 2012). 

Energy savings can be achieved by exploiting interactions between 

separation units and the heat recovery system. Heat recovery is essential in 

design due to its impact on energy costs of process. In a crude oil distillation 

system, heat recovery is carried out via a heat exchanger network (HEN). In 

this work, the design of a heat exchanger network is out of scope; however, 

previous studies have addressed this part (Smith et al., 2010).  

In order to simplify the problem and to reduce computational time, in this work 

pinch analysis (using the grand composite curve) is selected to evaluate 

minimum hot utility requirements for the crude oil distillation system, taking 

into account that pinch technology has provided industry with a systematic 

tool for design and optimisation of processes. 

To date, there is no study that focuses on hot utility demand and fired heating 

demand of a crude oil distillation system with emphasis on adding a preflash 

unit. Therefore, the present work represents a starting point for further 

analysis to capture the trade-offs between yield and energy demand or by 

maximising net profit. The following section presents the research aim and 

objectives of this work.  
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1.4. Research aim and objectives 

 

This research work aims to develop a systematic methodology to design 

energy-efficient crude oil distillation systems that exploit interactions between 

the separation units and the associated heat recovery system while meeting 

product quality and quantity specifications. Heat recovery is systematically 

evaluated using pinch analysis to account for the impact of operational 

variables on minimum energy demand.  

The optimisation-based design framework enables the selection of 

operational and structural variables within the crude oil distillation system. 

Product quality and quantity constraints are taken into account. This research 

has the following objectives: 

1. Develop an optimisation-based design methodology using rigorous 

models and pinch analysis simultaneously to simplify the design of 

heat-integrated crude oil distillation systems with and without a 

preflash unit taken into account operational and structural variables. 

 

2. Incorporate surrogate models (in particular, Artificial Neural 

Networks, ANN) into the optimisation-based design methodology 

aiming to reduce optimisation time without compromising model 

accuracy, column performance, product qualities or product yields.  

 

3. Enable minimisation of fired heating demand using rigorous and 

surrogate models.  

 

4. Apply the modelling and optimisation approaches to both 

objectives, minimum hot utility demand and minimum fired heating 

demand to demonstrate the capabilities of the methodology, and to 

gain understanding about opportunities to reduce energy demand 
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through appropriate selection of structural and operational design 

degrees of freedom. 

 

 

1.5. Thesis Overview 

 

This PhD Thesis is organised in seven Chapters. In Chapter 1, a brief 

introduction to the design of crude oil distillation and heat-integrated crude oil 

systems is presented.   

Chapter 2 outlines an overview of previous research related to the design and 

optimisation of heat-integrated crude oil distillation systems emphasising the 

cases including pre-separation units. Stochastic optimisation methods applied 

for crude oil distillation design are addressed, and standard methods for 

analysing heat integration potential are explained. 

An optimisation-based design methodology for crude oil distillation systems 

with preflash units is proposed in Chapter 3. In this Chapter, ‘direct 

optimisation’ is applied to design crude oil distillation systems with and 

without a preflash unit. Two scenarios are explored and presented as case 

studies. In the first case study, the structure of the main column is fixed in 

terms of the numbers of trays. In the second case study, the structure of the 

main column and the operating conditions of the crude oil distillation system 

are optimised simultaneously. 

Chapter 4 introduces an optimisation-based design framework developed 

applying surrogate models for crude oil distillation systems with and without a 

preflash unit. The models are developed using data from rigorous simulations 

and Artificial Neural Networks, ANN. Case studies demonstrate the 

capabilities of the optimisation framework and allow comparison to the ‘direct 

optimisation’ approach of Chapter 3. 
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A novel optimisation-based design methodology to minimise fired heating 

demand of crude oil distillation systems is presented in Chapter 5. No 

previous research is known to have taken into account the optimisation of 

fired heating demand and the associated fuel consumption of the atmospheric 

furnace. In this research work results of optimisations using both ‘direct 

optimisation’ and ANN-based optimisation regarding minimum hot utility 

demand and fired heating demand are compared for two different case 

studies: with and without a preflash unit. 

An overall Thesis summary is included in Chapter 6, linking results from case 

studies presented in Chapters 3, 4 and 5. The base case in each case study 

(with and without a preflash unit) is outlined, comparing best optimised 

designs.  

Finally, Chapter 7, summarises this research work discusses its limitations 

and recommends future work. 
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Chapter 2  

Literature Review 
 

 

This Chapter includes information published in: 

 

Ledezma Martínez, M., Jobson, M., and Smith, R. (2018a). Simulation-

optimization-based Design of Crude Oil Distillation Systems with 

Preflash Units. Industrial and Engineering Chemistry Research, 57(30), 

doi.org/10.1021/acs.iecr.7b05252. 

 

 

2.1 Introduction 

 

Crude oil distillation is the core part of a refining process and also the major 

energy consumer. Design and operation of crude oil distillation columns 

involve strong trade-offs between energy use and product recovery. 

Optimising these trade-offs by applying optimisation-based design 

methodologies can lead to increase energy savings in crude oil distillation 

systems. 
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This Chapter presents a brief review about relevant previous research on 

design and optimisation of crude oil distillation systems; benefits of a preflash 

implementation in a crude oil distillation system are also discussed.  

Stochastic optimisation methods are described in summary. Then, an 

introduction to surrogate models is presented. Finally, heat integration in 

crude oil distillation systems is addressed. 

 

2.2 Design and optimisation of crude oil distillation systems 

 

The design of chemical processes can be classified into grassroots design 

and retrofit design; the former refers to the design the process equipment to 

meet required product specifications and certain economic criteria. In crude 

oil distillation processes, grassroots design aims to find the most energy-

efficient option to separate the crude oil into the desired products.  

Designing crude oil distillation systems comprises the definition of operating 

and structure conditions; over the years, researches have been applying 

different design methodologies following traditional methods, integrated 

methods or optimisation-based design methods.  

Challenges in the crude oil distillation columns have been influenced by the 

rise in the cost of energy. Consequently, new design approaches need to be 

developed in order to meet energy demand, e.g. heat integrated designs in 

crude oil distillation, which involves the design of columns and heat 

exchangers simultaneously taking into account the interactions between 

them. 

Packie (1941) was the pioneer in designing crude oil distillation columns, he 

reported empirical charts based on experience to show the relation among 5-

95 gaps used as separation criteria. In his design, no heat-integration was 

taken into account because his designs followed a sequential method. 
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Nelson (1958) proposed a methodology for the design of atmospheric crude 

distillation units. Years later, Watkins (1979) included a design procedure for 

atmospheric and vacuum crude oil distillation units, based mainly on mass 

and energy balances, using empirical models and by trial and error. Because 

of the low cost of energy and lack of computational tools in those years, they 

do not include improvements regarding energy efficiency in their designs. 

Later, alternative configurations were developed including a pre-separation 

unit. 

Later works reported by Bagajewicz and Ji. (2001a); Bagajewicz and Soto 

(2001b); Ji and Bagajewicz (2002a) present the design of distillation systems 

to be used with different types of crude oils. However, their approach does 

not include the interactions between the crude oil distillation unit and its HEN. 

 

2.3 Preflash implementation in a crude oil distillation system 

 

Energy savings in a crude oil distillation system can be achieved by exploiting 

interactions between separation units and the heat recovery system. Preflash 

units are useful for reducing the fired heat demand for crude oil preheating 

prior to distillation. A preflash unit removes some light components and some 

of the light naphtha; the vapour stream bypasses the fired heater, helping to 

reduce its fuel consumption. The vapour stream can then be mixed with the 

stream leaving the furnace or be fed to the main column at a suitable location; 

this helps to reduce the heat duty of the column and can bring enhancements 

of the hydraulic performance of the HEN (Errico et al., 2009). 

Preflash units are added to existing crude units mainly for three reasons: a) to 

increase capacity, b) to improve heat integration and c) to improve the quality 

of the separation. Generally, preflash units are added to crude oil distillation 

units already built; however, few crude distillation units are designed with 

preflash units since the beginning (Sloley, 2001). 
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2.3.1 Previous works with focus on prefractionation units 

 

Several published studies consider the design and optimisation of crude oil 

distillation systems and how to maximise the benefits of including preflash 

units. 

Brugma (1942) is considered as a pioneer on prefractionation investigations. 

He suggested a configuration of three columns to separate a mixture of four 

components (ABCD) to symbolise petroleum products. He used a 

prefractionator to separate the two lightest components. Then a further 

separation is carried out in a column. He did not report energy consumption 

of his proposed configuration. 

Petlyuk et al., 1965 investigate the performance of a prefracionator in the 

separation of a ternary mixture, known as fully thermal coupled configuration. 

Results indicate that there was a reduction regarding mixing effects in the 

column due to a better match between the feed composition and the column 

feed stage. 

Golden (1997) provides useful insights into how key parameters, such as 

flash temperature and flashed vapour feed location, affect the performance of 

the main distillation column. 

Bagajewickz and Ji (2001); Li and Bagajewickz (2002a; 2002b) present a 

rigorous approach for setting the inlet and outlet stream conditions when 

designing a crude oil distillation unit with a preflash. The preflash temperature 

and feed location of preflash vapour in the main column are addressed, while 

pinch analysis is applied to assess minimum utility requirements.  

Sloley (2001) developed a complete review of the types of prefractionator and 

gas oil towers used in industrial practice. His work explains the advantages 

and disadvantages to the equipment, and evaluates the influence of 

prefractionation units on crude oil distillation design, considering product 

yields. But the analysis did not include HEN interactions; on the other hand, 
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he concluded that only if product yields were kept constant, prefractionation 

units can bring energy savings on the overall system. 

Errico et al., 2009 explore an industrial crude oil distillation unit analysing the 

feed conditions when installing a preflash drum or a preflash plate column. 

They compare the performance of a distillation system with and without a 

preflash unit, considering product flow rates, product quality and potential for 

energy savings. A limitation of this study is that column operating conditions 

and the preflash temperature are constant. Their results showed better 

performance for the preflash column than those obtained for a preflash drum. 

Wang et al., 2011 apply thermodynamic metrics to select the best pre-

separation scheme for heavy crude oils. Nine predistillation arrangements are 

explored, and the option with two preflash units is found to perform best. Heat 

recovery is not explicitly considered, so the results do not relate directly to 

demand for fired heating; in addition, product quality specifications appear to 

be only partially addressed, via stream or ‘cut’ temperatures. 

Benali et al., 2012 demonstrate that preflash units can bring benefits in terms 

of exergy destruction, although their methodology for adjusting the column 

operating conditions and for analysing the impact of the process changes on 

heat recovery opportunities is not discussed. 

 

Gadalla et al., 2013 present a methodology for the design of the crude oil 

distillation column and heat exchanger network simultaneously, considering 

process changes and structural modifications together with the interactions 

between them. Their work also reports the addition of a preflash drum, 

concluding that large energy savings of around 32% are obtained with this 

which also impact the utility costs.  

 

Kuboski (2014) investigates prefractionation upstream and downstream of the 

atmospheric distillation column in crude oil distillation. His results reveal 
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variations on process streams due to the allocation of prefractionation 

equipment, showing the importance of heat-integration to improve energy 

efficiency on grassroots design. 

Other researchers explore using optimisation to improve the performance of 

the crude oil distillation system when a preflash unit is added: 

 

Al-Mayyahi et al., 2014 utilise multi-objective optimisation techniques to study 

the effects of single and multiple preflash units on both energy consumption 

and yield. Their study investigates the vapour feed location and considers 

heat integration with and without preflash units. The optimisation variables 

varied include the steam flow to the main column and the furnace outlet 

temperature, as well as the vapour fraction from each flash unit; significantly, 

pump-around duties and temperature drops are not considered.  

 

Enriquez-Gutiérrez (2016) applies a simulation-optimisation strategy to 

explore the option of installing a preflash unit as a retrofit option in a crude oil 

distillation system when increasing capacity. This study confirms that 

installing a preflash unit can help to alleviate hydraulic constraints in the 

column (Fraser, 2014), thus avoiding the need to replace column internals.  

 

Table 2.1 summarises selected previous works about the design of crude oil 

distillation systems including a preflash unit. Table 2.2 presents an overview 

of previous works related to the optimisation of crude oil distillation systems 

with preflash units. 
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Table 2.1. Selected works on design of crude oil distillation systems with preflash 
units 

Authors Remarks 

Golden, 1997 Flash temperature and vapour feed 

location insights. 

Ji and Bagajewicz, 2002b Pinch analysis is applied. 

Errico et al., 2009 Compare the performance of 

columns with preflash units. 

Benali et al., 2012 Demonstrate the benefits of preflash 

units in terms of exergy destruction. 

 

 

Table 2.2. Optimisation of crude oil distillation systems with preflash units 

Authors Remarks 

Al-Mayyahi et al., 2014 Use of multi-objective techniques to 

study effect of single and multiple 

preflash units. 

Wang et al., 2016 Simulation-optimisation study for two 

different feedstocks. 

Enríquez-Gutiérrez, 2016 Optimisation-based retrofit approach 

for heat integrated crude oil 

distillation systems with a preflash 

unit. 

 

None of the methodologies discussed above provides a systematic design 

methodology for optimisation of crude oil distillation systems with preflash 

units that account for an extensive set of operating variables, as well as heat 

integration, product quality and yield constraints as it is addressed in this 

work. 



51 
  

2.4 Optimisation methods 

 

2.4.1 Introduction  

 

The need for efficient and systematic approaches drives the development of 

optimisation strategies. In Chemical Engineering, optimisation has been 

playing a key role in the design and operation of separation processes.  It 

refers to finding the best solution to a problem within a certain range; where 

an objective function is needed to provide a measure to the performance of 

the system, this can be system costs, profit, etc.   

Optimisation can be applied for minimisation or maximisation of the objective 

function with respect to (decision) variables subject to (process) constraints 

and bounds on the variables (Rangaiah, 2010). The constraints comprise a 

feasible region that defines limits of performance for the system. Process 

variables must be adjusted to satisfy the constraints. 

In practice, engineers need to consider optimisation tasks on a regular basis 

so that a systematic approach with a fundamental knowledge of optimisation 

algorithms is essential. 

Optimisation approaches can be classified as: 

a) Gradient-based and  

b) Metaheuristics 

Gradient-based (deterministic) approaches aim to find the gradients of the 

response variables due to they rely on derivatives of the objective function. 

Although they require continuity of functions in the optimisation problem, less 

iterations are needed to find the final solution which is usually a local 

optimum. The quality of the solution depends on the initial values. Detailed 

descriptions of deterministic optimisation methods are provided in Edgar et 

al, 2001; Trespalacios and Grossman (2014) and Biegler (2014). 
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In the context of crude oil distillation, various researchers have used 

gradient-based approaches to meet diverse objectives, Gadalla (2003), 

applied a successive quadratic programming algorithm, SQP to improve the 

energy efficiency of a crude oil distillation unit and to find the optimal process 

conditions of a heat-integrated crude oil distillation system respectively. 

López et al., 2013, applied a gradient-based method to find the operating 

conditions that maximise the profit of an existing crude oil distillation system. 

On the other hand, metaheuristic approaches are derivative-free algorithms 

which are designed to solve complex optimisation problems (Bianchi et al., 

2009). Two main methods have been widely used to solve complex chemical 

processes such as crude oil distillation system design namely, genetic 

algorithms and simulated annealing. Motlagli et al., 2008 use a genetic 

algorithm to optimise product yields according to their market values. Chen 

(2008) proposes an optimisation-based retrofit approach for maximising the 

net profit of crude oil distillation systems using a simulated annealing 

algorithm. Ochoa-Estopier (2015) also uses a simulated annealing algorithm 

to optimise column operating conditions and the heat exchanger network 

structure of a heat-integrated crude oil distillation system. 

To date, there are no optimisation-based design approaches that include a 

wide range of operational and structural variables for the design of crude oil 

distillation systems with a preflash unit. Chapter 5, will present a novel 

optimisation based-design methodology for the optimisation of fired heating 

demand in crude oil distillation systems with and without a preflash unit. 

The following Sections present an overview of two optimisation algorithms 

widely applied in the context of crude oil distillation that are used in this work, 

a genetic algorithm and simulated annealing.  
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2.4.2 Genetic Algorithm 

 

Genetic algorithms as an optimisation technique were proposed by Holland 

(1975). They mimic the process of natural selection starting from an initial 

encoded solution, a population is generated. The population is evaluated 

according to its fitness function, which is similar to the survival capacity of the 

species. Based on the fitness function, individuals are sorted and selected to 

be parents of the next generation. Then, they are combined to generate a 

new generation of children. Children are mutated and the elitism operator 

allows keeping the best solution during the optimisation process. The entire 

population evolves, with the fitness improving over generations (Bhaskar et 

al., 2000).  

The application of the genetic algorithm for optimisation used in Chapters 3, 4 

and 5 of this work, is described as follows and illustrated in Figure 2.1 

(Ledezma-Martínez et al., 2018). 

 

1. The search space is defined. In particular, upper and lower bounds 

are defined for the optimisation variables;  

2. The optimisation parameters are selected, namely the size of the 

initial population size and the number of generations;  

3. The initial generation is created randomly by the gaoptimiset 

algorithm;  

4. The algorithm evaluates the objective function for all individuals in 

the population, applying penalties as required;  

5. After evaluating the ‘fitness’ of individuals, the algorithm selects a 

sub-set of best-performing individuals;  

6. The algorithm populates the next generation using genetic operators 

(crossover and mutation), applying the default parameters; the 

objective function is evaluated again for all individuals; 
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7. If a termination condition is met (e.g. maximum number of 

generations, or a very small change in the average value of the 

objective function over a certain number of generations), the solution 

corresponding to the ‘best’ solution is retrieved. This solution, 

including the corresponding set of optimised variables, represents 

the best-performing design, i.e. with lowest hot utility demand. 

 

 

Figure 2.1 Overview genetic algorithm. 
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2.4.3 Simulated Annealing  

 

Simulated Annealing is an optimisation method inspired by the process of 

annealing of metals. First, the metal is heated by raising the energy of the 

molecules allowing freely movement between them. Second, a cooling 

process is performed to minimise the energy of the particles by their 

accommodation in a crystalline structure. If the cooling process is done very 

quickly, then an amorphous structure is obtained, leading to a higher energy 

state. This simulation of the annealing of metals was proposed by Metropolis 

et al., 1953; however, Kirkpatrick et al., 1983 and Cerny, 1985 pointed out the 

analogy between this process and an optimisation strategy where the 

objective function is represented by the energy of the particles; the 

temperature and the cooling path are the operators which will need to be 

tuned. Simulated annealing algorithm uses only one solution from the entire 

search space; therefore, the acceptance of a new individual is based on a 

probability value. 

The application of the simulated annealing method for optimisation used in 

this work in Chapter 4, as shown in Figure 2.2 is described as follows: 

1. Initial operating conditions for the optimisation variables are used as a 

starting point within the search space. 

2. Optimisation tuning parameters are selected; in particular, an initial 

value for the annealing temperature is needed. 

3. A random nearby solution, called move, is generated around the 

current solution. 

4. The objective function of the new proposed solution is calculated and 

compared with the current solution. 

5. If the new value of the objective function is lower than the initial 

calculated value, the new solution is accepted. Otherwise, it is 

accepted by applying a suitable acceptance criterion.  
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6. If the acceptance criterion is met, the annealing temperature is 

updated applying a cooling schedule. 

7. At each annealing temperature, the process is repeated, before the 

annealing temperature is reduced, and the whole cycle is repeated. 

The algorithm stops when a defined termination criterion is met.  

 

Figure 2.2 Simulated annealing algorithm (adapted from Chen, 2008). 

In this work, solvers (gaoptimset, and simulannealbnd) embedded within the 

Global Optimisation Toolbox in MATLAB R2016a are used to perform the 

optimisations of the crude oil distillation system with and without a preflash 

unit. See Appendix B, Tables B2 and B9 for details about the number of 

function evaluations that are needed for the optimisation using simulated 

annealing that will be presented in Chapter 4. In general, genetic algorithm 
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performed better than simulated annealing based on the objective function 

values obtained after carrying out optimisation of the system. 

 

2.5 Crude oil distillation systems design by optimisation 

 

 

In the case of complex Chemical Engineering problems such as the design of 

crude oil distillation systems, a process simulator is generally integrated as a 

black box model into the evaluation step of an optimisation framework, which 

mainly uses the degrees of freedom of the process (i.e. pump-around duties 

and temperature drops, steam flow rates). Process models are usually 

implemented within simulation software such as Aspen HYSYS, while 

additional software (i.e. MATLAB) can be linked to the process simulator via 

an interface to facilitate data transfer.  

In addition to the solution of the simulation model, the software may also 

facilitate the integration of additional constraints, e.g. product quality 

specifications. However, not all constraints can be handled by the process 

simulator so that constraint violations need to be implemented in an 

optimisation framework (Skiborowsky et al., 2015). Therefore, genetic 

algorithms make use of ‘penalty functions’ as will be presented in Chapter 3. 

This is especially important because failure in the simulation convergence can 

result in a failure of the optimisation (Caballero, 2015).  

From the perspective of the optimiser, a lack of convergence of the simulation 

and infeasible design specifications are indistinguishable (Silva and Salcedo, 

2009) so that the determination of an infeasible design can become the 

bottleneck of stochastic optimisation.  

Some authors assume that nonconvergent simulations correspond to an 

infeasible solution (Linke and Kokossis, 2003; Moddla, 2013) but this may 

limit the optimiser to suboptimal solutions due to a lack of convergence. 
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Therefore, having a high convergence ratio (ratio of converged solutions for 

the evaluation of a set of feasible degrees of freedom) is of prime importance 

for a successful optimisation (Silva and Salcedo, 2009). 

To summarise, the optimisation of complex engineering design problems 

such as the design of crude oil distillation systems is not straightforward due 

to the high computational effort (several hours to days) that is needed to 

perform an optimisation. Consequently, there is a need for alternative 

approaches that allow a reduction in computational time without 

compromising the performance of the system and also guarantee that 

constraints in product qualities are met.  

Recent developments (Ochoa-Estopier, 2014; Ibrahim, 2018) regarding the 

implementation of surrogate models, such as artificial neural networks, within 

an optimisation framework, have demonstrated to be a good alternative to 

overcome high computational effort in the optimisation of crude oil distillation 

systems. Figure 2.3 summarises the design of crude oil distillation systems by 

optimisation followed in this work. A brief review on artificial neural networks 

is presented in the next Section. 
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Figure 2.3 Crude oil distillation system design by optimisation (adapted from PRES 
17 workshop presentation, Jobson M., 2017). 

 

2.6 Artificial Neural Networks, ANN 

 

An artificial neural network is a structure built by many interconnected basic 

elements called neurons. It is similar to the natural tissues in the human brain 

so that early work on the field of the neural networks was focused on 

modelling the behaviour of neurons found in the human brain (Himmelblau, 

2000). 

Artificial neural networks consist of a number of neurons (simple processors) 

which are arranged into layers as can be seen in Figure 2.4. A group of 

neurons called the input layer receive a signal form an external source; the 

output layer, return signals to the environment and the layers between the 

input and output layer are called hidden layers (Himmelblau, 2000). 
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Figure 2.4 Artificial neural network, ANN. 

Neurons in adjacent layers of the artificial neural network are connected by 

weighted links passing signals from one layer to the next adjacent layer. 

Those links have numerical weights that are applied to the inputs of a neuron. 

An artificial neural network learns through the repeated adjustment of the 

weights to obtain the desired output signal.  

 

Artificial neural networks can be divided based on the type of connections 

between neurons. In this work, multilayers, feedforward networks are used. It 

means that the signal that they receive is directed from the input to the output 

layer, without cycles. 

 

The feedforward structure of ANN consists of a multilayer structure whereby 

there are hidden nodes in between the input and output layers. However, 

there is no specific method to obtain the number of the hidden nodes and it is 

commonly based on trial and error basis to find the appropriate number of 

nodes that will provide the best results (Aliet et al., 2015). Table 2.3 shows 

the principal elements of an artificial neural network and Figure 2.5 illustrates 

the architecture of a network neuron. 
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Table 2.3. Elements and description for an ANN  

Element in an ANN Description Symbol 

Inputs Independent variables x 

Outputs Dependent variables y 

Neurons Number of relations S 

Layer Stages of connections  

Transfer function Form of equations f 

Weights Regression coefficient W 

Bias Regression coefficient b 

 

 

Figure 2.5 Architecture of a network neuron. 

 

Feedforward network is the most common architecture due to it is easy to 

implement within an optimisation algorithm. In this type of architecture, 

information is processed in the forward direction only (Beale et al., 2015). 
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The summation point (weighted sum) adds the product of all inputs along with 

their corresponding weights and bias. The transfer function takes an input (x) 

to produce an output (y). In this work, both sigmoidal and linear functions are 

used in the hidden and output layers respectively. 

A neural network needs to be “trained” to be able to replicate the behaviour of 

the input-output data. This training is performed using an optimisation method 

such as the Levenberg-Marquardt; this method provides a faster training to 

the neural network, so it is selected to perform the training process of the 

network in this work. In order to facilitate the training and enhance their 

performance of a neural network, all the input-output data sets need to be 

scaled between -1 and +1 (Beale, et al, 2015). 

The mean squared error is used in this work to evaluate the performance of a 

neural network, it is defined as follows: 

                                   𝑚𝑠𝑒 =  
1

𝑁
∑ (𝑡𝑖 − 𝑎𝑖)

2𝑁
𝑖=1                  (2.1) 

where, 𝑡 and 𝑎  are the target and predicted output: N is the total number of 

samples. 

Surrogate models have gained popularity over the past three decades due to 

their simplicity to represent complex models. One of the advantages of using 

ANN models is that once the network is trained, it provides a response with a 

few simple calculations. 

The use of surrogate models within an optimisation framework, resulting in 

significant savings in terms of computational time. In particular, artificial 

neural networks (ANN) are used for process modelling, process control and 

optimisation.  
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2.7 Modelling crude oil distillation systems using artificial neural 

networks 

 

In response to the demand for increasing oil production levels and strict 

product quality specifications, the intensity and complexity of the operation of 

oil refineries have been increasing during the last three decades. To improve 

the operating requirements associated with new market demands, design 

engineers are increasingly looking into the implementation of new design 

methodologies (Bawazeer and Zilouchian, 1997). 

Mathematical models are important for the design of chemical and 

petrochemical plants. However, the high computational time required in 

solving models is a major problem for on-line applications so that there is a 

need to look for alternative approaches to solve high non-linear models such 

as a crude oil distillation column model (Yusof et al., 2003).  Traditional 

approaches of solving chemical engineering problems have their limitations in 

the modelling of these highly complex and non-linear systems (Himmelblau, 

2000). Because of the non-linear interactions between the operating input 

and output variables in a crude oil distillation column, maintaining optimal 

operating conditions of the column is a challenging task.  

Artificial neural networks had generated interest in Chemical Engineering 

since late eighties as an alternative approach to model a process.  ANN 

modelling approach is efficient and accurate for a system with non-linear 

interactions among several variables. An ANN model can represent the 

knowledge of the process operation. The model is constructed to describe the 

relationship between input and output variables of a crude oil distillation unit 

(Motlaghi, 2008). 

Research on crude oil distillation system design and optimisation using 

artificial neural networks has been increasing in the last ten years. Liau et al., 

2004 and Motlaghi et al., 2008 develop an artificial neural network (ANN) 

model of a crude oil distillation column using data from existing plants. Liau et 
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al., 2004 solved an optimisation problem to determine the operating 

conditions to achieve better product yields maintaining the required product 

specifications; however, no details about energy efficiency were included into 

their optimisation approach. In the work of Motlaghi et al., 2008, product 

flowrates were optimised according to their market value. They use a genetic 

algorithm to perform the optimisation but again, no heat integration was taken 

into account in their optimisation framework. 

 

Yao and Chu, 2012 used a non-linear regression method known as support 

vector regression to optimise the operating conditions of a crude oil distillation 

unit. A wide range of optimisation variables was included into their 

optimisation framework such as product flow rates, pump-around temperature 

drops, stripping steam, column inlet temperature, reflux ratio. They used 

rigorous simulations in Aspen Plus to generate the samples used to regress 

the model. Energy requirements were calculated without including heat 

exchanger network details. 

 

López et al., 2013 developed an optimisation framework to improve net profit 

of a crude oil distillation system with three atmospheric distillation columns 

and two vacuum columns. Rigorous simulations in PRO/II were performed to 

generate the data to regress the model based on second order polynomial 

functions. Optimisation variables pump-around temperatures and flow rates, 

stripping steam flow rates and temperatures for the furnace and condenser. 

 

Ochoa-Estopier and Jobson, 2015 used artificial neural networks to carry out 

operational optimisation of crude oil distillation systems. Their optimisation 

framework is developed using the simulated annealing method to optimise 

net profit. Data generated via rigorous simulations in Aspen HYSYS is used 

to regress the column model. They took into account the dependence of 

thermal properties on temperature in process streams using linear and third 

order polynomial correlations. Optimisation variables include pump-around 
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temperatures drops and duties, product and steam flow rates and the feed 

inlet temperature.  

 

Osuolale and Zhang, 2017 included a prefractionator within the crude oil 

distillation system. They used a bootstrap aggregate artificial neural network 

where the predictions for all the artificial neural network build are aggregated 

and used as the network output with the aim to improve the accuracy on the 

ANN. They used a successive quadratic programming algorithm to optimise a 

profit objective. 

 

Ibrahim et al., 2018 propose a novel optimisation framework for the optimal 

design of flexible crude oil distillation systems. The crude oil distillation unit is 

modelled using a rigorous tray-by-tray model where the number of trays 

active in each section is also a design degree of freedom. They used a 

support vector machine as a feasibility constraint. The support vector 

machine is a classifier which filters infeasible design alternatives form the 

search space reducing computational time and improving the quality of the 

final solution. Pinch analysis is considered to maximise heat recovery.  

 

To date, the modelling of a crude oil distillation system with a preflash unit 

using artificial neural networks accounting for a wide range of optimisation 

variables (i.e. pump-around duties and temperature drops, stripping steam 

flow rates, reflux ratio, column inlet temperature), including the vapour feed 

location in the main column has not been reported.  

Training the artificial neural network takes only a few seconds, from the total 

samples generated, they are randomly divided into three sets: training (70%), 

validation (15%), and testing (15%). Number of hidden neurons can be 

adjusted until the desired performance of the network is achieved. Maximum 

number of iterations is defined by the neural fitting tool in MATLAB, usually 

set as 1000. 
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2.8 Latin Hypercube Sampling (LHS) 

 

As it has been presented in the previous Section, initial data needed to create 

a model using artificial neural networks is the generation of samples. McKay, 

Beckman and Conover (1979) proposed Latin Hypercube Sampling, LHS as 

an attractive alternative to simple random sampling in computer experiments. 

The main feature of LHS is that it simultaneously distributes the samples in all 

input dimensions as can be seen in Figure 2.6. 

  

a) Random sampling b) LHS sampling 

Figure 2.6 Random and LHS samples generated in MATLAB. 

This sampling method, allows the samples to be randomly generated, but no 

two points share input parameters of the same value (Loh, 1996). The 

samples are divided into homogeneous subgroups with the aim to improve 

the precision of the sample by reducing sampling error. 

In this work, the samples used to build the distillation column model are 

generated using the Latin Hypercube Sampling function (lhsdesign) 

embedded in MATLAB R2016a. 
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2.9 Heat integration in distillation systems design 

 

In general, crude oil distillation systems are energy-intensive: it is estimated 

that 7 to 15% of the crude oil input is consumed in refinery processes, of 

which 35 to 45% is used for crude oil distillation (Szklo and Schaeffer, 2007). 

In practice, heat integration is crucial for energy-efficient operation of crude oil 

distillation systems. Heat integration, the recovery of heat between streams 

requiring cooling and streams requiring heating, reduces the need for hot and 

cold utilities. In these systems, the crude oil feed needs to be heated, usually 

from ambient conditions, to the temperature of the desalter and then to the 

temperature of the column feed; this ‘cold stream’ is heated by other ‘hot’ 

streams in the system that require cooling – these include pump-arounds and 

product streams (Ochoa-Estopier et al., 2015). 

Early design procedures do not include the interactions between the 

distillation column and the heat exchanger network. Therefore, design 

methodologies which consider both the distillation column, and its heat 

recovery network provide an opportunity to explore energy efficiency in the 

systems. 

Liebmann (1996) reported an integrated approach for the design of heat-

integrated crude oil distillation systems; he used the grand composite curve to 

find the appropriate design of an integrated crude oil distillation column. This 

work has the advantage that he considered the distillation column and its heat 

recovery system simultaneously. 

Suphanit (1999) used shortcut distillation models in order to simulate a crude 

oil distillation system in a grassroots design, taking into account pinch 

analysis and an optimisation framework to produce energy-efficient column 

designs. As a result, it was found that optimising the operating conditions of 

the distillation column reduce energy consumption for a given minimum 

temperature approach. 
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Rastogi (2006) analysed a distillation column and HEN simultaneously for 

grassroots and retrofit designs; his work is an extension of the shortcut 

models of Suphanit (1999) and Gadalla (2003) considering the effect of 

pressure drop in the atmospheric distillation column. Then, he developed a 

methodology to be applied to the vacuum distillation column. 

Chen (2008) extended the work published by Rastogi (2006), she proposed a 

methodology that can be applied either to grassroots designs and retrofit 

designs including refining specifications in short-cut models, eluding the need 

of identifying key components and its recoveries. 

It is important to point out that the methodology proposed by Rastogi (2006) 

and continued by Chen (2008) has the consideration to join the distillation unit 

and the HEN into an optimisation framework, expanding the number of design 

options. 

Ochoa-Estopier and Jobson (2015) evaluated a new methodology for 

optimising heat-integrated crude oil distillation systems applying artificial 

neuronal networks models to avoid convergence issues. They reported a 

case study that is validated with the grand composite curve (GCC) in terms of 

heat recovery comparing minimum energy requirements when assuming 

temperature–dependent and constant properties. 

Enríquez-Gutiérrez et al. (2015) proposed a systematic retrofit methodology 

of distillation systems and heat exchanger networks to revise and evaluate 

hardware adjustments to increase capacity. Their work highlights the 

necessity of considering both the distillation column and HEN when modelling 

crude oil distillation systems. 
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2.9.1 The Grand Composite Curve 

 

The grand composite curve (GCC) as shown in Figure 2.7 is a plot of interval 

temperatures against enthalpy. It can be described as a profile of the net heat 

surpluses and heat demands of process streams at different ranges of shifted 

temperature intervals. The grand composite curve is a tool for understanding 

the interface between the process and the utility system (Smith, 2016). 

Hot streams are represented ΔTmin/2 colder and cold streams ΔTmin/2 hotter 

than they are in practice. The heat recovery pinch is the point of zero heat 

flow in the grand composite curve. The open “jaws” at the top and bottom are 

the hot utility (QHmin) and cold utility (QCmin), respectively. Shaded areas, 

known as pockets represent areas of additional process-to-process heat 

transfer (Smith, 2016). 

 

Figure 2.7 Grand Composite Curve, GCC (Source: Smith, 2016: Figure 17.24). 
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In this work, it is important to capture the impact of process design choices on 

opportunities for heat recovery and utility demand, but there is no need for 

detailed information about the heat exchanger network design. 

Therefore, the grand composite curve will be used to represent the net 

heating and cooling demands of the process and the corresponding 

temperatures. 

 

 

2.9.2 Fired heaters (Furnaces) 

 

Fired heaters are essential in refineries; they are used to heat all types of 

hydrocarbons, hot coils, steam or air. The largest energy consumption in any 

refinery is associated with its fired heater. 

In a fired heater, gaseous, liquid or solid fuels are burnt to provide high-

temperature heat to process streams by heat transfer from the flame and 

combustion gases. In a refinery, waste gases blended with natural gas, heavy 

or light fuel oils, etc. may be used as fuels for heaters. Fuel is combusted with 

air or oxygen to produce hot flue gas. Inefficient furnaces contribute to fossil 

fuels problems due to higher fuel demand and higher carbon emissions 

(Izyan and Shuhaimi, 2014). The minimum fuel consumption targets in the 

furnace represent minimum fuel cost. Nevertheless, there are unavoidable 

stack losses (energy taken from the fuel being burnt along with the flue gases 

that is unutilised).  

Figure 2.8 illustrates a furnace model. The flue gas represented by the 

slopping line, starts at its theoretical flame temperature (TFT), shifted for a 

given ΔTmin, ending at the ambient temperature (Tamb). 

The theoretical flame temperature of 1800°C is used as a reference. Stack 

temperature (Tstack) should not be lower than the corrosion limit which is 

usually 160°C (Delaby, 1993). 
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Figure 2.8 Simple furnace model (Source: Smith, 2016: Figure 17.27). 

 

Three different cases (see Figure 2.9) are considered to evaluate the total 

fuel consumption in a crude oil distillation system: 

 Case 1: Process pinch limitation 

 Case 2: Utility pinch limitation 

 Case 3: Dew point temperature limitation 

 

The role of heat integration within an optimisation framework will be 

addressed in the next section as an introduction to the optimisation-based 

design methodology that will be presented in Chapter 5. 
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Figure 2.9 Flue gas line: (a) Limited by dew point temperature, (b) Limited by 
process pinch; (c) Limited by match between process and utility. 
(Source: Smith, 2016: Figures 17.28 & 17.29). 
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2.9.3 Role of heat integration within an optimisation framework 

 

Oil refining is a major traditional area for pinch studies. Pinch analysis method 

has some disadvantages mainly due to the fact that the method is based on 

heuristic rules and it is best suitable for the design of small-scale problems 

(Shenoy, 1995). In particular, the Grand Composite Curve (GCC) has the 

limitation that details about the individual streams are not shown. 

To overcome the limitation of the use of pinch analysis in big-scale problems 

such as a crude oil distillation system, mathematical programming provides a 

framework for an ‘automatic design’ reducing optimisation time which is a 

limiting factor in any refinery. 

This work applies ‘pinch technology’ to evaluate the minimum heating and 

cooling requirements, after all opportunities for heat recovery have been 

exploited (Smith, 2016). In particular, the grand composite curve is used to 

assess the minimum hot utility demand; in these systems, the temperature at 

which heat is needed requires fired heating. This approach allows minimum 

utility requirements to be calculated for each converged simulation, without 

requiring more detailed analysis and design of the heat recovery system. The 

disadvantage of this approach is that the investment costs and complexity of 

the heat recovery system that could achieve these utility targets are not 

considered (Ledezma-Martínez et al., 2018). 

 

In the context of the optimisation of this complex distillation system, designing 

a HEN for each possible column design would require very significant 

computational effort. Therefore, the design of the heat exchanger network is 

not addressed in this work. Previous research (Smith et al., 2010) proposes a 

relevant approach.  

 

Pinch analysis is carried out within MATLAB R2016a using an open source 

algorithm (Morandin, 2014), where relevant stream data (supply and target 
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temperatures and duties) are extracted from Aspen HYSYS for each 

proposed design. This algorithm is extended in this work to allow the 

evaluation of the fired heating demand in a crude oil distillation system as 

explained in the following section.  

 

2.9.4 Algorithm to evaluate fired heating demand 

 

The subroutine used in Chapters 3 and 4 to calculate the minimum hot utility 

demand of the crude oil distillation system is extended to account for the 

calculation of fired heating as follows: 

1. From the cascade information, a new matrix (matrix A) is created including 

supply and target temperatures, heat capacity flow rate and change in 

enthalpy for each stream. 

 

2. The heat capacity flow rate is identified using the function sign in MATLAB. 

 

3. The value for the theoretical flame temperature (TFT) is set to be equal to 

1800ºC (Smith, 2016). 

 

4. The slope of the flue gas line, m (flue gas profile for a fired heater) is 

calculated using the line equation: 

 

                                            𝑚 =
𝑇𝐹𝑇−𝑇𝑇

𝐻𝑈−∆𝐻
                                                    (2.2) 

 

where TT  is the target temperature, HU is the minimum hot utility demand, TFT 

is the theoretical flame temperature and ΔH is the change in enthalpy.  

 

5. A temperature dew point limitation is set to be equal or greater than 160ºC. 
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6. A new matrix (C = [ T, DH, M]) is created to include only values of target 

temperatures (T) greater than the dew point limitation, change in enthalpy 

values (DH) and the flue gas line slope (M).  

 

7. The min function in MATLAB is used to find the minimum slope value (M) 

and the minimum change in enthalpy value (DH), from matrix C. 

 

8. As the length of matrix C will be changing on each iteration, the function 

position in MATLAB is used to find the position of the target temperature, (T) 

that corresponds to the minimum slope, (M) of the flue gas line. 

 

9. The position of the new value for the change in enthalpy (DHnew) of matrix 

C, which will be changing on each iteration, is also found applying the 

position function in MATLAB. 

 

10. Three different cases (See Figure 2.8) according to the temperature 

values of matrix C are defined within the MATLAB subroutine using an if 

clause as follows: 

 

 Case 1: T = Pinch point, a process pinch limitation. 

 Case 2: T ≠ Pinch point, a heat recovery pocket limitation. 

 Case 3: T<Tdew, a dew point temperature limitation. 

 

11. To calculate the stack losses of the crude oil distillation system, three 

important points are identified numerically which represent the flue gas line: 

point 1: minimum hot utility demand and theoretical flame temperature, P1 = 

(QHmin, TFT); point 2: intersection of the flue gas line on “y” axis, P2 = (0, TT) 

and point P3: stack loss value, P3: = (stack loss, 0) as illustrated in Figure 

2.10. 
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12. Values for the stack losses are calculated based on the specific case 

according to the value of the target temperature (T) as follows: 

 

 Case 1: Stack loss 1 (SL_1) = T/M 

 Case 2: Stack loss 2 (SL_2) = f/M; f = (T-DH/M) 

 Case 3: Stack loss 3 (SL_3) = g/M; g= (T-DHnew) * M 

 

13. The total fuel consumption of the system (FH) is evaluated as the sum of 

the minimum hot utility demand (QHmin) plus the corresponding stack loss.  

 

   𝐹𝐻 =  𝑄𝐻𝑚𝑖𝑛 + 𝑆𝐿                                          (2.3) 

 

14. The objective function (min fired heating, min FH) is expressed as: 

 

                 min 𝐹𝐻 = 𝐹𝐻 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ∗ (𝑔𝑥1 + 𝑔𝑥2 + 𝑔𝑥3)                              (2.4) 

 

where gx1, gx2 are the inequality constraints for product qualities and gx3 is the 

inequality constraint for the residue flow rate. 

 

Figure 2.10 Flue gas line representation. 
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2.10 Hydraulic considerations in distillation  

 

Distillation is based on the concept of vapour-liquid separation stage in which 

vapour and liquid loads are in contact in the column internals. Internals can 

be divided into two categories: trays and packings (Kister, 1992, Ch. 6).  

 

To meet fixed product specifications, there will be a maximum feed flow rate 

that can be separated for an existing distillation process with a fixed feed 

composition. Flooding will occur on those stages with the highest traffic due 

to it is associated with the combination of the liquid and vapour flows (Liu and 

Jobson, 2004). Typically, the distillation column is designed with 80-85% tray 

flooding. In operation, the column can operate harder to reach 90-95% of the 

flood limit (Zhu, 2014).  

 

This Section introduces hydraulics of trayed columns and presents the results 

obtained after optimisation by using correlations embedded in Aspen HYSYS 

v8.8 for conventional trays. 

 

2.10.1 Hydraulics of trayed columns  

 

Sieve tray is a flat perforated plate where the vapour velocity keeps the liquid 

from flowing down through the holes (weeping effect). With a low vapour 

velocity, liquid weeps through the holes reducing its efficiency (Kister, 1992). 

Figure 2.11 shows a tray hydraulic model and a sieve tray. 

 

Figure 2.12 illustrates the flow limits at which trays can operate efficiently. 

Flooding is an excessive accumulation of liquid inside the column; it sets the 

upper limit and can be caused by spray entrainment flooding or froth 

entrainment flooding. Downcomer backup flooding occurs when aerated liquid 

is backed up into the downcomer due to a pressure drop in the tray, if it 

exceeds the tray spacing, liquid accumulates on the above tray, causing 
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downcomer backup flooding (Kister, 1992). Weeping sets the lower limit of 

operation when liquid descends through the tray perforations, caused by a 

low vapour flow. 

 

 

 

Figure 2.11 Tray hydraulic model and sieve tray (adapted from Figure 8.6, Smith 
2016). 

 

 

Figure 2.12 Tray operation region (Source: Figure 8.24, Smith 2016). 

The most popular criteria for the maximum velocity of clear liquid at the 

downcomer entrance are the Glitsch, Kosch and Nutter correlations. Glitsch 

correlation is set by default in Aspen HYSYS equipment design package, this 

correlation is used in this work as a jet flooding method. 
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To account for the hydraulic constraints related to the liquid loads, this work 

assesses two hydraulic parameters: the downcomer exit velocity and the 

approach to downcomer flooding. To prevent tower malfunction, it is 

recommended that the approach to downcomer flooding does not exceed 80-

85% of the design limit (Koch-Glitsch, 2013). 

 

Weir loading is another important parameter for tray ratings. It is calculated as 

the clear liquid volume divided by the length of the tray outlet weir. This value 

has a direct influence on the froth height on the tray as higher weir loadings 

increase the fluid crest over the weir. If the weir loading is too high, leading to 

an excessively high weir crest, the number of downcomers can be increased 

by introducing multiple passes as shown in Figure 2.13. 

 

 

Figure 2.13 Multipass tray layouts (Source: Figure 8.9, Smith 2016). 
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2.10.2 Hydraulic performance for a CDU with and without a 

preflash unit 

 

Figure 2.14 shows the diagram for a crude oil distillation unit without a 

preflash unit. Figure 2.15 illustrates the configuration for the preflash case. In 

both cases, the crude oil distillation column has eight sections starting from 

top to bottom; stage numbering is presented in Table 2.4 where it can be 

noted that the stages in the side-strippers are numbered sequentially for easy 

understanding. Note that column sections and stage numbering are the same 

for the crude oil distillation system with a preflash unit. 

 

Figure 2.14 Crude oil distillation column configuration without a preflash unit. 

 

For flooding calculations within Aspen HYSYS, the main distillation column is 

divided into five sections as shown in Table 2.4, while only one section is 

considered per stripper. The maximum flooding condition considered for all 

sections and strippers is 85%. 
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Table 2.4. Crude oil distillation column stage numbering 

Column section Stage numbering 

Section 1* 1-9 

Section 2* 10-17 

Section 3* 18-27 

Section 4* 28-36 

Section 5* 37-41 

Section 6 (HN SS) 42-47 

Section 7 (LD SS) 48-54 

Section 8 (HD SS) 55-59 

*Main column 

 

After optimisation of both systems (with and without a preflash unit), the 

hydraulic performance of them is analysed, noticing that key parameters such 

as downcomer flooding and downcomer backup are under design limits for all 

sections of the column due to the design constraints specified in Aspen 

HYSYS. For each optimisation run the algorithm takes into account these 

design constraints avoiding possible flooding problems related to column 

hydraulics.  

 

Detailed data for each crude oil distillation system including hydraulic results, 

internals and geometry are presented in Tables 2.5 and 2.6.  Figures 2.16 

and 2.17 show performance comparisons of the crude oil distillation systems 

with and without a preflash unit studied in this work. 
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Figure 2.15 Crude oil distillation configuration with a preflash unit. 

 

Table 2.5. Detailed hydraulic and column geometry for a crude distillation unit 

Column Section [1] [2] [3] [4] [5] [6] [7] [8] 

Hydraulic Results  

Max Flooding [%] 85.8 82.8 78.7 82.1 83.4 60.3 55.6 31.2 

Max DC Backup [%] 43.7 46.1 41.1 37.4 44.6 28.0 30.1 23.10 

Max Weir Load [m
3
/h-m] 52.0 63.2 53.1 37.2 60.9    

Internals Sieve Sieve Sieve Sieve Sieve Sieve Sieve Sieve 

Number of Flow Paths 4 4 4 2 2 2 3 3 

Jet Flooding Method Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch 

Column Geometry 

Section Diameter [m] 5.2 5.5 5.6 5.3 5.0 1.7 2.6 2.4 

Tray Spacing [m] 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Section Height [m] 6.1 5.5 6.7 5.5 3.7 3.0 4.3 3.7 
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Table 2.6. Detailed hydraulic and geometry: preflash case 

Column Section [1] [2] [3] [4] [5] [6] [7] [8] 

Hydraulic Results  

Max Flooding [%] 82.0 80.3 82.4 77.6 74.9 75.7 67.9 67.9 

Max DC Backup [%] 46.1 46.4 40.0 31.3 35.2 40.9 33.4 36.3 

Max Weir Load [m
3
/h-m] 64.6 66.1 47.9 14.6 40.4    

Internals Sieve Sieve Sieve Sieve Sieve Sieve Sieve Sieve 

Number of Flow Paths 4 4 4 4 4 1 3 2 

Jet Flooding Method Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch Glitsch 

Column Geometry 

Section Diameter [m] 5.2 5.3 4.6 4.1 4.0 1.5 2.6 1.8 

Tray Spacing [m] 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Section Height [m] 6.1 5.5 6.7 5.5 3.7 3.0 4.3 3.7 

 

 

Figure 2.16 Downcomer flooding performances. 
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Figure 2.17 Jet flooding profiles. 

 

2.10.3 Summary 

 

In this Section, concepts about distillation column hydraulics are presented 

including sieve trays definition, tray operation region, flow limits, flooding 

methods and tray layouts. Then, the hydraulic performance of a crude oil 

distillation system with and without a preflash unit is evaluated in terms of 

their downcomer flooding and jet flooding profiles. Results obtained show that 

all the column sections are below flooding due to the constraints imposed 

within the equipment design option in Aspen HYSYS v8.8; in this way, for 

each optimisation run column hydraulics is taken into account. Finally, as all 

sections are below flooding, there is no need to add constraints in the 

optimisation framework developed in MATLAB; if necessary, they can be 

added as constraints within the optimisation algorithm as reported by Ochoa-

Estopier and Jobson, 2015 and Enríquez-Gutiérrez, 2016. 
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2.11 Concluding remarks  

 

This Chapter summarises developments on the design and optimisation of 

crude oil distillation systems over the years. Initially, traditional design 

methods were based on heuristic rules, involving trial an error. Later on, 

integrated design methods applied rigorous simulations in commercial 

software packages such as Aspen HYSYS, Aspen Plus and PRO/II. Pinch 

analysis is used to evaluate energy consumption within the heat exchanger 

network, HEN. Recently, optimisation-based design methods have been 

widely applied. In these methods, the design of the crude oil distillation 

system is supported by optimisation. Objective functions vary depending on 

the requirements of the refinery. 

Exploiting the operating conditions of a crude oil distillation system can 

improve heat recovering opportunities, as it was discussed in this Chapter. 

Furthermore, adding a preflash unit to a crude oil distillation system helps to 

reduce the flow rate of the crude entering to the furnace, which in turn can 

reduce hot utility demand of the system.  

However, there are some limitations of the current approaches available on 

the literature: 

1. Design and optimisation methodologies developed over the years have 

been focussed mainly on the atmospheric distillation column only. 

 

2. Modelling approaches using artificial neural networks have not been 

applied to the case when a preflash is added to a crude oil distillation system. 

 

3. Process constraints are typically related to product specifications without 

paying attention to the residue flow rate.  
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4. Fired heating demand (including stack losses) of crude oil distillation 

systems with and without a preflash unit has never been explored and 

optimised simultaneously with its operating variables.  

 

The above limitations of existing design methodologies and the importance of 

crude oil distillation processes in the refining industry motivate the present 

work. To date, no systematic optimisation-based design methodologies are 

available to design crude oil distillation systems with preflash units that 

account for heat integration and yield constraints.  On the other hand, the 

importance of taking into account the role of fired heating demand within the 

evaluation of heat recovery opportunities has not been addressed in any 

published work. Today, new technologies/methodologies are increasingly 

sought; energy management and process integration of any refinery 

continues to be of prime importance.  

Outcomes of this work can be of interest for industrial application in crude oil 

distillation processes with and without a preflash unit. 
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Chapter 3  

 

Optimisation-based Design of Crude Oil 

Distillation Systems with a Preflash Unit 
 

 

This Thesis Chapter is based on two published papers: 

 

1. Ledezma Martínez, M., Jobson, M., Smith, R. (2018a). Simulation-

optimization-based Design of Crude Oil Distillation Systems with 

Preflash Units.  Industrial & Engineering Chemistry Research, 57(30).  

doi.org/10.1021/acs.iecr.7b05252. 

 

2. Ledezma-Martínez, M., Jobson, M., Smith, R. (2018b). A new 

optimisation-based design methodology for energy-efficient crude oil 

distillation systems with preflash units. Chemical Engineering 

Transactions, 69, 385-390. doi.org/10.3303/CET1869065. 
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3.1 Introduction 

 

Petroleum continues to be crucial in meeting global energy demand and 

crude oil distillation systems continue to play a central role in petroleum 

refining. World refining industry today is facing new challenges to meet strict 

requirements related to product quality, maximise the yield of valuable 

products in an energy-efficient way along with environmental regulations such 

as reducing CO2 emissions. Particularly, crude oil distillation is a highly 

energy-intensive process; on average a crude oil distillation unit consumes 

around 20% of total energy consumption in a refinery (Fu and Mahalec, 

2015).  

 

Modelling crude oil distillation systems is not a trivial task due to the 

complexity of the crude oil mixture, column configuration and its interactions 

with the heat recovery system. Models need to describe the process 

accurately as they are used to perform the optimisation of the system. The 

effectiveness of the optimisation relies on the optimisation algorithm selected, 

the lower and upper bounds for the optimisation variables and on the 

complexity and accuracy of models (Jobson et al., 2017).  

 

To date, systematic and accurate approaches for modelling and optimisation 

of crude oil distillation systems with a preflash unit are lacking. In practice a 

crude oil distillation system is likely to include a preflash unit. Hence, 

systematic and accurate approaches for modelling and optimisation of crude 

oil distillation systems with a preflash unit are needed. 

 

A typical crude oil distillation system, as illustrated in Figure 3.1, comprises a 

preheat train, crude oil distillation units with side strippers and pump-arounds 

and sometimes pre-separation units, such as flash units and prefractionation 

columns. These systems are energy-intensive: it is estimated that 7 to 15% of 

the crude oil input is consumed in refinery processes, of which 35 to 45% is 
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used for crude oil distillation (Szklo and Schaeffer, 2007). Preflash units can 

be useful for facilitating heat recovery within the system and thus reducing 

demand for fired heat for crude oil preheating prior to distillation. The preflash 

unit carries out a partial separation – the vapour recovers some low-boiling 

components and some material in the boiling range of light naphtha. This 

vapour stream bypasses the fired heater, helping to reduce its fuel 

consumption; the vapour may then be mixed with the stream leaving the 

furnace or be fed to the main column at a suitable location.  

 

 

Figure 3.1 Crude oil distillation system with a preflash unit. 

 

Global concerns about carbon emissions and pressure on refining process 

economics encourage design of crude oil distillation systems that maximise 

process yield and minimise energy consumption, and therefore also operating 

costs. Furthermore, the high capital and operating costs of these systems, 

together with their considerable complexity, motivate development of 

systematic approaches to develop optimised designs. 
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Crude oil distillation system design methods employ experience, trial-and-

error and heuristics, as well as process simulations and heat recovery 

analyses, typically using pinch analysis, to identify cost-effective and energy-

efficient design solutions. Design methods that are systematic and employ 

optimisation effectively continue to be developed, but these have not focused 

on the role of pre-separation units, such as preflash units and prefractionation 

towers.  

 

The aim of this work is to develop a systematic approach to design cost-

effective, energy-efficient crude oil distillation systems with preflash units, 

accounting for product quality constraints, yield and heat integration. The 

design methodology is developed using simulation models in Aspen HYSYS 

v8.8; these models are linked to MATLAB R2016a through an interface that 

allows communication between the two software packages. 

 

3.2 Simulation-based design methodology 

 

This section introduces the proposed simulation-optimisation-based design 

methodology for the design of a crude oil distillation system with a preflash 

unit. First, the Aspen HYSYS simulation model is presented, along with the 

use of an interface between Aspen HYSYS and MATLAB. Second, heat 

integration is addressed. Next, the optimisation approach is described. The 

strong interactions between the crude oil distillation unit, the preflash unit and 

the heat recovery system, make this a challenging optimisation problem, 

especially since both operational and structural variables are to be optimised.  

 

Two different scenarios are explored and presented as case studies in 

section 3.3. In the first case study, the structure of the main column is 

maintained unaltered - no change in the number of trays (Ledezma-Martínez 

et al., 2018). In the second case study, the structure of the main column is 
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simultaneously optimised with the operating conditions of the crude oil 

distillation system (Ledezma-Martínez et al., 2018b). 

 

3.2.1. Simulation model and Aspen HYSYS-MATLAB interface 

 

The crude oil distillation process is modelled using Aspen HYSYS v8.8; in 

such commercial simulation software, models for crude oil characterisation 

are well established in industrial practice and rigorous distillation models have 

demonstrated their potential to provide highly accurate representations of this 

complex process. The models require the crude oil feed, the process and the 

column configuration to be fully defined. 

 

At the design stage, it is appropriate to use heaters and coolers, rather than 

heat exchangers, because this simplifies process simulation and also 

because it allows the details of the heat recovery system to be decoupled 

from process design. Nevertheless, the minimum heating and cooling 

requirements of a proposed design can be readily ‘targeted’ using pinch 

analysis; this simplifies process simulation while still allowing evaluation of 

utility demand.  

 

A simulation file is created for two configurations – that without and that with a 

preflash unit. The column structure – number of stages in each section, 

number and location of pump-arounds, draw and return stages for all side-

strippers – is identical in both cases, as are the feed, operating pressures and 

product specifications. This work follows the approach in related studies 

(Ochoa-Estopier and Jobson, 2015; Ibrahim et al., 2017) by expressing the 

product quality in terms of points on the boiling profile, namely the 

temperatures at which 5 vol% (T5) and 95 vol% (T95) of each product are 

vaporised, according to the ASTM standard D86. 
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For the configuration with a preflash unit, heating of the crude oil is modelled 

using two heaters; one represents the heating upstream of the preflash unit 

and the other represents the preheating of the flash liquid by heat recovery 

and fired heating. The vapour leaving the flash unit is divided, using a stream 

splitter, into five streams, each of which is connected to a different stage of 

the main column, where there is one feed stage per section. The split 

fractions are defined in MATLAB such that all but one of these five streams 

will have zero flow, i.e. that all the material is directed to a single feed 

location. The extract of the MATLAB file included in Appendix A provides 

further detail. The approach builds on the simulation–optimisation technique 

(Caballero et al., 2005) for the design of distillation columns, facilitated by an 

Aspen HYSYS–MATLAB interface. The simulation model in Aspen HYSYS is 

linked to MATLAB R2016a via an ‘automation’ interface that allows the user 

to send inputs to and collect outputs from the simulation software (Aspen 

HYSYS Customization Guide). Spreadsheets within Aspen HYSYS are found 

very useful for viewing and storing results and for facilitating data-transfer 

between Aspen HYSYS and MATLAB. For example, HYSYS spreadsheets 

are useful for storing the current value of the objective function and values of 

other variables that need to meet specified constraints (e.g. product quality 

specifications).  

 

The column simulation is set up to allow its convergence. In addition, a set of 

variables is defined, corresponding to the design degrees of freedom. In this 

work, the variables are cooling duty and temperature drop of each pump-

around; flow rate of stripping steam to all steam-stripped column sections; 

reflux ratio; column feed inlet temperature and preflash feed temperature. 

One structural variable, the feed location in the main column to which the 

flash vapour is sent, is included as a degree of freedom.  

 

For the case with a preflash unit, the flash temperature is an important degree 

of freedom. Higher temperatures allow more vaporisation of the crude oil feed 
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and thus more of the feed to bypass the fired heater; heating only the preflash 

liquid reduces the fired heating duty. On the other hand, if a large fraction of 

the crude oil feed bypasses the fired heater, there is a risk that the total 

enthalpy of the two feed streams is too low to allow the desired separation to 

be achieved. The vapour leaving the flash unit is sent to a stream splitter 

which facilitates the vapour stream to be sent to any one of several potential 

feed locations. Initially, it is assumed that the vapour is sent to the same 

stage as the main feed, i.e. is effectively mixed with the crude oil leaving the 

fired heater. Product quality specifications aim to ensure that the product 

streams meet the requirements of downstream processing and of the market. 

Some of these specifications can be defined (as ‘specifications’) within the 

rigorous distillation model, but the limited number of degrees of freedom of 

the column means that not all products can be fully specified. Therefore, the 

remaining product specifications are defined within MATLAB as inequality 

constraints, where compliance with specifications is checked and, in the 

optimisation, a penalty term is added to the objective function. In line with 

industrial practice, where specifications are defined in terms of characteristic 

boiling temperatures within a tolerance  (typically 10C), the constraints are 

defined accordingly. 

 

When using the ‘automation’ feature for direct simulation-based optimisation, 

there is a risk that the rigorous simulation will not converge, either because 

the simulation has been poorly initialised or because, for a particular set of 

inputs, the specifications cannot be met. If the simulation does not converge, 

the optimisation may not be able to proceed or taking steps to facilitate 

convergence, such as re-initialising the simulation or increasing the number of 

iterations, may be computationally intensive. Therefore, the automation code 

instructs the Aspen HYSYS simulation to stop if it does not converge within 

the specified maximum number of iterations. In the case that the Aspen 

HYSYS simulation does not converge, a penalty is applied to the objective 

function within MATLAB. This penalty helps to reject spurious results during
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the optimisation.  

 

3.2.2. System Optimisation 

 

Experience showed that deterministic non-linear optimisation techniques 

(such as fmincon in MATLAB) for optimising the operating variables 

frequently led to the optimisation reaching a local optimum. Furthermore, the 

vapour feed location introduces an integer variable into the problem, which 

cannot be handled effectively by such an algorithm. Therefore, randomised 

search methods, also known as stochastic optimisation or metaheuristics, are 

applied. These methods are known to help to overcome the limitations of non-

randomised methods (Osman, 1996) by ‘learning’ about the problem during 

the optimisation and tailoring the search strategy accordingly. However, it is 

well known that such algorithms find ‘near-optimal’ solutions, rather than the 

globally optimal solution (Osman and Kelly, 1996).  

 

Two options from MATLAB R2016a Global Optimisation Toolbox were tested 

both simulated annealing (simulannealbnd) and a genetic algorithm 

(gaoptimset). The latter was found to be far more robust in reaching good 

solutions and therefore is adopted, (See Chapter 2, Section 2.4 for details 

about the optimisation methods). 

 

The objective function can be expressed mathematically as: 

𝑚𝑖𝑛 𝐹(𝑥) = 𝑓(𝑥) + 𝛾1|ℎ(𝑥)| + ∑ 𝛾𝑗  [𝑚𝑎𝑥 (0, 𝑔𝑗(𝑥))]
2

𝑛
𝑗=1            (3.1) 

ℎ(𝑥) = 0   𝑔𝑗(𝑥) ≤ 0         

  

where x is the vector of optimisation variables (i.e. cooling duty and 

temperature drop of each pump-around, the flow rate of steam to the main 

column and to any other steam-stripped sections, the column feed 
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temperature and the preflash feed temperature, if applicable); F(x) is the 

overall objective function; f(x) is the objective function before applying any 

penalty terms; h(x) represents the set of equality constraints; 𝑔𝑗(x) represents 

inequality constraints and j is a set of scalar penalty factors that scale the 

penalty according to the significance of the constraint and the magnitude of 

the violation of the constraint (Ibrahim et al., 2017). 

Product quality constraints are included as inequality constraints 𝑔𝑗(x) in the 

objective function as follows:  

 

𝑇5𝑖
∗ − ε ≤ 𝑇5𝑖 ≤ 𝑇5𝑖

∗ + ε                𝑖 = 1,2, … . . , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠                      (3.2) 

𝑇95𝑖
∗ − ε ≤ 𝑇95𝑖 ≤ 𝑇95𝑖

∗ + ε       𝑖 = 1,2, … . . , 𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠                     (3.3) 

 

where T5i and T95i correspond to the T5 and T95 ASTM D86 temperatures for 

product i, where the lower bound is  less than the specified temperatures 

(T5i* and T95i*, respectively) and the upper bound is  greater than the 

specified temperature. These specifications are conveniently represented 

using the max function in MATLAB: 

 

𝑔1(𝑥) = ∑ [𝑚𝑎𝑥(0, (𝑇5𝑖
∗ − 𝜀) −  𝑇5𝑖)2]𝑛

𝑖=1 + [𝑚𝑎𝑥(0, 𝑇5𝑖 − (𝑇5𝑖
∗ + 𝜀))2]                (3.4) 

 

𝑔2(𝑥) = ∑ [𝑚𝑎𝑥(0, (𝑇95𝑖
∗ − 𝜀) −  𝑇95𝑖)2]𝑛

𝑖=1 + [𝑚𝑎𝑥(0, 𝑇95𝑖 − (𝑇95𝑖
∗ + 𝜀))2]        (3.5) 

 

The squared term ensures that a positive penalty is applied only when the 

inequality constraint is violated (Biegler, 2003). 

 

In Case 2 (case study 3.1), a third inequality constraint is added to ensure 

that the volumetric flow rate of the atmospheric residue, 𝑚𝑅𝐸𝑆, is no greater 

than that in the base case, 𝑚𝑅𝐸𝑆
0 : 
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𝑔3(𝑥) = 𝑚𝑎𝑥(0, 𝑚𝑅𝐸𝑆 − 𝑚𝑅𝐸𝑆
0 )                                       (3.6) 

 

Table 3.1. Variables and constraints for system optimisation 

Optimisation variables Constraints Objective function 

3 Pump-around duties   

 

Product quality 

T5% and T95% ASTM 

D86 ± 10°C 

 

Residue flow rate, no 

greater than the value 

for the base case 

 

 

 

 

Minimum hot utility 

demand 

QHmin 

3 Pump-around 

temperature drops 

 

Main steam flow rate 

HD steam flow rate 

Reflux ratio 

Column inlet 

temperature 

 

Preflash temperature 

Flash vapour feed 

location 

 

 

3.3 Case studies 

 

Case studies presented in sections 3.3.1 and 3.3.2 aim to demonstrate the 

capabilities of the proposed design methodology for two different scenarios 

and to illustrate that a preflash unit can bring significant energy savings, even 

when product flow rates are constrained.  

 

The first case study is limited to the case that the column design – the 

number of sections and number of stages in each section – is fixed, and to a 

given crude oil feed and a given set of products, with associated quality 

specifications. The constraints on product quality partially fix the distribution of 

the crude oil into the various products; the option of including constraints on 

product quantity, as well as quality, is also explored. The methodology 
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focuses on reducing the fired heating demand of the system, without 

compromising the quality and quantity of products. Therefore, the objective 

function is the minimum hot utility demand (QHmin), calculated using pinch 

analysis, where penalty terms ensure that the optimal solution meets product 

specifications and also successfully converged when simulated.  

 

3.3.1. Case study 3.1: main column structure fixed 

 

The case study is based on the data presented by Watkins, 1979. Appendix A 

provides details of the crude oil assay in Tables A1 and A2, design 

specifications (Table A3), column structure (Table A4), base case product 

properties and flow rates (Table A5) and base case stream data (Table A6). 

The oil characterisation tool in Aspen HYSYS v8.8 is used to ‘cut’ the oil into 

a set of 25 pseudo-components and to calculate the physical and 

thermodynamic properties of each pseudo-component (e.g. molecular weight, 

density and viscosity). These pseudo-components, together with the six-real 

low-boiling components, represent the crude oil mixture. The Peng-Robinson 

equation of state is used to simulate the mixture of pseudo-components. 

 

The crude oil distillation system comprises an atmospheric distillation unit with 

a condenser, three pump-arounds, one steam-injected side stripper and two 

reboiled side strippers. The case study addresses the system with and 

without a preflash unit upstream of the column. The main column operates at 

a uniform pressure of 2.5 bar and has 41 theoretical stages, distributed in five 

sections, and numbered from top to bottom. Figure 3.2 illustrates the crude oil 

distillation system, showing details of the section numbers, distribution of 

stages in the main column, locations of pump-arounds and of draw and return 

streams, and stripping steam feed locations. Table A4 in the Appendix A, 

presents the distribution of trays in the main column and side-strippers; note 

that the numbering continues from 42 to 59 for stages in the side strippers. 

Figure 3.3 illustrates how the flowsheet is implemented in Aspen HYSYS – in 
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particular, it shows how the flash vapour stream may be directed to five 

different feed locations in the main column, and how several spreadsheets 

are used to facilitate data transfer to and from MATLAB. 

  

 

Figure 3.2 Crude oil distillation system with a preflash unit. 

 

 

Figure 3.3 Screenshot of Aspen HYSYS simulation. 
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The system processes 100,000 bbl day–1 (662.4 m3 h–1) of Venezuelan Tia 

Juana light crude oil. The crude oil distillation column produces five products: 

Light Naphtha (LN), Heavy Naphtha (HN), Light Distillate (LD), Heavy 

Distillate (HD) and Residue (RES). The unoptimised base case design is 

derived from a study by Chen, 2008. Table A6 (Appendix A) provides details 

about the process stream data for the not optimised base case (without a 

preflash unit) and Figure A1 shows its grand composite curve and minimum 

utility requirements. Vapour leaving the preflash unit is initially mixed with the 

stream leaving the fired heater; the mixture is sent to the feed stage in the 

main column. Steam is utilised as a stripping agent in the main column and in 

the HD stripper. The HN and LD strippers use reboilers, rather than live 

steam. Product specifications are expressed in terms of ASTM T5 and T95 (in 

C).   

 

3.3.1.1 Operational variables 

 

The crude oil distillation system has eleven operational variables and one 

structural variable (vapour feed location), as shown in Figure 3.4. The base 

case operating conditions and product specifications are listed in detail in 

Table A3 in Appendix A; the vapour feed location is selected to be the main 

feed stage, in Section 5 of the main column. The preflash temperature and 

vapour feed location are two important operating variables that significantly 

influence the performance of the crude oil distillation system. Product quality 

specifications and base case product flow rates (expressed in m3 h–1 and 

kmol h–1) are presented in Table A5 in the Appendix A. The study assumes a 

minimum temperature approach of 30°C in all heat exchangers for the heat 

recovery calculations. 

 

Prior to process optimisation, the initial case forms the basis for sensitivity 

studies. These studies facilitate understanding of the system and 

performance trends, in terms of hot utility demand, as each design variable is 
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changed. The results of the sensitivity studies help to define suitable bounds 

for the optimisation, considering the effect of design variables on performance 

and on ease of convergence of the flowsheet simulation.  

 

 

Figure 3.4 Operational and structural variables, crude oil distillation system with a 
preflash unit. 

 

3.3.1.2 Optimisation framework: Case study 3.1 

 

Figure 3.5 illustrates a general optimisation-based design methodology for 

case study 3.1 where the number of trays in the main column is fixed.  Aspen 

HYSYS v8.8 is applied for flowsheet simulation while MATLAB R2016a is 

used to carry out pinch analysis on proposed solutions and to drive the 

optimisation.  Relevant streams to calculate minimum hot utility demand of 

the system are the supply and target temperatures and duties of the preheat 
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trains, fired heater, products coolers, condenser, pump-arounds and side-

strippers.  

 

 

Figure 3.5 Optimisation-based design methodology, case study 3.1. 

 

3.3.1.3 Optimisation parameters 

 

The aim of the optimisation is to identify a flowsheet configuration and a 

corresponding set of operating conditions that minimise the hot utility 

demand. The optimisation is carried out as described in Section 3.2.3. The 

parameters selected for the genetic algorithm are 500 for the maximum 

number of generations and 100 for the initial population; the ‘function 

tolerance’, the average change in the value of the objective required before 

the optimisation is terminated, is set to 110–10. These optimisation 
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parameters were selected after running the optimisation several times with 

different values for population size and number of generations and 

considering the best value of the objective function and the effect on the 

computation time. 

 Three optimisation runs are performed for each case. Multiple runs help to 

give confidence that the optimisation is effective and robust; wide variations in 

the value of the objective function could suggest that the optimisation 

algorithm and/or parameters are unsuitable.  

 

3.3.1.4 Optimisation results 

 

Two cases are considered, Case 1, where constraints relate to product quality 

only, and Case 2, where both qualities of products and the flow rate of the 

atmospheric residue (RES) are constrained. Details of the optimisation results 

are provided in Tables A7 and A9 (for Case 1) and Tables A8 and A10 (for 

Case 2) in the Appendix A. Optimisation runs took between 4 and 6 hours of 

CPU time on an HP desktop PC with Intel Core i5 processor running at 3.20 

GHz and 16 GB of RAM.  

 

Case 1: Crude oil distillation system without and with a preflash unit, where 

constraints relate to product quality only. A summary of optimisation results 

and bounds (selected after performing sensitivity analyses) for operational 

and structural variables obtained for the crude oil distillation system with and 

without a preflash unit is presented in Table 3.2. (Note that pump-around 

duties are negative values in HYSYS; the MATLAB code takes this into 

account when defining upper and lower bounds on the duties). 

 

Table 3.2 shows that the initial conditions of the base case were far from 

optimal. More importantly, Table 3.2 shows that the minimum hot utility 

demand could be reduced by 17% by introducing a preflash unit to the 

flowsheet. It is also noteworthy that the optimiser selected Section 3 for the 
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feed location of the preflash vapour. (This result was obtained in all 

successful optimisations).  

 

It was observed that the location for the vapour feed was always chosen to be 

in the section with the temperature closest to the preflash temperature. For 

the solution shown in Table 3.2, the optimised feed location corresponds to 

stage 18 in section 3 of the main column. It may be observed that the column 

inlet temperature is 4C higher in the case that the flash vapour bypasses the 

furnace; this result indicates that, with a preflash, the crude oil feed needs to 

be hotter, to compensate for the lower enthalpy of the preflash vapour when it 

enters the column. Table 3.2 also shows that the optimiser maximises the 

temperature of the flash unit (to the upper bound of 230C), indicating that the 

benefits of allowing some material to bypass the fired heater outweigh the 

drawbacks of feeding relatively cold vapour to the column. 

 

Table 3.3 presents results for Case 1 related to product quality in terms of 

ASTM T5 and T95 (in C). It may be seen that the product quality constraints 

are all met within the allowed range of temperatures (±10C). Table 3.4 

shows the results for the optimised product flow rates and vapour for Case 1. 

These results confirm that the product yields for most of the valuable products 

(LN, HN, HD) change relatively little, which is a consequence of the product 

quality being constrained, and therefore the distribution of the crude oil feed 

into products being constrained. However, the 2.4% and 3% increases in the 

flow rate of the atmospheric residue (RES), compared to the not optimised 

base case, represents a loss of more valuable products. Therefore, Case 2 

addresses this problem by adding a constraint on the flow rate of the 

atmospheric residue, in line with previous studies (Ibrahim et al., 2017). 
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Table 3.2 Optimisation results and bounds for the crude oil distillation system Case 1 

Variable Units Base 
Case 

Lower 
Bound 

Upper 
Bound 

Optimisation 
Results 

No 
Preflash 

With 
Preflash 

Main Steam 
Flow Rate 

kmol h–1 1200 900 1800 900 1190 

HD Steam 
Flow Rate 

kmol h–1 250 200 375 200 211 

PA1 Duty MW 12.8 6 14 6.0 6.8 

PA2 Duty MW 17.8 6 18 9.8 8.3 

PA3 Duty MW 11.2 6 12 11.9 8.8 

PA1 T C 30 20 50 48.6 25.5 

PA2 T C 50 15 60 33.8 23.0 

PA3 T C 20 10 40 39.9 39.3 

Column Inlet 
Temperature 

C 365 350 385 350 354 

Flash 
Temperature 

C 115 110 230 – 230 

Reflux Ratio  4.17 3.0 4.5 3.7 3.0 

Vapour Feed 
Locationa 

 5 1 5 – 3 

Minimum Hot 
Utility 

MW 58.3   43.4 35.9 

a Number of section in main column 
   PA: pump-around 

   T: pump-around temperature drop 
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Table 3.3. Product qualities, optimised crude oil distillation system: Case 1 

Product Base Case 

 

ASTM (C) 

Optimisation 
Results 

No Preflash 

ASTM (C) 

Optimisation 
Results 

With Preflash 

ASTM (C) 

T5 % T95% T5% T95% T5% T95% 

LN 27 110 a 25 110 25 110 

HN 143 196 a 133 196 133 196 

LD 218 a 300 a 218 300 218 300 

HD 308 354a 305 354 302 354 

RES 363 755 354 753 353 753 

a Specified in HYSYS 

 

Table 3.4. Product flow rates, optimised crude oil distillation system: Case 1 

Flow rate (m3 h–1) Base Case Optimised 

No Preflash 

Optimised 

With Preflash 

LN 102 101 101 

HN 87 88 89 

LD 128 126 123 

HD 54 48 49 

RES 292 299 301 

 

Case 2: Crude oil distillation system with constraints on both product quality 

and product flow rates. Again, the crude oil distillation system is optimised 

without and with a preflash unit. The optimisation results for Case 2 are 

summarised in Tables 3.5 to 3.7, providing details of operating conditions and 

flowsheet structure, product quality and product flow rates. Note that bounds 

for HD steam flow rare, pump-around 3 duty and flash temperature are 

different of those presented in Case 1, bounds were updated according to a 
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better performance of the optimisation for the case when a residue constraint 

is added to the objective function. 

 

Table 3.5 Optimisation results and bounds for the crude oil distillation system Case 2 
 

Variable Units Base 
Case 

Lower 
Bound 

Upper 
Bound 

Optimisation 
Results 

No 
Preflash 

With 
Preflash 

Main Steam Flow 
Rate 

kmol h–1 1200 900 1800 1247 1195 

HD Steam Flow 
Rate 

kmol h–1 250 180 375 188 180 

PA1 Duty MW 12.8 6 14 7.4 8.5 

PA2 Duty MW 17.8 6 18 9.8 8.8 

PA3 Duty MW 11.2 6 14 14.0 13.0 

PA1 T C 30 20 50 31.9 38.8 

PA2 T C 50 15 60 34.9 31.6 

PA3 T C 20 10 40 39.9 21.0 

Column Inlet 
Temperature 

C 365 350 385 362 383 

Flash Temperature C 115 110 240 – 240 

Reflux Ratio  4.17 3.0 4.5 4.1 3.1 

Vapour Feed 
Location a 

 5 1 5 – 3 

Minimum Hot Utility MW 58.3   46.6 37.9 

a Number of section in main column 
   PA: pump-around 

   T: pump-around temperature drop 

 

As shown in Table 3.5, in Case 2 the use of a preflash unit again leads to a 

significantly lower minimum hot utility demand (18%). However, for both 
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configurations – without and with a preflash unit – when the residue flow rate 

is constrained, the minimum hot utility demand increases significantly, by 6% 

and 5%, compared to the optimised flowsheets without product flow rate 

constraints (i.e. Case 1). This increased demand for fired heating is 

consistent with the higher column inlet temperature of Case 2 (362C and 

383C), compared to Case 1 (350C and 354C). The increased column feed 

temperatures achieve greater vaporisation of this stream, compensating for 

both an increased vapour fraction entering the column at a relatively low 

temperature (240C) and the need to vaporise more of the feed in order to 

meet the flow rate constraint on the atmospheric residue. Consequently, and 

aligned with previous work (Ibrahim et al., 2017) demand for fired heating 

increases.  

 

It is noted that, as in Case 1, the flash temperature selected by the optimiser 

is at the upper bound of the range (240C), indicating that there are benefits 

for the heat recovery system (and few penalties for the separation 

performance) of using a preflash unit. It is also observed that the stream flow 

rate to the HD side-stripper is at the minimum value; a lower requirement for 

stripping steam is consistent with the removal of lighter material from the 

column feed. 

 

Again, the flash vapour is directed to the section of the column with the 

temperature that is most similar to that of the vapour. This result implies that 

the optimisation search space could be narrowed appropriately, with 

corresponding reductions in computation time. 

 

The greater duties of the pump-arounds in Case 2 indicate that the higher 

feed temperature also allows more heat to be recovered in the heat recovery 

system. It may be observed from Tables 3.2 and 3.5 that, in both Cases 1 

and 2, introducing a preflash, i.e. allowing a fraction of the feed to bypass the 

fired heater, tends to reduce the amount of high-temperature heat recovered. 
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In particular, heat recovery from pump-arounds 3 and 2 is reduced in favour 

of rejecting lower-grade heat from pump-around 1. This trend would also 

reduce the temperature to which the heat recovery system could preheat the 

crude oil feed before it enters the fired heater. 

 

In Table 3.6 it may be seen that the product quality constraints are all met 

within the allowed range of temperatures (±10C), as are those in Case 1. 

Results also confirm that the residue flow rate is unchanged, indicating that 

there is no loss of valuable products.  

 

Table 3.6. Product qualities, optimised system: Case 2  

Product  Base Case 

 

ASTM (C) 

Optimisation 
Results 

No Preflash 

ASTM (C) 

Optimisation Results 

With Preflash 

ASTM (C) 

T5% T95% T5% T95% T5% T95% 

LN 27 110 a 25 110 25 110 

HN 143 196 a 133 196 135 196 

LD 218 a 300 a 218 300 218 300 

HD 308 354 a 307 354 303 354 

RES 363 755 361 754 362 754 

a Specified in HYSYS 

 

Figure 3.6 presents the grand composite curves for the two optimised cases 

with a preflash unit, where Case 1 considers product quality constraints and 

Case 2 considers both product quality and product flow rate. The grand 

composite curves show that the minimum hot utility demand increases when 

product flow rates are considered. In both cases, the existence of several 

pinches (or near-pinches) indicates that heat recovery is maximised at a wide 

range of temperature levels: that is, the column operating conditions have 
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been optimised to maximise heat recovery.  This is a strength of the 

methodology, where each proposed solution is assessed in terms of its net 

heating demand, after heat recovery, rather than by considering heat 

recovery only after the design of the system. The results in Figure 3.6 and 

Tables 3.2 and 3.5 highlight the trade-offs between the fired heating demand 

and the yield of valuable products. Table A8 of the Appendix A provides 

stream data for the optimised system applying the constraint on the 

atmospheric residue flow rate. 

 

Table 3.7. Product flow rates, optimised system: Case 2 

Flow rate (m3 h–1) Base Case Optimised 

No Preflash 

Optimised 

With Preflash 

LN 102 101 101 

HN 87 88 89 

LD 128 126 123 

HD 54 55 58 

RES 292 292 292 
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(a) Case 1 (b) Case 2 

Figure 3.6 Grand composite curves of optimised crude oil distillation system with 
preflash. 

 

3.3.1.5 Case study summary 

 

A systematic design optimisation approach is proposed for crude oil 

distillation systems with preflash unit, applying a rigorous simulation model 

and using pinch analysis to determine the minimum hot utility demand of the 

heat-integrated system. The methodology accounts for industrially relevant 

constraints related to product quality and yield and the main operating cost of 

the distillation system, that of fired heating. Especially because of the rigorous 

simulations involved, the optimisation is relatively computationally intensive, 

requiring 4 to 6 hours of CPU time per optimisation run.  

 

The case study confirms that introducing a preflash unit, while also optimising 

the column operating conditions, can bring significant improvements in the 

hot utility demand. However, the preflash clearly impacts on the separation 

performance of the column, and thus potentially could reduce the value 
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added by the distillation system to the crude oil, for example, if more of the 

crude oil leaves the column in the residue stream. These results highlight the 

trade-off between yield and energy demand, and suggest that the objective 

function should capture both aspects, for example, as net profit, as in 

previous studies (Ochoa-Estopier and Jobson, 2015). 

 

The problem formulation described in this case study keeps the design of the 

distillation column (number of stages in each section) fixed in all cases. Case 

study 3.2 will address this limitation taking into account column design, 

together with the use of a preflash unit, taking advantage of recent 

developments in this area (Ibrahim et al., 2017). The change in flow rate and 

composition of the feeds after introducing a preflash unit, would logically 

require a different distribution and/or number of stages in the distillation unit, 

and would also significantly affect the cost of the column because of changes 

in required column diameter.  

 

3.3.2. Case study 3.2: design of main column structure optimised 

 

This second case study is also based on data reported by Watkins, 1979 and 

the base case is an unoptimised design presented by Chen, 2008. The crude 

oil distillation system analysed is exactly the same as that presented in 

Section 3.3.1.  The crude oil distillation unit is modelled in Aspen HYSYS 

v8.8, applying the ‘3ss crude’ column template for this purpose; this software 

has been employed in industrial practice because of its ability to generate 

accurate simulation results. The Aspen HYSYS simulation model represents 

the flowsheet structure and the column design (number of stages in each 

section and location of feed and draw stages and locations of pump-arounds, 

stripping steam feeds and side-stripper reboilers).  

 

The flowsheet shown in Figure 3.7 includes a preflash unit, where the 

destination of the preflash vapour is a design degree of freedom. Therefore, 
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the flash vapour is fed to a stream splitter with n outlets, each of which is 

connected to a different location in the main column. The stream splitter is 

specified to send 100% of the inlet stream to only one outlet stream; in this 

way, the flowsheet configuration can be varied using the stream splitter 

specifications.  

 

 

Figure 3.7 Crude oil distillation system showing vapour feed locations. 

 

3.3.2.1 System modelling and operating conditions  

 

The model also represents process operating conditions. Within the 

flowsheet, the heating of the crude oil from ambient conditions to the furnace 

inlet temperature is modelled using one heater upstream of the flash unit and 

one heater representing a second preheat train upstream of the furnace. The 

outlet temperature of the upstream heater, i.e. the preflash temperature, is an 

important degree of freedom in the flowsheet design.  Other design variables 

to be selected include column operating conditions, namely pump-around 

duties and temperature drops, stripping steam flow rates, column feed 

temperature, preflash temperature and reflux ratio.  
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In the simulation model in Aspen HYSYS, product quality may be specified in 

terms of product boiling ranges (e.g. T5% and T95%, the boiling temperature 

when 5% and 95% of the material, respectively, has vaporised using a 

standard test, such as ASTM D86). Independent variables are then 

manipulated by the simulation algorithm to attempt to meet these 

specifications and converge the simulation.  

 

The optimisation problem shown on Figure 3.8 has 11 operating variables (3 

pump-around duties, 3 temperature drops, 2 stripping steam flow rates, 

column feed temperature, preflash temperature and reflux ratio). The feed 

location in the main column of the flash vapour and the column structure 

(number of trays in each of 8 sections, including the side strippers) are the 9 

structural optimisation variables. The objective function is to minimise hot 

utility demand, calculated using pinch analysis. The optimisation algorithm 

provides a systematic search for the set of operating and structural variables 

that maximise the performance of the system in terms of demand for fired 

heating. A minimum approach temperature of 30C is assumed for all heat 

exchangers when generating the grand composite curve.  

 

The design of the column sections is addressed by including redundant 

stages in each section and defining the Murphree stage efficiency for each 

stage in each section of the column to be zero or one. In this way, existing 

trays can be activated (by setting the stage efficiency to 1), to allow mass 

transfer, or deactivated (by setting the stage efficiency to 0), to disallow mass 

transfer (Ibrahim et al., 2017). As a result, the number of active stages in 

each section and therefore the total number of stages in the column can be 

altered easily, by changing a process variable, without needing to explicitly 

change the column structure. 

 

The model can be used repeatedly, with trial and error or systematic 

searches, to search for designs that perform well in terms of the performance 



120 
  

indicator. Instead, following Caballero et al. (2005) and Ibrahim et al. (2017), 

the search is automated: an interface is created between MATLAB R2016a 

and Aspen HYSYS v8.8 which permits MATLAB to read from and write to 

Aspen HYSYS (AspenTech, 2010). A MATLAB subroutine (Morandin, 2014) 

uses the results of each converged simulation to apply pinch analysis and to 

generate a grand composite curve for the process, from which the minimum 

hot and cold utility demand is calculated.  

 

 

 

Figure 3.8 Operational variables and superstructure representation, crude oil 
distillation system with a preflash unit. 

 

 



121 
  

3.3.2.2 Optimisation framework: Case study 3.2 

 

The optimisation framework for the case study 3.2 as shown in Figure 3.9, 

selects values of process variables, including those determining the flowsheet 

or column structure, simulates the corresponding flowsheet, evaluates it and 

then selects a new set of inputs. 

 

A genetic algorithm is selected as the optimisation technique because it is 

known to be effective in finding good solutions to complex process design 

problems involving both continuous and discrete design choices (Kotecha et 

al., 2010). It is also simple to implement a genetic algorithm, using MATLAB 

R2016a Global Optimisation Toolbox. The optimisation parameters for the 

genetic algorithm are: population size, number of generations, and 

termination criteria. In this work, the optimisation terminates after a given 

number of generations or if the objective function does not improve by more 

than a certain tolerance over a given number of generations. Optimisation 

parameters for the genetic algorithm are:  population size (100), maximum 

number of generations (500) and the objective function tolerance (1·10–10). 

Optimisation runs took 8 to 8.5 hours of CPU time on an HP desktop PC with 

Intel Core i5 processor running at 3.20 GHz and 16 GB of RAM.  

 

Relevant optimisation constraints include the upper and lower limits of 

optimisation variables and constraints on integer variables (e.g. only one 

stream from the flash vapour has a non-zero flow rate; the maximum and 

minimum number of stages is specified for each column section). If an Aspen 

HYSYS simulation does not converge within a given number of iterations, a 

penalty term (a scalar of the same magnitude as the objective function) is 

applied to the objective function.  

 

Pinch analysis is applied to evaluate the minimum utility demand of the 

system, assuming heat recovery within the crude oil distillation system is 
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maximised. The grand composite curve (GCC) is generated for each 

simulated design – using results of the simulation relating to stream inlet and 

outlet temperatures and heating and cooling duties; the minimum approach 

temperature is specified by the user. The grand composite curve is then used 

to evaluate the minimum demand for fired heating, which is an important 

performance indicator. Detailed heat exchanger design is not directly 

addressed (Ledezma-Martínez et al., 2018a). 

 

 

Figure 3.9 Optimisation-based design methodology, case 3.2. 

Typically, in the process simulation model, there are fewer degrees of 

freedom than there are specifications, so some important specifications are 

expressed as constraints in the optimisation problem. In line with industrial 

practice and the flexibility of downstream units, product quality constraints 

related to boiling range (ASTM D86 T5% and T95%) may be set with a wide 

tolerance (10C). In addition, even though product quality specifications are 

imposed, it is possible for these to be met but the yield of products to 

decrease (i.e. more of the column feed is relegated to the residue stream, for 

further processing in a vacuum tower, and flow rates of more valuable product 
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streams may decrease). Therefore, the flow rate of the Residue stream is 

constrained to be no more than that in the base case design (Ledezma-

Martínez, et al., 2018a).  If the product quality or residue flow rate constraints 

are violated, a penalty term – a scalar multiplied by amount by which the 

constraint is exceeded – is added to the objective function.  

 

 

3.3.2.3 Optimisation results 

 

To provide a reasonable basis for comparison, the base case is first 

optimised without a preflash unit, then the base case design is optimised with 

a preflash unit (but without making any changes to column design); finally, the 

column design is optimised. 

 

A summary of the optimised operating variables is provided in Table 3.8 for: 

1) the base case, where the column design is fixed (without a preflash unit); 

2) the column design is fixed (no change in number of trays per section) and 

a preflash unit is added; 3) the column design is optimised for both 

operational and structural variables. Table 3.9 confirms that product 

specifications are satisfied within the tolerance (10C) in all three cases.  

Product flow rates for all cases are presented in Table 3.10. Residue flow rate 

is constant and other product flow rates change relatively little, as a 

consequence of product quality constraints. Table 3.11 provides detail of the 

base case (fixed) column structure and the optimised column structure. As 

shown in Table 3.8, introducing a preflash unit to the crude oil distillation 

system reduces the minimum hot utility demand by 20%, compared to the 

base case (without a flash). The significant increase in the column feed 

temperature compensates for the large flow rate of vaporised crude oil that 

bypasses the fired heater and enters the column at a relatively low 

temperature (230C). Nevertheless, more high-temperature heat is recovered 

within the system: pump-around duties are reduced in pump-around 1, PA1 
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and pump-around 2, PA2, at lower temperatures, but increased in pump-

around 3, PA3, where higher-temperature heat is more useful. When a 

preflash is used and the column design is also optimised, there is a marginal 

decrease in demand for fired heating. This result suggests that the additional 

stages and new distribution of stages do not effectively improve the 

separation performance and heat recovery opportunities simultaneously. 

 

Table 3.8. Optimisation results Case 3.2 

Variable  Units Base 

Case 

(no flash) 

Base 

Case 

(with 

flash) 

Optimised 

Design 

Main steam flow rate kmol h–1 1298 1287 1262 

HD steam flow rate kmol h–1 275 200 209 

PA1 duty MW 9.3 8.5 7.2 

PA2 duty MW 10.1 8.7 8.8 

PA3 duty MW 10.5 12.0 11.9 

PA1 ΔT °C 23.7 31.7 33.4 

PA2 ΔT °C 36.2 31.8 31.1 

PA3 ΔT °C 39.8 16.9 21.3 

Column feed 

temperature 

°C 363 377 377 

Flash temperature °C – 230 230 

Reflux ratio  4.0 3.2 3.3 

Vapour feed locationa  – 3 3 

Minimum hot utility MW 48.4 38.8 38.6 
a Number of section in main column 

   PA: pump-around 

   T: pump-around temperature drop 
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Table 3.9. Product quality specifications Case 3.2 

Product Base Case (no 

flash) 

ASTM (°C) 

Base Case (with 

flash) 

ASTM (°C) 

Optimised Design 

ASTM (° C) 

 T5 % T95 % T5 % T95 % T5 % T 95 % 

LN 27 110 a 25 110 25 110 

HN 134 196 a 133 196 133 196 

LD 218a 300 a 218 300 218 300 

HD 309 354 a 304 354 298 354 

RES 362 754 361 754 361 754 
a specified in HYSYS. 

 

Table 3.10. Product flow rates in m3 h–1, Case 3.2 

Product  Base Case  

(no flash) 

Base Case 

(with flash) 

Optimised Design 

LN 105 101 101 

HN 84 89 89 

LD 128 124 122 

HD 53 57 58 

RES 292 292 292 

 

Table 3.11. Crude oil distillation column design (number of stages in each section) 

Column Section                                       Number of trays 

 Base Case 

(no flash) 

Base Case 

(with flash) 

Optimised Design 

1 9 9 6 

2 8 8 10 

3 10 10 11 

4 9 9 9 

5 5 5 10 

6 6 6 3 

7 7 7 8 

8 5 5 7 

Total 59 59 64 

 

For both cases with a preflash unit, the optimum flash temperature was 

230C, the upper bound of the range; this suggests that the constraints on the 

search space should be revised. The insensitivity of the performance to the 
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design of main column was unexpected. Note that the cost of the column is 

not considered in this work so that the extra stages obtained by the optimised 

design do not have an impact on the objective function as it only takes into 

account the minimum hot utility demand of the system. 

 

 

 

3.3.2.4 Case study summary 

 

This second case study proposes a new optimisation-based design 

methodology for a crude oil distillation system with a preflash unit including a 

wide set of operational and structural variables. The approach allows the 

vapour leaving the flash unit to be fed to a suitable location to the main 

column (according to the temperature of the tray) while column structure is 

modified simultaneously on each optimisation run. Pinch technology is 

applied using the Grand Composite Curve (GCC) to evaluate minimum hot 

utility demand of the system but it does not account for the fuel demand of the 

fired heater nor take into account the detailed design and costing of the heat 

recovery system. 

 

The optimisation results show that adding a preflash unit – while applying 

product quality constraints and a flowrate constraint to the residue and taking 

into account both operational and structural variables – can reduce the 

energy consumption of the system. It is evident that the simulation–

optimisation approach is computationally intensive; this motivates the use of 

surrogate models, building on recent developments, e.g. Ibrahim et al., 2017. 
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3.4 Conclusions 
 

This Chapter addressed the first objective stated in the introduction (See 

Section 1.3) regarding the development of an optimisation-based design 

methodology using rigorous models and pinch analysis simultaneously. Direct 

optimisation was performed to select the optimal operational and structural 

variables of a crude oil distillation system with and without a preflash unit.  

 

Two scenarios are explored aiming to reduce minimum hot utility demand of 

the crude oil distillation system when a preflash is added. Case study 3.1 

demonstrates that a decrease in energy demand for fired heating of 17% is 

achieved for case 1; for case 2, a decrease of 19% is obtained. On the other 

hand, in Case study 3.2 energy savings are about 20% between the 

optimised base case with no flash and the optimised base case with flash (no 

change in number of stages); however, a marginal saving (0.5%) is obtained 

when optimising both operational variables and the structure of the main 

column. Further examination of capital–separation–energy trade-offs can be 

beneficial to this case study, where the column capital cost and operating 

costs are considered in the objective function. 

 

Limitations of the proposed design methodology are the use of pinch 

analysis, rather than addressing detailed aspects of design and costing of the 

heat recovery system. Also, the relatively high computational demand of this 

study cases – which could certainly be reduced by using software that is more 

time-efficient than MATLAB – points to the possibility of adapting recent 

developments in the use of surrogate models for distillation system 

optimisation (Ochoa-Estopier and Jobson, 2015; Ibrahim et al., 2017) as will 

be presented in the next Chapter. 
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Chapter 4  

 

Modelling and Optimisation of Crude Oil 

Distillation Systems with a Preflash Unit 

using Artificial Neural Networks 
 

 

4.1 Introduction 

  

The use of artificial neural network models rather than rigorous models to 

solve complex optimisation problems, as crude oil distillation systems are, 

has been preferred in practice because they are suitable for on-line 

applications taking advantages of shortest computational times required 

compared with rigorous models (Yusolf, et al., 2013).  Specifically, artificial 

neural network models have been successfully used to model chemical 

processes including crude oil distillation systems (Motlaghi et al., 2008, Liau 

et al., 2004; Shalini et al., 2012; Popoola et al., 2013). 

Optimising a crude oil distillation system is a highly complex task due to the 

interactions between the distillation column and its heat recovery system. 

Moreover, there is a trade-off between model accuracy and computational
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effort (Ochoa-Estopier and Jobson, 2015b). 

Process optimisation based on process simulation as presented in Chapter 3, 

is usually time-consuming due to the flowsheet created in Aspen HYSYS v8.8 

needs to be evaluated several times; however, it is strongly desirable that the 

distillation model can be simulated in a short period of time.  

To overcome large optimisation times using simulation based-design 

optimisation approaches, artificial neural network models (ANN) can be 

implemented within an optimisation framework. The replacement of a rigorous 

model by an equivalent artificial neural network model takes advantage of a 

high-speed processing as a result of non-iterative algebraic calculations (Gao 

et al, 2005). 

Previous research works (Ochoa et al., 2013; Ochoa et al., 2015a, 2015b; 

Ibrahim et al., 2018) have shown that surrogate models are useful and nearly 

as accurate as rigorous models; however, previous works have not 

addressed the design and optimisation of crude oil distillation systems that 

include a preflash unit using surrogate models. 

Surrogate models of the distillation column have demonstrated their ability to 

reduce computational times compared with conventional simulation-

optimisation approaches (Ibrahim et al., 2018a) as presented in the previous 

Chapter.   

This Chapter extends the use of artificial neural network models for the 

optimisation-based design of crude oil distillation systems with a preflash unit. 

The proposed approach takes into account both discrete and continuous 

variables within the heat-integrated crude oil distillation system and it is 

applied to cases with and without a preflash unit.    

As presented in Chapter 2, Section 2.4, there are two popular stochastic 

search methods that are used to solve optimisation problems: a genetic 

algorithm and simulated annealing. These methods are inherently more 
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robust than gradient-based optimisation techniques as discussed previously 

in Chapter 3, section 3.2.3. In this Chapter, both optimisation methods are 

implemented within the optimisation framework of the system to explore and 

compare their capabilities for a better performance of the system in terms of 

optimisation time and to search for the ‘best’ structural and operating 

conditions of the system which minimise fired heating demand. 

Similarly, to what was discussed in Chapter 3, Section 3.2.2, pinch analysis is 

used due to it allows calculations for minimum utility requirements for each 

converged simulation without detailed analysis and design of the heat 

recovery system represented by the heat exchanger network. 

 

4.2 Modelling crude oil distillation systems using artificial neural 

networks 

 

Increased attention regarding the use of surrogate models in crude oil 

distillation has emerged because they are easy to implement within an 

optimisation framework. Following the work of Ochoa-Estopier (2014) and 

Ibrahim (2018), the surrogate modelling framework developed in this research 

work starts with data generation (known as sampling); column modelling is 

performed using artificial neural networks, including a feasibility model 

extending previous work (Ochoa-Estopier, 2014) to the case when a preflash 

unit is added to the crude oil distillation system in order to predict whether a 

set of inputs can lead to feasible operating scenarios (i.e. the simulation 

converges so that material and energy balances, phase equilibrium 

relationships, as well as product constraints, are satisfied).  

To date, systematic and accurate approaches to identify optimal operating 

conditions for crude oil distillation systems with preflash units are needed, as 

discussed in Chapter 2, Section 2.3.1. The purpose of generating an ANN 

column model is to correlate inputs and outputs of the heat-integrated crude 
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oil distillation system which can easily be implemented within an optimisation 

framework, hence representing a good alternative for practical application in 

industry.  

The following Sections describe in some detail the procedure to create the 

distillation model for a crude oil distillation system with and without a preflash 

unit followed in this work. 

 

4.2.1. Data generation 

 

The first step to create an artificial neural network model is data generation, 

as the performance of the entire model will depend on the quality of the data 

used to train the network (Ibrahim et at., 2018).  In the context of simulating a 

crude oil distillation column, the neural network represents complex nonlinear 

relationships between process inputs and outputs. In this work, selected 

inputs or independent variables are those that can be manipulated or 

adjusted during column operation and also have an impact on heat recovery 

of the system as reported in previous research works (Ochoa-Estopier and 

Jobson, 2015a; Ibrahim et al., 2018). Inputs for the crude oil distillation 

system without a preflash unit analysed in this work are operational variables 

(namely pump-around duties and temperature drops, stripping steam flow 

rates, the column inlet temperature, and reflux ratio. On the other hand, 

inputs for the crude oil distillation system with a peflash are the same as for 

the case without a preflash unit plus the preflash temperature. The preflash 

vapour feed location is the structural variable due to it will change during the 

optimisation process.  

The outputs of the ANN model are dependent variables needed to evaluate 

the desired objective function and to verify if process constraints are met. A 

penalty function added to the objective function will ensure that other product 

quality and flow rates specifications are met. Both sets of constraints relate to 
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feasible outputs but only those defined in Aspen HYSYS v8.8 relate to 

converged solutions. Therefore, output variables selected in this work, as 

presented in Chapter 3, section 3.2.1, comprise those related to product 

quality for each product (namely ASTM D86 T5% and T95%), product flow 

rates and all the stream information required to calculate minimum heating 

and cooling requirements of the heat-integrated crude oil distillation system, 

namely the supply and target temperatures and enthalpy changes of relevant 

streams (See Chapter 3, Section 3.3.1.2). 

Once the inputs and outputs of the system are defined, the next step is to 

apply a sampling technique to generate random samples for each input 

variable. In this work, Latin Hypercube Sampling (LHS) is selected. LHS is a 

method of sampling from a given population (data) where all members are 

divided into homogeneous subgroups, aiming to guarantee a uniform 

distribution as presented in Section 2.8. Generation of data is carried out 

using in MATLAB R2016a.  

 

After sampling generation, rigorous simulations in Aspen HYSYS v8.8 of the 

crude oil distillation system with and without a preflash unit are performed 

separately in order to create ANN models for each case. Results of these 

rigorous simulations are recorded for each sample. To facilitate data 

collection from Aspen HYSYS v8.8, an automation code in MATLAB R2016a 

is used; the code works as an interface between the two software packages; 

first, it calls the set of input variables generated using the LHS method and 

sends each vector of inputs to Aspen HYSYS which automatically runs a 

simulation; then, the outputs of the system are generated. 

 

Each set of input variables is classified depending on the convergence of a 

rigorous simulation in Aspen HYSYS as reported in previous works, Ochoa-

Estopier et al., 2013, 2015a, 2015b; where the use of a feasibility model is 

discussed in detail. A binary value is assigned to each set of inputs, 1 if a set 

of input variables leads to a converged simulation; otherwise, a 0 value is 
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assigned. This classification facilitates the ‘training’ of each neural network so 

that only the sets of input variables which produce a converged simulation in 

Aspen HYSYS are used to fit the network. Figure 4.1 summarises the steps 

followed in this work to generate the data (sets of input vectors) needed to 

build the ANN model. 

 

Figure 4.1 Data generation. 

 

After data generation is completed, a regressed model for the atmospheric 

distillation column is created using artificial neural networks. The following 

section presents details about column modelling using surrogate models. 
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4.2.2. Creating the ANN model 

 

To create the ANN model, it is necessary to define the structure, transfer 

functions and number of neurons (Beale et al., 2011). Different approaches 

have been followed by the research community: (Sarle, 1995; Heaton, 2005) 

suggest the use of heuristic rules to determine the number of layers and 

neurons for a neural network; Nolfi and Parisi, (2002) used an approach 

based on a genetic algorithm. However, for simplicity, the number of layers 

and neurons used in this work are chosen by trial and error as was reported 

in previous work (Ochoa-Estopier, 2013). The ANN structure used to model 

the distillation column for the cases with and without a preflash unit is a 

feedforward backpropagation network with one hidden layer, one output layer 

a hyperbolic tangent function and a linear transfer function for the hidden and 

output layers respectively (Beale et al., 2011). 

 

4.2.3. ANN column modelling: crude oil distillation system with 

and without a preflash unit 

 

In this work, two different flowsheets are modelled using artificial neural 

networks, 1) a crude oil distillation system without a preflash unit and 2) a 

crude oil distillation system with a preflash unit. For the first case, there are 10 

inputs (i.e. independent variables) and 38 outputs (i.e. dependent variables); 

while for the second case, the system comprises 12 input variables and 41 

outputs.  To build the distillation model, several neural networks are required. 

In order to facilitate training of the neural networks, the outputs of both 

scenarios are grouped into six categories: product qualities (ASTM D86 T5% 

and T95%), product flow rates (See Chapter 3, Section 3.3.1.4), and stream 

data (i.e. supply and target temperatures and enthalpy changes) needed to 

evaluate the objective function. Thus, six ANN models are built to represent 

the distillation column. The difference between the modelling for the case with 
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a preflash unit with respect to the case without a preflash unit are the number 

of streams that are taking into account for each group (i.e. 11 supply 

temperatures and 9 enthalpy change streams, for the case without a preflash 

vs 12 supply temperatures and 11 enthalpy change streams, for the case with 

a preflash). 

The ANN models are developed using the Artificial Neural Network Toolbox 

embedded in MATLAB R2016a to build, validate and test the column model. 

These artificial neural networks models are structured as reported in previous 

works (Ochoa-Estopier and Jobson, 2015b; Ibrahim et al., 2018a) as 

multilayer feedforward networks, with one input layer, one hidden layer and 

one output layer.  

The hidden layer comprises 10 hidden neurons as it was seen to provide a 

better performance in line with previous work (Ibrahim et al., 2018). The 

number of neurons of the output layer depends on the number of output 

variables in the network (Beale et al., 2011. For example, the neural network 

built for product qualities (ASTM 5%) in the preflash case has 12 inputs and 5 

outputs as shown in Figure 4.2 corresponding to the five products namely, 

light naphtha, heavy naphtha, light distillate, heavy distillate and residue as 

will be presented and discussed in Section 4.4.2.   

 

Figure 4.2 MATLAB screenshot of a neural network for product qualities. 

 



138 
  

The transfer function (also known as the system function or network function 

is a mathematical representation of the relation between inputs and outputs) 

selected in this work for the hidden layers is a sigmoidal function, while an 

identity function is used for the output layers (Beale et al., 2011).  

All the converged samples for the column model generated using rigorous 

simulations are randomly divided into three sets: training (70%), validation 

(15%) and testing (15%); each set has a specific function within the ANN 

model, the training set is used to build the ANN model while the validation 

and testing sets are used to avoid model overfitting and to check the 

performance of the model respectively (Ibrahim et al., 2018b). 

The accuracy of the fitting is measured by the mean squared error (MSE) and 

the coefficient of determination, R. The error is defined as the difference 

between the values predicted by the ANN model and those generated during 

the sampling process. MSE is an interpretation of how close are the values 

generated by the ANN model to those against they will be compared. Both 

indicators are used to evaluate whether a group of variables is well-trained or 

not, more details are given in Sections 4.4.1 and 4.4.2.  

 

4.2.3.1 Feasibility ANN model  

 

Apart from the six ANN models required to develop the crude oil distillation 

model, another ANN model is created using a new sampled data set from 

rigorous simulations in Aspen HYSYS v8.8 to predict whether a set of inputs 

lead to a feasible operating scenario. A feasibility ANN model helps to predict 

whether a set of inputs (i.e. operating conditions) are feasible (Ochoa-

Estopier and Jobson, 2015a), the ANN distillation model provides stream data 

information (outputs) needed to evaluate the objective function value and to 

verify that process constraints on product quality are met. A feasibility ANN 

model guides the optimiser (clalsifying a set of outputs) towards operating 
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points which satisfy all the specifications in the simulation model only; hence, 

facilitating the convergence of an Aspen HYSYS simulation. Using a 

feasibility ANN increases the likelihood that if the inputs associated with the 

‘optimal’ solution are given as inputs to the rigorous simulation, it will 

converge.  Process constraints in HYSYS aim to ensure that a limited number 

of product quality and flow rate specifications are met.  

The feasibility ANN is built using the Neural Net Pattern Recognition 

application embedded in MATLAB R2016a, following the approach developed 

by (Ochoa-Estopier et al., 2013) as a feedforward network containing one 

hidden layer with 10 neurons (which were determined by trial an error) and 

one output layer. Hyperbolic transfer functions are used in both layers (default 

options in MATLAB Neural Pattern Recognition application).  

The output of this pattern recognition network (a feedforward network that can 

be trained to classify inputs according to target classes, MATLAB, 2016) is an 

integer, either 0 for infeasible scenarios or 1 for the feasible ones.   

Parity plots created for each ANN model represent a specific group of inputs 

correlated with the outputs of the system (i.e. product qualities, product flow 

rates and stream data).  The goodness of fit of the feasibility ANN is validated 

using a so-called confusion matrix; a table that indicates the performance of a 

pattern recognition model on a set of inputs, more details will be given in 

Sections 4.4.1.2 and 4.4.2.2. 

The feasibility ANN model reported by Ochoa-Estopier, 2014 for the case of a 

heat-integrated crude oil distillation system is adapted in this work, and 

extended to the case when a preflash unit is added. It was observed that 

without a feasibility ANN model within the optimisation framework for both 

case studies – with and wihout a preflash unit, the likelihood of converged 

simulation in Aspen HYSYS v8.8 was low (i.e. after 10 optimisation runs only 

1 or 2 converged). The feasibility ANN helps the optimiser to search only in 

the regions where the samples for the optimisation variables that are sent to 
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Aspen HYSYS lead to a converged simulation, meeting all product quality 

and quantity specifications. 

 

4.3 Optimisation framework using surrogate models 

 

The main feature of the optimisation methodology presented in this Chapter is 

the implementation of surrogate models into the optimisation framework 

presented in Chapter 3, Section 3.3.1.2, which has been adapted to apply 

surrogate models rather than rigorous simulation models to represent the 

distillation process, aiming to reduce optimisation times while accounting for 

product quality, yields and heat integration. This Section describes the 

approach proposed for optimisation of the crude oil distillation systems with 

and without a preflash unit using surrogate models. 

 

4.3.1. Objective function and process constraints 

 

The role of optimisation-based design methodologies is to select the best 

design alternative from a set of available options in a systematic way. In this 

work, the performance indicator used to identify an optimal solution is the 

minimum hot utility demand of the heat-integrated crude oil distillation system 

as presented in Chapter 3, Section 3.3.1.2. 

The optimisation methodology is formulated as a mixed integer nonlinear 

programming (MINLP) problem involving the distillation column model based 

on artificial neural networks, the feasibility ANN and additional inequality 

constraints related to product quality and quantity specifications. These 

additional constraints are incorporated into the objective function via penalty 

terms (i.e. product constraints in Aspen HYSYS v8.8 and in MATLAB R2016a 

which are within a tolerance of ±10°C). Therefore, the objective function used 

in this work can be expressed mathematically as given in Chapter 3 by the 
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equation (3.1) where product quality constraints are included as inequality 

constraints 𝑔𝑗(x) in the objective function as given by equations (3.4) and 

(3.5) in Chapter 3. A third inequality constraint is added to ensure that the 

volumetric flow rate of the atmospheric residue, 𝑚𝑅𝐸𝑆, is no greater than that 

in the base case, 𝑚𝑅𝐸𝑆
0   (Ibrahim et al., 2017; Ledezma-Martínez et al., 2018) 

as stated by equation (3.6), Chapter 3. 

The surrogate model includes six artificial neural networks; each group of 

ANN’s predicts a set of dependent variables of the system. Hence, the 

equality constraints h(x) in equation (3.1) presented in Chapter 3 can be 

expressed as follows: 

 

ℎ1 = 𝐴𝑁𝑁1 [𝑇5𝑖]                                                                                     (4.1) 

ℎ2 = 𝐴𝑁𝑁2 [𝑇95𝑖] 

ℎ3 = 𝐴𝑁𝑁3 [𝐹𝑅𝑖] 

ℎ4 = 𝐴𝑁𝑁4 [𝑇𝑆𝑖] 

ℎ5 = 𝐴𝑁𝑁5 [𝑇𝑇𝑖] 

ℎ6 = 𝐴𝑁𝑁6 [𝐸𝐶𝑖] 

ℎ7 =  [𝐹𝐶] 

 

where T5i and T95i   represent product qualities in terms of ASTM D86, FRi is 

the flow rate of each product, TS and TT are supply and target temperatures 

respectively, ECi is the enthalpy change of each stream and; FC represents 

the feasibility constraint according to a convergence criterion (0 or 1) as 

explained in Section 4.2.2. 

 

Inequality constraints 𝑔𝑗(x) represent the upper and lower bounds of the 

optimisation variables (pump-around duties and temperature drops, steam 

flow rates, column inlet temperature, preflash temperature, reflux ratio and 

vapour feed location for the preflash case).  
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Process optimisation is performed in MATLAB R2016a. Two optimisation 

search methods are applied:  a) genetic algorithm and b) simulated annealing 

to explore their performance. For the genetic algorithm, two tuning 

parameters need to be selected; the initial population size and the maximum 

number of generations, both make a difference to the optimisation results. For 

the simulated annealing algorithm, tuning parameters are the initial 

temperature and a function tolerance. General MINLP convergence refers to 

the stopping criteria for each method (i.e. maximum number of generations 

for the genetic algorithm and function tolerance for simulated annealing 

method). Figure 4.3 summarises the proposed optimisation framework. 

In order to gain confidence in results obtained by the optimiser, several runs 

should be performed. The solution with the lowest objective function is 

selected as the ’optimal’ solution.  

 

Figure 4.3 Optimisation framework using surrogate models. 
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4.3.2. Validation of ANN model results on rigorous models in 

Aspen HYSYS 

 

To gain more confidence in results obtained using surrogate models into an 

optimisation framework as shown in Figure 4.3 a final validation is performed 

as reported in previous work (Ibrahim, 2018), and extended to the case of a 

crude oil distillation system with a preflash unit. 

The validation of optimisation results on rigorous models is performed as 

follows: the set of optimal operating and structural conditions obtained after 

performing the optimisation of the system using surrogate models, (10 for the 

case without a preflash and 12 for the case with a preflash) is automatically 

send from MATLAB R2016a (via an interface) to the corresponding flowsheet, 

either with or without a preflash unit, in Aspen HYSYS v8.8 as inputs to verify: 

1. Convergence of the corresponding flowsheet in Aspen HYSYS v8.8. 

2. Agreement between objective function values (minimum hot utility 

demand) obtained using surrogate models and rigorous models.  

3. Accuracy and effectiveness of the proposed approach (Ibrahim, 2018). 

In practice, it is common to judge the effectiveness of surrogate models 

results comparing them with actual plant measurements (Arce-Medina and 

Paz-Paredes, 2009). Validating optimisation results from surrogate models on 

rigorous simulation models is useful in industrial practice and for process 

controls (Mittal, 2013). 
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4.4 Case studies 

 

The design approach presented in this Chapter is illustrated with two case 

studies to demonstrate the capabilities of the proposed optimisation 

methodology. The objective function is the minimum hot utility demand. 

The first case study refers to a crude oil distillation system without a preflash 

unit. The second case study includes a preflash unit within the crude oil 

distillation system. Here, the flash temperature and vapour feed location are 

added as optimisation variables. Heat recovery is evaluated as discussed in 

Chapter 3, Section 3.2.2. The next Sections describe each case study and 

present their optimisation results. 

 

4.4.1. Case study 4.1: crude oil distillation unit 

 

The atmospheric distillation unit processes 100,000 bbl/day (0.184 m3h-1) of 

Venezuela Tia Juana light crude oil (Watkins, 1979) into five products, 

namely, light naphtha (LN), heavy naphtha (HN), light distillate (LD), heavy 

distillate (HD) and residue (RES). The structure of the column as shown in 

Figure 4.4 includes a condenser, three pump-arounds numbered from top to 

bottom (PA1, PA2, PA3) one steam-injected side stripper (HD SS) and two 

reboiled side strippers (HN SS, LD SS). The column has 41 theoretical stages 

over five sections numbered from top to bottom; it operates at a uniform 

pressure of 2.5 bar. Initial column configuration and initial operating 

conditions are taken from Chen (2008) based on a study case presented by 

Watkins (1979).  The Peng-Robinson equation of state is used to simulate the 

mixture of pseudo-components as previously discussed in Chapter 3, Section 

3.3.1.  
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Figure 4.4 Crude oil distillation system. 

 

4.4.1.1 ANN model for a crude oil distillation system without a 

preflash unit 

 

The procedure to set up the crude oil distillation model starts with a rigorous 

simulation (base case) ensuring that product quality specifications are met. 

Then, a Latin Hypercube Sampling method (see Chapter 2, Section 2.8) is 

applied to generate 7000 samples in line with previous research work 

(Ibrahim et al., 2018a). Note that each sample has a set of independent 

variables that can be manipulated within the system. Lower and upper 

bounds for each independent variable are presented in Table 4.3. All bounds 

are the same as those used in Chapter 3, for Case 2 (Case study 3.1). 

From the 7000 simulated set of samples, 1713 converged (rigorous 

simulations took 1.6 hours). Results from the converged simulations only are 

used to train the artificial neural network model, while all samples are used to 

train the feasibility ANN. Details about the 10 input variables selected to 
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correlate the 38 outputs present in this case study as well as the number of 

streams grouped on each ANN are shown in Table 4.1.  

Table 4.1. ANN inputs-outputs model for Case 4.1 (without a preflash) 

Inputs 

10 

Outputs 

38 

Streams ANN 

group 

PA1 Duty    

PA2 Duty Product quality ASTM 5% 5 1 

PA3 Duty Product quality ASTM 95% 5 2 

PA1 ΔT Product flow rates 5 3 

PA2 ΔT Supply temperatures 11 4 

PA3 ΔT Target temperatures 3 5 

Main Steam Stream enthalpy change 9 6 

HD Steam    

Column inlet 

temperature 

   

Reflux Ratio    

PA: pump-around 

T: pump-around temperature drop 

 
 
Inputs of the surrogate model are all optimisation variables while the outputs 

of the model represent the information needed to calculate minimum hot utility 

demand and to allow inequality constraints related to product quality to be 

checked. 

 
Figure 4.5 shows the parity plots for the six artificial networks developed to 

describe the distillation model according to Table 4.1. These plots compare 

the ANN distillation model predictions against rigorous simulations for the 6 

groups of regressed variables. As can be seen, there is an excellent 

agreement between the rigorous simulations and ANN models.   
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Figure 4.5  Parity plots generated using 70% data, Case 4.1 (without a preflash). 
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Table 4.2 shows the group of variables for each ANN created in this case 

study; the goodness of fit for each network is also shown in terms of MSE and 

coefficient of determination R.  

Table 4.2. ANN models and goodness of fit for Case 4.1 (without a preflash) 

ANN 

group 

Variables Units  Mean 

Squared 

Error, MSE 

Coefficient of 

determination, R 

1 Product quality, 

T5%  

ºC  3.5 · 10 – 2  1 

2 Product quality, 

T95% 

ºC  9.6 · 10 – 3     1 

3 Product flow 

rates 

kmol h–1  1.4 ·10 – 2  1 

4 Supply 

temperatures 

ºC  1.6 · 10 – 2  1 

5 Target 

temperatures 

ºC  3.2 · 10 – 2  1 

6 Enthalpy 

change (duty) 

MW  7.7 ·10 – 2  1 

 

A well-trained ANN should have low values (close to zero) for the mean 

squared error. The coefficient of determination, R is an indication of the 

relationship between sampled and model outputs.  
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4.4.1.2 Prediction of feasibility, Case 4.1 

 

The feasibility ANN is validated using a confusion matrix; it shows how well 

the feasibility ANN predicts convergence for this particular case study as 

shown in Figure 4.6. During the training stage for this ANN model, 4900 

samples are used for training, 1050 samples for validation and 1050 samples 

for testing. 

In a confusion matrix, four categories can be identified (Thing, 2011): true 

positives (TP), for correct true predictions, true negatives (TN), for correct 

false predictions, false positives (FP), for those predictions that are expected 

to be true but they are not (i.e. when a set of inputs is expected to lead to a 

feasible solution in Aspen HYSYS but it is not); false negatives (FN), for 

predictions expected to be unfeasible but they are (i.e. a set of inputs is likely 

to be unfeasible when simulated in Aspen HYSYS but actually, they might 

lead to a feasible solution). 

From the square with double shading (bottom left) in the confusion matrix, it 

can be seen that there is a high accuracy of 97.7% (overall, how often is the 

classifier correct for the predicted values) while the classifier is wrong for 

2.3% of cases. True positive and true negative predictions are 25% and 

72.7% respectively. Between the two false predictions classes, the false 

positive ones are the least desired because they will allow unfeasible inputs 

to be used by the optimiser, thus leading to unrealistic results (Ochoa-

Estopier and Jobson, 2015a). Feasible (convergeable) solutions that are 

correctly identified represent 25% while 72.7% represent unconvergeable 

solutions. 
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Figure 4.6. Confusion matrix for Case 4.1 (without a preflash). 

 

4.4.1.3 Optimisation results, crude oil distillation system without a 

preflash unit 

 

This Section presents optimisation results for a crude oil distillation system 

without a preflash unit; constraints on both product quality and residue flow 

rate (as discussed in Chapter 3, Section 3.3.1.4) are included within the 

optimisation framework in Figure 4.3. Two options from MATLAB R2016a 

Global Optimisation Toolbox were selected and tested as MINLP optimisers – 

both simulated annealing (simulannealbnd) and a genetic algorithm 

(gaoptimset) to solve the problem stated earlier in this Chapter, Section 4.1.   

The application of the genetic algorithm for optimisation is described in 

Chapter 2, Section 2.4.1 and illustrated in Figure 2.1. Simulated annealing 

algorithm is presented in Section 2.4.2 and illustrated in Figure 2.2. Tuning 

parameters selected for the genetic algorithm are 500 for the maximum 

number of generations and 100 for the initial population size. For the 
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simulated annealing algorithm, tuning parameters are the initial temperature 

of 100ºC and a function tolerance of 1e-30.  

The independent variables (inputs) are randomly varied by the optimiser 

between their lower and upper bounds. Optimisation runs using a HP desktop 

PC with Intel Core i5 processor running at 3.20 GHz and 16 GB of RAM for 

the genetic algorithm took 95 to 98s of CPU time while for the simulated 

annealing algorithm optimisation runs took 41 to 122s of CPU time as can be 

seen in Appendix B, Tables B1-B3.  Optimisation results are summarised in 

Tables 4.3 to 4.5.  

After generating results using artificial neural networks, the independent 

variables for the optimal solutions are simulated provided as inputs to Aspen 

HYSYS v.8.8 to perform a final validation (See Section 4.3.2 and Appendix B, 

Tables B.6 and B.7. 
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Table 4.3. Optimisation results, Case 4.1 (no preflash) 

Variable Units Base 

Case 

Lower 

Bound 

Upper 

Bound 

Optimisation 

Results 

ANN model 

 GA SA 

Main Steam Flow 

Rate 

kmol h–1 1200 900 1800  1607 1353 

HD Steam Flow 

Rate 

kmol h–1 250 180 375  209 234 

PA1 Duty MW 12.8 14 6  6.0 9.5 

PA2 Duty MW 17.8 18 6  9.4 11.8 

PA3 Duty MW 11.2 14 6  14.0 14.0 

PA1 T C 30 20 50  20.0 31.5 

PA2 T C 50 15 60  29.6 37.8 

PA3 T C 20 10 40  40.0 33.9 

Reflux Ratio  4.17 3.0 4.5  4.1 3.7 

Optimisation CPU 

time 

s     96 41 

PA: pump-around     GA: genetic algorithm 

T: pump-around temperature drops  SA: simulated annealing 

 

 

It can be seen from Table 4.3 that increasing column inlet temperature 

requires less stripping steam in the case using simulated annealing, where 

the column inlet temperature of 360ºC requires less steam flow rate (1353 

kmol h-1) compared with the genetic algorithm results (1607 kmol h-1). Large 

stripping steam flow rates increase the vapour and liquid traffic in the bottom 

of the atmospheric column. 
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High pump-around duty values mean there is more heat to be recovered by 

the heat recovery system which will be pre-heating the crude oil before 

entering to the furnace. Optimisation results using a simulated annealing 

algorithm show the highest values for the 3 pump-around duties, in line with a 

high column inlet temperature of 360ºC. This high temperature also increases 

the minimum hot utility demand of the system by 2.4 MW compared with a 

lower temperature of 350ºC when using a genetic algorithm. 

The lowest value for the minimum hot utility demand (44.5 MW) is obtained 

for the case using a genetic algorithm, which also corresponds to a lower 

column inlet temperature of 350ºC. A reduction in the column inlet 

temperature reduces the fired heating duty. 

Appendix B, Tables B1 to B3 show details (objective function value, CPU 

optimisation time) for 10 optimisation runs performed for this case study.   

Product quality specifications (for the best solutions found by the two 

optimisation methods) in terms of ASTM D86 T5% and T95% (in °C) are 

listed in Table 4.4. It can be seen that all the product quality constraints are 

met within the allowed range of temperatures selected in this work (± 10°C). 

Both sets of constraints are met (i.e. the specifications within Aspen HYSYS 

v8.8 and the constraints within the optimisation).  

Table 4.5 shows results for the best solutions regarding the distribution of 

product flow rates. Residue flow rate value is kept almost unchanged as a 

result of the constraint added in MATLAB. 
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Table 4.4. Product specifications results for best solutions (Case 4.1) 

Product Base Case 

ASTM D86 (C) 

Optimisation Results ANN model 

GA 

ASTM D86 (C) 

SA 

ASTM D86 (C) 

T5% T95% T5% T95% T5% T95% 

LN 25.6 b 109.7 a 25.0 109.7 25.2 109.7 

HN 140.2 b 196.0 a 132.5 196.0 134.3 196.0 

LD 217.5 a 300.1 a 217.5 300.1 217.6 300.1 

HD 308.5 b 353.5 a 306.4 353.5 307.8 353.6 

RES 361.6 b 754.4 b 361.4 754.3 361.9 754.5 

a Specified in HYSYS  GA: genetic algorithm    SA: simulated annealing  
b Specified in MATLAB 

 

Table 4.5. Product flow rates for best solutions (Case 4.1) 

Product flow 
rate 

 (m3 h–1) 

Base Case ANN model 

GA SA 

LN 102.4 100.7 101.4 

HN 86.8 88.8 88.0 

LD 127.6 125.9 126.8 

HD 53.7 55.1 54.7 

RES 292.1 292.1 291.8 

GA: genetic algorithm  

SA: simulated annealing 

 

Table 4.6 summarises and compares optimisation results and CPU times for 

each optimisation run obtained using rigorous models via the direct 

simulation-optimisation approach presented in Chapter 3 against those 

generated by the ANN model. 
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Table 4.6. Optimisation results summary and validation on rigorous model (Case 4.1) 

Case 4.1 HU, MW CPU 

Time 

Rigorous 

model, 

MW 

Difference 

MW 

Direct simulation-optimisation 

using GA 

 

44.8 4.1 h 

  

GA - ANN optimisation 44.5 96 s 44.6 -0.1 

SA - ANN optimisation  46.9 41 s 46.9 0.0 

GA: genetic algorithm 

SA: simulated annealing  

 

 

4.4.1.4 Case study summary 

 

This case study illustrates how the implementation of artificial neural networks 

within an optimisation framework helps to reduce computational time to 

perform the optimisation of the crude oil distillation system without a preflash 

unit. An excellent accuracy between direct-simulation optimisation and GA-

ANN optimisation routes is achieved as shown in Table 4.6.  Product qualities 

and flow rates are maintained within the specified ranges as it is required in 

industrial practice.  

See Appendix B, Tables B6 and B7 for detailed information regarding the 

validation of results of the artificial neural network model on the rigorous 

model in Aspen HYSYS V8.8. 

In general, the artificial neural network model was easy to implement into the 

optimisation framework; the generation of samples via rigorous simulations 

took 1.6h, generation of samples took 0.5s, model training between 5 – 10min 

and each optimisation run took around 122s for the case using a simulated 

annealing algorithm and less than 98s for the case of using a genetic 
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algorithm as an optimisation method. Note that all times reported are CPU 

times.  

The next case study will extend the approach followed in this case study 

when a preflash unit is added to a crude oil distillation system. 

 

4.4.2. Case study 4.2: Crude oil distillation system with a preflash 

unit 

 

This case study aims to demonstrate the capabilities of the modelling 

approach using artificial neural networks when a preflash unit is added to a 

heat-integrated crude oil distillation system as shown in Figure 4.7. The main 

column structure is the same as that presented for the case without a preflash 

unit (Section 4.4.1). The crude oil distillation system has 11 operational 

variables and one structural variable (vapour feed location). In the base case, 

the vapour leaving the preflash unit is sent to the same stage in the main 

column as the main feed; the best vapour feed location is selected by the 

optimiser during the optimisation process. 

 

Figure 4.7 Crude oil distillation system with a preflash unit (Case 4.2). 
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4.4.2.1 Artificial neural network model for a crude oil distillation 

system with a preflash unit 

 

The modelling of the crude oil distillation system with a preflash unit starts by 

setting up a base case in Aspen HYSYS v8.8 ensuring that product quality 

specifications are all met within a tolerance of ±10ºC. Next, the Latin 

Hypercube Sampling method is used to generate 7000 samples. To construct 

the ANN model, 7000 rigorous simulations in Aspen HYSYS v8.8 are 

performed, of which 3340 converged. 

Simulation results from the converged simulations are used to train the 

artificial neural network models which describe the flowsheet comprising the 

preflash unit and atmospheric distillation column; while full set of samples is 

used to train the feasibility ANN. Details about the 12 input variables selected 

to correlate the 41 outputs present in this case of study as well as the number 

of streams grouped on each ANN are shown in Table 4.7.  

Table 4.7. ANN model, case study 4.2 (with preflash) 

Inputs 

12 

Outputs 

41 

Streams ANN 

group 

PA1 Duty    

PA2 Duty Product quality,  

ASTM D86 5% 

5 1 

PA3 Duty Product quality, 

ASTM D86 95% 

5 2 

PA1 ΔT Product flow rates 5 3 

PA2 ΔT Supply temperatures 12 4 

PA3 ΔT Target temperatures 3 5 

Main Steam Stream enthalpy change 11 6 

HD Steam    

Column inlet temperature    

Reflux Ratio    

Preflash temperature    

Vapour feed location    

PA: pump-around 

T: pump-around temperature drop 
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Table 4.8 shows the group of variables for each ANN created in this case 

study; the goodness of fit for each network is also shown in terms of MSE and 

coefficient of determination R.  

Table 4.8. ANN models and goodness of fit for Case 4.2 

ANN 

group 

Variables Units Mean 

Squared 

Error, MSE 

Coefficient of 

determination, R 

1 Product 

qualities, T5%  

ºC 6.8 · 10 – 1    0.9999 

2 Product 

qualities, T95% 

ºC 1.7 ·10– 2    1 

3 Product flow 

rates 

kmol h–1 4.7 ·10 – 1 0.9999 

4 Supply 

temperatures 

ºC 1.6 ·10 – 0 0.9999 

5 Target 

temperatures 

ºC 1.3 ·10– 1 1 

6 Enthalpy 

change 

MW 2.9 · 10– 1 0.9997 

 

 

 

Figure 4.8 shows the parity plots generated after training each artificial neural 

network.  Each parity plot compares the predictions of the ANN model and the 

original samples. It can be seen from Figure 4.8 that there are some issues 

with accuracy in parity plots for the supply temperatures and duties.  
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Figure 4.8 Parity plots generated using 70% data for Case 4.2 (with preflash). 
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4.4.2.2 Model validation (Case 4.2) 

  

The feasibility ANN model is validated using a confusion matrix as explained 

in Case study 4.1. For Case 4.2, the overall accuracy of the feasibility ANN 

model, as shown in the bottom right of the matrix (dashed square) is 93.6%, 

while the misclassification rate is 6.4%. Feasible (convergeable) solutions that 

are correctly identified represent 46.9% while 46.8% represent 

unconvergeable solutions. To create the matrix, 7000 samples are used, from 

them 4900 are used to train the feasibility ANN, 1050 for validation and 1050 

for testing.  

 

 

Figure 4.9 Confusion matrix, Case 4.2 (with preflash). 
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4.4.2.3 Optimisation results, Case 4.2: Crude oil distillation system 

with a preflash unit 

 

In this Section, optimisation results for the crude oil distillation system with a 

preflash unit are presented. Again, two options from MATLAB R2016a Global 

Optimisation Toolbox are selected and tested as MINLP optimisers – 

simulated annealing (simulannealbnd) and a genetic algorithm (gaoptimset) 

to solve the problem stated in Equation 4.1. Optimisation results are 

summarised in Table 4.9.  Appendix B, Tables B8 to B10 show detailed 

information about objective function values (minimum hot utility) and CPU 

time for optimisation. 

For the genetic algorithm optimisation runs took 102 to 110s of CPU time 

while for the simulated annealing algorithm optimisation runs took 38 to 118s 

of CPU time 

Product quality specifications are listed in Table 4.10. It can be seen that all 

the product quality constraints are met within the allowed range of 

temperatures selected in this work (± 10°C, in Aspen HYSYS v8.8 and 

MATLAB R2016a). 

 

 

 

 

 

 

 

 



162 
  

Table 4.9. Optimisation results case 4.2 (with preflash) 

Variable Units Base 
Case 

Lower 
Bound 

Upper 
Bound 

Optimisation 
Results 

ANN model 

     GA SA 

Main Steam Flow 
Rate 

kmol h–1 1200 900 1800 1684 1374 

HD Steam Flow 
Rate 

kmol h–1 250 180 375 193 345 

PA1 Duty MW 12.8 14 6 6.8 6.4 

PA2 Duty MW 17.8 18 6 8.1 7.9 

PA3 Duty MW 11.2 14 6 10.5 13.1 

PA1 T C 30 20 50 29.8 46.5 

PA2 T C 50 15 60 30.2 40.1 

PA3 T C 20 10 40 39.3 29.4 

Column Inlet 
Temperature 

C 365 350 385 367 384 

Reflux Ratio  4.17 3.0 4.5 3.8 3.8 

Preflash 
temperature 

C 115 110 240 235 239 

Vapour feed 
location (column 
section)a 

 5 1 5 3 3 

Minimum Hot 
Utility 

MW 57.7   38.2 39.4 

Optimisation time s    103 118 

a Number of section in main column             GA: genetic algorithm 

PA: pump-around                SA: simulated annealing 

T: pump-around temperature drop 
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It may be seen from Table 4.9 that the minimum hot utility demand of the 

crude oil distillation system deceased compared with optimisation results from 

case study 4.1 as follows: 15% for direct optimisation, 14% when a genetic 

algorithm is used as optimisation method and 16% using simulated 

annealing. Therefore, demonstrating that adding a preflash unit within the 

crude oil distillation system reduce its energy consumption. A preflash unit 

also allows more capacity to be processed in the distillation column as it 

reduces the vapour and liquid flow rates inside the column.  

 

Energy savings are dependent on the value of preflash temperature, which is 

an important degree of freedom in this case study. High preflash 

temperatures (235ºC and 239ºC) allow more material to be vaporised from 

the crude, decreasing the flow rate entering to the furnace which will also 

decrease the furnace duty.  

 

The vapour feed location in the main column is the same (column section 3) 

for the two optimisation methods used in this work. The optimiser selects a 

feed stage with a similar temperature as the flashed vapour (i.e. stage 18 in 

the main column).  

 

Column inlet temperatures increased with respect to the base case in 2ºC 

(GA) and 19ºC (SA); therefore, different values for the minimum hot utility 

demand were obtained. Pump-around duties 1 and 2 for the two optimisation 

methods are lower than those in the base case, which in turn will reduce the 

temperature of the crude oil stream before entering to the furnace.  
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Table 4.10. Product specifications for best solutions, Case 4.2 

Product Base Case 

ASTM D86 (C) 

Optimisation Results ANN model 

GA 

ASTM D86 (C) 

SA 

ASTM D86 (C) 

T5% T95% T5% T95% T5% T95% 

LN 25.6 b 109.7 a 25.4 109.7 25.1 109.7 

HN 140.2 b 196.0 a 138.0 195.8 134.8 195.8 

LD 217.7 a 300.1 a 217.5 300.1 217.5 300.1 

HD 308.5 b 353.5 a 304.7 353.5 307.8 353.5 

RES 361.4 b 754.3 b 362.2 754.4 363.0 754.6 

a Specified in HYSYS  GA: genetic algorithm        SA: simulated annealing 
b Specified in MATLAB 

 

 

Table 4.11. Product flow rates for the best solutions, Case 4.2 

Product flow 
rate 

 (m3 h–1) 

Base Case ANN model 

GA SA 

 

LN 102.4 101.9 101.3 

HN 86.8 87.1 87.8 

LD 127.6 124.9 126.2 

HD 53.5 56.5 56.2 

RES 292.3 292.2 291.1 

GA: genetic algorithm 

SA: simulated annealing 
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Results obtained by the distillation column model using artificial neural 

networks are simulated in Aspen HYSYS v.8.8 to perform a final validation, 

showing good agreement.  See Appendix B, Tables B.13 and B.14. 

Table 4.12 summarises optimisation results and show the accuracy of the 

artificial neural network model with respect to the direct simulation-

optimisation route. The validation of results on the rigorous model using a 

genetic algorithm has a difference of 2.2 MW with respect to predicted value 

from the ANN model; while for the simulated annealing algorithm has a better 

agreement. Validation of results is performed sending automatically from 

MATLAB to Aspen HYSYS a set of optimised operational variables. 

 

These results confirm the importance of exploring two optimisation algorithms 

within the same optimisation framework; depending on the case study they 

might have different performance. 

Table 4.12. Optimisation results summary and validation on rigorous model Case 4.2 

Case 4.2 HU, 

MW 

CPU 

Time 

Rigorous 

model, 

MW 

Difference 

MW 

Direct simulation-optimisation 

using GA 

 

38.1   6.2 h 

  

GA - ANN optimisation 38.2 103 s 40.4 2.2 

SA - ANN optimisation  39.4 118 s 39.5 0.1 

GA: genetic algorithm 
SA: simulated annealing 
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4.4.2.4 Case study summary 

 

This case study demonstrates the capabilities of the approach reducing 

optimisation times to the case of adding a preflash unit into a crude oil 

distillation system. Modelling the distillation process involves a deep 

understanding of the interactions between the operating conditions and how 

do they affect the performance of the whole system.  

Artificial neural network models are easy to implement, as discussed in the 

previous case study. Main differences between the models developed in case 

studies 4.1 and 4.2 are the number of streams that are grouped to construct 

them. A detailed error analysis is presented in Appendix B, Tables B11 and 

B12. 

Adding a preflash unit into a crude oil distillation system helps to avoid 

unnecessary heating of light components in the furnace and to reduce energy 

consumption as the flow rate entering the furnace is reduced.   

 

4.5 Conclusions 

 

The second objective of this work is addressed in this Chapter; surrogate 

models are incorporated into the optimisation-based design methodology 

presented in Chapter 3, aiming to reduce optimisation time without 

compromising model accuracy, column performance, product qualities or 

product yields.  

An artificial neural network model can represent and describe the distillation 

process for its input and output relations.  

Two case studies, with and without a preflash unit, demonstrate the 

capabilities of introducing artificial neural networks models into an 

optimisation framework. It has been demonstrated that an artificial neural 
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network model, can represent and describe the distillation process for its input 

and output relations (Motlaghi et al., 2008). 

Adding a preflash unit to a crude oil distillation system enable a considerable 

reduction on minimum hot utility demand of the system, i.e. 14% for the case 

using a genetic algorithm, and 16% for the case using simulated annealing.   

The flowsheet structure for Case study 4.2 changed after optimisation was 

performed (i.e. vapour feed location) with respect to the base case where the 

vapour is fed to the same stage in the atmospheric column as the crude oil 

stream. Optimisation results shown in Table 4.5, confirm that both 

optimisation search methods (genetic algorithm and simulated annealing) 

selected column section 3 as the optimum location to introduce the flashed 

vapour, rather than in column section 5 as in the base case. It is worthy to 

mention that the feed stage selected by the optimiser as optimum to introduce 

the vapour leaving the preflash unit corresponds to that with a similar 

temperature of the vapour so that the separation performance (liquid-vapour 

equilibrium) on that stage is barely altered.  

It is important to note that optimisation results obtained in this Chapter 

regarding the direct simulation-optimisation differ to those presented in 

Chapter 3 (Section 3.3.1.4) even though the bounds for the operational 

variables and tuning parameters for the optimisation algorithms are the same. 

Three new optimisation runs for each case study are carried out as reported 

in Appendix B, Table B3 for Case 4.1 and Table B10 for Case 4.2. 

As can be seen from Figures 4.10 and 4.11, the lowest value for the hot utility 

demand corresponds to the case when an artificial neural network model is 

introduced to an optimisation framework where a genetic algorithm is 

employed; confirming its effectiveness in handling a variety of operational and 

structural variables.  
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The overall CPU time required for the complete simulation-optimisation 

process was around 1.6h for both case studies. Specifically, for case study 

4.1 generation of samples took 0.5s, sampling (via rigorous simulations) 1.6h, 

model construction and validation 5min, and system optimisation 77s for the 

case using a genetic algorithm, and 41s when a simulating annealing 

algorithm is selected. For case study 4.2, generation of samples took 0.6s, 
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Figure 4.10 Optimisation results summary, Case 4.1 (no preflash). 
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Figure 4.11 Optimisation results summary, Case 4.2 (with preflash). 
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sampling 1.6h, optimisation time using a genetic algorithm 103s and 118s 

using simulated annealing. Therefore, a considerable reduction of CPU time 

(74% for case study 4.2 and 62% for case study 4.1) compared with the direct 

simulation-optimisation approach presented in Chapter 3, is obtained 

following the proposed approach in this Chapter.  

The next Chapter will introduce a novel optimisation-based design 

methodology for optimising fired heating demand which could lead to further 

energy savings within the crude oil distillation system. 
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Chapter 5  
 

Optimisation-based Design of Fired 

Heating Demand in Crude Oil Distillation 

Systems 
 

 

5.1 Introduction 

 

Petroleum refineries are increasingly required to address stringent 

environmental regulations. This incentivises the reduction of the use of 

primary energy, and hence reduced the generation of greenhouse gas 

emissions (mainly CO2) and other combustion gases, such as NOx and SOx, 

which are harmful to the environment. Furthermore, given the energy-

intensive nature of crude oil refining, even small improvements in the use of 

primary energy can yield considerable savings and environmental benefits. 

Research on crude oil distillation systems has generally focused on minimum 

hot utility demand, without considering details of the type and quality of the 

hot utility. Focusing on the minimum hot utility demand is rather simplistic, as 

it does not recognise that the source of heat of interest is fired heating so that 

the figures related to the minimum hot utility demand (QHmin) does not give 

completely useful information about the demand for fired heating, because 
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the amount of fuel combusted depends on the demand for fired heating and 

also the amount of heat that can be recovered from the combustion gases. In 

particular, the temperature at which the gases leave the stack (Tstack), affect 

the amount of fuel that is consumed. Therefore, a deeper analysis is required; 

yet for optimisation purposes, the simplicity of pinch analysis is appealing, 

because it quickly and simply allows the impact of process changes on utility 

demand to be determined. To date, the literature search has not revealed any 

studies that consider both the efficiency of the fired heater (ratio of heat to 

process and heat released by fuel) and design or operation of the crude oil 

distillation column. This Chapter extends the methodology presented in 

Chapters 3 and 4 to account for the efficiency of the fired heater.  

 

5.2 Role of fired heating in crude oil distillation 

 

Petroleum refineries typically use a furnace to pre-heat crude oil before it 

enters the atmospheric distillation unit. The heat input is provided by burning 

fuel, usually oil or gas. The pre-heat train (heat recovery system) aims to 

minimise the demand for hot utility – i.e. fired heating, bringing benefits in 

terms of the demand for fuel, and the associated fuel cost and emissions 

(Mahmoud and Sunarso, 2018). 

Approximately 75% of energy consumption in refineries is used by furnaces 

and heaters. Furnace efficiency can be affected by ambient air conditions (i.e. 

pressure and temperature) and operating conditions such as combustion air 

preheating and the use of excess air for combustion (Masoumi and Izakmenri, 

2011).  

Operating furnaces efficiently is a major operating concern in any refinery due 

to two-thirds of a plant fuel budget is needed for furnace fuel cost. 

Furthermore, furnace efficiency is directly linked to environmental regulations 

that stipulate a clean operation of the whole plant (Salih, 2018).  
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Taking into account the following considerations: 

1) Fired heaters are inherently inefficient. 

2) Crude oil distillation processes have many degrees of freedom for 

design (and for operation and retrofit). 

3) Results presented in Chapters 3 and 4, have shown that optimisation 

can be effective for achieving the required separations in the 

atmospheric distillation units, while also maximising the opportunities 

for heat recovery. 

4) No studies are known to have accounted for the effect of the process 

design variables on the performance (efficiency) of the fired heater. 

The aim of this Chapter is to develop a new optimisation-based design 

methodology to reduce the fuel consumption in the furnace, while 

simultaneously optimising operational and structural variables of a crude oil 

distillation system with a preflash unit, accounting for product quality, product 

yield and heat integration. 

 

5.3 Optimisation based-design of fired heating demand 

 

The simulation-optimisation framework developed in this work is extended to 

minimise fuel consumption by the fired heater. Continuing with the case 

studies that have been presented in Chapters 3 and 4, two configurations of 

the atmospheric distillation unit are studied, with and without a preflash unit.  

The design of the atmospheric distillation column is fixed and the initial 

operating conditions are exactly the same as those used in case studies 

presented in Chapters 3 and 4, (pump-around duties and temperature drops, 

flow rates of stripping steam to the main column and side-strippers, column 

inlet temperature, reflux ratio and preflash temperature). Product quality 

specifications are expressed in terms of product boiling ranges (T5% and 



176 
  

T95%, which are related to boiling point temperatures when 5% and 95% of 

the mixture has vaporised using a standard test e.g. ASTM D86). Additionally, 

a product quantity constraint (residue flow rate) is added within the 

optimisation framework to ensure that the sum of the flow rates of all other 

products is maintained. The flow rates of the individual products may change, 

as long as the product specifications are met. 

The crude oil distillation system is modelled in Aspen HYSYS v8.8. Initially, 

the flowsheet is modelled for the case without a preflash unit. In the case of 

including a preflash unit, the destination of the flashed vapour is an important 

degree of freedom. The model also represents process operating conditions 

such as pump-around duties and temperature drops, stripping steam flow 

rates, column feed temperature, and reflux ratio (Ledezma-Martínez et al., 

2018).  

Pinch analysis is applied to evaluate the minimum fuel consumption of the 

fired heater, using the grand composite curve. However, it is important to 

point out that: 1) the heat exchanger network design is not considered in any 

detail, 2) the minimum approach temperature is assumed to be the same in 

all heat exchangers, 30ºC. 

Main considerations for system optimisation are: 

1) After extracting the stream data needed to generate the grand 

composite curve, it is systematically evaluated to identify the flue gas 

line that satisfies all the constraints (i.e. when the stack temperature is 

higher than the dew point temperature).  

2) The slope of the flue gas line is minimised and it must not “cut” the 

grand composite curve. 

3) Total fuel demand is calculated in terms of energy content to allow this 

to be calculated in the objective function. 

Following the approach presented in Chapter 4, and based on the results 

obtained for the lowest minimum hot utility demand, two optimisation 
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techniques are evaluated to compare their performance in terms of 

optimisation time and objective function value: (a) direct optimisation using 

genetic algorithms (GA), and (b) surrogate models using artificial neural 

networks (ANN).   

The optimisation-based design methodology accounting for the demand for 

fired heating is illustrated through its application to cases studies: a crude oil 

distillation system with and without a preflash unit; results are compared to 

those of optimisation studies considering only the minimum hot utility 

demand. 

 

5.3.1. Optimisation framework using direct optimisation 

 

The crude oil distillation system (with and without a preflash unit) that is 

considered for optimisation in this Section is the same as that presented in 

Chapter 4 (See Figures 4.4 and 4.7). The operating conditions of the 

unoptimised base case are also the same as those used to perform the direct 

optimisation in the previous Chapter (See Tables 4.3 and 4.9).  

The purpose of the optimisation is to minimise the demand for fuel 

consumption in the furnace. It is calculated by the sum of the minimum hot 

utility (QHmin) plus the amount of heat loss to the ambient by the system, 

called stack loss (Smith, 2016, Ch. 17). 

There are 10 optimisation variables for the case without a preflash unit and 

12 optimisation variables for the case with a preflash unit as previously 

discussed in Chapters 3 and 4.  

Starting with a set of operating conditions for the crude oil distillation system, 

rigorous simulations are carried out in HYSYS v8.8 via a MATLAB interface. 

The interface is embedded within the optimisation framework. The 

optimisation algorithm selects process variables values, simulates the 

corresponding flowsheet (with and without preflash unit), evaluates its fuel 
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consumption and then selects a new set of inputs until the stopping criterion 

is met. 

A genetic algorithm (GA) is selected to perform the direct optimisation due to 

it showed a better performance compared with the simulated annealing as 

discussed in Chapter 4. Tuning parameters required by the genetic algorithm 

are population size, number of generations, and termination criteria. Product 

and flow rate constraints are defined as in Chapters 3 and 4.  

The simulation-optimisation framework developed in this work in Chapter 3 is 

extended to minimise fuel consumption by the fired heater using direct 

optimisation, as summarised in Figure 5.1.  The algorithm coded in MATLAB 

for calculating the fuel consumption in the fired heater is explained in detail in 

Chapter 2, Section 2.9.4. 

 

Figure 5.1 Direct optimisation framework, minimising fuel consumption. 

 

It is important to remark that during the optimisation process, the shape of the 

grand composite curve will be changing on each iteration, one of the 
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strengths of the proposed approach is that the algorithm developed in 

MATLAB is capable to identify the minimum slope for the flue gas line which 

represents the minimum amount of heat released to the ambient (stack loss). 

The algorithm also identifies the sign of the heat capacity flow rate which is 

related to the surplus-demand of energy within the system; as a result, the 

algorithm systematically evaluates both the minimum hot utility demand 

(QHmin) and the minimum fuel consumption (Qfuel) of the crude oil distillation 

system without the need to look at the shape of the grand composite curve.  

The capabilities of the proposed simulation-optimisation-based design 

methodology are illustrated in the following Section as a case study.  

 

5.4 Case study 

 

The case study presented in this Chapter includes two different flowsheets for 

a crude oil distillation system with and without a preflash unit as has been 

presented in Chapters 3 and 4. A preliminary analysis is carried out for each 

flowsheet without performing optimisation of the system to evaluate the base 

case for each alternative, calculating their minimum hot utility, fired heating 

demand and heat released to the ambient which will be referred as stack 

loss.  

Then, direct simulation-optimisation is carried out for each flowsheet, with and 

without a preflash unit. Optimisation results are compared with those obtained 

for the case of optimising minimum hot utility only, reported in Chapter 4 in 

order to gain some insight about the performance of the system and the 

importance to take into account stack losses for the evaluation of the 

complete fuel consumption. 
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5.4.1. Crude oil distillation system without a preflash unit 

 

The standard configuration found in most refineries around the world is the 

atmospheric crude oil distillation column with side-strippers and pump-

arounds as shown in Figure 5.2. Reboilers and steam are used for vapour 

generation (Gadalla, 2003). 

 

Figure 5.2 Crude oil distillation system. 

 

The grand composite curve shown in Figure 5.3 corresponds to the base 

case for a crude oil distillation system without a preflash unit (See Figure 5.2). 

It can be seen that the flue gas line touches the grand composite curve 

(GCC) at the process pinch point so that there is a process pinch limitation 

within the system. Dew point temperature limitation is at 160°C. 
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Figure 5.3 Grand composite curve base case: no preflash. 

 

Initial calculations obtained from the MATLAB subroutine for the minimum hot 

utility demand (QHmin), amount of heat loss (stack loss) and total fuel 

consumption (Qfuel) respectively are 58.3 MW, 7.1 MW and 65.4 MW. These 

results are summarised in Table 5.1 together with the optimisation results for 

the cases of optimising minimum hot utility demand only, and optimising fired 

heating demand. Table 5.2 summarises values obtained after optimisation for 

the degrees of freedom of the system. 
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Optimisation results no preflash case 

 

Table 5.1. Summary optimisation results: no preflash 

 Base 

Case 

Optimising Hot 

Utility 

Optimising Fired 

Heating 

Hot Utility, MW 58.3 44.8 45.7 

Cold Utility, MW 64.9 57.6 58.3 

Stack Loss, MW 7.1 8.1 6.0 

Fired Heating, 

MW 

65.4 53.0 51.7 

CPU Time, h  4.1 4.2 

 

As can be seen from Table 5.1, fired heating demand of the crude oil 

distillation system decreases from 53.0 to 51.7 MW when the objective 

function is to minimise it. This trend confirms that when the objective function 

focuses only on minimising hot utility demand, the information about energy 

consumption of the system is not complete; fired heating in the furnace is not 

reduced as a result of the high value for the stack loss. Even though the hot 

utility has an increase of 1.9%, the stack loss is 2.1 MW less than for the case 

when only the hot utility is optimised. Consequently, there is a reduction in the 

flue gas emissions to the ambient.  

From Table 5.2, it can be seen that compared with the base case, pump-

around duties 1 and 2 decreased, while pump-around duty 3 increases for 

both cases, optimising hot utility and fired heating. As a result, pump-around 

temperature drop 3 also increases, reducing the vapour traffic around the 

pump-around 3 due to more condensation. 

Higher values for the column inlet temperature are desired as it creates more 

opportunities for heat recovery within the system, it also requires less 
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stripping steam as it is shown for the case when the objective is to minimise 

fired heating, even one degree of temperature difference may lead to energy 

savings.  

The high value of 4.2 for the reflux ratio when the minimum hot utility is to be 

optimised implies that the column condenser duty will also increase. 

Table 5.2. Optimisation variables and results, direct optimisation no preflash case 

 Direct simulation-optimisation 

Base 

Case 

Minimising 

HU 

Minimising Fired 

Heating 

PA1 Duty, MW 12.84 6.4 10.0 

PA2 Duty, MW 17.89 9.2 8.5 

PA3 Duty, MW 11.20 14.0 13.7 

ΔT PA1, ºC 30 20.2 22.3 

ΔT PA2, ºC 50 28.1 29.4 

ΔT PA3, ºC 20 33.3 39.9 

Main Steam, kmol h-1 1200 1700 1620 

HD Steam, kmol h-1 250 200 264 

Reflux Ratio 4.17 4.2 3.9 

Column inlet 

temperature, ºC 

365 350 351 

PA: pump-around      

T: pump-around temperature drop 

 

Figure 5.4, shows the grand composite curve obtained with data after 

optimisation of fired heating is performed. Its corresponding flue gas line 

profile starts from the theoretical flame temperature (1800ºC) to the ambient 

temperature (Tamb), 25ºC. 
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Figure 5.4 Grand composite curve, best result with direct optimisation: no preflash 
case. 

 

From Figure 5.4, it may be seen that the flue gas line touches the grand 

composite curve three times (heat recovery pockets), the first point is of 

interest due to matching the flue gas line with the grand composite curve at 

this point ensures that it will not be crossing the curve; it also limits the slope 

of the flue gas line and hence the stack loss.  
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5.4.2. Crude oil distillation system with a preflash unit 

 

Energy consumption of a crude oil distillation system can be reduced by 

installing a preflash unit as shown in Figure 5.5. As discussed in Chapter 3, 

there are five locations (one per column section) in which the vapour leaving 

the flash can be introduced in the main column; in the base case, the flashed 

vapour is introduced at the column feed stage at the bottom of the column so 

that it is mixed with the hot crude oil leaving the furnace. Column structure is 

the same as that presented in Chapters 3 and 4.  

 

Figure 5.5 Crude oil distillation system with a preflash unit. 

 

Figure 5.6 shows the grand composite curve obtained for the base case 

(without performing optimisation). In this case, the stack temperature (the 

temperature at which the flue gas leaves the furnace) is limited by a process 

utility pinch.  

Total fuel consumption for the base case of a crude oil distillation system with 

a preflash unit is 64.1 MW, minimum hot utility demand is 57.7 MW with a 

stack loss of 6.4 MW. All values are lower than those for the base case 
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without a preflash unit, confirming that adding a preflash unit to the crude oil 

distillation system can help to reduce energy consumption within the system.  

 

 

Figure 5.6 Crude oil distillation system with a preflash unit (base case). 

 

Optimisation results 

Tables 5.3 and 5.4 show results and degrees of freedom for the optimisation 

of the fired heating of the system with a preflash unit using a direct simulation-

optimisation approach; they are compared with optimisation results when the 

objective is to minimise hot utility demand as presented in Chapter 4. 
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Table 5.3. Summary direct optimisation results: preflash case 

 Base Case Optimising Hot 

Utility 

Optimising 

Fired Heating 

Hot Utility, MW 57.7 38.1 41.4 

Cold Utility, MW 64.1 44.6 53.6 

Stack Loss, MW 6.4 7.3 3.5 

Fired Heating, MW 64.1 45.4 44.9 

CPU time, h  6.2 6.7 

 

From Table 5.3, it may be seen that energy savings on hot utility demand of 

15% are obtained after adding a preflash unit to the crude oil distillation 

system based on optimisation results for the case without a preflash unit (44.8 

MW). On the other hand, stack loss decreased in 3.8 MW when optimising 

fired heating, reducing the amount of heat escaping to the ambient unutilised.  

Fired heating demand decreased 0.5 MW compared with its value when the 

objective is minimising hot utility demand only; however, taking into account 

that fired heaters are major consumers of energy in a refinery, even smallest 

efficiency improvements on it can bring economic benefits.  
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Table 5.4. Optimisation results crude oil distillation system with a preflash  

 Direct simulation-optimisation 

Base 

Case 

Minimising 

HU 

Minimising Fired 

Heating 

PA1 Duty, MW 12.84 8.2 6.6 

PA2 Duty, MW 17.89 9.8 6.9 

PA3 Duty, MW 11.20 12.6 8.3 

ΔT PA1, ºC 30 41.1 39.4 

ΔT PA2, ºC 50 34.1 26.5 

ΔT PA3, ºC 20 21.4 20.1 

Main Steam, kmol h-1 1200 1269 1672 

HD Steam, kmol h-1 250 180 182 

Reflux Ratio 4.17 3.1 4.1 

Column inlet temperature, ºC 365 381 370 

Flash temperature, ºC 115 240 240 

Vapour feed location 

(column section) 

5 

 

3 3 

PA: pump-around      

T: pump-around temperature drop 
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As shown in Table 5.4, column inlet temperatures increased compared with 

those presented in Table 5.2 for the case without a preflash unit. When a 

preflash is added to the crude oil distillation system, the crude oil needs to be 

heated to a higher temperature to allow more vaporisation within the column. 

Column inlet temperature is decreased 11 °C when fired heating is optimised 

which is related to an increase of the steam flow rate compared with the case 

when hot utility is optimised. Reflux ratio also increases, from 3.1 to 4.1 

improving the separation within the column as there is more liquid returning to 

the column that cools and condensate the vapour up flowing. 

Figure 5.7 shows the grand composite curve obtained after fired heating 

optimisation for this case.  

 

 

Figure 5.7 Grand composite curve, best direct optimisation result: preflash case. 
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5.5 Optimisation framework using artificial neural networks 

 

Optimisation of crude oil distillation systems using artificial neural networks is 

attracting significant research interest due to their facility to be implemented in 

an optimisation framework to determine the best configuration and operating 

conditions. Artificial Neural Networks (ANN) have been recognised as a 

powerful tool for highly nonlinear systems due to its ability to learn complex 

functional relations, linking input and output data of the system (Osuolale and 

Zhang, 2016). Moreover, their evaluation is considerably less computationally 

demanding compared with direct optimisation as presented in Chapter 4 so 

that they represent a suitable option for optimisation-based design 

applications. 

The methodology developed in this work is extended using a combination of a 

genetic algorithm and artificial neural networks in the same optimisation 

framework, to evaluate total fuel consumption in a crude oil distillation system 

with and without a preflash unit as illustrated in Figure 5.8. 

As discussed in Chapter 4, the first step to build an ANN model is to generate 

samples via rigorous simulations; they are classified into converged and 

unconverged but only those which lead to a converged simulation in Aspen 

HYSYS are used to build the ANN model.  

The optimisation based-design framework takes into account product and 

residue flow rate constraints as well as lower and upper bounds for the 

optimisation variables (10 for the case without a preflash unit and 12 for the 

case with a preflash unit). A genetic algorithm is used to perform the 

optimisation in MATLAB R2016a; tuning parameters are population size and 

number of generations.  

The stream data needed to build the grand composite curve is taken from the 

outputs of the ANN model, as it was explained in Chapter 4. Here, the 

algorithm (see Section 2.7.5) developed in MATLAB to allow stack loss 

evaluations is implemented within the optimisation framework in order to 
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evaluate the objective function: minimise fired heating demand of the crude 

oil distillation system. 

 

Figure 5.8 Optimisation framework using artificial neural networks. 
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5.5.1. Crude oil distillation system without a preflash unit 

 

Tables 5.5 and 5.6 summarise optimisation results when optimising both hot 

utility and fired heating demand in a crude oil distillation system without a 

preflash unit.   

Table 5.5. Summary optimisation results using ANN: no preflash case 

 Base Case Optimising HU Optimising 

Fired Heating 

Hot Utility, MW 58.3 44.5 46.5 

Cold Utility, MW 64.9 56.1 59.2 

Stack Loss, MW 7.1 8.1 5.0 

Fired Heating, 

MW 

65.4 52.5 51.5 

CPU time,s  96 1395 

HU: Hot Utility 

 

Introducing artificial neural networks within the optimisation framework 

notable reduce the optimisation time required passing from hours as in the 

direct optimisation to seconds. Fired heating demand decreased in 1 MW 

when the objective function is to minimise fired heating, while the hot utility 

demand of the system increased 2 MW. Same trend as it was observed in the 

previous Section when direct optimisation is applied, confirming the relevance 

to take into account the complete fuel consumption of the system for a better 

understanding.  

Stack losses are reduced by 3.1 MW so there are more opportunities for heat 

recovery within the system.  
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Table 5.6. Degrees of freedom crude oil distillation system without a preflash unit 

 GA-ANN optimisation 

Base 

Case 

Minimising 

HU 

Minimising Fired 

Heating 

PA1 Duty, MW 12.84 6.0 8.6 

PA2 Duty, MW 17.89 9.4 8.0 

PA3 Duty, MW 11.20 14.0 13.0 

ΔT PA1, ºC 30 20.0 20.0 

ΔT PA2, ºC 50 29.6 28.8 

ΔT PA3, ºC 20 40.0 40.0 

Main Steam, kmol h-1 1200 1607 1713 

HD Steam, kmol h-1 250 209 188 

Reflux Ratio 4.17 4.1 4.1 

Column inlet temperature, 

ºC 

365 350 350 

PA: pump-around      

T: pump-around temperature drop 

HU: Hot Utility 

 

It can be seen from Table 5.6 that column inlet temperature is maintained for 

both optimisation cases; however, the main steam required increased when 

minimising fired heating improving heat recovery opportunities, as there is 

mayor liquid and vapour traffic in the column. Pump-around duty 3 increased 

for both optimisation cases rejecting heat at higher temperatures, thus 

allowing more heat to be recovered in the heat recovery system. 

Figure 5.9 shows the grand composite curve for the best result using artificial 

neural networks after optimisation is carried out, the flue gas line is limited by 

a match between process and utility. 



194 
  

 

Figure 5.9 Grand composite curve, best optimisation result using ANN: no preflash. 
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5.5.2. Crude oil distillation system with a preflash unit 

 

Optimisation results 

Table 5.7 summarises optimisation results when optimising both hot utility 

and fired heating demand in a crude oil distillation system with a preflash unit.   

Table 5.7. Summary optimisation results using ANN: preflash case 

 Base Case Optimising HU Optimising 

Fired Heating 

Hot Utility, MW 57.7 38.2 40.8 

Cold Utility, MW 64.1 52.5 49.1 

Stack Loss, MW 6.4 7.4 3.7 

Fired Heating, 

MW 

64.1 47.9 44.5 

CPU time,s  103 1379 

HU: Hot Utility 

 

Even though the CPU time to perform the optimisation increased, it can be 

seen from Table 5.7 that again, fired heating demand is reduced when it is 

optimised, due to the stack loss is reduced in 50% compared with the stack 

loss calculated for the case when only the hot utility demand is optimised. 

Table 5.8 summarises best optimisation results for the degrees of freedom as 

a result of the optimisation of both hot utility and fired heating demand using 

artificial neural networks. As can be seen, flash temperature is almost the 

same for both optimisation cases; reflux ratio is maintained and column inlet 

temperature increased in 13°C when the objective is to minimise fired heating 

demand, leading to a reduction in the main steam flow rate. Pump-around 

duties 1 and 2 were reduced from the base case values in both optimisation 

cases increasing heat recovery opportunities.  
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Table 5.8. Optimisation variables: best results optimising with ANN, preflash case 

 GA – ANN optimisation 

Base 

Case 

Minimising 

HU 

Minimising Fired 

Heating 

PA1 Duty, MW 12.84 6.8 7.8 

PA2 Duty, MW 17.89 8.1 6.6 

PA3 Duty, MW 11.20 10.5 11.3 

ΔT PA1, ºC 30 29.8 30.4 

ΔT PA2, ºC 50 30.2 27.5 

ΔT PA3, ºC 20 39.3 15.6 

Main Steam, kmol h-1 1200 1684 1317 

HD Steam, kmol h-1 250 193 264 

Reflux Ratio 4.17 3.8 3.8 

Column inlet temperature, ºC 365 367 380 

Flash temperature, ºC 115 235 236 

Vapour feed location 

(column section) 

5 

 

3 3 

PA: pump-around      

T: pump-around temperature drop 

HU: Hot Utility 

 

Figure 5.10 illustrates the best optimisation result using artificial neural 

networks for the case of adding a preflash unit to a crude oil distillation 

system. In this case, the flue gas line is limited by a match between process 

and utility. 
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Figure 5.10 Grand composite curve for the best optimisation result using ANN. 

 

5.6 Case study summary 

 

The case study presented in this Chapter demonstrates the capabilities of the 

methodology developed in this work, extending the scope for the optimisation 

of fired heating demand applied to a crude oil distillation system with and 

without a preflash unit.  Two optimisation approaches are compared, direct 

simulation-optimisation and optimisation using artificial neural network models 

into an optimisation framework with a genetic algorithm.  

Tables 5.9 and 5.10 summarise optimisation results for both optimising 

minimum hot utility demand and optimising fired heating demand. CPU time 

was notably reduced when using artificial networks models (Tables report the 

total optimisation time counting data sampling, model training and 

optimisation). 
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Direct optimisation of fired heating in a crude oil distillation system without a 

preflash unit reduced fired heating demand in 1.3 MW (53.0 - 51.7 MW) 

compared with the case when only hot utility demand is optimised. Similarly, 1 

MW (52.5 – 51.5 MW) less was obtained using artificial neural networks. For 

the preflash case, reductions of 0.5 MW and 3.4 MW of fired heating demand 

are obtained for the cases when only hot utility is optimised and when fired 

heating is optimised. 

Table 5.9. Optimisation results summary: minimising hot utility demand 
 

HU: Hot Utility 

CU: Cold Utility 

CDU: Crude Distillation Unit 

 

 

 

 

 

 

 

 

CDU Preflash 

 Base 

Case 

Direct 

Opt 

ANN 

Model 

Base 

Case 

Direct 

Opt 

ANN  

Model 

 

HU, MW 

 

58.3 

 

44.8 

 

44.5 

 

57.7 

 

38.1 

 

38.2 

CU, MW 64.9 57.6 56.1 64.1 44.6 52.5 

Stack loss, MW 7.1 8.1 8.1 6.4 7.3 7.4 

Fired heating, 

MW 

65.4 53.0 52.5 64.1 45.4 47.9 

CPU time, h  4.1 1.6  6.2 1.6 
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Table 5.10. Optimisation results summary: minimising fired heating demand 
 

HU: Hot Utility 

CU: Cold Utility 

CDU: Crude Distillation Unit 

 

 

Figures 5.11 and 5.12 illustrate the optimisation performance of the two 

approaches presented in this Chapter, direct optimisation (DO) and artificial 

neural networks (ANN) for the cases without and with a preflash unit 

respectively. It may be seen from Figure 5.11 that the lowest value for 

minimum fired heating demand is obtained by direct optimisation; in contrast, 

optimisation using artificial neural networks provides the lowest value when 

the objective function is to minimise hot utility demand. However, differences 

in the lowest values between the two approaches are no greater than 2 MW 

confirming the accuracy of them. 

 

CDU Preflash 

 Base 

Case 

Direct 

Opt 

ANN 

Model 

Base 

Case 

Direct 

Opt 

ANN  

Model 

 

HU, MW 

 

58.3 

 

45.7 

 

46.5 

 

57.7 

 

41.4 

 

40.8 

CU, MW 64.9 58.3 59.2 64.1 53.6 49.1 

Stack loss, 

MW 

7.1 6.0 5.0 6.4 3.5 3.7 

Fired heating, 

MW 

65.4 

 

51.7 51.5 64.1 44.9 44.5 

CPU time, h  4.2 1.6 

 

 6.7 1.6 
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Figure 5.11 Fired heating optimisation performance no preflash case. 

 

 

 

Figure 5.12 Fired heating optimisation performance preflash case. 
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Figure 5.12 shows the optimisation performance for the case of a crude oil 

distillation system with a preflash unit. In the case of optimising fired heating, 

optimisation using artificial neural networks performed better than the direct 

optimisation approach; while the lowest value when minimising, hot utility is 

obtained via direct optimisation (See Appendix C for details about 

optimisation runs). 

These results confirm the importance to include calculations regarding to the 

fired heating demand within an optimisation framework in order to have more 

realistic results about the about heat recovery opportunities of a crude oil 

distillation system. 

 

5.7 Conclusions 

 

A systematic design optimisation approach to minimise fired heating demand 

is proposed for crude oil distillation systems with and without a preflash unit, 

applying rigorous and artificial neural network models. The methodology 

accounts for industrially relevant constraints related to product quality and 

yield.  

The case study presented in this Chapter confirms that 1) introducing a 

preflash unit within a heat-integrated crude oil distillation system bring 

significant improvements in both hot and fired heating demand, 2) minimising 

fired heating demand of the system offers a better understanding about the 

amount of fuel combusted, hence improving opportunities for heat integration 

in the system. Additionally, impact to the ambient due to stack losses is 

minimised. 

Limitations of the proposed design methodology are that the number of trays 

in the main column is keep fixed. Future work will have to take into account 

column design together with different objective functions accounting for 

capital and energy costs. 
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Chapter 6  

Overall Summary 
 

 

This Chapter summarises and link results from case studies presented in 

Chapters 3, 4 and 5. The base case in each case study (with and without a 

preflash unit) is outlined, comparing best optimised designs.  

In Chapter 3, direct simulation-optimisation of a crude oil distillation system 

with and without a preflash unit is presented. In the first case study (Case 

3.1), main column structure fixed. It is divided into two parts: Case 1, 

comprise constraints related to product quality only while Case 2, include 

constraints on both product quality and product flow rates (residue). In the 

second case study (Case 3.2) the design of the main column is optimised 

together with the operating conditions of the corresponding flowsheet 

maintaining constraints in product quality for the residue. 

Chapter 4 extends the methodology developed in Chapter 3 implementing 

artificial neural networks into the optimisation framework with the aim of 

reducing optimisation time, taking advantage of recent developments in the 

area1. Two optimisation algorithms are evaluated (simulated annealing and 

genetic algorithms) in terms of performance (objective function value) and 

                                            
1
 Ochoa-Estopier, L. M. (2014). Optimisation of Existing Heat-Integrated Crude Oil Distillation 

Systems. PhD Thesis, The University of Manchester. Ibrahim, D. (2018). Optimal Design of 
Flexible Heat-Integrated Crude Oil Distillation Systems. PhD Thesis, The University of 
Manchester, Manchester, UK. 



204 
  

optimisation time. Better optimisation results are obtained using genetic 

algorithms than those generated by the optimisation framework using 

simulated annealing.  

Finally, Chapter 5 introduces a novel optimisation-based design framework 

for fired heating demand. To allow simultaneous evaluation of minimum hot 

utility and fired heating demand, an algorithm in MATLAB is developed (See 

Section 2.9.4 taking into account three different scenarios according to the 

flue gas line and process limitations (i.e. a pinch point, a match between 

process and utility and a dew point temperature limit). For optimisation 

purposes, two approaches are analysed (direct simulation-optimisation and 

artificial neural networks embedded into an optimisation framework using 

genetic algorithms) to gain some insight about the complete fuel consumption 

of the crude oil distillation system with and without a preflash unit. 

Table 6.1 shows optimisation results for a crude oil distillation system without 

a preflash unit and Table 6.2 summarise optimisation results for the case 

when a preflash unit is added to a crude oil distillation system. In both Tables, 

optimisation results are presented as follows: the first two columns include the 

optimisation variables (10 for the case without a preflash and 12 for the case 

with a preflash) and units, the third column highlight the base case conditions 

for each crude oil distillation system. Then, the best results obtained for 

minimising hot utility demand using direct optimisation are presented, 

including results for the case when the column structure is fixed and when it is 

optimised simultaneously with the operating variables. Best optimisation 

results obtained using artificial neural networks and genetic algorithms are 

shown in the sixth column in both Tables. The last two columns correspond to 

the best optimisation results when the objective function is to minimise fired 

heating demand of each system using direct optimisation and a combination 

of genetic algorithms and artificial neural networks. 

As can be seen from Table 6.1, optimisation results related to the minimum 

hot utility demand of the crude oil distillation system are all less than the base 
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case (no optimised). The best results for minimum hot utility demand and 

minimum fired heating demand are obtained applying artificial neural 

networks. Optimisation times are considerably reduced (note that for the ANN 

optimisation, times reported in Tables are only those needed to reach the 

lowest objective function value) compared with those required by the direct 

optimisation (DO).  

It was observed that higher column inlet temperatures lead to lower values for 

main steam flow rates while lower column inlet temperatures require high 

steam flow rates. Steam helps to reduce the partial pressure of the crude oil 

components hence their boiling points and thus reducing energy 

requirements. Steam in side-strippers helps to remove light components. 

Pump-around duties 1 and 2 for all cases are below the base case values 

whereas for pump-around 3, optimised values are in most cases higher than 

the value for the base case allowing more heat to be available for recovering 

purposes within the system. In general, pump-arounds are higher level 

temperature sources helping to increase energy efficiency of crude distillation 

units.  

Reflux ratio values are all around 4.0, close to the initial base case. One of 

the key roles of reflux ratio is to control the temperature at the top of the 

distillation column. Higher values of reflux ratio increase the efficiency of 

separation. 

 

 

 

 

 



206 
  

Table 6.1 Optimisation results summary: no preflash case 

                                                               Min Hot Utility                         Min Fired Heating 

    DO   

Variable Units Base 
Case 

Column 
fixed 

Column 
optimised 

ANN/GA DO ANN/GA 

Main Steam Flow 
Rate 

kmol h–1 1200 1247 1298 1607 1620 1713 

HD Steam Flow 
Rate 

kmol h–1 250 188 275 209 264 188 

PA1 Duty MW 12.8 7.4 9.3 6.0 10.0 8.6 

PA2 Duty MW 17.8 9.8 10.1 9.4 8.5 8.0 

PA3 Duty MW 11.2 14.0 10.5 14.0 13.7 13.0 

PA1 T C 30 31.9 23.7 20.0 22.3 20.0 

PA2 T C 50 34.9 36.2 29.6 29.4 28.8 

PA3 T C 20 39.9 39.8 40.0 39.9 40.0 

Column Inlet 
Temperature 

C 365 362 363 350 351 350 

Reflux Ratio  4.17 4.1 4.0 4.1 3.9 4.1 

Minimum Hot 
Utility 

MW 58.3 46.6 48.4 44.5 45.7 46.5 

Minimum Fired 
Heating 

MW     51.7 51.5 

Optimisation time   4.2h 8.0h 96s 4.2h 1395s 

PA: pump-around; T: pump-around temperature drops                 
ANN: artificial neural networks; GA: genetic algorithm; DO: direct optimisation 
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Table 6.2 Optimisation results summary: preflash case 

 Min Hot Utility Min Fired 
Heating 

 DO  

Variable Units Base 
Case 

Column 
fixed 

Column 
optimised 

ANN/GA DO ANN/
GA 

Main Steam 
Flow Rate 

kmol h–1 1200 1195 1262 1684 1672 1317 

HD Steam 
Flow Rate 

kmol h–1 250 180 209 193 182 264 

PA1 Duty MW 12.8 8.5 7.2 6.8 6.6 7.8 

PA2 Duty MW 17.8 8.8 8.8 8.1 6.9 6.6 

PA3 Duty MW 11.2 13.0 11.9 10.5 8.3 11.3 

PA1 T C 30 38.8 33.4 29.8 39.4 30.4 

PA2 T C 50 31.6 31.1 30.2 26.5 27.5 

PA3 T C 20 21.0 21.3 39.3 20.1 15.6 

Column Inlet 
Temperature 

C 365 383 377 367 370 380 

Reflux Ratio  4.17 3.1 3.3 3.8 4.1 3.8 

Preflash 
temperature 

C 115 240 230 235 240 236 

Vapour feed 
location, 
section 

 5 3 3 3 3 3 

Minimum Hot 
Utility 

MW 57.7 37.9 38.6 38.2 41.4 40.8 

Minimum 
Fired Heating 

MW     44.9 44.5 

Optimisation 
time 

  6.2h 8.5h 103s 6.7h 1379s 
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Table 6.2 summarises optimisation results for the case when a preflash unit is 

added to a crude oil distillation system. Initial base case (no optimised) is 

highlighted. For the case of minimising hot utility demand, again best 

optimisation result is obtained by using artificial neural networks.  

It is worth to mention that several optimisation runs were performed to gain 

confidence in the reported results. For the case of direct optimisation (DO) 

three runs were carried out, while for the cases using artificial neural 

networks, ten optimisation runs are performed (See Appendices A, B and C 

for further details). 

More importantly, Tables 6.1 and 6.2 show different system conditions for 

each ‘best optimised case’, pointing out the need to a further analysis i.e. 

details about the full costing of the system in order to have a solid basis to 

select the best practical option among the ones presented in this work. 

However, the detailed analysis performed in this work related to the minimum 

hot utility demand and minimum fired heating demand of the crude oil 

distillation system lays the foundation for further analysis. Even though no 

cost analysis was included in this work, it was demonstrated that including a 

preflash unit within a crude oil distillation system effectively reduces the hot 

utility demand of the system which in turn will reduce the overall utilities costs. 
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Chapter 7  

Conclusions and Future Work 
 

7.1 Conclusions 

 

Crude oil distillation systems are the major energy consumers in a refinery. 

Even a small reduction in their energy demand will have a significant impact 

in heat recovery opportunities and environmental impact. 

In this thesis, a systematic methodology for the design of energy-efficient 

crude oil distillation systems has been presented. The methodology exploits 

interactions between the separation units, i.e. crude oil distillation column and 

preflash unit and the associated heat recovery system applying pinch 

analysis. An optimisation-based design framework is developed, enabling the 

selection of key operational and structural variables within the crude oil 

distillation system whilst accounting for product quality and yield. 

In Chapter 3, a direct simulation-optimisation methodology is presented to 

minimise hot utility demand of a crude oil distillation system (with and without 

a preflash unit). Optimisation of the system is carried out using an interface 

between Aspen HYSYS and MATLAB, which facilitates data transfer between 

the software packages, allowing an easy visualisation of important 

operational variables using spreadsheets in Aspen HYSYS. The optimisation 
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framework allows a systematic evaluation of hot utility demand of the heat-

integrated crude oil distillation system without the need for detailed 

information about the heat recovery network; instead the grand composite 

curve is used as a tool to estimate minimum heating and cooling 

requirements of the system. Case studies presented in Chapter 3 

demonstrate the capabilities of the proposed optimisation-based design 

methodology. Results from the case studies show that adding a preflash unit 

within a crude oil distillation system can lead to energy savings of 19%. Case 

study 3.2 addressed the simultaneous design of the main column and 

optimisation of structural and operating variables. Results show that marginal 

energy savings (0.5%) are achieved when both the structure of the column 

and the operational variables are optimised simultaneously. This result 

suggests that the additional stages and new distribution of stages do not 

effectively improve the separation performance and heat recovery 

opportunities simultaneously. 

In Chapter 4, artificial neural network models are incorporated into the 

optimisation-based design methodology proposed in Chapter 3.  The aim of 

this approach is to reduce computational time; direct optimisation runs took 

around 5 hours for the case without a preflash unit and around 7 hours for the 

case with a preflash unit. Taking advantage of recent developments in the 

area (Ochoa-Estopier, 2014; Ibrahim, 2018) a column model was built using 

samples generated via rigorous simulations in Aspen HYSYS v8.8. The 

suitability of two stochastic optimisation algorithms – genetic algorithm (GA) 

and simulated annealing (SA) – is explored using the MATLAB optimisation 

Toolbox. This approach provided robust results for the case studies analysed, 

with and without a preflash unit, without compromising model accuracy, 

column performance, product quality, and product yields. Previous works 

have not reported the implementation of artificial neural networks into an 

optimisation framework for a heat-integrated crude oil distillation system with 

a preflash unit. Therefore, the proposed methodology can benefit current 

industrial practice by reducing engineering time.  
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Furthermore, considering only the minimum hot utility demand of a crude oil 

distillation system may lead to underestimation of the actual energy demand 

as stack loss associated with fired heaters is not taken into account. To 

overcome this limitation in the current open literature, Chapter 5 presents a 

novel optimisation-based design methodology that enables the minimisation 

of fired heating demand of a crude oil distillation system (with and without a 

preflash unit). The developed surrogate models (artificial neural networks) are 

further evaluated by comparing predictions of the minimum hot utility demand 

and minimum fired heating demand with values obtained from the rigorous 

model. To date, the literature search has not revealed any studies that 

consider both the efficiency of the fired heater and design or operation of the 

crude oil distillation column with a preflash unit. This work extends the 

methodology presented in Chapters 3 and 4 to account for the efficiency of 

the fired heater. In order to allow evaluation of the amount of heat released to 

the ambient (stack losses), an algorithm is coded in MATLAB, and 

implemented into an optimisation framework enabling the minimisation of fired 

heating while simultaneously optimising both structural and operating 

variables of the system, maintaining product qualities and the residue flow 

rate within allowed ranges of ±10°C and ±1% respectively in line with 

industrial practice. Results revealed that optimising hot utility demand only 

does not guarantee that the stack loss will be the minimum so that there is a 

need for more detailed analysis that reveals further opportunities to recover 

heat within the crude oil distillation system. 

The methodology developed in this work has the merits of using rigorous and 

surrogate process models, of being systematic, of using robust optimisation 

techniques and of accounting for configuration as well as operating 

conditions. Case study results indicate that energy demand can be reduced 

by introducing a preflash unit within the crude oil distillation system. Heat 

integration is considered simultaneously using pinch analysis. 
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7.2 Future Work 

 

The following future work is proposed to extend the methodology presented in 

this work and to enhance its capabilities: 

1. Extend the proposed design methodology to consider the design of 

crude oil distillation systems with other pre-separation arrangements 

i.e. a prefractionation column (See Appendix D). 

 

2. Include the vacuum distillation column within the crude oil distillation 

system extending the methodology presented in this work. Evaluate 

fired heating demand of the vacuum furnace applying the algorithm 

developed in MATLAB to complement the analysis of total fuel 

consumption in the system. 

 

3. The objective function included within the optimisation framework 

proposed in this work can be extended to capture the trade-offs 

between yield and energy demand, e.g. by maximising net profit. 

 

4. Stripping steam analysis can be added to the grand composite curve 

calculations in the MATLAB code. Temperature dependence of fluids 

can be taken into account during the simulation-optimisation steps 

enhancing the proposed methodology. 

 

5. In this work, the structure of the main column is maintained fixed, 

future work could be extended to consider the design of the main 

column including the number of trays as a discrete variable as it was 

presented in a case study in Chapter 3.  

 

6. The algorithm developed to allow calculations for the fired heating 

demand presented in Chapter 5 can be extended to include other 

limitations for the flue gas line depending on the nature of the process. 
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7. Full costing study of the crude oil distillation system with and without a 

preflash unit will complement and help to select the best set of 

operating conditions for industrial implementation of the methodology 

developed in this work. 
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APPENDIX A 

Supporting Information for Chapter 3 
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Table A1 shows the crude oil assay1 used in the case study presented in 

Section 3.3.1. 

 

Table A1. Crude oil assay (Venezuelan Tia Juana Light)1 

Light ends Component name Volume % 

 Ethane 0.04 

 Propane 0.37 

 i-Butane 0.27 

 n-Butane 0.89 

 i-Pentane 0.77 

 n-Pentane 1.13 

TBP Curve Temperature, °C Volume % 

 36.1 0 

 64.4 5 

 100.6 10 

 163.9 20 

 221.1 30 

 278.9 40 

 337.2 50 

 397.2 60 

 463.9 70 

 545.0 80 

Density: 867.6 kg/m3 

 

Once the crude oil assay is defined it is cut into 25 pseudo-components 

generated using the standard oil characterisation procedure in Aspen HYSYS 

v8.8. Table A2 shows the normal boiling temperature (NBP) in °C, 

compositions (volume fraction on a 100% basis) and volumetric flow rates (in 

m3 h-1) for pure components and pseudo-components. 
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Table A2. Crude oil characterisation, (Venezuelan Tia Juana Light)1,2 

Name NBP, °C Volume Fraction Vol Flow (m3 h-1) 

Ethane -89.0 0.04 0.26 

Propane -42.0 0.37 2.45 

i-Butane -12.0 0.27 1.79 

n-Butane -1.0 0.89 5.90 

i-Pentane 28.0 0.77 5.10 

n-Pentane 36.0 1.13 7.49 

NBP_47 47.1 4.25 28.16 

NBP_72 72.4 3.37 22.33 

NBP_97 97.5 3.26 21.62 

NBP_122 121.8 3.65 24.21 

NBP_146 146.2 3.85 25.49 

NBP_171 170.6 4.03 26.68 

NBP_195 194.9 4.15 27.48 

NBP_219 219.2 4.15 27.47 

NBP_244 243.7 4.08 27.05 

NBP_268 268.2 4.07 26.97 

NBP_293 292.6 4.06 26.92 

NBP_317 317.0 4.03 26.71 

NBP_341 341.5 4.02 26.61 

NBP_366 365.8 3.95 26.15 

NBP_390 390.3 3.82 25.32 

NBP_415 414.6 3.67 24.33 

NBP_449 448.6 6.15 40.76 

NBP_493 492.7 5.47 36.21 

NBP_538 537.8 4.87 32.29 

NBP_581 580.7 4.26 28.25 

NBP_625 624.8 3.21 21.29 

NBP_685 685.5 4.78 31.67 

NBP_771 770.9 2.81 18.61 

NBP_858 857.7 1.41 9.33 

NBP_950 949.8 1.14 7.56 

Total  100 662.46 
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Table A3.  Design specifications and variables, crude oil distillation system with a 
preflash 

Variable Units  Initial Value 

Reflux Ratio  4.17 

LN Prod Flow kmol h–1 833 

HN Prod Flow kmol h–1 491 

LD Prod Flow kmol h–1 515 

HD Prod Flow kmol h–1 165 

RES Prod Flow kmol h–1 565 

PA1 Duty MW 12.84 

PA2 Duty MW 17.89 

PA3 Duty MW 11.20 

PA1 T °C 30 

PA2 T °C 50 

PA3 T °C 20 

LN T5% °C 27 

HN T5% °C 143 

LD T5% °C 218 

HD T5% °C 308 

RES T5% °C 363 

LN T95% °C 110 

HN T95% °C 196 

LD T95% °C 300 

HD T95% °C 354 

RES T95% °C 755 

Column Inlet Temperature C 365 

Flash Temperature C 115 

Vapor Feed Locationa  5 

a Section number in main column 

   PA: pump-around; T: pump-around temperature drop 
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Table A4.  Distribution of theoretical stages in the main column and side strippers 
(SS). 

Column Section Stage numbers 

Section 1 19 

Section 2 1017 

Section 3 1827 

Section 4 2836 

Section 5 3741 

Section 6 (HN SS) 4247 

Section 7 (LD SS) 4854 

Section 8 (HD SS) 5559 

   SS: side-stripper 

 

Table A5. Initial product quality specifications and flow rates, crude oil distillation 
system. 

Product Base Case 

ASTM (C) 

Product flow rates 

(m3 h–1) 

Product flow rates 

(kmol h–1) 

T5 % T95 %    

LN 26 109 a 102 833 

HN 143 196 a 87 491 

LD 217 a 300 a 128 515 

HD 308 353 a 54 165 

RES 363 754 292 565 

a Specified in HYSYS 
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Table A6. Process stream data, crude oil distillation system without a preflash (not 
optimised base case) 

Name Process Stream Temperatures, 

C 

Duty, 
MW 

Tmin, C 

 Inlet Outlet   

Q crude 25.0 185.0 60.1 30 

Q heater 185.0 266.0 39.6 30 

Q furnace 266.0 365.0 51.9 30 

Q HN 190.2 40.0 6.5 30 

Q RES 325.1 100.0 46.4 30 

Q LD 285.9 40.0 17.6 30 

Q HD 270.2 50.0 6.8 30 

Q LN 59.0 40.0 0.8 30 

Q condenser 93.8 59.0 56.2 30 

PA1 147.4 117.4 12.8 30 

PA2 238.6 188.6 17.9 30 

PA3 310.9 290.9 11.2 30 

HN SS reboiler 181.3 190.2 12.8 30 

LD SS reboiler 276.5 285.9 5.3 30 

 PA: pump-around; SS: side-stripper; Tmin: minimum temperature difference 

approach 

 

 

Figure A1. Grand composite curve (base case: crude oil distillation system without a 
preflash). 

Hot Utility (HU) = 58.3 MW 

Cold Utility (CU) = 64.9 MW 
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Table A7. Process stream data, optimised crude oil distillation system with a 
preflash: Case 1 

Name Process Stream Temperatures, C Duty, MW Tmin, C 

 Inlet Outlet   

Q crude 25.0 230.0 81.7 30 

Q heater 230.0 266.0 12.9 30 

Q furnace 266.0 354.1 36.3 30 

Q HN 188.0 40.0 6.5 30 

Q RES 325.1 100.0 45.4 30 

Q LD 285.4 40.0 16.9 30 

Q HD 265.1 50.0 6.0 30 

Q LN 58.6 40.0 0.8 30 

Q condenser 91.2 58.6 46.8 30 

PA1 155.0 129.5 6.8 30 

PA2 223.7 200.6 8.4 30 

PA3 303.2 263.9 8.9 30 

HN SS reboiler 182.3 188.0 3.0 30 

LD SS reboiler 275.0 285.4 7.0 30 

 PA: pump-around; SS: side-stripper; Tmin: minimum temperature difference 

approach. 

 

Table A8. Process stream data optimised crude oil distillation system with a preflash: 
Case 2 

Name Process Stream Temperatures, C Duty, MW Tmin, C 
 Inlet Outlet   

Q crude 25.0 240.0 86.5 30 
Q heater 240.0 266.0 8.9 30 
Q furnace 266.0 383.4 47.4 30 
Q HN 188.2 40.0 6.5 30 
Q RES 343.4 100.0 48.2 30 
Q LD 285.4 40.0 16.8 30 
Q HD 278.0 50.0 7.6 30 
Q LN 58.6 40.0 0.7 30 
Q condenser 91.6 58.6 47.1 30 
PA1 157.1 118.2 8.5 30 
PA2 229.0 197.3 8.8 30 
PA3 312.7 291.6 13.0 30 
HN SS reboiler 182.7 188.2 2.8 30 
LD SS reboiler 275.5 285.4 6.2 30 

 PA: pump-around; SS: side-stripper; Tmin: minimum temperature difference 

approach 
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Table A9. Genetic Algorithm results: Case 1 

 CDU without a preflash CDU with a preflash 

Run Objective 

Function (MW) 

CPU time 

(hours) 

Objective 

Function (MW) 

CPU time 

(hours) 

1 43.4 4.0 35.9 5.8 

2 43.9 4.4 36.0 7.4 

3 43.8 5.2 36.1 6.0 

Population Size: 100; Generations: 500 

 

 

Table A10. Genetic Algorithm results: Case 2 

 CDU without a preflash CDU with a preflash 

Run Objective 

Function (MW) 

CPU time 

(hours) 

Objective 

Function (MW) 

CPU time 

(hours) 

1 46.6 4.7 38.2 6.4 

2 47.2 4.5 38.0 6.0 

3 46.6 4.2 37.9 6.2 

Population Size: 100; Generations: 500 
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Extract of MATLAB Code – Interface between Aspen HYSYS and MATLAB 

and principal commands used. 

%   Interface HYSYS v8.8 - MATLAB R2016a 

%   Establish link with Aspen HYSYS 

hy=actxserver('HYSYS.APPLICATION'); 

%   Connect to the active HYSYS document  

hy_ActiveDoc=hy.ActiveDocument; 

set(hy,'Visible',1); 

hy.ChangePreferencesToMinimizePopupWindows(0); 

%   Connection to the HYSYS solver  

hy_Solver=hy_ActiveDoc.Solver; 

%   Connection to flowsheet 

hy_Flowsheet=hy_ActiveDoc.Flowsheet; 

%   Connection to CDU on flowsheet 

CDU=hy_Flowsheet.Operation.Item('CDU'); 

%   Connection to items on CDU Sub-flowsheet 

CDU_SubFlowsheet=CDU.ColumnFlowsheet; 

%   Connection to streams on Main flowsheet 

CDU_MFStream=hy_Flowsheet.Streams; 

%   Connection with column specifications 

CDU_Specification=CDU_SubFlowsheet.Specifications; 

%   Connection to CDU on spreadsheet 

CDU1=hy_Flowsheet.Operation.Item('CDU_Results'); 

% Setting the location of the flashed vapor to the column: 

  PF = [1,0,0,0,0; 

        0,1,0,0,0; 

        0,0,1,0,0; 

        0,0,0,1,0; 

        0,0,0,0,1];           

% Initializing Optimization Variables 

% Duty Pump-around 1 

  Q_PA1x = y(1);            

% Reading variables from HYSYS: 

% Pump-around Duties, MW 

  Q_PA1 = CDU_Specification.Item('PA_1_Duty(Pa)'); 

 

% Product Flow rates: 

  LNx = get(CDU_Specification,'Item',1); 

 

% Product quality specifications: 

  T5_RESx = get(CDU_Specification,'Item',23); 

 

% Sending Values from MATLAB to HYSYS: 

  Q_PA1.Goal.SetValue(Q_PA1x,'MW') 

 

% Read Variables from HYSYS:  

% Product Specifications 

  T5_RES = T5_RESx.CurrentValue; 



223 
  

 

 

 

 

APPENDIX B 

Supporting Information for Chapter 4  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 
  

Table B1. ANN/GA optimisation runs (Case 4.1) 

Run HU, MW CPU Time, 

s 

HYSYS 

validation 

Difference 

1 44.5 96 44.6 -0.1 

2 44.6 96 44.9 -0.2 

3 44.6 96 44.7 -0.1 

4 44.7 96 45.4 -0.7 

5 44.7 96 44.9 -0.1 

6 44.9 98 45.0 -0.1 

7 45.0 96 45.1 -0.1 

8 45.3 96 45.5 -0.2 

9 45.4 97 45.4 0.0 

10 46.1 95 46.2 -0.1 

 

Table B2. SA/ANN optimisation runs (Case 4.1) 

Run HU, MW CPU 

Time, 

sec 

Function 

evaluations 

HYSYS 

validation 

Difference 

1 46.9 106 19016 46.8 0.1 

2 46.9 41 7335 46.9 0.0 

3 47.2 74 14255 47.2 0.0 

4 47.5 122 22118 47.6 0.0 

5 47.9 60 11993 47.9 0.0 

6 48.0 47 9456 48.2 -0.2 

7 48.0 76 13253 48.3 -0.3 

8 48.4 41 8143 48.3 0.0 

9 48.5 43 7516 48.5 0.0 

10 49.1 41 7769 49.1 0.0 

 

Table B3. Direct simulation-optimisation runs (Case 4.1) 

Run HU, MW CPU Time, hours 

1 45.0 3.8 

2 46.1 4.1 

3 44.8 4.1 
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Table B4. Error analysis, optimisation results (Case 4.1) 

 ANN model 

GA 

Direct opt 

GA 

Absolute 

error 

Product quality ASTM D86, 

(°C) 

 

 

 

T5% RES 361.4 362.0 0.6 

T5% LN 25.0 25.1 0.1 

T5% HN 132.5 133.3 0.8 

T5% LD 217.5 217.6 0.0 

T5% HD 306.4 306.0 0.4 

T95% RES 754.3 754.5 0.2 

T95% LN 109.7 109.7 0.0 

T95% HN 196.0 196.0 0.1 

T95% LD 300.1 300.1 0.0 

T95% HD 353.5 353.5 0.0 

Supply temperatures, (°C)    

HN cooler 187.6 188.4 0.8 

RES cooler 320.6 319.9 0.7 

LD cooler 285.7 285.7 0.0 

HD cooler 270.3 270.7 0.5 

LN cooler 58.6 58.7 0.1 

Condenser 90.9 90.6 0.4 

PA1 157.4 156.5 0.9 

PA2 231.6 231.2 0.4 

PA3 301.4 300.2 1.2 

HN reboiler 182.3 183.1 0.7 

LD reboiler 275.9 276.0 0.1 
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Table B5. Error analysis continuation, optimisation results (Case 4.1) 

 ANN model 

GA 

Direct 

opt GA 

Relative error 

Product flow rates, m3 h-1    

LN 100.7 101.1 0.0 

HN 88.8 88.4 0.0 

LD 125.9 125.5 0.0 

HD 55.1 56.1 0.0 

RES 292.1 291.6 0.0 

Enthalpy change, MW    

Fired heater 43.7 43.9 0.0 

HN cooler 6.5 6.5 0.0 

RES cooler 43.2 42.9 0.0 

LD cooler 17.4 17.3 0.0 

HD cooler 6.9 7.1 0.0 

LN cooler 0.8 0.8 0.0 

Condenser 59.0 60.6 0.0 

HN reboiler 2.5 2.7 -0.1 

LD reboiler 5.7 5.6 0.0 
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Table B6. Validation of ANN results on rigorous model (Case 4.1) 

 Rigorous 

model 

ANN model Difference 

Product quality ASTM D86, (°C)    

T5% RES 361.4 361.4 0.0 

T5% LN 25.0 25.0 0.0 

T5% HN 132.9 132.5 0.3 

T5% LD 217.5 217.5 0.0 

T5% HD 306.2 306.4 -0.3 

T95% RES 754.4 754.3 0.0 

T95% LN 109.7 109.7 0.0 

T95% HN 196.0 196.0 0.0 

T95% LD 300.1 300.1 0.0 

T95% HD 353.5 353.5 0.0 

Supply temperatures, (°C)    

HN cooler 187.9 187.6 0.3 

RES cooler 320.8 320.6 0.2 

LD cooler 285.7 285.7 0.0 

HD cooler 269.9 270.3 -0.3 

LN cooler 58.5 58.6 -0.1 

Condenser 90.8 90.9 -0.1 

PA1 157.2 157.4 -0.1 

PA2 231.6 231.6 0.0 

PA3 301.1 301.4 -0.4 

HN reboiler 182.6 182.3 0.3 

LD reboiler 276.0 275.9 0.1 
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Table B7. Continuation validation of ANN model results on rigorous model (Case 
4.1) 

 Rigorous 

model 

ANN 

model 

Difference 

Product flow rates, m3 h-1    

LN 100.8 100.7 0.1 

HN 88.7 88.8 -0.1 

LD 125.7 125.9 -0.2 

HD 55.2 55.1 0.1 

RES 292.2 292.1 0.1 

Enthalpy change, MW    

Fired heater 43.8 43.7 0.1 

HN cooler 6.5 6.5 0.0 

RES cooler 43.2 43.2 0.0 

LD cooler 17.3 17.4 -0.1 

HD cooler 7.0 6.9 0.0 

LN cooler 0.8 0.8 0.0 

Condenser 58.8 59.0 -0.2 

HN reboiler 2.4 2.5 -0.1 

LD reboiler 5.6 5.7 -0.1 

 

Table B8. GA/ANN optimisation runs (Case 4.2) 

Run HU, MW CPU Time, 

sec 

HYSYS 

validation 

Difference 

1 38.2 103 40.4 -2.2 

2 38.3 102 42.5 -4.2 

3 38.4 104 46.8 -8.4 

4 38.5 105 41.8 -3.3 

5 38.5 105 43.3 -4.8 

6 38.5 104 39.2 -0.7 

7 38.6 104 40.4 -1.8 

8 38.6 103 39.6 -1.0 

9 38.7 105 39.9 -1.2 

10 38.8 110 40.4 -1.7 
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Table B9. SA/ANN optimisation runs (Case 4.2) 

Run HU, MW CPU 

Time, 

sec 

Function 

evaluations 

HYSYS 

validation 

Difference 

1 39.4 118 20961 39.5 -0.1 

2 39.8 73 14065 42.3 -2.5 

3 40.2 71 12276 41.6 -1.3 

4 40.3 95 16039 40.6 -0.3 

5 40.6 71 13285 42.3 -1.7 

6 40.8 59 11610 41.0 -0.3 

7 44.6 43 7587 44.5 0.1 

8 45.4 48 9329 46.1 -0.7 

9 45.6 73 13300 47.2 -1.6 

10 46.4 38 6647 47.7 -1.3 

 

 

Table B10. Direct simulation-optimisation runs, preflash 

Run HU, MW CPU Time, hours 

1 39.1 6.1 

2 38.1 6.1 

3 38.6 6.5 
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Table B11.  Error analysis optimisation results (Case 4.2) 

 ANN/GA  Direct opt 

GA 

Absolute 

error 

Product quality ASTM D86, (°C)    

T5% RES 362.2 361.7 0.5 

T5% LN 25.4 25.0 0.4 

T5% HN 138.0 134.9 3.1 

T5% LD 217.5 217.5 0.0 

T5% HD 304.7 303.9 0.8 

T95% RES 754.4 754.4 0.0 

T95% LN 109.7 109.7 0.0 

T95% HN 195.8 196.0 0.2 

T95% LD 300.1 300.1 0.0 

T95% HD 353.5 353.5 0.0 

Supply temperatures, (°C)    

Preheat train 1 235.2 240.0 4.7 

HN cooler 189.0 188.2 0.8 

RES cooler 326.7 340.8 14.0 

LD cooler 285.5 285.5 0.0 

HD cooler 274.1 277.9 3.8 

LN cooler 58.8 58.6 0.1 

Condenser 90.1 91.1 1.0 

PA1 152.0 156.0 4.1 

PA2 225.9 228.5 2.6 

PA3 308.7 312.1 3.4 

HN reboiler 182.7 182.6 0.1 

LD reboiler 275.2 275.5 0.3 
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Table B12. Error analysis optimisation results continuation (Case 4.2) 

 ANN/GA Direct 

opt GA 

Relative error 

Product flow rates, m3 h-1    

LN 101.9 101.0 0.0 

HN 87.1 88.7 0.0 

LD 124.9 123.5 0.0 

HD 56.5 57.5 0.0 

RES 292.2 292.0 0.0 

Enthalphy change, MW    

Preheat train 1 84.5 86.6 0.0 

Preheat train 2 11.1 9.0 0.2 

Fired heater 41.0 46.6 -0.1 

HN cooler 6.5 6.5 0.0 

RES cooler 44.1 47.7 -0.1 

LD cooler 17.0 17.0 0.0 

HD cooler 7.0 7.6 -0.1 

LN cooler 0.8 0.8 0.0 

Condenser 57.6 47.7 0.2 

HN reboiler 4.3 2.9 0.5 

LD reboiler 6.4 6.3 0.0 
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Table B13. Validation of ANN results on rigorous model (Case 4.2) 

 Rigorous 

model 

ANN model Difference 

Product quality ASTM D86, (°C)    

T5% RES 361.7 362.2 -0.5 

T5% LN 25.4 25.4 0.0 

T5% HN 137.4 138.0 -0.6 

T5% LD 217.5 217.5 0.0 

T5% HD 305.3 304.7 0.7 

T95% RES 754.4 754.4 0.0 

T95% LN 109.7 109.7 0.0 

T95% HN 196.0 195.8 0.2 

T95% LD 300.1 300.1 0.1 

T95% HD 353.6 353.5 0.1 

Supply temperatures, (°C)    

Preheat train 1 235.0 235.2 -0.2 

HN cooler 189.7 189.0 0.7 

RES cooler 326.5 326.7 -0.3 

LD cooler 285.6 285.5 0.0 

HD cooler 275.1 274.1 0.9 

LN cooler 58.8 58.8 0.0 

Condenser 90.2 90.1 0.1 

PA1 151.5 152.0 -0.5 

PA2 225.8 225.9 -0.1 

PA3 307.7 308.7 -1.0 

HN reboiler 183.3 182.7 0.6 

LD reboiler 275.5 275.2 0.3 
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Table B14. Continuation validation of ANN results on rigorous model (Case 4.2) 

 Rigorous 

model 

ANN 

model  

Difference 

Product flow rates, m3 h-1    

LN 102.0 101.9 0.0 

HN 87.6 87.1 0.5 

LD 124.4 124.9 -0.4 

HD 56.6 56.5 0.1 

RES 292.0 292.2 -0.2 

Enthalphy change, MW    

Preheat train 1 84.1 84.5 -0.3 

Preheat train 2 10.9 11.1 -0.2 

Fired heater 41.2 41.0 0.2 

HN cooler 6.5 6.5 0.0 

RES cooler 44.4 44.1 0.4 

LD cooler 17.1 17.0 0.1 

HD cooler 7.3 7.0 0.4 

LN cooler 0.8 0.8 0.0 

Condenser 57.3 57.6 -0.3 

HN reboiler 4.6 4.3 0.3 

LD reboiler 6.2 6.4 -0.1 
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Table C1. Optimisation runs using ANN model, no preflash 

Run FH, MW SL Time,s Time, h CU, MW HU, MW 

1 51.5 5.0 1395 0.39 59.2 46.5 

2 51.7 6.2 1377 0.38 57.7 45.5 

3 51.8 6.3 1333 0.37 56.7 46.1 

4 51.8 6.3 1333 0.37 56.7 46.1 

5 51.9 5.7 1387 0.39 59.5 46.2 

6 51.9 5.7 1331 0.37 59.9 46.2 

7 52.2 4.6 1340 0.37 60.4 47.6 

8 52.4 6.3 1331 0.37 56.6 46.1 

9 52.8 4.7 1342 0.37 60.3 48.1 

10 53.6 7.7 1325 0.37 57.4 45.9 

 
 

Table C2. Optimisation runs direct optimisation, no preflash 

Run FH, MW SL Time,h CU, MW HU, MW 

1 52.07 4.7 4.5 60.0 48.3 

2 52.66 4.9 4.2 58.6 48.5 

3 51.19 6.0 4.2 58.3 45.7 

 

 

Table C3. Optimisation runs using ANN model, preflash 

Run FH, MW SL Time,s Time,h CU, MW HU, MW 

1 44.5 3.7 1379 0.4 49.1 40.8 

2 44.6 3.6 1334 0.4 53.5 41.0 

3 44.6 4.5 1399 0.4 54.8 40.1 

4 44.6 4.8 1346 0.4 50.1 39.8 

5 44.6 4.3 1353 0.4 52.4 40.3 

6 44.6 3.1 1428 0.4 54.7 41.5 

7 44.7 4.5 1420 0.4 52.0 40.1 

8 44.7 4.6 1350 0.4 52.5 40.0 

9 44.7 4.9 1394 0.4 48.6 39.8 

10 44.8 3.6 1476 0.4 50.4 41.2 
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Table C4. Direct optimisation runs, preflash 

Run FH, MW SL Time,h CU, MW HU, MW 

1 46.2 5.4 6.7 49.3 40.8 

2 44.9 3.5 6.7 53.6 41.4 

3 46.2 5.8 6.9 48.8 40.4 

 

Note for all the Tables: FH: Fired heating, SL: Stack loss, CU: Cold utility, HU: Hot 

utility. 

 

Table C5. Optimisation results product quality– direct optimisation no preflash case 

Product Base Case 

ASTM D86 (C) 

Fired Heating   

Direct optimisation 

ASTM D86 (C) 

T5% T95% T5% T95% 

LN 25.6 b 109.7 a 24.6 109.7 

HN 140.2 b 196.0 a 131.5 196.0 

LD 217.5 a 300.1 a 217.5 300.1 

HD 308.5 b 353.5 a 307.8 353.5 

RES 361.6 b 754.4 b 361.5 754.4 

a Specified in HYSYS , b Specified in MATLAB 
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Table C6. Optimisation results product flow rates – direct optimisation no preflash 
case 

Product flow rate 

 (m3 h–1) 

Base Case Fired Heating  

Direct optimisation 

LN 102.4 100.4 

HN 86.8 89.1 

LD 127.6 126.7 

HD 53.7 54.2 

RES 292.1 a 292.1 

a Constraint in MATLAB 

 

Table C7. Optimisation results product quality – direct optimisation preflash case 

Product Base Case 

ASTM D86 (C) 

Fired Heating   

Direct optimisation 

ASTM D86 (C) 

T5% T95% T5% T95% 

LN 25.6 b 109.7 a 25.6 109.7 

HN 140.2 b 196.0 a 133.2 196.0 

LD 217.5 a 300.1 a 217.5 300.1 

HD 308.5 b 353.5 a 305.9 353.5 

RES 361.4 b 754.3 b 361.8 754.4 

a Specified in HYSYS b Specified in MATLAB 
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Table C8. Optimisation results product flow rates – direct optimisation preflash case 

Product flow rate 

 (m3 h–1) 

Base Case Fired Heating  

Direct optimisation 

LN 102.4 101.0 

HN 86.8 88.5 

LD 127.6 124.7 

HD 53.7 56.3 

RES 292.1 a 292.0 

a Constraint in MATLAB 

 

Table C9. Optimisation results product quality– ANN model no preflash case 

Product Base Case 

ASTM D86 (C) 

Fired Heating   

ANN model 

ASTM D86 (C) 

T5% T95% T5% T95% 

LN 25.6 b 109.7 a 25.0 109.7 

     

HN 140.2 b 196.0 a 132.5 196.0 

LD 217.5 a 300.1 a 217.6 300.1 

HD 308.5 b 353.5 a 306.7 353.5 

RES 361.6 b 754.4 b 362.0 754.5 

a Specified in HYSYS b Specified in MATLAB 
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Table C10. Optimisation results product flow rates – ANN model no preflash case 

Product flow rate 

 (m3 h–1) 

Base Case Fired Heating  

ANN model 

LN 102.4 100.6 

HN 86.8 89.0 

LD 127.6 125.9 

HD 53.7 55.6 

RES 292.1 a 291.5 

a Constraint in MATLAB 

 

Table C11. Optimisation results product quality – ANN model preflash case 

Product Base Case 

ASTM D86 (C) 

Fired Heating   

ANN model 

ASTM D86 (C) 

T5% T95% T5% T95% 

LN 25.6 b 109.7 a 25.2 109.7 

HN 140.2 b 196.0 a 135.3 195.8 

LD 217.5 a 300.1 a 217.5 300.1 

HD 308.5 b 353.5 a 305.8 353.5 

RES 361.4 b 754.3 b 361.9 754.4 

a Specified in HYSYS b Specified in MATLAB 

 

 

 

 

 

 



240 
  

Table C12. Optimisation results product flow rates – ANN model preflash case 

Product flow rate 

 (m3 h–1) 

Base Case Fired Heating  

ANN model 

LN 102.4 101.5 

HN 86.8 87.7 

LD 127.6 125.2 

HD 53.7 56.2 

RES 292.1 a 292.0 

a Constraint in MATLAB 
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Figure D1 Aspen HYSYS v8.8 screenshot: crude oil distillation system with a 
prefractionator. 

 

Proposed optimisation-based design methodology: 

1. Prefractionator design: 

a. Number of stages 

b. Feed stage 

c. Reflux ratio 

d. Prefractionator temperature 

e. Column specifications – distillate flow rate to further processing 

 

2. Sensitivity studies: understanding operational variables ranges. 

 

3. Integrate prefractionator into the crude oil distillation system – 

converged simulation in HYSYS. 

 

4. Update stream information for the grand composite curve, to allow 

minimum hot utility demand, HU and minimum fuel consumption 

calculations - include Qcond prefractionator. 

 

5. Perform direct optimisation of the system using genetic algorithms, GA 

– update MATLAB code. 

 

6. Perform optimisation using surrogate models, in particular, artificial 

neural networks: 

 

a. Generate samples – rigorous simulations in Aspen HYSYS v8.8. 
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b. Create ANN functions and parity plots. 

 

7. Integrate ANN model into an optimisation framework. 

 

8. Evaluate and compare optimisation results for minimum hot utility 

demand and total fired heating of the system. 
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Published Journal paper  

Ledezma Martínez, M., Jobson, M., Smith, R. (2018a). Simulation-

optimization-based Design of Crude Oil Distillation Systems with Preflash 

Units. Industrial & Engineering Chemistry Research, 57(30). 

doi.org/10.1021/acs.iecr.7b05252 

 

Conference peer reviewed papers 

1. Ledezma Martínez, M., Jobson, M., Smith, R. (2017). Simulation-

optimisation-based Design of Crude Oil Distillation Systems with Preflash 

Units. In Proceedings of the 27th European Symposium on Computer-Aided 

Process Engineering (ESCAPE-27) (Computer Aided Chemical Engineering). 

doi.org/10.1016/B978-0-444-63965-3.50139-2. 

 

2. Ledezma-Martínez, M., Jobson, M., Smith, R. (2018b). A new optimisation-

based design methodology for energy-efficient crude oil distillation systems 

with preflash units. Chemical Engineering Transactions, 69, 385-390. 

doi.org/10.3303/CET1869065. 
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Abstract 

Crude oil distillation systems are energy intensive processes. A crude oil 

distillation system typically comprises a preheat train, a preflash unit and an 

atmospheric distillation unit. Preflash units in a crude oil distillation system 

create opportunities to reduce demand for fired heating. This work aims to 

develop a new design approach to enhance production and to reduce energy 

consumption and operating cost. Existing design methodologies do not allow 

systematic design optimisation of crude oil distillation systems with preflash 

units. Thus, a systematic approach is proposed that exploits interactions 

between the separation units and the heat recovery system, while meeting 

product quality specifications. The optimisation framework applies a 

stochastic optimisation algorithm (simulated annealing) to minimise utility 

consumption by selecting optimal values for operational variables: stripping 

steam, pump-around duties, pump-around temperature drops, column feed 

inlet temperature and preflash temperature. An interface between Aspen 

HYSYS v8.6 and MatLab R2016a facilitates integration of modelling and 

optimisation. Heat recovery is systematically evaluated using pinch analysis 

(grand composite curve) to account for the impact of operational variables on 

energy demand. A case study demonstrates the capabilities of the approach 

and illustrates that implementing preflash units can reduce hot utility demand. 

Keywords: energy consumption, heat integration, grand composite curve. 
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1. Introduction 

Crude oil distillation systems play a central role in petroleum refining. A typical 

crude oil distillation system comprises a preheat train, crude oil distillation 

units with side strippers and pump-arounds and sometimes pre-separation 

units, such as flash units and prefractionation columns. These systems are 

energy-intensive: it is estimated that 7 to 15 % of the crude oil input is 

consumed in refinery processes, of which 35 to 45 % is used for crude oil 

distillation (Szklo and Schaeffer, 2007). Preflash units are useful for reducing 

the fired heat demand for crude oil preheating prior to distillation. The preflash 

unit removes some light components and some of light naphtha; the vapour 

stream bypasses the fired heater, helping to reduce its fuel consumption. The 

vapour stream can then be mixed with the stream leaving the furnace or be 

fed to the main column at a suitable location.  

Research studies have investigated the design and optimisation of crude oil 

distillation systems to maximise the benefits of including preflash units. 

Golden (1997) provides useful insights into how key parameters, such as 

flash temperature and flashed vapour feed location, affect the performance of 

the main distillation column. Ji and Bagajewicz (2002) present a rigorous 

analysis for setting the inlet and outlet conditions for the design of a crude oil 

distillation unit with preflash units. Preflash temperature and feed location of 

preflash vapour in the main column are addressed; pinch analysis is applied 

to assess minimum utility requirements. Errico et al. (2009) compare the 

performance of columns with preflash units, considering product flow rates, 

product quality and potential for energy savings. One disadvantage of this 

study is that column operating conditions and the preflash temperature are 

constant. Wang et al. (2011) apply thermodynamic metrics to select the best 

pre-separation scheme for heavy crude oils. Nine predistillation arrangements 

are explored, and the option with two preflash units is found to perform best. 

Details of hot utility demand and product quality specifications are not 

reported, however. Benali et al. (2012) demonstrate that preflash units can 

bring benefits in terms of exergy destruction, although their methodology for 
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adjusting the column operating conditions and for analysing the impact of the 

process changes on heat recovery opportunities is not discussed. 

Other researchers explore using optimisation to improve the performance of 

the crude oil distillation system using preflash units. Al-Mayyahi et al. (2014) 

utilise multi-objective optimisation techniques to study the effects of single 

and multiple preflash units on both energy consumption and yield. Their study 

investigates the vapour feed location and considers heat integration with and 

without preflash units. The optimisation variables varied include the steam 

flow to the main column and the furnace outlet temperature, as well as the 

vapour fraction from each flash unit; significantly, pump-around duties and 

temperature drops are not considered. Wang et al. (2016) present a 

simulation-optimisation study in the context of an existing crude oil distillation 

processes for two different feedstocks. The study addresses a three-column 

system (i.e. prefractionation column), where the grand composite curve is 

used to evaluate energy consumption and CO2 emissions. Pump-around 

duties and temperatures are varied, while the inlet temperatures to the three 

distillation units and stripping steam flow rates are maintained as constants. 

Enríquez-Gutiérrez (2016) applies a simulation-optimisation strategy to 

explore the option of installing a preflash unit as a retrofit option in a crude oil 

distillation system when increasing capacity. This study confirms that 

installing a preflash unit can help to alleviate hydraulic constraints in the 

column (Fraser, 2014), thus avoiding the need to replace column internals. 

None of the methodologies discussed above provide a systematic design 

methodology for optimisation of crude oil distillation systems with preflash 

units that accounts for an extensive set of operating variables, heat 

integration and product quality.  

2. Methodology  

The aim of this work is to develop a systematic approach to design cost-

effective, energy-efficient crude oil distillation systems with preflash units, 

accounting for product quality and heat integration. The approach builds on 
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the simulation–optimisation technique of Caballero et al. (2005) for the design 

of distillation columns facilitated by an Aspen HYSYS–MatLab interface. A 

comprehensive set of degrees of freedom is used – including pump-around 

duties and temperature drops, stripping steam flow rates, the column feed 

inlet temperature and the preflash temperature. Rigorous simulation of the 

column is carried out within Aspen HYSYS v8.6. Product quality specifications 

are constrained, either within the simulation process or within the 

optimisation, using a penalty function. Heat integration is addressed by 

applying pinch technology: the grand composite curve is used to assess the 

minimum utility demand, i.e. for fired heating.  

The crude oil distillation process is modelled using Aspen HYSYS; the crude 

oil models are well established in industrial practice and the rigorous 

distillation models have demonstrated their potential to provide highly 

accurate representations of this complex process. The models require both 

the process and column configurations to be fully defined. Using heater and 

coolers, rather than heat exchangers, allows the process simulation and the 

heat recovery analysis to be decoupled, which simplifies the simulation 

without compromising the evaluation of minimum utility consumption. For the 

configuration with a preflash unit, heating of the crude oil is modelled using 

two heaters – one representing the heating upstream of the preflash unit and 

the other representing the preheating of the flash liquid by heat recovery and 

fired heating.  

The simulation model in Aspen HYSYS is linked to MatLab R2016a via an 

‘automation’ interface that allows the user to send inputs to and collect 

outputs from the simulation package (AspenTech, 2010). Pinch analysis is 

carried out within MatLab given stream data (supply and target temperatures 

and duties). In this way the minimum utility targets can be re-calculated as 

column operating conditions are optimised.  

Before the process is optimised, an initial converged simulation is required. 

Sensitivity studies facilitate understanding of trends in the system behaviour 
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with respect to each design or optimisation variable. Optimisation bounds are 

defined using results of these sensitivity studies. Once the simulation model 

and the HYSYS–MatLab interface are set up, optimisation is carried out using 

embedded algorithms in MatLab and iterative updating of simulation results.  

This study considers a fixed column design and a given set of products. The 

focus is on reducing the fired heat demand of the system. Optimisation 

variables are pump-around duties and temperature drops, stripping steam 

flow rates, column feed temperature and the preflash temperature. The 

objective function is the minimum hot utility demand, where the minimum hot 

utility demand is calculated using pinch analysis. Thus how operational 

variables impact on energy demand is systematically accounted for.  

For the case with a preflash unit, the flash temperature is an important degree 

of freedom. Higher temperatures allow more vaporised crude oil to bypass the 

fired heater, increasing opportunities for heat recovery. In this work, the 

vapour is assumed to be mixed with the crude oil leaving the fired heater; 

future work will also consider the option of the vapour being introduced 

elsewhere in the column. 

Product specifications are set within the simulation package. As there are 

insufficient degrees of freedom with the simulation to ensure that all product 

specifications are met, additional product quality specifications are defined as 

inequality constraints; the objective function is penalised if these constraints 

are violated. 

Experience showed that non-linear optimisation techniques (such as fmincon 

in MatLab) frequently led to the optimisation reaching a local optimum. 

Therefore, stochastic optimisation is applied: simulated annealing is 

implemented in the MatLab R2016a Global Optimisation Toolbox as 

simulannealbnd. The simulated annealing algorithm requires the user to 

specify the initial annealing temperature and to choose an annealing function. 

The termination criteria for the optimisation are the maximum number of 

iterations and a tolerance in the objective function.  
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If an Aspen HYSYS simulation does not converge within a certain number of 

iterations, this can interrupt the optimisation process and significantly 

increase CPU time. Therefore, following the approach of Enríquez-Gutiérrez 

(2016), a penalty is applied to the objective function, identifying that particular 

simulation as having very poor results. Aspen HYSYS is then reset to the 

base case and optimisation continues.  

3. Case Study 

The case study is based on data in Watkins (1979). Figure 1 illustrates the 

crude oil distillation system. The crude oil system comprises an atmospheric 

distillation unit with a condenser, three pump-arounds and three side strippers 

and a preflash unit. The system processes 100,000 bbl day–1 (662.4 m3 h–1) of 

Venezuelan Tia Juana light crude oil. The unit produces five products: Light 

Naphtha (LN), Heavy Naphtha (HN), Light Distillate (LD), Heavy Distillate 

(HD) and Residue (RES). The unoptimised base case design is derived from 

a study by Chen (2008). Vapour leaving the preflash unit is mixed with the 

stream leaving the fired heater; the mixture is sent to the feed stage in the 

main column. Steam is utilised as a stripping agent in the main column and in 

the HD stripper. The HN and LD strippers use reboilers, rather than live 

steam. Product specifications are expressed in terms of ASTM T5 % and T95 

% (in C).  

The optimisation is carried out as described in Section 2. The maximum 

number of iterations is specified to be 300 and the function tolerance is 

11010. The initial annealing temperature is 200 C, and the annealing 

Boltzmann function is used. 

A summary of optimisation results and bounds for operational variables 

obtained for the crude oil distillation system with and without a preflash unit is 

presented in Table 1. Optimisation runs took around 23 seconds of CPU time 

on an HP desktop PC with intel(R) Core i5 processor running at 3.20 GHz 

and 8 GB of RAM. 
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Table 2 presents results related to product quality in terms of ASTM T5 % and 

T95 % (in C) for the crude oil distillation system with and without a preflash 

unit. It may be seen that the product quality constraints are all met within the 

allowed range of temperatures (±10 C). Table 3 shows the results for the 

product flow rates in the two optimised cases. These results show that the 

product yields change relatively little, which is a consequence of the product 

quality being constrained. The hot utility demand of the crude oil distillation 

system decreases from 47 MW for the optimised based case to 45 MW for 

the optimised system with a preflash. 

 

Figure 2 Crude oil distillation system with a preflash unit 
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Table 4 Summary of optimisation results and bounds for crude oil distillation 

system 

Variable Units Base 

Case 

Lower 

Bound 

Upper 

Bound 

Optimisation 

Results  

No 

Preflash 

With 

Preflash 

Main Steam kmol/h 1200 900 1800 1213 1194 

HD Steam kmol/h 250 200 375 245.8 264.7 

PA1 Duty MW 12.8 14 6 6.6 6.1 

PA2 Duty MW 17.8 18 6 11.3 8.3 

PA3 Duty MW 11.2 12 6 9.0 8.6 

PA1 T C 30 20 50 22.9 25.2 

PA2 T C 50 15 60 38.2 42.0 

PA3 T C 20 10 40 36.5 28.2 

Column Inlet 

Temperature 

C 365 350 385 352.3 365.9 

Flash Temperature C 185 180 230  199.8 
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Table 5 Product quality specifications 

Product Base Case 

  

ASTM (C) 

Optimisation 

Results 

No Preflash 

ASTM (C) 

Optimisation 

Results 

With Preflash 

ASTM (C) 

T5  % T95 % T5  % T95 % T5 % T95 % 

RES 363 754 359 753 355 752 

LN 26 109* 25 109 25 109 

HN 143 196* 133 196 133 196 

LD 217* 300* 217 300 217 300 

HD 308 353* 308 353 306 353 

  * Specified in HYSYS  

 

Table 3 Product flow rates (in m3 h–1) 

Product Base Case Optimised 

No Preflash 

Optimised 

With Preflash 

RES 292.1 295.2 299.1 

LN 102.4 100.9 100.9 

HN 86.8 88.5 88.6 

LD 127.6 127.3 126.2 

HD 53.7 50.8 47.7 
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4. Conclusions 

A systematic design optimisation approach is proposed for a crude oil 

distillation system with a preflash unit, starting with rigorous simulations and 

using the grand composite curve as a tool to estimate hot utility demand of 

the system. Results of adding a preflash within the distillation system 

demonstrate that the simulation-optimisation methodology proposed in this 

work is capable of reducing energy consumption in comparison with the base 

case, while maintaining product quality specifications. In future work, the 

simulation-optimisation design methodology will consider the vapour feed 

location in the main column, the column design and capital-energy trade-offs.  

The proposed methodology will be extended to consider design of crude oil 

distillation systems with other pre-separation arrangements, including more 

than one preflash unit or a prefractionation column.  
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Crude Oil Characterisation Step by 

Step 
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Characterise the Assay 

 

The assay contains all of the petroleum laboratory data, boiling point curves, 

light ends, property curves and bulk properties. HYSYS uses the Assay data 

to generate internal TBP, molecular weight, density and viscosity curves. 

Step 1: Provide the Assay Data. Click on the Oil Manager tab to display the 

Input Assay and Output Blend folders. Click on the Add button. 

 

 

Step 2: Enter the values for Standard Density, Light Ends and data for the 

TBP curve.   

 Select the Assay Data Type as "TBP". 



260 
  

 

 Light Ends: Select "Input composition" within the Assay Definition 

Tab. Click on the ribbon for "Light Ends" in the Input Data group. 

Choose the Light Ends Basis as "Liquid Volume %". Finally, input the 

Light Ends data. 

 

 

  

 Distillation input – in this part, enter the TBP data. To start, select the 

Assay Basis as Liquid Volume. Click on the Edit Assay Button.  
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 Input the TBP information needed for the Assay: 

 

 
 

 

 Click the Calculate button. The status message at the bottom of the 

Assay view will change from “yellow” to “green” with the legend Assay 

Was Calculated. 

 

 

 
 

 Once the Assay is calculated, the working curves are displayed on the 

Plots and Working Curves tabs. 
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Step 3: Create a Blend to cut the Assay. The Output Blend 

characterisation in HYSYS splits the internal working curves for the 

assay into pseudo-components. To start, click on the Output Blend Tab 

then, click the Add button. 

 

 
 

 Input the flow rate value:  

 

 
 

 

 Select User Points as a Cut Option Selection, and the Number of Cuts 

as follows: 
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Results of the calculation can be viewed on the Tables and Property Plot 

Tabs. To rename the Assay, right click on the Assay-1 folder. Type the name 

for the Assay. 

 
 

The final step of the characterisation is to install the pseudo-components in 

the Fluid Package. To install the oil in the simulation environment, click on the 

Install Oil Button. 

 

 
 

In the Stream Name column, enter the name Tia Juana Light to which the oil 

composition will be transferred. 



264 
  

 
 

Aspen HYSYS will assign the composition of the calculated Oil and Light 

Ends into this stream, completing the characterisation process. 
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