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Thin elastic sheets are found throughout nature and are also extremely important in indus-

trial applications. Sheets can be described using plate and shell models which, in systems

where shear is negligible, are typically fourth-order, two-dimensional, partial differential

equations. Many such models exist; however, the circumstances in which a particular model

is appropriate to use may not be readily apparent. Therefore a means of comparing differ-

ent unshearable plate and shell models in a general setting is of interest, and is yet to be

systematically addressed in the literature.

The focus of this thesis is the implementation of a generic numerical framework for the

discretization of two-dimensional, fourth-order boundary-value problems, using the method

of boundary patches. We build upon the literature for curved triangular Hermite elements by

outlining the explicit construction formulas for a known class of curved elements, compatible

with Bell elements. We implement these elements within the finite element library oomph-lib.

In this study we consider three plate models: the well-known moderate-rotation Föppl-von

Kármán model, the arbitrary-rotation Koiter-Steigmann plate model and a new moderate-

to-large rotation model, which we derive herein. We then implement these plate models

within the library, so that they can be solved on generic domains.

Finally, we use the implemented plate models, along with analytic and finite difference

approaches, to compare the models in three different contexts. The systems we study are

the clamped inflation of a circular sheet, the inflation of a circular sheet subject to a rolling

clamp, which undergoes a wrinkling instability, and the large cantilever-type displacement of

a complicated curved domain, respectively. In all of these systems the choice of plate models

is demonstrated to be important: in particular in all cases the predictions of the Föppl-von

Kármán model break down for moderate-thickness sheets, yielding inaccurate predictions

of the sheet morphology. This serves both to demonstrate the capability of the numerical

framework as a comparison tool and highlight why such comparisons are important.
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Chapter 1

Introduction

1.1 Overview of Elastic Sheets

Thin elastic sheets, or plates and shells, are ubiquitous throughout nature: any elastic ma-

terial that is much thinner in one dimension than the other two may be regarded as an

elastic shell. A plate is simply a shell with zero initial curvature. Theories of thin elastic

plates find applications from the nanoscale, in the deformation of graphene flakes [Zhang

et al., 2011; Los et al., 2016, 2017] through to the kilometric scale found in continental plates

[Mahadevan et al., 2010; Jaupart and Lévy, 2011]. Thin plate and shell models provide a

powerful framework for the modelling of physical systems as continua, whereby they reduce

full three-dimensional systems to two-dimensional descriptions, by integrating the effect of

through-thickness strains.

Thin plate and shell models are utilised for a variety of reasons, but ultimately they are

used to provide a model of reality: be that by direct simulation, such as in the simulation of a

bio-prosthetic heart valve [Kiendl et al., 2015], or by providing a framework for understanding

a particular system, such as in the scarring of human tissue [Cerda, 2005]. Often the model

is used to provide a means of measurement when more direct methods are unavailable:

such as in the measurement of stiffness for graphene flakes [Los et al., 2016], in which it is

not possible to perform a standard uniaxial tension experiment, or in the measurement of

skin elasticity [Cerda and Mahadevan, 2003] in which non-invasive procedures are favoured

for obvious reasons. These measurements and simulations can inform upon design and

manufacturing and allow real engineering problems to be solved: such as in the design

of deformable electronics [Kim et al., 2008; Rogers et al., 2010; Kim et al., 2011] or the

13



14 Chapter 1. Introduction

deployment and design of space structures, such as reflectors [Wang et al., 2009] and solar

sails [Blandino et al., 2002; Fu et al., 2016]. In the latter applications, the accuracy of the

model is paramount, as ground testing is difficult due to the presence of gravity [Blandino

et al., 2002]. Thus, the understanding of plate models and their ability to accurately capture

behaviour is extremely important in many applications.

1.2 Wrinkling as a Ruler

A particularly important phenomenon found in thin sheets is wrinkling: regular undulations

of thin sheets that occur due to compression. Wrinkling is a familiar concept to most of us

as it is encountered in many aspects of every-day life, from displacement-induced wrinkling

of the skin that forms on the top of milk after heating, to the creases found when draping

of fabric over an object. In all of these scenarios wrinkles form due to compressive stresses,

which are in turn caused by a geometrical incompatibility, i.e having an excess of length or

area that needs to be accommodated [Huang et al., 2010; Holmes and Crosby, 2010].

In very thin sheets, bending out-of-plane is ‘energetically cheap’ as opposed to stretching

and compression in-plane, which is relatively speaking ‘expensive’. As such, deformation in

sheets is characterised by two types of deformation: bending and stretching. The thickness,

h∗, of a sheet is extremely important when considering these two types of deformations,

as the resistance associated with stretching (in-plane tension) typically scales as ∼ h∗, as

opposed to the resistance associated with bending (out-of-plane) which scales as ∼ (h∗)3

[Audoly and Pomeau, 2010]. Thus for thin sheets, large deformations out-of-plane can be

made with little resistance from the sheet. It is for this reason that wrinkling occurs readily

in extremely thin sheets: under any significant compression thin sheets buckle out-of-plane

rather than sustaining compression in-plane.

Wrinkling in thin sheets is often an unfavourable property of a system: for example, with

a telescope reflector, wrinkles would effect the quality of the reflected image [Puntel et al.,

2010]. In many engineering applications, wrinkling is associated with failure of a material, in

which structures lose their rigidity [Genzer and Groenewold, 2006]. However, wrinkling can

also be a useful indicator in experiments and in recent years has proved to be a powerful tool

for measuring sheet properties, especially in systems where more conventional measurements

are difficult or unfeasible [Huang et al., 2007; King et al., 2012].
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Studies have focused on using easily measurable properties, such as wrinkle extent, buck-

ling threshold and the number of wrinkles to determine sheet properties such as thickness,

h∗, and stiffness (Young’s modulus, E) [Cerda and Mahadevan, 2003; Huang et al., 2007;

King et al., 2012]. The advantage to such experiments is that measurement can be made

directly with a birds-eye view, without reconstruction of the displacement. Predictions for

these properties are usually based on either the predictions of the well-known Föppl-von

Kármán equations or the predictions of tension field theory, or a clever combination of the

two, both of which we discuss in detail below.

1.2.1 The Föppl-von Kármán Model

The Föppl-von Kármán model is a thin-plate model which is appropriate for moderate ro-

tations and small strains [Audoly and Pomeau, 2010]: it couples small-displacement (linear)

bending to the partially linearised (small-strain) Föppl membrane model, which neglects

higher order in-plane displacement strains. Classically, it is derived by the joint assumptions

of moderate rotations and the Kirchhoff-hypothesis: an assumption that after deformation

the normal to the undeformed middle-surface of a sheet remains normal and unstretched.

This latter assumption is tantamount to neglecting shear-strain in the model. Modern deriva-

tions have identified the conditions under which the Föppl-von Kármán model emerges as the

leading order model from 3D elasticity, instead making assumptions only on the magnitude of

applied forces and the small thickness of the sheet [Friesecke et al., 2006]. These corroborate

the classical assertions that the Föppl-von Kármán model is appropriate when bending and

stretching are of comparable magnitude and strains are small [Audoly and Pomeau, 2010].

The intrinsic assumption of sheet angles and displacements, renders the Föppl-von Kármán

model unsuitable when finite displacements need to be considered. Little work has been done

comparing higher order plate models that incorporate large displacements and strains to the

predictions of Föppl-von Kármán, the former of which become essential in large-deformation

systems such as twist-induced wrinkles [Chopin and Kudrolli, 2013; Chopin et al., 2015;

Kudrolli and Chopin, 2018].

The Föppl-von Kármán model is a relatively simple model which can predict wrinkling

phenomena. Often results are most readily obtained at the wrinkle onset, or near threshold,

where linear stability analysis is used to deduce information about the sheet near the buckling

threshold.
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1.2.2 Linear Stability Analysis

Linear stability analysis is a technique whereby the equations are linearised about an un-

wrinkled base state. First the base-state equations are solved, by making an ansatz using

the symmetry of the pre-wrinkling state. This base-state may either be solved analytically,

as in Davidovitch et al. [2011], by asymptotic expansion as in Coman et al. [2015], or by

numerical simulation [Coman, 2013]. This base-state is then used as a parameter in the so-

lution of the (linearised) perturbation equations, which in turn yield the wrinkling solution

near to the threshold. Though this solution is strictly valid only infinitesimally close to the

threshold of wrinkling, these solutions may inform upon finite wrinkling patterns close to the

threshold, as well as provide valuable information about the buckling onset. An excellent

example of linear stability analysis is provided by the studies Coman [2013]; Coman et al.

[2015], in which the wrinkling of smoothly-clamped, pressurized, circular sheets, subjected

to both weak and strong in-plane tension are studied both numerically and by asymptotic

methods. This was ultimately used to derive scaling laws for onset wavenumber variation

with in-plane tension [Coman et al., 2015].

1.2.3 Tension-Field Theory and Far-from-Threshold Wrinkling

Tension field theory on the other hand is a formalism that attempts only to identify regions

where wrinkling occurs, without resolving the wrinkles individually. Though these ideas

originated in the 1960s with the works of Stein and Hedgpeth [1961]; Mansfield [1969], the

ideas were later formalized by the work of Pipkin [1986]; Steigmann [1990]. The wrinkled

regions are found by neglecting bending stiffness, instead assuming that any would-be regions

of compression are slackened by fine-scale wrinkles, which are not resolved. Thus the stress

in the sheet is always positive (or zero) and any slack (zero-stress) regions are assumed to

be regions in which wrinkling occurs. These ideas saw a renewed interest after a landmark

study by Cerda and Mahadevan [2003], in which a form of tension field theory was applied

and extended to find scaling laws for both the wavelength, λ ∼ (h∗3E/T )1/4, and amplitude,

A ∼ λ of the wrinkles in a rectangular sheet (see figure 1.1a) under tension, T . These scaling

laws, in turn, can provide means of measurement of properties such as thickness, h∗, and

Young’s modulus, E, especially in systems where standard techniques are not possible. The

new approach, that included calculation of wrinkle wavenumber was later termed ‘far-from-

threshold’ analysis.
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Figure 1.1: (a) Stretch induced wrinkles in a thin sheet under lateral tension [Cerda et al.,

2002], image reproduced with permission from the rights holder, Springer Nature. (b) Thin

floating elastic sheet loaded by a liquid drop. From [Huang et al., 2007]. Reprinted with

permission from AAAS. (c) The Lamé set-up, involving an annular sheet subject to tension

at inner and outer radii. [Davidovitch et al., 2011]. A dashed line indicates the edge of the

wrinkled region, in which the minima are shown schematically as radial lines.

Following this, developments were made to apply and extend this framework to various

other systems: for example, Huang et al. [2007] performed experiments on a floating film,

nanometric in thickness and loaded by a liquid drop of radius, a (figure 1.1b). The sheet was

pulled by capillary forces, induced by the drop, which effectively resulted in two tensions

applied to an annular sheet: the capillary force of the drop at the contact line and the surface

tension, γ, of the liquid bath. A scaling law for number of wrinkles, m ∼ (γ/Eh)1/4(R/h∗)1/2,

similar to the one obtained by Cerda and Mahadevan [2003], and an empirically deduced

scaling for wrinkling extent, L ∼ (Eh∗/γ)1/2R, were used to infer the elastic modulus, E,

and thickness, h, of the films. The understanding of this system was then refined by the

studies of Vella et al. [2010] and Schroll et al. [2013] where a quantitative understanding of

the wrinkle length in the near (i.e. close to the onset) and far-from-threshold regime (i.e

when wrinkling has relaxed the compressive stresses) was obtained.

In the closely related Lamé problem [Timoshenko and Goodier, 1969], studied variously

by Géminard et al. [2004]; Coman and Bassom [2007]; Davidovitch et al. [2011, 2012], which

consists of an annular sheet subjected to tension at inner and outer radii (figure 1.1c),

theoretical progress was made in capturing the transition from near to far-from threshold,

[Davidovitch et al., 2011, 2012]. This was achieved by solving a linear stability analysis
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for the Föppl-von Kármán model at the wrinkling onset and using the tension field theory

approach to determine a region of collapsed azimuthal stress. The wrinkle wavenumber can

then be reconstructed by force balance arguments in the-out-of-plane direction: the bending

induced by wrinkling is assumed to balance the out-of-plane force induced by azimuthal

compression and radial tension, which yield scaling arguments on the number of wrinkles

and the azimuthal (hoop) stress. These studies resulted in the introduction of two new

dimensionless groups to describe wrinkled systems: ‘confinement’ and ‘bendability’, which

measure the relative strength of the tension and the resistance to bending in relation to the

tension, respectively. Thus, in sheets of ‘high bendability’ the bending stiffness is very small,

and the fine-scale wrinkling associated with the far-from-threshold is readily attainable in

the physical system. Confinement, on the other hand, describes relative strength of the

compressive tension, thus this associated with the onset of wrinkling, and the progression

from the near to far-from-threshold state.

These ideas also proved extremely useful in application to related systems, such as sheets

draped on drops, in which similar near and far-from-threshold scaling laws were found using

force-balance arguments [King et al., 2012]. The theoretical description underlying this

study is similar to the pressurized circular sheets of Coman et al. [2015], however the lack of

a bending boundary layer in the strong transverse-forcing limit results in a far more tractable

system, as noted by Coman and Bassom [2016].

All of these concepts were recently generalized by Paulsen et al. [2016] by considering a

local picture of wrinkling, which was then shown to apply to the three systems considered

by Cerda and Mahadevan [2003]; Davidovitch et al. [2011]; King et al. [2012], respectively.

1.2.4 Asymptotic Isometries

A more recent approach related to the ideas of far-from-threshold wrinkling is the study

of asymptotic isometries, i.e. states in which the sheet remains unstretched: often sheets

attain a state of approximate isometry with very little stretching of the midplane in the

far-from-threshold wrinkled state. This is exemplified in the experimental and theoretical

study of the indentation of ultra-thin floating circular sheets by Vella et al. [2015]. Here it is

shown that, for the doubly asymptotic limit of weak applied tension and large bendability,

the sheet adopts an approximately isometric shape under large deflections [Vella et al., 2015].

Thus, for large indentations work is mainly done on the fluid, with little being transmitted
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into the deformation of the sheet.

Asymptotic isometry provides a novel approach to tackle systems which exhibit ‘metric-

induced’ wrinkling, in which the geometrical incompatibility is intrinsic. These include

examples such as in the stamping of elastic sheets into spherical molds [Hure et al., 2012]

and the spherical Winkler problem, in which a flat sheet is draped over a spherical shell [King

et al., 2012; Bella and Kohn, 2017]. In such systems geometrical incompatibility ultimately

results in an induced strain in the system, making the approach of minimizing bending

energy subject to zero stretch impossible: thus the ensuing morphology instead approaches an

isometric state asymptotically, in the limit of high bendability and confinement [Davidovitch

et al., 2019], once again forming an approximately isometric state.

From these studies the connection between wrinkling and isometry is clear: in very thin

sheets wrinkles provide a means of slackening sheets undergoing geometrical incompatibility.

1.2.5 Studies of Large Displacement Far-From-Threshold Systems

Several studies have recently focused on analysing the approximately isometric states found

in the large deformations of twisted ribbons [Chopin and Kudrolli, 2013; Chopin et al.,

2015; Kudrolli and Chopin, 2018]. In particular, the study of Chopin et al. [2015] made

progress by considering a set of large-displacement plate equations, which they refer to as

the covariant Föppl-von Kármán equations. These particular equations were first derived in

the context of elastic growth problems by Dias et al. [2011] and are closely related to the

model of Efrati et al. [2009], an extension of the Koiter [1966] model that includes growth

terms. The nonlinear Koiter [1966] model, in turn, is an arbitrary-displacement plate model

that is derived from 3D elasticity based only on the assumptions of thinness, the assumption

that the underlying strains are small and the assumption of approximately plane stress.

The resulting model of Koiter [1966] is a large-displacement, geometrically nonlinear plate

model. For this model, the Kirchhoff-Love assumption is approximately satisfied, and the

model neglects through-thickness shear strains, based on the plane-stress hypothesis.

Chopin et al. [2015] use the Dias et al. [2011] model to study the ribbon system by assum-

ing a helicoid ribbon shape, effectively extending the classical solution of Green [1936, 1937]

to finite displacements. Using the small-displacement base-state, near-threshold results are

obtained by linear stability analysis. The far-from-threshold regime is also studied, which

is achieved by assuming the large-displacement helicoid shape for the strip and searching
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for a wrinkling pattern that relaxes the stress in the compressive region: thus the wrinkling

pattern is completely determined by the stress-relaxation condition. This analysis allows a

complete characterization of the various parameter regimes and is the first study to analyse

far-from-threshold wrinkling in a large-displacement setting. It provides a further example

of asymptotic isometry, as in the limit of large twist the wrinkles completely relax the com-

pressive stresses, leaving the sheet in an approximately un-stretched configuration [Chopin

et al., 2015].

The model of Dias et al. [2011], used by Chopin et al. [2015], is similar to the Koiter

[1966] model, but instead of being derived from 3D elasticity, it is based on the kinemati-

cal Kirchhoff-Love hypothesis. This model includes additional lower-order strain-curvature

terms in the bending energy: however, as their model is based on the two assumptions of the

Kirchhoff-hypothesis and plane-stress, rather than the single assumption of approximately

plane stress, there is no guarantee that their inclusion provides any additional accuracy from

a physical perspective. Indeed given that the recent finite-strain extension to the Koiter

plate model of Steigmann [2013], does not include these terms, it would suggest that they

are not necessary to include. The model of Steigmann [2013], in turn, is a rationally derived

finite-strain extension to the Koiter [1966] model, derived from 3D elasticity using minimal

assumptions. All of these models will agree in the limit of small strain, however, which is

the basic assumption in the studies of Dias et al. [2011] and Chopin et al. [2015].

1.3 Other Metrics for Measurement

Although wrinkling provides a straightforward means of measurement in thin-sheet systems,

it is by no means the only observation that can be used to determine material properties.

Other observations, such as the out-of-plane displacement (deflection) of deformed sheets

naturally provide a means of measurement. In Box et al. [2017] for example, who studied a

similar problem to Vella et al. [2015], both the wrinkling threshold and the axisymmetric base

state of a circular sheet subject to an indentation (an imposed displacement at the centre)

are shown to follow scaling laws, which could be used to measure thickness or stiffness for

sheets of varying thickness.

Indeed, in studies of graphene sheets the primary means of measurement is by observing
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axisymmetric deformations, and the most common types of experiments are sheet inden-

tations [Zhang et al., 2011]. In a typical set-up, a deformation is imposed by an indenter

and the corresponding applied force is measured [Castellanos-Gomez et al., 2012; López-Poĺın

et al., 2015; López-Poĺın et al., 2017; Los et al., 2016, 2017]. Another common way to deduce

sheet properties is instead to consider pressurized sheets [Koenig et al., 2011; Khestanova

et al., 2016; Berger et al., 2016], which can also be used to determine adhesion energy in

line with classical blister tests [Koenig et al., 2011]. This type of set-up has also been used

to create nano-scale pressure sensors, by measuring the capacitance of nano-cavities in the

linear-bending regime [Berger et al., 2017a,b].

These studies typically use the predictions of the Föppl-von Kármán model, or the sim-

pler Föppl membrane model, in order to measure quantum mechanical analogues of the

stiffness and thickness. Interestingly, the continuum model still gives reasonable estimates

for bending modulus even for tri-layer graphene plates, with an error of only 6% [Zhang

et al., 2011]. However, for monolayer sheets the measured bending stiffness does not arise

from through-thickness stresses, as in classical plate theory, but is instead a consequence

quantum mechanical effects [Zhang et al., 2011].

Many of these indentation studies, however, appeal to asymptotic results in order to

perform fitting to the experimental data, in an approach recently criticised by Vella and

Davidovitch [2017]. Vella and Davidovitch [2017] point out that the formula used for the

fitting in the above studies, which is a naive linear combination of two separate asymptotic

results at small and large indentation, results in large errors in the intermediate indenta-

tion regime. An obvious solution to this is to instead fit to numerical data when in the

intermediate regime. One solution proposed by López-Poĺın et al. [2017], is to fit a com-

plete third-order polynomial in the intermediate regime: however, as shown by Vella and

Davidovitch [2017], this may lead to large errors in the determined Young’s modulus. Vella

and Davidovitch [2017] further critique the use of the full sheet shape to perform fitting for

both elastic modulus and pre-stretch, as in Xu et al. [2016], because from the shape of the

deflection alone there is no way to distinguish whether the experiment is in the small or large

indentation regime [Vella and Davidovitch, 2017].

These studies of graphene build upon a large body of literature for blistering-type prob-

lems in classical systems [Dannenberg, 1961; Gent and Lewandowski, 1987; Guo et al., 2005],

which have long been used as tools for determining physical properties: in this context the
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main focus of experiments was to determine adhesion energy, using known elastic proper-

ties. The principal set-ups that have been considered have largely been of clamped circular

sheets, under various axisymmetric loading conditions: these include pressure loading, punch

loading1, point indentation and spherical indentation [Wan et al., 2003; Guo et al., 2005].

Pressurized systems have been especially successful for non-porous membranes, but much

less successful for sheets with defects, holes or porosity [Begley and Mackin, 2004]: for these

systems displacement by indentation is much more practical. Initial conditions have been

demonstrated to be extremely important in gaining accurate results, especially control of

initial pre-stretch and control of the initial deflection of the film [Small and Nix, 1992].

Linearized models have proven insufficient to describe experimental regimes in many

cases, due to the intrinsically minute forcing and displacement associated with such a regime

[Voorthuyzen and Bergveld, 1984]. Despite this, most systems are typically considered the-

oretically either in regimes where the deflections are either very small (bending dominated)

or moderate-to-large (membrane-like or stretching dominated). In intermediate regimes the

equations are more difficult to solve and standard techniques cannot be applied. Usually in

this regime numerical simulations are sought, but some progress has been made analytically

using the Föppl-von Kármán equations by Wan et al. [2003], who assumes a constant mem-

brane stress throughout the domain: thus linearising the out-of-plane equation. Typically in

such experiments, at moderate displacements, membrane forces dominate and bending can

be neglected. If the applied in-plane stress is small compared with self-induced stress, this

results in the applied force, F ∗, typically scaling as the deflection, v∗3, cubed: F ∗ ∼ (v∗3)3

[Wan et al., 2003].

Despite the simplicity of the simple inflation problem, geometrical nonlinearity in these

systems can complicate fitting procedures, especially in the intermediate regime. Large

displacements and rotations during simple inflation have not been considered and may be

expected to lead to a breakdown of the typical membrane scaling predicted by the Föppl-

von Kármán model. As such a robust understanding of the underlying physics is necessary.

Beyond these intricacies, ultimately we understand an object’s properties in the same way

as humans have since antiquity, we apply a force to an object to observe how it deforms.

1Punch-loading is a load distributed by a cylinder applying a force at the centre of a sheet. It can be
clamped to the sheet, in which case the sheet is in contact with the whole face of the cylinder, or resting on
the sheet, in which case the load will be applied along a particular radius.
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1.4 The Need for Full Numerical Simulations

Whilst a large amount of progress has been made by considering simplified models and

analytic scaling laws, the limitations of these laws for the description of more complex systems

are readily apparent. Many problems are, to all intents and purposes, insoluble by these

means: full numerical simulations are a necessity when fully nonlinear analysis is needed

for a system, such as in Pihler-Puzović et al. [2013] where results are needed in the fully

nonlinear regime of a bubble displacing a viscous fluid in an elastic-walled Hele-Shaw cell.

Full numerical simulations may also be necessary in systems in which the geometry is

complex, such as in the simulation of a bio-prosthetic heart valve [Kiendl et al., 2015].

Full numerical simulations can, of course, also inform on the development of new simplified

models, and be used to explore regions in which simplified models break down. Finally, they

allow a direct comparison to be made of the predictions of different models, and analytic

approaches, thereby providing a powerful tool for assessing the accuracy of different models.

The importance of model selection is exemplified by the study of Healey et al. [2013],

who demonstrated that in the strip-pull wrinkling system of Cerda and Mahadevan [2003],

nonlinear simulations of the Föppl-von Kármán model predicts an ever increasing amplitude

of wrinkles, unlike models which include a geometrically exact membrane term. Healey et al.

[2013] introduce an ad hoc model, which supplements the Föppl-von Kármán model with

the geometrically exact membrane terms, which does not display this behaviour. This study

was performed using a finite element discretization of the rectangular domain. The same

predicted decrease in wrinkle-amplitude was later demonstrated to be the behaviour of a

real system in experiments performed by Sipos and Fehér [2016].

The Föppl-von Kármán model was implemented in the open-source finite element library

oomph-lib [Heil and Hazel, 2006], for the special case of fully clamped systems by Pihler-

Puzović et al. [2013]. This study uses a particular mixed finite element method (cf. section

1.5.3), which cannot be used to impose general boundary conditions. This was used to

study the suppression of the fingering instability in an elastic-walled Hele-Shaw channel: a

fully-coupled fluid-structure interaction problem.

Other examples that develop full numerical simulations of plate models include, for in-

stance, the implementation of large-displacement plate models in Taylor et al. [2014] and

Taylor et al. [2015], which both obtain numerical solutions to the large-displacement, non-

linear Koiter plate model [Koiter, 1966], which was recently extended to finite strains by

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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Steigmann [2013]. The Koiter [1966] model is suitable for the study of large displacement

systems undergoing small strains, when through-thickness shear can be neglected. These

studies develop two-dimensional finite difference schemes for the equations, which are then

embedded in a damped pseudo-time-dependent system to minimize the energy, using dy-

namic relaxation. Dynamical relaxation replaces the physical equations with an artificial,

dissipative dynamical system: equilibria to this system, which are obtained once the tran-

sience has abated, correspond to solutions to the original physical system [Taylor et al.,

2014]. Finite difference methods, however, can only account for simple shapes. This limits

their use in generic plate problems.

Many studies in the literature use commercial codes to obtain numerical simulations of

thin elastic sheets (e.g. Portela et al. [2008]; Nayyar et al. [2011]; Taylor et al. [2015]),

most notably Abaqus [Smith, 2009]. As well as being used to directly simulate systems, such

simulations also provide extremely useful data through which to validate analytic predictions

and scaling arguments of simplified models: for example in the numerical verification of the

predicted far-from-threshold regimes in plates [Taylor et al., 2015], wrinkling in indented

shells [Vella et al., 2011] and in the validation of simplified models of orthotropic elastic

shells [Vidoli and Maurini, 2008; Seffen and Maurini, 2013; Vidoli, 2013], the latter case

of which has proven extremely useful for predicting the phenomena of multi-stability in

shell-systems [Coburn et al., 2013; Seffen and Maurini, 2013; Hamouche et al., 2017].

Abaqus simulations have also been used to compare differing numerical approaches for

post-buckling analysis by Taylor et al. [2015], in which dynamic relaxation simulations of

the Koiter-Steigmann model are compared to Abaqus simulations using S4R shell elements.

However, in this study the explicit equations that these elements implement remains obscure,

quoting Taylor et al. [2015]:

“[A]n explicit expression for the strain energy is not given in the Abaqus theory

documentation, it is likely to be akin to [the Koiter strain energy] but with the

bending strain replaced with the linearised Budiansky-Sanders bending strain.”

This study exemplifies two obvious difficulties currently encountered in the literature:

1. Model comparison is complicated by using different discretization methods.

2. Closed source codes often use plate equations for which the explicit equations remain

obscure.
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The first point is of particular importance in thin-plate models, as the use of sufficiently

continuous boundary and bulk discretizations is well known to be important in ensuring

solutions converge appropriately under mesh refinement [Žeńı̌sek, 1981a; Ciarlet, 1991]. Fur-

ther, the second point makes the direct comparison of different continuum models difficult,

as the underlying continuum model of the commercial code is not apparent [Taylor et al.,

2015].

Thus, a unifying framework in which these kind of models can be discretized, for generic

boundaries and boundary conditions, and in which the model used is both configurable and

explicit, would be of importance to the literature. As such, the development and imple-

mentation of a framework for generic plate models, and generic methods for fourth-order

problems is the focus this thesis.

Many methods are used to simulate plate-problems numerically: in the next section we

outline the main techniques used and highlight their relative merits and disadvantages for

implementation as a generic plate problem.

1.5 Numerical Studies of Thin Plates and Shells

1.5.1 Overview of Numerical Techniques

For the numerical simulation of plates several methods are particularly prevalent, which we

outline here. The most straightforward means of simulation is by directly discretizing the

governing equations via the finite difference method.

The Finite Difference Method

Typically, in finite difference methods the domain is split into a regular mesh of nodes,

which allow derivatives to be determined at discrete points in the domain. At each point a

discrete set of equations are constructed and, together with discrete boundary conditions,

the equations are converted from a set of differential equations to a set of algebraic equations

[Szilard, 2004]. These algebraic equations can then be solved by standard (usually Newton-

type) methods. Extensions can be made to use non-uniformly spaced nodes, but ultimately

these extensions confound the main advantage of the finite difference method, which lies in

its simplicity [Szilard, 2004]. The use of finite difference methods for axisymmetric (1D)

systems is straightforward in plate and shell models (see e.g Pihler-Puzović et al. [2013]),
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and is a common technique in the literature [Sheploak and Dugundji, 1998; Coman, 2013;

Pihler-Puzović et al., 2013].

The main disadvantage in using finite difference methods are that they are difficult to

automate for generic problems: the creation of finite difference codes for arbitrary geometry

and boundary conditions is difficult. Moreover, each new problem might require new finite

difference representation, which can be tedious to construct. Finally, for the standard finite

difference method, the geometry is difficult to represent for arbitrary shapes: only simple

shapes for which a conformal mapping exists can be readily discretized.

Another disadvantage associated with finite difference methods, especially for plate and

shell models, is that the governing equations are often far more complex than the correspond-

ing variational equations. Applying boundary conditions is also often more complicated than

in corresponding variational methods.

Collocation Methods

Collocation methods also rely on direct discretization of the governing equations: however,

instead of solving approximate equations formed of discrete derivatives, as in the finite dif-

ference method, collocation methods rely on approximating unknown functions using an

assumed (discrete) set of functions with unknown coefficients. The discrete set of functions

are either chosen such that they satisfy the boundary conditions or the boundary condi-

tions are introduced as additional equations. The unknown coefficients are determined by

solving the governing equations at a discrete set of points [Szilard, 2004], resulting in a

coupled set of (in general nonlinear) algebraic equations. Solutions are sought in a partic-

ular finite-dimensional function space [Brunner, 2004]: often functions with local support

such as piecewise polynomials or spline functions are selected, due to the sparse nature

of the resulting matrices. When used with piecewise polynomial functions with Lagrange-

type unknowns, that is unknowns that correspond to the value of the unknown function

at a particular point, the collocation method will produce identical discrete equations to a

corresponding finite difference scheme on the same mesh.

In axisymmetric problems, collocation methods are frequently used to numerically solve

the membrane equations: many studies use the tool bvp4c from the numerical computing

environment MATLAB [Kierzenka and Shampine, 2001], including the studies of Box et al.

[2017]; Vella and Davidovitch [2017]. This implements a generic tool for first-order ODES,

https://uk.mathworks.com/products/matlab.html
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using a generic interface to a C1 (gradient) continuous collocation scheme of third order

polynomials. To use bvp4c, the equations must first be reduced to a set of first order ODEs,

which is straightforward to achieve for second-order problems.

Collocation schemes may be used for two-dimensional boundary-value problems, see for

example Reali and Gomez [2015]; Kiendl et al. [2015], but ultimately such schemes rely on

similar discretization techniques to the finite-element method which we cover below.

Finite Element Method

A widespread method in use for the numerical solution of partial differential equations is the

finite element method. For systems with a variational principle, the finite element method

directly discretizes the variational equations. Variational equations minimize a particular

functional (say, an energy) over a region of space, by considering the change in the func-

tional due to small, arbitrary variations of the independent variable (say, small, arbitrary

displacements): the minimum of the functional occurs when the total variation is zero.

The finite element method discretizes the variational equation, by interpolating the in-

dependent variable piecewise, dividing the domain into a finite number of parts, or elements.

Elements are typically simple geometric shapes, such as triangles and quadrilaterals. El-

ements represent the solution locally, usually by interpolation which is usually continuous

between elements. Variations are also interpolated using the same basis, leading to a discrete

set of equations. The ensemble of elements that make up the whole region is known as the

mesh. Integration within elements is calculated numerically using quadrature2.

In classical finite element methods elements are made of a set of nodes, each of which

represents the corresponding location of an unknown. Basis functions are then used to inter-

polate between these unknowns over a localised region of space. In isoparametric methods,

the geometry is also interpolated using the position of the nodes, using the same basis func-

tions, allowing the elements to represent curved domains. For second-order boundary-value

problems, the discretization is usually straightforward. As only first derivatives appear in

the variational equation, to be integrable the representation of the solution need only be

value or C0-continuous: this is an easy condition to satisfy, which makes it straightforward

to construct isoparametric discretization schemes for second-order boundary-value problems.

2 Numerical integration or numerical quadrature is performed by evaluating a function at a series of
integration, or quadrature, points within a region, these contributions are then weighted and summed to
approximate the integral over the region.
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For fourth-order systems, however, the situation is more complicated. Due to second

derivatives appearing in the equations, to be integrable, in general the interpolation scheme

must now be C1 or gradient continuous between elements, which is a far more restrictive

constraint.

This is particular relevant for plate models, as plate models in which through-thickness

shear-strains are neglected are generally fourth-order in one or more of the displacements.

Direct Energy Minimization

A method that has recently been used for the solution of shell and plate problems is the

method of direct minimization [Schroll et al., 2011; Lecieux and Bouzidi, 2012; Arza et al.,

2013; Paulsen et al., 2015], using the software Surface Evolver [Brakke, 1992]. Surface

Evolver evolves the energy of a system toward local minima using a first-order gradient

descent method [Brakke, 1992]. The energies, in turn, are discretized on a grid of simplicial

elements, or facets. This method is favoured because of the flexibility of the underlying

software, which can handle many different types of system. Another advantage is that the

gradient descent method implemented for this code is inherently more stable near bifurcation

points, due to the method being first order [Lecieux and Bouzidi, 2012]. Lecieux and Bouzidi

[2012] report that this can make the computation of wrinkled structures more efficient than

corresponding finite element simulations.

However, this method relies on discretizations that are identical to the finite element

method and as such elements are subject to the same continuity requirements as corre-

sponding finite element methods. Below we therefore proceed by discussing some of the

methods for simulating plates and shells, within the context of the finite element method.

1.5.2 Finite Element Methods for Shearable and Solid-Shells

Solid-Shells

The most obvious way of modelling a thin shell or plate is to directly use the three-

dimensional equations of elasticity, using very thin elements. However, in large aspect-ratio

elements a phenomena known as shear-locking plagues such calculations [Wempner and Ta-

laslidis, 2002]. In 3D elements, unless the thickness and length of the elements is comparable,
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spurious shear terms3 dominate the energy, causing the elastic response to be overly stiff.

Many elements are therefore needed to accurately model even simple bending deformations:

making this an impractical method of approximation.

Many methods have been introduced to overcome these difficulties. Common methods to

alleviate these issues include: the introduction of discrete Kirchhoff constraints [Wempner

and Talaslidis, 2002], in which the normal at the centre-point of an element is constrained to

remain normal; reduced or selective-reduced-integration (RI and SRI) which use numerical

integration schemes carefully chosen to eliminate the spurious shear terms [Wempner and Ta-

laslidis, 2002]; the assumed natural strain method (ANS), which uses new quadrature points

that are appropriately re-weighted for the integration of the strains [Dvorkin and Bathe,

1984; Sze and Yao, 2000; Caseiro et al., 2014], and the enhanced assumed strain method

(EAS) [Simo and Rifai, 1990]. The enhanced-strain-method, in turn, replaces the strain in

the three-field (displacement-strain-stress) mixed4 variational principle with an ‘enhanced

strain field’. This enhanced strain-field behaves like a Lagrange-multiplier enforcing the

relationship between the stress-field and the displacements, but, unusually for a Lagrange-

multiplier, vanishes under mesh refinement. A general overview of the topic can be found in

Sze [2002].

Whilst being of use for the physical simulation of shells and plates, these methods can-

not provide a direct comparison between different thin-plate theories, as they instead model

three-dimensional elasticity using thin three-dimensional elements. Therefore any simplifica-

tions are not made in the model, but rather are made in the underlying discretization of the

equations. Given that the manner in which constraints and simplifications are imposed in

plate-models may result in a plethora of distinct plate and shell models, it is not necessarily

obvious which thin-plate or shell theory a particular 3D-shell element will correspond to.

Shell and Plate Models with Shear

Shell and plate models can be derived based on the assumptions of thinness and kinematical

assumptions about how the displacements vary through the thickness. If shear strains are not

neglected in this analysis (i.e. the plate/shell is not assumed to be in a state of approximate

3These shear terms arise as a consequence of the large aspect ratio of the element: such elements are “legal
approximations” and converge under mesh refinement. However, unless they have aspect ratios of order ∼ 1
they produce poor results [Wempner and Talaslidis, 2002].

4Mixed finite element methods reformulate the governing equations in terms of additional auxiliary fields,
and additional equations.
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plane-stress) then then the resulting model is of a shearable or thick plate/shell. Such models

include the classical Reissner-Mindlin plates [Ciarlet, 1997], the nonlinear Naghdi [1962,

1973] shell model and shearable versions of the Föppl-von Kármán equations [Kere and

Lyly, 2005], all of which introduce new unknown directors that are solved for, in addition to

the unknown displacements. The directors are the unknown, variable-coefficients associated

with thickness-wise expansions of the 3D displacement. The resulting equations are second

order in all variables, and thus only require C0 continuous interpolation.

Unfortunately such models are well known to suffer from the same issues of shear locking

as corresponding thick-shell elements; similar techniques are used to alleviate such locking

behaviours, such partial-selective-reduced-integration (PSRI) [Chinosi and Lovadina, 1995;

Boffi and Lovadina, 1997; Arnold and Brezzi, 1997], assumed natural strains methods (ANS)

[Bischoff and Ramm, 1997; Hale et al., 2018], enhanced assumed shear methods (EAS) [Simo

and Rifai, 1990; Bischoff and Ramm, 1997] and the mixed interpolated tensorial components

approach (MITC) [Bathe and Dvorkin, 1985; Bathe et al., 1989]. The MITC method is

based on a mixed method which introduces shear strain fields as an additional variable:

these strain-fields are subsequently eliminated from the final linear system, so that no ad-

ditional unknowns are introduced. For a comprehensive discussion of shearable plates and

discretization techniques which are then implemented for several shearable plate models we

refer the interested reader to Hale et al. [2018]. The code outlined in this paper forms part

of the finite element library FEniCS [Alnæs et al., 2015].

The models we intend to compare in this thesis all neglect the effect of through-thickness

shear stress: these effects are important in the deformation of thick shells, or shells under

strong lateral loading. Such effects can be neglected in the contexts we consider in this

thesis; as such, though of interest in general for the characterization of shells, our discussion of

shearable models ends here. We proceed instead to discuss the challenges faced in numerically

solving unshearable plate and shell models.

1.5.3 Finite Element Methods for Unshearable Shells

Shell and plate models for which shear-strains are neglected, in line with Kirchhoff-Love type

approximations, do not exhibit shear locking when discretized directly. Instead such models

are described by fourth-order partial differential equations. As discussed, for fourth-order

partial differential equations to be integrable in the finite element method it is in general
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necessary to discretize the equations using C1 (gradient) continuous finite elements. In two

dimensions, this property is difficult to ensure, especially for elements which attempt to accu-

rately interpolate the geometry. Accurate interpolation of the geometry, in turn, is necessary

to ensure correct characterization of the boundary-value problem [Žeńı̌sek, 1981a,b].

Polygonal Domains

For polygonal domains, in which plate boundaries are piecewise linear, constructing and

using C1-continuous interpolation schemes can be achieved using elements with Hermite or

derivative degrees of freedom. As opposed to standard Lagrange (value-type) interpolation

where functions are interpolated by the value of the function at discrete points, Hermite

interpolation uses values and derivatives of the unknown function to interpolate. With

Hermite interpolation it is possible to represent both the value of a function and its first

derivative continuously across the edges of elements. However, most Hermite-type elements

are defined only for simplex elements and can therefore only interpolate the geometry linearly.

Commonly used interpolation schemes include the Hermite polynomial triangular ele-

ments of Bell [1969] and Argyris et al. [1968], the quadrilateral elements of Bogner-Fox-

Schmidt [Bogner, 1965] and the singular Zienkiewicz triangle [Ciarlet, 1991]. Composite or

macro-elements, made of several elements, such as the reduced Hsieh-Clough-Tocher triangle

can also provide a C1-continuous interpolation scheme [Ciarlet, 1991].

Isoparametric Methods

Although isoparametric interpolation is often sought for second-order problems, its use in

fourth-order problems is not straightforward: the use of C1-continuous, isoparametric ele-

ments often necessitates severe geometric constraints5 to be imposed on the mesh, which

is unfavourable for meshing arbitrary geometries. The only isoparametric Hermite element

commonly used in the literature is the Bogner-Fox-Schmidt element, a four-sided element

which can be readily adapted to an isoparametric setting [Petera and Pittman, 1994; Fischer

et al., 2010; Fischer, 2011]. Unfortunately, for the use of this element, each mesh must be

topologically rectangular: that is, each vertex must be at the intersection of exactly four

elements. Thus, these elements may only be used on structured meshes, making the mesh-

ing of arbitrary domains less flexible than corresponding triangular domains. Isoparametric

5This is because the mapping from reference to global coordinates will either need to preserve angles on
inter-element boundaries, or be shared between adjacent elements to satisfy C1-continuity.
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Bogner-Fox-Schmidt elements have been used in the context of gradient-elasticity6 problems

by Fischer et al. [2010]; Fischer [2011]. However, the constraints in the meshing procedure

make them less suitable for a general-purpose code than other methods considered in this

thesis.

Mixed and Hybrid Methods

Instead of solving the original variational problem, one can consider a lower order varia-

tional principle that approximates the original system via the introduction of new auxiliary

variables. By formulating a system of lower order equations, the unknowns present in such

methods are therefore relatively straightforward to interpolate. However, constructing sta-

ble7 approximation schemes is a non-trivial task [Arnold, 1990; Brezzi and Bathe, 1990]:.

This, coupled with the fact that such schemes need to be constructed for a particular equa-

tion [Lovadina, 1996] rather than constructing generic interpolation schemes for any fourth

order problem makes these methods unattractive for the creation of a general framework for

fourth-order boundary-value problems.

Isogeometric Methods

Isogeometric methods are a relatively new method of approaching finite element problems.

Originally proposed by Hughes et al. [2005], isogeometric elements aim to combine the ele-

ments of design and analysis of physical systems into a single framework through the use of

existing techniques from computer-aided-design (CAD). CAD-type basis splines are used to

provide representation of both the geometry and the unknowns in physical problems, in a

similar manner to traditional isoparametric methods: however the main distinction between

isogeometric methods and traditional finite elements is that the reference space in isogeo-

metric methods is localised over so-called patches of elements not localised over a particular

‘reference element’ (cf. figure 1.2). Importantly, bases are not necessarily interpolatory : the

unknowns, and position of ‘nodes’ (i.e. control points) do not necessarily represent physical

values of the solution or positions in the mesh.

6 Gradient-elasticity generalizes the notion of continua to incorporate additional types of degrees of freedom
at the microscopic level. The result of this is to introduce higher order strain-gradients into the constitutive
law of a material [Askes and Aifantis, 2011; Fischer, 2011]. Such models are used for materials in which
microstructure is important, such as in concrete or metals in which there is an internal length-scale [Fischer,
2011].

7By stability we mean that the solution to the approximate problem converges to the solution at the
same rate as the ‘best approximation’ i.e in a least-squares sense. Unstable mixed schemes will generally not
converge at all under mesh refinement [Arnold, 1990].
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Figure 1.2: Cubic B-spline basis on a single patch with C0 continuity (left) and C1 continuity

(right). Elements are defined by knot-spans, over which basis functions are smooth. At

knots (i.e. element boundaries) the basis is only Cp−m continuous: where p is the order if

the basis and m is the ‘multiplicity’ of the knot, which is configurable. The reference space,

parametrized by ξ, spans all three elements within the ‘patch’.

The most common form of isogeometric analysis uses non-uniform-rational B-splines

(NURBS) as basis functions: these functions have the advantage of being able to represent

many common geometrical shapes exactly and having configurable smoothness and refine-

ment levels over the domain. Typically, multivariate basis functions are generated by taking

tensor products of 1D basis functions: this tensor-product structure forms the basis for a

single patch, which results in topologically rectangular meshes over each patch.

In the classical finite element method elements have two representations: one in the

reference space, one in the physical space: whereas in a NURBS mesh there is instead a

physical mesh and a control mesh. The control mesh is a net of points that controls the

shape of the physical mesh. A NURBS mesh consists of a single patch (a macro element)

subdivided into elements, which are defined by the knot-spans: areas in which the basis

functions are smooth (C∞). Similarly to the classical finite element method, basis functions

are localised over neighbouring elements, meaning that the resulting matrices are sparse,

just as in the finite element method. These knot spans define a simple rectangular mesh in

the reference space which spans the whole patch. Most simple geometries can be represented

with a single patch, which is a necessity as inter-patch continuity is only C0.

Multi-patch geometries are typically joined with ‘bending strips’, a method introduced

by Kiendl et al. [2010]: these are are strips of material that have a configurable bending

stiffness and no associated membrane stiffness, which are introduced at patch boundaries to

prevent ‘kinks’ forming. Unfortunately, the ‘strips’ introduce an additional bending stiffness
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into the model, which does not have physical origin and can affect the stability of the method,

leading to spurious deformations [Kiendl et al., 2010].

NURBS-based isogeometric methods have been used successfully on a variety of problems

within the literature, including the fluid-structure interaction of wind turbines [Hsu and

Bazilevs, 2012], the deformation of a bio-prosthetic heart valve [Kiendl et al., 2015] which

include the implementation of several large-displacement plate and shell models [Kiendl et al.,

2009; Hsu and Bazilevs, 2012; Kiendl et al., 2015; Nguyen et al., 2016], amongst others.

An alternative to this method is the use of T-splines which can mesh any domain as

a single patch, meaning that there is no need to introduce ‘bending strips’ to join patches

continuously [Bazilevs et al., 2010]. However, these splines encounter similar gradient dis-

continuities to NURBS at so-called ‘extraordinary vertices’, at which the valence (number

of meeting elements) is not four [Scott et al., 2013; Kapl et al., 2018].

The creation of non-tensor-product patches was recently achieved by Nguyen et al. [2016],

meaning that any number of patches can meet at vertices: this means much more general

meshes may be considered using this method. Finally, we mention a very recent contribution

to the literature which introduces a multi-patch parameterization that is C1 continuous

between patches, which can be of arbitrary connectivity. This new method combines existing

ideas from classical Hermite-type interpolation with the isogeometric method by introducing

Hermite-type (derivative) unknowns on patch boundaries [Kapl et al., 2019], which allows a

C1 continuous discretization of an entire domain.

It is worth noting that the isogeometric approach can also be applied to collocation-type

methods, which can provide significant benefits over finite element-type simulations [Nguyen

et al., 2015]. A brief review of collocation methods in isogeometric analysis is given in Nguyen

et al. [2015].

Given that both unstructured C1-continuous domains and generic shape C1-domains are

still, for the most part, an open problem for the isogeometric method we do not use them

for this study.

Subdivision Elements

In a similar vein to NURBS-based isogeometric methods, sub-division elements use patch-

type interpolation schemes to provide high continuity representations of unknown fields over

a surface. Originally introduced for plate and shell models by Cirak et al. [2000], they have
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proven to be an extremely efficient means of solving plate and shell type problems. For

example, they have been used simulations of airbag deployment [Cirak and Ortiz, 2001] and

growth models for thin structures [Vetter et al., 2014].

These elements, at least in principle, can be used for arbitrary triangular meshes and

interpolate both geometry and unknowns. However, at so-called irregular vertices in the

mesh: points at which the valence (number of meeting elements) is not equal to six, there exist

curvature singularities. These singularities are square-integrable, but affect the accuracy of

numerical integration in their vicinity. Another noteworthy point is that basis functions are

nonlocal: the basis function associated with a vertex, v, in an element, e, spans all elements

surrounding e: this is in contrast to classical finite element basis functions which instead

span only elements that contain the vertex, v.

That being said, the basis functions themselves only require a single quadrature point per

constituent element, which results in extremely fast construction of residuals and matrices.

Most Hermite type elements in contrast require very high order schemes, to maintain their

high accuracy.

Unlike NURBS, these basis functions cannot exactly represent common geometrical

shapes, but do provide accurate, piecewise (C2-continuous) boundary interpolation, which

is sufficient for use for generic boundary conditions in plate and shell problems.

Boundary-Patch Methods

Classical Hermite elements can only interpolate geometry linearly so cannot represent curved

boundaries. However, it is only strictly necessary to have curved elements on the edges of

domains, in order to represent curved boundaries. A natural way to account for this is to

introduce conforming elements, that are only present at curved edges of the domain (see

figure 1.3). By constructing elements with a single curved edge, it is possible to to introduce

elements that conform with straight-sided counterparts, whilst being able to account for edge

curvature. This turns out to be a flexible method: a major advantage associated with this

method is that standard (unstructured) constrained Delaunay triangulation can be used to

mesh the domain, for which curved boundaries can be easily introduced as a post-processing

step. This means that such a method can flexibly account for generic plate problems, without

difficulty for generic domains. Due to the inherent high order of these elements, the geometry

and unknowns can be represented using very few elements and results converge very quickly
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under mesh refinement.

These elements typically provide high order interpolation of both the unknowns and the

geometry, at the cost of introducing additional Lagrange degrees of freedom in the interior

of elements.

Figure 1.3: A triangular mesh (left) with boundary patches shown as shaded elements.

Also shown is a close-up of the same mesh (right) with unknowns indicated schematically.

Value-type unknowns are shown as points, first derivative unknowns with a single circle,

and second derivative unknowns with a second, concentric circle. Boundary-patch element

are C1-continuous with the interior elements, but introduce additional interior unknowns to

allow for a mapping with a single curved edge (cf. right-hand plot).

Several such curved elements have been proposed for both Argyris et al. [1968] and

Bell [1969] triangular elements [Žeńı̌sek, 1978; Bernadou, 1992, 1993b], for which explicit

construction formulas can be found in Bernadou and Boisserie [1993]. The paper of Bernadou

[1992] defines two classes of curved C1-triangles compatible with Argyris and Bell elements

that can be constructed to have any order boundary interpolation: with third and fifth-order

interpolating polynomials being the most useful elements in applications [Bernadou, 1993b],

resulting in C1 and C2 continuous boundary interpolation, respectively. In this method, a

mixture of different order boundary interpolation can be used, depending on the needs of

the problem, meaning that extra degrees of freedom needed in the vicinity of boundaries are

only introduced when necessary.

This latter method is apparently relatively unexplored in the literature: curved Argyris

elements have been investigated by Bernadou [1994], in the solution of the linear shell model

of Koiter [1970]. These elements were implemented to form part of the finite element library

Modulef. The curved Bell elements, first outlined by Žeńı̌sek [1978] have been used by
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Hřeb́ıček [1982] to solve the general biharmonic equation and by Růžičková and Žeńı̌sek

[1984] in the context of linear visco-elastic bending of a plate. The use of curved plate and

Bell elements for the solution of arbitrary-displacement, finite-strain plate models, however,

appears to be a novel contribution of this thesis.

1.5.4 A Generic Framework for Solving Plate Models

The literature review presented here suggests that a unifying framework in which any plate

model can be discretized, for generic boundaries and boundary conditions, would be an

important and useful scientific contribution. As such, the development and implementation of

a framework for generic fourth-order problems, using a mixture of Hermite triangle elements,

is the focus of this thesis.

We specifically set-out to implement selected plate models, the Föppl-von Kármán model

and the Koiter-Steigmann model as well as an apparently new moderate-rotation model,

which we call the extended Föppl-von Kármán model, to form a part of oomph-lib, the open

source, object-oriented multi-physics finite element library [Heil and Hazel, 2006]. This is

with the aim of

1. Making the solution of generic elastic plate problems possible.

2. Allowing the swift implementation and comparison of different elastic plate models.

3. Facilitating their incorporation into a multi-physics setting.

1.6 Outline of Thesis

We begin in chapter 2 by introducing the basic ideas of three-dimensional elasticity, which

provides a framework for ensuing discussion of elastic plates. Following this, in chapter 3, we

discuss the general concepts underlying plate models, and then the particular models used

in this thesis. This includes the derivation of the recent finite-strain extension to the Koiter

model, by Steigmann [2013], and the derivation of the two moderate-rotation plate models

from the Koiter-Steigmann plate model, by introduction of more restrictive assumptions:

these models are the Föppl-von Kármán model and a new, moderate-to-large rotation plate

model, respectively.

In chapter 4 we introduce the finite element method, with a focus on its application to

plate theories and outline the theory for two new element types introduced into oomph-lib:

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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curved and straight-sided Bell elements. We then outline the implementation of new plate

elements and demonstrate the convergence properties of all of the new element types, in

chapter 5.

We illustrate the use of the new plate elements applied to three physical systems in

chapters 6, 7 and 8, which investigate the inflation of a fully-clamped, circular sheet, the

inflation of a circular sheet subject to a sliding-type clamp and the large displacement of

a sheet clamped at one end, respectively. These problems serve to highlight the range of

validity of the moderate-rotation Föppl-von Kármán model in several different contexts,

which have a direct bearing on inflation-type metrology of thin elastic sheets. The former

two problems further provide a useful validation of the new oomph-lib capabilities, as they

can be cross-checked with a linear stability analysis: the third problem demonstrates the

flexibility of the underlying code. Finally, we form conclusions in chapter 9.

http://oomph-lib.maths.man.ac.uk/doc/html/index.html


Chapter 2

Three-dimensional Elasticity

We begin with a discussion of three-dimensional elasticity, for the purposes of providing a

solid framework from which to approach plate models. We start by introducing the notation

that is used throughout the thesis then proceed by discussing deformation and measures

of deformation. We then discuss the stresses induced by deformation and introduce differ-

ent measures of the stress. We conclude by discussing constitutive assumptions and their

implications, and introduce several material models that are used throughout this work.

2.1 Notation

We begin by defining the notation that we use throughout this work. Throughout, unless

otherwise stated, we follow the convention that Roman indices represent all three components

and Greek indices label only the first two (in-plane) components of vectors or tensors. Bold

script is used for vector and tensor fields, as shown in the example below.

We also use Einstein notation throughout, summing over repeated indices. We denote

partial derivatives of a vector field f with respect to a curvilinear coordinate component, θj ,

by a further index separated by a comma:

∂fi
∂θj
≡ fi,j .

In our notation the 3D divergence operator (Div) acting on field, f , would be

Div(f) ≡ ∂fi
∂xi

,

where xi are a Cartesian basis. We write the two-dimensional divergence (div) instead as

39
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follows:

div(f) ≡ ∂fα
∂xα

.

We further introduce the notation of D for the three-dimensional gradient operator and ∇

for the corresponding two-dimensional gradient. For example, the 3D gradient of a scalar

field f would be:

D f ≡ ∂f

∂xi
êi ,

in which êi are the standard Cartesian unit vectors. By contrast, the two-dimensional

gradient vector would be represented as:

∇ f ≡ ∂f

∂xα
êα .

The standard scalar product is denoted using a ‘·’. For the scalar product of two (real-

valued) matrices we use the standard Frobenius inner product, denoted A ·B = Tr(ATB).

For the contraction a rank four tensor-valued function, B = B(·), with a matrix, C, we

use the following notation, by analogy to matrix-vector notation:

A = B(·)C ,

where A = A(·) is a rank two tensor with the components:

Aij = Bijkl Ckl .

We also follow the convention that rank-four tensors are represented by script letters, to

distinguish them from matrices. Thus, in line with the above notation for matrix inner

products, the double contraction of a tensor B(·), with two matrices C and D would be

written:

A = B(·)C ·D ,

which in terms of indices would be:

A = Bijkl(·)CklDij .

We refer to variations in a tensor field by prepending the field with a delta; for example,

variations in a tensor field T would be given by δT .

For derivatives with respect to tensorial components we use a subscript of that tensor,

for example, the tensor formed from taking the derivative of a scalar field f with respect to

the components of the tensor field A would be given by:

fA ≡
(
∂f

∂Aij

)
,



2.2. Finite-Strain Elasticity 41

where fA is a tensor of the same rank as A.

We write the n × n identity matrix as In, where n is any integer; for example, the

three-by-three identity matrix would be I3. We use the standard ⊗ notation for the tensor

product of vectors; for example, we can write the three-by-three identity matrix in Cartesian

coordinates as:

I3 = ê1 ⊗ ê1 + ê2 ⊗ ê2 + k ⊗ k = êi ⊗ êi,

in which ê1, ê2 and k ≡ ê3 are the standard Cartesian unit vectors.

We refer to the trace, determinant and cofactor of matrices, A, using the standard

notation: TrA, detA and cofA, respectively.

We observe that dimensional quantities with nondimensional counterparts are denoted

with a star and corresponding nondimensional quantities are not starred: for example the

dimensional position vector will be Y ∗ and the corresponding nondimensional position vector

will be Y = Y ∗/L, where L, which has no nondimensional counterpart, is a dimensional

length scale. Finally, we denote material quantities that are defined throughout a material

using a tilde, which we drop for quantities evaluated at the midplane in shell and plate

models.

2.2 Finite-Strain Elasticity

The theory of three-dimensional elasticity is a framework for understanding the deformation

of elastic objects under applied loads, modelling them as continua. The displacement of

material points are related, purely geometrically, to strains. In large-displacement elasticity

this geometrical relationship is exact and is nonlinear. Strains induce internal stresses in ma-

terials, which balance externally applied loads and the inertia of the material; the governing

equations of three-dimensional elasticity constitute the balance between applied loads and

internal stresses at every point within a material. The stress balance and strain-displacement

relationship are independent of the material: however, to close the system we need to know

the relationship between a deformation, or strain, and the stress that this results in. This

relationship is known as the constitutive law and is material dependent. In this work we con-

sider only hyperelastic materials: materials whose behaviour is elastic even at large strains,

but whose stress-strain response is in general nonlinear.

Physically speaking, we control either the position of the surface of the body, Ỹ = Ỹ∗,
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or the traction, t̃∗, on the surface, along with any body forces applied to the body, as seen

in figure 2.1. The theory of three-dimensional elasticity then provides a prediction of the

response of the material under these conditions.

To proceed we begin by defining a framework used to characterise deformation.

p̃∗ ρdV ∗

t̃∗
Ỹ = Y∗

Figure 2.1: Diagram showing an elastic body, subject to a traction t̃∗, a body force, p̃∗ρdV ∗,

and an imposed position vector Ỹ ∗ = Ỹ∗. Here p̃∗ is the body force per unit mass, ρ is the

mass density and dV ∗ is a deformed volume element.

2.2.1 Deformation

We start by defining a reference, or undeformed, configuration. We denote the position of

a point within the continuum by ỹ∗ as shown in figure 2.2. After the body undergoes some

arbitrary deformation, the material point moves to Ỹ ∗, by a displacement ṽ∗ such that

Ỹ ∗ = ỹ∗ + ṽ∗, as shown in figure 2.3.

�
ỹ∗

�

Ỹ ∗

Figure 2.2: A solid undergoing a deformation: the point ỹ∗ in the initial configuration, is

displaced to Ỹ ∗.

We now define a material basis, using vectors tangent to the, in general, curvilinear

coordinate lines at each point. We assume that the position of material points in space is

parameterised in terms of a generic set of curvilinear coordinates, θ̃∗
i
, such that ỹ∗ = ỹ∗(θ∗i).
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�

�

�
ỹ∗

Ỹ ∗

ṽ∗

x∗2

x∗1
x∗3

Figure 2.3: The relationship between the deformed and undeformed positions, now displayed

as vectors relative to a fixed Cartesian reference frame, with coordinates xi.

We can express a set of tangent vectors (to the coordinate lines) in this coordinate system,

given by

g̃i ≡ ỹ∗,i . (2.2.1)

Using these vectors we can define a dual space g̃i such that

g̃i · g̃j = δij , (2.2.2)

and a metric tensor

g̃ij = g̃i · g̃j . (2.2.3)

The inverse metric tensor is given by

g̃ij = g̃i · g̃j . (2.2.4)

The metric tensor describes the ‘length’, (dt̃∗)2 = g̃ij dθ
∗i dθ∗j , of an infinitesimal line vector,

dt̃∗. The infinitesimal undeformed volume element, dv∗, can be expressed in terms of the

curvilinear coordinates as dv∗ =
√
g̃ dθ∗1 dθ∗2 dθ∗3 where g̃ is the determinant of the metric

tensor of the undeformed surface.

After deformation in the solid we can define a new ‘deformed’ basis, now using upper

case letters,

G̃i ≡ Ỹ ∗,i , (2.2.5)

and a dual space G̃
i

such that

G̃
i · G̃j = δij . (2.2.6)

We can also define a metric tensor in the deformed solid,

G̃ij = G̃i · G̃j (2.2.7)
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with inverse

G̃
ij

= G̃
i · G̃j

. (2.2.8)

Throughout we will use the deformation gradient, F̃ , defined as the rate of change of the

deformed position, with respect to the undeformed position

F̃ ≡D∗ Ỹ ∗ (2.2.9)

where we recall that D∗ is the three-dimensional (dimensional) gradient operator. Not all

deformations are admissible: the deformation gradient must have the property detF̃ > 0,

which corresponds to the deformation gradient preserving orientation [Ciarlet, 1988]: mate-

rial points cannot pass through one another.

Having defined the metric tensor, a ‘ruler’ for measuring length in both deformed and

undeformed configurations, we can define an objective measure of the change in length of

the material: the Green-Lagrange strain tensor

Ẽij ≡
1

2
(G̃ij − g̃ij) . (2.2.10)

Alternatively we can define this tensor in terms of the deformation gradient as follows

Ẽ =
1

2
(F̃

T
F̃ − g̃) , (2.2.11)

in which g̃ = g̃ij g̃i ⊗ g̃j is the three-by-three metric tensor of the undeformed surface.

Finally, we introduce the right Cauchy-Green deformation tensor, which is a symmetric

tensor given by

C̃ = F̃
T
F̃ = 2Ẽ + g̃ . (2.2.12)

2.2.2 Stress

We now discuss the effect of deformation: stress. Stresses are distributed internal forces that

occur in response to deformations of the material. The stresses act to restore the material

to its initial, unstressed state. To understand stress we first consider the force transmitted

through an infinitesimal area element, dA∗, within the deformed body, with unit normal Ñ

as shown in figure 2.4. The total force acting on the area element will be

dF̃∗ = τ̃ ∗ dA∗ , (2.2.13)

in which τ̃ ∗ is the Cauchy stress vector normal to the surface, defined as

τ̃ ∗ ≡ lim
∆A∗→0

∆F̃∗

∆A∗
. (2.2.14)
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Following this, we introduce the Cauchy stress tensor, σ̃∗ such that

τ̃ ∗ ≡ σ̃∗ Ñ . (2.2.15)

The Cauchy stress is, by definition, the force per unit deformed area, which is the physical

stress that would be applied to an elastic body.

For the infinitesimal force, dF̃∗, we can also define a force per unit reference area, or

Piola stress vector, T̃∗, as

dF̃∗ = T̃∗ da∗ . (2.2.16)

Here da∗ is an infinitesimal area element on the reference surface (i.e. the surface that will

be deformed to form the area element dA∗). To obtain the relationship between the two

stress vectors we use Nanson’s formula [Ciarlet, 1988]

Ñ dA∗ = (detF̃ ) F̃
−T
ñ da∗ , (2.2.17)

in which Ñ is the normal to the deformed surface element, dA∗, and ñ is the normal to the

undeformed surface element, da∗. This formula is then used to rewrite the expression for

dF̃∗:

dF̃∗ = σ̃∗ Ñ dA∗ = (detF̃ ) σ̃∗ F̃
−T
ñ da∗ . (2.2.18)

Therefore, the Piola stress vector, T̃∗, across the surface is given by

T̃∗ = (detF̃ ) σ̃∗ F̃
−T
ñ , (2.2.19)

and we can introduce a new stress tensor, known as the first Piola-Kirchhoff stress tensor

P̃ ∗, and write

dF̃∗ = P̃ ∗ ñ da∗ . (2.2.20)

This is related to the Cauchy stress tensor in the following manner [Ciarlet, 1988]

P̃ ∗ = (detF̃ ) σ̃∗ F̃
−T

. (2.2.21)

This stress tensor is associated with the force per unit undeformed area of the sheet. It is

worth noting that the transpose of this tensor is often known as the nominal stress tensor.

The first Piola-Kirchhoff stress tensor is, in general, asymmetric, owing to the fact that

it has one index pertaining to the deformed material frame and the other index pertaining

to the reference material frame [Ciarlet, 1988]. To define a symmetric quantity, we express
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the first Piola stress tensor, P̃ ∗, in terms of a new force per unit undeformed area with both

indices attached to the reference configuration. We define the following stress tensor

S̃∗ = F̃
−1
P̃ ∗ , (2.2.22)

which is known as the (symmetric) second Piola-Kirchhoff stress. This tensor can be ex-

pressed in terms of the Cauchy stress tensor as follows

S̃∗ = (detF̃ ) F̃
−1
σ̃∗ F̃

−T
. (2.2.23)

The interpretation of this stress may not be immediately obvious, so for clarity we exposit

the concept below. By equation (2.2.23) we see that the second Piola-Kirchhoff stress tensor

is merely the Cauchy stress tensor rotated and stretched to the axes of the reference config-

uration: it is merely the force per unit deformed area element acting as considered from the

reference configuration.

The second Piola-Kirchhoff stress has properties that make it an attractive measure to

use: it is symmetric [Ciarlet, 1988], which makes manipulations involving it comparatively

simpler. Additionally, the constitutive equation in the reference configuration often takes a

simpler form than when expressed in terms of a Cauchy stress [Ciarlet, 1988].

2.2.3 Strain Energy

To determine the change in internal energy caused by a deformation, we consider the internal

forces acting on an infinitesimal volume of elastic material, as shown in figure 2.4, adapting

the arguments of Wempner and Talaslidis [2002]. In this diagram we only show the forces

acting on the faces perpendicular to G̃1, but there are forces associated with each face,

perpendicular to all three coordinate directions. In general, we also consider the effect of

body forces, such as gravity, which are denoted p̃∗ρ dV ∗ in figure 2.4. Here, dV ∗, is the

infinitesimal volume element in the deformed material and p̃∗ is a force per unit mass and ρ

is the mass density of the deformed medium.

We consider a small increment of the deformed position on the far face, δỸ ∗, and at

the near face δỸ ∗ + δỸ ∗,1dθ
∗1, where forces −τ̃ ∗1dA∗1 and τ̃ ∗1 dA∗1 + (τ̃ ∗1dA∗1),1 dθ

∗1 act

respectively (as shown in figure 2.4). Using this and adding the contribution from each face,

labelled by area element dA∗i , we can write the work done by the forces acting on the volume
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θ∗1

θ∗2

θ∗3

G̃1

G̃2

G̃3

O

τ̃ ∗1 dA∗1 + (τ̃ ∗1dA∗1),1 dθ
∗1

−τ̃ ∗1 dA∗1

−p̃∗ρ dV ∗

Figure 2.4: Forces acting upon faces of an infinitesimal element.

element:

δW∗ = p̃∗ρ dV ∗ δỸ ∗ +

3∑
i=1

(τ̃ ∗i dA∗i + (τ̃ ∗idA∗i ),i dθ
∗i) · (δỸ ∗+ δỸ ∗,idθ

∗i) − τ̃ ∗i · δỸ ∗ dA∗i ,

(2.2.24)

in which we use an explicit summation for clarity. Expanding this, and neglecting terms of

smaller order, we find

δW∗ = p̃∗ρ dV ∗ δỸ ∗ +
3∑
i=1

τ̃ ∗i · δỸ ∗,idθ∗i dA∗i + (τ̃ ∗idA∗i ),i · δỸ ∗ dθ∗
i . (2.2.25)

Now, the work done, δW∗, must be equal to the sum of the change in translational energy,

δT∗, and the change in internal energy, δU∗:

δW∗ = δT∗ + δU∗ . (2.2.26)

However, work done by rigid translations and rotations, δỸ ∗, cannot be stored in the system

as elastic potential energy or dissipated by inelasticity. Thus, terms involving δỸ ∗, only

contribute to the energy, δT∗, which is associated with translational changes [Wempner and

Talaslidis, 2002].

Thus we can re-write the expression above as

δU∗ =
3∑
i=1

τ̃ ∗i · δỸ ∗,i dθ∗i dA∗i , (2.2.27)

which is the internal energy stored elastically or dissipated inelastically. In this study we

consider only purely elastic deformations, such that no energy is dissipated in the system.



48 Chapter 2. Three-dimensional Elasticity

Thus, the change in internal energy, δU∗, is equal to the strain energy, δW ∗. We can rewrite

the above expression using the undeformed area, in the same manner as described previously,

resulting in

δW ∗ =
3∑
i=1

T̃∗
i
· δỸ ∗,i dθ∗i da∗i , (2.2.28)

or in terms of the first Piola-Kirchhoff stress

δW ∗ =

3∑
i=1

P̃ ∗ g̃i · δỸ ∗,i dθ∗i da∗i . (2.2.29)

This expression is in turn equivalent to

δW ∗ = P̃ ∗ · δF̃ dv∗ , (2.2.30)

where dv∗ is the unit undeformed volume. Thus, it follows that the change in energy per

unit undeformed volume, δW∗, due to a deformation gradient, δF̃ , is

δW∗ = P̃ ∗ · δF̃ , (2.2.31)

which demonstrates that the Piola-Kirchhoff stress can be directly computed by the tensor

derivative

P̃ ∗ =W∗
F̃
≡
(
∂W∗

∂Fij

)
. (2.2.32)

Henceforth, we consider hyperelastic bodies with a strain-energy function W∗(F̃ ) such

that the total internal energy of a configuration can be written as

W ∗ =

∫
V
W∗(F̃ ) dv∗ (2.2.33)

for an elastic body with undeformed volume v∗ and with volume element dv∗. This energy

is a function of the deformation gradient F̃ . Thus, W∗(F̃ ) is a tensor valued function of

the deformation gradient, F̃ , but we can equivalently express the energy as a tensor-valued

function of the Green-Lagrange strain, Ẽ:

U∗(Ẽ) = U∗
(

1

2
(F̃

T
F̃ − g̃)

)
=W∗(F̃ ) . (2.2.34)

This is possible as a direct consequence of material objectivity, which we discuss further in

the next section: a reasonable material model should be frame-indifferent, meaning it must

be expressible in terms of an objective strain measure such as the Green-Lagrange strain

[Ciarlet, 1988].
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We reiterate here that we treat each tensor-valued function of the strain as a particular

function with a three-by-three matrix argument: as such, a particular strain-energy may be

expressed by two distinct functions of different strain measures, as illustrated in equation

(2.2.34). This formalism becomes important later in chapter 3, in order to keep the derivation

of the finite-strain extension to the Koiter model reasonably succinct.

The deformation of the body induces internal stresses which balance the externally ap-

plied loads. This culminates in a balance of stresses in the three coordinate directions. As

we have seen, by equation (2.2.32), in hyperelastic media the first Piola stress is given by

[Ciarlet, 1988]

P̃ ∗ =W∗
F̃

(2.2.35)

which arises in response to deformations of the body. By the definition of the symmetric

Green-Lagrange strain, E, and the chain rule we may deduce that

W∗
F̃

= F U∗
Ẽ
, (2.2.36)

which by definition of the Piola-Kirchhoff and the second Piola-Kirchhoff stress tensor implies

that

S̃∗ = U∗
Ẽ
. (2.2.37)

The stress balance results in the following governing equations and boundary conditions

[Ciarlet, 1988], which can be derived by taking the variational (Gateaux) derivative of the

strain-energy function

Div P̃ ∗ = p̃∗ρ (2.2.38)

subject to the boundary conditions

Ỹ ∗ = Ỹ∗ or P̃ ∗ ñ = t̃∗ . (2.2.39)

We can either apply a stress, t̃∗, at the boundary or alternatively impose a particular de-

formed position, Ỹ∗, of the boundary, as seen in figure 2.1. In the terminology of boundary-

value problems a displacement-type boundary condition (i.e a constraint on the unknown)

is known more generally as a Dirichlet or essential boundary condition. The stress-type

boundary condition is referred to as a Neumann or ‘flux-type’ boundary condition.

The vector p̃∗ is a body force field (per unit mass) acting on the (deformed) continuum

and t̃∗ is a traction per unit undeformed area applied on surfaces of the body, with the
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normal to the undeformed faces of the body ñ. Choosing a particular strain-energy function,

W∗ =W∗(F̃ ), tantamount to selecting a constitutive relation, closes the system.

It is useful to have a measure of the ‘stiffness’ of the material at a given strain. In

small-strain elasticity is is possibly to define a constant rank-four tensor which relates stress

to strain, independent of the stress tensor. The components of this tensor are known as

the small-strain elastic moduli, which describe the response of a material to deformation.

Heuristically, this tensor can be thought of as the ‘slope’ of the stress-strain curve. In

large-strain elasticity it is also possible to define elastic moduli, which are in general strain

dependent and depend on which stress-strain ‘slope’ we use [Ciarlet, 1980]. These are useful

in characterising the response of a material to a deformation.

The deformation-gradient-dependent elastic moduli, are defined as follows

M∗(F̃ ) =W∗
F̃ F̃

. (2.2.40)

We may instead define strain-dependent elastic moduli

C∗(Ẽ) = U∗
ẼẼ

, (2.2.41)

where we recall that U∗(Ẽ) =W∗(F̃ ) is the strain-energy as a function of the Green-Lagrange

strain.

By considering the contraction of M∗ with a generic matrix A and the chain rule, it

can be shown that the deformation-gradient dependent moduli can be related to the strain-

dependent elastic moduli by the following expression:

M∗(F̃ )A = AS̃∗ +
1

2
F̃ C∗(Ẽ)

(
AT F̃ + F̃

T
A
)
. (2.2.42)

These two moduli will agree in the limit of infinitesimal strain, which can be seen by con-

sidering the above expression for small strain, when F̃ ≈ I3.

2.2.4 Physical Considerations for Constitutive Relations

For a strain-energy function to be physically reasonable it must satisfy certain criteria. Previ-

ously, in introducing the physical basis for elasticity, we have made a number of assumptions

about the underlying constitutive behaviour, which we now elucidate here. We also introduce

some additional assumptions, that are used in the later derived models.

An extremely important physical condition is material objectivity, which is defined by

Ciarlet [1988] as follows:
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Criterion 1. Observables such as traction and mass density must be frame independent to

constitute a reasonable physical model.

Further to this, we make certain assumptions regarding the constitutive models that are

to be used, based on the types of materials we aim to model. The first assumption we make

is that the materials we consider are hyperelastic: the material only ever behaves elastically,

even at large strains, storing any energy transferred to the material through applied forces

as elastic potential energy. Thus, all energy transferred to the system through applied forces

is stored as elastic potential energy. This can be summarised as follows [Ciarlet, 1988]

Assumption 1. There exists a stored energy function, W∗(ỹ∗, F̃ ), such that the first Piola-

Kirchhoff stress is P̃ ∗ = W∗
F̃

, with ỹ∗ ∈ V and with F̃ a 3 × 3 matrix with a positive

determinant, such that

P̃ ∗ =W∗
F̃
. (2.2.43)

If this is the case, then the applied forces are conservative and thus all of the work energy

done is stored as elastic potential energy. This is a simplifying assumption that is appropriate

for rubber-like materials which exhibit little visco-elastic and plastic behaviour even at large

strains.

We also take the material to be isotropic with respect to material properties everywhere

within the reference state. A material is said to be isotropic at a given point the response of

the material does not depend on the direction of the applied force. We can express this as

[Ciarlet, 1988]

Assumption 2. A material is isotropic at point ỹ∗ if the Cauchy stress satisfies

σ̃∗(ỹ∗, F̃Q) = σ̃∗(ỹ∗, F̃ ) (2.2.44)

for all 3× 3 matrices with positive determinant, F̃ , and all 3× 3 rotation matrices Q.

Said differently, if we rotate the reference configuration about point ỹ∗ by an arbitrary

amount, then the Cauchy stress will be unaltered if the material is isotropic at that point

[Ciarlet, 1988]. Isotropy is a property of a material in a particular configuration, if a material

is deformed it may not remain isotropic [Ciarlet, 1988].

The last physical restriction we make is that the material has a stress-free (‘natural’)

reference state.
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Assumption 3. There exists a stress-free reference state, such that σ̃∗(F̃ ) = σ̃∗(I3) =

σ̃∗(Q) = 0, for all three-by-three rotation matrices Q.

This asserts that the reference configuration and rigid rotations of the reference configuration

are stress free. A corollary of this is that for small strain the second Piola-Kirchhoff stress,

S̃∗, has the following form [Ciarlet, 1988]

S̃∗(Ẽ) = C∗(0) Ẽ + o(|Ẽ|) (2.2.45)

in which C∗(0) are the strain dependent elastic moduli, evaluated at zero strain. For isotropic

materials we can express this in terms of Lamé constants as follows [Ciarlet, 1988]:

S̃∗(Ẽ) = λ∗Tr (Ẽ) g̃ + 2µ∗Ẽ + o(|Ẽ|) (2.2.46)

in which λ∗ and µ∗ are the Lamé constants, which experimentally are found to be positive.

Now we have made physical assumptions, we make a final mathematical assumption

that is necessary for the existence of solutions to the equations. We adopt strongly elliptic

strain-energy functions, which by definition satisfy the strong Legendre-Hadamard condition.

Assumption 4. We assume that the deformation-gradient-dependent elastic moduli,

M∗(F̃ ), of the chosen strain-energy function, W∗(F̃ ), satisfies: M∗ijkl(F̃ )ai aj bk bl > 0 for

all real vectors a, b 6= 0.

The Legendre Hadamard condition plays an important role in the calculus of variations

[Ciarlet, 1988], where it is used to study the regularity of solutions. The above inequality is

satisfied if the deformation, Ỹ ∗, is a minimizer of the energy (i.e. a solution) [Ciarlet, 1988;

Hilgers and Pipkin, 1996]: if it is not satisfied for all Ỹ ∗ then there may be certain classes

of deformation for which no solutions exist [Hilgers and Pipkin, 1996; Steigmann, 2010]1.

Hilgers and Pipkin [1996] provide an example of a model for which this condition is not

generally satisfied: they found that their derived plate model did not satisfy the Legendre-

Hadamard condition for any deformations involving a compressive stress. This means that

no compressive stress solutions exist for that model, despite these types of deformation

presumably being solutions to the full, 3D system for certain loadings.

1This is because the Legendre-Hadamard condition is a necessary (but not sufficient) condition for the
existence of a particular weak minimizer (i.e. a weak, stable solution). Weak solutions are merely solutions
that satisfy the governing equations in a distributional sense, that is over a region of space not necessarily
point-wise.
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A special class of strain-energy functions are polyconvex strain-energy functions: polycon-

vex strain-energy functions satisfy: W∗(F̃ ) = W∗(F̃ , cofF̃ ,detF̃ ) for a function W∗(·) that

is convex2 for all admissible deformations F̃ in each of its arguments. In the above expression

we used cofF̃ to denote the cofactor matrix of the matrix F̃ . It can be shown that poly-

convex strain-energy functions, that are twice continuously differentiable, are also strongly

elliptic (that is they satisfy the Legendre-Hadamard condition) [Ball, 1976; Steigmann, 2013].

Polyconvexity is a property common to many strain-energy models including the well known

Neo-Hookean, Mooney-Rivlin and Ogden material models [Zeidler, 1986; Ciarlet, 1988]. We

will discuss some of these models in the next section.

2.2.5 Material Models

We now briefly discuss the material models that we use in this study. We do not derive any

of the following models from statistical thermodynamics, as this is beyond the scope of the

present work. We instead direct the interested reader to relevant texts such as Rubinstein

and Colby [2003], which covers this topic in great detail.

Saint-Venant Kirchhoff Materials

The Saint-Venant Kirchhoff material model assumes that linear stress-strain behaviour holds

even at large strains. The strain-energy for this type of material is given by [Ciarlet, 1988]

W∗(F̃ ) = U∗(Ẽ) =
1

2
λ∗ (Tr Ẽ)2 + µ∗Tr Ẽ

2
. (2.2.47)

The two Lamé parameters, λ∗ and µ∗, can also be written in terms of the Young’s mod-

ulus E and the Poisson ratio, ν: which are more physically intuitive measures of material

properties. Their relationship to the Lamé parameters is as follows µ∗ = E /(2 + 2ν) and

λ∗ = E ν/ ((1 + ν)(1− 2ν)) [Landau and Lifshitz, 1986].

The Poisson ratio is a measure of the compressibility: the tendency of materials to expand

transversely in response to lateral compression. A perfectly incompressible material would

have a Poisson ratio ν → 1/2 and a perfectly compressible material has a Poisson ratio

ν = 0: almost all conventional materials lie between these two parameter values3 [Landau

2Convexity of f(x) on an interval [a, b] is defined as f(λa+(1−λ)b) ≤ f(a)λ+f(b)(1−λ) for all λ ∈ [0, 1].
This can be extended to tensor-valued functions, f(a) with a ∈ U , where the ‘interval’ instead becomes a
subset of the space U .

3Some materials, known as auxetic materials, exhibit a negative Poisson ratio and can expand laterally
when stretched. Naturally occurring auxetic materials are anisotropic and this effect only occurs in specific
directions: however, isotropic auxetic materials can exist and have been synthesized [Audoly and Pomeau,
2010].
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and Lifshitz, 1986; Audoly and Pomeau, 2010]. Rubber-like materials are usually close to

being incompressible, so we frequently take the Poisson ratio to be ν → 1/2. Young’s

modulus is simply defined as the stress per unit strain under uniaxial tension in the linearly

elastic regime.

Given that W∗(F̃ ) = U∗(Ẽ) is quadratic in Ẽ, for the Saint-Venant Kirchhoff model we

can write

C∗(Ẽ) = C∗(0) = C∗ , (2.2.48)

with components of C∗ given by

C∗ijkl = λ∗ g̃ij g̃kl + µ∗ (g̃ik g̃jl + g̃il g̃jk) . (2.2.49)

We can use this tensor to relate the Green-Lagrange strain tensor, Ẽ to the second Piola-

Kirchhoff stress, S̃∗ as follows

S̃∗ = C∗ Ẽ . (2.2.50)

The Saint-Venant Kirchhoff material model can easily be shown to satisfy the Legendre-

Hadamard condition for λ∗, µ∗ > 0. The model itself, however, is not physically realistic

at large strains [Ciarlet, 1988]. Nevertheless, as the models we consider coincide with this

model in the small deformation limit, and it is comparatively simple, it is useful to study

this model in its own right.

For the condition of in-plane plane-stress (σ3i = 0) we may eliminate some components

of the Green-Lagrange strain tensor. The Second Piola-Kirchhoff stress tensor can be im-

mediately deduced from the strain energy to be

S̃∗(Ẽ) = λ∗Tr (Ẽ) g̃ + 2µ∗Ẽ . (2.2.51)

Clearly, Ẽ3α = 0, and S̃∗33 = (λ∗ + 2µ∗)Ẽ33 + λ∗Ẽγγ = 0. Using this to determine E33, we

can now write the Saint-Venant Kirchhoff plane strain energy as

W∗(F̃ ) =
λ∗µ∗

λ∗ + 2µ∗
(Tr ε̃)2 + µ∗Tr ε̃2 . (2.2.52)

where ε̃ = Ẽαβ êα ⊗ êβ is the x − y strain tensor. We can also write this in terms of ν and

E to obtain

W∗(F̃ ) =
E

2(1− ν2)

(
ν(Tr ε̃)2 + (1− ν) Tr ε̃2

)
. (2.2.53)

Finally, we compute the plane-stress elastic moduli (stiffness tensor), G∗ ≡ U∗ε̃ε̃, for this

model

G∗αβγδ =
E

(1− ν2)
[(1− ν) (g̃αδ g̃βγ + g̃αγ g̃βδ) /2 + ν g̃δγ g̃αβ] . (2.2.54)
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Incompressible Neo-Hookean Materials

The Neo-Hookean material model is a simple nonlinear model based on the statistical ther-

modynamics of cross linked polymers [Müller and Strehlow, 2004; Rubinstein and Colby,

2003]. This model is attractive due to its physical basis in the molecular chain statistics of

polymers, which links the macroscopic material behaviour to microscopic polymer networks

[Rubinstein and Colby, 2003; Marckmann and Verron, 2006]. We consider only the incom-

pressible Neo-Hookean model, which has only a single free parameter: the Young’s modulus.

The strain-energy function for this model is given by [Müller and Strehlow, 2004]

W∗(F̃ ) = Ẇ∗(Ĩ1, Ĩ2, Ĩ3) = C∗1

(
Ĩ1 − 3

)
, (2.2.55)

in which Ĩ1 = Tr C̃ is the first invariant of the right Cauchy-Green deformation tensor and

C∗1 is a material constant. By considering the small-strain (linear) behaviour, we see that the

constant C∗1 can be related to the Young’s modulus by E = 6C∗1 [Li and Healey, 2016]. The

Neo-Hookean strain energy is polyconvex [Ciarlet, 1988], so satisfies the Legendre-Hadamard

condition for C∗1 > 0 [Ciarlet, 1988].

It is necessary to add an additional Lagrange multiplier to impose incompressibility,

as incompressibility is a constraint on the admissible deformations: detF̃ = 1 [Ciarlet,

1988]. Adding a Lagrange multplier to impose the constraint amounts to adding an unknown

hydrostatic pressure to the stress, to maintain a constant volume of material [Wempner and

Talaslidis, 2002]. This subtlety is avoided in plate models, however, as in plate models

the plane stress assumption allows one of the stress components to be eliminated from the

constitutive model.

Incompressible Mooney-Rivlin Materials

A well-advocated phenomenological model for rubber elasticity is the Mooney-Rivlin model

which, whilst not finding origin in the theory of polymer chain statistics, is known to be an

appropriate model for use in rubber elasticity for up to 200% strain [Marckmann and Verron,

2006]. This model introduces a new material parameter: C∗2 . We draw a distinction here

from the generalised Rivlin model (or polynomial hyperelastic model) which is sometimes

referred to as Mooney-Rivlin, despite the classical Mooney-Rivlin model being only a special

case of the former model. The strain-energy function for an incompressible Mooney-Rivlin
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material is given by [Müller and Strehlow, 2004]

W∗(F̃ ) = C∗1

(
Ĩ1 − 3

)
+ C∗2

(
Ĩ2 − 3

)
, (2.2.56)

where Ĩ1 = Tr C̃ and Ĩ2 = [(Tr C̃)2 − Tr (C̃
2
)]/2 are the first two invariants of the right

Cauchy-Green deformation tensor, C̃. The final invariant, Ĩ3 = detC̃ is unity, due to the

assumption of incompressibility. We can see that the Neo-Hookean model forms the special

case when C∗2 = 0. By considering the limit of small-strain (linear) behaviour we can see that

the Young’s modulus is related to the two material constants by the relation: E = 6(C∗1 +C∗2 )

[Li and Healey, 2016]. The Mooney-Rivlin model is polyconvex for C∗1 , C
∗
2 > 0 and therefore

satisfies the Legendre-Hadamard condition [Ciarlet, 1988]. Again it is generally necessary to

impose incompressibility via a Lagrange multiplier, however, in plate models the plane stress

assumption is used to eliminate one of the stress components, which avoids this subtlety.

For the conditions of plane-stress in-plane and incompressibility, we may eliminate some

of the components of the strain tensor to obtain the useful form [Müller and Strehlow, 2004;

Li and Healey, 2016]

W∗(F̃ ) = C∗1
(
Tr (c̃) + det c̃−1 − 3

)
+ C∗2

(
Tr (c̃) (detc̃)−1 + det c̃ − 3

)
, (2.2.57)

in which c̃ = Ỹ ∗i,α Ỹ
∗
i,β êα ⊗ êβ, is the plane Cauchy-Green strain. Again, setting C∗2 = 0 we

obtain the plane-stress Neo-Hookean model. As we have eliminated one of the stretches using

the condition of plane stress in this expression, here we do not need a Lagrange multiplier

to impose incompressibility.

We now proceed to discuss plate and shell theories, which are relevant to situations in

which one dimension of an elastic body is much smaller than the other two.



Chapter 3

Plate Models with a Bending

Stiffness

In this section we discuss several plate models in both variational form and as Euler-Lagrange

equations. We first detail the motivation behind shell theories in generality, with the aim of

later specialising to flat plates. We then discuss some important aspects of the differential

geometry of surfaces, for use in the proceeding plate theory: the recent finite-strain extension

to the Koiter model, as derived by Steigmann [2013]. We then show, heuristically, how to

obtain the Föppl-von Kármán model using the Koiter-Steigmann model as an intermediate

step in its derivation from 3D elasticity. Finally, we derive an extension to the Föppl-von

Kármán model, which appears to be novel.

This section ultimately aims to highlight the differences between several different plate

models and illustrate when the use of each model is appropriate.

3.1 Classical Shell Theories

The basic concept guiding the derivation of shell models is the concept of ‘thinness’: bodies

are assumed to be much smaller in one dimension than the other two-dimensions. This allows

a 3D solid mechanics problem to be reduced to a 2D problem, embedded in the 3D space.

Consider an elastic body of uniform thickness h∗ in the θ∗3 direction, and much larger

lateral lengths, L ∼ Rc, where Rc is the radius of curvature, such that h � 1, where

h = h∗/L is the relative thickness. This ‘shell’-like body is illustrated in figure 3.1. Typically

we characterise the position of the whole elastic body by considering its position relative to

57
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h∗
~∗

�
ỹ∗

�
Ỹ ∗

Figure 3.1: A shell undergoing a deformation: the point ỹ∗ in the initial configuration, is

transformed onto the new material point Ỹ ∗. This, in general, will be accompanied by some

change in thickness, h∗, to a thickness ~∗ = ~∗(ỹ∗).

a particular surface: often the midplane. The displacement, strain and stress are then

integrated through the thickness to eliminate the dependence on θ∗3. Throughout this work

we always take the reference surface to be the midsurface at θ∗3 = 0 where we parameterize

the through-thickness direction θ∗3 ∈ (−h∗/2, h∗/2) (as shown in figure 3.2).

h∗ ~∗

Figure 3.2: Deformation of a small element of material for which the shell hypothesis has

been made. The displacements have a linear dependence on the through-thickness coordinate

after deformation, but the material line parallel to the reference normal does not necessarily

remain normal to the (shaded) midsurface.

Recall that we use characters with a tilde to indicate 3D quantities and no tilde to denote

quantities evaluated on the midsurface. For example, the deformed position on the midplane

will be

Y ∗(θ∗1, θ∗2) ≡ Ỹ ∗(θ∗1, θ∗2, 0) . (3.1.1)

The objective of shell theories is to characterise the deformation of the full 3D body in terms

of deformations of the midplane only.
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h∗ h ∗

Figure 3.3: Deformation of a small element of material assuming that the Kirchhoff–Love hy-

pothesis holds. The normal line to the (shaded) midsurface remains normal and unstretched

after deformation.

Classically, to derive shell models from 3D elasticity, we first make the ‘linear shell hy-

pothesis’ by assuming that the displacements vary linearly through the thickness [Wempner

and Talaslidis, 2002]. We parameterise the undeformed position, ỹ∗, in terms of the through-

thickness coordinate θ∗3:

ỹ∗(θ∗1, θ∗2, θ∗3) = y∗(θ∗1, θ∗2) + θ∗3 n̂(θ∗1, θ∗2) , (3.1.2)

where θ∗3 ∈ (−h/2, h/2) and n̂ is the unit normal to the undeformed midsurface1. Using

this parametrisation the linear shell hypothesis can be equivalently be expressed as

Ỹ ∗(θ∗1, θ∗2, θ∗3) = Y ∗(θ∗1, θ∗2) + θ∗3G3(θ∗1, θ∗2) , (3.1.3)

where G3 is the tangent to the deformed θ∗3 line. Here we have assumed that the deformed

θ∗3 line remains straight, but in general neither parallel to the deformed normal, N̂ nor

unstretched.

It may be more intuitive to view this assumption in terms of displacements, whereby the

linear shell hypothesis becomes [Wempner and Talaslidis, 2002]

ṽ∗(θ∗1, θ∗2, θ∗3) = v∗(θ∗1, θ∗2) + θ∗3 ξ(θ∗1, θ∗2) (3.1.4)

where the change in unit normal vector, ξ, is given by

ξ(θ∗1, θ∗2) = G3(θ∗1, θ∗2)− n̂(θ∗1, θ∗2) , (3.1.5)

1The unit normal to the undeformed surface is equivalently the unit tangent to the θ∗3 line, n̂ ≡ ĝ3, by
definition of the θ∗3 line as the normal line to the undeformed surface.
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in which θ∗3ξ is the displacement of the midplane line. This is illustrated in figure 3.2. In

general, the thickness of the deformed shell will not be h∗.

From here on, we shall use ζ∗ ≡ θ∗3, to make clear the distinction between the through-

thickness coordinate and the two in-plane coordinate directions and to avoid cumbersome

constructs such as (θ∗3)m in the later expansions of the deformed position. Therefore, the

linear shell hypothesis becomes

ṽ∗(θ∗1, θ∗2, ζ∗) = v∗(θ∗1, θ∗2) + ζ∗ ξ(θ∗1, θ∗2) . (3.1.6)

Further simplifications to the underlying shell model can be achieved if the Kirchhoff-Love

hypothesis is made: it assumes that the material line that was orthogonal to the undeformed

midplane remains normal to the midplane and unstretched such that the deformed material

vector G3 is equal to the unit normal to the deformed midsurface N̂ , as shown in figure 3.3.

By the Kirchhoff-Love hypothesis

ṽ∗(θ∗1, θ∗2, ζ∗) = v∗(θ∗1, θ∗2) + ζ∗ N̂(θ∗1, θ∗2) , G3 ≡ N̂ , (3.1.7)

and the thickness of the deformed sheet, ~∗, is given by ~∗ = h∗. This hypothesis holds

when shells are thin enough to allow the transverse shear to be neglected. As pointed out by

Koiter [1966], this assumption is usually used in conjunction with the mutually contradictory2

assumption of plane stress: S̃∗n3 = 0. The latter is then used to eliminate n3 · Ẽ n3 (cf.

section 2.2.5), whose value is, in general, non-zero and determined entirely in terms of the in-

plane (membrane) strain. As such, the assumption of plane-stress violates the Kirchhoff-Love

hypothesis when non-zero strains are considered.

Upon making the Kirchhoff-Love hypothesis, it can be shown that the internal elastic

energy separates into a bending energy and a stretching (membrane) energy [Wempner and

Talaslidis, 2002]:

W ∗KL = hW ∗M + h3W ∗B , (3.1.8)

in which the first term pertains only to membrane-type deformations such as stretching

and shearing of the midplane and the second term, the bending energy, is related only to

changes of curvature. Here W ∗M and W ∗B are scaled energies that are order O(1) in relative

thickness, and have units of energy.

2Using these two assumptions one arrives at identical equations as when using the single assumption of
approximately plane stress: only the reconstruction of the full 3D displacement field differs [Koiter, 1966].
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One can imagine the deformation of a surface with no change in curvature, such as the

shearing of a flat, rectangular plate, to be purely associated with the first term. By contrast

the inextensional deformation of a flat plane rolled to a cylinder could be considered as a

deformation of pure bending, associated with only the second term. Due to these two modes,

it is natural to refer to the relative difficulty of bending as the ‘bending modulus’ which scales

as h3.

3.2 Modern Perspective on Shell Theories

As many shell theories exist, all purported to approximate the full 3D parent theory, the

question of choosing an accurate shell model becomes an important one. This status is wors-

ened by the kinematical assumptions used as the starting point for classical shell theories,

which sever the link to the 3D theory. It is for this reason that, in contrast to classical

derivations, modern derivations of shell theories attempt to make assumptions only on the

thickness and the magnitude of applied forces - which provides a more instructive way of

selecting a theory. This is in contrast to classical theories that can only verify a posteriori,

for example, that both the Kirchhoff-Love hypothesis and plane stress assumptions approx-

imately hold. Modern derivations instead provide a concrete means of relating the models

to the parent 3D theory.

Formal asymptotic methods have been used to provide justification for classical shell

models and relate them to their parent three-dimensional theory, for example by Ciarlet

[1980] and Fox et al. [1993]. However, these studies did not provide rigorous estimates of the

errors nor show that the solutions to the expanded equations converge to the solutions of the

three-dimensional equations in the limit of h→ 0 [Ciarlet, 1980; Trabelsi, 2006]. By contrast,

gamma convergence [Le Dret and Raoult, 1996; Friesecke et al., 2006] provides a rigorous

means of obtaining shell and plate models from three-dimensional elasticity, complete with

error bounds and proof that solutions to the derived theory are also solutions to the parent

theory [Trabelsi, 2006]. The method of gamma convergence can be viewed as an asymptotic

method but, unlike formal asymptotic methods that only expand the equations, the method

of gamma convergence demonstrates the convergence of the parent, three-dimensional min-

imization problem to the derived minimization problem [Braides, 2002]. The advantage to
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this method is that it provides a direct, rigorous link between the parent and derived theo-

ries, with the convergence of minimum points and minimum values directly implied by the

proof [Acerbi et al., 1988]. A review of the recent advances in gamma convergence has been

compiled by Focardi [2012].

However, as discussed by Steigmann [2008], a downside to both asymptotic and gamma

convergence methods is that both require the limit of h → 0 in their derivation, and thus

can only generate a leading order model in which successive terms are negligibly small in

comparison to preceding ones, effectively decoupling smaller terms [Friesecke et al., 2006;

Steigmann, 2008]. Methods of gamma expansion, as opposed to convergence, which involve

more than a single order have been proposed in the literature, for example by Braides and

Truskinovsky [2008] who also demonstrated the method to be successful in justifying several

existing empirical theories within solid mechanics. The implications of this framework for

shell and plate theories appears to be an open question.

To date, a number of shell and plate models have been derived using gamma convergence:

most notably nonlinear membrane theory [Le Dret and Raoult, 1996], nonlinear bending

[Friesecke et al., 2006], the Föppl-von Kármán model and linear bending [Friesecke et al.,

2006]. A summary of the various conditions under which we expect models to emerge, based

on the scaling of the energy and boundary conditions, is provided in appendix C. We will

discuss the details of some of these models in later sections.

An alternative to these approaches, as advocated by Steigmann [2013], is to avoid the

rigour of gamma convergence whilst still using the overriding concept that for a shell theory

to accurately represent the three-dimensional theory, the energies must agree in the small

thickness limit. This approach whilst informal, provides a route to expansion of the three-

dimensional energy and allows the derivation of an energy in which bending and stretching are

comparable with minimal assumptions [Steigmann, 2013]. This model extends the classical

nonlinear plate model of Koiter [1966], which is widely advocated as the ‘best all-round

model’ [Ciarlet, 2005], to finite strains, coinciding with it in the small-strain limit.

Given the status of the small-strain nonlinear Koiter model within the literature [Ciarlet,

2005] and the recent extension to finite strains [Steigmann, 2013], the Koiter-Steigmann

model is the most appropriate theory for the objectives of this study. As such, we will

discuss this model in more detail in section 3.4.

We proceed to discuss the deformation of surfaces, which we will use in the derivation of
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forthcoming plate theories.

3.3 Differential Geometry on a Surface

We now present some important relations pertaining to the differential geometry of a surface.

In this section we will present results generic to surfaces, but using the terminology associated

with the deformed surface in order to characterise plate models in which only the deformed

surface is curved.

3.3.1 The Surface Vectors

The tangent vectors, Gα, of a surface Y ∗ embedded in 3D space are given by

Gα ≡ Y ,α . (3.3.1)

We also introduce the tangent vectors, Gα, in the dual space, such that [Wempner and

Talaslidis, 2002]

Gα ·Gα = 1. (3.3.2)

We use these vectors to express the surface metric tensor, Gαβ and inverse metric tensor

Gαβ, defined as [Wempner and Talaslidis, 2002]

Gαβ ≡ Gα · Gβ and Gαβ ≡ Gα · Gβ . (3.3.3)

Thus, we can express the vectors in the dual space as linear combinations of the tangent

space and vice-versa:

Gα = GαβGβ and Gα = GαβG
β . (3.3.4)

We use the two in-plane unit vectors and the metric tensor to define the unit normal to

the deformed surface, N̂ , as [Wempner and Talaslidis, 2002]

N̂ =
G1 ×G2

|G1 ×G2|
or N̂ =

1

2
√
G
εαβ3Gα ×Gβ . (3.3.5)

Here εαβ3 is the unit alternator, defined from components of the Levi-Civita tensor: εijk and

G is the determinant of the surface metric tensor Gαβ gα ⊗ gβ. We can demonstrate the

equivalence of the two expressions by using the quadruple product identity and noting the

anti-commutative property of the cross product.
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3.3.2 Derivatives of Surface Vectors

We now consider the derivatives of surface vectors. First we consider the derivatives of

tangents, which can be written in the form of the Gauss formulae

G∗α,β = Γ∗αβγG
γ + B∗αβN̂ = Γ∗γαβGγ + B∗αβN̂ , (3.3.6)

where we define the 2D Christoffel symbols of the first and second kind respectively as

Γ∗αβγ ≡ G∗α,β ·Gγ and Γ∗γαβ ≡ G∗α,β ·Gγ , (3.3.7)

and the curvature components on the deformed surface, B∗αβ, by

B∗αβ = Γ∗3αβ = N̂ ·G∗α,β . (3.3.8)

It can be shown [Wempner and Talaslidis, 2002], using the product rule and the relation

G∗α,β = G∗β,α, that the first Christoffel symbol is related to the metric tensor as follows

Γ∗αβγ =
1

2

(
G∗γα,β + G∗βγ,α − G∗αβ,γ

)
. (3.3.9)

Using the product rule it can be shown that

B∗αβ = −Gα · N̂
∗
,β . (3.3.10)

Thus we see that the derivatives of the normal can be written as follows

N̂ ,α = −B∗αβGβ , (3.3.11)

which is known as the Weingarten formula.

The curvature tensor on the deformed surface is therefore

B∗ = B∗αβG
α ⊗Gβ , (3.3.12)

in the spatial frame. We can define instead a curvature tensor in the reference material

frame: the relative curvature, κ∗, which is given by

κ∗ = κ∗αβg
α ⊗ gβ (3.3.13)

which has components κ∗αβ = −B∗αβ. This curvature tensor is related to the derivative of the

deformed normal by

κ∗ = (∇∗Y ∗)T (∇∗N) , (3.3.14)
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Thus we can relate the two curvature tensors by the following formula

κ∗ = −(∇∗Y ∗)T B∗ (∇∗Y ∗) . (3.3.15)

Finally, for completeness, we define the well-known Gaussian curvature, kG, and mean cur-

vature, kM , which are given by

k∗G = B∗11B
∗2

2 −B∗
1
2B
∗2

1 and k∗M =
1

2
B∗αα , (3.3.16)

where the curvature tensor B∗αβ is obtained by raising the index: B∗αβ = GαγB∗γβ.

3.4 The Koiter-Steigmann Model

In this section we present Koiter’s nonlinear plate model [Koiter, 1966], which was recently

extended by Steigmann [2013] to incorporate finite strains. Plate models are a special type of

shell model, for which there is no initial curvature [Audoly and Pomeau, 2010]. In the limit

of small strains, or under assumption of a linear constitutive relation, the Koiter-Steigmann

model and Koiter’s original model coincide [Steigmann, 2013]. The Koiter-Steigmann model

has not been derived by means of gamma convergence (as a rigorous variational limit of three-

dimensional elasticity), but still has a rational descent from three-dimensional elasticity,

using minimal assumptions, as opposed to classical theories which begin with kinematical

assumptions, like the Kirchhoff-Love hypothesis.

The first study that attempted to relate 2D and 3D theories in the case of finite strain was

made by Hilgers and Pipkin [1992a,b, 1996]. They found that their plate model, whilst being

optimal in terms of accuracy compared to the three-dimensional theory, was generally ill-

posed as a minimization problem [Hilgers and Pipkin, 1996]: so traditional methods that rely

on minimizing the total energy would fail. This ill-posedness arises for any deformations with

compressive stress, similar to membrane theory; however, unlike in the case of membrane

theory the model is not suitable for relaxation (cf. tension field theory), due to the presence

of a bending stiffness [Steigmann, 2013]. The process of relaxation, which is suitable for plate

models without a bending stiffness, is the process of assuming that all compressive stress

is automatically relieved by fine-scale wrinkles (which are not resolved) as outlined by the

tenets of tension field theory [Steigmann, 1990]. To regularize the model Hilgers and Pipkin

[1996] instead supplemented the equations with an ad hoc term.

The study of Steigmann [2013] derives an energy which is free of the ad hoc term of Hilgers

and Pipkin [1996] that can still constitute a meaningful minimization problem. Steigmann
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[2013] instead shows that if the stress is smaller than o(1) in h∗/L, such that a linear consti-

tutive model is assumed in the bending term, then the destabilising term can be neglected,

regularizing the model with no additional penalty to accuracy.

The model itself contains both the nonlinear bending energy derived by means of gamma

convergence by Friesecke et al. [2006] and a nonlinear membrane energy that, upon relaxation

of compressive stresses, also yields the gamma convergent limit [Friesecke et al., 2006]. We

reiterate, however, that Steigmann’s model is not suitable for relaxation as the model contains

a bending stiffness.

More details of these relations can be found in Steigmann [2013]. Despite its close relation

to several gamma-convergent models, the Steigmann model is not a gamma-convergent limit.

In fact, the Koiter-Steigmann model cannot be derived by conventional methods of gamma

convergence, because it assumes a small but nonzero plate thickness [Friesecke et al., 2006;

Braides and Truskinovsky, 2008].

The original derivation of the small-strain version of the model is presented by Koiter

[1966], who assumes an approximate state of plane stress and then uses this to derive the

model. As noted by Koiter [1966], by assuming the contradictory Kirchhoff-Love hypothesis

and the plane-stress constitutive relations one can arrive at an identical energy and an

equivalent model: only the construction of the true, 3D deformation from the identical

midplane deformation would differ.

In the next section we will present the Koiter-Steigmann model, starting with the deriva-

tion of the energy principle and proceeding by deriving the variational equations and the

corresponding Euler-Lagrange equations.

3.4.1 Outline of the Derivation

We will now derive the Koiter-Steigmann plate energy, following closely the derivation of

Steigmann [2013]. As a rough guide to the process, we outline here, in words, the direction

the derivation takes. The basic assumption is that the plate has small thickness, h∗, in

comparison with the horizontal length scale, L. The derivation begins by performing a

Taylor expansion in ζ∗ ∼ h∗ � L, the through–thickness coordinate, of the displacements,

using this to express the deformation gradient, and the ζ∗ derivatives of the deformation

gradient, at the midsurface as a power series in ζ∗. By expanding the energy in terms of

these quantities and then integrating through the thickness, an o(h3) energy is computed,
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where we recall that h = h∗/L � 1 is relative thickness. This energy is then simplified

further by using physical restrictions on the magnitude of the pressure load, permitting a

relatively simple representation of the energy.

To achieve this, we must show that the energy is entirely determined in terms of the

midplane deformation, and that the higher order ‘directors’ in the expansion can be re-

constructed entirely using the position of the deformed midplane position vector. This is

achieved by assuming that the forces applied to the lateral faces of the sheet are of order

O(h3) in magnitude. It transpires that this latter assumption is equivalent to the assump-

tion of approximately plane stress, leading to a model in which through-thickness shear is

neglected.

The assumptions above lead to a model that is known to be generally ill-posed as a min-

imization problem: with the requirement of tensile stress everywhere in the sheet necessary

for the existence of minimizers [Steigmann, 2013]. This restriction can be removed by ne-

glecting the problematic terms in the strain gradients, which formally would result in an ad

hoc model. However, following the arguments of Steigmann [2013], it will be shown that a

weak assumption on the magnitude of stress allows these terms to be neglected with no cost

to accuracy, thereby restoring the rationality of the model.

The energy is then simplified for the cases of reflection symmetry of material properties

about the midplane and the special case of isotropic material properties, in pursuit of our

objective of characterising hyperelastic plates with uniform properties.

3.4.2 The 3D Energy

As before, we use tildes to indicate quantities defined throughout the material and remove

tildes for their counterparts evaluated on the midplane. We proceed to derive the Koiter-

Steigmann plate energy in the manner outlined in Steigmann [2013].

Dimensionless Quantities

We start by introducing nondimensional quantities, to make our assumptions on the magni-

tude of quantities explicit. We introduce nondimensional stress tensors as follows

[σ , S , P ] =
1

E
[σ∗ , S∗ , P ∗] , (3.4.1)

in which E is the Young’s modulus.
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We rescale the position vectors on the horizontal length scale L, where L ∼
√
A∗ and A∗

is the area of undeformed midplane. Thus, we obtain the following nondimensional position

vectors: [
Y , v , y , θi

]
=

1

L

[
Y ∗ , v∗ , y∗ , θi

∗
]
. (3.4.2)

Nondimensionalizing on inverse-length for the curvature, we define

[B , κ] =
1

L−1
[B∗ , κ∗] . (3.4.3)

We further introduce the energy scale EL3, and define the nondimensional energy

W =
1

EL3
W ∗ , (3.4.4)

and nondimensional energy density functions

[
W(F̃ ) , W(Ẽ)

]
=

1

E

[
W∗(F̃ ) , W∗(Ẽ)

]
. (3.4.5)

Finally we introduce the nondimensional elastic moduli

[
M(F̃ ) , C(Ẽ)

]
=

1

E

[
M∗(F̃ ) , C∗(Ẽ)

]
. (3.4.6)

All of these nondimensional quantities are initially assumed to be O(1) in relative thickness,

except for θ3 which will be O(h).

Problem Set-up

To set-up the problem, we first define the geometry of a plate, which is a special case of shell

with zero initial curvature. We use Ω to represent the midsurface of the undeformed plate,

which occupies a volume v = Ω × (−h/2, h/2) in 3D space. We introduce the undeformed

midplane material coordinate for a plate, given by: y ≡ x1ê1 + x2ê2, where x1 and x2 are

the standard Cartesian coordinates in the ê1, ê2 directions, respectively. Henceforth, we will

always use Cartesian coordinates, unless otherwise noted.

� x1

ζ

x2

Ω

∂Ω

Figure 3.4: Diagram showing the plate geometry. The midsurface, Ω, is located at ζ = 0.
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Our main assumption is that the thickness h � 1, where we recall that h = h∗/L is

the relative thickness of the plate. The edge (boundary) of the midplane, at which lateral

loading conditions are applied, is represented by ∂Ω. We show this plate in figure 3.4. In this

section we follow closely the derivation of Steigmann [2010, 2013] with the aim of deriving

an order O(h3) accurate plate model3, with minimal assumptions.

We recall from section 2.2.3, that the (nondimensional) energy for an elastic body is

W =

∫
v
W(F̃ ) dv , (3.4.7)

and the (nondimensional) Piola stress is

P ≡ WF̃ . (3.4.8)

The (nondimensional) deformation-gradient-dependent elastic moduli are related to the strain

energy density by:

M(F̃ ) =WF̃ F̃ . (3.4.9)

We again use the Green-Lagrange strain

Ẽ =
1

2

(
F̃
T
F̃ − I3

)
(3.4.10)

and the (nondimensional) strain-dependent energy

U(Ẽ) =W(F̃ ) , (3.4.11)

to define (nondimensional) strain-dependent elastic moduli

C(Ẽ) = UẼẼ , (3.4.12)

and the (nondimensional) second Piola-Kirchhoff stress

S̃(Ẽ) = UẼ . (3.4.13)

For clarity of exposition, in the remainder of this section we refer to quantities such as

stress and energy on the understanding that we are describing their nondimensional counter-

parts, unless explicitly stated otherwise. We continue to use starred and unstarred notation

for dimensional and nondimensional quantities respectively, however.

3That is, an energy that is accurate to O(h3), with smaller terms of order o(h3) neglected.
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We can use the chain rule to connect the deformation-gradient-dependent moduli,M(F̃ ),

acting on a matrixA, to the strain-dependent moduli, C(Ẽ) resulting in the following formula

[Steigmann, 2013]

M(F̃ )A = AS̃ +
1

2
F̃ C(Ẽ)

(
AT F̃ + F̃

T
A
)
. (3.4.14)

We also assume that we can expand about a stress-free reference state, such that the stress

vanishes at zero strain, Ẽ = 0, and that C(0) is positive definite such that A · C(0)A > 0

for all nonzero matrices A. Then,

S̃(Ẽ) = C(0) Ẽ + o(|Ẽ|) . (3.4.15)

We emphasize that, though we assume that the stress adopts this form when expanding about

the reference state, we have not assumed a linear constitutive hypothesis for all strain, as

we retain several orders in the thickness-wise expansion.

We also note that, using equation (3.4.14), at zero strain the relationship between the

two sets of elastic moduli acting on a matrix A, will be

M(I3)A = C(0)A (3.4.16)

where at zero strain F̃ = I3 and Ẽ = 0. Thus, we can see our constitutive hypothesis,

equation (3.4.15), satisfies strong ellipticity, defined in section 2.2.4, at zero strain.

Below we break convention slightly and use

S0 ≡ S̃(θ1, θ2, 0) , (3.4.17)

in order to make clear the distinction between the stress at the centre, S0, and the membrane

stress

S ≡ UMε , (3.4.18)

where ε ≡ Eαβ êα ⊗ êβ is the 2D plane-strain and UM (ε) is the membrane strain-energy, in

which the condition of plane stress has been used to eliminate out-of-plane strain components.

3.4.3 Expanding the Basic Quantities

We express the undeformed material coordinate as

ỹ = y + ζ k , (3.4.19)
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in the same manner as in section 3.1, but this time asserting the planar reference configuration

by using the Cartesian unit vector k as the undeformed normal. Here, as in section 3.1,

ζ ∈ (−h/2, h/2), is the nondimensional through-thickness coordinate.

We start by expressing the 3D position Ỹ as an expansion in the through-thickness

coordinate ζ � L:

Ỹ = Y (y) + ζ d(y) +
1

2
ζ2 e(y) +

1

6
ζ3 f(y) + . . . , (3.4.20)

in which Y (y) is a material position on the deformed midplane and the functions d(y), e(y)

and f(y) are known as the directors.

We can then express the deformation gradient, F̃ = DỸ , as

F̃ =∇Ỹ +

(
d(y) + ζ e(y) +

1

2
ζ2 f(y) + . . .

)
⊗ k , (3.4.21)

recalling that in our notation DV = ∇V + V ,3 ⊗ k, for some vector field V . It is useful

to define the deformation gradient and ζ derivatives at the midplane, which we denote with

successive primes, as follows

F =∇Y + d⊗ k , F ′ =∇d+ e⊗ k and F ′′ =∇ e+ f ⊗ k , (3.4.22)

where we have used the notation

(·)′ ≡ ∂

∂ζ
(̃·)|ζ=0 , (·)′′ ≡ ∂2

∂ζ2
(̃·)|ζ=0 etc. . (3.4.23)

This allows us to easily express quantities as power series in ζ, for example the 3D deformation

gradient would be

F̃ = F + ζ F ′ +
1

2
ζ2F ′′ + . . . . (3.4.24)

3.4.4 The Expanded Energy

Now Taylor expanding the energy in ζ � 1 about the midplane and using the chain rule we

get

W =

∫
Ω

∫ h/2

−h/2

(
W(F ) + ζP (F ) · F ′ +

1

2
ζ2(M(F )F ′ · F ′ + P (F ) · F ′′) + . . .

)
dζ dΩ

(3.4.25)

in which · is a Frobenius inner product and refers to the contraction of both indices in the

case of matrices. For example the inner product of matrices A and B would be

A ·B ≡ Tr (ABT ) = AijBij . (3.4.26)
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We can integrate the energy through the thickness, ζ, to obtain the approximate energy:

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′ + P (F ) · F ′′

))
dΩ + O(h5) . (3.4.27)

which is a function of y via the independent (unknown) functions Y , d, e and f that describe

the deformation.

Thus we have reduced the three-dimensional functional, in 3 fields, to a two-dimensional

functional evaluated at the midplane, with 12, as yet unknown, director fields. We can now

make further simplifications to this energy on the grounds of the applied forces, in order to

eliminate the directors.

3.4.5 Simplifying the Energy

In this section we use arguments on the scale of the forces applied to the lateral faces of the

sheet to further simplify the model. Following Steigmann [2013] the force balance normal to

the reference surface, Ω, is given by

t± = ±P (F̃ )|ξ=±h/2 n̂ , (3.4.28)

where n̂ = k is the normal to the undeformed midplane and t± is the (nondimensional)

applied traction. If we Taylor expand the through thickness strain, in powers of h � 1,

about the reference surface, and evaluate it on the top and bottom surfaces we get

t± = ±P (F )k +
1

2
h(M(F )F ′)k ± O(h2) (3.4.29)

for the top and bottom plates respectively, where t± are the (nondimensional) applied trac-

tions at the top and bottom surfaces respectively. This implies that

t+ + t− = hP ′k + O(h3) and t+ − t− = 2P (F )k +O(h2) , (3.4.30)

where P ′ ≡ (M(F )F ′).

We now make the simplifying assumption that forces applied on the top and bottom faces

are t± = O(h3) then this implies

Pk = O(h2) and P ′k = O(h2) , (3.4.31)

so that we can assume Pk = 0 and P ′k = 0 in the coefficients of h3, with no loss in accuracy.

These assumptions can be physically interpreted as restriction to forces which do not

result in large transverse shear strains. To incorporate these strains would necessitate solving
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for the director d as a coupled equation - leading to a shearable, Naghdi-type model with

additional unknowns. Thus, we are assuming that the transverse forces are “small enough”

that significant shearing of the plate does not occur. Instead, we may relate d directly in

terms of the displacements, which we do below.

We now apply these to the derived energy in equation (3.4.27). By imposing the condition

Pk = 0 in the bending energy we can neglect the term involving the director, f . The

resulting energy becomes

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′ + P (F ) ·∇e

))
dΩ + O(h5) . (3.4.32)

We now perform an integration by parts of the final term:

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′ − div(P (F )1) · e

))
dΩ

+
h3

24

∫
∂Ω

(P (F )1ν · e) dt+ O(h5) ,

(3.4.33)

where dt is an element along the boundary ∂Ω and ν is the outward unit normal to the

boundary ∂Ω. Here we also introduced the following tensor

1 ≡ I3 − k ⊗ k , (3.4.34)

which acts as a two-dimensional identity matrix embedded in the 3D space.

We then note that the equations of 3D elasticity predict, by equation (2.2.38), that

DivP̃ = div(P̃1) + P̃
′ · k = 0 , (3.4.35)

allowing us to replace the last bulk term as follows

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′ + P ′(F )k · e

))
dΩ

+
h3

24

∫
∂Ω

(P (F )1ν.e) dt+ O(h5) ,

(3.4.36)

and then immediately eliminate it, as it is of order O(h6) , by the condition on t+ − t−

in equation (3.4.30). This gives the following expression for energy for a plate subject to

transverse forcing of order O(h3), accurate to order O(h5)

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′)

))
dΩ +

h3

24

∫
∂Ω

(P (F )1ν.e) dt+O(h5) (3.4.37)

However, though we have eliminated the term f entirely, we still need to solve this set

of equations for the as yet unknown directors d and e, that enter via F ′. With this in mind,
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we proceed to simplify the energy using the results of Steigmann [2010]. By definition of

P ′ ≡ M(F )F ′ and F ′ = ∇d + e ⊗ k, the condition P ′k = O(h2) is equivalent to the

following expression

{M(F ) (e⊗ k)}k = −{M(F ) (∇d)}k +O(h2) . (3.4.38)

We can also write the approximate plane stress condition, Pk = O(h2), as

{
WF̃ (∇Y + d⊗ k)

}
k = O(h2) . (3.4.39)

Steigmann [2010] shows that these two equations form a complete system to uniquely deter-

mine the directors d and e to order O(h2). Thus, we can replace the directors in some parts

of equation (3.4.37) with the solutions d̄ and ē to equations (3.4.38) and (3.4.39) with no

loss of accuracy. We substitute

d = d̄(∇Y ) +O(h2) and e = ē(∇Y ) +O(h2) ,

in the order h3 term only. This results in the new expression for the energy

W =

∫
Ω
W̊ dΩ +

h3

24

∫
∂Ω

(P (F )1ν.e) dt + O(h5) , (3.4.40)

with W̊ given by

W̊ = hW(∇Y +d⊗k) +
h3

24

(
M(∇Y + d̄⊗ k)

(
∇d̄+ ē⊗ k

)
· (∇d̄+ ē⊗ k)

)
, (3.4.41)

where we emphasise that we cannot yet replace d with the solution d̄ in the first term, as

it, at first inspection, contributes order O(h3) terms to the energy. Taking variations in d,

Steigmann [2010] finds that the Euler-Lagrange equation for d, is given by

W̊d = hWd ,

which can be seen by taking the Gateaux derivative of equation (3.4.41). These are then

used to further simplify the energy. By the chain rule the above relation yields the equation

Wd =WF̃ k = 0 ,

which has the unique solution d̄ [Steigmann, 2010]. Thus no accuracy is lost by imposing

d = d̄ everywhere in the energy. This, in turn, gives the final, O(h5) energy as

WKS =

∫
Ω

(
hW(F ) +

h3

24

(
M(F )F ′ · F ′)

))
dΩ +

h3

24

∫
∂Ω

(P (F )1ν.e) dt , (3.4.42)
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in which d̄ is uniquely determined by solving equation (3.4.39), which we demonstrate in the

proceeding section for the special case of isotropy. This condition on d̄ is equivalent to the

statement of approximate plane stress, or that

Sk = 0 , (3.4.43)

as in Koiter’s original derivation [Koiter, 1966; Steigmann, 2013]. To reduce the notational

burden we henceforth drop the bar notation on the solutions d̄ and ē, remembering that the

plane-stress equations can be solved separately to reconstruct the 3D deformation.

On the boundary, the value of d cannot be arbitrarily chosen: on boundaries where

essential conditions are assigned, the position, Ỹ , is specified. This effectively means that

on the boundary we assign combinations Y and the normal derivative Y ,α να which in turn

control the value of d through the equations (3.4.38) and (3.4.39).

Along each boundary we have four independent degrees of freedom: three displacements,

Y , and an angle, Θ, formed between the tangent to the deformed sheet and the plane of the

undeformed sheet. We cannot arbitrarily set the value of Y ,ν as well as the displacements,

Y , as this would also impose an in-plane strain, which is a priori unknown. Instead we

impose the boundary condition N · νd = 0 where νd is the imposed outward normal to the

edge of the deformed sheet. Alternatively, we may set N I · Y ,α να = 0 where instead we

specify an imposed normal N I . This latter form is more accessible for the case of smoothly

clamped boundary conditions, for which Y = 0 and N = k, such that we may simply set

Y3,ανα = 0 and Yi = 0.

If the values of d or e determined from the boundary data of the original three-dimensional

problem disagree with the values determined by equations (3.4.38)and (3.4.39), then it is in

principle necessary to introduce a small 3D ‘matching region’ adjoining the boundary. Al-

ternatively, conflicting elements of the boundary data may be relaxed and the approximate

problem may solved as substitute for the original problem. This situation is not new, and is

also the case in theories that use the Kirchhoff-Love hypothesis as a basis in their derivation.

3.4.6 The Steigmann Energy

Unfortunately, the energy derived in the section above fails to satisfy the Legendre-Hadamard

condition (see section 2.2.4) necessary for the existence of energy minimizers unless the stress

is point-wise non-compressive [Hilgers and Pipkin, 1996; Steigmann, 2013]. This is much like
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the similar restriction on membrane theory, which needs to be ‘relaxed’ by fine scale wrinkling

in the manner outlined by tension field theory. However, in this instance the energy functional

is not suitable for relaxation as the current model contains a bending stiffness [Steigmann,

2013].

This unexpected restriction on the stress is not a failing of the model from the point of

view of accuracy: the energy accurately describes 3D elasticity in thin sheets. However, from

the point of view of the analysis of the 2D energy, it fails to form a well-posed minimization

problem within its own right, which means conventional means of solving the equations will

fail [Steigmann, 2010].

This restriction arises from a single problematic term. In the h3 (bending) term of

equation (3.4.42) the term (∇dS0) ·∇d appears: this term involves gradients of the through-

thickness stretch, so Hilgers and Pipkin [1996] refer to it as a strain-gradient term. If this term

is omitted, as in Koiter’s original formulation [Koiter, 1966], then the Legendre-Hadamard

condition is satisfied automatically - provided strong ellipticity is satisfied at equilibrium,

as the weak constitutive hypothesis we made in equation (3.4.15) implies [Steigmann, 2010].

The problematic parts of this term will automatically vanish in theories for which the classical

Kirchhoff-Love hypothesis has been made, as through-thickness stretch is neglected.

Steigmann [2013] instead makes a further restriction by assuming the stresses are |S0| =

o(1). This culminates in the use of a linear constitutive law in the bending term only. This can

be viewed as a restriction to small bending strains, whilst still allowing arbitrary rotations.

This is in contrast to membrane theory which assumes |S0| = O(1). Due to the constitutive

hypothesis outlined in equation (3.4.15), the assumption |S0| = o(1) implies that the strain

is also |E| = o(1).

We now simplify the energy, based on the above stress assumption, |S0| = o(1). Consid-

ering the coefficient of the h3 term the leading order energy, defined in equation (3.4.42), we

have the construct M(F )F ′. Using the connection between the two sets of elastic moduli

defined in equation (3.4.14) evaluated on the midplane we write

M(F )F ′ = F ′S0 +
1

2
F C(E)

(
F ′TF + F TF ′

)
. (3.4.44)

The deformation gradient, F , can be decomposed into a rotation, R, and a stretch, U , such

that F = RU . These matrices have the following properties [Ciarlet, 1988]

UT = U and RT = R−1 . (3.4.45)
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Accordingly, the Green-Lagrange strain tensor at the midplane can be written as

E =
1

2
(F TF − I3) =

1

2
(U2 − I3) . (3.4.46)

By Taylor expansion of
√
C = U about E = 0, it can be shown that

U = I3 +E +O(|E|2) , (3.4.47)

which can be easily verified by substitution into equation (3.4.46). Using the above relation,

we can conclude that F = R+o(1), i.e that the deformation gradient is equal to the rotation

matrix in the polar decomposition, to leading order.

Thus, using the relation F = R + o(1), and our assumption on the stress, equation

(3.4.47), we can write the final term in the energy, equation (3.4.44), as

M(F )F ′ =
1

2
RC(0)

(
F ′TR+RTF ′

)
+ o(1) . (3.4.48)

Here, we found the first term F ′ S · F ′ to be of order o(1), and therefore neglected it. This

term contained the problematic strain gradients, which enter via ∇d: thus, by neglecting

this term we have regularised the model.

In the above equation, equation (3.4.48), we have demonstrated that we can replace the

nonlinear constitutive relation used in the h3 terms with a linear constitutive hypothesis

whilst still maintaining O(h3) accuracy. Heuristically, we can view this as a statement that

bending strains are small, so a linear constitutive relationship is appropriate, in this term.

The energy now becomes

W =

∫
Ω

(
hW(F ) +

h3

24

(
M(R)F ′ · F ′)

))
dΩ + o(h3) , (3.4.49)

where we have also neglected the boundary term, that enters at order o(h3).

Using the generic relationship between the two elastic moduli (equation (3.4.14)) for

F = R, we can write

M(R)A = RM(I3)
(
RTA

)
, (3.4.50)

for a generic three-by-three matrix A. Using this expression to simplify the term appearing

in the energy, we have

M(R)F ′ · F ′ =M(I3)
(
RTF ′

)
·RTF ′ , (3.4.51)

which using equation (3.4.16) gives the final expression for the energy

WKS =

∫
Ω

(
hW(F ) +

h3

24

(
C(0)

(
RTF ′

)
·RTF ′

))
dΩ . (3.4.52)
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The tensor F ′ is determined by equation (3.4.22) with the director d determined by solving

equation (3.4.38).

To sum up, the assumption on the stress, |S0| = o(1), allows us to replace the constitutive

law in the h3 (bending) term with a linear one, as well as eliminating certain strain gradient

terms. This model is therefore appropriate for finite strains and finite rotations, provided

that the energy scales as o(h) with thickness [Steigmann, 2013]. For cases in which the

energy scales as O(h), tension field theory would instead be appropriate [Steigmann, 2013].

Though this model is now complete, we proceed to make simplifications based on the

commonly encountered conditions of reflection symmetry of material properties with respect

to the midplane and the case of isotropy of material properties.

3.4.7 Reflection Symmetry and Isotropy

Reflection symmetry about the midplane implies that the energy will be an even function of

the shear strain, Eα3. Mathematically this means: U(E) = U(QTEQ) with Q = I3−2k⊗k.

The shear stress at the midplane will be

∂U(E)

∂Eα3
= êα · UEk , (3.4.53)

which is an odd function of E3α. However, the shear stress vanishes by equation (3.4.43) and

the definition of the second Piola-Kirchhoff stress (equation (3.4.13)) , thereby vanishing in

the order h3 energy term. Due to the odd nature of the (O(h2)) stress with respect to E3α,

we conclude that E3α = 0 to leading order. Therefore, we have the following expression for

the strain

E = ε+
1

2
(φ2 − 1)k ⊗ k , (3.4.54)

in which ε = 1E 1 is the two-dimensional membrane strain and φ is the transverse (ζ-line)

stretch, determined by solving

k · S0k = 0 . (3.4.55)

Given that

E =
1

2

(
(∇Y )T (∇Y ) + (d⊗ k)T (d⊗ k)− I3

)
, (3.4.56)

we conclude that

d = φN , (3.4.57)

in which N is the unit normal to the deformed sheet.
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We can make further simplifications to the bending energy in the case of isotropy, for

which we have the linear Saint-Venant constitutive behaviour at small strain, as introduced

in section 2.2.5

C(0)A = λTr(A)I3 + 2µsym(A) . (3.4.58)

in which µ = µ∗/E and λ = λ∗/E are nondimensional Lamé coefficients and A is a rank two

tensor. We have also used the notation sym(A) to refer to the symmetric part of the matrix

A such that

A = sym(A) + skew(A) , (3.4.59)

where skew(A) is the skew symmetric part. We can use this to write

{C(0)a⊗ k}k = (λ+ 2µ) (a · k)k + µ1a , (3.4.60)

for a tensor composed of the outer product of any vector a and the unit normal to the

undeformed sheet, k. Focusing on the terms RTF ′, we then use the above relation, equation

(3.4.60), in conjunction with equation (3.4.38), modified using the assumption on stress,

{C(0)
(
RTe⊗ k + k ⊗ eR

)
}k = −{C(0)

(
RT∇d+ (∇d)TR

)
}k , (3.4.61)

to write

k ·RTe = − λ

λ+ 2µ
Tr(RT∇d)− 2µ

λ+ 2µ
k · sym(RT∇d)k (3.4.62)

and

1RTe = −21 {sym(RT∇d)}k . (3.4.63)

We have the following expression for ∇d =∇N +N ⊗∇φ. Here we have used the fact

that the transverse stretch is given by φ = 1 + o(1) in the normal term. This is to remain

consistent with the truncation of any terms smaller than order O(h3) in the energy, as any

o(1) terms in the coefficient of h3 will enter at lower order. Therefore, using the definition of

RT as the rotation matrix from deformed to undeformed surface, and additionally recalling

the definition of the relative curvature, κ, from section 3.3, we can write

RTN = k and RT ∇N = κ (3.4.64)

where κ = −(∇Y )TB(∇Y ) and B is the curvature on the deformed surface, as defined in

section 3.3. In Cartesian coordinates

κ = −Bαβ êα ⊗ êβ and Bαβ = Ni Yi,αβ . (3.4.65)
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Using this, and equation (3.4.64) we can write

RT∇d = κ + k ⊗∇φ and RTe = − λ

λ+ 2µ
Tr(κ)k −∇φ , (3.4.66)

which combined with the definition of F ′ yields

RTF ′ = κ− λ

λ+ 2µ
Tr(κ)k ⊗ k + k ⊗∇φ−∇φ⊗ k , (3.4.67)

and thus the bending energy

C(0)
(
RTF

)
·RTF =

2λµ

λ+ 2µ
(Tr(κ))2 + 2µ (κ · κ) . (3.4.68)

Therefore our final expression for the Koiter-Steigmann plate energy is

WKS =

∫
Ω

(
hW(F ) +

h3

24

(
2λµ

λ+ 2µ
(Tr(κ))2 + 2µ (κ · κ)

))
dΩ . (3.4.69)

To complete the model we must choose a particular strain-energy function, W(F ) for the

membrane part of the strain-energy function. As a consequence of the derived plane-stress

condition, the constitutive law must be modified using the plane stress condition to eliminate

components of the strain (cf. section 2.2.5). This, in turn, leads to an expression for

the in-plane strain-energy purely in terms of the gradient of the midplane, ∇Y , so that

hW(F ) = WM (∇Y ), which is the membrane strain-energy. Once this has expression has

been determined, we can write the above energy as

WKS =

∫
Ω
WKS(Gα,Gα,β) dΩ . (3.4.70)

where the model is a function of only the first and second derivatives of the midplane tangent

vectors, defined in section 3.3. Finally, it should be noted that the material constants in the

constitutive law must be chosen so that they linearise appropriately to agree with the Lamé

parameters for the infinitesimal strain limit.

3.4.8 Summary of the Koiter-Steigmann Model

In this section we summarize the derived energy and other relevant equations from the

previous section for a uniform thickness plate with zero initial deformation and isotropic

material properties. As seen in the previous section, the total strain-energy density for this

case is given by [Steigmann, 2013]:

WKS =

∫
Ω
WKS(Gα,Gα,β) dΩ . (3.4.71)
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where

WKS(Gα,Gα,β) =WM (Gα) +WB(Gα,Gα,β) . (3.4.72)

Here WM (Gα) is the membrane (plane stress) part of the energy, which arises when elimi-

nating the through-thickness stress from the strain-energy functionW(F ) (cf. section 2.2.5).

The bending energy, WB(Gα,Gα,β) is given by:

WB(Gα,Gα,β) =
1

24
h3

(
2λµ

λ+ 2µ
(Trκ)2 + 2µ(κ · κ)

)
. (3.4.73)

The relative curvature tensor, κ is given by

κ = −Bαβ êα ⊗ êβ , (3.4.74)

with the components:

Bαβ = N̂iYi,αβ . (3.4.75)

We can also write equation (3.4.73) as:

WB(Gα,Gα,β) = MiαβYi,αβ , (3.4.76)

where Miαβ is the bending moment. Due to the small, through-thickness strains involved in

bending, the bending moment is linearly related to the curvature tensor, Bαβ = Yi,αβN̂i =

vi,αβN̂i:

Miαβ =
1

12
h3N̂i

(
2λµ

λ+ 2µ
Bγγδαβ + 2µBαβ

)
, (3.4.77)

in which µ = 1 /(2+2ν) and λ = ν/(1+ν)(1−2ν) are the nondimensional Lamé coefficients.

Reintroducing dimensions, such that M∗ = (EL2)M , the (resultant) bending moment may

be more revealingly expressed in terms of E and ν:

M∗iαβ =
E (h∗)3

12(1− ν2)
N̂i

(
ν B∗γγδαβ + (1− ν)B∗αβ

)
. (3.4.78)

In this form we clearly see that the resistance to bending, the bending modulus, will be

D = E h∗3/12(1− ν2). The small strains inherent in the bending energy can be considered

as a restriction to deformations with a radius of curvature that is not comparable to the

thickness: as such they would not be suitable for ‘crumpling’-type problems in which there

is significant stress concentration.

Taking the variational (Gateaux) derivative of this energy [Steigmann and Ogden, 1999;

Steigmann, 2013] we can write the variations in energy (the energy functional) as

δWKS = Niαδvi,α +Miαβδvi,αβ , (3.4.79)



82 Chapter 3. Plate Models with a Bending Stiffness

with the total stress tensor Niα given by:

Niα = hSγαYi,γ −MiβγΓαβγ , (3.4.80)

where S is the plane stress tensor and Mi are the bending moments and quantities prepended

with a δ refer to variations (a Gateaux derivative) of that quantity. The complete derivation

of this result can be found in Appendix A. Here we note that, in accordance with our

assumption |S̃| = o(1), we replaced the Christoffel symbol of the first kind Γαβγ with a

Christoffel symbol of the second kind Γαβγ , at no penalty to overall accuracy.

The variation of a particular functional can be viewed as a small change in the functional

due to a small change in its input. For example the variation of U(Yi) is the small change

in energy, δWKS induced by a small deformation, δYi [Becker et al., 1981].

The tensor Γαβγ is the Christoffel symbol of the second kind, defined as:

Γαβγ = GαδΓ
δ
βγ , (3.4.81)

where Γδβγ ≡ G
δ ·Gβ,γ is the Christoffel symbol of the first kind.

We can also express the Christoffel symbol of the second kind in terms of gradients of

the midplane Green-Lagrange strain tensor ε [Steigmann, 2013]:

Γαβγ = Eαβ,γ + Eγα,β − Eβγ,α . (3.4.82)

We can express the Green-Lagrange strain tensor in terms of the metric tensors:

Eαβ =
1

2
(Gαβ − δαβ) , (3.4.83)

or the undeformed position vector:

Eαβ =
1

2
(Yi,αYi,β − δαβ) , (3.4.84)

or the displacements:

Eαβ =
1

2
(vα,β + vβ,α + vi,αvi,β) . (3.4.85)

As we only need the in-plane components of the strain tensor, we could replace all components

of the 3D strain tensor evaluated at the midplane Eαβ with components εαβ of the two-

dimensional, membrane strain tensor ε = Eαβ êα × êβ. However, to reduce the notational

burden, we continue to use the identical, 3D components, and favour index notation.

The model is then closed by assuming a particular strain-energy function (a constitutive

model) WM (Gα) that is specialised to plane stress. This then defines the second Piola-

Kirchhoff stress in terms of the deformed position vector. The adopted constitutive model is



3.4. The Koiter-Steigmann Model 83

required to coincide with the linear Saint Venant-Kirchhoff model (equation (3.4.58)) in the

limit of vanishing strain by the constitutive hypothesis (equation (3.4.15)). The plane stress

specialisations outlined in section 2.2.5 are therefore appropriate for this purpose.

Certain restrictions exist on the constitutive model that can be chosen: the constants

should be chosen such that the linearisation of the model agrees with the model assumed in

the bending moment. Additionally, the strain-energy function should be strongly elliptic for a

large range of strain, which is guaranteed for polyconvex strain-energy functions [Steigmann,

2013]. Included in this class of functions are the Neo-Hookean and two-dimensional Mooney-

Rivlin energy provided that the coefficients are non-negative [Ciarlet, 1988].

3.4.9 The Euler-Lagrange Equations

We will now derive the Euler-Lagrange equations. In simple terms, these are achieved by

repeated integration by parts. We start with the above variational principle∫
Ω
δWKSdΩ =

∫
Ω

(Niαδvi,α +Miαβδvi,αβ) dΩ = 0 , (3.4.86)

where Ω is the area of the midplane of the undeformed sheet and dΩ is an area element on

the undeformed sheet.

Integrating by parts, we obtain∫
Ω
δWKSdΩ =

∫
∂Ω

(Niαναδvi + Miαβνβδvi,α) dt−
∫

Ω
(Niα,αδvi +Miαβ,βδvi,α) dΩ = 0 ,

(3.4.87)

where ν is the normal vector to the edge δΩ.

We can further integrate the boundary-integral by parts, if we decompose the bending

moment into normal and tangential, with tangent τ , components as follows∫
Ω
δWKSdΩ =

∫
∂Ω

(
Niαναδvi +

(
Miαβνανβ δvi,γνγ +Miαβνατβδ

∂vi
∂t

))
dt

−
∫

Ω
(Niα,αδvi +Miαβ,βδvi,α) dΩ = 0 ,

(3.4.88)

to obtain∫
∂Ω

(
Niαναδvi + Miαβνανβδvi,γνγ −

∂

∂t
(Miαβνατβ) δvi

)
dt

+ lim
ι→0

∑
ξl

[Miαβνατβδvi]
ξl+ι
ξl−ι
−
∫

Ω
(Niααδvi +Miαβ,βδvi,α) dΩ = 0 ,

(3.4.89)

where ξl labels the lth discontinuity and in this case l labels a finite number of corners on

the boundary δΩ, rather than the three components of a vector field. A diagram showing

discontinuities in the boundary of a plate is shown in figure 3.5
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ξ1

ξ2
ξ3

ξ4

∂Ω

Figure 3.5: Birds eye view of an (undeformed) plate with four discontinuities (corners) in

the otherwise smooth boundary, ∂Ω.

As can be seen, the tangential angle variation along the boundary δ (∂vi/∂t) is completely

determined by the variation of the displacement along the boundary δvi. By integration of

this term by parts, we see that a twisting moment that varies along the boundary will result

in an additional contribution to the shear force on the boundary.

Mτν(t) dt Mτν(t+ dt) dt Mτν(t+ 2dt) dtMτν(t− dt) dt

Mτν(t)

Mτν(t)

Mτν(t+ dt)

Mτν(t+ dt)

Mτν(t+ 2dt)

Mτν(t+ 2dt)

Mτν(t− dt)

Mτν(t− dt)

Figure 3.6: Twisting moments applied to the edge of a flat plate. One can replace each

force couple generated by a twisting moment Mτν along the edge by opposing forces acting

a distance dt apart - the only difference will be the local stress distribution [Timoshenko and

Woinowsky-Krieger, 1959a]. From here it can be seen that variations in the twisting moment

along the edge give rise to a net upward (or downward) force, as at the edge of each segment

the forces are slightly unbalanced.

The origin of this additional shear force may be interpreted by considering a series of

twisting moments applied along the edge of a body, as displayed in figure 3.6. We can imagine

the edge split into a number of parts of length dt; upon each part a twisting moment is applied

which acts to twist the element out-of-plane. If we consider a single segment, the applied

moment exerts a force at either end of the segment. However, the next segment is also

twisting in the same sense, which prevents it from moving out-of-plane with an opposing
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force. If the (continuous) twisting moment varies along the boundary, each segment will

have a slightly unbalanced twisting force at the segment edge, resulting a net upward shear

force.

We finally integrate the bulk bending moment term for the second time to obtain:∫
∂Ω

((
Niανα −

∂

∂t
(Miαβνατβ)−Miαβ,βνα

)
δvi + Miαβνανβδvi,γνγ

)
dt

+ lim
ε→0

∑
ξl

[Miαβνατβδvi]
ξl+ε
ξl−ε
−
∫

Ω
(Niααδvi −Miαβ,βαδvi) dΩ = 0 .

(3.4.90)

Thus by inspection, the full equations and boundary conditions (as stated in [Taylor

et al., 2014]) are:

divT = 0 or Tiβ,β = 0 , (3.4.91)

with components of T given by:

Tiα = Niα −Miαβ,β , (3.4.92)

subject to the boundary conditions [Steigmann, 2013]:

qi = Qi or δvi = 0 , (3.4.93)

Miαβνανβ = ΨNi or δvi,ανα = 0 , (3.4.94)

with the generalised, internal ‘Kirchhoff shear’ qi = Niανα − (Miαβνατβ),γτγ −Miαβ,ανβ,

applied shear force Q and applied normal moment Ψ where ν and τ are the normal and

tangent to the edge ∂Ω, respectively.

So on an edge, we may set the deformed position Y and the normal to the plate edge

N I · r,α να = 0 where we specify an imposed normal N I . Alternatively we may apply a

bending moment Ψ, and a traction to the edge of the plate, Q, as displayed in figure 3.7.

(Qα)

Q3

Ψ

Figure 3.7: Diagram showing the forces that can be applied to the edge of a sheet. Q3, the

shear force, is shown separately to the in-plane traction Qα in this diagram.
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There are also the following conditions:

lim
ι→0

[Miαβ να τβ]
ξl+ι
ξl−ι

= Υi or δvi = 0 , (3.4.95)

on a corner ξl, on which we can apply a twisting moment, Υ. The twisting moments at

the discontinuities (corners) are concentrated reaction forces that arise in response to lateral

loads.

3.4.10 Applied Forces

The work done, δW−, by a pressure, P−, displacing a surface, ω−, quasistatically by a small

amount δY , is given by [Steigmann, 2004]:

δW− =

∫
ω−
P−N− · δY dω , (3.4.96)

where dω is an area element of the surface and N− is the unit normal to the surface.

In the case of a shell-like structure we have two pressures, P+ and P− acting on the top,

ω+ and bottom, ω−, faces of the deformed sheet respectively:

δW =

∫
ω+

P−N− · δY dω +

∫
ω+

P+N+ · δY dω , (3.4.97)

in which N+ and N− are the normals the top and bottom surface of the shell respectively.

Due to the inherent assumption of small thickness, we may write

δW =

∫
ω
P−(−N̂) · δY dω +

∫
ω
P+N̂ · δY dω +O(h) , (3.4.98)

as N±dω± = N̂dω +O(h), which can be shown by considering Nanson’s formula and per-

forming a Taylor expansion. Here ω is the deformed midsurface of the shell. This expression

can be further simplified to

δW =

∫
ω

∆PN̂ · δY dω +O(h) , (3.4.99)

where ∆P = P+ − P− is the pressure difference across the plate. If, as previously supposed

in section 3.4.5, P± = O(h3), then we can write this as:

δW =

∫
ω

∆PN̂ · δY dω +O(h4) , (3.4.100)

meaning that only the leading order pressure difference enters into the model in the forcing.

Finally, we write this in terms of an integral over the reference midsurface as: [Steigmann,

2013]:

δW =

∫
Ω

∆P
√
G N̂ · δY dΩ +O(h4) . (3.4.101)
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Therefore, we obtain the result from Steigmann [2013], for the Euler-Lagrange equations

subject to a uniform pressure load:

divT + α∆PN̂ = 0 or Tiβ,β + α∆PN̂i = 0 , (3.4.102)

in which α =
√
G is the ratio of deformed to undeformed area elements on the sheet,

specialised to a Cartesian reference material frame.

3.4.11 Comments on the Koiter-Steigmann Model

The Koiter-Steigmann equations are extremely complicated (∼ 370× more terms4 than the

Föppl-von Kármán model) when written out explicitly in terms of displacements, which

restricts analytical progress to the most simple of cases. We acknowledge that the counting

of terms is an imprecise measure, but provide this characterization to give some insight into

the complexity of the underlying equations.

In the present model, inverse square-roots of the surface metric tensor enter via the

unit normal, which results in non-polynomial nonlinearity in the equations. This makes

analytical progress with the equations comparatively more difficult than the other plate

models we consider in this work. However, given that there are no geometric restrictions in

the derivation, this model can accommodate arbitrarily large displacements and rotations

[Koiter, 1966] and finite strains [Steigmann, 2013], with a wide range of available constitutive

laws justified [Steigmann, 2013].

The equations are fourth order in all three displacements, which means that for the finite

element method the solution space will be H2(Ω) for all three displacements, which will have

a bearing on the ensuing speed of numerical solutions of the model.

Due to the weak assumption on the stress, all bar one of the models in the hierarchy

outlined in Friesecke et al. [2006] can be obtained with stronger assumptions on the stress

(see appendix C), the exception being membrane theory which is not suitable when any

compressive stress is present [Steigmann, 2013], as the model needs to be relaxed in the

manner described by Steigmann [1990]. This freedom makes the model attractive from

a numerical standpoint: it has a flexibility that makes it applicable to almost any thin

plate problem and allows for an assessment of whether simpler models provide an accurate

4By this we mean that, upon expanding all derivatives of products in the equations, written only in terms
of displacements, we have ∼ 370N where N = 22 is the number of unique terms in the Föppl-von Kármán
model. For example, in a(vi,α, vi,αβ) + b(vi,α, vi,αβ) where a, and b are distinct monomials, we would say
there are two terms.
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picture, without having to resort to 3D elasticity which, as discussed in the previous section,

is frequently far too expensive to be useful in studying thin-plate problems.

Finally, we relate the obtained expression for the three-dimensional displacement, ex-

pressed in equation 3.4.20, to classical kinematic assumptions. Recalling our original expan-

sion in ζ, the 3D displacements are given by the following equations for isotropic materials:

ṽ = v + (φN̂ − k) ζ + e ζ2 + f ζ3 + · · · . (3.4.103)

Now, recalling that φ = 1 + o(1), so that the normal-line remains unstretched, and noting

that ζ ∼ h, we see that to leading order the expression becomes:

ṽ = v + (N̂ − k) ζ + o(h) . (3.4.104)

Thus, the Kirchhoff-Love hypothesis, equation (3.1.7), approximately holds. This has emerged

naturally from derivation and has not been assumed. We reiterate here that, given that the

model is accurate up to order o(h3), the three-dimensional displacement can be reconstructed

with far more accuracy than the leading-order Kirchhoff-Love approximation.

The full reconstructed position vector will instead be given by;

Ỹ = Y + (φN̂) ζ −
(

λ

λ+ 2µ
Tr(κ)N̂ +R (∇φ)

)
ζ2 +O(h3) . (3.4.105)

where the midplane-stretch, φ, and the rotation matrix, R, can be readily computed from

the plane-strain tensor and unit-normal respectively. Here we note that the Lamé constants

enter via the assumptions of reflection symmetry and isotropy, along with the assumptions

on stress |S| = o(1).

We will now investigate the Föppl-von Kármán model and its derivation from the Koiter

model.

3.5 The Föppl-von Kármán Model

The Föppl-von Kármán model is a popular model throughout the literature as it is the

simplest plate model to incorporate both a bending and a stretching energy. It can be

derived heuristically from 3D elasticity by making assumptions on the relative magnitude of

the displacements,

vα ∼ h2 and v3 ∼ h . (3.5.1)
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It is not necessary to assume a linear constitutive relation, as the above assumption implies

that the strain scales as E ∼ O(h2), and therefore that material nonlinearity enters at lower

order. These assumptions are then consistent with the assumptions of the Koiter-Steigmann

model: thus we can derive the Föppl-von Kármán model from the Koiter-Steigmann model

by incorporating these stronger assumptions. Rather than deriving the model directly from

3D elasticity, we will instead derive the same equations from the Koiter-Steigmann model,

using these heuristic displacement scaling assumptions.

As has been shown in the previous section, the Kirchhoff-Love hypothesis is approxi-

mately satisfied by the Koiter-Steigmann model. Introducing these assumptions into equa-

tion (3.4.105), we see that in fact the Kirchhoff-Love hypothesis now holds to O(h3), as a

consequence of the stronger scaling assumptions.

Though we derive the equations in this manner, we stress that these assumptions are not

necessary to obtain the Föppl-von Kármán model: the model can instead be derived directly

by the method of gamma convergence purely based on a scaling assumption on the applied

forces, as shown by Friesecke et al. [2006]. The linear constitutive hypothesis, Kirchhoff-

Love hypothesis and the scaling of the displacements emerge naturally in the derivation.

Assuming a different scaling behaviour for the applied forces results in a different model in

the limit of vanishing thickness [Friesecke et al., 2006]. We will not repeat the derivation

via gamma convergence here, as for our purposes the heuristic arguments on the scaling

of the displacements will suffice. The assumed scaling of the applied forces in the Föppl-

von Kármán model constitute a model in which bending and stretching are of comparable

importance, allowing for moderate rotations and small in-plane displacements. We display

the relationship between the various models graphically in figure 3.8.

We will now proceed by deriving the Föppl-von Kármán model from the Koiter-Steigmann

model.

3.5.1 Rescaling of the Basic Quantities

The basic kinematic hypothesis we use to derive these equations can be expressed as follows:

vα = h2 v̄ , (3.5.2)

v3 = h v̄ , (3.5.3)

where we introduce the rescaled nondimensional displacements v̄α = O(1) and v̄3 = O(1).
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3D Elasticity

Koiter–Steigmann

Föppl–von Kármán

vα ∼ h2 , v3 ∼ h

|S0| ∼ o(1)

Figure 3.8: Relationship between 3D elasticity, the Koiter-Steigmann model and the Föppl-

von Kármán model, including the main assumptions used in their derivation. Solid-line

connections indicate a gamma convergent limit whilst dashed lines indicate connections via

heuristic scaling arguments.

3.5.2 Leading Order Bending Variations

We now apply the assumptions on the displacements to the Koiter-Steigmann equations, in

variational form, as expressed in equation (3.4.79). The first term we inspect is the bending

term, δWB = Miαβδvi,αβ, which can be expressed as follows:

δWB =
h3

12
Gαβγδ (N̂i vi,γδ) N̂j δvi,αβ , (3.5.4)

in which Gαβγδ = G∗αβγδ/E is the nondimensional Saint Venant-Kirchhoff membrane stiffness

tensor (c.f section 2.2.5), with coefficients

Gαβγδ =
1

(1− ν2)
[(1− ν) (δαδδβγ + δαγδβδ) /2 + ν δδγδαβ] . (3.5.5)

Here we used the standard notation δαβ for the Kronecker delta.

We substitute the scaled quantities into this expression, splitting up the in-plane and

out-of-plane terms:

δWB =
h5

12
Gαβγδ (h2 N̂µ v̄µ,γδ + h N̂3 v̄3,γδ) N̂µ δv̄µ,αβ

+
h4

12
Gαβγδ (h2 N̂µ v̄µ,γδ + h N̂3 v̄3,γδ) N̂3 δv̄3,αβ .

(3.5.6)

To truncate this, we must first expand the normal using the kinematical assumptions

expressed in equations (3.5.2) and (3.5.3). By considering the case of zero displacement, it

is clear that the leading order for the deformed normal to the sheet will be perpendicular to

the undeformed sheet: N̂ ≈ k. In fact, a detailed calculation (see Appendix B) reveals that

N̂ ≈ −hv̄3,α êα + (1 +
1

2
h2v̄3,γ v̄3,γ)k , (3.5.7)
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or, as we only need the expression at leading order

N̂ = (1 +O(h2))k +O(h)êα . (3.5.8)

Substituting this into the equations we can see that the resulting bending energy variation

is

δWB =
h5

12
Gαβγδ (h n̂3 v̄3,γδ) n̂3 δv̄3,αβ +O(h7) , (3.5.9)

with n̂ = k.

Thus, we see that under the displacement scaling assumptions the bending moment,

Miαβ, is of order O(h4) and linear in the displacements:

Mαβ =
h4

12
Gαβγδ v̄3,γδ k + o(h4) . (3.5.10)

We define a linear bending moment, ML
αβ, as follows

Mαβ = ML
αβ k + o(h4) , (3.5.11)

where the components are given by

ML
αβ =

h4

12
Gαβγδ v̄3,γδ . (3.5.12)

Thus, the linear bending energy emerges as the leading order bending term under the

assumptions of the Föppl-von Kármán model. We also note that in the treatment of the

bending moment we effectively evaluate the moment and curvature using the normal to

the undeformed sheet: all corrections to the normal of the sheet enter at higher order.

This confirms that the Föppl-von Kármán model is appropriate for sheets which undergo

‘moderate’ rotations.

3.5.3 Leading Order Membrane Variations

We now consider the truncation of the total stress term, from equation (3.4.79). This is

made up of the membrane term, WM , and a Christoffel term, δWΓ:

δWT = δWW + δWΓ (3.5.13)

with

δWM = hSαγYi,αδvi,γ , (3.5.14)

δWΓ = −MiαβΓγαβδvi,γ . (3.5.15)
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Using the assumption of a stress-free reference state, expressed in equation (3.4.15), in

conjunction with our assumptions on the displacement leads to

δWM = hGαγδµEδµYi,αδvi,γ + o(h5) . (3.5.16)

Thus, linear constitutive behaviour emerges at leading order as a consequence of the scaling

assumptions on the magnitude of the displacements and the assumption of a stress-free

reference state.

We may therefore write the variations as follows

δWT = (hGαβγδ Eγδ Yi,α −MiαβΓγαβ)δvi,γ + o(h5) . (3.5.17)

To tackle the first term we expand the strain, Eαβ, which is given in terms of the scaled

displacements by

Eαβ =
h2

2
(v̄α,β + v̄β,α + v̄3,αv̄3,β + h2 v̄γ,αv̄γ,β) . (3.5.18)

Therefore, we see the in-plane nonlinearity enters at higher order. We now define the

(rescaled) Föppl-von Kármán strain tensor

ĒvKαβ ≡
1

2
(v̄α,β + v̄β,α + v̄3,αv̄3,β) . (3.5.19)

Re-writing the first term of the stretching energy in terms of the scaled displacement, we get

the final expression for the membrane term

δWM = h5Gαβγδ
(
ĒvKγδ δv̄α,β + ĒvKγδ v̄3,α δv̄3,β

)
+ o(h5) . (3.5.20)

We now examine the term that contains the Christoffel symbol:

δWΓ = −MiαβΓγαβδvi,γ . (3.5.21)

First we consider the out-of-plane (3rd) component of this term: the order of the linear

bending moment is O(h4) and the strain, Eαβ, is O(h2). This implies that Γαβγ , which is a

linear combination of the strain gradients, will also be order O(h2). Thus, this whole term

will be of order O(h7) and will not appear in the Föppl-von Kármán equations.

The in-plane components of this tensor contain the in-plane component of the nonlinear

bending moment, Mγαβ which is of order O(h6). When combined with the Christoffel symbol

and the variations δvγ,αβ, it becomes of order O(h9) and can safely be neglected in equation

(3.5.15). Thus no terms containing the Christoffel symbol enter the leading order energy.
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3.5.4 The Loading Term

Before continuing, we examine the load term: as the Föppl-von Kármán model is the leading

order model under the scaling assumptions (equations (3.5.2-3.5.3)), we include only the

leading order loading terms. As we found in section 3.4.10, the load term is given by

N̂i∆p
√
Gδvi (3.5.22)

Based on the kinematical assumptions on the size of displacements,
√
G = 1 +O(h2). Using

this, and the expression for the unit normal (equation 3.5.7), which is given byN ≈ k+O(h),

to leading order the loading term will be given by

N̂i∆p
√
Gδvi = ∆p δv3 +O(h7) . (3.5.23)

Thus, the Föppl-von Kármán model does not distinguish between the deformed and unde-

formed sheet in then load term, due to the underlying assumption of small displacements.

3.5.5 Föppl-von Kármán as the Leading Order Model

We can now combine the bending and stretching variations to find the leading order energy

variations under the assumptions of the Föppl-von Kármán model. The total variation is

given by

δWFvK =
h5

12
Gαβγδ v̄3,γδ δv̄3,αβ + h5GαβγδĒvKγδ δv̄α,β + h5GαβγδĒvKγδ v̄3,αδv̄3,β +O(h7) ,

(3.5.24)

which can be written in terms of dimensional quantities in the familiar form:

δW∗FvK =
E h∗3

12(1− ν2)
((1−ν)v∗3,αβ δv

∗
3,αβ+νv∗3,αα δv

∗
3,ββ)+h∗ S∗ vKαβ (δv∗α,β+v∗3,αδv

∗
3,β)+O(h7) ,

(3.5.25)

where we have defined the Föppl-von Kármán stress as S∗ vK = G∗ εvK where

εvK = h2ĒvKαβ êα ⊗ êβ , (3.5.26)

is the unscaled, Föppl-von Kármán strain tensor. Thus, the equations comprise the famous

coupling of linear bending to the Föppl membrane model.



94 Chapter 3. Plate Models with a Bending Stiffness

The Föppl-von Kármán Equations

From this variational principle, we can derive the Euler-Lagrange equations, in the same way

as for the Koiter-Steigmann model in section 3.4.9, to get the Föppl-von Kármán equations:

D∇∗4v∗3 − h∗
(
S∗vKαβ v∗3,α

)
,β

= ∆P ∗ , (3.5.27)

S∗ vKαβ,β = 0 , (3.5.28)

with the bending modulus D = E h∗3/12(1− ν2).

These equations are subject to two boundary conditions on v3:

δv∗3 = 0 or q∗ vK3 = Q∗3 , (3.5.29)

δv∗3,ανα = 0 or M∗L3αβνανβ = Ψ∗3 , (3.5.30)

where q∗ vK3 , the generalised shear force for the Föppl-von Kármán model, is given by:

q∗ vK3 = −D(∇∗2v∗3),βνβ − (M∗L3αβνατβ),γτγ + h∗ v∗3,α S
∗ vK
αβ νβ . (3.5.31)

We also have the two in-plane boundary conditions:

δv∗α = 0 or S∗ vKαβ νβ = Q∗α . (3.5.32)

Here, once again, ν denotes the normal to the edge of the sheet and τ the unit tangent. Q∗3

is an applied shear force (normal to the undeformed sheet), Ψ∗3 is an applied moment and

Q∗α is an applied stress (tangent to the undeformed sheet). At the lth discontinuity, ξl, along

the edge (corners) we also have the following conditions:

δv∗3 = 0 or lim
ι∗→0

[M∗L3αβνανβ]
ξl+ι

∗

ξl−ι∗
= Υ∗3 , (3.5.33)

where Υ∗3 is an applied twisting moment.

3.5.6 Comments on the Föppl-von Kármán Model

The Föppl-von Kármán model is the leading order model when bending and stretching

energies are of comparable magnitude [Friesecke et al., 2006]. For planar problems, the

equations reduce to those of linear plane-stress elasticity, with identical solutions to 3D

infinitesimal elasticity, under conditions of plane-stress. Additionally, the nonlinearity only

enters the equations though the Föppl-von Kármán strain tensor via the term involving

∇∗v∗3 ·∇∗v∗3. It is the combination of these properties that make the solution of the equations
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in planar wrinkling problems particularly tractable: as they have a linear base state, for which

a linear stability analysis can readily be performed to calculate the onset of wrinkling.

We also saw that, in terms of displacements scaled on nondimensional thickness, the

Föppl-von Kármán equations represent the leading order in a (nondimensional) thickness-

wise expansion: this means that when considering scaled displacements, no explicit thickness

parameter can enter the equation. This is in contrast to the Koiter-Steigmann model which

retains multiple thickness orders and therefore must incorporate an explicit (nondimensional)

thickness parameter.

The equations are semi-linear [Ciarlet, 1980], as the coefficients of the highest derivative

do not depend on derivatives of the unknown functions. The Föppl-von Kármán equa-

tions are fourth order in the out-of-plane displacement, v3, and second order in the in-plane

displacements, meaning they require special interpolation schemes for the out-of-plane dis-

placements, as we will see in the following chapter.

Examining the variational equation, we note that the Föppl-von Kármán model is the

superposition of the nonlinear membrane model of Föppl, suitable for small displacements

and moderate rotations, and the linear (small displacement) Kirchhoff-Love bending model

[Friesecke et al., 2006].

As we have discussed in previous sections with other membrane-like models, the Föppl

membrane energy is not suitable for use when the stress becomes compressive. Instead the

energy needs to be ‘relaxed’ in the manner outlined by [Steigmann, 1990]. Alternatively, as

in Föppl-von Kármán, the superposition of a bending energy regularizes the model.

3.6 The Extended Föppl-von Kármán Model

Using the same assumptions of Föppl-von Kármán it is possible to derive an extension to

the Föppl-von Kármán model: which we call the extended Föppl-von Kármán model. The

model derived here appears to be novel, although its relation to 3D elasticity will only be

established by heuristic scaling arguments. We proceed with the heuristic derivation used

to justify Föppl-von Kármán, but now incorporate higher order terms into the model. We

maintain terms up to O(h7) in our variational equation, suppressing terms of higher order.

In this section we proceed by using a bar to denote quantities scaled on the leading order

in thickness, as in the previous section.
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3.6.1 Correction to the Normal

The first step in this derivation is the expansion of the unit normal, which leads to nonlinear-

ity in the bending moment. This nonlinear bending term appears to be novel and represents

a trade off between accuracy and simplicity.

We Taylor expand the normal using thickness as the small parameter, replacing the

displacements with explicitly scaled counterparts, to yield the unit normal to order O(h2).

A detailed calculation can be found in Appendix B.

This yields the following expression for the unit normal in terms of the scaled displace-

ments, v̄i:

N̂ = (−hv̄3,α +O(h3)) êα + (1 +
1

2
h2v̄3,γ v̄3,γ +O(h4))k , (3.6.1)

so maintaining terms up to order h2 we have:

N̂ ≈ −hv̄3,α êα + (1 +
1

2
h2v̄3,γ v̄3,γ)k , (3.6.2)

which constitutes the first correction to the unit normal of the Föppl-von Kármán model.

We define the correction to the unit normal as follows:

N̂
C ≡ −hv̄3,α êα +

1

2
h2v̄3,γ v̄3,γ k . (3.6.3)

We compare this approximation to the exact unit-normal and the approximation underlying

the Föppl-von Kármán equations for a plate undergoing large rotations in figure 3.9. As

can be seen this approximation is appropriate for moderate-to-large rotations, but will break

down once angles approach 90°.

Figure 3.9: Illustration of the approximations to the unit normal used in the Föppl-von

Kármán model (red), which remains constant, and the extended Föppl-von Kármán model

(green), as compared to the true normal (blue), under basic rotation of a plate (blue).
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3.6.2 Moment and Curvature Correction

We start by considering the bending term, δWB of the Koiter-Steigmann model

δWB = Miαβδvi,αβ . (3.6.4)

Introducing the approximate expression for the unit normal into the expression for the

curvature, to order O(h4) the scaled, nondimensional curvature, B̄αβ = N̂ .Y ,αβ/h, is

B̄αβ = −h2v̄3,γ v̄γ,αβ + (1 +
1

2
h2v̄3,γ v̄3,γ)v̄3,αβ +O(h4) . (3.6.5)

We see that the correction to the unit normal introduces an in-plane component to the

bending moment, resulting in the fourth derivatives of in-plane displacements in the Euler-

Lagrange equations.

We re-write this as:

B̄αβ = B̄L
αβ + h2B̄C

αβ +O(h4) , (3.6.6)

where B̄L
αβ ≡ v̄3,αβ are components of the linear bending moment and

B̄C
αβ ≡

1

2
v̄3,γ v̄3,γ v̄3,αβ − v̄3,γ v̄γ,αβ , (3.6.7)

are the components of the nonlinear correction. This results in a nonlinear bending moment:

M3αβ =
h4

12
Gαβγδ(B̄L

γδ + h2B̄C
γδ )(1 + N̂C

3 ) +O(h8) , (3.6.8)

and

Mµαβ =
h4

12
Gαβγδ(B̄γδ N̂C

µ ) +O(h7) , (3.6.9)

Using these results to construct the full bending variation term, we get the expression

δWB =
h5

12
Gαβγδ v̄3,γδ δv̄3,αβ +

h7

12
Gαβγδ(N̄C

i N̂
L
j + N̄C

j N̂
L
i + h2N̄C

j N̄
C
i ) v̄j,γδ δv̄i,αβ +O(h9) ,

(3.6.10)

in which we have introduced the scaled components of the correction to the unit normal

N̄C
α =

1

h
N̂C
α and N̄C

3 =
1

h2
N̂C

3 . (3.6.11)

and the corrected unit normal N̄+
i = δi3 + h2N̄C

i . Here we have retained some terms of order

O(h9): according to our assumptions these terms are negligible; however, their truncation

only serves to complicate the ensuing expression, so we do not neglect them.
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We may alternatively write this in the succinct form

δWB =
h5

12
Gαβγδ B̄+

αβ N̄
+
i δv̄i,γδ +O(h9) , (3.6.12)

where B̄+
αβ = v̄i,αβN̄

+
i . Finally, this can be expressed terms of unscaled quantities as

δWB =
h3

12
Gαβγδ B+

αβ N
+
i δvi,γδ +O(h9) (3.6.13)

where B+
αβ = vi,αβN

+
i and

N+
i = δi3 + N̂C

i = −v3,α δiα + (1 + v3,γv3,γ) δi3 . (3.6.14)

3.6.3 Approximation of the Christoffel Term

The next term to consider is the term containing the Christoffel symbol:

δWT = δWW + δWΓ . (3.6.15)

The Christoffel symbol itself is formed of derivatives of the strain tensor and therefore is of

order O(h2), according to our assumptions. Thus, we shall see that order O(h7) accuracy is

maintained if we consider only the linear bending moment, ML
αβ = O(h4), and the derivatives

of the Föppl-von Kármán strain tensor, EvKαβ .

We start by expanding the Christoffel symbol,

Γαβγ = h2 (ĒvKαβ,γ + ĒvKγα,β − ĒvKβγ,α) +O(h4) , (3.6.16)

where ĒvKαβ are components of the scaled, partially-linearised Föppl-von Kármán strain ten-

sor, of section 3.5.5. Thus, we may define the leading order Christoffel symbol, ΓCαβγ , as

ΓCαβγ = h2 (ĒvKαβ,γ + ĒvKγα,β − ĒvKβγ,α) . (3.6.17)

The Christoffel term in the equations is then given by

δW+
Γ = ΓCαβγM

L
αβδv3,γ +O(h9) . (3.6.18)

3.6.4 Approximation of the Membrane Term

The final part of the internal-energy variations to consider is the membrane term, δWM ,

given by

δWM = hSαγYi,αδvi,γ . (3.6.19)
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There are new nonlinear stretching terms that enter into the model via the strain tensor,

Eαβ, and the stress tensor, S ≡ UMε , where UM (ε) =WM (gα), which can now be a nonlinear

function of the strain, if suitably truncated.

The full Green-Lagrange strain tensor (equation (3.4.85)) does not need truncating and

is given in terms of scaled displacements by

Eαβ =
h2

2
(v̄α,β + v̄β,α + v̄3,β v̄3,α + h2v̄γ,αv̄γ,β) . (3.6.20)

The stress tensor needs to be truncated according to the displacement scaling assumptions

to give the following form:

S̄αβ = S̄vKαβ + h2S̄Cαβ + o(h2) , (3.6.21)

with S̄vkαβ and S̄Cαβ the (scaled) Föppl-von Kármán stress and stress correction, respectively.

This can only be performed once a constitutive equation has been chosen. Alternatively, the

full model can be incorporated which will, in general, lead to additional order O(h7) terms

entering the model.

For example, the linear Saint-Venant-Kirchhoff constitutive law gives the following form

for the stress tensor, cf. equation (2.2.50),

S̄αβ = Gαβγδ(ĒvKγδ +
1

2
h2v̄γ,αv̄γ,β) , (3.6.22)

in which we have not needed to truncate any terms, because of the linear constitutive as-

sumption.

Accordingly, the membrane term becomes

δWM = h5
(
S̄vKαβ + h2S̄Cαβ

)
Ḡiα δv̄i,β + o(h7) , (3.6.23)

in which Ḡiα = δiα + v̄3,αδi3 + h2 v̄β,αδiβ. Or in terms of unscaled variables

δWM = hS+
αβ Yi,α δvi,β + o(h7) , (3.6.24)

with the truncated stress tensor S+
αβ = h2S̄vK + h4S̄Cαβ. Once again, we retain some o(h7)

membrane terms, as their truncation would only complicate the foregoing model.

3.6.5 Truncation the Load Term

We finally truncate the loading terms in the Koiter-Steigmann model, to further simplify

the model. We now consider the form of the truncated follower load, for which the exact

expression is:

P ≡ ∆PN̂
√
G . (3.6.25)
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We expand the term N̂
√
G using an intermediate result from Appendix B, to get the fol-

lowing expression for the forcing:

P = ∆P
[
k(1 + h2v̄γ,γ +O(h4))− (hv̄3,γ +O(h3))êγ

]
. (3.6.26)

We can, therefore, define a new (non-unit) approximate normal vector:

η ≡ k(1 + h2v̄γ,γ)− (hv̄3,γ)êγ , (3.6.27)

which can be split into a constant part, and a correction term:

η ≡ k + ηC . (3.6.28)

Thus, the forcing term is now linear in the unknowns: a significant simplification.

3.6.6 The Variational Principle

Putting everything together we get the full variational form, where we use pluses to denote

the quantities of the extended Föppl-von Kármán model

δW+ = hS+
αβ Yi,α δvi,β +

h3

12
Gαβγδ B+

αβ N
+
i δvi,γδ + ΓCαβγM

L
αβδv3,γ + o(h7) . (3.6.29)

which is order o(h7) accurate under the assumptions of v3 ∼ h and vα ∼ h2. Here we

introduce the truncated bending moment:

M+
iαβ = Gαβγδ vj,αβN+

j N
+
i , (3.6.30)

the truncated stress S+
αβ which must be derived for the chosen material model, and the

truncated normal

N+ = −∇v3 + (1 +
1

2
(∇v3)2)k . (3.6.31)

We also take this opportunity to convert the equations back into dimensional form:

δW∗+ = h∗ S∗+
αβ Y

∗
i,α δv

∗
i,β +

h∗3

12
G∗αβγδ B∗+

αβ N
+
i v
∗
i,γδ + Γ∗CαβγM

∗L
αβ δv

∗
3,γ + o(h7) . (3.6.32)
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3.6.7 The Euler-Lagrange Equations

Deriving the Euler-Lagrange equations in the same way as for the Koiter-Steigmann model

in section 3.4.9, we now express the governing equations for the correction model

D
(
v∗i,ααββ N

+
i N

+
3 + 2v∗i,ααβ(N+

i N
+
3 ),β

)
+
h∗3

12
G∗αβγδ v∗i,γδ(N+

i N
+
3 ),αβ − h∗

(
S∗αβY

∗
j ,α

)
,β

+
h3

12

(
G∗βγµνv∗3,µνΓαβγ

)
,α

= (1 + vγ,γ) ∆p∗ (3.6.33)

D
(
v∗i,ααββ N

+
µ + 2v∗i,ααβ(N+

i N
+
µ ),β

)
+
h∗3

12
G∗αβγδ v∗i,γδ(N+

i N
+
µ ),αβ

− h∗
(
S∗αβY

∗
µ ,α

)
,β

= −v3,µ ∆p∗ (3.6.34)

with

N+ = −∇v3 + (1 +
1

2
∇v3 ·∇v3)k (3.6.35)

subject to the boundary conditions

q∗+
i = Q∗i or δv∗i = 0 , (3.6.36)

M∗+
iαβ = Ψ∗i or δv∗i,ανα = 0 , (3.6.37)

with the truncated, internal shear

q∗+
i = (h∗S∗αβYi,β +M∗+

iβγΓαβγ)να − (M∗+
iαβνατβ),γτγ −M∗+

iαβ,ανβ , (3.6.38)

applied shear force Q∗ and applied normal moment Ψ∗ where ν and τ are the normal and

tangent to the edge ∂Ω, respectively.

There are also the following conditions:

lim
ι→0

[M+∗
iαβ να τβ]

ξ∗l +ι∗

ξ∗l−ι∗
= Υ∗i or δv∗i = 0 , (3.6.39)

on a corner ξ∗l , on which we can apply a twisting moment, Υ∗.

The Extended Föppl-von Kármán Model

The governing equations for the extended Föppl-von Kármán model can be written far more

succinctly in terms of the bending moments, M∗C
αβ = M∗+

αβ −M
∗L
αβ , and M∗L

αβ as follows

Dv∗3,ααββ + M∗C3αβ,αβ −
(
h∗S∗αβY

∗
j ,α + M∗Lµγ Γβµγ

)
,β

= η3 ∆p∗ , (3.6.40)

M∗Cµαβ,αβ − h∗
(
S∗αβY

∗
µ ,α

)
,β

= ηµ ∆p∗ , (3.6.41)
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subject to the boundary conditions

q∗+
i = Q∗i or δv∗i = 0 , (3.6.42)

M∗+
iαβ = Ψ∗i or δv∗i,ανα = 0 . (3.6.43)

3.6.8 Comments on the Extended Föppl-von Kármán Model

We now comment on several important aspects of this newly derived, extended model. The

model now contains nonlinearity in both the bending and the stretching terms and is now

nonlinear in both the in-plane and out-of-plane displacements. This contrasts with the Föppl-

von Kármán model which contains nonlinearity only in the out-of-plane, stretching terms.

It is worth noting that in correcting the equations we have lost the semi-linear property

associated with the Föppl-von Kármán equations and the equations instead become quasi-

linear (cf. section 3.5.6), i.e. the coefficients of the highest derivative are all lower order

derivatives of the unknown. The relationship between the various models is shown in Figure

3.10.

We note that, in the truncation of the model, we have replaced the nonlinear loading

term with a linear one. We have also removed the non-polynomial type nonlinearity of the

Koiter-Steigmann model, discussed in section 3.4.11, that enters into the model via the exact

unit-normal. These simplifications make the expression for the bending energy comparatively

simpler.

These equations represent the first two orders of a thickness-wise expansion, when the

Föppl-von Kármán scaling holds. Thus, the equations now contain an explicit thickness

parameter, even in scaled form. Thus, we see that explicit thickness dependence enters both

through the membrane term (as in the model of Healey et al. [2013]) and through the, now

nonlinear, bending term.

The variational expression now contains second derivatives (and second variations) in all

of the displacements, which means that the solution space is H2(Ω) for each displacement,

rather than just for the out-of-plane displacement. We will see in later, in chapter 4 that this

will require C1 (gradient) continuous interpolation for all three displacements, not just the

out-of-plane displacement, when solving these equations numerically using the finite element

method.

This additional continuity requirement will increase the computational burden of the

extended model over the Föppl-von Kármán equations. However, the comparative simplicity
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3D Elasticity

Koiter–Steigmann

Föppl–von Kármán

Extended Föppl–von Kármán

O(h∗)2O(1)

Figure 3.10: Relationship between 3D elasticity, the Föppl-von Kármán model and the

extended Föppl-von Kármán model. The dashed line indicates an agreement in the zero

thickness limit.

of the present model, as compared to the Koiter-Steigmann model, does introduce some

advantage to this theory: it is far more tractable from an analytic perspective and allows

certain physical predictions to be made more readily. To give a sense of the complexity5 of the

equations, this model only has ∼ 8× more terms than the Föppl-von Kármán model, when

all derivatives have been expanded and explicitly written in terms of displacements, which

is a significant simplification as compared to the Koiter-Steigmann model, which contains

∼ 370× more terms.

Finally we relate our newly derived model to the Healey et al. [2013] model: if we

replace the new, nonlinear bending moment M∗+
αβ for the linearised bending moment M∗Lαβ

and neglect the term containing the Christoffel symbols, we arrive at the Healey et al.

[2013] model. The Healey et al. [2013] model comprises the superposition of the linear

bending energy and a nonlinear membrane energy, and is suitable for large-strain systems

with moderate-rotations.

5See the comments of section 3.4.11 for a discussion regarding this measure.
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3.7 Summary

In this chapter we have seen the rational descent of the Koiter-Steigmann model from three-

dimensional elasticity. Following this, we used scaling assumptions to connect the Föppl-

von Kármán model to the Koiter-Steigmann model, in the limit of small in-plane displace-

ments and moderate rotations. Finally, taking inspiration from this approach, we derived a

new model, the extended Föppl-von Kármán model, which represents the next order in the

thickness-wise expansion, under the same small-displacement, moderate rotation assump-

tions of the Föppl-von Kármán model.

Now that we have outlined the derivation of three distinct models, suitable for investi-

gating wrinkling in thin-plate problems, we proceed to explain how these equations can be

solved: focusing on their numerical solution using the finite element method - which we see

in the next chapter.



Chapter 4

Numerical Methods

4.1 Introduction to the Finite Element Method

The finite element method is a general technique that constructs approximate solutions to

boundary-value problems [Becker et al., 1981]. The method consists of dividing the domain

of the solution into a finite number of parts, or ‘elements’, and using localised interpolation

over these elements to construct a solution over the whole domain. When a variational

principle can be appealed to, this method can be thought of as a direct discretization of

the minimization problem. We begin by introducing the guiding principles behind the finite

element method for a simple variational problem, proceeding to discuss some extensions

that can be made to the outlined framework. In this introduction, we loosely follow the

explanation given by Becker et al. [1981], in order to provide an intuitive understanding

of the finite element method. Those familiar with the finite element method may proceed

directly to the next section.

4.1.1 A Simple 1D Example

To introduce the concepts we begin by considering the one dimensional functional

Π =

∫
Ω

(
1

2

(
du(x)

dx

)2

+ f(x)u(x)

)
dΩ = 0 , (4.1.1)

with Ω = [0, 1] subject to the forcing f(x). Taking variations we obtain the variational

equation

δΠ =

∫
Ω

(
du(x)

dx

dδu(x)

dx
+ f(x)δu(x)

)
dΩ = 0 . (4.1.2)

105
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The corresponding Euler-Lagrange equation for this variational principle will be the one-

dimensional Poisson equation: u,xx = f(x).

We may consider the expansion in a given, infinite-dimensional, basis set {ψi(x)}, such

that we can express any function in the solution space as a linear combination of the new

basis functions

u(x) =
∞∑
i=1

Ui ψi(x) , (4.1.3)

where Ui are the set of coefficients. Here, we are deliberately vague about what consti-

tutes an admissible solution space: it suffices to say that the basis functions should be

‘sufficiently smooth’ so that all operations involved in the variational principle ‘make sense

mathematically’. For instance, in the example above, solutions must be C0 (value) continu-

ous everywhere, in order that the zeroth and first derivatives are square integrable over the

domain. The relevant space for these will be the C0 continuous Sobelov space, H1 [Oden

and Reddy, 1976].

We also require that the variations, δu(x), vanish on Dirichlet boundaries, i.e. boundaries

on which we specify the value of u(x), as on these boundaries there can be no variation in

the solution: the value is known. These variations are arbitrary functions that belong to the

solution space and, as such, for u(x) to be a solution to the problem, the above variational

principle must be satisfied for all δu(x) ∈ H1
0 . Here we have denoted the subset of H1 that

vanishes on Dirichlet boundaries as H1
0 [Becker et al., 1981]. Thus we are able to represent

any arbitrary variation as

δU(x) =

∞∑
i=1

δUi ψ
0
i (x) for ψ0

i ∈ H1
0 , (4.1.4)

where δUi are a set of coefficients and ψ0
i (x) ∈ H1

0 are the subset of basis functions that

satisfy the Dirichlet boundary conditions.

The above variational problem becomes

δΠ =

∞∑
i,j=0

(
δUj

∫
Ω

(
Ui
dψi(x)

dx

dψ0
j (x)

dx
+ f(x)ψ0

j (x)

)
dΩ

)
= 0 , (4.1.5)

where we have, as yet, made no approximation.

4.1.2 The Galerkin Method

Having set up the exact problem, we now consider the Galerkin method for constructing

approximate solutions to the above variational boundary-value problem. Galerkin’s method
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aims to find approximate solutions in a finite-dimensional subset, H̃1, of the solution space,

H1. Thus, we instead consider the approximate problem,

N∑
i,j=0

(
δŨj

∫
Ω

(
Ũi
dψ̃i(x)

dx

dψ̃0
j (x)

dx
+ f(x)ψ̃0

j (x)

)
dΩ

)
= 0 , ∀ δŨj , (4.1.6)

where ψ̃i ∈ H̃1 are the discrete set of basis functions of the subset H̃ i and ψ̃0
i ∈ H̃1

0 are the

discrete set of basis functions that satisfy the Dirichlet boundary conditions. The coefficients

Ũi in the approximation are referred to as the degrees of freedom. Now, as this equation is

satisfied for all δŨi, the coefficients in δŨi must be separately equal to zero. Thus, we must

have the residuals

Rj =

N∑
i=0

(∫
Ω

(
Ũi
dψ̃i(x)

dx

dψ̃0
j (x)

dx
+ f(x)ψ̃0

j (x)

)
dΩ

)
= 0 , j ∈ {1, . . . , N} , (4.1.7)

which approximate the continuous equations, for an appropriate choice of basis functions.

We can rewrite this in the more revealing form

KijŨj = Fi(x) , i, j ∈ {1, . . . , N} (4.1.8)

with the stiffness matrix components, Kij ,

Kij =

∫
Ω

(
dψ̃i(x)

dx

dψ̃0
j (x)

dx

)
dΩ (4.1.9)

and the load term, Fi,

Fi = −
∫

Ω

(
f(x)ψ̃0

i

)
dΩ . (4.1.10)

To solve the problem, the inverse system must be solved:

Ũj = (K−1)jiFi(x) , i, j ∈ {1, . . . , N} , (4.1.11)

where (K−1)ij are elements of the inverse of K−1
ij .

4.1.3 The Finite Element Method

The Galerkin method provides an elegant tool for determining the approximate solutions

to boundary-value problems: however, the analyst is left with a vast array of possible basis

functions, on which the quality of approximate solution strongly depends [Becker et al., 1981].

Moreover, in higher dimensions the construction of a set of basis functions which satisfy the

boundary conditions of a given problem on an arbitrary boundary is an extremely non trivial

problem.
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To generalize this method, we need a systematic means of constructing the set of basis

functions. As we have described it the Galerkin method has no criteria for the selection of

the basis functions ψ̃0
i and ψ̃i: they can be arbitrary, independent members of H1

0 [Becker

et al., 1981]. The quality of the resulting solution will then strongly depend on the choice

of these basis functions [Becker et al., 1981]. These difficulties can be alleviated using the

finite element method, which provides a general and systematic technique for constructing

Galerkin approximations of boundary-value problems.

The overriding concept is that the basis functions can be defined piecewise over subregions

of the domain, or ‘elements’, with simple, interpolating basis functions [Becker et al., 1981].

We begin by discretizing the domain Ω = [0, 1] as shown in figure 4.1, splitting the domain

into N discrete parts, by introducing an equally spaced set of points, or ‘nodes’ ai for

i ∈ {0, . . . , N}, with ai = i/N . We then consider each of the N parts of the domain

Ωi ≡ (ai−1, ai) with i ∈ {1, N} as separate ‘pieces’ or ‘elements’ of the discretized domain.

The collection of nodes and elements making up the domain is referred to as the finite element

mesh.

Elements: Ω1 Ω2 Ω3 Ω4

x = 0 x = 1

Nodes: a0 a1 a2 a3 a4

Figure 4.1: A 1D domain, split into finite elements, Ωi.

One set of basis functions we could use is a piecewise linear basis. To explain this basis,

we begin by defining the set of values of the function u(x) evaluated at ai, as

{Ui} ≡ {u(ai)} , (4.1.12)

which we will refer to as the unknowns.

We further introduce the set of piecewise linear basis functions

ψi(x) =



x− ai−1

ai − ai−1
for ai−1 ≤ x ≤ xi

ai+1 − x
ai+1 − ai

for xi ≤ x ≤ ai+1

0 for x < ai−1 and x > ai+1

(4.1.13)

These functions provide interpolation of the unknown, which has local support: in other

words the basis function ψi is only nonzero in the direct vicinity of node ai. We display
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these basis functions in figure 4.2.

1

ψi(x)

x = 0 x = 1

Nodes: a0 a1 a2 a3 a4

Figure 4.2: The piecewise 1D linear basis functions shown on a 1D mesh of elements. The

support of the basis for each unknown is displayed in a different colour.

Using the basis functions and the unknowns, we may define a linear interpolant, πu(x) =

u(x), of the function u(x) as

πu(x) =

N∑
i=0

Ui ψi(x) . (4.1.14)

The subset H̃1
0 of basis functions that satisfy Dirichlet boundary conditions at nodes k can

now be easily formed by not including the basis functions at those nodes, such that we have

the subset {ψi} , i 6= k. We may then interpolate variations, δu, as follows

πδu(x) =
N∑

i=0 , i 6=k
δUi ψi(x) . (4.1.15)

Given that each basis function only has local support, i.e over two neighbouring elements,

it is convenient to define a local coordinate on each element such that each element only

contains quantities that are intrinsic to it. Thus, we introduce the local coordinate in element

e, x̂ ∈ (0, 1) and rewrite the basis functions on a single ‘reference’ element:

ψ̂0(x̂) = 1− x̂ and ψ̂1(x̂) = x̂ . (4.1.16)

Introducing local nodes â0 = 0 and â1 = 1 we see that basis functions are unity at their own

associated node and zero at the other node, or ψ̂i(âj) = δij for i j ∈ {0, 1}. This property is

known as the Kronecker delta property, and is common to most conventional finite element

basis functions. The local coordinate, x̂, can be related to the global coordinate in each

element, Ωe, by

x(x̂) = ai−1 ψ̂0(x̂) + ai ψ̂1(x̂) , x ∈ Ωi . (4.1.17)

Finally, the Jacobian of this mapping on element i will be given by

Ji(x̂) =
dx

dx̂
, (4.1.18)
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which in general will be dependent on x̂, but in the case of linearly interpolated geometry is

independent of x̂.

In the above scheme both the geometry of the element and the solution are interpolated

with the same basis functions, so this interpolation scheme is said to be isoparametric. If

we were to use higher order basis functions to interpolate the solution, as compared to

the geometric basis, the scheme would be said to be subparametric. Alternatively, with a

higher order geometric basis, as compared to the solution we would refer to the scheme as

superparametric.

We may now construct our approximate variational equation, by splitting up the integral

into separate integrals over each element Ωe:

Rj =

N∑
e=1

∫
Ωe

( N∑
i=1

J−1
i

(
Ui−1ψ̂

′
0(x̂) + Ui(x̂)ψ̂′1(x̂)

)
ψ̃0
j
′
(x) + f(x)ψ̃0

j (x)
)
dx . (4.1.19)

for residuals j 6= k, where k labels nodes with Dirichlet boundary conditions and we use the

notation g′(x) ≡ dg(x)/dx. We reiterate here that on boundaries with Dirichlet boundary

conditions we know the value of u and therefore the variation coefficient δUj will be zero.

We can further simplify these equations, by making use of the compact support of basis

functions. We know that the representation of πu(x) will only depend upon values intrinsic

to the element we are integrating over, e, which can be used to greatly simplify the above

expression. We rewrite the expression as

Rj =

N∑
e=1

∫
Ωe

(
J−1
e

(
Ue−1ψ̂

′
0(x̂) + Ue(x̂)ψ̂′1(x̂)

)
ψ̃0
j
′
(x) + f(x)ψ̃0

j (x)
)
dx . (4.1.20)

Contributions to residual j will arise from elements that contain node j: i.e. e = j and

e = j + 1, which means we can further rewrite this as

Rj =

j+1 , j≤N∑
e=j

∫
Ωe

(
J−1
e

(
Ue−1ψ̂

′
0(x̂) + Ue(x̂)ψ̂′1(x̂)

)
ψ̃0
j
′
(x) + f(x)ψ̃0

j (x)
)
dx . (4.1.21)

introducing a local node number l = e− j we may write

Rj =



∫
Ω1

(
J−1

1

(
U0ψ̂

′
0(x̂) + U1(x̂)ψ̂′1(x̂)

)
J−1

1 ψ̂′0(x̂) + f(x)ψ̂0(x̂)
)
dx j = 1

1∑
l=0

∫
Ωj+l

(
J−1
j+l

(
Uj+l−1ψ̂

′
0(x̂) + Uj+l(x̂)ψ̂′1(x̂)

)
J−1
j+lψ̂

′
l̄(x̂) + f(x)ψ̂l̄(x̂)

)
dx 1 < j < N

∫
ΩN

(
J−1
N

(
UN−1ψ̂

′
0(x̂) + UN (x̂)ψ̂′1(x̂)

)
J−1
N ψ̂′1(x̂) + f(x)ψ̂1(x̂)

)
dx j = N

(4.1.22)
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where l̄ is l̄ ∈ {0, 1} , l̄ 6= l. Finally, we replace the Cartesian integral with an integral over

the local coordinate of each node x̂ ∈ (0, 1):

Rj =



∫
Ω1

(
J−1

1

(
U0ψ̂

′
0(x̂) + U1(x̂)ψ̂′1(x̂)

)
ψ̂′0(x̂) + J−1

1 f(x)ψ̂0(x̂)
)
dx̂ j = 1

1∑
l=0

∫
Ωj+l

(
J−1
j+l

(
Uj+l−1ψ̂

′
0(x̂) + Uj+l(x̂)ψ̂′1(x̂)

)
ψ̂′l̄(x̂) + J−1

j+lf(x)ψ̂l̄(x̂)
)
dx̂ 1 < j < N

∫
ΩN

(
J−1
N

(
UN−1ψ̂

′
0(x̂) + UN (x̂)ψ̂′1(x̂)

)
ψ̂′1(x̂) + J−1

N f(x)ψ̂1(x̂)
)
dx̂ j = N .

(4.1.23)

To impose the boundary conditions we ‘pin’ nodal values on boundaries with Dirichlet

conditions, i.e at nodes k. At these nodes there will be no associated residual, as the discrete

variation δUk will be zero at this point. The value of Uk is then known and enters the

equations through the interpolated field πu′(x). On boundaries that are not pinned, flux

free (Neumann) boundary conditions are imposed automatically as ‘do-nothing’ boundary

conditions.

We may rewrite the above equations in the form

KijŨj = Fi(x) , i, j ∈ {1, . . . , N} , i, j 6= k (4.1.24)

in which k labels the nodes with Dirichlet conditions. The stiffness matrix, Kij , is given by

Kij =



∫
Ω1

J−1
1

(
δi0ψ̂

′
0(x̂) + δi1(x̂)ψ̂′1(x̂)

)
ψ̂′0(x̂)dx̂ j = 1

1∑
l=0

∫
Ωj+l

J−1
j+l

(
δi,j+l−1ψ̂

′
0(x̂) + δi,j+l(x̂)ψ̂′1(x̂)

)
ψ̂′1−l(x̂))dx̂ 1 < j < N

∫
ΩN

J−1
N

(
δi,N−1ψ̂

′
0(x̂) + δi,N (x̂)ψ̂′1(x̂)

)
ψ̂′1(x̂)dx̂ j = N .

(4.1.25)

and the forcing, Fi is

Fi =



∫
Ω1

(
J−1

1 f(x)ψ̂0(x̂)
)
dx̂ j = 1

1∑
l=0

∫
Ωj+l

(
J−1
j+lf(x)ψ̂1−l(x̂)

)
dx̂ 1 < j < N

∫
ΩN

(
J−1
N f(x)ψ̂1(x̂)

)
dx̂ j = N .

(4.1.26)

The above equation, once integrated, can be straightforwardly inverted by available linear

algebra software. Integration, in turn, can be numerically computed using the well known
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Gauss formulae [Becker et al., 1981], where in this case the stiffness matrix is constant and

the integral can be computed directly1.

4.1.4 Extensions

In the above example, we have considered a very basic example of a finite element method

for a linear, 1D, variational problem, using linear interpolation. However, this is by no

means the only type of problem that the finite element method can be used to tackle: on

the contrary, the method can be adapted to wide variety of problems that may otherwise

be intractable. We proceed to discuss some basic extensions to the simple finite element

method that we have outlined in the section above.

Nonlinear Systems and the Newton Method

The first extension we consider is the solution of nonlinear problems. In general finite

element approximations will be of nonlinear systems, in which case the residuals, Ri, will

be a nonlinear function of the unknowns, U = {Ui}. For the case of nonlinear systems the

Newton method may be used to determine the solution to the system. If we expand the

residuals, Ri(U), about an initial guess Ū , close to the solution, we may write

Ri(U) = Ri(Ū) +
N∑

i=0, i 6=k

∂Ri(U)

∂Uj
(Uj − Ūj) +O(Uj − Ūj)2 , (4.1.27)

in which the nodes i = k have Dirichlet boundary conditions. If U is the solution to the

system, the left hand side will be zero, and we can rearrange to obtain

Kij(Ūj)(Uj − Ūj) ≈ −Ri(Ū) , (4.1.28)

with

Kij =
∂Ri(U)

∂Uj
, (4.1.29)

provided that Ū i ≈ U . If we iteratively solve the above equation, using the previous solution

to determine the stiffness matrix in each step [Press et al., 1988], we can find the solution

to the nonlinear system. This method needs an initial ‘guess’ of the solution to begin the

iteration: for which convergence is not guaranteed. The method requires an initial guess that

1In general, this is not the case and it is in principle necessary to integrate the stiffness term exactly. This
can be achieved using quadrature rule such as Gaussian quadrature.
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is ‘close’2 to the solution. It is worth noting that, if used with a linear equation, the Newton

method will converge in a single step, as the above relation, equation (4.1.28), becomes

exact. Here we have described the Newton method in its most basic form: however, many

extensions exist to improve the stability and convergence properties of the above algorithm.

Higher Order Basis Functions

Each element need not have only two degrees of freedom: we could introduce a new unknown

at the centre of each element, as pictured in figure 4.3, and increase the polynomial order

to quadratic. The mesh in this case is shown in figure 4.3. The shape functions, ψQL i for

i ∈ {1, 2, 3}, will then be

ψQL 1 = (1− x̂) (1− 2x̂) , (4.1.30)

ψQL 2 = 4(1− x̂) x̂ , (4.1.31)

ψQL 3 = −x̂ (1− 2x̂) . (4.1.32)

Once again, the Kronecker delta property applies which can be seen in figure 4.4.

Elements: Ω1 Ω2 Ω3 Ω4

x = 0 x = 1

Nodes: a0 a1 a2 a3 a4 a5 a6 a7 a8

Figure 4.3: A 1D domain, split into finite elements, Ωi.

The interpolation of the solution will then be piecewise quadratic with three unknowns

per element, two of which are shared between adjacent elements. Other than this, the process

of constructing the residuals and stiffness matrix remains identical.

Hermite Basis Functions

So far we have only considered geometric elements with ‘value’ or ‘Lagrange-type’ degrees of

freedom. However, we may also consider elements with ‘derivative’ or ‘Hermite’ type degrees

of freedom.

2By close we require that the guess is inside the Newton method’s basin of attraction, which may be
arbitrarily complicated [Press et al., 1988]. It usually suffices to use an initial guess that is ‘close’ in a
physical sense: for example the solution at a slightly smaller value of forcing, or the solution to the linearised
problem.
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0.2 0.4 0.6 0.8 1.0
x̂

0.2

0.4

0.6

0.8

1.0

ψQL,1
ψQL,2
ψQL,3

Figure 4.4: The 1D Quadratic Lagrange basis functions.

Consider a one dimensional geometric element with two nodes, each with two degrees

of freedom: a value degree of freedom, Ui(x̂) and a first derivative3 degree of freedom,

(−1)i U ′i(x̂) for i ∈ {0, 1}. The corresponding (cubic) basis functions, ψCmH i , will be

ψC 0
H 0 = (1− x̂)2 (1 + 2x̂) , ψC 1

H 0 = (1− x̂)2 x̂ ,

ψC 0
H 1 = (3− 2x̂) x̂2 , ψC 1

H 1 = (1− x̂) x̂2 , (4.1.33)

Here i labels the node and m labels the order of the derivative of the degree of freedom. These

basis functions will satisfy a version of the Kronecker delta property: the mth derivative at

the lth node will be nonzero only only for the basis function ψCmH i :

anj
dn

dx̂n
ψCmH i (âj) = δmnδij , (4.1.34)

with

anj =


−1 for j = 1 , n = 1

+1 otherwise

(4.1.35)

This property can clearly be seen in figures 4.5 and 4.6.

These basis functions are naturally C1 or gradient continuous across inter-element bound-

aries; in 1D an inter-element boundary is simply a shared node between two elements. At

each node we have two values, the zeroth and first derivative degrees of freedom: as such

the first derivative is continuous between elements. Thus, the second derivative will be well

defined everywhere and the basis functions are therefore suitable for the approximation of

fourth-order boundary-value problems.

3Here we use a symmetric definition for the 1D Hermite elements, which becomes useful later in the
definition of curved C1-Bell Elements
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0.2 0.4 0.6 0.8 1.0
x̂

0.2

0.4

0.6

0.8

1.0

ψ0
H,0(x̂)

ψ1
H,0(x̂)

ψ0
H,1(x̂)

ψ1
H,1(x̂)

Figure 4.5: The 1D Hermite basis functions.

0.2 0.4 0.6 0.8 1.0
x̂

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψ0′
H,0(x̂)

ψ1′
H,0(x̂)

ψ0′
H,1(x̂)

ψ1′
H,1(x̂)

Figure 4.6: The first derivative of the 1D Hermite basis functions.

Two-Dimensional Variational Problems

For two-dimensional variational problems, we instead split the domain into elements that

are two-dimensional subdomains of the original region: typically quadrilateral or triangular

regions. For example, for a two-dimensional triangle a linear interpolation scheme over the

element is be given by

ψLL 1 = x̂1 (4.1.36)

ψLL 2 = x̂2 (4.1.37)

ψLL 3 = (1− x̂1 − x̂2) , (4.1.38)

in which x̂α, for α ∈ {1, 2}, are the two local coordinates of the element. In an isoparametric

element, these are related to the Cartesian coordinate by the following expression

x =

3∑
i=1

aiψ
L
L i(x̂) , (4.1.39)

and ai are the positions of the vertices in the physical domain, as shown in figure 4.7.

As we have seen, it is convenient to express the basis functions in terms of the local

coordinate system on the reference triangle, that is shared between all elements: however, to
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express the equations, derivatives with respect to the global coordinate system are necessary.

In the same manner as in the 1D example we considered, we transform between derivatives

of local to global coordinates using a Jacobian matrix, as follows

∂

∂xβ
ψLL i(x̂) =

∂

∂x̂α

(
ψLL i(x̂)

) (
J−1

)
αβ

(4.1.40)

with the Jacobian matrix

J =
∂x

∂x̂
. (4.1.41)

â1

â2

â3

1

1

0

K̂

x̂2

x̂1

a1

a2

a3

K
x2

x1

x(x̂)

x̂
x

Figure 4.7: Diagram showing the geometry of the reference triangle and a triangle in the

physical domain.

The resulting method remains largely the same: we split up the domain into a finite

number of triangles and compute the integral of the discretized residual over each one.

Each ‘node’ that is not on a Dirichlet boundary has an associated variation and therefore a

corresponding equation. Every node also has corresponding unknown, except on Dirichlet

boundaries for which the value is known. We display a typical example mesh, and the basic

procedure for interpolation, in figure 4.8.

4.1.5 An Object-Oriented Picture

It can be useful, especially from the perspective of implementation, to summarize ideas

in terms of objects, hierarchy and their interaction. We provide this description with the

aim of creating a framework through which to understand the structure of a finite element

simulation and clarify the ideas we have discussed.

Given that the code discussed during this thesis was developed to form part of oomph-lib

[Heil and Hazel, 2006], the (open-source) object-oriented multi-physics finite element library,

the structures we discuss will naturally reflect the structures found within oomph-lib.

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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Figure 4.8: A function (top right) interpolated on a 2D domain (top left), split into triangular

finite elements (middle), Ωi and then interpolated on the domain (bottom right).

Data

Node

Element

Mesh

Problem

is

has

has

has

has

has

has

Figure 4.9: The structure of a typical (mathematical) problem within oomph-lib.

We start by considering a given (mathematical) problem ( Problem , in oomph-lib), whose

structure we summarize in figure 4.9. A Problem is a collection of equations, boundary

conditions and applied forcing together with a particular discretization. Thus, a problem has

a mesh ( Mesh ) of elements (in oomph-lib a type of FiniteElement ), unknown values (which

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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are Data ) and nodes ( Node ). Each FiniteElement has Node (s), which supply geometric

information to the elements, and unknown values which supply the information about the

unknown fields within the problem; both the Node (s) and unknowns are shared with the

Mesh . A Node is a type of Data which also has a position. Data is the most primitive object

we consider, which in turn has a value which is either pinned, i.e. known, or is unpinned i.e.

to be solved for.

Finite Element

Discretized Equation Geometric Finite Element

Specific Finite Element

is is

isis

Finite Element

� Defines interface to basis

Discretized Equation

� Defines discrete equations

Geometric Element
� Implements geometric basis

Specific Finite Element
� Implements basis for

equations

Figure 4.10: The structure of a typical element within oomph-lib.

We now describe the structure of the elements, which is summarized in figure 4.10. The

elements provide the discretized equations, as well as the basis functions that interpolate the

unknowns and the basis functions for the geometry. A FiniteElement defines the interface

to the geometric basis and has Data and Node (s): it is a region of space with Node (s) and

associated functions. A geometric element is a type of FiniteElement that implements the

basis for the position over the region: the elements Shape functions. In an isoparametric

element the Shape functions are also used to interpolate the unknowns. Each equation is a

specific type of FiniteElement that provides a discretized set of equations over a region of

space. To create a new specific element type we require both a set of equations and a cor-

responding discretization scheme, which is achieved in oomph-lib using multiple inheritance

from both a geometric element and a discretized equation.

For example, in the 1D Poisson equation example we would implement several new ob-

jects. At the highest level we create a Problem which sets up the equation numbering, the

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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1D Mesh , the forcing and the boundary conditions. Boundary conditions are set by spec-

ifying which values are ‘known’ or ‘pinned’. The 1D Mesh in turn is made of linear, 1D,

FiniteElement (s) and 1D Node (s). Each Node has unknown values ( Data ) associated with

them and a 1D position. Each 1D, linear Poisson element ( TPoissonElement<1,2> ) consists

of two Node (s) and two associated unknown values; it also provides the linear Shape func-

tions and the equations; it inherits from both the 1D linear geometric element and a 1D

Poisson equation class. The basis functions are inherited from the parent 1D linear geo-

metric element class ( TElement<1,2> ), which is in principle parent to many other 1D linear

finite element types. The equations will be inherited from the 1D Poisson equation class

( TPoissonEquation<DIM,NNODE_1D> ), which again is in principle parent to many 1D Poisson

elements.

4.2 Finite Element for 2D Fourth Order Functionals

Having introduced the basic concepts behind the finite element method and some possible

extensions, we now review some of the specific aspects relevant to fourth-order problems, in

particular in the context of plate models which are the concern of this thesis.

The focus of this thesis is unshearable plate models which include bending stiffness: as

such, all of the studied models are described by two dimensional, fourth-order equations.

Fourth order, two-dimensional variational equations represent particularly difficult problems

to solve, both analytically and numerically, especially for nonlinear equations. To approxi-

mate these problems using the finite element method requires specialised interpolation meth-

ods which are required to either support C1-continuous (H2) basis functions or alternatively

transform the equations to a system of lower order C0-continuous basis functions, as in mixed

and hybrid methods [Brezzi and Fortin, 1991].

Simplex Elements

Direct discretization of these equations is difficult because of the difficulty in providing

C1-continuous basis functions. Whereas constructing C1-continuous bases in 1D is straight-

forward, as element boundaries are only at nodes between elements, in 2D the continuity

requirement is required to hold along the entire edge between two elements. This requirement

proves to be very restrictive, necessitating the use of high-order Hermite-type elements. Such
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methods are known as conforming methods, as the elements use a subspace of the solution

space.

Most C1-continuous bases are defined only for simplex elements, that is straight-sided

elements, due to the inherent difficulty in providing a basis that remains C1-continuous

when mapped from straight-sided elements to the curved elements. However, this proves

restrictive because, unlike in second-order problems, appropriate representation of a curved

edge is necessary to ensure convergence to the correct solution [Žeńı̌sek, 1981a; Ciarlet, 1991].

The most commonly used C1 quadrilateral simplex element is the 16 degree of freedom

Bogner-Fox-Schmidt element, also known as the Hermite rectangle. However, generating

quality rectangular meshes for generic shapes presents a difficult problem: it is far more

straightforward to mesh generic shapes using triangulation [Schiffer et al., 2012]. For this

reason, triangular elements such as Argyris, Bell and the singular4 Zienkiewicz triangle

[Ciarlet, 1991] or composite triangular elements such as the Hsieh-Clough-Tocher (HCT)

element are usually preferred. It should be noted that the Bell triangle is the optimal C1

element with a polynomial basis: C1 triangular elements with lower degrees of freedom

require the inclusion of non-polynomial functions [Ciarlet, 1991]. However, as mentioned,

none of these triangular elements are appropriate for characterising fourth-order problems

on curved domains.

Isoparametric Elements

In their basic form, the above C1 elements only interpolate the geometry linearly, and thus

are only suitable for the interpolation of polygonal domains. In second-order finite element

methods, isoparametric representation of the domain is usually sought, as it can improve

convergence properties on curved domains. However, the use of isoparametric formulations

is not straightforward for C1-continuous bases. For the case of quadrilateral meshes, the

Bogner-Fox-Schmidt element can provide an isoparametric representation of the domain and

the solution [Fischer, 2011]. These elements, however, have severe geometric constraints:

each vertex between elements must comprise of exactly four elements [Fischer, 2011]. Suitable

curved meshes, that satisfy this constraint, may be constructed from a generic mesh of

straight-sided quadrilaterals, which introduces an extra step in the generation of the mesh

for the given problem [Fischer, 2011]. An example of this is shown in figure 4.11. As such,

4A singular element uses rational functions in addition to polynomial functions to interpolate the
unknowns.



4.2. Finite Element for 2D Fourth Order Functionals 121

due to the complication in meshing the approach is less flexible than corresponding methods

using unstructured triangle meshes.

Figure 4.11: Input mesh (left) and interpolated mesh (right) for isoparametric Bogner-Fox-

Schmidt elements. To preserve the C1-continuity of the unknown field, each vertex in the

mesh must join exactly four elements.

The formulation of isoparametric Hermite triangle elements presents an even greater

challenge: indeed it is not possible to construct an isoparametric mapping for triangles with

only a single curved edge [Mansfield, 1978]. However, the construction of an isoparametric

mapping for triangular elements with multiple curved edges has apparently been achieved by

Fischer [2011] using a transform to an (unknown) intermediate configuration. This transfor-

mation entails minimizing a nonlinear system to determine the unknown final mesh shape, to

which there may be multiple solutions. Additionally, Fischer [2011] reported that under cer-

tain conditions the system of equations for the (initially unknown) local-to-global mapping

may become ill-conditioned and produce mesh defects as a consequence.

Mixed and Hybrid Methods

An alternative to the above methods of interpolation, for a particular fourth order problem,

is to use a lower order (H1) system of equations that approximates the original system by

introducing additional auxiliary variables. These methods are generally nonconforming and

use a space with lower continuity to approximate the equations.

The additional equations and variables augment the system to allow simpler means of

interpolation [Brezzi and Fortin, 1991]. Once a scheme is proposed, these methods can

be straightforward to implement: however the proposed method is not guaranteed to be

numerically stable. Methods that seem reasonable may suffer from numerical instability for
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reasons that are not readily apparent. Common drawbacks to these methods include locking

effects and unphysical results [Fischer, 2011]. As such, the construction of stable schemes

is a non-trivial problem [Arnold, 1990; Brezzi and Bathe, 1990]. Once a stable scheme is

obtained, the interpolation scheme is generally easy to construct: however these methods

often have a comparable number of degrees of freedom to conforming methods and as such

may not confer much advantage in terms of the size of the system required to solve a system

to a desired accuracy [Arnold, 1990]. Another downside is that these methods generally need

to be constructed for a particular equation rather than constructing generic interpolation

schemes for any fourth order problem. Coming up with consistent, stable approximation

schemes is extremely difficult, so it is the opinion of this writer that these methods present

an unattractive option for generic fourth-order boundary-value problems.

Isogeometric Analysis

An alternative that can be used for both conforming and nonconforming methods is isoge-

ometric analysis, which has been demonstrated to be effective at producing both accurate

representation of the geometry and of the solution, using non-uniform rational B-splines

(NURBS). NURBS are weighted rational functions of B-splines, which in turn are piecewise

polynomial. In the special case where the weights are all equal, NURBS reduce to normal

B-spline functions. This method affords many advantages over the standard finite element

method: the inter-element continuity, the size of elements and the order of interpolation

can all be easily controlled. A further advantage is that geometrical representation provided

by a CAD program can be directly used in the finite element code, without any remeshing

necessary.

A NURBS mesh is formed of one or more ‘patches’ each consisting of ‘control points’,

‘knots’ and ‘elements’. The physical geometry is mapped onto a set of ‘patches’ each compris-

ing a regular, rectangular, reference-mesh. This reference mesh is specified by introducing a

particular set of ‘knots’ which assume the place of nodes in standard finite element methods:

the patch consists of a regular rectangular mesh of knots. Elements in the patch are defined

simply as the rectangular regions created by joining knot points (see e.g figure 4.12): this is

a useful description as NURBS curves have only local support over neighbouring elements,

just as in classical finite element methods. Control points assume the place of degrees of

freedom; in the isogeometric method they are used to interpolate both the geometry and the
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Figure 4.12: Reference mesh (left) and physical mesh (right) for a domain made of a single

isogeometric patch, split into 3 elements. Thick blue lines show pinned edges, orange lines

show element boundaries and blue dots represent control points.

unknowns.

The control points used to interpolate the geometry will often be specified using separate

CAD software, but alternatively the locations of the control points can be determined by

solving the linear system that minimizes difference between exact and approximate geome-

tries in a least-squares sense. Sometimes a single patch is not sufficient to describe a whole

domain, in these scenarios several ‘patches’ can be used to create the full mesh. Unfortu-

nately, across patch boundaries the representation is only C0 continuous [Kiendl et al., 2010],

which means that a smooth interpolation over a single, continuous plate of arbitrary shape

is not always possible with NURBS.

NURBS have the advantage of being able to exactly represent common geometric shapes

such as circles and spheres and additionally have easily modifiable continuity between NURBS

‘elements’. However, the aforementioned disadvantage associated with patch continuity,

makes them unfavourable for generic problems. Proposed methods to alleviate this include

the introduction of ‘bending strips’ [Kiendl et al., 2010], which effectively introduce a stiff

‘strip’ over the patch boundary, which have a bending stiffness but no membrane stiffness.

This is to prevent kinks forming in the sheet: however, it introduces an additional control

parameter (relative stiffness of the strip) at patch boundaries, which does not have a direct

physical origin [Kiendl et al., 2010].

Alternatively other, more general, interpolating functions such as T-splines can be used

[Bazilevs et al., 2010], of which NURBS form a special case. T-splines can mesh any domains

with a single patch: however, at so-called ‘extraordinary points’, i.e. vertices at which the
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number of edges meeting is not four, the T-spline basis forms a gradient discontinuity, similar

to the above NURBS elements [Scott et al., 2013; Kapl et al., 2018], again making generic

meshing of domains trickier.

A recent contribution to the literature was the introduction of a multi-patch parameter-

ization that is C1 continuous between patches, which can be of arbitrary connectivity, by

utilising ideas from classical Hermite-type interpolation [Kapl et al., 2019]. These multi-

patch parameterizations are suitable even for unstructured quadrilateral meshes of patches,

therefore providing a powerful and general analysis tool.

For an excellent introduction into the use of the isogeometric analysis for use in plate

and shell models we direct the interested reader to the reviews of Kiendl [2011]; Nguyen

et al. [2015] and the work of Schillinger [2018], which provide an overview of the subject.

For further reading on NURBS see Piegl and Tiller [1997].

Subdivision Surfaces

A closely related method to isogeometric analysis is the method of subdivision surfaces: this

method once again uses CAD functions to provide interpolation of both geometry and un-

knowns [Cirak et al., 2000; Cirak and Ortiz, 2001]. These functions can provide extremely

efficient numerical simulations, apparently requiring only a single quadrature point per ‘el-

ement’ for quadratic convergence [Cirak et al., 2000; Cirak and Ortiz, 2001; Cirak et al.,

2002]; the disadvantage of such methods is that basis functions have support over a ring of

neighbouring elements. Additionally, such methods rely on topologically hexagonal tessella-

tions, where on boundaries one can introduce artificial nodes (‘control points’) to ensure the

elements conform to the boundary. Whilst modifications can be made to allow the inclu-

sion of ‘extraordinary points’, i.e vertices at which more or less than six elements meet, this

introduces gradient discontinuities [Cirak et al., 2000]. Thus, meshing arbitrary boundaries

becomes a non-trivial affair.

Boundary Patches

Finally, one may augment the Hermite simplex elements by the use boundary patches of

‘curved elements’ in order to approximate non-polygonal geometries. This is done by intro-

ducing a layer of elements which have single curved edge and are C1-continuous with the

chosen bulk elements.
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One of the major advantages of this method is that standard triangular mesh generation

can be used to generate the mesh. Additionally, because these elements are compatible with

their simplex counterparts and as well as other curved element in their class, a mixture can

be used to mesh a domain. This means that the curved elements can be confined only to

boundaries that require the additional continuity, rather than everywhere in the domain

or on all boundaries. This has the added advantage that the increased order integration

schemes for higher order elements are only needed for the boundary patches, which results

in more efficient evaluation of the residuals and stiffness matrix in the bulk mesh.

We choose this final method of introducing boundary ‘patches’ of curved elements in this

thesis, as this technique remains relatively unexplored in the literature. This is despite the

fact that curved boundary patches represent arguably the best solution for solving generic,

two-dimensional, fourth-order, boundary-value problems in triangulated domains. Thus the

implementation of a generic, conforming method for solving generic fourth-order problems

represents an interesting contribution to the literature.

We proceed to first outline the Bell element and then its curved counterpart. Though we

discuss the Argyris element and its curved counterpart briefly, we do not discuss it in detail

in this thesis as its explicit formulation and implementation has been studied in the context

of several (linear) shell problems by Bernadou [1994].

4.3 Notation

In the finite element method it is common, as we have seen in previous sections to refer to

basis functions on a reference element, which is common to all elements. For this section we

use hats to indicate vectors and functions on the reference triangle. For example x would

be the Cartesian position on the global triangle, whereas x̂ would be the position on the

reference triangle, as shown in figure 4.13. Similarly the vertices ai on the physical triangle

are denoted âi on the corresponding reference triangle, again shown in figure 4.13.

In this section, once again we denote the standard Cartesian unit vectors as êα. We use

the two dimensional gradient, ∇, to mean:

∇(·) =
∂

∂xα
(·)êα (4.3.1)

and the two dimensional gradient operator on the reference triangle:

∇̂(·) =
∂

∂x̂α
(·)âα (4.3.2)
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Figure 4.13: Diagram showing the (in general curved) global (right) and reference (left)

triangles. The reference triangle is shared between all elements.

where we note that the positions of the vertices âα coincide with the Cartesian basis vectors

on the reference element, âα, and â3 is located at the origin as shown in figure 4.13. Finally

we use the notation Pn to denote a generic order n polynomial throughout.

4.4 The Bell and Argyris Elements

In this section we discuss the Argyris element and the related Bell element. These elements

are both commonly used for C1-continuous interpolation over triangulated domains: however

both elements are subparametric and straight-sided. For this study we use Bell elements,

due to the lower number of degrees of freedom as compared to Argyris elements, but as

the elements share many properties, we discuss both. The Argyris triangle shares the Bell

degrees of freedom: which are the zeroth, first and second derivatives at each vertex, but also

has additional normal degrees of freedom along the edges, which allow it to form a complete

P5 polynomial.

4.4.1 Properties

The Bell [1969] triangle provides a C1 continuous interpolation scheme over a triangulated

domain using 18, Hermite-type, degrees of freedom [Okabe, 1994] per element. It is closely

related to the Argyris triangle [Masayuki, 1993], and can be obtained from the Argyris trian-

gle by imposing that the normal slope on the edge of the element be a degree 3 polynomial

of two variables; this allows the elimination of the mid-side normal-derivative degrees of

freedom. The Bell triangle is 4-unisolvent, meaning that any degree 4 polynomial on the
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domain can be represented exactly.

Figure 4.14: The Bell (left) and Argyris (right) elements, showing the degrees of freedom. A

dot indicates a normal Lagrange (zeroth derivative) degree of freedom, the (two) first deriva-

tive degrees of freedom are indicated by the inner circle and the (three) second derivative

degrees of freedom by the outer circle. Normal derivative degrees of freedom are indicated

by an arrow.

We proceed to discuss the degrees of freedom and write the explicit interpolation basis.

This basis depends on the spatial coordinates, through the linear basis functions defined

in section 4.1.4. and the positions of the three vertices in space. The degrees of freedom

for the Bell-triangle are the function values at each vertex, w(âi), the first partial deriva-

tives, ∂w(âi)/∂xα and the three second partial derivatives, ∂2w(âi)/∂xα∂xβ, with α ≤ β,

α, β ∈ {1, 2} as displayed in figure 4.14. Also shown is the Argyris triangle, which has three

additional normal-derivative degrees of freedom. For the Bell element, this totals 6 degrees

of freedom per vertex node - 18 for each element. In this work, we only discuss the explicit

formulas for the Bell element.

4.4.2 Defining the Basis

Intuitively, the basis, ψ
[0]
k , is the unique set of polynomial functions which span the inter-

polation space and have the Kronecker delta property: that is, if we obtain the kth degree

of freedom (or unknowns), Σ
[0]
k , from a function w(x) with the transformation w →

Uk
Σ

[0]
k by

some operator Uk, then the operation of Uk on the basis function yields the Kronecker delta:

ψ
[0]
j →

Uk
δjk.

In the case of Bell elements the operator Uk is a differential operator returning the kth

Hermite degree of freedom:

Σ
[0]m,n
i = Uk w(x) =

∂m+n

∂xm1 ∂x
n
2

w(âi) , m ∈ {0, . . . , 2} , n ∈ {0, . . . 2−m} (4.4.1)
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where we have labelled the degrees of freedom by the derivative order, m,n, and the node

number i. Here the kth degree of freedom is enumerated by a unique combination (i,m, n).

Written explicitly, the degrees of freedom are:

Σ[0] =
[
w(ai) ;

∂w

∂x1
(ai) ;

∂w

∂x2
(ai) ;

∂2w

∂x2
1

(ai) ;
∂2w

∂x1∂x2
(ai) ;

∂2w

∂x2
2

(ai) | i ∈ {1, 2, 3}
]
,

(4.4.2)

In the case of the Bell elements the relevant polynomial space is the trial function space

incorporating all P5 polynomials with P3 normal derivatives on the edges of the triangle

(a1,a2,a3) [Okabe, 1994].

Given this, the interpolated function, πw(x), on the triangle will be

πw(x) =

3∑
i=1

2∑
m=0

2−m∑
n=0

Σ
[0]m,n
i ψ

[0]m,n
H i (x). (4.4.3)

We now repeat the explicit formulas for the Bell basis polynomials, as outlined by Okabe

[1994]. We describe elements in terms of the three linear basis functions for a triangle of

section 4.1.4, ωi, which are given in terms of Cartesian coordinates by

ωi(x) =
1

A
((ai+1 − x)× (ai+2 − x)) · k . (4.4.4)

in which i ∈ {1, 2, 3} and we have implicitly used modulo 3 for i+ 1, i+ 2 etc.. x labels the

Cartesian position x = x1ê1 + x2ê2, and ai labels the Cartesian position of the ith vertex,

with components ai · ê1 and ai · ê2 in the two coordinate directions. Here we reiterate that

we have not used Einstein notation. Finally, A, denotes twice the signed area of the triangle,

calculated by

A = ((ai+1 − ai)× (ai+2 − ai)) · k . (4.4.5)

in which i ∈ {1, 2, 3} and we implicitly use modulo 3 for i+ 1, i+ 2 etc..

This linear basis is often referred to as a set of area coordinates, as they can be interpreted

geometrically as the ratio of signed area of the triangle (x,ai+1,ai+2) to the signed area of

the triangle (ai,ai+1,ai+2), as shown in figure 4.15.

We now define the constants, αij , which are used in the expression of the basis functions:

αij =
ωi,nj
ωj,nj

, (4.4.6)

where f,nj labels the derivative of a function f(x) in the direction normal to the jth edge

and, once again, there is no implicit summation over j.
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Figure 4.15: Image showing the geometric meaning of area coordinate ωi. This will be the

ratio of the area of the shaded triangle to the total (unshaded) area.

In the constants, αij we may use either the inward or outward normal: which need not

be of unit length. We use the following normal, ni, vector on the side opposite to vertex i

ni ≡ (ai+2 − ai+1)× k , (4.4.7)

where once again i ∈ {1, 2, 3} and we implicitly use modulo 3 for i+ 1, i+ 2 etc..

The explicit interpolation basis is then given by [Okabe, 1994]

ψ
[0] 0,0
H i = ω3

i (10− 15ωi + 6ω2
i )− 30(αi,(i+1)ωi+2 + αi,(i+2)ωi+1)ω2

i ωi+1ωi+2 , (4.4.8)

ψ
[0] 1,0
H i = ω3

i (4− 3ωi)(x1 − a1 i) +
(
15(a1 i − a1 i+2)αi,(i+1) + 3(a1 i+1 − a1 i+2)

)
ω2
i ωi+1ω

2
i+2

+
(
15(a1 i − a1 i+1)αi,(i+2) + 3(a1 i+2 − a1 i+1)

)
ω2
i ω

2
i+1ωi+2 , (4.4.9)

ψ
[0] 0,1
H i = ω3

i (4− 3ωi)(x2 − a2 i) +
(
15(a2 i − a2 i+2)αi,(i+1) + 3(a2 i+1 − a2 i+2)

)
ω2
i ωi+1ω

2
i+2

+
(
15(a2 i − a2 i+1)αi,(i+2) + 3(a2 i+2 − a2 i+1)

)
ω2
i ω

2
i+1ωi+2 , (4.4.10)

ψ
[0] 2,0
H i = ω3

i (x1 − a1 i)
2/2

− (a1 i − a1 i+2)
(
5(a1 i − a1 i+2)αi,(i+1) + 2(a1 i+1 − a1 i+2)

)
ω2
i ωi+1ω

2
i+2

− (a1 i − a1 i+1)
(
5(a1 i − a1 i+1)αi,(i+2) + 2(a1 i+2 − a1 i+1)

)
ω2
i ω

2
i+1ωi+2 , (4.4.11)

ψ
[0] 1,1
H i = ω3

i (x1 − a1 i)(x2 − a2 i)−
(
(a2 i−a2 i+2)

(
5(a1 i−a1 i+2)αi,(i+1)+2(a1 i+1−a1 i+2)

)
+ (a1 i − a1 i+2)

(
5(a2 i − a2 i+2)αi,(i+1) + 2(a2 i+1 − a2 i+2)

) )
ω2
i ωi+1ω

2
i+2

−
(
(a2 i − a2 i+1)(5(a1 i − a1 i+1)αi,(i+2) + 2(a1 i+2 − a1 i+1))

+ (a1 i − a1 i+1)
(
5(a2 i − a2 i+1)αi,(i+2) + 2(a2 i+2 − a2 i+1)

) )
ω2
i ω

2
i+1ωi+2 (4.4.12)

ψ
[0] 0,2
H i = ω3

i (x2 − a2 i)
2/2

− (a2 i − a2 i+2)
(
5(a2 i − a2 i+2)αi,(i+1) + 2(a2 i+1 − a2 i+2)

)
ω2
i ωi+1ω

2
i+2

− (a2 i − a2 i+1)
(
5(a2 i − a2 i+1)αi,(i+2) + 2(a2 i+2 − a2 i+1)

)
ω2
i ω

2
i+1ωi+2 , (4.4.13)
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with xα =
∑3

l=0 aα l ωl. Once again i ∈ {1, 2, 3} and we implicitly use modulo 3 for i + 1,

i+ 2 etc.. Here we note that under permutation, cyclic or otherwise, of the index i the basis

functions remain unchanged. These basis functions are plotted in figure 4.16.

4.4.3 Cartesian Derivatives

In the variational principle, derivatives with respect to the physical, Cartesian coordinates

appear, x, rather than derivatives with respect to the local coordinates, x̂. However, it is

more convenient to express the derivatives with-respect-to local (reference) coordinates and

then transform to the global derivatives, using the Jacobian and Hessian of the mapping.

In the above formulation, derivatives with respect to Cartesian coordinates can be com-

puted in principle, as the basis can be readily expressed in Cartesian coordinates using the

definition of the area coordinates. However, in most contexts the derivatives with respect

to the local coordinates are more desirable, as the expressions for the basis functions are

typically much more straightforward.

We start by considering the first derivatives with respect to Cartesian coordinates. These

can be straightforwardly constructed as

∂ψ
[0] j,k
H i

∂xα
=
∂ψ

[0] j,k
H i

∂ωl

∂ωl
∂xα

=
∂ψ

[0] j,k
H i

∂ωl

∂ωl
∂x̂β

(
J−1

)
βα

(4.4.14)

in which we use the Jacobian of the area to local coordinates:

∂ωα
∂x̂β

= δαβ ,
∂ω3

∂x̂β
= −1 , (4.4.15)

and (
J−1

)
αβ

=
∂x̂β
∂xα

. (4.4.16)

are components of the inverse Jacobian of the mapping from local to Cartesian coordinates

Since the mapping from Cartesian to local coordinates is linear, the second derivatives

can be expressed in terms of only the area to local and local to Cartesian Jacobian and the

second, local derivatives. Thus, Cartesian second derivatives can be constructed in terms of

area coordinate derivatives as

∂2ψ
[0] j,k
H i

∂xα∂xβ
=
∂ψ

[0] j,k
H i

∂ωl∂ωm

∂ωl
∂x̂γ

(
J−1

)
γα

∂ωm
∂x̂δ

(
J−1

)
δβ
. (4.4.17)
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Figure 4.16: Bell basis functions shown for a particular triangle. The different nodal basis

functions are shown by column and the different degree of freedom types are shown by

row, in various colours. By row the degrees of freedom are ordered as follows: w(ai),

∂w(ai)/∂x1, ∂w(ai)/∂x2, ∂2w(ai)/∂x
2
1, ∂2w(ai)/∂x1∂x2 and ∂2w(ai)/∂x

2
2. The Kronecker-

delta property can be readily seen: for example, ψ
[0] (0,0)
H, 2 is zero at a1 and a3 and unity at

a2 with zero slope and curvature at all three nodes.
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4.4.4 Subparametric Triangle Elements

To clarify the ideas we now quickly summarize the structure the Bell element will adopt

within the library. To begin, we introduce a new object to aid in the description of non-

isoparametric elements. We propose a new more generic structure to incorporate such el-

ements, which is shown in figure 4.17. The new object we propose is a non-isoparametric

element, which provides both shape functions (to interpolate the geometry) and basis func-

tions (to interpolate the unknowns).

Finite Element

Discretized Equation Non-isoparametric Element

Specific Finite Element

is is

isis

Finite Element

� Defines interface to basis

Non-isoparametric

Element
� Implements shape

� Implements basis

Specific Finite Element

� Implements basis for

equations

Figure 4.17: The revised structure for non-isoparametric elements within oomph-lib. New

functionality is required in the sub-parametric triangle element, which replaces the geometric

element within the structure, to provide distinct basis and shape functions.

As shown in figure 4.17, a non-isoparametric element assumes the role of a geometric

element, but also has basis functions. This is in contrast to isoparametric elements in which

the geometric shape functions are reused as basis functions for the unknowns, so this dis-

tinction would be unnecessary. We implement a new non-isoparametric element within the

library: a subparametric triangle element ( SubparametricTElement ), which provides the base

class for the new Bell elements.

A Bell element ( BellElement ) is therefore a kind of geometric element which also has

a set of Hermite basis functions (the Bell basis functions) to interpolate the unknowns.

It derives directly from a subparametric triangle element, which in turn derives from a

two-dimensional triangle element (a geometric element): in oomph-lib the parent class is

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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TElement<2,NNODE_1D> . In general subparametric triangle elements may provide any order

Lagrange basis (parameterized by the number of nodes per side: NNODE_1D ). However, Bell

triangles must always have straight-sides, so shape must be overridden (i.e. by providing

linear shape functions) to account for this. We retain the template parameter NNODE_1D how-

ever, as the higher order Lagrange bases may be required in derived multi-physics elements.

The Bell element must also provide the interface to the number of degree-of-freedom types

per node. Subparametic triangle elements fulfil the role of the discussed non-isoparametric

element and provide an interface to both a basis and a geometry. This is summarized in

figure 4.18.

Triangle Element

Bell Element

Bell Element Basis

Subparametric Triangle Element

is

is

has

Triangle Element

� Has three vertex nodes
� Provides shape functions

Subparametric Triangle Element

� Defines interface to shape functions

� Defines Interface to basis functions

Bell Element
� Implements shape functions

� Implements basis functions

Bell Basis

� Provides basis

Figure 4.18: The structure of a Bell element within oomph-lib. Bell elements are a subpara-

metric triangle element, which assume the role of the outlined non-isoparametric element.

Thus we may outline the new class and its key members, using the following (simplified)

code snippets shown in figures 4.19 and 4.20. This is not the final structure: as we add new

functionality, this structure will be modified to incorporate new element-types. Now that we

have outlined an interpolation scheme suitable for polygonal domains we proceed to discuss

the curved counterparts used for boundary patches.

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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// Class for generic subparametric triangle elements

template<unsigned NNODE_1D>

class SubparametricTElement : public TElement<2,NNODE_1D> {

public:

// Access functions for number of nodal dof types

virtual unsigned nnodal_basis_types() = 0;

// Access to basis

virtual void basis(Vector<double>& local_coord, Shape& basis) = 0;

// Shape provided by inheritance

Figure 4.19: Code snippet illustrating the structure of a subparametric triangle element.

// Class for straight-sided Bell elements: a new subparametric element

template<unsigned NNODE_1D>

class BellElement : public SubparametricTElement<NNODE_1D> {

public:

// Implements functions for number of nodal dof types

unsigned nnodal_basis_types();

// Implements basis

void basis(Vector<double>& local_coord, Shape& basis);

// Override inherited shape with linear shape.

void shape(Vector<double>& local_coord, Shape& shape);

private:

// Pointer to the class that defines the Bell basis functions

BellElementBasis* Bell_element_basis_pt;

Figure 4.20: Code snippet illustrating the implementation of a Bell element. In general we

require NNODE_1D elements with straight sides, for use in multi-physics problems.

4.5 The Curved Bell Element

As we have previously asserted, (affine) Bell elements are not suitable for the description of

curved boundaries as they can only interpolate the geometry linearly. Instead, for the accu-

rate representation of curved domains we use the curved Bell element outlined by Bernadou

[1992, 1993a], which was apparently first derived by Žeńı̌sek [1978]: we refer to these elements

as curved Bell elements. This element is compatible (C1-continuous) with the Bell element
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but uses an increased polynomial order in the interior to allow a single edge to be curved. An

alternative exists for the related Argyris element, which has extra normal degrees of freedom

associated with each edge. We frequently refer to curved-Bell elements as ‘curved triangles’:

which we take to mean three–sided shapes in which one of the sides is curved and the other

two straight.

This method of interpolation is relatively unexplored in the literature: the curved Argyris

elements have been implemented in the finite element library Modulef [Bernadou et al.,

1986], which in turn has been used to solve the linear shell model of Koiter [1970] (see

[Bernadou, 1994]). Curved Bell elements have been used by Hřeb́ıček [1982] to solve the

general biharmonic equation and by Růžičková and Žeńı̌sek [1984] in the approximation of

visco-elastic linear bending of a plate. However, the use of curved-Bell elements for the

solution of nonlinear, large displacement shell and plate models appears to be untouched in

the literature.

The increase in polynomial order is achieved by introducing additional interior, or ‘bub-

ble’ degrees of freedom, whilst constraining the element to share the same degrees of free-

dom on the edges. To ensure inter-element C1 continuity between neighbouring curved and

straight-sided Bell elements, the interpolated function, must have the same trace, i.e. the 1D

function describing the function on the edge, and normal derivative trace, as any adjacent

Bell or curved Bell elements share the same degrees of freedom on that edge. This is achieved,

in turn, by constraining the basis to be a polynomial of order 5 on the straight edges, with

the normal derivatives on the edges constrained to be order 3 polynomials, as is the case for

affine Bell elements. Depending on the order of boundary interpolation required, a higher

order polynomial, and thus more bubble degrees of freedom, are required in the interior of

the element [Bernadou, 1992, 1993a].

We proceed to construct the basis for the Bell elements in the same manner outlined in

Bernadou and Boisserie [1992, 1993] for the Argyris element. The definition of the elements

is provided by Bernadou [1992, 1993a] but a detailed account of their construction is a useful

addition to the literature, so we provide it in the next section.

4.5.1 Set-up of the Problem

Following Bernadou [1993a], we start by defining a boundary, Γ, which we suppose can be

split up into a finite number of arcs, each with described by a sufficiently smooth parametric
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function:

χ(s) , s ≤ s ≤ s̄ , (4.5.1)

where s is the arc length. We also define an alternative parameterization

Ψ(x̂2) = χ(x̂2(s̄− s) + s) , 0 ≤ x̂2 ≤ 1 , (4.5.2)

where x̂2 is the local coordinate that is 0 at node a1 and 1 at node a2. We wish to express the

basis on a single ‘reference triangle’ and with that in mind we define the reference triangle

K̂, as shown in figure 4.21.

â1

â2

â3

1

1

0

K̂

x̂2

x̂1

a1

a2

a3

K
x2

x1

FK

x̂

x

Figure 4.21: Diagram showing the geometry of the reference and curved triangles.

We now define an approximate arc, Ψh(x̂2), that interpolates the exact arc Ψ(x̂2), by a

polynomial of order m:

Ψh = a1 + (a2 − a1)x̂2 + x̂2(1− x̂2)fm−2(x̂2) , (4.5.3)

where components of fm−2 are as-yet undetermined polynomials of degree m−2 with respect

to x̂2.

In order to define a mapping, FK that takes us from the unit reference triangle, K̂, to

the curved triangle on the approximated domain, K, as shown in figure 4.21, we first define

the coordinates, x̂1 and x̂2 which parameterize the position on the reference triangle, K̂.

The mapping is thus given by

FK = a3 + (a1 − a3)x̂1 + (a2 − a3)x̂2 +
1

2
x̂1x̂2

(
fm−2(1− x̂1) + fm−2(x̂2)

)
(4.5.4)

which we have constructed such that FK(1 − x̂2, x̂2) = Ψh(x̂2). We visualize the mapping

for the case of an approximated circular arc in figure 4.22.
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Figure 4.22: An example of a mapping, FK from reference element K̂ to curved element

K. K is the approximated domain and the mapping is, in general non-affine. We illustrate

the mapping by showing how a set of lines (dashed blue) transform to a set of curves on

the curved element. In this instance the curve-section is a polynomial approximation to a

circular arc.

With this framework in place, we specialise to two particular cases which are of impor-

tance to this study: degree 3 and degree 5 interpolation of the boundary. A well known

contribution of Žeńı̌sek [1981a,b] was to demonstrate that in Kirchhoff-Love-type problems

it is necessary to use at least third order (C1-continuous) boundary interpolation to correctly

impose homogeneous Dirichlet-type boundary conditions and fifth order (C2-continuous) in-

terpolation for generic boundary conditions. With these two important cases in mind, we

follow Bernadou [1993b] in defining two curved elements of the same class that can use these

two boundary interpolations. It is important to note, that the P5 order elements do not

improve upon the convergence rate of the P3 elements; however, they are necessary for the

imposition of generic boundary conditions.

With the aim of characterising both clamped and free systems in mind, we define the

mappings for these two cases. For the third order boundary interpolation, we interpolate

based on the known values of the tangent at the vertices, s = s and s = s̄. These tangents are

given by χ′(s) and χ′(s̄). This interpolation provides a C1-continuous boundary interpolation

between curved elements. It can be shown that the approximated boundary is given by

[Bernadou, 1993b]

Ψh = a1 + (a2 − a1)x̂2 + x̂2(1− x̂2)f1(x̂2) , (4.5.5)

in which f1(x̂2) has the following expression:

f1(x̂2) ≡
(
2(a2 − a1)− (s̄− s)(χ′(s) + χ′(s̄))

)
x̂2 + a1 − a2 + (s̄− s)χ′(s) . (4.5.6)
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Following this, the mapping is given by

FK = a3 + (a1 − a3)x̂1 + (a2 − a3)x̂2 +
1

2
x̂1x̂2 (f1(1− x̂1) + f1(x̂2)) . (4.5.7)

which can be more straightforwardly expressed, as [Bernadou, 1993b]

FK = a3 + (a1 − a3)x̂1 + (a2 − a3)x̂2 +
1

2
x̂1x̂2

([
2(a2 − a1)

− (s̄− s)(χ′(s) + χ′(s̄))
]
(x̂2 − x̂1) + (s̄− s)(χ′(s)− χ′(s̄))

)
.

(4.5.8)

For the fifth order case it can be shown that the interpolation of the boundary has the

following expression:

Ψh = a1 + (a2 − a1)x̂2 + x̂2(1− x̂2)f3(x̂2) , (4.5.9)

in which f3(·) ≡ {fm−2(·) : m = 5} is given by:

f3 ≡ β3 x̂
3
2 + β2 x̂

2
2 + β1 x̂2 + β0 , (4.5.10)

which is used in the definition of FK and Ψh. The polynomial coefficients, βm , m ∈

{0, . . . 3}, is

β0 = a1 − a2 + (s̄− s)χ′(s) , (4.5.11)

β1 = a1 − a2 + (s̄− s)χ′(s) +
1

2
(s̄− s)2χ′′(s) , (4.5.12)

β2 = 9(a2 − a1)− (s̄− s)
(
5χ′(s) + 4χ′(s̄)

)
− 1

2
(s̄− s)2

(
2χ′′(s)− χ′′(s̄)

)
, (4.5.13)

β3 = 6(a1 − a2) + 3(s̄− s)
(
χ′(s) + χ′(s̄)

)
+

1

2
(s̄− s)2

(
χ′′(s)− χ′′(s̄)

)
. (4.5.14)

Thus, the mapping is

FK = a3 + (a1 − a3)x̂1 + (a2 − a3)x̂1 +
1

2
x̂1x̂2 (f3(1− x̂1) + f3(x̂2)) , (4.5.15)

and again, the expressions in the mapping can be written alternatively as

FK = a3 + (a1 − a2)x̂1 + (a1 − a2)x̂1 −
1

2
x̂1x̂2

(
β3 (x̂2)3 + β2 (x̂2)2 + β1 (x̂2)

+ β0 + β̃3 (x̂2)3 + β̃2 (x̂2)2 + β̃1 (x̂2) + β̃0

)
,

(4.5.16)

with the coefficients

β̃0 = a2 − a1 − (s̄− s)χ′(s̄) , (4.5.17)

β̃1 = a2 − a1 − (s̄− s)χ′(s̄) +
1

2
(s̄− s)2χ′′(s̄) , (4.5.18)

β̃2 = 9(a1 − a2) + (s̄− s)
(
5χ′(s̄) + 4χ′(s)

)
− 1

2
(s̄− s)2

(
2χ′′(s̄)− χ′′(s)

)
, (4.5.19)

β̃3 = 6(a2 − a1)− 3(s̄− s)
(
χ′(s̄) + χ′(s)

)
+

1

2
(s̄− s)2

(
χ′′(s̄)− χ′′(s)

)
. (4.5.20)

as shown in Bernadou [1993a].
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4.5.2 Requirements

We require the basis to be C1-continuous with adjacent Bell and curved Bell elements along

the straight edges, which we denote by their opposing nodes, such that edge 2 is [a1,a3],

and edge 1 is [a2,a3]. The curved edge is then edge 3. Firstly, this entails that all degrees

of freedom on edge 1 and 2 are identical to that of the Bell element [Bernadou, 1992]. For

C0-continuity we require that the interpolated function, w, is continuous between adjacent

elements. With this in mind we demand the trace of the interpolated function on side ᾱ,

f̂α ≡ w|[a3,aα], be a one-variable, degree 5 polynomial, entirely determined by the degrees

of freedom at a3 and aα. For C1-continuity we also require that the normal derivative be

continuous across boundaries: i.e that the normal derivative, ĝα ≡ ∇w|[a3,aα] · nᾱ , ᾱ 6= α,

has a trace, which is an order 3 polynomial in a single variable, entirely determined by the

first and second derivatives at the nodes a3 and aα [Bernadou, 1992].

To determine the order that the basis needs to be to satisfy these properties, we consider

the derivatives of the interpolated function, w(x1, x2) = ŵ(x̂1, x̂2), with respect to the coor-

dinates x̂α evaluated at point a ∈ [a3,aα], or â ∈ [â3, âα] on the reference element, which

lies on edge ᾱ 6= α, α ∈ {1, 2}:

∂ŵ

∂x̂α
(â) =∇w(a) · ∂FK

∂x̂α
(â) =

∂FK

∂x̂α
(â) · (gα(x̂α)nᾱ + hα(x̂α)tᾱ) , ᾱ 6= α (4.5.21)

where we have not used summation convention. Here gα ≡ ∇w(a) · nᾱ , ᾱ 6= α and hα ≡

∇w(a) · tᾱ , ᾱ 6= α are the normal and tangential derivatives on side ᾱ. We first note that,

if the element is to conform with the Bell element, gα and hα must be a third and fourth

order polynomials in x̂α respectively on the edge ᾱ. Using this in combination with the

mapping, FK which is an mth order polynomial where, by observing the particular form of

the mapping defined in equation (4.5.4), we can see that ∂ŵ/∂x̂1 on side 2 and ∂ŵ/∂x̂2 on

side 1, must both be order m+3 order polynomials. Thus ŵ must be at least an m+4 order

polynomial in the two variables x̂1 and x̂2 [Bernadou, 1993a].

Thus, for the useful cases of m = 3 and m = 5 that we considered previously we will

need a set of ‘reference’ polynomial basis functions, ψ̂[m], on the reference element, K̂, that

are of order 7 and 9 respectively. This results in a generic set of 36 polynomials for 3rd order

curved element and 55 for the 5th order curved element5.

5The number of degrees of freedom for a generic, 2D, mth-order polynomial is the (m + 1)th triangular
number, given by (m+ 2)(m+ 1)/2.
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4.5.3 Outline of Procedure for P3 Triangles

We now proceed to discuss the construction of the basis for the P3 triangle. The elements

are constructed by relating a generic set of 36 ‘reference’ basis functions, which correspond

to 36 degrees of freedom as shown in figure 4.23, to a smaller set of degrees of freedom on

the curved triangle. We can visualize this by considering a reference and a curved triangle,

as shown in figure 4.24.

We define the 36 reference ‘degrees of freedom’, Σ̂
[3]

, on the reference element to be

Σ̂
[3]

=
[
ŵ(âi) ;

∂ŵ(âi)

∂x̂α
;
∂2ŵ(âi)

∂x̂α∂x̂β
; −∂ŵ(b̂1)

∂x̂1
; −∂ŵ(b̂2)

∂x̂2
;

1√
2

(
∂ŵ(b̂3)

∂x̂1
+
∂ŵ(b̂3)

∂x̂2

)
;

ŵ(d̂j) ; −∂ŵ(d̂j)

∂x̂1
; ŵ(d̂k) ; −∂ŵ(d̂k)

∂x̂2
; ŵ(d̂l) ;

1√
2

(
∂ŵ(d̂l)

∂x̂1
+
∂ŵ(d̂l)

∂x̂2

)
; ŵ(̂em)

| i,m ∈ {1, 2, 3} , j ∈ {1, 2} , k ∈ {3, 4} , l ∈ {5, 6} , α ≤ β , (α, β) ∈ {1, 2}
]
. (4.5.22)

where we expand Greek indices first then Roman indices, as follows

Σ̂
[3]

=
[
ŵ(â1) ; ŵ(â2) ; ŵ(â3) ;

∂ŵ(â1)

∂x̂1
;
∂ŵ(â1)

∂x̂2
;
∂ŵ(â2)

∂x̂1
;
∂ŵ(â2)

∂x̂2
;
∂ŵ(â3)

∂x̂1
;
∂ŵ(â3)

∂x̂2
;

∂2ŵ(â1)

∂x̂1∂x̂1
;
∂2ŵ(â1)

∂x̂1∂x̂2
;
∂2ŵ(â1)

∂x̂2∂x̂2
;
∂2ŵ(â2)

∂x̂1∂x̂1
;
∂2ŵ(â2)

∂x̂2∂x̂2
;
∂2ŵ(â2)

∂x̂1∂x̂2
;
∂2ŵ(â3)

∂x̂1∂x̂1
;

∂2ŵ(â3)

∂x̂1∂x̂2
;
∂2ŵ(â3)

∂x̂2∂x̂2
; −∂ŵ(b̂1)

∂x̂1
; −∂ŵ(b̂2)

∂x̂2
;

1√
2

(
∂ŵ(b̂3)

∂x̂1
+
∂ŵ(b̂3)

∂x̂2

)
; ŵ(d̂1) ; ŵ(d̂2) ;

− ∂ŵ(d̂1)

∂x̂1
; −∂ŵ(d̂2)

∂x̂1
; ŵ(d̂3) ; ŵ(d̂4) ; −∂ŵ(d̂3)

∂x̂2
; −∂ŵ(d̂4)

∂x̂2
; ŵ(d̂5) ; ŵ(d̂6) ;

1√
2

(
∂ŵ(d̂5)

∂x̂1
+
∂ŵ(d̂5)

∂x̂2

)
;

1√
2

(
∂ŵ(d̂6)

∂x̂1
+
∂ŵ(d̂6)

∂x̂2

)
; ŵ(̂e1) ; ŵ(̂e2) ; ŵ(̂e3)

]
. (4.5.23)

Here we recall that the coordinates xα are global Cartesian coordinate, whereas the

coordinate x̂α are the local coordinates on the reference triangle. Similarly, âi are the

vertices of the (unit) reference triangle.

We have retained the Bell degrees of freedom on the reference triangle, but increased

the polynomial order by introducing additional normal and Lagrange degrees of freedom,

spaced uniformly throughout the element. This is then mapped onto degrees of freedom on

the curved ‘global’ triangle. However, the basis now needs to incorporate the constraints on

the trace and traces of the normal derivatives on each edge. We note that on each edge there

are 5, dependent ‘degrees of freedom’, which have values entirely determined by the nodal

degrees of freedom (see figure 4.24. These dependent ‘degrees of freedom’ are eliminated in

the global basis, as their values are formed of linear combinations of the nodal degrees of
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freedom. This the natural consequence of having a high order basis, constrained to be fifth

order polynomials and to have third order normal derivatives on the edges.

b̂1

b̂2

b̂3

d̂1

d̂2

d̂3 d̂4

d̂5

d̂6

ê1

ê2

ê3

â1

â2

â3

1

1

0

x̂2

x̂1

Figure 4.23: Diagram showing the degrees of freedom on the reference triangle.

With this in mind, we define the 21, global degrees of freedom, Σ
[3]
G , on the curved

element to be

Σ
[3]
G =

[
w(ai) ; (∇w(ai)) · êα ; (∇∇w(ai)) · êα ⊗ êβ ; w(ek)

| i, k ∈ {1, 2, 3} , α ≤ β , (α, β) ∈ {1, 2}
]
,

(4.5.24)

in which êα are the normal 2D Cartesian unit vectors. These degrees of freedom correspond

exactly to the Bell degrees of freedom on the vertices, with three additional ‘bubble’ degrees

of freedom at the points ei. In index notation, we may write these degrees of freedom as

follows

Σ
[3]
G =

[
w(ai) ;

∂w(ai)

∂xα
;
∂2w(ai)

∂xα∂xβ
; w(ek)

| i, k ∈ {1, 2, 3} , α ≤ β , (α, β) ∈ {1, 2}
]
.

(4.5.25)

At this stage we iterate that though the zeroth derivative degrees of freedom, w(x), are

identical to those on the reference element, ŵ(x̂) = w(x), the Hermite degrees of freedom
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will differ:

∂ŵ(â)

∂x̂α
6= ∂w(a)

∂x̂α
. (4.5.26)

K̂

x̂2

x̂1

K
x2

x1

FK

Figure 4.24: Diagram showing the degrees of freedom on the reference and curved triangle.

Redundant ‘degrees of freedom’ on the curved sides are grey, to indicate that they can be

eliminated by the constraints on the trace and normal.

We need a means of converting these 36 reference ‘degrees of freedom’ on the reference

triangle, to the 21 global degrees of freedom on the curved triangle. As an intermediate step

we convert the global degrees of freedom (that are shared between elements) to local degrees

of freedom, that are expressed in terms of tangential derivatives on the element. This step

makes it more straightforward to compare the degrees of freedom on the reference element to

those on the curved element. The usual Lagrange degrees of freedom are unchanged by this

transformation, but the Hermite degrees of freedom are re-expressed in terms of tangential

derivatives on the triangle. The local degrees of freedom are shown in figure 4.25.

With this aim in mind we define the following tangential vectors

A1 = a3 − a1 , (4.5.27)

A2 = (s̄− s)χ′(s) , (4.5.28)

B1 = −(s̄− s)χ′(s̄) , (4.5.29)

B2 = a3 − a2 , (4.5.30)

which are the tangents to the curved triangle at vertices 1 and 2 respectively. As the sides

1 and 2 are straight, the two tangents at vertex 3 are −A1 and −B2.

Specifically, we relate the degrees of freedom on the curved element, Σ
[3]
G , to the local
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degrees of freedom, Σ
[3]
L , defined by

Σ
[3]
L =

[
(ai) ; (∇w(a1)) ·Aα ; (∇w(a2)) ·Bα ; −(∇w(a3)) ·A1 ; −(∇w(a3)) ·B2 ;

(∇∇w(a1)) ·A1 ⊗A1 ; (∇∇w(a1)) ·A2 ⊗A2 ; (∇∇w(a2)) ·B1 ⊗B1 ;

(∇∇w(a2)) ·B2 ⊗B2 ; (∇∇w(a3)) ·A1 ⊗A1 ; (∇∇w(a3)) ·B2 ⊗B2 ;

(∇∇w(a1)) ·B2 ⊗B2 ; (∇∇w(a2)) ·A1 ⊗A1 ; −(∇∇w(a3)) ·A2 ⊗B1 ;

w(ek) | i, k ∈ {1, 2, 3} , α ∈ {1, 2}
]
. (4.5.31)

K
x2

x1

K
x2

x1

Figure 4.25: Diagram schematically showing the global (left) and local degrees of freedom

(right) on the curved triangle. In the right hand image the coloured, double-tipped arrows

represent the second, tangent and cross tangent derivative degrees of freedom and black

arrows represent the first, tangent derivative degrees of freedom.

This transformation from global, Σ
[3]
G , to local degrees of freedom, Σ

[3]
L , can be performed

by multiplication of a 21×21 square matrix, that depends only on the vertices of the triangle

and the curved edge. Expressed in terms of matrices we have

Σ
[3]
L︸︷︷︸

1×21

= Σ
[3]
G︸︷︷︸

1×21

D̃︸︷︷︸
21×21

(4.5.32)

in which D̃ is the matrix transform from the global to local degrees of freedom. To construct

for Bell elements, rather than Argyris as in Bernadou and Boisserie [1992], we remove the

(identity) part which relates the local normal degrees of freedom to global normal degrees of

freedom, in a trivial step. Otherwise the construction (which we perform in the next section)

follows the arguments of Bernadou and Boisserie [1992] exactly.

Once this intermediate stage is complete we can readily relate the local degrees of freedom

to reference ‘degrees of freedom’, Σ̂
[3]

, via another matrix transform, given by

Σ̂
[3]︸︷︷︸

1×21

= Σ
[3]
L︸︷︷︸

1×21

B̃︸︷︷︸
21×36

, (4.5.33)
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and thus related to the global degrees of freedom by

Σ̂
[3]︸︷︷︸

1×36

= Σ
[3]
G︸︷︷︸

1×21

D̃︸︷︷︸
21×21

B̃︸︷︷︸
21×36

. (4.5.34)

The matrix is constructed by consideration of the P5 polynomial trace of the function on the

triangle and the P3 normal derivative trace on each edge: the constraints are incorporated in

the same manner as for the Argyris triangle in Bernadou and Boisserie [1992], for the curved

Bell elements as outlined in Bernadou [1992], only incorporating the lack of normal degrees

of freedom and resulting P3 (rather than P4) normal derivatives on the edge. As noted, the

explicit construction is not detailed in Bernadou [1992], so we do so here for completeness.

Finally we must express the global basis in terms of the reference basis, Ψ̂, the set of 36

basis polynomials associated with the degrees of freedom on the reference element. These

can be obtained in terms of the 36 monomials, xn ym with m + n ≤ 7 by solving the linear

system of equations obtained by expressing the reference degrees of freedom of a generic P7

polynomial of two variables, as outlined in appendix D.3. Our global basis is then defined

such that

Σ
[3]
G ·ψ

[3] ≡ Σ̂
[3] · ψ̂[3]

, (4.5.35)

so that finally we get the expression for the global basis as

ψ[3]︸︷︷︸
21×1

= D̃︸︷︷︸
21×21

B̃︸︷︷︸
21×36

. ψ̂
[3]︸︷︷︸

36×1

. (4.5.36)

To summarize, the procedure for defining the basis for these elements can be split into

three steps. We begin with a ‘reference’ element, defined on the unit right-angled triangle,

K̂, as pictured in figure 4.23. This reference triangle basis is shared by curved-Bell elements

of any geometry with any generically curved edge. We then transform onto an element

with local degrees of freedom, as shown in 4.25, using the matrix B̃, which depends only

on the geometry of the curved element. This step eliminates the dependent ‘degrees of

freedom’. Finally the local degrees of freedom are converted to the global, axis-aligned

degrees of freedom which are shared between adjacent elements, using the matrix D̃ which

again depends only on the geometry of the curved element.

4.5.4 Outline of Procedure for P5 Triangles

The procedure for the P5 elements is identical to that of the P3 element, only now we must

account for additional ‘bubble’ degrees of freedom on the curved element and additional
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dependent ‘degrees of freedom’ on the reference element. Of the 55 degrees of freedom on

the reference element, the 27 additional edge degrees of freedom are dependent, leaving a

curved element with 28 degrees of freedom: 18 Bell degrees of freedom and 10 bubble degrees

of freedom.

b̂1

b̂2

b̂3

d̂1

d̂2

d̂3

d̂4

d̂5 d̂6 d̂7 d̂8

d̂9

d̂10

d̂11

d̂12

ê1

ê2

ê3

ê4 ê5 ê6 ê7

ê8

ê9

ê10

â1

â2

â3

1

1

0

x̂2

x̂1

Figure 4.26: Diagram showing the degrees of freedom on the P5 reference triangle.

We start by expressing the 55 degrees of freedom for the reference triangle, as shown in

figure 4.26. The reference degrees of freedom are given by

Σ̂
[5]

=
[
ŵ(âi) ;

∂ŵ(âi)

∂x̂α
;
∂2ŵ(âi)

∂x̂α∂x̂β
; −∂ŵ(b̂1)

∂x̂1
; −∂ŵ(b̂2)

∂x̂2
;

1√
2

(
∂ŵ(b̂3)

∂x̂1
+
∂ŵ(b̂3)

∂x̂2

)
;

ŵ(d̂j) ; −∂ŵ(d̂j)

∂x̂1
; ŵ(d̂k) ; −∂ŵ(d̂k)

∂x̂2
; ŵ(d̂l) ;

1√
2

(
∂ŵ(d̂l)

∂x̂1
+
∂ŵ(d̂l)

∂x̂2

)
; ŵ(̂em)

| i ∈ {1, 2, 3} , j ∈ {1, . . . 4} , k ∈ {5, . . . , 8} , l ∈ {9, . . . , 12} ,

m ∈ {1, . . . , 10} , α ≤ β , (α, β) ∈ {1, 2}
]
. (4.5.37)

Eliminating the dependent ‘degrees of freedom’ when considering the curved element we have
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the following global degrees of freedom, as shown in figure 4.27:

Σ
[5]
G =

[
w(ai) ; (∇w(ai)) · êα ; (∇∇w(ai)) · êα ⊗ êβ ; w(ej)

| i ∈ {1, 2, 3} , j ∈ {1, . . . , 10} , α ≤ β , (α, β) ∈ {1, 2}
]
,

(4.5.38)

in which êα are the normal 2D Cartesian unit vectors.

x2

x1

x2

x1

Figure 4.27: Diagram schematically showing the global (left) and local degrees of freedom

(right) on the P5 curved triangle. In the right hand image the double-tipped arrows repre-

sent the second, tangent and cross tangent derivative degrees of freedom and black arrows

represent the first, tangent derivative degrees of freedom.

To convert between the reference and global degrees of freedom, we again use a matrix
≈
D which is essentially the same as D̃ but with additional unit diagonal entries, that cor-

respond to the seven additional degrees of freedom. The matrix
≈
B has additional entries

corresponding to the additional dependent degrees of freedom, which are calculated in the

same manner as for B̃. The P5 basis is constructed as follows

ψ[5]︸︷︷︸
28×1

=
≈
D︸︷︷︸

28×28

≈
B︸︷︷︸

28×55

ψ̂
[5]︸︷︷︸

55×1

. (4.5.39)

The matrix
≈
D relates the global degrees of freedom, Σ

[5]
G to the local degrees of freedom Σ

[5]
L ,

defined as

Σ
[5]
L =

[
(ai) ; (∇w(a1)) ·Aα ; (∇w(a2)) ·Bα ; −(∇w(a3)) ·A1 ; −(∇w(a3)) ·B2 ;

(∇∇w(a1)) ·A1 ⊗A1 ; (∇∇w(a1)) ·A2 ⊗A2 ; (∇∇w(a2)) ·B1 ⊗B1 ;

(∇∇w(a2)) ·B2 ⊗B2 ; (∇∇w(a3)) ·A1 ⊗A1 ; (∇∇w(a3)) ·B2 ⊗B2 ;

(∇∇w(a1)) ·B2 ⊗B2 ; (∇∇w(a2)) ·A1 ⊗A1 ; −(∇∇w(a3)) ·A2 ⊗B1 ;

w(ek) | i ∈ {1, 2, 3} k ∈ {1, . . . , 10} , α ∈ {1, 2}
]
. (4.5.40)

We can relate
≈
D to D̃ as follows

≈
D =

(
D̃ 0

0 I7

)
, (4.5.41)
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where I7 is the 7× 7 identity matrix.

Now we have outlined the procedure, we must deduce of the local-to-global, and local-

to-reference matrices to complete the procedure. The calculation of these matrices is long

and involved, but will be useful to to readers implementing the relevant elements. However,

with the interest of conciseness, we direct readers not interested in the explicit construction

to the last subsections of sections 4.5.6 and 4.5.7 which summarize the construction process

for P3 and P5 elements, respectively.

4.5.5 Construction of the Global-to-Local Matrix

We start by constructing the mapping from the local degrees of freedom, Σ
[3]
L , to the global

degrees of freedom Σ
[3]
G : D̃. This step is identical to the construction in Bernadou [1993a],

which we follow closely.

We can straightforwardly relate the global Lagrange (zeroth derivative) degrees of free-

dom element to the local Lagrange degrees of freedom, as they are identical. We then

introduce the set of six tangent vectors tiα defined by

tα1 = Aα , tα2 = Bα and tα3 = Cα (4.5.42)

with C1 = −B2 and C2 = −A1. The first derivative degrees of freedom are related by a

simple rotation of the coordinate directions:

(
∇w(ai) · t1i ∇w(ai) · t2i

)
=
(
∇w(ai) · ê1 ∇w(ai) · ê2

)
d̃i (4.5.43)

where d̃i is a rotation matrix, with components

d̃iαβ = êα · tβi . (4.5.44)

Thus, to relate the full set of first derivative degrees of freedom to local degrees of freedom

we have the submatrices

d̃1 =

A1 · ê1 A2 · ê1

A1 · ê2 A2 · ê2

 , d̃2 =

B1 · ê1 B2 · ê1

B1 · ê2 B2 · ê2

 , d̃3 = −

B2 · ê1 A1 · ê1

B2 · ê2 A1 · ê2

 .

(4.5.45)

To express the local-to-global submatrix that relates the second derivative degrees of

freedom we need a 9× 9 matrix: this is due to the linear nature of the mapping from local-

to-global degrees of freedom, whereby the local second derivative degrees of freedom only
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depend on global second degrees of freedom. We can relate the degrees of freedom by 3

submatrices, corresponding to each of the three nodes. They are given by

d̃a =


(ê1 ·A1)2 (ê1 ·A2)2 (ê1 ·B2)2

2
∏
γ êγ ·A1 2

∏
γ êγ ·A2 2

∏
γ êγ ·B2

(ê2 ·A1)2 (ê2 ·A2)2 (ê2 ·B2)2

 , (4.5.46)

d̃b =


(ê1 ·B1)2 (ê1 ·B2)2 (ê1 ·A1)2

2
∏
γ êγ ·B1 2

∏
γ êγ ·B2 2

∏
γ êγ ·A1

(ê2 ·B1)2 (ê2 ·B2)2 (ê2 ·A1)2

 , (4.5.47)

and

d̃c =


(ê1 ·A1)2 (ê1 ·B2)2 (ê1 ·A2)(ê1 ·B1)

2
∏
γ êγ ·A1 2

∏
γ êγ ·B2 (ê2 ·A2)(ê1 ·B1) + (ê1 ·A2)(ê2 ·B1)

(ê2 ·A1)2 (ê2 ·B2)2 (ê2 ·A2)(ê2 ·B1)

 , (4.5.48)

in which
∏
γ(·)γ ≡

∏2
γ=1(·)γ is the usual product operator. Thus, taking into account the

ordering of degrees of freedom, we can express the full 9× 9 matrix, d̃4 as

d̃4 =



d̃a11 d̃a12 0 0 0 0 d̃a13 0 0

d̃a21 d̃a22 0 0 0 0 d̃a23 0 0

d̃a31 d̃a32 0 0 0 0 d̃a33 0 0

0 0 d̃b11 d̃b12 0 0 0 d̃a13 0

0 0 d̃b21 d̃b22 0 0 0 d̃a23 0

0 0 d̃b31 d̃b32 0 0 0 d̃a33 0

0 0 0 0 d̃a11 d̃a12 0 0 d̃a13

0 0 0 0 d̃a21 d̃a22 0 0 d̃a23

0 0 0 0 d̃a31 d̃a32 0 0 d̃a33



(4.5.49)

We are then able to write the full (21× 21) local-to-global matrix for the P3 elements as

D̃ =



I3

d̃1 0

d̃2

d̃3

0 d̃4

I3


, (4.5.50)
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and, by extension, for the P5 elements we have the 28× 28 matrix:

≈
D =



I3

d̃1 0

d̃2

d̃3

0 d̃4

I10


. (4.5.51)

Now we have constructed the matrices, D̃ and
≈
D, that map global (axis aligned) de-

grees of freedom to local degrees of freedom, we proceed to construct the local-to-reference

matrices.

4.5.6 Construction of the Local-to-Reference Matrix for the P3 Triangle

The construction of the local-to-reference matrices is less straightforward, due to the, in

general, non-affine mapping between the curved triangle, K, and the reference triangle, K̂.

The basic procedure for the vertex degrees of freedom will be familiar to those with a

background in vector calculus, as the constructed local-to-reference matrix will effectively be

constructed from a set of individual coordinate change Jacobians and Hessians. However, for

the dependent ‘edge’ degrees of freedom the calculation becomes slightly more involved: to

achieve this, we construct P5 and P3 one-dimensional, Hermite interpolations of the function

and normal-derivative on each edge and use these to infer the dependent values from the

independent unknowns. This must be done in order to satisfy the constraint that the elements

‘conform’ with Bell elements: i.e. that their trace and normal derivative trace on straight

edges are set entirely by the ‘Bell’ degrees of freedom at each vertex.

We begin by partitioning the 21× 36 matrix, B̃, as follows

B̃ =
(
B̃1 B̃2 B̃3 B̃4 B̃5 B̃6 B̃7

)
(4.5.52)

in which the submatrices B̃i with i ∈ {1, . . . , 7} have 21 rows of 3, 6, 9, 3, 6, 6 and 3 columns

respectively.

The submatrices B̃i with i ∈ {1, 2, 3} relate the (local) Bell degrees of freedom to their

counterparts on the reference element and, as such, they are identical to those found by

Bernadou and Boisserie [1993]. Similarly, the submatrix B̃5 which relates the Lagrange

degrees of freedom on each reference edge to the (local) Bell degrees of freedom, via a P5, 1D

polynomial, remains unchanged, as the representation of the trace is the same as for Argyris
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elements. The submatrix B7, which (trivially) relates the ‘bubble’ degrees of freedom from

local to reference likewise, remains unchanged. However, the submatrices B4 and B6, which

relate the normal degrees of freedom on the reference element to their counterparts on the

reference element, need to be adapted for use with the Bell element.

Construction of B̃1

To construct B̃1 is trivial: the Lagrange degrees of freedom are identical on the reference and

curved elements, so the mapping leaves them unchanged. This means that the submatrix

B̃1 is given by

B̃1 =
(
I3 03×18

)T
. (4.5.53)

Construction of B̃2

We now need to relate the first derivative degrees of freedom at vertices on the reference

element to the first derivative degrees of freedom on the reference element, by the submatrix

B̃2. We first consider the tangents on the curved element: by the mapping FK these

transform exactly to the tangents on the reference element. Thus, the tangent degrees of

freedom are given in terms of reference degrees of freedom by [Bernadou and Boisserie, 1993]

∇w(a1) ·A1 = −∇̂ŵ(â1) · â1 , (4.5.54)

∇w(a1) ·A2 = −∇̂ŵ(â1) · â1 + ∇̂ŵ(â1) · â2 , (4.5.55)

∇w(a2) ·B1 = −∇̂ŵ(â2) · â2 + ∇̂ŵ(â2) · â1 , (4.5.56)

∇w(a2) ·B2 = −∇̂ŵ(â2) · â2 , (4.5.57)

−∇w(a3) ·B2 = ∇̂ŵ(â1) · â2 , (4.5.58)

−∇w(a3) ·A1 = ∇̂ŵ(â1) · â1 , (4.5.59)

which can be succinctly expressed in the submatrix, b̃2,

b̃2 =



−1 −1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −1 −1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, (4.5.60)
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such that[
∇w(a1) ·Aα ; ∇w(a2) ·Bα ;∇w(a3) ·Cα , α ∈ {1, 2}

]
=[

∂ŵ(âi)

∂x̂α
, i ∈ {1, 2, 3} , α ∈ {1, 2}

]
b̃2

(4.5.61)

Thus, the submatrix B̃2 can be expressed as

B̃2 =
(
06×3 (b̃2)T6×6 06×12

)T
. (4.5.62)

Construction of B̃3

The next submatrix to construct is the matrix B̃3 that relates the 9 second derivative degrees

of freedom on the reference element, to the degrees of freedom on the reference element.

Again this follows exactly as in Bernadou and Boisserie [1993].

To construct the submatrix, we first express the derivatives on the reference element in

terms of the local degrees of freedom. In general the tangent vectors depend on the position,

as follows

∂2ŵ

∂x̂α∂x̂β
=

∂

∂x̂α

(
∂w

∂xγ

∂FKγ
∂x̂β

)
=

∂2w

∂xγ∂xδ

∂FKγ
∂x̂β

∂FKδ
∂x̂α

+
∂w

∂xγ

∂2FKγ
∂x̂α∂x̂β

, (4.5.63)

where F k = x.

After some algebra (see appendix D for details), we obtain

∂2ŵ

∂x̂1∂x̂1
(â1) =∇∇w(a1) · (A1 ⊗A1) , (4.5.64)

∂2ŵ

∂x̂1∂x̂2
(â1) =∇∇w(a1) · (A1 ⊗ (A1 −A2)) +∇w(a1) ·

(
2(B2 −A1) +

1

2
(3A2 −B1)

)
,

(4.5.65)

∂2ŵ

∂x̂2∂x̂2
(â1) =∇∇w(a1) · ((A1−A2)⊗ (A1−A2)) +∇w(a1)·(2(A1−B2)− (A2−B1)) ,

(4.5.66)

∂2ŵ

∂x̂1∂x̂1
(â2) =∇∇w(a2)·((B2−B1)⊗ (B2−B1)) +∇w(a2) · (2(B2−A1) + (A2−B1)) ,

(4.5.67)

∂2ŵ

∂x̂1∂x̂2
(â2) =∇∇w(a2) · ((B2 −B1)⊗B2) +∇w(a2) ·

(
2(A1 −B2) +

1

2
(3B1 −A2)

)
,

(4.5.68)

∂2ŵ

∂x̂2∂x̂2
(â2) =∇∇w(a2) · (B2 ⊗B2) , (4.5.69)
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∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · (A1 ⊗A1) , (4.5.70)

∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · (A1 ⊗B2) +∇w(a3) · 1

2
(B1 +A2) , (4.5.71)

∂2ŵ

∂x̂2∂x̂2
(â3) =∇∇w(a3) · (B2 ⊗B2) . (4.5.72)

Now, recalling that C1 = −B2 and C2 = −A1, we define the constants, ãα, b̃α,
≈
aα,

≈
bα,

c̃α and
≈
cα such that

B2 −A1 = ãαAα , B1 = −≈aαAα , (4.5.73)

A1 −B2 = b̃αBα , A2 =
≈
bαBα , (4.5.74)

A2 = c̃αCα , B1 =
≈
cαCα , (4.5.75)

and use these constants to re-express equations (4.5.64–4.5.72) in terms of the local degrees of

freedom. After some manipulation, which we detail in appendix D, we obtain the submatrices

b̃3a and b̃3b which together relate the reference second derivative degrees of freedom to the

local second and first derivative degree of freedom. The matrices are given by

b̃3a=



0 (2ã1 + 1
2
≈
a1) −(2ã1 +

≈
a1) 0 0 0 0 0 0

0 (3
2 +2ã2+ 1

2
≈
a2) −(1 + 2ã2 +

≈
a2) 0 0 0 0 0 0

0 0 0 −(1 + 2b̃1 −
≈
b1) (3

2 + 2b̃1 − 1
2

≈
b1) 0 0 0 0

0 0 0 −(2b̃2 −
≈
b2) (2b̃2 − 1

2

≈
b2) 0 0 0 0

0 0 0 0 0 0 0 1
2(c̃1 +

≈
c1) 0

0 0 0 0 0 0 0 1
2(c̃2 +

≈
c2) 0


(4.5.76)

and

b̃3b=



1
(

1 + 1+ã1

2ã2

) (
1 + 1+ã1

ã2

)
0 0 0 0 0 0

0 ã2

2(1+ã1)

(
1 + ã2

1+ã1

)
0 0 0 0 0 0

0 0 0
(

1 + b̃1

1+b̃2

)
b̃1

2(1+b̃2)
0 0 0 0

0 0 0
(

1 + 1+b̃2

b̃1

) (
1 + 1+b̃2

2b̃1

)
1 0 0 0

0 0 0 0 0 0 0 −c̃1≈c1
c̃1
≈
c2+c̃2

≈
c1

1

0 0 0 0 0 0 1 −c̃2≈c2
c̃1
≈
c2+c̃2

≈
c1

0

0 −1
2ã2(1+ã1)

−1
ã2(1+ã1)

0 0 0 0 0 0

0 0 0 −1
b̃1(1+b̃2)

−1
2b̃1(1+b̃2)

0 0 0 0

0 0 0 0 0 0 0 −1

c̃2
≈
c2+c̃2

≈
c1

0



.

(4.5.77)
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It remains to be discussed how to construct the constants, ãα, b̃α,
≈
aα,

≈
bα, c̃α and

≈
cα. By

taking cross products of the defining relations it can be shown that the constants are given

by the following expressions

ã1 =
(B2 ×A2) · k
(A1 ×A2) · k

− 1 , ã2 =
(B2 ×A1) · k
(A2 ×A1) · k

, (4.5.78)

≈
a1 = −(B1 ×A2) · k

(A1 ×A2) · k
,

≈
a2 = −(A1 ×B1) · k

(A1 ×A2) · k
, (4.5.79)

b̃1 =
(A1 ×B2) · k
(B1 ×B2) · k

, b̃2 =
(B1 ×A1) · k
(B1 ×B2) · k

− 1 , (4.5.80)

≈
b1 =

(A2 ×B2) · k
(B1 ×B2) · k

,
≈
b2 =

(B1 ×A2) · k
(B1 ×B2) · k

, (4.5.81)

and

c̃1 = − (A1 ×A2) · k
(A1 ×B2) · k

= − 1

ã2
, c̃2 = −(A2 ×B2) · k

(A1 ×B2) · k
= −

≈
b1

b̃1
, (4.5.82)

≈
c1 = −(A1 ×B1) · k

(A1 ×B2) · k
=

≈
a2

ã2
,

≈
c2 = −(B1 ×B2) · k

(A1 ×B2) · k
= − 1

b̃1
. (4.5.83)

Putting this all together, we can finally express the matrix B̃3 as

B̃3 =
(
09×3 (b̃3a)

T
9×6 (b̃3a)

T
9×9 09×3

)T
. (4.5.84)

Construction of f̂i and ĝi

The next submatrices to construct are the matrices that relate the edge degrees of freedom

on the reference element, which for the curved Bell element are all dependent, to the local

(nodal) degrees of freedom. We reiterate that the matrices B̃4 and B̃6 differ from their

Argyris counterparts and, as such, the explicit construction of these is a new contribution

to the literature.

We proceed by constructing 1D polynomials, f̂i , i ∈ {1, 2, 3} and ĝi ∈ {1, 2, 3} that cor-

respond to the interpolant of ŵ(x̂) on the edges and the interpolant of the normal derivative

of ŵ(x̂) on the edges of the reference element, where we label the trace of the edges [a1, a3],

[a2, a1] and [a3, a2] as f̂1, f̂2 and f̂3, respectively.

To do this, we introduce two 1D bases, Fi(si) and Gi(si), with s1 = x̂1 and s2 = s3 = x̂2

which, when superposed in conjunction with the degrees of freedom, give the interpolants f̂i

and ĝi. Expressed mathematically we have

f̂i = Σ
[3]
L Fi and ĝi = Σ

[3]
L Gi . (4.5.85)
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Once we have obtained Fi and Gi, we simply have to evaluate these vector-valued functions at

the appropriate points along the edge to relate the dependent reference, ‘degrees of freedom’

to the local degrees of freedom on which they depend.

Since the transformation FK is affine along the edges 1 and 2,6 the tangent degrees-of-

freedom on the curved triangle map directly to the tangent vectors on the curved element,

for example ∇w(a1) ·A1 = −∂ŵ/∂x̂1(â1). Thus, we can immediately write an expression

for the trace f̂α on both the local and reference element:

f̂α(x̂α) = Σ
[3]
L Fα =

[
w(a3) ; ∇w(a3) ·Cα ; ∇2w(a3) · (C(α) ⊗C(α)) ; w(aα) ;

−∇w(a(α)) ·C(α) ; ∇2w(a(α)) · (C(α) ⊗C(α)) ;

]
· ψQH(x̂α) , (4.5.86)

where x̂α ∈ [0, 1] and ψQH are the set of six 1D basis polynomials corresponding to the degrees

of freedom f̂α(0), f̂ ′α(0), f̂ ′′α(0), f̂α(1), −f̂ ′α(1) and f̂ ′′α(1), as detailed in the appendix. Here,

we have introduced bracketed indices to indicate that there is no summation.

Thus we can deduce, using the basis polynomials in the appendix, that Fα are given by

F1 =

[
x̂3

1(10− 15x̂1 + 6x̂2
1) ; 0 ; (1− x̂1)3(1 + 3x̂1 + 6x̂2

1) ; x̂3
1(4− 7x̂1 + 3x̂2

1) ; 0 0 0 0 ;

(1− x̂1)3x̂1(1 + 3x̂1) ;
1

2
(1− x̂1)2x̂3

1 ; 0 0 0 0 ;
1

2
x̂2

1(1− x̂1)3 ; 0 0 0 0 0 0

]T
, (4.5.87)

F2 =

[
0 ; x̂3

2(10− 15x̂2 + 6x̂2
2) ; (1− x̂2)3(1 + 3x̂2 + 6x̂2

2) ; 0 0 0 ; x̂3
2(4− 7x̂2 + 3x̂2

2) ;

(1− x̂2)3x̂2(1 + 3x̂2) ; 0 0 0 0 ;
1

2
(1− x̂2)2x̂3

2 ;
1

2
x̂2

2(1− x̂2)3 ; 0 0 0 0 0 0 0

]T
, (4.5.88)

which are the expressions obtained by [Bernadou and Boisserie, 1993].

We now construct the trace of the normal on the straight edges 1 and 2. We introduce

the altitude (normal) vectors n1 and n2 as

n1 = a1 − c1 and n2 = a2 − c2 (4.5.89)

where c3 are the points on side α where the normal vector that passes through vertex aα

intersects, as shown in figure 4.28. We refer to this vector as the altitude vector as its length

is the geometric altitude of the triangle.

We may relate the altitude vectors to the tangent vectors as follows

n1 = (B̃2 − Ã1)− 1

2
(1 + η1)B̃2 and n2 = (Ã1 − B̃2)− 1

2
(1− η2)Ã1 . (4.5.90)

6 By this we mean, the straight edges α on K̂ map to straight edges on K.
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x1

x2

x3

c1

c2

x2

x1

Figure 4.28: The altitudes (blue lines) of a particular triangle. The altitude vectors point

from the points cα to the opposite node xα.

in which ηα are the eccentricity parameters. In the above expression the geometric meaning

of, for example, the term (1 + η1)/2 is the distance of c1 from node a2 relative to the length

of the edge. Thus, if η1 = −1, c1 = a1 and the triangle is degenerate. Alternatively, if

η2 = 1 the triangle will be right-angled at the vertex opposite to the curved edge. These

parameters can be determined by the following relations

η1 = 1− 2

(
Ã1 · B̃2

B̃2 · B̃2

)
and η2 = 2

(
B̃2 · Ã1

Ã1 · Ã1

)
− 1 . (4.5.91)

which can be found by taking the dot product of nα with the tangent vectors Cα.

We wish to express the trace in terms of the normal derivative degrees of freedom on the

reference element. Expressed mathematically we have

ĝα(x̂α) = Σ
[3]
L Gα =

[
∇w(a3) · nβ ; ∇2w(a3) · (nβ ⊗Cβ) ;

∇w(aα) · nβ ; ∇2w(aα) · (nβ ⊗Cβ) , β 6= α

]
· ψCH(x̂α) , (4.5.92)

where x̂α ∈ [0, 1] and we are not summing over repeated indices. ψCH are the set of four 1D

basis polynomials corresponding to the degrees of freedom f̂α(0) f̂ ′α(0), f̂α(1), and −f̂ ′α(1),

which we recall from section 4.1 and can also be found in the appendix. Here, we have

introduced bracketed indices to indicate that there is no summation.

Considering g1 first, we rewrite derivatives in terms of the local degrees of freedom:

ĝ1(x̂1)=

[
− 1

2
(1 + η2)∇w(a3) ·C2 +∇w(a3) ·C1 ;

(
−1

2
(1 + η2)− c̃2≈c2

c̃1≈c2 + c̃2≈c1

)
∇2w(a3)

· (C2 ⊗C2)− c̃1≈c1

c̃1≈c2 + c̃2≈c1
∇2w(a3) · (C1 ⊗C1) +

1

c̃1≈c2 + c̃2≈c1
∇2w(a3) · (A2 ⊗B1) ;

− 1

2
(1 + 2ã1 − η2)∇w(a1) ·A1 − ã2∇w · (a1 ·A2) ;

(ã2)2

2(1 + ã1)
∇2w(a1) · (A2 ⊗A2)

− 1

2
(ã1 − η2)∇2w(a1) · (A1 ⊗A1)− 1

2(1 + ã1)
∇2w(a1) · (B2 ⊗B2) ;

]
· ψQH(x̂1) , (4.5.93)
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where we have used some results from the appendix in order to express the second derivatives

in terms of tangent degrees of freedom. Similarly ĝ2 is given by

ĝ2(x̂2) =

[
− 1

2
(1− η1)∇w(a3) ·C1 +∇w(a3) ·C2 ;

(
−1

2
(1− η1)− c̃1≈c1

c̃1≈c2 + c̃2≈c1

)
∇2w(a3)

· (C1 ⊗C1)− c̃2≈c2

c̃1≈c2 + c̃2≈c1
∇2w(a3) · (C2 ⊗C2) +

1

c̃1≈c2 + c̃2≈c1
∇2w(a3) · (A2 ⊗B1) ;

− 1

2
(1 + 2b̃2 + η1)∇w(a2) ·B2 − b̃1∇w · (a2 ·B1) ;

(b̃1)2

2(1 + b̃2)
∇2w(a2) · (B1 ⊗B1)

− 1

2
(b̃2 + η1)∇2w(a2) · (B2 ⊗B2)− 1

2(1 + b̃2)
∇2w(a2) · (A1 ⊗A1) ;

]
· ψQH(x̂2) .

(4.5.94)

We may finally express the matrices Gα by using the above expressions for ĝα. The

matrices Gα are given by

G1 =

[
0 0 0 ; −1

2
(1 + 2ã1 − η2)(3− 2x̂1)x̂2

1 ; −ã2(3− 2x̂1)x̂2
1 ; 0 0 ; (1− x̂1)2(1 + 2x̂1) ;

− 1

2
(1 + η2)(1− x̂1)2(1 + 2x̂1) ; −1

2
(ã1 − η2)(1− x̂1)x̂2

1 ;
(ã2)2

2(1 + ã1)
(1− x̂1)x̂2

1 ; 0 0 ;

− c̃1≈c1

c̃1≈c2 + c̃2≈c1
(1− x̂2

1)x̂1 ; −
(

1

2
(1 + η2) +

c̃2≈c2

c̃1≈c2 + c̃2≈c1

)
(1− x̂2

1)x̂1 ;

− 1

2(1 + ã1)
(1− x̂1)x̂2

1 ; 0 ; − 1

c̃1≈c2 + c̃2≈c1
(1− x̂2

1)x̂1 ; 0 0 0

]T
, (4.5.95)

and

G2 =

[
0 0 0 0 0; −b̃1(3− 2x̂2)x̂2

2 ; −1

2
(1 + 2b̃2 + η1)(3− 2x̂2)x̂2

2 ;
1

2
(η1 − 1)(1− x̂2)2(1 + 2x̂2) ;

(1− x̂2)2(1 + 2x̂2) ; 0 0 ;
(b̃1)2

2(1 + b̃2)
(1− x̂2)x̂2

2 ; −1

2
(b̃2 + η1)(1− x̂2)x̂2

2 ;

− 1

2

(
(1− η1) +

c̃1≈c1

c̃1≈c2 + c̃2≈c1

)
(1− x̂2

2)x̂2 ; − c̃2≈c2

c̃1≈c2 + c̃2≈c1
(1− x̂2

2)x̂2 ; 0 ;

− 1

2(1 + b̃2)
(1− x̂2)x̂2

2 ; − 1

c̃1≈c2 + c̃2≈c1
(1− x̂2

2)x̂2 ; 0 0 0

]T
, (4.5.96)

which use a lower order interpolation than the expressions obtained by [Bernadou and Bois-

serie, 1993], due to the lack of a normal degree of freedom.

We now construct the traces for the curved edges. For these elements the trace f̂3 is

determined entirely by the following data of the degrees of freedom

{
ŵ(â2) ; ∇̂ŵ(â2) · (â1 − â2) ; ∇̂∇̂ŵ(â2) · (â1 − â2)⊗ (â1 − â2) ;

ŵ(â1) ; ∇̂ŵ(â1) · (â2 − â1) ; ∇̂∇̂ŵ(â1) · (â2 − â1)⊗ (â2 − â1)
}
,

(4.5.97)
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which may be expressed in terms of the reference degrees of freedom as

{
ŵ(â2) ;

∂ŵ(â2)

∂x̂1
− ∂ŵ(â2)

∂x̂2
;
∂2ŵ(â2)

∂x̂2
1

+
∂2ŵ(â2)

∂x̂2
2

− 2
∂2ŵ(â2)

∂x̂1∂x̂2
;

ŵ(â1) ;
∂ŵ(â1)

∂x̂2
− ∂ŵ(â1)

∂x̂1
;
∂2ŵ(â1)

∂x̂2
1

+
∂2ŵ(â1)

∂x̂2
2

− 2
∂2ŵ(â1)

∂x̂1∂x̂2

}
,

(4.5.98)

We can now readily construct the derivatives from the local degrees of freedom by consid-

ering relations (4.5.64-4.5.72) and by extension the matrices expressed in equations (4.5.76-

4.5.77). We now express F3 in the same manner as Fα:

F3 =

[
x̂3

1

(
6x̂2

1 − 15x̂1 + 10
)

; (1− x̂1) 3
(
6x̂2

1 + 3x̂1 + 1
)

; 0 ; − (1− x̂1) 2x̂3
1

(
3ã1 + ˜̃a1

)
;

(1− x̂1) x̂3
1

(
3ã2x̂1 + ˜̃a2x̂1 − x̂1 − 3ã2 − ˜̃a2 + 2

)
; (x̂1 − 1) 3x̂1

(
3b̃1x̂1 − ˜̃

b1x̂1 − x̂1 − 1
)

;

−(1−x̂1) 3x̂2
1

(
3b̃2−˜̃

b2
)

; 0 0 0 ;
1

2
(1−x̂1) 2x̂3

1 ;
1

2
(1−x̂1) 3x̂2

1 ; 0 0 0 0 0 0 0 0 0

]T
. (4.5.99)

In general the normal derivative on the curved edge ∇̂ŵ(1 − x̂2, x̂2) · (−â1 − â2) /2 6=

∇w (Ψh(x̂2)) · n3 where n3 is the unit normal to the curved edge, as the mapping is not

conformal (i.e. it does not preserve angles). As we have no restriction as to what the trace

of the normal need be, we choose a direction which is linearly independent at both nodes on

edge 3. Thus we express7 the normal derivative on the edge

ĝ3(x̂1) = −∇̂ŵ(x̂) · (â1 + â2)/2 for x̂2 = 1− x̂1 , (4.5.100)

in terms of the independent reference degrees of freedom ∂ŵ(âα)/∂x̂β and ∂2ŵ(âα)/∂x̂β∂x̂γ .

The relevant data of the degrees of freedom are

{
∇̂ŵ(â2) · (−â1 − â2)/2 ; ∇̂∇̂ŵ(â2) · (â1 − â2)⊗ (−â1 − â2)/2 ;

∇̂ŵ(â2) · (−â1 − â2)/2 ; ∇̂∇̂ŵ(â1) · (â2 − â1)⊗ (−â1 − â2)/2
}
,

(4.5.101)

which must be computed in terms of the local degrees of freedom.

Once again, we can readily calculate the reference normal derivative degrees of freedom

by considering relations (4.5.64-4.5.72) and by extension the matrices expressed in equations

(4.5.76-4.5.77), to obtain an expression for the matrix G3, which differs from that of the

7We follow Bernadou and Boisserie [1993] in this convention. However, this means for these elements to be
C1-continuous with other curved elements across the curved edge the opposing element must have identical
tangents on sides 1 and 2. This complicates their use for internal boundaries.
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Argyris element. The matrix, G3, is then given by:

G3 =

[
0 0 0 ;

1

2
x̂2

1

(
−4x̂1−(x̂1 − 1)

(
2ã1 + ˜̃a1

)
+6
)

;
1

2
x̂2

1

(
2x̂1 − (x̂1 − 1)

(
2ã2 + ˜̃a2 + 1

)
− 3
)

;

1

2
(x̂1 − 1) 2

(
x̂1

(
2b̃1 − ˜̃

b1 − 1
)
− 1
)

;
1

2
(x̂1 − 1) 2

(
x̂1

(
2b̃2 − ˜̃

b2 + 4
)

+ 2
)

; 0 0 ;

(x̂1 − 1) x̂2
1

(
ã1 + 1

)
2ã2

;
1

2
(x̂1 − 1) x̂2

1

(
ã2

ã1 + 1
+ 1

)
;

1

2
(x̂1 − 1) 2x̂1

(
− b̃1

b̃2 + 1
− 1

)
;

−
(x̂1 − 1) 2x̂1

(
b̃2 + 1

)
2b̃1

; 0 0 ; − (x̂1 − 1) x̂2
1

2 (ã1 + 1) ã2
;

(x̂1 − 1) 2x̂1

2b̃1
(
b̃2 + 1

) ; 0 0 0 0

]
. (4.5.102)

Construction of B̃4, B̃5 and B̃6

Now we have the expressions Fi and Gi on each edge, we may construct the final submatrices.

First we must express the three normal derivative degrees of freedom at points b̂i in terms

of the local degrees of freedom, which is related by submatrix B4. The reference derivatives

are given by

− ∂ŵ
∂x̂1

(b̂1) = −∂FK

∂x̂1
(b̂1) ·

(
B2

|B2|2
f̂ ′2

(
1

2

)
+

n1

|n1|2
ĝ2

(
1

2

))
, (4.5.103)

− ∂ŵ
∂x̂2

(b̂2) = −∂FK

∂x̂2
(b̂2) ·

(
A1

|A1|2
f̂ ′1

(
1

2

)
+

n2

|n2|2
ĝ1

(
1

2

))
, (4.5.104)

and

1√
2

(
∂ŵ

∂x̂1
(b̂3) +

∂ŵ

∂x̂2
(b̂3)

)
= −
√

2ĝ3

(
1

2

)
, (4.5.105)

where we note that ĝ3 is by definition the derivative −∇̂ŵ(x̂) · b̂3 evaluated on the edge, such

that x̂1 = 1−x̂2 and that in general, because the mapping is not conformal, derivatives in the

direction nα on the curved element are not equal to derivatives in the direction ∂FK/∂x̂α

on the reference element.

Using the above relations, we define the following constants

E1 = −∂FK

∂x̂1
(b̂1) ·

(
B2

|B2|2

)
, E2 = −∂FK

∂x̂1
(b̂1) ·

(
n1

|n1|2

)
, (4.5.106)

F 1 = −∂FK

∂x̂2
(b̂2) ·

(
A1

|A1|2

)
, F 2 = −∂FK

∂x̂2
(b̂2) ·

(
n2

|n2|2

)
, (4.5.107)

in order to finally construct submatrix B̃4, as follows

B̃4 =

[
E1F2

(
1

2

)
+ E2G2

(
1

2

)
; F 1F1

(
1

2

)
+ F 2G1

(
1

2

)
;
√

2G3

(
1

2

) ]
. (4.5.108)

Next we must express the submatrix B5 which, using the results of the previous section,
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is straightforward. The six dependent Lagrange degrees of freedom can be expressed as

ŵ(d̂1) = f̂2

(
3

4

)
, ŵ(d̂2) = f̂2

(
1

4

)
, (4.5.109)

ŵ(d̂3) = f̂1

(
1

4

)
, ŵ(d̂4) = f̂1

(
3

4

)
, (4.5.110)

ŵ(d̂5) = f̂3

(
3

4

)
, ŵ(d̂6) = f̂3

(
1

4

)
, (4.5.111)

leading directly to the definition of submatrix B̃5

B̃5 =

[
F2

(
3

4

)
; F2

(
1

4

)
; F1

(
1

4

)
; F1

(
3

4

)
; F3

(
3

4

)
; F3

(
1

4

) ]
(4.5.112)

Finally, in the same manner as for submatrix B̃4 we relate the remaining dependent

normal degrees of freedom on the reference element to the local degrees of freedom. We first

introduce the following constants

G1 = −∂FK

∂x̂1
(d̂1) ·

(
B2

|B2|2

)
, G2 = −∂FK

∂x̂1
(d̂1) ·

(
n1

|n1|2

)
, (4.5.113)

H1 = −∂FK

∂x̂1
(d̂2) ·

(
B2

|B2|2

)
, H2 = −∂FK

∂x̂1
(d̂2) ·

(
n1

|n1|2

)
, (4.5.114)

J1 = −∂FK

∂x̂2
(d̂3) ·

(
A1

|A1|2

)
, J2 = −∂FK

∂x̂2
(d̂3) ·

(
n2

|n2|2

)
, (4.5.115)

K1 = −∂FK

∂x̂2
(d̂4) ·

(
A1

|A1|2

)
, K2 = −∂FK

∂x̂2
(d̂4) ·

(
n2

|n2|2

)
, (4.5.116)

which we then use to define the submatrix b̃6, as follows

B̃6 =

[
G1F2

(
3

4

)
+G2G2

(
3

4

)
; H1F2

(
1

4

)
+H2G2

(
1

4

)
; J1F1

(
1

4

)
+ J2G1

(
1

4

)
;

K1F1

(
3

4

)
+K2G1

(
3

4

)
;
√

2G3

(
1

4

)
;
√

2G3

(
3

4

) ]
. (4.5.117)

Construction of B̃7

As the bubble degrees of freedom, w(ei), i ∈ {1, 2, 3}, are Lagrange-type degrees of freedom,

they remain unchanged on the reference element. Therefore the final, local-to-reference

submatrix, B̃, can be immediately deduced to be

B̃7 =
(
03×18 I3

)T
. (4.5.118)



160 Chapter 4. Numerical Methods

Figure 4.29: P3 Curved Bell nodal basis functions shown for a particular curved triangle.

The different nodal basis functions are shown by column and the different degree of freedom

types are shown by row, in various colours. By row the degrees of freedom are ordered as

follows: w(ai), ∂w(ai)/∂x1, ∂w(ai)/∂x2, ∂2w(ai)/∂x
2
1, ∂2w(ai)/∂x1∂x2 and ∂2w(ai)/∂x

2
2.
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Figure 4.30: P3 Curved Bell bubble basis functions shown for a particular curved triangle.

Construction of the Reference Basis functions

Now that we have deduced the matrices that transform the reference degrees of freedom

to global degrees of freedom, we must construct a set of basis functions on the reference

element. This set of 36 basis functions are the set of degree 7, two dimensional polynomials

that satisfy the delta property. They can be readily deduced in the manner outlined in

appendix D.3: such that we have a 36 × 36 association matrix, Ã, and the set of 36, 2D

monomials of degree less than or equal to seven, m̃7, which are detailed in the appendix.

Thus the basis ψ̂
[3]

is given by

ψ̂
[3]︸︷︷︸

36×1

= Ã︸︷︷︸
36×36

m̃7︸︷︷︸
36×1

(4.5.119)

The association matrix, in turn, can be deduced in the manner outlined in the appendix,

and has been computed and expressed therein for the reader’s convenience.

Constructing the Global Basis Functions

Finally, we may compute the full basis functions for the P3 curved triangle element by the

following equation

ψ[3]︸︷︷︸
21×1

= D̃︸︷︷︸
21×21

B̃︸︷︷︸
21×36

Ã︸︷︷︸
36×36

m̃7︸︷︷︸
36×1

(4.5.120)

where the matrices D̃ and B̃ were defined in the preceding sections and Ã may be found in

the appendix. We display the basis functions for the P3 triangle in figures 4.29 and 4.30.

4.5.7 Construction of the Local-to-Reference Matrix for the P5 Triangle

Having outlined the method for the P3-triangle, we now, by the same method, construct the

matrix for the P5-triangle. Once again, we direct the reader not interested in the detailed

calculation of the matrices to the summary of these elements in at the end of section 4.5.7.
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The methods in the construction remain largely the same, but the details differ due to the

form of the mapping, FK .

We begin by partitioning the 21× 55 matrix,
≈
B, as follows

≈
B =

(
≈
B1

≈
B2

≈
B3

≈
B4

≈
B5

≈
B6

≈
B7

≈
B8

≈
B9

)
(4.5.121)

in which the submatrices B̃i with i ∈ {1, . . . , 9} have 28 rows of 3, 6, 9, 3, 12, 4, 4, 4 and

10 columns respectively. This corresponds the following partition of the reference degrees of

freedom:

Σ̂
[5]

=

[{
ŵ(âi), i ∈ {1, 2, 3}

}
;
{∂ŵ(âi)

∂x̂α
, i ∈ {1, 2, 3}

}
;
{∂2ŵ(âi)

∂x̂α∂x̂β
, α ≥ β , i ∈ {1, 2, 3}

}
;

{
∇̂ŵ(b̂i) · n̂i , i ∈ {1, 2, 3}

}
;
{
ŵ(d̂i) , i ∈ {1 . . . 12}

}
;
{
∇̂ŵ(d̂i) · n̂1 , i ∈ {1 . . . 4}

}
;

{
∇̂ŵ(d̂i) · n̂2 , i ∈ {5 . . . 8}

}
;
{
∇̂ŵ(d̂i) · n̂3 , i ∈ {9 . . . 12}

}
;
{
ŵ(̂ei) , i ∈ {1, . . . , 10}

}]
,

(4.5.122)

in which as usual we use α, β ∈ {1, 2} and we recall that n̂α = −âα and n̂3 = b̂3/
√

2.

Construction of the Submatrices B̃1, B̃2 and B̃3

The matrix
≈
B1 can be immediately deduced to be

≈
B1 =

(
I3 03×25

)T
, (4.5.123)

as the Lagrange degrees of freedom on the reference element are identical to those on the

curved element.

Similarly, as the P3 and P5 triangle tangent vectors coincide at vertices, the matrix b̃2,

which relates the first tangent derivatives to reference first derivatives at vertices on the P3

triangle, also relates the first tangent derivatives to the reference first derivatives. Therefore

we can express
≈
B2 as

≈
B2 =

(
06×3 (b̃2)T6×6 06×19

)T
. (4.5.124)

We now construct the submatrix
≈
B3. Following the same procedure as before, we first

construct two matrices
≈
b3a and

≈
b3b. After some algebra, involving second derivatives of the
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mapping, we may express the degrees of freedom as

∂2ŵ

∂x̂1∂x̂1
(â1) =∇∇w(a1) · (A1 ⊗A1) , (4.5.125)

∂2ŵ

∂x̂1∂x̂2
(â1) =∇∇w(a1)·(A1⊗(A1−A2))+

1

2
∇w(a1)·(B2 −A1 +A2 −

1

2
D1) , (4.5.126)

∂2ŵ

∂x̂2∂x̂2
(â1) =∇∇w(a1) · ((A1 −A2)⊗ (A1 −A2)) +∇w(a1) · (B2 −A1 +A2 +

1

2
D1) ,

(4.5.127)

∂2ŵ

∂x̂1∂x̂1
(â2) =∇∇w(a2)·((B2 −B1)⊗ (B2 −B1)) +∇w(a2) · (A1 −B2 +B1 +

1

2
D2) ,

(4.5.128)

∂2ŵ

∂x̂1∂x̂2
(â2) =∇∇w(a2)·((B2−B1)⊗B2)+

1

2
∇w(a2)·(A1 −B2 +B1 −

1

2
D2), (4.5.129)

∂2ŵ

∂x̂2∂x̂2
(â2) =∇∇w(a2) · (B2 ⊗B2) , (4.5.130)

∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · (A1 ⊗A1) , (4.5.131)

∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · 1

2
(A1 ⊗B2) +∇w(a3) · 1

2
(B1 +A2) , (4.5.132)

∂2ŵ

∂x̂2∂x̂2
(â3) =∇∇w(a3) · (B2 ⊗B2) , (4.5.133)

in which we introduced the new vectors

D1 = (s̄− s)2χ′′(s) , D2 = (s̄− s)2χ′′(s̄) , (4.5.134)

which enter via second derivatives of the mapping, equation (4.5.15).

After some manipulation we obtain the submatrices
≈
b3a and

≈
b3b which together relate

the reference second derivative degrees of freedom to the local second and first derivative

degree of freedom. Once again we note that, as the tangents on the P3 and P5 elements

coincide, only the terms involving second derivatives of the mapping on the vertices change.

As a consequence of this,
≈
b3b = b̃3b. The matrix

≈
b3a is then be given by

≈
b3a=



0 1
4(2ã1 − a

∼
1) (ã1 + 1

2a∼
1) 0 0 0 0 0 0

0 1
4(2 + 2ã2 − a

∼
2) (1 + ã2 + 1

2a∼
2) 0 0 0 0 0 0

0 0 0 (1 + b̃1 + 1
2 b∼

1) 1
4(2 + 2b̃1 − b

∼
1) 0 0 0 0

0 0 0 −(b̃2 + 1
2 b∼

2) 1
4(2b̃2 − b

∼
2) 0 0 0 0

0 0 0 0 0 0 0 1
2(c̃1 +

≈
c1) 0

0 0 0 0 0 0 0 1
2(c̃2 +

≈
c2) 0


(4.5.135)
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in which we have introduced the constants, a
∼
α, b
∼
α such that

D1 = (s̄− s)2χ′′(s) = a
∼
αAα , D2 = (s̄− s)2χ′′(s̄) = b

∼
αBα . (4.5.136)

Construction of f̂∗i and ĝ∗i

Due to the affine nature of the mapping on sides 1 and 2, f̂∗α and ĝ∗α α ∈ {1, 2} are identical

to f̂α and ĝα respectively. The traces f̂∗3 and ĝ∗3, and therefore the corresponding matrices

F∗3 and G∗3, however, differ.

We first construct the derivatives from the local degrees of freedom by considering rela-

tions (4.5.125-4.5.133) and by extension the matrix expressed in equation (4.5.135). We now

express F∗3 in the same manner as F3, using the corresponding relations for the P5 element:

F∗3 =

[
x̂3

1

(
6x̂2

1 − 15x̂1 + 10
)

; − (x̂1 − 1) 3
(
6x̂2

1 + 3x̂1 + 1
)

; 0 ;
1

2
a
∼

1 (x̂1 − 1) 2x̂3
1 ;

1

2
(x̂1 − 1) x̂3

1

(
x̂1a∼

2 − a
∼

2 + 6x̂1 − 8
)

; −1

2
(x̂1 − 1) 3x̂1

(
b
∼

1x̂1 + 6x̂1 + 2
)

;

− 1

2
b
∼

2 (x̂1 − 1) 3x̂2
1 ; 0 0 0 ;

1

2
(x̂1 − 1) 2x̂3

1 ; −1

2
(x̂1 − 1) 3x̂2

1 ; 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

]T
. (4.5.137)

Similarly by considering the normal derivative trace ĝ∗3 we may express the matrix G∗3 as

G∗3 =

[
0 0 0 ;

1

2

(
6− 4x̂1 + (

1

2
a
∼

1 + ã1)(x̂1 − 1)

)
x̂2

1 ;
1

4

(
(a
∼

2 + 2ã2)(x̂1 − 1) + (6x̂1 − 8)
)
x̂2

1 ;

− 1

4

(
(b
∼

1 + 2b̃1)x̂1 + (6x̂1 + 2)
)

(1− x̂1) 2 ;
1

4

(
(8x̂1 + 4)− (b

∼
2 + 2b̃2)x̂1

)
(1− x̂1) 2 ;

0 0
ã1 + 1

2ã2
(x̂1 − 1) x̂2

1 ;
1

2

(
ã2

ã1 + 1
+ 1

)
(x̂1 − 1) x̂2

1 ; −1

2

(
b̃1

b̃2 + 1
+ 1

)
(x̂1 − 1) 2x̂1 ;

−

(
b̃2 + 1

2b̃1

)
(x̂1 − 1) 2x̂1 ; 0 0 − (x̂1 − 1) x̂2

1

2ã2 (ã1 + 1)
;

(x̂1 − 1) 2x̂1

2b̃1
(
b̃2 + 1

) ; 0 0 0 0 0 0 0 0 0 0 0

]T
.

(4.5.138)

Construction of the submatrices B̃4 through B̃8

We now proceed to construct the submatrices that refer to the dependent, reference degrees

of freedom. This is carried out in the same manner is for the P3-element, but this time using

the higher order mapping.

We first relate the eliminated Argyris degrees of freedom to the local degrees of freedom,

by the matrix
≈
B4. We have

≈
B4 =

[
≈
E1F2

(
1

2

)
+
≈
E2G2

(
1

2

)
;
≈
F 1F1

(
1

2

)
+
≈
F 2G1

(
1

2

)
;
√

2G∗3

(
1

2

) ]
, (4.5.139)
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where we have introduced the constants

≈
E1 = −∂F

∗
K

∂x̂1
(b̂1) ·

(
B2

|B2|2

)
,

≈
E2 = −∂F

∗
K

∂x̂1
(b̂1) ·

(
n1

|n1|2

)
, (4.5.140)

≈
F 1 = −∂F

∗
K

∂x̂2
(b̂2) ·

(
A1

|A1|2

)
,

≈
F 2 = −∂F

∗
K

∂x̂2
(b̂2) ·

(
n2

|n2|2

)
. (4.5.141)

We now relate the dependent Lagrange degrees of freedom to the local degrees of freedom,

freedom, by the matrix
≈
B5. The submatrix

≈
b5 is given by

≈
B5 =

[
F2

(
5

6

)
; F2

(
2

3

)
; F2

(
1

3

)
; F2

(
1

6

)
; F1

(
1

6

)
; F1

(
1

3

)
; F1

(
2

3

)
; F1

(
5

6

)
;

F∗3

(
5

6

)
; F∗3

(
2

3

)
; F∗3

(
1

3

)
; F∗3

(
1

6

)]
. (4.5.142)

We now define submatrices
≈
B6,

≈
B7 and

≈
B8, which correspond to the additional depen-

dent normal degrees of freedom on sides 1, 2 and 3 respectively. We first express the matrix
≈
B6:

≈
B6 =

[ ≈
G1F2

(
5

6

)
+
≈
G2G2

(
5

6

)
;
≈
H1F2

(
2

3

)
+
≈
H2G2

(
2

3

)
;
≈
J1F2

(
1

3

)
+
≈
J2G2

(
1

3

)
;

≈
K1F2

(
1

6

)
+
≈
K2G2

(
1

6

) ]
, (4.5.143)

where we have introduced the constants

≈
G1 = −∂F

∗
K

∂x̂1
(d̂1) ·

(
B2

|B2|2

)
,

≈
G2 = −∂F

∗
K

∂x̂1
(d̂1) ·

(
n1

|n1|2

)
, (4.5.144)

≈
H1 = −∂F

∗
K

∂x̂1
(d̂2) ·

(
B2

|B2|2

)
,

≈
H2 = −∂F

∗
K

∂x̂1
(d̂2) ·

(
n1

|n1|2

)
, (4.5.145)

≈
J1 = −∂F

∗
K

∂x̂1
(d̂3) ·

(
B2

|B2|2

)
,

≈
J2 = −∂F

∗
K

∂x̂1
(d̂3) ·

(
n1

|n1|2

)
, (4.5.146)

≈
K1 = −∂F

∗
K

∂x̂1
(d̂4) ·

(
B2

|B2|2

)
,

≈
K2 = −∂F

∗
K

∂x̂1
(d̂4) ·

(
n1

|n1|2

)
. (4.5.147)

The matrix
≈
B7 is given by

≈
B7 =

[≈
L1F1

(
1

6

)
+
≈
L2G1

(
1

6

)
;
≈
M1F1

(
1

3

)
+

≈
M2G1

(
1

3

)
;
≈
N1F1

(
2

3

)
+
≈
N2G1

(
2

3

)
;

≈
P 1F1

(
5

6

)
+
≈
P 2G1

(
5

6

)]
, (4.5.148)

in which we have introduced the constants

≈
L1 = −∂F

∗
K

∂x̂2
(d̂5) ·

(
A2

|A2|2

)
,

≈
L2 = −∂F

∗
K

∂x̂2
(d̂5) ·

(
n2

|n2|2

)
, (4.5.149)

≈
M1 = −∂F

∗
K

∂x̂2
(d̂6) ·

(
A2

|A2|2

)
,

≈
M2 = −∂F

∗
K

∂x̂2
(d̂6) ·

(
n2

|n2|2

)
, (4.5.150)

≈
N1 = −∂F

∗
K

∂x̂2
(d̂7) ·

(
A2

|A2|2

)
,

≈
N2 = −∂F

∗
K

∂x̂2
(d̂7) ·

(
n2

|n2|2

)
, (4.5.151)

≈
P 1 = −∂F

∗
K

∂x̂2
(d̂8) ·

(
A2

|A2|2

)
,

≈
P 2 = −∂F

∗
K

∂x̂2
(d̂8) ·

(
n2

|n2|2

)
. (4.5.152)
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We finally express the matrix
≈
B8, that relates the local degrees of freedom to the addi-

tional reference normal degrees of freedom on side 3:

≈
B7 =

[
−
√

2G∗3

(
5

6

)
; −
√

2G∗3

(
2

3

)
; −
√

2G∗3

(
1

3

)
; −
√

2G∗3

(
1

6

)]
. (4.5.153)

Construction of the Submatrix B̃9

The interior, Lagrange (or bubble) degrees of freedom are identical on the reference element

as on the curved element. Therefore the final submatrix
≈
B9 is given by

≈
B9 =

(
010×18 I10

)T
. (4.5.154)

Finally, we may construct the full local-to-reference matrix using the above definitions.

The only remaining task is to define the 55, reference basis functions. This set of 55 basis

functions is the set of degree 9, bivariate polynomials that satisfy the delta property for

the defined degrees of freedom. They can be readily deduced in the manner outlined in the

appendix such that we have a 55×55 association matrix, Ã, and the set of 55, 2D monomials

of degree less than or equal to nine, m̃9. Thus the basis ψ̂
[5]

is given by

ψ̂
[5]︸︷︷︸

55×1

=
≈
A︸︷︷︸

55×55

m̃9︸︷︷︸
55×1

(4.5.155)

The association matrix, in turn, can be deduced in the manner outlined in appendix D.3.

Constructing the Global Basis Functions for the P5 Triangle

Finally, we may compute the full basis functions for the P5 curved triangle element by the

following equation

ψ[3]︸︷︷︸
28×1

=
≈
D︸︷︷︸

28×28

≈
B︸︷︷︸

28×55

≈
A︸︷︷︸

55×55

≈
m9︸︷︷︸

55×1

(4.5.156)

where the matrices
≈
D and

≈
B were defined in the preceding sections and

≈
A may be derived

by the method outlined in appendix D.3. We plot the basis functions in figure 4.31-4.32.
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Figure 4.31: Curved Bell P5 nodal basis functions shown for a particular curved triangle.

The different nodal basis functions are shown by column and the different degree of freedom

types are shown by row, in various colours. By row the degrees of freedom are ordered as

follows: w(ai), ∂w(ai)/∂x1, ∂w(ai)/∂x2, ∂2w(ai)/∂x
2
1, ∂2w(ai)/∂x1∂x2 and ∂2w(ai)/∂x

2
2.
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Figure 4.32: Curved Bell P5 bubble basis functions shown for a particular curved triangle.

The basis functions are associated with the unknowns at points êi with i ∈ {1, . . . , 10}, which

are shown ascending from left-to-right, top-to-bottom.

4.5.8 Cartesian Derivatives of Basis Functions

We now discuss the relationship between the local and global (Cartesian) derivatives of the

basis vectors, which are computed by taking derivatives of the mapping defined in equation

(4.5.4).

Firstly, we define the Jacobian of the mapping, J , as

J =
∂x

∂x̂
, (4.5.157)

and the Hessian of the mapping, H, as:

H =
∂2x

∂x̂∂x̂
, (4.5.158)

which are accessible by taking derivatives of the mapping defined in equation 4.5.4.

To express first derivatives we use the chain rule as follows

∂ψ
[m]
l

∂xα
=
∂ψ

[m]
l

∂x̂β

∂x̂β
∂xα

=
∂ψ

[m]
l

∂x̂β

(
J−1

)
βα

. (4.5.159)
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Second derivatives can then be computed as follows

∂2ψ
[m]
l

∂xα∂xβ
=

∂ψ
[m]
l

∂x̂γ∂x̂δ

(
J−1

)
δα

(
J−1

)
γβ

+
∂ψ

[m]
l

∂x̂γ

∂2x̂γ
∂xα∂xβ

. (4.5.160)

Since an explicit expression for the final term is not readily available, we make some manip-

ulations, detailed in appendix D.5, to express this as

∂2ψ
[m]
l

∂xα∂xβ
=

∂ψ
[m]
l

∂x̂γ∂x̂δ

(
J−1

)
δα

(
J−1

)
γβ
−
∂ψ

[m]
l

∂x̂γ
(J−1)αδ (H)δµν (J−1)µβ (J−1)νγ . (4.5.161)

This allows for the calculation of the second Cartesian derivatives, whilst only using the

known expressions for the Hessian and the inverse Jacobian. The expressions for the basis

functions are now complete. The implementation is described in the next section.

4.5.9 New Subparametric Elements

Subparametric Triangle Element

Curveable Bell Element

Bell Element Basis

Bernadou Element Basis

has

is

and
Boundary Order

Subparametric Triangle Element

� Has three vertex nodes

� Defines interface to unknown basis.

Curveable Bell Element
� Implements upgrade procedure.

� Overrides basis and shape.

Bell Element Basis

� Provides Bell basis

Bernadou Element Basis

� Provides Bernadou basis

Figure 4.33: The revised structure of the Bell and curved Bell elements within oomph-lib.

Template parameters are indicated by dashed boxes.

We incorporate the new basis functions into the hierarchy containing the Bell elements,

for which the revised structure is shown in figure 4.33. The new curved basis provides a

representation of the geometry and basis functions for the elements. The interface to this

class is illustrated in figure 4.34. A new subparametric element type takes the place of the

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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Bell element of section 4.4: the curveable subparametric element. This element type behaves

as a straight-sided Bell element until it is ‘upgraded’ to have a single curved side.

// Pure virtual base class for curveable Bell elements

template<unsigned NNODE_1D>

class CurveableBellElement : public SubparametricTElement<NNODE_1D> {

public:

// Access functions for basis

unsigned nbubble_basis();

unsigned nnodal_basis_types();

// Upgrade element

virtual void upgrade_to_curved_element(const double& s_at0, const double& s_at1,

const GeomObject1Variable2D& parametric_curve, const Edge& edge,

const unsigned& boundary_order);

// Defines the basis (nodal basis functions and bubble basis functions)

// Provides the Bell basis before the upgrade and the Bernadou basis after

void basis(Vector<double>& local_coord, Shape& nodal_basis, Shape& bubble_basis);

// Override inherited shape with linear shape.

void shape(Vector<double>& local_coord, Shape& shape);

private:

// Pointer to the class that provides the Bell basis functions

BellElementBasis* Bell_element_basis_pt;

// Pointer to the class that provides the Bernadou-Bell basis functions

BernadouElementBasisBase* Bernadou_element_basis_pt;

// Bool to indicate whether element has been upgraded to curved

bool Element_is_curved;

Figure 4.34: Simplified code snippet illustrating the curveable Bell element class.

The new curved element has a Bell element basis and a curved Bell element basis, which

can either be a P3 curved Bell element or a P5 curved Bell element: this allows a mixture

of element types to be used in any given domain. The two curved bases share much of the

functionality, but contain different methods and data used to construct the final basis. They

are therefore templated by the boundary order to maximise code reuse.

To use these elements for a curved edge, the function

void upgrade_to_curved_element(const double& s_at0, const double& s_at1,

const GeomObject1Variable2D& parametric_curve, const Edge& e, const unsigned&

boundary_order)
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must be called. This function requires a specialized geometric object (a new oomph-lib

class) to be provided as an argument: a GeometricObject1Variable2D . This object defines a

parametric curve (an arc in 2D) as a function of a single variable (the arc length). The other

arguments needed are the Edge (an enumerated type) to be upgraded, and the start and

end points on the arc. Finally the order of the boundary must be specified. Given that, in

principle, other curved Bell elements with different boundary orders (such as quadratic or

heptic) may be required in the future, we keep this interface generic.

The upgrade procedure has a general-purpose interface defined in CurveableBellement ,

which can be overridden as required in derived classes. The procedure is illustrated in figure

4.35. This function sets up the Bernadou basis and henceforth when

void basis(const Vector<double>& s, Shape& nodal basis, Shape& bubble_basis)

is called it will return the (curved) Bernadou basis, as shown in figure 4.36. This permits

a mixture of different Bell-type elements to exist within a single mesh. The curved-Bell

elements define the geometry of the element through FK , not a set of shape functions. As

such, once the elements are upgraded we ‘break’ the shape functions, by introducing a thrown

error with an informative error message.

virtual void upgrade_to_curved_element(const double& su, const double& so,

const GeomObject1Variable2D& parametric_curve, const Edge& e, const unsigned&

boundary_order){

// Get the element vertices for the set-up

Vector<Vector<double> > vertices = get_vertices();

// Set bool to indicate that the element has been upgraded to be curved

Element_is_curved = true;

// New Basis

if(boundary_order == 3)

{ Bernadou_element_basis_pt =

new BernadouElementBasis<3>(vertices,su,so,parametric_curve,e); }

else if (boundary_order = 5)

{ Bernadou_element_basis_pt =

new BernadouElementBasis<5>(vertices,su,so,parametric_curve,e); }

else { /* throw */ }}

Figure 4.35: Simplified code snippet illustrating the upgrade procedure.

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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// Interface to basis

void basis(const Vector<double>& local_coord, Shape& basis){

if(Element_is_curved)

{ Bernadou_element_basis_pt->basis(local_coord, basis);}

else

{ Bell_element_basis_pt->basis(local_coord, basis);}

}

// Interface to interpolated position

void interpolated_x(const Vector<double>& local_coord, Vector<double>& coord){

if(Element_is_curved)

{ Bernadou_element_basis_pt->::coordinate_x(local_coord, coord);}

else

{ TElement<2,2>::interpolated_x(local_coord, coord);}

}

Figure 4.36: Simplified code snippet illustrating the functionality of the basis and interpo-

lated position members.

4.6 Summary

In this section we discussed two element types: straight-sided Bell-elements, and curved

Bell-elements, which are mutually C1 continuous. The combination of these two element

types is sufficient to provide a C1-continuous basis over any domain. We further provided

explicit construction formulas for the curved-Bell elements, which was previously missing in

the literature. Finally we discussed an object-oriented structure for these elements, in order

to translate the mathematical descriptions into a form that can be used within the finite

element library, oomph-lib.

Now we have the relevant basis functions for generic fourth-order problems we proceed

to discuss the implementation of the various plate models.

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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Numerical Implementation and

Validation

5.1 Implementation of the Plate Models

We now proceed to discuss how the Bell and their curved counterparts are used, in conjunc-

tion with regular Lagrange elements when required, to discretize the plate models of the

proceeding section. For pedagogical purposes, we start by detailing the implementation of

linearised bending elements. The Bell and curved Bell basis functions and proceeding equa-

tions have been implemented to form part of the open-source object-oriented multi-physics

finite element library oomph-lib [Heil and Hazel, 2006].

5.1.1 Linear Bending Elements

We recall from the section 3.5.6 that the relevant nondimensional variational equation for

linear bending will be∫
Ω
δUBdΩ =

∫
Ω

(
h3

12
Gαβγδ v̄3,γδ δv3,αβ −∆pδv3

)
dΩ , (5.1.1)

with relative thickness h and

Gαβγδ =
1

(1− ν2)
[(1− ν)δαδδβγ + νδδγδαβ] . (5.1.2)

In order to keep the formulation consistent with previously implemented plate models within

oomph-lib, we divide through by h3/12(1− ν2). Thus the equations become∫
Ω

( ≈
Gαβγδ v̄3,γδ δv3,αβ −∆

≈
pδv3

)
dΩ . (5.1.3)
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with ∆
≈
p = 12(1− ν2)∆p/h3 and

≈
G = (1− ν2)G.

Now, to discretize this we use, in general, a mixture of Bell and curved Bell elements,

since the variational equation is fourth order and requires C1-continuous interpolation.

Discretizing the Equations

In a domain with a piecewise mth order boundary discretization we can express the inter-

polated transverse displacement, v
(e)
3 (y), on a particular element, e, in terms of discrete

nodal unknowns N
(e,i,m)
3 and bubble unknowns, B

(e,i)
3 , as follows

v
(e)
3 (x̂) =

3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e)(x̂) +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e)(x̂) . (5.1.4)

Here, we have split the basis function to pertain to nodal degrees of freedom and bubble

degrees of freedom separately. The basis will differ depending on whether the element in

question is a straight sided Bell element, a P3 curved-Bell element, or a P5 curved-Bell

element: in principle a mesh may consist of all three. In the bulk, there are no bubble

degrees of freedom and thus Nb = 0. On curved edges the elements will have Nb = 3 and

Nb = 10 for P3 and P5 elements respectively. For Bell elements the second summation will

be the empty sum, as there are no bubble degrees of freedom.

Similarly we may express the discrete variations as

δv
(e)
3 (x̂) =

3∑
i=1

6∑
j=1

δN
(e,i,j)
3 ψ

[N ]
(i,j,e)(x̂) +

Nb∑
i=1

δB
(e,i)
3 ψ

[B]
(i,e)(x̂) . (5.1.5)

Thus introducing these approximations into our variational form, we have∫
Ω
δUBdΩ ≈

Ne∑
e,e′,e′′=1

∫
Ωe

[
≈
Gαβγδ

(
3∑
i=1

6∑
j=1

N
(i,j)
e′ ψ

[N ]
(i,j,e′),γδ(x̂) +

Nb∑
i=1

B
(i)
e′ ψ

[B]
(i,e′),γδ(x̂)

)

·

(
3∑
i=1

6∑
j=1

δN
(i,j)
e′′ ψ

[N ]
(i,j,e′′),αβ(x̂) +

Nb∑
i=1

δB
(i)
e′′ ψ

[B]
(i,e′′),αβ(x̂)

)

+ ∆
≈
p

(
3∑
i=1

6∑
j=1

δN
(i,j)
e′′ ψ

[N ]
(i,j,e′′)(x̂) +

Nb∑
i=1

δB
(i)
e′′ ψ

[B]
(i,e′′)

]
dΩ . (5.1.6)

in which Ne is the number of elements. These equations must hold for arbitrary discrete
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variations, thus we are lead to the following discrete residuals

RN(i,j,e) =

Nn∑
e=1

∫
Ωe

[
≈
Gαβγδ

 3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e),γδ +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e),γδ

ψ
[N ]
(i,j,e),αβ (5.1.7)

+ ∆
≈
pψ

[N ]
(i,j,e)

]
dΩ

RB(i,e) =

∫
Ωe

[
≈
Gαβγδ

 3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e),γδ +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e),γδ

ψ
[B]
(i,e),αβ (5.1.8)

+ ∆
≈
pψ

[B]
(i,e)

]
dΩ

in which we have used the fact that each element’s support is compact, and thus involves

a sum over the Nn elements which contain the node i. In the case of the bubble degrees of

freedom which are not shared between elements, the support is confined to a single element.

Here, the second set of residuals will only be present in curved elements, not straight-sided

Bell elements.

The basis functions are enumerated by the degree of freedom type and by the degree of

freedom number which correspond to points within the element. The number of degrees of

freedom types for the nodal degrees of freedom are provided by the function:

unsigned nnodal_basis_type()

For bubble degrees of freedoms the number of degrees of freedom is given by

unsigned nbubble_basis()

This interface is defined in the SubparametricTElement , as discussed in section 4.5.9. The

basis functions are accessed using the SubparametricTElement member function:

void basis(const Vector<double>& s, Shape& nodal basis, Shape& bubble_basis)

which is overridden in the derived CurveableBellElement class.

We can write these equations more compactly as

RN(i,j,e) =

Nn∑
e=1

∫
Ωe

[
≈
ML
eαβ ψ

[N ]
(i,j,e),αβ −∆

≈
pψ

[N ]
(i,j,e)

]
dΩ (5.1.9)

RB(i,e) =

∫
Ωe

[
≈
ML
eαβ ψ

[B]
(i,e),αβ −∆

≈
pψ

[B]
(i,e)

]
dΩ . (5.1.10)

where we define the (interpolated) bending moment on the element as

≈
ML
eαβ =

≈
Gαβγδ

 3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e),γδ +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e),γδ

 . (5.1.11)
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The structure of this equation will form the basis of more complicated variational problems

in the proceeding sections.

In practise the integration is done discretely, using a suitable Gauss scheme such that that

the stiffness matrix can be integrated exactly. Therefore for Bell elements, we require full

integration up to at least sixth order, for P3 curved bell elements we require full integration

up to at least tenth order and finally for P5 curved bell elements we require full integration

up to at least fourteenth order. We utilise existing schemes within oomph-lib, using the 13

point, sixth order Gauss rule, the order 11 quadrature rules of de Doncker and Robinson

[1984], and the 64 point, fifteenth order Gauss rule respectively.

Imposing Boundary Conditions

Imposing physical boundary conditions with Hermite degrees of freedom is not as straight-

forward as for Lagrange degrees of freedom: this is due to the fact that physically admissible

boundary conditions are not necessarily possible to impose with axis aligned degrees of free-

dom. This difficulty can be overcome by making local rotations of the Hermite degrees of

freedom on the boundary.

For example, if we wish to introduce a new set of coordinates ξα, such that x(ξ), where x

is the position vector of a point in the domain and ξ is the new coordinate, we may introduce

the new first derivative Hermite degrees of freedom of a function w(x)

∂w

∂xα
=
∂w

∂ξβ

∂ξβ
∂xα

=
∂w

∂ξβ

(
JR
−1
)
βα
. (5.1.12)

In general, for the mapping, we also need to specify the Hessian, in order to express second

derivatives with respect to the new coordinate:

∂2w

∂xα∂xβ
=
∂ξν
∂xβ

∂2w

∂ξµ∂ξν

∂ξµ
∂xα

+
∂w

∂ξµ

∂2ξµ
∂xα∂xβ

. (5.1.13)

Or, in terms of the inverse Jacobian and inverse Hessian, we may write

∂2w

∂xα∂xβ
=
(
JR
−1
)
µα

∂2w

∂ξµ∂ξν

(
JR
−1
)
νβ

+
∂w

∂ξµ

(
HR

−1
)
µαβ

(5.1.14)

where the inverse Hessian may be calculated from the Hessian and inverse Jacobian of the

mapping (cf. appendix D.5).

Our interpolation of the function v3(x) is provided by the superposition of unknowns

and the Hermite basis

v
(e)
3 (x̂) =

3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e)(x̂) +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e)(x̂) . (5.1.15)
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Thus, we introduce new rotated unknowns, keeping this sum constant. Using the results from

equation 5.1.14, we may introduce a set of ‘rotated’ Hermite degrees of freedom, Ñ
(e,i,j)
3 , at

node i:

Ñ
(e,i,j)
3 =

[
v3(ae i) ;

∂v3

∂ξ1
(ae i) ;

∂v3

∂ξ2
(ae i) ;

∂v3

∂ξ1∂ξ1
(ae i) ;

∂v3

∂ξ1∂ξ2
(ae i) ;

∂v3

∂ξ2∂ξ2
(ae i)

]
j

(5.1.16)

and associated ‘rotated’ basis functions, ψ̃
[N ]
(i,j,e),

ψ̃
[N ]
(1,j,e)(x̂) = ψ

[N ]
(1,j,e)(x̂) , (5.1.17)

ψ̃
[N ]
(1+µ,j,e)(x̂) =

(
JR
−1
)
µα
ψ

[N ]
(1+α,j,e)(x̂) +

(
HR

−1
)
µαβ

ψ
[N ]
(2+α+β,j,e)(x̂) , (5.1.18)

ψ̃
[N ]
(2+µ+ν,j,e)(x̂) =

(
JR
−1
)
µα
ψ

[N ]
(2+α+β,j,e)(x̂)

(
JR
−1
)
νβ
. (5.1.19)

such that the product of the degrees of freedom and basis functions (i.e. the interpolant)

remains unchanged:

v
(e)
3 (x̂) =

3∑
i=1

6∑
j=1

N
(e,i,j)
3 ψ

[N ]
(i,j,e)(x̂) +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e)(x̂) (5.1.20)

=
3∑
i=1

6∑
j=1

Ñ
(e,i,j)
3 ψ̃

[N ]
(i,j,e)(x̂) +

Nb∑
i=1

B
(e,i)
3 ψ

[B]
(i,e)(x̂) . (5.1.21)

Thus, by providing a Jacobian and a Hessian, we may transform the degrees of freedom into

a different basis.

Finally we consider the case where only a boundary parametrization is specified, i.e. we

have a mapping of a single coordinate x(ξ1). In this case the tangent is given by x′(ξ1) and

the normal by x′(ξ1)×k, where k is the direction perpendicular to the domain. To construct

a two-dimensional parametrization, we may introduce a new coordinate ξ2 extruded in the

normal direction

x(ξ1, ξ2) = x(ξ) + ξ2

(
x′(s)× k

)
, (5.1.22)

where the curved boundary occupies the ξ2 = 0 line. This allows us to use the general

formulation expressed in equation (5.1.14) for boundaries expressed in terms of a single

parameter.

With rotated degrees of freedom it is now possible to specify a function along an entire

edge: to set the values of the deflection along the edge we adjust the values of the single

Lagrange degree of freedom and the first and second tangential derivatives, allowing us to
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approximate the deflection on the boundary as a piecewise fifth order polynomial, for a

sufficiently continuous boundary discretization. The normal derivative of the deflection, in

turn may be imposed up to a piecewise third order polynomial. Leaving these degrees of

freedom unpinned results in the ‘natural’ physical stress and moment free boundary condi-

tions. Here, we reiterate that the P3 curved elements are appropriate only for the imposition

homogeneous Dirichlet boundary conditions, sometimes known as a ‘built-in’ clamp.

The rotation of the degrees of freedom is performed by helper function

void set_up_rotated_dofs_on_edge(const Vector<std::pair<unsigned, BasisFctPt> >

nodal_basis_lookup);

which takes a single argument that associates new bases with nodes in the element. The

type BasisFctPt is an alias for the existing type:

typedef void (*BasisVectorsFctPt) (const Vector<double>& x, DenseMatrix<double>&

jacobian, RankThreeTensor<double>& hessian);

where, in general, the mapping is a function of x. A BasisVectorFctPt is a function pointer to

a function that provides the Hessian and Jacobian of the transform, which may be a function

of position. In general each node may also have a distinct basis, to allow the possibility of

specifying physical boundary conditions at corner points. This helper function forms a new

member of the KirchhoffPlateBendingCurveableBellElement class which we discuss in the next

section.

Summary: Linear Bending Elements

Finite Element

Linear Bending Equation Curveable Bell Element

Linear Bending Bell Element

is is

isis

Finite Element

� Defines interface to basis

Curveable Bell Element

� Implements geometric basis

� Implements unknown basis

Linear Bending Equations

� Implements generic equations

Linear Bending Bell Element

� Implements basis for equations

Figure 5.1: The structure of the new linear plate bending elements within oomph-lib.

We incorporate these equations into a new set of discrete equations: the linear plate

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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bending equations, as shown in figure 5.1. These inherit directly from the existing finite

element class within oomph-lib ( FiniteElement ). The complete linear bending element com-

bines the linear bending equations and the curveable Bell elements via multiple inheritance

to form a usable plate element. Two new interfaces are needed to set up linear bending

problems:

virtual void upgrade_to_curved_element(const double& s_at0, const double& s_at1,

const GeomObject1Variable2D& parametric_curve, const Edge& e, const unsigned&

boundary_order);

and the previously mentioned

void set_up_rotated_dofs_on_edge(const Vector<std::pair<unsigned, BasisFctPt> >

nodal_basis_lookup);

The former function cannot be called automatically, as it is not known a priori which edges

will be curved or what order boundary interpolation will be specified. The latter function

must be called separately as the rotation of degrees of freedom may be necessary on straight-

sided boundaries as well as curved edges. Simplified code showing the new functionality and

structure of the class is shown in figure 5.2.

// KirchhoffPlateBendingEquations using CurveableBellElements

class KirchhoffPlateBendingCurveableBellElement :

public virtual CurveableBellElement<2>,

public virtual KirchhoffPlateBendingEquations

{

public:

// Helper function to upgrade straight-sided Bell elements to be curved

// (provided by inheritance)

// virtual void upgrade_to_curved_element( ... );

// Helper function to set-up rotated Hermite degrees of freedom

void set_up_rotated_dofs_on_edge(const Vector<std::pair<unsigned, BasisFctPt> >

nodal_basis_lookup);

Figure 5.2: Simplified code snippet illustrating the new helper functions for a linear bending

Bell element.
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5.1.2 Föppl-von Kármán Elements

We now introduce the interpolation scheme for the Föppl-von Kármán elements. The struc-

ture of Föppl-von Kármán elements differs from the linear bending elements, because we

also require C0 interpolation for the in-plane displacements. This results in using standard

Lagrange basis functions to interpolate the in-plane degrees of freedom.

We use standard, cubic, Lagrange interpolation for the in-plane degrees of freedom, to

provide a convergence rate comparable to that of the out-of-plane displacement. Quadratic

and linear versions of these elements have also been implemented, but we do not use them

in this study, so we will not discuss them further. The interpolation schemes for the three

main types Föppl-von Kármán element are displayed in figure 5.3.

We introduce the in-plane displacements, interpolated on a particular element, as follows

v(e)
α =

10∑
l=1

L(e,l)
α ψCL l , (5.1.23)

and variations

δv(e)
α =

10∑
l=1

δL(e,l)
α ψCL l , (5.1.24)

in which ψCL l for l ∈ {1, . . . , 10} are the cubic, Lagrange basis functions, as outlined in

appendix E.

These elements are not necessarily isoparametric: the mapping is supplied by the relevant

C1-element which will supply either linear, cubic or quintic interpolation of the boundary.

Due to this, the straight-sided Föppl-von Kármán elements can be thought of as subpara-

metric in both in-plane and out-of-plane displacements whereas the P3 Föppl-von Kármán

element will be isoparametric in-plane and subparametric out-of-plane. Finally, the P5

Föppl-von Kármán elements will be subparametric in the out-of-plane displacements and

superparametric in the in-plane displacements. Due to the mapping being provided by the

C1-elements, the derivatives of the in-plane displacement will be given by

v
(e)
α,β =

10∑
l=1

L(e,l)
α ψCL l,γ(s) (J−1

(e)(s))γβ, (5.1.25)

in which J (e) will be the Jacobian of the mapping, provided by the relevant C1 basis (see

sections 4.4.3 and 4.5.8). Here we note in passing that the Lagrange basis functions do not

depend on element geometry and thus we have dropped the subscript e.

We reiterate, that unlike in standard isoparametric settings the position vector is not

in general interpolated by the same basis as the unknowns, except in the P3-elements in
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Straight-Sided Föppl-von Kármán Elements

(a) vα for straight-sided elements. (b) v3 for straight-sided elements.

P3 Föppl-von Kármán Elements

(c) vα for P3 elements. (d) v3 for P3 elements.

P5 Föppl-von Kármán Elements

(e) vα for P5 elements. (f) v3 for P5 elements.

Figure 5.3: The interpolation schemes for the three Föppl-von Kármán elements.
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which the two mappings coincide. However, in this case although the Lagrange interpolated

mapping and the curved Bell element mapping are identical, we observe the convention that

the mapping is likewise supplied by the curved Bell elements in order to avoid confusion.

We reiterate that the TElement implementation of interpolated_x , is instead overridden

in the CurveableBellElement class, as described in section 4.5.9.

Using the above interpolation, in the same way as before we may discretize the Föppl-von

Kármán equations (cf. section 3.5.6). Using identical steps to previously we arrive at the

following discrete set of equations

RN(i,j,e) =

Nn∑
e=1

∫
Ωe

[
≈
ML
eαβ ψ

[N ]
(i,j,e),αβ + η SvKαβ v

(e)
3,αψ

[N ]
(i,j,e),β −∆

≈
pψ

[N ]
(i,j,e)

]
dΩ , (5.1.26)

RB(i,e) =

∫
Ωe

[
≈
ML
eαβ ψ

[B]
(i,e),αβ + η SvKαβ v

(e)
3,αψ

[B]
(i,e),β −∆

≈
pψ

[B]
(i,e)

]
dΩ , (5.1.27)

RS(i,e) =

Nn∑
e=1

∫
Ωe

[
SvKαβ ψ

C
L i,β

]
dΩ , (5.1.28)

in which we replace vα and v3 with their element-wise interpolated counterparts v
(e)
α and v

(e)
3

in the calculation of the matrix SvK . Once again, we have divided through by h3/(12(1−ν2))

to remain consistent with other models within oomph-lib. Thus, η here is 12(1− ν2)/h2.

Summary: Föppl-von Kármán Elements

We incorporate these equations into a new discrete equation class: the Föppl-von Kármán

equations, as shown in figure 5.5. These inherit directly from an existing finite element

class within oomph-lib ( FiniteElement ). The complete Föppl-von Kármán element combines

the Föppl-von Kármán equations, and the curveable Bell elements to form a usable plate

element. The Föppl-von Kármán plate elements are templated by the C0 basis used, which

forms a set of new plate elements with various Lagrange interpolation schemes used for the

in-plane displacements; in this thesis we only consider elements that use cubic Lagrange

basis functions.

The interface will be largely the same as for the linear bending equations; however, we

introduce some new functionality which is necessary to use two sets of basis functions per el-

ement. Additionally, these elements must now derive from CurveableBellElement<NNODE_1D> ,

in order to

1. Access the higher order Lagrange basis for the in-plane degrees of freedom

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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5.1. Implementation of the Plate Models 183

2. Set-up the correct equation numbering for the in-plane degrees of freedom

As such, in order to set-up the equations and stiffness matrix correctly, the basic element

is required to be of type TElement<2,NNODE_1D> , despite the elements being assumed to be

straight-sided by default. This is easily ensured by overriding the shape functions as described

in section 4.5.9.

A new member function basis_inplane is needed to access the in-plane basis:

void basis_inplane(const Vector<double>& s, Shape& psi_u, Shape& test_u)

{

// Access TElement<2,NNODE_1D> implementation of shape

TElement<2,NNODE_1D>::shape(s,psi_u,test_u);

// Copy over to Test

for(unsigned l=0; l<nnode();++l)

{ test_u[lm = psi_u[l]; }

}

Additionally, the number of unknowns now varies between nodes: at vertex nodes there

are 6 out-of-plane degrees of freedom and 2 in-plane degrees of freedom, whereas at all other

nodes there are only the 2 in-plane degrees of freedom. We observe the convention that the

in-plane degrees of freedom are always the first two degrees of freedom, and that on vertex

nodes the out-of-plane degrees of freedom begin after the in-plane degrees of freedom. This

complicates the prescription of boundary conditions, however.

To aid in the prescription of boundary conditions we provide the helper functions

fix_in_plane_displacements and fix_out_of_plane_displacements . Both functions pin a nodal

displacement degree of freedom that lies on a specified boundary: the value on the boundary

is specified by passing a function pointer as an argument, as follows

void fix_out_of_plane_displacement(const unsigned& boundary, const unsigned& dof_number,

const void (*deflection_on_edge)(const Vector<double>&, const double&)&);

The function pointer provides the displacement degrees of freedom as a function of the global

(Cartesian) position - which is known when Dirichlet boundary conditions are specified.

An overloaded version of these functions exists which takes a double instead of a function

pointer: this is useful for the commonly encountered case of setting homogeneous boundary

conditions.

A simplified code snippet illustrating this class and the new functionality is shown in



184 Chapter 5. Numerical Implementation and Validation

figure 5.4.

// GeneralizedFoepplVonKarmanElement using CurveableBellElements for the deflection

template <unsigned NNODE_1D>

class FoepplVonKarmanCurveableBellElement :

public virtual CurveableBellElement<NNODE_1D>,

public virtual FoepplVonKarmanEquations,

{

public:

// Helper function for fixing the out-of-plane displacement dofs to a constant

value

void fix_out_of_plane_displacement(const unsigned& boundary, const unsigned&

dof_number, const double& w);

// Helper function for fixing the out-of-plane displacement dofs

void fix_out_of_plane_displacement(const unsigned& boundary, const unsigned&

dof_number, const void (*w_on_edge)(const Vector<double>&, const double&)&);

// Get the Lagrange interpolated basis

void basis_inplane(const Vector<double>& s, Shape& psi_u, Shape& test_u);

// Get the curveable Bell basis

void basis_and_test_fvk(const Vector<double>& s, Shape& psi_w, Shape& psib_w,

Shape& test_w, Shape& testb_w);

Figure 5.4: Simplified code snippet illustrating the new helper functions for the new Föppl-

von Kármán element.

We now proceed to detail the implementation of the Koiter Steigmann and extended

Föppl-von Kármán-model elements.

5.1.3 Large-Rotation Plate Elements

We finally describe the implementation of the Koiter Steigmann and extended-Föppl-von

Kármán-model elements. Because of the nature of the equations, both of these elements

must use C1-continuous interpolation for all three displacements components and share much

of the underlying code. As such, we refer to both models as large-rotation plate models, as
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Finite Element

Föppl-von Kármán Equation Curveable Bell Element

Föppl-von Kármán Element

is is

isis

C0 Basis

C0 Basis

Figure 5.5: The structure of the new Föppl-von Kármán elements within oomph-lib. Dashed

boxes are used to represent template parameters.

both will be treated in the same manner. We display the various interpolation schemes used

for both models in figure 5.6.

We discretize all three displacements using the relevant C1-basis, resulting in the following

interpolated displacements on an element e

v
(e)
i (x̂) =

3∑
j=1

6∑
k=1

N
(e,j,k)
i ψ

[N ]
(j,k,e)(x̂) +

Nb∑
j=1

B
(e,j)
i ψ

[B]
(j,e)(x̂) , i ∈ 1 . . . 3 . (5.1.29)

where we have three of each of the 18 nodal unknowns N
(j,k,e)
i of the basis and three of each

of Nb bubble unknowns of the basis B
(e,j)
i . We also now have the three arbitrary variations

that also need to be interpolated with a C1-basis

δv
(e)
i (x̂) =

3∑
j=1

6∑
k=1

δN
(e,j,k)
i ψ

[N ]
(j,k,e)(x̂) +

Nb∑
j=1

δB
(e,j)
i ψ

[B]
(j,e)(x̂) , i ∈ 1 . . . 3 . (5.1.30)

where we have three of each of the 18 arbitrary, discrete, nodal variations, δN
(j,k,e)
i and three

of each of Nb arbitrary, discrete, bubble unknowns, δB
(e,j)
i .

Discretizing the equations in the same manner as previously we arrive at

RN(i,j,k,e) =

Nn∑
e=1

∫
Ωe

[
≈
Meiαβ ψ

[N ]
(j,k,e),αβ +

≈
Neiαψ

[N ]
(j,k,e),α − (∆

≈
p)αeN̂e i ψ

[N ]
(j,k,e)

]
dΩ , (5.1.31)

RB(i,j,e) =

∫
Ωe

[
≈
Meiαβ ψ

[B]
(j,e),αβ +

≈
Neiαβψ

[B]
(j,e),α − (∆

≈
p)αeN̂e i ψ

[B]
(j,e)

]
dΩ , (5.1.32)

with the discrete moment components
≈
Meiαβ and tension components

≈
Neiα. Here

≈
Meiαβ is

the rescaled bending moment, given by:

≈
Meiαβ =

≈
GαβγδN̂iN̂k v

(e)
i,γδ(x̂) , (5.1.33)
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Straight-Sided large-rotation plate Elements

(a) vα for straight-sided elements. (b) v3 for straight-sided elements.

P3 Koiter Steigmann Elements

(c) vα for P3 elements. (d) v3 for P3 elements.

P5 large-rotation plate Elements

(e) vα for P5 elements. (f) v3 for P5 elements.

Figure 5.6: The interpolation schemes for the three large-rotation plate elements.
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and N̂i will be either the exact unit normal (for Koiter-Steigmann) or the approximate

unit normal (for the extended Föppl-von Kármán model). Finally, the total stress tensor

components Niα is given by

≈
Neiα = η SγαYi,γ −

≈
MiβγΓαβγ , (5.1.34)

where again η = 12(1− ν2)/h2.

Boundary Conditions

We now discuss the imposition of boundary conditions for the large-rotation plate models. In

this case generic boundary conditions for these equations are a little more tricky to impose.

For the case of a free edge, the imposition of boundary conditions is trivial: the free

boundary conditions are simply imposed as a ‘do-nothing’ condition. No rotation of the

degrees of freedom need take place.

For the case of a pinned edge, or a resting clamp, ‘rotation’ of the Hermite degrees

of freedom is necessary to impose physical boundary conditions. This allows the normal

derivative and the displacement to be specified along the entire edge of an element. Under

resting-clamp conditions, the moment free condition will be imposed naturally as a ‘do

nothing’ condition.

The situation is complicated when we wish to impose a particular angle on the boundary.

The direction of the unit normal to the deformed boundary (i.e normal to the edge of the

plate in the lateral plane) can be set in this case, but importantly the ‘stretch’ of the deformed

lateral normal cannot be set as this would overconstrain the problem. Thus, in general to

impose a particular angle on the boundary we cannot simply impose the derivatives of the

displacement, as this will also impose a particular stretch.

Instead we impose the boundary condition via a Lagrange multiplier, by augmenting the

variational equation as follows

δ

∫
∂Ω

(
Λ N̂ · νd

)
ds (5.1.35)

in which νd is the (imposed) deformed (in–plane) normal to the edge of the sheet and Λ is

an unknown Lagrange multiplier: a new field introduced on the edge of the sheet. ds is an

infinitesimal line element along the edge of the sheet.

Computing the variations we obtain∫
∂Ω

(
N̂ · νd

)
δΛds+

∫
∂Ω

Λ νd · δN̂ds (5.1.36)
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which introduces a new equation to be solved on the edge and a new unknown Lagrange

multiplier, Λ, applied to the edge. Following the arguments of Steigmann [2013], we can

directly interpret the Lagrange multiplier as a pure bending moment applied to the edge of

the plate.

The above process is in principle necessary for all clamped or sliding conditions: how-

ever, for the particular, commonly-encountered, case of homogeneous, clamped boundary

conditions on the out-of-plane displacement, an easier solution is available. For homoge-

neous Dirichlet conditions on v3,α, the transverse normal is in the k direction. Thus we may

impose the conditions more easily by simply pinning v3,ν = 0 and pinning v3 = 0 along the

whole edge, which by the definition of N̂ results in the unit normal on the edge being k.

This can be done in the same manner as for the linear bending elements and the Föppl-von

Kármán elements.

Summary: Large-Rotation Elements

Large-Rotation Plate Equations

Koiter-Steigmann

Equations

Extended Föppl-von

Kármán Equations

is is

Large Rotation Plate Equations

� Defines interface to normal, bending

moment, membrane tension etc.

Koiter-Steigmann Equations

� Implements normal, bending moment,

membrane tension etc.

Extended Föppl-von Kármán

Equations

� Implements normal, bending moment,

membrane tension etc.

Figure 5.7: The structure of the new large-rotation plate equation classes within oomph-lib.

We incorporate the interface to both the Koiter-Steigmann plate and the extended-Föppl-

von Kármán equations into a new set of discrete equations: large displacement plate equa-

tions, as shown in figure 5.7. The interface remains the same, but the definitions for moment

and total tension will differ in the derived classes. The equations themselves inherit directly

from the existing finite element class within oomph-lib.

Using the new equations, we introduce a new class of plate elements: large-rotation plate

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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Large-Rotation Plate Equations

Koiter-Steigmann Equations Extended Föppl von-Kármán Equations

Large Rotation Plate Element

Curveable Bell Element

is is

is is
is

parameterized inheritance

Figure 5.8: The structure of the new large-rotation plate element classes within oomph-lib.

elements, which are summarized in figure 5.8. The large-rotation element uses parameterised

inheritance (i.e. inheritance from a template argument) to create complete finite elements

using a set of large-rotation plate equations and the basis provided by the curveable Bell

elements. This provides a large amount of code reuse and promotes the rapid integration of

future large-rotation plate equations. The code structure that this parameterized inheritance

introduces is summarized in figure 5.9.

// LargeRotationPlateEquations using CurveableBellElements

// Parametrized inheritance

template <class LARGE_ROTATION_PLATE_EQUATIONS>

class LargeRotationCurveableBellElement :

public virtual CurveableBellElement<2>,

public virtual LARGE_ROTATION_PLATE_EQUATIONS

Figure 5.9: Simplified code snippet illustrating the inheritance structure for the large-rotation

curveable bell elements.

This concludes the details of the implementation. We proceed by validating the new

functionality, to ensure correctness of the implemented methods and equations.

5.2 Validation of the Plate Models

To ensure the methodology that we developed in chapter 4 is functioning correctly, we

implement several stages of numerical tests. We begin in section 5.2.1 by verifying the

http://oomph-lib.maths.man.ac.uk/doc/html/index.html
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functionality of a single curved element, by investigating the convergence behaviour of the

interpolation error. Once the implementation is verified for a single geometric element with

no associated equations, we proceed to validate the implementation of the various plate

models individually in sections 5.2.2–5.2.5.

The first set of discrete elements we validate are the linear bending equations in section

5.2.2. Since these equations are linear and only contain a single variable, we can easily verify

that the implemented geometric elements, defined in chapter 4, work in practise in a finite

element simulation. We demonstrate that the equations attain excellent convergence rates

in all tested cases.

In section 5.2.3 we proceed by demonstrating that the Föppl-von Kármán elements, which

introduce new methodology for solving mixed-type displacement problems, can be used to

solve plate problems, attaining high convergence rates.

Following this we test the Koiter-Steigmann elements in section 5.2.4 and then the ex-

tended Föppl-von Kármán model elements in section 5.2.5. Though these two sets of equa-

tions introduce no new methodology, it is necessary to verify that the governing equations

have been implemented correctly. Therefore several convergence tests are carried out, for

which high rates of convergence are obtained.

5.2.1 Interpolation Error on a Single Element

We start by examining the convergence behaviour of the error in interpolation on a single

element. We examine the convergence of the interpolant of a known function on a series of

triangles with decreasing diameter, keeping the angles of the triangle constant. We consider

the interpolation of a particular function, w(y), on a series of triangles that form a section

of the curved edge, with decreasing arc-length, to investigate the interpolation error over

a small ‘element’ of a particular function. This hierarchy is displayed graphically in figure

5.10.

To examine the convergence of the function we require a metric for measuring how accu-

rate our approximation is. We choose the L2-norm, denoted by || · ||2, which is defined for a

region Ω as the square root of the integrated, squared errors. Expressed mathematically we

have

||w − we||2 =

[∫
Ω

(w(y)− we(y))2 dΩ

] 1
2

, (5.2.1)

in which w(y) is the approximated function and we(y) is the exact function. We frequently
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Figure 5.10: The hierarchy of equilateral triangles used to generate the convergence results

for the validation of the interpolation on a single element.

quote the ratio of this measure relative to the L2 norm of the exact solution ||we||2, which

we call the relative L2 norm.

We first examine the behaviour of this norm for a P3 curved Bell element, introduced in

section 4.5.3, used to approximate a circular boundary. The boundary, in this case, will not

be approximated exactly but instead will be locally interpolated as a P3 polynomial. The

exact parametric representation of the boundary is

χ(s) = (cos(s), sin(s)) . (5.2.2)

We define the hierarchy of equilateral triangles with vertices

a1 =
(
cos(s−n ), sin(s−n )

)
, (5.2.3)

a2 =
(
cos(s+

n ), sin(s+
n )
)
, (5.2.4)

a3 =
1

2
(a2 + a1)−

√
3

2
(a2 − a1)× k , (5.2.5)

where for the hierarchy displayed in figure 5.10, we choose s±n = (4/5)± (2/5)(3/2)−n. Here

n labels the nth triangle with side length:

hn =
√

(a2 − a1) · (a2 − a1) . (5.2.6)

For the set of triangles defined by the above relation, displayed in figure 5.10, we examine

the behaviour of the L2 norm in figure 5.11.

In the case of curved Bell elements it can be shown [Bernadou, 1992] that the L2 error

estimate for the interpolation over an element is O(h5
n) when used to interpolate functions
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Figure 5.11: Convergence results for the hierarchy of triangles as a log-log plot of side-

length, hn, versus L2 norm for the P3 curved Bell element. The gradient is found to be 5.0,

in agreement with the expected convergence rate.

w ∈ H4, which is verified numerically in the above test (see figure 5.11). We do this by taking

a log-log plot of the errors versus side length and measuring the gradient. We proceed to

perform the same test for the P5 element, which has identical error estimates [Bernadou,

1992]. As can be seen in figure 5.12, the expected rate of convergence is obtained. We

reiterate that, though these elements do not improve upon the convergence rate of the

P3 elements, the boundary interpolation is of higher continuity. This higher continuity is

necessary for free boundary conditions, as discussed in section 4.5.1.

Having obtained the expected convergence rates for the basis, we have thus verified the

correctness of the implementation of the basis functions. We proceed by verifying that the

relevant plate equations have been correctly implemented.

5.2.2 Validation of Linear Bending

Validation for Polygonal Domains

To validate the implementation of the linear bending equations, defined in section 5.1.1, we

check the convergence rates on both polygonal and curved domains. Although there are

no convergence results for the L2 norm for this set of discretized equations, it is reasonable

to expect that the convergence will be dominated by the largest errors in the interpolation

scheme which, as we saw in the previous section, scale as h5. Additionally, for low-order
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Figure 5.12: Convergence results for the hierarchy of triangles as a log-log plot of side-length,

hn, versus L2 norm for the P5 curved Bell element. The gradient is found to be 4.9.

polynomial solutions that are exactly representable on the mesh, we expect that the equations

can be solved exactly with the minimum number of elements necessary to correctly impose

the boundary conditions. In cases for which the rate of convergence is faster than expected

it is common to describe the rate as superconvergent.

We first test the two, simple, polynomial solutions for a rectangular sheet, corresponding

to sliding-type boundary conditions on two opposing edges and resting or clamped-type

boundary conditions on the other opposing edges. These conditions result in a deflection

field that is only a function of a single variable, which coincides with the solutions for the

bending of a beam. The two cases, resting and clamped, with sliding edges at x1 = ±1
2 , have

the following deflections [Timoshenko and Woinowsky-Krieger, 1959b]

v3(x2) =
∆
≈
p

24
(a2 − x2

2)(5a2 − x2
2) and v3(x2) =

∆
≈
p

24
(a2 − x2

2)2 (5.2.7)

where the sheet has been clamped at x2 = ±a. These solutions are fourth-order polynomials

and therefore are exactly representable by the Bell basis functions [Okabe, 1994]. As such, we

expect that the solutions in these cases will be fully converged even on the coarsest possible

mesh.

We solve the linear bending equations on the smallest possible square mesh, setting the

in-plane aspect ratio to 2a = 1, which consists of two elements as shown in figure 5.13.

As expected, even with the minimum number of elements the exact solution is smoothly
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represented, with the machine precision L2-norms of 3.6× 10−14 and 1.8× 10−13 for resting

and clamped respectively. The smooth solutions are shown in figure 5.13.

Figure 5.13: The computed solution for a square sheet subjected to a uniform pressure load,

with opposing clamped (top left) or resting (bottom left) and sliding edges (left). Shown

also is the mesh on which the solution was computed (right).

We proceed to test the sheet for the less trivial example of opposing resting and free

boundary conditions. In this case, due to the Poisson effect, the sheet adopts a saddle

shape, which can be described by a series solution. This additional test is necessary as

the previous test cannot validate the cross derivative terms in either the discrete equations

or the underlying Bell basis. The series solution to the resting-free case may be found in

Timoshenko and Woinowsky-Krieger [1959b] and is given by

v3(x1, x2) = ∆
≈
p a4

∞∑
m=1,3,···

( 4

π5m5
+Am cosh (2αmx2) + 2Bm αmx2 sinh (2αmx2)

)
sin (2αmx1) ,

(5.2.8)

where the constant αm = mπ/2a, and the constants Am and Bm are given by:

Am =
4

m5π5

ν(1 + ν) sinhαm − ν(1− ν)αm coshαm
(3 + ν)(1− ν) sinhαm coshαm − (1− ν)2 αm

,

Bm =
4

m5π5

ν(1− ν) sinhαm
(3 + ν)(1− ν) sinhαm coshαm − (1− ν)2 αm

.

(5.2.9)

The solution is shown computed on a particular mesh in figure 5.14. We test the simulation

on a series of meshes with decreasing maximum element area, AE , and record how the L2

norm decreases with the decreasing diameter of the elements h ∼
√
AE . This is plotted in

figure 5.15. As can be seen the gradient of the line is 5.2, which is in line with the predicted
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interpolation errors.

Figure 5.14: The computed solution for a square sheet subjected to a uniform pressure load,

with opposing resting and free edges (left). The L2 norm of this solution is 7.8×10−3. Shown

also is the mesh on which the solution was computed (right).
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Figure 5.15: Convergence results for a series of unstructured meshes with decreasing max-

imum element area as a log-log plot of typical element size,
√
AE , versus L2 norm. The

gradient is found to be 5.2.

Having tested the implementation of the simple linear bending equations for a rectangular

domain, which tests the implementation of Bell elements in a plate model, we proceed to

examine the convergence behaviour on curved domains, which necessitates the use of curved-

Bell elements.
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Validation for Curved Domains

To test the use of curved element patches in a physical problem, we begin by testing rest-

ing and clamped conditions on a circular domain subject to a uniform pressure loading.

The linear bending solutions for these cases are axisymmetric and described by low order

polynomials. For the clamped case, the solution is [Timoshenko and Woinowsky-Krieger,

1959b]

v3(ρ) =
∆
≈
p

64
(1− ρ2)2 (5.2.10)

in which ρ =
√
x2

1 + x2
2 is the standard radial coordinate. For the resting case, the solution

is [Timoshenko and Woinowsky-Krieger, 1959b]

v3(ρ) =
∆
≈
p(1− ρ2)

64

(
5 + ν

1 + ν
− ρ2

)
(5.2.11)

in which the Poisson ratio enters via the moment free condition on the outer edge. We display

the computed solutions to these cases, at low resolution, in figure 5.16. For the clamped case

only, we may use the P3 elements with impunity. For free and resting cases, we expect the

use of P5 elements to be necessary.

Figure 5.16: The computed solutions for a circular sheet subjected to a uniform pressure

load, with clamped (top, left) and resting (top, right) boundary conditions respectively. The

relative L2 norms for these plots are 1.2× 10−4 and 6.6× 10−5 respectively. We also display

the mesh on which the solution was computed (right) for which the shaded region is the

approximated circular domain and the white triangles show the input mesh and vertices.

Although both of these cases are fourth-order polynomials, the curved elements are not

unisolvent to degree 4 for general curved plates. We instead examine the convergence rates
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as shown in figure 5.17. The observed convergence rate for the clamped and resting cases

are 6.2 and 5.1 respectively. The resting case is in agreement with the expected rate of 5,

but we have obtained a superconvergent rate of 6 for the fully clamped case.
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Figure 5.17: Mesh convergence results for the clamped circular sheet using P3 elements (left)

and resting circular sheet using P5 elements (right). We show L2 errors versus the typical

element sizes
√
AE for a series of unstructured meshes as log-log plots. The gradients of the

log-log plots are 6.2 and 5.1 respectively.

The final test case we examine for linear bending is a free boundary case subject to

quadratic loading. The pressure loading we consider is

∆
≈
p = (ρ2 − 1

2
) (5.2.12)

which we apply to a plate with free boundary conditions on the outer edge. It can can be

shown that this system has the analytic solution

v3(ρ) =
ρ2
(
(1 + ν)(2ρ4 − 9ρ2) + 12(2 + ν)

)
1152(1 + ν)

(5.2.13)

where the solution v3 is chosen such that the centre point has zero deflection. We display the

simulation result for this system at low resolution in figure 5.18 and the convergence test in

figure 5.19. The measured convergence rate is 5.1, in concordance with the expected value.

5.2.3 Validation of the Föppl-von Kármán Elements

Having implemented the Föppl-von Kármán elements which make use of both the C1 basis

functions discussed in sections 4.4-4.5 and cubic Lagrange shape functions discussed in section

5.1.2, we must validate the efficacy of such an implementation. We expect the largest errors

to dominate, and therefore the interpolation error of the in–plane displacements to set the
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Figure 5.18: The computed solutions for a circular sheet subjected to a quadratic pressure

load, free boundary conditions. The relative L2 norm in this case is 5.7 × 10−4. We also

display the mesh on which the solution was computed (right) for which the shaded region is

the approximated circular domain and the white triangles show the input mesh and vertices.
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Figure 5.19: Mesh convergence results for a free sheet subject to a quadratic loading, for

the linear bending equations. Shown is a log-log plot are the measured L2 errors against

typical element size
√
AE for a series of free circular sheets. The gradient for this plot is 5.1

in agreement with the expected rate of 5.
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rate of convergence. Cubic Lagrange elements are unisolvent to degree 3, so a convergence

rate of 4 is expected.

The first test case we examine is the small pressure solution for a free sliding sheet, v3(ρ=

1) = 0, dv3(ρ= 1)/dρ = 0, with stress free conditions on the outer edge, S(ρ= 1) · êρ = 0

in which êρ is the radial unit vector. We consider the small pressure limit in which linear

bending applies. At subleading order, the Föppl membrane model is forced via a one-way

coupling. The solution to this (linearised) case is:

v3 =
A(1− ρ2)2

64
(5.2.14)

with the (lower order) in-plane displacements:

vα = xα
A2

24576

(
3(1− ν) + (ν − 18ρ2) + 4(5− ν)ρ4 + (ν − 7)ρ6

)
, (5.2.15)

with x1 = ρ cos(φ), x2 = ρ sin(φ) with φ as the azimuthal polar coordinate. A here is the

magnitude of the forcing.

The above solution holds in the small pressure limit of a clamped Föppl-von Kármán plate

subject to uniform pressure loading, however, by applying an appropriate (non-uniform)

forcing (i.e. by the method of manufactured solutions [Oberkampf et al., 2004]), we can

extend this solution to the entire range of pressures. We can enforce this by application of

the following forcing

∆p = A+

(
5ρ8 − 20ρ6 + 30ρ4 − 18ρ2 + 3

)
196608

. (5.2.16)

Using this ‘manufactured’ solution as our test case, we examine the convergence of the L2

norm under mesh refinement. The results for this test are displayed in figure 5.20.

The second test we consider is the convergence of the azimuthal derivative of an axisym-

metric solution under mesh refinement. As the domain we consider only approximates a

circle, and the solutions are solved in a Cartesian coordinate system, the computed solutions

in a circular system will only be approximately axisymmetric.

We examine the convergence under mesh refinement of the L2 norm of the φ derivative

of the deflection:

||ρ−1∂φv3||2 =

[∫
Ω

(
1

ρ

∂v3(y)

∂φ
)

)2

dΩ

] 1
2

, (5.2.17)

which for a perfectly axisymmetric solution is zero. In the case of the quadratic forcing on a

free sheet, as seen in the section 5.2.2, we expect an axisymmetric solution to apply at small
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Figure 5.20: Convergence plots for the clamped manufactured solution (left) and the non-

axisymmetry measure in the free plate case (right). The convergence rates are measured to

be 4.3 and 3.9 respectively.

pressures. We therefore examine in this case how the non-axisymmetry measure decreases

with mesh refinement. The rate of convergence is measured to be 3.9, which agrees with the

expected rate of 4. These convergence results are displayed in figure 5.20.

5.2.4 Validation of the Koiter-Steigmann Elements

Having tested the Föppl-von Kármán equations, we proceed by testing the Koiter-Steigmann

equations. We discuss this validation before testing the extended Föppl-von Kármán model

in the following section, as large parts of the functionality is shared between the two elements.

Given that all three displacements are now interpolated by the Bell and curved Bell elements,

it is once again reasonable to expect a convergence rate of 5, in line with the interpolation

error.

To validate that the implementation of the Koiter-Steigmann equations is correct by

considering a simple physical example. To test the bending terms, we deform a flat, circular

sheet to the shape of a cylinder with no stretching, thus allowing the testing of the bending

terms in isolation.

The solution we wish to impose will be

v2 =
1

A
sin(Ax1)− x1 (5.2.18)

v1 = 0 (5.2.19)

v3 =
1

A
(cos(Ax1)− 1) (5.2.20)

which is the equation for a cylinder of radius 1/A centred at (0, 0,−1/A). The solution will
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Figure 5.21: The computed solution for a circular sheet bent to a cylinder of radius 1/π and

the mesh on which it was computed. The relative L2 norm is 6.2× 10−3.

have constant curvature (cf. figure 5.21), b11 = A, which for a finite thickness sheet will need

to be supported by a constant normal pressure load:

∆p̃ = A3 , (5.2.21)

acting in the direction of the unit normal. Here we recall that for a constant pressure F =

∆pN̂
√
G where for isometric deformations

√
G =

√
g = 1. For this solution, when h � A

the pressure load needed to support the sheet becomes negligible, and the pure membrane

solution corresponding to isometric deformation holds, which provides an additional physical

check. Computing the L2 norm for a series of meshes of decreasing maximum element area,

we find the rate of convergence to be 5.5, which is better than the expected rate of 5. The

convergence graph is plotted in figure 5.22.

The next test case we consider is the case of a circle deformed to a sphere. This defor-

mation must involve both bending and stretching and will allow the final test of the validity

of the discretized Koiter-Steigmann equations.

The solution we wish to impose will be

v1 = A sin
(x2

A

)
− x1 (5.2.22)

v2 = A cos
(x2

A

)
sin

(
2x1

A

)
− x2 (5.2.23)

v3 = A cos
(x2

A

)
cos

(
2x1

A

)
− 1 (5.2.24)

which is the equation for a sphere of radius A centred at (0, 0,−A). The forcing, F , required
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Figure 5.22: Maximum element area versus L2 norm for a series of unstructured meshes,

solving the Koiter-Steigmann equations for bending to a cylinder. The test was run for a

plate of thickness h = 1/50 and bent to a cylinder with curvature A = π. The observed

convergence rate is 5.5.

Figure 5.23: The computed solution for a circular sheet deformed to a sphere of unit radius

and the mesh on which it was computed. The relative L2 norm is 1.2× 10−3.

to impose this solution will be:

F1 =

(
12A2ν + h2(2ν + 3)

)
sin (ξ) + 3

(
6A2ν + h2(2ν − 1)

)
sin (3ξ)− 5h2 sin (5ξ)

−h2A3
(5.2.25)

F2 =
sin (2χ) cos (ξ)

(
12
(
A2(3ν + 4) + h2ν

)
cos (2ξ) + 6A2(4− 3ν)− 10h2 cos (4ξ) + 11h2

)
−h2A3

(5.2.26)

F3 =
cos (2χ) cos (ξ)

(
12
(
A2(3ν + 4) + h2ν

)
cos (2ξ) + 6A2(4− 3ν)− 10h2 cos (4ξ) + 11h2

)
−h2A3

(5.2.27)
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with χ = x1/A and ξ = x2/A. We display the computed solution in figure 5.23.

Computing the L2 norm for a series of meshes of decreasing maximum element area, we

find the rate of convergence to be 5.0: exactly the expected rate. This is shown in figure

5.24.
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Figure 5.24: Maximum element area versus L2 norm for a series of unstructured meshes, solv-

ing the Koiter-Steigmann equations for deformation to a sphere. The test was performed for

a plate of thickness h = 1/5, deformed to a sphere of unit radius. The measured convergence

rate 5.0.

5.2.5 Validation of the Extended Föppl-von Kármán Elements

To test the extended Föppl-von Kármán model, we only require testing of the bending

terms and truncated Christoffel terms, as the membrane terms are identical to the Koiter-

Steigmann membrane terms. We therefore choose a deformation which is strain free1 to

simplify the resulting manufactured solution. We choose the following strain-free deforma-

tion, chosen such that it scales appropriately with thickness as per the underlying kinematical

assumption:

v1 = E(x1 ; 5h)− x1 (5.2.28)

v2 = 0 (5.2.29)

v3 = 5h (cos(x1)− 1) (5.2.30)

1 This will be exactly isometric, so the (truncated) Föppl-von Kármán strain tensor will not be zero. This
is therefore sufficient to test the Christoffel term.
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in which E(φ ; k) is the incomplete elliptic integral of the second kind, defined as

E(φ ; k) =

∫ φ

0

(√
1− k2 sin2(θ)

)
dθ . (5.2.31)

This describes the bending of a plane to an approximately elliptical shell, with no stretching.

Figure 5.25: The computed solution for a circular sheet deformed to a strain-free approxi-

mately elliptical shape and the mesh on which it was computed. The relative L2 norm for

this solution is 1.0× 10−3.
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Figure 5.26: Maximum element area versus L2 norm for a series of unstructured meshes,

solving the extended Föppl-von Kármán equations for the strain-free test case. The test was

run for a plate of thickness h = 0.075 and the measured convergence rate is 4.5.

Introducing the function, χ = 1− h2 sin2(x1), we may then express the forcing required
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to impose the above solution as:

F1 = 50h2 sin(x1) cos(x1) (5.2.32)

F2 = 0 (5.2.33)

F3 =
10h cos(x1)

(
5χ7/2 − 2χ3 − 4χ5/2 − χ2 + 3χ

)
2χ5/2

−
6250(h)5

(
χ3/2 + χ

)
sin2(2x1)

2χ5/2

+
20(5h)3

(
χ3/2((χ− 2)χ+ 2)− 1

)
cos2(x1)

12χ5/2
(5.2.34)

We show the computed displacement field in figure 5.25 and the corresponding mesh on

which it was computed. Computing the error for a series of unstructured meshes we find

that the rate of convergence is 4.5, as shown in figure 5.26.

Plate Model Test Case Curved Edge Rate Expected

Linear Bending Rectangle, Resting/Sliding N Exact Exact

Rectangle, Clamped/Sliding N Exact Exact

Rectangle, Resting/Free N 5.2 5

Circle, Clamped Y 6.2 5

Circle, Resting Y 5.1 5

Circle, Free Y 5.1 5

Föppl-von Kármán Circle, Manufactured Y 4.3 4

Circle, Free, Axi-asymmetry Y 3.9 4

Koiter Steigmann Circle, Conform to Cylinder Y 5.5 5

Circle, Conform to Sphere Y 5.0 5

Extended Föppl Circle, Manufactured Y 4.5 5

von Kármán

Table 5.1: Table showing the measured and expected convergence rates of the validation

cases.

5.2.6 Summary

This concludes the validation of the plate models. We have found that all of the discretized

equations are correctly implemented and attain high rates of convergence, summarized in

table 5.1. This makes them both suitable and attractive for use in generic plate problems.

We now proceed to compare the various plate model predictions for several physical systems.



Chapter 6

Inflation of a Fully Clamped

Circular Sheet

The first system we consider is the inflation of a clamped circular elastic sheet, which is

displayed schematically in figure 6.1. In this system a thin, circular, elastic plate is smoothly

clamped, such that the deflection gradient is zero at the clamp and that no sliding past the

clamp is possible. This system can be viewed as a version of the blister test, which has been

the subject of many studies, including Dannenberg [1961]; Gent and Lewandowski [1987];

Williams [1997]; Guo et al. [2005], to name a few.

∆p∗

h∗

(a)

ρ∗ = R∗ρ∗ = 0
ρ∗

u∗3(ρ∗)

(b)

Figure 6.1: Diagram showing the set-up of the clamped inflation problem from an oblique

perspective (a) and a side view (b).

Under application of a pressure load, this system forms an axisymmetric bulge, which

grows in size. Though the deflection, u∗3, initially grows linearly in pressure, this behaviour

quickly gives way to a relatively stiffer response due to nonlinear membrane effects. In related

systems (see chapter 7) wrinkling instabilities may occur: however under this combination of

loading and boundary conditions conditions the sheet will always be under tensile stress, so

206
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no wrinkling is expected [Audoly and Pomeau, 2010]. Typically, in an experiment a pressure

is applied to the sheet and the corresponding deflection at the centre is measured. The

measured pressure-deflection curve can then be compared to predictions from the relevant

plate theory, and this can be used to determine a value for Young’s modulus.

Methods such as these have been the subject of renewed interest for the determina-

tion of macroscopic properties of nanoscale sheets, including in monolayer crystals such as

graphene and graphene-oxides [Los et al., 2016, 2017; Delfani, 2018; Drozdov and deClav-

ille Christiansen, 2017]. This is because conventional methods, such as uniaxial extension

experiments, cannot be performed on such sheets. In many of these systems, however, ex-

perimental properties such as the effective Young’s modulus and the pre-stretch1 involved

are a priori unknown. In nano-scale systems the effective values of these properties arise

from inherently quantum-mechanical effects and can depend on temperature and system-

size [Zhang et al., 2011; Los et al., 2016, 2017]. As such, they are difficult to control and

measurement of effective stiffness cannot be done by conventional tension tests.

Although most studies have used indentation-type experiments, for which a detailed

overview of the metrology can be found in Vella et al. [2015], there has been a renewed interest

in classical pressurized blister tests for nanoscale materials [Koenig et al., 2011; Khestanova

et al., 2016; Berger et al., 2016]. However, in these studies a quantitative understanding of

how pre-stretch, as well as large-displacement and finite-strain-effects, are missing.

We aim to give a thorough analysis of the clamped, circular-sheet-system and compare

predictions at large strains and displacements to the predictions of the Föppl-von Kármán

model. Ultimately we use this information to outline a fitting strategy, in order to develop

a robust means of determining Young’s modulus for axisymmetric systems when pre-stretch

is unknown, which provides an interesting contribution to the literature.

In macroscopic systems, pre-stretch is found to greatly affect the response of the ma-

terial, especially in thin sheets, as can be seen the experimental measurements displayed

in figures 6.5. In systems in which it is difficult to quantify pre-stretch, this introduces a

large (unknown) error into to the fitting procedure, leading to erroneous measured values

for Young’s modulus.

Typically, for very thin sheets the Föppl-von Kármán model is appropriate, especially

when the deflections are small. In cases when the tensile stress dominates it is possible

1By pre-stretch, we mean a non-zero, horizontal displacement imposed at the boundary.
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to use the Föppl membrane model instead, which coincides with Föppl-von Kármán when

bending can be neglected. In regimes where bending cannot be neglected these equations are

difficult to solve analytically [Landau and Lifshitz, 1986]: the Föppl-von Kármán equations

constitute a singular perturbation of the Föppl membrane model, and as such a bending layer

needs to be accounted for in asymptotic analysis. However, given that the discretization of

this system is straightforward, it is of little extra difficulty accounting for bending terms

numerically, which affords the model extra flexibility to account for low pressure behaviour

in the system.

In this chapter we outline two experimental procedures that are typically used for de-

termining material properties: an axisymmetric inflation experiment and a uniaxial tension

experiment. Following this, in section 6.2, we then investigate the predictions for the clamped

inflation system, using a finite difference simulation of the Föppl-von Kármán equations. In

section 6.3, we then address when and how this model breaks down at larger pressures, con-

sidering the effects of pre-stretch, nonlinear material behaviour and additional geometrical

nonlinearity. Finally, in section 6.4, having identified the regime in which the Föppl-von

Kármán model is appropriate, we use a nonlinear least-squares fit to the experimental data

in the inflation experiment and compare the obtained values for Young’s modulus to that

found in a uniaxial tension experiment.

6.1 Outline of Experimental Procedures

Two experiments were performed in order to determine Young’s modulus: a uniaxial ex-

tension experiment, in which samples of a material were cut into long strips and extended

subject to a uniaxial force, and an inflation experiment. Schematic diagrams of the two

experiments are shown in figure 6.2. The first experiment we describe is the uniaxial tension

experiment.

6.1.1 Experimental Procedure for the Uniaxial Tension Experiment

We first measure the Young’s modulus using a conventional uniaxial extension experiment:

long strips of latex sheet, from a commercial latex supplier (Supatex), are subjected to a
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known relative extension, eU , and the resulting force is measured, using an Instron single-

arm model 3345 machine. Large aspect ratio strips (length & 4.5× width)2 were used, so

that the strip was approximately in a state of simple tension with σ22 = σ33 = 0, with σ11

corresponding to the Cauchy stress in the direction of the extension.

Two separate latex samples were considered: one of thickness (0.365 ± 0.006)mm and

another of thickness (0.887± 0.018)mm: throughout this chapter we will use the parenthesis

shorthand for uncertainty where, for example, these values would be written 0.887(18)mm

and 0.365(6)mm. Each sheet was cut into strips of varying widths and lengths: the data was

then aggregated by combining the force displacement curves and taking an average of the

measured values at regular (interpolated) intervals of the engineering strain. This is made

possible because the behaviour under uniaxial extension is independent of aspect-ratio. The

error on each data point is then the standard deviation of the mean at that point: thus,

the error bars are representative of the variation between individual strip-pull experiments.

This experimental data is shown in figures 6.3 and 6.4.

Using the combined data, the known result for uniaxial tension of a strip made of a

Mooney-Rivlin material can be used to perform a nonlinear least-squares fit in order to

deduce the material parameters.

Uniform Force

Elastic Sheet

(a)

metal frame

rigid plate

elastic plate

nitrogen flow

laser

cameralaser line

(b)

Figure 6.2: Schematics of the strip pull experiment (a) and the inflation experiment (b).

2For the thinner (0.365mm) sheet, the strip dimensions were (14.7×133.82)mm, (30.01×133.82)mm,
(15.21×133.80)mm, (30.08×133.80)mm. For the thicker (0.887mm) sheet, the strip dimensions were
(15.76×133.35)mm, (30.04×133.55)mm, (15.14×133.35)mm, (29.92×133.35)mm.
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6.1.2 Fitting to Strip-Pull Experiments

For uniaxial extension3, the Mooney-Rivlin prediction for stress in the direction of the stretch

is [Mooney, 1940]

σ∗11 =

(
2C∗1 +

2C∗2
1 + eU

)(
(1 + eU )2 − 1

1 + eU

)
, (6.1.1)

where we recall that σ is the Cauchy stress. It is more convenient to measure the engineering

stress in experiments, which will instead be given by:

σ∗E11 =

(
2C∗1 +

2C∗2
1 + eU

)(
(1 + eU )− 1

(1 + eU )2

)
. (6.1.2)

As discussed in section 2.2.5, the Young’s modulus, E, is given by E = 6(C∗1 + C∗2 ). With

this in mind, we introduce nondimensional material constants C1 = C∗1/E and C∗2/E, related

by the formula C1 + C2 = 1/6. As both constants C∗1 and C∗2 must be non-negative, this

implies that 0 ≤ C2 ≤ 1/6 with C1 = 1/6− C2. For the special case of C2 = 0 the model is

Neo-Hookean, otherwise the material model is Mooney-Rivlin.
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Figure 6.3: Engineering stress, σE11, versus relative extension, eU , for sheets of thickness

h∗ = 0.365mm under simple tension. Young’s modulus is obtained by fitting to the experi-

mental data (markers) using the Mooney-Rivlin and neo-Hookean models, with correspond-

ing reduced χ2 values 0.071 and 0.41, respectively.

3Assuming a state of simple tension: i.e. σ∗3i = σ∗22 = 0.
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The above formula can be obtained from the Cauchy stress by multiplying it by the

deformed cross-sectional areal stretch of the sample. This areal stretch is equal to (1 +

eU )−1 for the case of uniaxial extension. The above functional form can then be used to

fit for Young’s modulus using a nonlinear least squares method: we will use the Levenberg-

Marquardt algorithm to determine the best fit [Bard, 1974; Eaton et al., 2014].
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Figure 6.4: Engineering stress, σE11, versus relative extension, eU , for sheets of thickness

h∗ = 0.887mm under simple tension. Young’s modulus is obtained by fitting to the experi-

mental data (markers) using the Mooney-Rivlin and neo-Hookean models, with correspond-

ing reduced χ2 values 0.027 and 0.045, respectively.

We show the experimental data for strips of two Mooney-Rivlin sheets, of different thick-

ness, and corresponding fits in figures 6.3 and 6.4. We find that for both sheets a neo-Hookean

fit well describes the data, without the need to introduce the additional material parameter

associated with the Mooney-Rivlin model. The Young’s modulus for the sheets of thickness

h∗ = 0.365mm and h∗ = 0.887 are found to be 2.041(4)MPa and 2.57(1)MPa respectively.

The reduced χ2 of both fits are lower than would be expected, 0.071 and 0.045 for the thinner

and thicker sheets, respectively, indicating that the estimated errors over-state the variability

of the data. This can be seen clearly in the graphs, as the fitted line never lies outside of

the errorbars. A possible explanation of this is that the errors associated with the fit arise

systematically, not randomly, as is assumed by the χ2 measure of goodness of fit. This may
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be due to the difficulty determining when the sheet is first tensile, which could introduce an

offset in measured values of extension.

6.1.3 Experimental Procedure for Inflation

The same material was then used in an inflation experiment: the sheet was clamped, using

a circular frame of radius 80mm, to a plate that was accurately levelled and contained a

small nozzle in the centre, as shown in the schematic of this set-up (figure 6.2). Air was

then injected into the cavity between the plate and sheet, through the nozzle. The pressure

difference between atmospheric pressure and the pressure inside the cavity was measured

using an ultra-low (Honeywell) pressure sensor (pressure range ±625Pa, with resolution

±5Pa). The deflection was measured by using a high-resolution camera (Nikon D7000100,

6000 × 4000 pixels) oriented at an oblique (31°) angle and projecting a laser line onto the

sheet, such that it passed through the centre. Sub-pixel resolution was achieved by locally

fitting a Gaussian profile to the line intensity, in the same manner as in Pihler-Puzović et al.

[2015]. The sheet’s deflection could then be determined by measuring the movement of the

laser line from its undeflected position to the new position, within the frame of the camera,

allowing the determination of deflection to within ∼ 10µm.
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Figure 6.5: The combined data from each inflation experiment. The thicker sheets (h∗ =

0.887) are shown as hollow circles and the thinner sheets (h∗ = 0.365) are shown as solid

circles. It can be seen that pre-stretch, which increases in the direction of the arrows, has a

significant stiffening effect, when considering the inflation of otherwise identical sheets.
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Each experiment was set up by clamping a sheet sample to the rig with a deliberately

imposed pre-stretch - which was not measured. In practise, some amount of imposed pre-

stretch is unavoidable when applying the clamp. Once the sheet was fixed in place several

inflation experiments were performed on the sheet, which could then be aggregated to form

a single pressure-deflection curve. This also provided errors for each point, which are the

standard deviation on the mean of the measured values.

Using this combined data, separate nonlinear fits can be carried out using the predictions

of a particular plate model and a standard-deviation-weighted average of the measured values

of the of Young’s modulus at different pre-stretch can be made.

6.2 The Föppl-von Kármán Model

The model we first consider to simulate the inflation system is the Föppl-von Kármán model,

suitably specialised to an axisymmetric domain. This model is appropriate for thin sheets

undergoing moderate rotations and small strains.

The axisymmetric Föppl-von Kármán equations are given by [Coman et al., 2015]:

D∆∗2u∗3 − h∗
(
S∗ρρu

∗
3
′′ +

1

ρ∗
S∗φφu

∗
3
′
)

= ∆p∗ , (6.2.1)

S∗ρρ
′ +

1

ρ∗
(
S∗ρρ − S∗φφ

)
= 0 , (6.2.2)

using (ρ∗, φ) as dimensional plane polar coordinates and D = Eh∗3/12(1−ν2) as the bending

moment. Here ∆p∗ is the pressure difference between the top and bottom plates, as discussed

in section 3.4.10. The second Piola-Kirchhoff stress components, the radial and hoop stress,

are given by

S∗ρρ =
E

1− ν2
(ερρ + νεφφ) , S∗φφ =

E

1− ν2
(εφφ + νερρ) , (6.2.3)

with Young’s modulus, E, and Poisson ratio ν. In turn, the Green-Lagrange strain compo-

nents, ερρ and εφφ, are given by

ερρ = u∗ρ
′ +

1

2

(
u∗3
′)2 and εφφ =

1

ρ∗
u∗ρ . (6.2.4)

Here u∗ρ is the radial displacement. For this system, the equations are subject to the boundary

conditions:

u∗ρ(ρ
∗ = R) = eρR , u∗3(ρ∗ = R) = 0 u∗3

′(ρ∗ = R) = 0 . (6.2.5)
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in which eρ is the applied pre-stretch. At the centre, we have the regularity conditions

u∗ρ(ρ = 0) = 0 , u∗3
′(ρ = 0) = 0 u∗3

′′′(ρ = 0) = 0 . (6.2.6)

In the above equations R is the outer radius as displayed in figure 6.1.

We can nondimensionalize these equations by introducing the following nondimensional

quantities:

w =

√
12(1− ν2)

h∗
w∗ , uρ =

12(1− ν2)R

h∗2
u∗ρ , ∆p =

R4
(
12(1− ν2)

) 3
2

h∗4E
∆p∗ , (6.2.7)

with ρ = ρ∗/R. This yields the following nondimensional equations:

∆2u3 −
(
Sρρu

′′
ρ +

1

ρ
Sφφu

′
ρ

)
= ∆p , (6.2.8)

S′ρρ +
1

ρ
(Sρρ − Sφφ) = 0 . (6.2.9)

subject to the boundary conditions

uρ(ρ = 1) = eρ
12(1− ν2)

h2
, u3(ρ = 1) = 0 , u′3(ρ = 1) = 0 , (6.2.10)

in which eρ > 0 is the pre-stretch parameter. At the centre, we have the regularity conditions

uρ(ρ = 0) = 0 , u∗3
′(ρ = 0) = 0 u∗3

′′′(ρ = 0) = 0 , (6.2.11)

which ensure that the stress and displacements are continuous. Here we have introduced the

nondimensional stress, S, and the scaled Green-Lagrange strain, ε̄,

S =
12(1− ν2)R2

E h∗2
S∗ and ε̄ =

12(1− ν2)R2

h∗2
ε∗ (6.2.12)

such that the nondimensional stress is related to the scaled strain by

Sρρ =
1

1− ν2
(ε̄ρρ + νε̄φφ) and Sφφ =

1

1− ν2
(ε̄φφ + νε̄ρρ) . (6.2.13)

We can rescale the experimental data, shown in figure 6.5, according to the predictions of

this model, which in principle should remove any explicit thickness dependence in the data.

An implicit thickness dependence instead enters via the ratio of pre-stretch to pressure-load,

which are scaled differently on h∗. We plot rescaled data in figure 6.6, where we instead

consider the rescaled, dimensional pressure, ∆p∗Rescaled, defined as

∆p∗Rescaled =
(
12(1− ν2)

) 3
2 (R/h∗)4 ∆p∗/1013, (6.2.14)

which is more convenient to fit to, as it removes any explicit thickness dependence.
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Figure 6.6: Experimental data re-plotted in terms of the nondimensional deflection, and a

rescaled dimensional pressure for the thinner sheet (left) and the thicker sheet (right) defined

as ∆p∗Rescaled =
(
12(1− ν2)

) 3
2 (R/h∗)4 ∆p∗/1013.

As can be seen in equations 6.2.9 and 6.2.10, if the nondimensional displacement uρ(ρ =

1), can be neglected, i.e. eρ/h
2 � 1, then this system contains only a single free parameter:

the pressure. This results in a h∗-independent pressure-deflection curve that provides a

powerful tool for determining Young’s modulus. However, the nondimensional applied pre-

stretch scales as uρ(ρ = 1) ∼ eρ (R/h∗)2. This means that in extremely thin sheets even a

minute, but nonzero, applied strain can result in a large pre-stretch parameter entering the

equations. This extreme sensitivity to boundary conditions makes it necessary to consider

the pressure-deflection-pre-stretch surface, which remains independent of an explicit relative-

thickness parameter, h. Thus, there are only two fitting parameters: u(ρ = 1) and E.

We solve equations (6.2.9-6.2.11) using a 1D, finite difference scheme as detailed in ap-

pendix G.3. This results in the displacement curves shown in figure 6.7. We also plot the

rescaled hoop stress in figure 6.9, where we can see that the sheet will be under tensile hoop

so that no wrinkling is expected. Given that that the sheet is expected to remain axisym-

metric, we can quantify the size of the deflection using only the centre value, u3(ρ = 0). We

then combine the results and plot them as a series of curves in pressure-deflection space, as

shown in figure 6.10.
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Figure 6.8: Rescaled radial strain over the domain plotted for several values of nondi-

mensional pressure, subject to zero pre-stretch (left) and at several values of pre-stretch,

eρ = Uρ h
2/(12(1− ν2)), (right) at a fixed nondimensional pressure of 1.5× 107.

A special consideration can be made when the imposed pre-stretch dominates4: in the

tension dominated regime, when pre-stretch is large the bending terms can be neglected. If

the pre-stretch is large enough, the stress will be approximately constant and determined

purely by the in-plane deformation. The solution to the above equation for equi-biaxial

4For the case of dominant bending the pressure will scale as ∆p = 64u3(ρ = 0). However, this regime was
not observed experimentally.
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Figure 6.9: Nondimensional hoop stress over the domain plotted for several values of nondi-

mensional pressure, subject to zero pre-stretch (left) and at several values of pre-stretch,

eρ = Uρ h
2/(12(1− ν2)), (right) at a fixed nondimensional pressure of 1.5× 107. As can be

seen the hoop stress is always tensile, so no wrinkling is expected.

stress (Sρρ = Sφφ = σ) is (see appendix F for details)

uρ(ρ) =
∆p

4σ
(1− ρ2) , (6.2.15)

In this case we expect the central deflection to be given by :

u3(ρ = 0) =
∆p(1− ν)

4Uρ
. (6.2.16)

with Uρ = 12(1− ν2)eρ/h
2. If either pre-stretch or Young’s modulus are known, this makes

fitting for the other straightforward. However, if both remain unknown it becomes impossible

to determine either in this regime, as the two values in the fit will be perfectly correlated.

Thus it is necessary in experiments to ensure that the nonlinear behaviour is explored, if

both pre-stretch and Young’s modulus are unknown.

Alternatively, we may assume that the stress is approximately constant but dominated

by out-of-plane deformations: σ ∼ U3
2, where U3 is the typical size of the deflection. For this

case, from the out-of-plane force balance, we would expect the pressure to scale instead as

p ∼ U3
3, assuming that bending is negligible. Thus, naively combining these two predictions,

one might expect that the pressure-deflection curve behaves as

∆p ∼ aUρ 0 U3 + b U3
3 , (6.2.17)

with prefactors a and b. In fact, a more detailed approximation of the membrane solution
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(see appendix F) gives the following prediction for the pressure-deflection relation

∆p ≈ 1

1− ν
(
4Uρ U3 + U3

3(3− ν)
)
, (6.2.18)

with U3 = u3(ρ = 0). From this we see that for large U3, the initially linear behaviour gives

way to a cubic scaling: it is this regime that is important for fitting to Young’s modulus.

We show this result, along with the linear, pre-stretch dominated solution, in figure 6.10.
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Figure 6.10: Nondimensional pressure versus centre-deflection plotted for various nondimen-

sional pre-stretch, eρ = Uρ h
2/(12(1 − ν2)), (left), with the approximate solution (equation

(6.2.18)) shown as dashed lines. In the right hand figure, we show the same solid curves at

low values of deflection where the imposed stretch dominates. For comparison in this latter

plot we show the linear, pre-stretch dominated solution (equation (6.2.16)) as dashed lines.

Estimates of Neglected Effects

To provide insight into the importance of material nonlinearity, we consider a simple scaling

argument to predict the size of the maximum radial strain. By equation (6.2.4), the typical

size of the strain will be ερρ ∼ eρ + (u∗3/R)2. We expect the second term to dominate, as

all pressure-deflection curves exhibit nonlinear dependence over large portions of the range.

Thus, for the strain5 to remain below ερρ . 0.05, which by figures 6.3 and 6.4 is within

the linear regime, we have u∗3/R .
√
ερρ = 0.22. In all experiments u∗3(ρ∗ = 0)/R∗ < 0.22,

therefore we expect that the linear constitutive hypothesis will hold over the experimental

5The Green-Lagrange strain for simple tension is ε11 = eU + e2
U/2, which for e2

U � 1 becomes ε11 ≈ eU .
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range. Comparing the radial-strain as a function of both deflection and pre-stretch in figure

6.8 we see that for the typical pre-stretch values considered, the value of pre-stretch only

alters the magnitude of the strains up to an order 1 factor, so even with relatively large

stretch we expect that the above argument will hold.

Additionally, given that in experiments deflections are relatively small (less than 25%

of the radius), we expect that the moderate-rotation assumption of the Föppl-von Kármán

model will be satisfied for the majority of the experimental range. To assess this, in the next

section we investigate the regimes in which the axisymmetric Föppl-von Kármán model, as

we have described it, does not apply. We instead consider the Koiter-Steigmann model, as

outlined in section 3.4, which has a geometrically accurate bending term and can include

nonlinear material behaviour. We also consider non-axisymmetric applied pre-stretch and

determine what effect this has on the resulting pressure-deflection curves. We expect that

this will corroborate with the assumption that the axisymmetric Föppl-von Kármán model

is appropriate for the fitting of the performed experiments, based on the above arguments.

6.3 Exploring Additional Nonlinear Effects in Plate Models

During Inflation

To begin, we consider the effect of the additional geometrical nonlinearity introduced by

accurate treatment of the (varying) unit normal. As discussed in sections 3.5.6 and 3.6,

explicit thickness dependence is introduced into the rescaled Föppl-von Kármán model when

the geometry of sheet is treated accurately. In practise, this means that we no longer assume

that rotations are small, such that N̂ ≈ k during inflation. We therefore consider the case

with no pre-stretch, uρ(ρ = 1, φ) = 0, and examine what effect the additional geometrical

nonlinearity introduced by the Koiter-Steigmann model has on the pressure-deflection curve.

As demonstrated in section 6.2, the Föppl-von Kármán model can be nondimensional-

ized such that it is independent of the explicit thickness parameter, h = h∗/R. However,

for large enough deformations this ‘thickness independent’ behaviour is expected to break

down. Thus, by comparing the predictions of the Koiter-Steigmann model, using the finite

element simulation developed in chapter 5.1, to the Föppl-von Kármán model at varying

nondimensional thickness, h, we can assess when the Föppl-von Kármán ceases to become

an appropriate model. We investigate this in the next section.
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6.3.1 Thickness Variation

The Föppl-von Kármán model predicts a strain-hardening pressure-deflection curve that

monotonically increases: it is expected that at large strains and large deflections the Föppl-

von Kármán model will break down due to the assumptions of moderate rotations and small

strains. We first compare the predictions of the Föppl-von Kármán model to the Koiter-

Steigmann model for a range of relative thickness, first using a linear constitutive assumption.

For example in figure 6.11, for thickness parameter, h = h∗/R = 0.008, only a 5% difference

in applied pressure is seen, as compared to Föppl-von Kármán, by deflection u3(ρ = 0) & 122.

This difference only reaches 10% by u3(ρ = 0) & 175, for relative thickness h = 0.008.

At the greater relative thickness value of h = 0.016 a much larger disparity can be seen,

which reaches 18%, as compared to Föppl-von Kármán, by relative deflection u3 & 120. The

Koiter-Steigmann model consistently predicts a relatively softer response from the material

as compared to the Föppl-von Kármán model. In the experiment we considered relative

thickness of 0.0045625 and 0.0110875, which indicates that at large enough deflections these

effects become relevant: however in the range of the experiments, for which u3 . 150 and

u3 . 50 for thinner and thicker sheets, respectively) these effects are demonstrably small if

the linear constitutive law is appropriate.
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Figure 6.11: Nondimensional pressure, ∆p, plotted versus maximum nondimensional deflec-

tion, u3(ρ = 0), for various relative thickness values, h, as predicted by the Koiter-Steigmann

model. Here we have assumed a linear (Saint-Venant Kirchhoff) constitutive relation.
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The difference between the two models is exacerbated when nonlinear constitutive rela-

tions are considered, however, as shown in figure 6.12. We study the Mooney-Rivlin material

model (see section 2.2.5) , with nondimensional material parameter C2 and focus on the case

of the minimum value of C2 = 0 (neo-Hookean) and the maximum value of C2 = 0.166,

by comparing the results for different thickness (see figure 6.12). It can be seen that the

difference between the Föppl-von Kármán model and Koiter-Steigmann prediction is most

pronounced for the neo-Hookean model, but is comparable for both values of C2.

At relative thickness of h = 0.004, only a 5% difference in the applied pressure, as

compared to the Föppl-von Kármán prediction, is expected by u3(ρ = 0) & 102, which

grows to 10% by u3(ρ = 0) & 150. For the maximum C2 value of C2 = 0.166, the effect is

lessened, reaching only a 5% difference by u3(ρ = 0) & 108. This effect is minor, in thinner

sheets, in comparison to the difference between linear and nonlinear constitutive relations.
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Figure 6.12: Nondimensional pressure, ∆p, plotted versus maximum nondimensional deflec-

tion, u3(ρ = 0), for various relative thickness values, h, as predicted by the Koiter-Steigmann

model. We show curves for a neo-Hookean material (C2 = 0, dashed), a Mooney-Rivlin ma-

terial (C2 = 0.166) and a linear material (solid). For comparison the curve for the Föppl-von

Kármán plate model is also shown (dash-dot).

For thicker sheets, the effects are far more pronounced: considering the relative thickness
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h = 0.008, we find a 10% difference by relative deflection u3(ρ = 0) & 80 and u3(ρ = 0) & 74

for C2 = 0.166 and C2 = 0, respectively. By u3(ρ = 0) & 150 the differences are 36% and

11% respectively: clearly, for large deflections of thicker sheets both constitutive nonlinearity,

and the additional geometrically nonlinear effects become important.

Thus, for a nonlinear constitutive model, explicit thickness dependence becomes signifi-

cant even at small values of relative thickness and is pertinent even for thickness of h = 0.004.

It is clear that thickness dependence is important when considering large deformations of

hyperelastic sheets, as rubber-like constitutive models predict a significant softening effect.

However, for thinner sheets (h . 0.004) or at smaller nondimensional pressure values these

effects are less significant and the Föppl-von Kármán model is sufficient, for the case of

negligible pre-stretch.

Interestingly, at high values of deflection, this system seems significantly more sensitive

to the choice of material parameter, C2, than the uniaxial tension experiment, at least for

thicker sheets. Assuming that both pre-stretch and thickness are known this could therefore

be a useful experiment for measuring material properties. We proceed by considering in detail

the effects of the material parameter, at two values of relative thickness of h = 0.0045625

and h = 0.0110875, which correspond to our experimental parameters.

6.3.2 Material Model Parameter Variation

Given that the effect of using a nonlinear material model is significant at higher thickness

values, it is useful to assess how important the Mooney-Rivlin parameter, C2, is in determin-

ing the overall shape. To this end, we compare the pressure-deflection curves for a range of

C2 parameters at two pertinent thickness values: h = 0.0045625 and h = 0.0110875, which

correspond to relative sheet thicknesses that inflation experiments have been performed for

(see section 6.1). Once again, in this section we only consider the case of zero pre-stretch

uρ(ρ = 1, φ) = 0.

As can be seen in figure 6.13, in which the C2 parameter is varied between the physical

limits of 0 and 1/6 for the thinner sheet, the value of the C2 parameter does not have a large

effect on the pressure-deflection curve at this thickness: even at a nondimensional deflection

of u3(ρ = 0) ≈ 175 the difference in applied pressure is only 5%. However, for any value

of C2 the curves differ to a greater extent from the linear constitutive model, and also with

Föppl-von Kármán, with differences of & 10% and & 9% respectively for u3(ρ = 0) = 150.
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Figure 6.13: Nondimensional pressure, ∆p, plotted versus maximum nondimensional de-

flection, u3(ρ = 0), for relative thickness value h = 0.0045625, plotted for a series of C2

parameters between the physical limits. Again, the Föppl-von Kármán model is shown

(dashed) for comparison, as well as the linear constitutive model prediction.

For relative thickness 0.0045625, using an incorrect value of C2 for the constitutive model

would result in errors smaller than 4% over the experimental range (u3(ρ = 0) ≤ 150) Using

the Föppl-von Kármán model for u3(ρ = 0) ∼ 150 could lead to up to 13% errors, at which

point the error in the model would start to overtake the experimental uncertainty. The linear

constitutive model is thus only appropriate at smaller deflections, as is to be expected.

The picture is a little more complicated for thicker sheets (figure 6.14): at this thickness

we see a significant softening of the deflection curve, which happens at lower deflections for

lower values of C2. Clearly, at greater nondimensional deflections, u3(ρ = 0), the value of

C2 becomes important. Restricting to the case when the nondimensional deflection, u3(ρ =

0) . 75, we can see that once again, though a nonlinear model is appropriate, the value

of the C2 parameter has only a small effect (. 5%) and it is thus appropriate to use the

neo-Hookean model which introduces no new constitutive parameters. At lower values still,

u3(ρ = 0) . 50, the Föppl-von Kármán model gives relatively good agreement with the

Koiter-Steigmann model, to 7.5%, indicating that for the experimental range the Föppl-von

Kármán is appropriate at small strain.
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Figure 6.14: Nondimensional pressure, ∆p, plotted versus maximum nondimensional de-

flection, u3(ρ = 0), for relative thickness value h = 0.0010875, plotted for a series of C2

parameters between the physical limits. Again, the Föppl-von Kármán model is shown

(dashed) for comparison, as well as the linear constitutive model prediction.

6.3.3 Pre-stretch Variation

Next we consider the effect of non-uniform applied pre-stretch on the ensuing pressure-

deflection curve. By investigating several different distributions of pre-stretch along the

outer edge, we can assess how important the form of the pre-stretch is to the measured

curve. We display the results in figure 6.15 for a range of pre-stretch, e(φ), from 0-1% average

extension6, 〈eρ〉, for radial pre-stretch, uniaxial pre-stretch and a pre-stretch consisting of

the superposition of several Fourier modes, in all cases using the neo-Hookean constitutive

relation. As can be seen by comparison of the three plots, the distribution of pre-stretch is

relatively unimportant: only the magnitude is important.

The out-of-plane deflection of the sheet is virtually unaffected by the distribution of pre-

stretch, as can be seen in figure 6.16. Although this distribution imposes non-axisymmetric

in-plane deformations, the shape of the deflection is virtually indistinguishable by eye. Thus,

the distribution of the pre-stretch is not important: only its magnitude.

6Here we define the average radial extension to be 〈eρ〉 = 1/(2π)
∫ π
−π u

∗
ρ(ρ = 1, φ)/R dφ.
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Figure 6.15: Comparison of pressure-deflection curves at varying pre-stretch for radial (left),

uniaxial (centre) and modal (right) stretches for a sheet of relative thickness h = 0.0045625

using the neo-Hookean model. Shown above are corresponding displacements for eρ = 0.1%.
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Figure 6.16: The deflection and radial displacements (inset) for uniaxial and modal imposed

pre-stretch of 〈eρ〉 = 0.1 with nondimensional forcing ∆p = 5.45 × 107, each shown at two

distinct values of the azimuthal coordinate, φ.
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Having demonstrated that there is little effect from non-axisymmetric pre-stretch, we now

compare the predictions of the Föppl-von Kármán model to that of the Koiter Steigmann

model at various values of radial pre-stretch, eρ. This is shown in figures 6.17 and 6.18 for

the smaller and larger thickness values respectively.

We observe that for the thinner sheet even a pre-stretch smaller than 0.002% has a

significant effect on the pressure-deflection curve, which is apparent from zero pressure.

This is to be expected, as the modified, pre-stretch boundary condition enters even in the

linearised limit. We see a disparity between the Föppl-von Kármán model and the Koiter-

Steigmann model for larger values of the pressure which is exacerbated by the pre-stretch: at

zero pre-stretch the relative difference between the two models reaches 5% by nondimensional

deflection uρ(ρ = 1) = 105. For the highest value of pre-stretch (0.02) the difference is 15%

by this value of nondimensional deflection. Thus, one might expect that using the Föppl-

von Kármán model to fit to the experimental data in this case would only be appropriate

up to nondimensional deflections of uρ(ρ = 1) . 105, especially for large pre-stretch. As

the experimental range exceeds this, when fitting to the Föppl-von Kármán model we will

instead truncate the range, excluding points where we expect the error to exceed 15% for

the largest values of pre-stretch, as this will begin to exceed the experimental error.

For the thicker sheet (figure 6.18) the pre-stretch parameter is similarly important in

determining the pressure-deflection curve as at lower thickness. However, the discrepancy

between the two models now occurs at lower values of the nondimensional deflection, uρ(ρ =

1). For this case the relative difference between the two models at a pre-stretch of eρ = 0.02

reaches 15% by relative deflection of u3(ρ = 0) ∼ 50. For zero pre-stretch a relative difference

of 7.5% is reached by this value of nondimensional deflection. Thus, for fitting over the

whole range of pre-stretch, it is appropriate to use the predictions of Föppl-von Kármán up

to nondimensional deflection up to u3(ρ = 0) ∼ 50, for the thicker sheet. This includes the

complete range of experimental data taken for the thicker sheet, as seen in section 6.1.

From these graphs it is clear to see that once the relative deflection gets sufficiently

large, u3(ρ = 0) ∼ 105 and u3(ρ = 0) ∼ 50 for the thin and thick sheet, respectively,

the assumptions of the Föppl-von Kármán model break down and both geometrical and

constitutive nonlinearity begin to play an important role. Up to these points, use of the

Föppl-von Kármán model is justified. However, for data that exceeds these deflection values,

we instead fit to the pressure-deflection curve the Koiter-Steigmann model.
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Figure 6.17: Comparison of pressure-deflection curves between Föppl-von Kármán (dotted)

and Koiter-Steigmann for varying radial pre-stretch, eρ. This is computed for a neo-Hookean

sheet of thickness h = 0.0045625.
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Figure 6.18: Comparison of pressure-deflection curves between Föppl-von Kármán (dotted)

and Koiter-Steigmann for varying radial pre-stretch. This is computed for a sheet of thickness

h = 0.0110875 and using the neo-Hookean material model.
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We now proceed to fit results from the Föppl-von Kármán model to experimental data

in the regimes described and, where necessary, compare them to Koiter -Steigmann fits over

the whole range.

6.4 Fitting Procedure for Inflation Experiments

Using everything that we have learned, we can predict that a Föppl-von Kármán fit is

appropriate for nondimensional deflection up to approximately u3(ρ = 0) ∼ 105 for the

thinner sheet and up to about u3(ρ = 0) ∼ 50 for the thicker sheet: within this range we

expect the largest error introduced by the model to be ∼ 15%. For smaller values of pre-

stretch, the error introduced by the model will be smaller than this, never exceeding 7.5%.

In these regimes it is not necessary to consider any of the parameters other than the radial

pre-stretch and Young’s modulus. A two parameter fit for pre-stretch and Young’s modulus

is therefore appropriate.

It is tempting to truncate the data further to further reduce errors introduced by the

Föppl-von Kármán prediction: however, for this system further truncation means that fitting

will be performed over the pre-stretch dominated regime which, as discussed in section

6.2, results in highly correlated parameters in the two parameter fit. Thus, limiting the

fitting region to the regime in which the Föppl-von Kármán model performs better may

paradoxically result in worse results.

We perform the fit by taking axisymmetric Föppl-von Kármán data for a range of values

of pre-stretch and constructing an piecewise linear mesh over which the solution can be

interpolated using rectangular elements, as shown in figure 6.19. A two-parameter, nonlinear

least squares fit can then be performed for the data, to deduce values for Young’s modulus,

E, and pre-stretch, eρ. The values can then be compared to the results obtained for the strip

pull experiment described in section 6.1.

A similar strategy was used for the thinner sheets using the Koiter-Steigmann predic-

tions, with a neo-Hookean model: this time, however, the data had to be acquired for a

particular value of thickness, as the curves exhibit thickness dependence. This was to al-

low a comparative fit using the entire range of data for the thinner sheet in which a large

proportion (18%) of the experimental data points lie outside the range of the Föppl-von

Kármán model. For the thicker sheet, all of the data lay within the established bounds of
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the Föppl-von Kármán model.
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Figure 6.19: The nondimensional pressure-deflection-pre-stretch surface. Here pre-stretch

is plotted in terms of the h scaled quantity that enters the nondimensional boundary-value

problem: uρ(ρ = 1) = eρ(h/L)2/(12(1− ν2)).

An obvious downside to this using the Koiter-Steigmann model is that it introduces an

explicit thickness parameter, so new data needs to be taken for each experimental value of

thickness considered.

We recall that for the sheet of relative thickness h = 0.0045625, three experiments were

performed: one in which pre-stretch was kept to a minimum, one in which a moderate

(unknown) pre-stretch was imposed deliberately and one with a large (unknown) imposed

pre-stretch.

We display the weighted least-squares fits to the data in figures 6.20, 6.21 and 6.22,

respectively, and tabulate the fitted values of Young’s modulus and pre-stretch in table 6.1,

for the readers convenience. All fits were weighted by the relative error of each data point.
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h∗ (mm) E (MPa) eρ

Föppl-von Kármán thinner

0.365(10) 1.67(19) 0.0007(12)

0.365(10) 2.09(34) 0.0054(25)

0.365(10) 1.76(30) 0.027(6)

Koiter-Steigmann thinner

0.365(10) 1.95(8) 0.0003(9)

0.365(10) 2.19(15) 0.0057(18)

0.365(10) 2.24(13) 0.028(4)

Föppl-von Kármán thicker

0.887(10) 2.84(15) 0.0014(7)

0.887(10) 2.36(9) 0.013(9)

Table 6.1: A summary of the fitted values from the various inflation experiments. The

uncertainty quoted on the fitted values (columns two and three) are the standard deviation,

σ, of the weighted nonlinear least-squares fit.

Fitting to the Föppl-von Kármán predictions, we find the weighted mean of the measured

values to be 1.76(14)MPa, where the bracketed value is the estimated error on the least-

squares fit of 0.14MPa, which is within 2σ of the value of 2.041(4)MPa determined by

the uniaxial tension experiment. The fitted values exhibited a large variability between

successive experiments, which was well described by estimated errors on the fit: this provides

further motivation for measuring Young’s modulus at various values of pre-stretch, and then

averaging the results. The estimated values of pre-stretch concord with the predicted order

(i.e small, moderate and large), though the estimated errors on the pre-stretch are large

especially for the smaller values of pre-stretch (see the last column of table 6.1). The graphs

used to generate this weighted mean are shown in figures 6.20-6.22.

Fitting to the whole range, using the Koiter-Steigmann model we find the weighted mean

of the values for the thinner sheet to be 2.06(6)MPa, which is in excellent agreement with the

value of 2.041(4)MPa measured in the uniaxial strip pull experiment. It also agrees with the

Föppl-von Kármán fit, but has a smaller associated error due to the additional data points

used in each fit. All of the pre-stretch predictions agree, within the quoted errors, with the
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values obtained Föppl-von Kármán fits as well, which provides support of the robustness of

this fitting procedure.
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Figure 6.20: Experimental pressure versus deflection data, with fitted curves for the thin sheet

(h = 0.0045625), small pre-stretch dataset. The Föppl-von Kármán model (orange) is fitted only to

solid data points, whereas the fit to the Koiter-Steigmann model (blue) uses the full range of (hollow)

data points. The fitted pre-stretches are eρ = 0.0007(12) and eρ = 0.0003(9) for Föppl-von Kármán

and Koiter-Steigmann respectively, with corresponding reduced χ2 values of 0.13 and 0.30.

Similar measurements were made at small and large pre-stretch for the thicker latex

sheet. Least-squares fitting was performed and the results are displayed in figures 6.23 and

6.24 for small and large pre-stretch respectively. For the thicker sheets, all data was within

the established bounds for the Föppl-von Kármán model, as it was not necessary to fit using

the Koiter-Steigmann model. Once again, the fitted values of Young’s modulus and pre-

stretch are summarized in table 6.1. We find the weighted sum of the Young’s modulus to

be 2.49(8)MPa, which is in good agreement with the measured value from the strip-pull of

2.57(1)MPa. However, we find that the two values of Young’s modulus for the thick sheet,

2.84(15)MPa and 2.36(9), are not in good agreement with one another, implying that the

errors on the fit do not describe the variability between experiments. This could instead be

representative of the error introduced by using the Föppl-von Kármán model, which could

account for up to 15% error, corresponding to ∼ 0.4MPa.
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Figure 6.21: Experimental pressure versus deflection data, with fitted curves for the thin sheet

(h = 0.0045625), moderate pre-stretch dataset. The Föppl-von Kármán model (orange) is fitted only

to solid data points, whereas the fit to the Koiter-Steigmann model (blue) uses the full range of

(hollow) data points. The fitted pre-stretches are eρ = 0.0054(25) and eρ = 0.0057(19) for Föppl-von

Kármán and Koiter-Steigmann respectively, with corresponding reduced χ2 values of 0.06 and 0.10.
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Figure 6.22: Experimental pressure versus deflection data, with fitted curves for the thin sheet

(h = 0.0045625), large pre-stretch dataset. The Föppl-von Kármán model (orange) is fitted only to

solid data points, whereas the fit to the Koiter-Steigmann model (blue) uses the full range of (hollow)

data points. The fitted pre-stretches are eρ = 0.027(6) and eρ = 0.028(4) for Föppl-von Kármán and

Koiter-Steigmann respectively, with corresponding reduced χ2 values for the fits of 0.07 and 0.17.
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Figure 6.23: Experimental pressure versus deflection data with fitted curves for a sheet of relative

thickness h = 0.011088 undergoing a small pre-stretch. The data is fitted to the Föppl-von Kármán

prediction which yields an estimated pre-stretch value of eρ = 0.0014(8). The χ2 value for the fit is

0.33
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Figure 6.24: Experimental pressure versus deflection data with fitted curves for a sheet of relative

thickness h = 0.011088 undergoing a large pre-stretch. The data is fitted to the Föppl-von Kármán

prediction which yields an estimated pre-stretch value of eρ = 0.0133(9). The χ2 value for the fit is

0.50.
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Another possible explanation for this variability is large scale heterogeneity in the thick-

ness of the sheets, created by the manufacture process. This would likely result in a similar

variability in the uniaxial tension experiment, however, as in membrane-dominated inflation,

energy is stored mainly in stretching modes, just as in the strip-pull experiment. Alterna-

tively it could be that during the experimental procedure damage is occurring in the process,

which degrades the sheet when stretched. This would manifest in very different strain curves

between re-runs, as the sheet degrades upon the first inflation.

Finally, another possible explanation could lie in the nature of the two-material parameter

fit performed for the parameters. As the shape of the curve does not vary much between

differing values of pre-stretch, this could result in shallow and/or multiple minima in the

resulting fitting which could confound the fitting procedure. This is evident in the large errors

on the strain parameters, which are strongly correlated with the error on Young’s modulus.

This observation further supports the procedure of acquiring data at several pre-stretch

values and combining the results, which will reduce the errors on the final measurement by

averaging any errors incurred by the degeneracy in strain parameter: weighting by error will

additionally penalize fitted values in regimes in which the minima is broader, with increased

associated errors on the fitted values.

One extension that could be considered would be to leave the thickness a priori unknown

in the fitting procedure: this would be made easier using the Föppl-von Kármán model,

whereby only a rescaling of the curves is necessary to obtain the fit. However, based on

the apparent difficulties in finding minima with a two-parameter fit, it is unlikely that a

global minima for thickness, pre-stretch and Young’s modulus could be obtained, so rea-

sonably tight bounds on the estimates would need to be established in order to use this

method. Additionally, to gain a reliable fit, the regime over which bending gives way to

membrane-like response would have to be considered, otherwise the thickness parameter will

be strongly correlated with the pressure, in the same manner as observed with the pre-stretch

in the strongly stretched (linear) regime: thus, a three-parameter fit is unsuitable for the

experimental data of this study.

Finally, we note that though we included a bending stiffness in the model, bending was

demonstrated to be unimportant in this regime, meaning that it would be appropriate to

consider the large-strain, nonlinear membrane model instead. If instead a regime in which

bending was comparable to stretching needed to be considered, the recent model of Healey
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et al. [2013] would possibly make a better choice of model than Koiter-Steigmann - due to its

comparative simplicity. A linear bending model would likely be appropriate, as the bending

would only occur in a small boundary layer, in which angles would be small. This model

could then be extended to finite strains, as in Li and Healey [2016], and supplemented with

a large-displacement follower-load to capture the ensuing behaviour.

6.5 Summary of Results

In conclusion, in this section we have seen that the pre-stretch, thickness and choice of

material model greatly affect the ensuing pressure-deflection curve. Thus, careful selection

of the experimental region, or use of an appropriate model, is of tantamount importance

to determining correct parameter values in the fit. Interestingly the distribution of pre-

stretch seemed unimportant in determining the value maximum vertical deflection, only the

average magnitude affects the shape of the curves. A two-parameter fit for the radial pre-

stretch and Young’s modulus of inflation experiments was performed and was found to be an

accurate means of determining the Young’s modulus. It was found that in regimes in which

the Föppl-von Kármán becomes inaccurate the Koiter-Steigmann model provides a realistic

alternative. The downside to this method is that the equations now depend explicitly on

thickness. An attractive alternative to both is the nonlinear membrane model, which in

the regimes considered would likely provide the optimal trade-off between accuracy and

simplicity, provided that bending may be neglected.

This bears considerable importance for future measurements made using this method, as

many scenarios in which a strip-pull experiment is unfeasible still require accurate determi-

nation of Young’s modulus. Given that in these scenarios it may be difficult or impossible to

control the pre-stretch, the method outlined provides a robust fitting strategy which avoids

this issue.
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Inflation of a Circular Sheet with a

Rolling Clamp

7.1 Outline of the Problem

The next problem we consider is the inflation of a circular, membrane, subject to approx-

imately stress-free in-plane boundary conditions with zero vertical displacement and angle

at the boundary. These conditions are sometimes known as a ‘sliding’ or ‘rolling’ clamp

and have been studied for Föppl-von Kármán plates by Coman [2013]; Coman et al. [2015];

Coman and Bassom [2016].

In this problem the deflection of the sheet is smoothly constrained to zero at a certain

radius on the undeformed sheet, but this material line is free to deform in-plane. One possible

physical realization of this would be two circular sheets glued on the rim, with a cavity in

between, which could then be inflated.

In a related system considered by Box et al. [2017], a circular sheet is indented in the low

tension regime: this system has similar boundary conditions applied at the outer edge but

is forced by an indenter rather than a constant pressure. Other similar problems include the

studies of sheets draped on liquid drops by King et al. [2012], which use the same equations

but with a slightly modified boundary condition. In their system, however, the lack of a

bending boundary layer results in qualitatively different wrinkling dynamics and ensuing

morphology: the system considered in their study is tension dominated. Here on the other

hand, we discuss a system in which the bending boundary layer cannot be neglected and we

focus on the low tension regime.

236
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(a) ∆p = 0 (b) ∆p < pc (c) ∆p > pc

Figure 7.1: Illustration of the evolution of the sheet shape as nondimensional pressure, ∆p, is

increased: at a critical nondimensional pressure, pc, a symmetry breaking bifurcation occurs

and the sheet wrinkles.

In the present system, application of pressure to the sheet initially results in an axisym-

metric bulge forming as displayed in figure 7.1. As the pressure increases the sheet deforms

inward, which results in the build up of a compressive hoop stress as excess material is accom-

modated. Once the compressive stress passes a certain threshold, it becomes energetically

favourable to wrinkle, rather than continuing to compress. At this value of pressure, pc, a

supercritical pitchfork (symmetry-breaking) bifurcation occurs, with an azimuthal wrinkling

pattern. The bifurcation can occur with any phase - resulting in a pitchfork of revolution.

However this would not be observed experimentally or in full numerical simulation, as im-

perfections due to meshing are present that break the degeneracy. The resulting wrinkling

pattern is shown in figure 7.1.

We begin by considering the Föppl-von Kármán prediction for the system, in section

7.2, first considering the pre-wrinkling axisymmetric base state. We then discuss results of

a linear stability analysis and briefly investigate the effects of pre-tension. Following this,

in section 7.2.1, we use the predictions of the linear stability analysis to estimate when

the Föppl-von Kármán predictions will break down. We then proceed to consider a 2D

simulation of the Föppl-von Kármán equations in section 7.2.2, which we finally compare to

the predictions of the two nonlinear-bending models outlined in chapter 3 in section 7.3.

Ultimately we show that in this simple system the wrinkling behaviour of the Föppl-von

Kármán model can be described by a universal curve with a single nondimensional onset

pressure and a universal wavenumber, independent of relative thickness, h = h∗/R∗: this

prediction also remains true in extremely thin sheets for the nonlinear bending models.

However, the nonlinear bending models predict that for sheets of greater relative thickness,
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h, this universal behaviour quickly gives way to a h-dependent onset behaviour, for which the

wavenumber and nondimensional onset-pressure becomes functions of the relative thickness.

7.2 The Föppl-von Kármán Prediction

For extremely thin sheets the governing equations will be the Föppl-von Kármán equations,

which can be found expressed in terms of polar coordinates (ρ, φ) in [Coman et al., 2015].

Using the nondimensionalization of chapter 6, the equations are:

∆2u3 − Sρρ
∂2u3

∂ρ2
− 2

ρ
Sρφ

(
1

ρ

∂2u3

∂ρ∂φ
− ∂u3

∂φ

)
− 1

ρ
Sφφ

(
1

ρ

∂2u3

∂φ2
+
∂u3

∂ρ

)
= ∆p , (7.2.1)

∂Sρρ
∂ρ

+
1

ρ

∂Sρφ
∂φ

+
1

ρ
(Sρρ − Sφφ) = 0 , (7.2.2)

∂Sρφ
∂ρ

+
1

ρ

∂Sφφ
∂φ

+
2

ρ
Sρφ = 0 , (7.2.3)

subject to the boundary conditions

u3(ρ = 1, φ) = 0 ,
∂u3

∂ρ
(ρ = 1, φ) = 0 and Sρρ(ρ = 1, φ) = 12µ2 . (7.2.4)

Assuming low radial forcing, we may neglect the 12µ2 term and use a stress-free boundary

condition, instead. At the centre, we have the following regularity conditions

uρ(ρ = 0, φ) = 0 ,
∂u3

∂ρ
(ρ = 0, φ) = 0

∂3u3

∂ρ3
(ρ = 0, φ) = 0 , (7.2.5)

which ensure that the stress and displacements are continuous. The nondimensional stress

components are given by:

Sρρ =
1

1− ν2
(ε̄ρρ + νε̄φφ) and Sφφ =

1

1− ν2
(ε̄φφ + νε̄ρρ) . (7.2.6)

in terms of the corresponding scaled strain components. The scaled strains, in turn, can be

written in terms of displacements as [Davidovitch et al., 2012]:

ε̄ρρ =
∂uρ
∂ρ

+
1

2

(
∂u3

∂ρ

)2

, (7.2.7)

ε̄ρφ = − 1

2ρ
uφ +

1

2ρ

∂uφ
∂ρ

+
1

2ρ

∂uρ
∂φ

+
1

2ρ

∂u3

∂ρ

∂u3

∂φ
, (7.2.8)

ε̄ρρ =
1

ρ
uρ +

1

ρ

∂uφ
∂φ

+
1

2ρ2

(
∂u3

∂φ

)2

, (7.2.9)

in which uρ is the nondimensional radial displacement and uφ is the nondimensional az-

imuthal displacement. For the axisymmetric base state, these equations reduce to the equa-

tions of chapter 6, except for the in-plane boundary condition, which is stress free for the

present system.
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As can be seen in equations (7.2.1–7.2.5), for low radial forcing µ � 1, this system has

only a single control parameter: the nondimensional pressure. This implies that the onset of

wrinkling, and ensuing morphology, will be described by a ‘universal onset curve’. A system

of any relative thickness will have a single value of critical pressure, pc, and a universal onset

wavenumber, k. Experimentally, one would observe the collapse of a range of dimensional

onset pressures, ∆p∗, onto a single value of nondimensional pressure.

Knowing the nondimensional onset pressure, and designing a suitable experiment to mea-

sure the wrinkling onset, gives a means of deducing the Young’s modulus of any sheet. In

principle, if the corresponding thickness of the sheet is unknown, it could be measured by

comparing the magnitude of the deflection of the sheet to the maximum deflection at the

bifurcation point, which it is linearly related to. Thus, this approach can be used for mea-

suring the properties of thin elastic sheets. However, the universal onset curve only applies

when the assumptions of the Föppl-von Kármán model are satisfied: small displacements

and moderate rotations. Otherwise, explicit relative-thickness dependence will be introduced

for thicker sheets, or correspondingly larger displacements, and the Föppl-von Kármán pre-

diction will cease to apply (see section 3.5.6).

By solving the axisymmetric Föppl-von Kármán equations, as outlined in appendix G,

we can investigate the pre-buckling, axisymmetric base state.
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Figure 7.2: Deflection, u3(ρ), (a) and gradient of deflection, u′3(ρ), (b) for axisymmetric

deformations, predicted by the Föppl-von Kármán model. The arrow indicates the direction

of increasing nondimensional pressure.
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We see in figure 7.2a, that as the nondimensional pressure increases, the deflection also

increases, forming a membrane-like solution in the bulk of the sheet, with a bending bound-

ary layer at the outer clamp. This is more obvious in the plot of the gradient of the deflection

(figure 7.2b), where we can be seen that as the nondimensional pressure increases, the bound-

ary layer forms at the edge. Prior to wrinkling a build-up of compressive hoop stress, seen

in figure 7.3b, occurs in a localised region near to the edge of the sheet as might be expected

for a wrinkling solution. This negative hoop stress is present even in the linear regime, and

can be accommodated without wrinkling due to the presence of a bending stiffness.
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Figure 7.3: Nondimensional radial stress, Sρρ, (a) and nondimensional hoop stress, Sφφ, (b)

as a function of the radial position. These results were obtained using the axisymmetric

Föppl-von Kármán model and are shown with increasing nondimensional pressure, with the

direction of increasing nondimensional pressure indicated by an arrow.

The radial strain in the sheet remains positive and increases with increasing nondimen-

sional pressure, as seen in figure 7.4a, indicating that the solution is tensile in the radial

direction. These observations fit with physical intuition: as the sheet deforms due to the

pressure load it generates a tensile stress which pulls material inward. This additional ma-

terial must be accommodated at a decreased circumference, causing the sheet to buckle

out-of-plane.

A linear stability analysis, as outlined in appendix G, reveals that the sheet first wrinkles

at a nondimensional pressure of ∆pc = 65130 with onset wavenumber k = 14. As stated,

under low radial forcing, this onset wavenumber and nondimensional onset pressure will be
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independent of the relative thickness of the sheet and the material properties.

We note that at the onset value of the nondimensional pressure the scaled radial strain

within the sheet (cf. figure 7.4a) is ε̄ρρ ∼ 103, which corresponds to a physical strain of

ερρ ∼ 0.01 for a sheet of relative thickness h = h∗/R∗ = 0.01, which is within the limits

usually considered appropriate for linear material behaviour in hyperelastic media [Raayai-

Ardakani et al., 2016]. We further support this by noting that the neo-Hookean and Mooney-

Rivlin models show little difference from linear material behaviour, under uniaxial extension,

for strains ∼ 1% (cf. section 6). Thus we expect that the linear constitutive hypothesis of

the Föppl-von Kármán model will be appropriate, at least for rubber-like materials. This

also serves to make the comparison between the assumptions of Föppl-von Kármán and the

ensuing nonlinear bending models more direct, allowing us to attribute differences in the

models to purely geometrical effects.
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Figure 7.4: Scaled radial strain, ε̄ρρ, (a) and scaled azimuthal strain, ε̄φφ, (b) as a function of

the radial position, as predicted by the axisymmetric Föppl-von Kármán equations. Results

are shown for increasing nondimensional pressure, with the increasing direction indicated by

an arrow.

We can perform a linear stability analysis for a range of wavenumbers, to identify the

nondimensional pressures at which we expect wrinkling solutions with a particular wavenum-

ber. We show the corresponding nondimensional onset pressure versus the wavenumber in

figure 7.5. Though physically wavenumbers can only take integer values, in the discretized
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equation there is no such necessity: we might expect that between integer values the nondi-

mensional onset pressure varies continuously. As can be seen in figure 7.5, this is indeed

the case, which allows a continuous plot to be made. The minimum of the resulting curve

is extremely shallow: nearby wavenumbers k = 13 and k = 15 wrinkle occur at nondimen-

sional pressure values of 65622 and 66312, respectively. Thus, we might expect that the

onset wavenumber would change with only a slight perturbation, as is found to be the case

when applied radial stresses, µ 6= 0, are considered [Coman et al., 2015].

Considering low radial forcing, we see that for the value µ = 2 the onset wavenumber

shifts from k = 14 to k = 15 and occurs instead at a nondimensional pressure 88825, a

difference of 26%. Thus we see that for radial forcing parameter, µ & 1, the system has

two important nondimensional parameters. For simplicity, however, in the remainder of this

chapter we focus on the case of µ � 1, taking µ = 0. This allows us instead to explore

variation in h = h∗/R.
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Figure 7.5: The critical nondimensional onset pressure ∆pc as a function of wavenumber,

k, for the Föppl-von Kármán model at three values of radial forcing, µ. Integer values are

shown with points: the first wrinkling mode to become available in this system will be the

integer-valued wavenumber with the smallest nondimensional pressure: k = 14.
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7.2.1 Estimating the Limit of Moderate Rotation

It is useful to estimate the typical deflection gradients, to provide an estimate of when we

expect the nondimensional onset pressure predicted by Föppl-von Kármán to be inappropri-

ate. Using an asymptotic result from [Coman et al., 2015], the typical size of the derivative

of the nondimensional deflection in this system scales as:

∂u3

∂ρ
∼ (∆p)

1
2 (7.2.10)

modulo an order 1 function. We may expect, from the formula for the (truncated) unit

normal,

N̂ ≈ −∇u∗3 + (1 +
1

2
∇u∗3 ·∇u∗3)k , (7.2.11)

introduced in section 3.6 that when the deflection gradient ∂u∗3/∂ρ
∗ becomes order unity,

the moderate rotation assumption breaks down. Thus, un-scaling the nondimensional dis-

placements, we have: ∂u∗3/∂ρ
∗ ∼ hu′3 ∼ 1, which we can combine with equation (7.2.10) to

predict that the moderate rotation assumption will break down for

h(∆p)
1
2 ∼ 1 . (7.2.12)

Using this relation, along with the critical nondimensional onset pressure ∆pc = 65130,

we may predict that the assumption of moderate rotations is appropriate until h ∼ 0.004.

We can make further estimates using the numerical simulations shown in figure 7.2b. For

p = 75000 (which is near to the nondimensional onset pressure), the scaled deflection gradient

will be ∂u3/∂ρ ≈ 120. We estimate that the moderate rotation assumption becomes invalid

once the gradient reaches

∂u∗3
∂ρ∗

=
h√

12(1− ν2)

∂u3

∂ρ
≈ 1

5
. (7.2.13)

Rearranging for h and introducing the numerical factors suggests that the predictions of the

Föppl-von Kármán model become invalid for relative thickness h ≈ 0.005.

7.2.2 2D Numerical Simulation

We also compute the wrinkling onset using a 2D full numerical solution, to ascertain whether

to expect the k = 14 wavenumber to be present for nondimensional pressures past the onset.

The onset can be measured by considering the non-axisymmetry measure of section 5.2.3,

which is given by:

||ρ−1∂φu3||2 =

[∫
Ω

(
1

ρ

∂u3(y)

∂φ

)2

dΩ

] 1
2

, (7.2.14)
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where u3 is once again the nondimensional deflection and dΩ is the undeformed area element

of the circular (undeformed) sheet Ω. As before, ρ and φ are the standard polar coordinates

on the undeformed sheet.
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Figure 7.6: Non-axisymmetry norm (equation (7.2.14)), versus applied nondimensional pres-

sures obtained from full numerical simulations of the inflation of a Föppl-von Kármán sheet.

The Föppl-von Kármán model predict a universal onset of wrinkling, with wavenumber

k = 14, for all values of relative sheet thickness h = h∗/R.

The 2D-numerical solution of the equations reveals that the sheet first wrinkles at critical

nondimensional pressure1 ∆pc = 65130 with wavenumber k = 14, as shown in figure 7.6.

This is in agreement with the value of ∆pc = 65130 obtained from the linear stability analysis

and also agrees with the value of ∆pc = 65128 obtained by Coman et al. [2015] to within

0.003%.

In principle, before the sheet wrinkles the measure should be zero, however, when solved

on a discretized domain the measure will be small but nonzero. After the wrinkling instabil-

ity occurs the measure should grow with an initially square-root amplitude, assuming that

an appropriate asymmetry measure has been chosen, in accordance with predictions from

1This is calculated by fitting a straight line to the square of the non-axisymmetry measure and extrap-
olating the ∆p-intercept. Using this method, errors in the calculated intercept are introduced both by the
imperfect nature of the bifurcation and the assumption of perfect square-root type behaviour, so high reso-
lution numerical simulation is required.
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bifurcation theory [Strogatz, 2015].

The form of the solution near to the onset is:

u3(r) = ū3(ρ) + εû3(ρ) sin(kφ) (7.2.15)

and thus, the measure we have chosen will assume the following form:

||ρ−1∂φu3||2 = ε

[
k2

∫ 2π

0
(sin(kφ))2dφ

∫ 1

ρ=0
û3(ρ)ρdρ

]1/2

(7.2.16)

where û3(ρ) is the solution to the perturbation problem. The integrals will be constant for a

particular wavenumber, k and for ε� 1. Thus the measure will initially grow proportionally

to the amplitude of the perturbation and we therefore expect square root type behaviour in

the vicinity of the bifurcation. We demonstrate the square-root-type behaviour in figure 7.7,

in which we square the non-axisymmetry measure and show that it follows a straight line.
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Figure 7.7: Squared non-axisymmetry norm, versus applied nondimensional pressures ob-

tained from full numerical simulations of the inflation of a Föppl-von Kármán sheet. The

apparent linear growth in this measure after onset indicates that the non-axisymmetry mea-

sure does indeed give square-root type behaviour.

No secondary bifurcations were observed past the bifurcation point, although other

wavenumber solutions are expected to bifurcate from the (now unstable) axisymmetric so-

lutions, indicating that there may be regions of multi-stability. This is to be expected, and
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in very thin sheets a complicated morphology is expected in the intermediate regime before

fine-scale wrinkling relaxes the stresses and leads to a far-from-threshold limit.

We now proceed to the next section, in which we assess when the moderate rotation as-

sumption of the Föppl-von Kármán model breaks down. As discussed, this can equivalently

be considered as the small relative thickness, h = h∗/R∗, regime at fixed nondimensional

forcing, ∆p∗, given that the nondimensional displacements are scaled on relative thickness.

Once the displacements (or equivalently the relative thickness) get large enough, the lin-

earised bending moment will cease to be appropriate, and nonlinear bending effects will

start to become important in the ensuing morphology. We expect from the above argument

that at h ≈ 0.004 we will begin to see the effects of the nonlinear bending terms.

7.3 The Effects of Nonlinear Bending

We can use the nonlinear-bending-type plate models that we have implemented to probe the

wrinkling onset at varying values of relative thickness, and investigate how the inclusion of

geometrically nonlinear bending affects the system. As discussed, in this system the strain

is not expected to be large, as the outer edge is stress free. Thus, it is appropriate to use a

linear constitutive relation for the sheet.

Computation of the onset curve for different values of the relative thickness, h, reveals

that the morphology is sensitive to the geometrical nonlinear bending, as shown in figure 7.8.

This culminates in the onset of wrinkling happening at value of nondimensional pressure that

increases with relative-thickness. The discrepancy between the predicted nondimensional

onset-pressures of the Koiter-Steigmann and the Föppl-von Kármán model is small at 5%

for sheets with relative thickness smaller than h = 0.0075. However, the nondimensional

onset pressure predicted by the Koiter-Steigmann model is 10% larger by h = 0.01 and

doubles for the thickness value h = 0.0225.

Another difference that can be observed is onset wavenumber variation: as the sheet

gets thicker the onset wavenumber shifts from k = 14 to k = 15, at a thickness h = 0.018,

and to k = 16 at h = 0.0225. Just like in the predictions of the Föppl-von Kármán model,

other modes exist past the initial onset, and bifurcate instead from the (now unstable)

axisymmetric branch. The change in wavenumber is thus a far less sensitive to the choice of

model.
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Figure 7.8: Nondimensional pressure versus non-axisymmetry norm, showing the wrinkling

onset for sheets of various relative thickness, obtained from full numerical simulation of the

Koiter-Steigmann model. The direction of increasing thickness is shown with an arrow. The

Föppl-von Kármán curve is shown as a dashed line for comparison.

We can now test the predictions of the simplified model derived in section 3.6, which

we refer to as the extended Föppl-von Kármán model, and see how well it agrees with

the Koiter-Steigmann model: in figure 7.10 we compute the onsets for the same range of

thickness as in figure 7.8. We find that the extended Föppl-von Kármán model behaves

qualitatively the same, and agrees well quantitatively up to relative thickness of h = 0.0175,

where the relative difference between the nondimensional onset pressure predictions of the

models is only 7%. However, beyond this point the prediction diverges from that of the

Koiter-Steigmann model.

A comparison of nondimensional onset pressure versus relative thickness for all three

models is displayed in figure 7.11, which clearly shows the agreement of the extended Föppl-

von Kármán model and the Koiter Steigmann model. It can clearly be seen that for relative

thickness greater than h = 0.0075 the Föppl-von Kármán model begins to disagree signifi-

cantly with the Koiter-Steigmann model and that it becomes increasingly necessary to use

a more geometrically accurate model. Thus, the estimate of h ≈ 0.004 made in the previous

section appears to have been appropriate. We show the shape of the solutions for several
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(a) h = 0.01

(b) h = 0.02

(c) h = 0.025

Figure 7.9: Wrinkling solutions predicted by the Koiter-Steigmann model for various values

of thickness. The deformed shape of the sheet is shown in the left hand plots, with the

corresponding azimuthal derivative shown on the right. These images are computed at

∆p = 2.0× 105, which is far past the onset in all cases.
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values of relative thickness in figure 7.9.
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Figure 7.10: Nondimensional pressure versus non-axisymmetry norm, showing the wrinkling

onset for sheets of various relative thickness, obtained from full numerical simulation of the

extended Föppl-von Kármán model. The direction of increasing thickness is shown with an

arrow. The Föppl-von Kármán curve is shown as a dashed line for comparison.

We obtain an excellent fit to the numerical data for the k = 14 mode, seen in figure 7.11,

for a function of the form:

∆pc = a h4 + b h2 + ∆pFvKc , (7.3.1)

with a = 1.6× 106∆pFvKc and b = 9.0× 102∆pFvKc , which suggests that the nondimensional

onset pressure dependence is described by power law-type behaviour. This form should be

expected, as in the extended Föppl-von Kármán model only even powers of h enter: via

the curvature N̂ivi,αβ and the loading term N̂i δvi where we recall from chapter 3.6 that

displacements are assumed to scale as v3 ∼ h and vα ∼ h2, similarly to the assumptions of

the Föppl-von Kármán model. As such the small parameter is h2 not h.
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Figure 7.11: Nondimensional pressure onset, pc, versus relative thickness, h, predicted by

the Koiter-Steigmann (circles) and extended Föppl-von Kármán model (diamonds). The

(constant) Föppl-von Kármán prediction is shown as a dot-dashed grey line. We also show

the fit to the k = 14 mode, shown as a green dashed line.

For the physical problem considered here, the use of the moderate-rotation Föppl-von

Kármán model results in qualitatively and quantitatively inaccurate behaviour, even for

sheets of relative thickness h ∼ 0.01: well within the thickness ranges usually considered

for thin plate models. For instance, in the related indentation problem of Box et al. [2017],

circular sheets up to relative thickness 0.02 are considered, though only for the axisymmetric

pre-buckling problem. In the corresponding wrinkling problem sheets of up to h = 0.00625

are considered, for which the difference between the models in the present system would be

smaller than 4%.

In the present system, the onset wavenumber and nondimensional pressure are found

to vary with relative-thickness, h, therefore negating the relative-thickness scaling of the

dimensional onset pressure of wrinkling predicted by the Föppl-von Kármán model. This

is of interest experimentally, because if the range of thickness values used for measurement

covers the region in which the Föppl-von Kármán predictions are invalid, the determination

of the Young’s modulus will fail. We have also demonstrated that the overall behaviour of

this system can be replicated qualitatively by a simplified model, the extended Föppl-von
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Kármán model, which agrees quantitatively for relative thickness up to h ≈ 0.0175.

Finally, we highlight that it would be interesting to observe the effects material non-

linearity has on the observed wrinkling behaviour: in other wrinkling systems, such as the

strip-pull wrinkling set-up, material nonlinearity has been observed to result in quite differ-

ent behaviour [Li and Healey, 2016]. As this system has zero stress at the outer edge, any

large stresses would need to be self-induced, so the effects of material nonlinearity would

likely only be present in the wrinkling of thicker sheets.

7.4 Summary of Results

In summary, we have seen that the choice of plate model can have a large bearing on the pre-

dicted morphology of thin sheets, by considering a simple wrinkling problem in which there

is a single parameter. In this system both the nondimensional onset pressure and wavenum-

ber are predicted to be universal by the Föppl-von Kármán model and independent of the

relative thickness, h = h∗/R. This behaviour agrees with the predictions of a geometrically

accurate model up to a relative thickness of h ≈ 0.0075 whereupon this h-independence

breaks down. The extended Föppl-von Kármán model was also found to describe this break-

down, but failed to do so quantitatively at larger values of relative thickness. This example

provides useful benchmark that allows us to assess for which values of thickness, and size

of the corresponding rotations, the Föppl-von Kármán model is appropriate. It also serves

to highlight a regime where thickness and/or Young’s modulus could be measured by con-

sidering a single observation, provided that the system could be realized experimentally. If

thicker sheets are considered, however, the scaling behaviour quickly breaks down. Thus,

this study serves to highlight a regime in which measurements that rely on the predictions

of the Föppl-von Kármán model are appropriate. Perhaps surprisingly, it only holds only

for extremely thin sheets.



Chapter 8

Cantilever-Type Displacement of a

Sheet

In this section we investigate the bending of a thin sheet, clamped at one end and undergoing

a constant pressure load normal to the sheet. To demonstrate the flexibility of the methods

outlined in this thesis we choose a sheet with a complex geometry: a fish shaped sheet, as

shown in figure 8.1. The mesh for this shape is straightforward to construct using the quality

mesh generator Triangle [Shewchuk, 1996], in-line within oomph-lib [Heil and Hazel, 2006].

(a) (b)

Figure 8.1: The interpolated domain (a) and input triangle mesh (b).

We compare the predictions of the Föppl-von Kármán model, the new extended model

presented in section 3.6, and the Koiter-Steigmann model for this system. This illustrates

the effect of the assumptions made regarding rotation in the two geometrically in-exact

252
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models, when the system undergoes large-displacement deformations. The deformation itself

is bending-dominated and the sheet remains virtually un-stretched.

The sheets we examine are of relative thickness h = h∗/L = 0.01, in which L is the

half-width of the fish’s body. We first examine small displacement behaviour, over a range

of nondimensional pressures ∆p = (12(1− ν2)3/2)∆p∗L4/Eh∗4 for the sheet, demonstrating

that in the limit of small displacements all three models coincide.

8.1 Small Displacement Behaviour

In the limit of small displacements, seen in figure 8.2, all three models coincide exactly.

This region corresponds to the linear, bending-dominated limit, in which we expect u∗3/L ∼

∆p∗L3/D. For a vertical displacement of order unity, u∗3/L ∼ 1, and a sheet of thickness

h ∼ 0.01, the applied pressure is estimated to be ∆p ∼ ∆p∗L/Dh∗ ∼ 102, in the bending

dominated regime. This value is in good agreement with observations from the numerics (cf.

figure 8.2).
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Figure 8.2: (a) The vertical position of the fish’s mouth versus the applied pressure, ∆p.

Inset in this graph is the Föppl-von Kármán prediction over a 10× larger pressure range.

(b) The position of the fish’s mouth traced over the (equally-spaced) pressure values from

(a). In both the predictions are shown for the Föppl-von Kármán model (FvK, red, hollow

circles), the Koiter-Steigmann model (KS, blue, filled circles) and the new extended Föppl-

von Kármán model (FvK+, green, diamonds).
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Figure 8.3: Displacement of the fish’s mouth predicted by the Föppl-von Kármán model over

a large range of pressure, compared to the approximate displacement of a wide, rectangular

sheet of comparable length1, at identical pressures, obtained using the solution of appendix

H. The rectangular sheet can be seen to overestimate the deformation response of the sheet.

The Föppl-von Kármán model is observed to diverge from the two, nonlinear bend-

ing models as soon as their deflection response becomes nonlinear. In fact, the Föppl-

von Kármán model does not predict a nonlinear response even for large deflections (up to

u∗3/L ∼ 15). Thus, we propose that a linear bending solution for the deflection exists for

all values of ∆p, and that the in-plane displacements satisfy the ‘approximate isometry’ im-

posed by the Föppl-von Kármán strain tensor, effectively set via a one-way coupling with

the deflection. This ‘approximate isometry’, however will result in erroneous stretching for

large values of nondimensional displacement.

Indeed, by considering the case of a wide, rectangular sheet subject to a constant pressure

load (see appendix H) we find that a zero Föppl-von Kármán-strain solution exists for all

values of pressure, resulting in displacements that scale as u∗3 ∼ ∆p∗ and u∗x ∼ (∆p∗)2. This

further supports our supposition of the ‘approximate-isometry’ solution of the Föppl-von

Kármán sheet. We compare the two solutions in figure 8.3 and find excellent qualitative

agreement. The pressure-deflection relation is however, out by an order 1 factor, as we have

not accounted for the shape of the fish in the simplified model.

1 We have chosen the length of the rectangle to be the length from head-to-tail of the fish. We plot the
displacement of a point located where the mouth of the fish would be, if overlaid on the rectangular sheet.
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8.2 Moderate-to-Large Displacement Behaviour

The displacement predicted by all three models initially agree in figure 8.4, until they be-

come approximately 150 times the sheet thickness, at pressures around ∆p ≈ 18.9. By

this point, the relative difference in deflection at the mouth of the fish has grown to ∼ 13%,

between the Föppl-von Kármán prediction and the predictions of the other two models. Sub-

sequently, this difference grows rapidly and the sheet using the Föppl-von Kármán model

behaves qualitatively differently to the other two models. Its deflection grows, continuing to

increase linearly (cf. inset figure 8.2a) even for larger pressures whilst undergoing significant

stretching, as can be seen in figure 8.5.

Reference State

(a) ∆p = 9.6 (b) ∆p = 28.1

(c) ∆p = 46.8 (d) ∆p = 65.4

Figure 8.4: Moderate-to-large displacements of the fish at different values of pressure. The

Föppl-von Kármán model (red) predicts a large erroneous stretching which is not predicted

by the Koiter-Steigmann (blue) and the new extended Föppl-von Kármán model (green).
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It can be seen that the Föppl-von Kármán model is inappropriate for large in-plane

strains and out-of-plane rotations, as might be expected, and predicts qualitatively different

behaviour from the other two models. This is catastrophic for the large-rotation bending

seen in this problem, as the Föppl-von Kármán model predicts large (erroneous) strains

almost immediately after it begins to diverge from the other two models.

The extended Föppl-von Kármán model and the Koiter-Steigmann model agree well

in the moderate-to-large rotation regime (see figures 8.5-8.6), differing less than 10% in

deflection up until the sheet reaches 90° with the horizontal plane at ∆p ≈ 65. This is to

be expected: at very large rotations the approximate unit normal underlying the extended

Föppl-von Kármán model becomes inaccurate. Indeed, based on the diagrams (figure 3.9)

showing the approximate unit normal as compared to the exact shown in chapter 3.6, once

the rotations reach 90° the predictions of the extended Föppl-von Kármán model start to

diverge from the arbitrary-rotation Koiter-Steigmann model.
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Figure 8.5: The position of the fish’s mouth traced for increasing pressure predicted by

the Föppl-von Kármán model (FvK, red), the Koiter-Steigmann model (KS, blue) and the

new extended Föppl-von Kármán model (FvK+, green). Results are shown over a reduced

deflection range (a) and the full range (b). Each point corresponds to a single pressure step.

The pressure is increased in constant increments over a range 0 < ∆p < 270.

Qualitatively the two large rotation models behave similarly up until the point where

the Koiter-Steigmann model predicts sheet angles greater than 180°: at this stage the ex-

tended Föppl-von Kármán model ceases to predict any further curling, whereas the arbitrary-

rotation Koiter-Steigmann model predicts that the sheet will bend inward towards itself. This

is to be expected as, due to the truncation in the forcing, the approximated normal can never
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reach angles greater than 90° (cf. figure 3.9), and therefore the stage of ‘curling’ back can

never occur. As mentioned, given that the strongest region of bending is near to the clamp,

the largest error is then expected to be from the application of the truncated forcing in the

extended FvK model. It should therefore expected that results would be of higher accuracy

if the extended Föppl-von Kármán model was to be supplemented with the exact loading

term.

Reference State

(a) ∆p = 56 (b) ∆p = 121

(c) ∆p = 186 (d) ∆p = 261

Figure 8.6: Large displacements of the fish-shaped sheet for various values of pressure cal-

culated using the Koiter-Steigmann model (KS, blue) and the extended Föppl-von Kármán

model (FvK+, green). The latter consistently under predicts the deformation.

8.3 Summary of Results

In conclusion, we have seen that, once again, the Föppl-von Kármán model gives accurate

results only up to small sheet angles, . 30° and at this point significant divergence of the

models occurs. Interestingly the Föppl-von Kármán model predicts an apparently monotonic
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increase in deflection and erroneous large strains. This is due to the truncated Föppl-von

Kármán strain tensor. On the other hand, the extended Föppl-von Kármán model can be

used until very large rotations occur.

We have shown in this section that model comparison can be made easily even for a

relatively complicated geometry, using a unified method of discretization. This demonstrates

the capabilities of the implemented code which will hopefully provide a strong basis for future

research.



Chapter 9

Conclusion

In this thesis we have outlined several plate models and their descent from three-dimensional

elasticity, these are:

1. The Koiter-Steigmann model, suitable for finite strains and arbitrary rotations.

2. The well-known Föppl-von Kármán model, which is suitable for small displacements

and moderate rotations.

3. An apparently novel moderate-to-large rotation model which we refer to as the ex-

tended Föppl-von Kármán model.

Following this, we described a generic method for discretizing fourth-order, two-dimens-

ional variational equations using a combination of Bell elements and boundary patches of

curved elements. As the explicit construction of the curved-Bell basis is not available in the

literature, we provided it along with derivation of the relevant sub-matrices needed in the

construction. We proceeded by describing the implementation of these methods into the

open-source finite element library, oomph-lib. Using this method, we discretized the three

plate models and validated the results.

Finally we used the finite element plate models, in conjunction with other numerical and

analytic techniques, to analyze three simple systems in order to highlight the differences

between the various models discussed in this thesis.

In the study of the first system, a clamped inflated circular sheet, we used a two-parameter

fitting strategy to determine both Young’s modulus and pre-stretch, by comparing numerical

predictions of the sheet deflection to an inflation experiment. The accuracy of this technique

was assessed by comparison to a uniaxial tension experiment. We completely characterized
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the system and achieved a quantitative agreement with the experiments. Importantly, non-

axisymmetric pre-stretch was found to be unimportant to the maximum deflection of the

sheet. We also established bounds in which fitting using the Föppl-von Kármán model was

appropriate. Ultimately it was found that when the Föppl-von Kármán model became inac-

curate the Koiter-Steigmann model provided a realistic alternative for the fitting procedure.

Alternatively, using the appropriate (established) bounds, the Föppl-von Kármán performed

appreciably but had larger associated errors. This system served to highlight the importance

of choosing the appropriate plate model when determining constitutive properties of sheets,

e.g. Young’s modulus.

In the second study, we considered a circular sheet subject to a sliding-type clamp: this

set-up is prone to a wrinkling instability at a particular inflation pressure. For this system

we demonstrated that the choice of plate model greatly affects the onset of wrinkling. In

particular, the Föppl-von Kármán model predicts wrinkling onset at a universal value of

nondimensional pressure with a single onset wavenumber, independent of the relative thick-

ness. The Koiter-Steigmann model, in contrast, predicted that this thickness-independent

behaviour broke down for sheets of greater relative thickness than h ≈ 0.0075. The extended

Föppl-von Kármán model successfully described this breakdown and agreed quantitatively

with the Koiter-Steigmann model for sheets of moderate thickness: however for relatively

thicker sheets the extended Föppl-von Kármán model failed to quantitatively predict the

correct onset pressures.

Finally, we demonstrated the flexibility of our implementation by considering a compli-

cated domain shape: a fish-shaped sheet, clamped at one end. This cantilever-type displace-

ment of a sheet further served the purpose of highlighting the differences between the various

plate models, and more specifically the approximations in the underlying unit-normal. The

Föppl-von Kármán equations picked up the correct, approximately isometric behaviour at

small pressures, but failed to predict the onset of nonlinear pressure-deflection behaviour.

This culminated in the prediction of large erroneous stretching in the moderate displacement

regime. The origin of this stretching was then confirmed by considering a simplified system.

The arbitrary-rotation Koiter-Steigmann model, by contrast, predicted approximately iso-

metric behaviour throughout the whole regime. The new, extended Föppl-von Kármán

model was found to perform well in this scenario and remained in quantitative agreement

with the Koiter-Steigmann prediction until the sheet turned over. This further highlights



261

the utility of the newly derived model.

These simple systems serve to highlight differences between the various models and pro-

vide useful benchmarks for when various approximations are appropriate, particularly as-

sumptions on the magnitude of rotations. They further serve to highlight the necessity of

having a generic framework for comparing models, which we have provided in this thesis.

For future work an important further comparison would be between the predictions of

the Koiter-Steigmann model and three-dimensional elasticity. In this study we have de-

scribed the Koiter-Steigmann model as ‘accurate’ based on the minimal assumptions made

in its descent from three-dimensional elasticity: however, to what extent these assumptions

manifest themselves in the accuracy of the predicted deformations is still an open question.

The most important result of this study is that, perhaps surprisingly, the Föppl-von Kármán

model is only appropriate for the study of very thin-sheets, for which Föppl-von Kármán

only described the leading order behaviour in a thickness-wise expansion.
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Appendix A

Derivation of the Koiter-Steigmann

Variational Equation

A.1 Partial Derivatives of the Energy

We provide the derivation of the variational equation from a generic strain-energy function

which depends on the curvature Bαβ and the metric tensor Gαβ, following the derivation of

Steigmann and Ogden [1999]. We start with the assumption of an energy:

W = W (Gαβ, Bαβ) . (A.1.1)

In this section, we continue to use the Cartesian material basis of section 3.4, such that

gα = êα and g = 1.

The total derivative, written as Ẇ , will thus be given by:

Ẇ =
∂W

∂Gαβ
˙Gαβ +

∂W

∂Bαβ
˙Bαβ . (A.1.2)

Noting that εαβ = 1
2(Gαβ − gαβ), we can write:

Ẇ =
1

2

∂W

∂εαβ
˙Gαβ +

∂W

∂Bαβ
˙Bαβ (A.1.3)

By definition of the second Piola-Kirchhoff stress tensor we write:

Ẇ =
1

2
Sαβ ˙Gαβ +

∂W

∂Bαβ
˙Bαβ (A.1.4)

where

Sαβ ≡
∂W

∂εαβ
. (A.1.5)
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Now computing the latter derivative we have:

Ẇ = Sαβ(Gα · Ġβ) +
∂W

∂Bαβ
˙Bαβ . (A.1.6)

We proceed by following the results of Steigmann and Ogden [1999] to derive the relevant

partial derivative ∂Bγδ/∂Yi,α.

Here we insert a factor of
√
G for convenience then use the product rule:

˙Bγδ =
(
Bγδ
√
G

1√
G

)̇
= −Bγδ

√̇
G√
G

+
1√
G

(
√
GBγδ )̇ (A.1.7)

and computing
√̇
G we get:

√̇
G =

1

2

Ġ√
G

=
1

2
√
G

adj(G)γδ ˙Gγδ (A.1.8)

where we have used the chain rule and that the derivative of the determinant is the adjugate

matrix, written as adj(G). The tensor G, here is the surface metric tensor:

G = Gαβ êα ⊗ êβ , (A.1.9)

not the 3D metric tensor, G̃, evaluated at the surface, in line with our definition of the

midplane stretch G. By definition of the adjugate matrix, which is simply the transpose of

the matrix of cofactors, we can write:

√̇
G =

√
G

2
Gγδ ˙Gγδ =

√
GGγδ Gγ · Ġδ =

√
GGδ · Ġδ (A.1.10)

which gives us the full expression:

˙Bγδ = −BγδGµ · Ġµ +
1√
G

(
√
GBγδ )̇ (A.1.11)

Next we compute the term: (
√
GBγδ )̇. Using the product rule we write:

(
√
GBγδ )̇ = ˙Yj,γδ

√
GN̂j + (εµν3Ġµ ×Gν) · Gγ,δ (A.1.12)

Using the Gauss formulae, Gα,β = BαβN̂ + ΓγαβGγ , we can express this as:

(
√
GBγδ )̇ = ˙Yj,γδ

√
GN̂j + (εµν3Ġµ ×Gν) · (N̂Bγδ + ΓγαβGγ) . (A.1.13)

To proceed we need expressions for the last two terms in the equation. We start with

the term containing the Christoffel symbol and apply the triple product formula:

εµν3(Ġµ × Gν) · Gγ = εµν3(Gγ × Gν) · Ġµ (A.1.14)
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we note that Gα×Gβ =
√
Gεαβ3N̂ [Wempner and Talaslidis, 2002] and that εµν3εσν3 = δσµ

in order to write

εµν3(Ġµ × Gν) · Gγ =
√
Gδµγ N̂ · Ġµ =

√
G N̂ · Ġγ . (A.1.15)

We now focus on the curvature term, again applying the triple product formula

εµν3(Ġµ × Gν) · N̂ = εµν3(Gν × N̂) · Ġµ (A.1.16)

which we can write as:

εµν3(Ġµ × Gν) · N̂ =
√
Gεµν3ενγ3Gγ · Ġµ (A.1.17)

using the triple product formula and Gα × N̂ =
√
Gεαβ3Gβ [Wempner and Talaslidis,

2002]. We then use the self-inverse property of the Levi-Civita tensor to write:

εµν3(Ġµ × Gν) · N̂ =
√
GGµ · Ġµ . (A.1.18)

Combining these results we get the expression for Ḃγδ:

˙Bγδ = −BγδGµ · Ġµ + Ġγ,δ · N̂ + BγδG
µ · Ġµ + ΓγαβN̂ · Ġγ (A.1.19)

or cancelling the terms involving curvature:

˙Bγδ = Ġγ,δ · N̂ + ΓγαβN̂ · Ġγ . (A.1.20)

So, putting all together, we have the following expression for the energy:

Ẇ = Sαβ(Gα · Ġβ) +
∂W

∂Bαβ
(N̂ · Ġα,β + ΓγαβN̂ · Ġγ) . (A.1.21)

We finally define the bending moment, Mαβ, to be:

Mαβ ≡
∂W

∂Bαβ
N̂ , (A.1.22)

giving us the final expression for the energy:

Ẇ = (SαβGα +MαβΓγαβ) . Ġβ +Mαβ · Ġα,β . (A.1.23)



Appendix B

Expansion of the Unit Normal

For the derivation of the improvement to the Föppl-von Kármán model it is necessary to

expand the expression for the unit normal.

The exact expression for curvature is given by (c.f equations 3.4.74-3.4.75)

B = N̂i∇∇vi . (B.0.1)

However, by assumption the in-plane and out-of-plane displacements scale as ∼ h2 and ∼ h

respectively. Thus, the next order correction in the expression for unit normal will be order

O(h) for the in-plane component and order O(h2) for the out-of-plane component.

We begin by considering the following expression for N̂ =
√
G:

N̂
√
G =

1

2
εαβ3 Gα ×Gβ (B.0.2)

We rewrite the expression for the cross product as:

Gα ×Gβ = (δγα + vγ,α)(δµβ + vµ,β)êγ × êµ

+ [v3,α(δµβ + vµ,β)− v3,β(δµα + vµ,α)]ê3 × êµ .
(B.0.3)

Now introducing the rescaled displacements of Section 3.5.6, and truncating to h3, we find:

Gα ×Gβ = (δµβ + h2v̄µ,β +O(h4))êα × êµ + (h2v̄γ,α +O(h4))êγ × êβ

+ (h v̄3,αδµβ − h v̄3,βδµα +O(h3))ê3 × êµ ,
(B.0.4)

which we substitute into the expression for N̂
√
G:

N̂
√
G =

1

2
εαβ3 [(δµβ + h2v̄µ,β +O(h4))êα × êµ + (h2v̄γ,α +O(h4))êγ × êβ

+ (h v̄3,αδµβ − h v̄3,βδµα +O(h3))ê3 × êµ] .

(B.0.5)
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We can simplify this to write:

N̂
√
G =

1

2
εαβ3 [(δµβ + 2h2v̄µ,β +O(h4))êα × êµ + (2h v̄3,α +O(h3))ê3 × êβ] , (B.0.6)

by noting the anti-symmetric property of εαβ3 under exchange of indices α and β.

Computing the summations and cross products we can now write:

N̂
√
G = (1 + h2v̄β,β +O(h4))ê3 − (h v̄3,α +O(h3))êα , (B.0.7)

which is our final expression for this term.

We now focus our attention on expanding the term 1/
√
G. The first term in Taylor

expansion will be 1/
√
G|h=0 = 1. Next we need the derivative of 1/

√
G, with respect to h,

which is given by:

∂

∂h

(
1√
G

)
= − 1

2G3/2
adj(G)γδ

∂Gγδ
∂h

.

Thus the coefficient of h in the Taylor expansion is:

∂

∂h

(
1√
G

)
|h=0 = −1

2
Tr

(
∂G

∂h

)
|h=0

but as the surface metric-tensor G = 1+ 2h2ε̄, this term vanishes.

Finally we investigate the h2 term in the Taylor expansion:

∂2

∂h2

(
1√
G

)
|h=0 = − 1

2G3/2
adj(G)γδ

∂2Gγδ
∂h2

|h=0 −
∂

∂h

(
1

2g3/2
adj(G)γδ

)
∂Gγδ
∂h
|h=0 .

The second term in this expression will vanish in the same way as the order O(h) term, so

the coefficient of h2 will be:

∂2

∂h2

(
1√
G

)
|h=0 = −1

2
Tr

(
∂2G

∂h2

)
|h=0 = −2 Tr(ε̄vK) ,

where we used the fact that ε = h2ε̄ under the displacement scaling assumptions.

Thus, the final expression for 1/
√
G will be:

1√
G

= 1− Tr(ε̄vK)h2 +O(h4)

with the next order correction entering at O(h4).

Combining the two parts of the expansion we get the final expression for the unit normal:

N̂ = −(hv̄3,α +O(h3))êα + (1− 1

2
h2v̄3,αv̄3,α +O(h4)) ê3 ,

or in terms of vector operators:

N̂ ≈ −h∇v̄3 +

(
1− 1

2
h2(∇v̄3)T.(∇v̄3)

)
ê3 .



Appendix C

Hierarchy of Plate Models

Here, we summarize the hierarchy of gamma-convergent plate models described by Friesecke

et al. [2006].

C.1 Clamped Boundary Conditions

For clamped boundary conditions (ṽ = 0 on the edge), we have the hierarchy displayed in

table C.1. The models referred to by the table are the (relaxed) nonlinear membrane model,

the relaxed Föppl membrane model, the Föppl-von Kármán model and finally the linear

bending model, with (nondimensional) energies:

WNLM = h

∫
Ω
W(F )dΩ , (C.1.1)

WF öppl = h

∫
Ω

(
2λµ

λ+ 2µ
(Trεvk)2 + 2µ(εvK · εvK)

)
dΩ , (C.1.2)

W vK = WF öppl + WLB , (C.1.3)

and

WLB =
h3

24

∫
Ω

(
2λµ

λ+ 2µ
(Tr(∇∇v3)2 + 2µ(∇∇v3) · (∇∇v3)

)
dΩ (C.1.4)

respectively. The membrane models must be relaxed in regions of compressive stress, as

outlined in Steigmann [1990].
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Model t±/h ∼ hα W/h ∼ hβ v ∼ hγ v3 ∼ hδ

Membrane α = 0 β = 0 γ = 0 δ = 0

Relaxed Föppl 0 < α < 3 β = (4/3)α γ = (2/3)α δ = (1/3)α

Föppl-von Kármán α = 3 β = 2α− 2 γ = 2(α− 2) δ = α− 2

Linear Bending α > 3 β = 2α− 2 γ = α− 1 δ = α− 2

Table C.1: A summary of the hierarchy of plate models for fully clamped (ṽ = 0 at the edge)

conditions, derived by Friesecke et al. [2006]. Here h∗ = h/L is the relative thickness and t±

are the tractions on the top and bottom faces of the plate and W/h is the energy per unit

thickness.

C.2 Free Boundary Conditions

A similar hierarchy emerges for plates subject to traction free boundary conditions at the

edge. However, the intermediate range energy scaling between membrane theory and the

Föppl-von Kármán model admits a more varied set of behaviours. These are summarised in

table C.2.

The new hierarchy includes the nonlinear bending energy:

WNLB =
h3

24

∫
Ω

(
2λµ

λ+ 2µ
(Trκ)2 + 2µ(κ · κ)

)
dΩ. (C.2.1)

subject to the (exact) isometry constraint

(∇y)T (∇y) = I3 . (C.2.2)

Mathematically, all deformations must belong to the subset of admissible displacements: in

practise, one would impose this constraint via a Lagrange multiplier. The hierarchy further

includes the isometric linear1 bending model:

WLB =
h3

24

∫
Ω

(
2λµ

λ+ 2µ
(Tr(∇∇v3)2 + 2µ(∇∇v3) · (∇∇v3)

)
dΩ (C.2.3)

subject to the nonlinear, small-displacement, moderate-rotation, isometry constraint

det(∇∇v3) = 0 . (C.2.4)

The above constraint specifies that the Gaussian curvature (using the linearised curvature

∇∇v3) remains zero everywhere. It is worth stressing that contrasts with linear bending in

which there is a small stretch induced by bending, that enters at lower order.



C.2. Free Boundary Conditions 287

Model t±/h ∼ hα W/h ∼ hβ v ∼ hγ v3 ∼ hδ

Membrane α = 0 β = 0 γ = 0 δ = 0

Nonlinear bending α = 2 β = 0 γ = 0 δ = 0

Linear1 isometric bending 2 < α < 3 β = 2α− 2 γ = 2(α− 2) δ = α− 2

Föppl-von Kármán 2 < α < 2 β = 2α− 2 γ = 2(α− 2) δ = α− 2

Linear Bending α > 3 β = 2α− 2 γ = α− 1 δ = α− 2

Table C.2: A summary of the hierarchy of plate models for traction free conditions at the

edge, derived by Friesecke et al. [2006]. Here h = h∗/L is the relative thickness and t± are

the tractions on the top and bottom faces of the plate and W/h is the nondimensional energy

per unit thickness.

1This is termed isometric linear bending as it uses the linear bending energy: however, deformations must
satisfy the have a nonlinear isometry constraint



Appendix D

Intermediate Results for

Curved-Bell Elements

We now derive some intermediate results which become useful in expressing the submatrix

b̃32, in the construction of the shape functions of the curved Bell element.

D.1 Expressing Second Derivative Degrees of Freedom on the

Reference Element

In general the tangent vectors will depend on the position. For example, in general we have

∂2ŵ

∂x̂α∂x̂β
=

∂

∂x̂α

(
∂w

∂xγ

∂FKγ
∂x̂β

)
=

∂2w

∂xγ∂xδ

∂FKγ
∂x̂β

∂FKδ
∂x̂α

+
∂w

∂xγ

∂2FKγ
∂x̂α∂x̂β

, (D.1.1)

where F k = x.

However, as the sides 1 and 2 transform to straight lines on the reference element (i.e the

transformation of these edges is affine), we can straightforwardly express four of the degrees

of freedom as follows

∇w(a1) · (A1 ⊗A1) = ∇̃w̃(â1) · (â1 ⊗ â1) , (D.1.2)

∇w(a2) · (B2 ⊗B2) = ∇̃w̃(â2) · (â2 ⊗ â2) , (D.1.3)

∇w(a3) · (A1 ⊗A1) = ∇̃w̃(â3) · (â1 ⊗ â1) , (D.1.4)

∇w(a3) · (B2 ⊗B2) = ∇̃w̃(â3) · (â2 ⊗ â2) . (D.1.5)

The other two tangent vectors, A2 and B1 are functions of the arc length s, and as such

the reference second derivatives also depend on both the second and first local derivatives.
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Noting that, by definition of the tangent vectors, we have

A1 ≡ −FK,x̂1(a1) = −FK,x̂1(a3) , (D.1.6)

B2 ≡ −FK,x̂2(a2) = −FK,x̂2(a3) , (D.1.7)

and

A2 ≡ −FK,x̂1(a1) + FK,x̂2(a1) , (D.1.8)

B1 ≡ −FK,x̂2(a2) + FK,x̂1(a2) (D.1.9)

which can be verified by taking the derivative of equation (4.5.7).

We also need to compute second derivatives of the mapping, which for the P3 elements

will be

∂2

∂x̂1∂x̂2
FK(a1) = 2(B2 −A1) +

1

2
(3A2 −B1) , (D.1.10)

∂2

∂x̂2∂x̂2
FK(a1) = 2(A1 −B2)− (A2 −B1) , (D.1.11)

∂2

∂x̂1∂x̂1
FK(a2) = 2(B2 −A1) + (A2 −B1) , (D.1.12)

∂2

∂x̂1∂x̂2
FK(a2) = 2(A1 −B2) +

1

2
(3B1 −A2) , (D.1.13)

∂2

∂x̂1∂x̂2
FK(a3) =

1

2
(B1 +A2) , (D.1.14)

and

∂2

∂x̂2
1

FK(a1) =
∂2

∂x̂2
2

FK(a2) =
∂2

∂x̂2
2

FK(a3) =
∂2

∂x̂2
1

FK(a3) = 0 . (D.1.15)

Finally we may express the second derivative degrees of freedom on the reference element
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as

∂2ŵ

∂x̂1∂x̂1
(â1) =∇∇w(a1) · (A1 ⊗A1) , (D.1.16)

∂2ŵ

∂x̂1∂x̂2
(â1) =∇∇w(a1) · (A1 ⊗ (A1 −A2)) +∇w(a1) ·

(
2(B2 −A1) +

1

2
(3A2 −B1)

)
,

(D.1.17)

∂2ŵ

∂x̂2∂x̂2
(â1) =∇∇w(a1)·((A1−A2)⊗(A1−A2)) +∇w(a1)·(2(A1−B2)− (A2−B1)) ,

(D.1.18)

∂2ŵ

∂x̂1∂x̂1
(â2) =∇∇w(a2)·((B2−B1)⊗(B2−B1)) +∇w(a2)·(2(B2−A1) + (A2−B1)) ,

(D.1.19)

∂2ŵ

∂x̂1∂x̂2
(â2) =∇∇w(a2) · ((B2 −B1)⊗B2) +∇w(a2) ·

(
2(A1 −B2) +

1

2
(3B1 −A2)

)
,

(D.1.20)

∂2ŵ

∂x̂2∂x̂2
(â2) =∇∇w(a2) · (B2 ⊗B2) , (D.1.21)

∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · (A1 ⊗A1) , (D.1.22)

∂2ŵ

∂x̂1∂x̂2
(â3) =∇∇w(a3) · (A1 ⊗B2) +∇w(a3) · 1

2
(B1 +A2) , (D.1.23)

∂2ŵ

∂x̂2∂x̂2
(â3) =∇∇w(a3) · (B2 ⊗B2) . (D.1.24)

In the above expression, it becomes necessary to express ∇∇w · (A1,A2) in terms of the

three local second degrees of freedom, ∇∇w ·A1⊗A1, ∇∇w ·A2⊗A2 and∇∇w ·B2⊗B2,

which we do below.

We first relate the expression B2 −A1 = a1 − a2 to the tangent vectors at a1:

B2 −A1 = ãαAα (D.1.25)

thus we can relate A1 to A2 and B2 by

A1 =
B2 − ã2A2

1 + ã1
, A2 =

B2 − (1 + ã1)A1

ã2
and B2 = (1 + ã1)A1 + ã2A2 . (D.1.26)

Here, we have tacitly assumed that 1 + ã1 and ã2 are nonzero, which corresponds to the

condition that both vectors A1 and B2 and vectors A2 and B2 are linearly independent.

We then use the above relations successively to gain an expression in terms of the three
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tangent directions, A1 ⊗A1, A2 ⊗A2 and B2 ⊗B2, as follows

∇∇w · (A1 ⊗A2) = − ã2

1 + ã1
∇∇w · (A2 ⊗A2) +

1

1 + ã1
∇∇w · (B2 ⊗A2) (D.1.27)

= − ã2

1 + ã1
∇∇w · (A2 ⊗A2) +

1

ã2(1 + ã1)
∇∇w · (B2 ⊗B2) (D.1.28)

− 1

ã2
∇∇w · (B2 ⊗A1)

= − ã2

1 + ã1
∇∇w · (A2 ⊗A2) +

1

ã2(1 + ã1)
∇∇w · (B2 ⊗B2) (D.1.29)

− 1 + ã1

ã2
∇∇w · (A1 ⊗A1) − ∇∇w · (A2 ⊗A1) .

Finally, rearranging terms we get

∇∇w · (A1 ⊗A2) = − 1 + ã1

2ã2
∇∇w · (A1⊗A1)− ã2

2(1 + ã1)
∇∇w · (A2⊗A2)

+
1

2ã2(1 + ã1)
∇∇w · (B2⊗B2) . (D.1.30)

Similarly, we can express ∇∇w · (B1 ⊗B2) in terms in terms of the three local second

degrees of freedom, ∇∇w ·B1 ⊗B1, ∇∇w ·B2 ⊗B2 and ∇∇w ·A1 ⊗A1. We introduce

the constants b̃α, such that

A1 −B2 = b̃αBα . (D.1.31)

Using identical algebraic steps to the above derivation we arrive at

∇∇w · (B1 ⊗B2) = −1 + b̃2

2b̃1
∇∇w · (B2⊗B2)− b̃1

2(1 + b̃2)
∇∇w · (B1⊗B1)

+
1

2b̃1(1 + b̃2)
∇∇w · (A1⊗A1) . (D.1.32)

The final second derivative term for which we need an expression is ∇∇w · (A1 ⊗B2).

With this objective in mind, we introduce the new vectors C1 = −B2 and C2 = −A1, and

relate these to the tangents A2 and B1 as follows

A2 = c̃αCα and B1 =
≈
cαCα (D.1.33)

where we have introduced the constants c̃α and
≈
cα. Using the above relations in the same

manner as previously, after some algebra we can derive

∇∇w · (A1 ⊗B2) =− c̃1≈c1

c̃1≈c2 + c̃2≈c1
∇∇w · (C1 ⊗C1)− c̃2≈c2

c̃1≈c2 + c̃2≈c1
∇∇w · (C2 ⊗C2)

+
1

c̃1≈c2 + c̃2≈c1
∇∇w · (A2 ⊗B1) .

(D.1.34)
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Finally we introduce four additional constants that relate Aα and Bα to B1 and A2

respectively. We introduce
≈
aα and

≈
bα to allow us to express B1 and A2 in terms of quantities

intrinsic to the opposing curved-edge vertex using the defining relations

B1 = −≈aαAα and A2 =
≈
bαBα . (D.1.35)

Putting this all together we can now express equations (D.1.16–D.1.24) in terms of the local

degrees of freedom and the introduced constants. The final expressions for the reference

second derivative degrees of freedom are

RDOF2 = LDOF1 b̃3a +LDOF1 b̃3b (D.1.36)

with the reference second derivative degrees of freedom vector

RDOF2 =

[
∂2ŵ

∂x̂2
1

(â1) ;
∂2ŵ

∂x̂1∂x̂2
(â1) ;

∂2ŵ

∂x̂2
2

(â1) ;
∂2ŵ

∂x̂2
1

(â2) ;
∂2ŵ

∂x̂1∂x̂2
(â2) ;

∂2ŵ

∂x̂2
2

(â2) ;

∂2ŵ

∂x̂2
1

(â3) ;
∂2ŵ

∂x̂1∂x̂2
(â3) ;

∂2ŵ

∂x̂2
2

(â3)

]
, (D.1.37)

the local first derivative degrees of freedom vector

LDOF1 =

[
(∇w(a1)) ·A1 ; (∇w(a1)) ·A2 ; (∇w(a2)) ·B1 ; (∇w(a2)) ·B2 ;

− (∇w(a3)) ·A1 ; −(∇w(a3)) ·B2

]
, (D.1.38)

the local second derivative degrees of freedom vector

LDOF2 =

[
(∇∇w(a1)) ·A1 ⊗A1 ; (∇∇w(a1)) ·A2 ⊗A2 ; (∇∇w(a2)) ·B1 ⊗B1 ;

(∇∇w(a2)) ·B2 ⊗B2 ; (∇∇w(a3)) ·A1 ⊗A1 ; (∇∇w(a3)) ·B2 ⊗B2 ;

(∇∇w(a1)) ·B2 ⊗B2 ; (∇∇w(a2)) ·A1 ⊗A1 ; −(∇∇w(a3)) ·A2 ⊗B1

]
,

(D.1.39)

and finally the submatrices b̃3a and b̃3b. These matrices, in turn, are given by

b̃3a=



0 (2ã1 + 1
2
≈
a1) −(2ã1 +

≈
a1) 0 0 0 0 0 0

0 (3
2 + 2ã2 + 1

2
≈
a2) −(1 + 2ã2 +

≈
a2) 0 0 0 0 0 0

0 0 0 −(1 + 2b̃1 −
≈
b1) (3

2 + 2b̃1 − 1
2

≈
b1) 0 0 0 0

0 0 0 −(2b̃2 −
≈
b2) (2b̃2 − 1

2

≈
b2) 0 0 0 0

0 0 0 0 0 0 0 1
2(c̃1 +

≈
c1) 0

0 0 0 0 0 0 0 1
2(c̃2 +

≈
c2) 0


(D.1.40)
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and

b̃3b =



1
(

1 + 1+ã1

2ã2

) (
1 + 1+ã1

ã2

)
0 0 0 0 0 0

0 ã2

2(1+ã1)

(
1 + ã2

1+ã1

)
0 0 0 0 0 0

0 0 0
(

1 + b̃1

1+b̃2

)
b̃1

2(1+b̃2)
0 0 0 0

0 0 0
(

1 + 1+b̃2

b̃1

) (
1 + 1+b̃2

2b̃1

)
1 0 0 0

0 0 0 0 0 0 0 −c̃1≈c1
c̃1
≈
c2+c̃2

≈
c1

1

0 0 0 0 0 0 1 −c̃2≈c2
c̃1
≈
c2+c̃2

≈
c1

0

0 −1
2ã2(1+ã1)

−1
ã2(1+ã1)

0 0 0 0 0 0

0 0 0 −1
b̃1(1+b̃2)

−1
2b̃1(1+b̃2)

0 0 0 0

0 0 0 0 0 0 0 −1

c̃2
≈
c2+c̃2

≈
c1

0
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D.2 1D Hermite Polynomials

Consider the function F (s) with s ∈ (0, 1). We can interpolate this function using a basis

ψ1D
3 , such that the interpolant f(s) = Σ1D

3 ·ψ1D
3 ≈ F (s) with the Hermite degrees of freedom

Σ1D
3 =

[
F (0) ; F ′(0) ; F (1) ; −F ′(1)

]
. (D.2.1)

It can be shown that the basis will be given by

ψ1D
3 =

[
(1− s)2(1 + 2s) ; (1− s)2s ; (3− 2s)s2 ; (1− s)s2

]T
, (D.2.2)

which again can be deduced as described in the next section.

Likewise, we can interpolate a function G(s) with s ∈ (0, 1) using a basis ψ1D
5 , such that

the interpolant g(s) = Σ1D
5 ·ψ1D

5 ≈ G(s) with the Hermite degrees of freedom

Σ1D
5 =

[
F (0) ; F ′(0) ; F ′′(0) ; F (1) ; −F ′(1) ; F ′′(1)

]
. (D.2.3)

It can be shown that the basis will be given by

ψ1D
5 =

[
(1− s)3(1 + 3s+ 6s2) ; (1− s)3s(1 + 3s) ;

1

2
(1− s)3s2 ;

s3(10− 15s+ 6s2) ; s3(4− 7s+ 3s2) ;
1

2
s3(1− s)2

]
,

(D.2.4)

which again can be deduced as described in the next section.
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D.3 Constructing a Basis

In this section we discuss how to construct a complete basis on a right-angled triangle. For

a Lagrange-interpolated basis it will be possible to use this method to construct the generic

basis, however the situation is complicated for Hermite basis functions which have differing

degrees of freedom on reference and physical triangles.

Let pn(s) be the space of 1D polynomials of degree n on range s ∈ [0, 1] and let mi be

the set of basis monomials mi(s) = si with i ∈ {0, . . . , n}, i.e that are linearly independent

and span the space such that we can express any p̄ =
∑n

i=0 Pi s
i , ∀p̄ ∈ pn , Pi ∈ <.

Let us construct a new basis ψi(s), such that

p̄ =
n∑
i=0

Σi ψi , ∀p̄ ∈ pn (D.3.1)

for Σi = Ĥip̄ where Ĥi is a linear operator on the space pn(s) and Σi ∈ R.

By the linear property of the operator, we have

Σi =

n∑
j=0

ĤiPjs
j =

n∑
j=0

PjĤis
j ≡

n∑
j=0

PjΣ̂ij , (D.3.2)

with Σ̂ij ≡ Ĥis
j . Thus we can write

n∑
i=0

Pis
i =

n∑
i=0

Σi ψi =
n∑
i=0

n∑
j=0

PjΣ̂ij ψi (D.3.3)

which in turn implies

sj =
n∑
i=0

Σ̂ij ψi . (D.3.4)

Therefore we can determine ψi by the following equation

ψ = Σ̂
−T
m , (D.3.5)

where Σ̂ij = Ĥis
j and m is the vector with components mi(s) = si This method can be

straightforwardly extended to higher-dimensional bases.

D.4 Basis Monomials

The vector of p7 basis monomials is given by

m̃7 =

[
x̂7

1, x̂
6
1x̂2, x̂

5
1x̂

2
2, x̂

4
1x̂

3
2, x̂

3
1x̂

4
2, x̂

2
1x̂

5
2, x̂1x̂

6
2, x̂

7
2, x̂

6
1, x̂

5
1x̂2, x̂

4
1x̂

2
2, x̂

3
1x̂

3
2, x̂

2
1x̂

4
2, x̂1x̂

5
2, x̂

6
2, x̂

5
1, x̂

4
1x̂2,

x̂3
1x̂

2
2, x̂

2
1x̂

3
2, x̂1x̂

4
2, x̂

5
2, x̂

4
1, x̂

3
1x̂2, x̂

2
1x̂

2
2, x̂1x̂

3
2, x̂

4
2, x̂

3
1, x̂

2
1x̂2, x̂1x̂

2
2, x̂

3
2, x̂

2
1, x̂1x̂2, x̂

2
2, x̂1, x̂2, 1

]
.

.

(D.4.1)
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D.5 Computing the Inverse Hessian

For the computation of the second derivatives, we must compute the value of the second

x derivative of x̂, which we refer to as the inverse Hessian. Since the inverse mapping is a

priori unknown, it is inconvenient to invert a 5× 5 matrix each time second derivatives are

required. Instead, we perform some matrix algebra to determine a more accessible expression

for the inverse hessian. The quantity we are interested in is:

(∇J−1)αβγ = (∇∇x̂)αβγ =
∂2x̂α
∂xα∂xβ

. (D.5.1)

We start by using the chain rule to express this as:

(∇J−1)αβγ = (∇̂J−1)αβδ(J
−1)δγ . (D.5.2)

Now, by considering the derivative of an identity matrix we can express the derivative of an

inverse as:

(J−1)′ = −J−1J ′J−1 , (D.5.3)

and therefore we have:

(∇J−1)αβγ = −(J−1)αν (∇̂J−1)µνδ (J−1)νβ (J−1)δγ , (D.5.4)

as our final expression. We recognise the rank three tensor as the Hessian defined as:

H ≡ ∇̂J = ∇̂∇̂x(x̂) , (D.5.5)

which can be easily computed from the mapping. Thus our final expression for the second

x̂ derivative of the local coordinate, x̂, is:

(∇J−1)αβγ = −(J−1)αδ (H)δµν (J−1)µβ (J−1)νγ . (D.5.6)



Appendix E

Lagrange Shape Functions

E.1 The Cubic Lagrange Basis

For completeness we record the cubic Lagrange basis below. The basis is given by:

ψCL =



1
2 x̂0 (9 (x̂0 − 1) x̂0 + 2)

1
2 x̂1 (9 (x̂1 − 1) x̂1 + 2)

−1
2 (x̂0 + x̂1 − 1) (3x̂0 + 3x̂1 − 2) (3x̂0 + 3x̂1 − 1)

9
2 x̂0 (x̂0 + x̂1 − 1) (3x̂0 + 3x̂1 − 2)

1
2(−9)x̂0 (3x̂0 − 1) (x̂0 + x̂1 − 1)

9
2 x̂0 (3x̂0 − 1) x̂1

9
2 x̂0x̂1 (3x̂1 − 1)

1
2(−9)x̂1 (x̂0 + x̂1 − 1) (3x̂1 − 1)

9
2 x̂1 (x̂0 + x̂1 − 1) (3x̂0 + 3x̂1 − 2)

−27x̂0x̂1 (x̂0 + x̂1 − 1)



. (E.1.1)
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Appendix F

Approximate Solution to the

Clamped Inflation Problem

F.1 The Föppl-von Kármán Equations

In this appendix we describe an approximate solution for the clamped, circular geometry of

the inflation experiments described in chapter 6. Assuming and axisymmetric solution, the

system is described by the following nondimensional equations

∆2u3 −
(
Sρρu

′′
ρ +

1

ρ
Sφφu

′
ρ

)
= ∆p , (F.1.1)

S′ρρ +
1

ρ
(Sρρ − Sφφ) = 0 . (F.1.2)

subject to the boundary conditions

uρ(ρ = 1) = eρ
12(1− ν2)

h2
, u3(ρ = 1) = 0 , u′3(ρ = 1) = 0 , (F.1.3)

in which eρ > 0 is the pre-stretch parameter and the shorthand f ′(x) = df(x)/dx is used for

the derivatives. Finally, at the centre, we have the following regularity conditions

uρ(ρ = 0) = 0 , u′3(ρ = 0) = 0 u′′′3 (ρ = 0) = 0 , (F.1.4)

which ensure that the stress and displacements are continuous. Here the (nondimensional)

radial, azimuthal and vertical displacements are given by uρ, uφ
1 and u3. ρ and φ correspond

to the radial and azimuthal coordinates of a plane polar coordinate system. Once again, we

use the nondimensionalization introduced in chapter 6.

1The azimuthal displacement does not enter the equations, due to the assumed axisymmetry.
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F.2 Reductions

We make several assumptions to make the problem more tractable. The first assumption we

make is that we may neglect bending: instead solving the Föppl membrane equations. Thus

we assume that Sρρ � 1, Sφφ � 1. Following this assumption, the equations become(
Sρρu

′′
ρ +

1

ρ
Sφφu

′
ρ

)
= ∆p , (F.2.1)

S′ρρ +
1

ρ
(Sρρ − Sφφ) = 0 . (F.2.2)

The equations are now second order and subject to the boundary conditions

uρ(ρ = 1) = Uρ , u3(ρ = 1) = 0 , (F.2.3)

and the following regularity conditions at the centre

uρ(ρ = 0) = 0 , u′3(ρ = 0) = 0 (F.2.4)

which ensure that the stress and displacements are continuous.

F.3 Approximate Solution Space

To further reduce the problem, we assume that the solutions are low order polynomials of

the radial coordinate: uρ(ρ) ∈ P3(ρ) and u3(ρ) ∈ P2(ρ). Thus we have

uρ(ρ) = U [0]
ρ + U [1]

ρ ρ+ U [2]
ρ ρ2 − U [3]

ρ ρ3 (F.3.1)

u3(ρ) = U
[0]
3 + U

[1]
3 ρ+ U

[2]
3 ρ2 . (F.3.2)

In order to satisfy the boundary conditions (equations (F.2.3)-(F.2.4)) the polynomials must

assume following form

uρ(ρ) = Uρ ρ+ U [3]
ρ ρ (1− ρ2) , (F.3.3)

u3(ρ) = U3(1− ρ2) . (F.3.4)

where U3 and U
[3]
ρ are constants to be determined.

This results in the following stress components

Sρρ =
1

1− ν2

(
Uρ(1 + ν) + U [3]

ρ ((1 + ν)− (3 + ν)ρ2) + 2U3
2 ρ2
)
, (F.3.5)

Sφφ =
1

1− ν2

(
Uρ(1 + ν) + U [3]

ρ ((1 + ν)− (3ν + 1)ρ2) + 2νU3
2 ρ2
)
. (F.3.6)
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F.4 In-Plane Stress Balance

Substituting this into the in-plane stress balance results in the following equation

(
−8U [3]

ρ + (6− 2ν)U3
2
)
ρ = 0 , (F.4.1)

allowing us to express U
[3]
ρ as a function of U3:

U [3]
ρ =

1

4
(3− ν)U3

2 . (F.4.2)

Thus, we see that the polynomial ansatz exactly satisfies the in-plane stress balance, if the

above equation holds.

F.5 Out of Plane Force Balance

It remains to relate the pressure to the deflection, by solving the out-of-plane force balance.

The ansatz we have made does not satisfy the equations exactly. However, it can be seen

that in the limit Uρ � U3
2, the stress components will be approximately constant. Thus,

we make the approximation that both stress components are constant and given by the

maximum values of the stress obtained from the in-plane force balance:

Sρρ(ρ) ≈ Sρρ(ρ = 0) =
1

1− ν

(
Uρ +

1

4
(3− ν)U3

2

)
, (F.5.1)

and Sφφ ≈ Sφφ(ρ = 0) = Sρρ(ρ = 0). Substituting the constant stress into the solution we

find

∆p = 4Sρρ U3 . (F.5.2)

Finally, introducing the expression for the approximate stress (equation (F.5.1)) allows us

to write the pressure as the following function of U3 and Uρ

∆p =
1

1− ν
(
4U3 Uρ + (3− ν)U3

3
)
, (F.5.3)

or in terms of dimensional quantities

∆p∗ =
Eh∗

R(1− ν)

(
4
U∗3 U

∗
ρ

R2
+ (3− ν)

(
U∗3
R

)3
)
, (F.5.4)

where R is the radius of the clamp. It transpires that this method is in fact equivalent to

a collocation method, with a single collocation point at ρ = 0, choosing the P3(ρ) solution

space for both unknowns.
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Whilst this result is strictly speaking only appropriate for Uρ � U3
2, numerical experi-

ments reveal that even in the case Uρ = 0, the error does not exceeds 5% in the membrane

limit of the equations. However, this approximation is not appropriate when bending is not

negligible, as per our assumptions. In the limit U3/Uρ → 0, we may neglect U
[3]
ρ in the strain

and the resulting solution will exactly satisfy the membrane equations. We refer to this limit

as the strong pre-stretch regime, in which ∆p ∼ UρU3.

Interestingly, for membrane-type deformations, a spherical-cap out-of-plane solution (i.e

u3 ∼ (1− ρ2)) approximately holds in both the in-plane stretch dominated (linear) regime,

and the self-induced tension dominated (cubic) regime. Thus, when bending is negligible

there is no way to distinguish which regime a system is using the shape of the membrane

at a particular forcing alone: multiple measurements over a range of forcing must be made.

This mirrors similar observations made of indentation-type systems made by Vella and Davi-

dovitch [2017].



Appendix G

Linear Stability Analysis of the

Föppl-von Kármán Equations

G.1 Linear Stability Analysis

To compute the onset of the symmetry breaking bifurcation we use the method of linear

stability analysis. For wrinkling problems, in a circular geometry, with polar coordinates

(ρ, φ), this entails assuming an initially axi-symmetric solution, that buckles at some critical

threshold in parameter space, giving rise to a wrinkling solution.

To explain the concepts of linear stability analysis, we begin with a general example,

proceeding to discuss the Föppl-von Kármán equations in depth. We begin by considering

a set of nonlinear partial-differential equations

F (ρ, φ,u(ρ, φ) ; P ) = 0 , (G.1.1)

with unknown variables, u, and independent variables ρ and φ and parameter P .

We assume an initially axisymmetric solution which at some point, as we vary the param-

eter P , undergoes a symmetry breaking bifurcation that corresponds to the plate wrinkling.

Thus, we make the following ansatz for the unwrinkled state

u(ρ, φ) = ū(ρ) . (G.1.2)

The set of partial differential equations in (G.1.1) become the axisymmetric equations,

F̄ (ρ, ū(ρ) ; P ) = 0 , (G.1.3)
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which will in general represent a set of nonlinear, ordinary differential equations. These

equations can then be solved to provide the base-state for the bifurcation analysis.

To find the wrinkling onset and the wrinkling pattern (i.e. the number of wrinkles

observed at the onset), the axisymmetric solution is then assumed to be perturbed by a

sinusoidal wrinkling state with infinitesimal amplitude, ε:

u(ρ, φ) = ū(ρ) + ε ũ(ρ) eikφ , (G.1.4)

where only the kth term of the Fourier expansion of the solution is considered. Here, we use

complex coefficients so that any phase difference between unknown variables can be absorbed

into the coefficients.

This ansatz, equation (G.1.4), is substituted into the governing equation, (G.1.1),

F
(
ρ, φ, ū(ρ) + ε eikφ ũ(ρ) ; P

)
= 0 , (G.1.5)

and terms up to linear order in ε are retained.

The O(1) terms in this equation will constitute the axisymmetric equations, which the

base-state will satisfy. The O(ε) (perturbation) terms must be linear in the perturbed solu-

tion, ũ, as the equations are linear in the amplitude ε. Thus the equation (G.1.5) becomes

F̄ (ρ, φ, ū(ρ) ; P ) + ε eikφ F̃ (ρ, ũ(ρ) ; ū(ρ), k) = 0 , (G.1.6)

where the perturbed equation, F̃ , is a linear, ordinary differential equation. As any boundary

conditions and loading conditions are satisfied at leading order by the axisymmetric equation,

the perturbation equation,

F̃ (ρ, ũ(ρ) ; ū(ρ), k) = 0 , (G.1.7)

is homogeneous. Thus, we can reformulate the perturbation equation (G.1.7) in terms of a

3× 3 differential operator, Ĵ , to write the equation as

Ĵ (ρ ; ū(ρ), k) ũ(ρ) = 0 . (G.1.8)

The perturbation equations, (G.1.8), will depend on the base-state as a functional pa-

rameter, as well as the assumed wavenumber of the perturbation, k. Examining equation

(G.1.8), it is clear that the trivial solution ũ = 0 will always be a solution to these equations;

thus, wrinkling solutions exist at isolated points in parameter space, (P, k), at which multiple

solutions exist. The non-trivial solutions, in turn, exist when the Jacobian operator has a
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zero eigenvalue: the corresponding eigenvector will be the solution. By searching for these

non-trivial solutions, we can find both the bifurcation point, (Pc, kc), and the corresponding

solution, ũ(ρ) exp(ikφ).

We proceed to outline the base-state and bifurcation equations for the displacement-based

Föppl-von Kármán equations for the wrinkling problem outlined in chapter 7, applying the

above methodology.

G.2 Axisymmetric Base State

To compute the onset of wrinkling, we may perform a linear stability analysis about an

initially axisymmetric state. Making the following ansatz

uρ(ρ, φ) = ūρ(ρ) + ε ũρ(ρ) cos(kφ)

uφ(ρ, φ) = ε ũφ(ρ) sin(kφ)

u3(ρ, φ) = ū3(ρ) + ε ũ3(ρ) cos(kφ) (G.2.1)

we are left with the base-state axisymmetric equations at leading order:(
d2

dρ2
+

1

ρ

d

dρ

)2

ū3 −
(
Sρρū

′′
ρ +

1

ρ
Sφφū

′
ρ

)
= ∆p , (G.2.2)

S′ρρ +
1

ρ
(Sρρ − Sφφ) = 0 . (G.2.3)

Here the stress tensor, S̄, is related to the Föppl-von Kármán strain tensor, S̄
vK

, by

S̄(ρ) =
1

1− ν2

(
(1− ν)Ē

vK
+ νI2TrĒ

vK
)
, (G.2.4)

with the components of the axisymmetric Föppl-von Kármán strain tensor given by

ĒvKρρ = ũρ
′ +

1

2

(
ũ3
′)2 , ĒvKρφ = 0 and ĒvKφφ =

1

ρ
ūρ . (G.2.5)

These equations are subject to the boundary conditions

ū3(ρ = 1) = 0 , ū3
′(ρ = 1) = 0 and S̄ρρ(ρ = 1) = 0 , (G.2.6)

and the regularity conditions at the centre

ūρ(ρ = 0) = 0 , ū′3(ρ = 0) = 0 and ū′′′3 (ρ = 0) = 0 . (G.2.7)

Thus we have reduced a set of fourth-order, nonlinear, partial-differential equations, into a

set of fourth-order, nonlinear, ordinary differential equations.
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These equations are identical to the system outlined in section 6, save for the replacement

of the stress free boundary condition with an imposed radial displacement condition. As such,

both sets of equations are discretized in the same manner, as outlined in the next section.

G.3 Discretization of the Axisymmetric Equations

Before perturbing the system, we solve equations (G.2.2–G.2.3) to determine the axisym-

metric base-state. This can be achieved readily numerically, by discretizing the system

using the finite difference method with a uniform 1D grid of N nodes, at positions Rn, for

n = {1, . . . , N}. Two discrete unknowns, Ūρn and Ū3n, are associated with each point,

resulting in a system of 2N unknowns.

In the discrete equations, derivatives are computed in terms of combinations of these

unknowns, as second-order, central, finite difference derivatives. For boundary conditions,

derivatives are computed in terms of second-order, forward and backward finite difference

derivatives, at ρ = 0 and ρ = 1, respectively. Thus, the continuous equations are replaced

with a set of 2N nonlinear algebraic equations (residuals), F̄ , in terms of the 2N unknowns:

F̄ (R, Ūρ, Ū3 ; ∆p) = 0 . (G.3.1)

Thus we have reduced the nonlinear ordinary differential equations (G.2.2–G.2.3), to a

set of nonlinear algebraic equations. These can be readily solved using the octave function

fsolve , which uses the MINPACK implementation of Powell’s hybrid method to find the local

minima [Powell, 1970; Moré et al., 1984; Eaton et al., 2014]. This method is a hybrid

algorithm, that combines the Newton method with steepest descent methods and relies upon

a so-called trust-region, inside which steps are contained. This extension makes Powell’s

algorithm significantly more stable than a standard newton algorithm [Powell, 1970].

Newton-type methods work more efficiently with an analytic Jacobian, which we can

readily determine from the discrete residuals

J(R, Ūρ, Ū3) =
∂

∂Ū
F̄ (R, Ūρ, Ū3 ; ∆p) . (G.3.2)

In this case, the Jacobian will depend on the unknowns, due to the nonlinearity of the

equations. Here Ū = Ūρ
_Ū3 is the concatenation of the two length N vectors of the

(unknown) discrete displacements.
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G.4 Perturbation Equations

To compute the wrinkling solution at the onset we must solve the perturbation equations.

Substitution of the ansatz, equation (G.2.1), into the Föppl-von Kármán equations (see

chapter 7) yields the following perturbation equations(
d2

dρ2
+

1

ρ

d

dρ
+
k2

ρ2

)2

ũ3 −
(
S̄ρρũ

′′
ρ + S̄φφ

(
1

ρ
ũ′ρ +

k2

ρ2
ũφ

)
+ S̃ρρū

′′
ρ +

1

ρ
S̃φφū

′
ρ

)
= 0 , (G.4.1)

S̃′ρρ +
1

ρ

(
S̃ρρ − S̃φφ

)
= 0 , (G.4.2)

S̃′ρφ −
1

ρ

(
kS̃ρρ − 2S̃ρφ

)
= 0 . (G.4.3)

The components of the perturbed stress tensor are related to the perturbed strain tensor by

S̃(ρ) =
1

1− ν2

(
(1− ν)Ẽ

vK
+ νI2TrẼ

vK
)
, (G.4.4)

whose components, in turn, are given by

ẼvKρρ = ũρ
′ + ū3

′ũ3
′ , ẼvKφφ =

1

ρ
(ũρ + kũφ) , (G.4.5)

and

ẼvKρφ =
1

2ρ

(
rũφ

′ − ũφ + k(ũρ + ū′3 ũ3)
)
. (G.4.6)

Finally, the boundary conditions for the perturbation equations will be

ũ3(ρ = 1) = 0 , ũ3
′(ρ = 1) = 0 , S̃ρφ(ρ = 1) = 0 and S̃ρφ(ρ = 1) = 0 , (G.4.7)

with the regularity conditions at the centre

ũρ(ρ = 0) = 0 , ũφ(ρ = 0) = 0 , ũ′3(ρ = 0) = 0 and ũ′′′3 (ρ = 0) = 0 . (G.4.8)

These equations are now linear in the unknown displacements and homogeneous.

G.5 Discretization of the Perturbation Equations

We discretize this system, using the same mesh as for the axisymmetric equations, and using

the axisymmetric solution as a functional parameter. Thus the continuous equations are

replaced by the 3N discrete, linear equations:

F̃ (R, Ũρ, Ũφ, Ũ3 ; k, Ū) = 0 . (G.5.1)



G.5. Discretization of the Perturbation Equations 307

The corresponding Jacobian will be

J̃(R; k, Ū) =
∂

∂Ũ
F̃ (R, Ũρ, Ũφ, Ũ3; k, Ū) = 0 . (G.5.2)

This equation does not depend on the unknowns, as the discrete equations are linear.

To find symmetry breaking bifurcations, we search for isolated points at which multiple

solutions occur: these will occur when the Jacobian determinant is zero. Thus, we can find

the wrinkling onset for a particular wavenumber, k, by searching for the first instance when

the Jacobian determinant changes sign. Once the parameter values are determined, the

form of the wrinkling solution can be found by solving the eigenproblem for the minimum

eigenvalue, which will be exactly zero at the numerical onset.



Appendix H

Approximate Solution for a Sheet

Clamped at One End

We may make a prediction by for the displacement of the fish-shaped domain, by considering

rectangular domain of (nondimensional) length ` = `∗/L and width w = w∗/L, where

L is a dimensional length scale associated with the sheet. Firstly, we assume that the

bending dominates at leading order. We use a nondimensional Cartesian coordinate system

x2 ∈ [−w ,w ] and x1 ∈ [0, `]. Thus we have the following in-plane force balance

∇4u∗3(x1, x2) = ∆p∗L4/D (H.0.1)

where u∗3 is the dimensional deflection, ∆p∗ is the (constant) applied pressure and D is the

bending moment. This equation is subject to clamped boundary conditions at x1 = 0 and

free boundary conditions on all other sides. Assuming the domain is wide w � `, such that

u3(x1, x2) ≈ u3(x1), we may write this as

∇4u∗3(x1) = ∆p∗L4/D (H.0.2)

subject to u∗3(0) = u∗3
′(0) = 0 and u∗′′3(`) = u∗′′′3 (`) = 0 with the nondimensional length `.

Determination of the solution to this equation is trivial, and the deflection is given by

u∗3/L =
1

24
Fx2

1

(
6`2 − 4`x1 + x2

1

)
, (H.0.3)

with F given by F = ∆p∗L3/D.

This will be an exact solution if the Föppl-von Kármán strain component εvKx1x1
= 0.

Thus, assuming this to be the case implies that the in-plane displacement will be

u∗1/L = −1

2

∫ x1

0
u′3(x̄1)dx̄1 . (H.0.4)
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Computing this, we find that the solution is given by

u∗1/L = −
F 2x3

1

(
42`4 − 63`3x1 + 42`2x2

1 − 14`x3
1 + 2x4

1

)
1008

. (H.0.5)

This result will be exact for an infinitely wide sheet, but is only an approximation for sheets

of finite width. Thus, choosing x = 16/5 and ` = 11/5 − 2 cos(π/8), as the position of

the fishes mouth and length of strip, respectively, we may estimate the displacement of the

fish-shaped sheet.
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