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Biomarker 

A portmanteau of ‘biological’ and ‘marker’. A biomarker is “…a characteristic that can be 

objectively measured and evaluated as an indicator of normal biologic processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” (National 

Institute for Health Biomarkers Definitions Working Group, 2001, p.91). 

Biomarker test 

A health technology that aims to reveal patient heterogeneity within routine clinical 

practice by detecting the presence of a biomarker.  

Biosimilar 

Biologic treatments with similar quality, safety, and efficacy of a reference biologic 

(Grabowski et al., 2014).  

Care pathway 

A pathway that describes the sequence of health technologies delivered to a patient over 

time in routine clinical practice (Brennan et al., 2000).  

Clinical validity (of a test) 

The ability of a biomarker to indicate a specific clinical status (Rogowski et al., 2009). 

Clinical utility (of a test) 

The ability to improve outcomes by making a treatment decision based on the result of a 

test (Rogowski et al., 2009). 
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Cluster-robust standard errors 

Used when data are clustered (for example, patients within different hospitals) to account 

for the potential within-cluster correlation between observations.  

Companion diagnostic 

A biomarker test co-developed ex ante alongside a pharmaceutical and typically stated 

explicitly within the product label of a treatment (Milne et al., 2015).  

Complementary diagnostic 

A biomarker test that may be developed ex post as a stand-alone test after a pharmaceutical 

has achieved market access. Complementary diagnostics are not typically stated within the 

product label of a treatment (Milne et al., 2015).  

Conceptual model 

An abstract representation of a phenomenon of interest, often illustrated diagrammatically, 

to assist in determining the final structure of a de novo decision analytic model 

(Tappenden, 2014).  

Cost-effectiveness acceptability curve 

A graphical illustration of the probability that each alternative comparator strategy is 

relatively cost-effective (Y-axis) over a range of cost-effectiveness thresholds (X-axis) 

(Fenwick et al., 2001).  

Cost-effectiveness acceptability frontier 

A graphical illustration of the probability that the alternative with the highest net benefit is 

relatively cost-effective (Y-axis) over a range of cost-effectiveness thresholds (X-axis) 

(Fenwick et al., 2001).  

Cost-effectiveness threshold 

The additional cost that must be imposed on the budget for health care to displace one 

QALY elsewhere within the health care system (Claxton et al., 2015a).  

Cut-off value (of a test) 

The quantity of a biomarker in a sample, measured by a test, that distinguishes whether the 

test has a positive or negative result; the cut-off value of a test is related directly to its 

sensitivity and specificity (Macaskill et al., 2010).  

Cytokines 

Proteins secreted during an immune response that influence the interaction between, or 

behaviour of, specific cells (Feldmann, 2002).  

Decision analytic model 

A series of mathematical relationships that represent the progression of a patient’s disease 

and the impact of a health technology on disease progression (Brennan et al., 2000). The 

output of a decision analytic model can be expressed in terms of the expected outcomes of 

interest for each alternative comparator strategy.  

Decision problem 

An explicit statement of the resource allocation decision under consideration (Roberts et 

al., 2012).  

Decision uncertainty 

The probability that an incorrect decision is made, in the context of resource allocation 

decisions for health care (O'Hagan et al., 2005).  
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Deterministic sensitivity analysis 

To establish the sensitivity of the expected outcomes derived from an economic evaluation 

by performing a manual adjustment to the value(s) of a model’s input parameter(s) (Briggs 

et al., 1999).  

Diagnostic information 

The information derived from the result of a medical test.  

Discrete event simulation 

A decision analytic modelling technique that simulates the histories of individual patients 

over time, characterised by the specific events that they may experience (Caro et al., 

2016b).  

Disease Activity Score – 28 Joint Count (DAS28) 

A composite condition-specific outcome measure for rheumatoid arthritis used to 

determine a patient’s level of disease activity (van Gestel et al., 1998).  

Dominance 

A health technology is dominated if a comparator strategy produces more health at a lower 

cost (Karlsson et al., 1996). 

Drug interference 

The inability to measure free anti-drug antibodies unless their quantity exceeds the amount 

of therapeutic drug within a serum sample (van Schouwenburg et al., 2013).  

Early economic evaluation 

An economic evaluation conducted early in the product lifecycle of a health technology. 

Such studies are typically characterised by limited evidence and substantial parameter 

uncertainty (Annemans et al., 2000).  

Econometric analysis 

A statistical analysis informed by economic theory (Tintner, 1953).  

Economic evaluation 

“…the comparative analysis of alternative courses of action in terms of both their costs 

and consequences” (Drummond et al., 2015, p.4). An alternative typically refers to a 

health technology and the consequence is typically expressed in terms of health benefits.  

End-to-end evidence 

A single study that incorporates all elements of a test-and-treatment strategy, by following 

a patient (i) from their observed test result, (ii) to a specific treatment decision, and then to 

their final (health and resource) outcomes (National Institute for Health and Care 

Excellence, 2011a).  

Endogeneity 

When an independent variable is correlated with the residual error term in a regression 

analysis. Endogeneity may occur due to (i) reverse-causality; (ii) measurement error; or 

(iii) omitted variable bias (Wooldridge, 2010).  

EULAR response 

Criteria of treatment response in clinical practice for patients with rheumatoid arthritis in 

England, measured six months after commencing any treatment. Patients may be classified 

as having achieved a good, moderate, or no EULAR response (van Gestel et al., 1998).  

Extended dominance 

An health technology is extendedly dominated if a linear combination of two alternatives 

produces more health at a lower cost (Karlsson et al., 1996).  
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Enzyme-linked immunosorbent assay 

A biochemical assay that can be used to test for the presence of specific antibodies within a 

patient’s serum sample (van Schouwenburg et al., 2013).  

Health technology 

An intervention used in the delivery of health care. For example, a pharmaceutical 

treatment, medical test, or device.  

Heterogeneity (in health outcomes) 

The variability in health outcomes can be explained by observed characteristics (Briggs et 

al., 2006).  

Horizontal inequity 

When patients of equal need receive unequal treatment (Wagstaff et al., 1991).  

Immunogenicity 

A process whereby the immune system of a patient incorrectly produces an immune 

response against a treatment itself, which may ultimately neutralise its therapeutic 

properties (Krieckaert et al., 2012).  

Incidence 

The rate of new cases within a specific population over a period of time.  

Incremental cost 

The difference in cost between two alternative interventions (Drummond et al., 2015).  

Incremental cost-effectiveness ratio 

The ratio of incremental costs to incremental health benefits (Drummond et al., 2015).  

Incremental QALY 

The difference in QALYs between two alternative interventions (Drummond et al., 2015).  

Mapping algorithm 

A technique to map between different instruments that measure clinical outcomes; for 

example, between a condition-specific and a generic outcome measure (Dakin, 2013).  

Monte Carlo simulation 

The process of random sampling. 

Multiple imputation by chained equations 

A method for handling missing data by randomly sampling values for the missing data, 

based on the observed data, and combining the results using Rubin’s rules (White et al., 

2011).  

National Institute for Health and Care Excellence 

The decision-making authority responsible for making recommendations regarding the 

allocation of population health care resources in England (National Institute for Health and 

Care Excellence, 2013a).  

Omitted variable bias 

When an independent variable is omitted from a regression that is correlated with a 

different independent variable and/or the dependent variable (Greene, 2012).  

Opportunity cost 

The benefit forgone from the next-best use of a specific resource. The opportunity cost of 

resource allocation decisions for health care can be expressed in the health benefits 

forgone (Claxton et al., 2015a).  
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Perspective 

The scope of the costs that should be included in an economic evaluation. The perspective 

is typically defined by the budget constraint of the decision-maker. Examples include a 

health care system perspective and a societal perspective (Drummond et al., 2015).  

Prescribing algorithm 

A set of “if…then” statements that informs a subsequent prescribing decision based on 

relevant factors (such as a biomarker) at the time of a clinical decision (Schoenbaum et al., 

1990).  

Prevalence 

The proportion of cases within a specific population at a specific period of time.   

Probabilistic sensitivity analysis 

To propagate joint parameter uncertainty through a decision analytic model by (i) 

characterising all input parameters as probability distributions and (ii) sampling values for 

all parameters by using Monte Carlo simulation (Doubilet et al., 1985).   

Purposive sample 

A non-random sample, used often in qualitative research, to enable an understanding of a 

phenomenon being researched (Silverman et al., 2008).  

Quality-adjusted life year 

A generic outcome measure of health benefit, calculated by multiplying each year of life 

by a weight that represents its health-related quality of life. Weights are calculated 

according to the reference points of one (full health) and zero (death); states worse than 

death are possible (Drummond et al., 2015).  

Reference case 

A pre-specified preferred criteria for conducting an economic evaluation. A reference case 

is typically an expression of a decision-maker’s value judgements (Drummond et al., 

1993).  

Rheumatoid arthritis 

A chronic, systemic inflammatory autoimmune disease characterised by (i) inflammation 

in the lining of the joints, and (ii) the progressive and irreversible destruction of joints and 

cartilage. Inflammation occurs predominantly within the hands and feet of a patient. 

Patients experience pain, a gradual decline in functional ability, and a reduction in quality 

of life. (Firestein, 2003; Kvien, 2004; Russell, 2008; Scott et al., 2010; McInnes et al., 

2011).  

Sampling frame 

The individuals within a target population that were eligible for recruitment to a study 

(Morgan, 2008).  

Secondary non-response 

When a patient with rheumatoid arthritis loses response to a treatment, such as a tumour 

necrosis factor-α inhibitor, after having responded for at least six months previously (Jani 

et al., 2015b).  

Semi-empirical medicine 

To treat all patients equally and make adjustments by trial-and-error (Woodcock, 2007).  

Semi-structured interview 

A strategy for qualitative data collection that poses a series of predetermined questions, 

based on the research objectives, which may be asked in any order to guide the structure of 

an interview (Ayres, 2008).  



18 
 

Sensitivity (of a test) 

The proportion of patients with a positive test result, of those patients who truly have the 

biomarker of interest (Macaskill et al., 2010).  

Specificity (of a test) 

The proportion of patients with a negative test result, of those patients who truly do not 

have the biomarker of interest (Macaskill et al., 2010).  

Stratified medicine 

To (i) identify subgroups of patients that share a pre-defined patient-level characteristic 

associated with a clinical outcome, and (ii) to make a subsequent treatment decision 

conditional on each patient’s subgroup membership (Trusheim et al., 2007). 

Thematic analysis 

A qualitative method of data analysis whereby the researcher takes an active role in 

identifying themes within a set of data (Braun et al., 2006).  

Therapeutic drug level 

The quantity of treatment (for example, a tumour necrosis factor-α inhibitor) circulating 

within a patient’s serum (Pouw et al., 2015).  

Tumour necrosis factor-α 

The cytokine responsible for the inflammatory disease process in most patients with 

rheumatoid arthritis (Feldmann, 2002).  

Value of information 

A set of methods, derived from statistical decision theory, that quantifies the potential 

value of producing further prospective research to reduce the parameter (and decision) 

uncertainty associated with making decisions based on expected outcomes (Wilson, 2015).  

Variability (in health outcomes) 

The chance occurrence of a clinical outcome (Briggs et al., 2006).  
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Abstract 

Health care policy, systems, and investment in related research have increasingly 

advocated for the personalisation of routine treatment decisions in order to improve 

population health outcomes. Stratified medicine may facilitate such personalisation by 

targeting specific health technologies to subgroups of patients defined by their individual-

level characteristics. The management of patients with chronic diseases, in particular, such 

as rheumatoid arthritis, may be revolutionised by stratified medicine if treatments are 

subsequently prescribed conditional on patient-level heterogeneity. Economic evidence is 

essential to demonstrate that stratified medicine is a cost-effective use of finite health care 

resources to support its expansion within the National Health Service in England.  

The aim of this thesis was to provide evidence for the relative cost-effectiveness of a 

biomarker test to stratify treatment for patients with rheumatoid arthritis, consistent with 

the requirements of decision-makers for the National Health Service in England. A specific 

case study of stratified medicine was selected (adalimumab anti-drug antibody and drug 

level testing) that was early in its product lifecycle and had an emerging, but limited, 

supporting evidence base. The thesis addressed three specific research questions: 

(i) What was the existing economic evidence for stratified medicine in rheumatoid 

arthritis? 

(ii) How were treatment decisions with biologic therapies made for patients with 

rheumatoid arthritis in current practice in England? 

(iii) Are treatment decisions stratified by adalimumab anti-drug antibody and drug 

level testing, for patients with rheumatoid arthritis in England, a relatively cost-

effective use of health care resources? 

The research questions were answered by using a mixed methods approach (systematic 

reviews; qualitative thematic framework analysis; quantitative econometric analysis; 

decision analytic modelling by discrete event simulation). The individual studies within the 

thesis built towards the overall aim sequentially and were linked together by a common 

theme of generating relevant evidence to inform decision-making for a new stratified 

medicine in England. A de novo early model-based economic evaluation of adalimumab 

anti-drug antibody and drug level testing for patients with rheumatoid arthritis in England 

was conducted, informed by (i) the limitations of published economic evaluations of 

stratified medicine for rheumatoid arthritis, (ii) a substantial characterisation of the care 

pathways in current practice for patients with rheumatoid arthritis in England, and (iii) an 

extensive process to conceptualise the structure of the decision analytic model.  

Stratified medicine by adalimumab anti-drug antibody and drug level testing for patients 

with rheumatoid arthritis in England was found not likely to be a relatively cost-effective 

use of health care resources based on current evidence. There was considerable decision 

uncertainty associated with this result and further prospective research, in particular on test 

accuracy and health outcomes, were found to be of substantial value to the health care 

system.  

This thesis made clear contributions to knowledge by advancing the economic evidence 

base for stratified medicine in rheumatoid arthritis and by demonstrating the value and 

challenges of generating economic evidence early within the product lifecycle of a new 

stratified medicine. 
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Chapter 1 

Introduction  
 

Health care systems around the world have expressed, with growing interest, a common 

desire to improve health outcomes by tailoring treatment decisions to the characteristics of 

individual patients (The Academy of Medical Sciences, 2013). Different terms have been 

used to describe the nuances of how treatment decisions may be tailored, including, but not 

limited to, personalised medicine, precision medicine, and individualised medicine 

(Schleidgen et al., 2013; Pokorska-Bocci et al., 2014; Pearson, 2016). Stratified medicine 

perhaps best encapsulates the practical application of these concepts to treatment decisions 

made in the routine practice of health care. The aim of stratified medicine is to inform a 

specific treatment decision by first identifying subgroups of patients, who share a pre-

defined patient-level characteristic (known as a biomarker), associated with a particular 

clinical outcome such as treatment response or an adverse drug reaction (Trusheim et al., 

2007). Each patient’s specific treatment decision is then subsequently made conditional on 

their subgroup membership (Trusheim et al., 2007). The conventional approach to making 

a treatment decision, by contrast, can be characterised as semi-empirical, whereby all 

patients are treated equally and subsequent adjustments are made by trial-and-error 

(Woodcock, 2007). Stratified medicine may improve population health outcomes, relative 

to the conventional semi-empirical approach, by treating only those patients likely to 

respond and adjusting treatment for those patients likely to experience harm (Trusheim et 

al., 2007). Stratified medicine may improve the management of patients with chronic 

diseases, in particular, such as rheumatoid arthritis (RA), some of whom, conditional on 

their subgroup membership, may have the potential to otherwise receive therapies for 

many years that are relatively costly and/or relatively less effective or safe. The focus of 

this thesis was to generate economic evidence that evaluated a specific example of 

stratified medicine for patients with RA in England.  
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The mantra of stratified medicine has become increasingly embedded within the discourse 

of national and international health policy. For example, in 2013, the World Health 

Organization produced a policy document that highlighted the importance of stratified 

medicine to facilitate patient access to treatments from their list of global priority 

medicines (Kaplan et al., 2013). The Department of Health in the United Kingdom (UK), 

also in 2013, launched a separate company called Genomics England, to collect whole 

genome data from 100,000 patients in the National Health Service (NHS) (Genomics 

England, 2015). The innovation agency of the UK Government, Innovate UK, have 

provided funding for the Precision Medicine Catapult to engender collaborations between 

medical test manufacturers, academia, and the NHS (Innovate UK, 2016). Finally, in 2015, 

the Government of the United States of America proposed an investment of $213 million 

to support the collection of linked biomarker and health record data from one million 

citizens (Collins et al., 2015; McCarthy, 2015). 

The positive signal for stratified medicine as an agenda for health policy has encouraged 

substantial investment in related research within the UK. For example, the Medical 

Research Council’s Stratified Medicine Initiative (Medical Research Council, 2016) has 

provided £60 million to support UK-wide research consortia across different disease areas, 

including RA (Barton et al., 2016). The prospective UK Biobank database, supported by 

research funding, has collected biomarker samples from 500,000 NHS patients to 

investigate the genetic and non-genetic determinants of disease (Sudlow et al., 2015). The 

National Institute for Health Research, funded by the Department of Health in the UK, has 

supported research into stratified medicine through investment in Biomedical Research 

Centres and Diagnostic Evidence Cooperatives (National Institute for Health Research, 

2014). UK-wide non-profit organisations, such as the UK Pharmacogenetics and Stratified 

Medicine Network, have been launched to promote collaborative research across industrial 

sectors into implementing stratified medicine within the NHS (McNamme, 2016). 

Established national cohort studies, such as Understanding Society (formerly the British 

Household Panel Survey) have been increasingly investing in the collection of 

supplementary individual-level biomarker data for the purpose of novel empirical research 

(Benzeval et al., 2016).  

Yet despite the high priority for health policy and the substantial investment in related 

research, few examples of stratified medicine have successfully translated into routine 

health care practice to date (Davis et al., 2009; Blair et al., 2011). Any new health 

technology (such as a pharmaceutical treatment, medical test, or device) faces two 
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translational gaps: (i) from basic research to market approval as a medical product, and (ii) 

from market approval to being recommended for routine use in the health care system 

(Becla et al., 2011), which ultimately relies on a favourable economic assessment by health 

care payers and decision-makers (Rogowski et al., 2008). Given that the resources 

available for health care in the NHS are finite, a new stratified medicine must provide 

evidence of its relative cost-effectiveness before being recommended for use in routine 

clinical practice (Drummond et al., 2015). The aim of this thesis was as follows:  

Thesis aim: to provide evidence for the relative cost-effectiveness of a biomarker test to 

stratify treatment for patients with RA, consistent with the requirements of decision-makers 

for the NHS in England.  

This introductory chapter presents a general background on economic evaluation in health 

care (Section 1.1), the economic evaluation of stratified medicine, in particular (Section 

1.2), and the rationale and case study for stratified medicine in RA (Section 1.3). Section 

1.4 reports the research questions and overall structure of the thesis.  

1.1. Economic Evaluation in Health Care 

There are multiple objectives facing the NHS in England but its primary objective is to 

improve health outcomes (Department of Health, 2016a). It is not possible, however, to 

recommend every effective health technology within the NHS because the annual national 

budget for health care is finite (Cylus et al., 2015). Decision-makers must therefore choose 

which health technologies to recommend in order to achieve the objective of population 

health maximisation, subject to the prevailing constraint on resources (National Institute 

for Health and Care Excellence, 2013a). The opportunity cost of any resource allocation 

decision is equivalent to the benefit forgone from the next-best use of those resources 

(Palmer et al., 1999a). In the context of allocating resources to recommend a specific 

health technology in the NHS, the opportunity cost can be expressed as the health benefit 

forgone if those same resources were used to provide a different (effective) health 

technology (Claxton et al., 2015a).  

The National Institute for Health and Care Excellence (NICE) was established in 1999 

(Buxton, 2006) as “the agent of a socially legitimate higher authority [Government]” 

(Claxton et al., 2010, p.16), responsible for population health care resource allocation 

decisions in England, whose objectives are set by the Secretary of State for Health 
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(Department of Health, 2014). NICE uses economic evidence, that makes the expected 

opportunity cost of any decision explicit (Drummond et al., 2015), to inform resource 

allocation recommendations during their health technology appraisal and guideline 

development processes (National Institute for Health and Care Excellence, 2013a). 

Economic evaluations are the primary method to provide such economic evidence, 

conventionally defined as, “…the comparative analysis of alternative courses of action in 

terms of both their costs and consequences” (Drummond et al., 2015, p.4). An alternative 

typically refers to a health technology and the consequence of concern to decision-makers 

is typically the health benefit derived from each alternative.  

Evidence from an economic evaluation can provide information about how to improve the 

(i) technical efficiency of a specific health care intervention; for example, by identifying 

the fewest resources required to achieve a pre-specified health outcome (Shiell et al., 

2002), and the (ii) allocative efficiency of population health care resources by enabling 

decision-makers to only recommend health technologies if their expected benefit exceeds 

their opportunity cost, consistent with the notion of population health maximisation within 

a finite budget for health care (Palmer et al., 1999b).  

1.1.1. The Methods of Economic Evaluation 

A decision problem is an explicit statement of the resource allocation decision under 

consideration (Roberts et al., 2012). Three predominant methods of economic evaluation, 

that may be used to inform an explicit decision problem, are summarised in Table 1.1 in 

terms of their defining characteristics.  

Table 1.1. Defining characteristics of three methods of economic evaluation.  

Economic Evaluation Method Valuation of Costs Valuation of Health Consequences 

Cost-benefit analysis. Monetary units. Monetary units. 

Cost-effectiveness analysis. Monetary units. Natural units. 

Cost-utility analysis. Monetary units. Generic outcome measure. 

Source: Drummond et al. (2015, p.11). 

Each method of economic evaluation estimates the cost of a health technology in monetary 

units. Costs comprise two components: (i) an estimated quantity of resources, and (ii) a 

price at which those resources are valued (Drummond et al., 2015). The incremental cost is 

the difference in cost between two alternative health technologies. The perspective of an 

economic evaluation defines the scope of the costs that should be included in the analysis, 

which are typically those that fall on the decision-maker’s budget constraint (Drummond et 
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al., 2015). For example, a health care system perspective will include all direct medical 

costs, whereas a societal perspective may include a wider set of costs, irrespective of who 

bears them, such as the societal cost of patients’ reduced labour productivity or patients’ 

own out-of-pocket expenditures (Weinstein, 1990).  

Value judgements are necessary, given the objective of health maximisation, to define how 

health should be measured and by whom it should be valued (Weinstein et al., 1996). The 

three methods of economic evaluation differ in their underlying value judgements and, in 

turn, their measure of benefit and relevance to specific decision problems (Drummond et 

al., 2015). A cost-benefit analysis (CBA) is broadly consistent with welfarist economic 

theory and values the benefit of a health technology in monetary units as a function of an 

individual’s utility (Coast et al., 2008). A cost-effectiveness analysis (CEA) and cost-utility 

analysis (CUA), by contrast, are consistent with an extra-welfarist evaluative framework 

(Brouwer et al., 2008). A CEA measures health outcomes in natural units (for example, 

binary endpoints) (Johannesson et al., 1996). However, as most health technologies affect 

survival and health status, a generic outcome measure is required that incorporates both 

quantity and quality of life, to facilitate comparisons across diseases (Drummond et al., 

2015). A CUA, itself a form of CEA, measures benefits in terms of quality adjusted life-

years (QALYs), which are a generic outcome measure of health benefit (Drummond et al., 

2015). The term cost-effectiveness analysis, rather than cost-utility analysis, is used 

frequently within the literature as a more-common nomenclature for an economic 

evaluation that has measured health outcomes in terms of QALYs (National Institute for 

Health and Care Excellence, 2013a).  

QALYs are estimated by multiplying each year of life by a weight representing its health-

related quality of life (Brazier et al., 1999). Weights are assigned according to the 

reference points of one (full health) and zero (death), and health states worse than death are 

assumed to be possible (Drummond et al., 2015). QALY weights are estimated according 

to preferences elicited from the general public to ensure that desirable health states receive 

a higher weight (Drummond et al., 2015). The EQ-5D (EuroQol Group, 1990), SF-6D 

(Brazier et al., 2002), and HUI3 (Horsman et al., 2003) are three generic multi-attribute 

instruments that are used commonly within the literature to classify health states according 

to different dimensions relevant to quality of life (Drummond et al., 2015). The 

incremental benefit is the difference in QALYs between two alternative health 

technologies. 
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Costs and QALYs are conventionally discounted to their present value (Drummond et al., 

2015). A positive time preference (the present is preferred to the future) implies that the 

present value of costs and health outcomes (derived in the future) will be less than at the 

time when they are realised (O'Mahony et al., 2015b). In practice, decision-makers express 

a preferred rate at which future outcomes should be discounted (O'Mahony et al., 2015b). 

The discount rate expressed by NICE has varied over time (Claxton et al., 2011; O'Mahony 

et al., 2014) and is currently recommended to be 3.5% per year for costs and QALYs (see 

Appendix 2) (Claxton et al., 2006b; Claxton et al., 2011; Paulden et al., 2012; National 

Institute for Health and Care Excellence, 2013a).  

Two related methods of evaluation, generally regarded as unsuitable to inform population 

health care resource allocation decisions, are (i) cost-minimisation analysis (CMA) and (ii) 

cost-consequences analysis (CCA). A CMA assumes that the benefits derived from 

alternatives are equivalent, and that the choice between alternatives should be made 

according to the lowest cost (Briggs et al., 2001). However, the CMA method has been 

deemed inappropriate for decision-making because, in the presence of uncertainty, it is not 

possible to claim a priori that two alternatives produce equivalent health benefits (Briggs 

et al., 2001). A CCA presents decision-makers with all potential costs and benefits of each 

alternative in a disaggregated list (Mauskopf et al., 1998); the CCA method may be 

inappropriate to inform population health care resource allocation decisions because its 

interpretation often lacks transparency, given that decision-makers must implicitly trade-

off the different benefits between competing alternatives (Owens et al., 2017).  

1.1.2. The Standardisation of Economic Evidence 

NICE has an explicit mandate to recommend health technologies that maximise population 

health subject to the NHS budget for health care (Culyer, 1997; Claxton et al., 2010), and 

achieves this by appraising health technologies in terms of their relative effectiveness and 

cost-effectiveness (National Institute for Health and Care Excellence, 2013a). Final 

recommendations arise from a deliberative process that balances contestable value 

judgements and evidence (Culyer et al., 2006; Shah et al., 2013). 

The standardisation of the methods for conducting an economic evaluation can facilitate 

comparability between evaluations; a reference case is a pre-specified preferred criteria for 

conducting an economic evaluation that will typically represent an expression of a 

decision-maker’s specific value judgements (Drummond et al., 1993; Sanders et al., 2016). 
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The NICE Reference Case (reported in Appendix 2), for example, includes the value 

judgements that (i) a QALY is an appropriate outcome measure of health benefit; (ii) the 

EQ-5D, in particular, can appropriately characterise all relevant aspects of health-related 

quality of life; and (iii) QALYs are valued equally, irrespective of who gains or loses them 

(Rawlins et al., 2004). The economic evaluation conducted in this thesis (reported in 

Chapter Six) conformed to the NICE Reference Case, in order to generate evidence that 

was relevant to decision-makers in England.  

1.1.3. Decision Analytic Modelling 

The decision-making process at NICE, in accordance with the NICE Reference Case, 

requires evidence that has simultaneously (i) accounted for all relevant comparators; (ii) 

included all relevant sources of evidence; (iii) appropriately characterised uncertainty; (iv) 

been estimated over a sufficient duration of time; and (v) has direct relevance to the 

decision-making context in the NHS (Buxton et al., 1997; Brennan et al., 2000; Sculpher et 

al., 2006a). An economic evaluation conducted alongside a single randomised controlled 

trial (RCT), by prospectively collecting resource use and QALY data (Glick et al., 2015), 

may be limited by its ability to meet the evidential requirements of the NICE Reference 

Case (National Institute for Health and Care Excellence, 2013a). For example, it may not 

be feasible to include all relevant comparators within a single RCT (Buxton et al., 1997; 

Brennan et al., 2000; Sculpher et al., 2006a). Model-based economic evaluations are 

therefore a fundamental component of the decision-making process at NICE (Akehurst, 

2003; Bryan et al., 2007) because of their ability to synthesise multiple sources of evidence 

in a format complicit with the NICE Reference Case (National Institute for Health and 

Care Excellence, 2013a). The economic evaluation in this thesis (see Chapter Six) was 

therefore conducted by producing a de novo decision analytic model to generate evidence 

consistent with the requirements of NICE.  

A decision analytic model is a series of mathematical relationships that represent the 

progression of a patient’s disease and the impact of a health technology on disease 

progression (Brennan et al., 2000). The structure of a decision analytic model is typically 

representative of a relevant care pathway that describes the sequence of health 

technologies delivered to a patient over time in routine clinical practice (Brennan et al., 

2000; Brennan et al., 2006). The parameters of a decision analytic model are the specific 

inputs whose values may be estimated from existing evidence (Briggs, 2000). For example, 

different potential sources of evidence for different types of input parameter are reported in 
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Table 1.2 (Zechmeister-Koss et al., 2014). The output of a decision analytic model can be 

expressed in terms of the expected outcomes (for example, mean costs and QALYs) 

derived from each alternative comparator strategy (Briggs et al., 2006).  

Table 1.2. Example input parameters and sources of evidence for a decision analytic 

model.  

Model Input Parameter Potential Source of Evidence 

Clinical effectiveness. Randomised controlled trial; Meta-analysis. 

Natural history of disease. Observational cohort study. 

Resource use. Microcosting study; Direct observation; Clinical guidelines.  

Unit costs. National price lists.  

Health-related quality of life. Published databases; Mapping algorithms.  

Source: Adapted from Zechmeister-Koss et al. (2014, p.293).  

 

Three types of decision analytic model observed most frequently in the literature are 

decision trees, Markov models, and discrete event simulations of individual patients 

(Barton et al., 2004a; Brennan et al., 2006; Briggs et al., 2006); these three different types 

of decision analytic model are described further in Appendix 3. The choice of decision 

analytic model, and its structure, should be justified by an explicit and transparent model 

conceptualisation process (Roberts et al., 2012; Tappenden, 2014). Therefore, Chapter 

Five reports an extensive conceptualisation of the de novo decision analytic model in this 

thesis.  

1.1.4. Decision Rules for Relative Cost-effectiveness 

Three equivalent decision rules (reported in Table 1.3) can be applied to the output of a 

decision analytic model to inform whether a health technology is cost-effective (assuming 

the objective of health maximisation), relative to an alternative strategy (Claxton et al., 

2010).  

Table 1.3. Decision rules for relative cost-effectiveness.  

Decision Rule Definition 

 

∆𝐶

∆𝐻
< 𝜆 

 

The ratio of incremental costs to incremental health consequences is less 

than the cost-effectiveness threshold. 

 

∆𝐻𝜆 − ∆𝐶 > 0 The incremental net monetary benefit is greater than zero. 

  

∆𝐻 −
∆𝐶

𝜆
> 0 

The incremental net health benefit is greater than zero.  

Source: Adapted from Claxton et al. (2010; pp.16-17); Note: ΔC=incremental costs; 

ΔH=incremental QALYs; λ=cost-effectiveness threshold.  
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The incremental cost-effectiveness ratio (ICER) is the ratio of incremental costs (ΔC) to 

incremental health benefits (ΔH) between two alternatives (
∆𝐶

∆𝐻
). A cost-increasing health 

technology is said to be relatively cost-effective if its ICER is below the value of a cost-

effectiveness threshold (λ) (Claxton et al., 2010). Alternative strategies are dominated if 

they produce less health at a higher cost compared with a different alternative, or 

extendedly dominated if a linear combination of two different alternatives produces more 

health at a lower cost (Karlsson et al., 1996). The decision rule can be expressed 

equivalently as an incremental net benefit by converting health and costs into the same 

units (Stinnett et al., 1998). A positive incremental net benefit, whether expressed in terms 

of money or health, is indicative of relative cost-effectiveness (Claxton et al., 2010).  

1.1.5. The Cost-effectiveness Threshold 

The cost-effectiveness threshold, in theory, represents the additional cost that must be 

imposed on the budget for health care to displace one QALY elsewhere within the health 

care system (Claxton et al., 2015a). The QALYs gained from an intervention health 

technology must be greater than its opportunity cost (the QALYs displaced elsewhere) in 

order to maximise population health (McCabe et al., 2008). However, the actual value of 

the cost-effectiveness threshold in the NHS is not known with certainty.  

The most recent empirical estimate of the cost-effectiveness threshold for the NHS in 

England was £12,936 per QALY gained (Claxton et al., 2015a). Previous appraisal 

decisions by NICE have recommended health technologies with ICERs estimated in excess 

of £30,000 per QALY gained (Devlin et al., 2004; Dakin et al., 2015). The relative cost-

effectiveness of a health technology is therefore neither a necessary nor sufficient 

condition for it to be recommended within the NHS because other factors (such as equity 

in the distribution of QALY gains) may also inform NICE’s deliberative decision-making 

process (Shah et al., 2013).  

In practice, NICE assumes that the cost-effectiveness threshold for the NHS falls within a 

plausible range £20,000 and £30,000 per QALY gained (National Institute for Health and 

Care Excellence, 2013a). The higher a health technology’s estimated ICER, the lower the 

likelihood that it will be recommended by NICE (Rawlins et al., 2004). Exceptions may be 

made for health technologies used at the end of a patient’s life; a cost-effectiveness 

threshold of £50,000 per QALY gained may be applied if the health technology (i) is 

suitable for patients with a life expectancy of less than twenty-four months; (ii) may extend 
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life by at least three months; and (iii) is indicated for a small patient population (Paulden et 

al., 2014b).  

1.1.6. Decision-making under Uncertainty 

Uncertainty is inherent in all decisions regarding the relative cost-effectiveness of health 

technologies and is paramount to the decision-making process at NICE (Claxton et al., 

2005; National Institute for Health and Care Excellence, 2013a). Decision uncertainty is 

defined as the probability that an incorrect decision is made, by recommending a health 

technology that is not relatively cost-effective (O'Hagan et al., 2005). The consequence of 

an incorrect decision is an inefficient allocation of health care resources and, in turn, the 

health forgone as a consequence (O'Hagan et al., 2005; Stevenson et al., 2014).  

The use of decision analytic modelling to characterise uncertainty in terms of probability 

statements can be regarded as an application of Bayesian reasoning (Briggs, 1999; Luce et 

al., 1999); for example, by estimating the probability that an alternative strategy is cost-

effective given the observed data (O'Hagan et al., 2003; Shih, 2003; Fenwick, 2014). 

When a decision must be made (that includes doing nothing), the approach taken by NICE 

is to make recommendations for a new health technology according to the relative 

magnitude of probable expected outcomes, and not according to an inferential test 

designed to reject a null hypothesis of “no difference” between two alternatives (Arrow et 

al., 1970; Claxton, 1999b; Luce et al., 1999).  

1.1.6.1. Defining Uncertainty 

There are three types of uncertainty inherent in any model-based economic evaluation, 

defined in Table 1.4.  

Table 1.4. Types of uncertainty in decision analytic models.  

Type of Uncertainty Definition 

Methodological uncertainty. Uncertainty in the methods of conducting an economic 

evaluation. 

 

Structural uncertainty. Uncertainty in the conceptual and mathematical representation 

of a decision problem. 

 

Parameter uncertainty. Uncertainty in the values of a model’s input parameters. 

Source: Stevenson et al. (2014, p.62). 
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Methodological uncertainty can be minimised by using a reference case that describes the 

appropriate methods of an economic evaluation (Briggs, 2000). Structural uncertainty can 

be minimised by undertaking a thorough model conceptualisation exercise a priori 

(Stevenson et al., 2014; Tappenden, 2014). Parameter uncertainty exists because the true 

value of any input parameter cannot be known with certainty (Briggs et al., 1999). 

Deterministic sensitivity analysis methods can be used to assess how the expected 

outcomes of a model are affected by manual adjustments to the values of one or more input 

parameters (Briggs et al., 1999). However, as all input parameters are jointly uncertain, a 

probabilistic sensitivity analysis (PSA) is recommended by NICE to characterise the joint 

uncertainty in all parameters of a model appropriately (Claxton et al., 2005; Claxton, 2008; 

National Institute for Health and Care Excellence, 2013a). 

1.1.6.2. Probabilistic Evaluation of a Decision Analytic Model 

A PSA characterises the input parameters of a decision analytic model as probability 

distributions, rather than point estimates, to represent the uncertainty in their true values 

(Doubilet et al., 1985; Baio et al., 2015). Only a subset of probability distributions, which 

are described further in Appendix 4, are appropriate to characterise the uncertainty in a 

model’s parameters. Monte Carlo simulation (random sampling) then samples values for 

all input parameters from their respective distributions and the model estimates the 

expected outcomes of interest (costs, QALYs, and net benefits) for each comparator 

strategy. This whole process is repeated many times to produce a distribution of outcomes 

that is representative of the joint uncertainty of the model’s parameters (Briggs et al., 1999; 

Claxton et al., 2005; Claxton, 2008). Based on the PSA output, uncertainty in the relative 

cost-effectiveness between multiple alternatives can be illustrated using cost-effectiveness 

acceptability curves (CEACs) and a cost-effectiveness acceptability frontier (CEAF) 

(Fenwick et al., 2001; Fenwick et al., 2004; Fenwick et al., 2005; Fenwick et al., 2006; 

Barton et al., 2008), which are described further in Appendix 5.  

1.1.6.3. Further Research to Reduce Parameter Uncertainty 

Further research, subsequent to a model-based economic evaluation, such as an RCT or 

observational study, has the potential benefit of reducing decision uncertainty. However, 

further research may also require resources that could be used elsewhere in the health care 

system to (i) generate health, or (ii) fund alternative research projects. Value of 

information (VOI) methods, based on statistical decision theory, can utilise the PSA output 
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to inform decisions regarding the desirability of further research by evaluating its potential 

benefit against its potential cost (Claxton et al., 1996; Claxton, 1999a; Claxton et al., 2001; 

Claxton et al., 2002; Claxton et al., 2004; Sculpher et al., 2005a; Claxton et al., 2006a; 

Eckermann et al., 2010; Griffin et al., 2011; Steuten et al., 2013; Drummond et al., 2015; 

Wilson, 2015). 

VOI methods have been applied in health care decision-making during NICE technology 

appraisals (Claxton et al., 2006a), research prioritisation decisions by the NHS Health 

Technology Assessment programme (Claxton et al., 2004; Mohiuddin et al., 2014), and in 

the design of future RCTs (Thompson, 1981; Claxton et al., 1996; Chilcott et al., 2003; 

Kent et al., 2013). VOI comprises three methods of increasing complexity that can inform 

increasingly specific decisions regarding further research (Eckermann et al., 2010). The 

expected value of perfect information (EVPI) can be used to estimate the overall potential 

value of further research to reduce decision uncertainty; the expected value of perfect 

partial information (EVPPI) can be used to estimate the specific parameter(s) with the 

greatest value for further research; the expected net benefit of sampling (ENBS) can be 

used to estimate the expected net benefit derived from specific research designs (Claxton, 

1999a). To date, all published examples of VOI have included an estimation of population 

EVPI (Steuten et al., 2013; Mohiuddin et al., 2014; Thorn et al., 2016); the methods for 

estimating population EVPI from a model-based economic evaluation are described in 

Appendix 6. The model-based cost-effectiveness analysis of stratified medicine in this 

thesis, reported in Chapter Six, estimated population EVPI.  

1.1.6.4. The Early Economic Evaluation of Health Technologies 

An early economic evaluation is the term used to describe an economic evaluation 

performed during an early stage of a health technology’s product lifecycle (Steuten et al., 

2014). In general, the model-based economic evaluations of pharmaceuticals within the 

NICE technology appraisal process are produced at a late-stage of the health technology’s 

product lifecycle. For example, pharmaceuticals require a product licence before being 

evaluated by NICE, indicating that trial-based studies (which demonstrate evidence of 

safety and efficacy) have been produced. The economic evaluation of health technologies, 

however, may be performed iteratively and can be undertaken before the supporting 

clinical evidence base has reached maturity (Sculpher, 1997; Vallejo-Torres et al., 2008). 
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It is likely that the uncertainty inherent in any model-based economic evaluation will 

reduce as the quantity and quality of clinical evidence for a new health technology 

increases over time. As a consequence, the uncertainty in the relative cost-effectiveness of 

a health technology may be greatest when the supporting clinical evidence base is in its 

infancy (Annemans et al., 2000; Steuten et al., 2014). The results of an early economic 

evaluation may, therefore, be indicative of relative cost-effectiveness rather than definitive 

(Sculpher et al., 1997). 

Economic evaluations, whether performed early or late, are designed to inform a decision. 

The specific decision, however, may vary depending on the timing of the economic 

evaluation. For example, a late-stage economic evaluation may be best suited to inform 

whether a health technology should be used widely in routine clinical practice; an early 

economic evaluation, by contrast, may be useful to inform the design of a subsequent 

clinical research study (Sculpher et al., 1997). Therefore, the use of VOI methods during 

an early economic evaluation, in particular, can be advantageous to identify whether such 

additional evidence would be of potential value to the health care system (Steuten et al., 

2014). 

The degree to which an economic evaluation can be interpreted as an early economic 

evaluation, conceptually, depends on the quantity and/or quality of the supporting clinical 

evidence base, a priori. The framework by Sculpher et al. (1997) posited that the economic 

evaluation of a new health technology could be performed iteratively over four broad time 

periods, defined as stages. Figure 1.1 illustrates these four stages, and describes the type of 

analyses that could be performed and the strength of clinical evidence that may support 

these analyses.  

The earliest form of economic evaluation, Stage 1, is performed during the development 

phase of a health technology. The components of an economic evaluation in Stage 1 may 

encompass an extensive description of current practice and of the characteristics of the new 

health technology, both in terms of costs and health outcomes. An economic evaluation 

performed when some additional clinical data has been produced (such as uncontrolled 

case studies or limited RCTs) is a Stage 2 analysis within the framework. Decision analytic 

modelling techniques can be used during Stage 2 to synthesise the available evidence and 

to assess the potential influence of specific parameters on the estimates of relative cost-

effectiveness. The quantity and quality of the evidence supporting these two early stages of 

economic evaluation will likely be limited (compared with a later-staged evaluation), 

leading to an indicative, rather than definitive, estimation of relative cost-effectiveness. 
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Later-staged economic evaluations can make use of a more extensive clinical evidence 

base and pragmatic RCT study designs, potentially informed by earlier economic 

evaluations, to reduce the uncertainty associated with the relative cost-effectiveness of a 

health technology.  

Figure 1.1. Conceptual framework of an early economic evaluation according to Sculpher 

et al (1997).  

Source: Adapted from Sculpher et al. (1997); Abbreviations: RCT=randomised controlled trial.  

 

The economic evaluation presented in this thesis was an example of an early economic 

evaluation because the clinical evidence base to support the health technology of interest 

(described in Section 1.3.5) was limited, characterised by a small number of test accuracy 

studies, and uncertainty with respect to the timing and effectiveness of testing within 

clinical practice. The economic evaluation, therefore, could be described as a Stage 2 

analysis; a decision analytic model was subsequently developed to provide an indicative 

estimate of relative cost-effectiveness, by synthesising all available evidence, assessing the 

sensitivity of the results to specific input parameters, and by using VOI methods to assess 

the value of further prospective research.  
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1.2. Stratified Medicine and Economic Evaluation 

Stratified medicine, in the context of this thesis, required a biomarker test that informed a 

treatment decision, such as (i) the identification of the most appropriate treatment from a 

set of alternatives; or (ii) whether adjustments to a previous treatment decision (dose-

adjustment, administration frequency, or change of treatment) were required (Redekop et 

al., 2013). A definition of a biomarker (a portmanteau of the words ‘biological’ and 

‘marker’), first proposed by the US Food and Drug Administration and assumed by this 

thesis, is “…a characteristic that can be objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacologic responses 

to a therapeutic intervention” (National Institute for Health Biomarkers Definitions 

Working Group, 2001, p.91).  

Biomarkers that indicate a likely pharmacologic response are known as predictive 

biomarkers which, by definition, are required to implement stratified medicine (Trusheim 

et al., 2007). Predictive biomarkers can be measurable patient characteristics based on, but 

not limited to, genotypes, proteins, identified by imaging, or by physiological assessment 

(Trusheim et al., 2007; European Commission, 2010). Biomarker tests that only provided 

diagnostic information, without a subsequent treatment decision (for example, a genetic 

test for Huntington’s disease), and the potential need for the valuation of non-health 

benefits (Payne et al., 2013b), were beyond the scope of this thesis. 

1.2.1. Theoretical Principal of the Economics of Stratified Medicine 

The theoretical principal that underpins the economics of stratified medicine is the 

distinction between variability and heterogeneity. Variability refers to a patient’s chance 

occurrence of a clinical outcome (Groot et al., 2010; Groot et al., 2011); for example, a 

specific patient may, or may not, experience an adverse drug reaction. Heterogeneity refers 

to the variability that can be explained by observed characteristics (Briggs et al., 2006); for 

example, men may have a higher probability of an adverse drug reaction, relative to 

women. 

The expected outcomes estimated by an economic evaluation of a conventional treatment 

apply to an average patient; population-level decisions can then be made by subsequently 

claiming that, on average, the treatment is (or is not) relatively cost-effective for all 

patients (Drummond et al., 2015). However, the costs and QALYs derived by each patient 
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may exhibit variability across the population (Sculpher, 2008), such that (i) some patients 

may receive a treatment for whom it is not individually cost-effective; or (ii) some patients 

may not receive a treatment for whom it would be individually cost-effective (Stevens et 

al., 2004; Basu et al., 2007). If such individual variability in relative cost-effectiveness 

could, in part, be explained by specific patient-level characteristics, an economic 

evaluation could potentially account for heterogeneity by estimating relative cost-

effectiveness according to distinct patient subgroups (Sculpher, 2008). Decision-makers 

would then be able to exploit such heterogeneity to maximise population health by 

recommending the treatment only for those subgroups of patients whose health gains 

exceed the opportunity cost (Coyle et al., 2003; Sculpher, 2008).  

The majority of decision-makers responsible for allocating population health care 

resources consider patient heterogeneity when making their recommendations (Ramaekers 

et al., 2013). For example, NICE have explicitly stated that subgroups according to 

geography, preferences, or non-disease related variability should not be considered within 

their appraisal of health technologies (National Institute for Health and Care Excellence, 

2013a). Potential patient subgroups identified by an economic evaluation should therefore 

have biologic plausibility and be implementable in routine practice (Sculpher, 2008; 

Espinoza et al., 2014a). For example, subgroups could, theoretically, be defined at the level 

of the individual patient (Basu et al., 2007) but this may not be feasible to implement in 

practice (Bloss et al., 2013). Moreover, greater stratification of a patient population may be 

characterised by diminishing returns, such that the expected marginal opportunity cost of 

revealing additional heterogeneity may exceed its expected marginal health benefit 

(Stevens et al., 2004; Espinoza et al., 2014a). 

The use of a biomarker test to inform a stratified medicine is therefore the mechanism by 

which patient heterogeneity can be revealed, to identify patient subgroups, and to 

potentially improve the relative cost-effectiveness of a treatment (van Gestel et al., 2012; 

Espinoza et al., 2014b). An economic evaluation of a stratified medicine, therefore, 

estimates the relative cost-effectiveness of treating patients by subgroup according to such 

a testing strategy that reveals patient heterogeneity within routine clinical practice.  

1.2.2. Distinction between Types of Test 

Biomarker tests used for stratified medicine, like all health technologies, incur costs and 

consequences that must be evaluated before being recommended for routine use in the 
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NHS (Husereau et al., 2014). However, the fundamental difference between the economic 

evaluation of a stratified medicine and a conventional treatment is that the health outcome 

attributable to a stratified medicine is principally derived from a subsequent treatment 

decision and not from the intervention test itself (National Institute for Health and Care 

Excellence, 2011a). Commercial biomarker tests, to stratify a treatment decision, can either 

be manufactured (i) ex ante during the development of a treatment; or (ii) ex post after a 

treatment had been licenced for routine practice (Garrison et al., 2007).  

Tests developed ex ante are known as companion diagnostics and are typically stated 

within the product licence of a treatment (Milne et al., 2015). Tests developed ex post are 

known as complementary diagnostics (and also may be known as stand-alone tests), which 

can be used to inform treatment decisions regarding disease management, early diagnosis, 

and drug monitoring, without being explicitly referenced in the product licence of a 

treatment (Annemans et al., 2013; Milne et al., 2015). This distinction is important for the 

economic evaluation of stratified medicine because companion diagnostics conventionally 

have a stronger supporting evidence base on health outcomes compared with 

complementary diagnostics (Garrison et al., 2007). A model-based economic evaluation of 

a stratified medicine must therefore consider how the diagnostic information obtained from 

a biomarker test is related to a patient’s final health outcome (Phillips et al., 2013), which, 

for complementary diagnostics in particular, has the potential to increase the uncertainty 

inherent in the decision-making process (Annemans et al., 2013; Fugel et al., 2014; Fugel 

et al., 2016). The cost-effectiveness analysis in Chapter Six of the thesis evaluated a 

stratified medicine that utilised a complementary diagnostic, with a limited evidence base 

on health outcomes, to inform a subsequent treatment decision.  

1.2.3. Fragmented Decision-making for Stratified Medicine in England 

The decision-making authorities responsible for appraising test-based treatment strategies 

(such as stratified medicine) for use in the NHS are relatively fragmented, compared with 

the case for pharmaceuticals. Five programmes that are able to evaluate a medical test in 

England are reported in Table 1.5; the appropriate decision-maker depends on the nature 

and value proposition of the test (Brockis et al., 2016). 

NICE have three appraisal programmes to evaluate treatment strategies that incorporate 

medical testing: (i) the standard Technology Appraisal Programme is suitable for 

companion diagnostics; (ii) the Medical Technology Evaluation Programme is suitable for 
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tests that offer similar health benefits at lower costs; and (iii) the Diagnostics Assessment 

Programme (DAP) is suitable for tests that may increase costs and health outcomes 

(National Institute for Health and Care Excellence, 2011a). However, only the Technology 

Appraisal Programme imposes mandatory funding for a test after receiving a positive 

recommendation by NICE (Brockis et al., 2016). Single-gene genetic tests can be 

evaluated by the UK Genetic Testing Network by submission of a ‘Gene Dossier’ (Miller et 

al., 2011); however, the Gene Dossier does not require any evidence for the relative cost-

effectiveness of testing (UK Genetic Testing Network, 2016). 

Table 1.5. Programmes that evaluate medical tests for use in the NHS. 

Evaluation Programme Characteristic of Test 

 

NICE Technology Appraisal 

Programme†. 

 

 

Companion diagnostic with a new treatment. 

 

NICE Diagnostics Assessment 

Programme♦. 

(i) Tests with the potential to increase costs and health 

outcomes; 

(ii) Complementary diagnostic with an established treatment.  

 

NICE Medical Technology 

Evaluation Programme▲. 

Tests with a potential for similar health outcomes at a lower 

cost, or greater health outcomes at a similar cost.  

 

UK Genetic Testing Network●. Genetic tests for single-gene genetic disorders.  

 

UK National Screening 

Committee■. 

Population screening programmes.  

Source: †=National Institute for Health and Care Excellence (2013a); ♦=National Institute for 

Health and Care Excellence (2011a); ▲=National Institute for Health and Care Excellence 

(2011b); ●=UK Genetic Testing Network (2016); ■=UK National Screening Committee (2016). 

 

The economic evidence generated for the stratified medicine in this thesis, which utilised a 

complementary diagnostic, was therefore designed to conform with the requirements of the 

NICE DAP (National Institute for Health and Care Excellence, 2011a).  

1.2.4. Practical Challenges in the Model-based Economic Evaluation of Stratified 

Medicine 

The use of a model-based economic evaluation, to estimate the relative cost-effectiveness 

of any stratified medicine, requires evidence of three related elements of a test-and-

treatment strategy (Byron et al., 2014), illustrated in Figure 1.2.  
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Figure 1.2. Elements of a test-and-treatment strategy for stratified medicine.  

 

A practical challenge when performing a model-based economic evaluation of stratified 

medicine, and in particular for complementary stand-alone diagnostics, is that tests 

frequently lack end-to-end evidence (National Institute for Health and Care Excellence, 

2011a). End-to-end evidence is defined as a single study that incorporates all elements of a 

test-and-treatment strategy illustrated Figure 1.2, by observing a patient from their test 

result, to a treatment decision, and then to their final health and resource outcomes 

(National Institute for Health and Care Excellence, 2011a). The relationship between a test 

result and a final health outcome can be defined according to three features of any test 

(Rogowski et al., 2009; Phillips et al., 2013): 

• Analytic validity – the accuracy and reliability of the test when measuring a specific 

biomarker; 

• Clinical validity – the ability of the biomarker to indicate a specific clinical status; 

• Clinical utility – the ability to improve outcomes by making a treatment decision 

based on the result of the test.   

The lack of end-to-end evidence is driven, in part, by the current regulatory requirements 

for European test manufacturers, who must only produce evidence of safety and analytic 

validity (but not necessarily clinical utility) in order to achieve market access for a new test 

(Payne, 2008; 2009; The Academy of Medical Sciences, 2013; Fugel et al., 2014). As a 

consequence, tests that achieve rapid market access frequently lack the necessary evidence 

to estimate their relative cost-effectiveness (Meadows et al., 2015). 

A second practical challenge is that the accuracy of testing can be characterised by four 

potential outcomes, and two of which indicate that a test may provide an incorrect (a false-

positive or false-negative) result (Annemans et al., 2013). A 2x2 table can be used to 

describe the four potential outcomes of a test (illustrated in Table 1.6) (Macaskill et al., 

2010). The sensitivity of a test is the proportion of patients with a positive test result, of 

those patients who truly have the biomarker of interest; the specificity of a test is the 

proportion of patients with a negative test result, of those patients who truly do not have 

the biomarker of interest. An economic evaluation of a stratified medicine must therefore 
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be designed to include the health and resource consequences associated with making a 

treatment decision according to both a correct, and an incorrect, test result (Annemans et 

al., 2013). 

Table 1.6. 2x2 table of test accuracy and the potential outcomes of a test.  

  Does Patient have Biomarker? 

 Test Result Yes No 

 

 

Test Positive 

 

True-positive. 

 

False-positive. 

 

Test Negative False-negative. True-negative. 

Source: Adapted from Macaskill et al. (2010, p.10).  

1.2.5. Sources of Uncertainty in Model-based Economic Evaluations of Stratified 

Medicine 

The following section describes five potential sources of uncertainty, that were relevant to 

the economic evaluation of stratified medicine presented in this thesis, by drawing on (i) 

nine published systematic reviews of economic evaluations of stratified medicine (Phillips 

et al., 2004; Vegter et al., 2008; Beaulieu et al., 2010; Vegter et al., 2010; Wong et al., 

2010; Hatz et al., 2014; Berm et al., 2016; Oosterhoff et al., 2016; Plumpton et al., 2016); 

and (ii) a wider literature that has discussed the potential challenges to conducting an 

economic evaluation of stratified medicine (Becla et al., 2011; Annemans et al., 2013; 

Buchannan et al., 2013; Fleeman et al., 2013; Fugel et al., 2014; Rogowski et al., 2015; 

Shabaruddin et al., 2015; Fugel et al., 2016). 

Defining the Role of Testing 

An economic evaluation of a stratified medicine necessarily requires an understanding of 

how a test will be used in routine practice to inform a subsequent treatment decision 

(National Institute for Health and Care Excellence, 2011a). A lack of end-to-end evidence, 

however, may introduce a degree of uncertainty over the most appropriate way to use a test 

in practice; both the timing of a new test and the respective treatment decision can affect 

the delivery of care in routine practice  (National Institute for Health and Care Excellence, 

2011a) which, in turn, may affect the outcomes derived from treatment stratification and 

the relative cost-effectiveness of testing (Hatz et al., 2014; Shabaruddin et al., 2015). A 

model-based economic evaluation of a stratified medicine must therefore make choices 

regarding the timing and treatment decisions associated with testing (Annemans et al., 
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2013), which can be investigated further by using model conceptualisation techniques 

(Tappenden, 2014). The role of testing in this thesis was subsequently investiagted in 

Section 5.3 of Chapter Five, by reviewing the clinical literature for prescribing algorithms 

that had incorporated the test being evaluated.  

Choice of Comparator 

An economic evaluation must include all relevant comparator strategies to generate 

relevant evidence for decision-makers (Drummond et al., 2015). The choice of comparator 

strategies included within an economic evaluation may be dependent on the assumptions 

made by the decision analyst. Different comparator strategies for a stratified medicine may 

be defined by using a test in different ways (for example, by changing the timing of 

testing) (Husereau et al., 2014; Fugel et al., 2016; Oosterhoff et al., 2016). In the context of 

evaluating a stratified medicine, comparing all alternative testing strategies to a common 

comparator (such as no testing) will underestimate the opportunity cost of the intervention 

and may not maximise population health (O'Mahony et al., 2015c). Moreover, given that 

relative cost-effectiveness is determined by the incremental comparison of a strategy to its 

next-best alternative, the choice of comparators can affect the estimated ICER of a 

particular strategy (O'Mahony et al., 2015a). Section 5.4 of Chapter Five in the thesis 

therefore explored the choice of comparator strategies by developing a novel algebraic 

conceptualisation technique, to inform the identification of potentially relevant comparator 

strategies of a stratified medicine early in its product lifecycle.    

Model Complexity 

The potential lack of end-to-end evidence may increase the number of structural 

assumptions made within a decision analytic model, which may, in turn, increase the need 

for a greater model complexity (Payne et al., 2010; Annemans et al., 2013). For example, it 

may be necessary to use a linked-evidence approach, commonly observed within 

technology appraisals for the NICE DAP (National Institute for Health and Care 

Excellence, 2011a), which synthesises different sources of evidence to demonstrate a link 

between test accuracy, treatment decisions, and patient outcomes (Merlin et al., 2013). 

Furthermore, it may also be necessary to design a decision analytic model that simulates 

patients individually, such as a discrete event simulation, if the occurrence of previous 

clinical events may affect future clinical events (Caro et al., 2016b). For example, future 

treatment response may be affected by whether the patient had developed a specific 
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biomarker at an earlier point in time (Rogowski et al., 2015). An explanation of the 

conceptualisation and development process of the de novo decision analytic model in this 

thesis, and the specific elements that had the potential to introduce complexity into the 

model, is provided in Chapter Five.  

Cost of Testing 

An economic evaluation of a stratified medicine must include an estimate for the unit cost 

of testing. However, there is no national price tariff for tests in England and the resources 

required to implement a new test in practice (for example, an additional clinical visit or the 

time taken to analyse a blood sample) may be unknown a priori (Buchannan et al., 2013; 

Fugel et al., 2016). Previous economic evaluations of stratified medicine have suggested 

that the relative cost-effectiveness of treatment stratification may be sensitive to the cost of 

testing (Phillips et al., 2004; Beaulieu et al., 2010; Vegter et al., 2010; Oosterhoff et al., 

2016). Microcosting methods, which aim to (i) identify the specific quantity of resources 

required to use a health technology in practice and to (ii) value those resources at relevant 

prices (Frick, 2009), may be valuable to estimate the true opportunity cost of a new testing 

strategy. A microcosting study was therefore conducted, supplementary to this thesis, with 

Dr. Meghna Jani at The University of Manchester (Jani et al. (2016a); reported in Appendix 

35) to estimate the unit cost of the specific test that was evaluated in this thesis. The 

estimated cost was subsequently incorporated as a source of evidence for the de novo 

decision analytic model in Chapter Six.  

Accuracy of Testing 

The accuracy of detecting a specific biomarker, characterised by a test’s sensitivity and 

specificity, is affected by the test’s cut-off value (Trusheim et al., 2015). The cut-off value 

defines the quantity of a biomarker that distinguishes a positive test result from a negative 

test result (Macaskill et al., 2010). However, different studies that have estimated the 

accuracy of a test may have used different cut-off values and the appropriate cut-off value 

may be unknown a priori (Macaskill et al., 2010). A synthesis of test accuracy evidence 

should therefore account for the correlation between sensitivity and specificity, if different 

cut-off values have been used (National Institute for Health and Care Excellence, 2011a), 

by performing a bivariate hierarchical meta-analysis (Dinnes et al., 2005; Reitsma et al., 

2005; Harbord et al., 2008; Macaskill et al., 2010). A bivariate meta-analysis was therefore 
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performed to appropriately synthesise the evidence of test accuracy (reported in Appendix 

34) for the cost-effectiveness analysis in Chapter Six.  

1.3. Disease Application: Rheumatoid Arthritis 

The economic evaluation presented in this thesis was based on a specific case study of 

stratified medicine in RA. This section provides a background to the epidemiology of RA 

(Section 1.3.1); relevant condition-specific outcome measures (Section 1.3.2); treatments 

for RA (Section 1.3.3); the general rationale for stratified medicine in RA (Section 1.3.4); 

and the specific case study addressed by this thesis (Section 1.3.5).  

1.3.1. Epidemiology of Rheumatoid Arthritis 

RA is a chronic, systemic inflammatory autoimmune disease characterised by 

inflammation within the lining of joints (the synovium), and the progressive destruction of 

joints and cartilage due to the development of invasive pannus tissue (Firestein, 2003; 

Scott et al., 2010; McInnes et al., 2011). Joint inflammation and destruction occurs 

predominantly within the hands and feet (Firestein, 2003). Patients with RA experience 

pain, a gradual decline in functional ability, and a reduction in quality of life (Kvien, 2004; 

Russell, 2008). There is no known cure for RA (National Audit Office, 2009).  

The estimated prevalence (proportion of cases within a population at a specific time) of 

RA within the UK is 0.81% (Symmons et al., 2002). The annual incidence (rate of new 

cases within a population over a period of time) of RA is estimated at 48 cases per 100,000 

individuals within the UK (Humphreys et al., 2013). Cases of RA are approximately three 

times more common in women than men (Kvien, 2004; Scott et al., 2010). The average age 

of disease onset occurs between 55-64 years for women and 65-75 years for men 

(Symmons, 2002). 

The precise factors that cause an individual to develop RA are unknown; however 

interaction between genetic and environmental factors are known to influence disease 

onset (Symmons, 2002; McInnes et al., 2011; Okada et al., 2014). RA is characterised by 

the production of autoantibodies (antibodies against an individual’s own proteins), namely 

rheumatoid factor and anti-citrullinated protein antibodies (McInnes et al., 2011). 

Rheumatoid factor production is associated with smoking behaviour (Albano et al., 2001), 

and a more aggressive form of the disease (Firestein, 2003; Scott et al., 2010). Patients 
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with RA also experience the overproduction of pro-inflammatory cytokines (proteins 

secreted during an immune response that influence the interaction between, or behaviour 

of, specific cells) (Scott et al., 2010). The cytokine tumour necrosis factor-α, in particular, 

is important in the pathogenesis of RA because of its role in promoting such an extensive 

inflammatory response (Feldmann, 2002; Feldmann et al., 2005; Feldmann et al., 2010).  

Patients with RA experience an increased risk of mortality, with an average reduction in 

life expectancy of five to ten years, compared with the general population (Kvien, 2004). 

Early mortality is primarily related to an increase in comorbid cardiovascular disease 

(Meune et al., 2009). RA patients may also experience comorbid depression, fatigue, 

diabetes, osteoporosis and infection (Kvien, 2004; Dougados, 2016; Siebert et al., 2016), 

which may be underreported in practice (Baillet et al., 2016). Greater physical disability 

and a lower probability of improvement in disease activity are associated with a higher 

number of comorbidities in patients with RA (Radner et al., 2010; Raganath et al., 2013).  

RA is associated with substantial costs to the health care system and to wider society. 

Patients with severe, active disease can escalate treatment to relatively expensive biologic 

therapies, which cost the NHS approximately £10,000 per patient per year (British 

National Formulary, 2016). There is an inverse relationship between the direct medical 

costs of treating a patient with RA and their functional ability (Kvien, 2004). The National 

Audit Office (2009) subsequently estimated that the direct cost (to the NHS) for treating 

RA was £560 million per year. Patients with RA may also incur productivity costs to the 

wider economy through a reduced ability to maintain employment (Zhang et al., 2011), 

estimated to be between £3.8 and £4.75 billion per year to the UK economy (National 

Institute for Health and Care Excellence, 2009).  

1.3.2. Condition-specific Outcome Measures for Rheumatoid Arthritis 

This section summarises the condition-specific outcome measures for RA that were used in 

this thesis, with respect to disease classification, and the measurement of functional ability, 

disease activity, and treatment response. The components of each outcome measure are 

reported fully in Appendix 7.  
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Disease Classification: ACR Criteria 

Disease classification instruments are primarily used to ensure patient homogeneity within 

clinical studies (Symmons, 2002; Aggarwal et al., 2015). The American College of 

Rheumatology (ACR) 1987 Classification Criteria remains widely used in empirical 

studies of RA (Arnett et al., 1988). The ACR and European League Against Rheumatism 

(EULAR) have since updated the criteria (2010 ACR/EULAR Classification Criteria) to 

classify patients with RA at an earlier stage of their disease (Aletaha et al., 2010). 

Functional Ability: HAQ-DI 

Functional ability can be assessed using the Health Assessment Questionnaire – Disability 

Index (HAQ-DI) (Bruce et al., 2003). The HAQ-DI has twenty questions across eight 

categories of functional ability (dressing, rising, eating, walking, hygiene, reach, grip, and 

usual activities). The total HAQ-DI score is between zero (no disability) and three 

(complete disability), and there are twenty-five possible numerical outcomes in increments 

of 0.125. Patients can have mild-moderate (HAQ-DI=0 to 1), moderate-severe (HAQ-DI=1 

to 2), or severe-very severe (HAQ-DI=2 to 3) disability (Bruce et al., 2003).   

Disease Activity: DAS28 

The Disease Activity Score-28 Joint Count (DAS28) is a composite measure of disease 

activity, used in routine clinical practice in England, comprising a count of a patient’s 

swollen joints, tender joints, and an assessment of their inflammatory markers (erythrocyte 

sedimentation rate (ESR) or C-reactive protein (CRP)) (Prevoo et al., 1995; Madsen, 

2013). The DAS28 is bound between zero and 9.4, and a score greater than 5.1 is 

indicative of high disease activity (van Gestel et al., 1998). 

Treatment Response: EULAR Response 

Treatment response in clinical practice for patients with RA in England is classified 

according to their EULAR response, defined by the absolute change in DAS28 and the 

prevailing level of disease activity, six months after commencing a treatment. A good 

EULAR response is equivalent to a DAS28 reduction of at least 1.2 and the presence of 

low disease activity (DAS28≤3.2) (van Gestel et al., 1998).  
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1.3.3. Treatment for Rheumatoid Arthritis 

Rheumatologists in England are predominately guided by the recommendations produced 

by NICE (National Institute for Health and Care Excellence, 2009) when making routine 

treatment decisions for RA, supported by the national British Society for Rheumatology 

(Ding et al., 2010). Treatment decisions can also be informally influenced by the 

recommendations of the international professional rheumatology organisations, EULAR 

(Smolen et al., 2014) and the ACR (Singh et al., 2016b).  

An international consensus has developed that regards the objective of treatment to be the 

achievement of clinical remission or low disease activity within six months of commencing 

therapy (Smolen et al., 2015). Treatment decisions for patients with RA should therefore 

follow an aggressive treat-to-target approach (Smolen et al., 2016). Regular assessments 

of disease activity and treatment adjustments are recommended to achieve the target of 

remission (Smolen et al., 2016). Health care is delivered by a multidisciplinary team and 

patient involvement in treatment decisions though shared decision-making is encouraged 

(Smolen et al., 2014; Singh et al., 2016b; Smolen et al., 2016).   

Early treatment of newly-diagnosed patients with RA is recommended to prevent 

irreversible long-term joint damage; a period known in the literature as the window of 

opportunity (Boers, 2003; van Nies et al., 2014). Intensive treatment at an early stage of 

RA may increase the likelihood of achieving remission, reduce the time to achieving 

remission, and improve the duration of remission (Verstappen et al., 2007). Consequently, 

treat-to-target objectives may be relatively difficult to achieve in patients with late-staged 

established, active RA (van Nies et al., 2014; Smolen et al., 2015).  

Patients with RA may ultimately require treatment over their lifetime due to the chronic, 

incurable nature of the disease (Smolen et al., 2015). There are four broad categories of 

treatment available for RA: (i) non-steroidal anti-inflammatory drugs (NSAIDs); (ii) 

glucocorticoids; (iii) conventional synthetic disease-modifying anti-rheumatic drugs 

(cDMARDs); and (iv) biologic disease-modifying anti-rheumatic drugs (bDMARDs). 

NSAIDs are used for short-term pain relief, however their long-term use is associated with 

adverse events due to toxicities (Scott et al., 2010; Crofford, 2013). Similarly, short-term 

glucocorticoid therapy can manage flares in disease activity, however their long-term use 

is associated with adverse events such as steroid-induced osteoporosis (National Institute 

for Health and Care Excellence, 2009; Scott et al., 2010).   
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cDMARDs are a heterogeneous group of synthetic therapies that modify disease activity, 

reducing both inflammation and further joint damage (Scott et al., 2010). NICE 

recommends that patients with RA receive a combination of cDMARDs within three 

months of diagnosis if clinically appropriate (National Institute for Health and Care 

Excellence, 2009). The cDMARD methotrexate is often referred to as an anchor drug 

because of its prominent role in the management of RA (Pincus et al., 2013). 

Approximately two-thirds of patients will respond to methotrexate as monotherapy or in 

combination with other cDMARDs (Pincus et al., 2013).  

bDMARD therapies are biologic protein-based treatments (commonly referred to as 

biologics) that act against different therapeutic targets of inflammation (Smolen et al., 

2015). One such target is the cytokine tumour necrosis factor-α that mediates the 

inflammatory process in RA; bDMARDs that target tumour necrosis factor-α are known as 

tumour necrosis factor-α inhibitors or anti-TNF therapies (hereafter referred to as TNFi 

therapies) (Smolen et al., 2015). Patients typically escalate treatment to bDMARD 

therapies after failing to respond to conventional cDMARDs. Figure 1.3 presents a flow 

diagram to illustrate the conditions under which a patient with RA may receive bDMARD 

therapies according to clinical recommendations by NICE.  

There are five TNFi therapies (reported in Table 1.7) recommended by NICE for patients 

with RA that meet the following criteria (National Institute for Health and Care 

Excellence, 2016a): 

• High disease activity, measured by a DAS28 score of at least 5.1 on two occasions; 

• Have previously failed two attempts of cDMARD therapy, usually including 

methotrexate.  
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Figure 1.3. Flow diagram of NICE recommendations for bDMARD therapies. 

 
Source: flow diagram based on prescribing recommendations provided by NICE (National 

Institute for Health and Care Excellence, 2016a) and the regional care pathway for biologic 

therapies in Greater Manchester (Jani et al., 2015b).  

All TNFi therapies for RA are licenced for use in combination with methotrexate due to 

greater efficacy than TNFi monotherapy (Nam et al., 2014; Choy et al., 2016). Four TNFi 

therapies are self-administered by subcutaneous injection with a pen device (between every 

one to four weeks) and infliximab is administered by intravenous infusion every two 

months following an initial loading dose. Four of the TNFi therapies (adalimumab, 

certolizumab pegol, golimumab, and infliximab) are monoclonal antibodies and etanercept 

is a fusion protein (Monaco et al., 2015). Up to fifty percent of patients with RA will fail to 

respond adequately to a TNFi therapy; bDMARDs with different therapeutic targets are 

subsequently recommended by NICE upon TNFi failure, including rituximab (B-cell 

depletion), abatacept (inhibits T-cell activation), and tocilizumab (acts against interleukin-

6) (Curtis et al., 2011; Mócsai et al., 2014; National Institute for Health and Care 

Excellence, 2016a).  
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Table 1.7. Five TNFi therapies recommended by NICE for patients with RA. 

Drug  

(Trade 

name) 

Concomitant 

methotrexate 

Mode of 

administration 

Administration 

Frequency 

EU 

Patent 

expiry 

Manufacturer 

Adalimumab† 

(Humira) 

 

Yes Subcutaneous 

injection  

40mg  

every 2 weeks 

2018 AbbVie 

Certolizumab 

pegol♦ 

(Cimzia) 

 

Yes Subcutaneous 

injection 

 

400mg  

every 4 weeks 

2024 UCB Pharma 

Etanercept▲ 

(Enbrel) 

 

Yes Subcutaneous 

injection 

50mg  

every week 

2015 Pfizer 

Golimumab● 

(Simponi) 

 

Yes Subcutaneous 

injection 

50mg  

every month 

2024 Merck Sharp 

& Dohme 

Infliximab■ 

(Remicade) 

Yes Intravenous 

infusion 

 

 

3mg/kg at 0, 2, 

and 6 weeks 

initially, then 

every 8 weeks 

thereafter 

2015 Merck Sharp 

& Dohme 

Source: †=European Medicines Agency (2017); ♦=European Medicines Agency (2016a); 

▲European Medicines Agency (2014); ●=European Medicines Agency (2016b); ■=European 

Medicines Agency (2012).  

 

Three TNFi therapies (adalimumab, etanercept, and infliximab) are currently experiencing 

patent expiry within the European Union, which will facilitate the production of biosimilar 

therapies. Biosimilar therapies are treatments with similar quality, safety, and efficacy of a 

reference biologic (Grabowski et al., 2014). The European Medicines Agency has granted 

market approval for biosimilar infliximab and etanercept, and biosimilar adalimumab is 

currently in development (Dörner et al., 2016).   

bDMARDs, relative to cDMARDs, impose a substantial opportunity cost on the health 

care system in England. Patent protection, and the high costs associated with the 

manufacture and development of bDMARDs, contribute to their relatively high cost to the 

NHS (approximately £10,000 per patient per year) (Kelly et al., 2009; British National 

Formulary, 2016). The cost of biosimilar TNFi therapies in the short-run may also be high 

due to limited competition between incumbent manufacturers (Grabowski et al., 2014). 

The evidence to support the relative cost-effectiveness of TNFi therapies for RA, despite 

their proven efficacy in clinical trials, is generally unfavourable (van der Velde et al., 

2011; Joensuu et al., 2015). The most recent recommendations regarding TNFi therapies 

by NICE were based on an economic evaluation of bDMARD therapies (relative to 

methotrexate) that estimated ICERs above the conventional cost-effectiveness threshold 
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used in NICE decision-making (between £39,100 and £42,200 per QALY gained) 

(Stevenson et al., 2016). Therefore, if decision-makers continue to recommend TNFi 

therapies for RA within the NHS, irrespective of the unfavourable evidence regarding their 

relative cost-effectiveness, further investigation into alternative means of prescribing TNFi 

therapies may be justified to improve their relative cost-effectiveness and, in turn, 

maximise population health across the NHS.  

1.3.4. Stratified Medicine in Rheumatoid Arthritis 

Stratified medicine has been proposed within the clinical literature as a method to improve 

the management of patients with RA (van den Broek et al., 2013; Karsdal et al., 2014). In 

practice, stratified medicine in RA could be implemented at different stages of the disease, 

for example: (i) to predict the onset of RA and commence early treatment in asymptomatic 

patients, (ii) to confirm a diagnosis of RA in symptomatic patients; and (iii) to predict 

response, or loss of response, to therapies when managing active RA (Gibson et al., 2012). 

Stratified bDMARD therapy, in particular, may be desirable given their high cost per 

patient and the potential to reduce the side-effects associated with less-effective therapies 

in certain patients (Isaacs et al., 2011). Tests to predict treatment response may reduce the 

time that RA patients are exposed to ineffective therapies and, in turn, reduce the potential 

for irreversible joint damage (Lindstrom et al., 2010).  

The clinical interest for stratified medicine in RA has been facilitated by a growing 

evidence-base of patient-level heterogeneity in the disease (Emery et al., 2011; Tak, 2012; 

Cuppen et al., 2016). For example, differences in disease pathogenesis and inflammatory 

markers have been observed between patients with RA (Tak, 2012). Such heterogeneity 

may be associated with different therapeutic responses within and across different classes 

of treatment (Emery et al., 2011). For example, different bDMARDs have different 

therapeutic targets (Mócsai et al., 2014), and patients may respond best to the treatment 

that acts against their own primary source of inflammation (Cuppen et al., 2016).  

1.3.5. Case Study: Stratified Medicine in RA by Testing for Immunogenicity against 

Adalimumab 

The economic evaluation in this thesis focused on a specific case study that involved 

testing for immunogenicity against a particular TNFi therapy, adalimumab, in patients with 

RA. This case study was chosen as a practical example of how treatment could be stratified 
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in the context of RA, and was a novel therapeutic approach emerging in routine practice 

when this thesis was conceived. This subsection introduces the case study, using the 

terminology presented in Section 1.2, by describing the: (i) clinical problem, (ii) source of 

heterogeneity, (iii) biomarkers, (iv) test to detect the biomarkers, (v) application of 

stratified medicine, and (vi) the potential economic rationale for stratified medicine.  

Clinical Problem 

Patients with RA who receive a TNFi therapy can experience two forms of treatment 

failure (National Institute for Health and Care Excellence, 2010; Emery, 2012; Jani et al., 

2015b): 

• Primary non-response occurs when a patient fails to respond to their TNFi within 

the first six months of treatment; 

• Secondary non-response occurs when a patient loses response to their TNFi after 

previously experiencing a period of sustained response to the treatment.  

Secondary non-response to TNFi therapies is a relatively common phenomenon; 

approximately 50% of RA patients will lose response to a TNFi within five years of 

commencing treatment (Tak, 2012). There are several factors that may influence secondary 

non-response to TNFi therapies; for example, a patient may fail to take concomitant 

methotrexate or may receive too little TNFi for their body weight (Jani et al., 2014; Jani et 

al., 2015b). The factor of increasing interest to the rheumatology community, due to its 

potential implication for stratified medicine, is immunogenicity against TNFi therapies 

(Garcês et al., 2013).   

All biologic therapies may cause an immunogenic response after being administered 

(Schaeverbeke et al., 2016). Immunogenicity against a TNFi occurs when the body, 

believing that it has experienced the presence of a harmful pathogen, inappropriately 

produces an immune response and develops anti-drug antibodies (ADAb) against the 

treatment itself (Krieckaert et al., 2012). ADAbs can have a dual role in affecting treatment 

by (i) increasing the clearance rate of therapeutic TNFi within a patient, and (ii) by binding 

to the TNFi drug to neutralise its therapeutic effect (Krieckaert et al., 2012). Consequently, 

the amount of TNFi circulating within a patient’s serum is reduced, referred to as the 

therapeutic drug level (Friedman et al., 1986), implying that there is less drug available to 

suppress the production of tumour necrosis factor-α, resulting in increased joint 
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inflammation and, ultimately, secondary non-response to the TNFi (Krieckaert et al., 

2012).  

The rate at which ADAbs develop is known to vary between different TNFi therapies and 

is a greater concern for monoclonal TNFi therapies (Schaeverbeke et al., 2016). For 

example, clinical evidence has indicated that immunogenic responses to etanercept are 

relatively uncommon (Schaeverbeke et al., 2016). Out of the monoclonal TNFi therapies 

available for patients with RA (described in Section 1.3.3), secondary care expenditure on 

adalimumab in England exceeded the expenditure on all other pharmaceutical treatments 

across all indications between 2014-15 (Health and Social Care Information Centre, 2015). 

Moreover, there existed a developing clinical evidence base for immunogenicity against 

adalimumab in RA, compared with the other monoclonal TNFis (Bartelds et al., 2011; 

Pouw et al., 2015; Jani et al., 2016b). The thesis therefore focussed specifically on the 

application of stratified medicine for patients with RA that were prescribed adalimumab, 

given the emerging clinical evidence base and the potential for its substantial impact on 

NHS expenditures.  

Source of Heterogeneity 

The development of immunogenicity against adalimumab was a (previously unobservable) 

source of heterogeneity in secondary non-response between patients with RA (Jamnitski et 

al., 2011; Jani et al., 2015a). For example, earlier clinical studies have demonstrated that 

patients with ADAb against adalimumab had significantly lower therapeutic drug levels 

(Radstake et al., 2009), and were significantly more likely to lose response to treatment 

over time (Garcês et al., 2013).  

Biomarkers 

The two biomarkers indicative of immunogenicity against adalimumab were (i) 

adalimumab ADAb and (ii) adalimumab drug levels. The usefulness of measuring ADAb 

and drug levels was of international interest within the rheumatology community, and had 

been raised as an important agenda for research by EULAR (Smolen et al., 2014). 

However, unlike predictive biomarkers that are tested before treatment initiation, ADAb 

and drug levels could only develop, and be measured, once a patient had commenced TNFi 

therapy (Krieckaert et al., 2012).  
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Test to Detect Biomarker 

A range of health technologies exist that can detect the presence of ADAb and drug levels 

associated with biologic therapies (Mire-Sluis et al., 2004; Pineda et al., 2016). Drug levels 

are most commonly detected by a sandwich enzyme-linked immunosorbent assay (ELISA) 

(Chen et al., 2015b; Jani et al., 2015a). The two most prominent methods to detect TNFi 

ADAb in patients with RA are the bridging-ELISA and the radioimmunoassay (RIA) (van 

Schouwenburg et al., 2013). The bridging-ELISA is more likely to be used in routine 

practice due to its comparatively lower start-up and running costs, and given that there is 

no use of radioactive materials (Jani et al., 2014). This thesis therefore concentrated on 

treatment stratification by using ELISA-based technologies to test adalimumab ADAb and 

drug levels in patients with RA.   

There are potentially three elements present within a patient’s serum when 

immunogenicity against adalimumab therapy occurs: (i) the monoclonal antibody 

(adalimumab) itself, (ii) free ADAb, and (iii) drug-ADAb complexes (Schaeverbeke et al., 

2016). The bridging-ELISA (and the RIA) can detect free ADAb within a patient’s serum 

(van Schouwenburg et al., 2013). However the bridging-ELISA is limited by drug 

interference when attempting to measure free ADAb if some of the biologic therapy is also 

present within the serum; free ADAb are only detectable by a bridging-ELISA if their 

levels exceed the levels of therapeutic drug within the serum (van Schouwenburg et al., 

2013).  

Commercial tests are now available to measure adalimumab ADAb and drug levels, using 

ELISA techniques (Karsdal et al., 2014; Kiely, 2016), which are increasingly being 

considered for routine use within the NHS. For example, the regional care pathway for 

patients with RA that receive TNFi therapies in Greater Manchester has incorporated 

ADAb and drug level assessment (Jani et al., 2015b). The tests are an example of a 

complementary diagnostic because they (i) were developed after adalimumab had received 

market access, and (ii) are not included within the product label of adalimumab. Table 1.8 

reports three commercial ELISA assays for measuring adalimumab ADAb and drug levels.  
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Table 1.8. Commercial ELISA assays to detect adalimumab ADAb and drug levels.  

Name of Commercial ELISA Test   

Detect Free Anti-adalimumab 

Antibodies Detect Free Adalimumab 

 

Manufacturer 

LISA-TRACKER Anti-Adalimumab LISA-TRACKER 

Adalimumab 

 Theradiag/ Alpha 

Laboratories 

 

Immunodiagnostik TNFα-Blocker 

Monitoring, Antibodies Against 

Adalimumab Drug Level (e.g. 

Humira®) ELISA 

Immunodiagnostik TNFα-

Blocker Monitoring, 

Adalimumab Drug Level (e.g. 

Humira®) ELISA 

 Immunodiagnostik 

AG 

BioHit Healthcare 

Ltd 

 

 

Promonitor  

Anti-ADL ELISA 

 

Promonitor  

ADL ELISA 

  

Proteomika 

Source: National Institute for Health and Care Excellence (2014).  

 

Application of Stratified Medicine 

Advocates of testing ADAb and/or drug levels have argued that they may be candidate 

biomarkers to characterise patient subgroups such that subsequent bDMARD treatment 

decisions could be stratified (Vincent et al., 2013). However the commercial ELISA-based 

ADAb and drug level tests, as with most complementary diagnostics, lacked end-to-end 

evidence that followed a patient from their test result to a health outcome. The (i) clinical 

utility, (ii) appropriate timing of testing, and (iii) the specific treatment decision following 

a test result were therefore uncertain a priori.  

Potential Economic Rationale for Stratified Medicine 

The potential economic rationale for testing immunogenicity against adalimumab was 

twofold. Firstly, a relative QALY gain may have been achieved if patients receiving 

adalimumab were able to be stratified to avoid the harm associated with second non-

response. Secondly, a relative cost reduction may have been achieved by using the testing 

strategies to identify a subgroup of patients that could have sustained response after 

experiencing a reduction in their dose of adalimumab.  

Stratified treatment decisions according to adalimumab ADAb and drug levels will, 

however, impose an opportunity cost because additional health care resources will be 

required to pay for testing. The relative cost-effectiveness of routine immunogenicity 

testing in England was unknown. Therefore, an economic evaluation of treatment 

stratification was necessary to provide health care decision-makers in England with 
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evidence regarding the relative cost-effectiveness of adalimumab ADAb and drug level 

testing.      

1.4. Research Questions and Thesis Structure 

The overall aim of this thesis was addressed using mixed methods (systematic reviews, 

qualitative thematic framework analysis, quantitative econometric analysis, and decision 

analytic modelling). The relative cost-effectiveness of stratifying treatment for RA in 

England according to a test for immunogenicity against adalimumab was estimated by 

conducting an early model-based cost-effectiveness analysis. However, uncertainties 

existed in the (i) wider evidence base regarding the relative cost-effectiveness of stratified 

medicine in RA, (ii) the characterisation of current treatment decisions for RA in England, 

and (iii) the appropriate use of adalimumab ADAb and/or drug level ELISA testing in 

routine practice.  

Subsequently, the thesis addressed three related research questions: 

Research Question 1: What was the existing economic evidence for stratified medicine in 

RA? 

Research Question 2: How were treatment decisions with biologic therapies made for 

patients with RA in current practice in England? 

Research Question 3: Are treatment decisions stratified by adalimumab ADAb and drug 

level testing, for patients with RA in England, a relatively cost-effective use of health care 

resources? 

The thesis was written as a case study that developed the economic evidence base for 

stratified medicine in RA. The structure of the thesis is summarised in Table 1.9 by 

outlining the research question addressed by each chapter, and each chapter’s general 

method and purpose within the thesis. Each chapter was written as a standalone study, with 

the exception of Chapter Five, which was written as a series of smaller sub-studies. All 

chapters were linked by the common theme of developing relevant evidence to inform the 

overall aim of the thesis.  



 
 

       Table 1.9. Thesis research questions, structure, general method, and purpose of each chapter.  

Research Question Chapter Addressed General Method Purpose of Chapter  

1. What was the existing economic 

evidence for stratified medicine in RA? 

Chapter 2 Systematic review.  To identify the exiting model-based economic evaluations 

of stratified medicine in RA.  

 

 

2. How were treatment decisions with 

biologic therapies made for patients with 

RA in current practice in England? 

Chapter 3 

 

 

 

 

Chapter 4 

Qualitative analysis.  

 

 

 

 

Quantitative analysis.  

To explore (i) the relevant care pathways for patients with 

RA in England, (ii) the potential influences on treatment 

decisions, and (iii) the potential barriers to using ADAb 

and drug level testing in routine practice.   

 

To estimate the patient-level factors that influenced the 

choice of TNFi prescribed to patients with RA in 

England.  

 

 

3. Are treatment decisions stratified by 

TNFi ADAb and drug level testing, for 

patients with RA in England, a relatively 

cost-effective use of health care resources? 

Chapter 5 

 

 

 

 

 

 

 

Chapter 6 

Model 

conceptualisation.  

 

 

 

 

 

 

Decision analytic 

modelling and evidence 

synthesis.  

To (i) identify how ADAb and drug level testing may be 

used to stratify treatment decisions in routine practice; (ii) 

define the decision problem of the early economic 

evaluation; (iii) conceptualise the care pathways and 

health outcomes associated with treatment stratification; 

(iv) select the appropriate type of model; and (v) to design 

the structure of the de novo decision analytic model.  

 

To (i) estimate relevant values for the input parameters of 

the decision analytic model; (ii) estimate the relative cost-

effectiveness of adalimumab ADAb and drug level testing 

to stratify treatment for patients with RA in England; and 

(iii) to estimate the potential value of conducting 

additional prospective research to reduce the parameter 

uncertainty associated with testing.  

6
0
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Chapter Two reports a systematic review of published economic evaluations of stratified 

medicine in RA, which established the existing economic evidence base upon which this 

thesis was built. Chapter Three presents a qualitative study, conducted with a sample of 

consultant rheumatologists in England, which explored the prevailing care pathway for 

treating patients with RA, the factors that influenced routine treatment decisions, and the 

potential barriers to using ADAb and drug level testing in practice. The evidence from 

Chapter Three subsequently informed the structure of the de novo decision analytic model. 

Chapter Four developed the findings of the qualitative study, and reports a quantitative 

econometric analysis of the patient-level factors associated with a specific treatment 

decision (the choice of TNFi therapy) using a representative sample of patients with RA in 

England. Chapter Five presents a thorough conceptualisation of the de novo decision 

analytic model and economic evaluation of stratified medicine. The chapter begins by 

exploring how ADAb and drug level testing may be used to stratify treatment in routine 

clinical practice and presents a novel algebraic conceptualisation technique to identify 

potentially relevant comparator testing strategies. Chapter Five then defines the decision 

problem of the economic evaluation, conceptualises the progression of RA and the relevant 

care pathways, justifies the type of decision analytic model chosen to address the decision 

problem, and presents the final structure of the de novo decision analytic model. Chapter 

Six presents the full economic evaluation of the adalimumab ADAb and drug level ELISA 

tests to stratify treatment for patients with RA in England. Chapter Seven concludes the 

thesis by discussing the specific contributions to knowledge, the implications of the results 

to different stakeholders, the potential limitations of the thesis, and suggests possible topics 

for further research.  

This thesis provided seven clear contributions to knowledge:  

(i) The first synthesis and critical appraisal of existing economic evidence for 

stratified medicine in RA;  

(ii) The first exploratory analysis of the factors that influenced rheumatologists’ 

prescribing of biologic therapies for RA in England; 

(iii) The identification of potential barriers to using ADAb and drug level testing in 

routine practice, perceived by rheumatologist in England; 

(iv) The first quantitative analysis of the patient-level factors that influenced the 

choice of TNFi therapy prescribed to patients with RA in England, using data 

from treatment decisions observed in routine practice; 
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(v) The first synthesis of published clinical recommendations for using TNFi 

ADAb and drug level testing in routine clinical practice for patients with RA; 

(vi) A novel model conceptualisation technique to facilitate the early identification 

of potentially relevant comparator strategies during the development of a de 

novo model-based economic evaluation of a stratified medicine; 

(vii) The first estimate of the relative cost-effectiveness of adalimumab ADAb and 

drug level ELISA testing to stratify treatment for patients with RA in England, 

and the potential value of conducting further prospective research subsequent to 

this thesis.  
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Chapter 2 

Existing Economic Evidence 

for Stratified Medicine in 

Rheumatoid Arthritis 
 

Chapter Two reports an investigation into the existing economic evidence for stratified 

medicine in RA. A published version of Chapter Two (Gavan et al., 2014) is provided in 

Appendix 8; the content of this thesis chapter has been updated (in December 2016) to 

account for new evidence since publication of the peer-reviewed manuscript. The chapter 

is presented as a standalone study in terms of an introduction (Section 2.1), aim and 

objectives (Section 2.2), method (Section 2.3), results (Section 2.4), discussion (Section 

2.5), and conclusion (Section 2.6).  

 

2.1. Introduction 

The application of stratified medicine in RA posed a timely and policy-relevant case study 

with the potential to improve the relative cost-effectiveness of care. Stratified medicine in 

RA may be valuable to the health care system in England given the high disease 

prevalence, the high relative cost of treatment for patients with severe disease activity, and 

the potential for heterogeneity in treatment response (for example, in rates of treatment 

failure, adverse events, and effectiveness). Moreover, bDMARD therapies remain widely 

available in England despite questionable evidence of their relative cost-effectiveness (see 

Section 1.3.3). In practice, treatment for RA could be stratified at multiple points along the 

care pathway, from presentation with asymptomatic early arthritis to the management of 

severe inflammation in later stages of the disease (see Section 1.3.4). Despite the clinical 
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interest, the research investment to identify biomarkers associated with treatment response, 

and the growing potential for stratified medicine in RA, an investigation of the existing 

economic evidence to support this emerging treatment paradigm had not yet been 

undertaken.  

In the context of this thesis, the existing literature of relevance was previous economic 

evaluations of stratified medicine for RA that had used a decision analytic model. The 

purpose of reviewing existing economic evaluations differs from a review of conventional 

clinical evidence. Economic evaluations are primarily produced to inform a specific 

decision and their findings may not generalise to different decision-making contexts 

(Sculpher et al., 2006b; Vale, 2010). For example, decision-makers in different 

jurisdictions may have (i) different objectives, (ii) different budget constraints, (iii) 

different decision problems, (iv) different context-specific inputs such as unit costs and (iv) 

different reference case standards by which to perform an economic evaluation (Sculpher 

et al., 2006b; Anderson, 2010). Therefore, it was unlikely to be appropriate to synthesise 

the principle findings from a set of economic evaluations (similar to the process of a meta-

analysis) to make general statements about whether a health technology was, or was not, 

relatively cost-effective (Anderson, 2010).  

A more appropriate purpose of reviewing existing economic evaluations was to inform 

future decisions regarding the design of a de novo economic evaluation (Anderson, 2010). 

For example, existing economic evaluations may inform the potential type and structure of 

a subsequent decision analytic model, and may document the availability of evidence for 

particular input parameters (Anderson, 2010). The technology appraisal programme for 

NICE, and other health technology assessment agencies around the world, incorporates a 

review of the existing economic and clinical literature before generating a de novo decision 

analytic model to provide evidence for a specific resource allocation problem (Anderson, 

2010; National Institute for Health and Care Excellence, 2011a). Relevant topics for this 

thesis regarding the existing economic evidence for stratified medicine in RA included 

investigating: (i) the motive to stratify treatment (for example, to improve effectiveness or 

avoid adverse events); (ii) how the evidence on test accuracy was identified and 

synthesised; (iii) the methods to characterise uncertainty; and (iv) whether (and how) any 

VOI analyses were performed to estimate the value of further research.  
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2.2. Aim and Objectives 

The aim of this study was to identify and appraise the existing economic evidence for 

stratified medicine in RA. There were two objectives to meet this aim: 

Objective 1: Identify all published model-based economic evaluations of stratified 

                     medicine for RA; 

Objective 2: Critically appraise all published model-based economic evaluations of 

                     stratified medicine for RA.  

 

2.3. Method 

A systematic review and critical appraisal of published model-based economic evaluations 

of stratified medicine for RA was performed according to the Preferred Reporting Items 

for Systematic Reviews and Meta-analyses (PRISMA) reporting standards (Liberati et al., 

2009). The completed PRISMA checklist for this study is reported in Appendix 9. 

Study selection 

The study inclusion criteria (reported in Table 2.1) was designed to incorporate as wide a 

set of relevant economic evaluations to the review as possible.  

Table 2.1. Systematic review inclusion criteria: economic evaluations of stratified 

medicine for RA.  

Study Characteristic Inclusion Criteria 

Population Any population that included adults (> 16 years) with RA. 

 

Intervention Any test-based strategy of a biomarker to stratify any treatment 

decision with any pharmacological therapy.  

 

Comparator Any comparator treatment strategy.  

 

Outcomes Expected costs and expected patient benefits per intervention 

strategy. 

 

Study Design Full economic evaluation (cost-benefit analysis, cost-

effectiveness analysis, cost-utility analysis), comparing at least 

two treatment strategies, using a decision analytic model. 

  

Language English; full-text publication.  



66 
 

A study was included if it was a full economic evaluation, defined by Drummond et al. 

(2015) as the joint comparison of at least two alternative interventions in terms of both 

their costs and consequences. This definition included all CUA, CEA, and CBA analyses. 

A stratified medicine intervention was defined broadly, consistent with the definition in 

Section 1.2, as any test-based strategy of a biomarker to stratify any treatment decision, 

within a patient population that included at least some adults with RA. Only economic 

evaluations based on a decision analytic model were included in the review, as they were 

the most relevant studies to inform the development of the subsequent de novo model-

based economic evaluation.  

Medline, Embase, Web of Science and the NHS Economic Evaluations and Health 

Technology Assessment (NHS EED and HTA) databases were searched electronically, 

initially between January 1990 and January 2014. These four databases were deemed 

appropriate because a previously published systematic review had used the same electronic 

databases to identify all economic evaluations of TNFi therapies for RA (Heather et al., 

2014). The review searched for published studies from 1990 because (i) examples of 

higher-cost bDMARDs (assumed to be a motivating factor for stratified medicine) were 

introduced into practice in the 1990s (Mócsai et al., 2014); and (ii) the number of 

published economic evaluations increased during the 1990s because health care decision-

makers began to demand economic evidence (Hutton, 2012). Taking into account the 

number of studies identified in each database, the systematic review was subsequently 

updated by searching the Medline and the NHS EED and HTA databases electronically 

from January 2014 until December 2016. 

The search strategies to identify published studies from the electronic databases are 

reported in Appendix 10. The Medline and Embase search strategies combined index and 

free-text terms for rheumatoid arthritis with the published search filters to identify 

economic evaluations produced by the Centre for Reviews and Dissemination (Duffy et al., 

2007). The Web of Science search strategy combined terms for rheumatoid arthritis and 

economic evaluations. The NHS EED and HTA databases were manually searched using 

the Medical Subject Headings (MeSH) term “Arthritis, Rheumatoid”. Finally, the reference 

lists of all included studies were hand-searched for publications that met the inclusion 

criteria of the systematic review.  

The title and abstract of all publications identified by the search strategies were screened 

by SG against the inclusion criteria in Table 2.1. Four researchers at the Manchester 
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Centre for Health Economics, The University of Manchester, were allocated an equal 

proportion of titles and abstracts to second-screen independently. Abstracts were not 

excluded at the screening stage if there were disagreements between SG and the 

independent reviewers. Studies that remained after the screening stage were read in full by 

SG to determine whether a full economic evaluation of a stratified medicine for RA had 

been performed.  

Data Extraction and Analysis 

A data extraction form was designed according to the recommendations of the Centre for 

Reviews and Dissemination for appraising published economic evaluations (Craig et al., 

2007). The form comprised (i) key study features (target population, intervention and 

comparator, evaluation vehicle); (ii) sources of evidence; (iii) components of the economic 

evaluation (costs included, measure of effectiveness, uncertainty analysis); and (iv) the 

results of the economic evaluation (Craig et al., 2007). Particular attention for this 

systematic review was given to the test characteristics in each economic evaluation, 

including the source of evidence for test performance, the assumed timing of testing, and 

the reported health and resource consequences of testing. All data extraction was 

performed by SG. Key features of each study were summarised in tabular form and a 

critical appraisal of the included economic evaluations was performed by a narrative 

synthesis of the evidence base.  

 

 

 

 

 

 



68 
 

2.4. Results 

A flow diagram of the study inclusion procedure is illustrated in Figure 2.1. The search 

strategy identified 13,941 study titles and abstracts, and 227 manuscripts were read in full. 

Ten studies met the inclusion criteria by reporting a model-based economic evaluation of a 

stratified medicine for RA, published between January 1990 and December 2016.  

Figure 2.1. Systematic review flow diagram of included studies: economic evaluations of 

stratified medicine for RA.  

 

 

The completed data extraction forms for the ten economic evaluations included in the 

systematic review are reported in Appendix 11. An overview of the stratified medicine 

evaluated by each study is provided in Table 2.2, detailing the source of heterogeneity 

within the patient population, the test to reveal this heterogeneity, and the stratified 

treatment decision informed by the test result.  
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Table 2.2.  Systematic review: ten economic evaluations of stratified medicine for RA.   

Author  

(Year) 
Source of Heterogeneity 

Test to Reveal 

Heterogeneity 

Stratified Treatment 

Decision 

 

Purpose of Stratified Medicine: Reduce Adverse Drug Reactions 

      

Bergquist et al. 

(1995). 

  

  

 

 

Patients may develop toxicity 

to methotrexate whilst 

receiving treatment.  

 

 

Liver biopsy during 

treatment.   

 

Continue or 

discontinue 

methotrexate.  

Kim et al. 

(2006).  

 

  

 

Patients with a MTHFR 

mutation may develop 

toxicity to methotrexate 

whilst receiving treatment. 

 

Genotype test (MTHFR) 

before commencing 

treatment.  

 

Different initial dose of 

methotrexate according 

to MTHFR mutation.  

Kowada. 

(2010).  

 

 

 

Patients may have latent 

tuberculosis infection, 

increasing the risk of adverse 

events during TNFi therapy.  

Interferon-gamma release 

assay to test for 

tuberculosis infection 

before TNFi therapy.  

 

Commence treatment 

protocol for 

tuberculosis infection.  

Marra et al. 

(2002). 

 

  

 

Patients with a TPMT 

mutation may experience 

severe adverse drug reactions 

to full dose azathioprine.  

 

Genetic test (TPMT) 

activity before starting 

treatment.  

Different initial dose of 

azathioprine according 

to TPMT mutation.  

Oh et al. 

(2004).  

 

  

 

Patients with a TPMT 

mutation may experience 

severe adverse drug reactions 

to full dose azathioprine. 

 

Genetic test (TPMT) 

activity before starting 

treatment 

Different initial dose of 

azathioprine according 

to TPMT mutation. 

Solomon et al. 

(2000). 

 

 

.   

Patients with low bone 

mineral density may develop 

osteoporosis after receiving 

corticosteroids.  

 

Test bone mineral density 

by x-ray before treatment. 

Treat with 

corticosteroids 

according to bone 

mineral density test.  

Purpose of Stratified Medicine: Improve Treatment Effectiveness 

      

Konnopka et al. 

(2008).  

 

  

 

Patients with early 

undifferentiated arthritis may 

subsequently develop RA. 

 

Anti-CCP test to diagnose 

cases of RA earlier at 

clinical presentation.  

 

 

Earlier effective 

treatment of RA with 

cDMARDs.  

Nair et al.  

(2015) 

Patients with differential 

inflammation may benefit 

from intense, tight-control, 

methotrexate.  

Monitoring of 

inflammation using 

handscan imaging.  

Adjustment of 

methotrexate dose 

according to 

inflammation.  

 

Suter et al. 

(2011).  

 

 

Patients may have differential 

risks of radiographic disease 

progression.  

Include MRI scan in the 

standard risk-stratification 

protocol.  

Early treatment with 

combination cDMARD 

in patients at-risk of 

severe progression.  

 

Purpose of Stratified Medicine: Reduce Unnecessary Health Care Resources 

 

Krieckaert et al. 

(2015). 

 

  

 

 

Patients receiving 

adalimumab may have drug 

levels greater than, or less 

than, a target value to achieve 

an effective response.  

 

ELISA test of adalimumab 

drug levels 28 weeks after 

commencing treatment.  

 

Continue treatment, 

reduce-dose of 

adalimumab, or change 

treatment to a different 

bDMARD.  

Note: Anti-CCP=antibodies against cyclic citrullinated peptides; bDMARD=biologic disease-modifying 

antirheumatic drug; cDMARD=conventional disease-modifying antirheumatic drug; ELISA=enzyme-linked 

immunosorbent assay; MRI=magnetic resonance imaging; MTHFR=methylenetetrahydrofolate reductase; 

TNFi=tumour necrosis factor-α inhibitor; TPMT=thiopurine-methyltransferase. 
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The results reported by each economic evaluation were mostly favourable towards 

stratified medicine within their respective jurisdiction (Konnopka et al., 2008), and the 

approach to stratified medicine was identified as the dominant alternative in six studies 

(Marra et al., 2002; Oh et al., 2004; Kim et al., 2006; Kowada, 2010; Krieckaert et al., 

2015; Nair et al., 2015). However, the validity of these principal results should be viewed 

as conditional on the decisions made for each decision analytic model in terms of the 

identification of supporting evidence, the structure of the model, and the characterisation of 

parameter uncertainty.  

Four studies performed an economic evaluation by using a simple decision tree (Bergquist 

et al., 1995; Marra et al., 2002; Oh et al., 2004; Kim et al., 2006), four studies used a 

Markov model (Solomon et al., 2000; Suter et al., 2011; Krieckaert et al., 2015; Nair et al., 

2015), and two studies combined a decision tree and Markov model (Konnopka et al., 

2008; Kowada, 2010). Three economic evaluations were conducted for a lifetime time 

horizon (Solomon et al., 2000; Kowada, 2010; Suter et al., 2011) whereas the seven 

remaining economic evaluations had much shorter time horizons, ranging between six 

months to ten years. No study documented the conceptualisation procedure of model 

development and only one economic evaluation varied the timing of testing (Bergquist et 

al., 1995; tested patients at five years and ten years).  

The majority of economic evaluations provided limited evidence regarding the estimation 

of test accuracy. Four studies assumed that testing was perfectly accurate with a sensitivity 

and specificity of 100% (Bergquist et al., 1995; Solomon et al., 2000; Kim et al., 2006; 

Nair et al., 2015). A single published source of evidence was used to identify test accuracy 

in three studies (Marra et al., 2002; Oh et al., 2004; Kowada, 2010). Krieckaert et al. 

(2015) did not report the accuracy of adalimumab drug level testing. Suter et al. (2011) 

identified multiple sources of evidence to derive values for test sensitivity and specificity, 

however no method of evidence synthesis was performed with these test accuracy data. By 

contrast, Konnopka et al. (2008) derived the sensitivity and specificity of anti-CCP testing 

from a published systematic review and meta-analysis. 

The resource use (and subsequent cost) of testing in the majority of studies (n=9) was 

assumed to be represented by the unit cost of testing. Only Kowada (2010) accounted for 

the additional resources required to operationalise testing in practice, including the time to 

collect a sample of blood, the need for an additional patient visit to the health care 

professional, and the time for a laboratory technician to evaluate the samples.  
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All studies characterised parameter uncertainty with a deterministic one-way sensitivity 

analysis by making manual adjustments to the values of individual input parameters. The 

prior prevalence of patients with the target condition addressed by the stratified medicine 

(for example, the prevalence of patients with a particular genetic mutation who 

subsequently experience an adverse drug reaction) was a key driver of relative cost-

effectiveness in five studies (Bergquist et al., 1995; Solomon et al., 2000; Kim et al., 2006; 

Kowada, 2010; Suter et al., 2011). Other common drivers of relative cost-effectiveness 

were the cost of testing (Marra et al., 2002), and the severity and likelihood of treatment 

according to an incorrect test result (Konnopka et al., 2008; Suter et al., 2011). A PSA was 

performed in five economic evaluations (Konnopka et al., 2008; Kowada, 2010; Suter et 

al., 2011; Krieckaert et al., 2015; Nair et al., 2015). No study undertook a VOI analysis to 

estimate the value of further research to reduce parameter uncertainty.  

 

2.5. Discussion 

This study identified and critically appraised ten model-based economic evaluations of 

different examples of stratified medicine for RA. In all included studies, a test was used to 

reveal unobserved heterogeneity in a population of patients with RA, which was then 

subsequently used to stratify a specific treatment decision. Consistent with the clinical 

literature that addressed the potential for stratified medicine in RA (see Section 1.3.4), the 

economic evaluations incorporated testing strategies that revealed heterogeneity between 

patients at all points in the care pathway, including: (i) pre-diagnosis of RA (Konnopka et 

al., 2008; Suter et al., 2011), (ii) first-line cDMARD therapy (Bergquist et al., 1995; Marra 

et al., 2002; Oh et al., 2004; Kim et al., 2006; Nair et al., 2015), (iii) prior to commencing 

bDMARD therapy (Kowada, 2010) or corticosteroid therapy (Solomon et al., 2000), and 

finally, (iv) during treatment with a bDMARD (Krieckaert et al., 2015). 

The studies generally reported favourable evidence for the relative cost-effectiveness of 

stratified medicine. However, the reliability of the studies’ findings, and their usefulness 

for informing decision-making, may be affected by the potential limitations of their 

analytic approaches (Anderson, 2010; Tappenden et al., 2014). Ultimately, these potential 

limitations had several implications for the subsequent design of the model-based 

economic evaluation of adalimumab ADAb and drug level testing presented in this thesis 

(in Chapter Six).   
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Current best-practice for developing a de novo decision analytic model for RA 

recommended to represent the chronic nature and gradual worsening of the disease through 

changes to a patient’s HAQ score over time (Madan et al., 2015). For example, all 

academic models that informed previous NICE appraisals of TNFi therapies in England 

estimated HAQ progression by an individual patient simulation (Jobanputra et al., 2002; 

Barton et al., 2004b; Malottki et al., 2011; Stevenson et al., 2016). The use of decision tree 

models in this review did not incorporate the chronic worsening of RA due to their lack of 

an explicit time component (Sonnenberg et al., 1993; Briggs et al., 1998). No study 

performed an individual patient simulation, yet three studies represented disease 

progression over time in a Markov model (Konnopka et al., 2008; Krieckaert et al., 2015; 

Nair et al., 2015). However, Markov models may also be limited for evaluating a stratified 

medicine if the status of the unobserved biomarker differs between patients over time, and 

that biomarker affects the probability of a subsequent clinical event occurring (Caro et al., 

2016b).  

The economic evaluations in this review predominately compared a treatment strategy 

informed by a test to a strategy that represented current clinical practice without testing. 

The definition of current practice for RA was often unclear in the reported studies. 

Treatment decisions in England are made with reference to national recommendations by 

NICE (National Institute for Health and Care Excellence, 2009; 2016a); however, there 

remained evidence of substantial regional variation in the treatments prescribed to patients 

with RA (The British Society for Rheumatology, 2015). The studies were poor at 

explaining the conceptualisation of current clinical practice, which may bring into question 

its suitability as a relevant comparator strategy for stratified medicine.  

Current clinical practice may not have been the only relevant comparator if the test 

featured in each economic evaluation could have been used in different ways (for example, 

by testing patients earlier or having a different treatment decision) (O'Mahony et al., 

2015c). Only one study investigated variation in the timing of testing (Bergquist et al., 

1995). Different ways of using a test to stratify treatment decisions can affect its relative 

cost-effectiveness, as patients may accrue costs and QALYs at a different rate between 

different testing strategies (Hatz et al., 2014; Shabaruddin et al., 2015) (see Section 1.2.5). 

Therefore, the credibility of the incremental analyses reported by each economic 

evaluation may have been improved if multiple relevant testing strategies were included 

within the respective decision problems (O'Mahony et al., 2015a).  
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A stratified medicine may require resources in addition to the test itself, such as clinician 

time to make a treatment decision and a patient appointment to collect a biomarker sample 

(Buchannan et al., 2013). Only one economic evaluation in this systematic review included 

all the resources necessary for testing (Kowada, 2010). Previous systematic reviews have 

identified that the relative cost-effectiveness of different stratified medicines were sensitive 

to the cost of testing (Phillips et al., 2004; Beaulieu et al., 2010; Oosterhoff et al., 2016). 

The majority of economic evaluations identified in this review may have underestimated 

the unit cost (and opportunity cost) of testing by omitting these additional resources (Luce 

et al., 1990) which, as a consequence, may have inaccurately improved the relative cost-

effectiveness of the stratified medicine (Drummond et al., 2015).  

While screening the abstracts for model-based economic evaluations, one RCT-based 

economic evaluation of a stratified medicine for RA was identified by Thompson et al. 

(2014). This prospective study investigated the relative cost-effectiveness of TPMT testing 

to stratify azathioprine therapy using a pragmatic trial design. Pragmatic trials are 

performed in routine clinical practice to investigate the effectiveness of an intervention 

health technology (Roland et al., 1998); in the case of Thompson et al. (2014), clinicians 

could make their own treatment decisions but were guided by pre-defined 

recommendations on how to interpret the TPMT test result. Clinicians must make the 

appropriate treatment decision according to a test result to realise the benefit of treatment 

stratification in practice (Garrison et al., 2006; Annemans et al., 2013; Buchannan et al., 

2013). However, Thompson et al. (2014) found that clinicians may not have followed the 

test result, as described in the trial protocol, when making their treatment decisions. 

Consequently, the estimated cost-effectiveness of a stratified medicine derived from a 

model-based economic evaluation may not be achieved if clinicians perceive that there are 

barriers to testing in routine practice.  

Limited information was provided by the economic evaluations in this systematic review 

regarding the identification of evidence for test accuracy. The NICE DAP programme, 

when appraising a stratified medicine, requires that the evidence of a test’s accuracy must 

be identified by a systematic review (National Institute for Health and Care Excellence, 

2011a); however only one economic evaluation in this study identified a test’s sensitivity 

and specificity from a systematic review (Kowada, 2010). Three studies assumed perfect 

test accuracy, meaning that the consequences of an incorrect (false-positive and false-

negative) test result were not incorporated in the respective evaluations (Annemans et al., 

2013). Suter et al. (2011) identified multiple sources of evidence for test accuracy, 
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however no formal method of evidence synthesis, such as a bivariate meta-analysis, was 

used to combine these data (Harbord et al., 2008; Macaskill et al., 2010). The relative cost-

effectiveness of a stratified medicine may ultimately be sensitive to the proportion and/or 

consequence of incorrect treatment decisions due to test inaccuracies (Phillips et al., 2004; 

Annemans et al., 2013; Oosterhoff et al., 2016).   

Decision-makers customarily require model-based economic evaluations to propagate 

parameter uncertainty with a PSA (Claxton et al., 2005; National Institute for Health and 

Care Excellence, 2013a); however, only half of the economic evaluations included in this 

review performed a PSA. No study investigated the value of additional research by 

performing a VOI analysis, which has been increasingly utilised in early model-based 

economic evaluations characterised by limited supporting evidence (Mohiuddin et al., 

2014; Buisman et al., 2016). The studies could have used VOI methods, given the limited 

evidence reported for some parameter inputs related to stratified medicine (for example, 

test accuracy or the impact of treatment on patient outcomes), to investigate whether the 

cost of additional prospective research may exceed its potential value in reducing 

uncertainty in the estimate of relative cost-effectiveness (Claxton et al., 2001; Wilson, 

2015).  

Limitations 

One potential limitation of this systematic review was that the target populations of two 

economic evaluations included patients with different inflammatory diseases (not only RA) 

(Marra et al., 2002; Oh et al., 2004). However the two studies met the inclusion criteria in 

Table 2.1, ensuring that the widest-possible set of relevant model-based economic 

evaluations were included in the systematic review. 

A second potential limitation was that only Medline and the NHS EED & HTA databases 

were searched electronically to update the systematic review in December 2016. This 

decision was unlikely to have affected the results because the original database search (in 

January 2014) did not identify any unique economic evaluations from Embase or Web of 

Science that were subsequently included in the systematic review.  

A third potential limitation was the exclusion of trial-based analyses from the systematic 

review. Decision analytic models conventionally make simplifying assumptions that may 

overlook important contextual factors related to the use of a health technology in routine 



75 
 

clinical practice. For example, the pragmatic trial by Thompson et al. (2014) reported that 

clinicians may not prescribe the correct treatment according to the result of a test; the 

decision analytic models within this systematic review, however, assumed that treatments 

were prescribed correctly according to each testing strategy. The absence of such 

contextual factors in model-based economic evaluations, which may be revealed within 

pragmatic trial-based analyses, may limit the generalisability of the results generated by a 

decision analytic model. However, the search strategy identified only one trial-based 

economic evaluation of a stratified medicine for RA and it was unlikely that additional 

studies of a similar design were also present within the literature.  

Implications for Future Research 

The findings of this systematic review provided seven implications for the 

conceptualisation of the de novo decision analytic model presented in this thesis. These 

seven implications are now summarised: 

(i) The decision analytic model may benefit from being implemented as an individual 

patient simulation, consistent with current best-practice in RA, given that the status 

of adalimumab ADAb and drug levels may change over time, which may also affect 

the likelihood of future clinical events (Caro et al., 2016b);  

 

(ii) Given the uncertainty in defining current practice for RA, an exploration of 

prescribing decisions for RA in England may help to inform the characterisation of 

the care pathway within the economic model (Tappenden, 2014);  

 

(iii) An extensive review of the potential ways to incorporate adalimumab ADAb and 

drug level testing into the care pathway for RA was required, to ensure that all 

relevant comparator testing strategies were included in the model (Buisman et al., 

2016);  

 

(iv) An investigation into the potential barriers to routine adalimumab ADAb and drug 

level testing perceived by rheumatologists in England may be beneficial, in light of 

evidence that clinicians may not choose to follow the result of a test to stratify a 

treatment in clinical practice (Thompson et al., 2014);  
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(v) All resources associated with adalimumab ADAb and drug level testing must be 

quantified and valued to account for their opportunity cost (Oosterhoff et al., 2016);  

 

(vi) Test accuracy data must be identified by a systematic review and combined using 

appropriate methods of evidence synthesis (National Institute for Health and Care 

Excellence, 2011a);  

 

(vii) A VOI analysis may be beneficial to investigate the value of further prospective 

research regarding adalimumab ADAb and drug level testing (Steuten et al., 2014).  

 

2.6. Conclusion 

The aim of this study was to identify appraise the existing economic evidence supporting 

the use of stratified medicine in RA. A systematic review identified ten published model-

based economic evaluations in RA that had estimated the relative cost-effectiveness of a 

stratified medicine. The examples of stratified medicine used different means of testing to 

reveal unobserved heterogeneity in the patient population at different points in the care 

pathway for RA. The results suggested that the existing evidence for the cost-effectiveness 

of stratified medicine in RA, albeit generally favourable within their respective 

jurisdiction, may be limited by the analytic choices and assumptions made within each 

decision analytic model.   

The results of the systematic review provided seven implications for conducting the de 

novo economic evaluation of adalimumab ADAb and drug level ELISA testing in this 

thesis. These seven implications are subsequently addressed in the forthcoming chapters, 

including the characterisation of current practice (Chapter Three and Chapter Four), the 

conceptualisation of the decision problem and decision analytic model (Chapter Five), and 

the estimation of relative cost-effectiveness (Chapter Six).  
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Chapter 3 

Understanding Treatment 

Decisions for Rheumatoid 

Arthritis in Current Practice 
 

Chapter Three presents a qualitative investigation of treatment decisions for RA made in 

current practice with a sample of senior consultant rheumatologists in England. The study 

provided a source of evidence for: (i) conceptualising the structure of the subsequent 

decision analytic model (described in Chapter Five), and (ii) the potential barriers to 

introducing ADAb and drug level testing into routine practice. An earlier version of this 

study was presented at the EULAR 2016 Annual European Congress of Rheumatology 

(Gavan et al., 2016a). The chapter comprises an introduction (Section 3.1), aim and 

objectives (Section 3.2), method (Section 3.3), results (Section 3.4), discussion (Section 

3.5), and conclusion (Section 3.6).  

 

3.1. Introduction 

The structure of any decision analytic model, used to conduct an economic evaluation, is 

conventionally designed according to an existing care pathway, so that its outcomes are 

estimated with relevance to a specific decision-making context (National Institute for 

Health and Care Excellence, 2011a; Tappenden, 2014). The model-based economic 

evaluation of adalimumab ADAb and drug level testing to stratify treatment, presented in 

this thesis, therefore, required an understanding of current practice for RA in England. The 

results of the systematic review in Chapter Two indicated that previous model-based 

economic evaluations of stratified medicine in RA had not reported their characterisations 
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of current practice with clarity. Chapter Three was subsequently designed to understand 

the treatment decisions made in current practice for patients with RA in England.  

Prevailing clinical recommendations and guidelines may be used as one potential source of 

evidence to understand the treatment decisions within an existing care pathway 

(Tappenden, 2014). For example, it may be possible to deduce the appropriate care 

pathway for RA from NICE recommendations, which are used by rheumatologists in 

England to inform routine treatment decisions for patients in the NHS (National Institute 

for Health and Care Excellence, 2009; 2016a). NICE recommendations, in theory, were 

established to improve the standard of care in the NHS, promote a cost-effective use of 

population health care resources, and minimise inappropriate regional variation in clinical 

practice (Walker et al., 2007). In the context of a treatment decision for a specific patient, 

however, NICE recommendations are fundamentally advisory (Cookson et al., 2001) and 

do not preclude the expression of clinical judgement (National Institute for Health and 

Care Excellence, 2016b). As a potential consequence, recent studies have identified 

considerable regional variation in the treatment decisions for patients with RA in England, 

despite the existence of national evidence-based recommendations by NICE (Tugnet et al., 

2013; Blake et al., 2014; The British Society for Rheumatology, 2015). Such regional 

variation indicated that clinical recommendations and guidelines may have been necessary, 

but not sufficient, sources of evidence for this thesis to understand the care pathway for RA 

in England.  

The NICE clinical guideline for RA, for example, includes seven recommendations for 

patient management (National Institute for Health and Care Excellence, 2009). In 2014-15, 

The British Society for Rheumatology performed a high-profile national audit of 

rheumatology practice against these seven recommendations by analysing patient data 

(n=6,354) from the majority of NHS rheumatology providers (n=135) in England and 

Wales (The British Society for Rheumatology, 2015). The audit reported evidence of non-

trivial regional variation in the implementation of the seven recommendations; for 

example, (i) access to rheumatology services within three weeks of referral was observed 

in 55% of trusts in London and 32% of trusts in the Midlands and East England; and (ii) 

education and self-management activities were provided in 63% of cases in the North of 

England and 38% of cases in London (The British Society for Rheumatology, 2015). 

Tugnet et al. (2013) surveyed 311 patients with RA from nineteen rheumatology units 

located in the Midlands of England and found that, even by restricting the analysis to this 
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specific geographic region, between-hospital variability was also present in the uptake of 

the same recommendations by NICE. For example, only 25% of the rheumatology units 

within the sample conducted monthly assessments of disease activity (DAS28) and 40% of 

units treated their patients with combination cDMARDs. Statistically significant 

differences in implementing recommendations were also observed between rheumatology 

units with, and without, an early inflammatory arthritis clinic (Tugnet et al., 2013).  

Blake et al. (2014) reported a related study that investigated the extent to which patients 

with RA, who changed treatment between two bDMARD therapies, were compliant with 

NICE recommendations. Data were collected from all patients with RA who changed 

bDMARD therapies across eighteen rheumatology units in the East and West Midlands, 

England. Decisions to change between bDMARDs were compliant with NICE 

recommendations in 65% of cases. Additionally, individual hospitals varied in their rates 

of compliance with NICE recommendations (between 50% of patients to 100% of patients) 

which may suggest that unobserved hospital-specific factors had an influence on treatment 

decision-making (Blake et al., 2014).  

An alternative source of evidence, that has been recommended to understand the treatment 

decisions made within an existing care pathway, is to explore the views of experts within 

the health care system for their input (Chilcott et al., 2010; National Institute for Health 

and Care Excellence, 2011a; Tappenden, 2014). Qualitative methods of research, in 

general, can be used to formalise the interpretation and understanding of the views 

provided by different individuals (Snape et al., 2003). Such methods, in the context of this 

thesis, had the potential to be valuable, by enabling an understanding of specific 

observations within a relevant clinical scenario (Coast, 1999; Obermann et al., 2013), such 

as regional variation in treatment decisions. Qualitative methods have also been explicitly 

recommended as one approach to inform the structure of a de novo decision analytic model 

during the conceptualisation and development stages of an economic evaluation (Husbands 

et al., 2017). In particular, the use of clinical experts to inform the design of a decision 

analytic model can be valuable during an early-stage economic evaluation in order to 

describe the characteristics of current practice, as described within the conceptual 

framework presented in Figure 1.1 (Sculpher et al., 1997).  

No previous research had used qualitative methods to explore routine bDMARD 

prescribing decisions for patients with RA with a sample of consultant rheumatologists in 

England. Evidence provided by consultant rheumatologists had the potential to inform the 
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understanding of three relevant topics of interest for this thesis: (i) the care pathway for 

patients with RA in England, (ii) the factors that may influence treatment decisions in 

current practice, and (iii) the potential barriers to introducing ADAb and drug level testing 

into routine clinical practice for RA. 

3.2. Aim and Objectives 

The aim of this study was to understand the current prescribing and treatment practices for 

the management of patients with RA with TNFi therapies in England. Three objectives 

were addressed to meet this aim: 

Objective 1: To explore the differences between rheumatologists’ approaches to managing 

                      patients with RA in England; 

Objective 2: To understand the reasoning for why rheumatologists in England choose to 

            treat their patients with RA in particular ways; 

Objective 3: To explore the potential barriers perceived by rheumatologists regarding the 

                      use of ADAb and drug level testing in routine practice.  

 

3.3. Method 

This study used a qualitative thematic framework analysis of semi-structured one-to-one 

in-depth interviews with senior consultant rheumatologists across England. The study was 

performed according to the best-practice Standards for Reporting Qualitative Research 

(SRQR) checklist (O'Brien et al., 2014); the completed SRQR checklist for this study is 

reported in Appendix 12. The method is reported according to the study population and 

sample (Section 3.3.1); data collection (Section 3.3.2); data analysis (Section 3.3.3); and 

ethical approval (Section 3.3.4).  

3.3.1. Study Population and Sample 

The target population of this study was senior consultant rheumatologists that had 

experience of treating patients with RA in England. A purposive sample of individuals 

were recruited, consistent with this target population, according to their professional role of 
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employment. A purposive sample is a non-random sample collected with a purpose of 

enabling an understanding of the phenomenon being researched (Silverman et al., 2008).  

A sampling frame defines the individuals, within a target population, that were eligible for 

recruitment to a particular study (Morgan, 2008). The sampling frame for this study, from 

which participants were recruited, was the list of principle investigators (n=45) of the 

Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) 

cohort study. The quantitative study, reported in Chapter Four, analysed the patient-level 

data from BRAGGSS; the use of the BRAGGSS principal investigators in the sampling 

frame of this study therefore introduced a degree of consistency between the research 

reported in Chapter Three and Chapter Four. Each principle investigator was a consultant 

rheumatologist, experienced in treating RA patients with TNFi therapies, from a different 

hospital across England. The sample inclusion criteria were: (i) consultant rheumatologists 

in England; (ii) who were principle investigators of BRAGGSS; (iii) with experience of 

treating patients with RA.   

An identical participant recruitment email and participant information sheet was sent 

individually to all rheumatologists in the sampling frame in December 2014. 

Rheumatologists who did not respond were sent a follow-up recruitment email in March 

2015. No further contact was made with non-responding rheumatologists after March 

2015. The participant recruitment email, and the participant information sheet that was 

attached to each email, are reported in Appendix 13.  

3.3.2. Data Collection 

In the context of qualitative research, interviews can facilitate a conversation with a 

purpose (Miller, 1995) to explore the views and experiences of individuals regarding a 

specific phenomenon (Gill et al., 2008). In-depth semi-structured interviews were 

conducted with open-ended questioning that enabled the rheumatologists to provide 

expansive responses. A semi-structured interview is a strategy for data collection in which 

a series of predetermined questions are posed, based on the research objectives, which may 

be asked in any order according to the responses of each participant (Ayres, 2008). The 

interview schedule addressed the three objectives of this study in seven topics of 

questioning, reported in Table 3.1. A pilot interview was conducted with a clinical research 

fellow (Dr. Meghna Jani) at The University of Manchester, who had experience of treating 
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patients with RA in England, to evaluate the suitability of the interview questions and its 

structure. The complete semi-structured interview schedule is reported in Appendix 14.  

Table 3.1. Seven topics addressed by the semi-structured interview schedule. 

Research Objective Topic Addressed by Interview Schedule  

1 & 2 The interpretation of NICE recommendations. 

1 & 2 Procedures to ensure compliance with NICE recommendations. 

2 & 3 Assessing the suitability of TNFi therapy. 

2 & 3 The decision of choosing the first TNFi. 

2 & 3 Treatment decisions after TNFi failure. 

2 & 3 Beliefs about the five TNFis recommended by NICE. 

3 The use of ADAb and drug level testing in routine practice. 

 

Additional interview questions were posed according to the responses of preceding 

participants, consistent with grounded theory method of qualitative research (Glaser et al., 

1967). For example, if one participant described a unique experience, the questions posed 

to subsequent participants were updated to assess whether they had shared a similar 

experience.  

Participants were interviewed by SG over the telephone to increase the feasibility of 

conducting one-to-one interviews with a sample of practicing clinicians distributed across 

England, compared with scheduling a face-to-face meeting, during working-hours (Miller, 

1995). To minimise the burden of participating, the rheumatologists that provided consent 

were able to schedule the interview at a date and time that was most convenient for them. 

SG conducted all telephone interviews from the Manchester Centre for Health Economics, 

The University of Manchester.  

The telephone interviews were recorded by a digital audio recorder and the content of all 

interviews was transcribed verbatim by SG using the method reported by Poland (1995). 

The audio of each interview was replayed in full after it had been transcribed to ensure data 

integrity and congruence between the audio and the transcript (Poland, 2008). The 

transcripts were made anonymous by SG by removing references to the names of 

individuals, geographic locations, and labelling each transcript alphabetically in ascending 

order of the interview date. The rheumatologists that participated were therefore unable to 

remove their data from the study after transcription.  
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3.3.3. Data Analysis 

The interview transcripts were analysed by an inductive thematic framework analysis 

(Ritchie et al., 2001; Braun et al., 2006; Gale et al., 2013). A thematic analysis is a 

qualitative method of data analysis in which the researcher takes an active role in 

identifying themes within the data (Braun et al., 2006). An inductive analysis indicated that 

such patterns were identified within the data without specifying of how those patterns 

should be defined a priori (Patton, 2003). The analysis comprised six stages 

(familiarisation, coding, developing the framework, applying the framework, generating 

the framework matrix, and interpretation); these six stages are now described. 

Stage One: Familiarisation – The initial stage of the framework analysis, common to most 

forms of qualitative research, was to become immersed in the data (Ritchie et al., 2001; 

Braun et al., 2006). Therefore, all telephone interviews were (i) conducted by SG and (ii) 

transcribed by SG, which are conventionally regarded to be the time period at which data 

familiarisation begins (Braun et al., 2006). The transcripts were then read repeatedly by 

SG, in an active way (for example, by making notes in the margins), to identify initial 

patterns of responses within and between individual transcripts (Braun et al., 2006).  

Stage Two: Coding – A code was defined as a descriptive label that was applied to 

elements of a transcript that conveyed a meaning in relation to the research objectives 

(Braun et al., 2006). Codes may have referred to matters of fact (for example, an explicit 

statement made within a transcript) or to the emotions conveyed by the rheumatologists 

(for example, an expression of frustration towards a particular situation) (Gale et al., 2013). 

A specific code was applied by SG to each line of the transcripts to label excerpts from the 

interviews. Coding was systematic and thorough which enabled different sections of the 

transcripts to be compared between the sample of rheumatologists (Braun et al., 2006; Gale 

et al., 2013). Supplementary coding was performed by KP and Dr. Gavin Daker-White, 

who had extensive experience in the analysis of qualitative data. In addition, to enhance the 

trustworthiness of the analysis, a researcher at the Manchester Centre for Health 

Economics, The University of Manchester, who was independent from the study and blind 

to the study’s design, provided supplementary coding in twenty percent of transcripts that 

were selected at random.  

Stage Three: Developing the Framework – The codes within and between individual 

transcripts were grouped together according to their similarity. A theme was the term used 
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to describe a distinct set of codes that shared a common element, and reflected a pattern of 

responses across the rheumatologists, that were important in relation to the research 

objectives (Braun et al., 2006). All themes were constructed by SG.  

Stage Four: Applying the Framework – The themes and codes that were identified within 

earlier transcripts were then applied to subsequent transcripts. The analytic framework was 

refined if excerpts of subsequent transcripts did not relate to a theme or code that was 

identified earlier (Ritchie et al., 2001). The interview transcripts were therefore analysed 

continually during data collection, rather than after all data had been collected (Glaser et 

al., 1967).   

Stage Five: Generating the Framework Matrix – The transcribed data were then input into 

a matrix by a process known as charting (Gale et al., 2013). A separate matrix was created 

for each theme. Each column of the matrix represented a specific code and each row 

represented a specific participant (Gale et al., 2013). A summary of each participant’s data 

was written for each code, within each cell along their specific row within the matrix 

(Ritchie et al., 2001). The matrix maintained a link to the original transcribed data by 

referring to specific page numbers of the transcripts and quotations (Ritchie et al., 2001; 

Gale et al., 2013). The data were charted from the transcripts to the framework matrix by 

SG.  

Stage Six: Interpretation – The responses of all rheumatologists were compared across 

each code and theme after all data were charted to the framework matrix (Ritchie et al., 

2001). Table 3.2 provides an example of a framework analysis matrix for one specific 

theme.  

Table 3.2. Example of a framework analysis matrix.  

 Theme 1 

Rheumatologist No. Code a Code b Code c 

Rheumatologist 1    

Rheumatologist 2    

Rheumatologist 3    

 

The matrix in Table 3.2 is based on the interview transcripts of three rheumatologists. The 

coding and framework development stages in this example identified one overall theme 

within the data (“Theme 1”) and three codes were identified that related to this theme 
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(“Code a”, “Code b”, “Code c”). A summary of the rheumatologists’ data for each code 

(referring back to the original transcripts) would then be written within each empty cell of 

the matrix. These summarised data would then be analysed and interpreted by reading 

down a column to compare each rheumatologists’ response for a specific code. The results 

were presented for each research objective by using a narrative synthesis with supporting 

quotations. 

3.3.4. Ethical Approval 

This research received ethical approval by The University of Manchester Research Ethics 

Committee 2 (reference number: 14147). All rheumatologists contributed voluntarily and 

received no financial compensation. All participants provided informed consent and agreed 

to: (i) the recording of their telephone interview, and (ii) the publication of anonymous 

quotations within the final PhD thesis and peer-reviewed journal articles.  

 

3.4. Results 

Figure 3.1 illustrates a flow diagram of participant recruitment. Recruitment emails were 

sent to the sampling frame of consultant rheumatologists (n=45) in December 2014. 

Seventeen individuals responded, of whom three declined to participate. Follow-up 

recruitment emails were sent to the twenty-eight non-responding individuals in March 

2015 and four additional rheumatologists agreed to participate. Thirteen completed consent 

forms were returned by rheumatologists who agreed to be interviewed. Contact was lost 

with two individuals after returning completed consent forms. Telephone interviews were 

conducted with the remaining participants (n=11; 24% of the sampling frame) between 

January and September 2015. All participants met the study inclusion criteria. The mean 

duration of the telephone interviews was 30 minutes (range: 16 minutes to 56 minutes).  
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Figure 3.1. Flow diagram of participant recruitment to the qualitative study.  

 

 

The summary demographics of the final sample are reported in Table 3.3. The sample was 

distributed evenly by geographic region across England. The mean self-reported 

population size of patients with RA that were treated at each hospital was 2,450 patients.  

Table 3.3. Summary demographics of the final interviewed sample.   

Sample Characteristic n (%) 

 

Sex 

     Male 

     Female 

 

 

 

9 (82%) 

2 (18%) 

Region in England 

     North 

     Midlands 

     South 

 

4 (36%) 

4 (36%) 

3 (27%) 

 

The results are now presented in three sections for each research objective: the differences 

in treatment decisions (Section 3.4.1), the reasoning for treatment decisions (Section 

3.4.2), and the potential barriers to ADAb and drug level assessment in routine practice 

(Section 3.4.3).  
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3.4.1. Objective 1: Differences in Routine Treatment Decisions 

The interview schedule addressed six treatment decisions that could be made along the 

care pathway for patients with RA (illustrated in Figure 3.2) who became eligible for TNFi 

therapy. A table that reports the eleven rheumatologists’ approaches to treatment at each 

decision point is provided in Appendix 15. This section explores the similarities and 

differences between the rheumatologists’ responses.  

Figure 3.2. Six treatment decisions along the care pathway for RA. 

  

 

Decision 1: Choice of First TNFi 

The participants reported three conceptually different approaches to choosing the first 

TNFi: (i) facilitating free patient choice; (ii) choosing the TNFi according to patient 

characteristics; and (iii) choosing the TNFi according to the recommendations of hospital-

level guidelines or regional health care commissioners.  

The set of TNFi therapies that were offered to patients varied (a restricted set versus all 

five TNFi therapies recommended by NICE), if the rheumatologists facilitated a free 

patient choice. Participants who made treatment decisions according to the requirements of 

regional health care commissioners varied in the choice of first TNFi (however, three 

participants reported that their health care commissioners required the first TNFi to be 

certolizumab pegol). Etanercept and infliximab were repeatedly cited as candidate first-line 

TNFi therapies in patients with infection or compliance issues, respectively.  
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Decision 2:  when TNFi was Unsuitable 

The rheumatologists explained their preferred treatment approaches for patients with RA 

when TNFi therapy was unsuitable, for example: (i) tocilizumab monotherapy for patients 

unable to receive concomitant methotrexate; (ii) abatacept for patients with an infection 

risk or multiple sclerosis; and (iii) rituximab for patients with evidence of malignancy, 

infection, or lung disease.  

Decision 3: following an Adverse Event from TNFi 

The treatment decision after a TNFi adverse event was reported to depend on its severity. 

Minor adverse events (such as an injection site reaction) were commonly followed with a 

second TNFi, in some cases switching between monoclonal and non-monoclonal agents. 

Alternatively, one rheumatologist favoured to continue the first TNFi and treat any pain 

with anaesthetic.  

The rheumatologists argued that more severe adverse events (such as an infection) would 

prompt a decision to change treatment to a different class of bDMARD, such as rituximab. 

A minority of rheumatologists argued that they may use a second TNFi, if their patient had 

responded well to the first TNFi, following a severe adverse event.  

Decision 4: following Primary Failure of TNFi 

Primary failure of the first TNFi was followed by changing treatment to a different 

bDMARD. Only one rheumatologist claimed that they may attempt to control disease 

activity with a second TNFi, conditional on the patient’s approval.  

Decision 5: following Secondary Failure of TNFi 

One rheumatologist claimed that they may attempt dose-escalation specifically after 

secondary failure of infliximab. However, a number of participants did not consider TNFi 

dose-escalation to be an appropriate treatment strategy. Most participants explained that 

treatment would be changed to a different bDMARD (such as rituximab) after secondary 

failure of a TNFi. Two rheumatologists explained that they may attempt a second TNFi if 

their patient responded well to an earlier TNFi.  
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Decision 6: during TNFi-induced Remission 

Six rheumatologists explained that they would increase the interval between TNFi 

injections (to reduce the effective dose) for patients that had entered remission while 

receiving a TNFi. One rheumatologist preferred to maintain the regular TNFi injection 

intervals for patients in remission. Two rheumatologists argued that testing TNFi drug 

levels and ADAb may be helpful to inform treatment decisions in remission. In contrast, 

three rheumatologists argued to reduce a patient’s concomitant methotrexate in remission 

(two of which explained this was only suitable for patients that had previously experienced 

an adverse drug reaction to methotrexate).  

3.4.2. Objective 2: Reasons for Treatment Decisions 

Given that differences between the rheumatologists’ routine treatment decisions were 

reported along the care pathway for RA (Section 3.4.1), an exploratory analysis of the 

factors that influenced these treatment decisions may inform why such differences were 

reported. The rheumatologists’ responses suggested that TNFi treatment decisions were 

made within a system characterised by three nested themes of influential factors, the 

relative strength of which appeared to inform treatment variation across the sample. The 

three themes comprised influences on treatment decisions: (i) from the wider context in 

which a hospital operated (External Environment Influences); (ii) from within the 

rheumatologists’ hospitals (Internal Hospital Influences); and (iii) from the day-to-day 

factors closest to each rheumatologist (Individual-level Influences). Influences in the 

external environment affected those at the hospital level, and both had an impact on the 

rheumatologists’ individual-level influences (illustrated in Figure 3.3). 

The specific influences, identified across the rheumatologists’ transcripts, were classified 

as subthemes within each theme (reported in Table 3.4). This section discusses each theme 

and subtheme, using direct quotations from the participants to support the results.  
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Figure 3.3. The interaction of influences that affected rheumatologists’ treatment decision-

making.  

 

 

Table 3.4. Specific factors that influenced treatment decisions categorised by broad theme.  

Theme Subtheme (Specific Factor of Influence) 

External Environment 

Influences 

NICE recommendations; 

Clinical commissioning groups; 

Cost pressures; 

Published clinical evidence; 

Colleagues in Different Hospitals; 

Pharmaceutical companies; 

 

Internal Hospital Influences Systems to promote compliance with NICE recommendations; 

Internal treatment pathways; 

Hospital Culture; 

 

Individual-level Influences Patient influence; 

Consultant autonomy; 

Consultant experience; 

Perceptions of DAS28; 

 

3.4.2.1. External Environment Influences 

Six factors in the external environment that influenced treatment decisions (Table 3.4) 

were identified within the rheumatologists’ transcripts; these are now described. 
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NICE Recommendations 

The rheumatologists framed the discussions of TNFi treatment decisions around NICE 

recommendations, which were claimed to be used without question or forethought:  

Rheumatologist E: “Obviously DAS28, obviously patients have to have had 

rheumatoid for over six months”. 

NICE recommendations were perceived as suitable for most patients. However, 

recommendations were occasionally difficult to interpret, in particular, when a patient 

presented with RA that did not conform to the conventional NICE eligibility criteria: 

Rheumatologist J: “…NICE guidance tends to provide a linear algorithm of the 

way to go and…if you don’t end up on that linear algorithm, then…it’s just not 

clear what’s allowed”. 

Rheumatologist C: “[NICE recommendations are] contradicting and confusing. 

They’re not always good”. 

The rheumatologists’ interpretations of NICE recommendations were characterised by two 

extreme positions. One rheumatologist, for example, interpreted NICE recommendations 

as too restrictive:  

Rheumatologist I : “[NICE guidance] is not open enough, in my view. It should be 

more open”. 

A different rheumatologist, in contrast, thought that the same recommendations were 

flexible and open to interpretation:   

Rheumatologist H: “…almost all NICE guidance is open to 

interpretation…Guidance is guidance. It’s not…the law that has to be followed, 

otherwise you go to jail or something”. 

Clinical Commissioning Groups 

Regional health care services are commissioned by clinical commissioning groups (CCGs) 

in England (Cylus et al., 2015) and the rheumatologists perceived their CCG as an enforcer 
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of NICE recommendations. The relationship that each rheumatologist had with their CCG 

varied across the sample. Some explained how a good relationship, facilitated by following 

NICE recommendations closely, improved their ability to persuade their CCG to approve a 

treatment outside of NICE recommendations. In contrast, other rheumatologists argued that 

their CCG (typically those in a worse financial position) imposed the choice of first TNFi 

according to NICE recommendations: 

Rheumatologist K: “Our CCG is a bit strapped for cash so we are not allowed to 

deviate one iota [from NICE recommendations]”. 

The rheumatologists within the sample expressed displeasure towards treatment decisions 

imposed by their CCG, principally because of the necessary restriction on clinical 

autonomy: 

Rheumatologist G: “I should say, it’s not a particularly popular decision with the 

clinicians…because we want to have free choice of biologics”. 

The conflict between clinical autonomy and CCG-imposed treatment decisions may have 

arisen due to differences in the interpretations of NICE recommendations (literal compared 

with advisory):  

Rheumatologist J: “…the payers often use guidance as…somewhat less flexible 

than it’s intended to be”. 

Cost Pressures 

The influence of cost on treatment decisions was a contentious issue across the sample, 

best summarised by one rheumatologist, who claimed: 

Rheumatologist K: “We’ve debated [the influence of cost] fairly aggressively 

within our department”. 

The pressure to prescribe TNFi therapies according to their cost, in alignment with NICE 

recommendations, appeared greatest in the hospitals whose CCGs were experiencing 

financial difficulties. Most rheumatologists, however, suggested that cost had a limited 

influence on their treatment decisions, despite NICE recommending to use of the lowest-

cost TNFi in routine practice:  
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Rheumatologist A: “I think there’s lip service paid to total acquisition cost”. 

Rheumatologist I: “Personally speaking, I try and ignore [cost in treatment 

decisions]”. 

However, a sense of duty was expressed by other rheumatologists when considering the 

sustainability of high-cost treatments in the NHS:  

Rheumatologist B: “It’s a hellish expensive total when you start adding up what 

we’re spending on biologics as a department, and are we getting our value for 

money out of it…or is it just…an ever-expanding expense mushrooming”. 

Rheumatologist F: “I think we should be obliged, as clinicians, to consider costs 

with every treatment decision we make…Every anti-TNF drug we start takes money 

out of the health service that could be used for other purposes or other patients”. 

The rheumatologists expressed that it was difficult to make cost-savings and certain 

treatment approaches (such as the escalation of TNFi doses following loss of response) 

were rarely considered due to their relative expense. The implications of failing to save 

costs also appeared to influence the treatment decisions of some rheumatologists in the 

sample. For example, one participant preferred to use a cheaper biosimilar therapy than 

reduce the number of nurses in the hospital:  

Rheumatologist K: “We prefer to use a…biosimilar than sack nurses, quite 

honestly”. 

Two strategies to mitigate high treatment costs included regional price negotiations of 

TNFi therapies and engagement in research studies to receive an experimental treatment 

free of charge. 

Published Clinical Evidence 

There was some consensus between the rheumatologists that developments in the clinical 

literature had superseded the treatment recommendations of NICE. A developing clinical 

evidence base appeared to encourage prescribing decisions outside of NICE 

recommendations, facilitated by individual funding requests on a per-patient basis or CCG-

approved changes to the local care pathway:  
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Rheumatologist E: “[The aim of the local treatment algorithm is to]…keep up to 

date with what’s going on, which is sometimes a little bit ahead of what NICE is 

actually saying”. 

A lack of clinical evidence was also described by some rheumatologists as a factor that 

influenced treatment decisions, for example, by having national drives to generate 

evidence on less-utilised therapies (such as the newer TNFi therapies). There was no 

consensus, however, on treatment decisions made outside of NICE recommendations; such 

decisions were often guided by clinical intuition instead when the published clinical 

evidence was uncertain:  

Rheumatologist I: “None of this stuff [treatment decisions outside of NICE 

recommendations] is really very well decided or agreed, and it comes down to your 

clinical…feeling, really”. 

Colleagues in Different Hospitals 

The rheumatologists expressed that differences in treatment practices were likely between 

hospitals across England and most stated an interest in understanding how treatment 

decisions were made in other rheumatology units. However, the extent to which their own 

practice was influenced by that of others varied. Some rheumatologists valued the 

treatment experiences shared at national professional meetings, whereas others assigned a 

greater value to their own personal experiences of patient management:  

Rheumatologist I: “…what I find most helpful is to go to sessions to hear people 

talk about their clinical experience. Particularly people who are using drugs in 

different ways”. 

Rheumatologist D: “…all that really matters to me is…knowing that what I do 

works for my patients”. 

An awareness of the approaches to treatment decisions in other rheumatology units also 

appeared to facilitate informal comparisons in best-practice between the rheumatologists. 

For example, some rheumatologists argued that their use of early, intensive combination 

cDMARD therapy or subcutaneous methotrexate led to relatively fewer patients receiving 

(and subsequently reduced total expenditure on) bDMARD therapies:  
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Rheumatologist A: “…we could actually bring drug spend up significantly by 

doing what many people do, which is…don’t use combinations, use small-dose 

methotrexate, don’t use high-dose subcutaneous methotrexate…then put loads of 

people on biologics”. 

Pharmaceutical Companies 

The rheumatologists perceived the claims of pharmaceutical companies with scepticism 

and argued that they did not influence their treatment decisions. However, some concern 

was expressed that the pharmaceutical industry, in general, may have exerted an influence 

to promote treatment towards bDMARD therapies. The rheumatologists speculated that 

rheumatology nurse specialists involved in patient care, including the provision of 

information regarding bDMARD therapies (Palmer et al., 2010), may be vulnerable to the 

marketing messages of pharmaceutical companies, particularly when meeting with 

promotional representatives:  

Rheumatologist E: “…one of the things I’m always a little bit concerned about 

is…drug reps speaking to us, speaking to nurses…Because so often…you ask [the 

patient] to see the specialist nurse who can speak about anti-TNF treatment with 

them…That decision making can be influenced”. 

It was suggested that one benefit of prescriptive treatment recommendations was to 

minimise the influence of pharmaceutical manufacturers on routine treatment decisions.  

3.4.2.2. Internal Hospital Influences 

There were three factors at the hospital-level (Table 3.4) that were reported to influence 

treatment decisions; these are now described.  

Systems to Promote Compliance with NICE Recommendations 

The rheumatologists reported the existence of internal systems to promote compliance with 

NICE recommendations, often implemented by pressure from their CCG:  

Rheumatologist F: “Our CCG have imposed that on us…they actually set an 

ambitious target of ninety-five percent adherence to NICE”. 
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Rheumatologist I: “We have to [comply with NICE recommendations] we’re very 

governed here”. 

Internal audits of practice were cited as a means to ensure that treatment decisions were 

made within the boundaries of NICE recommendations. However, the frequency of 

auditing was variable across the sample:  

Rheumatologist I: “[The CCG] want certain bits of our data every three months”. 

Rheumatologist H: “…every year, there is a full report that comes out”. 

Rheumatologist C: “…we audit each drug…every now and again”. 

The approaches to auditing were characterised by two extreme positions. One position 

demonstrated a proactive investment in a computerised system to monitor indicators of 

treatment response:  

Rheumatologist E: “We’ve got a [computerised monitoring system] which…we’ve 

paid for, which is a database of all our patients with, not just rheumatoid, but all 

inflammatory arthritis”. 

The second position contrasted by reporting that there was no formal approach to auditing: 

Rheumatologist D: “No [we don’t have a system to ensure adherence to NICE]. I 

think we deliberately blur the margins”. 

Computerised prescribing systems were perceived by some rheumatologists as a means to 

enforce NICE recommendations, whereas others considered such systems to be fallible:  

Rheumatologist K: “…we’ve got the discipline of the computerised prescribing 

system”. 

Rheumatologist A: “[The computerised prescribing system] logs if they’ve not 

responded to things, and you can…duck and dive a bit there”. 
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Internal Treatment Pathways 

Most rheumatologists explained how their treatment decisions were, or were soon to be, 

guided by an internal treatment pathway based on NICE recommendations. Internal 

recommendations often incorporated deviations from national recommendations by NICE:  

Rheumatologist E: “…what we do now, in consideration, is use our [local] 

guidelines rather than NICE guidance”. 

Rheumatologist I: “…we have our own pathway which…is basically the NICE 

pathway but there’s one or two minor exceptions”. 

Hospital Culture 

The general approach to treatment was reported to have become more aggressive in recent 

years. However, some participants positively referred to treatment aggression in terms of 

rapid escalation to bDMARDs, whereas others referred to treatment aggression in terms of 

early arthritis clinics to delay bDMARD therapy: 

Rheumatologist B: “I think with the kind of evidence that comes though about early 

treatment…we’re probably more rapidly putting more patients on [bDMARDs]”. 

Rheumatologist K: “…we’ve got nearly 180 people on [combination cDMARDs], 

so probably more than the average unit, and we think that’s partly responsible for 

us having a relatively low biologics use”. 

Divergent views were presented on the influence that rheumatology nurse specialists had 

on treatment decisions, from being an additional enforcer of NICE recommendations to 

taking a passive role in treatment decisions: 

Rheumatologist F: “…if our biologics nurse has received referrals with as DAS 

below 5.1, for example…they’d just bat that straight back to…the lead consultant 

for that patient”. 

Rheumatologist B: “Patients become very laissez-faire about being on their 

biologics…and I think the nurses [are the same]. As we have more and more 
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experience, [the nurses say] ‘ah, they’ve very safe’ and they can just…put everyone 

on them”. 

The rheumatologists identified that their ability to treat patients aggressively may have 

been restricted by capacity limitations:  

Rheumatologist K: “We’ve got four rheumatologists, we could probably do with a 

fifth. There’s been a capacity issue which has meant that…the behaviour of the unit 

has been a bit suboptimal”. 

3.4.2.3. Individual-level Treatment Influences 

There were four factors that were reported to influence routine treatment decisions at the 

individual-level of the rheumatologist (Table 3.4); these are now described.  

Patient Influence 

The extent to which patients influenced treatment decisions varied between 

rheumatologists’ responses, reflected by the set of TNFi therapies offered to patients:  

Rheumatologist C: “If everything else is fine…we’re happy to go with…whatever 

[TNFi] the patient wants”. 

Rheumatologist F: “…we don’t give them options of five agents…you don’t want to 

bewilder patients”. 

The rheumatologists expressed some concern that patients may have surreptitiously 

modified their treatment regime without later making that known during a consultation:  

Rheumatologist A: “…the other problem is that when they’re doing well on the 

biologics, they [the patients] wind down their other treatments…the methotrexate 

et cetera”. 

Rheumatologist B: “Often they [the patients]…self-regulate [their TNFi injections] 

with minor infections. So if they get a cold, they will stop them…It’s rare they’ll 

take, you know, fifty-two etanercept injections in a year”. 
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Some rheumatologists were sceptical over patients’ ability to make an informed treatment 

decision: 

Rheumatologist D: “…you know what it’s like with patients. Even if somebody 

changes the colour of their paracetamol, they’re convinced it isn’t working as 

well”. 

Rheumatologist I: “…what we’ve found is when we sort of said…’do you want this 

one or that [TNFi]?’, [the patient]…said, ‘well, what do you recommend?’…I 

kinda’ think you’ve got to make a clinical decision, really”. 

The ability for patients to directly influence treatment decisions was considered to be 

sacrificed when treatment decisions were imposed by a CCG:  

Rheumatologist K: “…we’ve compromised patient choice in the interests of the 

health economy”. 

It was believed that patients acquired information about treatments primarily from 

rheumatology nurse specialists. In-house, charity, and pharmaceutical manufacturer 

information leaflets also provided patients with information. The rheumatologists 

suggested that their patients had typically expressed a preference over the TNFi injection 

frequency and mode of administration; however, they also recognised that preferences over 

specific treatments were variable between different patients.  

Rheumatologist H: “…it’s pretty obvious that they [patients] think [in] their own 

way…we cannot really figure out how they think”. 

Consultant Autonomy 

The ability to exert clinical autonomy over treatment decisions was valued by the 

rheumatologists in the sample. Some rheumatologists indicated that they made treatment 

decisions strategically to maintain a wider set of recommended bDMARD therapies later in 

the care pathway, potentially highlighting a concern that clinical autonomy appeared to be 

compromised: 

Rheumatologist I: “…my view would be…to have every agent available first-line 

and then second-line…and third-line and, being really greedy, then have a fourth-
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line option which currently we don’t have…I think that’s partly why we don’t move 

away from anti-TNF as our first-line, because it gives us more options [later] in the 

pathway”. 

The desire for clinical autonomy was expressed in the measures taken when attempting to 

approve treatments outside of NICE recommendations:  

Rheumatologist A: “…we’ve been around various loops [to get a treatment outside 

of NICE approved], we’ve written business cases and [been] told that we must 

submit to different bodies…There’s the national overarching body – turned out they 

were too busy, then there’s a regional overarching body – turned out they were too 

busy, and now we’re back to doing individual business cases, and that can take a 

long time, and that’s foolish”. 

There was variability across the sample to facilitate clinical autonomy by using individual 

funding requests (IFRs) as a mechanism to obtain approval from the CCG for prescribing 

treatments outside of NICE recommendations: 

Rheumatologist H: “Quite a lot [of IFRs have been undertaken]…in our area, we 

have actually never had a problem…I cannot recollect a single occasion that we 

were refused funding”. 

Rheumatologist D: “…it takes an absolute year of paperwork to get them [IFRs], 

because you’ve got to go through hundreds of different committees…so I’m very 

glad I haven’t needed to”. 

Further strategic behaviour was demonstrated by using previously successful IFRs as 

templates for future IFRs. Alternatively, some rheumatologists argued that changing the 

hospital’s internal treatment recommendations, rather than using IFRs, was a more 

effective strategy to achieve clinical autonomy:  

Rheumatologist F: “…these things come up over and over again, so you’ve got a 

kind of ‘Situation X IFR’ that you can use, cut and paste”. 

Rheumatologist I: “…we never get anywhere with IFRs…In the end, after a lot of 

wrangling, got [a treatment outside of NICE recommendations] though as 
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a…change to the pathway…IFRs…for rheumatoid just don’t wash ‘cos it’s not an 

individual fight”. 

Consultant Experience 

The rheumatologists’ previous experience of TNFi therapies had an influence on their 

decision making. In particular, the older TNFi therapies were viewed positively due to the 

rheumatologists having more experience with using them:  

Rheumatologist J: “…we tend to just use what we’re familiar with, and the ones 

[TNFi therapies] that have been around the longest”. 

Treatment decisions were occasionally referred to as habitual, based on how previous 

patients had been treated:  

Rheumatologist K: “…some of the nurses have been [treating patients] for…the 

best part of twenty years…so they’re set in their ways”. 

Negative treatment experiences, such as an increase in infections, were found to dissuade 

the rheumatologists from subsequently using that treatment in the future:  

Rheumatologist A: “We don’t use a lot of leflunomide in combination with 

biologics because…we’ve seen more infections. But that’s only in small numbers, 

but it does influence you”. 

Perception of DAS28 

The use of the DAS28 assessment of disease activity to determine eligibility for TNFi 

therapy, in alignment with NICE recommendations, was generally perceived negatively 

across the sample: 

Rheumatologist I: “…[the DAS28] is probably as good as we’ve got [to measure 

disease activity]…albeit it’s not fantastic”. 

The rheumatologists expressed that the DAS28 may be unsuitable for patients with RA 

predominately in their ankles or feet, and that it may overestimate or underestimate disease 

activity:  
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Rheumatologist E: “…we all recognise that some patients actually score highly on 

DAS28 because they’ve got a lot of tender joints, for example, and yet we know that 

there’s…actually not…all active disease”. 

In particular, rheumatologists reported experiencing cases where low inflammatory 

markers or low patient self-reporting on the visual analogue scale (VAS) led the DAS28 to 

underestimate disease activity: 

Rheumatologist F: “…there are a few patients who we will put for anti-TNF even if 

their DAS is below 5.1 if…they’re ‘copers’ or ‘habituators’…where we…from 

our…expert judgement feel that their disease is far more active than perhaps their 

VAS would indicate”. 

Rheumatologist A: “…then there’s some people who don’t put up their 

inflammation tests, their ESR/CRP, and that is quite a big part of the composite 

[DAS28] score. So there are a lot of people who you think, ‘if only their 

inflammation test went up’, and we could [giver them TNFi therapy]”. 

Uncertainty in the validity of a DAS28 score prompted the rheumatologists to exercise 

their clinical judgement over disease activity: 

Rheumatologist F: “…I think that if you just go on the DAS…you lose a lot of that 

information [about a patient’s disease], and it’s kind of a…drone’s approach to 

medicine…I think you’ve got to rationalise and justify…every DAS score really…to 

say what it actually means…in the context of that patient”. 

A number of rheumatologists argued that the NICE-recommended DAS28 threshold for 

TNFi eligibility was too high, and consequently patients with less active disease suffered 

from the inability to access TNFi therapies: 

Rheumatologist H: “The problem is with those people who have DAS28s of 4, 4.5, 

4.2…continuously…We know they’ve got a considerable amount of disease activity, 

but we cannot actually give them [a TNFi]”. 
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Rheumatologist J: “…we have got…quite a lot of patients [with a 

DAS28<5.1]…They smoulder in modest, moderate disease activity…probably 

slowly damaging their joints”. 

Some rheumatologists advocated a range of methods to strategically game the DAS28 

assessment, to enable more patients to receive a TNFi therapy (reported in Table 3.5). One 

rheumatologist expressed concern that inaccurate DAS28 assessments may bias subsequent 

empirical analysis that used the data collected by large national patient registers: 

Rheumatologist A: “…I think most people lie actually [about DAS28 scores]…most 

people make it up…the problem for…the [biologics] registry is that people make up 

the numbers…to keep the CCG happy…but then give those spurious numbers to the 

registry”. 

Table 3.5. Methods to game the DAS28 assessment reported by the sample of 

rheumatologist.   

Rheumatologist Method of Gaming DAS28 Assessment 

A Measure disease activity using a different instrument (such as RAPID3) and 

map to DAS28. 

 

B Claim that the patient has psoriatic arthritis because fewer active joints are 

required to receive TNFi therapy, relative to RA. 

 

D & K Only perform one DAS28 assessment. 

 

H Stop a patient’s steroids to increase their DAS28. 

 

I 

 

I 

Perform DAS28 when patient is having a flare. 

 

Increase frequency of DAS28 assessment to increase the likelihood of 

obtaining two DAS28 scores below 5.1.  

 

3.4.3. Objective 3: Potential Barriers to ADAb and Drug Level Testing 

The rheumatologists were invited to discuss ADAb and drug level testing of TNFi 

therapies in routine practice for RA. All participants demonstrated an awareness that health 

technologies were available for measuring TNFi ADAb and drug levels and some 

participants reported being in contact with commercial test manufacturers:  

Rheumatologist A: “People are trying to sell us a little kit to check drug levels and 

antibody levels”. 
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The majority of the sample, however, apart from one rheumatologist, did not consider 

testing for TNFi ADAb or drug levels in their current routine management of patients with 

RA.  

Rheumatologist D: “I know the tools exist and we have toyed with using them, but 

we haven’t”. 

Rheumatologist I: “To be honest, we don’t…routinely measure any antibodies here. 

So, I mean, I know it’s a kind of interesting area…but it doesn’t really alter our 

clinical practice here as of yet”. 

Rheumatologist C: “…we have already worked with our immunologist who have 

got some antibody assays to use…our plan is to change our guidelines at some 

point in the near future. So, we’ll include screening for antibodies…”. 

These responses provided insight into the potential barriers perceived by rheumatologists 

regarding the introduction of TNFi ADAb and drug level testing into routine practice. Four 

potential barriers were identified across the sample.  

Barrier 1: Recognition of a Clinical Problem 

Despite a growing academic literature documenting immunogenicity against TNFi 

therapies (Radstake et al., 2009; Krieckaert et al., 2012), the participants discussed that it 

was generally not a recognisable problem in their own clinical practice.  

Rheumatologist E: “Put it this way, I know it’s described [immunogenicity against 

TNFi therapies], but we don’t see it particularly”. 

Rheumatologist B: “…we’ve not really seen a lot of problems with 

immunogenicity”. 

Barrier 2: Understanding of the Purpose of Testing in Routine Practice 

An understanding of the potential purpose of TNFi ADAb and drug level testing, and its 

role to inform subsequent treatment decisions, was variable between the rheumatologists in 

the sample. Some participants were optimistic:  
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Rheumatologist J: “I think if we were having this conversation in five years’ time, 

we’d probably be looking routinely at that [TNFi immunogenicity 

assessment]…One algorithm would be all patients have drug levels checked 

automatically at, maybe two or three times a year…whether or not they’re doing 

well…I think drug levels are gonna’ allow us to reduce doses of drugs as well, 

which is the other reason to use them”. 

Some more sceptical:  

Rheumatologist H: “…we’ve known about immunogenicity for twenty years. So 

why hasn’t it, you know, taken off?”. 

Some were uncertain: 

Rheumatologist A: “It [TNFi immunogenicity assessment] appeals to us. We don’t 

know why it appeals to us. We think it’s just, you know, a shiny little gizmo…it’s 

interesting”. 

Barrier 3: Evidence Supporting TNFi Immunogenicity Testing 

The rheumatologists explained how a lack of clinical evidence supporting TNFi ADAb and 

drug level measurement may dissuade them from testing in routine practice.  

Rheumatologist A: “I think those…things like drug antibody kits and drug levels 

should be evaluated in proper controlled studies, really…The danger is that the 

market will be flooded with kits and everybody will think, ‘that’s great, I’ll have a 

go’, and…no one will know, in the end, what’s actually happening”. 

Rheumatologist H: “I think that if…we have robust, you know, reliable 

methods…to measure antibodies and relate them to clinical response, then possibly 

they could go in the therapeutic algorithm. But I really think that we are a long way 

away”. 

Barrier 4: Capacity and Resource Constraints 

The introduction of ADAb and drug level testing into routine practice will likely require 

additional resources (see Section 1.3.5). The rheumatologists, however, explained that they 
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may not have the budget to introduce testing or that the availability of laboratories to 

analyse samples may be inadequate.  

Rheumatologist D: “…It’s [measuring ADAb] a bit of a faff, and again it’s more 

time, more money, more thought around it…I’m still not convinced that for the 

majority of patients it really changes management”. 

Rheumatologist B: “I don’t think we’ve got the capability [to measure ADAb]. 

There’s only a couple of places in the country that’ll do it, so it’s not something 

that we are getting too concerned about”. 

 

3.5. Discussion 

This study explored the decisions for treating patients with RA in current practice by 

performing in-depth semi-structured telephone interviews with eleven senior consultant 

rheumatologists in England. Regional variation, consistent with published national audits 

of practice, was observed at key decision points along the care pathway for RA. The 

factors that appeared to influence treatment decisions were categorised according to three 

themes (external environment influences, internal hospital influences, and individual-level 

influences). The rheumatologists also reported four potential barriers to introducing ADAb 

and drug level testing in routine practice.   

NICE recommendations state that when choosing a TNFi therapy to prescribe, for most 

patients with RA who meet the eligibility criteria, the lowest cost therapy should be 

selected (National Institute for Health and Care Excellence, 2016a) (see Section 1.3.3). 

Given the growing evidence that the approach to using bDMARDs, as recommended by 

NICE, may impose a substantial opportunity cost on population health (van der Velde et 

al., 2011; Joensuu et al., 2015; National Institute for Health and Care Excellence, 2016a), 

any systematic deviations from these recommendations are unlikely to be a cost-effective 

use of NHS resources. This study, however, identified that factors other than cost 

influenced the choice of TNFi in routine practice and some rheumatologists ignored costs 

entirely. By failing to acknowledge cost in treatment decisions, which ultimately reduces 

the health care resources available for patients elsewhere in the NHS, an implicit 

judgement was made that the health of identifiable patients with RA was valued more than 
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the health of unidentifiable patients elsewhere in the NHS (Claxton et al., 2015b; Cookson, 

2015).   

Contention was observed between the rheumatologists’ interpretations of clinical 

recommendations (from advisory to mandatory) and the methods to ensure compliance 

with NICE recommendations were inconsistent and perceived as fallible. Sheldon et al. 

(2004) evaluated the implementation of eleven examples of NICE guidance using routinely 

collected data, patient case notes, and qualitative interviews with the leads of clinical 

specialities, governance, and chief executives. Consistent with the findings of this study, 

the participants in Sheldon et al. (2004) also exhibited divergent beliefs regarding the role 

of guidance and in the extent to which regular audits of practice occurred.  

The rheumatologists that agreed to deviate from NICE recommendations in principle did 

not agree on how to do so in practice. Moreover, the rheumatologists that agreed to follow 

NICE recommendations interpreted those recommendations differently; for example, 

whether an aggressive treatment regime meant rapid escalation to bDMARD therapy or an 

intensive use of combination cDMARDs. The previous quantitative observations of 

regional variation in current practice for RA (Tugnet et al., 2013; Blake et al., 2014; The 

British Society for Rheumatology, 2015) may therefore be due to: (i) divergent 

interpretations of clinical recommendations, (ii) successful attempts to consciously treat 

outside of NICE recommendations, or (iii) a combination of the two.  

The specific decisions that were made by the rheumatologists along the care pathway for 

RA (Section 3.4.1, Appendix 15) were used to inform the design of the de novo decision 

analytic model in Chapter Five. For example, the rheumatologists described that following 

secondary non-response of a TNFi therapy, patients were likely to be prescribed rituximab 

and not a second TNFi. In addition, the rheumatologists described how patients that 

remained in remission whilst receiving a TNFi therapy may experience a reduction in the 

intensity of their treatment. The use of such expert clinical input, in turn, facilitated a 

characterisation of current practice, which was highlighted as a relevant objective during 

the early economic evaluation of a health technology (see Section 1.1.6.4, Figure 1.1).   

The participants reported that making cost savings was challenging in practice as hospitals 

were already operating at capacity. The immediate financial pressure was therefore 

expected to fall on the hospitals’ labour force (the employment of nurses and consultant 

rheumatologists). Since conducting data collection for this study, most NHS Trusts in 
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England have entered a financial deficit (Lafond et al., 2016). Therefore, more 

rheumatology units in England may subsequently experience CCG-imposed treatment 

regimes, as reported in this study, in the future. As a consequence, both clinical autonomy 

and patient involvement in decision making (however defined) may be further sacrificed 

across England. 

Examples of previous studies that had used qualitative methods to explore the factors that 

influenced the prescription of TNFi therapies for patients with RA were sparse, and none 

of those studies had been performed in England. Kee et al. (2005) investigated consultants’ 

beliefs of whether patients with RA should continue infliximab therapy in the Republic of 

Ireland. Some evidence was found to indicate that consultants were gaming the DAS28 

assessment, in particular when patient-reported symptoms were more severe than 

suggested by the DAS28 score (Kee et al., 2005). Similarly to Kee et al. (2005), the sample 

of English rheumatologists in the present study also reported strategies to game the DAS28 

assessment to improve patient eligibility for TNFi therapy and concern was expressed over 

whether these artificial values were entered into national patient registers. The presence of 

artificial DAS28 scores in patient registers may, in part, explain why previous studies have 

been unsuccessful at identifying robust predictive biomarkers of treatment response for 

patients with RA (a change in DAS28) (Emery et al., 2011; Gibson et al., 2012).  

Kalkan et al. (2014) performed a qualitative analysis by exploring the influences of senior 

consultant rheumatologists’ bDMARD prescribing decisions in Sweden. Despite 

differences between health care systems, comparable influential factors were also reported 

by the sample in the present study, such as the influence of a developing clinical evidence 

base, colleagues, departmental culture, and budget constraints (Kalkan et al., 2014).  

Four potential barriers to using ADAb and drug level testing were discussed by the 

rheumatologists in this study. The exploration of potential barriers to using a new health 

technology can provide useful information to support an early economic evaluation 

because the views of clinicians may inform how such a health technology may, or may not, 

be used in routine clinical practice (Figure 1.1; Section 1.1.6.4). Raghavan et al. (2014) 

conducted a review of studies that investigated the potential barriers, perceived by 

physicians, to incorporating genetic testing in routine practice; the barriers identified by 

Raghavan et al. (2014) (for example, a lack of knowledge of genetic testing; a desire for 

more trial evidence; unclear benefit of testing; a challenge to include additional health 

technologies in a time and resource-constrained environment) overlapped with those 
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reported by the rheumatologists within this study. Similarly, Jones et al. (2013) conducted 

a systematic review of seven qualitative studies that explored clinicians’ attitudes towards 

using point-of-care testing in primary care (such as a urine test that provided an immediate 

result); the potential barriers to testing identified by Jones et al. (2013) included the 

additional cost associated with testing and an uncertainty regarding the usefulness of 

testing. These findings, when considered collectively, may therefore suggest that the 

introduction of any new test (to stratify treatment) into clinical practice may experience a 

set of potential barriers that are common to all types of medical test.  

Reflexive Statement 

Qualitative research necessarily requires an interaction between the researcher and the 

phenomenon being researched (Patton, 2003). For example, the data generated during an 

interview must derive from a conversation between the participant and the researcher 

(Miller, 1995). Therefore, best-practice recommends the inclusion of a reflexive statement, 

that demonstrates self-awareness on behalf of the researcher regarding how their behaviour 

(interactions; prior beliefs; perceived status with the participants) may have influenced the 

results (Coast, 1999; Patton, 2003; Coast et al., 2004). 

The primary researcher (SG) had never met any of the rheumatologists prior to conducting 

the telephone interviews and existed in a distinct professional discipline (health 

economics) compared with the participants (rheumatology). In the terminology of the 

qualitative literature, the researcher was therefore an outsider because they did not share 

the same prior experiences or professional role of the participants (Dwyer et al., 2009). 

Therefore, it was possible that the sample of rheumatologists did not address technical 

issues in detail because of a belief that the primary researcher would not understand. 

Alternatively, the participants were aware that the research was being conducted under 

conditions of anonymity at an academic institution for a doctoral thesis, and may have 

responded less-candidly if the primary researcher had been a member of the general public 

or a manufacturer of a commercial health technology instead. The responses of all 

rheumatologists were detailed and insightful, which may suggest that a good rapport was 

established during the interviews between SG and the participants. Ultimately, it is not 

necessary for a qualitative researcher to be an insider of the group being researched in 

order to have an understanding of the participants’ perspectives and experiences (Dwyer et 

al., 2009).  
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Limitations 

The relatively small sample size of this study could be claimed as a potential limitation. 

However, twenty-four percent of the sampling frame were recruited as participants, which 

was equivalent to the proportion of rheumatologists recruited in the similar qualitative 

study by Kalkan et al. (2014) (twenty-five percent of their sampling frame). Data were not 

collected until saturation due to the purposive nature of the sample. However, the sample 

was sufficient to reveal variation in previously undocumented factors that influenced 

rheumatologists’ treatment decisions in England. Issues of sample size are most relevant 

when the purpose of research is to infer generalisations to a wider population, based on a 

single reality that is assumed to be measurable (consistent with a positive, empirical 

ontology). The ontology of qualitative research, by contrast, presupposes that reality is, to 

some degree, a construct of the participants’ perceptions (Norum, 2008). In this study, for 

example, participants provided different interpretations of the appropriate way to treat 

patients with RA; yet, all believed that their interpretation was correct. Multiple realities 

may have existed in the sample and the purpose of exploratory data analysis, therefore, was 

to understand these divergent perceptions further (Silverman et al., 2008). A larger sample 

size, consequently, is neither a necessary, nor sufficient, to obtain an understanding of a 

phenomenon being researched (Sandelowski, 1995).  

Secondly, the use of telephone interviews as a means of data collection may have had its 

limitations, compared with face-to-face interviews conducted in person. For example, 

meaningful non-verbal communication (such as head nods and hand gestures) were not 

observable over the telephone and pauses in the conversation (to provide the participant 

with time to think) may have been misinterpreted as the conclusion of a sentence (Miller, 

1995). The rheumatologists’ responses were therefore interpreted at face-value. However, 

the data collected for this study were comprehensive; it was therefore unlikely that the 

interpretation of the results would have changed substantially if these data had been 

collected by face-to-face interviews instead.  

A third potential limitation of this study was that a rheumatologist’s account of the factors 

that influenced treatment decisions was just one perspective that could have been explored. 

The perspective of other stakeholders in the decision-making process (for example, the 

CCG, nurses, and patients) may have revealed different influences on routine treatment 

decisions for RA.  



111 
 

Implications for Future Research 

Given the competing influences on treatment decisions identified by this study, a future 

qualitative study may benefit to explore the decision-making process at the CCG and, in 

particular, the evidence required at a local level to recommend a new health technology in 

routine practice. Health care commissioners, for example, may require an explicit business 

case to be made (Lourenco et al., 2011) for a new stratified medicine. In addition, a future 

qualitative study could interview a sample of rheumatology nurse specialists, given the 

divergent perceptions of their influence reported in this study, to explore their own 

perceived influence on treatment decisions within the care pathway for RA.   

The availability of patient-level data may facilitate a quantitative analysis of the factors 

that influenced treatment decisions observed in routine practice. A quantitative analysis of 

TNFi choice, in particular, may provide evidence of an implicit treatment stratification 

mechanism, given that cost was not the only factor reported to influence the 

rheumatologists’ prescribing decisions in this study. The results of this qualitative study 

may suggest that such a patient-level analysis should attempt to control for influential 

factors at the hospital-level and in the external environment (which may be unobserved). 

Chapter Four therefore develops the results of this study to estimate the patient-level 

factors associated with the choice of TNFi prescribed to patients with RA in England, by 

using the data collected by the BRAGGSS cohort.  

Finally, the need for an economic evaluation of adalimumab ADAb and drug level testing 

was justified by the rheumatologists in this study on three grounds:  

(i) Inconsistent treatment decisions were recommended across the sample for 

patients who experienced TNFi-induced remission or secondary non-response 

of a TNFi, both of which may be informed by testing (Vincent et al., 2013). The 

participants also reported that TNFi dose-reduction strategies already occurred 

in routine practice; consequently, these strategies should be included as relevant 

comparators in the conceptualisation and development of the de novo decision 

analytic model in this thesis (reported in Chapter Five); 

 

(ii) Commercial ADAb and drug level test manufacturers had reportedly attempted 

market access with the rheumatologists in the sample; however, no evidence for 
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the relative cost-effectiveness of testing in England was available; 

 

(iii) The rheumatologists’ requested additional primary research regarding the use of 

ADAb and drug level testing in routine clinical practice. Therefore a VOI 

analysis would provide useful evidence of whether such further research would 

be valuable to the NHS (Claxton et al., 2001; Wilson, 2015).  

 

3.6. Conclusion 

This was the first study to explore the factors that influenced routine treatment decisions of 

TNFi therapies for patients with RA in England. This research was timely given the 

documented regional variation in RA treatment decisions and the questionable evidence 

supporting the relative cost-effectiveness of TNFi therapies for RA in England. 

This study provided relevant evidence for the subsequent cost-effectiveness analysis of 

adalimumab ADAb and drug level testing in RA (reported in Chapter Six). The 

rheumatologists that were interviewed demonstrated a clinical need for the testing 

strategies by describing differences in treatment decisions following secondary failure of a 

TNFi and during TNFi-induced remission. The treatment decisions, reported by the 

rheumatologists, along the care pathway for RA were subsequently used to conceptualise 

the structure of a de novo decision analytic model in Chapter Five. The specific questions 

raised by the rheumatologists regarding how to use ADAb and drug level testing in 

practice, and whether to conduct further research on the tests, are addressed in Chapter 

Five and Chapter Six of the thesis, respectively.  

The eleven rheumatologists that participated in this study revealed that factors other than 

those recommended by NICE may influence routine treatment decisions. A quantitative 

analysis of observed treatment decisions using a nationally representative sample patient-

level data could be valuable to estimate whether implicit treatment stratification had 

occurred in current practice. Building on the results of this chapter, Chapter Four 

investigates current practice further by quantifying the patient-level factors that influenced 

the choice of TNFi therapy prescribed to patients with RA across England.   
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Chapter 4 

Estimating the Patient-level 

Factors that Influence the 

Choice of TNFi Prescribed 

for Rheumatoid Arthritis in 

Current Practice 
 

Chapter Four presents a quantitative econometric analysis of prescribing decisions for 

patients with RA in England. This study built on the results of Chapter Three, to develop 

an understanding of current practice further, by estimating the patient-level factors that 

may influence TNFi prescribing decisions and, subsequently, may indicate the presence of 

implicit treatment stratification for patients with RA. An earlier version of this study was 

presented at the International Society for Pharmacoeconomics and Outcomes Research 

21st Annual International Meeting in May 2016 (Gavan et al., 2016b). The chapter is 

structured according to the following subsections: an introduction (Section 4.1), aim and 

objectives (Section 4.2), method, (Section 4.3), results (Section 4.4), discussion (Section 

4.5), and conclusion (Section 4.6).  

 

4.1. Introduction 

The systematic review in Chapter Two identified that previous model-based economic 

evaluations of stratified medicine in RA had not described “current practice” with 

sufficient clarity. The qualitative analysis in Chapter Three, therefore, explored treatment 

decisions along the care pathway for RA and identified that factors may influence a 
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rheumatologist’s routine treatment decisions within the external environment, at the 

hospital-level, and at the individual-level. Three potential limitations of this qualitative 

analysis, however, were that: (i) the self-reported beliefs of individual rheumatologists, in 

the context of a telephone interview, may not align with their actual prescribing decisions 

in practice; (ii) it was not possible to identify each factor’s relative magnitude of influence; 

and (iii) the results may not generalise to other rheumatologists outside of the sample. The 

use of observational patient-level data, derived from routine treatment decisions, has been 

recommended as an additional source of evidence to understand care pathways in current 

practice (Tappenden, 2014) and may counteract the potential limitations of the qualitative 

study. Therefore, this chapter presents a quantitative analysis of current practice for RA by 

using patient-level data from actual treatment decisions observed in England.  

The economic rationale for stratified medicine is that population health outcomes may be 

maximised by allocating health care resources to an explicit biomarker testing strategy, that 

can identify subgroups of patients for whom the relative cost-effectiveness of a treatment 

may be improved (see Section 1.2.1) (Coyle et al., 2003; Sculpher, 2008; Espinoza et al., 

2014a; Espinoza et al., 2014b). Treatment decisions in current practice may be implicitly 

stratified if they are made according to systematic differences in observable patient 

characteristics (FitzGerald et al., 2017). The choice of TNFi prescribed to patients with RA 

in England, according to NICE recommendations, should, on average, be determined by its 

cost to the NHS (National Institute for Health and Care Excellence, 2016a). However, the 

rheumatologists in Chapter Three explained that cost had a limited influence on their 

routine decision-making (see Section 3.4.2.1). A relevant topic for further research was to 

investigate whether patient-level factors were being used to implicitly stratify the TNFi 

therapy prescribed to patients with RA within current practice in England.  

Three previous studies from North America have estimated the patient-level factors that 

influenced TNFi prescribing decisions by using data from patients with RA enrolled to 

various health care plans (DeWitt et al., 2006; Carter et al., 2012; Zhang et al., 2013). 

Appendix 16 describes the features of these three studies and the potential limitations of 

their analytic design. No previous study had estimated the patient-level factors associated 

with the choice of TNFi, by using data from actual treatment decisions, for patients with 

RA in England.  
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4.2. Aim and Objectives 

The aim of this study was to identify the patient-level characteristics that influenced the 

choice of TNFi prescribed to patients with RA in England. There were two objectives to 

meet this aim: 

Objective 1: Identify a nationally representative sample of patients with RA in England 

                      that included observations of actual TNFi prescribing decisions; 

Objective 2: Test the hypothesis that no patient-level characteristics systematically 

                      influenced the choice of TNFi, after controlling for unobservable influences 

                      on prescribing decisions in the external environment and at the hospital-level.  

 

4.3. Method 

This study was a pooled cross-sectional analysis of prescribing decisions observed in 

routine clinical practice in England. The study was reported according to the standards 

outlined by the Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) checklist; the completed STROBE checklist is reported in Appendix 17. The 

method of this study is reported in three subsections: Section 4.3.1 describes the elements 

of economic theory that informed the analysis; Section 4.3.2 describes the dataset; and 

Section 4.3.3 reports the method of analysis.  

4.3.1. Supporting Economic Theory 

Statistical analyses informed by economic theory are referred to as econometric analyses 

(Tintner, 1953). There were three relevant elements of economic theory that informed this 

study: (i) the determinants of demand for health care; (ii) the agency relationship; and (iii) 

inequities in health care utilisation.   

4.3.1.1. The Determinants of Demand for Health Care 

The estimation of factors that influence the choice of a specific good or service is an 

example of a study that estimates the determinants of demand (Morris et al., 2012). Health 

care, in general, has a set of unique characteristics when compared with other types of 
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tradable commodity (Arrow, 1963). For example, the demand for health care is derived 

from the demand for health itself (Grossman, 1972). In addition, non-health factors such as 

a patient’s socioeconomic characteristics and the cost of treatment are known to influence 

health care demand (Zuvekas, 2014). The cost of TNFi therapies in England, however, are 

determined at the regional-level via unobservable price negotiations with treatment 

manufacturers, and are not borne by the patients themselves (Stokoe et al., 2011). 

Therefore, an econometric analysis of the factors that influence the choice of TNFi should 

account for patient-level health characteristics, the cost of treatment at the hospital-level, 

and patient-level non-health socioeconomic characteristics. 

Endogeneity may occur in a regression-based analysis when an independent variable is 

correlated with the residual error term, principally due to (i) reverse-causality, (ii) 

measurement error, or (iii) omitted variable bias (Wooldridge, 2010). Omitted variable 

bias, in particular, occurs when an independent variable is excluded from a regression that 

is correlated with a different independent variable and/or the dependent variable (van der 

Gaag et al., 1991; Greene, 2012). A confounding variable shares a similar definition within 

the epidemiology literature; however, an omitted variable within the econometric literature 

often refers to an unmeasured confounding variable (for example, unobserved 

heterogeneity at the geographic-level) (Zohoori et al., 1997; Gunasekara et al., 2008). 

Based on the results of Chapter Three, failing to control for the influences on treatment 

decisions in the external environment and at the hospital-level in this study may have led to 

endogenous patient-level influences due to omitted variable bias. 

4.3.1.2. The Agency Relationship in Health Care 

The market for health care in England is characterised by a hierarchy of agency 

relationships, whereby one party (the agent) acts upon the objectives of another party (the 

principal) (Propper, 1995; Baxter et al., 2008). The agency relationship that characterises a 

treatment decision can be exemplified by the information asymmetry between an informed 

clinician (the agent) and a less-informed patient (the principal). An individual patient, 

given this agency relationship, was therefore unable to directly influence the demand for 

specific treatments (Williams, 1988; Mooney et al., 1993).  

Perfect agency occurs when the principal acts as the agent would in the case of no 

information asymmetry (Morris et al., 2012). Strategies to overcome information 

asymmetry may occur through a process of shared decision-making by consulting the 



117 
 

patient in a treatment decision, as advocated by the treatment guidelines for RA produced 

by the international professional organisations for rheumatology, EULAR and the ACR 

(Smolen et al., 2014; Singh et al., 2016b). However, there may be barriers to perfect 

agency; for example, patients and clinicians may have competing objectives (Ryan, 1994) 

and clinicians (as agents) may influence both the supply and demand for care (Maynard, 

1979; Ferguson, 1985). Wider organisational constraints are also likely to affect treatment 

decisions because the clinician may be regarded as a double agent, responsible for the 

patient and payer’s competing objectives of quality health care delivery in a cost-effective 

manner (Blomqvist, 1991; Shortell et al., 1998). The implication for this study was that the 

choice of TNFi therapy may, to some extent, have been influenced by the preferences of 

patients; however, the influence of patients may be diminished by the wider objective of 

ensuring cost-effective treatment decisions. For example, the rheumatologists in Chapter 

Three described how patient choice was sacrificed if their CCG imposed the use of the 

cheapest TNFi.  

4.3.1.3. Horizontal Inequity in Health Care Utilisation 

The econometric literature regarding the estimation of inequities in health care utilisation is 

related closely to the demand for health care literature. Inequalities in health care occur 

when different patients receive different health care resources; inequities in health care 

utilisation occur when different patients do not receive the health care they need (Gravelle 

et al., 2006). Horizontal inequity arises when patients of equal need receive unequal 

treatment (Wagstaff et al., 1991).  

The analysis of horizontal inequity necessarily requires a value judgement regarding the 

patient characteristics that define need and those that, by implication, define non-need 

(Morris et al., 2005; Gravelle et al., 2006; Fleurbaey et al., 2009; Kjellsson et al., 2015; 

Wagstaff, 2015). Studies that have estimated the demand for health care have 

predominantly represented need with patient-level variables for health status and non-need 

with variables representing socioeconomic characteristics (Vallejo-Torres et al., 2014). A 

regression analysis of the determinants of health care demand may therefore detect 

horizontal inequity if the coefficient of a non-need independent variable is estimated to be 

non-zero and statistically significant (Morris et al., 2005; Gravelle et al., 2006; Vallejo-

Torres et al., 2014). In this study, it was assumed that evidence of horizontal inequity was 

present if TNFi treatment decisions were implicitly stratified by non-need patient 

characteristics.    
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4.3.2. Data 

This study used patient-level data from the Biologics in Rheumatoid Arthritis Genetics and 

Genomics Study Syndicate (BRAGGSS), which was a nationally representative prospective 

cohort of patients with RA in England whose genetic and genomic data were collected 

alongside information on response to bDMARD therapies (Maxwell et al., 2008; Jani et al., 

2015a). Patients within BRAGGSS were followed for twelve months and data were 

collected at four time points (baseline, three months, six months, and twelve months). 

Recruitment for BRAGGS occurred between 2008 and 2014 from fifty-seven NHS 

hospitals in England (hereafter referred to as hospitals). The full list of contributing 

hospitals is provided in Appendix 18.  

The sample was restricted to the patient-level baseline observations from BRAGGSS 

which provided information on the treatment prescribed, and the need and non-need 

characteristics of each patient. All patients were observed only once (at baseline). The 

sample was also restricted to 2009 to 2014, to cover a period of time in which no changes 

were made to the recommendations for managing RA by NICE (National Institute for 

Health and Care Excellence, 2009).  

The structure of the BRAGGSS cohort was such that, patient-level observations were 

clustered within a hospital, which were additionally clustered by year of inclusion into the 

cohort (illustrated in Figure 4.1). Using the terminology from the qualitative interviews in 

Chapter Three, the clustered design of the cohort could be exploited to control for 

heterogeneity in the unobservable environmental and hospital-level factors that influenced 

treatment decisions (Rice et al., 1997). For example, controlling for variation over time 

was assumed to account for the factors that influenced TNFi choice in the external 

environment (such as a developing clinical evidence base). Additionally, controlling for 

variation between hospitals was assumed to account for unobserved heterogeneity in 

hospital-level influences on TNFi choice (such as a local care pathway, systems to promote 

compliance with NICE, or the cost of each TNFi therapy).  

4.3.2.1. Patient Inclusion Criteria 

The criteria for inclusion to the study is reported in Table 4.1. Individuals were included in 

the sample if they were adults with RA, as classified by the ACR 1987 criteria (Arnett et 

al., 1988) (see Appendix 7 for a description of the criteria). Patients must have been 
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prescribed any TNFi at baseline and must not have been exposed to a biologic agent 

previously. Non-Caucasian patients were excluded from the sample given their 

infrequency in the BRAGGSS cohort. 

Figure 4.1. Structure of BRAGGSS cohort. 

 

Table 4.1. Patient inclusion criteria. 

Patient Characteristic Inclusion Criteria 

Disease. RA (ACR 1987 Classification Criteria†). 

Age. Adult (>18 years). 

Sex. Any. 

Ethnicity. Caucasian. 

Treatment. Any TNFi, first-line.  

Year of prescribing decision. 2009 to 2014. 

Source: † Arnett et al. (1988).  

4.3.2.2. Dependent Variable 

The dependent variable (defined as TNFiPrescribed) used in the regression analysis was an 

unordered categorical variable that reported the TNFi prescribed to each patient at 

baseline. The variable had three mutually exclusive categories, based on clinical 

plausibility, to indicate whether the patient had been prescribed (i) a non-monoclonal 

antibody (etanercept), (ii) an older monoclonal antibody (adalimumab or infliximab), or 

(iii) a newer monoclonal antibody (certolizumab pegol or golimumab). The ability to 

collapse the five TNFi therapies into three categories was verified by a likelihood ratio test 

(reported fully in Appendix 19).  

4.3.2.3. Independent Variables 

Table 4.2 describes the independent variables that were included in the analysis. The 

selection of independent variables was informed by the wider econometric literature 

regarding the determinants of demand for health care (Zuvekas, 2014), described in 

Section 4.3.1, conditional on the data availability within BRAGGSS. A distinction was 
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made between health and non-health variables, consistent with previous studies that had 

estimated the influence of patient-level factors on treatment decisions (Vallejo-Torres et 

al., 2014).  

Table 4.2. Description of independent variables. 

Variable Description 

 

Health Variables 

 

DAS28 DAS28 score. Calculated using C-reactive protein level.  

Woman Dummy variable, =1 if patient was a woman. 

Age/10 Patient’s age divided by 10.  

HAQ Patient’s Health Assessment Questionnaire-Disability Index score.  

Totaldrug Total number of previous cDMARDs.  

Totalcomorb Total number of comorbidities.  

YearswithRA Years with RA.  

BMIover Dummy variable, =1 if patient had BMI ≥ 25. 

MTX Dummy variable, =1 if patient was receiving methotrexate.  

 

Non-health Variables 

 

Alcohol Dummy variable, =1 if patient self-reported alcohol consumption.  

Smoke Dummy variable, =1 if patient self-reported smoking daily.   

Employment Status 

   Work1 Dummy variable, =1 if patient was employed (full-time/part-time) 

or a student.   

   Work2 Dummy variable, =1 if patient was on sick/disability leave or 

retired early due to arthritis.  

   Work3 Dummy variable, =1 if patient was unemployed or retired for 

reasons unrelated to poor health.  

Marital Status 

   Marital1 Dummy variable, =1 if patient was married/living with partner.  

   Marital2 Dummy variable, =1 if patient was single.  

   Marital3 Dummy variable, =1 if patient was divorced/widowed.  

Homecare Dummy variable, =1 if patient had a carer at home.  

 

Non-patient Variables  

 

Year Time trend for each year of analysis (1=2009, 6=2014).  

HospitalDummy Dummy variable for each hospital, =1 if patient enrolled there.  

Abbreviations: BMI=Body mass index.  

Nine independent variables were included in the analysis that sought to encompass each 

patient’s health status. Three clinical health variables, used to inform decision making in 

routine clinical practice for RA (DAS28, HAQ, BMIover), were included in BRAGGS and 

were measured at baseline by a health professional. For this study, DAS28 was calculated 

using C-reactive protein (CRP), rather than using the erythrocyte sedimentation rate (ESR), 
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because more CRP samples were observed at baseline. BMIover was calculated by 

dividing the patient’s weight (in kilograms) by their height (in metres, squared), and 

dichotomised to indicate an overweight body mass index (BMI) (BMI≥25) according to the 

World Health Organization’s BMI classification score (World Health Organization, 2000). 

Totalcomorb was the sum of each patient’s self-reported comorbidities, recorded at 

baseline, from the following list (high blood pressure, angina, heart attack, heart failure, 

stroke, epilepsy, asthma, chronic bronchitis, peptic ulcer, liver disease, renal disease, 

tuberculosis, demyelination, diabetes, hyperthyroidism, depression, cancer). Similarly, 

Totaldrug was the sum of unique cDMARDs used by each patient at baseline, from the 

following list (methotrexate, cyclophosphamide, auranofin, intramuscular gold, 

leflunomide, azathioprine, hydroxychloroquine, cyclosporine, penicillamine, 

sulphasalazine). Both Totalcomorb, Totaldrug, and the years that a patient reported to have 

had RA (YearswithRA) were included in the analysis as proxy variables for the severity of 

disease (the greater the quantity of comorbidities, previous cDMARDs used, or years since 

diagnosis, the more severe the patient’s disease was likely to have been). NICE 

recommended that a subset of TNFi therapies may be prescribed as monotherapy for 

patients with contraindications to methotrexate (National Institute for Health and Care 

Excellence, 2016a); therefore, a dummy variable was included to indicate concomitant 

methotrexate use (MTX).  

Five variables were available in BRAGGSS, self-reported by each patient, that 

encapsulated the potential non-health influences on the demand for TNFi choice. Two 

dummy variables were included that were assumed to reflect a patient’s health behaviours 

(Smoke, Alcohol); both variables may have indicated a lack of patient involvement in 

treatment decision-making because (i) clinicians were assumed to have informed patients 

that smoking may increase the severity of RA and reduce treatment effectiveness 

(Westhoff et al., 2008), and (ii) the product label for methotrexate described that alcohol 

consumption was contraindicated and should have been avoided (British National 

Formulary, 2016). The presence of a carer at home (Homecare) was included in the 

analysis as a potential non-health influence on treatment selection because it may proxy for 

resources available to the patient at home, for example, to assist with, or record the 

frequency of, treatment administration.  

A patient’s employment status was classified according to their activity in the labour 

market and whether their self-reported exit from the labour market was due to their health 

condition; a patient may have been (i) employed and active in the labour market, full-time, 
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part-time, or as a student (Work1); (ii) inactive in the labour market due to health reasons, 

for example, by reporting sick leave, disability leave, or early retirement due to arthritis; or 

(iii) inactive in the labour market due to reasons unrelated to their health status, for 

example, by reporting unemployment or retirement due to non-health reasons (Work3). 

Marital status was categorised according to whether the patient was in a relationship 

(Marital1), single (Marital2), or had formerly been in a relationship (Marital3). The 

employment and marital status of patients are examples of socioeconomic characteristics, 

available in BRAGGSS, that have been found to influence the demand for health care in 

previous econometric studies (Zuvekas, 2014).  

Two sets of non-health independent variables were included, by exploiting the clustered 

design of BRAGGSS (illustrated in Figure 4.1), to control for factors that may have 

influenced routine prescribing decisions above the level of a patient’s characteristics. An 

annual time trend (Year) was included to control for unobservable temporal changes in 

external environmental influences, and a dummy variable for each hospital was included to 

control for unobservable heterogeneity in hospital-level influences (HospitalDummy).  

4.3.2.4. Missing Data 

The occurrence of variables with missing observations is a common problem in 

quantitative analyses of large datasets (Little et al., 1987; Rubin, 1987). There were some 

individuals with missing data within the BRAGGS dataset (described in Appendix 20). 

Simple solutions to handle missing data, such as (i) excluding observations with missing 

data (known as a complete-case analysis) or (ii) replacing the missing value with the 

sample mean, may have led to imprecise parameter estimates and biased inference (Sterne 

et al., 2009; Janssen et al., 2010; Rezvan et al., 2015). Multiple imputation was a more 

appropriate method to account for uncertainty in the true values of the missing data, by 

estimating a series of plausible values based on the observed data instead (White et al., 

2011). Multiple imputation was therefore used to address the missing data in this study by 

using chained equations (Royston, 2009; Royston et al., 2011; White et al., 2011; 

Romaniuk et al., 2014). Appendix 20 describes the multiple imputation method that was 

used in this study.  
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4.3.3. Analysis 

The data analysis used a multinomial logistic (MNL) regression to estimate the factors that 

influenced the choice of TNFi prescribed for each patient. MNL regression was 

appropriate because the dependent variable was an unordered, categorical variable 

(Greene, 2012). The analysis pooled the cross-sections of BRAGGSS over time because 

the unit of observation (the prescribing decision of an individual patient) was observed 

only once (and not replicated over time, as would be required to analyse BRAGGSS as 

panel data) (Wooldridge, 2010). This subsection describes the following analysis methods: 

MNL regression (Section 4.3.3.1), addressing potential endogeneity (Section 4.3.3.2), 

model specification (Section 4.3.3.3), cluster-robust standard errors (Section 4.3.3.4) and 

measures of model fit (Section 4.3.3.5).  

4.3.3.1. Multinomial Logistic Regression 

MNL regression can be used to model a random variable (𝑌) that may take the value 

{0, … , 𝐽}, 𝐽 ≥ 2. The dependent variable in this study had three categories (𝐽 = 3). A vector 

(𝑉) of (𝑘) independent variables can be defined (see Table 4.2) with a unit intercept term 

(Wooldridge, 2010). 

The analysis of factors that influenced TNFi choice focused on how unit changes in the 

variables within (𝑉) affected the probability of choosing an alternative in (𝑌). The 

probability that alternative (𝑗) was chosen could be expressed as shown in Equation 4.1: 

𝑃𝑟𝑜𝑏(𝑌 = 𝑗|𝑉) =
exp (𝛽𝑗𝑉)

1+∑ exp (𝛽ℎ𝑉)
𝐽
ℎ=1

=, 𝑗 = 1, … , 𝐽             (Equation 4.1) 

Where 𝛽𝑗 was a (𝑘𝑥1) vector of unknown parameters to be estimated for alternative (𝑗), 

and (ℎ) was indexed over all alternatives. As the probability of choosing an alternative 

TNFi category must sum to one, the probability of choosing (𝑗 = 0) could be expressed as 

in Equation 4.2 (Wooldridge, 2010): 

𝑃𝑟𝑜𝑏(𝑌 = 0|𝑉) =
1

1+∑ exp (𝛽ℎ𝑉)
𝐽
ℎ=1

                                         (Equation 4.2) 

Changes in the probability of choosing an alternative were determined by the partial effects 

of the independent variables in (𝑉). For any independent variable 𝑥𝑘𝜖𝑉, the partial effect 
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was not provided by its estimated coefficient alone (𝛽𝑗𝑘), but instead by Equation 4.3 

(Wooldridge, 2010): 

𝜕𝑃𝑟𝑜𝑏(𝑌 = 𝑗|𝑉)

𝜕𝑥𝑘
= 𝑃𝑟𝑜𝑏(𝑌 = 𝑗|𝑉) ∗ (𝛽𝑗𝑘 −

[∑ 𝛽ℎ𝑘∗exp (𝛽ℎ𝑉)] 
𝐽
ℎ=1

1+∑ exp(𝛽ℎ𝑉)𝐽
ℎ=1

)                            (Equation 4.3)                               

The sign and magnitude of the partial effect for a unit change in (𝑥𝑘), for any alternative 

(𝑗), therefore depended on the estimated coefficients across all other alternatives 𝛽ℎ 

(Wooldridge, 2010). Each partial effect was interpreted as the average change in 

probability of being prescribed a category of TNFi due to a unit increase in the 

independent variable of interest, ceteris paribus. The MNL regression was estimated by 

maximum likelihood in STATA Version 13 (StataCorp, 2013).  

4.3.3.2. Endogeneity 

The vector (𝑉) contained patient-level health and non-health characteristics. The demand 

for health care literature (see Section 4.3.1.1) described that patient-level characteristics 

may be endogenous if correlated with the residual error term, principally due to omitted 

variable bias. The results of Chapter Three suggested that two candidate sources of omitted 

variable bias were the influences on TNFi prescribing decisions within the external 

environment and within individual hospitals. Examples of such influences, that may be 

correlated with the independent and/or dependent variables in the MNL regression, are 

reported in Table 4.3. 

Table 4.3. Potential unobservable influences of TNFi choice.  

External Environment Influences Hospital-level Influences 

Change in evidence base or clinical guideline. 

 

Local care pathways. 

 

National drives to use specific TNFi therapies. 

 

Productive capacity of hospital. 

 

National price of a TNFi therapy.  Propensity of a hospital to negotiate the price 

of a TNFi therapy.  

 

Therefore, the inclusion of the time-trend in vector (𝑉) was anticipated to minimise 

endogeneity by controlling for unobservable changes in the external environment that may 

have influenced TNFi choice and/or patient-level variables over time. The inclusion of 

hospital-level dummy variables in vector (𝑉) was assumed to control for the endogenous 

and unobservable supply-side fixed effects of hospitals over time (Gravelle et al., 2003).  
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4.3.3.3. Model Specification and Sensitivity Analysis 

The base-case results estimated four different multivariable model specifications (reported 

in Table 4.4). The model specifications analysed the influence of health variables alone, 

and in conjunction with non-health variables, both with, and without, hospital-level fixed 

effects.  

Table 4.4. Regression specifications.  

Regression Independent Variables Variable List† 

Regression A Health variables,  

Time. 

DAS28, Woman, Age/10, HAQ, Totaldrug, 

Totalcomorb, YearswithRA, BMIover, MTX, 

Year. 

 

Regression B Health variables,  

Time, 

Hospital fixed effects. 

DAS28, Woman, Age/10, HAQ, Totaldrug, 

Totalcomorb, YearswithRA, BMIover, MTX, 

Year, Hospital dummy variables. 

  

Regression C Health variables, 

Non-health variables, 

Time. 

DAS28, Woman, Age/10, HAQ, Totaldrug, 

Totalcomorb, YearswithRA, BMIover, MTX, 

Smoke, Work1, Work3, Marital1, Marital3, 

Homecare, Year. 

 

Regression D Health variables, 

Non-health variables, 

Time, 

Hospital fixed effects. 

DAS28, Woman, Age/10, HAQ, Totaldrug, 

Totalcomorb, YearswithRA, BMIover, MTX, 

Smoke, Work1, Work3, Marital1, Marital3, 

Homecare, Year, Hospital dummy variables. 

Note: †Variables are defined in Table 4.2.  

 

Two sensitivity analyses of the base-case results were performed. One sensitivity analysis 

investigated whether the results were sensitive to changes in the measure of a patient’s 

health behaviour, by replacing the Smoke variable with the Alcohol variable and re-

estimating the base-case results. The second sensitivity analysis re-estimated the base-case 

results by omitting hospitals with fewer than ten patients from the sample, to determine 

whether the results were sensitive to the number of patients clustered within each hospital 

(Cameron et al., 2015).  

4.3.3.4. Cluster-robust Standard Errors 

Statistical inference requires precision in both the parameter estimate and the associated 

standard error (Cameron et al., 2015). Regression-based analyses of individual-level data 

typically assume that residual error terms are uncorrelated between observations (Greene, 

2012). However, if the observations are clustered, as was the case in this study (patients 

were clustered by hospital), residual error terms may be uncorrelated across clusters but 
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correlated within clusters (Morris et al., 2005). Within-cluster residual correlation, if left 

unaddressed, may have overestimated the magnitude of the standard errors and artificially 

reduced the associated p-value (Williams, 2000). Therefore, cluster-robust standard errors 

by hospital were used for all MNL regressions (Wooldridge, 2010). The partial effect of an 

independent variable was deemed to be significantly different from zero if its associated p-

value was less than 0.01, 0.05, or 0.1, demonstrating decreasing levels of statistical 

significance.  

4.3.3.5. Measures of Model Fit 

Three statistical measures of model fit (McFadden’s Pseudo-R2, the Akaike Information 

Criteria (AIC), and the Bayesian Information Criteria (BIC)) were used to estimate the 

relative ability of the four model specifications to fit the patient-level data (Akaike, 1974; 

McFadden, 1974; Schwarz, 1978). Each measure used the log-likelihood from the full 

model (𝐿𝐿𝐹𝑢𝑙𝑙), and the pseudo-R2 calculation required the log-likelihood from a restricted 

model including only the intercept term (𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑟𝑒𝑑). These measures were estimated 

from the complete-case data, given the difficulty in estimating relative model performance 

from multiply imputed datasets (Wood et al., 2008)  

4.3.3.5.1. McFadden’s Pseudo-R2 

The pseudo-R2 (McFadden, 1974) was calculated according to Equation 4.4:  

Pseudo-R2 = 1 − (
𝐿𝐿𝐹𝑢𝑙𝑙

𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)                                          (Equation 4.4) 

The pseudo-R2 would have equalled zero if the log-likelihood from the two models were 

identical. The greater the log-likelihood of the full model, the greater the pseudo-R2 and 

the better the relative fit of the model. However, the value of a pseudo-R2 would have 

always increased as the number of parameters in the regression model increased (Long et 

al., 2012).  

4.3.3.5.2. Akaike Information Criteria 

The AIC (Akaike, 1974) was calculated according to Equation 4.5: 

AIC =  −2𝐿𝐿𝐹𝑢𝑙𝑙 + 2𝐾                      (Equation 4.5) 



127 
 

where (𝐾) was equal to the number of parameters in the model. The lower the AIC 

statistic, the better the model fit. Unlike the pseudo-R2, the AIC imposed a penalty as the 

number of parameters in the regression model increased (Akaike, 1974).  

4.3.3.5.3. Bayesian Information Criteria 

The BIC (Schwarz, 1978) was calculated according to Equation 4.6: 

BIC = −2𝐿𝐿𝐹𝑢𝑙𝑙 + 𝐾(𝐿𝑛𝑁)                     (Equation.4.6) 

where (𝑁) was equal to the sample size. The lower the BIC statistic, the better the relative 

fit of the model. The penalty imposed by including additional parameters was greater than 

for the AIC, which indicated that the BIC gave preference to more parsimonious models 

(Schwarz, 1978).  

4.4. Results 

The results indicated a rejection of the hypothesis, stated in Objective 2 (see Section 4.2), 

that no patient-level characteristics systematically influenced the choice of TNFi, after 

controlling for unobservable influences on prescribing decisions in the external 

environment and at the hospital-level. The results of this study are reported according to 

the summary statistics (Section 4.4.1), base-case results (Section 4.4.2), and the results of 

the sensitivity analyses (Section 4.4.3).  

4.4.1. Summary Statistics 

Figure 4.2 illustrates a flow diagram of the patients with RA that were included in the 

study. There were 1,788 baseline observations within BRAGGSS that reported a 

prescribing decision which involved any bDMARD. A total of 894 patients with RA met 

the study inclusion criteria (Table 4.1) and had specifically been prescribed any TNFi for 

the first time between 2009 and 2014 across forty-nine NHS hospitals. Table 4.5 presents 

the distribution of patients to each category of the dependent variable.  
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Figure 4.2. Flow diagram of patients that met the study inclusion criteria.  

 

Table 4.5. Distribution of patients in the sample to each category of the dependent 

variable.  

Category Name TNFi Number of Patients (n) 

Non-monoclonal TNFi. Etanercept. 357 

Older monoclonal TNFi. Adalimumab and infliximab. 373 

Newer monoclonal TNFi. Certolizumab pegol and golimumab. 164 

 

The proportion of patients in the sample that were prescribed each TNFi varied over time 

(illustrated in Figure 4.3). The newer monoclonal TNFi therapies were prescribed less 

frequently than the other treatments between 2009 and 2014. The non-monoclonal TNFi, 

etanercept, became the most frequently prescribed treatment in the sample from 2012. 

Figure 4.4 depicts the proportion of patients in each of the forty-nine hospitals that were 

prescribed each category of TNFi treatment, to illustrate the presence of hospital-level 

variation in prescribing decisions across the sample. 



 
 

Figure 4.3. The proportion of patients in the sample that were prescribed each category of TNFi per year.  
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Figure 4.4. The proportion of patients in each hospital that were prescribed each category of TNFi. 
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Table 4.6 reports the summary statistics for each independent variable in the analysis for 

(i) the full sample and (ii) for each category of the dependent variable. The mean values of 

the summary statistics for the full sample were consistent across each category of TNFi 

therapy. 

The mean DAS28 score for the full sample was 5.41, which indicated a population with 

active and severe RA (Prevoo et al., 1995). Three quarters of the sample were women and 

the average patient age was 57 years old, both of which were consistent with the 

population-level epidemiological characteristics of RA (see Section 1.3.1). Patients had, on 

average, one comorbid condition alongside their RA diagnosis, and had previously 

received four different cDMARDs. Patients in the sample had a diagnosis of RA for an 

average of ten years prior to enrolment in the study. The majority of patients (79%) 

received concomitant methotrexate with their TNFi and 68% had a BMI indicative of 

being overweight.  

Over half of the sample reported regularly drinking alcohol (59%), whereas 20% were a 

self-reported daily smoker. Over a third of the sample (38%) reported being employed; 

44% were unemployed due to health reasons and 18% had left the labour market for non-

health reasons. The majority of patients (74%) considered themselves to be in a 

relationship and almost all (90%) had a carer available to assist them at home. 

 

 

 

 

 

 

 



  

 
 

                                Table 4.6. Summary statistics of independent variables in the full sample and for each category of the dependent variable. 

 

Total Sample 

(n=894) 
 

Non-monoclonal 

TNFi 

(n=357) 

 

Older monoclonal 

TNFi  

(n=373) 

 

Newer monoclonal 

TNFi 

 (n=164) 

Variable Mean SD Min Max  Mean SD  Mean SD  Mean SD 

Health Variables             

DAS28 
5.41 0.81 1.86 8.59  5.45 0.79  5.40 0.84  5.38 0.75 

Woman 
0.75 0.43 0 1  0.77 0.42  0.75 0.43  0.73 0.44 

Age/10 
5.71 1.23 1.9 8.5  5.76 1.22  5.62 1.26  5.80 1.18 

HAQ 
1.70 0.64 0 3  1.69 0.64  1.70 0.63  1.72 0.65 

Totaldrug 
4.14 1.63 0 12  4.25 1.74  4.07 1.58  4.04 1.50 

Totalcomorb 
1.09 1.18 0 7  1.15 1.18  1.04 1.22  1.08 1.09 

YearswithRA 
10.48 10.28 0 60  10.57 10.64  11.03 10.33  9.03 9.14 

BMIover 
0.68 0.47 0 1  0.69 0.46  0.67 0.47  0.67 0.47 

MTX 
0.79 0.41 0 1  0.74 0.44  0.81 0.39  0.86 0.35 

Non-health Variables 
            

Alcohol 
0.59 0.49 0 1  0.61 0.49  0.58 0.49  0.60 0.49 

Smoke 
0.20 0.40 0 1  0.18 0.38  0.21 0.41  0.23 0.42 

Employment Status 
            

   Work1 
0.38 0.48 0 1  0.40 0.49  0.39 0.49  0.31 0.46 

   Work2† 
0.44 0.50 0 1  0.43 0.50  0.45 0.50  0.46 0.50 

   Work3 
0.18 0.38 0 1  0.17 0.37  0.16 0.37  0.23 0.42 

Marital Status 
            

   Marital1 
0.74 0.44 0 1  0.73 0.44  0.76 0.43  0.73 0.45 

   Marital2† 
0.09 0.29 0 1  0.11 0.32  0.08 0.27  0.07 0.25 

   Marital3 
0.17 0.37 0 1  0.15 0.36  0.16 0.37  0.21 0.41 

Homecare 
0.90 0.30 0 1  0.90 0.30  0.89 0.31  0.91 0.29 

Year 3.39 1.45 1 6  3.36 1.51  3.15 1.49  4.01 0.97 

                                         Note:  SD = standard deviation; † denotes omitted categorical variable. Non-monoclonal TNFi=etanercept; Older monoclonal TNFi=infliximab & adalimumab; Newer 

                                         monoclonal TNFi= certolizumab pegol & golimumab.

1
3
2
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4.4.2. Base-case Results 

The base-case results for each regression specification are presented in Table 4.7. The 

inclusion of hospital-level fixed effects improved the model fit according to all criteria 

(Regression B Vs. Regression A; Regression D Vs. Regression C). Regression D fitted the 

data best, compared with other model specifications, according its lower AIC and BIC 

statistics and higher pseudo-R2 (Pseudo-R2=0.40; AIC=447; BIC=593).  

The partial effects of all clinical assessment variables (DAS28, HAQ, BMIover) were not 

significantly different from zero (for each variable, p>0.1 for all TNFi categories across all 

model specifications). This result may indicate that implicit stratification of TNFi 

therapies, according to clinical disease status, did not occur in routine practice.  

The positive and significant partial effect of the Year variable (which was a proxy for the 

influence of factors in the external environment) may suggest that the probability of being 

prescribed a newer monoclonal TNFi increased over time (In Regression C: Yearpartial 

effect|newer monoclonal TNFi=0.0705; p=0.00). However, the influence of factors in the external 

environment appeared to be absorbed by including hospital-level fixed effects to control 

for influences on treatment decisions at the hospital-level (In Regression D: Yearpartial 

effect|newer monoclonal TNFi=0.0045; p=0.00). Moreover, the influence of patient-level factors on 

being prescribed a newer monoclonal TNFi were also reduced after controlling for 

unobservable heterogeneity between hospitals. These findings may provide evidence that 

hospital supply-side factors were more influential than patient-level characteristics, in 

determining whether a newer monoclonal TNFi was prescribed.  

Regression D indicated that, after controlling for unobservable influences at the hospital-

level and in the external environment, a ten-year increase in a patient’s age was associated 

with a 4.5% greater probability of receiving the non-monoclonal TNFi etanercept (p=0.01), 

ceteris paribus. In contrast, patients that were prescribed concomitant methotrexate had an 

11% lower probability of also being prescribed etanercept (p=0.02), ceteris paribus.  

The socioeconomic characteristics of patients were found to be associated with the 

prescription of etanercept, adalimumab, and infliximab; patients reported to be in a 

relationship were were 16% more likely to have received an older monoclonal TNFi 

(p=0.02), ceteris paribus. The influence of socioeconomic characteristics may provide 

evidence for horizontal inequity in TNFi prescribing decisions (see Section 4.3.1.3.) if a 
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value judgement was made that non-health factors (such as a patient’s relationship status) 

should not have influenced a patient’s health care utilisation (Morris et al., 2005; Gravelle 

et al., 2006). 

4.4.3. Sensitivity Analyses 

Table 4.8 reports the mean partial effects from the multinomial logistic regression when 

the Smoke variable was replaced with the Alcohol variable. These two variables were a 

proxy for each patient’s individual health behaviours, which may have been correlated 

with their involvement in routine treatment decision-making (see Section 4.3.3.3). The 

partial effects of the base-case analysis were robust to changes in the variable that 

measured each patient’s individual health behaviours. Regression D remained the preferred 

model specification, due to its relatively higher pseudo-R2 and relatively lower AIC and 

BIC test statistics. The same independent variables were statistically significant in 

Regression D (Age, MTX, Marital1 in particular for etanercept, adalimumab, and 

infliximab) and demonstrated the same magnitude of partial effect, when compared with 

the base-case results in Table 4.7. There was therefore no evidence that a patient’s self-

reported health behaviours influenced the choice of TNFi therapy prescribed in routine 

clinical practice. 

Appendix 21 reports the results of the sensitivity analysis when the regression was 

estimated on a restricted sample of hospitals that contributed at least ten patients to 

BRAGGSS. The sample size was reduced to 816 patients and the relative magnitude and 

direction of the base-case results were robust to performing the analysis on the restricted 

sample (Appendix 21; Table A21.1).  

 

 

 

 

 



  

 
 

Table 4.7. Base-case results: mean partial effects from multinomial logistic regression.  
 Regression A  Regression B  Regression C  Regression D 

 Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs 

DAS28 0.0216 
(0.0287) 

-0.0212 
(0.0299) 

-0.0004 
(0.0201) 

 0.0481 
(0.0363) 

-0.0472 
(0.0363) 

-0.0009 
(0.0012) 

 0.0219 
(0.0292) 

-0.0224 
(0.0304) 

0.0004 
(0.0197) 

 0.0480 
(0.0369) 

-0.0473 
(0.0369) 

-0.0007 
(0.0011) 

Woman 0.0455 

(0.0371) 

-0.0144 

(0.0409) 

-0.0311 

(0.0346) 

 0.0536 

(0.0445) 

-0.0510 

(0.0443) 

-0.0025 

(0.0022) 

 0.0481 

(0.0399) 

-0.0105 

(0.0428) 

-0.0376 

(0.0361) 

 0.0529 

(0.0476) 

-0.0505 

(0.0475) 

-0.0024 

(0.0019) 

Age/10 0.0129 

(0.0123) 

-0.0280** 

(0.0135) 

0.0150 

(0.0113) 

 0.0277** 

(0.0130) 

-0.0279** 

(0.0130) 

0.0002 

(0.0005) 

 0.0335** 

(0.0147) 

-0.0352** 

(0.0163) 

0.0016 

(0.0111) 

 0.0452*** 

(0.0175) 

-0.0450*** 

(0.0175) 

-0.0002 

(0.0005) 

HAQ -0.0395 
(0.0295) 

0.0161 
(0.0316) 

0.0233 
(0.0196) 

 -0.0134 
(0.0368) 

0.0117 
(0.0369) 

0.0016 
(0.0012) 

 -0.0272 
(0.0285) 

0.0200 
(0.0312) 

0.0072 
(0.0212) 

 -0.0034 
(0.0352) 

0.0027 
(0.0353) 

0.0007 
(0.0011) 

Totaldrug 0.0165 

(0.0202) 

0.0091 

(0.0163) 

-0.0256 

(0.0187) 

 0.0006 

(0.0180) 

-0.0004 

(0.0177) 

-0.0002 

(0.0006) 

 0.0148 

(0.0202) 

0.0095 

(0.0160) 

-0.0243 

(0.0185) 

 -0.0017 

(0.0180) 

0.0018 

(0.0178) 

-0.0001 

(0.0005) 
Totalcomorb 0.0139 

(0.0150) 

-0.0114 

(0.0153) 

-0.0025 

(0.0094) 

 0.0216 

(0.0183) 

-0.0217 

(0.0182) 

0.0001 

(0.0005) 

 0.0142 

(0.0158) 

-0.0096 

(0.0157) 

-0.0046 

(0.0093) 

 0.0192 

(0.0193) 

-0.0192 

(0.0192) 

0.0000 

(0.0005) 

YearswithRA -0.0008 
(0.0020) 

0.0025 
(0.0017) 

-0.0018 
(0.0014) 

 -0.0015 
(0.0021) 

0.0017 
(0.0021) 

-0.0002** 

(0.0001) 
 -0.0009 

(0.0021) 
0.0029* 

(0.0017) 
-0.0019 
(0.0015) 

 -0.0018 
(0.0022) 

0.0020 
(0.0021) 

-0.0002*** 

(0.0001) 

BMIover 0.0245 

(0.0470) 

0.0032 

(0.0467) 

-0.0277 

(0.0294) 

 0.0060 

(0.0575) 

-0.0053 

(0.0572) 

-0.0007 

(0.0017) 

 0.0205 

(0.0471) 

0.0032 

(0.0478) 

-0.0237 

(0.0293) 

 0.0013 

(0.0576) 

-0.0010 

(0.0575) 

-0.0003 

(0.0015) 
MTX -0.1208*** 

(0.0393) 

0.0577 

(0.0399) 

0.0631** 

(0.0287) 

 -0.1049** 

(0.0460) 

0.1013** 

(0.0459) 

0.0036** 

(0.0015) 

 -0.1237*** 

(0.0410) 

0.0616 

(0.0406) 

0.0621** 

(0.0288) 

 -0.1141** 

(0.0467) 

0.1109** 

(0.0465) 

0.0032*** 

(0.0012) 

Smoke 
   

 
   

 -0.0393 
(0.0442) 

0.0255 
(0.0459) 

0.0138 
(0.0261) 

 -0.0547 
(0.0549) 

0.0522 
(0.0549) 

0.0025* 

(0.0015) 

Work1 
   

 
   

 0.0548 

(0.0578) 

0.0193 

(0.0530) 

-0.0742** 

(0.0330) 

 0.0349 

(0.0673) 

-0.0318 

(0.0670) 

-0.0031** 

(0.0015) 
Work3 

   
 

   
 -0.0279 

(0.0623) 

0.0417 

(0.0636) 

-0.0138 

(0.0406) 

 -0.0357 

(0.0808) 

0.0371 

(0.0806) 

-0.0014 

(0.0017) 

Marital1 
   

 
   

 -0.1587** 

(0.0629) 
0.1052** 

(0.0529) 
0.0535 

(0.0374) 
 -0.1629** 

(0.0671) 
0.1613** 

(0.0666) 
0.0016 

(0.0016) 

Marital3 
   

 
   

 -0.1614** 

(0.0760) 

0.0488 

(0.0786) 

0.1127 

(0.0695) 

 -0.1319 

(0.1084) 

0.1285 

(0.1082) 

0.0034 

(0.0033) 
Homecare 

  
 

   
 0.0073 

(0.0610) 

-0.0330 

(0.0560) 

0.0258 

(0.0346) 

 0.0406 

(0.0805) 

-0.0403 

(0.0803) 

-0.0003 

(0.0019) 

Year -0.0152 

(0.0162) 

-0.0515** 

(0.0206) 

0.0667*** 

(0.0173) 

 -0.0011 

(0.0186) 

-0.0037 

(0.0186) 

0.0048*** 

(0.0010) 

 -0.0164 

(0.0173) 

-0.0541*** 

(0.0205) 

0.0705*** 

(0.0171) 

 -0.0011 

(0.0202) 

-0.0034 

(0.0201) 

0.0045*** 

(0.0008) 

Hospital Dummy No No No  Yes Yes Yes  No No No  Yes Yes Yes 

Pseudo R2 0.072  0.3634  0.1138  0.4022 

AIC 613.7943  474.8829  612.1243  447.0357 

BIC 694.2261  628.4346  736.428  593.2754 

Note: Standard errors are reported in parentheses. Non-mAbs = Non-monoclonal antibody (etanercept); Older mAbs = Older monoclonal antibodies (infliximab & adalimumab); Newer mAbs = 

Newer monoclonal antibodies (certolizumab pegol & golimumab). *, **, *** indicates statistical significance at 10%, 5% and 1%, respectively. Partial effects of hospital dummy variables are 

unreported

1
3
5
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Table 4.8. Sensitivity analysis: mean partial effects from multinomial logistic regression 

after replacing smoking behaviour with self-reported alcohol intake. 

 
Regression C  Regression D 

 Non-mAb Older mAbs Newer mAbs 
 

Non-mAb Older mAbs Newer mAbs 

DAS28 0.0221 

(0.0290) 

-0.0218 

(0.0306) 

-0.0002 

(0.0199) 

 0.0482 

(0.0368) 

-0.0474 

(0.0367) 

-0.0009 

(0.0012) 

Woman 0.0525 
(0.0388) 

-0.0154 
(0.0418) 

-0.0371 
(0.0345) 

 0.0576 
(0.0471) 

-0.0548 
(0.0470) 

-0.0028 
(0.0021) 

Age/10 0.0347** 

(0.0143) 

-0.0355** 

(0.0156) 

0.0008 

(0.0106) 

 0.0461*** 

(0.0172) 

-0.0458*** 

(0.0172) 

-0.0003 

(0.0005) 
HAQ -0.0259 

(0.0274) 

0.0154 

(0.0331) 

0.0105 

(0.0231) 

 -0.0029 

(0.0341) 

0.0020 

(0.0342) 

0.0010 

(0.0013) 
Totaldrug 0.0157 

(0.0199) 

0.0080 

(0.0164) 

-0.0238 

(0.0175) 

 -0.0002 

(0.0181) 

0.0003 

(0.0179) 

-0.0001 

(0.0006) 

Totalcomorb 0.0155 
(0.0156) 

-0.0116 
(0.0153) 

-0.0040 
(0.0094) 

 0.0212 
(0.0192) 

-0.0212 
(0.0191) 

0.0000 
(0.0005) 

YearswithRA -0.0009 

(0.0020) 

0.0029* 

(0.0017) 

-0.0020 

(0.0014) 

 -0.0016 

(0.0021) 

0.0018 

(0.0021) 

-0.0002*** 

(0.0001) 
BMIover 0.0260 

(0.0477) 

-0.0027 

(0.0486) 

-0.0233 

(0.0292) 

 0.0085 

(0.0590) 

-0.0081 

(0.0588) 

-0.0004 

(0.0016) 

MTX -0.1210*** 

(0.0407) 

0.0569 

(0.0402) 

0.0641* 

(0.0280) 

 -0.1110** 

(0.0466) 

0.1075** 

(0.0465) 

0.0035*** 

(0.0013) 

Alcohol 0.0250 

(0.0393) 

-0.0451 

(0.0438) 

0.0201 

(0.0348) 

 0.0226 

(0.0460) 

-0.0235 

(0.0464) 

0.0009 

(0.0016) 
Work1 0.0587 

(0.0574) 

0.0162 

(0.0521) 

-0.0749** 

(0.0332) 

 0.0418 

(0.0670) 

-0.0383 

(0.0667) 

-0.0035** 

(0.0017) 

Work3 -0.0238 
(0.0625) 

0.0365 
(0.0633) 

-0.0127 
(0.0415) 

 -0.0276 
(0.0799) 

0.0292 
(0.0796) 

-0.0016 
(0.0018) 

Marital1 -0.1591** 

(0.0627) 

0.1065** 

(0.0524) 

0.0526 

(0.0377) 

 -0.1624** 

(0.0669) 

0.1606** 

(0.0663) 

0.0018 

(0.0018) 
Marital3 -0.1633** 

(0.0747) 

0.0481 

(0.0781) 

0.1152* 

(0.0700) 

 -0.1353 

(0.1074) 

0.1309 

(0.1071) 

0.0045 

(0.0038) 

Homecare 0.0121 
(0.0619) 

-0.0393 
(0.0570) 

0.0272 
(0.0355) 

 0.0467 
(0.0824) 

-0.0463 
(0.0823) 

-0.0004 
(0.0022) 

Year -0.0160 

(0.0173) 

-0.0545*** 

(0.0205) 

0.0705*** 

(0.0170) 

 -0.0009 

(0.0199) 

-0.0040 

(0.0198) 

0.0049*** 

(0.0009) 
Hospital Dummy No No No  Yes Yes Yes 

Pseudo R2 0.1138  0.4022 

AIC 612.1243  447.0357 

BIC 736.428  593.2754 

Note: Standard errors are reported in parentheses. Non-mAbs = Non-monoclonal antibody (etanercept); 

Older mAbs = Older monoclonal antibodies (infliximab & adalimumab); Newer mAbs = Newer monoclonal 

antibodies (certolizumab pegol & golimumab). *, **, *** indicates statistical significance at 10%, 5% and 

1%, respectively. Partial effects of hospital dummy variables are unreported. 

 

4.5. Discussion 

This study aimed to identify the patient-level characteristics that influenced the choice of 

TNFi prescribed to patients with RA in England. The analysis built on the results of 

Chapter Three which suggested that treatment decisions for RA may be influenced by 

factors in the external environment and at the hospital-level. MNL regression was used to 

model the patient-level factors that may influence first-line TNFi prescribing decisions 

observed in a representative sample of 894 patients with RA across England between 2009 

and 2014, identified within the BRAGGSS cohort. There was evidence to reject the 

hypothesis that patient-level factors did not influence the prescription of etanercept, 

adalimumab, and infliximab which may indicate that these therapies were subject to 
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implicit stratification in current practice. There was also evidence that patient-level factors 

had a limited influence on the prescription of newer monoclonal TNFi therapies 

(certolizumab pegol and golimumab), which may suggest that, on average, these treatments 

were prescribed according to their lower cost, in alignment with NICE recommendations. 

Older patients were found to have a greater probability of being prescribed etanercept, 

relative to other TNFi therapies, ceteris paribus. The risk of infection from bDMARD 

therapies may be greater in older patients (Lahiri et al., 2015) and the rheumatologists in 

Chapter Three perceived that etanercept was the most suitable TNFi for patients at-risk of 

infection. Therefore, the potential implicit stratification of etanercept therapy by age may 

have been mediated by an unmeasured patient-level risk of infection. The three North 

American studies of the patient-level factors that influenced TNFi choice (described in 

Appendix 16), by contrast, estimated that older patients were more likely to have been 

prescribed infliximab (DeWitt et al., 2006; Carter et al., 2012; Zhang et al., 2013). 

However, direct cross-country comparisons of health care use may be inappropriate, due to 

structural differences between health care systems in the delivery of care, payment 

mechanisms, and the patient case-mix (McPherson, 1989).  

Patients that were prescribed concomitant methotrexate were more likely to have been co-

prescribed an older monoclonal TNFi (infliximab or adalimumab), ceteris paribus. This 

result also had clinical plausibility because etanercept monotherapy was recommended by 

NICE for patients that were intolerant to methotrexate (National Institute for Health and 

Care Excellence, 2016a). The importance of including concomitant methotrexate use as an 

independent variable was illustrated by the magnitude of its partial effect; omission of 

concomitant therapies, and methotrexate in particular, has previously been demonstrated to 

confound empirical studies in RA that used patient-level data (Hudson et al., 2010)  

The results also indicated that a patient’s socioeconomic characteristics, measured by 

proxy according to their marital status, may have influenced the choice of TNFi therapy 

prescribed in current practice. The potential influence of a patient’s socioeconomic 

characteristics on their health care use has been documented widely in the econometric 

literature regarding the demand for health care (van Doorslaer et al., 2004; Gravelle et al., 

2006; Zuvekas, 2014), including in publically-funded health care systems such as the NHS 

in England (Laudicella et al., 2012). However, a patient’s marital status, as a multinomial 

variable, had nominal properties which made it an imperfect proxy of socioeconomic 

status because the direction of its influence was unknown a priori, unlike variables with 
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ordinal properties (Erreygers et al., 2011) such as income or level of education. 

Recommendations for managing patients with RA by EULAR and the ACR suggested that 

treatment decisions should be made in a shared decision-making context with the patient 

(Smolen et al., 2014; Singh et al., 2016b). It may be possible that a patient’s 

socioeconomic characteristics correlated with their own preferences of certain treatments, 

and these preferences were expressed during a shared decision-making process (Vick et al., 

1998). However, if a value judgement was made, a priori, that non-health patient 

characteristics should not affect routine treatment decisions, then the influence of a 

patient’s marital status in this study may have suggested the presence of horizontal 

inequity in TNFi prescribing (Section 4.3.1.3).  

This study was the first quantitative analysis of the patient-level factors that influenced 

routine TNFi prescribing decisions for patients with RA in England and had three distinct 

advantages. Firstly, the analysis utilised data from real prescribing decisions that were 

observed in routine clinical practice, such that the observations represented a clinician’s 

revealed preference for a certain treatment (Mark et al., 2004), rather than hypothetical 

choices made in a stated preference analysis (Wardman, 1988; Kievit et al., 2010). 

Secondly, to mitigate the potential for endogeneity through omitted variable bias, hospital-

level fixed effects and a time trend were included in the MNL regression to control for 

unobservable non-patient-level influences on prescribing decisions. Thirdly, multiple 

imputation was used to handle missing data and retain the largest possible sample; the 

results of related studies that were published previously, such as DeWitt et al. (2006), 

excluded patients with missing data, which may have introduced a selection bias into their 

analysis.  

Limitations 

A limitation experienced by most studies that have estimated the determinants of demand 

for health care is that data are often characterised by a trade-off between the precision of 

measurement and availability (Propper et al., 2005). Data are typically characterised as 

either (i) smaller samples, specific to a disease or treatment, that have measured variables 

for health and health care use with high precision, but measured non-health variables 

imperfectly, or (ii) larger-scale analyses of national household surveys that have measured 

non-health variables with greater precision, but measured health status imperfectly 

(Propper et al., 2005). This study was an example of the former; high-quality data were 

available on the treatment received by patients and on their health status (clinical 
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assessments were performed by a health professional) but non-heath variables were self-

reported by patients and were imperfect proxies for socioeconomic status. If these 

socioeconomic characteristics were excluded, however, the analysis may have been subject 

to an additional source of omitted variable bias which, in turn, may have reduced the 

robustness of the results.  

A second limitation of this study was that the cost of each TNFi therapy was not directly 

observable in the dataset. The study therefore assumed that the cost of each TNFi may 

have differed between hospitals, and the hospital-level fixed effects were sufficient to 

control for this unobservable heterogeneity. This assumption was plausible because the 

cost of treatments could be negotiated at the regional-level in the NHS (Stokoe et al., 

2011). The hospital-level fixed effects, however, may have additionally accounted for 

other unobservable hospital-level influences that were described by the rheumatologists in 

Chapter Three (such as a local treatment algorithm or a system to promote compliance 

with NICE recommendations). Therefore, despite the inability to observe the cost of 

treatment directly, by controlling for unobservable hospital-level heterogeneity, the risk of 

endogeneity due to omitted variable bias was reduced, which may have confounded the 

results of similar previous studies.  

A third potential limitation was that this study used a smaller sample relative to the three 

North American-based quantitative analyses of TNFi prescribing decisions (DeWitt et al., 

2006; Carter et al., 2012; Zhang et al., 2013). However, the sample of patients in this study 

may have been more homogenous, compared to those other studies, given the existence of 

NICE recommendations that explicitly stated the characteristics of patients who were 

eligible to receive TNFi therapies in England (National Institute for Health and Care 

Excellence, 2016a). Therefore, despite the smaller sample size, the greater homogeneity of 

the sample may have improved the study’s sensitivity to detect the factors that influenced 

routine prescribing decisions.  

A fourth limitation of the study was that, given the sample size, the choice of TNFi was 

determined according to a three-category multinomial dependent variable rather than a 

five-category dependent variable (one category for each TNFi therapy). This study, 

however, was the first to consider the patient-level factors that influenced the choice of all 

five TNFi therapies licenced for patients with RA. In addition, the decision to collapse the 

dependent variable into three categories had clinical plausibility and statistical plausibility 

according to the results of a likelihood ratio test.  
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Lastly, the specification of the regression included a dummy variable for each individual 

hospital, which resulted in a substantial number of independent variables to be estimated 

within the analysis. Although the inclusion of the hospital-level dummy variables 

improved the fit of the regression, a potential limitation of this approach was that the 

frequency of patients that received each category of TNFi within each hospital may be 

been small. Alternatively, a dummy variable could have been included for each hospital’s 

CCG, rather than for each hospital, and would have resulted in fewer independent variables 

within the regression analysis. However, the results of Chapter Three indicated that 

hospital-level influences on prescribing decisions for RA were important, compared with 

external influences (such as those from a CCG) and, therefore, should have been included 

within the empirical analysis of prescribing decisions to avoid omitted variable bias.  

Implications for Future Research 

The BRAGGSS cohort was a subset of patients enrolled to the larger British Society for 

Rheumatology Biologics Register (BSRBR) study (Hyrich et al., 2011). A follow-up study 

could therefore be undertaken, to replicate the findings of this research, by using the MNL 

regression method with the larger BSRBR sample. A potential advantage of performing the 

MNL regression on a larger sample may be that more patients would be distributed to the 

categories of the dependent variable and individual hospitals, which may subsequently 

reduce the practical problems associated with non-converging estimations by maximum 

likelihood (Rabe-Hesketh et al., 2005).  

The data for this study were collected prior to the introduction of biosimilar TNFi therapies 

in current practice. Health care systems are expected to express a preference towards 

biosimilar therapies due to their potentially lower cost, compared with branded biologic 

drugs (Grabowski et al., 2014). It is unclear, however, whether clinicians and patients are 

willing to use biosimilar therapies in practice (Casey, 2016). Patient registers for RA in 

England have since started to collect data on patients treated with biosimilar TNFi 

therapies in routine practice (The British Society for Rheumatology, 2016). The results of 

this study could therefore be developed further, by using these new observational data, to 

investigate the patient-level factors that may influence the prescribing of biosimilar TNFi 

therapies, compared with their branded alternatives.  

Finally, hospital-level factors were found to have an influence on the prescribing of TNFi 

therapies in general, and on the newer monoclonal TNFi therapies in particular. Further 
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exploration of these hospital-level influences was beyond the scope of this study and the 

inclusion of additional variables in the analysis may not have been appropriate, given the 

sample size. However, to develop a clearer understanding of the hospital-level influences 

on treatment decisions for RA, a future quantitative study could condition on additional 

hospital-level variables to potentially explain some of the unobservable between-hospital 

heterogeneity in this study. For example, treatment decisions may be influenced by 

hospital quality (which has previously been measured by proxy using evidence of thirty-

day mortality from emergency admissions) (Dranove, 2012), the size of the hospital, and 

whether the hospital was research-oriented and aligned with the medical school of a 

university (Beckert et al., 2012). 

 

4.6. Conclusion 

This quantitative study built on the results of Chapter Three and utilised economic theory 

regarding the demand for health care, agency relationships, and inequity in health care use, 

to estimate the patient-level factors that influenced the choice of TNFi for patients with RA 

in England. Representative data were obtained from a national cohort study of 894 

treatment decisions observed in routine practice between 2009 and 2014. By controlling 

for annual and hospital variation, to account for the environmental and hospital-level 

influences on treatment decisions identified by the rheumatologists in Chapter Three, the 

results identified that etanercept, adalimumab, and infliximab prescribing decisions may be 

implicitly stratified according to a patient’s age, concomitant methotrexate use, and 

socioeconomic characteristics. The results also suggested that newer monoclonal TNFi 

therapies (certolizumab pegol and golimumab), by contrast, may have been prescribed in 

alignment with the recommendations by NICE.  

Having explored current practice for RA in England to a greater extent than the previous 

model-based economic evaluations of stratified medicine (identified by the systematic 

review in Chapter Two), the remaining chapters of this thesis are focused on the early cost-

effectiveness analysis of adalimumab ADAb and drug level testing to stratify treatment. 

Chapter Five begins to develop the economic evaluation by conceptualising and producing 

the structure of the de novo decision analytic model. Chapter Six subsequently reports the 

methods and final results of the economic evaluation. 
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Chapter 5 

Early Model-based Economic 

Evaluation of Stratified 

Medicine:  

Decision Problem,  

Model Conceptualisation,  

and Structure  
 

Chapter Five describes the development of the early model-based economic evaluation of 

adalimumab ADAb and drug level ELISA testing to stratify treatment for patients with RA 

in England. This chapter is presented as a series of six sequential studies that developed the 

decision problem of the economic evaluation and the final structure of the de novo decision 

analytic model. A diagram to illustrate the structure of the chapter is provided in Figure 

5.1.  

5.1. Introduction 

The primary purpose of any economic evaluation is to inform a health care resource 

allocation decision by providing sufficient evidence of the incremental (costs and health) 

outcomes derived from a particular health technology (Drummond et al., 2015). Two 

preliminary stages of any model-based economic evaluation, that must be addressed before 

estimating the relative cost effectiveness of a health technology, are to (i) define the 

decision problem, and (ii) to conceptualise the decision analytic model (Roberts et al., 
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2012). A decision problem provides a clear statement of the resource allocation decision 

under consideration (Roberts et al., 2012) and, consequently, facilitates an economic 

evaluation to be designed in order to generate relevant evidence for the decision-making 

context (Chilcott et al., 2010). A conceptual model is an abstract representation of a 

phenomenon of interest (such as the use of a new test to stratify treatment in a care 

pathway), often illustrated diagrammatically, that can assist in determining the final 

structure of a de novo decision analytic model (Tappenden, 2014). Chapter Five focussed 

on these two preliminary elements of the early economic evaluation of adalimumab ADAb 

and drug level testing by ELISA to stratify treatment for RA (see Section 1.3.5 for a 

description of the case study).  

Decision problems, in general, are characterised by an explicit objective that details: the 

policy context of the economic evaluation, the target patient population, the perspective of 

the analysis, the time horizon, the relevant costs and health outcomes, and the intervention 

health technologies under consideration (Roberts et al., 2012). A specific challenge with 

the early economic evaluation of new a test to stratify a treatment decision, however, is 

that there may be multiple ways to potentially use that test in practice (Buisman et al., 

2016; Smith et al., 2016). For example, commercial ELISA tests were available to measure 

adalimumab ADAb and drug levels (see Table 1.8), but the specific ways in which these 

tests could be used to inform a treatment decision was uncertain. Therefore, the first half of 

Chapter Five addressed the decision problem of the early economic evaluation by 

clarifying the role of ADAb and drug level testing to stratify treatment.  

The second half of Chapter Five addressed the conceptualisation and development of the 

de novo decision analytic model. A transparent conceptualisation procedure can enhance 

the credibility of a decision analytic model by making explicit, and providing justification 

for, its key simplifications and assumptions (Robinson, 2008). For example, a conceptual 

model may aid the identification of key input parameters to include in a final model and 

the relationships between those parameters (Chilcott et al., 2010; Tappenden, 2014). A 

distinction was made between conceptual models that were: (i) problem-oriented, and (ii) 

design-oriented (Tappenden, 2014).   

A problem-oriented conceptual model described the system in which the decision problem 

existed (Tappenden, 2014). There were two types of problem-oriented conceptual model: 

(i) a disease logic model described the true underlying disease status of a patient over time, 

in terms of the clinical events that may have occurred and disease states that may have 
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been experienced; (ii) a service pathway model described the sequence of health care 

interventions along a care pathway that a patient may have received (Tappenden, 2014). In 

the context of the early economic evaluation of adalimumab ADAb and drug level testing, 

problem-oriented conceptual models may have been beneficial because they could be used 

to rationalise the potential treatment decisions following a test result, and the potential 

health consequences of making a treatment decision according to a correct or incorrect test 

result.  

A design-oriented conceptual model combined the two problem-oriented conceptual 

models to identify a feasible structure for the final decision analytic model (Tappenden, 

2014). A design-oriented conceptual model made the structural modelling decisions 

explicit and provided early identification of the potential evidence requirements for the 

economic evaluation (Tappenden, 2014). Problem-orientated and design-orientated 

conceptual models were recommended to be used in sequence, to move from the care 

pathway observed in clinical practice to the final structure of the decision analytic model 

(Tappenden, 2014).   

5.2. Aim and Objectives 

The aim of Chapter Five was to report the design of the economic evaluation of 

adalimumab ADAb and drug level ELISA testing to stratify treatment for patients with RA 

in England. There were six sequential objectives to meet this aim: 

Objective 1: Identify how ADAb and drug level testing may be used to stratify treatment 

                     for patients with RA that received a TNFi therapy in routine practice; 

Objective 2: Identify the subset of relevant comparator testing strategies to include in the 

                     decision problem of the economic evaluation; 

Objective 3: Define the decision problem of the economic evaluation; 

Objective 4: Conceptualise the potential impact of adalimumab ADAb and drug level 

                      testing to stratify treatment decisions on a patient’s subsequent (i) disease 

                      status, and (ii) care pathways; 
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Objective 5: Select the type of decision analytic model to be used for the economic 

                      evaluation; 

Objective 6: Determine the structure of the de novo decision analytic model to address the 

                     decision problem.  

Each chapter objective became the aim of a specific sub-study reported within Chapter 

Five. Figure 5.1 presents a flow diagram, for the purpose of orientation, that provides a 

visual overview of the chapter’s structure, the topic addressed by each sub-study, and the 

method that was used for each sub-study.  

Figure 5.1. Flow diagram to illustrate the structure of Chapter Five.  
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5.3. Chapter Objective 1: Identifying Prescribing Algorithms 

for TNFi ADAb and Drug Level Testing in Rheumatoid 

Arthritis 

This study addressed the first challenge of conducting an economic evaluation of ADAb 

and drug level testing, to stratify treatment for patients with RA, by investigating how 

testing may be performed within routine practice. The results of this study were 

subsequently used to inform the comparator strategies within the final decision problem.  

5.3.1. Introduction 

An economic evaluation of any stratified medicine requires an understanding of how a 

testing strategy can be used in clinical practice to inform a subsequent treatment decision 

(National Institute for Health and Care Excellence, 2011a; Annemans et al., 2013; 

Shabaruddin et al., 2015). The use of adalimumab ADAb and drug level testing necessarily 

required a change to the existing care pathway for patients with RA because testing was 

not currently performed in routine practice. A challenge reported in the literature for the 

early economic evaluation of any new testing strategy, such as the ELISA-based ADAb 

and drug level tests (see Section 1.3.5), was that there may have been numerous ways in 

which testing could potentially be used within an existing care pathway (Buisman et al., 

2016). One potential solution to this challenge was to review the clinical literature to help 

identify how such new health technologies may be incorporated into routine practice 

(Tappenden, 2014; Buisman et al., 2016).  

Treatment algorithms, of which prescribing algorithms are a subset, comprise “if…then” 

statements that describe the appropriate actions to take according to relevant factors at the 

time of a clinical decision (Schoenbaum et al., 1990; Woolf et al., 1999). Independent 

treatment algorithms for a new health technology may be published as its supporting 

clinical evidence base begins to develop over time (Tak, 2012). Prescribing algorithms 

may help to understand how a biomarker test could be used to stratify a subsequent 

prescribing decision which, in the absence of end-to-end evidence, was essential 

information in order to conduct a model-based economic evaluation of a new stratified 

medicine (National Institute for Health and Care Excellence, 2011a). 
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A number of independent prescribing algorithms have been published that state how and 

when to use TNFi ADAb and drug level testing explicitly, such as that of Vincent et al. 

(2013), which were, in theory, applicable to all diseases that were treated with TNFi 

therapies (hereafter termed “generic prescribing algorithms”). Some of the 

recommendations within these generic prescribing algorithms, however, may not have 

been applicable to patients with RA (den Broeder et al., 2013). For example, some generic 

prescribing algorithms may have recommended TNFi dose-escalation strategies (Vincent 

et al., 2013), but the rheumatologists in Chapter Three explained that it would not be 

appropriate to escalate the dose of bDMARD therapies for their patients with RA in 

England (see Section 4.3.1).  

Disease-specific prescribing algorithms (hereafter termed “RA-specific prescribing 

algorithms”) may have been more likely to recommend prescribing decisions that had 

clinical relevance to patients with RA. For example, an RA-specific prescribing algorithm 

may be based on a care pathway, or assume treatment availability, that was more 

representative of routine practice for RA. There had been no previous systematic 

investigation of the RA-specific prescribing algorithms that incorporated TNFi ADAb and 

drug level testing in routine practice. 

5.3.2. Aim and Objectives 

The aim of this study was to identify how ADAb and drug level testing may be used to 

stratify treatment for patients with RA that received a TNFi therapy in routine practice. 

The study had two objectives: 

Objective 1: Identify all RA-specific prescribing algorithms that included ADAb and 

                      drug level testing for any TNFi therapy; 

Objective 2: Synthesise and appraise the recommendations within the RA-specific 

                      prescribing algorithms regarding the use of TNFi ADAb and drug level 

                      testing.  

5.3.3. Method 

A systematic review of published RA-specific prescribing algorithms was performed 

according to the PRISMA recommendations (Liberati et al., 2009). The completed PRISMA 
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checklist for this study is reported in Appendix 22. The systematic review included all 

algorithms that reported an explicit TNFi ADAb and/or drug level test-and-treat strategy 

within an explicit algorithm for an RA population. The study inclusion criteria is reported 

in Table 5.1. Studies were excluded if they only provided recommendations for testing 

within the text of the manuscript.  

Table 5.1. Systematic review inclusion criteria: TNFi ADAb and drug level prescribing 

algorithms for RA.   

Study Feature Inclusion Criteria 

Population. Adults with rheumatoid arthritis. 

Intervention. Any assay to measure TNFi ADAb and/or drug levels. 

Outcome. Prescribing algorithm for using the intervention in the defined 

population. 

Study Design. Any design in a peer-reviewed publication (exclude conference 

abstracts). 

Language. English. 

 

Study Selection 

This systematic review built upon a published study conducted as part of the NICE DAP 

for the appraisal of TNFi ADAb and drug level testing in patients with Crohn’s disease in 

England (National Institute for Health and Care Excellence, 2016c). The search strategy 

from an independent systematic review conducted during the appraisal process was 

amended to identify RA-specific prescribing algorithms by replacing disease-specific 

terms for Crohn’s disease with terms relating to RA (reported in Appendix 23).  

Medline and Embase were then searched electronically using this search strategy for 

studies published from the date of inception until August 2016. Medline and Embase were 

deemed to be appropriate because they were the databases used most frequently within 

previous systematic reviews of health care interventions (Centre for Reviews and 

Dissemination, 2009).  

All titles and abstracts identified by the search strategy were screened by SG against the 

inclusion criteria. Six researchers at the Manchester Centre for Health Economics, The 

University of Manchester were allocated an equal proportion of abstracts to second-screen. 

Studies were not excluded if there were disagreements at the screening stage. All studies 

included after the initial screening were read in full by SG to identify whether an explicit 

prescribing algorithm, that included TNFi ADAb and/or drug level testing, was reported. 
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The reference lists of all included studies were hand-searched to identify additional studies 

that met the inclusion criteria. 

Data Extraction and Analysis 

The following information was extracted from all prescribing algorithms that met the 

inclusion criteria: (i) the time and frequency of testing; (ii) whether recommendations were 

reported for a specific TNFi; (iii) the treatment recommendations for each test result; (iv) 

the country of the study; and (v) the evidence used to inform the algorithm. Study features 

were summarised in tabular form and treatment recommendations were appraised by 

narrative synthesis according to the population eligible for testing.   

5.3.4. Results 

The search strategy identified 4,006 database records and 119 manuscripts were read in 

full, after title and abstract screening, against the inclusion criteria (flow diagram reported 

in Figure 5.2). Nine publications reported an explicit RA-specific prescribing algorithm 

with TNFi ADAb and/or drug level testing and were included in the systematic review. 

The features of each prescribing algorithm are reported in Table 5.2.   

Figure 5.2. Systematic review flow diagram of included studies: TNFi ADAb and drug 

level prescribing algorithms for RA.   

 



  

 
 

                   Table 5.2. Features of nine RA-specific prescribing algorithms with TNFi ADAb and drug level testing. 
 Population Eligible for 

Testing 

     

Author  

(Year) 

Country 

After loss 

of response 

to TNFi 

While 

responding 

to TNFi Timing of Testing 

Frequency of Testing  

(while responding) Tests in Algorithm 

Source of Evidence for 

Algorithm Specific TNFi 

Bendtzen. 

(2011). 

Country: Not reported. 
 

Yes. Yes. (i) Early (2-3 months); (ii) Late (6 

months or more). 

Not reported. (i) Drug level in early testing; (ii) 

ADAb and drug level in late testing.  

 
 

Non-systematic review. Not reported. 

Chen et al. 

(2015). 
Country: Taiwan. 

 

Yes. Yes. 3-6 months after starting TNFi. Not reported. (i) Drug level in responders; (ii) 

ADAb and drug level in non-
responders.  

 

Non-systematic review 

& accompanying cohort 
study. 

Not reported. 

Daïen et al. 
(2012). 

Country: France. 

 

Yes. No. 3 months after starting TNFi. Not applicable.  (i) Drug level.  Non-systematic review 
& accompanying cohort 

study. 

Etanercept. 

Garcês et al. 

(2014). 

Country: Portugal. 
 

Yes. Yes. 3 months after starting TNFi. Every 3 months. (i) Drug level only (if detectable); (ii) 

ADAb if drug levels are not detected. 

 

Non-systematic review 

& accompanying cohort 

study. 

Not reported. 

Krieckaert et al. 
(2015). 

Country: Netherlands. 

 

Yes. Yes. 7 months after starting TNFi. Not applicable.  (i) Drug level.  Non-systematic review 
& economic evaluation. 

Adalimumab. 

Mok et al. 

(2016). 

Country: Asian 
countries. 

 

Yes. Yes. 6 months after starting TNFi. Every 6 months or 

when efficacy reduces. 

(i) ADAb and drug level.  Authors’ opinions. Monoclonal 

TNFi. 

Mulleman et al.  
(2009). 

Country: France. 

 

No. Yes. Before next infusion. Before next infusion. (i) Drug level.  Non-systematic review. Infliximab. 

Mulleman et al.  

(2012). 

Country: Not reported.  

Yes. Yes. (i) Following adverse drug reaction; 

(ii) Not reported for responders or 

loss of response. 
 

Not reported. (i) Drug level in responders and 

patients that lost response; (ii) ADAb 

after adverse drug reaction.  
 

Non-systematic review. Not reported. 

Rosas et al.  

(2014). 

Country: Spain. 

No. Yes. 6 months after starting TNFi. Every 6 months. (i) Drug level; (ii) ADAb if drug level 

is low and disease activity is high. 

Non-systematic review 

& accompanying cross-

section study. 

Adalimumab. 

                  Note: TNFi = tumour necrosis factor-α inhibitor, ADAb = anti-drug antibody.   
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Four of the prescribing algorithms were designed for specific TNFi therapies (Mulleman et 

al., 2009; Daïen et al., 2012; Rosas et al., 2014; Krieckaert et al., 2015), and one algorithm 

was designed for patients that received any monoclonal TNFi (Mok et al., 2016). The 

majority of the prescribing algorithms (n=6) included both ADAb and drug level testing. 

Three of the algorithms for specific TNFi therapies considered only drug level testing. 

Testing within six months of commencing treatment was recommended by over half of the 

prescribing algorithms (n=5).   

The evidence to support eight of the algorithms was based on a non-systematic review of 

the literature, five of which were supplemented by an accompanying study (Daïen et al., 

2012; Garcês et al., 2014; Rosas et al., 2014; Chen et al., 2015b; Krieckaert et al., 2015). 

Garcês et al. (2014) evaluated the effectiveness of their algorithm, and Krieckaert et al. 

(2015) evaluated the relative cost-effectiveness of testing. The source of evidence for one 

algorithm was reported to be based on the authors’ opinions (Mok et al., 2016). 

The prescribing algorithms were categorised by two groups according to the population 

eligible for testing: (i) patients that had responded to TNFi therapy (n=8), and (ii) patients 

that had already lost response to TNFi therapy (n=6). Most algorithms (n=6) provided 

recommendations for testing in both eligible populations. Table 5.3 reports the 

recommended prescribing decisions for each test result by eligible population, as reported 

explicitly by each published algorithm.  

5.3.4.1. Testing RA Patients that had Responded to TNFi Therapy 

Testing patients that had respond to TNFi therapy could be used to monitor treatment and 

inform a subsequent prescribing decision. The strategies recommended by the algorithms 

when patients respond to their TNFi are reported in Table 5.3i. For this population, five 

algorithms tested drug levels only (Mulleman et al., 2009; Mulleman et al., 2012; Rosas et 

al., 2014; Chen et al., 2015b; Krieckaert et al., 2015) and three algorithms tested both 

ADAb and drug levels (Bendtzen, 2011; Garcês et al., 2014; Mok et al., 2016).  
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           Table 5.3. Strategies recommended by TNFi ADAb and drug level prescribing algorithms for patients who had (i) responded and (ii) lost response. 
 (i) Testing when Patients had Responded to a TNFi.  (ii) Testing when Patients had Lost Response to a TNFi. 

Test Result Author Reported Recommendation  Author Reported Recommendation 

 Drug Level Testing Only  Drug Level Testing Only 

High Drug Levels Bendtzen. (2011). 

Chen et al. (2015). 

Garcês et al. (2014).  

Krieckaert et al. (2015). 

Mulleman et al. (2012). 

Rosas et al. (2014). 

Reduce intensity. 

Lower dose/frequency.  

Eventually decrease dose.  

Prolong interval.  

Reduce dose.  

Increase Interval between 

doses.  

 Bendtzen. (2011); 

Daïen et al. (2012); 

Mulleman et al. (2012).  

 

Chen et al. (2015).  

Krieckaert et al. (2015). 

Mulleman et al. (2009).  

Switch to non-TNFi bDMARD. 

 

 

 

Switch to bDMARD with a different mechanism of action.   

Switch to rituximab.  

Switch to a different bDMARD.  

 

Normal Drug Levels.  Mulleman et al. (2009); 

Mulleman et al. (2012);  

Krieckaert et al. (2015). 

 

Rosas et al. (2014).  

Continue treatment.  

 

 

 

Continue treatment and testing.  

 

 Mulleman et al. (2009); 

Mulleman et al. (2012).  

Consider dose increase.  

Low Drug Levels.  Krieckaert et al. (2015). 

 

Mulleman et al. (2009); 

Mulleman et al. (2012).  

Stop treatment.  

 

Continue treatment.  

 Daïen et al. (2012). 

Krieckaert et al. (2015).  

 

Mulleman et al. (2009); 

Mullemen et al. (2012).  

 

Increase dose or switch to a different TNFi or class of bDMARD. 

Switch to etanercept.  

 

Increase dose.   

 Drug Level and ADAb Testing  Drug Level and ADAb Testing 

Normal Drug Levels; 

Positive ADAb.  

 

Mok et al. (2016).  Continue treatment & repeat 

test. 

 Mok et al. (2016).  Switch to non-TNFi bDMARD.  

Low Drug Levels; 

Positive ADAb.  

Bendtzen. (2011).  

Garcês et al. (2014). 

Pause treatment.  

Consider stopping treatment.  

 Garcês et al. (2014); 

Chen et al. (2015).  

 

Mok et al. (2016). 

Rosas et al. (2014).  

Switch to bDMARD with less immunogenicity.  

 

 

Switch to a different TNFi or non-TNFi bDMARD.  

Switch to etanercept.  

 

Low Drug Levels; 

Negative ADAb.  

Bendtzen. (2011).  

Garcês et al. (2014). 

Continue treatment.  

Consider stopping treatment.  

 Bendtzen. (2011).  

Chen et al. (2015).  

Garcês et al. (2014). 

Mok et al. (2016).  

Rosas et al. (2014).  

Increase treatment intensity.  

Consider dose adjustment.  

Repeat immunogenicity test.  

Switch to different TNFi or increase dose.  

Switch therapeutic target.  

           Note: Recommendations are reported as-written within each manuscript. Switch refers to a change of treatment; bDMARD = biologic disease-modifying antirheumatic drug;  

           TNFi = tumour necrosis factor-α inhibitor.
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There was a consensus between the algorithms to reduce the intensity of treatment when 

high TNFi drug levels were detected. However, the algorithms did not specify precisely 

when the intensity of treatment should be reduced following testing. Furthermore, the 

specific phrases to describe reduced intensity were not standardised between the 

algorithms; for example, Chen et al. (2015b) referred to lowering the dose whereas Rosas 

et al. (2014) referred to increasing the interval between doses.  

The algorithms were also inconsistent with respect to prescribing decisions when low drug 

levels were detected; the addition of ADAb testing did not resolve these inconsistencies. 

Two algorithms recommended that treatment should be stopped when low drug levels were 

detected (Garcês et al., 2014; Krieckaert et al., 2015) whereas three algorithms 

recommended that treatment should be continued (Mulleman et al., 2009; Bendtzen, 2011; 

Mulleman et al., 2012). None of the identified algorithms recommended that testing should 

be used to pre-emptively change the treatment of patients with detectable ADAb (who 

were likely to experience secondary non-response).  

5.3.4.2. Testing RA Patients that had Lost Response to TNFi Therapy 

Testing patients that had lost response to a TNFi therapy may be used to inform a 

rheumatologist’s next prescribing decision. Table 5.3ii reports the strategies recommended 

by the identified prescribing algorithms when patients had lost response to their TNFi.  

The algorithms were consistent in recommending that treatment should be changed when 

high drug levels were detected after the failure of a TNFi, but imprecise with respect to 

what this treatment should be. For example, three algorithms recommended that a non-

TNFi bDMARD should be prescribed (Bendtzen, 2011; Daïen et al., 2012; Mulleman et 

al., 2012), which could have referred to either rituximab, abatacept, or tocilizumab; 

Krieckaert et al. (2015) was the only algorithm that had recommended a specific non-TNFi 

treatment (rituximab) in this scenario.  

The recommendations for patients that had low drug levels after losing response to their 

TNFi were conflicting. Daïen et al. (2012) recommended increasing the TNFi dose or 

changing treatment to any different bDMARD (TNFi or otherwise), Mulleman et al. (2009) 

recommended increasing the TNFi dose, and Krieckaert et al. (2015) recommended 

changing treatment to etanercept (a second TNFi). 
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Recommendations were also inconsistent after TNFi failure with detectable ADAb. In this 

scenario, Rosas et al. (2014) specifically recommended prescribing etanercept. The other 

algorithms recommended prescribing (i) a bDMARD with less immunogenicity which, as 

written, may or may not have been a second TNFi (Garcês et al., 2014; Chen et al., 2015b), 

(ii) a different non-specific TNFi (Bendtzen, 2011), or (iii) any other bDMARD (Mok et 

al., 2016).  

There were also inconsistent recommendations following TNFi failure with low drug 

levels and undetectable ADAb. Repeat testing was recommended by one algorithm (Garcês 

et al., 2014) and three algorithms provided recommendations for dose-adjustment 

(Bendtzen, 2011; Chen et al., 2015b; Mok et al., 2016). Of the two algorithms that 

recommended changing treatment with low drug-levels and undetectable ADAb, one 

recommended using a different TNFi (Mok et al., 2016) whereas another recommended 

using a bDMARD with a different therapeutic target (Rosas et al., 2014).   

5.3.5. Discussion  

The aim of this study was to identify how ADAb and drug level testing may be used to 

stratify treatment for patients with RA that received a TNFi therapy in routine practice. A 

systematic review identified nine distinct RA-specific prescribing algorithms that provided 

recommendations for the timing of TNFi ADAb and drug level testing and the appropriate 

prescribing decision to take.  

The algorithms lacked clarity with regards to certain recommendations which, at face 

value, may impede their ability inform prescribing decisions in routine practice 

consistently. For example, (i) the appropriate timing and frequency of testing was 

inconsistent between algorithms and (ii) the algorithms that recommended strategies to 

reduce treatment intensity failed to report when exactly such actions should occur. The 

appropriate timing of testing and dose reduction strategies, however, could be investigated 

further in a model-based economic evaluation, by estimating their impact on the relative 

cost-effectiveness of treatment stratification (Shabaruddin et al., 2015).  

Another potential deficiency of the algorithms was that all omitted recommendations for 

when a prescribing decision may cause an adverse event. For example, a proportion of 

patients who undergo a reduction in TNFi intensity may subsequently experience a flare in 

disease activity (Fautrel et al., 2015). Disease flares are adverse events that may result in 
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an increased cost of care and a reduction in health benefit (National Institute for Health and 

Care Excellence, 2009; Bykerk et al., 2016). However no prescribing algorithm provided 

recommendations for managing patients that flared following a decision to reduce or stop 

TNFi therapy.  

Two algorithms explicitly recommended prescribing a second TNFi if ADAb were 

detected after failure of an earlier TNFi (Rosas et al., 2014; Mok et al., 2016). Clinical 

justification for this recommendation was based on previous studies that concluded 

patients may respond better to a second TNFi if they had developed ADAb against an 

earlier TNFi, compared with those patients who were ADAb-negative (Jamnitski et al., 

2011). However, NICE have determined that sequential TNFi therapy for patients with RA 

was unlikely to be a relatively cost-effective use of health care resources in England 

(National Institute for Health and Care Excellence, 2010). A comparison with more 

relevance to English clinical practice was whether patients with ADAb against an earlier 

TNFi obtained a greater response to a second TNFi compared with rituximab (the next 

appropriate treatment in the care pathway for RA in England (National Institute for Health 

and Care Excellence, 2016a)); otherwise, sequential TNFi therapy in patients with ADAb 

against an earlier TNFi was also unlikely to be relatively cost-effective, ceteris paribus.  

Previous studies have demonstrated that patients with RA who developed ADAb against a 

TNFi were more likely to experience secondary non-response (Garcês et al., 2013). ADAb 

status could therefore be used as a predictive biomarker of treatment response and be 

potentially valuable to implement a stratified approach to treatment. Patients at-risk of 

TNFi failure may be more likely to respond to a bDMARD with a different mechanism of 

action (Tak, 2012) and may therefore benefit from an earlier change in treatment. None of 

the algorithms, however, recommended to change the treatment of patients that were 

responding, irrespective of ADAb status.  

Limitations 

One potential limitation of this systematic review was that the inclusion criteria did not 

consider the prescribing recommendations embedded within the text of individual studies. 

However, it was assumed that such recommendations were supplementary and unlikely to 

be derived from a primary study objective. Therefore, focussing on the recommendations 

within published prescribing algorithms was unlikely to bias the findings of this review.   
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A general limitation of the algorithms in this review and, more broadly, of reviewing 

prescribing algorithms to identify the role of testing within a care pathway was that the 

clinical evidence to support the appropriate prescribing recommendations was limited, 

consistent with the conceptual framework for an early-stage economic evaluation of a new 

health technology (Figure 1.1). Given this limited clinical evidence base, prescribing 

algorithms published at a later date may have been informed by the recommendations of 

algorithms published earlier which, in turn, may be problematic if the recommendations 

that persisted over time were founded on relatively poor clinical evidence. Moreover, the 

authors that publish recommendations for a new health technology early within its product 

lifecycle may, themselves, have a vested interest in advancing that health technology into 

routine clinical practice. Therefore, an appropriate caveat for this study, and for subsequent 

reviews of prescribing algorithms, was that the set of strategies identified may not be 

sufficient to inform how a health technology could be used within an existing care 

pathway.  

Implications for Future Research 

The results of this systematic review had four implications for further research that were 

addressed within this thesis. These implications are now summarised: 

(i) The decision problem of an economic evaluation must include all relevant 

comparator strategies (Drummond et al., 2015). This systematic review 

highlighted one of the challenges associated with estimating the relative cost-

effectiveness of a stratified medicine early in the product lifecycle of a new 

biomarker test; without an established evidence base a priori, there may 

potentially be many ways to stratify treatment according to the result of a new 

test (Buisman et al., 2016). The feasibility of including every possible 

comparator strategy in an economic evaluation may reduce as the number of 

ways to stratify a treatment decision increases (Owens et al., 2017). Therefore, an 

implication for future research, addressed by this thesis, was to develop an early 

economic evaluation conceptualisation technique for stratified medicine that 

identified a subset of comparator strategies most relevant for inclusion in a 

decision problem (see Section 5.4); 

 

(ii) A problem-oriented conceptual model could be developed to adapt the 

prescribing decisions recommended by the algorithms to the clinical context for 
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RA in England (see Section 5.6) (Tappenden, 2014); 

 

(iii) An early model-based economic evaluation of TNFi ADAb and drug level testing 

may be able to estimate the appropriate timing of events (such as (i) testing or (ii) 

dose-reduction strategies) that were omitted from the prescribing algorithms in 

the systematic review (see Chapter Six) (Shabaruddin et al., 2015); 

 

(iv) This systematic review provided details of how treatment decisions could be 

made according to the results of a biomarker test (for TNFi ADAb and drug 

levels). The study constitutes a single element in the chain of evidence to 

estimate the relative cost-effectiveness of a stratified medicine in the absence of 

end-to-end evidence (see Section 1.2.4; Figure 1.2). It was also necessary to 

investigate the accuracy of testing and the impact of a stratified treatment 

decision on (health and resource) outcomes (see Chapter Six).  

Summary of Key Findings 

The early model-based economic evaluation of ADAb and drug level testing, to stratify 

treatment for patients with RA, required an understanding of how the biomarkers could be 

tested in routine practice to inform a subsequent prescribing decision. This systematic 

review identified nine RA-specific prescribing algorithms that included ADAb and drug 

level testing for patients that were treated with any TNFi therapy. The algorithms 

recommended inconsistent prescribing decisions to stratify treatment, which suggested 

that, as with most new medical tests (Buisman et al., 2016; Smith et al., 2016), there was 

uncertainty over how best to incorporate the testing strategies into existing care pathways 

for RA. Three general ways in which testing could be used were to: (i) test patients after 

they had lost response to a TNFi to inform their next choice of treatment; (ii) test patients 

during response to a TNFi to pre-emptively change their treatment (to avoid loss of 

response); and (iii) test patients during remission whilst receiving a TNFi to inform dose-

reduction strategies.  

An immediate challenge for this thesis was to identify the subset of relevant comparator 

strategies to be included in the decision problem of the economic evaluation. Building on 

the results of this systematic review, the following study presents a novel early economic 

evaluation conceptualisation technique that was used to select the relevant comparator 

strategies for the economic evaluation of TNFi ADAb and drug level testing.  
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5.4. Chapter Objective 2: Early Identification of Relevant 

Comparator Strategies to Stratify Treatment when Multiple 

Candidate Strategies Exist 

This study presents a novel algebraic technique to facilitate the early identification of 

potentially relevant comparator strategies during the conceptualisation phase of a de novo 

model-based economic evaluation of a stratified medicine. The technique was 

subsequently applied to identify the candidate ADAb and drug level testing strategies that 

were relevant comparators for the decision problem in this thesis.  

5.4.1. Introduction 

An economic evaluation must include all relevant comparator strategies to ensure that 

incremental outcomes are estimated appropriately, by comparing each intervention strategy 

to its next-best alternative (Neyt et al., 2011; O'Mahony et al., 2015a; O'Mahony et al., 

2015c). A relevant comparator can be defined, in the broadest of terms, as a strategy that 

has the possibility of being worthwhile (Drummond et al., 2015). New health technologies 

to stratify treatment (such as a test), however, may be characterised by structural 

uncertainty with respect to their positioning and purpose within an existing care pathway, 

(Shabaruddin et al., 2015; Buisman et al., 2016) (see Section 1.2.5). This structural 

uncertainty may be greatest during an early-stage economic evaluation when limited 

clinical evidence is available to inform the role of testing in routine clinical practice (see 

Figure 1.1, Stage 1). For example, the rheumatologists interviewed in Chapter Three 

expressed uncertainty regarding how TNFi ADAb and drug level testing could be used to 

stratify treatment decisions in current practice for RA. Moreover, the systematic review of 

RA-specific prescribing algorithms in Section 5.3 concluded that there were three general 

ways to stratify treatment by testing TNFi ADAb and drug levels (summarised in Table 

5.4). By contrast, a later-stage economic evaluation may be supported by a mature 

evidence base, and legitimate care pathways may be observable from individual patient-

level data if the health technology had diffused in routine clinical practice (see Figure 1.1, 

Stage 4).  

Given the constraints that decision analysts may face (such as time, physical equipment, or 

technical competency), it may not be practically feasible to include every possible 

comparator strategy in an economic evaluation (Claxton et al., 2005; Owens et al., 2017). 
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It may therefore be necessary to make a decision, during the conceptualisation phase of an 

economic evaluation, to identify a subset of potentially relevant comparator strategies to 

include in a decision problem (Buisman et al., 2016). One technique that may help to 

identify a subset of potentially relevant comparator strategies was to conceptualise each 

general testing strategy, a priori, in terms of the incremental net benefit framework.  

The incremental net benefit framework can be used in an economic evaluation to inform 

whether a strategy is cost-effective compared with a relevant alternative (Stinnett et al., 

1998) (described in Table 1.3; Section 1.1.3). The incremental net benefit of a stratified 

medicine, in general, comprises the impact of a test on the incremental costs and/or health 

outcomes between comparator strategies (Phelps et al., 1988). Overall incremental 

outcomes arise from differences in the elements of resource use and health experienced 

between alternatives (Weinstein et al., 1977); in the specific case of testing strategies to 

stratify treatment, differences in incremental outcomes typically occur over time (after 

testing) along a care pathway (Mushlin, 1999). For example, one element that may have 

affected the overall incremental health outcomes of testing adalimumab drug levels to 

inform dose-reduction strategies was the downstream proportion of patients that 

subsequently flared in disease activity.  

It may be possible, based on existing evidence, to describe a hypothetical profile of costs 

and health outcomes over time associated with each potential comparator test-and-

treatment strategy. By formalising these profiles using algebraic notation, the incremental 

net benefit framework, and comparative statics analysis, it may be possible to identify (i) 

potentially relevant comparator strategies to include in the decision problem of an 

economic evaluation, and (ii) the anticipated effect of changing the value of an input 

parameter on the incremental net benefit of each strategy, before implementing a final 

quantitative decision analytic model.  

5.4.2. Aim and Objectives 

The aim of this study was to identify the subset of relevant comparator testing strategies to 

include in the decision problem of the economic evaluation presented in this thesis. The 

study had three objectives: 

Objective 1: Describe the candidate strategies to stratify treatment decisions using 

                     ADAb and drug level testing for patients with RA; 



 

160 
 

Objective 2: Determine whether each candidate strategy was a plausible relevant 

                      comparator; 

Objective 3: Investigate how the relative cost-effectiveness of each plausible relevant 

                      comparator may be affected by exogenous changes in the values of input 

                      parameters.  

5.4.3. Method 

The method that underpinned this novel conceptualisation technique may be regarded as an 

approach to describe the introduction of a new health technology within an existing care 

pathway during an early economic evaluation (for example, Stage 1 in Figure 1.1). The 

technique utilised algebraic notation to conduct a theoretical incremental cost-effectiveness 

analysis of alternative strategies by using the incremental net benefit framework. 

Justifiable assumptions were made regarding each strategy’s anticipated profile of cost and 

QALYs over time, and the incremental net benefit framework provided a transparent 

rationale for excluding specific strategies from the final decision problem. The following 

explains the method in five steps by applying the technique to the adalimumab ADAb and 

drug level testing case study.  

Step 1: Study Perspective 

The perspective of an economic evaluation defines the scope of relevant costs that should 

be included within the analysis (Drummond et al., 2015). The perspective assumed by the 

conceptualisation technique should be consistent with the perspective of the final decision 

problem. The decision problem for the economic evaluation in this thesis followed the 

NICE Reference Case (Section 1.1.2); therefore, the appropriate perspective for this study 

was the NHS and personal social services budget (National Institute for Health and Care 

Excellence, 2013a).  

Step 2: Identification of Candidate Strategies 

Candidate strategies for inclusion in a decision problem should be justified according to 

existing a priori evidence. Testing strategies for stratified medicine were described in 

general terms (for example, ‘test patients that responded’); the specific features of each 

candidate strategy (for example, the frequency of testing) could be determined at a later 
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stage during a full model-based economic evaluation (Shabaruddin et al., 2015). This study 

used the systematic review of RA-specific prescribing algorithms in Section 5.3 as the 

source of evidence to identify candidate strategies for ADAb and drug level testing. 

Step 3: Characterisation of Candidate Strategies 

Existing clinical evidence was used to characterise the candidate strategies by their key 

elements. Key elements were features that were anticipated to affect the cost and/or 

QALYs derived from each strategy; for example, the cost of testing, the cost of treatments, 

and the proportion of patients with ADAb. Each element was defined using its own 

notation to facilitate algebraic manipulation. The ordinal relationships between key 

elements were specified, where necessary (for example, the cost of full-dose therapy was 

assumed to be greater than the cost of reduced-dose therapy).  

The anticipated cost and QALY profiles of each candidate strategy were illustrated on 

separate graphs that plot time (X-axis) against cost or QALYs (Y-axis) gained. Time was 

divided into four distinct periods as reference points for the sequence of clinical events that 

were assumed to occur over time. A comparator strategy (current practice) was plot on the 

same graph to illustrate the cost and QALY profiles that were assumed without treatment 

stratification.  

Step 4: Identification of Plausible Relevant Comparator Strategies 

The total cost (TCi) and total QALYs (TQi) associated with each candidate strategy (i), and 

with current practice (TCCP, TQCP), were estimated algebraically by calculating the area 

under the time profiles. The incremental cost and QALY of each candidate strategy (i), 

relative to current practice, was calculated using the formulas in Equation 5.1 and Equation 

5.2, respectively, by subtracting the area for current practice from the area for the 

candidate strategy.  

Incremental Costi = 𝑇𝐶𝑖 − 𝑇𝐶𝐶𝑃         (Equation 5.1) 

Incremental QALY𝑖 = 𝑇𝑄𝑖 − 𝑇𝑄𝐶𝑃         (Equation 5.2) 
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The incremental net monetary benefit (INMB) of each strategy was calculated 

algebraically using the formula in Equation 5.3, based on the decision rules reported in 

Table 1.3 

INMBi = (𝜆×Incremental QALY
i
) − Incremental Costi                 (Equation 5.3) 

where (λ) was the notation for the (non-zero) cost-effectiveness threshold. A non-negative 

INMB indicated that the strategy was potentially cost-effective; such strategies were 

considered to be plausible relevant comparators for the final decision problem.  

Step 5: Comparative Statics Analysis 

Comparative statics analysis is a technique used in mathematical economics to formalise 

how the value of an objective function may change (increase or decrease) with respect to 

exogenous changes in its constituent elements (Silberberg, 1974; Currier, 2000; Gravelle et 

al., 2004). The algebraic INMB for each plausible relevant comparator was differentiated 

with respect to each key element of the function. The sign of each first-derivative indicated 

the anticipated effect that an exogenous change in a key element would have on the 

relative cost-effectiveness of a plausible relevant comparator, ceteris paribus. For example, 

a negative first-derivative indicated that an increase in the value of the key element (for 

example, the cost of testing) would lead to a reduction in the INMB. This comparative 

statics analysis was conceptually equivalent to performing a one-way sensitivity analysis in 

a full model-based cost-effectiveness analysis (Briggs et al., 1999). 

5.4.4. Results 

The systematic review in Section 5.3 concluded that ADAb and drug level testing could be 

used to stratify treatment for patients with RA in three general ways. These candidate 

strategies are described in Table 5.4 alongside their key elements that were anticipated to 

affect costs and QALYs. The algebraic notation that was used to define the key elements of 

each strategy is reported in Table 5.5. 

The cost and QALY profiles that characterised Strategies A, B, and C are illustrated in 

Figures 5.3, 5.4, and 5.5, respectively. The solid lines represented the anticipated outcomes 

derived from current practice and the dashed lines represented the anticipated outcomes 

derived from the candidate comparator strategy. Lines were drawn in parallel, for the 

purpose of exposition, if they followed the same cost or QALY profile over time. The 
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incremental outcomes for each candidate strategy are described in the following three 

sections. A full derivation of the algebraic solutions is reported in Appendix 24. 

Table 5.4. Three candidate strategies for TNFi ADAb and drug level testing.  

Strategy Action Description Key Elements 

Strategy 

A. 

Test ADAb and 

drug levels after 

loss of response 

to TNFi.  

Test TNFi ADAb and drug 

levels in patients that had lost 

response to inform a 

subsequent bDMARD 

prescribing decision.  

 

• Cost of test; 

• Cost of treatments; 

• QALYs lost from 

treatment failure.  

Strategy 

B. 

Test ADAb and 

drug levels while 

responding to 

TNFi.  

Test TNFi ADAb and drug 

levels to monitor treatment in 

patients that were responding. 

Treatment may be changed for 

patients that developed ADAb 

against their TNFi to avoid the 

harm associated with earlier 

secondary non-response.  

 

• Cost of test; 

• Cost of treatments; 

• QALYs lost from 

treatment failure; 

• Proportion of ADAb-

positive patients.  

Strategy 

C.  

Test drug levels 

in remission.  

Test the drug levels of patients 

in remission to inform whether 

TNFi dose-reduction strategies 

were possible.   

• Cost of test; 

• Cost of treatments; 

• QALYs lost from 

disease flare; 

• Proportion of patients 

with high drug levels; 

• Proportion of patients 

that flare. 

 

Table 5.5. Algebraic notation for the key elements of each strategy.  

Notation Description 

𝜆 Cost-effectiveness threshold. 

𝑡𝑖, 𝑖 = {0, … , 3}† Four time periods, where 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3. 

𝑎 Unit cost of biologic therapy. 

𝑏 Unit cost of testing. 

𝑐 Unit cost of treatment for a patient that experienced secondary non-

response. 

𝑦 Reduction in unit cost of TNFi therapy following dose reduction. 

𝑃 Proportion of patients [0,1]† that developed ADAb. 

𝑑 Proportion of patients [0,1]† that had high TNFi drug-levels in 

remission. 

𝑞 Proportion of patients [0,1]† that flared after TNFi dose reduction. 

𝑄1 QALY gained for successful response to TNFi therapy. 

𝑄2 QALY gained for successful TNFi therapy in remission. 

𝑋1 QALY loss associated with secondary non-response/adverse events. 

𝑋2 QALY loss associated with a flare. 

Note: †=in set theory notation, [0,1] indicates that a variable, x, can take any value within the                 

interval (0 ≤ x ≤ 1); the notation {a,b} indicates that a variable, i, can take the value of an element specified 

within the set (either i=a or i=b). 



 

 

 

Figure 5.3. Conceptual cost and QALY profile for Strategy A. 

Note: λ=cost-effectiveness threshold; ti=time period; a=cost of biologic treatment; b=cost of test; c=treatment cost for secondary non-response; y=cost reduction following TNFi dose de-

escalation; P=proportion of ADAb-positive patients; D=proportion of patients with high TNFi drug levels in remission; Q1=QALY gain from response to TNFi; Q2=QALY gain from 

response to TNFi in remission; X1=QALY loss due to secondary non-response; X2=QALY loss due to flare. 
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Figure 5.4. Conceptual cost and QALY profile for Strategy B. 

Note: λ=cost-effectiveness threshold; ti=time period; a=cost of biologic treatment; b=cost of test; c=treatment cost for secondary non-response; y=cost reduction following TNFi dose de-

escalation; P=proportion of ADAb-positive patients; D=proportion of patients with high TNFi drug levels in remission; Q1=QALY gain from response to TNFi; Q2=QALY gain from 

response to TNFi in remission; X1=QALY loss due to secondary non-response; X2=QALY loss due to flare.
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Figure 5.5. Conceptual cost and QALY profile for Strategy C.   

 

Note: λ=cost-effectiveness threshold; ti=time period; a=cost of biologic treatment; b=cost of test; c=treatment cost for secondary non-response; y=cost reduction following TNFi dose de-

escalation; P=proportion of ADAb-positive patients; D=proportion of patients with high TNFi drug levels in remission; Q1=QALY gain from response to TNFi; Q2=QALY gain from 

response to TNFi in remission; X1=QALY loss due to secondary non-response; X2=QALY loss due to flare.
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5.4.4.1. Strategy A 

• Clinical scenario: Patients were assumed to have commenced a TNFi therapy at 

𝑡0. A proportion of those patients (𝑃) were assumed to have developed ADAb at a 

time between 𝑡1 and 𝑡0. The ADAb-positive patients lost response to treatment at 𝑡1 

which, in turn, was associated with a reduction in QALYs and an increased cost of 

care. 

• Current Practice: Patients that lost response at 𝑡1 had their treatment changed to a 

different bDMARD at 𝑡2. 

• Strategy A: Patients that lost response at 𝑡1 had their drug levels tested at 𝑡1 to 

inform the change of treatment at 𝑡2. 

Incremental Costs 

The top-half of Figure 5.3 is a graphical illustration of the incremental cost of Strategy A 

compared with current practice. All bDMARD therapies were assumed to cost (𝑎).  

• Current Practice: The cost of treatment was assumed to equal (𝑎) units and was 

escalated by (𝑐) units for the period of time that the patient had lost response (𝑡2 −

𝑡1). 

• Strategy A: The cost of treatment was assumed to equal (𝑎) units and was 

escalated by (𝑏 + 𝑐) units for the period of time that the patient had lost response 

(𝑡2 − 𝑡1) due to the additional cost of testing (b units).  

The incremental cost of Strategy A (subtracting the area under the solid line from the area 

under the dashed line) was equal to the value in Equation 5.4 (full derivation in Appendix 

24):  

Incremental CostA = (𝑡2 − 𝑡1)𝑏𝑃                                                                (Equation 5.4) 

The incremental cost of Strategy A was always positive, and depended on the cost of 

testing (𝑏), the proportion of patients that developed ADAb (𝑃), and the time between 

TNFi failure and commencing a different bDMARD (𝑡2 − 𝑡1).  
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Incremental QALYs 

The bottom-half of Figure 5.3 is a graphical illustration of the incremental QALYs of 

Strategy A compared with current practice. All bDMARD therapies were assumed to be 

equally effective.  

• Current Practice: The (𝑃) ADAb-positive patients gained (𝑄1) QALYs while 

responding and lost (𝑋1) QALYs for the duration of treatment failure (𝑡2 − 𝑡1). 

• Strategy A: Given that bDMARD therapies were assumed to be equally effective, 

the (𝑃) ADAb-positive patients also gained (𝑄1) QALYs while responding and lost 

(𝑋1) QALYs for the duration of treatment failure (𝑡2 − 𝑡1). 

Under these assumptions, patients derived no incremental benefit from Strategy A 

compared with current practice (Equation 5.5).  

Incremental QALYA = 0          (Equation 5.5) 

Incremental Net Monetary Benefit 

The INMB for Strategy A (Equation 5.6) was calculated by substituting (Equation 5.4) and 

(Equation 5.5) into the formula in Equation 5.3 (full derivation in Appendix 24).  

INMBA =  −𝑃𝑏(𝑡2 − 𝑡1)                                                       (Equation 5.6) 

The INMB for Strategy A was negative. Given that testing imposed positive incremental 

costs 𝑃𝑏(𝑡2 − 𝑡1), Strategy A must have subsequently provided a QALY-gain in order to 

have potentially demonstrated a positive INMB. Therefore, Strategy A was not considered 

to be a potentially relevant comparator strategy for the full cost-effectiveness analysis in 

this thesis.  

5.4.4.2. Strategy B 

• Clinical scenario: Patients were assumed to have commenced a TNFi therapy at 

𝑡0. A proportion of those patients (𝑃) were assumed to have developed ADAb at a 

time between 𝑡1 and 𝑡0. 
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• Current Practice: The (𝑃) patients that developed ADAb experienced treatment 

failure at (𝑡1) and had their treatment changed to a different bDMARD at (𝑡2). The 

(1 − 𝑃) ADAb-negative patients maintained response to their TNFi therapy.  

• Strategy B: All patients experienced routine testing from (𝑡0) to monitor for the 

development of ADAb. Testing was assumed to be perfectly accurate. The (𝑃) 

patients that developed ADAb had their treatment changed pre-emptively to a 

second bDMARD at (𝑡1) because testing detected the presence of ADAb.  

Incremental Costs 

The top-half of Figure 5.4 is a graphical illustration of the costs profile for current practice 

and Strategy B over time. The outcomes of the (𝑃) ADAb-positive and (1 − 𝑃)  ADAb-

negative patients are on the left and right of Figure 5.4, respectively.  

• Current Practice: The cost of treatment was assumed to equal (𝑎) units and was 

escalated by (𝑐) units for the period of time that the (𝑃) ADAb-positive patients 

had lost response (𝑡2 − 𝑡1). 

• Strategy B: The cost of care for the (1 − 𝑃) ADAb-negative patients was assumed 

to encompasses the cost of testing (𝑏) and treatment (𝑎) for all time periods (Figure 

5.4ii). The cost of care for the (𝑃) ADAb-positive patients encompassed the cost of 

testing (𝑏) and treatment (𝑎) for the initial time period (𝑡1 − 𝑡0), and was reduced 

to (𝑎) units (no further testing) after changing treatment to a different bDMARD at 

(𝑡1).  

The incremental cost of Strategy B (subtracting the area under the solid line from the area 

under the dashed line) was equal to the value in Equation 5.7 (full derivation in Appendix 

24):  

Incremental CostB = 𝑃[((𝑡1 − 𝑡0)𝑏 − (𝑡2 − 𝑡1)𝑐] + (1 − 𝑃)[(𝑡3 − 𝑡0)𝑏]    (Equation 5.7)                

The incremental cost of Strategy B could be positive or negative depending on the unit cost 

of testing (𝑏), the cost of treatment following loss of response (𝑐), and the proportion of 

ADAb-positive patients (𝑃). The cost of Strategy B was (𝑏) units higher than current 

practice for the (1 − 𝑃) ADAb-negative patients for all time periods (𝑡3 − 𝑡0) (see Figure 

5.4ii). For the (𝑃) ADAb-positive patients (Figure 5.4i), the initial cost of Strategy B was 

(𝑏) units higher than current practice, and (𝑐) units lower than current practice after pre-

emptively changing treatment.  
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Incremental QALYs 

The bottom-half of Figure 5.4 is a graphical illustration of the QALY profile for current 

practice and Strategy B over time. All bDMARD therapies were assumed to be equally 

effective. 

• Current Practice: Patients that responded to treatment were assumed to gain (𝑄1) 

QALYs. The (𝑃) ADAb-positive patients experienced a loss of response at (𝑡1), 

which reduced QALYs by (𝑋1) until the second-line bDMARD treatment (𝑡2 −

𝑡1), when QALYs were assumed to revert to their original level (𝑄1) (see Figure 

5.4i).  

• Strategy B: The (𝑃) patients that developed ADAb maintained the (𝑄1) QALY 

gain by pre-emptively changing treatment at (𝑡1) to avoid the loss of response. 

The incremental QALY of Strategy B (subtracting the area under the solid line from the 

area under the dashed line) was equal to the value in Equation 5.8 (full derivation in 

Appendix 24):  

Incremental QALY
B

= (𝑡2 − 𝑡1)𝑋1𝑃                                         (Equation 5.8) 

The incremental QALY of Strategy B was always positive (due to avoiding the QALY-loss 

in current practice), and depended on the proportion of patients that developed ADAb (𝑃), 

the magnitude of the QALY-loss associated with treatment failure (𝑋1), and the duration 

of treatment failure (𝑡2 − 𝑡1). 

Incremental Net Monetary Benefit 

The INMB for Strategy B (Equation 5.9) was calculated by substituting (Equation 5.7) and 

(Equation 5.8) into the formula in Equation 5.3 (full derivation in Appendix 24).  

INMBB= 𝜆(𝑡2 − 𝑡1)𝑋1𝑃 − (𝑡1 − 𝑡0)𝑏𝑃 + (𝑡2 − 𝑡1)𝑐𝑃 − (𝑡3 − 𝑡0)𝑏 + (𝑡3 − 𝑡0)𝑏𝑃 (Equation 5.9) 

It was not possible to determine whether the incremental net monetary benefit of Strategy 

B, compared with current practice, was positive or negative based on the algebraic analysis 

alone. The sign of the incremental net monetary benefit depended on whether (i) the 

monetary value of the incremental QALY gains (λ(t2 – t1)X1P) and (ii) the cost-reduction 
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associated with avoiding the need to treat patients that had lost response ((t2 – t1)cP) were 

greater than the additional costs imposed by testing (– (t1 – t0)bP – (t3 – t0)b + (t3 – t0)bP). 

Therefore, Strategy B was a potentially relevant comparator strategy to be included in the 

final decision problem.  

Table 5.6 reports the sign of the first-derivative of Equation 5.9 with respect to five 

parameters (full derivation in Appendix 24). The positive first-derivative for three 

parameters (cost of treating loss of response; proportion of ADAb-positive patients; the 

QALY loss associated with treatment failure) indicated that the relative cost-effectiveness 

of Strategy B may increase if the magnitude of these parameters were to increase, ceteris 

paribus. The two parameters with a negative first-derivative (cost of testing; time taken to 

develop ADAb) indicated that the relative cost-effectiveness of Strategy B may reduce if 

the magnitude of these parameters were to increase, ceteris paribus.  

Table 5.6. First-derivative of INMB with respect to individual parameters: Strategy B 

Parameter  
Sign of First-derivative† 

Notation Definition  

𝑐 Cost of treating loss 

of response.  

 

 ∂INMB

∂C
>0 

𝑏 Cost of testing.  ∂INMB

∂b
<0 

 

(𝑡1 − 𝑡0) Time taken to 

develop ADAb.  

 

 ∂INMB

∂(t1-t0)
<0 

𝑃 Proportion of 

patients with ADAb.  

 

 ∂INMB

∂P
>0 

𝑋1 QALY loss 

associated with 

treatment failure. 

 ∂INMB

∂X1

>0 

Note: †=full algebraic derivation of first-derivative is provided in Appendix 24. 

 

5.4.4.3. Strategy C 

• Clinical scenario: All patients were assumed to be in remission at (𝑡0) and were 

receiving full-dose TNFi therapy. A proportion of those patients (𝐷) were assumed 

to have high drug levels by (𝑡1). 

• Current Practice: Patients maintained full-dose TNFi therapy for the full duration 

of the analysis.  
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• Strategy C: All patients had their drug levels tested between (𝑡0) and (𝑡1). The 

intensity of treatment was reduced if high drug levels were detected at (𝑡1). A 

proportion (𝑞) of patients that received reduced-dose TNFi were assumed to flare 

in disease activity at (𝑡2), which prompted treatment to revert to its original dose. 

Incremental Costs 

The top-half of Figure 5.5 is a graphical illustration of the costs profile for current practice 

and Strategy C over time. 

• Current Practice: The cost of care encompassed the cost of treatment (𝑎) for all 

time periods. 

• Strategy C: The initial (𝑡1 − 𝑡0) cost of care for all patients encompassed the cost 

of treatment (𝑎) and testing (𝑏). At (𝑡1), the cost of treatment was reduced by (𝑦) 

units for the (𝐷) patients with high drug levels. Patients could follow one of two 

mutually exclusive pathways at (𝑡2) depending on whether they flared after their 

TNFi dose had been reduced (Figure 5.5i). Flaring patients (𝑞) had their TNFi 

dose-reduction reverted to its original value (𝑎) (bold dashed pathway). Non-

flaring patients (1 − 𝑞) continued to receive reduced-dose TNFi treatment.  

The incremental cost of Strategy C (subtracting the area under the solid line from the area 

under the dashed line) was equal to the value in Equation 5.10 (full derivation in Appendix 

24):  

Incremental CostC = (𝑡1 − 𝑡0)𝑏 − (𝑡2 − 𝑡1)𝑦𝐷 − (1 − 𝑞)(𝑡3 − 𝑡2)𝑦𝐷      (Equation 5.10)                                  

The incremental cost of Strategy C may be positive or negative depending on the 

prevalence of high drug levels (𝐷), the cost-reduction associated with reduced-dose TNFi 

treatment (𝑦), and the proportion of flares (𝑞). 

Incremental QALYs 

The bottom-half of Figure 5.5 is a graphical illustration of the QALY profile for current 

practice and Strategy C over time. 

• Current Practice: The patients with (𝐷) and without (1 − 𝐷) high drug levels 

gained same amount of QALYs (𝑄2) (because they didn’t flare).  
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• Strategy C: Of the (𝐷) patients that experienced reduced-dose TNFi therapy under 

Strategy C (Figure 5.5i), (i) those that flared (𝑞) experienced a QALY-loss (𝑋2) for 

the duration of the flare (𝑡2 − 𝑡1); (ii) those that did not flare obtained the same 

QALYs (𝑄2) as those that received full-dose TNFi. QALYs were assumed to return 

to their initial value (𝑄2) in patients that flared, when their dose of TNFi was 

reverted to its initial value. 

The incremental QALYs of Strategy C (subtracting the area under the solid line from the 

area under the dashed line) was equal to the value in Equation 5.11.  

Incremental QALY
C

= −𝐷(𝑡2 − 𝑡1)𝑋2𝑞                   (Equation 5.11) 

The incremental QALY of Strategy C was negative assuming that dose-reduction 

strategies, based on TNFi drug-level testing in remission, only led to potential QALY-

losses (from patients that flared). The magnitude of the incremental QALY-loss depended 

on the proportion of patients with high drug levels (𝐷), the proportion of patients that 

flared (𝑞), the duration of the flare (𝑡2 − 𝑡1), and the magnitude of the QALY-loss 

associated with a flare (𝑋2).  

Incremental Net Monetary Benefit 

The INMB for Strategy C (Equation 5.12) was calculated by substituting (Equation 5.10) 

and (Equation 5.11) into the formula in Equation 5.3 (full derivation in Appendix 24). 

INMBC =  −𝜆𝐷(𝑡2 − 𝑡1)𝑋2𝑞 − (𝑡1 − 𝑡0)𝑏 + (𝑡2 − 𝑡1)𝑦𝐷 + (1 − 𝑞)(𝑡3 − 𝑡2)𝑦𝐷 (Equation 5.12) 

It was not possible to determine whether the INMB for Strategy C (Equation 5.12) was 

positive or negative from the algebraic analysis alone. Strategy C had the potential to be 

cost-effective, relative to current practice, if the reduction in QALYs (expressed in 

monetary units: −𝜆𝐷(𝑡2 − 𝑡1)𝑋2𝑞) and the additional cost of testing ((𝑡1 − 𝑡0)𝑏) were offset 

by the lower cost of reduced-dose TNFi therapy in patients that did not flare ((𝑡2 − 𝑡1)𝑦𝐷 +

(1 − 𝑞)(𝑡3 − 𝑡2)𝑦𝐷). Therefore, Strategy C was a potentially relevant comparator strategy 

to be included in the final decision problem. 

Table 5.7 reports the sign of the first-derivative of Equation 5.11 with respect to five 

parameters (full derivation in Appendix 24). The positive first-derivative of the cost-



 

174 
 

reduction associated with lower dose TNFi therapy indicated that the relative cost-

effectiveness of Strategy C may increase if the magnitude of this cost-reduction increased, 

ceteris paribus. The negative first-derivative of four parameters (cost of testing; cost-

effectiveness threshold; proportion of patients that flared; QALY-loss associated with a 

flare) indicated that the relative cost-effectiveness of Strategy C may reduce if the 

magnitude of these parameters were to increase, ceteris paribus. It was not possible to 

make a priori comparative predictions regarding one parameter (proportion of patients 

with high drug levels) because the direction of its first-derivative could not be determined 

from the algebraic analysis alone.   

Table 5.7. First-derivative of INMB with respect to individual parameters: Strategy C. 

Parameter  
Sign of First-derivative† 

Notation Definition  

𝑏 Cost of testing.   ∂INMB

∂b
<0 

 

𝑦 Cost-reduction associated with 

lower dose TNFi. 

 

 ∂INMB

∂y
>0 

𝜆 Cost-effectiveness threshold.   ∂INMB

∂λ
<0 

 

𝐷 Proportion of patients with high 

drug levels.  

 

 ∂INMB

∂P
= undefined♦ 

𝑞 Proportion of patients that 

flared from reduced-dose TNFi. 

 

 ∂INMB

∂q
<0 

𝑋2 QALY-reduction associated 

with flare.  

 ∂INMB

∂X2

<0 

Note: †=full algebraic derivation of first-derivative is provided in Appendix 24; ♦=not possible to determine 

whether the first-derivative was positive or negative.  

 

5.4.5. Discussion 

This study demonstrated a novel conceptualisation technique (using algebraic notation, the 

incremental net benefit framework, and comparative static analysis) to inform the choice of 

potentially relevant comparator strategies for the de novo economic evaluation of stratified 

medicine presented in this thesis. Two potentially relevant comparator strategies were 

identified from a set of three candidate strategies that described how treatment for RA 

could be stratified by TNFi ADAb and drug level testing. This conceptualisation technique 

could, in principal, help to identify the relevant comparators within any early model-based 
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economic evaluation of a stratified medicine, if multiple candidate strategies exist because 

the role of testing in a care pathway is unclear.  

A fundamental component of an early economic evaluation, as posited by the conceptual 

framework in Section 1.1.6.4 (Figure 1; Stage 1), is to describe how a new health 

technology may enter an existing care pathway. This study presented an approach to 

formalise such a description by using algebraic manipulation to identify potentially 

relevant comparator strategies, in the absence of robust data to inform care pathways, 

resource use and health outcomes. By contrast, relevant comparator strategies are likely to 

be known during a later-stage economic evaluation when the clinical evidence base has 

matured (Figure 1.1; Stage 4). Therefore, the purpose of such an early-stage 

conceptualisation technique should be to produce indicative, rather than definitive, 

arguments of relative cost-effectiveness (Sculpher et al., 1997).  

The results suggested that TNFi ADAb and drug level testing in RA had the potential to be 

cost-effective when used as a predictive biomarker of treatment response (Strategy B) and 

to guide dose-reduction in remission (Strategy C). It was notable that testing after loss of 

response to a TNFi (Strategy A) was unlikely to be cost-effective (imposing additional cost 

with no additional QALY gain) given that nine prescribing algorithms in Section 5.3. 

recommended variants of this strategy. The results for Strategy A were contingent on the 

assumption that different bDMARDS were equally effective, which can be supported by 

previously published meta-analyses of RCT evidence (Aaltonen et al., 2012; Stevenson et 

al., 2016). Additionally, no prescribing algorithm in Section 5.3 recommended a pre-

emptive change of treatment, based on TNFi ADAb or drug level status, to potentially 

avoid a QALY loss associated with treatment failure; yet Strategy B in this study was 

potentially cost-effective when compared with current practice.   

Limitations 

The candidate strategies were characterised in general terms as a pragmatic decision to 

enable algebraic manipulation. One potential limitation of this study was that, in practice, 

there may have been different specific strategies that conformed to the characterisation of 

each general strategy. For example, the general strategy to routinely monitor patients that 

responded to a TNFi (Strategy B) did not specify the frequency of testing. It was more 

appropriate, however, to estimate the relative cost-effectiveness of such specific strategies 
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in a full model-based economic evaluation and not during a conceptualisation exercise a 

priori (Shabaruddin et al., 2015).  

A potential limitation of the comparative statics analysis, after differentiating the INMB 

function with respect to individual parameters, was the assumption that the predictions 

were only valid if the values of all other parameters remained constant. A one-way 

sensitivity analysis within a full model-based economic evaluation would also be limited 

by the same assumption (Briggs et al., 1999). Practically, the internal validity of a full 

model-based economic evaluation could be appraised by comparing the actual results of a 

one-way sensitivity analysis with the direction of change predicted by the first-derivative 

in the conceptual algebraic analysis.  

Lee et al. (2013) have used a similar algebraic technique to produce a generalised case 

model-based cost-effectiveness analysis of a companion diagnostic test. However, the 

approach by Lee et al. (2013) requires the input of empirical data (for example, on test 

accuracy or QALYs gained) and evaluates testing over a short time horizon. The advantage 

of the present study, therefore, was that (i) longer time horizons could be accounted for by 

considering the potential profile of costs and QALYs over time, and (ii) the algebraic 

manipulation enabled an informative analysis to be performed during an early stage of a 

test’s product lifecycle without the need for empirical data.  

Implications for Future Research 

There were two possible ways that this early economic evaluation conceptualisation 

technique could be extended. Firstly, a fully incremental analysis could be performed using 

the algebraic notation, by comparing all strategies with each other, without loss of 

generality. This study used a common comparator (current practice) to illustrate the 

analytic concept; a fully-incremental analysis was not necessary to inform the relevant 

comparator strategies for the decision problem reported this thesis. Secondly, future 

research could extend the conceptualisation technique, contingent on the decision-maker’s 

required perspective, to describe the time profile of other potentially relevant outcomes 

that were beyond the scope of this thesis (such as patient out-of-pocket expenditures or the 

QALY-loss borne by carers).  

A practical implication for this thesis was that the relative cost-effectiveness of the two 

general strategies with the potential to be cost-effective, identified by this study (Strategy B 
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and Strategy C), should be investigated further in a full model-based economic evaluation 

of adalimumab ADAb and drug level testing to stratify treatment.   

Summary of Key Findings 

This study presented an early economic evaluation conceptualisation technique after 

recognising that decision-analysts may have had difficulty in identifying relevant 

comparator strategies for a stratified medicine that incorporates a new test when: (i) there 

was limited evidence to support the use of testing, (ii) testing could have been performed in 

multiple ways, and (iii) constraints existed on the time available to conduct a full economic 

evaluation. The results were presented as a general case analysis by using algebraic 

manipulation and the incremental net benefit framework. Treatment stratification by 

testing adalimumab ADAb and drug levels during response, and testing drug levels during 

remission, both had the potential to be cost-effective, relative to current practice. In 

contrast, informing treatment decisions by testing after a patient had lost response was less 

likely to be cost-effective, relative to current practice. The following section of Chapter 

Five uses the results derived from this early conceptualisation technique to define the 

relevant comparator strategies in the decision problem for the full economic evaluation of 

treatment stratification according to adalimumab ADAb and drug level testing in patients 

with RA.  
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5.5. Chapter Objective 3: The Decision Problem 

This study defines the decision problem for the early economic evaluation of adalimumab 

ADAb and drug level ELISA testing to stratify treatment for patients with RA in England.  

5.5.1. Introduction 

The primary purpose of any economic evaluation is to inform a decision; namely, a 

decision to allocate population health care resources by providing sufficient evidence of 

the incremental costs and benefits of a health technology (Drummond et al., 2015). A 

decision problem must therefore be specified, before conducting any economic evaluation, 

that describes the specific resource allocation decision under consideration (Roberts et al., 

2012; Drummond et al., 2015). For example, the decision problem within a NICE 

technology appraisal process is specified at the preliminary scoping phase (National 

Institute for Health and Care Excellence, 2011a; 2013a).   

The proposed early model-based economic evaluation of adalimumab ADAb and drug 

level testing to stratify treatment for RA was designed to provide evidence for decision-

makers responsible for resource allocation decisions in NHS England. It was therefore 

necessary for the decision problem to conform to the evidence requirements of a NICE 

technology appraisal. The decision problem, whilst being relevant to decision-makers, 

must have also been relevant to the clinical context of managing patients with RA in 

England. It was also necessary, therefore, to refine the comparator testing strategies 

identified within the literature for relevance to clinical practice in England.  

5.5.2. Aim and Objective 

The aim of this study was to define the decision problem for the economic evaluation of 

adalimumab ADAb and drug level testing to stratify treatment for patients with RA in 

England. There were two objectives: 

Objective 1: Refine the ADAb and drug level testing strategies for relevance to clinical 

                     practice in England; 

Objective 2: Define the decision problem in terms that conformed to the requirements 

                     of decision-makers responsible for resource allocation in NHS England. 



 

179 
 

5.5.3. Method 

The two potentially relevant comparator strategies, identified by the early 

conceptualisation technique in Section 5.4, were made appropriate for clinical practice in 

England by defining the specific treatment decision associated with each test result. This 

decision was informed by published clinical evidence regarding testing for TNFi 

immunogenicity (see Section 5.3), clinical recommendations for managing patients with 

RA (Ding et al., 2010; Smolen et al., 2014; National Institute for Health and Care 

Excellence, 2016a; Singh et al., 2016b), and the interviews with rheumatologists in 

Chapter Three.  

The NICE Guide to the Methods of Technology Appraisal outlined the appropriate 

evidence requirements of an economic evaluation used to inform the appraisal of health 

technologies in NHS England (National Institute for Health and Care Excellence, 2013a). 

The decision problem for the economic evaluation in this thesis, therefore, conformed to 

the requirements specified in the NICE Reference Case (described in Appendix 2) to 

generate results applicable to decision-makers in NHS England.  

5.5.4. Results 

A description of the prescribing decisions associated with each test result, and how those 

decisions were deemed to be relevant for routine clinical practice in England, is reported in 

Appendix 25. The final decision problem addressed by the economic evaluation in this 

thesis, consistent with a NICE Reference Case analysis, is summarised in Table 5.8.  

The decision problem considered a population of adult patients with RA that were were (i) 

already receiving adalimumab and (ii) met the NICE eligibility for TNFi therapy (patients 

must have had a DAS28 score of at least 5.1 and must have failed two previous attempts of 

cDMARD therapy) (National Institute for Health and Care Excellence, 2016a). The 

intervention strategies to stratify treatment followed the test-and-treatment decisions that 

were relevant to clinical practice in England (Appendix 25; Table A25.1). In addition to 

testing, dose-reduction of adalimumab in all patients (irrespective of drug level status) was 

included as a relevant comparator strategy, based on the reported practice of the 

rheumatologists that were interviewed in Chapter Three. The expected outcomes from the 

intervention strategies were compared to a common comparator (current practice) and to 

each other in a fully incremental analysis. 
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Table 5.8. The decision problem. 

Element of 

Decision Problem 
Description 

Population Adults with RA in England, receiving adalimumab, who had: 

• (i) a DAS28 score of at least 5.1, and; 

• (ii) failed at least two attempts of synthetic cDMARD therapy, 

including methotrexate. 

Intervention 

Technology 
• (i) Test ADAb and drug levels by ELISA while responding to first-

line adalimumab to inform an early change to rituximab therapy†; 

• (ii) Test ADAb only by ELISA while responding to first-line 

adalimumab to inform an early change to rituximab therapy†; 

• (iii) Test first-line adalimumab drug levels only by ELISA in 

remission to inform a dose-reduction strategy†. 

• (iv) Dose-reduction strategies in all patients irrespective of drug-level 

status. 

Comparator 

Technology 
• (i) Current practice adalimumab therapy; 

• (ii) All intervention strategies. 

Perspective NHS England and personal social services.  

 

Measure of health 

outcome 

 

EQ-5D quality-adjusted life years.  

Costs considered Include direct medical costs, that comprised: 

• (i) treatment costs; 

• (ii) test costs; 

• (ii) cost of hospitalisations. 

Exclude indirect and productivity costs.  

 

Outcomes • Expected incremental costs; 

• Expected incremental QALYs; 

• Incremental cost-effectiveness ratio; 

• Net monetary benefits, 

• Incremental net monetary benefits,  

• Expected value of perfect information (EVPI). 

Time horizon Lifetime. 

 

Discount rate Costs = 3.5%, QALYs = 3.5%. 

 

Cost-effectiveness 

Threshold 

 

£20,000 to £30,000 per QALY gained. 

Sensitivity 

Analysis 
• One-way sensitivity analysis; 

• Two-way sensitivity analysis; 

• Probabilistic sensitivity analysis.  

Note: †=The rationale for the appropriateness of these treatment decisions are reported in Appendix 25.  
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5.5.5. Discussion  

This study defined the decision problem for testing adalimumab ADAb and drug levels in 

order to stratify treatment for patients with RA in England. The testing strategies that were 

identified in the clinical literature (Section 5.3 and Section 5.4) were refined in accordance 

with current clinical practice in England. Given that rituximab therapy was assumed to be 

the next appropriate therapy (after adalimumab) along the care pathway for RA (see 

Appendix 25), monitoring strategies that detected the presence of low adalimumab drug 

levels and/or ADAb were assumed to recommend a pre-emptive change of treatment to 

rituximab. The decision problem required that incremental costs and QALYs derived from 

each intervention strategy were estimated over a lifetime time horizon.  

The remaining sections of Chapter Five, having defined the decision problem, report how 

the de novo decision analytic model was conceptualised and developed. Section 5.6 builds 

on the decision problem by presenting problem-oriented conceptual models of the clinical 

events and care pathways that patients may have experienced over time; Section 5.7 selects 

the appropriate type of decision analytic model for the economic evaluation; and Section 

5.8 describes the final structure of the quantitative de novo decision analytic model.  
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5.6. Chapter Objective 4: Problem-Oriented Conceptual Models 

This study describes how the use of adalimumab ADAb and drug ELISA level testing to 

stratify treatment in current practice was conceptualised. Two problem-oriented conceptual 

models (disease-logic and service-pathway) are presented that described the potential 

health and resource consequences associated with testing in current practice. The problem-

oriented conceptual models were subsequently used to select the most suitable type of 

decision analytic model (in Section 5.7) for the early economic evaluation in this thesis.  

5.6.1. Introduction 

A de novo decision analytic model should be structured to include the relevant events that 

may be experienced by a patient over time, to address an explicit decision problem 

(Tappenden, 2014). Structural uncertainty is inherent in any model-based economic 

evaluation (Briggs, 2000; Bojke et al., 2009) and may arise, for example, when the relevant 

events that should be included in a de novo decision analytic model not clear (Bojke et al., 

2009). In the context of this thesis, two sources of structural uncertainty regarding 

adalimumab ADAb and drug level testing were the characterisation of (i) disease 

progression and (ii) the care pathways available to patients before, after, and without 

treatment stratification. Explicit model conceptualisation techniques may reduce such 

structural uncertainties by making transparent, and providing justification for, the choice of 

relevant events to include in a de novo decision analytic model (Tappenden, 2014).  

5.6.2. Aim and Objectives 

The aim of this study was to conceptualise the potential impact of treatment stratification 

by adalimumab ADAb and drug level testing on a patient’s subsequent disease status and 

care pathways. There were two objectives: 

Objective 1: Conceptualise the progression of RA with and without the use of adalimumab 

                      ADAb and drug level testing to stratify treatment; 

Objective 2: Conceptualise the care pathway for RA with and without the use of 

                      adalimumab ADAb and drug level testing to stratify treatment. 
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5.6.3. Methods 

Two problem-oriented conceptual models were developed to address each objective. A 

disease-logic conceptual model was developed first that described the true clinical events 

that were assumed to have been experienced by a patient with RA over time (Tappenden, 

2014). A service-pathway conceptual model was developed second that described the 

health technologies that were assumed to be received by a patient with RA over time, 

based on their known characteristics (Tappenden, 2014).  

Both problem-oriented conceptual models used flow diagrams to illustrate the anticipated 

sequence of events and were supported by descriptive text (Tappenden, 2014). The flow 

diagrams were used as a communication tool to obtain clinical input from Prof. Anne 

Barton and Dr. Meghna Jani (both of whom had experienced treating patients with RA) to 

ensure that the conceptualisation was relevant to clinical practice in England. The 

conceptualisation process followed the best-practice recommendations made by the 

International Society for Pharmacoeconomics and Outcomes Research (ISPOR) (Roberts 

et al., 2012) and the NICE Decision Support Unit (Kaltenthaler et al., 2011).  

5.6.4. Results 

The results section reports each descriptive problem-oriented conceptual model separately.  

5.6.4.1. Disease-logic Model 

Figure 5.6 illustrates the disease-logic conceptual model for RA that was developed for this 

early model-based economic evaluation of stratified medicine.  

The management of RA was characterised by the control of disease activity and the 

minimisation of disease progression over time (Upchurch et al., 2012). Patients were 

assumed to be eligible for a sequence of treatments, that began with adalimumab, which 

they could potentially receive over their lifetime (Tosh et al., 2014). A representative 

sample of patients with RA living in England were assumed to have heterogeneous 

characteristics at baseline (for example, age, sex, and disease activity), which may have 

affected the likelihood of future clinical events (Hyrich et al., 2011). A patient with RA 

could have died at any time over the lifetime course of treatment.  



 

 
 

Figure 5.6. Disease-logic conceptual model. 

 

Note: Arrows denote the logic of clinical events over time; ADAb positive=the patient had developed adalimumab anti-drug antibodies and was assumed to have low drug levels. 

 

1
8
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The disease-logic model was designed to be consistent with clinical practice in England; a 

patient’s response to treatment was assessed using the EULAR response criteria (van 

Gestel et al., 1996) (described in Appendix 7) which was determined six months after 

receiving any treatment (National Institute for Health and Care Excellence, 2016a). 

Primary non-response occurred when no EULAR response was attained at six months, and 

treatment was subsequently changed to the next therapy in the sequence. A good EULAR 

response, by definition, was associated with a greater reduction in disease activity than a 

moderate EULAR response (van Gestel et al., 1996).   

Patients that received a treatment in the sequence, other than adalimumab, were assumed to 

maintain therapy until they experienced a loss of response. Disease was assumed to 

progress over time at a rate conditional on the type of treatment received; the clinical 

evidence indicated that patients treated with cDMARD therapies had a faster rate of 

disease progression that those treated with bDMARD therapies (Michaud et al., 2011).   

If the patient was treated with adalimumab, there was a probability that they developed 

ADAb (termed ADAb-positive). Adalimumab drug levels were assumed to correlate 

perfectly with ADAb status, such that ADAb-positive patients had lower drug levels 

(Bartelds et al., 2011; Jani et al., 2015a).  

Secondary non-response to adalimumab may have occurred at any time during the course 

of treatment, which was assumed to be conditional on the patient’s underlying ADAb 

status (positive or negative) and drug level status (high or low) (Bartelds et al., 2011). A 

patient’s adalimumab ADAb status and drug levels were unobservable unless a 

rheumatologist used an ELISA assay to measure them (for example, see the prescribing 

algorithms in Section 5.3). Patients with adalimumab ADAb and low drug levels were 

assumed to be more likely to lose response to their treatment earlier (Garcês et al., 2013). 

Disease was assumed to progress over time as with the other treatments.   

A distinction between treatments was made by assuming that patients treated with 

adalimumab could enter an explicit period of remission. In reality, patients may enter 

remission when receiving non-adalimumab therapies as well; however modelling this 

phenomenon was not relevant to the decision problem as defined (see Section 5.5). Testing 

non-adalimumab therapies in remission was a different resource allocation problem which 

likely required a different testing strategy and prescribing algorithm. Underlying 

adalimumab drug levels in remission could have been characterised as high or not high. 



 

186 
 

The likelihood of a flare in disease activity during remission was assumed to be a function 

of a patient’s true underlying adalimumab drug level (Bykerk et al., 2016). For example, 

based on the clinical literature, patients were more likely to flare if their adalimumab dose 

was reduced and their drug levels were not high a priori (Chen et al., 2016).   

Patients were assumed to gain QALYs over their lifetime depending on the clinical events 

experienced in relation to their underlying disease activity. A EULAR response to 

treatment reduced disease activity and, in turn, increased QALYs. A loss of response to 

treatment increased a patient’s disease activity (Prevoo et al., 1995) and, consequently, was 

assumed to reduced QALYs. ADAb-positivity wasn’t assumed to affect QALYs directly, 

but instead made the QALY-loss from treatment failure occur earlier. Gradual disease 

progression resulted in a diminishing rate of QALY gain over time while responding to 

treatment. A disease flare in remission was associated with a short period (approximately 

one week) (Bykerk et al., 2014) of QALY-loss due to the increase in disease activity.  

Given that patients who developed adalimumab ADAb may respond better to a treatment 

with a different therapeutic target (Tak, 2012), an early change of treatment to second-line 

rituximab therapy (upon ADAb detection) was assumed to provide a health benefit, 

reducing disease activity and increasing QALYs. However, an inappropriately early 

change to rituximab therapy for patients without adalimumab ADAb was assumed to cause 

harm by increasing disease activity and reducing QALYs (because previous inhibition of 

tumour necrosis factor-α production was effective).  

5.6.4.2. Service-pathway Model 

Figure 5.7 illustrates the service-pathway conceptual model for this early model-based 

economic evaluation of stratified medicine. The service-pathway conceptual model 

described the care pathway that was assumed for patients with RA in England, and how 

adalimumab ADAb and drug level testing was integrated into this care pathway.  
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Figure 5.7. Service-pathway conceptual model.  

 

Current practice for RA was characterised by a sequence of therapies prescribed over a 

patient’s lifetime (Tosh et al., 2014). The appropriate sequence was identified according to 

the qualitative interviews in Chapter Three and the recent recommendations for managing 

RA by NICE (National Institute for Health and Care Excellence, 2016a). The sequence 

was also consistent with recommendations by the British Society for Rheumatology, which 

advocated the prescription of rituximab after the failure of a TNFi therapy (Bukhari et al., 

2011) and tocilizumab with methotrexate after inadequate response to cDMARDs 

(Malaviya et al., 2014). Furthermore, the sequence was consistent with the general 

recommendations of the international bodies for rheumatology; the EULAR treatment 

guidelines for RA recommended (i) using a bDMARD with methotrexate if the patient had 

an insufficient response to cDMARD therapy; and (ii) using a second bDMARD if the 

patient had failed their first bDMARD (Smolen et al., 2014). The ACR treatment guidelines 

for RA recommended using a sequence of up to two non-TNFi bDMARDs (with or 

without methotrexate) if a patient’s disease activity remained high following first-line 

TNFi therapy (Singh et al., 2016b).  

All patients were assumed to commence the sequence with adalimumab therapy. All 

bDMARD treatments (adalimumab, rituximab, tocilizumab) were assumed to be 

prescribed with concomitant methotrexate (National Institute for Health and Care 

Excellence, 2016a). Patients with RA were assumed to receive each treatment until they 

experienced a loss of response. Patients that received adalimumab could also change 

treatment if specified by a testing strategy. Patients were assumed to receive palliative 
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cDMARD therapy for the rest of their lives if they lost response to three bDMARD 

therapies.  

Rituximab and tocilizumab required additional direct health care resources to account for 

their administration by intravenous infusion (British National Formulary, 2016). No direct 

health care resources for infusion were required for adalimumab therapy, however, a 

proportion of subcutaneous injections may have been administered by a nurse in routine 

practice (Stevenson et al., 2016). Patients were assumed to potentially require 

hospitalisation, at any point in their lifetime, which increased in likelihood as the patients’ 

disease status worsened (Bansback et al., 2008) 

ADAb and drug level testing was assumed to occur during response to adalimumab only. 

The ELISA-based testing strategies were assumed to require additional health care 

resources (for example, an additional outpatient appointment). The appropriate frequency 

of testing was unknown a priori and this was later informed by the incremental net benefit 

of testing in the full economic evaluation. Figure 5.8 illustrates the relevant prescribing 

decisions for the outcome of each testing strategy.  

Figure 5.8. Service pathway conceptual model of testing strategies for (i) adalimumab 

ADAb testing only during response; (ii) adalimumab ADAb and drug level testing during 

response; and (iii) adalimumab drug level testing during remission.   

 

Abbreviations: ADAb=Anti-drug antibody. 
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If only ADAb were tested and detected during response to adalimumab (Figure 5.8i), 

treatment was pre-emptively changed to the next bDMARD in sequence (rituximab). If 

patients were tested for both adalimumab ADAb and drug levels (Figure 5.8ii), treatment 

was changed to rituximab if ADAb and low drug levels were detected. If high adalimumab 

drug levels were detected in patients during remission (Figure 5.8iii), the dose was halved 

by doubling the time between subcutaneous injections (Smolen et al., 2014). Patients that 

flared were assumed to receive intramuscular steroids and had their adalimumab dose 

reverted to the original injection schedule (National Institute for Health and Care 

Excellence, 2009).  

5.6.5. Discussion  

This study aimed to conceptualise the impact of treatment stratification by adalimumab 

ADAb and drug level testing on patients’ subsequent disease status and care pathways. 

Two problem-oriented conceptual models were developed (disease-logic and service-

pathway models) that described the clinical events and health technologies that patients 

were assumed to experience over time. The results of this study represented the initial 

stage of developing a de novo decision analytic model to address the decision problem 

reported in Section 5.5.  

Conceptual models are descriptive tools that have the advantage of enabling decision-

analysts to explore the structural uncertainty inherent in any model-based economic 

evaluation, by considering alternative ways to structure a final quantitative decision 

analytic model (Tappenden, 2014). The process of model conceptualisation is an essential 

element of any model-based economic evaluation (Roberts et al., 2012) that is rarely 

documented in practice (Chilcott et al., 2010). The two problem-oriented conceptual 

models were based on relevant evidence derived from (i) published clinical studies, (ii) 

clinical recommendations for RA, and (iii) previous research conducted in this thesis. An 

advantage of these evidence-based conceptual models, therefore, was that they provided a 

transparent justification for how to structure the final decision analytic model of 

adalimumab ADAb and drug level testing.  

Implications for Future Research 

The problem-oriented conceptual modelling exercise had two implications for future 

research that were addressed by this thesis: 
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• A decision was required to select the type of model (decision tree, Markov model, 

discrete event simulation) that should be used for the final decision analytic model. 

The elements of the decision problem highlighted by this conceptual modelling 

study may be able to inform the appropriate model type for the economic 

evaluation of adalimumab ADAb and drug level testing (Tappenden, 2014); 

 

• The disease-logic and service-pathway conceptual models must be combined to 

finalise the design of the de novo decision analytic model. A design-oriented 

conceptual model may therefore be used to justify the simplifications and 

assumptions of the final quantitative model.  

Summary of Key Findings 

This study conceptualised the health states and care pathways associated with stratifying 

treatment for patients with RA according to adalimumab ADAb and drug level testing. 

Two problem-oriented conceptual models were constructed according to evidence from a 

range of sources, including relevant clinical recommendations, published clinical evidence 

and research presented earlier in this thesis (qualitative interviews in Chapter Three and 

the systematic review of prescribing algorithms in Section 5.3). The following study 

reported in Chapter Five built on these problem-oriented conceptual models to select the 

type of decision analytic model that was used to address the decision problem in Section 

5.5.  
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5.7. Chapter Objective 5: Selection of Model Type 

This study reports how the type of decision analytic model was chosen for the de novo 

model-based economic evaluation of stratified medicine presented in this thesis.  

5.7.1. Introduction 

The next stage of developing the economic evaluation, having defined the decision 

problem (Section 5.5) and conceptualised the clinical states and care pathways over time 

(Section 5.6), was to select the most appropriate type of decision analytic model. Three 

candidate types of model (decision tree, Markov model, discrete event simulation) were 

described previously in Appendix 3 in terms of their key features, advantages, and 

disadvantages. The choice of model type, however, was not arbitrary; the most appropriate 

type of model depended on the specific characteristics of the decision problem (Roberts et 

al., 2012).  

5.7.2. Aim and Objectives 

The aim of this study was to determine the appropriate type of decision analytic model for 

the economic evaluation presented in this thesis. There were two objectives: 

Objective 1: Identify characteristics of the decision problem that were relevant to inform 

                      the appropriate type of decision analytic model; 

Objective 2: Select the type of decision analytic model that was appropriate to provide 

                      evidence for the decision problem in Section 5.5.   

5.7.3. Method 

The two problem-oriented conceptual models reported in Section 5.6 were used to identify 

the characteristics of the decision problem that were relevant to inform the appropriate type 

of decision analytic model. These specific characteristics of stratified medicine for RA, 

according to adalimumab ADAb and drug level testing, were then applied to the published 

fifteen-item checklist, reported by Brennan et al. (2006), to inform the choice of decision 

analytic model.  
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5.7.4. Results 

There were four characteristics of the decision problem, identified by the problem-oriented 

conceptual models, which may have been relevant to inform the choice of model type: 

(i) The baseline characteristics of patients with RA in England were assumed to be 

heterogeneous (for example, by age and disease severity) (Hyrich et al., 2011); 

 

(ii) Patients were assumed to receive a sequence of treatments over their lifetime, 

characterised by the recurring events of treatment response and failure (Tosh et al., 

2014); 

 

(iii) Patient-level characteristics were assumed to affect clinical outcomes (for example, 

patients with greater severity of disease were assumed to have a higher risk of 

mortality) (Stevenson et al., 2016); 

 

(iv) The occurrence of future clinical events were assumed to depend on previous 

clinical events (for example, the development of adalimumab ADAb was assumed to 

affect the loss of response to treatment in the future) (Garcês et al., 2013).  

The completed fifteen-item checklist to inform the choice of model type, developed by 

Brennan et al. (2006), is reported in Appendix 26. The key elements of the decision 

problem that informed the choice of decision analytic model are reported below. Each 

Issue referrers to a specific item within the Brennan et al. (2006) checklist. 

• The use of a decision tree was deemed to be inappropriate (Issue 8) because treatments 

were prescribed in a sequence which, conceptually, led to each patient experiencing a 

lifetime of recurring clinical events (treatment response and failure); 

 

• The dimensionality of the decision problem was likely to be too great for a model that 

simulated a homogeneous cohort (Issue 7). For example, (i) patient characteristics were 

assumed to affect mortality and the time to treatment failure, and (ii) the type of 

treatment prescribed was assumed to affect the rate of disease progression; 

 

• The decision problem was also characterised by a range of competing clinical events 

that could have occurred within any unit of time (such as treatment failure, disease 
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progression, death, development of adalimumab ADAb, or a test for ADAb and drug 

levels). The checklist therefore suggested that the appropriate modelling approach 

should have advanced time continuously or in small time cycles (Issue 12); 

 

• The development of ADAb and low drug levels during response to treatment was 

assumed to affect the time to secondary non-response of adalimumab. This assumption, 

which was the source of exploitable heterogeneity to stratify subsequent treatment 

decisions, implied that: (i) the timing of events was important (Issue 9), (ii) covariates 

(at the patient-level) caused an interaction effect (Issue 5), and (iii) the timing of events 

was inherently non-Markovian (Issue 6) because the previous clinical events 

experienced by a patient may have affected their likelihood of future clinical events. 

The checklist therefore recommended a non-Markovian individual-level model that 

utilised simulation methods.  

The appropriate type of model to address the decision problem in Section 5.5 was therefore 

selected to be an individual-level discrete event simulation (DES) (Caro et al., 2016b).  

5.7.5. Summary of Key Findings 

This study selected the most appropriate type of decision analytic model for the economic 

evaluation of stratified medicine in this thesis by (i) identifying the key characteristics of 

the decision problem, that may have informed the type of model, from the problem-

oriented conceptual models in Section 5.6, and (ii) by applying these characteristics to a 

published checklist that informed model selection by Brennan et al. (2006). An individual-

level discrete event simulation was selected to be the most appropriate type of model to 

address the decision problem in Section 5.5. The key element of the decision problem that 

informed this choice was the need for a non-Markovian model; the model required a 

memory of patients’ histories because the development of adalimumab ADAb and low 

drug levels were assumed to affect the time to subsequent treatment failure.  

The final stage of model development, having (i) defined the decision problem (Section 

5.5); (ii) conceptualised the system in which the decision problem existed (Section 5.6); 

and (iii) selected the appropriate type of model (Section 5.7), was to design the structure of 

the final quantitative decision analytic model. This final stage, reported in the next section 

of Chapter Five, was achieved by using a design-oriented conceptual model that brought 

together the two problem-oriented conceptual models within a DES framework.  
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5.8. Chapter Objective 6: Design-oriented Conceptual Model 

This study reports how the structure of the final decision analytic model was designed, 

within the framework of a DES, to address the decision problem in Section 5.5.  

5.8.1. Introduction 

The structure of the final decision analytic model of adalimumab ADAb and drug level 

testing, to stratify treatment for patients with RA in England, was informed by combining 

the two problem-oriented conceptual models that were described in Section 5.6. There 

were, however, a number of different ways in which to structure the final decision analytic 

model (Tappenden, 2014). There is an extensive literature on the differences in structural 

assumptions between different published decision analytic models for RA (Bansback et al., 

2005; Drummond et al., 2005; Bansback et al., 2008; Barton, 2011; Madan et al., 2011; 

Tosh et al., 2011; Tsao et al., 2012; Scholz et al., 2014; Tosh et al., 2014; Ganz et al., 

2015; Madan et al., 2015). Therefore, previous model-based economic evaluations for RA, 

and in particular those that performed an individual-patient simulation, also had the 

potential to inform the design of the economic evaluation reported in this thesis 

(Tappenden, 2014) 

5.8.2. Aim and Objectives 

The aim of this study was to determine the structure of the de novo decision analytic model 

to address the decision problem in Section 5.5. There were two objectives to meet this aim: 

Objective 1: Identify the modelling assumptions that were made by similar individual 

                      level model-based economic evaluations for RA; 

Objective 2: Develop the structure of the de novo DES model for the early economic 

                      evaluation of stratified medicine in this thesis.  

5.8.3. Method 

A systematic review of published decision analytic models for RA that had performed an 

individual-level patient simulation is reported in Appendix 27. The purpose of this 

systematic review was to identify the distinct structural assumptions that were made within 
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different published decision analytic models for RA that had a similar design as the DES in 

this thesis.  

A design-oriented conceptual model was then developed within a DES structure, which 

combined the two descriptive problem-oriented conceptual models from Section 5.6, 

informed by the results of the systematic review in Appendix 27.  

5.8.4. Results 

The results of the systematic review of published individual-level models for RA is 

reported, in full, in Appendix 27. The systematic review identified twenty-nine studies that 

reported an individual-level model for RA. Each model was categorised into eight 

‘families’ that had similar structural assumptions. The models were, broadly, designed to 

simulate a patient individually through a sequence of treatments over time according to 

four phases: (i) estimate treatment response; (ii) estimate the immediate and temporal 

change in disease activity following treatment response; (iii) estimate loss of response to 

treatment and commence the next treatment in the sequence; (iv) estimate whether the 

patient has died, at which point, commence the simulation of the next patient within the 

cohort. The models made assumptions about the simulated population, the progression of 

disease, and the estimation of direct health care resource use and QALYs gained over time. 

These assumptions are described in detail within Appendix 27 and are used throughout 

Chapter Six to justify the specific assumptions within the de novo decision analytic model 

in this thesis. The results reported here provide an overview of the final decision analytic 

model’s structure in the thesis (Section 5.8.4.1) and describe the specific care pathways 

that a patient may have experienced within the model (Section 5.8.4.2).  

5.8.4.1. Overview of the Model 

The structure of the de novo decision analytic model characterised the sequence of 

treatments that could be prescribed to a patient with RA over their lifetime. The model 

assumed a structure that emulated current clinical practice for RA in England to ensure 

relevance to the decision problem in Section 5.5. For example, (i) the appropriate sequence 

of treatments was informed by clinical recommendations (produced by NICE, the British 

Society for Rheumatology, and EULAR) and qualitative interviews with consultant 

rheumatologists in England (Chapter Three); and (ii) response to any treatment was 

characterised in terms of a EULAR response (van Gestel et al., 1998). ADAb and drug 
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level ELISA testing were included the model, for patients that were prescribed 

adalimumab, to facilitate the stratification of a subsequent treatment decision.  

The decision analytic model was implemented as a DES (described in Appendix 3) (Caro, 

2005; Caro et al., 2016a; Caro et al., 2016b). Conceptually, the DES simulated patients 

individually through the structure of the model by exposing each patient to a set of relevant 

competing events that could have occurred over their lifetime. Twelve published model-

based economic evaluations have also simulated patients by estimating time-to-event 

values individually for each patient (see Appendix 27; Section A27.4). Figure 5.9 

illustrates the design-oriented conceptual model of the DES simulation.  

The model was divided into two parts; Part One corresponded to the period when a patient 

received adalimumab and Part Two corresponded to the period when they received any 

other subsequent treatment in the sequence. Part One was divided further into the time 

before and after adalimumab-induced remission, to enable different strategies of stratified 

medicine (based on the time of testing) to be evaluated.  
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Figure 5.9. Structure of the decision analytic model to stratify treatment for RA using 

adalimumab ADAb and drug level testing.  

 

Note: †:  Different testing strategies were used for routine monitoring of adalimumab: (i) Test ADAb only – 

Test positive = ADAb detected; (ii) Test ADAb and drug levels – Test Positive = ADAb and low drug levels 

detected. Abbreviations: ADAb+=Anti-drug antibody positive. 
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5.8.4.2. Description of Care Pathways 

This section describes the different care pathways that a hypothetical individual patient 

could have experienced through the model.  

Part One: Adalimumab before Remission 

Patients that entered the model were assumed to commence adalimumab therapy. There 

were six competing events that a patient may have experienced, before they entered 

remission, whilst receiving adalimumab: (i) a EULAR response; (ii) loss of response; (iii) 

enter remission; (iv) develop adalimumab ADAb; (v) test ADAb and drug levels; or (vi) 

death. The first event was usually a EULAR response to treatment, unless death or loss of 

response occurred within six months of model entry. The patient moved to Part Two of the 

model if no EULAR response was attained; the remaining events were experienced in 

ascending order of time if a good or moderate EULAR response to adalimumab was 

attained at six months.  

If a patient developed adalimumab ADAb, their time to experiencing a loss of response to 

adalimumab was reduced (to occur earlier). The frequency of ADAb and drug level testing, 

and the time to enter remission, were determined in advance to characterise different 

strategies to stratify treatment. If testing detected adalimumab ADAb (and low drug levels, 

if both tests were used), the patient proceeded to Part Two of the model and changed their 

treatment to the next bDMARD in the sequence (rituximab).  

Part One: Adalimumab during Remission 

There were three competing events that a patient could have experienced during 

adalimumab-induced remission: (i) loss of response; (ii) test adalimumab drug levels; or 

(iii) death. If the drug level test detected high drug levels, the interval between the patient’s 

adalimumab injections was doubled (to reduce the dose). The patient may have 

subsequently flared based on the true status of their underlying drug level. The interval 

between injections was reverted to its original schedule if a patient flared. Patients 

remained on adalimumab until loss of response or death.  
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Part Two: Treatments after Adalimumab 

A patient’s treatment was changed to the next in sequence upon entering Part Two of the 

model. The three competing events that could occur after commencing any treatment in 

Part Two were: (i) a EULAR response; (ii) loss of response; or (iii) death. A patient that 

lost response to a treatment was prescribed the next therapy in the sequence. Patients that 

entered Part Two remained there until death; at which point, the next individual patient 

entered the model to simulate their specific lifetime of events.   

Specific Testing Strategies 

The different ways to use a testing strategy in order to stratify treatment were defined as 

different comparator strategies in the economic evaluation (identified in Chapter Six). For 

example, permutations of testing, consistent with the decision problem, included (i) only 

testing adalimumab drug levels in remission; (ii) only testing adalimumab ADAb (and not 

drug levels) whilst responding; and (iii) testing at different frequencies (for example, every 

three or six months). Additionally, the decision problem included consideration of 

adalimumab dose-reduction strategies in all patients without testing (Section 5.5). The care 

pathways in the decision analytic model were therefore adjustable to implement different 

comparator strategies.  

5.8.5. Summary of Key Findings 

This study presented the design of the final de novo decision analytic model of 

adalimumab ADAb and drug level ELISA testing to stratify treatment for patients with RA 

in England. The structure was designed with explicit relevance to current clinical practice 

in England to satisfy the requirements of the decision-makers responsive for allocating 

population health care resources in the NHS. A design-oriented conceptual model was used 

to combine the two descriptive problem-oriented conceptual models from Section 5.6, 

informed by a systematic review of published individual-level economic evaluations.  

Having developed the structure of the de novo decision analytic model, the next stage of 

the early economic evaluation was to populate the model with relevant evidence to inform 

(i) the relative cost-effectiveness of using the ADAb and drug level tests to stratify 

treatment, and (ii) the potential value of conducting further research to reduce parameter 

uncertainty in the model.  
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5.9 Conclusion 

This chapter provided a transparent explanation of how the early economic evaluation, 

reported in this thesis, was developed. An extensive model conceptualisation process was 

undertaken, which was informed by six sub-studies within the chapter: (i) a systematic 

review of RA-specific prescribing algorithms that included ADAb and drug level testing 

for any TNFi; (ii) a novel algebraic conceptualisation technique to identify relevant 

relevant comparator strategies from a wider set of candidate strategies; (iii) a clear 

definition of the decision problem; (iv) two problem-oriented conceptual models that 

described disease progression and the relevant care pathways; (v) a clear justification for 

selecting the type of decision analytic model; and (vi) a design-oriented conceptual model 

that described the final structure of the de novo decision analytic model.  

In order to implement the final DES model, evidence was required to estimate the values of 

the input parameters for clinical outcomes, resource use, unit costs, and QALYs. Chapter 

Six presents the methods that were used to perform the economic evaluation, which 

addressed the decision problem in Section 5.5, by estimating: (i) the relative cost-

effectiveness of adalimumab ADAb and drug level testing to stratify treatment for patients 

with RA in England, and (ii) the potential value of conducting further research to reduce 

uncertainty in the relative cost-effectiveness of treatment stratification.  
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Chapter 6 

Early Model-based Economic 

Evaluation of Adalimumab 

Anti-drug Antibody and Drug 

Level Testing to Stratify 

Treatment for Rheumatoid 

Arthritis in England 
 

Chapter Six presents an early model-based economic evaluation of adalimumab ADAb and 

drug level ELISA testing to stratify treatment for patients with RA in England. The study 

describes how the de novo decision analytic model was implemented as a DES and how 

the specific input parameters, and expected outputs, of the model were estimated. 

A published microcosting study, co-authored with Dr. Meghna Jani to supplement the 

research within this thesis, is provided in Appendix 35 (Jani et al., 2016a). The systematic 

review and bivariate meta-analysis of test accuracy studies, reported in Appendix 34, has 

been accepted for presentation at the International Society for Pharmacoeconomics and 

Outcomes Research 22nd Annual International Meeting and the EULAR 2017 Annual 

European Congress of Rheumatology. The thesis chapter is structured by the following 

sections: the introduction (Section 6.1), aim and objectives (Section 6.2), method (Section 

6.3), results (Section 6.4), discussion (Section 6.5), and conclusion (Section 6.6). 
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6.1. Introduction 

Chapter Five documented the development process of the early cost-effectiveness analysis 

presented in this thesis by (i) defining the decision problem, (ii) selecting the most 

appropriate type of model, (iii) conceptualising disease progression and care pathways, and 

(iv) finalising the structure of the decision analytic model. This chapter reports how the 

final decision analytic model was implemented, in its quantitative form, to estimate the 

relative cost-effectiveness of adalimumab ADAb and drug level testing to stratify 

treatment for RA in NHS England.  

 

6.2. Aim and Objectives 

The aim of this study was to determine whether adalimumab ADAb and drug level ELISA 

testing, to stratify treatment for patients with RA in England, was a relatively cost-effective 

use of health care resources, according to the decision problem in Table 5.8 of Section 5.5. 

There were three objectives to meet this aim: 

Objective 1: Construct a quantitative de novo decision analytic model that was appropriate 

                     for the decision problem in Table 5.8; 

Objective 2: Estimate relevant values and distributions for the input parameters of the 

                     decision analytic model; 

Objective 3: Estimate the (i) relative cost-effectiveness and (ii) decision uncertainty 

                      associated with adalimumab ADAb and drug level testing to stratify 

                      treatment for patients with RA in the NHS in England, and (iii) the potential 

                      value of further research to reduce parameter uncertainty within the model.  
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6.3. Method 

The methods of the early economic evaluation are reported over five subsections, which 

describe: the study’s design (Section 6.3.1), the target population (Section 6.3.2), the 

estimation of the model’s input parameters (Section 6.3.3), validation of the model 

(Section 6.3.4) and the analysis (Section 6.3.5). The economic evaluation was reported 

according to the requirements of the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) statement (Husereau et al., 2013). The completed CHEERS 

statement is reported in Appendix 28.  

6.3.1. Study Design 

This study was designed as a model-based economic evaluation, to inform health care 

resource allocation decision-making in England by following the requirements specified by 

the NICE Reference Case (National Institute for Health and Care Excellence, 2011a; 

2013a). 

6.3.1.1. Perspective 

The study was conducted from the perspective of the NHS and personal social services in 

England, defined by the decision problem in Chapter Five (see Table 5.8; Section 5.5). 

This perspective was deemed to be relevant for decision-makers that had responsibility for 

allocating resources from the NHS England’s budget for health care (National Institute for 

Health and Care Excellence, 2011a; 2013a). The relevant opportunity cost of a comparator 

strategy was therefore estimated according to the incremental direct health care costs that 

were imposed on this budget constraint. Indirect costs (such as the productivity loss of a 

patient) were not included in the analysis because they were beyond the scope of the 

study’s perspective (National Institute for Health and Care Excellence, 2013a).  

6.3.1.2. Time Horizon 

Relevant cost and QALY differences between intervention strategies were expected to 

occur for the duration of each patient’s life due to the chronic nature of RA, and the 

consequential sequence of therapies that each patient would likely have experienced over 

their lifetime. The study was therefore conducted over a lifetime time horizon.  
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6.3.1.3. Form of Economic Evaluation 

The economic evaluation was a cost-effectiveness analysis, with health outcomes 

expressed in terms of QALYs. In the NICE Reference Case, the term cost-effectiveness 

analysis was used interchangeability with cost-utility analysis, which was a more-common 

nomenclature to define an economic evaluation that used QALYs to quantify health 

consequences (National Institute for Health and Care Excellence, 2013a).  

By expressing the health consequences of each intervention strategy in QALYs, statements 

could be made regarding the relative cost-effectiveness of treatment stratification in 

England with reference to a range of cost-effectiveness thresholds used by NICE (National 

Institute for Health and Care Excellence, 2013a).  

6.3.1.4. Test and Treatment Strategies 

All patients received a sequence of therapies, identified during model conceptualisation 

(Figure 5.7; Section 5.6), representative of current practice in England, which comprised 

(i) adalimumab plus methotrexate, (ii) rituximab plus methotrexate, (iii) tocilizumab plus 

methotrexate, and (iv) methotrexate for their remaining lifetime. The health technologies 

(treatments and tests) were assumed to be delivered in a secondary-care setting within the 

NHS.  

ADAb and drug level testing was performed when the patient received adalimumab. The 

decision problem (Table 5.8; Section 5.5) included three relevant comparator strategies: (i) 

use the ELISA tests to monitor treatment in patients that responded to adalimumab, (ii) use 

the drug level ELISA test in remission to inform adalimumab dose-reduction strategies, 

and (iii) reduce the dose of adalimumab in all patients without testing. Choices were 

required over the frequency of monitoring, and the timing of testing/dose reduction, after 

responding to adalimumab. Additionally, the ADAb test could be used with, or without, 

the drug level test when used to monitor treatment. The economic evaluation was therefore 

structured around thirteen potential comparator strategies (reported in Table 6.1).  

Eight of these comparator strategies used testing to monitor treatment, to inform a pre-

emptive change of treatment to the next therapy in the sequence (rituximab plus 

methotrexate), while patients were responding to adalimumab (Strategies 1-4, 7-10). The 

accuracy of monitoring ADAb alone (Strategies 7-10) was imperfect and may have 
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provided false-positive test results (because the patient truly didn’t have adalimumab 

ADAb and low drug levels). Drug level testing could be used in combination with ADAb 

testing (Strategies 1-4), at a greater cost to the NHS, to verify whether the ADAb test was 

correct. It was assumed that immunogenicity monitoring could occur every three or six 

months, to conform with published RA-specific prescribing algorithms identified in 

Section 5.3 (Garcês et al., 2014; Mok et al., 2016).  

Table 6.1. Thirteen comparator strategies included in the cost-effectiveness analysis of 

adalimumab ADAb and drug level testing.  

Strategy Type of Testing Strategy Description 

 

Current 

Practice 

 

Not applicable†. 

 

Usual care for RA patients with no testing of ADAb 

or drug levels. 

 

Strategy 1 Monitoring. ADAb and drug level testing every 3 months. 

 

Strategy 2 Monitoring. ADAb and drug level testing every 6 months. 

 

Strategy 3 Monitoring & dose reduction.  ADAb and drug level testing every 3 months, drug 

level test in remission after 2 years. 

 

Strategy 4 Monitoring & dose reduction. ADAb and drug level testing every 3 months, drug 

level test in remission after 3 years. 

 

Strategy 5 Dose reduction.  Drug level test in remission after 2 years. 

 

Strategy 6 Dose reduction.  Drug level test in remission after 3 years. 

 

Strategy 7 Monitoring.  ADAb testing only every 3 months. 

 

Strategy 8 Monitoring.  ADAb testing only every 6 months. 

 

Strategy 9 Monitoring & dose reduction. ADAb testing only every 3 months, drug level test 

in remission after 2 years. 

 

Strategy 10 Monitoring & dose reduction. ADAb testing only every 3 months, drug level test 

in remission after 3 years. 

 

Strategy 11 Not applicable†.  No testing, just half dose in remission after 2 years. 

 

Strategy 12 Not applicable†.  No testing, just half dose in remission after 3 years. 

Note: †=Strategy did not include testing; Abbreviations: ADAb=Anti-drug antibody.  

 

Six strategies tested adalimumab drug levels after patients responded to treatment for two 

or three years (Strategies 3-6, 9-10). It was assumed that patients who maintained response 

at two years were characterised as being in remission. The standard course of full-dose 

adalimumab was halved upon detecting high drug levels by doubling the interval between 
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adalimumab injections. Four strategies combined both routine monitoring of adalimumab 

and remission drug level testing (Strategies 3, 4, 9, 10).  

Three strategies did not include any testing to stratify treatment. Patients that followed the 

‘Current Practice’ strategy were treated according to the usual care pathway for RA. Two 

strategies halved adalimumab doses in all patients after responding for two or three years, 

irrespective of their true drug level (Strategies 11, 12).  

6.3.1.5. Model Structure 

A de novo decision analytic model was developed as a DES (Caro et al., 2016b), the logic 

for which was written in the programming language R (R Core Team, 2015). R has been 

used, and recommended, increasingly within the literature to develop decision analytic 

models that simulate the histories of individual patients over time (Tosh et al., 2008; 

Holland et al., 2016; Jalal et al., 2017). The DES was built by following the practical 

guidance on programming individual patient-level simulation models issued by the NICE 

Decision Support Unit (Davis et al., 2014). The DES simulated patients individually 

through the model structure illustrated in (Figure 5.9; Section 5.8.4.1).  

Each individual patient received all thirteen strategies reported in Table 6.1 to facilitate an 

incremental analysis. Patients remained in the model until their death and received the 

therapies in the pre-defined sequence. Treatment decisions based on testing adalimumab 

ADAb and drug levels may have caused a benefit or harm, depending on whether testing 

provided a true-positive, false-positive, true-negative, or false-negative result. Reduced-

dose adalimumab may have caused a patient to flare if they did not have high drug levels a 

priori.  

The model was implemented by simulating the progression of each patient’s HAQ-DI 

score over time, referred to hereafter as the HAQ score, which quantified the functional 

ability of each patient (Bruce et al., 2003). The simulation of each patient’s individual 

HAQ score over time has been recommended by a multidisciplinary working party for 

modelling the relative cost-effectiveness of bDMARD therapies for RA (Madan et al., 

2015), and has been performed by other individual-level model-based economic 

evaluations in RA (these published model-based economic evaluations are described 

extensively in Appendix 27).  
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Each patient’s EULAR response was assumed to be assessed six months after starting any 

treatment, consistent with current practice in England (National Institute for Health and 

Care Excellence, 2016a). A EULAR response (good or moderate) to treatment was 

assumed to cause a reduction a patient’s HAQ score. Upon treatment failure, the HAQ 

score increased by a magnitude equal to the initial reduction, referred to in the literature as 

a perfect rebound (see Appendix 27; Treatment Withdrawal). A patient’s HAQ was 

assumed to gradually worsen over time to reflect the chronic nature of RA and the natural 

progression of the disease (Madan et al., 2015). QALYs and annual days of hospitalisation 

were estimated from a patient’s HAQ profile over time.  

The DES handled the simulation of patients through the model by using the time-to-event 

method (Caro et al., 2016b). The time-to-event method involved advancing the DES 

simulation clock according to the pre-defined times at which certain events were scheduled 

to occur for each patient. Each patient had a unique list of events that comprised nine types 

of event (Table 6.2) that could have occurred over time. The times to five events were 

estimated by parametric survival analysis; a description of the parametric survival analysis 

methods that were used in this thesis are reported in Appendix 29. The times to events that 

incorporated testing were determined according to the comparator strategy in Table 6.1. 

The time to each EULAR response and HAQ progression were fixed by assumption (six 

months after starting any treatment and annually, respectively, by definition). Each 

patient’s list of events were scheduled in ascending order of time. If a patient developed 

adalimumab ADAb, the time to adalimumab failure was updated to occur earlier.  

 

Table 6.2. Nine time-to-event input parameters and their estimation method. 

Event Estimation Method 

Time to death. Parametric survival analysis. 

Time to adalimumab failure. Parametric survival analysis. 

Time to rituximab failure. Parametric survival analysis. 

Time to certolizumab failure. Parametric survival analysis. 

Time to developing adalimumab ADAb. Parametric survival analysis. 

Time to routine ADAb and drug level testing. Varied by comparator strategy. 

Time to remission testing. Varied by comparator strategy. 

Time to EULAR response. Fixed. 

Time to HAQ progression. Fixed. 
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6.3.2. Model Population 

The relevant population simulated by the model, consistent with the decision problem in 

Table 5.8; Section 5.5, was representative of all patients with RA in England that were 

eligible for TNFi therapy according to NICE recommendations. Patients were assumed to 

be bDMARD-naïve, had failed two previous attempts of cDMARD therapy (at least one 

being methotrexate), and had a DAS28 score of at least 5.1 indicating high disease activity 

(National Institute for Health and Care Excellence, 2016a).  

Patients were defined at the start of the simulation by three attributes: their (i) age, (ii) sex, 

and (iii) HAQ score. The majority of published individual-level model-based economic 

evaluations in RA, identified by the systematic review in Appendix 27, have also described 

their population according to these three attributes (see Appendix 27; Model Population). 

The mean and standard deviation of each attribute (reported in Table 6.3) were obtained 

from the baseline summary statistics of RA patients that were recruited to the British 

Society for Rheumatology Biologics Register – Rheumatoid Arthritis (BSRBR-RA) cohort 

in 2004 (Hyrich et al., 2011). The BSRBR-RA cohort was a representative sample of 

patients with RA in the UK who were prescribed a TNFi therapy according to the 

eligibility criteria of NICE. The year 2004 was chosen because the BSRBR-RA recruited 

the largest number of eligible patients (n=3,138) to the cohort in that year.  

Table 6.3. Mean values of patient attributes derived from the BSRBR-RA cohort.  

Attribute BSRBR-RA Value for Population 

Mean Age (Standard deviation). 

 

56.7 years (12.1). 

Percentage of Women in cohort. 

 

76%. 

Mean HAQ score (Standard deviation). 2.04 (0.56). 

Source: Hyrich et al. (2010, pp.119-120). 

The values in Table 6.3 were used to simulate each individual patient’s (i) age from a 

normal distribution, (ii) sex from a uniform distribution, and (iii) baseline HAQ from a 

normal distribution (bounded between zero and three) and rounded to the nearest 0.125 to 

represent a legitimate HAQ score (Bruce et al., 2003). Attributes were not simulated from 

correlated distributions because the variance-covariance matrix of the patient-level 

characteristics was not available. In general, published DES models, in the absence of 

individual patient data, have also not induced correlation between attributes (Caro et al., 

2016b). This modelling decision was unlikely to have impacted the expected cost and 

QALY outcomes estimated by the model, providing that a sufficient number of patients 
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were simulated. However, uncorrelated patient-level attributes may have increased the 

uncertainty associated with the estimate of relative cost-effectiveness.  

6.3.3. Model Parameters 

An advantage of using a decision analytic model, to inform decision-making, was its 

ability to synthesise all relevant existing evidence (Shemilt et al., 2010). Every input 

parameter of any decision analytic model must be estimated (Kaltenthaler et al., 2013). The 

most appropriate source of evidence may vary depending on nature of the parameter being 

estimated (Kaltenthaler et al., 2011). The NICE Reference Case required that the sources 

of evidence to inform a model’s parameters were identified in a systematic way (National 

Institute for Health and Care Excellence, 2013a). Coyle et al. (2010) produced a hierarchy 

of data sources for health economic analyses that described the quality of a source for 

different types of model parameters (clinical effect size; baseline clinical data; resource 

use; unit costs; utilities) in terms of how the source was estimated and its relevance to the 

specific decision problem; an application of the hierarchy to the data sources used to 

populate this decision analytic model is reported in Appendix 30. Section 6.2.3 reports all 

values of the model’s parameters, and how these values were estimated, in the order of: 

clinical effectiveness (Section 6.3.3.1), QALYs (Section 6.3.3.2), resource use (Section 

6.3.3.3), and unit costs (Section 6.3.3.4).  

6.3.3.1. Clinical Effectiveness Parameters 

Table 6.4 provides a summary of all clinical input parameter values used in the model. 
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Table 6.4. Clinical input parameter values for the decision analytic model 

Parameter Deterministic Analysis 
Probabilistic Analysis 

Source 
Distribution Parameters 

 

Time to Event Parameters 

 

   

All-cause 

mortality: 

men. 

Gompertz 

Shape: 0.103924; 

Rate: 0.0000154 

Multivariate 

normal†.  

Shape(0.021284) 

Rate(0.000040) 

Cov(-0.000263) 

Survival 

analysis 

(Section 

6.3.3.1.1.) 

using ONS 

(2015) data. 

 

All-cause 

mortality: 

women. 

Gompertz 

Shape: 0.1162922; 

Rate: 0.000004307 

Multivariate 

normal†. 

Shape(0.000627) 

Rate(0.000000) 

Cov(-0.000007) 

Survival 

analysis 

(Section 

6.3.3.1.1.) 

using ONS 

(2015) data. 

 

Time to biologic 

failure. 

Weibull 

Shape: 1.351142; 

Scale: 4.708286305 

Multivariate 

normal†. 

Shape(0.000012) 

Rate(0.000015) 

Cov(-0.000005) 

Survival 

analysis 

(Section 

6.3.3.1.5.) 

using Souto 

et al. (2016) 

data. 

 

Time to develop 

ADAb. 

Log-normal 

Mean: 1.146684; 

SD: 0.7284289 

Multivariate 

normal†. 

Shape(0.216342) 

SD(0.069402) 

Cov(0.056025) 

Survival 

analysis 

(Section 

6.3.3.1.7.) 

using 

Bartelds et 

al. (2011) 

data. 

 

Time to testing. Fixed. Fixed. Determined 

by 

comparator 

strategy.  

RA-specific 

mortality hazard 

ratio. 

Baseline 

HAQ    

    

0                             

0.125 - 0.375 

0.5 - 0.875 

1 - 1.37 

1.5 - 1.875 

2 - 2.375 

2.5 - 3 

Hazard (95% CI) 

 

 

1 (Reference) 

1.4 (1.1-1.8) 

1.5 (1.2-1.9) 

1.8 (1.4-2.2) 

2.7 (2.2-3.5) 

4 (3.1-5.2) 

5.5 (3.9-7.7) 

 

 

 

 

 

LogNormal. 

 

 

 

 

 

(0.34, 0.13) 

(0.41, 0.12) 

(0.59, 0.12) 

(0.99, 0.12) 

(1.39, 0.13) 

(1.70, 0.17) 

 

 

 

 

 

Michaud et 

al. (2012) 

Clinical Parameters 

 

   

Consequence of 

developing 

adalimumab 

ADAb. 

 

Relative Risk of Loss of Response 

(95% CI) 

 

0.47 (0.33-0.65) 

 

 

LogNormal. 

 

 

(-0.76, 0.17) 

 

 

Garcês et al. 

(2013) 

Annual HAQ 

progression. 

Treatment 

bDMARD 

Methotrexate 

HAQ Increase 

0 

0.045 

 

Fixed. 

Previous 

NICE 

Appraisals♦. 
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Note: †=Values for the multivariate normal distribution obtained from Cholesky decomposition of the 

variance-covariance matrix; ♦=Malottki et al. (2011) and Stevenson et al. (2016); Abbreviations: 

ONS=Office for National Statistics.  

 

Parameter Deterministic Analysis 
Probabilistic Analysis 

Source 
Distribution Parameters 

Treatment Response Parameters 

 

   

 

Treatment      

 

     Adalimumab. 

 

 

     Rituximab. 

 

 

     Tocilizumab. 

 

 

     Methotrexate. 

EULAR 

Response 

 

Good; 

Moderate  

 

Good; 

Moderate  

 

Good; 

Moderate  

 

Good; 

Moderate  

Probability 

 

 

0.252 

0.448 

 

0.242 

0.448 

 

0.568 

0.346 

 

0.094 

0.357 

 

 

 

Dirichlet 

 

 

 

 

 

(0.252, 0.448, 

0.3) 

 

(0.242, 0.448, 

0.31) 

 

(0.568, 0.346, 

0.086) 

 

(0.094, 0.357, 

0.549) 

 

 

 

Systematic 

review and 

network 

meta-

analysis in 

Stevenson et 

al. (2016) 

 

HAQ reduction 

following 

treatment 

response.  

 

EULAR 

Response 

 

Good; 

Moderate 

 

 

Mean (SE) 

 

 

-0.672 (0.112) 

-0.317 (0.048) 

 

 

 

 

1-Gamma. 

 

 

 

 

(231.04, 0.0072) 

(752.82, 0.0017) 

 

 

 

 

Stevenson et 

al. (2016). 

Test Parameters   

 

 

      

     ADAb test. 

 

 

   Drug level test: 

     Full dose. 

 

 

      

 

     Half dose. 

Test 

Accuracy 

 

Sensitivity 

Specificity 

 

 

Sensitivity 

Specificity 

 

 

 

Sensitivity 

Specificity 

Mean (95% CI) 

 

 

0.32 (0.21-0.46) 

0.98 (0.93-0.99) 

 

 

0.95 (0.85-0.98) 

0.68 (0.28-0.92) 

 

 

 

1 (Not reported) 

0.93 (Not reported) 

 

 

 

 

 

Beta. 

 

 

 

Multivariate 

normal†. 

 

 

 

Beta.  

 

 

 

(16.962, 35.714) 

(62.852, 1.283) 

 

 

LogitSens(0.658) 

LogitSpec(1.488) 

Cov(0.388) 

 

 

(23, 0.01) 

(38.294, 2.706) 

 

 

Jani et al. 

(2016).  

 

 

Hierarchical 

meta-

analysis in 

Section 

6.2.3.1.11. 

 

Chen et al. 

(2016).  

HAQ multipliers 

for monitoring 

test.  

Test Outcome 

 

 

True-positive; 

False-positive 

Multiplier 

(Range) 

 

0.5 (0-1) 

0.5 (0-1) 

 

 

 

 

Uniform. 

 

 

 

(0,1) 

(0,1) 

 

 

 

Assumption.  

Probability of 

adalimumab low 

drug levels in 

remission. 

Probability (95% CI) 

 

0.23 (0.16-0.32) 

 

 

Beta.  

 

 

(24.220, 81.084) 

 

 

Kuijper et al. 

(2015). 

 

HAQ increase 

due to flare. 

HAQ Increase (95% CI) 

 

0.250 (Not reported) 

 

 

Gamma.  

 

 

(1, 0.251) 

 

Markusse et 

al. (2015). 

 

Duration of flare. One week.  Fixed. Bykerk et al. 

(2014). 
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6.3.3.1.1. Time to Death 

Each patient required an estimate of their time to death, in order to define their lifetime 

duration within the model. This estimate should be representative of the target population 

of patients with RA in England. All-cause mortality data were obtained from the most 

recent national life tables (for the years 2012 to 2014) for England published by the Office 

for National Statistics (Office for National Statistics, 2015). A parametric survival analysis 

was performed separately on the data for men and women (reported in full in Appendix 

31).  

Gompertz survival curves fit the observed mortality data best for both men and women 

according to the AIC and BIC test statistics (Akaike, 1974; Schwarz, 1978). The Gompertz 

function for (i) men was defined by a shape parameter of 0.103924 and rate parameter of 

0.0000154, and for (ii) women was defined by a shape parameter of 0.1162922 and a rate 

parameter of 0.000004307. Both curves followed a similar trajectory but the male 

Gompertz curve was further to the left, which demonstrated a greater risk of all-cause 

mortality relative to women. 

6.3.3.1.2. Mortality Adjustment for Rheumatoid Arthritis 

Patients with RA have a greater risk of mortality than the general population (Kvien, 

2004). Therefore, the time to death estimated from the general population all-cause 

mortality data required an adjustment to account for this increased mortality in the target 

population. The individual-level model-based economic evaluations identified by the 

systematic review in Appendix 27 reported that this adjustment could be made by making 

mortality a function of the patient’s HAQ score (see Appendix 27; Mortality). 

Following the modelling approach of Stevenson et al. (2016), which provided evidence for 

the most recent NICE technology appraisal of TNFi therapies for RA, the RA-specific 

mortality was related to each patient’s HAQ by using the evidence from Michaud et al. 

(2012). Michaud et al. (2012) used patient-level data from 10,319 patients with RA 

enrolled to the National Data Bank for Rheumatic Diseases longitudinal cohort, to estimate 

the predictive ability of their baseline HAQ (at study entry) on mortality. The results 

demonstrated that a worse (higher) baseline HAQ was associated with a greater risk of 

mortality.  
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Michaud et al. (2012) estimated their results as hazard ratios across seven categories of 

HAQ score, reported in Table 6.4. A hazard ratio provided the likelihood that an event 

(mortality) would have occured in an intervention group (in this case, defined by baseline 

HAQ score) relative to a control group (in this case, a HAQ equal to zero) (Blagoev et al., 

2012). 

The decision analytic model applied these hazard ratios to the all-cause mortality survival 

curves, conditional on the value of each individual patient’s simulated baseline HAQ 

attribute (Caro et al., 2016b). The greater a patient’s HAQ at model entry, the greater the 

hazard ratio applied to their survival curve, and the more the survival curve shifted to the 

left, resulting in a higher probability of earlier mortality. The implicit assumption of 

modelling RA-specific mortality in this way was that an improvement in HAQ over the 

duration of treatment did not affect the probability of death.  

6.3.3.1.3. EULAR Response to Treatment 

Response to all therapies was represented as a EULAR response that occurred six months 

from treatment initiation, consistent with current practice in England (National Institute for 

Health and Care Excellence, 2016a). Two published individual-level model-based 

economic evaluations for RA have modelled treatment response in terms of a EULAR 

response (see Appendix 27; Initial Treatment Response). Estimates of six-month treatment 

efficacy were derived from the independent systematic review and network meta-analysis 

of published RCT evidence, performed by Stevenson et al. (2016, p. 84, Table 31) for the 

most-recent technology appraisal of TNFi therapies for RA by NICE. A network meta-

analysis is a method of evidence synthesis that uses all available trial evidence to facilitate 

comparisons between treatments that have not necessarily been evaluated in a head-to-head 

RCT, but which instead have a common comparator treatment (Jansen et al., 2011).   

The network meta-analysis by Stevenson et al. (2016) was the most suitable source of 

treatment efficacy for this study, relative to the other relevant published network meta-

analyses (Orme et al., 2012; Jansen et al., 2014; Buckley et al., 2015; Hazlewood et al., 

2016; Singh et al., 2016a), because treatment efficacy was: (i) evaluated in terms of 

EULAR response rather than ACR response, which is used in clinical practice in England, 

and (ii) trials only included patients that had previously failed methotrexate, which was 

consistent with the target population for this economic evaluation. The probabilities of 
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achieving a good and moderate EULAR response to each treatment are reported in Table 

6.4.  

As multinomial probabilities, by definition, must sum to one, a random number was drawn 

from a uniform distribution, individually for each patient, to determine their response to 

each treatment in the model (Caro et al., 2016b). Figure 6.1 illustrates the simulation of a 

EULAR response to adalimumab plus methotrexate for two different patients using the 

values derived from the published network meta-analysis. The probabilities were arranged 

such that: a good EULAR response was associated with random numbers up to 0.252; a 

moderate EULAR response was associated with random numbers between 0.252 and 0.7; 

and no EULAR response was associated with random numbers greater than 0.7. In the 

example shown in Figure 6.1, Patient A simulated the number 0.1 from a uniform 

distribution and subsequently achieved a good EULAR response to therapy, whereas 

Patient B simulated the number 0.8 from the same uniform distribution and subsequently 

achieved no EULAR response. 

Figure 6.1. Example of simulating a EULAR response to adalimumab plus methotrexate. 

Source: Probability of a EULAR response (van Gestel et al., 1998) was derived from the network 

meta-analysis of Stevenson et al. (2016). 

6.3.3.1.4. HAQ Improvement following EULAR Response 

A EULAR response, six months after starting any treatment, was assumed to be associated 

with an improvement (reduction) in a patient’s HAQ. Approximately ninety percent of the 

individual-level model-based economic evaluations for RA published previously have 
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assumed an immediate reduction in HAQ following treatment response (see Appendix 27; 

Disease Progression - Initial Treatment Response).  

The observed HAQ improvement was estimated by Stevenson et al. (2016) using data from 

10,186 patients with RA in England enrolled in the BSRBR register. The mean reduction in 

HAQ at six months following treatment initiation was estimated conditional on the 

following patient characteristics, measured at enrolment to the BSRBR: age; sex; disease 

duration; DAS28; and previous number of cDMARDs. The reduction in HAQ was 

estimated to be greater for patients with a good EULAR response (-0.672) compared with 

those with a moderate EULAR response (-0.317). Patients with no EULAR response were 

assumed to experience no change in their HAQ (Stevenson et al., 2016). 

The two assumptions underlying treatment response were that: (i) no EULAR response did 

not directly worsen a patient’s functional ability, and (ii) the improvement in HAQ did not 

vary between different treatments (for example, a good EULAR response to adalimumab 

was equivalent to a good EULAR response to rituximab). These assumptions have been 

made previously in published individual-level model-based economic evaluations for RA 

(see Appendix 27; Disease Progression – Initial Treatment Response).  

6.3.3.1.5. Time to Treatment Failure 

Patients that had a EULAR response to any bDMARD were assumed to respond to 

treatment for a finite period of time, to represent the occurrence of secondary non-

response. The model therefore required an estimate of the time that each patient would fail 

each treatment. As a DES was used, the most appropriate way to estimate the time to 

treatment failure was to assign a time for each individual patient; an alternative approach, 

if the model had used time cycles, would have been to apply a probability of treatment 

failure in each cycle (see Appendix 27; Treatment Failure).  

Souto et al. (2016) performed a systematic review and meta-analysis of all studies that 

estimated the discontinuation of bDMARDs in patients with RA using data from registry 

or health care databases. The analysis included ninety-eight studies, comprising over 

200,000 unique patients with RA. The meta-analysis results reported the annual percentage 

of RA patients that discontinued bDMARD therapy over a four-year period.   
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This decision analytic model used the annual probabilities of treatment discontinuation that 

were estimated for all TNFi therapies. A parametric survival analysis (reported in 

Appendix 32) was performed on the data from Souto et al. (2016). A Weibull survival 

curve was chosen, on the basis of clinical plausibility, to model the time to treatment 

failure, defined by a shape parameter of 1.351142 and a scale parameter of 4.708286305. 

The model simulated each patient’s time to treatment failure by: (i) drawing a random 

number from a uniform distribution and (ii) determining the corresponding time according 

to the Weibull survival curve. Due to limitations of data availability, the time to treatment 

failure for all bDMARDs were simulated from the same Weibull curve. Patients that had 

received all three bDMARDs in the treatment sequence were assumed to receive 

methotrexate for the remainder of their lives as palliative care.  

6.3.3.1.6. Annual HAQ Progression 

A patient’s HAQ score was assumed to progress over time to represent the gradual 

worsening of RA (Madan et al., 2015). Following the modelling approach used in two 

previous NICE technology appraisals for RA (Malottki et al., 2011; Stevenson et al., 

2016), each patient’s HAQ score increased annually by: (i) 0.045 units when prescribed 

methotrexate only, and (ii) by zero units when prescribed any bDMARD. This modelling 

assumption implied that the progression of RA was prevented for the duration of treatment 

with a bDMARD.  

6.3.3.1.7. Time to Developing ADAb against Adalimumab 

A proportion of patients that received adalimumab were expected to develop ADAb 

against their treatment, which was a key biomarker of interest to stratify subsequent 

treatment decisions (see Chapter 1, Section 1.3.5). Therefore, the model required an 

estimate of the time to developing adalimumab ADAb. 

A systematic review was conducted to identify studies that reported the time to developing 

adalimumab ADAb (reported in Appendix 33). The most appropriate study identified by 

this review was Bartelds et al. (2011), which assessed the development of ADAb in RA 

patients the received adalimumab over a duration of three years. ADAb were measured by 

radioimmunoassay and adalimumab drug levels were measured by a sandwich-ELISA. 

Patients were defined as ADAb-positive if their serum had: (i) ADAb titres greater than 

twelve arbitrary units per millilitre and (ii) serum drug levels lower than five milligrams 
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per litre (Bartelds et al., 2011). The thresholds used to define a positive ADAb test result 

were expressed as arbitrary units as a pragmatic solution, in the absence of published 

evidence on the correct cut-off threshold (Wadhwa et al., 2011).  

The percentage of patients that developed adalimumab ADAb over the three-year study 

period was illustrated graphically (Bartelds et al., 2011, p.1463). Following the approach 

recommended by Guyot et al. (2012), the graphical data points were recreated using the 

DigitizeIt software to calculate the number of patients that developed ADAb at each 

follow-up time period (Bormann, 2016).  

Parametric survival analysis was performed on the estimated data points (reported in 

Appendix 33). A log-normal survival curve fit the data best according to the AIC and BIC 

statistics (Akaike, 1974; Schwarz, 1978), defined by a mean of 1.146684 and a standard 

deviation of 0.7284289. The model simulated each patient’s time to developing ADAb by: 

(i) drawing a random number from a uniform distribution, and (ii) determining the 

corresponding time according to the log-normal survival curve. For consistency with the 

data reported by Bartelds et al. (2011), all patients that developed adalimumab ADAb in 

the model were also assumed to have low drug levels.  

6.3.3.1.8. Consequence of Developing ADAb against Adalimumab 

The clinical literature demonstrated that patients who developed adalimumab ADAb were 

more likely to experience secondary non-response to treatment (described in Section 

1.3.5). In the model, the time to adalimumab failure was reduced to occur earlier for 

patients that developed adalimumab ADAb, relative to those patients without ADAb. 

Therefore, the model required an estimate of the consequence of adalimumab ADAb on 

treatment failure.  

Garcês et al. (2013) report a systematic review and meta-analysis of studies that estimated 

the impact of developing ADAb against a TNFi therapy on a patient’s response to that 

TNFi. The meta-analysis estimated that RA patients with detectable ADAb against a TNFi 

had a reduced rate of response to treatment by fifty-three percent (relative risk = 0.47, 95% 

confidence interval = 0.33-0.65) compared with those patients without detectable ADAb 

(Garcês et al., 2013).  
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The model applied the RA-specific relative risk of treatment failure to the estimated time 

to adalimumab failure if the patient had developed adalimumab ADAb (Caro et al., 2016b). 

For example, a patient may have started the simulation with an estimated time to 

adalimumab failure of five years. However, if they developed ADAb over the duration of 

their adalimumab therapy, their time to adalimumab failure would have been updated to 

occur earlier at 2.35 years (= 5 ×0.47).  

6.3.3.1.9. Proportion of Patients with Low Adalimumab Drug Levels in Remission 

The clinical evidence indicated that a proportion of patients may flare in disease activity 

after reducing the dose of their TNFi (Bykerk et al., 2016). The model therefore required 

an estimate of this proportion as an input parameter.  

Kuijper et al. (2015) conducted a systematic review and meta-analysis of studies that 

investigated the risk of a flare in disease activity in patients with RA, following a de-

escalation of TNFi therapy while in low disease activity or remission. The meta-analysis 

reported the results as the pooled flare rate per patient year of 0.26 (95% CI: 0.17-0.39) for 

good quality studies. The rate per patient year was converted into an annual probability by 

using the formula in Equation 6.1, reported in Briggs et al. (2006): 

Annual Probability = 1 − 𝐸𝑥𝑝(−𝑅𝑎𝑡𝑒 𝑝𝑒𝑟 𝑝𝑎𝑡𝑒𝑛𝑡 𝑦𝑒𝑎𝑟)                        (Equation 6.1) 

Using Equation 6.1 and the evidence synthesised by Kuijper et al. (2015), the probability 

of a disease flare, one year after TNFi dose reduction, was calculated as 23% (95% CI: 

16% to 32%). The model assumed that patients only flared due to low drug levels, and by 

implication, twenty-three percent of patients had low adalimumab drug levels during 

remission. 

6.3.3.1.10. Consequence of Flare in Remission 

A flare in disease activity was assumed to have a detrimental impact on a patient’s health, 

expressed as an increase in their HAQ for a short period of time; the model therefore 

required an estimate of: (i) the duration of a flare and (ii) the consequence of a flare on 

HAQ.  
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Markusse et al. (2015) estimated the impact of a flare in disease activity on the functional 

ability of patients with RA (expressed as a change in HAQ) recruited to the BeSt study in 

The Netherlands. A flare in disease activity was defined as an increase in DAS28 of greater 

than 0.6 units in patients that had a DAS28 score of at least 2.4. The HAQ of patients that 

flared, relative to those that did not, was estimated to have increased by 0.251 units 

(Markusse et al., 2015). Legitimate HAQ scores can only be expressed in multiples of 

0.125 (Bruce et al., 2003), so the model therefore assumed that patients that flared after 

receiving reduced-dose adalimumab experienced a HAQ increase of 0.250. The model 

assumed, conservatively, that the duration of a flare was one week, based on the 

observational evidence reported by Bykerk et al. (2014).  

6.3.3.1.11. Test Accuracy 

The NICE DAP manual recommended explicitly that test accuracy should ideally be 

estimated from evidence identified by a systematic review (National Institute for Health 

and Care Excellence, 2011a). Test accuracy studies estimate the performance (sensitivity 

and specificity) of a test that measures a particular biomarker against the performance of a 

reliable reference standard using a receiver operating characteristic (ROC) curve 

(Macaskill et al., 2010). The model required estimates of test accuracy for three testing 

scenarios in RA patients receiving adalimumab: (i) accuracy of measuring ADAb by 

ELISA relative to radioimmunoassay; (ii) accuracy of measuring drug levels by ELISA to 

identify patients that would maintain response to full-dose adalimumab; and (iii) accuracy 

of measuring drug levels by ELISA to identify patients that would maintain response to 

reduced-dose adalimumab. The systematic review that identified these studies is reported 

in full in Appendix 34. The quality of test accuracy studies included in the review were 

appraised using the Quality Assessment of Diagnostic Accuracy Studies – 2 (QUADAS-2) 

checklist (Whiting et al., 2011).   

Accuracy of Adalimumab ADAb ELISA Relative to Radioimmunoassay 

The time to developing adalimumab ADAb, estimated using evidence from Bartelds et al., 

(2011) in Section 6.3.3.1.7, measured ADAb with a radioimmunoassay. The systematic 

review (see Appendix 34) identified one study that assessed the concordance between 

measuring adalimumab ADAb by radioimmunoassay (the reference standard) and by 

ELISA. Jani et al. (2016b) measured adalimumab ADAb with a radioimmunoassay and 

ELISA from 159 serum samples of RA patients treated with adalimumab in England. 
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Following the manufacturer’s instructions, the cut-points chosen to define ADAb positivity 

were 12 AU/mL for the radioimmunoassay (the same as in Bartelds et al. (2011)) and 3.5 

AU/mL for the ELISA. Relative to detecting adalimumab ADAb with radioimmunoassay, 

the ELISA test had a sensitivity of 32.2% (95% CI: 20.6% to 45.6%) and a specificity of 

98% (95% CI: 93% to 99%).  

Accuracy of Drug Level ELISA and Response: Full Dose Adalimumab 

The systematic review identified four studies that used a ROC analysis to estimate the 

accuracy of measuring adalimumab drug levels by ELISA to predict an observed treatment 

response (the reference standard) (Rosas et al., 2014; Chen et al., 2015a; Jani et al., 2015a; 

Pouw et al., 2015). The four studies were heterogeneous in the drug level cut-points 

assumed, measures of outcome, and patient populations. Appendix 34 reports a bivariate 

meta-analysis that was used to synthesise these test accuracy data (Reitsma et al., 2005; 

Macaskill et al., 2010). The pooled estimate of sensitivity (the probability of a normal drug 

level for responders) was 95% (95% CI: 85% to 98%) and specificity (the probability of a 

low drug level for non-responders) was 68% (95% CI: 28% to 92%).  

Accuracy of Drug Level ELISA and Response: Reduced Dose Adalimumab 

The model required an estimate of the accuracy of measuring adalimumab drug levels by 

ELISA for patients in remission to distinguish between those patients that would, and 

would not, maintain response after receiving reduced dose adalimumab. The systematic 

review in Appendix 34 identified one study that estimated a drug level cut-point by using a 

ROC analysis in patients with RA that received reduced-dose adalimumab. Chen et al. 

(2016) measured adalimumab drug levels by sandwich ELISA in twenty-five patients with 

RA who were (i) already in remission (DAS28 < 2.6) and (ii) were receiving half-dose 

adalimumab (40mg every month) plus methotrexate. The reference standard was whether 

patients remained in remission at twenty-four weeks after receiving half-dose adalimumab 

with methotrexate. Chen et al. (2016) estimated that a drug level cut point of 6.4ug/mL 

could predict persistent remission, with a sensitivity of 100% and a specificity of 93.4%. 

No standard error or confidence interval was reported for this published estimate.  
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6.3.3.1.12. Consequence of Treatment Decisions According to Test Results 

The ADAb and drug level tests had the potential to report false-positive and false-negative 

results, given their imperfect accuracy. The model assumed that the consequences of 

treatment decisions based on the ELISA test results affected a patient’s HAQ score. These 

assumed consequences are reported in Table 6.5.  

Treatment Decisions following Routine Monitoring 

The model assumed that when any treatment failed, the patient’s HAQ increased by a 

magnitude equal to the initial reduction associated with the EULAR response (a perfect 

rebound). The benefit and harm of treatment decisions according to the routine testing for 

adalimumab ADAb and drug levels was assumed to affect the HAQ rebound by a 

multiplier, summarised in Table 6.5.  

Table 6.5. Consequence of stratified treatment decisions according to test results.  

Test Outcome True Patient State Treatment Decision 

Health Consequence of 

Treatment Decision 

 

Test: Routine Monitoring of Adalimumab ADAb to Inform Treatment Change 

 

True-positive. 

 

ADAb positive; 

Low drug level. 

 

Change treatment to 

rituximab. 

 

HAQ rebound by: 

(HAQ Rebound ) x α 

 

False-positive. 

 

ADAb negative; 

Normal drug level. 

 

Change treatment to 

rituximab. 

 

HAQ rebound by: 

(HAQ Rebound) + 

[(HAQ Rebound) x β] 

 

True-negative. 

 

ADAb negative; 

Normal drug level. 

 

Continue adalimumab. 

 

None. 

 

False-negative. 

 

ADAb positive; 

Low drug level. 

 

Continue adalimumab. 

 

None. 

 

Test: Adalimumab Drug Levels in Remission to Inform Dose Reduction 

 

True-positive. 

 

Normal drug level. Half adalimumab dose. None. 

False-positive. 

 

Low drug level. Half adalimumab dose. Flare. 

True-negative. 

 

Low drug level. Continue adalimumab. None. 

False-negative. Normal drug level. Continue adalimumab. None. 

Note: α,β were multipliers, between zero and one, that adjusted the HAQ rebound upon changing treatment 

to to rituximab; Abbreviations: ADAb=anti-drug antibody.  
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Patients that tested positive for immunogenicity ((i) ADAb positive or (ii) ADAb positive 

and low drug levels) had their adalimumab therapy pre-emptively changed to rituximab. 

The use of rituximab was relevant to clinical practice in England, justified by the model 

conceptualisation procedure in Chapter Five. 

• In patients with a true-positive test result (the patient truly was ADAb-positive and 

had low drug levels), the treatment change was assumed to be beneficial as 

secondary non-response to adalimumab was avoided. This benefit was represented 

by the multiplier 𝛼 ∈ [0,1], such that the patient’s HAQ rebound due to changing 

therapy was less than the initial reduction in HAQ.  

• In patients with a false-positive test result (the patient truly was ADAb-negative 

and had normal drug levels), the treatment change was assumed to be inappropriate 

and subsequently caused harm. This harm was represented by the multiplier  𝛽 ∈

[0,1], such that the patient’s HAQ rebound was greater than the initial reduction in 

HAQ. 

The values of the HAQ multipliers were unknown. The base-case analysis used the values 

𝛼 = 0.5 and 𝛽 = 0.5 and subsequent sensitivity analyses varied these values extensively. 

Patients that had a negative test result for immunogenicity were assumed to continue 

adalimumab therapy. Patients with a true-negative test result (the patient was truly ADAb-

negative and had normal drug levels) were assumed to receive continued benefit from 

adalimumab therapy. Patients with a false-negative test result (the patient was truly ADAb-

positive and had low drug levels) were assumed to experience earlier secondary failure of 

adalimumab, compared with those patients without adalimumab ADAb.  

Treatment Decisions following Remission Testing 

The drug level test in remission identified patients that could maintain remission following 

a reduction in adalimumab, according to whether their adalimumab drug levels were high. 

There was no QALY benefit assumed to be associated with reducing the dose of 

adalimumab; however, inappropriate dose-reduction was assumed to cause a flare in 

disease activity (Section 6.3.3.1.9). The consequences of treatment decisions based on 

remission testing are reported in Table 6.5.  
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The dose of adalimumab was assumed to be halved if testing reported drug levels to be 

high. Patients with a true-positive test result (the patient truly had high drug levels) 

experienced change in QALYs following adalimumab dose-reduction. In contrast, patients 

with a false-positive test result (the patient truly had low drug levels) experienced a flare 

and an adjustment in QALYs (see Section 6.3.3.1.10) because reduced-dose adalimumab 

was inappropriate. No adjustments were made to treatment if the test result reported that 

the patient had low adalimumab drug levels, resulting in no negative impact on health 

consequences. However, patients with a false-negative test result (the patient truly had high 

drug levels) could have been treated with reduced-dose adalimumab with no harmful 

health consequences.  

6.3.3.2. Quality-adjusted Life Years 

QALYs were calculated by estimating a patient’s health-related quality of life, informed by 

the EQ-5D instrument (EuroQol Group, 1990), and were discounted at 3.5% per year, in 

accordance with the NICE Reference Case (National Institute for Health and Care 

Excellence, 2013a). The health-related quality of life weights were assumed to be a 

function of the HAQ score, following the approaches of similar individual-level model-

based economic evaluations for patients with RA (see Appendix 27; QALYs). Therefore, 

the model required an equation, referred to as a mapping algorithm, to represent the 

relationship between HAQ and EQ-5D (Dakin, 2013).  

There were many published mapping algorithms available to estimate EQ-5D from HAQ 

in patients with RA (Pennington et al., 2014). The base-case analysis of this model used 

the quadratic mapping algorithm estimated previously for the NICE Technology Appraisal 

195 by Malottki et al. (2011) which used: (i) data from patients with RA in the UK to 

measure health states, and (ii) UK-specific EQ-5D-3L tariff data to estimate the value of 

health states. This mapping algorithm is reported in Equation 6.2.  

𝐸𝑄5𝐷 = 𝑎 − 𝑏1𝐻𝐴𝑄 − 𝑏2𝐻𝐴𝑄2                                                                    (Equation 6.2) 

where a=0.804 (95% CI: 0.711-0.897), b1=0.203 (95% CI: 0.054-0.351), and b2=0.045 

(95% CI: -0.007-0.096). Subsequently, by using this equation to estimate a patient’s EQ-

5D, as their HAQ increased (and became worse), their estimated QALY gain reduced.  
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6.3.3.3. Resource Use 

The evidence used to estimate resource use is explained in the following three sections for: 

treatments (Section 6.3.3.3.1); hospitalisations (Section 6.3.3.3.2); and testing (Section 

6.3.3.3.3). All resource use assumptions are reported in Table 6.6.  

6.3.3.3.1. Treatments 

All treatments were administered according to their recommended dose (see Table 6.6) in 

the British National Formulary (2016). All bDMARD therapies were assumed to be co-

prescribed with methotrexate. Reduced-dose adalimumab assumed that the time between 

the administration of injections doubled (from every two weeks to every four weeks) 

consistent with recommendations by EULAR (Smolen et al., 2014). Patients that flared 

from reduced-dose adalimumab were assumed to receive one course of corticosteroid 

therapy (methylprednisolone), administered by intramuscular injection, prior to reverting 

their treatment to full-dose adalimumab.  

Administration of therapies by intravenous infusion (rituximab, tocilizumab) was assumed 

to last for one hour. Following the evidence generated for NICE Technology Appraisal 375 

by Stevenson et al. (2016), administration of subcutaneous adalimumab was assumed to be 

performed by a nurse in ten percent of cases. The resources associated with the monthly 

monitoring of a patient’s full blood count and biochemical profile were omitted from the 

analysis because they were common to every strategy in the model.  
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Table 6.6. Model input parameter values for resource utilisation and unit costs.  

Treatment Cost (bDMARD, cDMARD, and Corticosteroid) 

Treatment Dosea 

Unit Cost a  

(£; 2015/16) 

Annual Cost 

(£; 2015/16) 

Adalimumab†  

(Full dose). 

 

40mg every two weeks, 

subcutaneous injection. 

£352.14 per 40mg. £9,155.64. 

Adalimumab†  

(Half dose). 

 

40mg every four weeks, 

subcutaneous injection. 

£352.14 per 40mg. £4,577.82. 

 

Biosimilar adalimumab▲ 

(Full dose). 

 

40mg every two weeks, 

subcutaneous injection. 

£352.14 per 40mg. £6103.76. 

Biosimilar adalimumab▲ 

(Half dose). 

 

40mg every four weeks, 

subcutaneous injection. 

£352.14 per 40mg. £3051.88. 

 

Rituximab†. 2g every nine months, 

intravenous infusion. 

 

£873.15 per 500mg. £4,656.8. 

Tocilizumab†. 800mg every four weeks, 

intravenous infusion. 

 

£512 per 400mg. £12,288. 

Methotrexate♦. 

 

20mg weekly, oral tablet. £0.082 per 2.5mg. £34.03. 

Methylprednisolone♦. 120mg for one week, 

intramuscular injection. 

£8.88 per 120mg. £8.88. 

 

Treatment Administration Cost 

Resource Quantityb Unit Cost b (£; 2015/16)  

Intravenous infusion. 

 

One hour. £154 per infusion.  

Nurse-led subcutaneous 

injection. 

Ten percent of injections. £2.61 per injection.  

 

ADAb and Drug Level ELISA Test Cost  

Test Scenario Unit Cost c (£; 2015/16)   

Single test. 

 

£133.78 per patient.   

Concurrent testing. £152.52 per patient.   

 

Hospitalisation Cost 

HAQ 

Mean Days Hospitalised 

Per Yeard 

Annual Coste 

(£; 2015/16) 

 

0 < HAQ < 0.5 0.26 £160.12  

0.6 < HAQ < 1 0.13 £80.06  

1.1 < HAQ < 1.5 0.51 £314.07  

1.6 < HAQ < 2 0.72 £443.40  

2.1 < HAQ < 2.6 1.86 £1,145.44  

2.6 < HAQ < 3 4.16 £2,561.85  

Note: †=Branded pharmaceutical; ▲=One-third price discount for biosimilars assumed; ♦Generic 

pharmaceutical. Sources: a=British National Formulary (2016); b=Stevenson et al. (2016); c=Jani et al. 

(2016a); d=Roche (2006, p.110); e=Department of Health (2016b); In the PSA, resources required for testing 

and treatments were assumed to be fixed, and resources for hospitalisations were simulated from gamma 

distributions (described further in Appendix 37).  
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6.3.3.3.2. Hospitalisations 

Hospitalisations were assumed to be positively related to a patient’s HAQ score. Previous 

individual-level model-based economic evaluations for RA have also assumed a positive 

relationship between each patient’s HAQ score and their frequency of hospitalisation (see 

Appendix 27; Direct Medical Costs). The mean annual days hospitalised per patient were 

sourced from the original submission of evidence by the manufacturer, Roche, during the 

NICE Single Technology Appraisal of rituximab (Roche., 2006). Estimated days of 

hospitalisation (Table 6.6) were based on data from the Norfolk Arthritis Register 

(Symmons et al., 2003) cohort, and were considered to be conservative estimates because 

only patients with a HAQ score greater than 2.1 experienced at least one day hospitalised 

per year. These values have been used in different published model-based economic 

evaluations for RA, including in the generation of evidence for the most recent NICE 

technology appraisal for TNFi therapies by Stevenson et al. (2016). A potential limitation 

of these data, however, was that the relationship between HAQ and the mean number of 

hospitalisations was not monotonic.  

6.3.3.3.3. Testing 

To identify and quantify the resources required for testing TNFi ADAb and drug levels by 

ELISA in routine clinical practice, a microcosting study was performed in collaboration 

with Dr. Meghna Jani (see Appendix 35 for a version of the published manuscript). This 

microcosting study estimated the direct health care resources per patient that were required 

for testing, during: (i) the pre-testing phase, (ii) the analysis of samples, and (iii) the 

determination of the treatment decision (Jani et al., 2016a). The microcosting study 

produced essential evidence for the decision analytic model and was performed as a 

collaborative study to supplement the main content of this thesis.  

6.3.3.4. Unit Costs 

All unit costs were expressed in pound sterling (£) at a price year of 2015/16 and no price 

inflation was performed. Costs were discounted at 3.5%, consistent with the NICE 

reference case (National Institute for Health and Care Excellence, 2013a).  
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6.3.3.4.1. Treatments 

The unit costs of all treatments were obtained from the British National Formulary (2016), 

reported in Table 6.6. Following the evidence generated by Stevenson et al. (2016) for the 

NICE Technology Appraisal 375 for RA, a sixty minute intravenous infusion was assumed 

to cost £154 and the ten percent of nurse-administered subcutaneous injections was 

assumed to cost an average of £2.61 per injection.  

6.3.3.4.2. Hospitalisations 

The unit cost of one day hospitalised was £615.83. This value was the unit cost of a non-

elective short stay in secondary care, identified in the NHS National Schedule of Reference 

Costs 2015-2016 (Department of Health, 2016b). 

6.3.3.4.3. Testing 

The unit cost of testing both ADAb and drug levels together by ELISA (concurrent testing) 

was £152.52 per patient. The unit cost of testing either the ADAb or drug level ELISA 

only was £133.78 per patient (Jani et al., 2016a).  

6.3.4. Model Validation 

Two approaches were taken to ensure the validity of the decision analytic model. The 

model was built by taking into account best-practice strategies for reducing variability in 

simulation analyses (see Section 6.3.4.1) and by assessing its internal validity (see Section 

6.3.4.2).  

6.3.4.1. Strategies to Reduce Variability 

Variability in the chance occurrence of events within any simulation analysis may reduce 

the precision of the estimated outcomes (costs and QALYs) of interest (Caro et al., 2016b). 

Such variability in a decision analytic model, in particular, is unhelpful because it cannot 

be reduced by further collection of data, unlike the uncertainty in the values of input 

parameters (Briggs et al., 2006). The conventional approach to reduce undesirable 

variability in the outcomes of a DES model was to increase the number of individual 

patients simulated through the model (Caro et al., 2016b). However, a larger sample size 
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may have been computationally expensive and may have increased the model run time 

(Griffin et al., 2006). Therefore, best-practice variability-reduction strategies were 

implemented to increase the precision of the simulated expected outcomes, reduce the 

sample size required to achieve those expected outcomes, and reduce model run times 

(Karnon et al., 2012). This DES model used three strategies to reduce undesirable 

variability and improve the validity of the simulation: 

(i) The same set of patients experienced every comparator strategy in Table 6.1. A 

particular comparator strategy may have otherwise appeared more cost-

effective by chance if, for example, the simulated patients were healthier than 

those simulated for a different comparator strategy (Karnon et al., 2012; Caro et 

al., 2016b); 

(ii) The generation of random numbers within the model was seeded, following 

best-practice recommendations for simulation analyses (Davis et al., 2014). 

Seeded random numbers ensured that the same set of random numbers were 

used if the model was run more than once, which eliminated any undesirable 

variability in outcomes between different runs of the model.  

(iii) The probabilities associated with EULAR responses and event times were fixed 

in advance for each individual patient before model entry, and did not vary 

between the comparator strategies being simulated. This variability-reduction 

strategy is known as using common random numbers (Stout et al., 2008; 

Karnon et al., 2012; Murphy et al., 2013). QALY and cost differences between 

strategies may have otherwise occurred by chance due to a different random 

simulation of an individual-level probability. For example, a particular 

comparator strategy may have appeared more cost-effective if the random 

number used to simulate time to death from the Gompertz survival curve was 

more favourable (and increased the patient’s lifespan) compared with the value 

simulated for the other strategies. Therefore, any estimated differences in costs 

and QALYs were only due to differences in the decisions to stratify treatment 

between the comparator strategies. 

The sample size of patients that were simulated through the model was chosen to be 20,000 

individuals. To justify this decision, a simulation was performed with 40,000 patients (run 

time = 24 hours) and the expected cost and QALYs were evaluated for the most complex 

strategy (Strategy 3) for an increasing sample size (Davis et al., 2014). Figure 6.2 
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illustrates the estimated expected incremental cost and QALYs for Strategy 3 compared 

with current practice, as the sample size increased.  

The difference in incremental costs as the sample size increased was approximately £35 

(Incremental cost = -£2,411 for 20,000 patients; -£2,376 for 40,000 patients), and in 

incremental QALYs was approximately 0.0008 QALYs (Incremental QALYs = 0.021132 

for 20,000 patients; 0.020260 for 40,000 patients). Therefore, the variation in incremental 

costs and QALYs appeared to have stabilised by 20,000 patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Figure 6.2. Determine sample size: expected (top) incremental cost and (bottom) incremental QALY for Strategy 3 versus. Current Practice over increasing 

sample size. 
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6.3.4.2. Internal Validity 

Assessing the validity of a model may improve the credibility of the final estimated 

outcomes (Tappenden et al., 2014). A quantitative model that has included all relevant 

elements for a specific decision problem is said to have face validity (Caro et al., 2016b). 

Internal validity refers to whether a quantitative model is implemented correctly, for 

example, in terms of its internal logic, programming, and calculations (Caro et al., 2016b). 

The DES model in this study was implemented by running a computer code written in a 

general programming language (R). All computer codes have the potential for errors, 

known in the literature as bugs (Caro et al., 2016b). The following four debugging internal 

validity checks were performed to assess whether the model ran correctly: 

(i) Set all unit costs equal to zero, to assess whether total costs over the simulation 

also equalled zero; 

(ii) Set all parameters to calculate QALYs from a HAQ score equal to zero, to 

assess whether total QALYs over the simulation also equalled zero; 

(iii) Increase the discount rate for costs and QALYs, to assess whether the total 

costs and QALYs reduced; 

(iv) A histogram of 100,000 random draws from each survival curve within the 

model was produced to ensure that the simulation generated a clinically 

plausible distribution of times to each event.  

The results of all internal validity checks are reported in Appendix 36.  

6.3.5. Analysis 

The analysis section describes how the results of the economic evaluation were obtained 

for the base-case (Section 6.3.5.1.), deterministic sensitivity analysis (Section 6.3.5.2), 

probabilistic sensitivity analysis (Section 6.3.5.3), and VOI analysis (Section 6.3.5.4).  

6.3.5.1. Base-case Analysis 

The base-case analysis simulated 20,000 patients individually through all treatment 

strategies reported in Table 6.1 to estimate the lifetime expected cost and QALYs 

associated with each strategy. The first stage of the base-case analysis compared all twelve 

intervention strategies with current practice as a common comparator. The second stage of 
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the base-case analysis conducted a fully incremental analysis by estimating ICERs between 

strategies that were not dominated or extendedly dominated (Drummond et al., 2015). 

Incremental net monetary benefits were then calculated for three pre-defined cost-

effectiveness thresholds of £20,000, £30,000 and £50,000 per QALY gained. The expected 

cost of each alternative strategy was reported to two decimal places. The expected QALYs 

of each alternative strategy were reported to six decimal places because the magnitude of 

the incremental QALYs between strategies was anticipated to be small; for example, the 

harm from a flare in disease activity was assumed to last for one week only.  

6.3.5.2. Deterministic Sensitivity Analyses 

Ten one-way sensitivity analyses of the base-case results were performed, by varying the 

value of a single input parameter in the model (Briggs et al., 1999): 

(i) The cost of all tests were reduced to £20 to represent the results of an economic 

evaluation that did not account for the additional resources required for testing. 

This cost was identified in the microcosting study as the price per ELISA test 

charged by a commercial manufacturer (see Appendix 35) (Jani et al., 2016a); 

(ii) The HAQ multiplier for patients that changed treatment to rituximab after a 

true-positive monitoring test result (α) was omitted to represent a situation in 

which treatment stratification provided no health benefit; 

(iii) The HAQ multiplier for patients that changed treatment to rituximab after a 

false-positive monitoring test result (β) was omitted to represent a situation in 

which treatment stratification provided no harm to health; 

(iv) The probability of low adalimumab drug levels in remission was varied to the 

upper and lower values of the confidence interval estimated by Kuijper et al. 

(2015); 

(v) The relative risk of losing response to adalimumab after developing ADAb was 

varied to the upper and lower values of the confidence interval estimated by 

Garcês et al. (2013); 

(vi) The annual cost of adalimumab was reduced by one third to represent the 

anticipated price-reduction associated with biosimilar adalimumab. The price-



 

233 
 

reduction of one third was consistent with the cost assumed by other studies 

that had investigated the use of biosimilar therapies (Grabowski, 2010).  

(vii) The time to biologic treatment failure was estimated using a log-normal (rather 

than a Weibull) survival curve. The log-normal curve fit the data by Souto et al. 

(2016) best according to the AIC and BIC statistics, but had less clinical 

plausibility than the Weibull curve (see Appendix 32 for survival analysis 

results).  

(viii) The sensitivity of the results to the QALY mapping algorithm, used to obtain 

EQ-5D weights from HAQ scores, was assessed by using two different 

published mapping algorithms. The algorithms reported by Adams et al. (2011) 

and Barton et al. (2004b) were selected for the sensitivity analysis because they 

were both estimated by using data from patients with RA in the UK.  

(ix) The annual HAQ progression of patients that received fourth-line methotrexate 

was set to zero to represent a situation in which disease was not assumed to 

worsen over time whilst receiveing any treatment.  

 

(x) The rates of discounting were varied in line with the recommendations provided 

by the NICE DAP Manual (National Institute for Health and Care Excellence, 

2011a). One sensitivity analysis presented the undiscounted outcomes and, 

following Stevenson et al. (2016), a second sensitivity analysis used the annual 

discount rates of 6% for costs and 1.5% for QALYs.  

In addition, a two-way sensitivity analysis was performed by jointly omitting the benefit 

and harm associated with changing treatment to rituximab, according to the monitoring test 

result. This sensitivity analysis represented a situation in which stratified treatment 

decisions, informed by a monitoring test, had no positive or negative impact on health 

outcomes.  

Lastly, a multiway sensitivity analysis was performed by assuming that all testing 

strategies were perfectly accurate. This sensitivity analysis represented a situation in which 

the relative cost-effectiveness of stratified medicine was not adversely affected by (i) 

failing to identify patients that were ADAb-positive with low drug levels; and (ii) 

inappropriately changing treatment in patients that were ADAb-negative.  
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6.3.5.3. Probabilistic Sensitivity Analysis 

In accordance with best-practice and the requirements of the NICE Reference Case, a 

probabilistic sensitivity analysis (PSA) was performed to identify the impact of joint 

uncertainty in the model’s input parameters on expected outcomes (Claxton et al., 2005; 

National Institute for Health and Care Excellence, 2013a). Distributions were assigned to 

all input parameters of the model, which is documented fully in Appendix 37. Correlation 

between input parameters was accounted for by Cholesky decomposition where a variance-

covariance matrix was available (Briggs et al., 2006). The PSA simulated 1,000 patients 

across 100 PSA model simulations. PSA results were presented by plotting each strategy as 

a cost-effectiveness acceptability curve (giving the probability of cost-effectiveness at 

increasing cost-effectiveness thresholds) and as a cost-effectiveness acceptability frontier 

(giving the extent of uncertainty associated with making decisions based on expected 

values) (see Appendix 5 for a description of the method).  

6.3.5.4. Value of Information 

Further prospective research into adalimumab ADAb and drug level testing, subsequent to 

the model-based cost-effectiveness analysis, may provide a benefit by reducing the 

uncertainty associated with making a decision to recommend a strategy based on current 

evidence. The PSA output was used to quantify this decision uncertainty by calculating the 

population EVPI (see Appendix 6 for a description of the method) (Claxton et al., 2001; 

Mohiuddin et al., 2014; Wilson, 2015). Population EVPI required an estimate of (i) the 

annual incidence of eligible patients with RA which, according to the NICE Rheumatoid 

Arthritis Commissioning Guide, was assumed to be 1,750 patients (National Institute for 

Health and Care Excellence, 2013b); (ii) the anticipated product lifecycle of the ELISA 

tests, which was uncertain and assumed to be up to ten years; and (iii) the discount rate, 

which was assumed to be 3.5% (National Institute for Health and Care Excellence, 2013a).  
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6.4. Results 

The results section presents findings for the deterministic analysis of the base-case (Section 

6.4.1.), the deterministic sensitivity analyses (Section 6.4.2.), the probabilistic sensitivity 

analysis (Section 6.4.3.), and the VOI analysis (Section 6.4.4).  

6.4.1. Deterministic Analysis of Base-case 

The base-case results are presented for two analyses: Section 6.4.1.1 reports the results of 

comparing all twelve strategies (see Table 6.1) with a common comparator (current 

practice); Section 6.4.1.2 reports the results of comparing all strategies with each other in a 

fully incremental analysis.  

6.4.1.1. Deterministic Analysis: Common Comparator (Current Practice) 

The deterministic results, when all twelve comparator strategies were compared with 

current practice, are reported in Table 6.7. No strategy provided a positive net monetary 

benefit at a cost-effectiveness threshold of £20,000 or £30,000 per QALY. This set of 

results may suggest that, at the thresholds for cost-effectiveness conventionally assumed by 

NICE, the current provision of adalimumab therapy in England is unlikely to be a cost-

effective use of health care resources. However, the incremental net monetary benefit of 

ten strategies, compared with current practice, were positive. Therefore, if a decision was 

made to recommend adalimumab in England (contrary to the economic evidence), 

adjustments to the administration of treatment in current practice (by dose-reduction or 

immunogenicity testing) may improve the relative cost-effectiveness of care.  

 

 

 

 

 

 

  

 



 

 
 

                   Table 6.7. Base-case results: deterministic analysis with common comparator (current practice).  

     

 Net Monetary Benefit 

(£) 

 Incremental Net 

Monetary Benefit (£) 

Comparator 

Strategy 

Expected 

Cost (£) 

Expected 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

Current Practice 114,001.57 2.740078 N/A N/A  -59,200.01 -31,799.23  N/A N/A 

Strategy 1 114,611.27 2.839540 609.70 0.099462  -57,820.47 -29,425.07  1,379.54 2,374.16 

Strategy 2 114,272.37 2.806897 270.80 0.066819  -58,134.44 -30,065.47  1,065.57 1,733.76 

Strategy 3 111,589.70 2.761210 -2,411.88 0.021132  -56,365.50 -28,753.40  2,834.51 3,045.82 

Strategy 4 112,951.32 2.791718 -1,050.26 0.051639  -57,116.96 -29,199.78  2,083.05 2,599.44 

Strategy 5 111,064.18 2.740070 -2,937.39 -0.000009  -56,262.79 -28,862.10  2,937.21 2,937.13 

Strategy 6 112,193.59 2.740073 -1,807.98 -0.000005  -57,392.13 -29,991.40  1,807.88 1,807.82 

Strategy 7 114,702.42 2.730222 700.84 -0.009856  -60,097.98 -32,795.76  -897.97 -996.53 

Strategy 8 114,390.58 2.761272 389.00 0.021194  -59,165.13 -31,552.41  34.88 246.82 

Strategy 9 112,104.99 2.692252 -1,896.58 -0.047826  -58,259.96 -31,337.44  940.05 461.79 

Strategy 10 113,383.81 2.703548 -617.76 -0.036530  -59,312.84 -32,277.36  -112.83 -478.13 

Strategy 11 110,802.42 2.739957 -3,199.15 -0.000121  -56,003.29 -28,603.72  3,196.72 3,195.51 

Strategy 12 112,079.83 2.739997 -1,921.75 -0.000082  -57,279.90 -29,879.93  1,920.11 1,919.30 

                      Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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The direction and magnitude of the incremental expected costs and QALYs in Table 6.7 

were consistent with a priori reasoning regarding the anticipated outcomes from each 

strategy: 

(i) Strategy 11 and Strategy 12 halved the dose of adalimumab in remission for all 

patients, which reduced the relative expected cost of treatment but also reduced 

the relative expected QALYs gained (because an increased proportion of 

patients experienced a flare in disease activity); 

(ii) Dose-reduction strategies that occurred after three years had a greater expected 

cost than those that occurred after two years (because patients received full-

dose adalimumab for a longer time period); 

(iii) Dose-reduction strategies that were informed by drug level testing (Strategy 5, 

Strategy 6) had higher expected QALYs than dose-reduction strategies in all 

patients (Strategy 11, Strategy 12) because fewer patients experienced an 

inappropriate reduction of treatment intensity; 

(iv) Strategy 1 and Strategy 2 routinely tested adalimumab ADAb and drug levels, 

whereas Strategy 7 and Strategy 8 only tested ADAb. As a consequence of 

greater test accuracy, the QALYs gained from Strategy 1 and Strategy 2 were 

greater than for Strategy 7 and Strategy 8.  

  

6.4.1.2. Deterministic Analysis: Incremental Analysis 

The incremental analysis first ranked all strategies in ascending order of QALY gain (see 

Table 6.8). The incremental analysis was then performed in this sequence to identify the 

dominated and extendedly dominated strategies (shaded in grey). Seven strategies were 

dominated by another comparator strategy and were excluded from the incremental 

analysis. Current practice was dominated, providing further evidence that the conventional 

approach to adalimumab therapy was unlikely to be a relatively cost-effective use of health 

care resources in England. Three strategies were extendedly dominated by a linear 

combination of other non-dominated comparator strategies. Table 6.9 reports the fully 

incremental analysis of the three non-dominated comparator strategies. 
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Table 6.8. Incremental base-case results: dominated and extendedly dominated strategies. 

Comparator 

Strategy 

Mean Cost 

(£) 

Mean 

QALY Dominated or Extendedly Dominated 

Strategy 9 112,104.99 2.692252 Dominated by Strategy 11 

Strategy 10 113,383.81 2.703548 Dominated by Strategy 11 

Strategy 7 114,702.42 2.730222 Dominated by Strategy 11 

Strategy 11 110,802.42 2.739957 
 

Strategy 12 112,079.83 2.739997 Dominated by Strategy 5 

Strategy 5 111,064.18 2.740070 Extendedly dominated by 90% of 

Strategy 11 and 10% of Strategy 3 

Strategy 6 112,193.59 2.740073 Dominated by Strategy 3 

Current Practice 114,001.57 2.740078 Dominated by Strategy 3 

Strategy 3 111,589.70 2.761210 
 

Strategy 8 114,390.58 2.761272 Dominated by Strategy 4 

Strategy 4 112,951.32 2.791718 Extendedly dominated by 45% of 

Strategy 11 and 55% of Strategy 1 

Strategy 2 114,272.37 2.806897 Extendedly dominated by 20% of 

Strategy 11 and 80% of Strategy 1 

Strategy 1 114,611.27 2.839540 
 

Note: Grey shading=dominated or extendedly dominated strategy.  

Table 6.9. Incremental base-case results: relative cost-effectiveness. 

   
 Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Incremental 

Cost (£)      QALY 

ICER 

(£ per 

QALY)  

λ = 

£20,000 

per QALY 

λ = 

£30,000 

per QALY 

λ = £50,000 

per QALY 

Strategy 11 N/A N/A N/A  N/A N/A N/A 

Strategy 3 787.27 0.021253 37,042.87  -362.21 -149.68 275.38 

Strategy 1 3,021.58 0.078330 38,574.74  -1,454.97 -671.66 894.95 

Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

The three non-dominated strategies were: reducing adalimumab doses in all patients after 

two years of response (Strategy 11); testing adalimumab ADAb and drug levels every three 

months (Strategy 1); and testing adalimumab ADAb and drug levels every three months 

plus testing adalimumab drug levels in remission after two years (Strategy 3). 

According to the conventional cost-effectiveness thresholds used by NICE (£20,000 to 

£30,000 per QALY gained), the use of immunogenicity testing by ELISA (Strategy 3, 
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Strategy 1) was not cost-effective relative to reducing adalimumab doses in all patients 

after two years. The ICER for Strategy 3 compared with Strategy 11 (£37,042 per QALY 

gained) and for Strategy 1 compared with Strategy 3 (£38,574 per QALY gained) exceeded 

the conventional cost-effectiveness threshold of NICE. Immunogenicity testing may 

provide a positive incremental net monetary benefit, relative to reducing adalimumab doses 

after two years, at higher thresholds for cost-effectiveness (for example, £50,000 per 

QALY gained; Table 6.9).  

6.4.2. Deterministic Sensitivity Analyses 

The results of all deterministic sensitivity analyses are reported in Appendix 38. The 

following summarises these results by the type of input parameter that was varied (test 

characteristics, disease characteristics, treatments, and structural assumptions).  

Test Characteristics 

The base-case results were sensitive to the unit cost of testing (Appendix 38; Table A38.1). 

The relative cost-effectiveness of Strategy 3 and Strategy 1 improved by reducing the cost 

of all tests to £20. In particular, Strategy 3 (test ADAb and drug levels every three months, 

then test drug levels in remission after two years) became cost-effective, relative to 

Strategy 11 (reduce doses in all patients at two years), for conventional thresholds of cost-

effectiveness assumed by NICE (incremental net monetary benefit = £96 for a cost-

effectiveness threshold = £20,000 per QALY gained). However by assuming a test cost of 

£20, all additional direct health care resources that were necessary to implement ADAb 

and drug level were (inappropriately) excluded from the analysis.   

If patients with a true-positive ADAb and drug level test result were assumed to experience 

no benefit from the pre-emptive change in treatment to rituximab, the testing strategies 

(Strategy 1 and Strategy 3) were dominated by Strategy 11 (Appendix 38; Table A38.2). 

Therefore, in this scenario, reducing the dose of adalimumab in all patients after two years 

cost less, and caused less harm, than routinely testing patients for ADAb and drug levels.  

Alternatively, by assuming no harm from inappropriately changing treatment to rituximab 

in patients with a false-positive monitoring test result provided only a modest improvement 

the relative cost-effectiveness of Strategy 3 and Strategy 1 (Appendix 38; Table A38.3). A 
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modest improvement was observed because only a minority of patients had a false-positive 

test result, due to the high accuracy of concurrent ADAb and drug level testing.  

If the consequence of treatment stratification, according to the monitoring tests, was varied 

simultaneously in a two-way sensitivity analysis, such that no harm was caused by false-

positive test results and no benefit was derived from true-positive test results, routine 

ADAb and drug level testing (Strategy 1 and Strategy 3) was dominated by Strategy 11 

(Appendix 38; Table A38.4).  

If all ELISA tests were assumed to be perfectly accurate (100% sensitivity and specificity) 

in a multiway sensitivity analysis, the relative cost-effectiveness of both Strategy 3 and 

Strategy 1 improved. In particular, Strategy 3 had an ICER of £12,704 per QALY gained, 

relative to Strategy 11, and a positive incremental net monetary benefit over the range of 

cost-effectiveness thresholds conventionally assumed by NICE (Appendix 38; Table 

A38.5).  

Disease Characteristics 

The base-case estimates for the relative cost-effectiveness of the testing strategies (Strategy 

3, Strategy 1) were robust to changes in the probability of patients with low adalimumab 

drug levels in remission. The total expected QALYs derived from reducing the dose of 

adalimumab in all patients at two years (Strategy 11), relative to the base-case results, were 

(i) higher if fewer patients were assumed to have low adalimumab drug levels (Appendix 

38; Table A38.6) and (ii) lower if more patients were assumed to have low adalimumab 

drug levels (Appendix 38; Table A38.7).  

The base-case results were also robust to changes in the relative risk of adalimumab 

treatment failure after developing ADAb. The incremental net monetary benefits of 

Strategy 3 and Strategy 1 remained negative, according to the conventional thresholds for 

cost-effectiveness used by NICE, when this relative risk was lower (Appendix 38; Table 

A38.8) and higher (Appendix 38; Table A38.9) than the value assumed in the base-case. 

The relative cost-effectiveness of all strategies improved if no HAQ progression was 

assumed during response to fourth-line methotrexate therapy (Appendix 38; Table A38.10). 

This assumption may not be plausible in reality, however, due to clinical evidence that 
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suggested the disease activity of patients with RA worsened over time while receiving 

cDMARDs, relative to bDMARDs (Madan et al., 2015; Stevenson et al., 2016).  

Treatments 

If the price of adalimumab was assumed to be reduced by one third, to represent the price 

of biosimilar adalimumab, Strategy 3 became extendedly dominated by Strategy 11 and 

Strategy 1. The relative cost-effectiveness of Strategy 1, compared with Strategy 11, was 

close to (but not within) the range of thresholds for cost-effectiveness conventionally 

assumed by NICE (Appendix 38; Table A38.11). The base-case result that favoured 

Strategy 11 was therefore robust to the assumption that patients were prescribed biosimilar 

adalimumab.  

Structural Assumptions 

The base-case result was sensitive to the rate at which future costs and QALYs were 

discounted. Strategy 1 generated the highest expected incremental net monetary benefit, at 

a cost-effectiveness threshold of £30,000, if no discounting was applied to future outcomes 

(Appendix 38; Table A38.12). In addition, both Strategy 1 and Strategy 3 generated a 

positive incremental net monetary benefit if outcomes were discounted at a differential rate 

(6% for costs; 1.5% for QALYs) (Appendix 38; Table A38.13).  

The base-case results were robust when a log-normal survival curve was used to model the 

time to failure of each bDMARD therapy instead of a Weibull survival curve (Appendix 

38; Table A38.14). The magnitude of QALY gains varied between the strategies when 

different algorithms were used to map between HAQ and EQ-5D; however, the relative 

cost-effectiveness of Strategy 3 and Strategy 1 did not improve, compared to the outcomes 

estimated in the base-case analysis (Appendix 38; Table A38.15; Table 38.16).  

6.4.3. Probabilistic Sensitivity Analysis 

The results of the PSA are presented as a CEAC in Figure 6.3. Strategies were excluded 

from the illustration of the CEAC if they had a zero probability of being cost-effective at 

all cost-effectiveness thresholds (Strategy 6, Strategy 12). Strategy 11 had the highest 

probability of being cost-effective at the lower thresholds of relative cost-effectiveness. 

Strategy 1 had the highest probability of being cost-effective for cost-effectiveness 
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thresholds greater than approximately £70,000 per QALY gained. The probability that 

Strategy 11 was cost-effective was 64% for a threshold of £20,000 per QALY gained and 

56% for a threshold of £30,000 per QALY gained.  

Figure 6.4 presents a CEAF that plotted the probability the strategy with the greatest 

expected net monetary benefit was cost-effective, across a range of cost-effectiveness 

thresholds. The CEAF illustrated the decision uncertainty associated with making 

recommendations according to expected values based on current information (Fenwick et 

al., 2001; Fenwick et al., 2004). Three strategies provided the greatest net monetary benefit 

for cost-effectiveness thresholds up to £100,000 per QALY gained. There were two breaks 

in the CEAF, referred to as discontinuities, when the strategy with the highest expected net 

benefit changed. The value of the cost-effectiveness threshold, at which a discontinuity in 

the CEAF occurred, was equal to ICER between the two respective strategies (Fenwick et 

al., 2001). The discontinuities in the CEAF occurred at £41,625 (Strategy 3 Vs. Strategy 

11) and £46,171 (Strategy 1 Vs. Strategy 3). 

6.4.4. Value of Information Analysis 

The EVPI per patient was estimated from the PSA simulation results by subtracting the 

expected net monetary benefit under current information from the expected net monetary 

benefit with perfect information (Claxton et al., 2001; Wilson, 2015). The EVPI per 

patient, reported in Table 6.10, was calculated for a range of cost-effectiveness thresholds 

(between £1,000 and £100,000 per QALY gained). At at cost-effectiveness threshold of 

£20,000 per QALY gained, the estimated EVPI per patient was £485.78.  

The incidence of patients with RA in England was approximately 17,500 patients per year, 

and 10% of those patients were eligible for bDMARD therapy (National Institute for 

Health and Care Excellence, 2013b). The time horizon of the adalimumab ADAb and drug 

level ELISA test’s product lifecycle was uncertain. The population EVPI was therefore 

calculated (see Appendix 6 for method) over a range of time horizons (between zero and 

ten years), discounted at 3.5% per year, assuming a cost-effectiveness threshold of £20,000 

per QALY gained (reported in Table 9.11). By assuming a ten-year time horizon, the 

eligible future population to benefit from further research (discounted at 3.5%) was 

estimated to be 14,554 patients. Therefore, at a cost-effectiveness threshold of £20,000 per 

QALY, the population EVPI was approximately £7,070,099. 



 

 
 

Figure 6.3. Cost-effectiveness acceptability curves. 
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Figure 6.4. Cost-effectiveness acceptability frontier. 

 

 

2
4
4
 



 

245 
 

Table 6.10. Estimation of EVPI per patient for a range of cost-effectiveness thresholds.  

 

Maximum Expected Net 

Monetary Benefit (£) 

 

 
 

λ  

(£ per QALY gained) 

Current 

Information 

Perfect 

Information  

EVPI per 

patient (£) 

1,000 -99,469.54 -99,449.23  20.31 

2,000 -96,717.11 -96,700.30  16.81 

3,000 -93,964.67 -93,947.73  16.94 

4,000 -91,212.24 -91,191.69  20.55 

5,000 -88,459.80 -88,435.61  24.19 

6,000 -85,707.37 -85,678.47  28.90 

8,000 -80,202.50 -80,153.06  49.44 

10,000 -74,697.63 -74,614.18  83.45 

15,000 -60,935.46 -60,690.12  245.34 

20,000 -47,173.29 -46,687.51  485.78 

25,000 -33,411.13 -32,589.07  822.06 

30,000 -19,648.96 -18,435.10  1,213.85 

35,000 -5,886.79 -4,265.09  1,621.70 

40,000 7,875.38 9,918.62  2,043.24 

50,000 35,876.17 38,348.14  2,471.97 

60,000 64,380.47 66,809.16  2,428.69 

80,000 121,389.08 123,804.65  2,415.57 

100,000 178,397.68 180,888.56  2,490.87 

Abbreviations: EVPI=expected value of perfect information; λ=cost-effectiveness threshold. 

 

 

Table 6.11. Estimation of population EVPI over a range of product time horizons, 

assuming a cost-effectiveness threshold of £20,000 per QALY gained. 

Product 

Time 

Horizon 

(Years) 

Annual Incidence 

of bDMARD-

Eligible Patients 

with RA 

Discounted† 

Annual 

Incidence 

Cumulative Annual 

Discounted† 

Eligible Population 

Population 

EVPI 

(£) 

1 1,750 1,690.82 1,690.82 821,370.44 

2 1,750 1,633.64 3,324.46 1,614,965.07 

3 1,750 1,578.40 4,902.86 2,381,723.16 

4 1,750 1,525.02 6,427.89 3,122,552.23 

5 1,750 1,473.45 7,901.34 3,838,329.12 

6 1,750 1,423.63 9,324.97 4,529,900.99 

7 1,750 1,375.48 10,700.45 5,198,086.37 

8 1,750 1,328.97 12,029.42 5,843,676.11 

9 1,750 1,284.03 13,313.45 6,467,434.31 

10 1,750 1,240.61 14,554.06 7,070,099.24 

†: 3.5% annual discount rate was assumed.  
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6.5. Discussion 

This study addressed the decision problem in Table 5.8 (Section 5.5) and aimed to 

determine whether adalimumab ADAb and drug level ELISA testing, to stratify treatment 

for patients with RA in England, was a relatively cost-effective use of health care 

resources. An early model-based cost-effectiveness analysis was performed to understand 

the indicative incremental costs and benefits, and the key drivers of relative cost-

effectiveness, of stratifying treatment decisions for RA using commercial ELISA-based 

tests. A de novo decision analytic model was constructed (as a DES) that simulated 

individual patients (with characteristics derived from the BSRBR-RA cohort) across 

thirteen different test-and-treatment strategies (Table 6.1). The model was representative of 

current practice in England and was developed following extensive model 

conceptualisation (reported in Chapter Five). The values of all input parameters were 

estimated from relevant published sources and the model was evaluated probabilistically to 

quantify the decision uncertainty associated with recommending each strategy in the NHS 

in England.  

The results indicated that the standard administration of adalimumab (40mg every two 

weeks with methotrexate until treatment failure) observed in current practice was unlikely 

to be relatively cost-effective at the conventional thresholds for cost-effectiveness assumed 

by NICE. Previously published economic evaluations, including those used as evidence for 

NICE technology appraisals, have also questioned the relative cost-effectiveness of TNFi 

therapies for RA (van der Velde et al., 2011; Joensuu et al., 2015; Stevenson et al., 2016). 

The most cost-effective treatment strategy in this study, relative to all other strategies, was 

to halve the dose of adalimumab in all patients after two years of responding (Strategy 11; 

Incremental net monetary benefit = £3,196 if the cost-effectiveness threshold was £20,000 

per QALY gained).  

All thirteen comparator strategies in this economic evaluation generated a negative net 

monetary benefit at the standard cost-effectiveness thresholds assumed by NICE. Negative 

net monetary benefits imply that a treatment strategy caused a net reduction in population 

health (Drummond et al., 2015); in the case of this study, the health forgone as a 

consequence of treating patients with adalimumab was greater than the health gained. 

However, if decision-makers choose to overlook the published economic evidence, and the 

evidence provided by this study, and decide to recommend adalimumab for RA, the 
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findings of this study suggested that adjustments may be possible when prescribing 

adalimumab to improve its relative cost-effectiveness, compared with the existing 

approach, in current practice.  

The cost-effectiveness of testing adalimumab ADAb and drug levels was sensitive to the 

unit cost of testing. If all additional resources to perform testing were omitted from the 

analysis (such as the need for an additional patient appointment or the time taken to 

interpret the results), Strategy 3 became cost-effective relative to a uniform dose reduction 

in all patients. Only one model-based economic evaluation of a stratified medicine for RA 

published previously had quantified all of the additional resources necessary to perform 

testing (Kowada, 2010). It was therefore possible that the remaining economic evaluations 

of a stratified medicine in RA (described in Chapter Two) had underestimated the 

(opportunity) cost of testing, and in turn, overestimated its relative cost-effectiveness of 

treatment stratification.   

All testing strategies that measured adalimumab ADAb without measuring concurrent drug 

levels were dominated. This finding demonstrated the importance of testing both ADAb 

and drug levels to improve the accuracy of testing (Jani et al., 2016b). As a consequence, 

fewer patients experienced a false-positive ADAb test result, which mitigated the number 

of inappropriate changes to treatment and the subsequent loss of QALYs.  

The base-case result was sensitive to the accuracy of testing; the relative cost-effectiveness 

of Strategy 3 and Strategy 1 improved substantially by assuming that the sensitivity and 

specificity of all tests were 100% (Appendix 38; Table A38.5). Chapter Two reported a 

systematic review of economic evaluations of stratified medicine in RA and found that 

forty percent of included studies assumed that testing was perfectly accurate. This 

assumption, to use the terminology of Phelps et al. (1988, p.284), although untenable in 

practice, was evidence that testing cleared the first “hurdle” of establishing relative cost-

effectiveness. ELISA test manufacturers may now subsequently have an incentive to 

improve the accuracy of testing, given the knowledge that greater test accuracy may 

improve the relative cost-effectiveness of treatment stratification, ceteris paribus.  

A uniform dose-reduction of adalimumab in all patients after two years of responding 

represented a disinvestment in health care resources. As a consequence, Strategy 11 

provided a positive incremental net monetary benefit (indicating relative cost-

effectiveness) but also led to a reduction in costs and QALYs compared to current practice. 
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The QALY loss occurred due to the proportion of patients that flared after halving their 

adalimumab dose. The STRASS trial randomised patients with RA, treated with 

adalimumab or etanercept that were in remission, to either (i) a strategy that de-escalated 

the intensity of treatment or (ii) a strategy that maintained full-dose TNFi therapy; the 

results corroborated the findings of this model-based economic evaluation and concluded 

that dose-reduction strategies were relatively cost-effective but simultaneously reduced 

costs and QALYs (Vanier et al., 2017). Decision-makers, however, may choose to only 

recommend health technologies that are both effective and cost-effective (Dowie, 2004). 

As a consequence, failing to recommend a cost-effective technology on the grounds that it 

provides a health loss to identifiable patients (and a health gain to unidentifiable patients) 

will not allocate resources such that population health is maximised (Claxton et al., 2015b; 

Cookson, 2015).   

The population EVPI estimated by the study was large (£7,070,099) and indicated that 

future prospective research, subsequent to this model-based cost-effectiveness analysis, 

would likely be of value to the NHS (Thorn et al., 2016). The cost of previous research 

projects in England, that have received funding from public resources, have been below 

this estimated population EVPI; for example, the NIHR Programme Grants for Applied 

Research can provide awards for up to £2 million for research into disease management in 

the NHS (National Institute for Health Research, 2012). This result may provide legitimacy 

to agenda for research set by EULAR, and the requests made by the rheumatologists in 

Chapter Three, for further research into the use of ADAb and drug level testing in routine 

clinical practice (Smolen et al., 2014).  

There are limitations to the estimate of population EVPI in this study and to VOI analyses 

more generally. The magnitude of population EVPI is equivalent to the upper-bound on the 

value of further research to reduce parameter uncertainty; it does not necessarily inform 

whether more research is desirable (Claxton et al., 2004; Wilson, 2015). The complexity 

and run-time of the DES framework, however, precluded the ability to calculate the ENBS 

of different research designs. Further research also takes time to be generated and the 

population EVPI does not make statements about when such research should be produced; 

for example, a prospective RCT may take a number of years to complete, from ethical 

approval, to patient recruitment, to data collection, and to data analysis. Conditional on the 

product lifecycle of the health technology, independent research may be produced or wider 

organisational constraints may change, such that the relative cost-effectiveness of a study 
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designed to reduce parameter uncertainty may change temporally. In addition, no single 

programme of research will eliminate all parameter uncertainty and, therefore, health 

technology assessment should be considered as an iterative process by informing the 

design of, and analysing the impact of, further research over time (Sculpher et al., 1997). 

The estimate of parameter uncertainty from a decision analytic model, and the subsequent 

VOI analysis, are conditional on the structural assumptions of the model (Barton et al., 

2004a). Alternative structural assumptions could have been made (for example, by 

including a specific health state for patients that undergo surgery) that may have affected 

the uncertainty associated with the relative cost-effectiveness of testing. Therefore, VOI 

analyses should be interpreted as a guide to inform future research decisions, rather than as 

a definitive estimate of the value of future research studies. Lastly, the lack of correlation 

between patient-level attributes, test sensitivity and specificity, and the use of an 

uninformative prior distribution to characterise the uncertainty associated with the HAQ 

multiplier may have inflated the parameter uncertainty within the model and, in turn, 

contributed to overestimating the population EVPI.  

Limitations 

One potential limitation of this study, common to all early model-based economic 

evaluations, was the limited evidence available to populate the input parameters 

(Annemans et al., 2000). The DES model in this study was developed using all available 

evidence, but that evidence may have been derived from a single source or may have been 

greatly uncertain. The economic evaluation of a new health technology is, however, an 

iterative process that can be updated as further research becomes available (Sculpher, 

1997). One specific advantage of this study, therefore, was to provide evidence that 

suggested such further research may be valuable to the NHS in England.  

Due to the evidence limitations in this study, the sensitivity and specificity of the 

adalimumab ADAb and drug level ELISA assays were assumed to be constant over time. 

This assumption may have overestimated the accuracy of testing because test performance 

may change depending on the prevalence of a biomarker in the patient population (Longo 

et al., 2014). However, it was unlikely that this assumption biased the results because, even 

under such favourable conditions for testing, Strategy 11 (which didn’t include a test) was 

estimated to be cost-effective relative to all other strategies.  
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A third potential limitation was that uncertainty in the HAQ rebound multipliers following 

true-positive and false-positive monitoring test results were sampled from a uniform 

distribution in the PSA. Alternatively, expert elicitation methods could have been used to 

characterise the distribution of this uncertainty (Iglesias et al., 2016), if all possible 

multiplier values between zero and one were not equally likely. However, it may have been 

a challenge to find appropriate experts for this study, given than the rheumatologists in 

Chapter Three were unsure of how to use the ELISA tests in routine clinical practice. It 

was therefore more appropriate, in absence of evidence, to include some uncertainty in the 

HAQ rebound multipliers, as an uninformative prior distribution, rather than to assume a 

fixed value (Boshuizen et al., 2009).   

A final practical limitation of performing a DES model was that each simulation of 20,000 

patients required an approximate run time of eight hours per comparator strategy. This 

computational demand limited the ability to perform extensive deterministic sensitivity 

analyses (Griffin et al., 2006). However, a deterministic sensitivity analysis was conducted 

for all parameters that related to testing and a PSA was performed to propagate the joint 

uncertainty through all input parameters of the model, as required by the NICE Reference 

Case (National Institute for Health and Care Excellence, 2013a). 

Implications for Future Research 

The accuracy of testing, and the health consequence from stratified treatment decisions 

according to true-positive and false-positive monitoring test results, were both key drivers 

of the relative cost-effectiveness of adalimumab ADAb and drug level testing. Future 

prospective research on these parameters may be justified, given the population EVPI 

estimated by the study, to reduce the decision uncertainty associated with recommending 

ADAb and drug level ELISA testing in current practice. However, as the population EVPI 

may be overestimated, such future research studies should be deliverable within a short 

time period whilst also taking the cost of the study into consideration.  

The introduction of new bDMARD therapies and the treat-to-target paradigm has changed 

how patients with RA are treated in routine clinical practice substantially (Smolen et al., 

2016). It may be possible that these new approaches to patient management have reduced 

the average number of days that patients require hospitalisation, compared with the 

evidence that was used in this study (Roche., 2006). A potential study for future research, 

therefore, could estimate an updated relationship between the mean days hospitalised per 
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year and the HAQ score, by using a sample of patients in England that have been treated 

according to a more-recent therapeutic paradigm.  

Since the results of this study were estimated, clinical evidence has started to be produced 

that investigated the use of testing ADAb and drug levels in patients with RA that received 

a different TNFi therapy (certolizumab pegol) (Jani et al., 2017). A future model-based 

economic evaluation could therefore estimate the relative cost-effectiveness of testing 

ADAb and drug levels with ELISA tests, to stratify a subsequent treatment decision, in 

patients that received different monoclonal TNFi therapies (infliximab, golimumab, 

certolizumab pegol) as the supporting clinical evidence base develops.  

Adalimumab is licenced not just for patients with RA, but also for patients with psoriasis, 

psoriatic arthritis, axial spondyloarthritis, and Crohn’s disease (European Medicines 

Agency, 2017). Between 2015 and 2015, the total expenditure on adalimumab in 

secondary care within the NHS in England was higher than the expenditure on any other 

pharmaceutical treatment across all indications (approximately £371 million) (Health and 

Social Care Information Centre, 2015). Given that dose-reduction strategies were found to 

be relatively cost-effective for patients with RA in this study, future research could 

investigate the relative cost-effectiveness of reduced-dose adalimumab across the spectrum 

of diseases defined in the product licence. In light of the magnitude of NHS resources that 

are allocated to full-dose adalimumab at present, such research may have the potential to 

benefit population health substantially. 

6.6. Conclusion 

This study conducted an early model-based economic evaluation of testing adalimumab 

ADAb and drug levels by ELISA to stratify treatment for patients with RA in England. A 

DES model simulated 20,000 hypothetical patients, representative of the patient population 

with RA in England, individually through thirteen different alternative test-and-treatment 

strategies over a lifetime time horizon. The results suggested that, based on current 

evidence, the use of adalimumab ADAb and drug level testing by ELISA was unlikely to 

be a relatively cost-effective use of health care resources, compared with halving the dose 

of adalimumab in all patients after responding for two years. There was, however, 

substantial decision uncertainty associated with the estimates of relative cost-effectiveness. 

The population EVPI was estimated to be greater than £7 million, which may justify the 

calls for further prospective research into ADAb and drug level testing, to reduce the 
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decision uncertainty associated with recommending the ELISA-based testing strategies in 

routine practice. 
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Chapter 7 

Discussion and Conclusion 
 

Chapter Seven presents a discussion of the thesis in terms of the specific contributions to 

knowledge (Section 7.1), the potential implications for different stakeholders (Section 7.2), 

the limitations (Section 7.3), and the topics for further research (Section 7.4). Section 7.5 

presents the final concluding remarks.  

The overall aim of this thesis was to provide evidence for the relative cost-effectiveness of 

a biomarker test to stratify treatment for patients with RA, consistent with the requirements 

of decision-makers for the NHS in England. The thesis began, for the purpose of 

orientation, by juxtaposing a background of a priori investment and health policy promise 

in stratified medicine against the observation that relatively few examples of stratified 

medicine had translated into routine clinical practice. It was posited that the production of 

economic evidence, in particular, was essential to advance the use of biomarker tests to 

stratify treatments in the NHS which, in turn, provided the policy-relevance that motivated 

the research in this thesis.  

The thesis focussed on evaluating a specific case study of stratified medicine for RA, the 

measurement of adalimumab ADAb and drug levels by commercial ELISA-based assays 

(Section 1.3.5), that was an emerging health technology at the inception of this thesis and 

was considered by the international EULAR organisation as a high-priority for clinically-

relevant research (Smolen et al., 2014). The thesis addressed three related research 

questions regarding (i) the existing economic evidence for stratified medicine in RA; (ii) 

the treatment decisions made in current practice for patients with RA in England; and (iii) 

whether adalimumab ADAb and drug level testing to stratify treatment was a relatively 

cost-effective use of health care resources. Each research question was answered using 

specific methods (systematic reviews, qualitative thematic framework analysis, 

quantitative econometric analysis, and decision analytic modelling), presented across five 
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chapters that, when considered sequentially, advanced the economic evidence base for 

stratified medicine in RA.  

7.1. Contributions to Knowledge 

The research in this thesis provided seven clear contributions to knowledge that are now 

summarised, within and beyond the context of the thesis. A strategy to disseminate these 

contributions as academic peer-reviewed publications is described in Appendix 1.  

The first contribution to knowledge, reported in Chapter Two, was a systematic review of 

model-based economic evaluations of stratified medicine in RA. Previously published 

systematic reviews that had identified economic evaluations of stratified medicine had, in 

general, focussed on only one specific type of health technology to stratify treatment, such 

as genomic testing to predict treatment response (Phillips et al., 2004; Vegter et al., 2008; 

Beaulieu et al., 2010; Vegter et al., 2010; Wong et al., 2010; Hatz et al., 2014; Berm et al., 

2016; Plumpton et al., 2016). The study in Chapter Two had a broader focus by arguing, 

consistently with the NICE DAP, that different types of health technologies could be used 

to stratify treatment decisions, such as imaging and an invasive biopsy (National Institute 

for Health and Care Excellence, 2011a). The contribution of the systematic review in 

Chapter Two was therefore novel, not only because it identified all existing economic 

evidence for stratified medicine in RA, but also because it provided an in-depth survey of 

existing economic evidence for all potential ways to stratify treatment in a single disease. 

The potential limitations of the ten economic evaluations identified by the systematic 

review (for example, a poor characterisation of current practice; insufficient comparator 

strategies; limited quantification of the resources required to implement testing; 

insufficient reporting of strategies to identify evidence for test accuracy; and no VOI 

analyses) established a set of relevant topics for further research that were addressed in the 

subsequent chapters of the thesis.  

The second contribution to knowledge, reported in Chapter Three, was an exploratory 

qualitative analysis of the factors that influenced treatment decisions for patients with RA 

in England. This study had a practical value for the thesis, to inform the design of the 

subsequent de novo model-based economic evaluation in Chapter Six, by identifying a 

relevant care pathway for patients with RA according to a sample of consultant 

rheumatologists distributed across England. Prior evidence, however, indicated that 
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treatment decisions for RA were variable across England (Tugnet et al., 2013; Blake et al., 

2014; The British Society for Rheumatology, 2015) and, to date, no evidence had 

attempted to explain the potential sources of this variability. The results, which suggested 

that treatment decisions were influenced by factors at three levels (the external 

environment; internal to the hospital; at the level of the individual rheumatologist) was 

therefore a novel contribution towards the developing literature regarding treatment 

variation in rheumatology practice (Tugnet et al., 2013; Blake et al., 2014; The British 

Society for Rheumatology, 2015).  

The third contribution to knowledge, also reported in Chapter Three, was the identification 

of four potential barriers to using the ADAb and drug level ELISA tests in routine practice 

(the recognition of a clinical problem; understanding the role of testing; lack of evidence to 

support testing; capacity and resource constraints), as perceived by the sample of 

consultant rheumatologists distributed across England. The effective application of any 

stratified medicine in routine practice is reliant on the behaviour of clinicians to prescribe 

the correct treatment according to the test result (Garrison et al., 2006; Annemans et al., 

2013; Buchannan et al., 2013). However, pragmatic trials of stratified medicine have 

demonstrated that clinicians may not always comply with the appropriate treatment 

decision (Thompson et al., 2014). The four barriers were found to be similar to those 

reported by clinicians with respect to using different types of medical test in routine 

practice (Jones et al., 2013; Raghavan et al., 2014).  

The fourth contribution to knowledge, reported in Chapter Four, was the quantitative 

econometric analysis of the patient-level factors that influenced TNFi prescribing decisions 

observed in routine practice for patients with RA in England. The results of three related 

studies, which analysed TNFi prescribing decisions observed for patients with RA in North 

America, may have been subject to endogeneity (DeWitt et al., 2006; Carter et al., 2012; 

Zhang et al., 2013). The study in Chapter Four built on the findings of Chapter Three by 

attempting to control for the unobservable factors that may have influenced treatment 

decisions within the external environment and internal to the hospital, to mitigate the 

influence of endogeneity through omitted variable bias. The results found that patient-level 

characteristics (age; concomitant methotrexate; socioeconomic characteristics) had a 

significant influence on the choice of TNFi prescribed, which may have indicated that 

implicit treatment stratification occurred within routine clinical practice in England.  
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The fifth contribution to knowledge, reported in Chapter Five, was a systematic review of 

RA-specific prescribing algorithms that included TNFi ADAb and drug level testing. No 

previous study had synthesised the different recommendations for TNFi ADAb and drug 

level testing that were designed specifically for patients with RA. The appropriate use for 

testing was unknown a priori, as evidenced by the potential barriers to testing (perceived 

by the rheumatologists) in Chapter Three. The results of this study were used to inform the 

relevant comparator strategies for the subsequent economic evaluation in Chapter Six.  

The sixth contribution to knowledge, reported in Chapter Five, was the development of a 

novel algebraic conceptualisation technique that facilitated the early identification of 

potentially relevant comparator strategies (from a larger set of plausible candidate 

strategies) during the development of a de novo model-based economic evaluation. A 

common challenge when evaluating the relative cost-effectiveness of a new medical test to 

stratify a treatment, early in its product lifecycle, was that the appropriate purpose of 

testing may be uncertain (Buisman et al., 2016) A limited clinical evidence base may 

increase the number of plausible candidate testing strategies; however, constraints on a 

decision analyst’s time may reduce the feasibility of comparing all plausible strategies in a 

full economic evaluation (Owens et al., 2017). The algebraic conceptualisation technique 

was applied to the results of the systematic review of RA-specific prescribing algorithms 

and identified two broad approaches to stratify treatment that were deemed to be 

potentially relevant comparator strategies for the decision problem in this thesis.  

The seventh contribution to knowledge, reported in Chapter Six, was the early model-

based economic evaluation of adalimumab ADAb and drug level testing to stratify 

treatment for patients with RA in England. This study was the first model-based economic 

evaluation of stratified medicine for RA that was designed specifically for decision-makers 

in England. An extensive model conceptualisation and development process (Chapter 

Five) ensured that the economic evaluation included all comparator strategies that were 

directly relevant to clinical practice in England. The results suggested that, based on 

current evidence, stratified medicine according to adalimumab ADAb and drug level 

ELISA testing was not likely to be a relatively cost-effective use of health care resources in 

England. The accompanying VOI analysis, however, indicated that further prospective 

research into the ELISA-based testing strategies had the potential to be worthwhile, in 

order to reduce the decision uncertainty associated with recommending a stratified testing 

strategy in routine clinical practice.  
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7.2. Thesis Implications 

The research presented within this thesis had implications for different stakeholders in the 

health care system. These implications are now reported for commercial medical test 

manufacturers (Section 7.2.1), population health care decision-makers (Section 7.2.2), and 

and decision analysts (Section 7.2.3). 

7.2.1. Commercial Medical Test Manufacturers 

Commercial manufacturers that have produced a new medical test to stratify a treatment 

face an immediate challenge to demonstrate the value of testing to both (i) decision-

makers, by communicating how treatment stratification could be consistent with the 

objectives of the health care system (for example, population health maximisation), and to 

(ii) clinicians, by explaining how testing may be useful in routine clinical practice 

(Faulkner et al., 2012). For example, the ELISA-based tests evaluated in this thesis were an 

example of a complementary diagnostic (Milne et al., 2015), with a lack of end-to-end 

evidence and data to support the clinical utility of testing (Rogowski et al., 2009; National 

Institute for Health and Care Excellence, 2011a; Phillips et al., 2013). 

The current regulatory standards for licencing a new medical test in Europe require 

evidence of a test’s accuracy and safety only (Payne, 2009; Frueh, 2013; Payne et al., 

2013a), which may decrease the incentive for test manufacturers to produce evidence of 

clinical utility during product development. Pharmaceutical manufacturers may also be 

unwilling to generate evidence for the clinical utility of testing if treatment stratification 

reduces their treatment’s market share (Towse et al., 2013). Therefore, a practical 

implication for commercial medical test manufacturers was that an early model-based cost-

effectiveness analysis could be incorporated during the development of a new test to (i) 

ensure that a test to stratify treatment is developed in alignment with the values of 

decision-makers in the health care system (Sculpher, 1997; Annemans et al., 2000; 

Buisman et al., 2016) and (ii) to provide evidence to clinicians regarding the purpose of 

testing in routine clinical practice.    

7.2.2. Population Health Care Decision-makers 

NICE has a mandate to maximise population health subject to the prevailing budget 

constraint for health care, and it achieves this objective by making resource allocation 
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decisions after evaluating the relative effectiveness and cost-effectiveness of new health 

technologies (National Institute for Health and Care Excellence, 2013a). This evaluative 

approach by NICE may be sufficient for health technologies that require an investment in 

health care resources; however, the demonstration of effectiveness may not be appropriate 

for health technologies that require a disinvestment in health care resources (Bryan et al., 

2014; Scotland et al., 2017). For example, the most cost-effective strategy estimated by the 

economic evaluation in Chapter Six was to reduce adalimumab doses in all patients after 

two years of responding; this strategy represented a disinvestment in health care resources 

(compared with current practice) and simultaneously (i) maximised population health; (ii) 

was relatively cost-effective; but (iii) was not relatively effective because a proportion of 

patients with reduced-dose adalimumab experienced a flare in disease activity.  

If objections are made on the grounds that it is unethical to reduce the health of known 

patients (to release resources for other unidentifiable patients in the health care system) 

then, for consistency, it must also be equally unethical to reduce the health of those 

unidentified patients by treating a known population of patients with a strategy that is not 

relatively cost-effective (Dowie, 2004). Failure to recommend a strategy that is relatively 

cost-effective, but not effective, is inconsistent with population health maximisation and 

implies that identifiable lives are worth more than unidentifiable lives (Claxton et al., 

2015b; Cookson, 2015). The practical implication of the results in this thesis for NICE was 

to recommend consulting their Citizens Council to improve the transparency in the social 

value judgements made with respect to disinvestment decisions (Rawlins, 2005; Culyer et 

al., 2006; Shah et al., 2013).  

7.2.3. Decision Analysts 

There were three implications for decision analysts who may conduct a future model-based 

economic evaluation of stratified medicine; these implications are now described.  

The scientific literature regarding a new medical test to stratify treatment may develop 

rapidly over a short period of time (Buisman et al., 2016). For example, there were three 

major developments in the literature over the duration of this thesis, which subsequently 

affected the model-based economic evaluation reported in Chapter Six: (i) in 2013, 

Krieckaert et al. (2015) published an early-view version of their cost-effectiveness analysis 

of adalimumab drug level testing for patients with RA in The Netherlands; (ii) in 2014, the 

NICE DAP published the scope of a (now complete) technology appraisal that included 
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TNFi ADAb and drug level ELISA testing for patients with Crohn’s disease (National 

Institute for Health and Care Excellence, 2016c); and (iii) in 2015, the (now complete) 

NICE multiple technology appraisal for RA was updated, mid-appraisal, to include 

biosimilar therapies as relevant comparator treatments (National Institute for Health and 

Care Excellence, 2016a). The implication for decision analysts, based on the experience of 

this thesis, was that new model-based economic evaluations of stratified medicine must be 

expectant of, and be adaptable to, similar rapid developments in the existing evidence base.  

A second implication for decision analysts was that economic evaluations of stratified 

medicine must appropriately account for (i) all direct health care resources associated with 

testing and (ii) the accuracy of testing. The economic evaluations of stratified medicine in 

RA that were published previously, identified in Chapter Two, were found to have 

inadequately characterised the values of (and uncertainty in) test accuracy and the 

resources necessary for testing. Failing to do so may have underestimated the relative cost-

effectiveness of treatment stratification and biased an economic evaluation in favour of the 

testing strategy (National Institute for Health and Care Excellence, 2011a; Miguel et al., 

2015). For example, in the economic evaluation presented in Chapter Six, the values of 

both test accuracy and the cost of testing were found to be key drivers of the relative cost-

effectiveness of ADAb and drug level testing.  

A third implication of this thesis for decision analysts was that a thorough model 

conceptualisation process is essential for the evaluation of new examples of stratified 

medicine that are characterised by a lack of end-to-end evidence. For example, the 

conceptualisation process in this thesis (Chapter Five) was used to (i) identify relevant 

comparator strategies, (ii) define the decision problem, (iii) characterise disease 

progression, and (iv) characterise the care pathways that included testing. In addition, the 

involvement of clinical experts in the conceptualisation process was invaluable. The 

responses provided by the rheumatologists in Chapter Three, for example, led to the 

inclusion of dose-reduction strategies in the decision problem for the model-based 

economic evaluation in Chapter Five, which were subsequently found to be cost-effective, 

relative to the testing strategies, in Chapter Six.  
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7.3. Limitations 

The scope of this thesis encompassed the generation of economic evidence that conformed 

to the pre-specified requirements of the decision-makers responsible for health care 

resource allocation in England, in order to be relevant to health care policy and decision-

making. The specific limitations of the individual studies in the thesis were reported within 

their respective chapters and are not repeated here. There were, however, two potential 

broader limitations to the analytic approach of the thesis, related to the omission of non-

health benefits (Section 7.3.1) and the capacity to implement stratified medicine (Section 

7.3.2), that are now discussed.  

7.3.1. The Non-health Benefits of Stratified Medicine 

The first potential limitation was that the diagnostic information obtained from any test 

result may have had an intrinsic value to both clinicians and patients, but the prevailing 

paradigm for the economic evaluation of health technologies in England was concerned 

with the maximisation of population health only. For example, the methods used by the 

NICE DAP to evaluate a stratified medicine linked the information derived from a test 

result to an appropriate treatment decision, which was then linked to a final health outcome 

(Byron et al., 2014); the benefit of testing, therefore, was framed entirely in terms of the 

consequential impact on the net QALYs gained or lost (National Institute for Health and 

Care Excellence, 2011a). 

The limitations of using QALYs as a measure of benefit were not unique to stratified 

medicine; for example, relevant dimensions of health benefit in some diseases (such as 

those characterised by aural or visual problems) may not be reflected by the EQ-5D 

instrument adequately (Longworth et al., 2014), and the evaluation of public health 

interventions may utilise a broader set of outcome measures (Edwards et al., 2013; Brazier 

et al., 2015). The diagnostic information derived from the result of a medical test, an 

essential element of a stratified medicine, may have incurred (non-health) benefits that 

were not quantified within the QALY outcome measure (Payne et al., 2013c). The intrinsic 

value of such diagnostic information derived from a test result has been referred to as the 

value of knowing (Zamora et al., 2016). 
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In this thesis, one candidate way of using the ELISA-based testing strategies was excluded 

from the decision problem because it was expected to impose additional costs without an 

accompanying QALY gain (Section 5.4; testing patients after they had already lost 

response to treatment). This testing strategy would have provided diagnostic information (a 

patient’s prevailing adalimumab drug levels and ADAb status) that may have been valued 

by clinicians and patients. Complex interventions (such as clinical genetic services) that 

produce no direct health benefit have been funded previously by the NHS in England, 

which may imply that the non-health benefit derived from diagnostic information had some 

value within the health care system (Payne et al., 2013b). However it was not clear how, or 

if, those non-health benefits could have been incorporated within the prevailing paradigm 

for the economic evaluation of health technologies in England.   

7.3.2. Capacity to Implement Stratified Medicine 

The second potential limitation was that an implicit assumption was made, within the 

generation of economic evidence in this thesis, that the capacity to implement the ELISA-

based testing strategies would be available immediately in the NHS. However, the 

qualitative study in Chapter Three revealed that some rheumatology units across England 

did not have the resources or laboratory requirements available at present to perform 

routine ELISA testing in clinical practice.  

Cost-effectiveness analyses presuppose, to use the economic term, a first-best world in 

which all necessary assumptions hold and the results, when applied to decision-making, 

enable a movement towards the allocative efficiency of population health care resources 

(Weinstein et al., 1973). The scenario in which a decision is actually made, however, may 

be characterised as second-best if those necessary assumptions do not hold in practice 

(Culyer, 2016). For example, there may be heterogeneity in the size of local budgets for 

health care that affects the opportunity cost of displaced health technologies (Gafni et al., 

2006; Eckermann et al., 2014; Paulden et al., 2014a), and health technologies may not be 

perfectly divisible or exhibit constant returns to scale (Weinstein et al., 1973; Birch et al., 

1993). The practical implication of applying first-best solutions in a second-best world, the 

theory of the second-best (Lipsey et al., 1956), is that resource allocation decisions may 

move outcomes away from maximising the objective function of population health (Birch 

et al., 1992; Sculpher et al., 2005b; Culyer, 2016).  
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The capacity to implement a testing strategy is instrumental to the application of a 

stratified medicine in practice, and its absence is therefore indicative of a second-best 

environment. The capacity to use a medical test may be affected by a complex series of 

constraints, including the laboratory facilities available to analyse samples from a test 

(Cree et al., 2014), the time taken to collect and process samples (Grasas et al., 2014), and 

the availability of a computerised system to present and/or interpret the results of a test 

within a routine consultation (van Rooij et al., 2012). Such capacity constrains may impose 

an opportunity cost on population health (Jahn et al., 2010) which, if unaccounted for, may 

have overestimated the relative cost-effectiveness of stratified medicine in this thesis.  

7.4. Future Research 

The findings presented in this thesis, and their respective limitations, stimulated a number 

of questions that required further research. The topics for further research, which were not 

subsequently addressed by the thesis, are now summarised by the chapter in which they 

were presented.  

Chapter Three 

(i) To understand the decision-making process and evidence requirements of local 

decision-makers when recommending a new testing strategy to stratify 

treatment in clinical practice, by conducting a qualitative interview-based study 

with members of different CCGs in England; 

(ii) To conduct a qualitative interview-based study with a sample of rheumatology 

nurse specialists in England, in order to explore their perceived influence on 

routine prescribing decisions for patients with RA.  

Chapter Four 

(i) To replicate the results of the econometric study in Chapter Four by using a 

larger sample of patients with RA in England from the BSRBR register; 

(ii) To utilise the data from patients that were prescribed biosimilar TNFi therapies 

in England, that were collected recently by the BSRBR register, to estimate the 

factors that influenced their selection in routine prescribing decisions; 

(iii) To estimate the magnitude of influence that specific hospital-level factors (for 

example, size, quality, or teaching status) had on the choice of TNFi prescribed 
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to patients with RA in England, to partially explain the unobservable between-

hospital heterogeneity that was present in Chapter Four.  

Chapter Five 

(i) To extend the algebraic early model-based conceptualisation technique (Section 

5.4) by describing the profile of other potentially relevant outcomes over time 

(depending on the perspective of the analysis); 

Chapter Six 

(i) To conduct further prospective research on the accuracy of adalimumab ADAb 

and drug level ELISA testing in a sample of patients with RA, in order to 

reduce the parameter uncertainty that was present in the decision analytic 

model; 

(ii) To conduct further prospective research on the health consequences (as a 

change in HAQ score) associated with using the ELISA-based testing strategies 

to stratify treatment for patients with RA, in order to reduce the parameter 

uncertainty that was present in the decision analytic model; 

(iii) To update the statistical relationship between the HAQ score and the annual 

mean days hospitalised using a sample of patients with RA in England that 

were prescribed treatments according to a more-recent therapeutic paradigm.  

(iv) To investigate the relative cost-effectiveness of using ADAb and drug level 

testing to stratify treatment for patients with RA that were treated with different 

monoclonal TNFi therapies (infliximab, golimumab, certolizumab pegol) as the 

clinical evidence base develops; 

(v) To estimate the relative cost-effectiveness of prescribing reduced-dose 

adalimumab for a range of different diseases, including psoriasis, Crohn’s 

disease, and psoriatic arthritis.  

The two broader limitations of the thesis, described in Section 7.3, also identified topics 

that may be addressed by larger programmes of subsequent research. These potential 

research programmes are now described.  

Programme One: The Non-health Benefits of Stratified Medicine 

Given the objective of population health maximisation and the fundamental principal that 

the opportunity cost of any incremental health care expenditure will inevitably fall on 
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health itself, the incorporation of non-health benefits in the decision-making process (such 

as the value of diagnostic information derived from a test) has the potential to reduce 

overall population health (Sculpher et al., 2017). Four relevant topics for further research 

were therefore: 

(i) To investigate the normative case for whether the diagnostic information 

derived from a medical test ought to be an appropriate benefit by which to 

allocate population health care resources; 

(ii) To explore how the value to patients and clinicians, derived from knowing 

specific diagnostic information, may be quantified; 

(iii) To quantify the trade-off between health outcomes and the value derived from 

diagnostic information, acceptable to decision-makers, under a scenario that 

knowing the result of a test will not improve health outcomes; 

(iv) To quantify the opportunity cost (in terms of population health forgone) of 

allocating health care resources towards an exemplar medical test that provides 

no direct health benefit, but provides value from diagnostic information only.  

Programme Two: Capacity to Implement Stratified Medicine 

The capacity to implement a testing strategy is essential to realise the (clinical and 

economic) benefits of a stratified medicine in routine practice. However, the evidence 

generated by an economic evaluation conventionally assumes the absence of any constraint 

on capacity (Crane et al., 2013). Three relevant topics for further research were therefore: 

(i) To investigate if, and how, published model-based economic evaluations of 

stratified medicine have parametrised capacity constraints within the structure 

of their decision analytic models; 

(ii) To review the health technologies recommended by previous NICE DAP 

appraisals in terms of the pre-existing capacity available to implement the 

testing strategies nationally; 

(iii) To estimate the opportunity cost associated with the imperfect implementation 

of an exemplar testing strategy to stratify treatment, and how dynamic changes 

to capacity constraints over time may affect the relative cost-effectiveness of 

testing.  
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7.5 Conclusion 

The personalisation of health care, by tailoring treatment decisions to specific known 

characteristics of patients, through the means of stratified medicine, has been expressed as 

a high-priority for health policy in England. The successful introduction of stratified 

medicine into routine clinical practice is reliant on the development of economic evidence 

to advance its uptake within the NHS in England.  

This thesis aimed to provide evidence for the relative cost-effectiveness of a biomarker test 

to stratify treatment for patients with RA, consistent with the requirements of decision-

makers for the NHS in England. A specific example of stratified medicine for patients with 

RA, by testing adalimumab ADAb and drug levels with commercial ELISA-based health 

technologies, was used as a case study. The thesis utilised a mixed methods approach and 

produced seven clear contributions to advance knowledge on the economics of stratified 

medicine in RA.  

The distinct challenges associated with producing economic evidence early in the product 

lifecycle of a new medical test were identified throughout the thesis. For example, such 

challenges included (i) handling a lack of end-to-end evidence, (ii) uncertainty over how to 

use the ELISA tests in practice, (iii) uncertainty in the accuracy of testing, (iv) uncertainty 

in the health outcomes and resources associated with testing, and (v) the potential barriers 

to using the tests to stratify treatment in routine practice.  

The results of the economic evaluation suggested that, based on current evidence, the use 

of adalimumab ADAb and drug level testing to stratify treatment was unlikely to be a 

relatively cost-effective use of health care resources in England, according to the 

conventional thresholds for cost-effectiveness assumed by NICE. There was considerable 

decision uncertainty associated with this result and further prospective research, in 

particular relating to the accuracy of testing and the health outcomes associated with 

treatment stratification, was determined to be potentially valuable to the NHS.  

The key contributions of this thesis were in advancing the economic evidence base for 

stratified medicine in RA and by demonstrating the value of producing relevant economic 

evidence for decision-makers early within the product lifecycle of a new medical test to 

stratify a subsequent treatment decision. 
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Appendix 1: Strategy to Disseminate Research 

This appendix reports the proposed publication strategy to disseminate the research 

presented in this thesis. Seven clear outputs are described in terms of their (i) proposed 

title; (ii) the relevant section from the thesis; and (iii) a description of the manuscript.  

Publication One 

Title: Economics of Stratified Medicine in Rheumatoid Arthritis.  

Relevant Section from Thesis: Chapter Two. 

Description: A systematic review of model-based economic evaluations of stratified 

medicine in rheumatoid arthritis was reported in Chapter Two. The study synthesised 

existing economic evidence for stratified medicine in rheumatoid arthritis and was 

published in Current Rheumatology Reports in December 2014 as the initial output from 

this thesis.  

Publication Two 

Title: Exploring the Factors that Influenced Treatment Decisions with Anti-TNF Therapies 

for Patients with Rheumatoid Arthritis in England: A Qualitative Investigation. 

Relevant Section from Thesis: Chapter Three.  

Description: A qualitative study was reported in Chapter Three which explored the factors 

that influenced specific prescribing decisions for patients with rheumatoid arthritis, with a 

sample of consultant rheumatologists across England. This study is proposed for 

dissemination as a published manuscript, of national interest, because of (i) growing 

evidence of regional variation in rheumatology practice in England, and (ii) a limited 

existing evidence base on how routine treatment decisions are actually made for patients 

with rheumatoid arthritis in England.  

Relevant Audience: Rheumatologists, patients, and regional decision-makers in England.  

Target Journal: This study had specific relevance to current practice for rheumatoid 

arthritis in England. Therefore, the most suitable target journal for the manuscript was 

Rheumatology, which is the official journal of the British Society for Rheumatology.  
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Publication Three 

Title: Barriers to Stratified Medicine Perceived by Rheumatologists in England: The Case 

of Routine Anti-TNF Immunogenicity Testing. 

Relevant Section from Thesis: Chapter Three. 

Description: The study in Chapter Three also reported the potential barriers to using a test 

(anti-TNF anti-drug antibody and drug level testing) to stratify treatment, perceived by the 

sample of rheumatologists in England. This set of results addressed an explicit research 

objective and was therefore deemed to be applicable for dissemination as an independent 

manuscript.  

Relevant Audience: Product manufacturers (tests and treatments), rheumatologists, and 

local and national decision-makers.  

Target Journal: This study contributed to the broader literature regarding the potential 

barriers to stratified medicine in routine practice, and has a specific application to the 

practice of rheumatology. Therefore, the most suitable target journal for this manuscript 

was Rheumatology.  

Publication Four 

Title: Estimating the Factors that Influenced the choice of Anti-TNF Prescribed to Patients 

with Rheumatoid Arthritis in England. 

Relevant Section from Thesis: Chapter Four.  

Description: The study in Chapter Four estimated the patient-level factors that influenced 

the choice of anti-TNF therapy prescribed to patients with rheumatoid arthritis, based on 

treatment decisions observed in routine practice in England. The study addressed similar 

topics as the qualitative study in Chapter Three (regional variation in health care; 

uncertainty over how treatment decisions were made in practice) but from a quantitative 

perspective. The two studies were therefore complementary to each other.  

Relevant Audience: Rheumatologists, patients, and regional decision-makers in England. 

Target Journal: This study addressed a similar topic, for a similar audience, as those 

addressed by Publication Two. Therefore, the most suitable target journal for this study 

was also deemed to be Rheumatology.  
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Publication Five 

Title: Systematic Review of Prescribing Algorithms for Anti-TNF Immunogenicity 

Assessment in Rheumatoid Arthritis. 

Relevant Section from Thesis: Section 5.3; Chapter Five.  

Description: A novel systematic review of prescribing algorithms was performed in 

Section 5.3 of this thesis, which synthesised all published recommendations on how to use 

anti-TNF anti-drug antibody and drug level testing in routine practice. This study was 

timely because these tests were at an early stage of their product lifecycle, with limited 

clinical (and economic) evidence to describe how they could be used to inform treatment 

decisions.  

Relevant Audience: Product manufacturers (tests and treatments), rheumatologists, local 

and national decision-makers, and decision analysts.  

Target Journal: This study had relevance for the clinical practice of rheumatology 

globally because, to date, no study had synthesised the published recommendations, 

specifically for patients with rheumatoid arthritis, on how to use anti-TNF anti-drug 

antibody and drug level testing. Therefore, the most suitable target journal for this 

manuscript was the Annals of the Rheumatic Diseases, which is the official journal of the 

European League Against Rheumatism. 

Publication Six 

Title: Early Model-based Conceptualisation Technique to Identify Potentially Relevant 

Comparators when Multiple Candidate Strategies Exist.  

Relevant Section from Thesis: Section 5.4; Chapter Five.  

Description: A novel algebraic conceptualisation technique, to identify potentially relevant 

comparator strategies when performing an early economic evaluation, was developed in 

Section 5.4. The identification of relevant comparators is a challenge during the early 

evaluation of new test-based strategies to stratify treatment, in particular, because a limited 

clinical evidence base may increase the number of plausible candidate strategies in which 

the test could be used in practice.  

Relevant Audience: Decision analysts with an interest in the early economic evaluation of 

health technologies. 

Target Journal: This study had specific relevance to decision analysts and developed a 

method that was subsequently applied to the test evaluated in this thesis. Therefore, the 

most suitable target journal for this manuscript was Medical Decision Making, which 
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publishes (amongst other topics) novel methods for health technology assessment and 

decision-making.  

Publication Seven 

Title: Economic Evaluation of Routine Immunogenicity Monitoring, Remission Drug Level 

Assessment, and Uniform Dose-reduction Strategies in Patients with Rheumatoid Arthritis 

that Received Adalimumab.  

Relevant Section from Thesis: Chapter Six. 

Description: The study in Chapter Six presents a de novo model-based economic 

evaluation of stratified medicine in RA. The economic evaluation provided evidence for 

using anti-TNF anti-drug antibody and drug level testing in multiple ways to stratify 

treatment and for reducing the dose of anti-TNF therapies in all patients. The study also 

estimated the value of conducting further prospective research to reduce the uncertainty 

associated with making decisions based on current evidence. The study was a substantial 

and novel contribution to the literature, with specific relevance to decision-makers in 

England, and a general relevance to an international audience interested in using the tests 

in routine practice.  

Relevant Audience: Rheumatologists, health care decision-makers, health care payers, 

patients, and decision analysts.  

Target Journal: One suitable target journal for this manuscript, given the relevance of this 

economic evaluation to an international audience, was the Annals of the Rheumatic 

Diseases. The European League Against Rheumatism have expressed that research into the 

usefulness of anti-drug antibody and drug level testing is a high-priority, and the study in 

Chapter Six contributed to this agenda for research. Alternatively, the manuscript could be 

submitted to a general medical journal; for example, the Journal of the American Medical 

Association would also be a suitable target journal because a number of the model’s input 

parameters were estimated from studies that were published previously in this journal.    
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Appendix 2: The NICE Reference Case 

This appendix reports the details of the NICE Reference Case (Table A2.1). The NICE 

Reference Case specifies the methods, considered to be appropriate by NICE, for 

producing economic evidence to inform population health care resource allocation 

decisions in the NHS. Consistency in the methods of conducting an economic evaluation 

facilitates NICE to make comparisons between the outcomes of different technology 

appraisals (National Institute for Health and Care Excellence, 2013).  

 Table A2.1. Summary of the NICE Reference Case. 

Component of Economic Evaluation NICE Reference Case 

Defining the decision problem. Scoping phase by NICE. 

 

Comparators. Defined in the scope. All relevant comparators. 

 

Perspective on outcomes. All direct health effects for patients or, where 

relevant, for carers. 

 

Perspectives on costs. NHS and Personal & Social Services. 

 

Type of economic evaluation.  Cost-utility analysis with fully incremental 

analysis. 

 

Time horizon. Long enough to reflect all important differences 

in costs or outcomes between technologies being 

compared. 

 

Synthesis of evidence on health effects. Based on systematic review. 

 

Measuring and valuing health effects.  Health effects expressed in QALYs. 

 

The EQ-5D is the preferred measure of health-

related quality of life.  

 

Source of data for measurement of health-

related quality of life.  

Reported directly by patients and/or carers. 

 

 

Sources of preference data for valuation of 

changes in health-related quality of life.  

Representative sample of the UK population. 

 

 

Equity considerations.  An additional QALY has the same weight 

regardless of who receives the health benefit. 

 

Evidence on resource use and costs. Costs should relate to NHS and PSS resources 

and should be valued using prices relevant to 

NHS and PSS. 

 

Discounting. The same annual rate for both costs and health 

effects (3.5%). 

 

Handling of Uncertainty.  Probabilistic sensitivity analysis is preferred.  

Source: National Institute for Health and Care Excellence (2013, pp. 31-57). 
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Appendix 3: Description of Three Types of Decision Analytic 

Model 

This appendix describes three different types of decision analytic model (decision tree, 

Markov model, and discrete event simulation) that may be used to conduct a model-based 

economic evaluation in order to estimate the expected costs and health outcomes 

associated with different comparator health technologies. The model types each use a 

different approach to estimate expected outcomes. Each type of model is explained in 

terms of its key design features, advantages, and disadvantages. The choice of model 

should be appropriate to address the decision problem at hand, which is explained further 

during the conceptualisation of the de novo decision analytic model in Chapter Five.  

A3.1. Decision Trees 

A decision tree represents a decision (for example, a treatment decision) and the 

subsequent logical flow of chance events that may occur to a patient over time (Keeler, 

1995). An illustrative example of a decision tree is provided in Figure A3.1 which 

represented a decision between Treatment A and Treatment B.  

Figure A3.1. Illustrative example of a decision tree.  

 

The design of any decision tree is characterised by three key elements: (i) a decision node 

represents the decision to be made, and is conventionally depicted by a solid square; (ii) a 

chance node represents an uncertain event that may occur after a decision, and is 

conventionally depicted by a solid circle; and (iii) a branch is the link between a decision 

node and the flow of chance nodes, and is conventionally depicted by a solid line 

(Drummond et al., 2015). The branches of a decision tree form mutually exclusive 
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pathways that a patient may follow (Kuntz et al., 2013). Terminal nodes, which represent 

outcomes of interest (such as costs or QALYs), are attached to the end of each mutually 

exclusive pathway. Probabilities associated with each chance node can be estimated from 

the clinical literature (for example, the probability of a side-effect).  

The most common way to estimate the expected costs and QALYs, associated with each 

treatment alternative, in a decision tree is by calculating an analytic solution (Brennan et 

al., 2006). The probability that a patient may experience a specific mutually exclusive 

pathway can be found by multiplying the probabilities associated with each chance event 

along that pathway (Drummond et al., 2015). The expected outcomes associated with a 

specific pathway can then be found by multiplying the pathway-specific probability by the 

values of the pathway-specific terminal nodes. The expected outcomes of a particular 

treatment alternative can finally be estimated by summing the expected outcomes of each 

mutually exclusive pathway associated with that treatment. This whole analytic process is 

often referred to as rolling-back the tree (Briggs et al., 2006).  

The principal advantages of decision trees are that they are relatively simple to construct 

and comprehend. Decision trees, however, have a number of disadvantages. Firstly, they 

may become difficult to handle as the number of mutually exclusive pathways increases 

(which is often referred to as a bushy decision tree) (Sonnenberg et al., 1993). Secondly, 

given that expected outcomes are estimated analytically, all chance outcomes are assumed 

to occur at the same time, which may not be justifiable for chronic diseases that are 

characterised by clinical events that occur over a long time horizon (Karnon et al., 2014). 

Finally, by implication of the first two limitations, it is difficult to use a decision tree to 

characterise clinical events that recur over time (such as periods of intermittent remission 

or regular monitoring of treatment).  

A3.2. Markov Models 

A Markov model represents the movement of patients between mutually exclusive health 

states over time (Briggs et al., 2006). An illustrative example of a three-state Markov 

model is provided in Figure A3.2.  

The design of a Markov model is characterised by three key elements: (i) a finite set of 

mutually exclusive health states, relevant to the decision problem, that describe the 

progression of disease (Briggs et al., 1998). Patients must reside in one health state at any 

point in time; (ii) transition probabilities that define the probability of moving between 

each health state per unit of time. The set of transition probabilities from one health state to 
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another must sum to one (Briggs et al., 1998); and (iii) time, which is divided into discrete 

cycles of equal length (Sonnenberg et al., 1993; Standfield et al., 2014).  

Figure A3.2. Illustrative example of a Markov model.  

 

The most common way to estimate the expected costs and QALYs associated with each 

alternative strategy in a Markov model is to simulate a cohort of identical patients between 

the health states over time. Costs and QALYs are assigned to each health state. Patients 

accrue costs and QALYs according to the duration of time they reside in each health state 

(Sonnenberg et al., 1993). Expected outcomes are estimated by dividing the total costs and 

QALYs (accrued by the whole cohort) by the number of patients within the cohort.  

The advantage of Markov models is that, by explicitly accounting for time, recurring or 

remitting clinical events can be incorporated into the analysis (Kuntz et al., 2013). 

However, there are three potential limitations to Markov models. Firstly, Markov models 

are characterised by the Markovian assumption which assumes that the probability of 

transitioning between health states depends only on the current health state (Briggs et al., 

1998). The practical implication of the Markovian assumption is that Markov models do 

not have any memory regarding the states that each patient has previously occupied 

(Sonnenberg et al., 1993; Briggs et al., 1998). The Markovian assumption may be too 

restrictive if future clinical events may be affected by events previously experienced by a 

patient. A second potential limitation is that, given patients can only reside in one state at 

any point in time, the model may need (i) many states to characterise the progression of 

disease sufficiently, which may not be computationally efficient, or (ii) potentially 

restrictive assumptions with respect to the choice of health states (Caro et al., 2005). 
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Lastly, patients in reality transition between health states in continuous time rather than in 

discrete cycles. Therefore, a half-cycle correction is often applied to Markov models, 

which adjusts the results by assuming that transitions occur, on average, half-way through 

each cycle (Sonnenberg et al., 1993; Briggs et al., 1998).  

A3.3. Discrete Event Simulation 

A discrete event simulation (DES) represents the experience of individual patients over 

time in terms of the specific events that may occur. Decision analytic models that are 

evaluated at the level of the individual patient may also be referred to as individual 

sampling models or microsimulation models (Kuntz et al., 2013).  

There are four key elements that characterise the design of a DES: (i) entities are the 

objects being modelling that experience events over time. In the case of the economic 

evaluation of health technologies, entities are conventionally defined as individual patients 

(Caro et al., 2016a); (ii) attributes are the specific characteristics that describe an entity, 

such as the age and sex of a patient. Each patient may have their own unique value for an 

attribute, unlike with a Markov model which assumes a homogeneous cohort. The values 

of a patient’s attributes can be updated at any time (Caro et al., 2016a); (iii) events are 

characterised broadly as something that can happen to a patient over time. For example, 

events may comprise disease progression or the administration of a treatment or test (Caro 

et al., 2016a); and (iv) time is advanced in a DES model according to when the next event 

is scheduled to occur (Caro et al., 2016a).  

DES models estimate expected costs and QALYs by simulating a cohort of patients 

individually over a predetermined period of time. A DES begins when a single patient 

enters the model and their attributes are sampled from a distribution representative of a 

wider population. The patient’s times to specific events are then sampled from survival 

curves described using time-to-event data. The events are scheduled in ascending order of 

time and the patient experiences each event sequentially. The time to specific events can be 

updated, if required, during the simulation (Caro et al., 2016b). The patient’s own costs 

and QALYs derived over time are stored as attributes. The process is repeated as each 

individual patient leaves the model until all patients in the cohort have been simulated 

through the DES. The expected costs and QALYs are finally calculated, similarly to a 

Markov model, by dividing the total costs and QALYs for the sample by the number of 

patients within the sample.  
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A key advantage of DES models is that the simulation can remember the history of each 

individual patient by storing information within the patient-level attributes. The ability to 

remember each patient’s history may be valuable if the likelihood of future clinical events 

may be influenced by the events previously experienced by a patient (Caro et al., 2016b). 

A notable disadvantage, however, is that DES models can be computationally demanding 

and may require thousands of patients to be simulated in order to estimate stable results 

(Griffin et al., 2006). The computational demand may be increased further by conducting a 

probabilistic sensitivity analysis (PSA) because two loops must be simulated (an outer-

loop to simulate the PSA model parameters and an inner-loop to simulate the individual 

patients) (Griffin et al., 2006). An additional factor that may limit the use of a DES model 

is whether time-to-event data are available to simulate event times for each patient (Caro, 

2005).  
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Appendix 4: Parametric Distributions for a Probabilistic 

Sensitivity Analysis 

Statistical distributions must be assigned to a decision analytic model’s input parameters in 

order to conduct a PSA. Monte Carlo simulation can then sample from these distributions, 

by using a random number generator, to select a value for each input parameter. The use of 

distributions, rather than point estimates, reflects the uncertainty in the input parameters’ 

values appropriately. In practice, there are only a few candidate distributions that can be 

used to characterise the uncertainty of a model’s parameters. This appendix documents the 

candidate distributions that can be used to characterise uncertainty in the different types of 

parameter, and how these distributions are defined statistically. This appendix summarises 

the exposition of parametric distributions provided by Briggs et al. (2006, pp.84-93).  

Beta Distribution 

Beta distributions are suitable for data that are bound between zero and one, such as 

probabilities. Beta distributions are defined by two parameters: α (the number of events) 

and β (the sample size-α). If only summary data are available, beta distributions can be fit 

by method of moments. For example, if a sample mean 𝜇̅ and variance 𝑠2 are known, then: 

𝛼 + 𝑏 =
𝜇̅ ×(1 − 𝜇̅)

𝑠2
− 1 

𝛼 = 𝜇̅(𝛼 + 𝛽) 

𝛽 = 𝛼(1 − 𝜇̅)/𝜇̅ 

Dirichlet Distribution 

Dirichlet distributions are suitable for multinomial outcome data. The number of 

parameters to define a Dirichlet distribution is equal to the number of outcomes. For 

example, a EULAR response (see Appendix 7) to treatment for patients with RA is a 

multinomial outcome (the patient can have either a good, moderate, or no response) that 

can be defined by a three-parameter Dirichlet distribution. 

Practically, the Dirichlet distribution can be implemented as a series of conditional beta 

distributions. For example, if there are k multinomial outcomes, where αk defines the 

number of events observed for each k, then: 

Step 1: Sample a value, π1, from 𝐵𝑒𝑡𝑎 ~ (𝛼1, ∑ 𝛼𝑗)𝑘
𝑗=2 ; 

Step 2: Sample a value, ϕj, from 𝐵𝑒𝑡𝑎 ~ (𝛼𝑗 , ∑ 𝛼𝑖)   ∀ 𝑗 = 2, … , 𝑘 − 1𝑘
𝑖=𝑗+1 ; 
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Step 3: Set 𝜋𝑗 = (1 − ∑ 𝜋𝑖)𝜙𝑗
𝑗−1
𝑖=1     ∀ 𝑗 = 2, … , 𝑘 − 1; 

Step 4: Set 𝜋𝑘 = 1 − ∑ 𝜋𝑖
𝑘−1
𝑖=1  

Lognormal Distribution 

The lognormal distribution may be used for relative risks as their confidence intervals are 

calculated on a log-odds scale. Practically, assigning a lognormal distribution can be 

achieved by: 

Step 1: Calculate the natural log of the relative risk point estimate (𝐿𝑜𝑔𝑅𝑅) and 

confidence interval (CI); 

Step 2: Calculate the log-standard error (SE) by: 𝑆𝐸(LogRR) =
𝑈𝑝𝑝𝑒𝑟 𝐶𝐼−𝐿𝑜𝑤𝑒𝑟 𝐶𝐼

2 𝑥 1.96
; 

Step 3: Sample from a normal distribution 𝑁𝑜𝑟𝑚𝑎𝑙 ~ (𝐿𝑜𝑔𝑅𝑅, 𝑆𝐸(𝐿𝑜𝑔𝑅𝑅)); 

Step 4: Calculate the exponential of the sampled value.  

Gamma Distribution 

A gamma distribution is bound between zero and positive infinity. Therefore, given the 

skew of a gamma distribution, it can be used to characterise uncertainty in resource use 

(cost data are conventionally positively-skewed because (i) they cannot be negative and (ii) 

a small proportion of patients will often disproportionately require a large quantify of 

health care resources). Gamma distributions are defined by two parameters (α, β) and can 

be fit by method of moments. For example, if the sample mean 𝜇̅ and variance 𝑠2 are 

known, then: 

𝛼 =
𝜇̅2

𝑠2
 

𝛽 = 𝑠2/𝜇̅ 

Normal Distribution 

The normal distribution is a candidate distribution for any parameter because, with a 

sufficient sample size, the sampling distribution of the mean will be normally distributed 

irrespective of the data’s underlying distribution (by the central limit theorem). A normal 

distribution is characterised by a mean and standard error.  

Multivariate Normal Distribution 

It is possible to correlate the values sampled for two parameters if their variance-

covariance relationship is known. A Cholesky decomposition can be performed on the 
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variance-covariance matrix to enable the two (correlated) parameters to be sampled from a 

multivariate normal distribution. The following section uses matrix algebra to explain the 

process of performing a Cholesky decomposition, to induce correlation in the sampled 

values of two parameters (x1, x2), in three steps: 

Step 1: Define the variance-covariance matrix (V) between the two parameters: 

𝑉 = [
𝑉𝑎𝑟(𝑥1) 𝐶𝑜𝑣(𝑥1, 𝑥2)

𝐶𝑜𝑣(𝑥1, 𝑥2) 𝑉𝑎𝑟(𝑥2)
] 

where Var(xi) is the variance of parameter xi, and Cov(x1, x2) is the covariance between the 

two parameters.  

The Cholesky decomposition of (V) is a lower-triangular matrix (the bottom-left half of the 

matrix is non-zero), defined by (T), such that, if multiplied by its transpose (T’) will equal 

(V): 

𝑇𝑇′ = 𝑉 

This expression can therefore be written as: 

[
𝑎 0
𝑏 𝑐

] × [
𝑎 𝑏
0 𝑐

] = [𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 + 𝑐2] = [

𝑉𝑎𝑟(𝑥1) 𝐶𝑜𝑣(𝑥1, 𝑥2)

𝐶𝑜𝑣(𝑥1, 𝑥2) 𝑉𝑎𝑟(𝑥2)
] 

  (𝑇      ×    𝑇′)    =             𝑉           ==                        𝑉 

Step 2: Given that the variance-covariance matrix (V) is known, it is possible to calculate 

the values of a, b, and c within the Cholesky decomposition (T): 

𝑇 = [
𝑎 0
𝑏 𝑐

] = [
√𝑉𝑎𝑟(𝑥1) 0

𝐶𝑜𝑣(𝑥1, 𝑥2)/𝑎 √𝑉𝑎𝑟(𝑥2) − 𝑏2
] 

Step 3: To sample correlated values for all xi, draw a value from a standard normal 

distribution for each parameter input (zi) and multiply it by the Cholesky decomposition 

matrix. Finally, add the parameter-specific mean to this random variate (μi): 

[
𝑥1

𝑥2
] = [

𝜇1

𝜇2
] + [

𝑎 0
𝑏 𝑐

] ∗ [
𝑧1

𝑧2
] = [

𝜇1 + (𝑎 ∗ 𝑧1)

𝜇2 + (𝑏 ∗ 𝑧1) + (𝑐 ∗ 𝑧2)
] 
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Appendix 5: Cost-effectiveness Curves and Frontiers: 

Estimation and Interpretation  

This appendix explains the general method for presenting uncertainty in the output of a 

model-based economic evaluation by using CEACs and CEAFs. The explanation describes 

how to calculate net benefits from the PSA output (Section A5.1), and how to present and 

interpret these data as a CEAC (Section A5.2) and CEAF (Section A5.3).  

A5.1. Calculating Net Benefits 

The calculation of each alternative strategy’s net benefit is essential to the production of a 

CEAC and CEAF. A decision analytic model will have estimated, for each alternative 

strategy (j), within each PSA simulation (i), a different expected cost (𝐶𝑗
𝑖) and a different 

expected QALY (𝑄𝑗
𝑖). The net (monetary) benefit (𝑁𝐵𝑗

𝑖) of each alternative (j), within 

each PSA simulation (i), can be calculated by multiplying the expected QALY by a cost-

effectiveness threshold (λ) and subtracting the expected cost, as stated in Equation A5.1: 

𝑁𝐵𝑗
𝑖 = (𝜆 ×𝑄𝑗

𝑖) − 𝐶𝑗
𝑖                                                                                  (Equation A5.1) 

For example, Table A5.1 illustrates the calculation of the net benefits for one alternative 

strategy (j=1) over fives PSA simulations (i=5), assuming a cost-effectiveness threshold 

(λ) of £20,000 per QALY gained. The example in Table A5.1 illustrates that as the values 

of the input parameters change between PSA simulations, the expected costs, QALYs, and 

net benefits of the alternative also change. A CEAC can be used to graphically represent 

this parameter uncertainty for multiple alternative strategies.  
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Table A5.1. Illustrative example of calculating the net benefit of one strategy over five 

PSA simulations; cost-effectiveness threshold = £20,000 per QALY gained.  

PSA Simulation  

(i) 

Expected 

Cost (£) 

(𝑪𝟏
𝒊 ) 

Expected 

QALY 

(𝑸𝟏
𝒊 )  

Net Benefit†  (£) 

(𝑵𝑩𝟏
𝒊 ) 

PSA1 £10,000 3 QALYs  £50,000 

PSA2 £50,000 10 QALYs  £150,000 

PSA3 £70,000 6 QALYs  £50,000 

PSA4 £30,000 3 QALYs  £30,000 

PSA5 £15,000 4 QALYs  £65,000 

Note: †=Calculated using Equation A5.1.  

 

A5.2. Cost-effectiveness Acceptability Curves 

A CEAC plots the probability that each alternative strategy is relatively cost-effective (Y-

axis) over a range of cost-effectiveness thresholds (X-axis) (Fenwick et al., 2001; Fenwick 

et al., 2004; Fenwick et al., 2005). The probability that an alternative strategy is cost-

effective, for a given cost-effectiveness threshold, is equal to the proportion of Monte 

Carlo simulations in the PSA where its net benefit is the largest (Fenwick et al., 2001). At 

each cost-effectiveness threshold, the probability of cost-effectiveness for all alternatives 

must therefore sum to one. Figure A5.1 illustrates a CEAC for three hypothetical 

alternative strategies (Strategy 1, Strategy 2, Strategy 3).  

The shape of a CEAC depends on the joint density of costs and QALYs derived from the 

PSA output (Fenwick et al., 2004). CEACs can only inform statements of probability; in 

the case of more than two alternatives, the alternative with the highest probability of cost-

effectiveness may not necessarily have the highest expected net benefit (Fenwick et al., 

2001). In the example CEAC presented in Figure A5.1, Strategy 1 had the highest 

probability of being cost-effective (approximately 60%) for a range of cost-effectiveness 

thresholds, up to approximately £43,000 per QALY gained. Strategy 2 had the highest 

probability of being cost-effective for cost-effectiveness thresholds greater than 

approximately £43,000 per QALY gained.  
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A5.3. Cost-effectiveness Acceptability Frontier 

A CEAF represents the decision uncertainty associated with making recommendations 

according to the expected net benefit of each alternative (Fenwick et al., 2006). For each 

value of the cost-effectiveness threshold (X-axis), a CEAF plots the probability that the 

alternative with the highest expected net benefit is relatively cost-effective (Y-axis) 

(Fenwick et al., 2001; Barton et al., 2008); alternatives with the highest expected net 

benefit may not necessarily have the highest probability of being cost-effective (Barton et 

al., 2008). Figure A5.2 illustrates a CEAF for the same three hypothetical alternative 

strategies as in Figure A5.1.  

The points at which a break in the CEAF occurs are referred to as “discontinuities” 

(Fenwick et al., 2014, p. 228); discontinuities arise when the alternative strategy with the 

highest expected net benefit changes. The value of the cost-effectiveness threshold at 

which a discontinuity in the CEAF occurs is equal to the ICER between the two 

alternatives (Fenwick et al., 2001; Barton et al., 2008).  

In the example CEAF presented in Figure A5.2, Strategy 1 had the highest expected net 

benefit up to a cost-effectiveness threshold of approximately £25,000 per QALY gained; at 

which point, Strategy 2 had the highest expected net benefit. Strategy 3 did not have the 

highest expected net benefit over the range of cost-effectiveness thresholds and was 

therefore not presented on the CEAF. The cost-effectiveness threshold at which the 

discontinuity in the CEAF occurred (£25,000 per QALY gained) was equal to the ICER 

between Strategy 2 and Strategy 1. 

 

 

 

 

 

 



 

 
 

                          Figure A5.1. Illustrative example of a CEAC.   

 

 

 

 

 

 

 

 

 

Figure A5.2. Illustrative example of a CEAF.  
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Appendix 6: An Illustrative Example of Estimating Population 

EVPI 

This appendix provides an illustrative example of how to estimate the population EVPI 

from the PSA output of a hypothetical decision analytic model. The appendix summarises 

the techniques described in Wilson et al. (2015) and Claxton et al. (2001).  

Background 

In this hypothetical example, decision-makers had to recommend one of two different 

treatments (Treatment A or Treatment B) for a particular disease. A decision analytic 

model was structured and synthesised all available evidence to inform their decision. The 

relative cost-effectiveness of each treatment was uncertain; a PSA was performed by 

simulating patients through the model five times to estimate the net monetary benefit 

(NMB) of each treatment. The NMB of each treatment varied over each PSA simulation, 

according to the different values that were sampled for the input parameters. The results of 

these five hypothetical PSA simulations are reported in the Current Information section of 

Table A6.1.  

Table A6.1. Estimating EVPI per patient from PSA simulation output. 

 
Current Information  Perfect Information 

 
Net Monetary Benefit (£)  Treatment 

with Highest 

Net Benefit 

Maximum 

Net Monetary 

Benefit (£) PSA Simulation 
Treatment 

A 

Treatment 

B 
 

PSA1 500 200  Treatment A 500 

PSA2 250 450  Treatment B 450 

PSA3 450 600  Treatment B 600 

PSA4 300 100  Treatment A 300 

PSA5 800 300  Treatment A 800 

Expected 

Outcome† 
£460 £330  Expected  

Outcome† 
£530 

Note: †=Expected outcomes were derived by calculating the mean outcome over all PSA simulations.  

 

By propagating parameter uncertainty through the model and averaging over all five PSA 

simulations, the expected NMB for Treatment A was £460 and for Treatment B was £330. 

Based on current information, the decision-makers recommended Treatment A because it 
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provided the greatest expected NMB. However, in 40% of the PSA simulations (n=2; PSA2 

and PSA3), Treatment A did not produce the greatest NMB. Therefore, making decisions 

based on expected values with current information was subject to uncertainty.    

Calculating EVPI per Patient 

The expected NMB from recommending Treatment A, in this example, was equivalent to 

the maximum expected net benefit of making a decision based on current information. 

Written using general notation, if a decision-maker was faced with (j) alternative 

treatments, and the net benefits derived from those (j) alternatives (NB(.)) were conditional 

on the values taken by a set of uncertain input parameters (𝜃), then the decision-maker 

would recommend the alternative that had the greatest expected net benefit based on 

current information [max
𝑗

 𝐸𝜃 𝑁𝐵(𝑗, 𝜃)]. 

If the decision-maker had perfect information instead, there would be no parameter 

uncertainty and they would recommend the alternative (j) with the highest NMB in each 

PSA simulation. For example, in Table A6.1, if the PSA1 parameters were observed with 

certainty, the decision-maker would recommend Treatment A; if the PSA2 parameters were 

observed with certainty instead, the decision-maker would recommend Treatment B. 

However the true values of the model’s input parameters were not known. Therefore, the 

expected NMB from a making a recommendation with perfect information is estimated by 

averaging over the maximum possible NMB in each of the PSA simulations 

[𝐸𝜃 max
          𝑗

 𝑁𝐵(𝑗, 𝜃) ] (Claxton et al., 2001; Wilson et al., 2015). For example, in Table 

A6.1, the expected NMB with perfect information was estimated to be £530.  

The EVPI per patient is the difference between the expected NMB based on perfect 

information and the expected NMB based on current information (see Equation A6.1): 

𝐸𝑉𝑃𝐼𝑃𝑎𝑡𝑖𝑒𝑛𝑡 = [𝐸𝜃  max
𝑗

 𝑁𝐵(𝑗, 𝜃)] − [max
𝑗

 𝐸𝜃 𝑁𝐵(𝑗, 𝜃)]                           (Equation A6.1) 

The expected NMB based on current and perfect information, reported in Table A6.1, can 

be substituted into this formula to estimate the EVPI per patient: 

𝐸𝑉𝑃𝐼𝑃𝑎𝑡𝑖𝑒𝑛𝑡 = £530 − £460 
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𝐸𝑉𝑃𝐼𝑃𝑎𝑡𝑖𝑒𝑛𝑡 = £70 

Therefore, the EVPI per patient for the hypothetical example in Table A6.1 was equal to 

£70.  

Calculating Population EVPI 

Information derived from research has public good properties (non-rival, non-excludable) 

and its benefits can therefore be applied to the whole population of eligible patients, 

expressed as the population EVPI (Claxton et al., 2001; 1999). The population EVPI 

establishes an upper-bound on the value of (and rational maximum cost of) additional 

research to reduce parameter uncertainty (Claxton et al., 2001).  

Population EVPI can be estimated by multiplying the EVPI per patient by the (discounted) 

effective patient population size (Wilson et al., 2015). The effective patient population size 

is a function of the effective product lifetime of the treatments (T), the incidence of patients 

with the disease (It) in a given time period (t), and the annual discount rate (r). The 

duration of the intervention’s product lifetime will be finite, and may depend on factors 

such as patent expiry, the production of new research from an unrelated research project, or 

the introduction of new comparator technologies (Phillips et al. 2008). 

In the hypothetical example described in this appendix, for illustrative purposes, it was 

assumed that (i) the treatments had an effective product lifetime of ten years, (ii) there 

were 100 new patients every year, and (iii) the annual discount rate was 3.5%. Table A6.2 

demonstrates that, under these conditions, the total discounted effective population size 

was 831.65 patients.  

The population EVPI was calculated by multiplying the EVPI per patient (£70) by the 

(discounted) effective patient population size (831.65 patients) (see Equation A6.2): 

𝐸𝑉𝑃𝐼𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑉𝑃𝐼𝑃𝑎𝑡𝑖𝑒𝑛𝑡 × ∑
𝐼𝑡

(1+𝑟)𝑡
𝑇
𝑡=1                                               (Equation A6.2) 

𝐸𝑉𝑃𝐼𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 70×831.65 

𝐸𝑉𝑃𝐼𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = £58,215.50 
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In this example, the population EVPI was estimated to be £58,215.50. The population 

EVPI therefore sets a necessary condition for future research to be cost-effective: in this 

hypothetical example, if future research to reduce parameter uncertainty cost more than 

£58,215.50, the maximum possible benefit derived from that research would be lower than 

the amount it would cost to produce it. In contrast, future research would be potentially 

cost-effective if it cost less than £58,215.50 to produce. 

Table A6.2. Estimating the discounted effective population of patients.  

Year 

Incidence of 

New Patients 

Discounted Incidence 

of New Patients 

1 100 96.62 

2 100 93.35 

3 100 90.19 

4 100 87.14 

5 100 84.20 

6 100 81.35 

7 100 78.60 

8 100 75.94 

9 100 73.37 

10 100 70.89 

 
Total 831.65 patients 

Note: Annual discount rate assumed = 3.5% 
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Appendix 7: Condition-specific Outcome Measures for 

Rheumatoid Arthritis 

This appendix provides details about the condition-specific outcome measures for RA that 

were used within this thesis. The outcome measures describe the classification of disease 

(Section A7.1 and A7.2), functional ability (Section A7.3), disease activity (Section A7.4), 

and treatment response (Section A7.5).  

A7.1. Disease Classification: 1987 ACR Criteria 

The instrument to classify patients with RA has undergone gradual adjustments since its 

initial inception (Arnett et al., 1988; Aletaha et al., 2010). The primary purpose of the RA 

classification criteria is to ensure that clinical studies include a homogenous sample of 

patients with RA (Symmons, 2002; Aggarwal et al., 2015).  

The American College of Rheumatology (ACR) 1987 Classification Criteria is reported in 

Table A7.1 and remains widely used in empirical research studies. Patients are classified as 

having RA if they have at least four of the seven criteria in Table A7.1 (Arnett et al., 

1988).  

A7.2. Disease Classification: 2010 ACR/EULAR Criteria 

The ACR and European League Against Rheumatism (EULAR) amended the classification 

criteria to include patients with RA at an earlier stage of the disease (Aletaha et al., 2010). 

The 2010 ACR/EULAR Classification Criteria is reported in Table A7.2. A total score 

between zero and ten is calculated by summing the scores associated with the response to 

the four criteria. Patients with a total score of at least six are classified as having RA 

(Aletaha et al., 2010).  

A7.3. Functional Ability: HAQ-DI 

The Health Assessment Questionnaire is an instrument that assesses functional ability, 

originally designed in rheumatology but now widely used in other diseases (Bruce et al., 

2003a). The shorter Disability Index (HAQ-DI) version (reported in Table A7.3) assesses 

physical movement in twenty questions across eight categories: dressing, rising, eating, 

walking, hygiene, reach, grip, and usual activities (Bruce et al., 2003a). The highest score 

in each category is used to calculate the total HAQ-DI score and each category has equal 

weight. The total HAQ-DI score is between zero (no disability) and three (complete 
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disability), and there are twenty-five possible numerical outcomes in increments of 0.125. 

Patients can be interpreted as having mild-moderate (HAQ-DI=0-1), moderate-severe 

(HAQ-DI=1-2), or severe-very severe (HAQ-DI=2-3) disability (Bruce et al., 2003a). 

Table A7.1. ACR 1987 Classification Criteria.  

Criterion Definition 

 

Morning stiffness. 

 

In/around the joints, lasting for one hour before maximal 

improvement.  

 

Arthritis of three or more joint 

areas. 

At least three joint areas simultaneously have soft tissue 

swelling or fluid.  

 

Arthritis of hand joints. At least one area swollen in a wrist, MCP or PIP joint.  

 

Symmetric joints.  Simultaneous involvement of the same joint areas on both 

sides of the body.  

 

Rheumatoid nodules.  Subcutaneous nodules.  

 

Serum rheumatoid factor.  Abnormal amount of serum rheumatoid factor.  

 

Radiographic changes.  Radiographic changes typical of RA on hand and wrist 

radiographs.  

Source: Arnett et al. (1988, p.319); Abbreviations: MCP=Metacarpophalangeal joints; 

PIP=Proximal Interphalangeal joints. 

 

Table A7.2. ACR/EULAR 2010 Classification Criteria.  

Criterion Score 

 

1. Joint involvement: 

1 large joint 

2-10 large joints 

1-3 small joints 

4-10 small joints 

>10 joints (at least 1 small joint) 

 

2. Serology: 

Negative RF and negative ACPA 

Low-positive RF or low-positive ACPA 

High-positive RF or high-positive ACPA 

 

3. Acute-phase reactants: 

Normal CRP and normal ESR 

Abnormal CRP or abnormal ESR 

 

4. Duration of symptoms: 

<6 weeks 

≥6 weeks 

 

 

0 

1 

2 

3 

5 

 

 

0 

2 

3 

 

 

0 

1 

 

 

0 

1 

Source: Aletaha et al. (2010, p.1583). 
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Table A7.3. HAQ-DI instrument to assess functional ability.  

Are you able to: 

Without 

ANY 

difficulty 

Score = 0 

With 

SOME 

difficulty 

Score = 1 

With 

MUCH 

difficulty 

Score = 2 

UNABLE 

to do  

Score = 3 

1. Dressing & Grooming 

a. Dress yourself including tying shoelaces 

and doing buttons? 

b. Shampoo your hair? 

 

    

2. Rising 

a. Stand up from an armless straight chair? 

b. Get in and out of bed? 

 

    

3. Eating 

a. Cut your meat? 

b. Lift a cup of glass to your mouth? 

c. Open a new carton of milk (or soap 

powder)? 

 

    

4. Walking 

a. Walk outdoors on flat ground? 

b. Climb up five steps? 

 

    

5. Hygiene 

a. Wash and dry your entire body? 

b. Take a bath? 

c. Get on and off the toilet? 

 

    

6. Reach 

a. Reach and get a 5lb objected (eg. a bag of 

potatoes) from above your head? 

b. Bend down to pick up clothing from the 

floor? 

 

    

7. Grip 

a. Open car doors? 

b. Open jars which have previously been 

opened? 

c. Turn taps on and off? 

 

    

8. Activities 

a. Run errands and shop? 

b. Get in and out of a car? 

c. Do chores such as vacuuming, housework, 

or light gardening? 

    

Source: Bruce et al. (2003a; 2003b).  

A7.4 Disease Activity: DAS28 

The Disease Activity Score-28 Joint Count (DAS28) is a composite measure of disease 

activity that comprises a count of tender and swollen joints, and an assessment of the 

patient’s erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP) (Prevoo et al., 
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1995; Madsen, 2013). The DAS28 can also be measured with an optional global health 

assessment. Table A7.4 reports four different methods to calculate the DAS28.  

Table A7.4. Calculation of DAS28. 

  DAS28 Version Formula 

 

ESR with global 

health. 

 

 

0.56√𝑇𝑒𝑛𝑑𝑒𝑟 + 0.28√𝑆𝑤𝑜𝑙𝑙𝑒𝑛 + 0.7𝐿𝑛(𝐸𝑆𝑅) + 0.014𝐺𝑙𝑜𝑏𝑎𝑙 
 

ESR without global 

health. 

 

[0.56√𝑇𝑒𝑛𝑑𝑒𝑟 + 0.28√𝑆𝑤𝑜𝑙𝑙𝑒𝑛 + 0.7𝐿𝑛(𝐸𝑆𝑅)] ×1.08 + 0.16 
 

CRP with global 

health. 

 

0.56√𝑇𝑒𝑛𝑑𝑒𝑟 + 0.28√𝑆𝑤𝑜𝑙𝑙𝑒𝑛 + 0.36𝐿𝑛(𝐶𝑅𝑃 + 1) + 0.96𝐺𝑙𝑜𝑏𝑎𝑙 
 

CRP without global 

health. 
[0.56√𝑇𝑒𝑛𝑑𝑒𝑟 + 0.28√𝑆𝑤𝑜𝑙𝑙𝑒𝑛 + 0.36𝐿𝑛(𝐶𝑅𝑃 + 1)] ×1.10 + 1.15 

Source: Prevoo et al. (1995, p.46) and Madsen (2013, p.380). Abbreviations: Tender = 28 tender 

joint count; Swollen = 28 swollen joint counts; Global = global health assessment.  

 

A DAS28 score is bound between zero and 9.4. Disease activity is classified as low 

(DAS28≤3.2), moderate (3.2<DAS28≤5.1), or high (DAS28>5.1) (van Gestel et al., 1998). 

 

A7.5. Treatment Response: EULAR Response 

A EULAR response is an outcome that classifies a patient’s response to treatment and is 

used within clinical practice for patients with RA in England. Response is characterised by 

the absolute change in DAS28 score and the level of disease activity experienced by the 

patient (reported in Table A7.5).  

Table A7.5. EULAR response.  

 Change in DAS28 

Disease Activity >1.2 >0.6 and ≤1.2 ≤0.6 

 

Low disease activity 

DAS28≤3.2 

 

Good Moderate No Response 

Moderate disease activity 

3.2<DAS28≤5.1 

 

Moderate Moderate No Response 

High disease activity 

DAS28>5.1 
Moderate No Response No Response 

Source: Van Gestel et al. (1998, p.1846). 

A reduction in DAS28 of at least 1.2 and the presence of low disease activity is equivalent 

to a good EULAR response (van Gestel et al., 1998).  
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Appendix 8: Publication Version of Chapter Two  

This appendix presents the published version of the systematic review of economic 

evaluations of stratified medicine that was reported in Chapter Two. The systematic review 

was published in Current Rheumatology Reports in December 2014. The content reported 

in Chapter Two has been updated since the systematic review was published (in December 

2016).  

The appropriate citation for the study is: 

• Gavan, S., Harrison, M., Iglesias, C., Barton, A., Manca, A., & Payne, K. (2014). 

"Economics of Stratified Medicine in Rheumatoid Arthritis", Current 

Rheumatology Reports, Vol. 16, 12(468), pp. 1-11. 
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Appendix 9: Chapter Two - Complete PRISMA Statement 

Checklist 

This appendix provides the completed PRISMA checklist for the systematic review in 

Chapter Two. The checklist ensured that the systematic review was reported transparently 

and completely in accordance with the standards recommended for best-practice (Liberati 

et al., 2009).  

Table A9.1. Complete PRISMA Statement checklist for systematic review in Chapter Two. 

Section/Topic 

Item 

No. Checklist Item Evidence 

Title    

Title. 1 Identify the report as a systematic 

review, meta-analysis, or both. 

Not applicable for PhD thesis.  

Abstract    

Abstract. 

 

2 Provide a structured summary.  Not applicable for PhD thesis.  

Introduction    

Rationale. 3 Describe the rationale for the 

review in the context of what is 

already known.  

 

Section 2.1.   

 

Objectives. 4 Provide an explicit statement of 

questions being addressed with 

reference to PICOS.  

Section 2.2. 

Methods    

Protocol and 

registration.  

5 Indicate if a review protocol exists, 

if and where is can be accessed, 

and, if applicable, provide 

registration number information.  

 

No registration number exists. 

Review followed protocol as 

written in methods section.  

Eligibility 

criteria. 

6 Specify study characteristics and 

report characteristics used as 

criteria for eligibility, giving 

rationale.  

 

Table 2.1. and Section 2.3; 

Study Selection.  

Information 

sources.  

7 Describe all information sources in 

the search and date last searched. 

  

Section 2.3.  

 

Search. 8 Present full electronic search 

strategy for at least one database. 

 

Appendix 10. 

Study selection. 9 State the process for selecting 

studies.  

 

Section 2.3; Study Selection. 

Data collection 

process.  

10 Describe method of data extraction 

from reports. 

 

Section 2.3; Data Extraction 

and Analysis. 

Data items.  11 List and define variables for which 

data were sought.  

Section 2.3; Data Extraction 

and Analysis. 
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Section/Topic 

Item 

No Checklist Item Evidence 

Risk of bias in 

individual studies.  

12 Describe methods used for 

assessing risk of bias of individual 

studies.  

Not applicable. Purpose of 

study was to critically appraise 

individual economic 

evaluations (and not to 

synthesise results of a 

common point estimate).  

 

Summary 

measures.  

13 State the principal summary 

measures.  

 

Section 2.3; Data Extraction 

and Analysis. 

Synthesis of 

results.  

14 Describe the methods used for 

handling data and combining 

results of studies.  

 

Section 2.3; Data Extraction 

and Analysis. 

Risk of bias 

across studies.  

15 Specify any assessment of risk of 

bias that may affect the cumulative 

evidence.  

No applicable. Purpose of 

study was to critically appraise 

individual economic 

evaluations. 

 

Additional 

analyses.  

16 Describe methods of additional 

analyses.  

 

Not applicable.  

Results    

Study selection.  17 Give numbers of studies screened, 

assessed for eligibility, and 

included in the review, with 

reasons for exclusion at each state, 

ideally with a flow diagram.  

 

Figure 2.1.  

Study 

characteristics.  

18 For each study, present 

characteristics for which data were 

extracted and provide citations.  

 

Table 2.2; Appendix 11.  

Risk of bias 

within studies.  

19 Present data on risk of bias of each 

study and, if available, any 

outcome assessment.  

Not applicable; potential risk 

of bias discussed throughout 

results (Section 2.4).  

 

Results of 

individual studies.  

20 For all outcomes, present for each 

study, (a) a simple summary data 

for each intervention group and (b) 

effect estimates and confidence 

intervals.  

 

Results of individual 

economic evaluations are 

reported in Appendix 11.  

Synthesis of 

results.  

21 Present results of each meta-

analysis done, including 

confidence intervals and measures 

of consistency.  

 

Not applicable; Narrative 

synthesis throughout Section 

2.4.  

Risk of bias 

across studies.  

22 Present results of any assessment 

of risk of bias across studies (see 

item 15).  

Not applicable; Purpose of 

study was to critically appraise 

individual economic 

evaluations.  
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Section/Topic 

Item 

No Checklist Item Evidence 

Additional 

analyses.  

23 Give results of additional analyses, 

if done.  

 

Not applicable.  

Discussion    

Summary of 

evidence.  

24 Summarise the main findings 

including the strengths of evidence 

for each main outcome.  

 

Section 2.5.  

Limitations.  25 Discuss limitations at study and 

outcome level and at review level.  

 

Section 2.5; Limitations.  

Conclusions.  26 Provide a general interpretation of 

the results in the context of other 

evidence and implications for 

future research.  

Section 2.5; Implications for 

Future Research; Section 2.6.  

Funding    

Funding.  27 Describe sources of funding for the 

systematic review and other 

support, and the role of funding for 

the systematic review.  

Not applicable for individual 

PhD chapter. Funders 

acknowledged at the start of 

the thesis.  

Source: Liberati et al. (2009, p. 18).  
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Appendix 10: Chapter Two – Search Strategies 

This appendix reports the search strategies that were used in Chapter Two to identify all 

published economic evaluations of stratified medicine in RA, within (i) Medline, (ii) 

Embase, (iii) Web of Science, and (iv) the Centre for Reviews and Dissemination 

Database.  

(i) Medline 

1 economics/  

2 exp "costs and cost analysis"/  

3 economics, dental/  

4 exp "economics, hospital"/  

5 economics, medical/  

6 economics, nursing/  

7 economics, pharmaceutical/  

8 (economic$ or cost or costs or costly or costing or price or prices or pricing or 

pharmacoeconomic$).ti,ab.  

9 (expenditure$ not energy).ti,ab.  

10 value for money.ti,ab.  

11 budget$.ti,ab.  

12 (model or modelling).mp.  

13 or/1-12  

14 ((energy or oxygen) adj cost).ti,ab,rn.  

15 (metabolic adj cost).ti,ab.  

16 ((energy or oxygen) adj expenditure).ti,ab.  

17 or/14-16  

18 13 not 17  

19 letter.pt.  

20 editorial.pt.  

21 historical article.pt.  

22 or/19-21  

23 18 not 22  

24 Animals/  

25 Humans/  

26 24 not (24 and 25)  

27 23 not 26  
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28 exp Arthritis, Rheumatoid/  

29 rheumatoid arthritis.ti,ab,rn.  

30 28 or 29  

31 30 and 27  

32 (1990$ or 1991$ or 1992$ or 1993$ or 1994$ or 1995$ or 1996$ or 1997$ or 

1998$ or 1999$ or 2000$ or 2001$ or 2002$ or 2003$ or 2004$ or 2005$ or 2006$ 

or 2007$ or 2008$ or 2009$ or 2010$ or 2011$ or 2012$ or 2013$ or 2014$).ed. 

33 31 and 32  

34 remove duplicates from 33  

 

(ii) Embase 

1 health-economics/  

2 exp economic-evaluation/  

3 exp health-care-cost/  

4 pharmacoeconomics/  

5 1 or 2 or 3 or 4  

6 (econom$ or cost or costs or costly or costing or price or prices or pricing or 

pharmacoeconomic$).ti,ab.  

7 (expenditure$ not energy).ti,ab.  

8 (value adj2 money).ti,ab.  

9 budget$.ti,ab.  

10 6 or 7 or 8 or 9  

11 5 or 10  

12 letter.pt.  

13 editorial.pt.  

14 note.pt.  

15 12 or 13 or 14  

16 11 not 15  

17 (metabolic adj cost).ti,ab.  

18 ((energy or oxygen) adj cost).ti,ab.  

19 ((energy or oxygen) adj expenditure).ti,ab.  

20 17 or 18 or 19  

21 16 not 20  

22 exp animal/  

23 exp animal-experiment/  
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24 nonhuman/  

25 (rat or rats or mouse or mice or hamster or hamsters or animal or animals or dog or 

dogs or cat or cats or bovine or sheep).ti,ab,sh.  

26 22 or 23 or 24 or 25  

27 exp human/  

28 exp human-experiment/  

29 27 or 28  

30 26 not (26 and 29)  

31 21 not 30  

32 Rheumatoid Arthritis/  

33 rheumatoid arthritis.ti,ab.  

34 32 or 33  

35 31 and 34  

36 (1990$ or 1991$ or 1992$ or 1993$ or 1994$ or 1995$ or 1996$ or 1997$ or 

1998$ or 1999$ or 2000$ or 2001$ or 2002$ or 2003$ or 2004$ or 2005$ or 2006$ 

or 2007$ or 2008$ or 2009$ or 2010$ or 2011$ or 2012$ or 2013$ or 2014$).em. 

37 35 and 36  

38 remove duplicates from 37  

 

(iii) Web of Science 

1. TI=((rheumat* same arthrit*) or (“rheumatoid arthritis”)) 

2. TS=(econom* or cost or costs or costly or costing or price or process or pricing or 

pharmacoeconom* or budget*) 

3. #1 and #2 

4. TS=(animal or animals or dog or dogs or hamster* or mice or mouse or rat or rats 

or bovine or sheep or guinea*) 

5. #3 not #4 

 

(iv) Centre for Reviews and Dissemination Database 

Manually searched the NHS EED and HTA databases after using the MeSH term 

“Arthritis, Rheumatoid” 
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Appendix 11: Chapter Two – Full Data Extraction 

This appendix presents the complete data extraction tables for the ten studies that were 

included in the systematic review of model-based economic evaluations of stratified 

medicine in RA (reported in Chapter Two).  

The data extraction tables were designed according to the Centre for Reviews and 

Dissemination’s recommendations for appraising published economic evaluations (Craig et 

al., 2007).  

The data that were extracted are presented over the following ten pages, in alphabetical 

order according to the lead authors’ surname 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Study: Bergquist et al. (1995) 

Purpose of Stratified Approach: Detect cirrhosis by a liver biopsy to stratify continuation of treatment with methotrexate; avoid adverse drug reaction.  

 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Liver biopsy to 

stratify 

whether 

methotrexate 

should be 

continued.  

 

Comparator: 

No liver biopsy 

(continue 

methotrexate).  

 

Population: 

White women, 

aged 50, with 

RA receiving 

methotrexate. 

 

Country: 

USA. 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree 

 

Time horizon: 

5 and 10 years. 

 

Perspective: 

Not reported.  

 

Evaluation method: 

Cost-effectiveness analysis; 

Cost-utility analysis.  

 

Benefits: 

Life expectancy;  

QALYs 

 

Direct costs included: 

Biopsy, complications, 

treatments.  

 

Indirect costs included: 

None. 

Probabilities & 

outcomes: 

National Centre for 

Health Statistics; Non-

systematic review of 

literature.  

 

Health-related quality of 

life: 

Published values from 

the literature.  

 

Resource use: 

Charge data from Boston 

University Medical 

Centre. 

 

Unit cost: 

Charge data from Boston 

University Medical 

Centre. Test cost was 

reported to be based on 

typical utilisation of 

resources for outpatient 

liver biopsy.  

 

Price year (currency): 

1992 ($ USA). 

Type of test: 

Biopsy. 

 

Test accuracy 

evidence: 

Perfect sensitivity and 

specificity assumed. 

 

Timing of testing: 

5 or 10 years after 

commencing 

methotrexate. 

 

Consequence of 

testing: 

Probability of harm 

(complication; death).  

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (baseline 

probabilities, costs, 

QALYs).  

 

Probabilistic sensitivity 

analysis: 

None. 

 

Value of information: 

None. 

Base-case results: 

Stratified approach (liver 

biopsy) was dominated.  

 

Key drivers of relative 

cost-effectiveness: 

Prior prevalence of liver 

cirrhosis.  

              Abbreviations: QALY=quality-adjusted life year; RA=rheumatoid arthritis.
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Study: Kim et al. (2006).  

Purpose of Stratified Approach: Test to stratify starting dose of methotrexate according to a genetic polymorphism ; avoid adverse drug reaction.  

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

MTHFR 

genotype test 

to stratify 

starting and 

maximum dose 

of 

methotrexate.  

 

 

Comparator: 

No testing 

(conventional 

methotrexate 

dose). 

 

 

Population: 

Patients with 

RA.  

 

 

Country: 

Korea 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree.  

 

Time horizon: 

12 months.  

 

Perspective: 

Societal. 

 

Evaluation method: 

Cost-effectiveness analysis.  

 

Benefits: 

Probability of continuing 

methotrexate therapy.  

 

Direct costs included: 

Treatments and monitoring, 

testing, hospitalisation.  

 

Indirect costs included: 

Out-of-pocked prescription 

fee. 

 

Probabilities & 

outcomes: 

Retrospective analysis of 

accompanying patient 

data. Test accuracy 

assumed as perfect.  

 

Health-related quality of 

life: 

Not applicable.  

 

Resource use: 

Retrospective analysis of 

accompanying patient 

data. 

 

Unit cost: 

Mean price of products 

sold in Korean 

pharmacies during 

retrospective study; 

Observed hospitalisation 

costs; Unit cost of testing 

from Hanyang University 

Hospital.  

 

Price year (currency): 

2004 (Korean won). 

Type of test: 

Genetic test. 

 

Test accuracy 

evidence: 

Perfect sensitivity and 

specificity assumed. 

 

Timing of testing: 

Before commencing 

methotrexate. 

 

Consequence of 

testing: 

None reported.  

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (prevalence of 

polymorphism, incidence 

of toxicity from 

methotrexate with 

polymorphism, cost of 

testing, cost of 

hospitalisation).  

 

Probabilistic sensitivity 

analysis: 

None. 

 

Value of information: 

None. 

Base-case results: 

Stratified approach 

(genotype test) was 

dominant.  

 

Key drivers of relative 

cost-effectiveness: 

The incidence of 

methotrexate toxicity in 

patients with the genetic 

polymorphism. 

               Abbreviations: MTHFR= methylenetetrahydrofolate reductase; QALY=quality-adjusted life year; RA=rheumatoid arthritis.

3
6
7
 



 

 
 

Study: Konnopka et al. (2008).   

Purpose of Stratified Approach: Stratify treatment by anti-CCP test to detect patients with RA earlier than conventional diagnosis; improve treatment 

effectiveness.  

 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Early diagnosis 

and treatment 

of RA using 

anti-CCP test.  

 

Comparator: 

Annual 

conventional 

diagnosis of 

RA with the 

ACR criteria.  

 

Population: 

Patients with 

early RA, 

currently 

classified with 

undifferentiated 

arthritis.  

 

Country: 

Germany 

 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree and Markov 

model.  

 

Time horizon: 

10 years.  

 

Perspective: 

Not reported.  

 

Evaluation method: 

Cost-utility analysis.  

 

Benefits: 

QALYs. 

 

Direct costs included: 

Testing, inpatient and 

outpatient treatments, 

pharmacological treatments.  

 

Indirect costs included: 

Out-of-pocket expenses.  

Probabilities & 

outcomes: 

Non-systematic review of 

literature. 

 

Health-related quality of 

life: 

Published mapping 

algorithm from HAQ to 

EQ-5D.  

 

Resource use: 

Previously published 

studies. 

 

Unit cost: 

Previously published 

studies. Unit cost of 

testing obtained from 

Swiss data.   

 

Price year (currency): 

Year not reported (€). 

Type of test: 

Molecular biochemical 

assay.  

 

Test accuracy 

evidence: 

Single published 

source.  

 

Timing of testing: 

At clinical presentation 

with arthritic pain.  

 

Consequence of 

testing: 

False-negative test 

result leads to a more 

rapid annual disease 

progression.  

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (prevalence of 

polymorphism, incidence 

of toxicity from 

methotrexate with 

polymorphism, cost of 

testing, cost of 

hospitalisation).  

 

Probabilistic sensitivity 

analysis: 

Yes.  

 

Value of information: 

None.  

 

Base-case results: 

The estimated ICER for 

testing was €930 per 

QALY gained.  

 

Key drivers of relative 

cost-effectiveness: 

The worse the 

consequence of a false-

negative test result. 

               Abbreviations: ACR=American College of Rheumatology; Anti-CCP= antibodies against cyclic citrullinated peptides; EQ-5D=EuroQol-5 Dimension; 

               HAQ=Health Assessment Questionnaire; ICER=Incremental cost-effectiveness ratio; QALY=quality-adjusted life year; RA=rheumatoid arthritis.

3
6
8
 



 

 
 

Study: Kowada et al. (2010).    

Purpose of Stratified Approach: Stratify treatment for tuberculosis prior to TNFi initiation according to a test for latent tuberculosis; avoid adverse drug 

reaction. 

Study Design Evaluation Characteristics Data Sources Data Sources Analysis Results 

Intervention: 

Interferon-gamma 

release assay 

(QuantiFERON-

TB Gold In-Tube).  

 

Comparator: 

Tuberculin skin 

test.  

 

Population: 

Patients with RA, 

aged 40 years, 

before 

commencing TNFi 

therapy.  

 

Country: 

Japan.  

 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree and Markov 

model.  

 

Time horizon: 

Lifetime.  

 

Perspective: 

Societal.   

 

Evaluation method: 

Cost-utility analysis.  

 

Benefits: 

QALYs.  

 

Direct costs included: 

Testing included: drawing 

blood, the test, one 

physician visit, and 

technician. Treatments.  

 

Indirect costs included: 

Productivity loss.  

Probabilities & 

outcomes: 

Review of the published 

literature.  

 

Health-related quality of 

life: 

Published estimates.  

 

Resource use: 

Published economic 

evaluation. 

 

Unit cost: 

Government sources, 

Published economic 

evaluation.  

 

Price year (currency): 

2009 (Yen). 

Type of test: 

Molecular biochemical 

assay.  

 

Test accuracy 

evidence: 

Published systematic 

review and meta-

analysis.   

 

Timing of testing: 

Before commencing 

TNFi therapy to detect 

latent tuberculosis.   

 

Consequence of 

testing: 

None reported.   

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis on all variables.  

 

Probabilistic sensitivity 

analysis: 

Yes. 

 

Value of information: 

No.  

 

Base-case results: 

Intervention test was 

dominant compared to 

the tuberculin skin test.  

 

Key drivers of relative 

cost-effectiveness: 

Low incidence of 

tuberculosis in patients 

with RA.  

         Abbreviations: QALY=quality-adjusted life year; RA=rheumatoid arthritis; TNFi= tumour necrosis factor-α inhibitor. 
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Study: Krieckaert et al. (2015).     

Purpose of Stratified Approach: Stratify adalimumab treatment by EULAR response and testing drug levels; reduce unnecessary health care resources.  

 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Treatment 

algorithm for 

adalimumab 

therapy based on 

EULAR 

response and a 

test for drug 

levels.  

 

Comparator: 

Usual care with 

adalimumab.  

 

Population: 

Patients with RA 

receiving 

adalimumab.  

 

Country: 

The 

Netherlands. 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Markov model.  

 

Time horizon: 

3 years.  

 

Perspective: 

Societal.  

 

Evaluation method: 

Cost-utility analysis.  

 

Benefits: 

QALYs.  

 

Direct costs included: 

Direct costs not specified, 

Testing, Treatment.  

 

Indirect costs included: 

Productivity costs. 

Probabilities & 

outcomes: 

Published cohort study; 

Regression analysis of 

cohort treated with 

intervention and 

comparator.  

 

Health-related quality of 

life: 

Published cohort study 

(EQ-5D per health state).  

 

Resource use: 

Published cohort study.  

 

Unit cost: 

Published cohort study.  

 

Price year (currency): 

Year not reported (€).  

 

Type of test: 

Molecular biochemical 

assay.  

 

Test accuracy 

evidence: 

Not reported; estimated 

from accompanying 

patient-level data.  

 

Timing of testing: 

28 weeks after 

commencing 

adalimumab.   

 

Consequence of 

testing: 

None reported.   

Deterministic sensitivity 

analysis: 

Scenario analysis (change 

response measure, 

different second-line 

bDMARD, different drug 

level cut-offs, cost and 

QALY assumptions of 

non-TNFi bDMARDs).  

 

Probabilistic sensitivity 

analysis: 

Yes.  

 

Value of information: 

No.  

 

 

Base-case results: 

Intervention treatment 

algorithm was dominant.  

 

Key drivers of relative 

cost-effectiveness: 

EULAR response within 

the algorithm.  

            Abbreviations: bDMARD= biologic disease-modifying antirheumatic drug; EQ-5D= EuroQol-5 Dimension; EULAR=European League Against Rheumatism; 

            QALY=quality-adjusted life year; RA=rheumatoid arthritis; TNFi= tumour necrosis factor-α inhibitor. 
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Study: Marra et al. (2002).       

Purpose of Stratified Approach: Stratify azathioprine dose according to genetic test; avoid adverse drug reaction. 

 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Polymerase 

chain reaction 

test of TPMT 

activity to 

stratify 

azathioprine 

doses.  

 

Comparator: 

No testing – full 

dose of 

azathioprine in 

usual care.  

 

Population: 

Patients with 

rheumatic 

conditions 

(mainly RA and 

systemic lupus 

erythematosus).  

 

Country: 

Canada.    

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree.  

 

Time horizon: 

6 months.  

 

Perspective: 

Third-party payer.  

 

Evaluation method: 

Cost-effectiveness analysis.  

 

Benefits: 

Number of adverse events 

avoided.  

 

Direct costs included: 

Testing, treatments, 

Hospitalisations, dispensing 

fee.  

 

Indirect costs included: 

None. 

Probabilities & 

outcomes: 

Systematic review of 

published literature.  

 

Health-related quality of 

life: 

Not applicable.  

 

Resource use: 

Correspondence with 

experts and assumption.  

 

Unit cost: 

Estimated the cost of 

testing by proxy 

according to the cost of 

other clinically available 

polymerase chain 

reaction tests. Published 

cost model.  

 

Price year (currency): 

1999 ($ CAN). 

Type of test: 

Genetic test.  

 

Test accuracy 

evidence: 

Single published 

source.   

 

Timing of testing: 

Before commencing 

azathioprine therapy.    

 

Consequence of 

testing: 

False-positive result 

(inappropriately reduce 

azathioprine dose) 

increases resource 

utilisation of 

prescribed treatments 

and physician visits.    

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (cost of test, test 

accuracy, probability of 

hospitalisation from 

adverse event).  

 

Probabilistic sensitivity 

analysis: 

No. 

 

Value of information: 

No.  

 

 

Base-case results: 

Intervention test was 

dominant relative to the 

usual dose strategy.  

 

Key drivers of relative 

cost-effectiveness: 

Cost of testing. 

             Abbreviations: RA=rheumatoid arthritis; TPMP= thiopurine-methyltransferase.
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Study: Nair et al. (2015).        

Purpose of Stratified Approach: Stratify tight control methotrexate treatment decisions according to handscan imaging device to monitor inflammation in 

early RA; improve treatment effectiveness.  

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Intensive, tight-control 

methotrexate informed by 

handscan imaging.  

 

Comparator: 

(i) Usual care; (ii) 

Intensive, tight-control 

methotrexate.  

 

Population: 

Patients with early RA. 

 

Country: 

The Netherlands. 

 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Markov model.  

 

Time horizon: 

2 years.  

 

Perspective: 

Societal; Health care system.  

 

Evaluation method: 

Cost-utility analysis.  

 

Benefits: 

QALYs.  

 

Direct costs included: 

Hospitalisations, 

rehabilitation, nursing home, 

aids, consultations with health 

care workers, alternative 

therapies, drug treatment, 

health care visits.  

 

Indirect costs included: 

Productivity loss.  

Probabilities & 

outcomes: 

Accompanying RCT.  

 

Health-related 

quality of life: 

External published 

source.  

 

Resource use: 

External published 

source.  

 

Unit cost: 

Dutch costing 

manual; cost of 

testing was assumed.   

 

Price year 

(currency): 

Year not reported 

(€). 

Type of test: 

Imaging.  

 

Test accuracy 

evidence: 

Perfect sensitivity and 

specificity assumed. 

 

Timing of testing: 

Two times every 

three months.  

 

Consequence of 

testing: 

None. Assumed to be 

equally as effective as 

the RCT tight-control 

strategy. 

Deterministic 

sensitivity analysis: 

Cost of rheumatologist 

visit; change second-

line therapy; test cost; 

test effectiveness; 

comparator 

effectiveness. 

 

Probabilistic sensitivity 

analysis: 

Yes.  

 

Value of information: 

No.  

 

 

Base-case results: 

Intervention was 

dominant relative to 

the comparators.  

 

Key drivers of relative 

cost-effectiveness: 

Reduction in 

effectiveness of testing.  

Abbreviations: QALY=quality-adjusted life year; RA=rheumatoid arthritis; RCT=randomised controlled trial
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.   

Study: Oh et al. (2004).        

Purpose of Stratified Approach: Stratify azathioprine dose according to genetic test; avoid adverse drug reaction. 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Polymerase 

chain reaction 

test of TPMT 

activity to 

stratify 

azathioprine 

doses. 

 

Comparator: 

No testing – full 

dose of 

azathioprine in 

usual care. 

 

Population: 

Patients with 

moderate to 

severe RA or 

systemic lupus 

erythematosus. 

 

Country: 

Korea.  

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Decision tree.  

 

Time horizon: 

12 months.  

 

Perspective: 

Societal.  

 

Evaluation method: 

Cost-effectiveness analysis.  

 

Benefits: 

Probability of not 

discontinuing treatment due 

to adverse events.  

 

Direct costs included: 

Treatment, testing, 

laboratory charges, 

hospitalisations. 

 

Indirect costs included: 

None. 

Probabilities & 

outcomes: 

Review of the published 

literature.  

 

Health-related quality of 

life: 

Not applicable.  

 

Resource use: 

Treatment guidelines 

 

Unit cost: 

Hospitalisation costs 

from observed cases.  

 

Price year (currency): 

2002 (Korean won). 

Type of test: 

Genetic test.  

 

Test accuracy 

evidence: 

Single published 

source.   

 

Timing of testing: 

Before commencing 

azathioprine therapy.    

 

Consequence of 

testing: 

None reported.     

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (adjust 

prevalence of decreased 

TPMT activity, 

hospitalisation cost, 

incidence of severe 

adverse events from 

intermediate TPMT 

activity, and the cost of 

testing). 

 

Probabilistic sensitivity 

analysis: 

No. 

 

Value of information: 

No.  

 

 

Base-case results: 

Intervention test was 

dominant relative to the 

usual dose strategy.  

 

Key drivers of relative 

cost-effectiveness: 

Results were robust to 

one-way sensitivity 

analysis.  

            Abbreviations: RA=rheumatoid arthritis; TPMP= thiopurine-methyltransferase. 
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Study: Solomon et al. (2000).         

Purpose of Stratified Approach: Stratify corticosteroid treatment by bone mineral density test; avoid adverse drug reaction (corticosteroid-induced 

osteoporosis).  

 

Study Design Evaluation Characteristics Data Sources Test Characteristics Analysis Results 

Intervention: 

Test bone 

mineral density 

by dual x-ray 

absorptiometry 

scan before 

treating with 

corticosteroids.  

 

Comparator: 

(1) Treat only 

after fracture; (2) 

treat all with 

corticosteroids.  

 

Population: 

Postmenopausal 

women with RA, 

aged 55.  

 

Country: 

USA. 

 

Evaluation vehicle: 

Decision analytic model.  

 

Model type: 

Markov model.   

 

Time horizon: 

Lifetime.  

 

Perspective: 

Societal.  

 

Evaluation method: 

CUA.  

 

Benefits: 

QALYs.  

 

Direct costs included: 

Treatments, fractures, 

nursing home. 

 

Indirect costs included: 

None. 

 

Probabilities & 

outcomes: 

Review of the literature.  

 

Health-related quality of 

life: 

Obtained from published 

source.  

 

Resource use: 

Not reported.  

 

Unit cost: 

Wholesale prices for 

treatments, previously 

published sources.  

 

Price year (currency): 

1998 ($ USA). 

Type of test: 

Imaging.  

 

Test accuracy 

evidence: 

Perfect sensitivity and 

specificity assumed.    

 

Timing of testing: 

Before commencing 

corticosteroid 

treatment.     

 

Consequence of 

testing: 

None reported.     

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis (test cut-point 

threshold, treatment costs 

and efficacy, rate of 

fractures, rate of bone 

mineral density loss, 

proportion of hip 

fractures).  

 

Probabilistic sensitivity 

analysis: 

No.  

 

Value of information: 

No.  

 

 

Base-case results: 

Stratified intervention 

had an ICER of $92,600 

per QALY gained 

relative to treating only 

after a fracture.  

 

Key drivers of relative 

cost-effectiveness: 

Rates of fracture, cost of 

treatments.  

            Abbreviations: QALY=quality-adjusted life year; ICER=incremental cost-effectiveness ratio; RA=rheumatoid arthritis.
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Study: Suter et al. (2011).         

Purpose of Stratified Approach: Stratify combination DMARD therapy by including MRI in standard risk-stratification protocol; improve treatment 

effectiveness.  

Study Design Evaluation 

Characteristics 

Data Sources Test Characteristics Analysis Results 

Intervention: 

Include MRI scan 

in standard risk 

stratification 

protocol to detect 

patients at-risk of 

radiographic 

progression.  

 

Comparator: 

(1) standard risk-

stratification; (2) 

treat all with 

cDMARDs.  

 

Population: 

Patients with RA 

at high risk/low 

risk of developing 

severe erosive 

disease, aged 45 

years.  

 

Country: 

USA.  

Evaluation vehicle: 

Decision analytic model.  

 

Model type:  

Markov model.  

 

Time horizon: 

12 months and lifetime.  

 

Perspective: 

Societal.  

 

Evaluation method: 

Cost-utility analysis.  

 

Benefits: 

QALYs.  

 

Direct costs included: 

Treatment, testing, 

management of RA with 

increasing severity.  

 

Indirect costs included: 

Productivity costs. 

 

Probabilities & 

outcomes: 

Accompanying review 

of published sources.  

 

Health-related quality 

of life: 

Assumption; published 

values.  

 

Resource use: 

Clinical guidelines in 

the USA.  

 

Unit cost: 

Published Government 

documents, previously 

published sources.  

 

Price year (currency): 

2010 ($ USD). 

Type of test: 

Imaging.  

 

Test accuracy evidence: 

Multiple published 

sources; no method of 

synthesis reported.     

 

Timing of testing: 

Before commencing first-

line treatment.  

 

Consequence of testing: 

False-negative result: 

greater probability of 

adverse events, QALY 

reduction, and increased 

medical costs.      

Deterministic sensitivity 

analysis: 

One-way sensitivity 

analysis on all input 

parameters.  

 

Probabilistic sensitivity 

analysis: 

Yes.  

 

Value of information: 

No.  

 

 

Base-case results: 

Stratified intervention 

had an ICER of $167,783 

per QALY gained 

relative to standard 

practice risk-stratification 

over a lifetime.  

 

Key drivers of relative 

cost-effectiveness: 

Prevalence of poor-

prognosis patients, 

comparator test accuracy, 

intervention test 

specificity. 

            Abbreviations: cDMARD= conventional disease-modifying antirheumatic drug; MRI=magnetic resonance imaging; QALY=quality-adjusted life year; 

            ICER=incremental cost-effectiveness ratio; RA=rheumatoid arthritis.
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Appendix 12: Chapter Three – Complete SRQR Checklist 

This appendix reports the completed twenty-one item SRQR checklist (Table A12.1) for 

the qualitative study that aimed to understand current prescribing and treatment practices 

for the management of patients with RA in Chapter Three. The checklist described the 

standards for reporting qualitative research clearly and transparently (O’Brien et al., 2014).  

 

Table A12.1. Completed SRQR checklist for the qualitative study in Chapter Three.. 

Topic No. Item Evidence 

Title and Abstract 

Title. 1 Concise description of the nature 

and topic of the study. Identifying 

the study as qualitative or 

indicating the approach or data 

collection methods is 

recommended.  

 

Not applicable for a chapter 

in a PhD thesis.  
 

Abstract.  2 Summary of key elements of the 

study using the abstract format of 

the intended publication; typically 

includes background, purpose, 

methods, results, and conclusions.  

 

Not applicable for a chapter in 

a PhD thesis.  

 

Introduction    

Problem 

formulation 

3 Description and significance of the 

problem/phenomenon studied; 

review of relevant theory and 

empirical work; problem 

statement.  

 

Section 3.1; 

 

Purpose of 

research question.  

4 Purpose of the study and specific 

objectives or questions.  

 

Section 3.2.  

Methods    

Qualitative 

approach and 

research 

paradigm.  

5 Qualitative approach (eg. 

ethnography, grounded theory, 

case study) and guiding theory if 

appropriate; Identifying the 

research paradigm is also 

recommended.  

 

Section 3.3.3. 

Researcher 

characteristics 

and reflexivity.  

6 Researchers’ characteristics that 

may influence the research, 

including personal attributes, 

qualifications/experience, 

relationship with the participants, 

and/or presuppositions. 

Section 3.5; Reflective 

Statement. 
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Topic No. Item Evidence 

Context. 7 Setting/site and salient contextual 

factors.  

 

Section 3.3.1; 

Section 3.3.2. 

Sampling 

strategy.  

8 How and why research participants 

were selected; criteria for deciding 

when no further sampling was 

necessary.  

 

Section 3.3.1.  

Ethical issues 

pertaining to 

human subjects.  

9 Documentation of approval by an 

appropriate ethics review board 

and participant consent, or 

explanation for lack thereof.  

 

Section 3.3.4.  

Data collection 

methods.  

10 Types of data collected; details of 

data collection procedures 

including (as appropriate) start and 

stop data collection and analysis, 

iterative process, modification of 

procedures in response to evolving 

study findings.  

 

Section 3.3.2; 

Appendix 14.  

Data collection 

instruments.  

11 Description of instruments (eg. 

interview guides, questionnaires) 

and devices (eg. audio recorders) 

used for data collection.   

 

Section 3.3.2; 

Appendix 14.  

Units of study.  12 Number and relevant 

characteristics of participants 

included in the study; level of 

participation (could be reported in 

results).  

 

Figure 3.1; 

Table 3.3.  

Data processing.  13 Methods for processing data prior 

to and during the analysis, 

including transcription, data entry, 

data management and security, 

verification of data integrity, data 

coding, and anonymization/de-

identification  of excerpts.  

 

Section 3.2.2.  

Data analysis.  14 Process by which inferences, 

themes etc were identified and 

developed, including the 

researchers involved in data 

analysis; usually references a 

specific paradigm or approach.  

 

Section 3.3.3.  

Techniques to 

enhance 

trustworthiness.  

15 Techniques to enhance 

trustworthiness and credibility of 

data analysis (eg. member 

checking, audit trail).  

Section 3.3.3.  
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Topic No. Item Evidence 

Results/Findings    

Synthesis and 

interpretation.  

16 Main findings (eg. interpretations, 

inferences, and themes); might 

include development of a theory of 

model.  

 

Section 3.4.1; 

Section 3.4.2; 

Section 3.4.3.  

Links to empirical 

data.  

17 Evidence (eg. quotes, field notes, 

text excerpts) to substantiate 

analytic findings.  

 

Section 3.4.2; 

Section 3.4.3; 

Appendix 15.  

Discussion    

Integration with 

prior work, 

implications, 

transferability, 

and contributions 

to the field.  

 

18 Short summary of main findings; 

explanation of how findings and 

conclusions connect to support, 

elaborate on, or challenge 

conclusions of earlier scholarship 

Section 3.5.  

Limitations. 19 Trustworthiness and limitations of 

findings.  

 

Section 3.5; Limitations.  

Other    

Conflicts of 

interest.  

20 Potential sources of influence or 

perceived influence on study 

conduct and conclusions; how 

these were managed.  

 

Not applicable.  

Funding.  21 Sources of funding and other 

support; role of funders in data 

collection, interpretation, and 

reporting.  

Not applicable for individual 

PhD chapter. Funders 

acknowledged at the start of 

the thesis. 

Source: O’Brien et al. (2014, pp. 1247-1248).    
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Appendix 13: Recruitment Emails and Participant Information 

Sheet for Study in Chapter Three 

This appendix reports the recruitment emails that were sent to the rheumatologists within 

the sampling frame of the qualitative study in Chapter Three (Section A13.1) and the 

participant information sheet that was attached to those emails (Section A13.2).  

A13.1. Participant Recruitment Emails 

There were two recruitment emails sent to the participants within the sampling frame of the 

study in Chapter Three. The first email (Figure A13.1) was sent in December 2014 to all 

individual rheumatologists. The second (follow-up) recruitment email was sent in March 

2015 to the rheumatologists that did not respond in December 2014. The follow-up 

recruitment email was identical to the initial participant recruitment email. All emails were 

sent to each rheumatologist individually.  

A13.2. Participant Information Sheet 

A participant information sheet (Figure A13.2) was attached to all recruitment emails. The 

participant information sheet explained (i) the purpose of the research, (ii) the reason why 

the rheumatologist was contacted, (iii) details about their role as a participant, and (iv) 

information about the study design (for example, maintaining confidentiality, 

remuneration, and the dissemination of outputs). The participant information sheet 

followed the standardised template recommended by The University of Manchester’s 

Research Ethics Committee.  
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Figure A13.1. Participant recruitment email (December 2014 and March 2015). 

 

 

 

 

 

 

My name is Sean Gavan, and I am currently undertaking my PhD in Health Economics at the 

Manchester Centre for Health Economics, in The University of Manchester. I am looking for 

participants who are willing to be interviewed over the telephone, to help provide evidence for 

my forthcoming research project. 

My thesis is focused on the use of a diagnostic test to help inform the prescribing process of 

anti-TNF treatments. For my next project, I am interested in establishing the reasons for why 

certain anti-TNF treatments are given to a patient in practice. In particular, I am interested in 

how you would treat a patient with RA after they exhibit secondary non-response to an anti-

TNF. That is, a treatment that was initially beneficial for the patient, but then sees a reduction 

in effectiveness over time. Attached to this e-mail is a participant information sheet, which 

explains the aim of the research and what is expected of you as a participant. 

Your participation is entirely voluntary, and anything that you say during the interview will 

remain fully anonymous. Ethical approval for this study has been granted by The University of 

Manchester Ethics Committee 2 (reference number: 14,147). 

If you would like to take part, have any questions, or you would like some more information 

on the project, please contact me on my email address: sean.gavan@manchester.ac.uk 

Kind Regards, 

Sean Gavan, MSc, MSc, BA (Hons)  Professor Anne Barton 

Manchester Centre for Health Economics Arthritis Research UK Epidemiology Unit 

The University of Manchester   Centre for Musculoskeletal Research 

Room 4.306 Jene McFarlane Building  Institute of Inflammation and Repair 

Oxford Road     The University of Manchester 

Manchester     Room 2.607, Stopford Building  

M13 9PL     Oxford Road                                                        

        Manchester    

       M13 9PT                                                                  
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Figure A13.2. Participant Information Sheet (page one).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A Qualitative Analysis of the Approaches Taken to Treat Patients with 

Rheumatoid Arthritis using Anti-TNF Therapies. 

Participant Information Sheet 

 

You are being invited to take part in a research study exploring the use of anti-TNF 

treatments in patients with rheumatoid arthritis. This research will contribute towards 

the PhD thesis of Mr Sean Gavan, at The University of Manchester. Before you decide 

it is important for you to understand why the research is being done and what it will 

involve. Please take time to read the following information carefully and discuss it with 

others if you wish. Please ask if there is anything that is not clear or if you would like 

more information. Take time to decide whether or not you wish to take part. Thank 

you for reading this. 

 

Who will conduct the research?  

The research will be conducted by Mr Sean Gavan, who is based in the Manchester Centre 

for Health Economics at The University of Manchester. The research findings will contribute 

towards a chapter in his PhD thesis.  

 

What is the aim of the research?  

The aim of the research is to explore the current prescribing and treatment practices for the 

use of anti-TNF treatments in the management of patients with rheumatoid arthritis.  

 

Why have I been chosen?  

You have been chosen to take part in the research because of: (1) your association with the 

Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) 

register, and (2) your expertise and knowledge in the current prescribing and treatment 

practices for rheumatoid arthritis.  

 

What would I be asked to do if I took part?  

By agreeing to take part, you will be interviewed for approximately 30-45 minutes over the 

telephone at a time that is most convenient for you. You will be asked questions regarding 

how you would treat patients with severe rheumatoid arthritis, and your interpretation of the 

National Institute for Health and Care Excellence (NICE) guidelines for anti-TNF use in 

patients with rheumatoid arthritis. 

What happens to the data collected?  

The telephone interviews will be recorded using a digital audio recording device, and 

transcribed to analyse your responses. The audio recording will be deleted after being 

transcribed. The data collected will be stored securely for a period of 5 years at The 

University of Manchester.  

 

How is confidentiality maintained?  

All of the data that are collected, stored, and reported will be anonymised. Direct quotations 

from the interview may be used in the final reporting of results. However, it will not be possible 

to identify your name, the centre which you are associated with, or any other identifiable 

characteristics from these direct quotations. All data will be kept strictly confidential and stored 

in accordance with the University of Manchester’s data protection regulations. 
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                          Figure A13.2. Participant Information Sheet (page two). 

What happens if I do not want to take part or if I change my mind?  

It is up to you to decide whether or not to take part. If you do decide to take part you will be 

given this information sheet to keep and be asked to sign a consent form. If you decide to 

take part you are still free to withdraw without giving a reason and without detriment to 

yourself. It will not be possible to withdraw your data after it has been made anonymous.  

 

Will I be paid for participating in the research?  

You will receive no payment for taking part in this research.  

 

What is the duration of the research?  

The telephone interview will last for approximately 30 to 45 minutes. The date of the 

interview can be chosen by you, at a time that is most convenient for you.  

 

Where will the research be conducted?  

As this is a telephone interview, you are free to participate in any location of your choosing. 

It is recommended that the location you choose if quiet and free from distractions.  

 

Will the outcomes of the research be published?  

The outcomes of the research will contribute towards the PhD thesis of Sean Gavan. 

Findings will be submitted for publication in peer-reviewed journals, and for presentation at 

national conferences. All responses from your participation will remain strictly anonymous.  

 

Who has reviewed the research project?  

The University of Manchester Research Ethics Committee 2 (reference number, 14,147).  

 

Contact for further information: 

 

Lead Researcher Primary    Supervisor 

Mr Sean Gavan     Prof. Katherine Payne 

Manchester Centre for Health Economics  Manchester Centre for Health Economics 

Room 4.306, Jean McFarlane Building  Room 4.319, Jean McFarlane Building 

The University of Manchester   The University of Manchester 

Oxford Road     Oxford Road 

M13 9PL     M13 9PL 

Email: sean.gavan@manchester.ac.uk   Email: katherine.payne@manchester.ac.uk  

 

 

Who is funding this research?  

This research is funded by a National Institute for Health Research (NIHR) Manchester 

Musculoskeletal Biomedical Research Unit Studentship, awarded to Sean Gavan.  

 

What if something goes wrong?  

If there are any issues regarding this research that you would prefer not to discuss with 

members of the research team, please contact the Research Governance and Integrity 

Team by either writing to 'The Research Governance and Integrity Manager, Research 

Office, Christie Building, The University of Manchester, Oxford Road, Manchester M13 9PL', 

by emailing: Research.complaints@manchester.ac.uk, or by telephoning 0161 275 7583 or 

275 8093 
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Appendix 14: Chapter Three - Semi-structured Interview 

Schedule 

This appendix presents the semi-structured interview schedule (Section A14.1) that was 

used to guide the telephone interviews with consultant rheumatologists in Chapter Three. 

The interview schedule began with an introductory statement and five preliminary 

questions that were asked to all rheumatologists. The remaining questions in the semi-

structured interview schedule addressed the specific research objectives of Chapter Three 

and could have been asked in any order. All interviews were conducted by SG.  

A14.1. Semi-structured Interview Schedule 

i. Introduction Section: 

“Hello, my name is Sean Gavan. I am a PhD student in the Manchester Centre for Health 

Economics, at The University of Manchester. Thank you for agreeing to take part in my 

research. I plan to talk to you for around 30 to 45 minutes, to get some information on how 

you would use anti-TNF treatments in practice for patients with rheumatoid arthritis. 

Before we begin, I must remind you that our conversation will be recorded, but any 

information that you give will remain fully anonymous. Your participation is voluntary, 

and you are free to end the session at any time without giving any reason. Feel free to ask 

any questions at any time, during or after the interview”. 

(1) “Are you still happy to take part?”                           YES    NO 

(Proceed to Preliminary Questions Section if YES). 

ii. Preliminary Questions Section: 

“Excellent; we will begin with just a couple of brief questions about you”. 

(1) “Can you confirm your name?”:  

(2) “What is your formal job title?”; 

(3) “Can you confirm the centre that you are based at?”; 

(4) “Approximately, how many patients with rheumatoid arthritis are treated at your 

centre?” 
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(5) “Can you confirm that you have had experience of prescribing anti-TNFs when 

treating patients with rheumatoid arthritis?”. 

 

iii. Questions that Addressed the Research Objectives: 

“Excellent, we can begin the interview”. 

Topic 1: Assessing the suitability of a patient for anti-TNF treatment:  

(1) “Please explain how you would assess a patient in terms of whether they are 

suitable for anti-TNF treatment for RA?” 

Topic 2: The decision of choosing the first anti-TNF treatment: 

(1) “If a patient is determined to be suitable for anti-TNF treatment, which treatment is 

initially chosen for that patient?” 

(2) “How and why is this decision made?” 

Topic 3: The decision of choosing a treatment following the failure of an anti-TNF: 

(1) “What do you understand by the terms ‘secondary non-response’ and ‘adverse 

drug reactions’ to anti-TNFs?” 

(2) “If a patient exhibits secondary non-response or adverse drug reactions to an anti-

TNF treatment, what would be the next suitable treatment strategy to try?” 

(3) “If this is an anti-TNF treatment, which is most suitable for the patient?” 

(4) “How and why is this decision made?” 

Topic 4: The interpretation of NICE guidelines: 

(1) “Are you aware of NICE guidelines? If so, which ones are you aware of?” 

(2) “How is NICE guidance interpreted in your centre when prescribing anti-TNF 

treatments for patients with RA?” 

Topic 5: How to ensure adherence to NICE guidelines: 
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(1) “Are there any systems in place at your centre to ensure that NICE guidance is 

followed?” 

Topic 6: Beliefs about the five anti-TNF treatments for patients with RA: 

(1) “Can you rank the anti-TNF treatments approved by NICE according to an order 

in which you would consider them suitable for initial therapy?” 

(2) “Can you justify this ranking by explaining why and how you chose this ordering?” 

(3) “Can you rank the anti-TNF treatments approved by NICE according to an order 

in which you would consider them suitable for second-line therapy, following 

secondary non-response to a patient’s first anti-TNF?” 

(4) “Can you justify this ranking by explaining why and how you chose this ordering?” 

Topic 7: The effects of a test for immunogenicity in clinical practice: 

(1) “Would a test for immunogenicity to anti-TNF treatments be of any use in 

practice?” 

(2) “Would the existence or results of an immunogenicity test change the initial anti-

TNF treatment prescribed to patients, and the reasons for why this treatment is 

chosen?” 

(3) “Would the existence or results of an immunogenicity test change the choice of 

second anti-TNF treatment, and the reasons for why this treatment is chosen?” 

iv. Closing of the Interview 

“Thank you very much. That concludes the interview. Your responses have been very 

helpful. Thank you for your participation. If you have any further questions, feel free to 

contact either myself or my supervisor – our contact details can be found on the 

participant information sheet. Have a good day. Bye”.  
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Appendix 15: Chapter Three - Reported Prescribing Decisions 

at Six Points in the Care Pathway for Rheumatoid Arthritis 

This appendix reports a table (Table A15.1) of the six specific prescribing decisions that 

each consultant rheumatologist made along the care pathway for RA, in Section 3.4.1 of 

Chapter Three. The eleven participants were labelled alphabetically (from A to K). The six 

treatment decisions (illustrated in Figure 3.2) were: 

Decision 1: The choice of first TNFi therapy; 

Decision 2: The choice of therapy if a TNFi is unsuitable; 

Decision 3: The action taken following an adverse event from a TNFi therapy; 

Decision 4: The action taken following primary failure of a TNFi therapy; 

Decision 5: The action taken following secondary failure of a TNFi therapy; 

Decision 6: The action taken during remission, induced by a TNFi therapy.  

Bold font was used to highlight the specific pharmacological treatments that each 

consultant rheumatologist recommended prescribing at each decision point.  

 

 

 

 

 

 



 

 

 

Table A15.1. Prescribing decisions reported by eleven consultant rheumatologists in England at six decision points along the care pathway for RA.  

Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist 

A 

 • Rheumatology 

meeting to decide 

most suitable TNFi 

based on patient 

characteristics; 

• Choose etanercept 

if prone to 

infection. 

 

• Rituximab if patient 

has a serious 

infection risk or 

recent malignancy; 

• Tocilizumab if the 

patient can’t have 

methotrexate. 

• Change treatment to a 

different bDMARD 

(usually rituximab) 

after a serious adverse 

reaction;  

• Don’t use a second 

TNFi. 

• Change 

treatment to a 

different 

bDMARD 

(usually 

rituximab); 

• Don’t use a 

second TNFi. 

• Change treatment 

to a different 

bDMARD 

(usually 

rituximab); 

• Don’t use a second 

TNFi. 

 

 

• Not reported. 

Rheumatologist 

B 

 • Patient can choose 

between 

adalimumab and 

etanercept. 

• Rituximab if patient 

has pulmonary 

fibrosis; 

• Tocilizumab if 

patient can’t tolerate 

methotrexate; 

• Abatacept if patient 

has infection risk. 

• Change treatment to 

the other TNFi 

(adalimumab or 

etanercept, depending 

on Decision 1) for 

immediate problems, 

such as an injection 

site reaction. 

• Change 

treatment to a 

different 

bDMARD; 

• Don’t use a 

second TNFi. 

• Change treatment 

to a different 

bDMARD; 

• Don’t use a second 

TNFi; 

• Rituximab if the 

patient is 

seropositive; 

• No TNFi dose 

escalation. 

 

• Reduce 

methotrexate; 

• Reduce the 

frequency of 

TNFi injections. 

• Patients may self-

regulate their TNFi 

injections and 

compliance is 

unknown.  

           Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug.  

 

 

3
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Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist 
C 

 • Patient can 

choose between 

all TNFi 

therapies; 

• Choose 

etanercept if 

prone to 

infection. 

• Rituximab if 

patient has 

interstitial lung 

disease; 

• Tocilizumab if 

patient has high 

inflammatory 

markers and can’t 

receive 

methotrexate; 

• Abatacept or 

rituximab if 

patient has 

multiple sclerosis. 

• Change to a second TNFi 

for injection site reactions.  

• Etanercept if patient 

received a monoclonal 

TNFi, and a non-

monoclonal TNFi 

otherwise.  

 

 

• Change 

treatment to a 

different 

bDMARD 

(Rituximab, 

tocilizumab, 

or sometimes 

abatacept); 

• Don’t use a 

second TNFi; 

• Change 

treatment to a 

different 

bDMARD; 

• Don’t use a 

second TNFi; 

• Rituximab if 

the patient is 

seropositive; 

• Tocilizumab if 

patient has 

high 

inflammatory 

markers and 

can’t receive 

methotrexate.  

 

• Reduce steroids if 

applicable; 

• Reduce the non-

methotrexate 

cDMARDs if 

receiving multiple 

cDMARDs; 

• Reduce/stop 

methotrexate if 

patient is having side-

effects to 

methotrexate; 

• Plan to use 

immunogenicity 

testing in the future to 

inform reducing or 

stopping TNFi doses. 

Rheumatologist 
D 

 • Adalimumab; 

• Patients can 

choose any TNFi 

if they have a 

strong 

preference. 

• Choose a 

bDMARD (not a 

TNFi) if patient 

has a previous 

cancer, lung 

disease or can’t 

receive 

methotrexate. 

• Change to a second TNFi 

for local adverse reactions; 

• Change to a different 

bDMARD for general 

adverse reactions; 

• If seropositive, use the 

pathway: rituximab, 

tocilizumab, abatacept. 

Omit rituximab from this 

pathway if seronegative. 

• Not reported. • Not reported. • Not reported. 

           Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug; cDMARD= conventional disease 

            modifying anti-rheumatic drug.
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Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist 

E 

 • Certolizumab is 

chosen for all 

patients; 

• No patient choice 

is facilitated.   

 

 

• Rituximab if patient 

has chronic airways 

disease or infection 

risk.  

• Other bDMARDs 

(including 

rituximab) may be 

used if the patient 

has a history of 

tumours, melanoma 

or lymphomas. 

• Continue TNFi if 

there’s an injection site 

reaction; 

• Potentially consider 

TNFi dose-reduction; 

• Supplement painful 

injections with an 

anaesthetic.  

• Don’t use a second 

TNFi for patients with 

severe, rare side-

effects. 

 

• Change 

treatment to a 

second TNFi 

if the patient 

agrees; 

• Participant 

has used 

etanercept 

after primary 

failure.  

 

 

• Change treatment 

to a different 

bDMARD; 

• Don’t use a second 

TNFi. 

• Don’t escalate the 

dose of TNFi.  

 

 

 

 

• Reduce frequency 

of TNFi injections.  

Rheumatologist 

F 

 • Rheumatologist is 

encouraged to 

choose 

certolizumab; 

• Most patients 

begin with 

etanercept, 

adalimumab or 

certolizumab; 

• Patients can 

choose between a 

limited set of TNFi 

therapies. 

• Choose abatacept 

or tocilizumab. 

• Change treatment to a 

second TNFi for 

injection site reactions; 

• Participant explained 

that they would 

probably change to a 

different bDMARD 

(not a TNFi) if there’s 

a serious injection.  

 

• Not reported. • Consider dose 

escalation for 

infliximab; 

• Potentially change 

treatment to a 

second TNFi if the 

patient did well on 

their initial TNFi; 

otherwise, change 

to a different 

bDMARD.  

 

 

• Reduce the 

frequency of TNFi 

injections; 

• Patients can revert 

back to their 

original TNFi dose 

if they want.  

 

 

           Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug.  
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Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist 

G 

 • Certolizumab 

encouraged for 

most patients; 

• Choose etanercept 

for infection risk; 

• Choose infliximab 

for patients with 

compliance issues. 

• Choose rituximab if 

the patient had a 

previous 

malignancy. 

• Change treatment to a 

second TNFi if the 

patient responded well 

to their initial TNFi; 

• Change treatment to 

rituximab otherwise.  

 

 

• Not reported. • Change treatment 

to rituximab; 

• Don’t escalate the 

dose of TNFi.  

 

 

• Reduce the 

frequency of TNFi 

injections; 

• The patient has an 

input in whether 

the injection 

frequency is 

adjusted.  

 

 

Rheumatologist 

H 

 • Patient can choose 

their TNFi therapy. 

• Choose rituximab if 

the patient has 

severe disease or 

serology for 

Sjogren’s 

syndrome.; 

• Choose tocilizumab 

if the patient can’t 

tolerate 

methotrexate. 

• Consider changing 

treatment to a second 

TNFi for injection site 

reactions.  

 

• Not reported. • Change treatment 

to a second TNFi; 

• Don’t escalate the 

dose of TNFi. 

  

• Not reported.  

           Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug.  
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Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist  

I 

 • Local health care 

commissioners 

have imposed the 

use of etanercept. 

• Choose rituximab if 

the patient has 

pulmonary fibrosis 

or lung disease; 

• Choose tocilizumab 

if the patient can’t 

tolerate 

methotrexate; 

• Choose abatacept if 

the patient has an 

infection risk or a 

family history of 

multiple sclerosis.  

 

• Change treatment to 

either (i) a second 

TNFi or (ii) a different 

bDMARD, depending 

on the adverse event.  

• Not reported.  • Change treatment 

to rituximab.  

• Maintain full-dose 

TNFi therapy; 

• Reduce the dose of 

methotrexate if 

the patient has 

previously failed 

cDMARDs (as 

monotherapy or 

combination 

therapy). 

 

  

Rheumatologist 

J 

 • Typically 

commence 

treatment with 

adalimumab or 

etanercept; 

• The choice of 

TNFi is made 

between the patient 

and a nurse. 

• Most likely to 

choose abatacept; 

• Occasionally 

rituximab is used; 

• Tocilizumab may be 

used if the patient 

has systemically 

active disease.  

• The treatment decision 

is made by the 

rheumatologist on a 

case-by-case basis.  

 

 

• Not reported. • Change treatment 

to a different 

bDMARD (not a 

TNFi) if the 

patient did not 

respond well to 

their initial TNFi; 

• Otherwise, change 

treatment to a 

second TNFi; 

• Don’t escalate the 

dose of TNFi. 

  

• Reduce the 

frequency of TNFi 

injections; 

• TNFi anti-drug 

antibody and drug 

level testing may 

be beneficial to 

inform dose-

adjustments in 

remission.  

  

           Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug; cDMARD= conventional disease 

            modifying anti-rheumatic drug. 
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Rheumatologist 
 Treatment Decision  

 Decision 1 Decision 2 Decision 3 Decision 4 Decision 5 Decision 6 

Rheumatologist  

K 

 • Choose 

certolizumab 

pegol as the first-

line TNFi therapy.  

• Choose rituximab if 

the patient has had a 

recent malignancy.  

• Change treatment to 

rituximab if the 

patient didn’t respond 

well to their initial 

TNFi; 

• Otherwise, change 

treatment to a second 

TNFi. 

• Not reported.  • Change treatment 

to rituximab for 

most patients; 

• Change treatment 

to a different 

bDMARD if the 

patient would like 

to enrol into a 

clinical research 

study.  

• Reduce the 

frequency of TNFi 

injections after the 

patient has been in 

remission for 

twelve months.  

            Abbreviations: TNFi=anti-tumour necrosis factor-α inhibitor; bDMARD=biologic disease-modifying anti-rheumatic drug.  
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Appendix 16: Chapter Four - Previous Quantitative Studies of 

the Patient-level Factors that Influenced TNFi Prescribing 

Decisions for Rheumatoid Arthritis 

This appendix describes the features and potential limitations of three previous quantitative 

studies that had estimated the patient-level factors that influenced TNFi prescribing 

decisions for patients with rheumatoid arthritis in North America (Carter et al., 2012; 

DeWitt et al., 2006; Zhang et al., 2013). Table A16.1 summarises the key features and 

potential limitations of each study’s design.  

Carter et al. (2012) obtained data from 1,696 patients with RA, who received treatment 

between 2000 and 2006, in a national commercial database of over eighty private health 

plans. The results of a univariate analysis concluded that infliximab-treated patients (i) 

were significantly older than patients treated with adalimumab or etanercept, and (ii) had 

higher staging of RA compared to etanercept-treated patients. However, the reliability of 

these results may be debated; the univariate analysis may have been confounded by 

unmeasured variables such as previous cDMARD use (Hudson et al., 2010). Moreover, 

Carter et al. (2012) did not control for any temporal effects or hospital-level heterogeneity 

in treatment decisions, which were identified as potentially influential factors on 

prescribing decisions in Chapter Three.  

DeWitt et al. (2006) estimated the patient-level factors that influenced the prescription of 

etanercept and infliximab, between 2000 and 2003, in a cohort of 1,663 patients with RA 

in the North American National Databank for Rheumatic Diseases. Multivariable analyses 

of disease, patient-level and geographic characteristics found infliximab prescribing to be 

significantly associated with older age, lower education, and lower physical activity 

(DeWitt et al., 2006). The multivariable analysis may have addressed potential 

confounding in the results, however DeWitt et al. (2006) also did not control for temporal 

effects or hospital-level heterogeneity. In addition, DeWitt et al. (2006) excluded patients 

with missing data from their analysis (known as a complete case analysis), which may 

have introduced a selection bias in their results if those patients with missing data were 

systematically different from those patients with complete data (Rezvan et al., 2015).  
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Table A16.1. Features of three previous studies of TNFi prescribing decisions.  

Author Study Design Variables Results Limitations 

DeWitt et al.  

(2006). 

 

Country: 

USA. 

Sample size: 

1,663 patients. 

 

Data source: 

National 

Databank for 

Rheumatic 

Diseases 

 

Years analysed: 

2000 to 2003 

 

Method: 

Multivariable 

analysis. 

Dependent 

variable: 

TNFi (etanercept or 

infliximab).  

 

Independent 

variables: 

Public insurance, 

age, sex, ethnicity, 

marital status, 

income, education, 

employment status, 

disease duration, 

HAQ, treatments, 

pain, disease 

severity, SF-36 

physical and mental 

component.  

Influences: 

- infliximab 

relative to 

etanercept: 

concomitant 

methotrexate; 

older age; 

public 

insurance.  

Limitations: 

• Only included 

patients with full 

data available;  

• Only analysed 

two TNFi 

therapies; 

• No time element 

included in 

analyses; 

• Patients were 

distributed 

across 413 

practices but the 

analysis did not 

control for 

hospital-level 

heterogeneity.  

Carter et al.  

(2012). 

 

Country: 

USA. 

Sample size: 

1,696 patients. 

 

Data source: 

Database of 

over eighty 

private health 

plans. 

 

Years analysed: 

2000 to 2006. 

 

Method: 

Univariate T-

test. 

Dependent 

variable: 

TNFi (adalimumab, 

etanercept or 

infliximab).  

 

Independent 

variables: 

Age, sex, 

comorbidities, 

staging of disease 

severity.  

Influences: 

- infliximab 

relative to 

etanercept or 

adalimumab: 

older age. 

- infliximab 

relative to 

etanercept 

only: a higher 

staging of RA.   

Limitations: 

• Only analysed 

three TNFi 

therapies; 

• Univariate 

analysis may be 

subject to 

confounding; 

• No time variable 

included in the 

analysis; 

• Did not control 

for hospital-level 

heterogeneity.  

Zhang et al. 

(2013). 

 

Country: 

USA. 

 

Sample size: 

11,966 patients. 

 

Data source: 

All patients 

covered by 

Medicare.  

 

Years analysed: 

2006 to 2009. 

 

Method: 

Logistic 

regression.  

Dependent 

variable: 

TNFi (adalimumab, 

etanercept or 

infliximab).  

 

Independent 

variables: 

Age, sex, ethnicity, 

urban residence, 

income, previous 

treatments, 

physician 

preference for 

infusions, year.  

Influences: 

- infliximab 

relative to 

subcutaneous 

TNFi: 

older age; 

concomitant 

methotrexate; 

physician 

preference for 

infusions.  

- subcutaneous 

TNFi relative 

to infliximab: 

low income. 

Limitations: 

• Only analysed 

three TNFi 

therapies; 

• Did not control 

for hospital-level 

heterogeneity.  

 

Zhang et al. (2013) used multivariable logistic regression to analyse all patients with RA 

covered by Medicare in North America who commenced adalimumab, etanercept, or 
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infliximab between 2006 and 2009. Like Carter et al. (2012), the authors found that older 

patients were more likely to be prescribed infliximab compared with etanercept or 

adalimumab. Low income patients (measured by proxy according to receipt of Government 

assistance for Medicare Part B premiums) were more likely to receive a subcutaneous 

TNFi, and physician preference for intravenous therapies was found to positively influence 

the likelihood of treatment with infliximab (Zhang et al., 2013). These results may be more 

reliable than Carter et al. (2012) and DeWitt et al. (2006) because independent variables to 

control for differences over time were included in the analysis. However, Zhang et al. 

(2013) did not control for hospital-level heterogeneity, which may have introduced omitted 

variable bias in the results (Wooldridge, 2010) if unobservable hospital-level factors also 

influenced prescribing decisions, as described by the qualitative study in Chapter Three.  
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Appendix 17: Chapter Four - Complete STROBE Checklist 

This appendix provides the completed STROBE checklist for the econometric study 

presented in Chapter Four (Table A17.1). The checklist ensured that the quantitative study 

was reported in accordance with best-practice recommendations for empirical analyses that 

utilised observational data (Vandenbroucke et al., 2007).  

Table A17.1. Complete STROBE checklist for quantitative analysis of observational data 

in Chapter Four.  

Section/Topic 

Item 

No. Recommendation Evidence 

    

Title    

Title and abstract. 1 (a) Indicate the study’s design with 

a commonly used term in the title 

or abstract; (b) Provide in the 

abstract an informative and 

balanced summary of what was 

done and what was found.  

Not applicable for a 

PhD thesis.  

Introduction    

Background/rationale. 2 Explain the scientific background 

and rationale for the investigation 

being reported.  

 

Section 4.1.  

Objectives.  3 State specific objectives, including 

any pre-specified hypotheses.  

Section 4.2.  

Methods    

Study design.  4 Present key elements of the study 

design early in the paper.  

 

Section 4.3.  

Setting.  5 Describe the setting, locations, and 

relevant dates, including periods of 

recruitment, exposure, follow-up, 

and data collection.  

 

Section 4.3.2.  

Participants.  6 (a) Cohort study – Give the 

eligibility criteria, and the sources 

and methods of selection of 

participants.  

 

Section 4.3.2.1.  

Variables 7 Clearly define all outcomes, 

exposures, predictors, potential 

confounders, and effect modifiers.  

Section 4.3.2.2; 

Section 4.3.2.3;  

Section 4.3.3.2.  
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Section/Topic Item 

No. 

Recommendation Evidence 

Data 

sources/measurement. 

8 For each variable of interest, give 

sources of data and details of 

methods of assessment 

(measurement).  

 

Section 4.3.2; 

Section 4.3.2.3.  

Bias. 9 Describe any efforts to address 

potential sources of bias.  

 

Section 4.3.2.4; 

Section 4.3.3.2. 

Study size.  10 Explain how the study size was 

arrived at.  

 

Section 4.3.2.  

Quantitative 

variables.  

11 Explain how quantitative variables 

were handled in the analyses. If 

applicable, describe which 

groupings were chosen and why.  

 

Section 4.3.2.2; 

Section 4.3.2.3. 

Statistical methods.  12 (a) Describe all statistical methods, 

including those to control for 

confounding; (b) Describe any 

methods used to examine 

subgroups and interactions; (c) 

Explain how missing data were 

addressed; (d) Cross-sectional 

study – if applicable, describe 

analytical methods taking account 

of sampling strategy; (e) Describe 

any sensitivity analyses.  

Section 4.3.2.4; 

Section 4.3.3.1; 

Section 4.3.3.2;  

Section 4.3.3.3; 

Section 4.3.3.4; 

Section 4.3.3.5.  

Results    

Participants.  13 (a) Report the numbers of 

individuals at each stage of the 

study; (b) Give reasons for non-

participation at each stage; (c) 

Consider use of a flow diagram. 

 

Figure 4.2. 

Descriptive data.  14 (a) Give characteristics of study 

participants and information on 

exposures and potential 

confounders; (b) Indicate the 

number of participants with 

missing data for each variable of 

interest.  

 

Section 4.4.1; 

Figure 4.3; 

Figure 4.4; 

Table 4.6; 

Appendix 20.  

Outcome data.  15 Report numbers of outcome events 

or summary measures.  

Table 4.5.  
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Source: Vandenbroucke et al. (2007, p. 1630).  

A17. References 
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10(e297), pp. 1628-1654.  

Section/Topic Item 

No. 

Recommendation Evidence 

    

Main results.  16 (a) Give unadjusted estimates and, 

if applicable, confounder-adjusted 

estimates and their precision. 

Make clear which confounders 

were adjusted for and why they 

were included; (b) Report category 

boundaries when continuous 

variables were categorised; (c) If 

relevant, consider translating 

estimates of relative risk into 

absolute risk for a meaningful time 

period.  

 

Section 4.4.2.  

Other analyses.  17 Report other analyses – eg. 

analyses of subgroups, 

interactions, and sensitivity 

analyses.  

Section 4.3.3; 

Appendix 21. 

Discussion    

Key results. 18 Summarise key results with 

reference to study objectives.  

 

Section 4.5.  

Limitations 19 Discuss limitations of the study, 

taking into account sources of 

potential bias or imprecision.  

 

Section 4.5; 

Limitations. 

Interpretation 20 Give a cautious interpretation of 

the results considering objectives, 

limitations, multiplicity of 

analyses, results from similar 

studies, and other relevant 

evidence.  

 

Section 4.5.  

Generalisability.  21 Discuss the generalisability of the 

results.  

Section 4.5.  

Other Information    

Funding. 22 Give the source of funding and the 

role of funders for the present 

study and, if applicable, for the 

original study on which the present 

article is based.  

Not applicable for 

individual PhD 

chapter. Funders 

acknowledged at 

the start of the 

thesis. 
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Appendix 18 – Chapter Four - List of Hospitals that 

Contributed Data to BRAGGSS 

This appendix provides a list of the fifty-seven hospitals, across the UK, which had 

contributed patient-level data to the BRAGGSS cohort (see Table A18.1). These hospitals 

were referred to as Contributing Centres within BRAGGSS.  

Table A18.1. Fifty-seven BRAGGSS Contributing Centres.  

Hospital ID Trust Hospital 

1 Cambridge University Hospitals NHS Foundation 

Trust 

Addenbrookes Hospital 

2 Mid Staffordshire General Hospitals NHS Trust Cannock Chase Hospital 

3 The Leeds Teaching Hospitals NHS Trust Chapel Allerton Hospital 

4 Derby Hospitals NHS Foundation Trust Derbyshire Royal Infirmary 

5 Doncaster And Bassetlaw Hospitals NHS 

Foundation Trust 

Doncaster Royal Infirmary 

6 Peterborough and Stamford Hospitals NHS 

Foundation Trust 

Edith Cavell Hospital 

 

7 The Newcastle upon Tyne Hospitals NHS Trust Freeman Hospital 

8 University Hospital of North Staffordshire NHS 

Trust 

Haywood Hospital 

9 Hereford Hospitals NHS Trust Hereford County Hospital 

10 Norfolk & Norwich University Hospital NHS 

Trust 

Norfolk & Norwich 

University Hospital 

 

11 Pennine Acute Hospitals NHS Trust North Manchester General 

Hospital 

12 Portsmouth Hospitals NHS Trust Queen Alexander Hospital 

13 Gateshead Health NHS Trust Queen Elizabeth Hospital 

14 Sheffield Teaching Hospitals NHS Trust Royal Hallamshire Hospital 

15 University Hospital of Morcambe Bay Royal Lancaster Infirmary 

16 Sandwell and West Birmingham Hospital NHS 

Trust 

Sandwell General/City 

Hospital 

17 University Hospital Birmingham NHS Foundation 

Trust 

Selly Oak Hospital 

18 St Helens and Knowsley Hospital NHS Trust St Helens Hospital 
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Hospital ID Trust Hospital 

19 South Tees Hospitals NHS Trust James Cook University 

Hospital 

20 County Durham and Darlington Acute Hospitals 

NHS Trust 

University Hospital of 

North Durham 

21 Whipps Cross University Hospital NHS Trust Whipps Cross University  

Hospital 

22 The West Suffolk Hosiptal NHS Trust West Suffolk Hospital 

23 Southampton University Hospital NHS Trust Southampton General 

Hospital 

24 Basingstoke & North Hampshire NHS Foundation 

Trust 

Basingstoke & North 

Hampshire Hospital 

25 Queen Mary's Sidcup NHS Trust Queen Mary’s Sidqcup 

Hospital 

26 Pennine Acute Hospitals NHS Trust Royal Oldham Hospital 

27 Pennine Acute Hospitals NHS Trust Rochdale Infirmary 

28 University Hospitals of Morecambe Bay NHS 

Trust 

Furness Hospital 

29 Central Manchester University Hospital NHS 

Foundation Trust 

Manchester Royal 

Infirmary 

30 Worcestershire Acute Hospitals NHS Trust Worcestershire Royal 

Hospital 

31 The Dudley Group of Hospitals NHS Foundation 

Trust 

Russells Hall Hospital 

 

32 Northumbria Healthcare NHS Foundation Trust Wansbeck Hospital 

33 University Hospitals of Coventry and 

Warwickshire NHS Trust 

University Hospital 

Coventry 

34 Wrightington, Wigan and Leigh Hospitals NHS 

Foundation Trust 

Wrightington Hospital 

35 Nottingham University Hospitals NHS Trust Nottingham Hospital 

36 Salford Royal NHS Foundation Trust Hope Hospital 

37 South Warwickshire General Hospital NHS Trust Warwick Hospital. 

38 Weston Area Health NHS Trust Weston General Hospital. 

39 The Royal Bournemouth & Christchurch 

Hospitals NHS Foundation Trust 

Christchurch Hospital.   

40 Northern Lincolnshire and Goole Hospitals NHS 

Foundation Trust 

Diana, Princess of Wales 

Hospital.  
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Hospital ID Trust Hospital 

41 York Hospitals NHS Foundation Trust York District Hospital.  

42 University Hospitals of Leicester NHS Trust Leicester Royal Infirmary.   

43 The Royal Wolverhampton Hospitals NHS Trust New Cross Hospital. 

44 Green Park Healthcare NHS Trust Musgrave Park Hospital.   

45 Chesterfield Royal Hospital NHS Foundation 

Trust 

Chesterfield Royal 

Hospital. 

46 Trafford Healthcare NHS Trust Trafford General Hospital. 

47 Harrogate and District NHS Foundation Trust Harrogate District Hospital. 

48 Royal National Hospital for Rheumatic Diseases 

NHS Foundation Trust 

Bath Hospital. 

49 Oxford Radcliffe Hospitals NHS Trust John Radcliffe Hospital. 

50 Milton Keynes Hospital NHS Foundation Trust Milton Keynes Hospital. 

51 Royal Liverpool and Broadgreen University 

Hospitals NHS Trust 

Royal Liverpool Hospital.  

 

52 Countess of Chester Hospital NHS Foundation 

Trust 

Countess of Chester 

Hospital.  

53 Royal Cornwall Hospitals NHS Trust Royal Cornwall Hospital. 

54 City Hospitals Sunderland NHS Foundation Trust Royal Sunderland Hospital.  

55 Stockport NHS  Foundation Trust Stepping Hill Hospital. 

56 Trafford Healthcare NHS Trust Trafford General Hospital. 

57 Kettering General Hospital NHS Foundation Trust Kettering General Hospital. 
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Appendix 19: Chapter Four - Likelihood Ratio Test to Collapse 

Categorical Dependent Variable 

This appendix presents the rationale for collapsing the dependent variable (from five to 

three categories) for the quantitative study reported in Chapter Four.  

A19.1. Introduction 

The distribution of the five TNFi therapies prescribed across the sample of 894 patients 

with RA in Chapter Four is reported in Table A19.1a. The relatively few patients that 

received infliximab and golimumab may have led to convergence problems during 

statistical estimation if the dependent variable was defined by these five categories. The 

efficiency of a regression analysis may be improved by collapsing the categories of an 

unordered categorical variable that are indistinguishable with respect to the independent 

variables (Long et al., 2012). Collapsing a categorical dependent variable, however, should 

be done to maintain clinical and statistical plausibility. The proposed collapsed dependent 

variable (TNFiPrescribed) comprised three mutually exclusive categories (Table A19.1b); 

patients that were prescribed infliximab or adalimumab were categorised as having 

received an older monoclonal antibody and patients that were prescribed certolizumab 

pegol or golimumab were categorised as having received a newer monoclonal antibody. 

Etanercept was categorised as the only non-monoclonal antibody. These three mutually 

exclusive categories were clinically plausible (van Vollenhoven, 2009).   

Table A19.1. Distribution of (a) five TNFi therapies prescribed across the sample and (b) 

the proposed three-category dependent variable (TNFiPrescribed).  

(a) Five TNFi Therapies  (b) Proposed Three-category Dependent Variable 

TNFi n  TNFiPrescribed n 

Etanercept 357 

 

 

 Non-monoclonal antibody 

Etanercept 

357 

Infliximab 34  Older Monoclonal Antibodies 

(infliximab and adalimumab) 

 

373 

Adalimumab 339 

 

 

 Newer Monoclonal Antibodies 

(certolizumab pegol and golimumab) 

164 

Certolizumab pegol 123 

 

   

Golimumab 41    

Total 894  Total 894 
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A19.2. Aim and Objective 

The aim of this study was to determine the statistical plausibility of collapsing the five-

category variable in Table A19.1a into the three-category TNFi variable in Table A19.1b.  

A19.3. Method 

Statistical plausibility for creating the dependent variable with three categories was 

informed by a likelihood ratio test (Wooldridge, 2010; Long et al., 2012). The test statistic 

for a categorical dependent variable was based on the log-likelihood of a full (𝐿𝐿𝐹𝑢𝑙𝑙) and 

restricted (𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) multinomial logistic regression. The dependent variable of this 

regression was the five-category TNFi variable (Table A19.1a); the independent variables 

of the regression were the variables that represented the patient’s health status (see Section 

4.3.2.3).  

Written in a general case, the log-likelihood of the full model (𝐿𝐿𝐹𝑢𝑙𝑙) was from a 

regression that included only the constant term. The log-likelihood of the restricted model 

(𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑), when collapsing categories i and j, was from a regression that used category 

i as the base-category and the coefficients of all other independent variables were 

constrained to zero except for the constant term for category j. The likelihood ratio test 

statistic (𝐿𝑅), defined by Equation A19.1 was chi-squared distributed with degrees of 

freedom (k) equal to the number of independent variables (Long et al. 2012).  

𝐿𝑅 = 𝐿𝐿𝐹𝑢𝑙𝑙 − 𝐿𝐿𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  ~𝑋𝑘
2              (Equation A19.1)             

Under the null hypothesis, all coefficients (aside from the intercepts) for alternatives i and j 

were equal to zero and could be collapsed. A statistically significant test statistic was 

sufficient to reject the null hypothesis.  

A19.4. Results 

The likelihood ratio test statistics for collapsing the older monoclonal antibodies 

(infliximab and adalimumab) and newer monoclonal antibodies (certolizumab pegol and 

golimumab) into distinct categories, calculated using baseline clinical health variables, are 

reported in Table A19.2. The null hypothesis could not be rejected for either test statistic 

under conventional levels of statistical significance (in both cases, the p-value was greater 
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than 0.1). Therefore, the three category dependent variable reported in Table A19.1b was 

considered to be statistically plausible. 

Table A19.2. Likelihood ratio test for collapsing dependent variable categories. 

Collapsed Categorical Variables 𝐋𝐑 ~ 𝐗𝐤
𝟐 P-value 

Infliximab and adalimumab 11.835 0.106 

Certolizumab pegol and golimumab 8.475 0.293 

 

A19.5. Conclusion 

The results of this study indicated that it was statistically plausible to collapse the 

dependent variable into three categories ((i) Non-monoclonal antibody; (ii) Older 

monoclonal antibodies; and (iii) Newer monoclonal antibodies). This three-category 

dependent variable was therefore used within the quantitative study reported in Chapter 

Four.  
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Appendix 20: Chapter Four - Multiple Imputation of Missing 

Data 

 

This appendix documents the methods of multiple imputation used to handle missing data 

in Chapter Four. The appendix describes the data that were missing in Chapter Four 

(Section A20.1), the three stages of handling missing data by multiple imputation (Section 

A20.2), multiple imputation by chained equations (Section A20.3), and the number of 

imputations used in Chapter Four (Section A20.4).  

A20.1. Missing Data in Chapter Four 

Missing data can be characterised as (i) missing completely at random (MCAR), (ii) 

missing at random (MAR), or (iii) missing not at random (MNAR). The definitions of 

these three categories are reported in Table A21.1. 

Table A20.1. Definitions to categorise missing data.  

Type of Missing Data Acronym Definition 

Missing completely at random. MCAR No systematic difference between 

observed and missing values. 

 

Missing at random. MAR Differences between the observed and 

missing values are explained, conditional 

on the observed data.  

 

Missing not at random.  MNAR Systematic differences between observed 

and missing values remain, after 

conditioning on observed values.  

Source: Sterne et al. (2009).  

 

Multiple imputation methods require the assumption that missing data are MAR, in order 

to use the observed data to predict values for the missing observations (see Section A20.2) 

(White et al., 2011; Sterne et al., 2009). The econometric study reported in Chapter Four 

used patient-level data from the BRAGGSS cohort. There were seven independent variables 

within the analysis that had missing data (reported in Table A20.2); these missing data 

were assumed to be MAR.  
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Table A20.2. Variables with missing data in the analysis presented in Chapter Four. 

Variable Missing (n) 

Work status 309 

DAS8 283 

MTX 158 

BMIover 156 

YearswithRA 13 

HAQ 12 

Woman 2 

 

A20.2. The Three Stages of Multiple Imputation 

The general method of multiple imputation comprises three stages: 

• Stage one: Generate m datasets, each of which have replaced the missing data for 

specific variables by sampling from their predicted distribution (conditional on the 

observed data); 

• Stage two: Perform a separate statistical analysis (for example, a regression) on 

each of the m datasets; 

• Stage three: Combine the m parameter estimates and standard errors using Rubin’s 

rules (Sterne et al., 2009).  

The process of sampling a different value for the missing data m times, in Stage one, 

appropriately represents the uncertainty in the true values of the missing observations 

(Sterne et al., 2009). The statistical analyses performed on each imputed dataset, in Stage 

two, will therefore likely produce different outcomes and variance-covariance matrices due 

to differences in the imputed missing values (White et al., 2011). The use of Rubin’s rules 

to combining the separate analyses and produce the final parameter estimate, in Stage 

three, accounts for (i) the within-imputation uncertainty (the uncertainty of the results 

within one imputed dataset) and (ii) the between-imputation uncertainty (the uncertainty of 

the results across m datasets) (Rubin, 1996; White et al., 2011). The formulae (Rubin, 

1996) to calculate a final parameter estimate (𝜃)̂ and variance (𝑉𝐴𝑅𝜃) over m imputed 

datasets using Rubin’s rules (which are based on the average over imputed datasets) are 

described in Equation A20.1 and Equation A20.2, respectively.  
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𝜃 =
1

𝑚
∑ 𝜃𝑗

𝑚
𝑗=1                                             (Equation A20.1) 

𝑉𝐴𝑅𝜃 = [
1

𝑚
∑ 𝑉𝐴𝑅𝜃𝑗̂

𝑚
𝑗=1 ] + [(1 +

1

𝑚
) ∗

1

𝑚−1
∑ (𝜃𝑗̂ − 𝜃)𝑚

𝑗=1 ]                      (Equation A20.2) 

where j is used to index an individual dataset within m.   

A20.3. Multiple Imputation by Chained Equations 

The two predominant approaches for generating the m datasets in Stage one of multiple 

imputation, when data are missing from several variables, are (i) multiple imputation by 

chained equations (MICE) and (ii) multivariate normal imputation (Rezvan et al., 2015). 

The study in Chapter Four used MICE to impute missing data because there was some 

evidence to indicate its relative superiority at producing unbiased results (Romaniuk et al., 

2014) and given the available commands to perform the analysis in STATA (Royson et al., 

2011). 

MICE was used to produce m imputed datasets by initially sampling the missing values 

from the observed data with replacement (Royston, 2009; Royston et al., 2011). The first 

variable with missing data, for example X1, was regressed on all other variables that 

observed X1 and the dependent variable (Moons et al., 2006). The type of regression 

depended on the properties of the variable with missing data (Romaniuk et al., 2014). For 

example, logistic regression was used if the variable was dichotomous (for example, MTX, 

BMIover, Woman) and multinomial logistic regression was used if the variables were 

unordered categorical data (for example, Work status). The remaining variables (DAS28, 

YearswithRA, HAQ) used ordinary least squares regression. The missing values were then 

imputed by repeatedly sampling from the predicted value of the regression to generate one 

imputed dataset. The whole process was repeated m times to produce m datasets (White et 

al., 2011). Variables that were not normally distributed (HAQ, YearswithRA) were 

transformed to a normal distribution before imputation and inverted to the original scale 

following imputation.  

A20.4. Number of Imputations in Chapter Four 

The appropriate number of imputations (m) was determined using the rule that m should be 

at least 100 times the largest fraction of missing information (FMI) test statistic (White et 

al., 2011). The base-case regression in Chapter Four had an FMI test statistic of 0.356. 

Therefore, sixty imputations was deemed to be sufficient for the analysis.  
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Appendix 21: Chapter Four - Sensitivity Analysis of the Base-

case Result 

This appendix presents the results of the sensitivity analysis described in Section 4.3.3.3 of 

Chapter Four when the regressions were re-estimated on a restricted sample of hospitals 

that had at least ten patients. 

A21.1. Sensitivity Analysis: Exclude Hospitals with Fewer than Ten Observations 

Table A21.1 reports the mean partial effects from the multinomial logistic regression in 

Chapter Four when hospitals with fewer than ten patient-level observations were omitted 

from the sample. This structural sensitivity analysis was performed to assess whether the 

base-case results were sensitive to the number of patients clustered within each hospital.  

Regression D was still the preferred model specification (relatively higher pseudo-R2, and 

relatively lower AIC and BIC test statistics. The base-case results (which identified that a 

patient’s age, concomitant methotrexate use, and marital status had an influence on the 

likelihood of being prescribed etanercept, adalimumab, or infliximab) were robust to 

performing the analysis on the restricted sample, in terms of the partial effects’ statistical 

significance, relative magnitude, and direction of influence. The results of this sensitivity 

analysis (i) confirmed the importance of including hospital-level dummy variables to 

control for unobservable between-hospital heterogeneity, and (ii) suggested that the base-

case results were not driven by hospitals that had included fewer than ten patients to the 

BRAGGSS cohort (which may have been systematically different compared with the other 

hospitals that remained in the sample).  



 

 
 

    Table A21.1. Sensitivity analysis: mean partial effects from multinomial logistic regression when hospitals with fewer than ten observations were omitted.  

Note: Standard errors are reported in parentheses. Non-mAbs = Non-monoclonal antibody (etanercept); Older mAbs = Older monoclonal antibodies (infliximab & adalimumab); Newer mAbs = 

Newer monoclonal antibodies (certolizumab pegol & golimumab). *, **, *** indicates statistical significance at 10%, 5% and 1%, respectively. Partial effects of hospital dummy variables are 

unreported. 

 Regression A  Regression B  Regression C  Regression D 

 Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs  Non-mAb Older mAbs Newer mAbs 

DAS28 0.0234 
(0.0313) 

-0.0193 
(0.0325) 

-0.0041 
(0.0206) 

 0.0467 
(0.0391) 

-0.0459 
(0.0390) 

-0.0008 
(0.0011) 

 0.0250 
(0.0317) 

-0.0212 
(0.0333) 

-0.0038 
(0.0201) 

 0.0477 
(0.0397) 

-0.0471 
(0.0397) 

-0.0006 
(0.0011) 

Woman 0.0442 

(0.0396) 

0.0011 

(0.0426) 

-0.0453 

(0.0357) 

 0.0435 

(0.0465) 

-0.0406 

(0.0464) 

-0.0029 

(0.0020) 

 0.0454 

(0.0426) 

0.0055 

(0.0442) 

-0.0509 

(0.0370) 

 0.0426 

(0.0502) 

-0.0397 

(0.0500) 

-0.0029 

(0.0020) 

Age/10 0.0094 

(0.0127) 

-0.0198 

(0.0137) 

0.0104 

(0.0119) 

 0.0225* 

(0.0132) 

-0.0227* 

(0.0132) 

0.0002 

(0.0005) 

 0.0300* 

(0.0154) 

-0.0280* 

(0.0169) 

-0.0020 

(0.0114) 

 0.0416** 

(0.0186) 

-0.0415** 

(0.0186) 

-0.0001 

(0.0005) 

HAQ -0.0323 
(0.0301) 

0.0062 
(0.0333) 

0.0262 
(0.0190) 

 -0.0014 
(0.0383) 

-0.0003 
(0.0385) 

0.0017 
(0.0011) 

 -0.0221 
(0.0297) 

0.0105 
(0.0332) 

0.0115 
(0.0203) 

 0.0068 
(0.0372) 

-0.0077 
(0.0373) 

0.0009 
(0.0011) 

Totaldrug 0.0175 

(0.0215) 

0.0105 

(0.0175) 

-0.0280 

(0.0199) 

 -0.0024 

(0.0192) 

0.0024 

(0.0190) 

-0.0001 

(0.0006) 

 0.0164 

(0.0213) 

0.0110 

(0.0172) 

-0.0274 

(0.0195) 

 -0.0047 

(0.0192) 

0.0046 

(0.0190) 

0.0000 

(0.0005) 
Totalcomorb 0.0178 

(0.0159) 

-0.0147 

(0.0164) 

-0.0032 

(0.0095) 

 0.0264 

(0.0199) 

-0.0264 

(0.0199) 

0.0000 

(0.0005) 

 0.0188 

(0.0168) 

-0.0129 

(0.0168) 

-0.0059 

(0.0091) 

 0.0247 

(0.0209) 

-0.0246 

(0.0209) 

-0.0002 

(0.0004) 

YearswithRA -0.0010 
(0.0020) 

0.0026 
(0.0017) 

-0.0016 
(0.0014) 

 -0.0019 
(0.0022) 

0.0020 
(0.0022) 

-0.0001*** 

(0.0001) 
 -0.0012 

(0.0021) 
0.0030* 

(0.0018) 
-0.0017 
(0.0014) 

 -0.0022 
(0.0023) 

0.0024 
(0.0023) 

-0.0002*** 

(0.0001) 

BMIover 0.0344 

(0.0484) 

-0.0172 

(0.0490) 

-0.0172 

(0.0285) 

 0.0212 

(0.0602) 

-0.0212 

(0.0601) 

-0.0001 

(0.0015) 

 0.0317 

(0.0481) 

-0.0175 

(0.0500) 

-0.0142 

(0.0285) 

 0.0179 

(0.0602) 

-0.0182 

(0.0601) 

0.0003 

(0.0014) 
MTX -0.1079*** 

(0.0404) 

0.0574 

(0.0422) 

0.0506 

(0.0294) 

 -0.0909* 

(0.0501) 

0.0880* 

(0.0501) 

0.0029 

(0.0013) 

 -0.1101*** 

(0.0424) 

0.0603 

(0.0432) 

0.0497* 

(0.0292) 

 -0.1012** 

(0.0510) 

0.0982* 

(0.0510) 

0.0030** 

(0.0013) 

Smoke 
   

 
   

 -0.0396 
(0.0463) 

0.0310 
(0.0483) 

0.0086 
(0.0243) 

 -0.0538 
(0.0575) 

0.0512 
(0.0576) 

0.0026* 
(0.0014) 

Work1 
   

 
   

 0.0308 

(0.0597) 

0.0303 

(0.0544) 

-0.0611 

(0.0334) 

 0.0199 

(0.0718) 

-0.0169 

(0.0717) 

-0.0031** 

(0.0015) 
Work3 

   
 

   
 -0.0259 

(0.0664) 

0.0483 

(0.0673) 

-0.0225 

(0.0414) 

 -0.0399 

(0.0852) 

0.0416 

(0.0851) 

-0.0017 

(0.0016) 

Marital1 
   

 
   

 -0.1969*** 

(0.0666) 
0.1231** 

(0.0547) 
0.0738* 

(0.0378) 
 -0.1997*** 

(0.0734) 
0.1980*** 

(0.0729) 
0.0017 

(0.0016) 

Marital3 
   

 
   

 -0.2111*** 

(0.0798) 

0.0510 

(0.0842) 

0.1601** 

(0.0813) 

 -0.1862* 

(0.1100) 

0.1827* 

(0.1099) 

0.0036 

(0.0036) 
Homecare 

   
 

   
 0.0015 

(0.0652) 

-0.0356 

(0.0588) 

0.0341 

(0.0360) 

 0.0392 

(0.0856) 

-0.0381 

(0.0855) 

-0.0010 

(0.0022) 

Year -0.0102 

(0.0173) 

-0.0526** 

(0.0220) 

0.0627*** 

(0.0181) 

 0.0012 

(0.0197) 

-0.0055 

(0.0197) 

0.0043*** 

(0.0005) 

 -0.0108 

(0.0183) 

-0.0559** 

(0.0220) 

0.0667*** 

(0.0176) 

 0.0007 

(0.0213) 

-0.0052 

(0.0212) 

0.0045*** 

(0.0006) 

Hospital Dummy No No No  Yes Yes Yes  No No No  Yes Yes Yes 

Pseudo R2 0.0909  0.3077  0.1291  0.3666 

AIC 330.2344  257.7613  317.1032  237.551 
BIC 358.4035  289.0603  345.2723  268.85 

4
1
1
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Appendix 22: Section 5.3 - Complete PRISMA Statement 

Checklist 

This appendix provides the completed PRISMA checklist (Table A22.1) for the systematic 

review in Section 5.3 of Chapter Five. The checklist ensured that the systematic review 

was reported transparently and completely in accordance with the standards recommended 

for best-practice (Liberati et al., 2009).  

Table A22.1. Complete PRISMA Statement checklist for systematic review in Section 5.3 

of Chapter Five. 

Section/Topic 

Item 

No. Checklist Item Evidence 

Title    

Title. 1 Identify the report as a systematic 

review, meta-analysis, or both. 

Not applicable for PhD thesis.  

Abstract    

Abstract. 

 

2 Provide a structured summary.  Not applicable for PhD thesis.  

Introduction    

Rationale. 3 Describe the rationale for the 

review in the context of what is 

already known.  

 

Section 5.3.1.  

 

Objectives. 4 Provide an explicit statement of 

questions being addressed with 

reference to PICOS.  

Section 5.3.2.  

Methods    

Protocol and 

registration.  

5 Indicate if a review protocol exists, 

if and where is can be accessed, 

and, if applicable, provide 

registration number information.  

 

No registration number exists. 

Review followed protocol as 

written in methods section.  

Eligibility 

criteria. 

6 Specify study characteristics and 

report characteristics used as 

criteria for eligibility, giving 

rationale.  

 

Table 5.1; Section 5.3.3.  

Information 

sources.  

7 Describe all information sources in 

the search and date last searched. 

  

Section 5.3.3; Study Selection. 

 

Search. 8 Present full electronic search 

strategy for at least one database. 

 

Appendix 23.  

Study selection. 9 State the process for selecting 

studies.  

 

Section 5.3.3; Study Selection. 

Data collection 

process.  

10 Describe method of data extraction 

from reports. 

 

Section 5.3.3; Data Extraction 

and Analysis. 

Data items.  11 List and define variables for which 

data were sought.  

Section 5.3.3; Data Extraction 

and Analysis. 
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Section/Topic 

Item 

No Checklist Item Evidence 

Risk of bias in 

individual studies.  

12 Describe methods used for 

assessing risk of bias of individual 

studies.  

Not applicable: purpose of 

review was to identify 

published prescribing 

recommendations.  

 

Summary 

measures.  

13 State the principal summary 

measures.  

 

Section 5.3.3; Data Extraction 

and Analysis. 

Synthesis of 

results.  

14 Describe the methods used for 

handling data and combining 

results of studies.  

 

Section 5.3.3; Data Extraction 

and Analysis. 

Risk of bias 

across studies.  

15 Specify any assessment of risk of 

bias that may affect the cumulative 

evidence.  

Not applicable: purpose of 

review was to identify 

published prescribing 

recommendations. 

 

Additional 

analyses.  

16 Describe methods of additional 

analyses.  

 

Not applicable.  

Results    

Study selection.  17 Give numbers of studies screened, 

assessed for eligibility, and 

included in the review, with 

reasons for exclusion at each state, 

ideally with a flow diagram.  

 

Section 5.3.4; Figure 5.2.  

Study 

characteristics.  

18 For each study, present 

characteristics for which data were 

extracted and provide citations.  

 

Table 5.2.  

Risk of bias 

within studies.  

19 Present data on risk of bias of each 

study and, if available, any 

outcome assessment.  

Not applicable: purpose of 

review was to identify 

published prescribing 

recommendations. 

 

Results of 

individual studies.  

20 For all outcomes, present for each 

study, (a) a simple summary data 

for each intervention group and (b) 

effect estimates and confidence 

intervals.  

 

Table 5.3; Section 5.3.4.1; 

Section 5.3.4.2.  

Synthesis of 

results.  

21 Present results of each meta-

analysis done, including 

confidence intervals and measures 

of consistency.  

 

Table 5.3; Section 5.3.4.1; 

Section 5.3.4.2. 

Risk of bias 

across studies.  

22 Present results of any assessment 

of risk of bias across studies (see 

item 15).  

Not applicable: purpose of 

review was to identify 

published prescribing 

recommendations. 
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Section/Topic 

Item 

No Checklist Item Evidence 

Additional 

analyses.  

23 Give results of additional analyses, 

if done.  

 

Not applicable.  

Discussion    

Summary of 

evidence.  

24 Summarise the main findings 

including the strengths of evidence 

for each main outcome.  

 

Section 5.3.5.  

Limitations.  25 Discuss limitations at study and 

outcome level and at review level.  

 

Section 5.3.5; Limitations.  

Conclusions.  26 Provide a general interpretation of 

the results in the context of other 

evidence and implications for 

future research.  

Section 5.3.5; Implications for 

Future Research. 

Funding    

Funding.  27 Describe sources of funding for the 

systematic review and other 

support, and the role of funding for 

the systematic review.  

Not applicable for individual 

PhD chapter. Funders 

acknowledged at the start of 

the thesis.  

Source: Liberati et al. (2009, p. 18).  
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Appendix 23: Search Strategies to Identify Studies with 

Relevance to TNFi Anti-drug Antibody and Drug Level Testing 

in Rheumatoid Arthritis 

This appendix reports the search strategies that were used in Chapter Five to identify all 

published studies that had relevance to TNFi ADAb and drug level testing in RA, within (i) 

Medline, and (ii) Embase. The search strategies were used in Section 5.3 to identify 

prescribing algorithms that incorporated ADAb and drug level testing, and in Appendix 34 

to perform a systematic review of test accuracy studies. The search strategies were based 

on an independent systematic review, conducted as part of the NICE DAP appraisal 

process, which identified published studies that included TNFi ADAb and drug level 

testing for patients with Crohn’s disease (National Institute for Health and Care 

Excellence, 2016).  

(i) Medline 

1 (adalimumab or humira).mp. 

2 ADA.tw.  

3 (infliximab or remicade).mp.  

4 IFX.tw. 

5 (etanercept or enbrel).mp. 

6 ETN.tw.  

7 (certolizumab* or cimzia).mp.  

8 CZP.tw. 

9 (golimumab or simponi).mp.  

10 GOL.tw.  

11 ((anti-TNF* or antiTNF* or TNF*) adj2 inhibitor*).mp.  

12 anti* tumo?r* necrosis* factor*.mp.  

13 Tumor Necrosis Factor-alpha/ and Antibodies, Monoclonal/  

14 biologic* treatment*.mp.  

15 biologic* agent*.mp.  

16 biologic* therap*.mp.  

17 anti* drug* antibod*.tw.  

18 ADAb.tw.  

19 or/1-18 



 

416 
 

20 exp Enzyme-Linked Immunosorbent Assay/  

21 enzyme* link* immunoassay*.mp. 

22 enzyme* link* immuno* assay*.mp.  

23 ELISA*.mp.  

24 *Radioimmunoassay/ 

25 (radioimmuno* or radio immuno* or radio-immuno*).mp. 

26 RIA.tw. 

27 reporter* gene* assay*.mp.  

28 RGA.tw.  

29 semi* fluid* phase* enzyme* immuno*.mp. 

30 EIA.tw. 

31 ((homogenous* or homogeneous*) adj1 mobilit* shift* assay*).mp.  

32 HMSA.tw. 

33 or/20-32 

34 ((immuno* or monitor* or pharmacokinetic* or measur* or level* or 

concentration*) adj3 (adalimumab or ADA or infliximab or IFX or etanercept or 

ETN or certolizumab* or CZP or golimumab or GOL or anti-TNF* or anti-tumo?r 

necrosis factor*)).mp.  

35 exp Arthritis, Rheumatoid/  

36 (rheumatoid* or rheumatoid arthritis).tw.  

37 35 or 36  

38 (((immuno* or monitor* or pharmacokinetic* or measur* or level* or 

concentration*) adj3 (adalimumab or ADA or infliximab or IFX or etanercept or 

ETN or certolizumab* or CZP or golimumab or GOL or anti-TNF* or anti-tumo?r 

necrosis factor*)) and (correlat* or associat* or test performance)).mp.  

39 19 and 33 and 37  

40 34 and 37  

41 38 or 39 or 40 

42 Animals/ not Humans/  

43 41 not 42  

44 remove duplicates from 43 

 

 

 

 



 

417 
 

(ii) Embase 

1 (adalimumab or humira or ADA).tw. 

2 *adalimumab/ 

3 (infliximab or remicade or IFX).tw. 

4 *infliximab/ 

5 (etanercept or enbrel or ETN).tw.  

6 *etanercept/ 

7 (certolizumab* or cimzia or CZP).tw. 

8 *certolizumab pegol/  

9 (golimumab or simponi or GOL).tw.  

10 *golimumab/  

11 ((anti-TNF* or antiTNF* or TNF*) adj2 inhibitor*).tw.  

12 anti* tumo?r* necrosis* factor*.tw. 

13 *tumor necrosis factor alpha inhibitor/ 

14 biologic* treatment*.tw.  

15 biologic* agent*.tw.  

16 biologic* therap*.tw.  

17 anti* drug* antibod*.tw.  

18 ADAb.tw.  

19 *drug antibody/ 

20 or/1-19  

21 *enzyme linked immunosorbent assay/  

22 enzyme* link* immunoassay*.tw. 

23 enzyme* link* immuno* assay*.tw.  

24 ELISA*.tw.  

25 *radioimmunoassay/  

26 (radioimmuno* or radio immuno* or radio-immuno*).tw.  

27 RIA.tw.  

28 reporter* gene* assay*.tw.  

29 RGA.tw.  

30 semi* fluid* phase* enzyme* immuno*.tw.  

31 EIA.tw.  

32 (homogeny* adj1 mobilit* shift* assay*).tw.  

33 HMSA.tw.  

34 or/21-33  
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35 ((immuno* or monitor* or pharmacokinetic* or measure* or level* or 

concentration*) adj3 (adalimumab or ADA or infliximab or IFX or etanercept or 

ETN or certolizumab* or CZP or golimumab or GOL or Anti-TNF* or Anti-

Tumo?r Necrosis Factor*)).tw.  

36 *rheumatoid arthritis/  

37 (rheumatoid* or rheumatoid arthritis*).tw.  

38 or/36-37 

39 (((immuno* or monitor* or pharmacokinetic* or measure* or level* or 

concentration*) adj3 (adalimumab or ADA or infliximab or IFX or etanercept or 

ETN or certolizumab* or CZP or golimumab or GOL or Anti-TNF* or Anti-

Tumo?r Necrosis Factor*)) and (correlate* or associate* or test performance)).tw.  

40 20 and 34 and 38  

41 35 and 38  

42 39 or 40 or 41  

43 nonhuman/ not human/  

44 42 not 43 

45 remove duplicates from 44  
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Appendix 24: Section 5.4 - Full Derivation of Incremental 

Outcomes from the Algebraic Early Economic Evaluation 

Technique 

This appendix provides the full derivation of the incremental outcomes calculated by the 

early economic evaluation technique in Section 5.4 of Chapter Five. The algebraic 

derivations for the three broad TNFi ADAb and drug level testing strategies to stratify 

treatment are reported sequentially.   

A24.1. Strategy A: Testing after Loss of Response 

The derivation in Section A24.1 relates to the cost and QALY profiles for Strategy A and 

Current Practice, illustrated in Figure 5.3.  

Cost Profile 

                Total CostStrategy A = P[(t1 – t0)a + (t2 – t1)(a + b + c) + (t3 – t2)a] 

          Total CostCurrent Practice = P[(t1 – t0)a + (t2 – t1)(a + c) + (t3 – t2)a] 

      Incremental CostStrategy A = (t2 – t1)bP 

QALY Profile 

           Total QALYsStrategy A = (t1 – t0)Q1 + (t2 – t1)(Q1 – X1) + (t3 – t2)Q1 

     Total QALYsCurrent Practice = (t1 – t0)Q1 + (t2 – t1)(Q1 – X1) + (t3 – t2)Q1 

Incremental QALYsStrategy A = 0 

Incremental Net Monetary Benefit 

Incremental Net Monetary BenefitStrategy A = – (t2 – t1)bP  
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The incremental net monetary benefit of Strategy A, compared with current practice, was 

negative, which indicated that it was unlikely to be a potentially relevant comparator to 

include in the final decision problem.  

A24.2. Strategy B: Testing During Response 

The derivation in Section A24.2 relates to the cost and QALY profiles for Strategy B and 

Current Practice, illustrated in Figure 5.4.  

Cost Profile 

             Total CostStrategy B = P[(t1 – t0)(a + b) + (t3 – t1)a] + (1 – P)[(t3 – t0)(a + b)] 

       Total CostCurrent Practice = P[(t1 – t0)a + (t2 – t1)(a + c) + (t3 – t2)a] + (1 – P)[(t3 – t0)a] 

   Incremental CostStrategy B = P(t1 – t0)a + P(t1 – t0)b + P(t3 – t1)a + (t3 – t0)a + (t3 – t0)b  

                                             – P(t3 – t0)a – P(t3 – t0)b – P(t1 – t0)a – P(t2 – t1)a – P(t2 – t1)c  

                                             – P(t3 – t2)a – (t3 – t0)a + P(t3 – t0)a 

          = P[(t1 – t0)b – (t2 – t1)c] + (1 – P)[(t3 – t0)b] 

QALY Profile 

          Total QALYStrategy B = P[(t3 – t0)Q1] + (1 – P)[(t3 – t0)Q1] 

    Total QALYCurrent Practice = P[(t1 – t0)Q1 + (t2 – t1)(Q1 – X1) + (t3 – t2)Q1]  

                                              + (1 – P)[(t3 – t0)Q1] 

Incremental QALYStrategy B = P(t3 – t0)Q1 + (t3 – t0)Q1 – P(t3 – t0)Q1 – P(t1 – t0)Q1  

                                               – P(t2 – t1)Q1 + P(t2 – t1)X1 – P(t3 – t2)Q1 – (t3 – t0)Q1  

                                               + P(t3 –t0)Q1 

          = (t2 – t1)X1P 

 

 



 

421 
 

Incremental Net Monetary Benefit 

Incremental Net Monetary BenefitStrategy B = λ(t2 – t1)X1P – (t1 – t0)bP + (t2 – t1)cP  

                                                                       – (t3 – t0)b + (t3 – t0)bP 

It was not possible to determine whether the incremental net monetary benefit of Strategy 

B, compared with Current Practice, was positive or negative based on the algebraic 

analysis alone. The sign of the incremental net monetary benefit depended on whether (i) 

the monetary value of the incremental QALY gains (λ(t2 – t1)X1P) and (ii) the cost-

reduction associated with avoiding the need to treat patients that had lost response ((t2 – 

t1)cP) were greater than the additional costs imposed by testing (– (t1 – t0)bP – (t3 – t0)b + 

(t3 – t0)bP).  

The following section presents the first-derivative of the incremental net monetary benefit 

for Strategy B with respect to six input parameters: 

Cost of Treating Loss of Response  

∂Incremental Net Monetary Benefit
B

∂c
 = (t2 – t1)P    >    0 

The positive first-derivative indicated that an increase in the cost of treating patients that 

had lost response (c) would increase the incremental net monetary benefit of Strategy B, 

ceteris paribus. 

Cost of Testing Patients 

∂Incremental Net Monetary Benefit
B

∂b
  = – (t1 – t0)P– (t3 – t0) + (t3 – t0)P    <    0 

The negative first-derivative indicated that an increase in the cost of testing patients (b) 

would reduce the incremental net monetary benefit of Strategy B, ceteris paribus. 

Cost-effectiveness Threshold 

∂Incremental Net Monetary Benefit
B

∂λ
  = (t2 – t1)X1P    >   0 



 

422 
 

The positive first-derivative indicated that an increase in the cost-effectiveness threshold 

(λ) would increase the incremental net monetary benefit of Strategy B, ceteris paribus. 

Time Taken to Develop Anti-drug Antibodies 

∂Incremental Net Monetary Benefit
B

∂(𝑡1−𝑡0)
 =  – bP    <    0 

The negative first-derivative indicated that an increase in time taken to develop ADAb (t1 – 

t0) would reduce the incremental net monetary benefit of Strategy B, ceteris paribus. 

Proportion of Patients with Anti-drug Antibodies 

∂Incremental Net Monetary Benefit
B

∂P
 =  λ(t2 – t1)X1 – (t1 – t0)b + (t2 – t1)c + (t3 – t0)b    >    0 

The positive first-derivative indicated that an increase in the proportion of patients that 

developed ADAb (P) would increase the incremental net monetary benefit of Strategy B, 

ceteris paribus. 

Magnitude of QALY Loss Associated with Treatment Failure 

∂Incremental Net Monetary Benefit
B

∂𝑋1
 =  λ(t2 – t1)P    >    0 

The positive first-derivative indicated that an increase in the magnitude of QALY loss 

associated with treatment failure (X1) would increase the incremental net monetary benefit 

of Strategy B, ceteris paribus. 

 

A24.3. Strategy C: Test Drug Levels in Remission 

The derivation in Section A24.3 relates to the cost and QALY profiles for Strategy C and 

Current Practice, illustrated in Figure 5.5.  

 



 

423 
 

Cost Profile 

          Total CostStrategy C = D[(t1 – t0)(a + b) + (t2 – t1)(a – y)  

                                          + q(t3 – t2)a + (1 – q)(t3 – t2)(a – y)] + (1 – D)[(t1 – t0)(a + b)  

                                          + (t3 – t1)a] 

    Total CostCurrent Practice = D[(t3 – t0)a] + (1 – D)[(t3 – t0)a] 

Incremental CostStrategy C = D(t1 – t0)a + D(t1 – t0)b + D(t2 – t1)a – D(t2 – t1)y + Dq(t3 – t2)a  

                                           + D(t3 – t2)a – D(t3 – t2)y – Dq(t3 – t2)a + Dq(t3 – t2)y  

                                           + (t1 – t0)a + (t1 – t0)b + (t3 – t1)a – D(t1 – t0)a – D(t1 – t0)b  

                                            – D(t3 – t1)a – D(t3 – t0)a – (t3 – t0)a + D(t3 – t0)a 

                                        = (t1 – t0)b – (t2 – t1)yD – (1 – q)(t3 – t2)yD 

QALY Profile 

          Total QALYStrategy C = D[(t1 – t0)Q2 + q(t2 – t1)(Q2 – X2) + (1 – q)(t2 – t1)Q2  

                                              + (t3 – t2)Q2] + (1 – D)[(t3 – t0)Q2] 

    Total QALYCurrent Practice = D[(t3 – t0)Q2] + (1 – D)[(t3 – t0)Q2] 

Incremental QALYStrategy C = D(t1 – t0)Q2 + Dq(t2 – t1)Q2 – Dq(t2 – t1)X2 + D(t2 – t1)Q2 

                                                                      – Dq(t2 – t1)Q2 + D(t3 – t2)Q2 + (t3 – t0)Q2 – D(t3 – t0)Q2 

                                                                      – D(t3 – t0)Q2 – (t3 – t0)Q2 + D(t3 – t0)Q2 

                                               = – D(t2 – t1)X2q 

Incremental Net Monetary BenefitStrategy C = – λD(t2 – t1)X2q – (t1 – t0)b + (t2 – t1)yD  

                                                                       + (1 – q)(t3 – t2)yD 

It was not possible to determine whether the incremental net monetary benefit of Strategy 

C, compared with Current Practice, was positive or negative based on the algebraic 

analysis alone. The sign of the incremental net monetary benefit depended on whether (i) 

the reduction in QALYs (from patients that flared), expressed in monetary units (– λD(t2 – 

t1)X2q), and (ii) the additional cost imposed by testing (– (t1 – t0)b), were offset by the 
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reduction in the cost of treatment due to using a lower-dose ((t2 – t1)yD + (1 – q)(t3 – 

t2)yD).  

The following section presents the first-derivative of the incremental net monetary benefit 

for Strategy C with respect to six input parameters.  

Cost of Testing 

∂Incremental Net Monetary Benefit
C

∂b
 =  – (t1 – t0)    <    0 

The negative first-derivative indicated that an increase in the cost of testing patients (b) 

would reduce the incremental net monetary benefit of Strategy C, ceteris paribus. 

Cost-reduction of Lower-dose TNFi 

∂Incremental Net Monetary Benefit
C

∂y
 =  (t2 – t1)D + (1 – q)(t3 – t2)D    >    0 

The positive first-derivative indicated that an increase in the cost-reduction associated with 

using a lower-dose of TNFi (y) would increase the incremental net monetary benefit of 

Strategy C, ceteris paribus. 

Cost-effectiveness Threshold 

∂Incremental Net Monetary Benefit
C

∂λ
 =  – D(t2 – t1)X2q    <    0 

The negative first-derivative indicated that an increase in the cost-effectiveness threshold 

(λ) would reduce the incremental net monetary benefit of Strategy C, ceteris paribus. 

Proportion of Patients with High Drug Levels 

∂Incremental Net Monetary Benefit
C

∂D
 =  – λ(t2 – t1)X2q + (t2 – t1)y + (1 – q)(t3 – t2)y 

It was not possible to determine whether the first-derivative of the incremental net 

monetary benefit, with respect to the proportion of patients with high drug levels (D), was 
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positive or negative from the algebraic analysis alone. This was because the sign of the 

function depended on values taken by its arguments.  

Proportion of Patients that Flared from Reduced-dose TNFi 

∂Incremental Net Monetary Benefit
C

∂q
 =  – λD(t2 – t1)X2  – (t3 – t2)yD    <    0 

The negative first-derivative indicated that an increase in the proportion of patients that 

flared from reduced-dose TNFi (q) would reduce the incremental net monetary benefit of 

Strategy C, ceteris paribus. 

QALY-reduction Associated with a Flare 

∂Incremental Net Monetary Benefit
C

∂𝑋2
 =  – λD(t2 – t1)q    <    0 

The negative first-derivative indicated that an increase in magnitude of the QALY-

reduction that was associated with a flare (X2) would reduce the incremental net monetary 

benefit of Strategy C, ceteris paribus. 
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Appendix 25: Section 5.5 - Defining Relevant Strategies to 

Stratify Treatment in Current Practice 

This appendix explains how the adalimumab ADAb and drug level tests were conceptually 

embedded within the existing care pathway for RA to ensure relevance to clinical practice 

in England. Sections A25.1 and A25.2 describe how relevant prescribing decisions were 

determined for using the tests to stratify treatment in patients that (i) responded to 

treatment and (ii) were in remission, respectively. These relevant treatment strategies were 

subsequently included in the decision problem of the economic evaluation in Section 5.5. 

A25.1. Testing Adalimumab ADAb and Drug Levels in Patients that Responded 

Patients with RA were expected to receive a sequence of treatments over their lifetimes 

due to the chronic nature of the disease (Stevenson, 2016). Early detection of ADAb and 

low drug levels in patients that were responding to adalimumab was assumed to be 

predictive of treatment failure (Garcês et al., 2013). Therefore, such patients may have 

responded better to a bDMARD with a different therapeutic target (not tumour necrosis 

factor-α). 

Patients with RA in England that had lost response to a first-line TNFi typically 

commenced rituximab therapy as a second-line bDMARD, as demonstrated by the 

qualitative interviews in Chapter Three. Rituximab, unlike adalimumab and the other TNFi 

therapies, has a mechanism of action that targets B-cells (Emery, 2012). Sequential TNFi 

therapies, despite being recommended by some prescribing algorithms (Section 5.3), were 

not likely to be a relatively cost-effective use of health care resources in England (National 

Institute for Health and Care Excellence, 2010).  

An appropriate way to embed the ADAb and drug level tests into the care pathway for RA 

in England, therefore, was to stratify treatment by advancing patients to rituximab therapy. 

Table A25.1i reports the appropriate prescribing decisions associated with each test result. 

If only the ADAb test was used, a positive detection of ADAb was sufficient evidence to 

change treatment to rituximab before adalimumab failure occurred. Patients with no 

detectable ADAb were recommended to remain on adalimumab therapy. An early change 

to rituximab was assumed to be associated with a benefit to ADAb-positive patients and a 

harm to ADAb-negative patient. The accuracy of ADAb testing was improved by 
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including drug level testing, which was assumed to reduce the harm induced by false-

positive test results.  

A25.2. Testing Adalimumab Drug Levels in Patients in Remission 

Patients with RA that were in remission were assumed to have continued receiving full-

dose adalimumab in current practice. It may have been possible, however, to reduce the 

dose of adalimumab in such patients that had been responding a long period of time. The 

dose of a TNFi can be reduced by increasing the time interval between the scheduled 

injections (Smolen et al., 2014). 

Prescribing recommendations by EULAR stated that the dose of a TNFi therapy may be 

tapered if a patient with RA remained in persistent remission (Smolen et al., 2014). 

However, dose-reduction strategies may have only been appropriate for patients with high 

adalimumab drug levels, which was assumed to have reduced the likelihood of a 

subsequent flare in disease activity (Bykerk et al., 2016). The reduced-dose of adalimumab 

was recommended to revert back to its original dose if the patient experienced a flare in 

disease activity (Smolen et al., 2014). Table A25.1ii reports the appropriate prescribing 

decisions associated with testing adalimumab drug levels in patients during remission. 

Table A25.1. Appropriate test and prescribing decisions for current practice in England.  

Test Outcome Prescribing Decision  

 

(i) Test Patients during Response to Adalimumab 

 

ADAb Test Only 

ADAb-positive. 

 

Prescribe rituximab & methotrexate. 

ADAb-negative. 

 

Continue adalimumab & methotrexate.  

ADAb & Drug Level Test 

ADAb-positive & drug level low.  

 

Prescribe rituximab & methotrexate.  

ADAb-positive & drug level high; 

ADAb-negative & drug level high; 

ADAb-negative and drug level low.  

 

Continue adalimumab & methotrexate. 

(ii) Test Adalimumab Drug Levels of Patients in Remission 

 

Drug level high.  

 

Half-dose of adalimumab & maintain methotrexate.  

Drug level low; 

Drug level normal.  

Continue adalimumab & methotrexate. 
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Appendix 26: Section 5.7 - Checklist to Inform the Choice of 

Model Type  

Table A26.1. presents the checklist, reported by Brennan et al. (2006, p. 1304), regarding the 

choice of model type for an economic evaluation with respect to fifteen issues. An example was 

provided in the final column of the table if an issue was considered to be relevant for adalimumab 

ADAb and drug level testing.  

Table A26.1. Checklist to inform model selection by Brennan et al. (2006), applied to thesis case 

study.  

Issue† Relevant Choice of model† Example 

I.1: Does the decision 

maker require knowledge 

of variability to inform the 

decision? 

 

Yes Need for stochastic 

output. 

Needed to know variability in 

estimates of expected cost and 

health outcomes.   

I.2: Is the decision maker 

uncertain about which 

sub-groups are relevant 

and likely to change 

his/her mind? 

 

Yes Individual level 

models are more 

flexible to further 

covariates or changed 

assumptions. 

Unknown which population 

should have used ADAb and 

drug level testing a priori.  

I.3: Is a probabilistic 

sensitivity analysis 

required? 

 

Yes Need for PSA should 

not drive model 

structure.  

NICE required a probabilistic 

sensitivity analysis.  

I.4: Do individual risk 

factors affect outcome in a 

non-linear fashion? 

Yes Need to subdivide 

states or consider 

individual level 

model if the number 

of states is large.  

 

Increased risk of death with 

more severe RA. 

Hospitalisations may have 

increased with disease severity.  

 

I.5: Do covariates have 

multiple effects, which 

cause interaction? 

Yes Individual level 

modelling likely to be 

necessary. 

Development of adalimumab 

ADAb and low drug levels 

reduced the time to secondary 

non-response of adalimumab. 

 

I.6: Are times in states 

non-Markovian? 

Yes Need to use ‘fixes’ in 

Markovian models or 

use non-Markovian 

models. 

 

Development of adalimumab 

ADAb and low drug levels 

reduced the time to secondary 

non-response of adalimumab. 

I.7: Is the dimensionality 

too great for a cohort 

approach? 

Yes Individual level 

modelling likely to be 

necessary.  

Patient characteristics may 

have affected the probability of 

death and the time to treatment 

failure. Rate of disease 

progression have depended on 

treatment type.   

 

I.8: Do states ‘recycle’? Yes Decision tree 

approach is probably 

not appropriate.  

Treatments were prescribed in 

sequence in which patients 

responded and then lost 

response.  
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Issue† Relevant Choice of model† Example 

I.9: Is phasing or timing 

of events decisions 

important? 

Yes.  Possible to have 

different branches in 

the decision tree but 

Markov model or 

simulation may be 

necessary.  

 

The time to failure of 

adalimumab was dependent on 

whether the patient had 

previously developed ADAb 

and low drug levels.  

I.10: Is there interaction 

directly between patients? 

No. Models with 

interactions.  

 

Not applicable.  

I.11: Is there interaction 

due to constrained 

resources? 

 

No.  Models with 

interaction.  

Not applicable.  

I.12: Could many events 

occur in one unit of time? 

Yes.  Need for small time 

intervals or 

continuous time 

models.  

In a particular period of time, a 

patient’s disease may have 

progressed, they may have lost 

response to treatment, they 

may have developed ADAb, or 

they may have been tested for 

ADAb and drug levels.  

 

I.13. Are interactions 

occurring in small 

populations? 

No.  Need to consider 

individual level 

modelling.  

 

Not applicable.  

I.14: Are there delays in 

response due to the 

resource constraints 

which affect cost or health 

outcome? 

 

No.  Need for stochastic 

output and 

interaction.  

Not applicable.  

I.15: Is there non-linearity 

in system performance 

when inherent variability 

occurs? 

No.  Discrete event 

simulation useful.  

Not applicable.  

Note: †=As reported in Brennan et al. (2006, p. 1304).  
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Appendix 27: Section 5.8 - Systematic Review of Individual-

level Model-based Economic Evaluations in Rheumatoid 

Arthritis 

This appendix presents a systematic review of model-based economic evaluations in RA 

that have estimated expected outcomes by simulating the histories of individual patients 

over time. The primary purpose of this systematic review was to identify the modelling 

assumptions that could be used to inform the design of the DES in this thesis. This 

appendix is reported as a standalone study, with the following subsections: an introduction 

(Section A27.1), aim and objectives (Section A27.2), method (Section A27.3), results 

(Section A27.4), and a summary of key findings (Section A27.5).  

A27.1. Introduction 

A decision analytic model necessarily requires simplifying assumptions to be made in 

order to simulate the progression of a patient’s disease over time. These assumptions can 

be represented by the different choices that decision-analysts have made regarding (i) the 

input parameters included in a model, and (ii) how those parameters were assumed to be 

related to each other (Tappenden et al., 2014). Published model-based economic 

evaluations (within the same disease area) have been recommended as a potentially useful 

source of evidence to help inform the development of a de novo decision analytic model, 

by identifying and critically appraising the assumptions within these models (Tappenden et 

al., 2014).  

Previous reviews of model-based economic evaluations in RA have described, in general 

terms, the differences in structural assumptions that have been made by different authors 

(Bansback et al., 2005b; Drummond et al., 2005; Bansback et al., 2008; Barton, 2011; 

Madan et al., 2011; Tosh et al., 2011a; Tsao et al., 2012; Scholz et al., 2014; Tosh et al., 

2014; Ganz et al., 2015; Madan et al., 2015). Section 5.7 of this thesis concluded that a 

DES was the most appropriate type of decision analytic model to estimate the relative cost-

effectiveness of adalimumab ADAb and drug level testing to stratify treatment for patients 

with RA. A principal feature of using a DES for an economic evaluation is that patients are 

simulated through the structure of the model individually (Caro et al., 2016). Individual-

level decision analytic models may also be referred to as individual sampling models or 

microsimulations (Barton et al., 2004a; Brennan et al., 2006; Davis et al., 2014). In the 

context of this thesis, it was therefore potentially useful to identify the specific assumptions 
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that have been made in published individual-level decision analytic models for RA, in 

order to inform the development of the de novo decision analytic model in Chapter Five.  

A27.2. Aim and Objectives 

The aim of this study was to identify and summarise the key assumptions used in published 

decision analytic models for RA that have estimated expected outcomes by simulating 

patients individually. There were three objectives to meet this aim: 

Objective 1: Identify all model-based economic evaluations for RA that have simulated 

                      patients individually through the structure of the model;  

Objective 2: Identify the key assumptions that were made during the design of these 

                     individual-level decision analytic models.  

Objective 3: Summarise the key assumptions to inform the design of the de novo DES 

                      model in this thesis.  

A27.3. Method 

A systematic review of economic evaluations in RA that simulated patients individually 

through the structure of a decision analytic model was performed according to PRISMA 

reporting standards (Liberati et al., 2009). This study built on the systematic review of 

published model-based economic evaluations of stratified medicine in RA that was 

reported in Chapter Two.  

Study Selection 

The study inclusion criteria (reported in Table A27.1) was designed to identify all model-

based economic evaluations for RA that had performed an individual patient simulation. A 

study was included if it used a decision analytic model that simulated patients with RA 

individually (and not as a cohort) for any pharmacological therapy.  

Following the approach of Chapter Two, Medline, Embase, Web of Science, and the NHS 

EED and HTA databases were searched electronically between January 1990 and January 

2014. A subsequent electronic search was conducted to update the review by searching 

Medline and the NHS EED and HTA databases until December 2016. The search strategies 

to identify the published model-based economic evaluations were identical to that of 

Chapter Two (reported in Appendix 10).  

The title and abstract of all publications identified by the search strategies were screened 

by SG against the inclusion criteria in Table A27.1. Four researchers at the Manchester 
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Centre for Health Economics, The University of Manchester, were allocated an equal 

proportion of titles and abstracts to independently second-screen. Abstracts were not 

excluded at the screening stage if there were disagreements between SG and the 

independent reviewers. Studies that remained after the screening stage were read in full by 

SG to determine whether a full model-based economic evaluation was performed that 

simulated patients with RA individually through the structure of the model.  

Table A27.1. Systematic review inclusion criteria: model-based economic evaluations in 

RA that simulated individual patients.  

Study Characteristic Inclusion Criteria 

Population Adults (>16 years) with RA.  

 

Intervention Any pharmacological therapy.  

 

Comparator Any comparator.  

 

Outcome Expected costs and expected patient benefits per intervention 

strategy.  

 

Study Design Full economic evaluation (cost-benefit analysis, cost-

effectiveness analysis, cost-utility analysis), comparing at least 

two treatment strategies, using a decision analytic model that 

simulated the histories of individual patients over time (DES, 

microsimulation, or individual sampling model).  

 

Language English; full-text publication.  

 

Data Extraction and Analysis 

The principal motivation for this study was to identify the specific assumptions that had 

been made within published individual-level model-based economic evaluations for RA. 

Therefore, the following eight key assumptions were extracted from all included studies: 

(i) how the sample of patients was simulated; (ii) how treatment response was classified; 

(iii) how time-to-treatment failure was determined; (iv) how disease was assumed to 

progress over time; (v) how RA-specific mortality has handled; (vi). how direct health care 

costs were included; (vii) how QALYs were estimated (if relevant); and (viii) how a PSA 

was conducted. All data extraction was performed by SG. The key assumptions were 

summarised by a narrative synthesis of the extracted data.  
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A27.4 Results 

A flow diagram of the studies included in the systematic review is reported in Figure 

A27.1. Twenty-nine published model-based economic evaluations in RA, that had 

simulated patients individually, were identified by the search strategy. Following the 

approach of Scholz et al. (2014), Table A27.2 categorised these twenty-nine economic 

evaluations by the general structure of their decision analytic model. The models were 

categorised into eight ‘families’ that represented incremental developments to their general 

structures over time.  

Figure A27.1. Flow diagram of included studies.  

 

 

 

 

 

 

 

 



 

 
 

                       Table A27.2. Twenty-nine individual-level model-based economic evaluations in RA, categorised by their general structure.  

 

 

 

 

 

 

 

 

 

 

 

 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Brennan et al. 

(2004) 

 

Kielhorn et al. 

(2008) 

Jobanputra et al. 

(2002) 

Vera-Llonch et al. 

(2008a) 

Kobelt et al. 

(2009) 

Stephens et al. 

(2015) 

Tran-Duy et al. 

(2014) 

Wu et al. 

(2015) 

Bansback et al. 

(2005a) 

 

Merkesdal et al. 

(2010) 

Barton et al. 

(2004b) 

Vera-Llonch et al. 

(2008b) 

Lindgren et al. 

(2009) 

   

Brennan et al. 

(2007) 

 

Hallinen et al. 

(2010) 

Clark et al. 

(2004) 

Yuan et al. 

(2010) 

    

Wailoo et al. 

(2008) 

 

Diamantopoulos et al. 

(2012) 

Chen et al. 

(2006) 

     

Finckh et al. 

(2009) 

 

Soini et al. 

(2012) 

Malottki et al. 

(2011) 

     

Davies et al. 

(2009) 

 

Diamantopoulos et al. 

(2014) 

      

Tosh et al. 

(2011b) 

 

Athanasakis et al. 

(2015) 

      

Stevenson et al. 

(2016) 

Carlson et al. 

(2015) 

      

4
3
5
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Each model simulated individual patients over their lifetime through a sequence of 

treatments relevant to the respective decision problem and clinical setting. The appropriate 

treatment sequences were informed by clinical guidelines, patient registry data, or expert 

input from rheumatologists. The majority of models followed a common sequence of 

phases: 

• Phase One: An individual patient may have had an initial response to the first 

treatment in the sequence. Treatment was changed to the next in the sequence if the 

patient did not respond; 

• Phase Two: The patient’s disease activity may have changed immediately as an 

initial response to treatment and/or over time for the duration of treatment; 

• Phase Three: The patient may have eventually stopped responding to treatment, at 

which point they returned to the start of the model and received the next treatment 

in the sequence. Loss of response to a treatment may have had a negative impact on 

disease activity; 

• Phase Four: The patient could die at any time. The next patient was selected to 

proceed through the model if the current patient died. The whole process was 

repeated until all patients had been simulated through the model.  

Over half of the models simulated patients individually through time by using time cycles 

of either six months (n=14) (Brennan et al., 2004; Bansback et al., 2005; Finckh et al., 

2009; Davies et al., 2009; Tosh et al., 2011; Kielhorn et al., 2008; Merkesdal et al., 2010; 

Hallinen et al., 2010; Soini et al., 2012; Diamantopoulos et al., 2012; Athanasakis et al., 

2015; Carlson et al., 2015; Diamantopoulos et al., 2014; Stephens et al., 2015) or three 

months (n=3) (Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; Yuan et al., 2010). 

The twelve remaining models advanced time by estimating time-to-event values from 

survival curves.  

Model Population 

The patient population simulated within sixteen of the models were representative of the 

baseline characteristics observed within pivotal drug trials (Stephens et al., 2015; 

Athanasakis et al., 2015; Carlson et al., 2015; Vera-Llonch et al., 2008a; Vera-Llonch et 

al., 2008b; Yuan et al., 2010; Brennan et al., 2004; Davies et al., 2009; Wu et al., 2015; 

Bansback et al., 2005a; Kielhorn et al., 2008; Merkesdal et al., 2010; Lindgren et al., 2009; 

Soini et al., 2012; Diamantopoulos et al., 2012). The fourteen remaining studies had 

representative populations of a more-general distribution of RA patients, based on data 
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from incidence cohorts or national registries. Four models, in particular, had a population 

representative of patients with RA in the UK by utilising patient characteristics derived 

from the British Society for Rheumatology Biologics Registry (Diamantopoulos et al., 

2014; Brennan et al., 2007; Malottki et al., 2011; Stevenson et al, 2016).  

The majority of studies allowed patient-level characteristics to vary between individual 

patients, however seven studies simulated identical patients through their model structure 

(Bansback et al., 2005a; Kobelt et al., 2009; Lindgren et al., 2009; Diamantopoulos et al., 

2012; Diamantopoulos et al., 2014; Athanasakis et al., 2015; Wu et al., 2015). The 

majority of models described a patient’s baseline characteristics according to at least three 

variables: age (apart from Davies et al. (2009) and Stephens et al. (2015)), sex (apart from 

Bansback et al. (2005a) and Davies et al. (2009)), and HAQ score (apart from Jobanputra 

et al. (2002) and Stephens et al. (2015)). Other characteristics to describe patients included 

disease duration (n=7), previous cDMARDs (n=5), DAS28 (n=3), and socioeconomic 

characteristics such as education and income (n=2).  

Initial Treatment Response 

Patients were assumed to have an initial short-term response after receiving treatment for 

six months in nineteen models. The majority of these models (n=15) categorised a six-

month treatment response according to ACR response, which was reported by most trials 

of biologic therapies for RA. Two models included treatment response as a EULAR 

response, obtained from accompanying registry data (Brennan et al., 2007) and a review of 

published trials (Stevenson et al., 2016). Tran-Duy et al. (2014) included treatment 

response as a direct change in DAS28 score only.  

The initial six-month response to therapy was estimated predominantly by indirect 

treatment comparison, using multiple sources of evidence, where a common comparator 

existed between trials (n=13) (Diamantopoulos et al., 2014; Athanasakis et al., 2015; 

Bansback et al., 2005a; Diamantopoulos et al., 2012; Stevenson et al, 2016; Wailoo et al., 

2008; Finckk et al., 2009; Kielhorn et al., 2008; Merkesdal et al., 2010; Soini et al., 2012; 

Tosh et al., 2011; Carlson et al., 2015; Davies et al., 2009). Alternatively, Brennan et al. 

(2004), Hallinen et al. (2010), Wu et al. (2015), and Stephens et al. (2015) estimated a six-

month treatment response using evidence from a single trial.   

Treatment Failure 

There were two different methods to determine the time for remaining on a treatment until 

its withdrawal due to failure. The first approach applied a probability of treatment failure 
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within each time cycle of the model (n=13). The second approach directly assigned a time 

of treatment failure to each individual patient (n=16).  

Different methods were used to directly assign the time-to-treatment failure for individual 

patients. A fixed time-to-treatment failure was assigned to each patient in three models 

(Hallinen et al., 2010; Merkesdal et al., 2010; Kielhorn et al., 2008). The thirteen 

remaining models sampled individual time-to-event values from statistical survival 

distributions. The most common distribution used to sample an individual patient’s time-

to-treatment failure was the Weibull distribution (n=10) (Malottki et al., 2011; Chen et al., 

2006; Brennan et al., 2007; Wu et al., 2015; Kobelt et al., 2009; Lindgren et al., 2009; 

Wailoo et al., 2008; Barton et al., 2004; Clark et al., 2004; Jobanputra et al., 2002). 

However, multivariate normal distributions (Finckh et al., 2009), gamma distributions 

(Stevenson et al., 2016), exponential distributions (Tran-Duy et al., 2014), and log-normal 

distributions (Diamantopoulos et al., 2014) were also used.  

Disease Progression 

Most models determined RA disease progression via changes in patients’ HAQ scores over 

time. Five models, which were developed for specific NICE Technology Appraisals, used 

legitimate HAQ scores, expressed only in multiples of 0.125 (Barton et al., 2004b; Clark et 

al., 2004; Chen et al., 2006; Malottki et al., 2011; Stevenson et al., 2016). There were three 

common clinical events within the models that were assumed to prompt disease 

progression:    

(i) Initial treatment response; 

(ii)  Treatment withdrawal; 

(iii) Long-term progression while receiving treatment.  

Initial Treatment Response 

Twenty-six models represented the benefit of treatment response by an immediate 

reduction in the a patient’s HAQ score. This HAQ reduction was conditional on the 

response criteria in fifteen models; for example, the greatest HAQ reduction was for a 

good EULAR response (Finckh et al., 2009; Diamantopoulos et al., 2012; Diamantopoulos 

et al., 2014; Wu et al., 2015; Athanasakis et al., 2015; Stevenson et al., 2016; Hallinen et 

al., 2010; Kielhorn et al., 2008; Merkesdal et al., 2010; Soni et al., 2012; Carlson et al., 

2015; Davies et al., 2009; Bansback et al., 2005a; Wailoo et al., 2008; Tosh et al., 2011), or 

the treatment received in eleven models; for example, bDMARDs provided a greater HAQ 

reduction than cDMARDs (Kobelt et al., 2009; Lindgren et al., 2009; Jobanputra et al., 



 

439 
 

2002; Barton et al., 2004b; Clark et al., 2004; Brennan et al., 2004; Chen et al., 2006; 

Malottki et al., 2011; Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; Yuan et al., 

2010).  

Treatment Withdrawal 

The worsening of a patient’s disease, associated with treatment withdrawal, was 

represented in most models (n=22) by an increase in the HAQ score. Upon treatment 

failure, fifteen models assumed a complete reversal of the initial HAQ reduction (known as 

a perfect rebound), (Chen et al., 2006; Malottki et al., 2011; Diamantopoulos et al., 2012; 

Diamantopoulos et al., 2014; Athanasakis et al., 2015; Wu et al., 2015; Stevenson et al., 

2016; Kielhorn et al., 2008; Merkesdal et al., 2010; Soni et al., 2012; Davies et al., 2009; 

Brennan et al., 2004; Bansback et al., 2005a; Wailoo et al., 2008; Tosh et al., 2011); three 

models assumed that HAQ returned to the value before treatment initiation (Carlson et al., 

2015; Kobelt et al., 2009; Lindgren et al., 2009); and three models assumed that the HAQ 

score increased to the value observed in the comparator arm (Vera-Llonch et al., 2008a; 

Vera-Llonch et al., 2008b; Yuan et al., 2010).  

Long-term Progression 

RA is characterised by a worsening of disease over time, most frequently represented in 

the models by gradual increases in the HAQ score according to the type of treatment 

(n=16; HAQ worsened more quickly on cDMARD than bDMARD therapy) (Brennan et 

al., 2004; Wailoo et al., 2008; Kielhorn et al., 2008; Merkesdal et al., 2010; Hallinen et al., 

2010; Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; Yuan et al., 2010; Brennan et 

al., 2007; Malottki et al., 2011; Diamantopoulos et al., 2012; Diamantopoulos et al., 2014; 

Athanasakis et al., 2015; Wu et al., 2015; Soini et al., 2012; Carlson et al., 2015), or initial 

response to therapy (n=7; HAQ worsened more quickly for a poorer response to treatment) 

(Bansback et al., 2005a; Tosh et al., 2011; Davies et al., 2009; Finckh et al., 2009; Kobelt 

et al., 2009; Lindgren et al., 2009; Stevenson et al., 2016). Three models specifically 

incorporated the impact of radiographic progression on HAQ progression over time 

(Brennan et al., 2004; Brennan et al., 2007; Finckh et al., 2009).  

Table A27.3 presents the annual rate of HAQ progression in eleven models, by treatment 

type, for moderate to severe patients with RA. A range of annual HAQ progression rates 

were assumed for cDMARD (between 0.034 and 0.065 per year) and TNFi (between 0 and 

0.034 per year) therapies. The lower the annual rate of HAQ progression for a treatment, 

the more favourable its estimated relative cost-effectiveness is likely to be, ceteris paribus.  
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Table A27.3. Assumed rate of annual HAQ progression for patients with RA on cDMARD 

and bDMARD therapies. 

cDMARD  bDMARD 

Author 

(Year) 

Annual 

HAQ 

Progression 

 
Author 

(Year) 

Annual 

HAQ 

Progression 

Specific 

Biologic 

Brennan et al. 

(2004); 

Bansback et al.  

(2005a); 

Hallinen et al. 

(2010); 

Kielhorn et al. 

(2008); 

Merkesdal et al. 

(2010). 

 

0.034 per 

year. 

 Brennan et al.  

(2007); 

Diamantopoulos et al. 

(2012); 

Diamantopoulos et al. 

(2014); 

Malottki et al.  

(2011); 

Soini et al.  

(2012). 

0 per 

year. 

TNFi, 

rituximab, 

abatacept 

Brennen et al. 

(2007). 

0.042 per 

year. 

 Brennan et al. 

(2004); 

Vera-Llonch et al. 

(2008a); 

Vera-Llonch et al. 

(2008b); 

Yuan et al. 

(2010). 

 

0.015 per 

year.  

Etanercept, 

abatacept 

Malottki et al. 

(2011); 

Soini et al. 

(2012); 

Diamantopoulos et al. 

(2014); 

Athanasakis et al. 

(2015). 

0.045 per 

year.  

 Bansback et al. 

(2005a); 

Hallinen et al. 

(2010); 

Kielhorn et al. 

(2008); 

Merkesdal et al. 

(2010). 

 

0.034 per 

year.  

TNFi, 

rituximab 

Vera-Llonch et al. 

(2008a); 

Vera-Llonch et al. 

(2008b); 

Yuan et al.  

(2010). 

0.065 per 

year.  

 Diamantopoulos et al. 

(2010). 

 

-0.037 per 

year.  

Tocilizumab 

  Soini et al. 

(2012). 

-0.032 per 

year. 

Tocilizumab 

 

 

Mortality 

Most studies adjusted standardised age/sex mortality rates to account for the increased 

mortality risk associated with RA in one of three ways: (i) direct adjustment for elevated 

mortality due to RA (n=7) (Wailoo et al., 2008; Merkesdal et al., 2010; Bansback et al., 

2005a; Kobelt et al., 2009; Lundgren et al., 2009; Brennan et al., 2004; Jobanputra et al., 
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2002); (ii) HAQ-dependent adjustment to reflect higher mortality with greater disease 

severity (n=15), (Hallinen et al., 2010; Barton et al., 2004b; Athanasakis et al., 2015; 

Carlson et al., 2015; Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; Stevenson et al., 

2016; Yuan et al., 2010; Kielhorn et al., 2008; Clark et al., 2004; Chen et al., 2006; 

Malottki et al., 2011; Soini et al., 2012; Wu et al., 2015; Davies et al., 2009); or (iii) 

mortality adjustment by type of treatment (n=1) (Finckh et al., 2009).  

Relative risks (between 1.3 and 1.975) were applied to population mortality rates when 

adjusting for RA-specific mortality only. Four approaches were used when adjusting 

mortality by HAQ, by applying: (i) a relative risk of 1.33 per HAQ unit (n=10), (ii) a 

relative risk of 2.73 per HAQ unit (n=1), (iii) an odds ratio of 1.33 per HAQ unit (n=3), or 

(iv) a different hazard ratio depending on baseline HAQ score (n=1). One study applied a 

relative risk reduction in mortality of 0.65 when the patient received a biologic therapy 

(Finckh et al., 2009).   

Direct Medical Costs 

All models included the cost of treatments, monitoring and, where relevant, the cost of 

treatment administration. Patients with RA may incur additional direct medical costs over 

their lifetime for hospitalisations and joint replacements. These additional direct medical 

costs were most commonly included by HAQ-dependency, by assigning an annual cost to 

mutually exclusive HAQ intervals (n=12) (Hallinen et al., 2010; Athanasakis et al., 2015; 

Carlson et al., 2015; Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; Stevenson et al., 

2016; Tosh et al., 2011; Diamantopoulos et al., 2012; Diamantopoulos et al., 2014; 

Merkesdal et al., 2010; Kielhorn et al., 2008; Soini et al., 2012), or by using a monotonic 

HAQ-based cost algorithm (n=6) (Malottki et al., 2011; Wu et al., 2015; Bansback et al., 

2005a; Kobelt et al., 2009; Davies et al., 2009; Brennan et al., 2004).  

Six models used multivariable regression-based algorithms that included patient 

characteristics to calculate direct medical costs (Wailoo et al., 2008; Stephens et al., 2015; 

Tran-Duy et al., 2014; Finckh et al., 2009; Lindgren et al., 2009; Brennan et al., 2007). 

One model included an additional clinical state (for joint replacement) which, if 

experienced, increased the patient’s direct medical cost (Barton et al., 2004b).  

QALYs 

All models used QALYs as the outcome measure of health benefit. Four models calculated 

QALYs according to HAQ intervals (Vera-Llonch et al., 2008a; Vera-Llonch et al., 2008b; 

Wailoo et al., 2008; Yuan et al., 2010), whereas the remaining models estimated QALYs 
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from a regression-based algorithm. Five algorithms (in ten models) calculated QALYs 

according to current HAQ score only (reported in Table A27.4). Figure A27.2 illustrates a 

hypothetical HAQ profile of a patient with RA over ten years.  

Figure A27.2. 10-Year HAQ profile of a hypothetical patient. 

 

The patient in Figure A27.2 commenced cDMARD therapy with a HAQ score of 2 in year 

zero. HAQ was assumed to progress by 0.034 per year (lowest value for cDMARDs in 

Table A28.3), and biologic therapy was initiated in year three, which was assumed to have 

immediately reduced their HAQ score by 0.25. Biologic therapy remained effective for 

four years, and HAQ progressed by 0.015 per year (lowest non-zero value for bDMARDs 

in Table A28.3). A perfect rebound of the HAQ score (by 0.25) was assumed upon 

biologic failure in year eight, and HAQ was assumed to progress by 0.034 per year for the 

remainder of the time horizon. The total undiscounted QALYs calculated for this HAQ 

profile, using the five HAQ-based algorithms identified within the individual economic 

evaluations, are reported in Table A27.4. Different methods to estimate QALYs from HAQ 

led to substantial differences in total QALYs estimated for this particular individual 

patient.   

Probabilistic Sensitivity Analysis 

The majority of models (n=24) reported performing a probabilistic sensitivity analysis, the 

details of which are presented in Table A27.5 (seven studies did not report the number of 

PSA samples or individuals simulated). There was variation between the studies in the 

number of PSA simulations and samples generated, which were most likely due to 

differences in the computational burden between models.  
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Table A27.4. Five HAQ-based algorithms to calculate QALYs and 10-year total 

undiscounted QALYs gained. 

Author (Year) QALY Algorithm 

Total 

Undiscounted 10-

Year QALYs per 

Patient† 

Jobanputra et al. (2002). 0.2 x HAQ 4.37 QALYs. 

 

 

Barton et al. (2004b); 

Clark et al. (2004); 

Chen et al. (2006). 

 

 

0.862 – (0.327 x HAQ) 2.34 QALYs. 

Malottki et al. (2011). 0.804 – (0.203 x HAQ) – (0.045 x 

HAQ2) 

 

 

2.45 QALYs.  

Davies et al. (2009). 0.76 – (0.28 x HAQ) 

 

 

2.25 QALYs.  

Soini et al. (2012); 

Diamantopoulos et al. (2010); 

Wu et al. (2015); 

Carlson et al. (2015).  

0.82 – (0.11 x HAQ) – (0.07 x 

HAQ2) 

3.57 QALYs.  

Note: †Total QALYs were calculated by applying the QALY algorithm to the HAQ profile in 

Figure A27.2.  

 

Table A27.5. The reported number of PSA parameter samples and individuals simulated 

in seventeen models. 

Author PSA Samples PSA Individuals 

Brennan et al. (2007) 100. 50. 

Stevenson et al.  (2016) 100. 1,000. 

Vera-Llonch et al. (2008a) 100. 1,000. 

Vera-Llonch et al. (2008b) 100. 1,000. 

Yuan et al. (2010) 100. 1,000. 

Stephens et al. (2015) 250. 1,000. 

Kobelt et al. (2009) 1,000. Not reported. 

Lindgren et al. (2009) 1,000. Not reported. 

Diamantopoulos et al. (2014) 1,000. Not reported.  

Wu et al. (2015) 1,000. Not reported.  

Tosh et al. (2011b) 1,000. 100. 

Kielhorn et al. (2008) 1,000. Not reported. 

Soini et al. (2012) 1,000. 3,000. 

Tran-Duy et al. (2014) 1,000. 100,000. 

Malottki et al. (2011) 2,000. 5,000. 

Carlson et al. (2015) 2,000. 10,000. 

Athanasakis et al. (2015) 10,000. Not reported.  

 



 

444 
 

A27.5 Summary of Key Findings 

This systematic review identified the specific assumptions that had been made within 

twenty-nine published model-based economic evaluations for RA that had simulated 

patients individually. Key structural assumptions were made within each model regarding 

the sample population, initial response and failure of treatment, disease progression, 

mortality, direct medical costs, and the calculation of lifetime QALYs. The key 

assumptions revealed within each model could subsequently be used, through a design-

oriented conceptual model, to inform the development of a de novo individual-level 

decision analytic model for RA (Tappenden et al., 2014). 

It is possible that the different modelling assumptions were due to differences in the 

underling decision problems and settings between models, which themselves may not be 

applicable to the routine management of RA in England. For example, assessing treatment 

response in terms of an ACR response would not be used in clinical practice in England 

(National Institute for Health and Care Excellence, 2016). This potential limitation was 

mitigated by focusing on identifying the types of assumptions that were necessary to 

implement an individual-level decision-analytic model in RA in general, rather than 

identifying which specific assumptions were most applicable to the decision problem in 

Section 5.5.  

The different structural assumptions between the published individual-level decision 

analytic models for RA represented different modelling choices made by decision analysts. 

Structural assumptions are unavoidable when designing a de novo decision analytic model 

for any economic evaluation, and any simplification should be transparent and justified. 

The findings of this systematic review were therefore able to provide justification for the 

specific assumptions that were made when designing the DES model in Chapter Five of 

this thesis.  
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Appendix 28: Chapter Six – Complete CHEERS Checklist 

This appendix reports the completed twenty-four item CHEERS checklist (Table A28.1) 

for the early model-based economic evaluation in Chapter Six. The checklist ensured that 

the economic evaluation was reported transparently and consistently with the standards 

recommended for best-practice (Husereau et al. 2013).  

Table A28.1. Completed CHEERS checklist for the early economic evaluation in Chapter 

Six. 

Section/Item 

Item 

No. Recommendation Evidence 

Title and Abstract 

Title. 1 Identify the study as an economic 

evaluation, or use more specific 

terms such as “cost-effectiveness 

analysis” and describe the 

interventions compared. 

 

Title of Chapter Six.  

Abstract. 2 Provide a structured summary of 

objectives, perspectives, setting, 

methods (including study design 

and inputs), results (including 

base-case and uncertainty 

analyses), and conclusions. 

 

Not applicable for PhD thesis.  

Introduction 

Background and 

objectives.  

3 Provide an explicit statement of 

the broader context for the study. 

Present the study question and its 

relevance for health policy or 

practice decisions.  

 

Section 6.2.  

Methods 

Target population 

and subgroups. 

4 Describe characteristics of the 

base-case population and 

subgroups analysed including why 

they were chosen.  

 

Section 6.3.2. 

Setting and 

location.   

5 State the relevant aspects of the 

system(s) in which the decision(s) 

need(s) to be made.  

 

Section 6.3.1.4.  

Study 

perspective.  

6 Describe the perspective of the 

study and relate this to the costs 

being evaluated.  

Section 6.3.1.1. 
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Section/Item 

Item 

No. Recommendation Evidence 

Comparators.  7 Describe the interventions or 

strategies being compared and 

state why they were chosen.  

 

Section 6.3.1.4; Table 6.1.  

Time horizon.  8 State the time horizon(s) over 

which costs and consequences are 

being evaluated and say why 

appropriate.  

 

Section 6.3.1.2. 

Discount rate.  9 Report the choice of discount 

rate(s) used for costs and outcomes 

and say why appropriate.  

 

Section 6.3.3.2; 

Section 6.3.3.4. 

Choice of health 

outcomes.  

10 Describe what outcomes were used 

as the measure(s) of benefit in the 

evaluation and their relevance for 

the type of analysis performed.  

 

Section 6.3.3.2. 

Measurement of 

effectiveness.  

11 Synthesis-based estimates: 

Describe fully the methods used 

for the identification of included 

studies and synthesis of clinical 

effectiveness data.  

 

Section 6.3.3.1. 

Measurement and 

valuation of 

preference-based 

outcomes.  

 

12 If applicable, describe the 

population and methods used to 

elicit preferences for outcomes.  

Section 6.3.3.2.  

Estimating 

resources and 

costs.  

13 Model-based economic evaluation: 

Describe approaches and data 

sources used to estimate resource 

use associated with model health 

states. Describe primary or 

secondary research methods for 

valuing each item in terms of its 

unit cost. Describe any 

adjustments made to approximate 

opportunity costs.  

 

Section 6.3.3.3; 

Section 6.3.3.4. 

Currency, price 

date, and 

conversion.  

14 Report the dates of the estimated 

resource quantities and unit costs. 

Describe methods for adjusting 

estimated unit costs to the year of 

reported costs if necessary. 

Describe methods for converting 

costs into a common currency base 

and the exchange rate.  

Section 6.3.3.4. 

    

Choice of model.  15 Describe and give reasons for the 

specific type of decision-analytic 

model used. Providing a figure to 

show the model structure is 

strongly recommended.  

Section 5.7; 

Figure 5.9.  
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Section/Item 

Item 

No. Recommendation Evidence 

Assumptions. 16 Describe all structural or other 

assumptions underpinning the 

decision-analytic model.  

 

Section 6.3.1.5; 

Section 6.3.3. 

Analytic methods. 17 Describe all analytic methods 

supporting the evaluation. This 

could include methods for dealing 

with skewed, missing, or censored 

data; extrapolation methods; 

methods for pooling data; 

approaches to validate or make 

adjustments to a model; and 

methods for handling population 

heterogeneity and uncertainty.  

 

Section 6.3.3; 

Section 6.3.4; 

Section 6.3.5.  

Results 

Study parameters. 18 Report the values, ranges, 

references, and if used, probability 

distributions for all parameters. 

Report reasons or sources for 

distributions used to represent 

uncertainty were appropriate. 

Providing a table to show the input 

values is strongly recommended. 

  

Section 6.3.3; 

Table 6.4; 

Table 6.6; 

Appendix 37.  

Incremental costs 

and outcomes.  

19 For each intervention, report mean 

values for the main categories of 

estimates costs and outcomes of 

interest, as well as mean 

differences between the 

comparator groups. If applicable, 

report incremental cost-

effectiveness ratios.  

 

Section 6.4.1; 

Table 6.7; 

Table 6.8; 

Table 6.9.  

Characterising 

uncertainty.  

20 Model-based economic evaluation: 

Describe the effects on the results 

of uncertainty for all input 

parameters, and uncertainty related 

to the structure of the model and 

assumptions.  

Section 6.4.2; 

Appendix 38; 

Section 6.4.3; 

Section 6.4.4. 

Characterising 

heterogeneity.  

21 If applicable, report differences in 

costs, outcomes, or cost-

effectiveness that can be explained 

by variations between subgroups 

of patients with different baseline 

characteristics or other observed 

variability in effects that are not 

reducible by more information.  

Not applicable.  
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Section/Item 

Item 

No. Recommendation Evidence 

Discussion    

Study findings, 

limitations, 

generalisability, 

and current 

knowledge.  

22 Summarise key study findings and 

describe how they support the 

conclusions reached. Discuss 

limitations and the generalisability 

of the findings and how the 

findings fit with current 

knowledge.  

 

Section 6.5.  

Other    

Source of 

funding.  

23 Describe how the study was 

funded and the role of the funder 

in the identification, design, 

conduct, and reporting of the 

analysis. Describe other 

nonmonetary sources of support.  

 

Not applicable for individual 

PhD chapter. Funders 

acknowledged at the start of 

the thesis. 

Conflicts of 

interest.  

24 Describe any conflicts of interest 

among study contributors in 

accordance with journal policy. In 

the absence of journal policy, we 

recommend authors comply with 

International Committee of 

Medical Journal Editors’ 

recommendations.  

Not applicable.  

Source: Husereau et al. (2013, pp. 235-236).   
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Appendix 29: Background to Parametric Survival Analysis 

This appendix provides a background to the general method of parametric survival 

analysis. Parametric survival analysis was performed in Chapter Six to estimate the values 

of time-to-event parameters within the DES model. The appendix is structured by an 

introduction to survival analysis in economic evaluation (Section A29.1); the types of 

parametric survival model (Section A29.2); how to select a survival model (Section 

A29.3); and how to perform a survival analysis in the absence of individual patient-level 

data (Section A29.4).  

A29.1. Introduction to Survival Analysis 

Survival analysis is concerned with the estimating the time between two events, such as the 

time from a patient entering a particular study until their death (Latimer, 2011). The events 

of interest for this thesis were: 

(i) The time to developing ADAb against adalimumab; 

(ii) The time to treatment failure; 

(iii) The time to a patient’s death.  

The principal challenge with observed time-to-event data is that, over the duration of a 

particular study, it is unlikely that all patients will have experienced the event of interest 

(Altman et al., 1998). Time-to-event data are routinely censored for two reasons: (i) some 

patients may drop-out of the study resulting in loss to follow-up and (ii) secondly, some 

patients may not have experienced the event by the conclusion of the study’s data 

collection period (Latimer, 2011). However, decisions regarding the cost-effectiveness of a 

health technology must be made irrespective of the quality of time-to-event evidence to 

support those decisions (Davies et al., 2013). Consequently, survival analysis methods can 

be used to extrapolate analyses beyond the duration observed within a single study 

(Latimer, 2011). Within a DES, survival analysis is required to define a distribution from 

which event times can be simulated (by using random numbers) for each individual patient 

(Ishak et al., 2013).   
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A29.2. Parametric Survival Models 

Parametric survival analysis characterises observed time-to-event data by using a 

mathematical model that makes an assumption about how the risk of an event changes over 

time (Ishak et al., 2013). A hazard function is the event rate at time t, conditional on 

survival up to time t. A probability density function (F(t)) is the probability that survival 

time is less than time t. A survivor function (1-F(t)) is the probability that the survival time 

is at least equal to time t (Latimer, 2011). 

There are different parametric survival models that can be fit to time-to-event data. The 

following sections describe the properties of five survival models (exponential, Weibull, 

Gompertz, log-logistic, and log-normal) that have been recommended for use used when 

estimating input parameter values for a decision analytic model (Latimer, 2013).  

Exponential Distribution 

Hazard Function: ℎ(𝑡) = 𝛼 𝑓𝑜𝑟 0 ≤ 𝑡 < ∞ 

Survivor Function: 𝑆(𝑡) = 𝑒𝑥𝑝−𝛼𝑡 

The exponential distribution is defined by one parameter (α: the rate) and the hazard 

function is constant over time for all values of t (Latimer, 2011).  

Weibull Distribution 

Hazard Function: ℎ(𝑡) = 𝛽𝛾𝑡𝛾−1 𝑓𝑜𝑟 0 ≤ 𝑡 < ∞ 

Survivor Function: 𝑆(𝑡) = exp (−𝛽𝑡𝛾) 

The Weibull distribution is defined by two parameters (β: the scale; γ: the shape). The 

hazard can increase (γ>1) or decrease (γ<1) monotonically over time. The Weibull 

distribution collapses to an exponential distribution when γ=1 (Latimer, 2011).  

Gompertz Distribution 

Hazard Function: ℎ(𝑡) = 𝛽𝑒𝑥𝑝𝛾𝑡 𝑓𝑜𝑟 0 ≤ 𝑡 < ∞ 

Survivor Function: 𝑆(𝑡) = 𝑒𝑥𝑝 [
𝛽

𝛾
(1 − 𝑒𝑥𝑝𝛾𝑡)] 

The Gompertz distribution is defined by two parameters (β: the scale; γ: the shape). The 

hazard can increase (γ>0) or decrease (γ<0) monotonically over time (Latimer, 2011).  
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Log-logistic Distribution 

Hazard Function: ℎ(𝑡) =
𝑒𝑥𝑝𝜃𝛿𝑡𝛿−1

1+𝑒𝑥𝑝𝜃𝑡𝛿
 𝑓𝑜𝑟 0 ≤ 𝑡 < ∞, 𝛿 > 0 

Survivor Function: 𝑆(𝑡) = [1 + 𝑒𝑥𝑝𝜃𝑡𝛿]
−1

 

The log-logistic distribution is an accelerated failure time model defined by two parameters 

(δ and θ). The hazard can decrease with time (δ≤1) or have a single mode (δ>1) where the 

hazard initially increases and then decreases over time (Latimer, 2011). 

Log-normal Distribution 

Hazard function: ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 𝑓𝑜𝑟 0 ≤ 𝑡 < ∞, 𝑓(𝑡) =  probability density function of t. 

Survivor Function: 𝑆(𝑡) = 1 − Φ (
log(𝑡)−𝜇

𝜎
) , Φ = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

The log-normal distribution has two parameters (𝜇, 𝜎) with a hazard that initially increases, 

and then later decreases, with time (Latimer, 2011).  

A29.3. Selecting a Parametric Survival Model 

Selection of the most appropriate parametric survival model requires a consideration of 

internal and external validity (Latimer, 2013). Internal validity can be assessed statistically 

using the AIC and BIC criteria (defined in Section 4.3.3.5.2 and Section 4.3.3.5.3, 

respectively) to see how the estimated curve fits the observed time-to-event data. The 

curve with the lowest AIC and BIC values fits the data best (Akaike, 1974; Schwarz, 

1978). External validity can be assessed by considering the clinical plausibility of the 

extrapolation beyond the observed study length. Visual inspection of the extrapolated 

survival curve can be used to rationalise whether the gradient is clinically plausible, 

supported by independent clinical evidence or input from experts (Ishak et al., 2013; 

Connock et al., 2011).  

A29.4. Survival Analysis without Individual-level Patient Data 

In the absence of individual-level patient data, parametric survival models can be fit using 

count-time data from published secondary sources. Count-time data report, for each time 

period in the analysis, the number of patients that experienced the event of interest or were 

censored. If published time-to-event data are only displayed graphically, software can be 
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used (such as DigitizeIt) (Bormann et al., 2016) to reconstruct the count-time data by 

plotting the co-ordinates of the graph electronically (Guyot et al., 2012; Diaby et al., 2014; 

Ishak et al., 2013).  
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Appendix 30: Chapter Six - Application of Coyle et al. (2010)’s 

Hierarchy of Data Sources for Health Economic Analyses 

This appendix provides justification for the sources of evidence that were used to populate 

the decision analytic model in Chapter Six by applying the hierarchy of data sources for 

health economic analyses by Coyle et al. (2010). The appendix first presents the hierarchy 

of data sources (Section A30.1) and then applies the hierarchy to all input parameters of 

the DES in Chapter Six (Section A30.2).  

A30.1. The Hierarchy of Data Sources for Health Economic Analyses 

The hierarchy of data sources for health economic analyses, described by Coyle et al. 

(2010), explained that (i) different study designs may be more appropriate sources of 

evidence for different types of input parameter, and (ii) the relevance of a specific data 

source is as important as its quality. The hierarchy graded the standards of evidence for a 

model’s input parameters on a scale of one (high quality) to six (low quality). The 

following five tables outline the hierarchy of evidence for five specific types of input 

parameter: Clinical effect size (Table A30.1); Baseline clinical data (Table A30.2); 

Resource use (Table A30.3); Unit costs (Table A30.4); and Utilities (Table A30.5).  

Table A301. Hierarchy of evidence for clinical effect sizes.  

Rank Data Components 

1+ Meta-analysis of RCTs with direct comparison between comparator therapies, 

measuring final outcomes. 

 

1 Single RCT with direct comparison between comparator therapies, measuring final 

outcomes. 

 

2+ Meta-analysis of RCTs with direct comparison between comparator strategies, 

measuring surrogate outcomes; Meta-analysis of placebo-controlled RCTs with similar 

trial populations, measuring final outcomes for each individual therapy. 

 

2 Single RCT with direct comparison between comparator therapies, measuring surrogate 

outcomes; Single placebo-controlled RCTs with similar trial populations, measuring 

final outcomes for each individual therapy. 

 

3+ Meta-analysis of placebo-controlled RCTs with similar trial populations, measuring 

surrogate outcomes. 

 

3 Single placebo-controlled RCTs with similar trial populations, measuring surrogate 

outcomes for each individual therapy. 

 

4 Case-control or cohort study. 

 

5 Non-analytic studies, such as case reports. 

 

6 Expert opinion. 

Source: Coyle et al. (2010, p. 107); Abbreviation: RCT=randomised-controlled trial.  



 

458 
 

Table A30.2. Hierarchy of evidence for baseline clinical data. 

Rank Data Components 

1 Case series or analysis of reliable administrative databases specifically conducted for 

the study covering patients solely from the jurisdiction of interest.  

 

2 Recent case series or analysis of reliable administrative databases covering patients 

solely from the jurisdiction of interest.  

 

3 Recent case series or analysis of reliable administrative databases covering patients 

from another jurisdiction.  

 

4 Old case series or analysis of reliable administrate databases;  

Estimates from RCTs. 

 

5 Unsourced estimates from a previously published economic analysis.  

 

6 Expert opinion 

Source: Coyle et al. (2010, p. 107); Abbreviation: RCT=randomised-controlled trial.  

Table A30.3. Hierarchy of evidence for resource use. 

Rank Data Components 

1 Prospective data collection or analysis of reliable administrative data from same 

jurisdiction for specific study. 

 

2 Recently published results of prospective data collection or recent analyses of reliable 

administrative data from same jurisdiction of interest.  

 

3 Unsourced data from a previous economic evaluation from the same jurisdiction of 

interest.  

 

4 Recently published results of prospective data collection or recent analysis of reliable 

administrative from a different jurisdiction.  

 

5 Unsourced data from a previous economic evaluation from a different jurisdiction. 

 

6 Expert opinion. 

Source: Coyle et al. (2010, p. 107).  

Table A30.4. Hierarchy of evidence for unit costs. 

Rank Data Components 

1 Cost calculations based on reliable databases or data sources conducted for the specific 

study, from the same jurisdiction of interest.  

 

2 Recently published cost calculations based on reliable databases or data sources from 

the same jurisdiction of interest.  

 

3 Unsourced data from a previous economic evaluation, from the same jurisdiction of 

interest.  

 

4 Recently published cost calculations based on reliable databases or data sources, from a 

different jurisdiction.  

 

5 Unsourced data from a previous economic evaluation, from a different jurisdiction.  

 

6 Expert opinion.  

Source: Coyle et al. (2010, p. 107).  
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Table A30.5. Hierarchy of evidence for utilities. 

Rank Data Components 

1 Direct utility assessment for the specific study from a sample: 

(a) of the general population, (b) with knowledge of the disease of interest, (c) of 

patients with the disease of interest; 

Indirect utility assessment from a specific study from a patient sample with the disease 

of interest: using a tool validated for the patient population. 

 

2 Indirect utility assessment from a patient sample with the disease of interest: using a 

tool not validated for the patient population.  

 

3 Direct utility assessment from a previous study from a sample:  

(a) of the general population, (b) with knowledge of the disease of interest, (c) of 

patients with the disease of interest; 

Indirect utility assessment from a previous study from a patient sample with the disease 

of interest: using a tool validated for the patient population; 

 

4 Unsourced utility data from a previous study, with an unknown elicitation method.  

 

5 Patient preference values obtained from a visual analogue scale.  

 

6 Expert opinion. 

Source: Coyle et al. (2010, p. 108).  

 

A30.2 Application of the Hierarchy to the Input Parameters in Chapter Six 

Table A30.6 describes each input parameter of the decision analytic model in Chapter Six 

in terms of (i) its source of evidence, (ii) the quality standard of this evidence according to 

the hierarchy by Coyle et al. (2010), and (iii) an explanation for this grade.  
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Table A30.6. Application of the hierarchy of evidence to the parameters of the decision 

analytic model in Chapter Six.  

Parameter Section in 

Thesis 

Source of 

Evidence 

Grade of  

Quality 

Explanation 

Clinical Effect Sizes – Table A31.1 

 

EULAR 

response to 

all treatments 

6.3.3.1.3. Network meta-

analysis of RCT 

evidence by 

Stevenson et al. 

(2016).  

2+ No RCT existed that directly 

compared all therapies. Stevenson 

et al. (2016) was most relevant 

source of evidence because (i) the 

final outcomes (EULAR 

response) were measured for each 

individual treatment (ii) in the 

relevant trial population 

(bDMARD-naïve patients with 

RA having failed to respond to 

methotrexate).  

 

HAQ 

multipliers 

for 

monitoring 

test. 

6.3.3.1.12. Assumption.  6 No data were available to estimate 

the likely HAQ multiplier 

associated with a pre-emptive 

change in treatment due to 

treatment stratification. Extensive 

sensitivity analyses were therefore 

performed on these values.  

Baseline Clinical Data – Table A31.2. 

  

All-cause 

mortality for 

men and 

women. 

6.3.3.1.1. Office for 

National 

Statistics (2015) 

national life 

tables for 

England.  

 

2 These data were reliable 

administrative data that covered 

patients solely from the 

jurisdiction of interest.  

 

RA-specific 

mortality 

adjustment. 

6.3.3.1.2. Analysis of 

National Data 

Back for 

Rheumatic 

Diseases cohort 

by Michaud et 

al. (2012).  

3 These data were from reliable 

administrative databases that 

covered patients with RA from a 

different jurisdiction (North 

America). The source was 

deemed to be suitable because it 

was used in the generation of 

evidence for the NICE 

Technology Appraisal 375 for RA 

by Stevenson et al. (2016).   

 

Time to 

treatment 

failure. 

6.3.3.1.5. Meta-analysis of 

biologic therapy 

discontinuation 

studies that used 

data from 

registry or 

health care 

databases by 

Souto et al. 

(2016). 

3 These data were from reliable 

administrative databases that 

covered patients with RA from 

different jurisdictions. There was 

a trade-off between jurisdiction-

specific estimates for England 

(with a smaller sample size) and 

jurisdiction non-specific estimates 

(with a larger sample size). It was 

therefore assumed that the 

estimated time to failure of a 

biologic therapy could be 

generalised across jurisdictions.  
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Parameter Section 

in Thesis 

Source of 

Evidence 

Grade of  

Quality 

Explanation 

Time to 

developing 

adalimumab 

ADAb. 

6.3.3.1.7. Cohort study by 

Bartelds et al. 

(2011) of patients 

with RA, followed 

over three years, to 

identify the 

development of 

adalimumab 

ADAb.  

3 These data were a recent cohort 

study, identified by a systematic 

review, which recorded the 

development of ADAb against 

adalimumab over three years. The 

data used patients from a 

different jurisdiction (The 

Netherlands) but was deemed to 

be appropriate because of the 

assumption that TNFi 

immunogenicity was not 

heterogeneous across different 

jurisdictions.  

 

Consequence 

of 

developing 

adalimumab 

ADAb.  

6.3.3.1.8. Systematic review 

and meta-analysis 

by Garcês et al. 

(2013).  

3 These data were sourced from a 

systematic review that 

synthesised all available evidence 

from patients with RA across 

different jurisdictions.  

 

Time to 

testing.  

6.3.1.4. Defined by the 

decision problem.  

1 The evidence for time-to-testing 

was sourced from an extensive 

model conceptualisation process 

in Chapter Five. The time-to-

testing was varied according to 

different intervention strategies in 

the cost-effectiveness analysis.  

 

Annual 

HAQ 

progression. 

6.3.3.1.6. Evidence from 

previous NICE 

Technology 

Appraisals for RA 

by Stevenson et al. 

(2016) and 

Malottki et al. 

(2011).  

 

2 The sources of evidence, from 

which the annual rate of HAQ 

progression was based, were used 

in previous NICE Technology 

Appraisals that were relevant to 

patients with RA in the 

jurisdiction of interest.   

 

HAQ 

reduction 

following 

treatment 

response.  

6.3.3.1.4. Evidence provided 

by Stevenson et al. 

(2016) that used a 

sample of patients 

with RA in 

England enrolled 

to the BSRBR 

register.  

2 The source of evidence was a 

recent analysis of patient-level 

data that were solely from the 

jurisdiction of interest.  
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Parameter Section in 

Thesis 

Source of 

Evidence 

Grade of  

Quality 

Explanation 

Probability 

of low 

adalimumab 

drug levels 

in 

remission.  

6.3.3.1.9. Systematic review 

and meta-analysis 

of studies that 

investigated the 

risk of flare in 

patients with RA 

following a de-

escalation of a 

TNFi therapy 

whilst in remission 

or low disease 

activity by Kuijper 

et al. (2015).  

 

3 The source of evidence was a 

recent meta-analysis of all 

evidence (from different 

jurisdictions) on the proportion 

of patients with RA that flared 

following a de-escalation of a 

TNFi therapy. It was assumed 

that the proportion of patients 

that flared corresponded to the 

proportion of patients with low 

adalimumab drug levels in 

remission.  

HAQ 

increase 

due to flare.  

6.3.3.1.10. Single study that 

expressed flare in 

disease activity in 

terms of a change 

in HAQ by 

Markusse et al. 

(2015).  

 

3 This source provided evidence 

for patients with RA from a 

recent study (the BeSt study) in 

a different jurisdiction (The 

Netherlands).  

Duration of 

flare.  

6.3.3.1.0. Cohort study 

reported by Bykerk 

et al. (2013).  

3 This source provided evidence 

for patients with RA from a 

recent study (the BRASS 

Registry) in a different 

jurisdiction (North America). 

 

ADAb test 

accuracy.  

6.3.3.1.11. Jani et al. (2016a) 

performed a ROC 

analysis for the 

accuracy of 

measuring 

adalimumab ADAb 

by ELISA.  

2 This recent source was good 

quality evidence because it had 

evaluated test performance 

using a sample of patients with 

RA, treated with adalimumab, 

within the jurisdiction of 

interest.  

 

Drug level 

(full-dose) 

test 

accuracy.  

6.3.3.1.11. Appendix 34 

reports a systematic 

review and 

hierarchical meta-

analysis of test 

accuracy studies.  

 

3 This source of evidence 

synthesised all available test 

accuracy data, which included 

patients from different 

jurisdictions.  

Drug level 

(half dose) 

test 

accuracy.  

6.3.3.1.11. Chen et al. (2016) 

performed a ROC 

analysis for the 

accuracy of 

measuring 

adalimumab drug 

levels by ELISA to 

predict whether 

patients would 

maintain response.  

3 This source of evidence 

evaluated test performance in a 

sample of patients with RA from 

another jurisdiction (Taiwan).  
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Parameter Section 

in Thesis 

Source of 

Evidence 

Grade of  

Quality 

Explanation 

Resource use - Table A31.3. 

 

Treatment 

dosing 

schedules.  

6.3.3.3.1. Recommended 

dosing schedule 

according to the 

British National 

Formulary 

(2016).  

 

1 High-quality source of 

evidence because treatments 

are administered in routine 

practice in England 

according to the British 

National Formulary.  

 

Treatment 

administration.  

6.3.3.3.1. Evidence 

provided by 

Stevenson et al. 

(2016) for the 

NICE Technology 

Appraisal 375. 

3 Study assumed that ten 

percent of subcutaneous 

injections were performed by 

a nurse, to generate evidence 

that was consistent with 

previous NICE technology 

appraisals for RA.  

 

Testing. 6.3.3.3.3. A microcosting 

study of testing 

by Jani et al. 

(2016b), which 

accompanied this 

thesis, was 

reported in 

Appendix 35. 

 

1 This source was high-quality 

evidence because it collected 

prospective data specifically 

for this economic evaluation 

within the same jurisdiction.  

Hospitalisations. 6.3.3.3.2. Based on patient-

level data within 

the Norfolk 

Arthritis Register, 

produced for 

submission to a 

NICE Single 

Technology 

Appraisal for 

rituximab.  

 

3 This source of evidence used 

data that had been used 

previously in published 

economic evaluations for 

RA. The evidence was 

produced using patient-level 

data from the same 

jurisdiction as the study.  

Unit Costs  - Table A31.4. 

 

Treatments.  6.3.3.4.1. British National 

Formulary 

(2016). 

1 High-quality evidence 

because costs were 

calculated based on reliable 

data sources from the same 

jurisdiction of interest.  

 

Treatment 

administration.  

6.3.3.4.1. Evidence 

provided by 

Stevenson et al. 

(2016) for the 

NICE Technology 

Appraisal 375 

3 Unit cost of nurse-based 

subcutaneous injections and 

intravenous infusions were 

consistent with the values 

chosen for previous NICE 

technology appraisals for 

RA. 
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Parameter Section 

in Thesis 

Source of 

Evidence 

Grade of  

Quality 

Explanation 

Testing.  6.3.3.4.3. A microcosting 

study of testing 

by Jani et al. 

(2016b), which 

accompanied this 

thesis, was 

reported in 

Appendix 35. 

 

1 Cost calculations were based 

on reliable databases within 

the same jurisdiction of the 

economic evaluation.  

Hospitalisations.  6.3.3.4.2. NHS National 

Schedule of 

Reference Costs 

(Department of 

Health, 2016).  

 

1 Cost calculations were based 

on reliable databases within 

the same jurisdiction of the 

economic evaluation. 

Utilities - Table A31.5. 

 

QALYs. 6.3.3.2. Estimated by a 

mapping 

algorithm (from 

HAQ to EQ-5D) 

used by Malottki 

et al. (2011) when 

generating 

evidence for the 

NICE Technology 

Appraisal 195.  

1 This source of evidence was 

high-quality because it 

indirectly assessed EQ-5D 

using (i) a sample a patients 

with the disease of interest, 

(ii) and a tool validated for 

the patient population 

(HAQ).  
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Appendix 31 – Chapter Six - Estimating Time to Death 

The decision analytic model in Chapter Six required an estimate of each patient’s time to 

death. National life table data provide a representative empirical distribution of mortality 

by age and sex. By fitting a parametric survival curve (see Appendix 29) to these observed 

data, the model could draw random numbers to simulate each patient’s age of death. This 

appendix reports how parametric survival analysis was performed to estimate a time-to-

event distribution for all-cause mortality in England.  

A31.1. Method 

The most recent national life table data (for the years 2012-2014) for England were 

obtained from the Office for National Statistics (2015). These life table data provided, for a 

representative 100,000 individuals, the number of individuals expected to die annually (by 

age) from all causes. 

The five parametric survival curves described in Appendix 29 (exponential, Weibull, 

Gompertz, log-logistic, log-normal) were fit to these all-cause mortality data. The 

parametric survival curve used to simulate time to death in the decision analytic model was 

chosen according to the lowest AIC and BIC statistics (Akaike, 1974; Schwarz, 1978), and 

by visual inspection to ensure biologic plausibility of the estimated survival curve. 

Parametric survival analysis was estimated separately on life table data for men and 

women to account for differences in all-cause mortality by sex. All analyses were 

performed in STATA Version 13 (StataCorp, 2013).  

A31.2. Results 

The Kaplan-Meier curves for all-cause mortality are plotted separately for men and women 

in Figure A31.1 and Figure A31.2, respectively.  
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Figure A31.1. Kaplan-Meier national life table data for the United Kingdom: men. 

 

Figure A31.2. Kaplan-Meier national life table data for the United Kingdom: women.

 

The lifetable distribution for men was further to the left than for women, indicating a 

greater risk of all-cause mortality for men.  

The parameter estimates from estimating the parametric survival curves using male life 

table data are reported in Table A31.1.  
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Table A31.1. Parametric survival analysis on national life table data for the United 

Kingdom: Men.  

  Parametric Survival Distribution 

Parameter  Exponential Weibull Gompertz Log-normal Log-logistic 

Rate  0.012653     

Shape   7.886955 0.103924 0.240344 0.099351 

Scale   6.62E-16 1.54E-05  4.382697 

Location     4.348525  

AIC  201954.5 -81196.6 -95104.1 -1329.86 -50264.2 

BIC  201964 -81177.6 -95085.1 -1310.85 -50245.2 

 

The Gompertz survival curves had the lowest AIC and BIC test statistics, indicating that it 

fit the observed data best. The Weibull survival function was the second-best fit to the 

observed data. The estimated Gompertz and Weibull survival functions have been overlaid 

on the Kaplan-Meier survival curve for men in Figure A31.3 (other functions were 

omitting from the figure to ease interpretation).  

Figure A31.3. Estimated Gompertz and Weibull survival functions with Kaplan-Meier 

national life table data: men.  

 

The Gompertz curve (grey line) was closer to the observed survival data over all time 

periods compared to the Weibull curve (dashed line). Therefore, the decision analytic 

model used a Gompertz survival curve to estimate the time to death for male patients, with 

a shape parameter of 0.103924 and a scale parameter of 0.0000154. 
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The parameter estimates from estimating the parametric survival curves using the national 

life table data for women are reported in Table A31.2.  

Table A31.2. Parametric survival analysis on national life table data for the United 

Kingdom: Women.  

  Parametric Survival Distribution 

Parameter  Exponential Weibull Gompertz Log-normal Log-logistic 

Rate  0.012124     
Shape   9.210187 0.1162922 0.211123 4.425642 

Scale   1.35E-18 4.307E-06  0.085314 

Location     4.396185  

AIC  198857 -110419.6 -123841.5 -26677.1 -79522 

BIC  198866.5 -110400.7 -123822.5 -26658.1 -79503 

 

Similar to the mortality data for men, the Gompertz survival distribution fit the all-cause 

mortality data for women best (lowest AIC and BIC) followed by the Weibull survival 

distribution. The Gompertz and Weibull survival curves were overlaid on the Kaplan-

Meier survival curve for women in Figure A31.4; the Gompertz curve (grey line) was also 

closer to the observed survival data over time compared with the Weibull curve (dashed 

line). Therefore, the decision analytic model used a Gompertz survival function to estimate 

the time to death for women patients, with a shape parameter of 0.1162922 and a scale 

parameter of 0.000004307. 

Figure A31.4. Estimated Gompertz and Weibull survival functions with Kaplan-Meier 

national life table data: women. 
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Appendix 32 – Chapter Six - Estimating Time to Treatment 

Failure 

The decision analytic model in Chapter Six required an estimate of the time that each 

patient would lose response to each bDMARD treatment. These time-to-event values were 

estimated by randomly sampling from a parametric survival curve that was fit to secondary 

data. This appendix describes how these parametric survival curves were estimated and 

selected.  

A32.1. Method 

The times to failing all bDMARD therapies (adalimumab, rituximab, and tocilizumab) 

were assumed to be sampled from the same parametric survival curve, due to limited data 

availability, following the modelling approach assumed by Stevenson et al. (2016) for the 

previous NICE Technology Appraisal 375 of bDMARD therapies for RA. 

Souto et al. (2016) reported a systematic review and meta-analysis of studies that estimated 

the discontinuation of bDMARD therapies in patients with RA using data from registry or 

health care databases. The annual percentage of patients that discontinued any TNFi 

therapy over four years since starting treatment, estimated by the meta-analysis, is reported 

in Table A32.1.  

Table A32.1. Annual percentage of patients that discontinued TNFi therapy: meta-

analysis estimate from Souto et al. (2016). 

Time (Years) Discontinue any TNFi (%) 95% Confidence Interval 

1 27% 23% - 32% 

2 37% 35% - 40% 

3 44% 40% - 49% 

4 52% 46% - 57% 

Source: Souto et al. (2016, p.525). 

The meta-analysis demonstrated that approximately half of patients with RA had lost 

response to their therapy by four years from first commencing a TNFi. A parametric 

survival analysis was required to extrapolate beyond the four-year follow-up period to 

estimate the time-to-treatment failure for the remaining patients that were still responding 

to therapy.  

Count-time Kaplan-Meier curves were constructed for 100,000 hypothetical patients over a 

duration of four years by applying the annual percentage of patients that discontinued 
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therapy reported in Table A32.1. The five parametric survival curves reported in Appendix 

29 (exponential, Weibull, Gompertz, log-normal, and log-logistic) were estimated using 

the observed data on treatment discontinuation. The most appropriate parametric form was 

selected for the decision analytic model according to the lowest AIC and BIC values 

(Akaike, 1974; Schwarz, 1978), and according to clinical plausibility by visual inspection 

of the extrapolated distribution. All survival analyses were performed in STATA Version 13 

(Statacorp, 2013).  

A32.2. Results 

The Kaplan-Meier curve of treatment failure for the first four years after commencing 

therapy is illustrated in Figure A32.1.  

Figure A32.1. Kaplan-Meier bDMARD treatment failure in RA. 

 

The parameters that were estimated to define the parametric survival curves that were fit to 

these data, and the summary statistics to assess the fit of each curve to the data, are 

reported in Table A32.2.  
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Table A32.2. Parametric survival analysis on data for bDMARD failure in RA. 

  Parametric Survival Distribution 

Parameter  Exponential Weibull Gompertz Log-normal Log-logistic 

Rate  0.188406 N/A N/A N/A N/A 

Shape  N/A 1.351142 0.132325 0.985526 0.61154 

Scale  N/A 4.708286 0.147838 N/A 1.236764 

Location  N/A N/A N/A 1.240371 N/A 

AIC  226170.1 220932.9 224925.3 212247.4 217461.2 

BIC  226179.6 220951.9 224944.2 212266.3 217480.2 

The log-normal survival curve fit the observed treatment failure data best and had the 

lowest values AIC and BIC test statistics. However, the most common way to model 

treatment failure in previously published individual-level simulation models for RA was to 

use a Weibull survival curve (see Appendix 27; Treatment Failure). Figure A32.2 plots the 

estimated log-normal and Weibull survival curves, extrapolated over ten years, to enable a 

comparison between the two functional forms.  

Figure A32.2. Plot of estimated log-normal and Weibull survival curves, extrapolated over 

ten years. 

 

The log-normal and Weibull curves followed a similar trajectory up to year four, for the 

time period where the meta-analysis data were available. However, after year four, the two 

curves diverged in their extrapolation of the likelihood of treatment failure. The Weibull 

extrapolation was more conservative than the log-normal curve because it estimated that 

treatment failure was more likely to occur earlier than estimated by the log-normal curve. 

The estimated Weibull survival curve therefore appeared to have greater clinical 

plausibility, irrespective of the statistical fit of the distribution. The base case analysis of 
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the decision analytic model simulated the time to bDMARD treatment failure from a 

Weibull survival curve with a shape parameter of 1.351142 and a scale parameter of 

4.708286. The impact of this structural assumption was explored in a sensitivity analysis 

that replaced the Weibull curve in the model with the estimated log-normal curve.  
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Appendix 33: Chapter Six – Estimating the Time to Developing 

Adalimumab Anti-drug Antibodies 

The decision analytic model in Chapter Six required an estimate for each patient’s time to 

developing ADAb against adalimumab that was simulated from a parametric survival 

curve. However, no individual-level data were available to perform a patient-level survival 

analysis. Therefore, the parameters of the survival curve were estimated by using evidence 

identified by a systematic review of the published clinical literature. This appendix reports 

how these parameters were estimated for the parametric survival curve used in the decision 

analytic model, from which an individual’s time to developing adalimumab ADAb were 

simulated.  

A33.1. Method 

The method section of this appendix describes how (i) published studies were identified 

that included evidence of the time to developing ADAb against adalimumab in patients 

with RA, and (ii) how parametric survival analyses were performed with these data.  

Systematic Review 

A systematic review was conducted to identify all published studies that met the inclusion 

criteria in Table A33.1 that explicitly reported the time taken for patients with RA to 

develop ADAb against adalimumab.  

Table A33.1. Inclusion criteria for identifying temporal studies assessing the development 

of adalimumab ADAb.  

Study Feature Inclusion Criteria 

Population Adults with RA, receiving 40mg adalimumab every two weeks. 

Intervention Any test to detect adalimumab ADAb. 

Comparator None. 

Outcome Time to developing ADAb. 

Study design Any study with a longitudinal design. 

Language English. 

 

An electronic search strategy (Appendix 23) was used to identify the titles and abstracts of 

the published clinical studies. Medline and Embase were searched electronically from the 
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date of inception until August 2016. All abstracts were screened by SG and second-

screened independently by six members of the Manchester Centre for Health Economics, 

The University of Manchester. Studies were not excluded if there was a disagreement 

between SG and the second-screening process. Abstracts that remained after screening 

were read in full by SG and evaluated against the inclusion criteria. A flow diagram of 

included studies is illustrated in Figure A33.1.  

Figure A33.1. Flow diagram of included studies that assessed the time to developing 

adalimumab ADAb.  

 

 

The search strategy identified 4,006 abstracts. Three studies were identified that reported a 

time to developing adalimumab ADAb across a sample of patients with RA (Bartelds et al., 

2011; Krickaert et al., 2012; van Schouwenburg et al., 2013). Krickaert et al. (2012) 

reported a time-to-developing ADAb, stratified by the dose of concomitant methotrexate, 

and was of limited relevance to this thesis because all patients were assumed to be 

prescribed the maximum dose of methotrexate in the decision analytic model. van 

Schouwenburg et al. (2013) reported the percentage of patients that developed adalimumab 

ADAb over time, but failed to report the number of patients censored from the analysis at 

each time point. Bartelds et al. (2011) reported the time to developing adalimumab ADAb 

across a starting cohort of 272 patients with RA at nine time intervals over three years, and 

reported the number of patients that remained in the study at each time point. Therefore, 

the economic evaluation in Chapter Six used the data from Bartelds et al. (2011) to 

estimate the time to developing adalimumab ADAb by accounting for sample attrition.  
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Data Extraction 

The number of patients that were censored at each time point in Bartelds et al. (2011) was 

reported in the study. However, the number of patients that developed adalimumab ADAb 

were reported graphically. The computer software DigitizeIt (Bormann, 2016) was used to 

extract data points from the graph to estimate the number of corresponding patients that 

developed ADAb at each follow-up period, as recommended by Guyot et al. (2012). Table 

A33.2 reports the number of patients with RA in Bartelds et al. (2011) that developed 

adalimumab ADAb over three years.  

Table A33.2. Estimated number of patients to develop adalimumab ADAb over three 

years, reported in Bartelds et al. (2011).  

Week 

Patients that 

Remained in 

study (n) 

Patients that 

were 

Censored (n) 

Patients that 

develop ADAb 

(n) 

0 272 0 0 

4 261 11 22 

16 247 14 22 

28 228 19 7 

40 201 27 3 

52 192 9 3 

78 175 17 9 

104 156 19 5 

130 137 19 3 

156 118 19 2 

 

Parametric Survival Analysis 

The five parametric survival curves reported in Appendix 29 (exponential, Weibull, 

Gompertz, log-normal, and log-logistic) were estimated using the data from Bartelds et al. 

(2011) in Table A33.2. The most appropriate parametric form was selected for the decision 

analytic model according to the lowest AIC and BIC values (Akaike, 1974; Schwarz, 

1978), and according to clinical plausibility by visual inspection of the extrapolated 

distribution. All survival analyses were performed in STATA Version 13 (StataCorp, 2013). 

A33.2. Results 

The Kaplan-Meier curve that illustrated the time-to-event data for developing adalimumab 

ADAb is reported in Figure A33.2.  
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Figure A33.2. Kaplan-Meier curve for the time to developing adalimumab ADAb based on 

Bartelds et al. (2011).  

 

The results from fitting the five parametric survival curves to the data from Bartelds et al. 

(2011), to extrapolate beyond the three-year follow-up, is reported in Table A33.2. The 

log-normal distribution had the lowest AIC and BIC values and therefore fit the data best.  

Table A33.2. Parametric survival analysis using data from Bartelds et al. (2011) on time 

to developing adalimumab ADAb.  

  Parametric Survival Distribution 

Parameters  Exponential Weibull Gompertz Log-normal Log-logistic 

Rate  0.283646     
Shape   0.744583 -0.52128 0.728429 1.185381 

Scale   0.317068 0.439401  1.09911 

Location     1.146684  

AIC  494.2614 486.1691 486.7302 478.8197 484.3277 

BIC  497.6995 493.0453 493.6063 485.6958 491.2038 

 

Figure A33.3 plots the estimated log-normal survival curve on the observed Kaplan-Meier 

curve to illustrate the fit. The estimated time to developing ADAb appeared to be 

conservative after one year of receiving treatment because the log-normal function lay 

below the observed data.  
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Figure A33.3. Estimated log-normal survival function with Kaplan-Meier data for time to 

ADAb development. 

 

The decision analytic model therefore simulated each patient’s time to developing 

adalimumab ADAb from a log-normal survival curve, defined by a location parameter of 

1.146684 and a scale parameter of 0.7284289.  
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Appendix 34: Chapter Six - Systematic Review of Test Accuracy 

Studies for Measuring Adalimumab Anti-drug Antibodies and 

Drug Levels by ELISA 

The decision analytic model in Chapter Six required evidence for the accuracy of using the 

ELISA tests to measure adalimumab ADAb and drug levels in three scenarios, as described 

in Section 6.3.3.1.11: 

(i) The accuracy of measuring adalimumab ADAb by ELISA, compared with 

measurement by radioimmunoassay; 

(ii) The accuracy of measuring adalimumab drug levels by ELISA to identify 

patients that would maintain response to full-dose adalimumab; 

(iii) The accuracy of measuring adalimumab drug levels by ELISA to identify 

patients that would maintain response to reduced-dose adalimumab.  

However, the accuracy of measuring adalimumab ADAb and drug levels by ELISA was 

unknown, a priori. NICE require evidence of test accuracy, used to inform the values of 

input parameters in a model-based economic evaluation, to be identified by a systematic 

review (National Institute for Health and Care Excellence, 2011).  

Test accuracy studies compare the performance of an index test with a reference standard 

when detecting a target condition (Macaskill et al., 2010). An index test is the test of 

interest with unknown accuracy. The target condition is the health condition that is being 

detected. A reference standard is the existing best method to identify the target condition. 

Test accuracy studies comprise a receiver operating characteristic (ROC) curve analysis to 

estimate the sensitivity and specificity of an index test, relative to a reference standard, at a 

particular test cut-point (Macaskill et al., 2010).  

A34.1. Aim and Objectives 

The aim of this study was to identify evidence to inform the accuracy of using adalimumab 

ADAb and drug level testing by ELISA in patients with RA. There were two objectives to 

meet this aim: 
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Objective 1: Identify all studies that had estimated the accuracy of testing adalimumab (i) 

                     ADAb by ELISA, compared with a radioimmunoassay, in patients with RA; 

                     (ii) drug levels by ELISA to identify patients with RA that would maintain 

                     response to full-dose adalimumab; and (iii) drug levels by ELISA to identify 

                     patients with RA that would maintain response to reduced-dose adalimumab.  

Objective 2: To synthesise the evidence from multiple test accuracy studies to estimate 

                      input parameter values for the decision analytic model regarding test 

                      sensitivity and specificity.  

A34.2. Method 

This study conducted a systematic review and hierarchical meta-analysis of test accuracy 

studies for measuring adalimumab ADAb and drug levels by ELISA in patients with RA. 

The method section describes the systematic review (Section A34.2.1), quality assessment 

(Section A34.2.2), and the hierarchical meta-analysis (Section A34.2.3).  

A34.2.1. Systematic Review 

The study inclusion criteria, to identify all published test accuracy studies relevant for the 

economic evaluation, is reported in Table A34.1. The search strategy reported in Appendix 

23 was used to identify the titles and abstracts of published test accuracy studies. Medline 

and Embase were searched electronically from the date of inception until August 2016. All 

abstracts were screened by SG and second-screened by six researchers at the Manchester 

Centre for Health Economics, The University of Manchester. Abstracts were not excluded 

if there were disagreements at the screening stage. Abstracts that remained after screening 

were read in full by SG and evaluated against the inclusion criteria in Table A34.1.  

The following data were extracted from each study included in the review by SG: (i) study 

characteristics (country, ELISA test used, test cut-point, definition of the target condition, 

sample size, treatment regime, test sensitivity and specificity) and (ii) sample summary 

statistics (baseline mean DAS28, age, proportion of women, proportion receiving 

concomitant methotrexate). If more than two studies were identified for a particular testing 

scenario, to synthesise the published evidence, the proportion of patients classified as true-

positive, false-positive, true-negative, and false-negative by the ELISA were also 

extracted. Patient classifications were obtained directly from the 2x2 table of test accuracy 
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reported in each manuscript. If a 2x2 table was not reported, the values were calculated by 

SG according to the number of patients with the target condition and the reported ELISA 

sensitivity and specificity. If calculation was not possible, the authors of the manuscript 

were contacted by SG to obtain the true-positive, false-positive, true-negative, and false-

negative values of the test.  

Table A34.1. Inclusion criteria for systematic review of drug level test accuracy studies. 

Study feature Inclusion criteria 

Population Adults with rheumatoid arthritis receiving 40mg adalimumab 

every two weeks.  

 

Intervention (Index test) (i) ELISA to measure adalimumab ADAb; 

(ii) ELISA to measure adalimumab drug levels for detection 

of treatment response with full-dose adalimumab; 

(iii) ELISA to measure adalimumab drug levels for detection 

of treatment response with reduced-dose adalimumab.  

 

Comparator (Reference 

standard) 

(i) Radioimmunoassay; 

(ii) Observed treatment response; 

(iii) Observed treatment response.  

 

Outcome (Target condition) (i) Detection of adalimumab ADAb; 

(ii) Treatment response; 

(iii) Treatment response. 

 

Study design ROC analysis of test accuracy in a peer-reviewed publication 

(exclude conference abstracts).  

 

Language English. 

Abbreviations: ADAb=Anti-drug Antibody; ELISA=Enzyme-linked Immunosorbent Assay; 

ROC=Receiver Operating Characteristic.  

A34.2.2. Quality Assessment 

The quality of each study in the review was assessed according to the QUADAS-2 

(Whiting et al., 2011), as recommended by the NICE DAP (National Institute for Health 

and Care Excellence, 2011). The QUADAS-2 is a checklist to assess the quality of 

diagnostic accuracy studies across four domains (patient selection, the index test, the 

reference standard, and the flow of patients through the study) (Whiting et al., 2011). The 

results of the quality assessment were presented in graphical form if multiple studies were 

identified, independently for risk of bias and concern regarding study applicability.  

A34.2.3. Hierarchical Meta-analysis 

The appropriate methods for a meta-analysis of test accuracy studies are different to the 

conventional methods for a meta-analysis of relative treatment effects (Macaskill et al., 

2010). Heterogeneity is often present between test accuracy studies and may arise from a 

number of sources, including the patient population and the protocol for using the index 
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test and reference standard (Dinnes et al., 2005; Reitsma et al., 2005). The cut-point, used 

to define whether the result of an index test is positive, may vary between test accuracy 

studies when not defined in advance (Macaskill et al., 2010). The higher the cut-point, the 

lower the sensitivity and the higher the specificity of the index test (Dinnes et al., 2005). 

Different cut-points between different studies will induce a negative correlation between 

the study-specific estimates of sensitivity and specificity, indicating that they should not be 

treated as independent values in a meta-analysis (Dinnes et al., 2005). Consequently, 

hierarchical methods for meta-analysis have demonstrated greater accuracy for 

synthesising test performance data, compared with conventional meta-analysis methods 

(Harbord et al., 2008), and are recommended by the Cochrane Collaboration (Macaskill et 

al., 2010) and used in evidence generation for the appraisal of health technologies by the 

NICE DAP (National Institute for Health and Care Excellence, 2011).  

Random effects models can provide an estimate of the average test accuracy, controlling 

for systematic heterogeneity between individual studies (Macaskill et al., 2010; Dinnes et 

al., 2005). Moreover, by jointly synthesising the evidence of a test’s sensitivity and 

specificity, the covariance between these parameters can be estimated to enable parameter 

correlation in a PSA of a decision analytic model (Novielli et al., 2010; see Appendix 4). 

The two hierarchical meta-analysis methods reported in the literature are the bivariate 

meta-analysis (Reitsma et al., 2005) and the hierarchical summary ROC (HSROC) (Rutter 

et al., 2001). Both methods are mathematically equivalent in the absence of study-level 

covariates but are parameterised differently (Harbord et al., 2007). This study estimated a 

bivariate meta-analysis of test accuracy studies, which directly modelled the test’s 

sensitivity and specificity, and the correlation between them (Reitsma et al., 2005). The 

bivariate meta-analysis method was chosen because of the ability to perform the analysis in 

STATA Version 13 (StataCorp, 2013) using the method of Harbord et al. (2009).  

Hierarchical models of test accuracy studies are estimated in two levels; the first level 

performs an analysis on the study-level 2x2 tables and the second level uses random effects 

to control for between-study heterogeneity in test accuracy (Macaskill et al., 2010). The 

bivariate meta-analysis jointly estimated Equation A34.1 by maximum likelihood. 

[
𝜇𝐴𝑖

𝜇𝐵𝑖
] ~𝑁𝑜𝑟𝑚𝑎𝑙 [

𝜇𝐴

𝜇𝐴
, [

𝜎𝐴
2 𝜎𝐴𝐵

𝜎𝐴𝐵 𝜎𝐵
2 ]]                                       (Equation A34.1) 

Where 𝜇𝐴 is the logit-transformed sensitivity with variance 𝜎𝐴
2, and 𝜇𝐵 is the logit-

transformed specificity with variance 𝜎𝐵
2. The subscript i denotes study i. Therefore, the 
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model estimated five parameters: 𝜇𝐴, 𝜇𝐵, 𝜎𝐴
2, 𝜎𝐵

2 and 𝜌𝐴𝐵 = (
𝜎𝐴𝐵

𝜎𝐴𝜎𝐵
). A test’s average 

sensitivity and specificity values were derived by transforming back from their logit 

specifications [if y=logit(x), then x= (
ey

ey+1
)] (Macaskill et al., 2010). 

A34.3. Results 

A flow diagram of included studies is illustrated in Figure A34.1. The search strategy 

identified 4,006 abstracts, 119 of which were read in full. There was (i) one study that 

estimated the accuracy of measuring adalimumab ADAb by ELISA compared with 

radioimmunoassay (Jani et al., 2016); (ii) four studies that reported a ROC analysis to 

detect treatment response by measuring full-dose adalimumab drug levels (Chen et al., 

2015; Pouw et al., 2015; Rosas et al., 2014; Jani et al., 2015); and (iii) one study that 

reported a ROC analysis to detect treatment response by measuring reduced-dose 

adalimumab drug levels (Chen et al., 2016). The results are presented for each of these 

testing scenarios in turn.  

Figure A34.1. Flow diagram of included test accuracy studies. 
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A34.3.1. Accuracy of Measuring Adalimumab ADAb by ELISA 

The systematic review identified one study that assessed the concordance between 

measuring adalimumab ADAb by ELISA and by radioimmunoassay (the reference 

standard) (Jani et al., 2016). It was therefore not possible to synthesise multiple sources of 

evidence using a bivariate meta-analysis.  

Jani et al. (2016) measured adalimumab ADAb using the commercial Promonitor 

bridging-ELISA (see Table 1.8) in 159 serum samples of patients with RA in England that 

met the NICE eligibility criteria for TNFi therapy (DAS28 score ≥ 5.1; had failed two 

previous attempts of cDMARDs including methotrexate). Following the commercial 

manufacturer’s instructions, the cut-point to define adalimumab ADAb positivity was 12 

AU/mL for the radioimmunoassay and 3.5 AU/mL for the ELISA. The ELISA test 

detected adalimumab ADAb, compared with the radioimmunoassay, with a sensitivity of 

32.2% (95% CI: 20.6% to 45.6%) and a specificity of 98% (95% CI: 93% to 99%) (Jani et 

al., 2016).  

Table A34.2 reports the QUADAS-2 checklist for Jani et al. (2016), which assessed the 

study’s risk of bias and applicability to the research question.  

Table A34.2. QUADAS-2 checklist for Jani et al. (2016). 

Domain 

Risk of 

Bias  Domain 

Concern Regarding 

Applicability 

1. Patient selection. Low.   1. Patient selection.  Low. 

2. Index test. Low.   2. Index test. Low. 

3. Reference standard. Low.   3. Reference standard.  Low. 

4. Flow and timing. Low.     

 

The study reported by Jani et al. (2016) had a low risk of bias according to the QUADAS-2 

checklist (patients were enrolled by a prospective cohort study; index test cut-points were 

pre-specified; the reference standard was likely to correctly classify the target condition; 

and all patients were included in the analysis). There was also low concern regarding the 

study’s applicability to the research question (the patient population were identical to the 

population in the cost-effectiveness analysis in Chapter Six; the index test was the test 

being evaluated in Chapter Six).  

A34.3.2. Accuracy of Measuring Adalimumab Drug Levels (Full Dose) by ELISA 

The systematic review identified four studies that estimated the accuracy of measuring 

drug levels by ELISA to identify patients that would maintain response to full-dose 
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adalimumab (Chen et al., 2015; Rosas et al., 2014; Jani et al. 2015; Pouw et al., 2015). It 

was therefore possible to synthesise these sources of evidence using a bivariate meta-

analysis. The study design and sample characteristics of these four studies are reported in 

Table A34.3. The 2x2 table extracted from each study is reported in Table A34.4. 

Chen et al. (2015) and Pouw et al. (2015) estimated the optimal cut-point of trough 

adalimumab levels to determine a good EULAR response by a ROC analysis. Jani et al. 

(2015) estimated the optimal cut-point of adalimumab drug levels to determine any 

EULAR response (good or moderate). Rosas et al. (2014) performed a ROC analysis to 

estimate the adalimumab drug level cut-point that distinguishes patients with low disease 

activity from those with moderate or higher disease activity.  

In all studies, patients with RA received 40mg adalimumab every two weeks, consistent 

with the target population of the economic evaluation in Chapter Six. However, there was 

heterogeneity across the study designs and patient samples. Notably, mean disease severity 

measured by DAS28 at study entry ranged between 2.7 and 6.08, and the proportion of 

patients that received concomitant methotrexate ranged between 51% and 89%. Similarly 

to other meta-analyses of test accuracy, the cut-point varied between the four studies 

(Macaskill et al., 2010). 

All studies used ELISA-based assays to measure drug levels. Three studies used the 

commercial index test that was the focus of the economic evaluation in Chapter Six 

(described in Table 1.8) (Chen et al., 2015; Rosas et al., 2014; Jani et al. 2015). Pouw et al. 

(2015) used an in-house ELISA assay and, to facilitate evidence synthesis, it was assumed 

that the ability of this test to measure therapeutic drug levels was equivalent to the ability 

of the commercial assays. There were differences in how response was defined between 

studies: two studies predicted a good EULAR response (Chen et al., 2015; Pouw et al., 

2015), one study predicted a good or moderate EULAR response (Jani et al., 2015), and 

one study predicted low disease activity (Rosas et al., 2014). Values for the 2x2 tables 

(Table A35.4) were reported fully by one study (Rosas et al., 2014), were calculated 

according to sensitivity and specificity values in two studies (Chen et al., 2015; Pouw et 

al., 2015), and were obtained by correspondence with the author for one study (Jani et al., 

2015).  

The quality of the four studies included in the review, determined by the QUADAS-2 

checklist, is presented graphically by risk of bias (Figure A34.2) and concern of 

applicability to the research question (Figure A34.3).



 

 
 

       Table A34.3. Study design and sample characteristics of four test accuracy studies included in review. 

         Abbreviations: ELISA=Enzyme-linked immunosorbent assay; EULAR=European League Against Rheumatism.  

 

 

 

 

 

 Study Design  Sample Characteristics 

Study 

Country Assay Response Outcome 

Drug level 

cut-point  

Sample 

size (n) 

Mean 

age 

(SD) 

% 

women 

Baseline 

DAS28 

(SD) 

% with 

methotrexate 

Chen et al. (2015) 

Taiwan 

Sandwich ELISA 

(Promonitor) 

Good EULAR response at 12 months 

Vs. moderate/no EULAR response 

 

1.046 μg/mL  36 52.9 

(15) 

89% 6.08 

(0.81) 

89% 

Pouw et al. (2015) 

The Netherlands 

ELISA Good EULAR response at 28 weeks 

Vs. moderate/no EULAR response 

 

5 μg/mL  221 54 

(12) 

80% 5.3 

(1.1) 

77% 

Rosas et al. (2014) 

Spain 

Sandwich ELISA 

(Promonitor) 

Low disease activity Vs. 

moderate/high disease activity 

 

4.3 mg/L  70 63 

(12) 

79% 2.7 

(1.1) 

63% 

Jani et al. (2015) 

England 

Sandwich ELISA 

(Promonitor) 

Good/moderate EULAR response at 

12 months Vs. No EULAR response 

5 μg/mL  118 56.8 

(11) 

76% 5.8 

(0.9) 

51% 

4
8
8
 



 

 
 

Table A34.4. 2x2 tables extracted from the four test accuracy studies included in the review. 

 

 

 

 

 

 

 

 

 

 

Abbreviations: EULAR=European League Against Rheumatism. 

 

 

 

 

 

 Chen et al. (2015)   Pouw et al. (2015) 

 Normal drug 

level 

≥ 1.046 μg/mL 

Low drug 

level 

< 1.046 μg/mL 

Total 

(n) 

   Normal 

drug level 

≥ 5 μg/mL 

Low drug 

level 

< 5 μg/mL 

Total 

(n) 

 

Good EULAR 

response 

20 0 20 Sensitivity 

100% 

 Good EULAR 

response 

79 8 87 Sensitivity 

91% 

Moderate or no 

EULAR response 

0 16 16 Specificity 

100% 

 Moderate or no 

EULAR response 

76 58 134 Specificity 

43% 

           

 Rosas et al. (2014)   Jani et al. (2015) 

 Normal drug 

level 

≥ 4.3 mg/L 

Low drug 

level 

< 4.3 mg/L 

Total 

(n) 

 

  

Normal 

drug level 

≥ 5 μg/mL 

Low drug 

level 

< 5 μg/mL 

Total 

(n) 

 

Low disease 

activity 

44 6 50 Sensitivity 

88% 

 Good or moderate 

EULAR response 

98 4 102 Sensitivity 

96% 

Moderate or high 

disease activity 

8 12 20 Specificity 

60% 

 No EULAR 

response 

10 6 16 Specificity 

38% 

4
8
9
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Figure A34.2. QUADAS-2 checklist: risk of bias assessment. 

 

Figure A34.3. QUADAS-2 checklist: concerns regarding applicability assessment.  

 

 

The four studies, as reported, had a low risk of bias according to the QUADAS-2 checklist 

(Figure A34.2). All patients received the index and reference standard tests, and the 

reference standard (direct observation of treatment response) was objective. The methods 

of patient selection were unclear in two studies (Chen et al., 2015; Rosas et al., 2014) and 

one study did not did not explain why the final results of the ROC analysis excluded a 

minority of patients (Rosas et al., 2014). 

The four studies, as reported, also had low concern regarding applicability to the final 

research question according to the QUADAS-2 checklist (Figure A34.3). All included 

patients, index tests, and reference standards were relevant to the final economic evaluation 

in Chapter Six.  
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A bivariate meta-analysis was performed to synthesise the results of the four test accuracy 

studies reported in Table A34.4. The results of the analyses estimated an average test 

sensitivity of 95% (95% CI: 0.85-0.98) and specificity of 68% (95% CI: 0.28-0.92). The 

covariance between sensitivity and specificity was estimated to be 0.255.  

A35.3.3. Accuracy of Measuring Adalimumab Drug Levels (Reduced Dose) by ELISA 

The systematic review identified one study that estimated the accuracy of measuring 

adalimumab drug levels by ELISA to identify patients that would maintain response to 

reduced-dose adalimumab (Chen et al., 2016). It was therefore not possible to synthesise 

multiple sources of evidence using a bivariate meta-analysis. 

Chen et al. (2016) measured adalimumab drug levels using the commercial Promonitor 

sandwich ELISA (see Table 1.8) in twenty-five patients with RA in Taiwan that were in 

remission and had been prescribed a half-dose of adalimumab (40mg every month plus 

methotrexate). The reference standard was whether those patients maintained response at 

twenty-four weeks. Patients had a mean age of 57.1 years (SD: 14.7), 91.3% were women, 

91.3% were receiving concomitant methotrexate, and the mean DAS28 score was 2.21 

(SD: 0.13). Chen et al. (2016) used a ROC analysis to estimate the optimal adalimumab 

drug level cut-off that was predictive of maintaining treatment response. The optimal drug 

level cut-point was estimated to be 6.4ug/mL, which predicted persistent remission with a 

sensitivity of 100% and a specificity of 93.4%. No standard error or confidence interval 

was reported within the published manuscript.  

Table A34.5 reports the QUADAS-2 checklist for Chen et al. (2016), which assessed the 

study’s risk of bias and applicability to the research question.  

Table A34.5. QUADAS-2 checklist for Chen et al. (2016). 

Domain 

Risk of 

Bias  Domain 

Concern Regarding 

Applicability 

1. Patient selection. Unclear.   1. Patient selection.  Low  

2. Index test. Low  2. Index test. Low. 

3. Reference standard. Low.   3. Reference standard.  Low. 

4. Flow and timing. Low.     

 

The study, as reported by Chen et al. (2016), generally had a low risk of bias (all patients 

were included in the analysis; the reference standard was likely to correctly classify the 

target condition). However, it was unclear whether the patients in the study were sampled 

consecutively or randomly. The study was also deemed to be applicable to the economic 
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evaluation in Chapter Six (similar patient population; relevant index test and reference 

standard).   

A34.4. Discussion 

This study performed a systematic review and meta-analysis of test accuracy studies that 

assessed (i) the accuracy of measuring adalimumab ADAb by ELISA, compared with 

measurement by radioimmunoassay, and the accuracy of measuring adalimumab drug 

levels by ELISA to identify patients that would maintain response to (ii) full-dose 

adalimumab and (iii) reduced-dose adalimumab. The results suggested that using a 

bridging ELISA to detect adalimumab ADAb (Section A34.3.1) was (i) relatively accurate 

at detecting the absence of adalimumab ADAb correctly (specificity = 98%) but (ii) 

relatively poor at detecting the presence of adalimumab ADAb correctly (sensitivity = 

32.2%). The measurement of high adalimumab drug levels by a sandwich ELISA, in 

patients that were receiving full-dose therapy (Section A34.3.2), was estimated to be 

highly predictive of treatment response (sensitivity = 95%) but low drug levels were not 

necessarily predictive of no response (specificity = 68%). The drug level cut-point 

estimated by Chen et al. (2016) in Section A34.3.3 was found to be accurate at predicting 

whether patients maintained response to reduced-dose adalimumab in remission 

(Sensitivity = 100%; Specificity = 93.4%).  

Hierarchical meta-analyses of test accuracy studies have previously been undertaken 

during technology appraisals for the NICE DAP in England. For example, the DAP 

technology appraisal of TNFi ADAb and drug level monitoring for Crohn’s disease 

included a hierarchical meta-analysis of four test accuracy studies that predicted response 

to treatment by measuring adalimumab drug levels (National Institute for Health and Care 

Excellence, 2015, Appendix 12.3 of the DAP report). The analysis found that low drug 

levels (the definition of a positive test) were predictive of no response (the target 

condition) with a sensitivity of 68% (95% CI: 59% to 76%) and specificity of 79% (95% 

CI: 64% to 88%) (National Institute for Health and Care Excellence, 2015, Appendix 

12.3). These results were similar to the results of the present study (high adalimumab drug 

were found levels predict response); the point-estimate probability of no response given 

low drug levels was identical between the two studies (68% sensitivity in the NICE DAP 

assessment, and 68% specificity in the present study) (National Institute for Health and 

Care Excellence, 2015).  

The application of hierarchical meta-analysis methods for test accuracy studies is variable 

within the literature, and many studies have performed a conventional meta-analysis to 
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synthesise evidence of a test’s performance (Novielli et al., 2010; Ochodo et al., 2013). An 

advantage of this study was that the use of a bivariate meta-analysis accounted for the 

between-study heterogeneity and correlation between ELISA sensitivity and specificity. 

This correlation was subsequently incorporated during the PSA of the decision analytic 

model (described in Appendix 37). One potential limitation of the study reported in this 

appendix was that there were too few studies identified by the systematic review to explore 

between-study heterogeneity by meta-regression, despite observed differences in the 

proportion of patients receiving concomitant methotrexate, disease severity, and the drug 

level cut-point. One study also used a different ELISA test to measure drug levels, which 

may have had a different predictive ability than the assay used in the three remaining 

studies (Pouw et al., 2015). However, the QUADAS-2 assessment of bias and risk of study 

applicability were generally low, indicating that the four studies that were synthesised in 

the bivariate meta-analysis were of good quality and relevant to the economic evaluation in 

Chapter Six.  

The values of the input parameters that related to test accuracy in the decision analytic 

model (Section 6.3.3.1.11) were chosen based on the results of this systematic review. A 

sensitivity analysis of these input parameters was performed (Section 6.3.5.2) to assess 

how the relative cost-effectiveness of treatment stratification varied according to the 

accuracy of testing.  

 

A34.5. References 

Chen, D., Chen, Y., Hsieh, T., Hung, W., Hsieh, C., Chen, H., Tang, K., & Lan, J. (2016). 

"Drug Trough Levels Predict Therapeutic Responses to Dose Reduction of Adalimumab 

for Rheumatoid Arthritis Patients During 24 Weeks of Follow-up", Rheumatology, Vol. 55, 

1, pp. 143-148. 

Chen, D., Chen, Y., Tsai, W., Tseng, J., Chen, Y., Hsieh, C., Hung, W., Lan, J. (2015). 

“Significant Associations of Antidrug Antibody Levels with Serum Drug Trough Levels 

and Therapeutic Response of Adalimumab and Etanercept Treatment in Rheumatoid 

Arthritis”, Annals of the Rheumatic Diseases, Vol. 74, 3, pp. 1-9.  

Dinnes, J., Deeks, J., Kirby, J., Roderick, P. (2005). “A Methodological Review of how 

Heterogeneity has been Examined in Systematic Reviews of Diagnostic Test Accuracy”, 

Health Technology Assessment, Vol. 8, 12, pp. 1-113.  

Harbord, R., Deeks, J., Egger, M., Whiting, P., & Sterne, J. (2007). “A Unification of 

Models for Meta-analysis of Diagnostic Accuracy Studies”, Biostatistics, Vol. 8, 2, pp. 

239-251.  

Harbord, R., & Whiting, P. (2009). “Metandi: Meta-analysis of Diagnostic Accuracy using 

Hierarchical Logistic Regression”, The Stata Journal, Vol. 9, 2, pp. 211-229.  



 

494 
 

Harbord, R., Whiting, P., Sterne, J., Egger, M., Deeks, J., Shang, A., & Bachmann, L. 

(2008). “An Empirical Comparison of Methods for Meta-analysis of Diagnostic Accuracy 

Showed Hierarchical Models are Necessary”, Journal of Clinical Epidemiology, Vol. 61, 

11, pp. 1095-1103.  

Jani, M., Chinoy, H., Warren, R., Griffiths, C., Plant, D., Fu, B., Morgan, A., Wilson, A., 

Isaacs, J., Hyrich, K., & Barton, A. (2015). “Clinical Utility of Random Anti-tumor 

Necrosis Factor Drug-level Testing and Measurement of Antidrug Antibodies on the Long-

term Treatment Response in Rheumatoid Arthritis”, Arthritis & Rheumatology, Vol. 67, 8, 

pp. 2011-2019.  

Jani, M., Isaacs, J., Morgan, A., Wilson, A., Plant, D., Hyrich, K., Chinoy, H., & Barton, 

A. (2016). "Detection of Anti-drug Antibodies using a Bridging ELISA Compared with 

Radioimmunoassay in Adalimumab-treated Rheumatoid Arthritis Patients with Random 

Drug Levels", Rheumatology, Vol. 55, 11, pp. 2050-2055. 

Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R., & Takwoingi, Y. (2010). “Chapter 10: 

Analysing and Presenting Results”. In: Deeks, J., Bossuyt, P., & Gatsonis, C. (Eds). 

Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. (1 Ed). London: 

The Cochrane Collaboration.  

National Institute for Health and Care Excellence. (2011). Diagnostics Assessment 

Programme Manual. Manchester: National Institute for Health and Care Excellence.  

National Institute for Health and Care Excellence. (2015). Diagnostics Assessment 

Programme: Crohn’s Disease: Tests for Therapeutic Monitoring of TNF Inhibitors (LISA-

TRACKER ELISA Kits, TNF-α Blocker ELISA Kits, and Promonitor ELISA Kits – 

Evaluation Report. Manchester: National Institute for Health and Care Excellence. 

Novielli, N., Cooper, N., Abrams, K., & Sutton, A. (2010). “How is Evidence on Test 

Performance Synthesized for Economic Decision Models of Diagnostic Tests? A 

Systematic Appraisal of Health Technology Assessments in the UK Since 1997”, Value in 

Health, Vol. 13, 8, pp. 952-957.  

Ochodo, E., Reitsma, J., Bossuyt, P., & Leeflang, M. (2013). “Survey Revealed a Lack of 

Clarity about Recommended Methods for Meta-analysis of Diagnostic Accuracy Studies”, 

Journal of Clinical Epidemiology, Vol. 66, 11, pp. 1281-1288.  

Pouw, M., Krieckaert, C., Nurmohamed, M., van der Kleij, D. Aarden, L., Rispens, T., & 

Wolbink, G. (2015). “Key Findings Towards Optimising Adalimumab Treatment: the 

Concentration-effect Curve”, Annals of the Rheumatic Diseases, Vol. 74, 3, pp. 513-518.  

Reitsma, J., Glas, A., Rutjes, A., Scholten, R., Bossuyt, P., & Zwinderman, A. (2005). 

“Bivariate Analysis of Sensitivity and Specificity Produces Informative Summary 

Measures in Diagnostic Reviews”, Journal of Clinical Epidemiology, Vol. 58, 10, pp. 982-

990.  

Rosas, J., Llinares-Tello, F., de la Torre, I., Santos-Ramírez, C., Senabre-Gallego, J., 

Valor, L., Barber-Vallés, X., Hernández-Flórez, D., Santos-Soler, G., Salas-Heredia, E., & 

Carreño, L. (2014). “Clinical Relevance of Monitoring Serum Levels of Adalimumab in 

Patients with Rheumatoid Arthritis is Daily Practice”, Clinical and Experimental 

Rheumatology, Vol. 32, 6, pp. 942-948.  



 

495 
 

Rutter, C., & Gatsonis, C. (2001). “A Hierarchical Regression Approach to Meta-analysis 

of Diagnostic Test Accuracy Evaluations”, Statistics in Medicine, Vol. 20, 19, pp. 2865-

2884.  

StataCorp. (2013). "Stata Statistical Software". Release 13, College Station, TX: StataCorp 

LP. 

Whiting, P., Rutjes, A., Westwood, M., Mallett, S., Deeks, J., Reitsma, J., Leeflang, M., 

Sterne, J., & Bossuyt, P. (2011). “QUADAS-2: A Revised Tool for the Quality Assessment 

of Diagnostic Accuracy Studies”, Annals of Internal Medicine, Vol. 155, 8, pp. 529-536.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

496 
 

Appendix 35: Published Microcosting Study of TNFi Anti-drug 

Antibody and Drug Level Testing 

This appendix presents a published microcosting study that estimated the direct health care 

costs associated with using the ELISA tests to measure TNFi ADAb and drug levels in 

routine rheumatology practice in England. The evidence from this study was a necessary 

input (the cost of testing) to the de novo decision analytic model in Chapter Six. The study 

was published in Rheumatology in December 2016.  

The microcosting study was conducted independently from this PhD thesis with Dr. 

Meghna Jani, and contributed towards the PhD thesis of Dr. Jani. SG contributed to the 

study design and made substantive comments on the final manuscript. All data collection 

and analysis was performed by MJ.  

The appropriate citation for the study is: 

• Jani, M., Gavan, S., Dixon, W., Harrison, B., Moran, A., Barton, A., & Payne, K. 

(2016). "A Microcosting Study of Immunogenicity and TNFi Drug Level Tests for 

Therapeutic Monitoring in Clinical Practice", Rheumatology, Vol. 55, 12, pp. 2131-

2137. 
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Appendix 36: Chapter Six - Internal Validity of the Decision 

Analytic Model  

This appendix presents the results of the four procedures, described in Section 6.3.4.2, that 

were used to assess the internal validity of the decision analytic model in Chapter Six. 

Each procedure is described in turn: (i) Set all cost parameters equal to zero (Section 

A36.1), (ii) Set all QALY parameters equal to zero (Section A36.2), (iii) Increase the 

discount rate (Section A36.3), and (iv) Sample 100,000 random values from the survival 

curves (Section A36.4).  

A36.1 Set all Cost Parameters Equal to Zero 

The input parameters that accounted for the unit costs of testing, treatments, and 

hospitalisation (Section 6.3.3.4) were all set to equal zero. The model was then run for 

Current Practice and the most complex intervention strategy (Strategy 3). The model 

subsequently estimated the total expected costs for each strategy to be zero. Therefore, the 

logic written within the model’s code to calculate total expected costs was internally valid.  

A36.2. Set all QALY Parameters Equal to Zero 

The three input parameters that were used in the QALY mapping algorithm within the 

model (Section 6.3.3.2) were set to equal zero. The model was then run for Current 

Practice and the most complex intervention strategy (Strategy 3). The model subsequently 

estimated the total expected QALYs for each strategy to be zero. Therefore, the logic 

written within the model’s code to calculate total expected QALYs was internally valid. 

A36.3. Increase the Discount Rate 

The rate at which future costs and QALYs were discounted was adjusted to 0%, 3.5%, and 

5%. The model was run for current practice and the most complex intervention strategy 

(Strategy 3) for each of the discount rates. The model subsequently estimated expected 

outcomes such that, the higher the discount rate, the lower the present value of expected 

costs and QALYs. Therefore, the logic written within the model’s code to discount future 

costs and QALYs was internally valid.  
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A36.4. Sample from Survival Distributions 

Four survival curves were used within the model that simulated each patient’s time to (i) 

death, for men, (ii) death, for women, (iii) bDMARD treatment failure, and (iv) developing 

ADAb against adalimumab. 100,000 values were sampled randomly from these survival 

curves to appraise their internal validity and clinical plausibility. Table A36.1 reports the 

mean values from these random samples. A histogram of the 100,000 random samples 

from each survival curve was produced; each survival curve is now discussed.  

Table A36.1. Mean time-to-event values from 100,000 random samples drawn from the 

survival curves in the decision analytic model.   

Parameter Estimated by Survival Curve Mean (Years) 

Time to death; women 82.78 years. 

Time to death; men 79.27 years. 

Time to bDMARD failure 4.32 years. 

Time to developing ADAb 4.10 years. 

 

Time to Death 

Figure A36.1 and Figure A36.2 illustrate the histograms of the 100,000 random samples 

from the Gompertz survival curves that described time-to-death for men and women, 

respectively. The histograms demonstrated a clinically plausible distribution of ages at 

which individuals were expected to die from all-causes, in alignment with the life table 

data provided by the Office for National Statistics (2016). The mean age of death was 

greater for women than men (82 years compared with 79 years) which was also consistent 

with the national life table data for England.  

Time to bDMARD Treatment Failure 

Figure A36.3 illustrates the histogram of the 100,000 random samples from the Weibull 

survival curve that described the time-to-treatment failure of a bDMARD therapy. The 

histogram demonstrated a clinically plausible distribution of the time (in years) at which a 

patient would have maintained response to a bDMARD therapy. The mean time to 

bDMARD treatment failure was 4.32 years, consistent with the meta-analysis performed 

by Souto et al. (2016) which estimated that approximately fifty percent of patients with RA 

would lose response to their TNFi therapy after four years.  
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Time to Developing ADAb against Adalimumab 

Figure A36.4 illustrates the histogram of 100,000 random samples from the log-normal 

survival curve that described the time-to-developing ADAb against adalimumab. The 

histogram demonstrated a clinically plausible distribution of the times-to-developing 

ADAb against adalimumab; the evidence within the clinical literature suggested that 

patients who had developed ADAb against a TNFi therapy had done so within the years 

that immediately followed treatment initiation (Bartelds et al., 2011).  

Figure A36.1. Histogram of 100,000 random samples from the Gompertz survival curve 

that characterised all-cause mortality for men.  

 

 

 

Figure A36.2. Histogram of 100,000 random samples from the Gompertz survival curve 

that characterised all-cause mortality for women.  
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Figure A36.3. Histogram of 100,000 random samples from the Weibull survival curve that 

characterised bDMARD treatment failure.   

 

Figure A36.4. Histogram of 100,000 random samples from the log-normal survival curve that 

characterised the time to developing ADAb against adalimumab.  
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Appendix 37: Chapter Six - Distributions that Characterised the 

Input Parameters 

It was necessary to characterise the input parameters of the decision analytic model in 

Chapter Six as probability distributions in order to perform a PSA (Briggs et al., 2006). 

This appendix describes how these distributions were chosen, with reference to the 

distributions described in Appendix 4 (Beta; Dirichlet; Lognormal; Gamma; Normal; 

Multivariate normal). The distributions are described for clinical parameters (Section 

A37.1), resource use (Section A37.2), and QALYs (Section A37.3). Unit costs were not 

assigned probability distributions because they were assumed to be fixed (and not subject 

to parameter uncertainty) (Briggs et al., 2006).  

A37.1. Clinical Parameters 

Section A37.1 explains the distributions that characterised each input parameter in Table 

6.4.  

Time to Death 

National life table data from the Office for National Statistics (2015) were used to estimate 

a patient’s time to death. Gompertz survival curves were fit to these life table data for men 

and women, which were defined by two parameters (the shape and rate). The variance-

covariance matrices were known for the shape and rate parameters based on the regression-

output from the survival analysis (reported in Appendix 31). A Cholesky decomposition of 

the variance-covariance matrices was performed (described in Appendix 4), which enabled 

the sampled shape and rate parameters to be correlated, by characterising their probability 

distribution as a multivariate normal distribution. The parameters that defined this 

multivariate normal distribution are reported in Table 6.4.   

Mortality Adjustment for Rheumatoid Arthritis 

The mortality adjustment for patients with RA was described by the hazard ratios 

estimated by Michaud et al. (2012). Lognormal distributions were used to characterise 

uncertainty in the hazard ratios reported by Michaud et al. (2012) by following the 

procedure described in Appendix 4.  
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EULAR Response to Treatment 

A EULAR response to treatment was a multinomial outcome (there were three possible 

outcomes: a good response, a moderate response, or no response). Stevenson et al. (2016) 

provided evidence from a network meta-analysis on the probabilities associated with each 

EULAR response for each treatment. A three-parameter Dirichlet distribution was used to 

characterise the uncertainty in the EULAR response probabilities for the PSA by using a 

series of conditional beta distributions, described in Appendix 4.  

HAQ Improvement following a EULAR Response 

The HAQ improvement following a EULAR response was always a negative value (a 

HAQ improvement meant that the HAQ score reduced). The potential value of a reduction 

in HAQ was therefore bound between zero and negative infinity. A gamma distribution 

was used to characterise the uncertainty in the HAQ reduction, based on the mean and 

standard errors estimated by Stevenson et al. (2016), according to the method of moments 

(described in Appendix 4).  

Time to Treatment Failure 

The time to treatment failure was estimated by survival analysis (Appendix 32), similarly to 

estimating the time to death. A Cholesky decomposition of the variance-covariance matrix 

from the survival analysis was therefore performed, to induce correlation between the 

shape and scale parameters of the Weibull survival curve, to enable those parameters to be 

sampled from a multivariate normal distribution.  

Time to Developing ADAb against Adalimumab 

A Cholesky decomposition of the variance-covariance matrix from the survival analysis 

that estimated the time to developing ADAb against adalimumab (Appendix 33) was 

performed, to induce correlation between the parameters that described the log-normal 

survival distribution. These parameters were sampled from a multivariate normal 

distribution in the PSA, the values for which are defined in Table 6.4.  
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Consequence of Developing ADAb against Adalimumab 

Garcês et al. (2013) provided evidence for a relative risk parameter that was used to adjust 

the time to adalimumab treatment failure in the model. This relative risk parameter was 

sampled from a lognormal distribution in the PSA, using the technique described in 

Appendix 4.  

Proportion of Patients with Low Adalimumab Drug Levels in Remission 

The annual probability of a disease flare, one year after TNFi dose reduction, was 

estimated using data from a systematic review and meta-analysis by Kuijper et al. (2015), 

reported in Section 6.3.3.1.9. This probability was characterised by a beta distribution in 

the PSA, by the method of moments (see Appendix 4), based on the mean and confidence 

interval reported by Kuijper et al. (2015).  

Consequence of a Flare in Remission 

A gamma distribution (bound between zero and positive infinity) was used to characterise 

the uncertainty associated with a change in HAQ following a flare in disease activity. 

Using the evidence reported by Markusse et al. (2015), a legitimate HAQ increase of 0.125 

units was expected following a flare. However, Markusse et al. (2015) did not report a 

standard error for this estimate. Therefore, following the approach of Briggs et al. (2006), 

it was assumed that the standard error was equal to the mean (0.125), and the method of 

moments was used to characterise a gamma distribution (see Appendix 4) with the 

parameter values reported in Table 6.4.  

Accuracy of Adalimumab ADAb Test 

The accuracy of adalimumab ADAb testing were derived from the ROC analysis by Jani et 

al. (2016a). Beta distributions (see Appendix 4) were used to characterise the uncertainty in 

the sensitivity and specificity of testing, by using the mean and confidence interval 

reported by Jani et al. (2016a). No correlation was induced between test sensitivity and 

specificity because their co-variance was not reported within the published study.  
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Accuracy of Adalimumab Drug Level Testing (Full Dose) 

Appendix 34 reported a hierarchical meta-analysis of test accuracy studies for adalimumab 

drug level testing. This study estimated the covariance between the synthesised estimates 

of sensitivity and specificity. Therefore, a Cholesky decomposition of the variance-

covariance matrix between test sensitivity and specificity was performed, to induce 

correlation between their sampled values in the PSA. The parameter values that defined the 

multivariate normal distribution are reported in Table 6.4.  

Accuracy of Adalimumab Drug Level Test (Half Dose) 

The accuracy of drug level testing when the dose of adalimumab was halved was estimated 

by Chen et al. (2016). Chen et al. (2016) reported the mean sensitivity and specificity of 

testing, but did not report an associated standard error. Using the data reported by Chen et 

al. (2016) it was possible to calculate the number of patients that had a true-positive, false-

positive, true-negative, and false-negative test result. A beta distribution was fit to these 

data, separately for sensitivity and specificity, such that the number of true test outcomes 

defined the “number of events” (α) parameter of the distribution (see Appendix 4).  

Consequence of Treatment Decisions following Routine Monitoring 

Routine monitoring of adalimumab by ADAb and drug level testing may have led to a pre-

emptive change of treatment to rituximab (Section 6.3.3.1.12). The effect of this treatment 

change was represented by a multiplier on the patient’s HAQ rebound (Table 6.5). 

However, there was no evidence to support the value of these HAQ multipliers because the 

tests were relatively early in their product lifecycle. Therefore, uninformative uniform 

distributions were used to characterise the uncertainty in the HAQ multipliers during the 

PSA. The uniform distributions sampled any value between (and inclusive of) zero and one 

with equal probability (Briggs et al., 2006).  

A37.2. Resource use 

Section A37.2 explains how parameter uncertainty was characterised in the model’s input 

parameters for resource use.    

 



 

513 
 

Treatments 

All treatments were assumed to be administered at the dose recommended in the British 

National Formulary (2016). The resources required to perform an intravenous infusion, 

and the proportion of subcutaneous injections performed by a nurse, were also assumed to 

be fixed. Therefore, all health care resources that were specifically related to treatments 

were not subject to parameter uncertainty in the PSA.  

Testing 

The resources required to incorporate testing in routine practice were quantified by the 

supplementary microcosting study (reported in Appendix 35) by Jani et al. (2016b). These 

resources were assumed to be necessary to perform the ADAb and drug level tests and 

were therefore assumed to be fixed in the PSA in Chapter Six.  

Hospitalisations 

The mean days hospitalised per year were estimated for six categories of HAQ score by 

using evidence submitted to a previous NICE Single Technology Appraisal for RA (Section 

6.3.3.3.2). The distribution of health care resources is often positively-skewed and can 

therefore be characterised by a gamma distribution (bound between zero and positive 

infinity) (see Appendix 4; Briggs et al., 2006). However, there were no standard errors 

reported with the mean days hospitalised. Therefore, following the approach of Briggs et 

al. (2006), it was assumed that for each category of HAQ score, the mean days hospitalised 

was equal to the standard error. A gamma distribution was subsequently used in the PSA, 

with the parameter values reported in Table 6.4, to characterise parameter uncertainty in 

the mean days hospitalised per year.  

A38.3. Quality-adjusted Life Years 

The value of a patient’s EQ-5D score was estimated from their prevailing HAQ score by 

using the mapping algorithm reported by Malottki et al. (2011) in Section 6.3.3.2. Malottki 

et al. (2011) reported the mean and confidence intervals for each of the three parameters 

within the mapping algorithm. The PSA therefore sampled these mapping algorithm 

parameter values from three independent normal distributions.  
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Appendix 38: Chapter Six - Deterministic Sensitivity Analysis of 

Base-case Result 

This appendix reports the results of all deterministic sensitivity analyses of the base-case 

result derived from the de novo model-based economic evaluation in Chapter Six. The 

table that corresponds to each sensitivity analysis is as follows: 

Test Characteristics 

Table A38.1: Reduce cost of all tests to £20; 

Table A38.2: Assume no benefit from a true-positive monitoring test result; 

Table A38.3: Assume no harm from a false-positive monitoring test result; 

Table A38.4: Assume no benefit from a true-positive monitoring test result and no harm 

                      from a false-positive monitoring test result; 

Table A38.5: Assume that all tests are perfectly accurate.  

Disease Characteristics 

Table A38.6: Assume a lower probability of having low adalimumab drug levels in 

                      remission; 

Table A38.7: Assume a higher probability of having low adalimumab drug levels in  

                      remission; 

Table A38.8: Assume a lower relative risk of losing response to adalimumab after 

                     developing ADAb; 

Table A38.9: Assume a higher relative risk of losing response to adalimumab after 

                     developing ADAb; 

Table A38.10: Assume no HAQ progression whilst receiving methotrexate therapy only; 

Treatment Characteristics 

Table A38.11: Assume that the cost of adalimumab is one third lower to represent the use  

                       of biosimilar adalimumab.  

Structural Assumptions 

Table A38.12: Assume a discount rate of 0% for costs and QALYs; 

Table A38.13: Assume a discount rate of 6% for costs and 1.5% for QALYs; 

Table A38.14: Assume that time to treatment failure was sampled from a log-normal 

                        survival curve; 

Table A38.15: Assume that QALYs were estimated from HAQ by using the mapping 

algorithm by Adams et al. (2011); 

Table A38.16: Assume that QALYs were estimated from HAQ by using the mapping 

algorithm by Barton et al. (2004).   

 

 



 

 
 

                       Table A38.1. Deterministic sensitivity analysis: test cost of £20. 

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER 

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

Strategy 11 

Strategy 3 

Strategy 1 

110,802 

111,131 

113,882 

2.739957 

2.761210 

2.839540 

N/A 

328.99 

2,750.60 

N/A 

0.021253 

0.078330 

N/A 

15,480 

35,116  

N/A 

96.07 

-1,184 

N/A 

308.60 

-400.70 

 

N/A 

733.6 

1,165.90 

                            Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.2. Deterministic sensitivity analysis: no benefit from true-positive monitoring test result.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 1 

Strategy 3 

Strategy 11 

114,989.01 

111,679.41 

110,802.42 

2.697814 

2.726842 

2.739957 

Dominated by Strategy 11 

Dominated by Strategy 11 

N/A                   N/A 

N/A 

N/A 

N/A  

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

                          Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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                        Table A38.3. Deterministic sensitivity analysis: no harm from false-positive monitoring test result.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,802.42 

111,580.49 

114,597.03 

2.739957 

2.764169 

2.844088 

N/A 

778.06 

3,016.54 

N/A 

0.024212 

0.079919 

N/A 

32,135.30 

37,745.16  

N/A 

-293.82 

-1,418.17 

N/A 

-51.70 

-618.98 

N/A 

432.54 

979.39 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.4. Deterministic sensitivity analysis: no harm from false-positive monitoring test result and no benefit from true-positive 

                        monitoring test result.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 1 

Strategy 3 

Strategy 11 

114,974.76 

111,670.20 

110,802.42 

2.702361 

2.729801 

2.739957 

Dominated by Strategy 11 

Dominated by Strategy 11 

N/A                   N/A 

N/A 

N/A 

N/A  

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year.
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                        Table A38.5. Deterministic sensitivity analysis: perfect accuracy of all tests.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,802.42 

111,636.16 

114,401.34 

2.739957 

2.805580 

2.908273 

N/A 

833.74 

2,765.18 

N/A 

0.065624 

0.102692 

N/A 

12,704.89 

26,926.83  

N/A 

478.73 

-711.33 

N/A 

1,134.97 

315.59 

N/A 

2,447.44 

2,369.44 

                          Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.6. Deterministic sensitivity analysis: lower probability of low drug levels in remission.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,599.95 

111,435.38 

114,611.27 

2.739994 

2.761507 

2.839540 

N/A 

835.44 

3,175.89 

N/A 

0.021513 

0.078033 

N/A 

38,833.92 

40,699.37  

N/A 

-405.18 

-1,615.23 

N/A 

-190.04 

-834.90 

N/A 

240.22 

725.76 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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                       Table A38.7. Deterministic sensitivity analysis: higher probability of low drug levels in remission.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

111,065.38 

111,908.25

114,611.27 

2.739907

2.761982

2.839540 

N/A 

842.87 

2,703.03 

N/A 

0.022074 

0.077559 

N/A 

38,183.35 

34,851.41  

N/A 

-401.39 

-1,151.85 

N/A 

-180.64 

-376.27 

N/A 

260.85 

1,174.90 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.8. Deterministic sensitivity analysis: lower relative risk of ADAb development.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,506.67 

111,303.78 

114,572.62 

2.749627 

2.773032 

2.845931 

N/A 

797.11 

3,268.84 

N/A 

0.023404 

0.072899 

N/A 

34,057.89 

44,840.58  

N/A 

-329.02 

-1,810.86 

N/A 

-94.97 

-1,081.87 

N/A 

373.12 

376.12 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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                         Table A38.9. Deterministic sensitivity analysis: higher relative risk of ADAb development.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,586.19 

111,480.92 

114,593.94 

2.749962

2.770236

2.845209 

N/A 

894.73 

3,113.01 

N/A 

0.020274 

0.074973 

N/A 

44,131.75 

41,522.05  

N/A 

-489.25 

-1,613.56 

N/A 

-286.51 

-863.84 

N/A 

118.97 

635.61 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.10. Deterministic sensitivity analysis: no HAQ progression on cDMARDs.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

108,822.15 

109,596.50 

112,600.48 

3.456676 

3.483455 

3.574900 

N/A 

774.35 

3,003.98 

N/A 

0.026779 

0.091445 

N/A 

28,916.25 

32,850.04  

N/A 

-238.77 

-1,175.07 

N/A 

29.02 

-260.62 

N/A 

564.60 

1,568.28 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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                       Table A38.11. Deterministic sensitivity analysis: biosimilar adalimumab.  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 1 

Strategy 3† 

105,598.54 

108,959.86

106,441.67 

2.739957 

2.839540 

2.761210 

N/A 

3,361.32 

ED† 

N/A 

0.099584 

ED† 

N/A 

33,753.82 

N/A  

N/A 

-1,369.65 

N/A 

N/A 

-373.82 

N/A 

N/A 

1,617.85 

N/A 

                         Note: †=Strategy 3 was extendedly dominated by 75% of Strategy 11 and 25% of Strategy 1; λ = cost-effectiveness threshold; QALY = quality-adjusted 

                         life-year.  

 

                        Table A38.12. Deterministic sensitivity analysis: Discount rate – 0% for costs and QALYs.    

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

166,845.71 

167,599.07 

170,945.11 

3.601181 

3.634202 

3.766379 

N/A 

753.37 

3,346.04 

N/A 

0.033021 

0.132178 

N/A 

22,814.69 

25,314.68  

N/A 

-92.94 

-702.48 

N/A 

237.27 

619.30 

N/A 

897.69 

3,262.85 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year.
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                         Table A38.13. Deterministic sensitivity analysis: Discount rate – 6% for costs and 1.5% for QALYs.     

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

87,811.23 

88,594.81 

91,377.43 

3.190146 

3.217159 

3.321408 

N/A 

783.57 

2,782.62 

N/A 

0.027013 

0.104249 

N/A 

29,007.62 

26,692.01  

N/A 

-243.32 

-697.64 

N/A 

26.81 

344.86 

N/A 

567.06 

2,429.84 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.14. Deterministic sensitivity analysis: Log-normal time to bDMARD treatment failure.   

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

109,754.80 

110,694.97

114,171.00 

2.841893 

2.861321 

2.932965 

N/A 

940.17 

3,476.03 

N/A 

0.019428 

0.071644 

N/A 

48,393.41 

48,517.92  

N/A 

-551.62 

-2,043.14 

N/A 

-357.34 

-1,326.70 

N/A 

31.21 

106.18 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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                        Table A38.15. Deterministic sensitivity analysis: QALY mapping algorithm by Adams et al. (2011).      

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,802.42 

111,589.70 

114,611.27 

5.383739 

5.393951

5.431183 

N/A 

787.27 

3,021.58 

N/A 

0.010211 

0.037232 

N/A 

77,097.86

81,154.93  

N/A 

-583.05 

-2,276.93 

N/A 

-480.93 

-1,904.61 

N/A 

-276.71 

-1,159.97 

                           Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 

 

                        Table A38.16. Deterministic sensitivity analysis: QALY mapping algorithm by Barton et al. (2004).  

     
  Incremental Net Monetary Benefit (£) 

Comparator 

Strategy 

Mean  

Cost (£) 

Mean 

QALY 

Incremental 

Cost (£) 

Incremental 

QALY 

ICER  

(£ per 

QALY)  

λ = £20,000 

per QALY 

λ = £30,000 

per QALY 

λ = £50,000 

per QALY 

 

Strategy 11 

Strategy 3 

Strategy 1 

110,802.42 

111,589.70 

114,611.27 

2.815876 

2.835752 

2.908222 

N/A 

787.27 

3,021.58 

N/A 

0.019876 

0.072470 

N/A 

39,609.91 

41,694.28  

N/A 

-389.76 

-1,572.18 

N/A 

-191.00 

-847.48 

N/A 

206.51 

601.91 

                         Note: λ = cost-effectiveness threshold; QALY = quality-adjusted life-year. 
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