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Abstract

Background: Knee osteoarthritis is one of the leading causes of disability world-
wide, affecting 3.8 million people around the globe. Despite its prevalence it is still
a poorly understood condition for which limited treatments are currently available.
Osteoarthritis(OA) usually starts by affecting the articular cartilage covering the sur-
face of bones in the knee joint, ending up involving all tissue types together with the
synovial fluid. The way clinicians diagnose this disease is by looking at radiographic
images and assigning a severity score from 0 to 4, where 0 stands for a healthy knee
and 4 is late stage OA. Current methodologies in automated study and diagnosis of
OA have been applied to small datasets made of a few hundred images and tend to
involve only the analysis of Posterior-Anterior(PA) view radiographs. In addition, the
relationship between structural changes in the joint and symptoms has not been well
understood.

Aim: The aim of this work was to improve the performance of computer aided diag-
nosis techniques available when studying knee OA from medical images. These tech-
niques have the chance of helping the experience of people affected by this very com-
mon disease by supporting and speeding up the diagnosis so that appropriate counter
measures can be taken. There are two main improvements that we propose: first, the
incorporation of additional informative data and second the refinement of the machine
learning model. Furthermore, we wanted to contribute to the understanding of the
relation between what can be seen in medical images and the symptoms that people
experience when affected by OA. This has the potential to deepen our understanding of
osteoarthritic sources of pain and ultimately can affect the direction of focus in clinical
trials.

Methods: Random forest based landmark point detectors have been built to find the
outlines of the bones in knee joint radiographs. Separate models were built for lat-
eral and PA view images. The found annotations allowed the automatic extraction of
measurements associated with the shape, texture and appearance of the bones and their
spatial relation within radiographic images. We used these features to perform several
OA related classification tasks, including automated diagnosis of structural changes.
We proposed an improvement over the classification model previously used with the
introduction of what we called “Indecisive Forests” together with ways of optimising
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such forests once they have already been trained. Finally, a comprehensive exploration
on radiographic sources of pain and investigation on whether it is possible to find a
clearer relation between images and symptoms was performed.

Results: Our lateral knee model was able to perform as well as the PA model in the
first experiments and showed high discriminative ability considering that it is not used
by clinicians to perform the grading. The combination of features from the two views
only marginally improved performance, with the full knee model using appearance
features achieving the best overall results. Using the indecisive forest further reduced
the number of classification errors on two classification tasks, while the results of the
experiments on the proposed optimisation routine did not allow us to conclude on its
effectiveness. The radiographic structural changes that can be seen as a source of pain
were a combination of lateral and PA manual features. Consistent knee pain showed
an improved correlation with manual scores compared to what has been reported in the
literature.

Conclusions: The results of our work suggest that features extracted from the lat-
eral view are informative and that using multiple views in general helps performance,
though not always by a large margin. Predicting future knee pain is the hardest task for
the automated models we used. Our indecisive forest based experiments achieved the
state of the art on the tasks of interest, though at the expense of a higher computational
costs. We presented the highest correlation between radiographic features and frequent
knee pain when evaluated with AUC.
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Figure 1: Neural Networks painting works following the style of famous artists. (image
downloaded from [2])

“Patience is something you admire in

the driver behind you, but not in the

one ahead. ”

— Anonymous
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Chapter 1

Thesis Overview

1.1 Introduction

Knee Osteoarthritis (OA) is a disease whose main symptoms are stiffness and pain.
This inflammatory disease affects all tissues in the joint, starting with the erosion of
articular cartilage which cushions the joint, followed by the onset of bony spurs called
Osteophytes. The joint capsule is also affected by these changes, making the synovial
fluid which helps reduce friction in the joint less concentrated and thus causing more
attrition and consequently pain. Knee OA is usually an asymmetrical disease, affecting
mostly one side of the joint. That causes joint space narrowing and malalignment.

Knee OA is the most common form of arthritis and one of the leading causes of
disability globally, affecting 3.8% of the global population [24]. Its relative prevalence
is shown in Figure 1.1. Among musculoskeletal diseases and pathologies, knee OA
is the third most prevalent, only preceded by low back pain and neck pain. When
compared to diseases in general, OA was also found to be one of the main causes
of disability, ranked 11th overall [24], immediately after diabetes. Disability can be
quantified using the YLDs (Years Lived with Disability) measure. Figure 1.2 shows
the ranking of the most prevalent musculoskeletal diseases according to this factor.

Despite the availability of more modern imaging modalities such as CT and MRI,
radiographic assessment is still the gold standard in Osteoarthritis imaging, mainly
due to the acquisition costs and speed. There are a number of grading schemes to
quantify the severity of structural OA, most of which are based on posterior-anterior
radiographic images. The most used grading scheme is semi-quantitative and was
designed by Kellgren and Lawrence in 1957 [59].
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Figure 1.1: Knee Osteoarthritis is the third most prevalent musculoskeletal disease
found in the global burden of disease 2010 study [24, 23, 52, 53, 99].

One of the main issues with manual grading of radiographic images is the subjectiv-
ity of the assessment. Several studies [118, 46] have shown high inter- and intra-rater
variability, partially due to the arguably ambiguous definition of the individual grades.
This can lead to significant inefficiency when running clinical trials. Most often, in or-
der to minimise the effect of subjectivity, more clinicians are needed to assign grades
to images and more participants need to be recruited. This increases both costs and the
time spent running clinical trials.

In medical imaging we have seen an increasing interest in Computer Aided Diagno-
sis (CAD) systems. These systems automate the study of medical images, performing
the same tasks that trained clinicians would do. The obvious advantage is in the re-
peatability of such measurements and the time efficiency (it takes seconds to have a
response from a machine vs. days or weeks for a clinician). Improving the reliability
and accuracy of such methodologies is crucial to optimise clinical trials and provide
quick and cheap evaluation of radiographic images. Early diagnosis of OA can help
slow down disease development and reduce symptoms by suggesting changes to peo-
ple’s lifestyles and adopting other precautions.

Current methodologies in automated study and diagnosis of OA [108, 109, 97, 6]
have been applied to small datasets made of a few hundred images and tend to involve
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Highest contributors to 
global disability(YLDs)

● 1st Low back pain
● 4th Neck pain
● 11th Knee and hip OA
● 42nd Rheumatoid Arthritis
● 138th Gout

Figure 1.2: Among musculoskeletal diseases knee and hip OA are the third biggest
global contributor of disability. This becomes the 11th if we consider all diseases
regardless of their type.

only the analysis of the PA view, while other views are often available and as easy
to acquire. Furthermore, little evidence is available in terms of what images contain
specific disease related information. Finally, the relation between radiographic OA and
symptomatic OA has always been hard to grasp. The way to reduce disease symptoms
is to first understand what is causing them.

In this project we created a model to analyse lateral view radiographic images.
A segmentation model allowed us to localise landmark points associated to the bone
shape. Different sets of features were extracted using these coordinates and their dis-
criminative ability at various OA related classification tasks was evaluated. The com-
parison and combination with features associated to different radiographic views and
physiological and demographic data were also performed. We extended the work to the
largest datasets available in the field, increasing by two orders of magnitude the number
of subjects. In addition, we designed a novel machine learning model for classification
to reduce the number of mistakes made by the system. Furthermore, we explored in
more depth the relation between symptoms and radiographic features, by taking into
account pain measures acquired at different time points with respect to radiographic
acquisition.
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1.2 Aims and Objectives

The aim of this work was to improve the performance of computer aided diagnosis
techniques available when studying knee OA from medical images. These techniques
have the chance of helping the experience of people affected by this very common
disease, by supporting and speeding up the diagnosis so that appropriate counter mea-
sures can be taken. There are two main improvements: first by incorporating additional
informative data and second by refining the machine learning model. In addition, we
wanted to give supplementary evidence on some of the commonly believed concepts
in clinical practice. Given the nature of our work the kind of evidence we can pro-
vide is both quantitative and qualitative and this can support or challenge conjectures
in other domains. Furthermore, we wanted to contribute to the understanding of the
relation between what can be seen in medical images and the symptoms that people
experience when affected by OA. This has the potential to deepen our understanding of
osteoarthritic sources of pain and ultimately can affect the direction of focus in clinical
trials.

1.3 Contributions

The main contributions reported in this thesis are as follow:

• The development of a fully automated landmark point detector for lateral
knee radiographs

• The extraction of radiographic features from those images and their use to auto-
matically diagnose the presence of structural OA

• The comparison between the two main radiographic views from a machine learn-
ing stand point and the exploration on the benefits of combining radiographic
features from multiple views to solve three OA related classification tasks

• The implementation and evaluation of a novel machine learning classifier called
“Indecisive Tree”. The exploration of optimisation methods of an already trained
indecisive forest based on back-propagation.

• The exploration of the relationship between manually graded radiographic
features and symptoms experienced by the participants of a OA study. The
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development of a model based on automatically extracted features capable of
performing as well as manual grades.

• In general, our work was the first one as far as we are aware to use large datasets
(around 20k images) in imaging for OA.

1.4 Outline of the Thesis

Chapter 2 provides an overview on knee osteoarthritis, its features and risk factors
together with the available treatments.

Chapter 3 presents a literature review on machine learning techniques in computer
vision and a more detailed description of the main approaches to study knee radiograph
when trying to determine the presence of OA.

Chapter 4 is the first chapter containing experimental results. We introduce the
novel lateral knee landmark point detector and show its effectiveness to extract struc-
tural features to discriminate OA affected knees from healthy ones. In addition, we
present experiments on combining features from both Lateral and PA radiographs. The
classification tasks involved prediction of onset of both structural and symptomatic
OA.

Chapter 5 introduces a novel classification method called “Indecisive Tree”. This
techniques generalises the behavior of a classic random forest by adding an indecisive
region to the space where optimal binary splits are made. Pros and cons of using this
technique are presented.

Chapter 6 describes the work on the relation between radiographic features and fre-
quent knee pain. We compare manual and automated assessments looking at mul-
tiple pain scores acquired at different time points and calculated from participants’
responses.

Chapter 7 sums up the contributions of this work and what can be concluded from
our findings. We propose possible natural directions for future investigation.



Chapter 2

Knee Osteoarthritis

This chapter includes an overview of knee osteoarthritis, describing its prevalence and
how it affects the daily life of patients. The review provides an introduction to princi-
ples of physiology of the knee joint, a detailed description of the main characteristics
of Osteoarthritis, its development in time, the factors that seem to increase the chance
of future onset of the disease and the treatments that are currently employed to reduce
the symptoms and increase mobility.

2.1 Structure of the knee joint

An illustration of knee anatomy can be found in Figure 2.1. In what follows we will
use the standard notation of medial side, meaning the one towards the centre of the
body and lateral side, facing away from the centre of the body. The structure of the
knee joint can be divided into several components. The first component is bone and
it is made of four different elements: proximal tibia, distal femur, fibula and patella.
The second component is cartilage, made of meniscus (medial and lateral, both located
between the tibia and the femur is an example of fibrocartilage) and articular cartilage
(tibial, femoral and patellar, covering the surface of each bone is the main example of
hyaline cartilage). The third component is the ligaments 2.2 (the cruciate and collateral
ligaments) that keep the other components of the joint together. The last component
is the synovial membrane (also called joint capsule) containing the synovial fluid, a
non-Newtonian fluid responsible for reducing attrition during movement.

The knee joint is the largest joint in the human body. It consists of what can be
regarded as two joints, the joint of the tibia and the femur (tibiofemoral joint) and the
one comprising patella and femur (patellofemoral joint). The tibiofemoral joint is the

26
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Figure 2.1: An illustration of the anatomy of the knee joint in its different components:
bone, articular cartilage and meniscus [115].

weight-bearing joint whose movement enables the leg to bend. Its stability is assisted
by the presence of cruciate and collateral ligaments. The patella is attached to the
quadriceps femoral muscles at the front of the tibiofemoral joint via the quadriceps
tendon.

There are two types of bone tissue in the human body: cortical bone and trabecular
bone. Cortical bone is the outer layer of any bone and makes around 80% of bone
mass. Its functions are organ protection, stability of structure and storage of calcium.
Trabecular bone is the inner layer of bone and can be mostly found at the extremities of
long bones such as the femur and tibia. It is a softer kind of tissue compared to cortical
bone and its composition makes it flexible to adapt to different load distributions.
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Figure 2.2: An illustration of the anatomy of the knee joint with particular emphasis
on ligaments. [51]

2.2 The Disease

Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people
around the world. The disease is associated with pain, stiffness, and loss of function.
It has been reported [36] that by 2030 around 20% of the American population will
be above the age of 65, and that half of them (35 million patients) will be at high risk
of developing OA, hence requiring huge amounts of public money for treatments and
surgery [15].

Despite its prevalence and severity, OA still remains poorly understood and a con-
dition for which there are limited effective treatments available [54], most of them just
reducing the severity of the symptoms. Researchers are as yet unsure what initiates
Osteoarthritis or in which tissues the pathology originates [9]. Originally, it was at-
tributed to a deterioration of the cartilage, although it is now known to be a disease
that affects all joint tissues, causing both degeneration and malformed restoration of
the joint.

It can be challenging to separate the structural changes due to aging from patho-
logical changes as a result of OA [17]. Up to a few decades ago, OA was regarded
only as disease related to aging, but now it has been established that the disease can



2.2. THE DISEASE 29

Figure 2.3: Examples of severe JSN and tibial osteopyte.

Figure 2.4: Example of a OARSI grade 2 sclerosis.

be developed at any age. It is often considered to be a condition with multiple causes,
making it harder to define and to establish a relationship between cause and effect.

There are a number of structural features of the knee joint that are related to OA.
The most relevant are joint space narrowing (JSN), which implies that the distance
between a pair of bones is not symmetrical in the medial and lateral side and is there-
fore reduced, causing increased attrition (Figure 2.3, left). The commonest form of
JSN appears in the medial tibiofemoral area. A second structural sign of OA is the
development of Osteophytes (Figure 2.3, right), small bony spurs that form around the
joint. Other common features are calcium deposits, sclerosis (Figure 2.4) and cysts, all
of which are linked to mechanical stress.
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Osteoarthritis usually develops in the following way1: first, articular cartilage of
both the femur and the tibia starts to break down, losing smoothness and causing dis-
comfort in movement. Osteophytes begin to develop on the edge of the joint. Os-
teophytes are considered to be a natural response of our body to the loss of cartilage.
Second, the articular cartilage begins to erode causing narrowing between the joints
and increased pain in flexion. Hyaluronic acid in the joint capsule loses density reduc-
ing its lubricative function together with the synovial fluid. At this stage subchondral
bone, located right below the articular cartilage has possibly been affected as well.
This type of bone is responsible for transferring oxygen and hydration to cartilage and
the attempt of the body to repair releases proteins and cytokines in the synovial fluid,
further lowering its density and efficacy, giving pain even in rest position. Third, osteo-
phytes increase in number and size and the cartilage deteriorates up to the point where
the bones touch each other, causing severe pain and impacting movement and lifestyle.

There are two recognized types of Osteoarthritis, depending on the cause: primary
Osteoarthritis and secondary Osteoarthritis. Primary Osteoarthritis, also called “wear
and tear”, is the most commonly diagnosed Osteoarthritis. It is mainly associated with
aging and with an excessive use of the joints. The increasing life expectancy worldwide
is likely to cause a larger portion of the population to suffer from this.

Secondary Osteoarthritis has exactly the same symptoms but it can develop at any
point in the life of an individual. The possible causes for secondary Osteoarthritis are
reported as risk factors in the following section.

2.2.1 Risk factors

There are a number environmental and mechanical factors that are linked with an in-
creased risk of developing OA.

Some of the more prominent risk factors are: injuries [33, 88], history of previous
fractures or operation of the joint has been proven to increase the chance of develop-
ing the disease; obesity [34, 80], weight-bearing joints are at increased stress levels
and this causes Osteoarthritis to occur and develop more rapidly; hormonal factors

[86, 74], hormones affect the way and the speed at which cartilage regeneration and
remodeling cycles happen; collagen deficiency [5], is a hereditary factor that causes

1While it is true that every individual experiences a different disease progression, the following
serves as a description of causality in Osteoarthritis and gives both physiological and mechanical in-
sights.
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increased risk of OA due to collagen being a critical component in the bone and car-
tilage formation; inactivity [84], a sedentary lifestyle leads to weight gain, which can
lead to osteoarthritis. Also, if you are inactive, you have weaker muscles and tendons
that surround the joint. Strong muscles help keep joints properly aligned and stable;
Genetics [101], having ancestors who had OA has shown to increase the chance to
develop it; inflammation from other diseases [103], diseases that cause inflammation,
such as rheumatoid arthritis, can increase your risk of onset of OA.

Other risk factors are currently being studied, but some of them are already widely
accepted by the research community. It is worth mentioning in this context the relation
between practicing sports at a professional level and the development of the disease
[94].

2.3 Available treatments

As mentioned earlier there is no cure for Osteoarthritis but a number of treatments
are available to reduce the symptoms, potentially slow down disease progression and
therefore limit the impact of the disease on patients’ lifestyles. The most prominent
treatments are: exercise, taking care of fitness is a crucial aspect when aiming for
healthy joints. There is evidence that having strong quadriceps can protect against knee
pain and slow down disease progression [95]. On the other hand, people who have OA
might tend to reduce their physical activities causing their quadriceps to weaken. This
is known to increase instability of the joint and accelerate erosion of cartilage. Another
treatment is adjusting diet in order to reduce the BMI. People who are overweight tend
to stress more the weight-bearing joints like the knee and this, combined with OA, can
deteriorate tissues faster.

Injection of hyaluronic acid, Analgesics and the Injection of steroids are three com-
mon ways to relieve pain symptoms caused by OA. Hyaluronic acid is naturally present
in the knee capsule to reduce friction. Nowadays, it is often extracted from rooster
combs. Analgesics are all-purpose pain killers but their effect is quite limited in time.
Steroids have a much longer effect compared to analgesics. Their consumption is only
advised in presence of severe pain. Knee replacement is the last resort and it is usually
done when the last stage of OA is diagnosed. This procedure is highly invasive and
expensive [89] and having an artificial knee does not solve the problem since surgery
is required again every ten years [28].
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2.4 Grading systems

Similarly to any other disease a branch of research is performed to explore reliable
and repeatable ways of assigning severity scores to the stage of OA. This can be
done by looking at different sorts of data: medical imaging modalities, physiologi-
cal data, mechanical data etc. The most widely used grading systems of structural
OA are based on the measurement of some of the osteoarthritic features described
before from plain radiographic images. That is mainly due to the fast and cheap ac-
quisition of radiographic images. Current methods for establishing the presence and
measuring the severity of OA from radiographs are split into two groups: quantitative,
where the grading makes use of specific measurements of the osteoarthritic features;
and semi-quantitative, where the assessor has to compare X-rays against some typical
reference representations of the different grades. For the semi-quantitative grading, the
most prominently used methods are: Kellgren-Lawrence [59] grading and atlas grad-
ing methods, such as the Line Drawing Atlas [85] and Altman et al. [4] grading, also
called OARSI atlas.

Atlas based grading systems are examples of individual scoring systems, where a
score is assigned to each of a set of OA features. The sum of those scores will be the
overall OA grade. The main drawback of using atlas methods is that it can be very
time consuming, since in order to assign each of the individual scores a radiograph has
to be compared with the reference images.

The KL grading system, as described in Table 2.1 is a composite grading method.
Radiographs showing the progression of KL grades from 0 to 4 is shown in Figures
2.5, 2.6 and 2.7. That means that the grade is assigned by looking at a set of fea-
tures simultaneously. Due to the composite nature of the grading, it can be difficult
to distinguish what grade a knee should be assigned. Some OA affected knees will
have different features developing at different rates, while this grading assumes paral-
lel progression of the structural signs. It is possible to find a knee joint with extremely
marked joint space narrowing but almost no signs of osteophytes. According to the KL
grading prescriptions, the knee should be considered either grade 1 or 2, despite the
lack of joint space indicating a more severe progression of the disease. An example of
a quantitative grading method is the Ahlback grading system [3].

Grading systems are assessed by performing experiments on the inter- and intra-
rater reliability, finding a measure of how often different graders agree on assigning
severity to OA. One of the most relevant studies with this aim was executed by Gossec
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Grade Description
0 Normal
1 Doubtful narrowing of joint space and possible osteophytic lipping
2 Possible narrowing of joint space and definite osteophytes
3 Definite narrowing of the joint space, moderate multiple osteophytes,

some sclerosis and possible deformity of bone ends
4 Marked narrowing of joint space, large osteophytes,

severe sclerosis and definite deformity of bone ends

Table 2.1: K-L grading scheme

Figure 2.5: KL grade 0 (left) and KL grade 1 (right)

et al. [46], where 1759 x-ray images were graded using KL, OARSI joint space narrow-
ing score and measurement of joint space width (JSW). Results on inter-rater reliability
was higher for JSW with value of kappa equal to 0.86 compared to 0.56 and 0.48 of
KL and OARSI, respectively. Furthermore, JSW had the highest intra-rater reliability
(kappa=0.83) while KL and OARSI resulted with only 0.61 and 0.71. Even though KL
grades have been frequently criticised for not being able to give a reliable measure of
this complex disease they are still the gold standard.

2.5 The MOST initiative

MOST (Multicenter Osteoarthritis Study) [36] is a longitudinal, prospective study of
Knee OA run in the United States and involves 3026 participants, men and women aged
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Figure 2.6: KL grade 2 (left) and KL grade 3 (right)

Figure 2.7: KL grade 4
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50 to 79 at baseline, with or at high risk of developing knee OA. Eligibility criteria in-
cluded those who were overweight or obese, with knee pain or with a history of knee
injury or operation. Each participant made one visit at baseline and then weight bear-
ing knee radiographs (two lateral and one posterior anterior) and MRI were taken at
months 15,30,60 and 85. The study collected a wide variety of data involving physical
data such as BMI and height, history of previous injuries, symptoms and medications
taken.

The assignment of grades was done in the following way. A panel of three experi-
enced readers was chosen. Radiographs taken at each visit were assessed by a pair of
readers and, in case of disagreement, the third reader was required to give an opinion
as well. Both KL and OARSI grades were assigned.



Chapter 3

Machine Learning for Osteoarthritis

This chapter is an overview of the techniques used in the project together with the cir-
cumstances of their creation. This will include aspects of machine learning, statistical
shape analysis and a literature review of various approaches to the automated study of
Osteoarthritis, both by looking at medical images and other data sources.

3.1 Object detection

The literature on object detection is very large since locating objects in images is a
key step in many applications, one of the main ones being object segmentation, the
problem of finding the contours of an object of interest in images. In this section, we
will try to give a brief overview of some of the most successful approaches.

The idea behind the earliest approaches for object detection was to take a fixed
template for the object shape and attempt to detect similarities between this template
and the image [91]. For instance, the template of a square would only need a rigid set
of the four corners and connecting edges to be able to accurately detect other squares.
This method works well if the object appears with approximately the same orientation
as the template, otherwise it will often fail.

3.2 Machine learning algorithms

Significant improvements were obtained with the increasing success and development
of machine learning techniques. Nowadays most state of the art techniques in the field
of computer vision and its application are machine learning based [70, 49, 120]. We
can think of data as a set of vectors, where the number of vectors represents the amount

36
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of examples of data instances coming from a source. Each of those vectors contains
measurements of characteristics (features) associated to the specific sample. For in-
stance, if we are describing a person, those measurements can be physical characteris-
tics such as height, weight, blood pressure etc. The length of those vectors represents
the number of features used to describe each sample.

The idea underlying machine learning is the exploration of whether it is possible to
split samples into groups based on the values of the features. That is done by finding
patterns in the way variables change alone and with respect to each other. Another
type of exploration is attempting to find relations between two sets of variables. An
example of this is predicting the value of the stock market the next day based on news
sentiment and information regarding the relationship between companies on the current
day (supplier, competitor, etc.).

There are at least two broad categories of learning: supervised and unsupervised,
depending of the information available in the data. If data instances also have la-
bels, expressing membership of some class, meaning that for every sample we know
the ground truth value of the variable to predict, then we are dealing with supervised

learning, and the task is to learn the functional relation between the features and the
labels. When labels are not available the data is unsupervised. One of the most natural
things to do is try to find clusters in the data in order to group together instances that
share some characteristics.

With regard to both supervised and unsupervised learning, a vast number of mod-
els have been designed and optimised. The most popular machine leaning models are:
Random Forest, an ensemble model made of a sequence of decision trees, each one
independently trained on a different bootstrap sample; Neural Networks, a model in-
spired by the way neurons transmit information in the human brain; Support Vector

Machines, which learn a nonlinear classifier by applying the so called kernel trick to
find hyperplanes with maximum-margin in separating different classes; Probabilistic

Methods, a very broad class of models, including Hidden Markov Models and Bayesian
Networks; Boosting Methods, techniques developed to increase performance of weak
classifiers (e.g. AdaBoost).

3.2.1 Cross Validation

Cross Validation(CV) is an evaluation procedure used to show the robustness of ma-
chine learning models. The idea is to divide the dataset in n folds. Then the model will
be trained and tested n times, each time training on a different combination of (n−1)
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folds and testing on the remaining fold. This will lead to n different measurements
of performance, which can be used to determine what is the average performance and
how much variation there is depending on different training datasets.

3.2.2 Machine learning for object detection

The most commonly adopted baseline for object detection is the Viola-Jones object
detector [112], that makes use of Haar features and AdaBoost [40]. Haar features
involve the creation of integral images to evaluate rectangular features in constant time.
AdaBoost is a technique used to make a series of cascade classifiers from a single weak
model. The method is quite fast in testing due to the fast computing of the features and
flexible enough to be applied in various contexts, but it is not very robust with regard
to rotation of the object or significant luminance variation.

Dalal and Triggs [26] designed an object detector by considering the problem as
a binary classification task: distinguishing object patches from background patches.
Histograms of Oriented Gradients (HOG) are computed for the whole image at multi-
ple resolutions and then score a set of patches extracted from scanning the image. The
task in this setting results in an extremely unbalanced binary classification problem be-
cause most images contain far more background pixels that object pixels. This method
performed very well on the INRIA dataset, but not as well on a more challenging
benchmark dataset, the PASCAL [32].

Further improvements were achieved by combining part-based models with the
Discriminative Training (D-T) algorithm [37] [38], giving a linear filter per part. The
idea was to combine the responses of the individual filters to find the location of the
object together with its parts. Part-based models were popular when initial investiga-
tions on object detection were carried out by the research community but they were
left aside due to lack of computational power.

3.3 Statistical shape and appearance models

Almost everything we can think of is an object, but every object can appear in the real
world in many different instances, that can be very different from each other, within
the same class of objects. That is why it is useful to have a model that can capture the
underlying variations of a class of objects and express them in a compact way.

Statistical shape models exploit the principle that all examples of some types of
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objects can be represented as a mean shape, plus some linear combination of modes of
variation.

The first thing we need to do is collect a dataset of images containing the object
of interest. Then, and this is probably the most crucial step, we have to choose a set
of landmark points. These points have to be well defined in every instance and they
have to characterize the object class in some sense. When the landmark points have
been chosen, we annotate them in each image, ending up with a set of 2n-dimensional
vectors (n is the number of landmark points) giving the coordinates of these points
within the corresponding image.

Since objects in images can appear in different sizes and angles, it is necessary
to align the shapes to a common reference frame that makes it possible to compare
them effectively using Procrustes Analysis [60]. After the alignment of the shapes
Principal Component Analysis (PCA) is applied. The principal components we obtain
correspond to the most relevant modes of variation in the data. Figure 3.1 shows the
first three modes of a shape model built from faces.

Figure 3.1: An example of three modes of a shape model.

In more detail, a shape model is a mathematical object that represents each shape
x = (x1,y1,x2,y2, . . .)

T in the following way

x = T (x̄+Psbs; t), (3.1)

where x̄ is a representation of the mean shape in a suitable reference frame, Ps is a
matrix containing a set of modes of variation and T applies a global similarity trans-
formation with parameters t.
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The shape parameters bs can be calculated from x using

bs = PT
s (T

−1(x; t)− x̄). (3.2)

3.3.1 Shape Model Matching

Building a shape model is useful to study the within-class variance of a set of objects
and it is widely used in medical imaging to find correlations between certain shapes
and different progressions of the disease of interest.

In this context a question that naturally arises is the following: can we build an
algorithm that, given a shape model and a new image, is able to find the outline of
the shape? That specifically means locating each one of the points that constitute the
outline of the shape. We can think of shape model matching as a case of Landmark
Point Detection with a special emphasis on shape features.

There have been various attempts to solve this task. In the following sections we
will introduce some of the most successful approaches: Active Shape Models (ASM),
Active Appearance Models (AAM) and Constrained Local Models (CLM).

3.3.2 Active Shape Model

The Active Shape Model (ASM) [21] is a well established technique to fit shape models
in new images.

First, we assume that we have already built a shape model and we initialise it in
the image we want to test. A poor initialization makes it very hard for the algorithm
to converge to a good fit. A good initialisation method is to run an object detector
over the image in order to obtain a good approximation of the location of the object.
We suppose now that the model has been initialised, so we have a first approximation
of where the landmark points are within the image. The algorithm then iteratively
looks for new locations for each of the points in the shape. When this model was first
developed, this was done by extracting one-dimensional profiles of pixel intensities
along the normal to the shape and then building a statistical model of the grey-level
structure given by them. The statistical model works under the standard assumption
that the data is distributed as a Gaussian. Current implementations of ASM use 2D
patches instead of one-dimensional profiles.

In the test phase of the search algorithm profiles extracted from the current approx-
imation of the landmark points are compared to a statistical model built from a training
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Figure 3.2: Search along sampled profile and evaluation of the fit [20].

set, using the following expression as cost of fit, known as Mahalanobis distance [76]
as shown in Figure 3.2.

f (gs) = (gs− ḡ)T Sg
−1(gs− ḡ), (3.3)

where gs is the vector whose elements are the grey-scale intensities sampled from
the profile, ḡ is the mean vector of the model and Sg is the covariance matrix. This
distance is related to the probability that gs is drawn from the distribution in the sense
that minimising f (gs) is equivalent to maximising the probability that gs comes from
the distribution.

The ASM model has two major limitations: it treats each model point as indepen-
dent when searching, and it only makes use of sparse image information around the
points. A partial solution to these was given by the Combined Appearance Models
[31], that model an object using parameters related to its shape but also the texture
intensities that describe it.

3.3.3 Combined Appearance Model

One of the main insights on ASM is that it does not incorporate all grey-level informa-
tion in its parameters. Combined Appearance Models (CAM) are an attempt to a better
use of textural information. They are based on a much more complex statistical model
that uses shape as one of its components. In this way we achieve better representation
power and this could bring more robustness.
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We start by assuming that we have built a shape model of variation, as described
in Equation 3.1. Then we warp each of the training images to match the mean shape
and we sample the texture information from the resulting objects. To minimise the
effect of lighting variation, we normalise the samples using a scale factor α and an
offset parameter β. After applying PCA to the set of vectors obtained, we end up with
a linear model that follows

g = T (ḡ+Pgbg; t), (3.4)

where ḡ is the mean grey-level vector, Pg is a matrix of eigenvectors, explaining the
textural variation and bg are texture parameters and T (:, t) is an affine transformation
(translation, rotation, scaling) with parameter vector t.

An Appearance model can be calculated by concatenating the two models and then
a further PCA. This is because shape and texture may be correlated.

b =

(
Wsbs

bg

)
, b = Qc, (3.5)

where Ws is a diagonal matrix of weights, the shape eigenvalues, for each shape pa-
rameter, bg are the texture parameters and c are the appearance parameters with corre-
sponding eigenvectors listed in Q.

3.3.4 Random Forest Voting Schemes

Random Forest Voting algorithms, as well as ensemble models in general, work on the
principle that a large number of separate independent votes will result in a majority
vote on the correct answer.

Algorithms of this kind are now very popular in object detection. Some of them
combine the idea of visual codebooks or part-based model to a voting scheme [41, 42].

3.3.5 Random Forest Constrained Local Models

We now focus on one of the implementations of a Random Forest Voting Scheme:
the Random Forest Constrained Local Model (RFCLM) [19], which has been shown
to produce accurate segmentation consistently with different radiographic datasets in
medical imaging [22, 72, 30, 108]. We assume we have a set of annotated images. The
idea is to sample patches around each of the landmark points and store the displacement
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of the center of the patch with respect to the location of the corresponding annotated
point.

This data is used to train a Random Forest Regressor per landmark point. Each for-
est has to learn the functional relation between the pixel intensities within the patches
and the associated displacement. Haar features are used to find the optimal split during
training.

During testing, we locally sample a set of patches, around the current approxima-
tion of each landmark point. If we feed them into the trained Forest each patch will end
in a leaf in each tree of the forest, making a set of predicted displacements. The idea
now is to store the locations predicted using the displacements as votes in a response
image with the same size as the original image, as shown in Figure 3.3.

Figure 3.3: CLMs are first initialised on the test image, then a point regressor focuses
on a specific region resulting in a response image per point.

We are looking for locations with high number of votes, but we also want the
overall outline of the points to agree with the shape model. This is done by setting a
constrained optimisation problem. The function to maximise is a function V counting
the number of votes of each of the coordinates in the voting image. Then we add a
constraint term giving an estimate of the log-likelihood of the shape given the shape
parameters associated to the current outline. This term penalises all those shapes that
are far from the mean shape, according to the Mahalanobis distance.

The RFCLM is both efficient and robust and has proven to converge even in cases
where the initialisation of the model is far from accurate. More details about this
method and the way it was used as part of the project are given in the following chapter.



44 CHAPTER 3. MACHINE LEARNING FOR OSTEOARTHRITIS

3.4 Automated Methods for studying OA

In this section we explore a variety of computer aided approaches for studying OA.
These include methods for automatically evaluating specific radiographic features such
as trabecular bone or joint space width; other methods were built trying to diagnose
and assess the severity of knee OA by determining the appropriate KL grade. Finally,
we will cover examples of techniques used to determine the chance of a person devel-
oping the disease in the future depending on the current state of the joint and how well
radiographic features can be used to discriminate both people experiencing pain and
people who will develop symptoms in the future from their corresponding controls.

It is possible to distinguish two main classes of algorithms: the semi-automated
and the fully automated. Any technique of the first kind needs at some point in the
process some sort of human intervention, usually by an experienced clinician. On the
other hand, fully automated methods do not need any human input.

3.4.1 Fractal Signature based methods

The first kind of approaches are those that study trabecular bone, specifically its vari-
ation in thickness and orientation by using Fractal Signature based methods. Knee
Osteoarthritis causes the trabecular bone of the tibia to thicken and this can be vi-
sualised in radiographs as horizontal striations. Calculating the fractal dimension of
texture of those regions can help establishing the degree of thickness due to the disease
and consequently its progression.

Kraus et al. [65] performed fractal analysis of the subchondral tibial plateau and
combined it with both radiographic measurements such as knee alignment and bone
mineral content and covariate features like age, gender and BMI. Using a total of 138
participants from the Prediction of Osteoarthritis Progression (POP) study, the work
showed that fractal analysis was able to predict JSN progression on the medial side,
while failing to perform as well on the lateral side. The best collections of features
found were the combination of radiographical features with age, gender and BMI with
the best AUC reported being 0.79.

Podsiadlo et al. [90] introduced a modified Hurst orientation transform (HOT)
method able to characterise trabecular bone texture with a better focus on descriptors
for roughness and anisotropy. The authors showed the effectiveness of the methodol-
ogy as well as its robustness with respect to the presence of noise, blurring effects and
other types of artifacts.
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Wolski et al. [117, 116] aimed to evaluate if there were statistical differences in
trabecular bone texture in radiographs between people with OA and those without it.
The methodology involves a novel use of the variance orientation transform (VOT),
compared to the HOT method. The VOT method was chosen because it allows us to
calculate the fractal dimension and signature in all directions efficiently. Results ob-
tained show that the fractal dimension of cases in several locations was lower than the
same variable for control patients, while VOT and HOT had the same reproducibility
of texture features and the same discriminative power for binary OA diagnosis 1.

Another fully automated method is the one of Stachowiak et al. [102]. In this work
knee and hand radiographs are studied. Our review will cover the steps applied to
analyse the knee joint. First image enhancement techniques are used and then Active
Shape Models retrieve the outline of the tibial plates. ROIs are then placed making
sure that there is no overlap with periarticular osteopenia, subchondral bone sclerosis
and fibula head. High agreement was shown between automatically found ROIs and
regions selected by clinicians (Similarity Index (SI)≥ 0.81). Fractal signature of these
ROIs is then calculated using the VOT method together with the Hurst coefficient and
the following features are extracted: the roughest part of the FS, texture aspect ratio
signature and texture direction signature. Differences in trabecular bone texture using
these measurements were evaluated between different groups (OA vs no-OA, cartilage
defects vs no cartilage defects and others) consistently finding significant differences.
As an example, texture extracted from OA affected knee radiographs were on aver-
age smoother and less anisotropic than textures in healthy joints. These results were
consistent with previous findings of similar studies as described above.

3.4.2 Joint Space Width

The first work in automated analysis of the Joint Space Width was by Dacre et al.
[25]. The authors used a standard square grid as template and a computer generated
refined grid in order to find areas of joint space. Those areas can then be measured just
by counting the number of pixels inside them. Similarly, the authors computed joint
space distance and showed that healthy knees have higher joint space width than knees
with OA.

An early semi-automated study of OA was developed by Duryea et al. [29]. The
idea was to design an algorithm to automate the measurement of the minimal Joint

1By this, we mean splitting the radiographic set into two groups: the ones with KL grade equal to 0
or 1 and everything else.
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Space Width in PA images. This work is semi-automated since the radiographs have
been manually cropped before training. The techniques used involve the application
of the gradient based Gabor filter and a region growing algorithm to find an approxi-
mate segmentation of femur and tibia. Then, the minimal distance point between the
contours is measured to obtain the JSW estimation. The reproducibility results are
perhaps the greatest merit of this work, while the algorithm was noted to not perform
in cases where complete surface contact was found between the femur and tibia since
the method looks at sub-chondral surfaces.

The KIDA algorithm [78] was proposed by Marijnissen et al. to measure a number
of osteoarthritic features from radiographs, JSW being one of them. The algorithm
works as follows: first, in order to derive bone density estimation and the magnifica-
tion value of the radiograph the user has to choose the reference wedge, from a set of
15 options, that best compares with the image texture. The software will automatically
compute a reference length based on it. A framework of four lines is then added to
manually locate the joint within the image. Those lines will also be used to find the
profile of the bone cartilage and the subchondral area. The operator then has to manu-
ally place a set of circles in order to more accurately define the interface of the articular
cartilage to get an approximation of the joint space width. Further manipulation can
be done by the software to obtain other measurements such as osteophyte margin and
joint angle.

The work of Grochowski et al. [47] uses lateral knee radiographs (one of the few
studies to do so) to build a semi-automated method for measuring the patello-femoral
JSW. The method is not fully automated because the user is required to crop the radio-
graph, obtaining a patch containing the patello-femoral joint. The Canny edge detector
[14] was applied to segment the lateral femoral epicondyle. The edge of the patella
was found by computing the intensity gradients of the image and then by determining
the brightest pixels in each horizontal scan line. The minimal JSW was computed by
comparing the x-axis coordinates of the outlines previously found. The repeatability
intra and extra observer was evaluated as 0.03±0.09 mm and 0.01±0.12 mm, respec-
tively and reproducibility after the collection of a new set of radiographs two weeks
later was measured as 0.09±0.73 mm for the same technician. The size of the dataset
used was small, including images taken from only 35 participants.
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3.4.3 OA Classification

Oka et al. [87] proposed the KOACAD software to measure various osteoarthritic fea-
tures. After correcting for magnification and reducing noise with a multiple application
of median filtering, the method applies Robert’s filter to extract an initial approxima-
tion of the outline of both femur and tibia. Then a rectangle containing the joint space
is found by applying a vertical neighborhood difference filter. Further application of
the same filter plus Canny filter gave the outline of the femoral condyles and the tibial
plateau. The middle line between the two profiles was chosen as the lower bound of
the JSW. The profiles of the bones found earlier were used as well to compute the joint
space area and the tibiofemoral angle. Further processing gives the osteophyte area as
well. The paper found that all measurements were highly correlated with osteoarthritic
grades (both OARSI and KL grades) and that medial joint space narrowing and varus
angulation were risk factors for the onset of knee pain.

The semi-automated work of Hladůvka et al. [50] is based on the manual input
of the user who has to select several ROIs from PA high resolution radiographs. The
resulting radiographic patches are analysed computing the Hurst coefficient and the
Shannon entropy of the texture. These measurements are then used as features in
order to perform binary classification of radiographic OA. Results found that a linear
classifier trained on only 5 features of the ones extracted leads to an AUC of 0.85,
higher than the state of the art at the time, but evaluated on a significantly smaller
dataset.

The work proposed by Gornale et al. [45] is a fully automated method that finds
the location of the knee joint by applying an Active Contour segmentation technique.
The region is analysed by extracting a large number of features (Haralick, mean, area,
entropy, Euler number of images, the first four moments and others). A random forest
classifier is then trained on the individual sets of features and on the combinations of all
descriptors. The best overall performance, with an accuracy of 87.92%, was achieved
by the fusion of all available features. Similarly to other cases, the model is evaluated
on a rather small dataset containing only a few hundred images.

Another fully automated method is the work of Thomson et al. [108]. The authors
worked with 500 posterior anterior knee joint radiographs to automatically classify the
presence of Osteoarthritis. To this aim they considered as part of the OA group all
those patients with KL grade equal to 2 or more and non-OA all the other patients. The
images were manually annotated using 74 points in order to build a shape model of
the tibiofemoral joint. A global object detector based on Random Forests was trained
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to find the approximate location of two of those points in order to initialise a RFCLM
to locate each individual point in the bony outline. Then, shape parameters were ex-
tracted together with textural information that quantifies the fractal signatures of tibial
texture. Results included an AUC of 0.845 for the fully automated method trained on
the whole set of features with the shape features proving to be more discriminative that
the textural ones.

Continuing from the previous work, Thomson et al. [109] used the old 74 point
model for PA knee radiographs, but extended it to specifically study osteophytes using
three different approaches. The first one augmented the model with 44 extra points
to capture the shape of osteophytes, where present. The second approach was based
on extending the profile defined by the original points by looking for strong edges
along the direction normal to the shape surface. This problem was modeled as an
optimisation problem and solved using dynamic programming. The third approach was
using 4 ROIs based on the 74 point annotation. Those ROIs were located in regions
of the joint were osteophytes are most likely to develop. Haar features calculated
from the texture of the ROIs were used to train random forest classifiers. Features
were associated to the first two approaches by building a statistical shape model of
the resulting shapes and extracting shape parameters corresponding to each particular
shape instance. The initial problem was to automatically say if an osteophyte was
present by splitting the corresponding OARSI grade into two groups (0-1 and 2-3). The
best achieved result for this problem was AUC 0.846±0.014, obtained by combining
all the available features. Using the same features and methods the authors perform the
standard KL grade classification task and Binary OA classification task on a dataset of
over 500 radiographs obtaining in both cases the state of the art of 50.2±0.5% (multi-
class accuracy) and AUC 0.931±0.002, respectively.

The work described in [56] was automated detection of OA using Infrared Ther-
mography images, that provide functional information on thermal and vascular condi-
tions of knee joints. The idea was to use a semi-automated feature extractor algorithm
based on patella-centering and then feed the found features to a SVM classifier. The
size of the dataset does not allow to draw definite conclusions and repeatability of the
experiments was not investigated, but this work showed the discriminative potential of
features extracted from Infrared Thermography images.

Shamir et al. [97] developed a method for automated detection of Osteoarthritis.
The knee joint was found by computing the Euclidean distances between 20 predefined
150×150 pixels knee joint patches and image patches of the same size extracted from
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a large number of locations in each image. The idea was then to extract a large set
of discriminative features such as: Zernike features, multi-scale histograms, first four
moments, Tamura texture features, Haralick features or Chebyshev statistics. Then
weights were assigned to each feature using Fisher scores, to give more importance to
features with more discriminative potential. A Nearest Neighbor classifier was trained
on the weighed features to predict the first 4 KL grades. This method distinguished
KL grade 3 and KL grade 2 from KL grade 0 with an accuracy of 91.5% and 80.4%,
respectively, on a dataset made of 350 PA radiographs. Feature extraction was very
time consuming, especially for Zernike features, making the method not suitable for
real time applications.

In a study by Anifah et al. [6], 303 PA knee radiographs collected by the OAI [69]
were first preprocessed by applying Contrast Limited Adaptive Histogram Equaliza-
tion and then segmented using Gabor kernel, template matching, row sum graph and
grey level center of mass method. Then the gray tone spatial dependency matrix was
built and 4 features, namely the contrast, correlation, energy and homogeneity were
extracted and fed to a Self Organizing Map (SOM) [63] for classification. The results
were a rate of 93.8% for KL-Grade 70% for KL-Grade 1, 4% for KL-Grade 2, 10%
for KL-grade 3 and 88.9% for KL-Grade 4.

CNN based methods

In recent years, we have seen increasing attention by the medical imaging research
community dedicated to develop CNN based architectures. Some of them were used
for classification purposes, others to look for specific structures in the data. In general,
they have shown to be able to solve some of the most relevant tasks in the field, finding
ways to get around the use of hand crafted features. CNNs provide features that are
learned from the data and consequently have potential to better describe phenomena.
Here, we will focus on Osteoarthritis Imaging applications.

The first work exploring the potential of deep learning in imaging for Osteoarthri-
tis, was the work by Antony et al. [8]. A patch containing the knee joint was found
by labeling positive patches of the centre of the joint and negative patches outside the
center of the joint. Sobel horizontal image gradients were used as features and the
binary classification was done using a linear SVM model. In testing phase, a sliding
window technique was used to find the centre of the joint in the unseen radiographs.
A patch of 300× 300 pixels was then extracted based on the smaller centre patch.
Two CNN approaches were then used. In the first one features were extracted from a
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VGG16 architecture trained on the OAI and a linear SVM was trained on those fea-
tures to classify radiographs based on their KL grade. The second approach fine-tuned
two architectures pre-trained on ImageNet replacing the top fully connected layer in
both instances. The best performing model was a linear SVM trained on features ex-
tracted from the last fully connected layer of a fine-tuned BVLC NET network. The
corresponding accuracy of 57.5% was the state of the art in KL grade classification.

A second work from the same group of authors [7] improved the model further with
two main adjustments. The first one was a knee joint detector based on CNNs. The
idea is to feed a radiograph and to get as output a binary segmentation mask describing
the location the knee joint within the image. Furthermore, the found patches are then
used to train Fully Connected Networks(FCN) for KL grade classification. The clas-
sification network was trained from scratch to minimise a combined classification and
regression loss (categorical cross-entropy and sum of squared differences). The per-
formance of this method achieved a multi-class accuracy of 61.9% further improving
on the state of the art.

The last and most recent work that uses CNNs is the one of Tiulpin et al. [110]. Us-
ing an automated method for locating the knee joint, the authors developed a collection
of three Deep Siamese networks using three different random seeds. All three networks
share the same architecture and take as input two smaller patches, one containing only
the lateral side of the joint and a second one being the flipped version of the medial
side. A softmax layer is responsible for weighting the outputs of the network and pro-
viding the final distribution over the KL grades. This work is the first one using the
MOST dataset for training and OAI for testing. Multi-class accuracy increases further
on previous work reaching 66.71%. Attention maps showing what areas in the im-
ages were important to lead to the prediction were also included, showing areas where
information about the disease is available.

3.4.4 OA Prediction

Here we focus our attention on studies whose aim was to look at longitudinal patterns,
looking at predicting future development based on current measurements.

The first study that is worth mentioning is of Kinds et al. [61]. The authors con-
sidered baseline participant of the CHECK cohort [114] with knee pain, and looked at
measuring several radiographic osteoarthritic features using the KIDA software. Multi-
variate regression was used to predict incidence of radiographic OA at a 5-year follow
up visit. The study compared whether adding radiographic features to demographic
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and clinical characteristics improved performance. The results showed the best sets of
features were the combination of osteophyte area and minimum joint space width with
demographic and clinical features (AUC of 0.74) but clinical OA development could
not be predicted more accurately using any radiographic measurement.

In the study from Bowes et al. [11] over 2000 MRI scans of the knee were seg-
mented using Active Appearance Models [18] allowing for measurements of subchon-
dral bone. Participants with OA showed an increase in bone area over time, while
controls remained overall stable. Bone was more responsive than more standard os-
teoarthritic features such as cartilage thickness and JSW.

In the work of Yoo et al. [119], the authors trained a Logistic Regressor and an Ar-
tificial Neural Network to predict future onset of radiographic and symptomatic OA,
just using features extracted from clinical data, without any radiographic image. The
features used included sex, age, body mass index, educational status, hypertension,
moderate physical activity and knee pain. The full dataset contained about 2500 pa-
tients from the KNHANES V-1 study. The Logistic regressor and the ANN predicted
radiographic OA with AUC of respectively 0.62 and 0.67 and symptomatic OA with
AUC of 0.70 and 0.76.

The same technique described in [97] was applied in [96] to detect future onset
of Osteoarthritis using a follow-up of approximately 20 years. The data used was
collected by the Baltimore Longitudinal Study of Aging [57]. In the experiments they
used just a few hundred images to train a classifier to distinguish between patients that
will develop OA with KL grade 3 from the ones that will not develop it at all, achieving
72% accuracy. Similar experiments were performed to distinguish whether a knee will
change to KL grade 2 from KL grade 0 or it will remain the same. The corresponding
accuracy was 62%, also finding that features extracted from the tibial spines had strong
predictive signal.

3.4.5 Pain

In this last section we cover studies looking for ways of predicting current and future
pain in Osteoarthritis.

Galvan et al. [43] used data from the OAI study to look at current radiographic OA
features and build a univariate logistic regression test to find out what features were
most associated with future pain. The study found that early osteophytes were the
feature with the highest association and, in contrast with previous analyses, joint space
reduction was not associated with future joint pain.
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Finally the work of Luna-Gomez et al. [75] studied the discriminative ability of
MOAKS (MRI Osteoarthritis Knee Score) to predict future knee pain. These scores
are manual grades assigned as part of the OAI study. The experiments were divided
into three time points all of which achieved significant association with future knee
pain. An AUC above 0.60 was reported in each of the experiments.



Chapter 4

Fully Automated Classification and
Prediction of Osteoarthritis

4.1 Lateral Knee Radiographs

The project started from the observation that lateral knee radiograph images are often
available or, even when they are not, they are easy, cheap and fast to acquire. Further-
more, the lateral view contains very informative features that cannot be read from PA
images. Several works in the field have emphasised the need for better use of the avail-
able resources and lateral radiographs are often cited as the main addition to explore
[79, 35]

4.1.1 Choice of Landmarks

The choice of the landmarks’ point locations was done in order to capture anatomical
landmarks. Additionally, equally spaced points were inserted between them to suf-
ficiently capture the shape profiles. The annotation was performed by one annotator
only, initially placing points by hand. Once the landmark point detector was perform-
ing reasonably well the software was used to speed up manual annotation.

4.1.2 Parameter Optimisation

When using the RFCLM algorithm, there are a number of parameters that can be op-
timised to best fit the data being used to train the model. These parameters relate to
various characteristics of the way the algorithm works and the way training and test-
ing images are treated, including the size of the images, and the necessary level of

53
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detail required to analyse the images. To achieve the best accuracy and efficiency of
the model, these parameters had to be carefully tuned by experimenting with different
value settings.

The most relevant parameters to tune in the RFCLM were:

• Frame Width, representing the size that the object of interest will have in the
reference frame;

• Patch Size, this parameter is highly related to the previous one and it encodes the
width of the sub-images that are sampled for training, hence containing all the
features used by the CLM;

• Maximum Displacements, this parameter defines the maximum pixel displace-
ment that training samples can have with respect to the corresponding landmark
point;

• Search Range Border defines the size in pixels of an extra border around the
mean shape point that the searcher can extract patches from;

• Optimiser Radius is the maximum distance allowed for points to be chosen as
candidates of landmark points when maximising the response image values con-
strained to the shape model.

4.2 Papers

The following works were considered state of the art at the time of submission in the
tasks that were approached in them. The first paper describes the development of a
landmark point detector to find the outline of the knee joint in lateral knee radiographs.
The found segmentations are then used to distinguish diseased knees from healthy
ones. An investigation of which features are most informative and what is the best way
to combine radiographic features was also performed.

The second paper looks at the combination of radiographic features from the two
views that are most commonly available. In this work we investigated whether concate-
nating these features improves performance and we looked at future pain prediction.
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Abstract

Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people
around the world. Since no cure has been discovered and considering the financial
impact on health systems, any attempt to understand more of this disease could reveal
new insights that would help develop new therapies. Lateral knee radiographs are often
ignored both by clinicians and the research community when trying to diagnose OA or
other diseases that affect the knee joint. Our goal is to show that this view has a con-
siderable potential. We present a fully automated method based on a Random Forest
Regression Voting Constrained Local Model (RFCLM) to discriminate radiographs of
people that have developed OA from people who have not. The experiments involved
models built on different combinations of the four shapes (patella, tibia, medial and
lateral femoral condyles) of the knee joint. We show that automated analysis of the
lateral view achieves classification performance comparable if not better than similar
techniques applied to the frontal view.
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4.2.1 Introduction

Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people
around the world. It has been reported [36] that by 2030 around 20% of the American
population will be above the age of 65, and that half of them (35 million patients) will
be at high risk of developing OA.

Since no cure has been discovered and considering the financial impact on health
systems [15], any attempt to understand more of this disease could reveal new insights
that would help develop new therapies.

OA is currently assessed from radiographs using the Kellgren and Lawrence (KL)
[59] grades from 0 to 4, where 0 represents normality and 4 the most severe stage of
OA. When a radiograph is taken clinicians assign a discrete KL grade based on features
in the image. This is time consuming, subjective and there are shortages of suitably
trained radiologists. There is an increasing need for reliable systems that can perform
the grading automatically.

We describe the first fully automated system for classifying OA and KL grades
from lateral radiographs of the knee. We evaluate its performance and show that
analysing the shape of bones in lateral images gives better results than using the shape
in PA (frontal) views. The lateral view is often ignored both by clinicians and the re-
search community when trying to diagnose OA or other diseases that affect the knee
joint. We show that this view has a considerable potential when trying to assess the
state of OA from a radiograph.

We used a Random Forest Regression Voting Constrained Local Model (RFCLM)
[19], [22], [72] to locate points in both single bones and combinations of bones. We
used an object detector based on Random Forests (RF) to automatically initialise the
RFCLM on each image.

The RFCLM returns the found points and the associated shape parameter vector.
We used the components of these vectors as features on which to train a Random Forest
classifier.

In this work we are interested in the level of classification performance that is
achievable using just information coming from the shape of the bones in a lateral knee
radiograph. We used features related to the texture only to train our Random Forest
landmark point detector.

We performed experiments on both binary (OA vs No OA) and 5 class (the 5 K-L
grades) classification, using shape information from the manual annotation and from a
fully automated system.
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Our approach is similar to that in [108], where the authors studied Posterior-Anterior
(PA) knee radiographs to retrieve shape and texture features. They used a RFCLM on
a 74 points model and extracted features of tibial texture. Other approaches are [97]
and [6], where image processing techniques are applied to PA knee radiographs: in
the former the authors extracted image content descriptors and image transforms to
use as features in a Nearest Neighbor setting; the latter applied the unsupervised self
organizing maps based on Gabor filter to classify the K-L grades. In [56], the authors
used medical infrared thermography of the PA view to extract features on which train
a SVM classifier.

4.2.2 Method

Our model is made of four different sub-shapes: the patella (21 points), the lateral
femoral condyle (24 points), the medial femoral condyle (25 points) and the tibia (32
points). The whole knee model is then made of 102 points (Figure 4.1).

We analysed different combinations of these shapes in order to understand which
features are most informative.

4.2.3 Statistical Shape Model

A shape model [20] can be obtained by applying the Principal Component Analysis
(PCA) to a set of aligned shapes (vectors). We used a linear model of shape variation,
that represents each shape x = (x1,y1,x2,y2, . . .)

T in the following way

x = T (x̄+Pb; t), (4.1)

where x̄ is a representation of the mean shape in a suitable reference frame, P is a matrix
containing a set of modes of variation (Figure 4.2) and T applies a global similarity
transformation with parameters t.

The shape parameters b can be calculated from x using

b = PT (T−1(x; t)− x̂). (4.2)

These parameters were the features in our classification tasks.
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Figure 4.1: An example of the 102 landmark points used to build the shape model.

Shape Model Matching

The first step was to build a global searcher able to find the individual bones within
each image. We used a Hough Forest approach [41]. We defined a bounding box
starting from a pair of landmark points and then sampled from each image a set of
23×23 patches with different displacements, angles and scales with respect to the lo-
cation of the bone of interest. We then trained a Random Forest to learn the functional
relation between the pixel intensities in the image patches and the corresponding dis-
placements. This RF is scanned over a new image at multiple scales and orientations,
voting for likely knee locations. The output of the global search is a bounding box with
two reference points, from which we initialise each model (Figure 4.3).

In the second step we improve the fitting of the model, by applying a sequence of
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Figure 4.2: The first (above) and the second (below) shape model modes of variation.

increasingly refined Constrained Local Models. The idea is to independently train a
point detector per landmark point.

In the search phase we sample a set of patches around the current approxima-
tion of the point location. We feed those patches into the Random Forest, receiving
a prediction per patch and tree for the location of the landmark point of interest. We
combine all the predictions in a voting image Vi() for each point i. The shape model is
used to regularise the result, finding the parameters b, t which maximise the total votes
Q(b, t) = ∑

n
i=1Vi(T (x̄i +Pibi; t)). Our implementation involved a sequence of three

increasingly refined CLM, with frame width equal to 50, 100 and 200 pixels.

Classification

The approach above enables us to fully automatically locate the points of the outlines
of the bones in new images. From both manual and automated annotation we can find
shape parameters from the statistical shape model. The shape parameters are weights
representing which modes of variation were found in the data instance and with what
magnitude.

We train Random Forests on combinations of shape parameters, in order to predict:
(a) OA vs non-OA, (b) the KL grade. Our implementation involves 100 trees per Forest
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Figure 4.3: An example of the bounding boxes found by the Random Forest bone
detector.

and we use two stopping criteria when building the trees: the maximum depth that a
tree can have and the minimum entropy in the data. As soon as one of these two
conditions is met we stop splitting.

4.2.4 Results

Data

Our dataset is made of 300 lateral knee radiographs, 60 images per grade, from the
MOST (Multicenter Osteoarthritis Study) dataset [36]. MOST is a longitudinal, prospec-
tive study of Knee OA run in the United States and involves 3026 participants, men
and women aged 50 to 79. Each participant makes one visit per year, with about 5
visits in total. The dataset also contains various information recorded at each visit, in-
cluding the KL grades from 0 to 4, indicating respectively: normal, doubtful, minimal,
moderate, severe.

For the binary classification task the grades have been split into two groups: non-
OA, KL (0,1), and the OA group, KL(2-4).
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Table 4.1: Point detection results (mm)

Shape Mean Median 90%
Patella 0.24 0.17 0.45
Lateral Femoral Condyle 1.04 0.72 2.21
Medial Femoral Condyle 1.18 0.86 2.35
Tibia 0.98 0.81 2.39

Landmark point detection

Finding Landmark points in a radiograph is challenging due to the way bones overlap
in the projection. The lateral view is even more challenging than the frontal view since
the two femoral condyles look almost identical, making them difficult to distinguish
even for an experienced clinician. Table 4.1 contains the results of experiments eval-
uating the accuracy of the local search for each of the bony outlines shown in Figure
4.1. The latter results were obtained by training the model on 200 examples and testing
on the remaining 100.

Our model performs well on the patella, where the error on 90% of the examples
is less than 0.5mm. This is probably due to the lower spatial variation of the land-
mark points describing this shape. The accuracy of detection of the other shapes is
considerably worse, though we always have a median error of less than a millimeter.

OA Classification

The results shown in this section are obtained performing a 5-fold cross validation. For
both binary and 5-class classification we trained a Random Forest made of 100 trees.

Our experiments have been performed first looking at the shape parameters from
each shape, both using manual and fully automated annotation. We also concatenated
different combinations of the points and then built the shape model on the concatenated
points. In this way we can assess what shapes or combination of shapes contain more
information and how big is the loss in performance when we move from a manual
annotation to a fully automated one.
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Table 4.2: AUC for manual and fully automated annotation. Results from concatenat-
ing points.

Shape Manual Fully Automated
Patella 0.759±0.021 0.651±0.008

Lateral Femoral Condyle 0.666±0.02 0.632±0.007
Medial Femoral Condyle 0.671±0.011 0.711±0.016

Tibia 0.771±0.008 0.73±0.017
Patella+LCon 0.72±0.005 0.617±0.013

Patella+LCon+MCon 0.754±0.011 0.714±0.014
Pat+LCon+MCon+Tibia 0.842±0.017 0.711±0.013

We also used the combinations of different shape parameters, independently ob-
tained from different shape models, as features.

Binary Classification. As we can see from Table 4.2, the Tibia and the Patella are the
two shapes whose features achieve the best individual classification accuracy. The best
overall performance is obtained by the whole knee model in the manual annotation and
by the individual tibia model in the fully automated system. The AUC for the Medial
Femoral Condyle is higher in the fully automated system than in the model trained on
features built on manual annotation.

The best results for the fully automated system were achieved when we concate-
nated the shape parameters of different shapes, calculated independently. In this way
we ignore the relative position of the different shapes. The results corresponding to
these experiments are shown in Table 4.3. The overall best binary classification per-
formance of our fully automated system is achieved by the knee model given by the
concatenation of the shape parameters of the four sub-shapes. Figure 4.4 shows the
results of the concatenation of the different shape parameters with manual annotation.
If we add the lateral femoral condyle parameters to the patella we obtain a ROC curve
that is consistently lower than the one related to just the patella. Figure 4.5 shows the
ROC curves corresponding to the different combination of shapes obtained by concate-
nating the shape parameters. Concatenating shape parameters leads to improved ROC
curves in each case.
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Figure 4.4: The ROC curves corresponding to the different concatenations of the shape
parameters based on manual annotation.

We are not aware of any other work investigating the potential of the lateral view.
Results using a similar approach on 500 Posterior-Anterior (PA) radiographs from the
OAI dataset [69] are given in [108].

The comparison of their best results using shape parameters with our performance
is reported in Table 4.4. Although we are dealing with results coming from different
views and different datasets this suggests that models trained on the lateral view show
great promise.

5-Class Classification. In this section we describe the results corresponding to the
5-class classification task, a considerably more challenging problem. In this case we
train a Random Forest classifier to predict the KL grade from the shape parameters.
In Table 4.5 we show the results for this new task in terms of the proportion of data
correctly classified.

The individual shapes whose shape parameters perform best are the Patella from
manual annotation and the Medial Femoral Condyle for the fully automated system.
We see again two examples where the fully automated system has better performance
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Table 4.3: AUC for concatenation of shape parameters deriving from individually
trained shape models.

Shape Manual Fully Automated
Patella+LCon 0.755±0.014 0.695±0.007

Patella+LCon+MCon 0.785±0.018 0.719±0.017
Knee 0.827±0.006 0.794±0.015

Table 4.4: A comparison between our best results and the ones in [108].

Shape Our Method [108]
Manual 0.842±0.017 0.796

Fully Automated 0.794±0.015 0.789

Table 4.5: Proportion of the data correctly classified for manual and fully automated
annotation. KL-grade classification problem.

Shape Manual Fully Automated
Patella 45.3±3.3 29.8±1.3

Lateral Femoral Condyle 32.6±1.2 30.7±1.7
Medial Femoral Condyle 35.6±1.6 36.2±3

Tibia 30.9±2.8 32.1±0.7
Patella+LCon 40.6±0.8 33.7±1.6

Patella+LCon+MCon 45.3±2.8 37.9±1.7
Knee 47.9±0.8 43.9±1
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Figure 4.5: The ROC curves corresponding to the different concatenations of the shape
parameters based on fully automated annotation.

than the manual system. However, the best overall performances for both annotations
are achieved by the full knee model. For completeness we also report the confusion
matrices for both knee models (Tables 4.6 and 4.7).

With regard to the manual annotation (Table 4.6), radiographs with grade 0 were
easiest to classify. It is encouraging to observe that in the vast majority of instances
the mislabeled images were assigned to grades close to the ground truth.

Table 4.7 is the confusion matrix corresponding to the fully automated model. In
this case grade 0 turned out to be the hardest to classify, being often mislabeled with
grade 1 and 2. Conversely, the fully automated model performs better than the manual
one in classifying grade 1 and 2 and they achieve exactly the same accuracy on grade
3.

The proportion of data correctly classified by the model using concatenated shape
parameters is reported in Table 4.8. We observe an overall increasing trend when
adding more shapes, but unlike what we saw with binary classification the results on
automated annotation are consistently worse if compared to the ones obtained by con-
catenating the different annotations. The overall best results are achieved both by
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Table 4.6: Confusion Matrix of the full knee model built on manual annotation (All
standard deviations less than 3.2%)

Class 0 Class 1 Class 2 Class 3 Class 4
Class 0 55.3 19.7 12.5 9.2 3.4
Class 1 21.8 45.7 20.0 8.6 3.9
Class 2 17.5 9.5 49.2 11.1 12.7
Class 3 14.7 9.0 13.3 38.3 24.7
Class 4 8.8 8.4 8.8 23.1 50.9

Table 4.7: Confusion Matrix of the full knee model built on fully automated annotation
(All standard deviations less than 2.5%)

Class 0 Class 1 Class 2 Class 3 Class 4
Class 0 33.6 23.4 20.3 14.9 7.8
Class 1 17.9 47.5 16.4 6.4 11.8
Class 2 12.1 13.7 50.8 14.6 8.9
Class 3 13.7 14.0 16.7 38.3 17.3
Class 4 8.1 12.8 14.4 15.9 48.8
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Table 4.8: Proportion of the data correctly classified for concatenations of shape pa-
rameters deriving from individually trained shape models.

Shape Manual Fully Automated
Patella+LCon 45.8±2.8 32.4±1.9

Patella+LCon+MCon 47.1±0.7 35.6±2.3
Knee 47±1.6 39.2±1.4

the manual and the automated system by the full knee models built on the concate-
nated point annotations, with a proportion of data correctly classified of respectively
47.9±0.8% and 43.9±1%.

4.2.5 Conclusion

We have shown the first attempt at building a fully automated system to classify OA and
OA grades using shape information from lateral knee radiographs. The results suggest
that the lateral view contains very informative features that can achieve performance
of the same level if not better to that of the PA view. One of the reasons for this is that
one of the bones that is most affected by knee OA, the patella, is clearly visible in the
lateral view, but it is obscured by the femur in PA images.

There is still a great room for improvement in fully automated OA diagnosis. In
future work we will use a combination of shape and texture parameters for the lateral
view. Informative texture features can be found near the tibial spines and, in general,
in all the locations that are most likely to develop osteophytes. When concatenating
shape parameters coming from different models it would be interesting to apply some
sort of feature selection, in order minimise the noise in the data. Furthermore, it is
worth investigating a way of concatenating features from both views.

Finally, we will be studying techniques able to quantify the risk for a patient to
develop OA in the near future given the current state of the joint.
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4.3 Combining features from both radiographic views

One natural question that arose from the previous study was whether simply combining
radiographic features from lateral and PA image could improve performance at clas-
sifying if a person had knee OA. Furthermore, several other learning tasks could be
attempted such as future radiographic OA prediction and onset of knee pain. In addi-
tion, the following work aimed at providing the first direct comparison of the features
of the two views, while the previous work was done with PA images of the OAI dataset
and lateral images from the MOST dataset.
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4.3.1 Abstract

Knee Osteoarthritis (OA) is the most common form of arthritis, affecting millions of
people around the world. The effects of the disease have been studied using the shape
and texture features of bones in Posterior-Anterior (PA) and Lateral radiographs sep-
arately. In this work we compare the utility of features from each view, and evaluate
whether combining features from both is advantageous. We built a fully automated
system to independently locate landmark points in both radiographic images using
Random Forest Constrained Local Models. We extracted discriminative features from
the two bony outlines using Appearance Models. The features were used to train Ran-
dom Forest classifiers to solve three specific tasks: (i) OA classification, distinguishing
patients with structural signs of OA from the others; (ii) predicting future onset of the
disease and (iii) predicting which patients with no current pain will have a positive
pain score later in a follow-up visit. Using a subset of the MOST dataset we show
that the PA view has more discriminative features to classify and predict OA, while the
lateral view contains features that achieve better performance in predicting pain, and
that combining the features from both views gives a small improvement in accuracy of
the classification compared to the individual views.
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4.3.2 Introduction

Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people
around the world, the chance of developing the disease being particularly high in older
people. It has been reported [36] that by 2030 around 20% of the American population
will be above the age of 65, and that half of them (35 million of patients) will be at high
risk of developing OA, requiring a large amount of public money [15] for treatments
and surgery.

The most common signs of OA are: osteophytes, bony spurs that grow on the
bones of the spine or around the joints, joint space narrowing (JSN) and calcium de-
posits. Painkillers and lifestyle changes are the only therapies currently available and
eventually most patients have to undertake a total or partial joint arthoplasty.

OA is currently assessed from radiographs using the Kellgren and Lawrence (KL)[59]
grades from 0 to 4, where 0 represents normality and 4 the most severe stage of OA.
When a radiograph is taken clinicians assign a discrete KL grade based on features
in the image. This is time consuming, subjective and there are shortages of suitably
trained radiologists. There is an increasing need for reliable systems that can perform
the grading automatically. Detecting knee OA and assessing its severity are crucial
step for clinical decision making and a reliable prediction of the disease progression.

Current automated systems focus on the PA view, but research [68] indicates the
lateral knee view adds information about pain, prediction of disease and other mea-
sures. It also allows better analysis of disease by capturing features missed in the PA
angle.

We have developed fully automated systems to analyse the shape and texture of
bones in both lateral and PA knees. The goal of this work is to compare which view
gives the most informative features for studying OA, and to explore whether better
results can be achieved by combining information from both views.

This work follows two different ones [82, 108] in automated OA diagnosis. In the
first one the authors built the first automated system to classify OA using lateral knee
radiographs. This system was built on the MOST [36] dataset, the only large dataset
associated to a longitudinal study where at each visit both lateral and PA radiographs
are acquired. This work showed that shape features extracted from lateral radiographs
have promising discriminative capabilities, but lacked direct comparison with PA ra-
diograph on the same dataset. The second work studied Posterior-Anterior (PA) knee
radiographs from the OAI dataset [69] to retrieve shape and texture features. They
used a RFCLM on a 74 points model and extracted features of tibial texture.
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Other approaches as the ones of Shamir [97] and Anifah [6], where image process-
ing techniques are applied to PA knee radiographs: in the former the authors extracted
image content descriptors and image transforms to use as features in a Nearest Neigh-
bor setting; the latter applied the unsupervised self organizing maps based on Gabor
filter to classify the K-L grades. In the work of Jin [56] , the authors used medical
infrared thermography of the PA view to extract features on which train a SVM classi-
fier.

Our work aims at combining features from both lateral and PA knee radiographs.
For both lateral and PA radiographs the method was the following: we manually an-
notated a few hundred images with a set of landmark points, obtaining a collection of
discrete shapes, from which we built statistical shape and appearance models. We used
a Random Forest Regression Voting Constrained Local Model (RFCLM) [19, 22, 72]
to locate points in both single bones and combinations of bones. The detection of a
ROI containing the joint was done using an object detector based on Random Forests
(RF) to automatically initialise the RFCLM on each image.

Once an automated annotation was found, we extracted shape, texture and appear-
ance parameters and combined them to solve three tasks related to OA: (i) OA classifi-
cation, distinguishing patients with structural signs of OA from the others; (ii) predict-
ing future onset of the disease and (iii) predicting which patients with no current pain
will have a positive pain score later in a follow-up visit.

4.3.3 Methods

Our lateral knee model is made of four different sub-shapes: the patella (21 points),
the lateral femoral condyle (24 points), the medial femoral condyle (25 points) and
the tibia (32 points). We considered the lateral femur as the union of the two femoral
condyles (49 points). The whole knee model is then made of 102 points (Figure 4.6).
In this work we ignored the points of the patella because there was not a corresponding
model for the PA view.

On the other hand, the PA model is made of two shapes: the femur and the tibia
(37 points each, for a total of 74 points).

Appearance Model

The way we extracted features was by building an appearance model. Combined Ap-
pearance Models (CAM) [20] are an attempt at a better use of textural information
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Figure 4.6: An example of the landmark points used to build the two shape models.

and they are based on a statistical model that uses shape as one of its components. In
this way we achieve better representation power compared to a shape model and this
could bring more robustness. Such a model incorporates non redundant information of
the shape and the texture of the object of interest. They are built by first retrieving a
statistical shape model of the knee.

A shape model is a mathematical object that represents each shape x=(x1,y1,x2,y2, . . .)
T

in the following way
x = T (x̄+Psbs; t), (4.3)

where x̄ is a representation of the mean shape in a suitable reference frame, Ps is a
matrix containing a set of modes of variation and T applies a global similarity trans-
formation with parameters t.

The shape parameters bs can be calculated from x using

bs = PT
s (T

−1(x; t)− x̄). (4.4)

In order to build an appearance model we start by assuming that we have built a
shape model of variation, as described in Equation 4.3. Then we warp each of the
training images to match the mean shape and we sample the texture information from
the resulting objects. To minimise the effect of lighting variation, we normalise the
samples using a scale factor α and an offset parameter β so that the mean of the pixel
values is zero and the sum of their squares is unity. After applying PCA to the set of
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Figure 4.7: The mean appearance of the lateral (left) and Posterior-Anterior (right)
models.

vectors obtained we end up with the linear model that follows

g = T (ḡ+Pgbg; t), (4.5)

where ḡ is the mean grey-level vector, Ph is a matrix of eigenvectors, explaining the
textural variation and bg are texture parameters. The number of texture parameters was
chosen to be constantly equal to 30.

An Appearance model, as shown is Figure 4.7, can be calculated by concatenating
the two models and then via a further PCA. This is because shape and texture are often
correlated.

b =

(
Wsbs

bg

)
, b = Qc, (4.6)

where Ws is a diagonal matrix of weights, the shape eigenvalues, for each shape pa-
rameter, bg are the texture parameters and c are the appearance parameters with corre-
sponding eigenvectors listed in Q.

Object Detection and Shape Model Matching

The first step in the segmentation of the bones was to build a global searcher able to
find the individual bones within each image. Our implementation used a Hough Forest
approach [41]. We defined a bounding box starting from a pair of landmark points and
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then sampled from each image a set of patches with different displacements, angles and
scales with respect to the location of the bone of interest. We then trained a Random
Forest to learn the functional relation between the pixel intensities in the image patches
and the corresponding displacements. This RF is scanned over a new image at multiple
scales and orientations, voting for likely knee locations. The output of the global search
is a bounding box with two reference points, from which we initialise each model
(Figure 4.8).

Figure 4.8: An example of the bounding boxes found by the Random Forest bone
detector.

In the second step we improve the fitting of the model, by applying a sequence of
increasingly refined Constrained Local Models. The idea is to independently train a
point detector per landmark point. Each model uses regression-voting trees to predict
point displacements from patches of image texture and constrains the points using a
shape model. The algorithm has been used previously to find hips and knees [73] from
radiographs.

In the search phase we sample a set of patches around the current approxima-
tion of the point location. We feed those patches into the Random Forest, receiving
a prediction per patch and tree for the location of the landmark point of interest. We
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combine all the predictions in a voting image Vi() for each point i. The shape model is
used to regularise the result, finding the parameters b, t which maximise the total votes
Q(b, t) = ∑

n
i=1Vi(T (x̄i +Pibi; t)). With regard to the lateral view, we used a different

segmentation model for each of the three shapes involved. Each of those models in-
volved a sequence of three increasingly refined CLM, with frame width equal to 50,
100 and 200 pixels. The frame widths associated to the PA radiographs were 50, 200
and 500, the first two aim to find the whole knee shape at once while the last one
improving the fitting of tibia and femur separately.

The RFCLM is trained on manually annotated points placed around the shape out-
lines. We used 500 images from the MOST dataset to train the lateral RFCLM and 500
images from the OAI dataset for the PA model.

Table 4.9: Number of features per each shape and feature type.

Lateral view PA view

Shape Texture App. Shape Texture App.

Femur 30 30 50 18 30 37

Tibia 20 30 42 19 30 40

Knee 44 30 55 35 30 51

Extraction and combination of the features

The approach above enables us to fully automatically segment the outlines of the bones
in new images. We can find shape, texture and appearance parameters given the points
from the statistical shape model.

In this work we explore how the parameters from different structures and views
can be combined to most effectively classify the disease or pain status of the knee. To
combine parameter vectors we simply concatenate them.

4.3.4 Results

The results shown in this section are obtained performing a 5-fold cross validation.
For all the classification tasks introduced above we trained a Random Forest made of
25 trees. We show the performance of our technique by giving the areas under the
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Receiver Operating Characteristic (ROC) curves (AUC) for each bone and view or
combinations of features.

Data

The images were taken from the Multicentre Osteoarthritis Study (MOST) dataset.
This is a longitudinal prospective study that collected data from 3026 participants with
a 7-year follow-up. The data used in this work only considers data up to 30 months
after baseline (second visit). Lateral and PA radiographs have been collected at each
time-point for both knees. For the binary classification task the grades have been split
into two groups: non-OA, KL (0,1), and the OA group, KL (2-4). KL grades and
reported pain within the last 30 days are used as outcomes in the experiments, and
different subsets of the data are used to solve the tasks of interest: (i) OA classification,
using 4628 OA (KL ≥ 2) and 6805 non-OA images; (ii) OA prediction, using 3234
baseline images with no OA (KL≤ 1) of those 272 develop OA within 30 months and
2962 do not develop OA; (iii) pain prediction, 845 knees with no pain at baseline with
478 later developing pain and 367 not developing pain.

In the following tables, the best results for the lateral view , the PA view and the
combined view are highlighted.

OA Classification

The results of the automated diagnosis are shown in Table 4.10. In general, features
extracted from the PA view perform better than those of the Lateral view. Furthermore,
in various instances combining features of the two views achieved AUCs higher than
both the individual models. However, the best overall AUC of the combined model
is only as good as the best AUC of the PA model, in both cases corresponding to the
appearance features of the full knee model. Finally, texture in all but one instance
performes better that shape and appearance parameters in almost everytime perform
better that both shape and texture alone.

OA Prediction

The accuracy of predicting future onset of structural OA is shown in the following
Table 4.11. Again, in most cases the PA view has better performance than the lateral
view. Moreover, features from the combined model are often more discriminative only
by a small margin compared to the ones of the individual models. Similarly to the
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Table 4.10: Binary OA classification. AUC for the two individual views and their
concatenation.

Lateral view PA view Lateral + PA views

Shape Texture App. Shape Texture App. Shape Texture App.

Femur 74±0.1 80.9±0.01 82.3±0.01 78.7±0.1 87.1±0.1 87.3±0.1 81±0.1 87.9±0.1 87.7±0.1

Tibia 72.3±0.01 79.2±0.01 81±0.2 78.4±0.2 89±0.1 88.9±0.1 80.5±0.1 89.1±0.1 89±0.01

Knee 81.3±0.2 82.7±0.01 85.3±0.2 89.6±0.1 89.4±0.1 90.4±0.1 89.7±0.2 89.6±0.1 90.5±0.01

Table 4.11: Prediction of future onset of OA. AUC for the two individual views and
their concatenation.

Lateral view PA view Lateral + PA views

Shape Texture App. Shape Texture App. Shape Texture App.

Femur 57±0.6 57.4±0.8 58±0.8 57.5±0.1 62.4±1.2 60.3±0.8 58.9±0.5 63.1±1.1 60.2±1.2

Tibia 54.1±1.3 55.2±1 53.1±0.1 59.6±0.2 65.1±0.4 64.3±1.2 59.7±0.8 62.6±1 60.4±0.5

Knee 54.8±0.8 56.3±0.5 56.6±1.1 60.3±0.5 64±0.6 63±0.5 60.2±0.8 63.2±0.9 62.1±0.6

previous table in most cases shape is less discriminative that texture, that in turn is less
discriminative than appearance features. The appearance features of the femur have the
highest AUC of lateral view features, while the texture features or the tibia have the
highest AUC of the PA view and the highest overall.). While texture features perform
consistently better than shape features, the performance often decreases when using
appearance features.

Pain Prediction

Predicting future onset of knee joint pain is the most challenging of the three tasks.
Pain scores are very subjective and finding patterns in the way pain develops with time
has proven to be extremely difficult. Results of this task are shown in Table 4.12.

Unlike the previous experiments, features extracted from lateral knee radiographs
show consistently better performance than the ones of the PA view. Furthermore, on
average combining the two sets of features does not seem to increase the performance.
Nevertheless, the best overall AUC 56.9± 0.1 is achieved by the combination of tex-
tures features of the femur. The appearance features of the femur again have the highest
AUC of lateral view features, while the texture features or the femur have the highest
AUC of the PA view.
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Table 4.12: Prediction of future pain. AUC for the two individual views and their
concatenation.

Lateral view PA view Lateral + PA views

Shape Texture App. Shape Texture App. Shape Texture App.

Femur 53.6±1.1 54.9±1.7 55.7±1.3 48.3±0.8 56.8±1.3 53.8±0.1 52.6±1.1 56.9±0.1 55.1±0.2

Tibia 54.1±0.5 53.5±1.2 55.4±0.2 51.5±1.2 52.9±1.3 53.3±1.2 55.4±0.9 55.6±1.6 54.8±0.7

Knee 53.1±2.6 54.7±0.8 55.3±1.8 48.5±1.1 52.2±0.8 52.4±1.7 55.2±0.2 54±0.3 54.3±1.3

4.3.5 Conclusions and Future Work

In this work we have shown the first attempt at combining shape, texture and appear-
ance parameters of radiographs of the knee joint acquired from different views. Our
experiments show that such concatenation leads to improved accuracy in various tasks,
though often by a small margin. As far as we are aware this work is the first large scale
direct comparison of the two views when studying OA and its future development.

The results show that the combination of the two views contais more discriminative
features, but the magnitude of the improvement in performance is not large. Future
work will involve the development of alternative ways of combining features from the
two views. For example, we will be investigating ways of building a combined model
for the appearance and apply redundancy reduction techniques. We also aim to design
a deep learning architecture to merge the information coming from the radiographs.

It would also be interesting to use combined features to solve other OA related
classification problems in the computer aided study of the disease such as: automated
assessment of the severity of OA, detection of osteophytes severity and joint space
narrowing.
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Table 4.13: Comparison between our method and previous approaches.

Binary OA prediction Binary Pain prediction
Ours 58.8 54

Shamir et al. [96] 55.7 54.6

4.4 Appendix

4.4.1 Hyper-parameter tuning

The number of shape and appearance parameters have been chosen in order to explain
95% of variance when applying PCA. The number of texture parameters have been
chosen by looking at previous works, considering what was done for similar shapes in
terms of number of points. This is due to the inherent redundancy of textural features.
A more comprehensive tuning of the texture parameters was done prior to the indeci-
sive tree experiments. This also explain the slight boost in performance between this
chapter and the next one.

4.4.2 Comparisons with previous works

In this section we want to compare the performance of our lateral knee model with the
method proposed by Shamir et al. [96]. We used the same features extracted in the
paper and trained gradient boosted decision forests for classification. The lateral knee
crop was obtained using our own knee joint detector.

We can see in Table 4.13 that our method outperforms the previous method. The
distance is more significant on the disease prediction task. This is confirming the idea
that hand crafted features perform worse than those learned from the data.

4.4.3 Summary of Deep learning results

Table 4.14 contains the results of the most well known approaches for knee OA clas-
sification using deep learning. Both of them use exclusively the PA view. The method
from Tiulpin et al. [110] uses a siamese architecture to simultaneusly analyse two PA
patches of the same knee. The network was trained on the MOST dataset and tested
on OAI dataset. On the other hand, Anthony et al. [8] use a finetuned BLVC network
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Table 4.14: Results on deep learning approaches in knee OA related learning tasks.

Binary OA classification(AUC) KL-grade classification(Accuracy %)
Tiulpin et al [110] 93 66.71
Anthony et al. [8] 57.9

to extract features from the penultimate fully connected layer. An SVM classifier then
is trained to predict the appropriate KL grade. The results reported in Table 4.14 are
reflecting evaluations on the OAI dataset.



Chapter 5

Improving the classification algorithm:
Indecisive Forests

It is commonly believed that improved classification performance is achievable via
either improving the quality of the data used or by refining the machine learning model.
While the work that we presented earlier was mainly focused on the former, this part
of the project was trying to address the latter issue.

This chapter describes the development of a novel classification technique based
on random forests. The model can be potentially applied to any classification task,
but we will show its effectiveness at solving two of the tasks associated to our project,
namely binary structural knee OA classification and future onset of structural OA. The
idea was to start from the Random Forest implementation used previously and look at
ways to improving its generalization potential.
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Abstract

Random forests are widely used for classification and regression tasks in medical im-
age analysis. Each tree in the forest contains decision nodes which choose whether a
sample should be passed to one of two child nodes - a binary decision. We demonstrate
that replacing this binary choice with something less decisive (some samples may go
to both child nodes) can lead to improvements in performance for both individual trees
and whole forests. Introducing a soft decision at each node means that a sample may
end up at multiple leaves. The output of a tree should thus be a weighted sum of the
individual leaf values - we show how the leaves can be optimised to give the best re-
sults. We also show how backpropagation can be used to optimise the parameters of
the decision functions at each node. We show that the new method outperforms an
equivalent random forest on a disease classification and prediction task.
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5.1 Introduction

Decision trees, particularly in the form of Random Forests [12], are widely used in
medical image analysis for tasks such as landmark location [19], segmentation [92] and
classification [82, 83]. In most cases each tree uses hard decision nodes (a threshold
on a feature response derived from the input), in which a sample is channelled to either
the left or right child node. Thus one input sample ends up at exactly one leaf, which
holds the output for the tree.

A natural extension is to replace this binary decision with something softer, so
that a sample can go down both branches, but with different weights or probabilities
depending on the feature response at the node. An early example of this approach were
“Fuzzy Decision Trees” [105] in which a sigmoidal function is used to assign a weight
to be passed down each child branch. The approach was extended in [64], where a
forest of such trees was integrated into a deep network allowing end-to-end training.

However, one problem with using a sigmoidal transfer function is that every input
effectively ends up at every leaf of the tree with a non-zero weight - though at most
leaves the weight may be very close to zero. This is potentially very inefficient for
deep trees.

In this paper we introduce trees in which only samples near the decision boundary
are propagated to both children - most samples only go to one child. This is equiva-
lent to using a simple sloped step function to compute the weights. Each input is then
propagated to a relatively small number of leaves. This allows us to use deep trees
and retain most of the efficiency of binary decision trees. In the following we describe
the approach in detail, including a greedy method for training a tree. Like the Fuzzy
trees, we can optimise both the values stored at the leaf nodes and the parameters of
the transfer functions using either closed form or gradient descent approaches, leading
to better performance than that from the greedy training. We demonstrate that replac-
ing random forests with these more indecisive trees leads to improvements in overall
performance on a classification task. We show the improvement in performance of our
methodology on Osteoarthritis (OA) classification and prediction tasks. OA is the most
common form of arthritis, affecting millions of people around the world, the chance
of developing the disease being particularly high in older people. The most common
signs of OA are: osteophytes, bony spurs that grow on the bones of the spine or around
the joints, joint space narrowing (JSN) and calcium deposits. We train our new trees
to use features which measure the shape and appearance of the knee in radiographs to
classify OA status and predict who is at risk of developing the disease.
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5.2 Background

Random Forests [12] are a very successful machine learning ensemble model, where
each of the sub-models is a binary decision tree. The randomness comes from two main
features: first, each of the decision trees is trained on a different sample of the original
dataset obtaining by generating multiple bootstrap samples; second, the optimal split
is found by considering only a random subset of the features appearing in the data.

Ren et al. [92] showed how the leaves of a forest could be mutually optimised to
give better performance than that of a forest with independent trees. Fuzzy decision
trees, which can be optimised by a backpropagation-like algorithm, were introduced
in [105]. They proposed training a tree in the normal way, then replacing the binary
decision threshold with a sigmoidal function to indicate branch membership, the pa-
rameters of which can then be optimised.

Kontschieder et al. [64] extended this idea to full decision forests, using a sig-
moidal decision function. They too used a stochastic gradient descent approach to
optimise the parameters of the decision nodes and the leaves. The decisions at each
node are based on the output of one node of a deep convolutional network, making the
entire system amenable to end-to-end training.

When using a sigmoidal function for branch membership, every sample ends up
being propagated to every leaf of the tree, even though at some leaves the membership
value may be very small. This may lead to inefficiencies for deep trees. To overcome
this we use a ramp function for the membership propagation:

π(x; t0, t1) =


0 if f (x)≤ t0

( f (x)−t0)
(t1−t0)

if t0 < f (x)< t1
1 if f (x)≥ t1

(5.1)

where f (x) is a feature derived from the input x and t0 < t1 are two thresholds defining
the ramp function. Thus if the membership for either branch is zero, we do not need to
propagate down that branch. During training we choose the thresholds so that a given
proportion of the training samples are in the ambiguous region (see below).

5.2.1 Evaluating the result from a tree

A tree is a collection of decision nodes and leaf nodes. Each decision node has two
child nodes (left and right), a function which computes a scalar feature value from the
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input f (x) and two threshold values defining the transfer function, t0, t1. Each leaf
node contains an output value.

When an input, x, is evaluated with the tree, the output is a set of leaf values and
associated weights, S = {(vi,wi)}. Starting at the root node, we propagate an input
through the nodes, exploring only the branches with non-zero weights. Each node ei-
ther adds its value (if it is a leaf) to a set of outputs, or it propagates the input and
weight to one or both of its child nodes. This can be computed with a recursive func-
tion, starting at the root node with a unit weight: S =EVALUATE(root,(x,1.0),{}).
The function is defined as follows:

1: function EVALUATE(node,(x,w),S )
2: if node.isLea f then
3: S ←{S ,(node.value,w)}
4: else
5: µ = π(node. f (x),node.t0,node.t1)

6: wL = (1−µ)w

7: wR = µw

8: if wL < wR then
9: if (wL < wt) then wL← 0,wR← w

10: else
11: if (wR < wt) then wR← 0,wL← w

12: end if
13: if (wL > 0) S ←EVALUATE(node.leftChild,(x,wL),S )
14: if (wR > 0) S ←EVALUATE(node.rightChild,(x,wR),S )
15: end if
16: return S
17: end function

The tests in lines 8-12 allow a threshold (wt) on the smallest allowable weight to
be enforced. If a split would cause the weight propagated to one child node to fall
below the threshold, then that child node is ignored and all the weight is passed to the
other child. Setting wt > 0 ensures that no leaf is reached with a weight lower than
wt , and focuses processing on the branches with higher weights. It thus also limits the
maximum number of leaves that can be returned to w−1

t . The output of the tree can
then be computed from S as the weighted sum of the leaf outputs, v = ∑i wivi.
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5.3 Training and Optimising Indecisive Trees

In a similar way to training a normal decision tree, an indecisive tree is trained using a
greedy recursive algorithm in which each node finds a feature and threshold to split the
data arriving at it so as to minimise a cost function. During training a sample consists
of a triplet, (x,y,w), containing the input vector, the target output and a weight. To
train a node, we consider the set of n samples D arriving from the parent node. To
evaluate a particular choice of feature, f (x), and thresholds t0, t1, we compute the sets
of data DL and DR that would be propagated to the child nodes, and the cost function

C( f , t0, t1) =C(DL)+C(DR) (5.2)

The cost C(D) depends on the task (classification or regression). For instance, for
regression, it can be the sum of square differences. When used as part of a random
forest, a random selection of features and possible thresholds is evaluated, and those
giving the lowest cost retained.

Since finding the optimal pair of thresholds can be computationally expensive, we
use the following approach. For each input (xi,yi,wi) we compute the feature value
fi = f (xi), then rank the samples using this value. Let (x j,y j,w j) be the jth sample in
this ranked list. By computing running sums through this ranked data we can efficiently
locate the index, k, for the hard split leading to the lowest total cost (all samples j ≤ k

are sent to one child, all j > k to the other). We then introduce an ambiguous region
to include a proportion of approximately r ∈ [0,1] of the samples by setting j0 =

max(1,k−0.5rn), j1 = min(n,k+0.5rn), and selecting t0 = f j0, t1 = f j1.

Since those samples in the ambiguous region will go to both children, the total num-
ber of samples propagated from nodes at depth d will be approximately n0.(1+ r)d ,
where n0 is the original number of training examples, though it should be remembered
that the total weight for each of the original samples will always sum to unity. In order
to avoid propagating large numbers of samples with small weights, we use the same
technique as described above (Sec. 5.2.1) - if a sample weight would fall below wt

when propagated to one child node, we ignore that child and propagate all the sample
weight to the other child. Decision nodes are added in a recursive manner until a suit-
able stopping condition (a maximum depth, minimum number of samples or measure
of spread) is reached. The values at the leaf nodes can then be set to the weighted mean
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of the samples reaching that node, for instance for regression, the value

t =
(
∑wiyi

)
/
(
∑wi

)
(5.3)

5.3.1 Optimising the leaf values

A tree with vector output can be expressed as a function of input x

y = Vw(x) (5.4)

where V is a matrix whose columns are all the leaf vectors, and w(x) is the sparse vec-
tor of weights returned by the tree, which selects the leaves to which x is propagated.
Thus the outputs corresponding to the training inputs can be expressed as

Y = VW (5.5)

where Y = (y1|...|yn) and W = (w(x1)|...|w(xn)) is a sparse matrix.

For regression, as in [92], the leaf values can be found by minimising

Q(V) = ||VW−Y||2 +α||V||2 (5.6)

where α is an optional ridge regression regularisation function. Since W is sparse the
solution can be found efficiently with conjugate gradient descent.

5.3.2 Optimising the decision nodes

If the leaf values are fixed, each decision node only affects the final output through the
way it changes the weights on the samples passing through it. As in [105, 64] we can
use a gradient descent-based backpropagation algorithm to optimise the parameters.
However, in our case, since each sample only passes through a small subset of nodes,
this can be significantly more efficient - we only have to compute values at the nodes
visited.

The cost function to be minimised is of the form

QT (θ;{(xi,yi)}) = ∑
i

Q(Vw(xi,θ),yi) (5.7)



5.3. TRAINING AND OPTIMISING INDECISIVE TREES 91
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wL

wR
a) Forward pass

dQ
dθ

dQ
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dQ
dwRb) Backward pass

Figure 5.1: During the forward pass (root to leaves), weights are calculated. During
the backward pass (leaves to root), gradients are calculated.

where θ are the parameters affecting the weights and Q(t,y) is the cost function com-
paring the output of the tree, t = Vw(x,θ) with the target output y.

Gradient at leaf nodes: The contribution to the output from a single leaf node is
given by wv, where w is the weight of the sample arriving at the leaf. For one leaf,

dQ
dw

=
dQ
dt

dt
dw

= vT dQ
dt

(5.8)

Gradient at decision nodes: At a decision node, the weights passed to the output
nodes are given by (

wL

wR

)
= w

(
1−π( f , t0, t1)

π( f , t0, t1)

)
(5.9)

If the parameters at the decision nodes are θ, then

dQ
dθ

= dwR
dθ

dQ
dwR

+ dwL
dθ

dQ
dwL

= wdπ

dθ

dQ
dwR
−wdπ

dθ

dQ
dwL

= wdπ

dθ

(
dQ
dwR
− dQ

dwL

) (5.10)

Similarly
dQ
dw

= π(θ)
dQ
dwR

+(1−π(θ))
dQ
dwL

(5.11)

During the backward pass we use (5.10) to compute the gradient w.r.t. the thresh-
olds t0 and t1. In the experiments below we keep the features fixed, but it would also
be possible to compute gradients of any parameters of the features.

We use the following algorithm to update the parameters of each node (t0, t1):

1: function UPDATENODES(X = {(xi,yi)})
2: for all x in X do
3: Feed x forward through tree to calculate weights
4: Visit each node in reverse depth order - compute gradients
5: Update estimate of mean gradient over batch
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6: end for
7: Update parameters using mean gradient
8: end function

In the following the parameter update is made using a momentum term, but something
more sophisticated could be used.

5.4 Experiments

Here we focus on two classification tasks related to knee osteoarthritis. The features
we used were shape, texture and appearance parameters extracted from lateral knee
radiographic images (Figure 4.1). Those features were obtained by first building a
statistical appearance model [20] of the knee. This model is a PCA based combination
of statistical shape and texture models and it was built on fully automated annotation
found using a 3-stage Constrained Local Model [22].

Figure 5.2: Proportion of examples within the indecisive window at each level for
different choices for window width.

Data. The images were taken from the Multicentre Osteoarthritis Study (MOST)
dataset [36]. MOST is a longitudinal prospective study that collected data from 3026
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OA Classification OA Prediction Timings (OA Prediction)
Baseline Forest 86.35±0.99 59.03±1.20 9.3s
IF 87.61±0.94 61.11±1.79 94.9s
OIF 88.15±0.91 59.11±2.01 between 3s and 2 minutes

Table 5.1: AUC for the two knee OA tasks: comparing a standard Random Forest with
both an Indecisive Forest(IF) and an Optimised Indecisive Forest(OIF).

participants with a 7-year follow-up. Lateral radiographs have been collected at each
time-point for both knees and a KL(Kellgren-Lawrence) grade assessing the severity
of the disease was assigned to each knee. For our binary classification tasks the grades
have been split into two groups: non-OA, KL (0,1), and the OA group, KL(2-4). The
first task is an OA classification task, where the goal is to distinguish patients from the
two groups and uses 8606 OA (KL≥ 2) and 10604 non-OA images. In the second task
we consider 3478 baseline images with no OA (KL≤ 1) and aim to discriminate those
that will develop OA within 84 months from those who will not.

Knee OA classification tasks. We compare the performance of our Indecisive
Forest (IF) with a standard Random Forest (RF) in 5-fold CV experiments. A param-
eter sweep suggested that a good choice for the parameter responsible for the width
of indecision window r = 0.3. In addition we applied the tuning algorithm described
above to optimise the IF, and evaluated the performance. We report the area under the
ROC curve to evaluate each of the models in Table 5.1. This shows that for both classi-
fication tasks the IF performs better than a standard Random Forest, with an improve-
ment of at least 2% for both Classification and Prediction. The optimisation improves
the results for the OA classification task, while the OA prediction performance does
not change significantly. Our results on both tasks achieve the state of the art on the
MOST dataset using only lateral knee radiographs (compared to [83]).

Figure 5.2 (Right) shows that the proportion of examples within the indecisive
region increases when the window width increases and decreases linearly as examples
go deeper in the trees.

Timings. The average time to train a standard tree on the prediction dataset was
9.3s, compared to 94.9s for each indecisive tree. The average tree optimisation time
depended on the dataset and the parameter choice, it ranges from 3s to 2 minutes.
There is only a small difference in performance when applying the trees.
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5.5 Discussion and Conclusions

We have presented an improvement on the standard random forest that uses a ramp
function with an ambiguous region to train and test random forests. We showed im-
proved performance, compared to a standard Random Forest, on two OA related clas-
sification tasks. The combined leaf and node optimisation further improved the results
on one of the tasks. The indecisive forests take longer to train and optimise. Pi-
lot experiments on regression tasks have shown small but encouraging improvements,
something that we will explore in future work.
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5.7 Appendix

5.7.1 Details of the hardware used

The experiments reported in this chapter were obtained on a 3.10GHz Intel core x4
CPU machine with 16 GB RAM.

5.7.2 Comparison with alternative methodologies

In this section we want to compare the indecisive tree approach and its optimisation
with the alternative methods cited in the paper. The code implementing the Deep Neu-
ral Decision Forest [64] is publicly available and after writing a parsing for our dataset
we trained and tested it with the same 5 fold CV setup. Table 5.2 report the results
of this comparison. Our indecisive forest performs better on the prediction task. On
the OA Classification task the DNDF performs better than than the Indecisive Forest
but there does not seem to be significant difference between the two methods after the
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OA Classification OA Prediction
Deep Neural Decision Forest [64] 88.28±1.20 56.22±5.04
IF 87.61±0.94 61.11±1.79
OIF 88.15±0.91 59.11±2.01
XGBoost 86.43±0.18 53.16±1.54

Table 5.2: Direct comparison between the indecisive forest and the Deep Neural Deci-
sion Forest [64].

optimisation step. As an added comparison we compared with the Gradient Boosted
trees [58], using the open source python library XGboost. This method performs worse
than both the Indecisive Forest and its optimisation.



Chapter 6

Correlating Symptomatic and
Radiographic Osteoarthritis

After mainly focusing on ways to automatically diagnose the disease and improving
the performance of machine learning classifiers for radiographic OA, the last part of
the project was around the relationship between radiographic features and symptoms
experienced by the participants of an OA related study. Being able to show evidence
of this relationship would allow for further understanding of what is causing those
symptoms and consequently investigate ways of reducing them.

The paper in this chapter deals with this problem. We attempt to answer the fol-
lowing questions:

• What are the main individual sources of pain?

• Measure the discriminative ability of manual radiographic measurements at pre-
dicting pain

• Does adding demographic information improve performance?

• Does removing people with widespread pain improve performance?

• Is consistent pain more correlated with radiographic features?

• Can we extract features automatically to achieve the same performance?

Our work is the first we are aware of using manual grades of lateral view radio-
graphs and reports the highest AUC of a machine learning classifier when predicting
pain from radiographic measurements.

96
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Abstract

Objectives: The relationship between radiographic evidence of osteoarthritis and knee
pain has been weak, but this may be because features that best discriminate knees with
pain have not been included in analyses. We tested the correlation between knee pain
and radiographic features of osteoarthritis taking into account both features automati-
cally extracted from radiographs and manual scores. Methods: Using the baseline visit
of the Multicenter Osteoarthiritis Study, we tested how well x-ray features discrimi-
nated those with frequent knee pain (one question at one time) or consistent frequent
knee pain (3 questions at 3 times) from those without it. We used posteroanterior and
lateral radiographs and examined grades assigned by readers as well as imaging fea-
tures such as shape and texture. Random forest classifiers were used to predict whether
participants had knee pain or not. We used the area under the ROC curve (AUC) to
quantify how well radiographs classified those with and without pain. Results: X-
rays were better at classifying those with pain using 3 questions compared to one.
When we used all radiographic features scored by readers, the AUC was 70.4. Using
the best model from automated image analyses or a combination of these and man-
ual grades, no significant improvement in performance over manual grading alone was
found. Conclusions: X-ray changes of OA are more strongly associated with repeated
reports of knee pain than pain reported once. In addition, a fully automated image
analysis technique that assessed features not scored on x-ray performed no better than
manual grading of features.



6.1. INTRODUCTION 99

6.1 Introduction

One of the main points of interest in research in osteoarthiritis(OA) is the investiga-
tion of pain and its relation with structural changes from radiographic images. Despite
considerable effort the existence of pain has not found to be strongly correlated with
radiographic OA [43, 48, 98, 107, 67]. In general, only about half the people with
knee pain in population studies have radiographic OA and likewise, only around half
of the knees with radiographic OA in such studies are afflicted with knee pain [10, 48].
Firstly, this poor agreement between radiographs and pain may be because the global
measures of radiographic disease that are used in these studies, such as Kellgren and
Lawrence grades, are insensitive to subtle or specific features that are better corre-
lated with pain than global scores. Secondly, these studies have generally been limited
to uniplanar radiographs and therefore may miss features that are correlated with the
presence of pain. Thirdly, some individuals may have knee pain as part of a syn-
drome of widespread pain and do not have OA. Lastly, knee pain is often transient and
radiographic disease may be more likely in persons in whom it is more consistently
reported.

Previous studies involve the investigation of correlation between individual struc-
tural features such as osteophytes and joint space narrowing (JSN) [10, 48, 67] and
pain. Even those explorations have not found a strong correlation of pain with ra-
diographic features. Felson and colleagues [35] gave an alternative definition of OA
based on a combination of structural features and showed a modestly improved corre-
lation with pain. Minciullo et al. [83] used Constrained Local Models (CLM) to find
landmark points for the knee joint in both Lateral and PA radiographs and extracted
features related to the shape, texture and their combination to predict future onset of
knee pain, showing a weak correlation with structural features and suggesting that the
lateral view contains features that are significantly more discriminative at predicting
future knee pain compared to the PA view. Galvan-Tejada et al. [43] used radiographs
from the OAI to prove that osteophytes are early predictors of joint pain, while joint
space reduction is not clearly associated with future joint pain.

The objective of our work was to determine the correlation between knee pain and
various sets of radiographic features of OA obtained at the time of the pain report,
using both features automatically extracted from knee radiographs and manual grades
assigned by clinicians. To do so we built random forest classifiers using a large collec-
tion of features, both extracted from radiographs using state of the art landmark point
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detectors and manual grades. Unlike most previous works we used both posteroante-
rior and lateral radiographs. We also tried combining structural features with image
independent features such as age and BMI, which are known to increase risk of devel-
oping OA [107]. Furthermore, we tried to exclude from the study people who were
experiencing widespread pain, under the assumption that such pain may not be due to
OA.

6.2 Methods

Images were taken from the Multicentre Osteoarthritis Study (MOST) dataset [36].
Bilateral PA standing flexed and unilateral weight bearing, flexed lateral radiographs
were obtained at baseline for both knees. At baseline subjects were asked three times
whether they had knee pain, aching or stiffness on most of the last 30 days. Firstly, a
telephone screening (TScreen) done roughly 2 weeks before the clinic visit was per-
formed to check eligibility criteria. Secondly, before the visit, participants filled a Self
Assessed Questionnaire (SAQ) at home. Lastly, an interview was done as part of the
clinical visit (Clinic). We used the telephone screening, the Clinic and SAQ variable
together to create a measure we called ‘Consistent Pain’. By consistent pain we meant
selecting participants that gave the same binary score at all three time points. In our
experiments we only considered data from the baseline visit and only the right knee
in order to remove the effect of considering structurally non independent information
(multiple visits of the same participants or the two knees).

The radiographic grades used in our work were assigned by central readers as part
of the MOST study protocol. Two main types of features have been used in our ex-
perimental setup. The first ones were manual grades for features of OA assigned by
readers during the MOST study. We used scores for all the features that were read on
both the PA and lateral views. These readers also provided a Kellgren and Lawrence
grade for each knee.

The second set of features was automatically extracted using Constrained Local
Models (CLM) to find landmark points in radiographs. This latter model has been
successfully used in medical imaging in numerous occasions and with a large variety
of radiographic images [73, 82, 83]. Our knee model for the lateral radiograph was
made of four different sub-shapes: the patella (21 points), the lateral femoral condyle
(24 points), the medial femoral condyle (25 points) and the tibia (32 points). We
considered the femur as the union of the two femoral condyles (49 points) (Figure 6.1,
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Figure 6.1: The PA (left) and Lateral (right) knee models.

right). The PA model was made of two shapes: the femur and the tibia (37 points each,
a total of 74 points) (Figure 6.1, left).

6.2.1 Appearance Model

We extracted features by building an appearance model. Combined Appearance Mod-
els (CAM) [20] are an attempt to better use textural information and are based on a
statistical model that uses shape as one of its components. Such a model incorporates
non redundant information of the shape and the texture of the object of interest. In
this way we achieved better representation power compared to a shape model and this
could bring more robustness.

A shape model is a mathematical object that represents each shape x=(x1,y1,x2,y2, . . .)T

in the following way

z = T (x̄+Psbs; t) (6.1)

where x̄ is a representation of the mean shape in a suitable reference frame, Ps is
a matrix containing a set of modes of variation and T (·; t) applies a global similarity
transformation with parameters t.

The shape parameters bs can be calculated from x using

bs = Ps
T (T−1(x, t)− x̄), (6.2)
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In order to build an appearance model we started by assuming that we have built a
shape model of variation, as described in Equation 6.1. Then we warped each of the
training images to match the mean shape and we sampled the texture information from
the resulting objects. To minimise the effect of lighting variation, we normalised the
samples using a scale factor α and an offset parameter β so that the mean of the pixel
values was zero and the sum of their squares was unity. After applying Principal Com-
ponent Analysis (PCA) to the set of vectors obtained, we ended up with the following
linear model:

g = T (ḡ+Pgbg; t) (6.3)

where ḡ is the mean grey-level vector, Pg is a matrix of eigenvectors, explaining the
textural variation and bg are texture parameters. The number of texture parameters was
chosen to retain 90% of the variance obtaining 30 PA features and 63 lateral features.

An appearance model can be calculated by concatenating the two models and then
via a further PCA

b =

(
Wsbs

bg

)
, b = Qc, (6.4)

where Ws is a diagonal matrix of weights (the shape eigenvalues for each shape
parameter), b is the weighted concatenation of shape and texture parameters and c are
the appearance parameters with corresponding eigenvectors listed in Q.

6.2.2 Object Detection and Shape Model Matching

We developed an automatic system to locate the outlines of the bones in both radio-
graphic views. It first finds the position of a bounding box around the joint, then refines
this with a shape model matching algorithm – for full details see [41, 82, 19]

6.2.3 Analysis Approach

First, we tested the relation of individual features and KL grades with the presence
of pain. All the experiments were performed training and testing a random forest
classifier with 40 trees, running a 5-fold cross validation with 5 repeats and we used
the area under this ROC curve to determine the relation of knee pain with radiographc
features. We report the standard deviation of the performance evaluated using the AUC
over 5 repetitions.
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We compared a single question for frequent knee pain (obtained at the clinic visit)
vs. the same question administered three times in relation to the baseline MOST visit.
For the latter approach, we compared persons who consistently reported knee pain to
those who did not report knee pain at any of the 3 time points.

The subsequent analyses tested whether automated image analysis generated a
higher area than did a combination of manually scored features. In addition, we tested
whether a combination of information provided by image analysis and manual grading
improved upon the ROC curve area compared with manual grading alone.

χ2 tests were used to assess the difference in AUC between the manual scoring
(as the gold standard), adding BMI and sex and the best fully automated model. The
p-value of 0.05 or below was selected to indicate that the ROC curve differed from the
gold standard significantly.

In additional analyses, we limited our sample to knees without radiographic OA
signs to see if there were imaging features that might help identify knees with pain.
By without radiographic OA signs we mean participants with both radiographs graded
with all OARSI grades equal to 0.

6.3 Results

6.3.1 Testing individual radiographic features

There are 36 individual radiographic features scored from the PA and lateral radio-
graphs (listed in Table 6.1). We tested how well each grade could classify the pain
score collected once at the clinic visit. For each we measured the AUC when using
the grade as a feature in a classifier. We observe that KL grade, osteophytes, joint
space narrowing and sclerosis were the most discriminative with the KL grade achiev-
ing the best result. On the other hand chondrocalcinosis, cyst, attrition and ossification
of the patella-tendon performed no better than chance. While some of these results
were expected, bone attrition (as MRI feature) was previously found to be associated
with OA pain [67]. Furthermore, grades associated with the medial compartment were
consistently better at classifying frequent pain.

6.3.2 Using shape, texture and appearance parameters

We compared the previous method of using features manually assigned by experts with
features automatically extracted by the CLM Model using PA and lateral views. We
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Table 6.1: Testing each radiographic feature individually using the pain score reported
during the visit (Clinic).

Variable AUC (%)
Chondrocalcinosis (OARSI grades 0-1) PF joint on LA view 50±0.3

Osteophytes(OARSI grades 0-3) femur anterior PF joint on LA view 58.3±0.2
Osteophytes(OARSI grades 0-3) femur posterior PF joint on LA view 60±0.5

Joint space narrowing (OARSI grades 0-3) lateral TF compartment on LA view 55.2±0.2
Joint space narrowing (OARSI grades 0-3) medial TF compartment on LAT view 59.1±0.3

Effusion (OARSI grades 0-1) PF joint on LA view 56±0.3
Kellgren & Lawrence (grades 0-4) on PA view 64.8±0.1

Chondrocalcinosis (OARSI grades 0-1) lateral TF compartment on PA view 50.4±0.3
Cyst (OARSI grades 0-3) femur lateral TF compartment on PA view 50.6±0.3

Osteophytes (OARSI grades 0-3) femur lateral TF compartment on PA view 60.2±0.2
Sclerosis (OARSI grades 0-3) femur lateral TF compartment on PA view 54.3±0.3

Joint space narrowing (OARSI grades 0-3) lateral TF compartment on PA view 54.9±0.3
Attrition (OARSI grades 0-1) lateral TF compartment on PA view 50.6±0.2
Cyst (OARSI grades 0-3) tibia lateral TF compartment on PA view 50.6±0.2

Osteophytes (OARSI grades 0-3) tibia lateral TF compartment on PA view 60±0.2
Sclerosis (OARSI grades 0-3) tibia lateral TF compartment on PA view 54.2±0.3

Chondrocalcinosis (OARSI grades 0-1) medial TF compartment on PA view 50.7±0.1
Cyst (OARSI grades 0-3) femur medial TF compartment on PA view 50.8±0.3

Osteophytes (OARSI grades 0-3) femur medial TF compartment on PA view 61±0.3
Sclerosis (OARSI grades 0-3) femur medial TF compartment on PA view 57.7±0.2

Joint space narrowing (OARSI grades 0-3) medial TF compartment on PA view 57.7±0.2
Attrition (OARSI grades 0-1) medial TF compartment on PA view 52.1±0.2
Cyst (OARSI grades 0-3) tibia medial TF compartment on PA view 51.5±0.3

Osteophytes (OARSI grades 0-3) tibia medial TF compartment on PA view 59.7±0.2
Sclerosis (OARSI grades 0-3) tibia medial TF compartment on PA view 58.3±0.4

Ossification (OARSI grades 0-3) patella tendon lower PF joint on LA view 49.5±0.1
Ossification (OARSI grades 0-3) patella tendon upper PF joint on LA view 50±0.6

Ossified loose body (OARSI grades 0-1) femur posterior PF joint on LA view 52.2±0.3
Ossification of QF insertion (OARSI grades 0-3) PF joint on LA view 51±0.3

Cyst (OARSI grades 0-3) PF joint on LA view 51±0.2
Joint space narrowing (OARSI grades 0-3) PF joint on LA view 53.2±0.3

Sclerosis (OARSI grades 0-3) PF joint on LA view 53.1±0.4
Osteophytes (OARSI grades 0-3) patella inferior PF joint on LA view 59.5±0.2
Osteophytes (OARSI grades 0-3) patella superior PF joint on LA view 60.1±0.3

Osteophytes (OARSI grades 0-3) tibia anterior PF joint on LA view 55.5±0.1
Osteophytes (OARSI grades 0-3) tibia posterior PF joint on LA view 59.4±0.3
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report the classification performance (AUC, %) for the features derived from the two
views separately, and from combining the features from both views (Table 6.2). We
notice that, similarly to previous works [83], the PA view performs better than the lat-
eral view at discriminating people experiencing pain regardless of the pain score used.
Furthermore, the combination of both view almost in all cases leads to improved re-
sults. The best overall results are achieved by the combined PA+lateral models trained
on the whole set of appearance features. Consistent pain was the easiest to classify,
followed by SAQ, Clinic and TScreen.

6.3.3 Testing combinations of radiographic features

Next we combined all the available manually graded features and repeated the same
experiments, considering as well the SAQ, TScreen and consistent pain scores. The
input to the random forest classifiers was thus a vector containing all grades. Each
node in each tree could thus branch by examining any one of the features (grades). (see
Table 6.4). Removing participants with widespread pain made little difference, though
it dramatically reduced the size of the dataset. Adding BMI and gender significantly
improved the ROC for both Clinic and SAQ pain, while it is not different in the TScreen
and Consistent dataset. While we could not perform statistical tests evaluating whether
consistent frequent knee pain AUCs were different from one time point pain reports,
the AUCs for consistent pain were higher especially for manual grades (e.g. 73.9 vs.
62.8 – 66.7) and the standard deviations around these estimates were narrow.

When working with each pain score individually, the results show that, although
there was variation depending on what features and images were used, using the best
performing automated model gives results that were not significantly different from
those of manual grades. The best model was chosen as the one achieving the highest
AUC overall. The consistent pain score was the only one to have all fully automated
models performing worse than manual grades 1.

Finally we combined manual grades with the appearance features extracted from
the model and found that this combination was not more discriminative than using
manual grades alone. Following the usual order, TScreen, Clinic, SAQ and Consistent
pain the results were respectively 65.6, 63, 68 and 75.6.

In our dataset there were a number of participants that had no signs of radiographic
OA in either PA or lateral view and still experienced frequent pain. We wished to

1Comparison eliminating participants with widespread pain was performed using manual
grades+Gender+BMI features.
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Features # Samples AUC±SD P-Value vs. Referent
Telephonic Screening Interview Manual Grades 2756 62.8±0.4 Referent

Manual Grades+Gender+BMI 66±0.5 0.001
Best Automated 63.8±0.2 0.15

Manual+Automated 65.6±0.3 <0.001
Removing WS Pain 1374 61±0.2 0.51

Clinic Manual Grades 2756 66.4±0.2 Referent
Manual Grades+Gender+BMI 68.8±0.2 <0.001

Best Automated 65.6±0.9 0.29
Manual+Automated 63±0.3 0.01
Removing WS Pain 1374 61±0.2 0.02

Self-Assessed Questionnaire(HOME) Manual Grades 2756 66.7±0.3 Referent
Manual Grades+Gender+BMI 68.9±0.4 <0.001

Best Automated 67.7±0.3 0.30
Manual+Automated 68±0.2 0.05
Removing WS Pain 1374 69±0.2 0.10

Consistent Pain Manual Grades 1066 73.9±0.5 Referent
(answered yes to pain at all time points) Manual Grades+Gender+BMI 76.1±0.2 0.01

Best Automated 73.1±0.7 0.97
Manual+Automated 75.6±0.6 0.14
Removing WS Pain 565 78±1 0.04

Table 6.4: Performance of RF classifiers when using all the available clinician grades
as features. The p-values depicted compare the AUCs with the referent in that pain
group. For example, for telephone screening, compared with manual grades, none of
the other approaches was significant.

explore whether shape and appearance features could be used to discriminate those
experiencing pain from those who did not, among people with no clinician graded
radiographic signs. We carried out separate analyses for the three types of pain and
the consistent pain score. (see Table 6.3). The highlighted entries correspond to the
highest AUCs for each pain score. Texture parameters give the best performance for
three out of the four pain score and the SAQ is the one with the highest AUC overall.
Consistent knee pain is the hardest to correctly classify using these features. This
is, considering the results in Table 6.4, shows the very close link between structural
features and consistent pain. It has to be said, that for many of the experiments in
Table 6.3 is was only possible to find slight correlation between radiographic features
and the pain score, in several instances the classifier performed no better than random.

6.4 Discussion

We built a number of binary classifiers to try and distinguish participants with frequent
knee pain from those without pain, using various sets of features and selecting subsets
of participants satisfying certain conditions. We found that identifying persons with
consistent knee pain from manually read radiographic features gave the highest AUC.
The best model using features computed automatically from the images could be used
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to discriminate pain from non-pain, without significant loss in AUC compared to using
grades assigned by experienced clinicians. Furthermore, removing participants with
widespread pain does not make the classification easier for either of the pain scores
considered.

This fully automated approach has similarly been applied to diagnose osteoporosis
vertebrae and wrist fractures [13, 30] among other applications. We do not believe that
previous studies have formally compared manual approaches to automated ones.

The main strengths of this work are in the size of the dataset used, one order of
magnitude larger that most similar studies. In addition, we presented the most compre-
hensive corpus of experiments looking at correlations between radiographs and symp-
tomatic OA, using both PA and lateral view images, therefore including PF joint [10]
and posterior compartments. Finally, we explored for the first time OARSI grades
of the lateral view of the MOST study and their combination with other radiographic
features.

Limitations are the absence of skyline view radiographs, which could provide fur-
ther discriminative information, but were not acquired during the MOST study. MRI
volumes, that have shown to be more correlated with symptoms were also excluded
from this work, and they are the most promising addition to improve performance.

Future work will involve the study of MR images and the grades that are commonly
assigned to them as well as the training of a convolutional neural network architecture
to study the images. Further areas of interest will be the research for patterns in func-
tional MR images of the brain related to pain perception in participants with OA or at
risk of developing it.
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6.5 Supplementary Results

This section reports supplementary material on the paper described in this chapter.

6.5.1 Descriptive statistic analysis of the presence of frequent knee
pain for different KL grades

Figure 6.2 shows the number of people from our study experiencing pain for all pos-
sible values of the KL grade. There were no participants with pain among the KL0
group. The KL1 group participants were almost uniformly distributed between painful
and non-painful knees. We notice that as the KL grade increases the proportion of
painful knees increases reaching around 75% for KL4. This is to support the claim
that radiographic information is related with pain symptoms.

6.5.2 Results of using individual structural features to predict fre-
quent knee pain when we use the consistent knee pain score

The corresponding results are shown in Table 6.5. Similarly to what was seen previ-
ously the individual features reporting the highest AUCs are a combination of both PA
and lateral view grades, further underlining the need for using multiple views. The
KL grade score is consistently the individual feature reporting the highest AUC value.
The TScreen score (see Table 6.6) which is the one collected the earliest with respect
to image acquisition is also the one showing the weakest correlation with radiographic
features, followed by the Clinic score (reported in the previous paper), the SAQ score
(see Table 6.7) and finally the consistent knee pain score. This result is somewhat sur-
prising. One would expect the Clinic score to have the highest correlation with imaging
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Figure 6.2: The proportion of painful knees increases as the KL grade increases. Data
from baseline knees of the MOST study.

features, being acquired in proximity of image acquisition. A possible explanation for
this is that the SAQ score is acquired by the study participants in a familiar environ-
ment and without any time pressure, allowing them to better consider their responses.
Bone attrition also has does not have any current pain signal. This result should be
further investigated to understand whether there is any strong inconsistency between
the way this variable is graded in radiographs as opposed to MRIs. Finally, overall
there is small difference between the pain predictive power of the KL grade alone and
the whole set of 36 features, suggesting that the KL grade is a good proxy variable,
but if we want to understand pain source we should be looking at different quantitative
assessments.

6.5.3 Summary of results on the MOST dataset

This section summarises the majority of results achieved on the MOST dataset from
the works described in this thesis. Table 6.8 reports the experimental results for the
OA related tasks investigated in this work. When reporting binary classification per-
formance we use AUC (%), while for multi-class we use the mean per class accuracy
(%). The manual annotation results correspond to using features extracted from human



6.5. SUPPLEMENTARY RESULTS 111

annotated bone landmarks. All results are the best results in each scenario. For exam-
ple, the manual annotation results were achieved using only a few hundred images (see
Chapter 4 for details), while to achieve the automated results we could deploy the en-
tire MOST dataset. All in all, when a direct comparison is possible and if we consider
the best results only, the PA view performs better than the Lateral view at the Binary
OA tasks, while the lateral view performs better on pain related tasks. The combination
of the two views only marginally improved performance.
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Table 6.5: Testing each radiographic feature individually using the consistent pain
score.

Variable AUC (%)
Chondrocalcinosis (OARSI grades 0-1) PF joint on LA view 51.2±0.2
Osteophytes(OARSI grades 0-3) femur anterior PF joint on LA view 62.2±0.4
Osteophytes(OARSI grades 0-3) femur posterior PF joint on LA view 64.7±0.6
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on LA view 56.3±0.6
Joint space narrowing (OARSI grades 0-3) medial TF compartment on LAT view 63.7±0.7
Effusion (OARSI grades 0-1) PF joint on LA view 58±0.7
Kellgren & Lawrence (grades 0-4) on PA view 71.7±0.2
Chondrocalcinosis (OARSI grades 0-1) lateral TF compartment on PA view 50.8±0.2
Cyst (OARSI grades 0-3) femur lateral TF compartment on PA view 50.6±0.2
Osteophytes (OARSI grades 0-3) femur lateral TF compartment on PA view 64.3±0.6
Sclerosis (OARSI grades 0-3) femur lateral TF compartment on PA view 55.6±0.2
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on PA view 57±0.5
Attrition (OARSI grades 0-1) lateral TF compartment on PA view 50.9±0.3
Cyst (OARSI grades 0-3) tibia lateral TF compartment on PA view 50.7±0.1
Osteophytes (OARSI grades 0-3) tibia lateral TF compartment on PA view 64.7±0.3
Sclerosis (OARSI grades 0-3) tibia lateral TF compartment on PA view 55.3±0.5
Chondrocalcinosis (OARSI grades 0-1) medial TF compartment on PA view 51.4±0.5
Cyst (OARSI grades 0-3) femur medial TF compartment on PA view 51.1±0.5
Osteophytes (OARSI grades 0-3) femur medial TF compartment on PA view 66.2±0.4
Sclerosis (OARSI grades 0-3) femur medial TF compartment on PA view 62.7±0.4
Joint space narrowing (OARSI grades 0-3) medial TF compartment on PA view 63.5±0.2
Attrition (OARSI grades 0-1) medial TF compartment on PA view 52.7±0.5
Cyst (OARSI grades 0-3) tibia medial TF compartment on PA view 52.1±0.5
Osteophytes (OARSI grades 0-3) tibia medial TF compartment on PA view 64.5±0.6
Sclerosis (OARSI grades 0-3) tibia medial TF compartment on PA view 63.5±0.5
Ossification (OARSI grades 0-3) patella tendon lower PF joint on LA view 49.1±1.3
Ossification (OARSI grades 0-3) patella tendon upper PF joint on LA view 50±0.6
Ossified loose body (OARSI grades 0-1) femur posterior PF joint on LA view 53.5±0.4
Ossification of QF insertion (OARSI grades 0-3) PF joint on LA view 52.4±0.6
Cyst (OARSI grades 0-3) PF joint on LA view 50.1±0.8
Joint space narrowing (OARSI grades 0-3) PF joint on LA view 54±0.4
Sclerosis (OARSI grades 0-3) PF joint on LA view 52.7±0.5
Osteophytes (OARSI grades 0-3) patella inferior PF joint on LA view 64.1±0.4
Osteophytes (OARSI grades 0-3) patella superior PF joint on LA view 64.7±0.5
Osteophytes (OARSI grades 0-3) tibia anterior PF joint on LA view 58.1±0.4
Osteophytes (OARSI grades 0-3) tibia posterior PF joint on LA view 64.5±0.7
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Table 6.6: Testing each radiographic feature individually using the Telephone Screen-
ing interview pain score.

Variable AUC (%)
Chondrocalcinosis (OARSI grades 0-1) PF joint on LA view 49.8±0.3
Osteophytes(OARSI grades 0-3) femur anterior PF joint on LA view 56.4±0.3
Osteophytes(OARSI grades 0-3) femur posterior PF joint on LA view 58.1±0.2
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on LA view 54±0.2
Joint space narrowing (OARSI grades 0-3) medial TF compartment on LAT view 58.7±0.4
Effusion (OARSI grades 0-1) PF joint on LA view 55.9±0.2
Kellgren & Lawrence (grades 0-4) on PA view 62.7±0.3
Chondrocalcinosis (OARSI grades 0-1) lateral TF compartment on PA view 49.6±0.6
Cyst (OARSI grades 0-3) femur lateral TF compartment on PA view 50.3±0.1
Osteophytes (OARSI grades 0-3) femur lateral TF compartment on PA view 58.6±0.1
Sclerosis (OARSI grades 0-3) femur lateral TF compartment on PA view 53.5±0.2
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on PA view 53.8±0.4
Attrition (OARSI grades 0-1) lateral TF compartment on PA view 50±0.4
Cyst (OARSI grades 0-3) tibia lateral TF compartment on PA view 50.6±0.3
Osteophytes (OARSI grades 0-3) tibia lateral TF compartment on PA view 58±0.3
Sclerosis (OARSI grades 0-3) tibia lateral TF compartment on PA view 53.7±0.5
Chondrocalcinosis (OARSI grades 0-1) medial TF compartment on PA view 49±0.5
Cyst (OARSI grades 0-3) femur medial TF compartment on PA view 50.6±0.1
Osteophytes (OARSI grades 0-3) femur medial TF compartment on PA view 60.3±0.2
Sclerosis (OARSI grades 0-3) femur medial TF compartment on PA view 58.3±0.3
Joint space narrowing (OARSI grades 0-3) medial TF compartment on PA view 58.4±0.3
Attrition (OARSI grades 0-1) medial TF compartment on PA view 52.2±0.2
Cyst (OARSI grades 0-3) tibia medial TF compartment on PA view 50.6±0.3
Osteophytes (OARSI grades 0-3) tibia medial TF compartment on PA view 59.6±0.3
Sclerosis (OARSI grades 0-3) tibia medial TF compartment on PA view 58.6±0.2
Ossification (OARSI grades 0-3) patella tendon lower PF joint on LA view 50.4±0.1
Ossification (OARSI grades 0-3) patella tendon upper PF joint on LA view 49.8±0.6
Ossified loose body (OARSI grades 0-1) femur posterior PF joint on LA view 51.7±0.3
Ossification of QF insertion (OARSI grades 0-3) PF joint on LA view 50.7±0.2
Cyst (OARSI grades 0-3) PF joint on LA view 50.7±0.4
Joint space narrowing (OARSI grades 0-3) PF joint on LA view 52.9±0.3
Sclerosis (OARSI grades 0-3) PF joint on LA view 52±0.4
Osteophytes (OARSI grades 0-3) patella inferior PF joint on LA view 58±0.1
Osteophytes (OARSI grades 0-3) patella superior PF joint on LA view 58±0.2
Osteophytes (OARSI grades 0-3) tibia anterior PF joint on LA view 55.4±0.3
Osteophytes (OARSI grades 0-3) tibia posterior PF joint on LA view 58.6±0.1
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Table 6.7: Testing each radiographic feature individually using the Self Assessed Ques-
tionnaire(Home) pain score.

Variable AUC (%)
Chondrocalcinosis (OARSI grades 0-1) PF joint on LA view 49.6±0.4
Osteophytes(OARSI grades 0-3) femur anterior PF joint on LA view 58.2±0.2
Osteophytes(OARSI grades 0-3) femur posterior PF joint on LA view 60.3±0.5
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on LA view 53.5±0.5
Joint space narrowing (OARSI grades 0-3) medial TF compartment on LAT view 60.2±0.4
Effusion (OARSI grades 0-1) PF joint on LA view 56±0.1
Kellgren & Lawrence (grades 0-4) on PA view 65.9±0.2
Chondrocalcinosis (OARSI grades 0-1) lateral TF compartment on PA view 49.5±0.5
cyst (OARSI grades 0-3) femur lateral TF compartment on PA view 50.4±0.1
osteophytes (OARSI grades 0-3) femur lateral TF compartment on PA view 59.6±0.3
Sclerosis (OARSI grades 0-3) femur lateral TF compartment on PA view 53.1±0.1
Joint space narrowing (OARSI grades 0-3) lateral TF compartment on PA view 53.8±0.2
Attrition (OARSI grades 0-1) lateral TF compartment on PA view 50.7±0.1
Cyst (OARSI grades 0-3) tibia lateral TF compartment on PA view 50.2±0.3
Osteophytes (OARSI grades 0-3) tibia lateral TF compartment on PA view 59.5±0.3
Sclerosis (OARSI grades 0-3) tibia lateral TF compartment on PA view 53.1±0.3
Chondrocalcinosis (OARSI grades 0-1) medial TF compartment on PA view 49.8±0.5
Cyst (OARSI grades 0-3) femur medial TF compartment on PA view 50.7±0.2
Osteophytes (OARSI grades 0-3) femur medial TF compartment on PA view 62.2±0.2
Sclerosis (OARSI grades 0-3) femur medial TF compartment on PA view 59.9±0.3
Joint space narrowing (OARSI grades 0-3) medial TF compartment on PA view 60.9±0.1
Attrition (OARSI grades 0-1) medial TF compartment on PA view 51.6±0.1
Cyst (OARSI grades 0-3) tibia medial TF compartment on PA view 51.1±0.1
Osteophytes (OARSI grades 0-3) tibia medial TF compartment on PA view 61.1±0.2
Sclerosis (OARSI grades 0-3) tibia medial TF compartment on PA view 60±0.3
Ossification (OARSI grades 0-3) patella tendon lower PF joint on LA view 50.4±0.5
Ossification (OARSI grades 0-3) patella tendon upper PF joint on LA view 51±0.2
Ossified loose body (OARSI grades 0-1) femur posterior PF joint on LA view 51.9±0.2
Ossification of QF insertion (OARSI grades 0-3) PF joint on LA view 52.4±0.2
Cyst (OARSI grades 0-3) PF joint on LA view 51.1±0.2
Joint space narrowing (OARSI grades 0-3) PF joint on LA view 54.3±0.2
Sclerosis (OARSI grades 0-3) PF joint on LA view 53.6±0.2
Osteophytes (OARSI grades 0-3) patella inferior PF joint on LA view 59.5±0.4
Osteophytes (OARSI grades 0-3) patella superior PF joint on LA view 61±0.2
Osteophytes (OARSI grades 0-3) tibia anterior PF joint on LA view 55±0.2
Osteophytes (OARSI grades 0-3) tibia posterior PF joint on LA view 60.2±0.5
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Table 6.8: A table summarising our results on the MOST dataset. All results are
reported using the AUC(%) with the exception of KL grade classification for which we
used the mean per class accuracy (%). N/A means that the corresponding experiments
were not performed as part of our work. ’Auto’ stands for fully automated landmark
annotation, while ’Manual’ stands for manually annotated points.

Landmarks Method Binary OA
KL

Grade
Binary

Future OA Pain
Future
Pain

PA Auto RF-CLM 90.4±0.1 N/A 65.1±0.4 65.3±0.4 56.8±1.3
Lat Manual RF-CLM 84±2 47.9±0.8 N/A N/A N/A
Lat Auto RF-CLM 85.3±0.2 43.9±1 58±0.8 62.1±0.8 55.7±1.3
Lat Auto IF 87.6±0.9 N/A 61.1±1.8 N/A N/A

Both Auto RF-CLM 90.5±0.01 N/A 63.2±0.9 65.6±0.9 56.9±0.1



Chapter 7

Discussion

We have described the first fully automated system to segment the knee joint from
lateral view radiographs and compared its discriminative potential for automatically
studying osteoarthritis against standard PA radiographs. We looked into the combina-
tion of radiographic features from the two views, developed a new machine learning
classifier and showed that it gave better performance on our task.

Finally, we studied the relationship between pain and radiographic features. We
determined which radiographic features are most correlated with current frequent pain
and built a fully automated model that performs as well as manually graded features.

7.1 Conclusions

Our work contributed to improve the classification accuracy of different knee os-
teoarthritis related tasks: binary OA classification, prediction of both future frequent
pain and structural OA and current pain classification. These improvements were
achieved by: extending the data to both PA and lateral images; including a number
of subjects and images two orders of magnitude larger in size than previous studies
and by refining the machine learning classifier.

Our work leads us to conclude the following:

• Lateral knee radiographs contain very informative disease information. These
images are significantly more challenging to segment due to the presence of bone
profiles that look almost identical and can intersect or even completely overlap.
The lateral view includes features that have lower discriminative ability when di-
agnosing knee osteoarthritis, but are extremely useful to study the patellofemoral
joint.
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• Combining features from different views only slightly improves performance.
Predicting future frequent pain is the hardest task and the only one where features
extracted from lateral view radiographs perform on average better than those
from the PA view. Our work on the combination was the first to use a large scale
dataset ( 20k images).

• Unlike other works in the field, all the experiments performed as part of this
project did not include any image selection based on data quality. This means
that our results are more realistic and our models have higher capability of deal-
ing with real data.

• Introducing indecisive windows in a random forest can help improve perfor-
mance on classification tasks. Our indecisive forest achieved the state of the
art at binary OA classification and prediction of future onset of OA using lat-
eral images. It is as yet unclear whether the proposed back-propagation based
optimisation of a pre-trained indecisive forest is in general beneficial or not.

• The current pain classification experiments showed that the proposed consistent
pain measure is the pain score with the highest correlation with manual radio-
graphic features. Furthermore, it is possible to build a fully automated feature
extractor whose features perform as well as grades assigned by experienced clin-
icians.

• Osteophytes, medial JSN and both tibial and femoral medial sclerosis were
found to be most strongly linked with frequent knee pain in our study.

• When focusing on radiographs with no signs of osteoarthritis it was not possible
to distinguish painful knees from non-painful ones.

7.2 Future Work

Potential future research directions include:

Grading Scheme. There is need for more reliable grading methods to use as ground
truth. Current grading schemes carry too much subjectivity and inter-rater variability.
While these are reduced when dealing with a machine learning classifier, having a more
robust and reproducible assessment would be highly beneficial for the AI system.
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Include more radiographic views. Adding lateral view images helps when study-
ing structural features that could not be studied with PA radiographs only. Skyline
radiographs are often available and provide further information on the patellofemoral
joint and femoral osteophytes. These images are rarely included in studies and in-
cluding them could help achieve a more comprehensive disease evaluation just using
radiographic images.

Different ways of combining the two views. In our work, we described the most
natural way of combining features, which is by concatenating them. While this can
work and give insight to the level of synergy between two sets of features, other ways
can be explored. Among them it is worth mentioning deep learning approaches, such
as Deep Siamese Networks [62] and 2D-3D reconstruction approaches [113].

Indecisive forest for regression problems. The results we obtained with the Indeci-
sive forest showed its effectiveness when dealing with classification tasks. Preliminary
experiments have also been performed on regression tasks, resulting in somewhat in-
conclusive outcomes. Further investigation is needed to find out whether this novel
methodology is beneficial for tasks such as landmark point detection.

MRI images. Knee osteoarthritis is a disease that usually initially affects articular
cartilage only. As a result, the best way to assess early knee OA is by looking at MRI
volumes. Similar techniques to what we have described in this work can be applied to
3D images. A landmark point detector can be applied to a set of 2D slices obtaining
a bone segmentation together with a shape model. Alternative ways of studying MRI
images use CNN based segmentation architectures similar to U-Net [93], such as [81,
16].

Radiographic image augmentation. There is need for methodologies for under-
standing radiographic texture structure to the extent of being able to generate real-
istically looking radiographic images. Research in this field can help design novel
augmentation techniques for radiographic datasets and improve performance on ab-
normality detection tasks. Examples of techniques that could be used for this aim are
Image Auto-encoders [77] and Generative Adversarial Networks (GANs) [44]. GANs
could be used by using a U-Net like generator architecture to reconstruct radiographic
images and a VGG16 or ResNet architecture to discriminate real from fake images.
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Once trained, the middle layer of the U-Net could be replaced by noise sampled from
the distribution of real radiographs to generate realistic, synthetic images. Apart from
the standard GAN loss terms, a good base for training the architecture would be L1 loss
and perceptual loss for reconstruction and sigmoid cross entropy for the discriminator
as in [55].

Use of CNNs depending on the available data. Medical imaging applications suf-
fer from data scarcity. That is why designing strategies for the exploitation of small
amounts of annotated data is particularly important.

• Very little data: A possible strategy for this would be few-shot learning ap-
proaches, for examples deep learning models based on meta-learning [39, 100],
where one of the objectives of the training phase is learning the learning algo-
rithms from a small set of annotated images.

• Few Hundred images: In medical images there is also need for a recognised pre-
training dataset, such as ImageNet for Image Recognition and MSCoco [71] or
Open Images [66] for Object Detection. With a dataset of this size it would be
possible to successfully pre-train deep feature extractor blocks such as ResNet50
or ResNet152 and then fine-tune application specific architectures using the fea-
ture extractor as backbone. In 2017, Stanford University announced that it was
going to release a pre-training dataset for medical imaging [1], but the data has
not been made public yet.

Refining the shape model. Our model can be extended to include both tibial condyles
and the femoral crista and articulation of both medial and lateral patellofemoral joints.
This would require time and support from experienced radiologists but would allow
the model to capture more information on the spatial relation between bones in the
knee joint.

Objectivising the study of pain patterns. When we want to study pain patterns we
usually need to rely on patients’ self reports. This makes our data prone to subjectivity.
Pain symptoms can be severely affected by mood and individual perceptions. That is
why there is need for ways to assess it that rely on quantifiable measurements. One
way of doing this is by looking at patterns of brain signals. Electroencephalography
(EEG) and functional MRI (fMRI) have been recently used for this kind of problem
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[27, 111, 104]. Such an approach has the chance of making the measure more reliable
and robust, though requiring more time and money.

Unbalanced datasets. One common issue with medical applications of machine
learning is class imbalance. One often has to deal with datasets where one of the classes
is significantly under-represented. This makes the classification problem harder for the
model, risking building something unable to correctly detect the minority class. For
this reason, there has been interest in these kinds of problems [106], but there is need
to further investigate ways to both transform the datasets to reduce the unbalance at its
source (under- and over-sampling are the simplest approaches to this) and to develop
models that are able to cope with heavy imbalances.
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[105] A. Suárez and J. F. Lutsko. Globally optimal fuzzy decision trees for classi-
fication and regression. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(12):1297–1311, 1999.

[106] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmenta-
tions. In Deep Learning in Medical Image Analysis and Multimodal Learning

for Clinical Decision Support, pages 240–248. Springer, 2017.

[107] B. Szebenyi, A. P. Hollander, P. Dieppe, B. Quilty, J. Duddy, S. Clarke, and
J. R. Kirwan. Associations between pain, function, and radiographic features in
Osteoarthritis of the knee. Arthritis & Rheumatology, 54(1):230–235, 2006.

[108] J. Thomson, T. O’Neill, D. Felson, and T. Cootes. Automated shape and tex-
ture analysis for detection of Osteoarthritis from radiographs of the knee. In
International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 127–134. Springer, 2015.

[109] J. Thomson, T. O’Neill, D. Felson, and T. Cootes. Detecting osteophytes in
radiographs of the knee to diagnose osteoarthritis. In International Workshop

on Machine Learning in Medical Imaging, pages 45–52. Springer, 2016.

[110] A. Tiulpin, J. Thevenot, E. Rahtu, P. Lehenkari, and S. Saarakkala. Automatic
knee osteoarthritis diagnosis from plain radiographs: A deep learning-based
approach. Scientific reports, 8(1):1727, 2018.

[111] I. Tracey. Can neuroimaging studies identify pain endophenotypes in humans?
Nature Reviews Neurology, 7(3):173, 2011.

[112] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, volume 1, pages I–I. IEEE, 2001.

[113] J. Weese, T. M. Buzug, C. Lorenz, and C. Fassnacht. An approach to 2D/3D
registration of a vertebra in 2D X-ray fluoroscopies with 3D CT images. In
CVRMed-MRCAS’97, pages 119–128. Springer, 1997.



BIBLIOGRAPHY 133

[114] J. Wesseling, M. Boers, M. A. Viergever, W. K. Hilberdink, F. P. Lafeber,
J. Dekker, and J. W. Bijlsma. Cohort profile: cohort hip and cohort knee (check)
study. International journal of epidemiology, 45(1):36–44, 2014.

[115] C. Williams. Efficient mapping of the training of convolutional neural net-
works to a cuda-based cluster. http://www.apostherapy.co.uk/en/blog/

anatomy-of-the-knee.

[116] M. Wolski, P. Podsiadlo, and G. Stachowiak. Directional fractal signature anal-
ysis of trabecular bone: evaluation of different methods to detect early Os-
teoarthritis in knee radiographs. Proceedings of the Institution of Mechanical

Engineers, Part H: Journal of Engineering in Medicine, 223(2):211–236, 2009.

[117] M. Wolski, P. Podsiadlo, G. Stachowiak, L. Lohmander, and M. Englund. Dif-
ferences in trabecular bone texture between knees with and without radiographic
Osteoarthritis detected by directional fractal signature method. Osteoarthritis

and Cartilage, 18(5):684–690, 2010.

[118] R. W. Wright, J. R. Ross, A. K. Haas, L. J. Huston, E. A. Garofoli, D. Harris,
K. Patel, D. Pearson, J. Schutzman, M. Tarabichi, et al. Osteoarthritis classifi-
cation scales: interobserver reliability and arthroscopic correlation. The Journal

of bone and joint surgery. American volume, 96(14):1145, 2014.

[119] T. K. Yoo, D. W. Kim, S. B. Choi, and J. S. Park. Simple scoring system and
artificial neural network for knee Osteoarthritis risk prediction: a cross-sectional
study. PloS one, 11(2):e0148724, 2016.

[120] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep fea-
tures for scene recognition using places database. In Advances in Neural Infor-

mation Processing Systems, pages 487–495, 2014.

http://www.apostherapy.co.uk/en/blog/anatomy-of-the-knee
http://www.apostherapy.co.uk/en/blog/anatomy-of-the-knee

	List of Tables
	List of Figures
	Abstract
	Declaration
	Copyright
	Abbreviations
	Acknowledgements
	About the Author
	Alternative Format
	Thesis Overview
	Introduction
	Aims and Objectives
	Contributions
	Outline of the Thesis

	Knee Osteoarthritis
	Structure of the knee joint
	The Disease
	Risk factors

	Available treatments
	Grading systems
	The MOST initiative

	Machine Learning for Osteoarthritis
	Object detection
	Machine learning algorithms
	Cross Validation
	Machine learning for object detection

	Statistical shape and appearance models
	Shape Model Matching
	Active Shape Model
	Combined Appearance Model
	Random Forest Voting Schemes
	Random Forest Constrained Local Models

	Automated Methods for studying OA
	Fractal Signature based methods
	Joint Space Width
	OA Classification
	OA Prediction
	Pain


	Fully Automated Classification and Prediction of Osteoarthritis
	Lateral Knee Radiographs
	Choice of Landmarks
	Parameter Optimisation

	Papers
	Introduction
	Method
	Statistical Shape Model
	Results
	Conclusion

	Combining features from both radiographic views
	Abstract
	Introduction
	Methods
	Results
	Conclusions and Future Work

	Appendix
	Hyper-parameter tuning
	Comparisons with previous works
	Summary of Deep learning results


	Improving the classification algorithm: Indecisive Forests
	Introduction
	Background
	Evaluating the result from a tree

	Training and Optimising Indecisive Trees
	Optimising the leaf values
	Optimising the decision nodes

	Experiments
	Discussion and Conclusions
	Acknowledgments
	Appendix
	Details of the hardware used
	Comparison with alternative methodologies


	Correlating Symptomatic and Radiographic Osteoarthritis
	Introduction
	Methods
	Appearance Model
	Object Detection and Shape Model Matching
	Analysis Approach

	Results
	Testing individual radiographic features
	Using shape, texture and appearance parameters
	Testing combinations of radiographic features

	Discussion
	Aknowledgements

	Supplementary Results
	Descriptive statistic analysis of the presence of frequent knee pain for different KL grades
	Results of using individual structural features to predict frequent knee pain when we use the consistent knee pain score
	Summary of results on the MOST dataset


	Discussion
	Conclusions
	Future Work

	Bibliography

