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No physical or biological system can fully be decoupled from its surroundings; the
effect of the environment on such a system therefore needs to be understood. In this
thesis, we present a number of methods to understand the dynamics of stochastic
systems coupled to a time-varying environment. We focus primarily on the case of
an environment which randomly switches between conditions, however deterministic
environments are also considered. For all our methods and applications, the starting
point is an individual-based model: a microscopic description of the system.

The first model-reduction method we develop considers an approximation to the
dynamics in the limit of a large system. As the system’s size approaches infinity, its
dynamics can be approximated by a piecewise-deterministic Markov process (PDMP),
where the dynamics are characterised by deterministic motion in between random
switches of the environment; this approximation neglects the effects of demographic
noise. We go beyond this approximation and explicitly include the effects of demo-
graphic stochasticity, resulting in a description of the system as a stochastic differential
equation with switching. We derive an expression for the stationary distribution for
certain cases, and show how this method leads to strong agreement with simulations.

The second method considers the dynamics of a system in an environment when
there is a large separation between systemic and environmental time scales. In the limit
in which environment’s time scale is infinitely faster than the system’s—the adiabatic
limit—the environmental dynamics can be eliminated. For fast, but finite, environ-
ments we show how reduced master equations can be derived beyond this adiabatic
limit. These are characterised by bursting events not found in the original master
equation. The above two methods can be combined to consider scenarios with both
a large system and fast environmental switching. This results in a range of different
approximation schemes valid in different situations. New methods are also developed
for the approximation of first-passage times, subject to a deterministic environment.

Applications of these methods to models in biology, medicine, and otherwise, are
explored. One focus is on bet-hedging strategies in populations of cells: in the face of
uncertain environmental conditions, cells are understood to switch between phenotypes
with different growth properties. We present a microscopic model of such a system,
and use the PDMP to derive analytical expressions for the mean instantaneous growth
rates and thereby study bet-hedging. Another study considers a large genetic network,
representing an embryonic stem cell. We derive a simplified model, where the system
is a high-dimensional population of gene-products, and we show how the PDMP can
be used as an efficient method of simulation. We also consider applications to normal
tissue complications, which are caused by damage to normal cells in the radiotherapy
of neighbouring cancer cells. Our approaches provide an approximation to the first and
second moments of normal tissue complication probabilities in the limit of a large, but
finite, population of cells. Other applications considered include a bi-stable genetic
circuit and crack propagation.
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Chapter 1

Introduction

It is not because things are difficult

that we do not dare; it is because we

do not dare that they are difficult.

Seneca (5 BC – 65 AD)

1.1 Systems in switching environments

An introduction to statistical physics. Statistical physics arises from the need

to understand a world which is simply too complex. Consider a balloon with 1023

individual interacting gas particles, each with a certain momentum and position: the

system’s microscopic properties. Using a computer to simulate the precise dynamics

of each of these quantities is well beyond our current capabilities. Still, theoretically,

if one knew the initial conditions of the system and the precise nature of the physical

interactions between the particles, could one not model the system’s dynamics and

calculate a later state of the system with certainty? Such a question was considered

in 1814, and has come to be referred to as Laplace’s demon [1]. The answer, it seems,

is no. Firstly, one would have to know all initial conditions with infinite precision: our

recent understanding of chaos [2] shows that any deviation in the initial conditions,

however small, grows exponentially with passing time. As a result any error in a

model quickly prevents us from describing the microscopic properties of the system.

Secondly, the success of quantum mechanics presses us to make another conclusion: all

evidence suggests the universe is intrinsically probabilistic. We are forced to conclude

16
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that we cannot predict the future with certainty. But most importantly, what use

would knowing all this information be? In practise a few macroscopic variables, such

as pressure, volume, and temperature, are sufficient to describe the system’s behaviour.

Statistical physics, then, arises from a need to understand the emergent phenomena

of an impossibly complicated microscopic system and its unpredictable environment.

Thus at the core of statistical physics is the study of which elements are essential in

the description of a complex system. Such elements become the necessary ingredients

of an effective model.

The successes of this approach can be seen by the achievements of non-equilibrium

statistical physics. These achievements are not isolated to any one area; rather they

are spread throughout innumerable scientific disciplines and impossible to list compre-

hensively. For example, economical applications have allowed physicists to understand

the nature of financial processes [3], while sociological applications have allowed us to

understand behaviours ranging from the flow of traffic and stampedes [4, 5] to ex-

plaining the racial segregation of neighbourhoods using a model initially proposed to

describe atomic spins [6]. The analysis of models of infectious diseases have shaped

medical policy [7–9]. Through research of statistical physics, we even shed light on the

assembly and evolution of life itself [10, 11].

In this thesis we identify one inalienable constituent of many complex systems to

be its dynamical environment. All processes in nature are to some extent dependent

on an environment. Physical and biological systems can exchange energy, informa-

tion, or particles with their surroundings. The need to understand a general class

of problem necessitates a careful analysis of the effects of environmental noise, and

for us to identify the reduced variables and dynamics which allow us to conceptualise

environmental effects.

Deterministic environmental dynamics. In many cases environments are best

characterised as deterministic. In studies of the dynamics of disease, seasonal varia-

tions in temperature, behaviour, and resource availability are known to exert strong

pressures on populations [12]; extensions to the susceptible-infectious-recovered (SIR)

model have incorporated time-dependent rates [13, 14]. The effects of periodic vari-

ations have also been considered in ecological models of extinction [15]. Even in

controlled medical applications one can identify such an environment: Brachytherapy,
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the treatment of cancer using a sealed radiation source, irradiates cancer cells and

nearby normal cells with a rate which varies in time as the source decays.

Bacterial persistence presents another important example of such behaviour. Mi-

crobial cells have been shown to switch between phenotypes as a survival strategy to

react to changing environments, including variations in temperature and concentra-

tions of nutrients and toxins. In certain settings, this environment can be deterministic:

in laboratory experiments, the dynamics of phenotypic switching as a survival strategy

are often studied using periodic application of antibiotics [16–18]. Such dynamics are

understandably important due to our continued interest in antibiotic resistance.

Continuous stochastic environmental dynamics. In general, however, the

dynamical environment is itself unpredictable. For example, in real bacterial pop-

ulations outside of a laboratory setting, we expect environmental changes to occur

outside of any strictly regimented regime. In ecological models, environmental fluc-

tuations may arise from changes in the availability of food, pressure from predation,

and weather; stochastic environments have therefore been considered in studies of ex-

tinction, fixation, and competition [19–25]. Similarly, the role of continuous stochastic

environmental noise on evolutionary processes has been a subject of study [26,27].

The dividing line between system and environment is not always clear, and in some

sense arbitrary. In theory, one could incorporate elements of the environment into the

system, resulting in a ever-increasingly complicated joint system. The system, then,

is perhaps best described as the populations in which we are strictly interested.

Noise is understood to play a crucial role within the dynamics of gene expression,

including being an indispensable part of the cellular decision making process, enabling

cell specialization and bet-hedging strategies [28, 29]. Many authors identify a source

of environmental noise which arises from variations in the copy numbers of molecules

underlying the machinery of gene expression [30,31], affecting the rates on transcription

and translation. The effects of such environmental sources of noise on biochemical

networks has been an important area of theoretical research, where it has been shown

to induce bistability [32, 33] and modify switching rates [34–36]. Recent studies have

incorporated the effects of this environmental noise into simple kinetic models through

production and degradation rates which vary stochastically in time [37,38]. This source

of environmental noise is distinct from the kind considered in this thesis:
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Switching environments. For many applications it is more realistic to assume

an environment consists of discrete states; the environment switches between these

states stochastically, having a pronounced effect on the model parameters of the sys-

tem to which it is coupled. For example, in the context of genetic networks, noise

arises from temporal variations in the binding configurations of genes: each poten-

tial configuration of a gene’s promoter site corresponds to a discrete state. A change

to this configuration may activate or repress the gene, vastly changing the rate of

transcription of mRNA [39]. In models of bacterial persistence, the environment may

represent the presence of antibiotics or a host immune response, each of which can be

modelled as a random environment with discrete states [40, 41]. In certain ecological

models an environment may occasionally switch to describe a short-lived catastrophe,

causing a major change to the population [20, 42]. Predator-prey models and other

ecological models have been considered in switching environments in order to account

for abrupt changes in growth rates and carrying capacities arising from weather vari-

ations and the availability of nutrients [43–47]. A recent game theoretical study of

fixation in switching environments shows that switching environments can work in a

mutant’s favour to increase the probability of fixation [48]. Further examples can be

found in models of voter behaviour [49], and the failure of mechanical components due

to different modes of operation [50–55].

Systems coupled to switching environments are subject to two sources of noise:

environmental noise, arising from stochasticity in environmental switches, and demo-

graphic (or intrinsic) noise, arising from unpredictability of the system itself. This

latter source is caused by random births and deaths of individuals. Intrinsic noise

is understood play an important role in many models. For example, it has shown

to cause macroscopic changes of behaviour in populations by sustaining oscillations

[56–58]. Our goal is to better understand the dynamics of systems under the influence

of both these sources of noise. This involves the development, understanding, and

application of model-reduction schemes to reduce complex problems to their necessary

elements.

In the aforementioned examples and the majority of this thesis, the processes de-

scribing the system and the environment are Markov jump processes: the system and

the environment each hop stochastically between discrete states in continuous time.
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Such processes will be referred to as individual-based models, since each possible state

refers to a certain number of individuals in the population of the system. The time-

evolution of the joint probability of processes occupying a specific state is described

exactly by a master equation.

Although both system and environment are formally described by the master equa-

tion, an environment as discussed here differs from a system in a number of crucial

ways. Firstly, environmental states are typically few in number, while a system may

have many possible states. Binary environments, in particular, are used extensively in

the aforementioned models; in such cases, the variation in the environment is some-

times referred to as dichotomous noise [59]. Secondly, a change in environmental state

often causes an abrupt change in dynamics. This can be seen in the context of ge-

netic models, where the binding or unbinding of a particular molecule to a promoter

site can have a drastic effect on the production of mRNA molecules [39]. Similarly

in models of antibiotic resistance, the introduction of antibiotics to a population of

bacteria can serve to favour one phenotype over another and thereby reverse the di-

rection of flow [40,41]. As a result of these differences the environmental states cannot

be treated as a continuum. Thus many simplifying approximations which work for

large systems—the Kramers–Moyal expansion or the system-size expansion [60, 61]—

are not valid for the environment. In order to approximate the dynamics of systems

in switching environmental conditions different techniques are needed.

We proceed by discussing existing methods which are used to understand the dy-

namics of systems in switching environments.

1.2 Existing methods

1.2.1 Exact approaches for analysing systems in switching en-

vironments

The chemical master equation is a set of first-order ordinary differential equations

(ODEs) describing the time-evolution of the probability of a system (and an environ-

ment) occupying each state as a function of time [60, 61]. In the simplest case where

the system consists of a single species, this probability can be written Pn,σ(t), where
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σ is the state of the environment and n is the number of individuals in the system1.

The master equation then takes the general form

d

dt
Pn,σ(t) =

∑
n′,σ′

An′→n,σ′→σPn′,σ′(t), (1.1)

where A describes the rate of transition from one state to another. The master equa-

tion is an exact description of the dynamics of the underlying individual-based model.

However, only for the simplest models can the master equation be solved analyti-

cally [60–62]. For other cases, analytical results are only available by performing an

approximation.

Integration of the master equation. The master equation, however, may be

integrated numerically using a Runge–Kutta method or similar [63]. In this way, one

can obtain numerical results describing, for example, the time-course of the probability

distribution, the stationary probability distribution, and the first-passage time through

a boundary. This brute-force approach, however, has a number of disadvantages. One

such shortfall is the scaling of computational difficulty with the size and complexity

of the system. When the populations in the model are large, a large number of ODEs

must be forward-integrated. This can have a large effect on simulation times: each

additional (chemical) species in the model increases the dimensionality of the system,

thereby exponentially increasing the number of ODEs and thus the computation time.

For large systems, then, it can quickly become infeasible to directly integrate the

chemical master equation. Another disadvantage is that integration of the master

equation provides only numerical results, and so gives little insight into the underlying

physics of a model. Lastly, numerical integration of the master equation itself involves

a number of approximations: (1) for many models the state-space is infinite. Thus,

to proceed with this method one needs to truncate an infinite series of ODEs at some

finite cut-off [64]; (2) it involves selecting a finite time-step dt thereby introducing

error depending on the method of integration [e.g., the fourth order Runge–Kutta

introduces an error of order (dt)4].

Generating functions. One technique for obtaining analytical results from the

master equation without approximation involves moment generating functions. This

1Since the space of states is discrete, the set of probabilities is strictly (up to a labelling) a vector.
However, in practise the probabilities are often written as a function, e.g., P (n, σ, t).
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entails introducing the generating function Gσ(z, t) =
∑∞

n=0 z
nPn,σ(t), and substitut-

ing into the master equation. Using such a method, one is able obtain exact solutions

to the transient and asymptotic probability distributions for simple models [35,65–68].

Critically, however, the moment generating function method works only for the sim-

plest cases. Specifically, this method is limited to cases where the dynamics of the

underlying model are linear. Furthermore, success in using the moment-generating

function to exactly solve problems for systems in switching environments has only been

achieved for one dimensional systems, that is, systems containing a single species; for

more complex models, approximations (such as a separation in timescales [69]) have

been required. While for the simplest cases such methods provide a solution to the

generating function, transforming this solution back to the space of probabilities [i.e.,

Pn,σ(t)] is difficult. Lastly, if such a solution is obtainable, the functional form is often

too complicated to glean the underlying physics. Thus, to study a more general class

of problem, the method of moment-generation functions is inadequate.

Monte Carlo methods. The statistics of systems in switching environments

can be obtained from the master equation using kinetic Monte Carlo methods. The

Gillespie algorithm, otherwise called the Stochastic Simulation Algorithm (SSA), was

proposed by Gillespie in 1976 [70,71] and has seen widespread use in simulating Markov

jump processes. The SSA produces a single sample path of a stochastic process without

approximation; at each time this sample path has a single given state. Owing to the

stochastic nature of the process, each sample path will be different. To determine the

statistics of the model using this method, a large ensemble of trajectories must be sim-

ulated. The Gillespie algorithm has also been generalised to consider time-dependent

transition rates and non-Markovian processes [72, 73], while an improvement to the

Gillespie algorithm has been suggested which requires only a single random variable

to be generated per time step [74]. Still, using this method involves the generation of

a large number of random numbers, which comes at a significant computational cost.

As a result, the Gillespie algorithm often does not constitute an efficient approach to

obtaining the statistical properties of a model. This is especially the case when either

(i) the rate at which events occur is very high, meaning a large number of events need

to be simulated over a small time, as is the case when the system contains a very large

population; or (ii) when the state space is very large, meaning a very large ensemble
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of Gillespie simulations must be considered before the statistics are adequately repre-

sentative. Similarly to the other approaches discussed so far, the Gillespie algorithm

provides only numerical results, while analytical results can sometimes be more useful.

1.2.2 Approximations to systems in switching environments

The need for the approximation of the master equation derives from two main reasons.

Firstly, they allow one to obtain otherwise impossible (or impractical) mathematical

results. By making certain well-justified assumptions, we are often able to make sim-

plifications which lead to new analytical results, giving real, physical insight into the

properties of the model itself. Secondly, approximating the master equation can facil-

itate more efficient means of simulation. An example of this, as is discussed in more

detail below, is the Kramers–Moyal expansion which allows for stochastic time-courses

to be generated more efficiently at larger system sizes. In this way, the approximation

of the master equation precipitates progress even when it does not provide a final,

analytical result. One aim of this thesis is therefore to expand our understanding of

approximations to systems in switching (and in Chap. 6 continuously time-varying)

environments. Secondly, we use these methods in a number of applications to further

our understanding of various biological processes. Below, we give an overview of exist-

ing approaches for approximating the master equation and their relevance to systems

in switching environments.

The large-system limit. For systems without the complication of environmen-

tal switching, a well-developed toolset for approximating the master equation has

emerged. The most prominent of these approximations rely on the following assump-

tion: the populations of interest are large. For systems with larger sizes, the dynamics

become more predictable.

The Kramers–Moyal expansion [60–62,75,76] is the Taylor expansion of the master

equation in inverse powers of the system size; The system size is characterised by

the system-size parameter Ω. Truncating this series after a finite number of terms

constitutes an approximation; this is almost always done after either one or two terms.

The reason for this is Pawula’s theorem [60, 62] which states that the inclusion of

higher-order terms contradicts the positivity of the probability density distribution,

unless infinitely many terms are collected.
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The truncation of the Kramers–Moyal expansion after the lowest-order terms leads

to the rate equation. One introduces a rescaling of the population xt = nt/Ω, referred

to as the population density. For a one-dimensional population the rate equation has

the form
dx

dt
= v[x(t)], (1.2)

where v(x) describes the deterministic drift of the population. For the multidimen-

sional case, this is a set of ordinary differential equations (ODEs) which again describe

the deterministic drift of the system only. While useful in certain cases, this description

neglects the effects of demographic noise which arises as a product of having a finite

system. Even with this caveat, such rate equations have seen use in many applica-

tions, including models of infectious disease [7] and pioneering studies of predator-prey

dynamics [77].

The sub-leading-order truncation of the Kramers–Moyal expansion leads to a Fokker–

Planck equation (FPE), a second order partial differential equation (PDE). The finite

truncation of the expansion removes the discreteness of the state space, so that that

state-space becomes continuous, and rather than a probability we have a probability

density. The Fokker–Planck equation in one dimension has the form

∂

∂t
Π(x, t) = − ∂

∂x
v(x)Π(x, t) +

1

2Ω

∂2

∂x2
w2(x)Π(x, t), (1.3)

where Π(x, t) is the probability density as a function of time. The right hand side of the

FPE consists of two terms; the first, characterised by the function v(x), describes the

drift of the population, and the second, characterised by the function w(x), describes

the diffusion. This latter term accounts for the demographic noise. In general the

Kramers–Moyal expansion results in process with multiplicative noise; a process where

the diffusion term is a function of the random process.

Similarly, a related expansion—van Kampen’s system-size expansion—also con-

siders an expansion in powers of the inverse system size. This approach utilises an

ansatz to further simplify the dynamics; we assume the random process describing the

population density can be decomposed

xt = φ(t) + Ω−1/2ξt, (1.4)

where φ(t) is a deterministic path which describes the drift only, and random process
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ξt describes deviations from this path. This is referred to as the linear noise approx-

imation (LNA), and it leads to a description of the system as an FPE with additive

noise:

dφ

dt
= v[φ(t)], (1.5a)

∂

∂t
Π̃(ξ, t) = − v′(φ)

∂

∂ξ
ξΠ̃(ξ, t) +

w2(φ)

2

∂2

∂ξ2
Π̃(ξ, t), (1.5b)

where v′(φ) is the derivative of v(φ), and Π̃(ξ, t) is the probability density of the ran-

dom process ξt. It has been shown that this approximation is valid over limited times

for any population which is sufficiently large [78]. The linear form of the noise, the

independence of the noise strength from variable ξ, can be considered simpler than

the multiplicative noise in the Kramers–Moyal expansion. In this way, the system-size

expansion lends itself more readily to analytical solutions, however, in some circum-

stances where the system size is not sufficiently large, it fails to capture dynamical

effects otherwise captured by multiplicative noise [79].

Monte Carlo methods can also be used in the large-system limit. Dynamics in

the form of a Fokker–Planck equation can equivalently be written as a system of Itō

stochastic differential equations (SDEs). For example FPE (1.3) may be rendered

dxt = v(xt) dt+ Ω1/2w(xt) dWt, (1.6)

where Wt is the Wiener process, also referred to as Brownian motion. The Euler–

Maruyama method provides a method for the integration of these SDEs, providing an

approximation to a sample path of the process [80]. For large systems, this approximate

approach can be much more efficient than performing the SSA with the full model.

While these large-system-size approaches are useful when all species are present

in large numbers, they are not directly applicable to cases where they are coupled to

environmental states which are few in number. The failure of such an approach is

documented in Ref. [81], wherein the authors perform the traditional Kramers–Moyal

expansion to a model where a large population of proteins (a system) coupled to the

state of a small number of genes (an environment). The authors find a marked dis-

agreement between the stationary statistics of the approximation and the full model.

This motivates a more careful approach to the dynamics of systems in switching envi-

ronments, where we adapt the approach of the Kramers–Moyal expansion to consider
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a system which is large but an environment which is not. Before starting my PhD,

such a technique was developed only for the cases of an infinitely-large system:

The piecewise-deterministic Markov process. The piecewise-deterministic

Markov process (PDMP) was first introduced in a 1984 paper by Davis [82]. Such a

process is characterised by continuous deterministic motion between discrete stochastic

jumps. Since its inception, the PDMP has been used in applications as varied as

financial risk [83] and the growth of cracks in mechanical components subject to time

varying loads [52].

The PDMP can be seen as an approximation to large systems coupled to switch-

ing environments. More specifically, it is the result of approximating the system as

infinitely large (and therefore deterministic), while maintaining the discreteness and

randomness of the environment. For this reason, the PDMP has seen increasing use

in modelling genetic regulatory networks [84–87]. In these cases a large population of

proteins is coupled to an ‘environment’ which is typically the state of a single gene,

or else a small population of mRNA molecules [88]. For the case of a one-dimensional

population, the PDMP has the form

dxt
dt

= vσt(xt), (1.7)

where the function vσ(x) describes the drift of the population when it is in environ-

mental state σ; the state of the environment σt is itself described by a master equation.

Approximating the system in this way has allowed for analytical results to be

produced in some cases, for example the stationary distributions for certain models

were calculated in Refs. [84, 89]. A major part of the work of this thesis is using the

PDMP to achieve new, analytical results. Furthermore, the deterministic treatment of

the large system vastly increases the efficiency with which a process can be simulated

[85]. This allows progress to be made where analytical solutions are not feasible. As

such, another major component of this thesis involves utilising the PDMP to efficiently

simulate large and high-dimensional models.

While the PDMP accounts for discrete switching between environmental states, it

does not account for demographic noise arising from finite system sizes. This noise

cannot always be ignored. For example, in Chapter 2, we show that this noise can

lead to marked difference in the statistics of the stationary state. This motivates a
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more accurate approximation of the full model which retains, to some approximation,

the effects of this demographic noise.

Fast environmental switching. A separate approach for approximating systems

in switching environments has been used when the time-scale separation between the

evolution of the environment and the system is large. When the environment switches

very quickly, it can be that assumed the environment is always equilibrated to its

stationary state. This assumption is closely related to the quasi-steady-state assump-

tion (QSSA), which allows fast-reacting species to be eliminated from the dynamics of

chemical reactions [90–97]. For the case of a one-dimensional population, the dynamics

are then described by a master equation

d

dt
Pn(t) =

∑
n

Aavg
n′→nPn′(t), (1.8)

where Aavg is an effective transition rate matrix, found by averaging over the environ-

ment.

This approach, however, relies on the assumption that there is an infinite sepa-

ration between the time scales of the system and the environment. This results in

a deterministic environment, where the noise from environmental switches is entirely

neglected. Even in the fast switching case, the noise from environmental switches can

be important. For example, in Ref. [98] it was shown that even when fluctuations

in a genetic environment occur on fast time scales, they still impart a non-negligible

modification to the lifetime of an epigenetic state. Thus, it is necessary to more ac-

curately consider the dynamics of systems in fast-switching environments, in order to

re-account for this environmental noise.

1.3 New approaches to systems in switching envi-

ronments and applications

The aforementioned existing approaches to systems in switching environments (the

PDMP and the QSSA) ignore sources of noise which can have a significant effect

on the resulting statistics. In order to effectively approximate systems in switching

environments, one must introduce new methods. In the chapters which follow, we

develop new methods for treating such systems, and we apply our insight to certain
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Figure 1.1: A schematic view of this thesis (Pictures reproduced from Freepik from
www.flaticon.com, and Cancer Research UK / Wikimedia Commons).

important biological applications. An overview of the structure of these chapters is

shown in Fig. 1.1.

Throughout this body of work, we develop a range of approximations to the master

equation, allowing one to approximate the dynamics of a model suit each individual

purpose. This involves putting existing approximations into context, as well as de-

veloping new approximations. A schematic of approximation schemes is presented in

Fig. 1.2, in which we consider approximations in the size of the system (horizontal

axis), and approximations in the time scale of environmental switching (vertical axis).

Approximation schemes with a red border were developed during the course of this

body of work.

Chapter 2: Intrinsic noise in systems with switching environments. In

Chapter 2 we consider approximations of systems in switching environments in the

large-system limit, i.e., we move horizontally along the top column of Fig. 1.2. This

involves considering a Kramers–Moyal-type expansion of the system only, while main-

taining the discrete, random environment. Collecting only lowest-order terms leads

to a PDMP. Focusing on the case of a two-state environment and a single systemic

species, we derive a general expression for the stationary state of this PDMP. How-

ever, we show that there are major qualitative and quantitative differences between

https://www.freepik.com/
www.flaticon.com
https://commons.wikimedia.org/wiki/File:Diagram_showing_how_cancer_cells_keep_on_reproducing_to_form_a_tumour_CRUK_127.svg
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Figure 1.2: A schematic of the different schemes for approximating the individual-
based model of a system in a switching environment as we increase the system size and
the environmental switching rates; each column and row corresponds to a successive
layer of approximation. Approximation schemes with a red border are original to this
body of work.

the true stationary distribution and this lowest-order approximation. This motivates

us to consider the next-order term in the Taylor expansion of the system.

The result of our higher-order expansion is a hybrid Fokker–Planck equation; an

equation where the time-evolution of the system evolves according to drift and dif-

fusion terms (i.e., Fokker–Planck-like), but where the environment is described by

master-equation-like switching. This is related to a contemporary study consider-

ing dichotomous noise [100]. Such dynamics can be described by an SDE where the

drift and diffusion coefficients change instantaneously between discrete environmental

switches, i.e.,

dxt = vσt(xt) dt+ Ω1/2wσt(xt) dWt. (1.9)

We refer to such a process as a piecewise-diffusive process. In this chapter, we focus

on the statistics of the stationary state of systems in switching environments. Using

an additional approximation, we are able to produce a result describing the stationary

state in a closed form as an integral. We show how this has marked improved accuracy

over the PDMP, and show a number of illuminating examples. Chapters 3 and 4 each

contain biological applications of the techniques developed in this chapter.

Chapter 3: Phenotypic switching of populations of cells in a stochas-

tic environment. Chapter 3 contains an application of the techniques developed in
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the preceding chapter to a model rooted in biology. Thereby, we obtain original in-

sight into a biological problem. We consider the phenomenon of bacterial phenotypic

switching as a bet-hedging strategy to endure unfavourable environmental conditions.

Microbial cells are understood to switch between faster-growing and more-resilient

phenotypes in order to react to changes in the environment, including the presence

of antibiotics, differences in temperature, and the state of a host immune response

[16, 112–117]. While much previous analysis has been carried out when the environ-

mental changes happen periodically [16, 17, 118–125] , less attention has been paid to

stochastic environmental switching [40,41,126–130]. In this chapter we focus primarily

on the case of a Markovian environment. Starting from an individual-based model, we

derive the piecewise-diffusive process and piecewise-deterministic Markov process. Ap-

plying these technologies, we derive a closed expression for the average growth rate of

bacterial populations in our model, and use this to analyse how phenotypic switching

constitutes a survival strategy in a stochastically switching environment. We show that

optimal phenotypic responses are non-trivial for slow and intermediate environmental

processes, and we compare our results to the case of periodic environments. We also

find that stochastic environmental switching produces population growth rates which

are always higher than their periodic counterparts. The model can also be looked

at as a host-pathogen interaction, where a host switches environments to minimise

the growth rate while the pathogen attempts to maximise it. In doing so, we find a

Nash-like best-response scenario for the pathogen and host environment.

Chapter 4: A stochastic and dynamical view of pluripotency in mouse

embryonic stem cells. The research paper reproduced in Chapter 4 arose as a collab-

orative effort between the Theoretical Physics division at the University of Manchester

and the Center for Theoretical Biological Physics at Rice University, Houston TX. We

consider a large genetic network which describes mouse embryonic stem cells (mESCs).

In this case, the instantaneous configuration of a number of genes constitutes an en-

vironmental state. Under certain chemical conditions such mESCs are pluripotent:

they maintain the capacity to differentiate into every type of cell in the adult organ-

ism [131–133]. The network and underlying signalling layers are thought to describe

the cell-fate decision-making process [133]. Descriptions of genetic networks have been

inferred from experiments, however, these often only encode the lowest-level Boolean
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information of whether the expression of a particular gene causes the expression of

another further downstream. In this respect, they remain silent about exactly how

one gene causes the activation of another. The underlying molecular dynamics and

logic are ignored, and thereby also the role of stochasticity in gene expression.

The primary aim of Chapter 4 is to expound the benefits of using the PDMP to

simulate large genetic networks. We develop an extension to the Boolean-level in-

formation to give a higher-resolution picture which explicitly accounts for molecular

logic and switching between genetic states. We start from the genetic network recently

inferred by Dunn et al. [134] describing 12 genes and three external inputs, and we

introduce molecule logic describing the production, degradation, binding, and unbind-

ing of molecules of transcription factors (TFs). This results in an individual-based

model describing populations of TFs and the states of genes. In order to proceed with

the smallest number of free parameters, a large number of simplifying assumptions are

made, such TFs sharing the same rates, and similarly for genes. While these assump-

tions are chosen to be consistent with experiments as best possible, they still (in all

likelihood) constitute very large approximations to the real microscopic system. In this

chapter, then, we do not focus on the quantitative specifics of embryonic stem cells,

but rather on: (i) the methods for the efficient simulation of large individual-based

models; and (ii) qualitative results which appear to be features of the network, rather

than the specific molecular dynamics. We present a mathematical framework for the

efficient simulation of a high-dimensional population of TFs in a genetic environment;

in this case we consider a PDMP description of the system since the populations are

very large. We validate this against Monte Carlo simulation of the full chemical master

equation, and report an increase in simulation efficiency of order 103.

Chapter 5: Model reduction methods for classical stochastic systems

with fast-switching environments: reduced master equations, stochastic dif-

ferential equations, and applications. In Chapter 5 we consider the dynamics of

systems in switching environments in the limit that this switching is fast. We perform

an expansion in this limit which is independent of the large-system approximations

considered in Chapter 2. When the environmental switching is infinitely fast compared

to the system—the adiabatic limit—the aforementioned QSSA applies and there is in

effect no environmental noise. However, when there is a finite time-scale separation
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we show that there are corrections; the dynamics can be approximated by a reduced

master equation which contains bursting events. Bursting events are characterised

by instances where two of the original system’s reactions occur simultaneously (e.g.,

the reduced dynamics may allow two proteins to be synthesised simultaneously, even

when the original dynamics did not). These approximations are shown schematically

by descending the left-hand column of Fig. 1.2.

Combining the different levels of approximations in (i) the system size, and (ii) the

environmental switching time scale leads to the full series of approximations shown

in Fig. 1.2. In this way, we put the existing levels of approximation [81, 82, 85, 86,

91–97,99–106,108–111,135] and our approximations (those shown with a red border)

into a wider context. In this chapter we apply these methods to a number of different

examples, biological and otherwise, and suggest how they may be useful for efficient

simulation and for obtaining analytical results in the future.

Another focus of this chapter relates to negative ‘rates’. In some cases, the ex-

pansion of the master equation in the fast-switching limit leads to a reduced master

equation containing negative ‘rates’. This is similar, at least superficially, to negative

rates which appear in open quantum systems when integrating out an environment

[136–138]. We consider existing approaches for the treatment of master equations with

negative rates [137, 138]. We also devise a stochastic simulation algorithm in discrete

time to procure sample paths in such a scenario, and provide an interpretation of

bursting events in the reduced master equation.

Chapter 6: Calculating normal tissue complication probabilities and

probabilities of complication-free tumour control from stochastic models of

population dynamics. Chapter 6 marks a slight departure from the preceding chap-

ters since here we consider the dynamics of a system with an environment which varies

continuously and deterministically in time. We define an individual-based model of

normal tissue cells subject to radiation from the radiotherapeutic treatment of neigh-

bouring cancer cells. During the radiotherapy of cancerous cells, nearby healthy cells

are also damaged, which can lead to normal tissue complications ranging from acute

complications such as increased urinary frequency in the treatment of prostate cancers

[139, 140], to severe neurological complications such as myelitis in neck cancers [141].

In the model we consider, the radiation protocol constitutes an environment. The
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calculation of normal tissue complication probabilities (NTCP) forms an active area

of research [142–145]. In our work, the mathematics of NTCP are equivalent to a first-

passage time problem [146]. In this chapter, we use large-system expansion methods

to approximate the distributions of first-passage times for general models in this limit.

In this way, our results have implications beyond modelling cancer therapies. In the

latter parts of this chapter we consider the probability of normal tissue complications

for a more complicated model of cancer treatment. Using earlier research into the

probability of fully eliminating all cancerous cells [147], we also consider a combined

model of tumour control probabilities (TCP) and NTCP, which aims to forms a bal-

ance between the maximisation of tumour control and the minimisation of normal

tissue complications.

Chapter 7: Conclusions. Finally, Chapter 7 is the conclusions chapter. In this

chapter, I consider the body of work produced during my doctoral studies as a whole,

including its successes, shortcomings, and areas for future research.

It is my hope that the reader of this thesis will experience even a fraction of the

enjoyment that I have had in writing it over the past three and a half years.

Comments on thesis format. This thesis follows The University of Manchester’s

journal format: the middle chapters consist of five journal papers. The first three

chapters are reproduced from three published research papers [101,148,149], while the

latter two relate to submitted papers currently under review [107,150]. The papers are

presented here in order of submission/publication; fortunately, this also proves optimal

in terms of storytelling. To varying extents, each of these papers relates to work which

was completed as part of a collaboration: I preface each chapter with details of my

personal contribution to each paper. The motivation behind my decision to use the

journal format is that it allowed me to focus on developing skills in writing research

papers, as well as enhancing my research profile. Secondly, it is my opinion that the

material contained in these five papers tells a logical and consistent story.

The papers presented herein are not without changes from their published forms.

Most notably, rather than using pre-prints relating to each publication, the papers

have been adapted into the appropriate thesis template. This allows for consistent

pagination and sequential numbering throughout the thesis. Other minor changes

have been made to improve the consistency of notation throughout the papers, with
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the aim of increasing the ease of reading when considering the body of work as a whole.
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[36] M. Leisner, J.-T. Kuhr, J. O. Rädler, E. Frey, and B. Maier. Kinetics of genetic

switching into the state of bacterial competence. Biophys. J 96, 1178 (2009).



BIBLIOGRAPHY 37

[37] M. Assaf, E. Roberts, Z. Luthey-Schulten, and N. Goldenfeld. Extrinsic Noise

Driven Phenotype Switching in a Self-Regulating Gene. Phys. Rev. Lett. 111,

058102 (2013).

[38] E. Roberts, S. Be’er, C. Bohrer, R. Sharma, and M. Assaf. Dynamics of simple

gene-network motifs subject to extrinsic fluctuations. Phys. Rev. E 92, 062717

(2015).

[39] T. B. Kepler and T. C. Elston. Stochasticity in transcriptional regulation: ori-

gins, consequences, and mathematical representations. Biophys. J. 81, 3116

(2001).

[40] M. Thattai and A. Van Oudenaarden. Stochastic gene expression in fluctuating

environments. Genetics 167, 523 (2004).

[41] E. Kussell and S. Leibler. Phenotypic diversity, population growth, and infor-

mation in fluctuating environments. Science 309, 2075 (2005).

[42] B. Cairns, J. Ross, and T. Taimre. A comparison of models for predicting

population persistence. Ecol. Model. 201, 19 (2007).

[43] Q. Luo and X. Mao. Stochastic population dynamics under regime switching.

J. Math. Anal. Appl. 334, 69 (2007).

[44] C. Zhu and G. Yin. On competitive Lotka–Volterra model in random environ-

ments. J. Math. Anal. Appl. 357, 154 (2009).

[45] R. West, M. Mobilia, and A. M. Rucklidge. Survival behavior in the cyclic

Lotka-Volterra model with a randomly switching reaction rate. Phys. Rev. E

97, 022406 (2018).

[46] K. Wienand, E. Frey, and M. Mobilia. Evolution of a Fluctuating Population in

a Randomly Switching Environment. Phys. Rev. Lett. 119, 158301 (2017).

[47] K. Wienand, E. Frey, and M. Mobilia. Eco-Evolutionary Dynamics of a

Population with Randomly Switching Carrying Capacity. arXiv preprint

arXiv:1712.07939 (2017).



38 BIBLIOGRAPHY

[48] P. Ashcroft, P. M. Altrock, and T. Galla. Fixation in finite populations evolving

in fluctuating environments. J. R. Soc. Interface 11, 20140663 (2014).

[49] J. Hidalgo, S. Suweis, and A. Maritan. Species coexistence in a neutral dynamics

with environmental noise. J. Theor. Biol. 413, 1 (2017).

[50] J. Chiquet and N. Limnios. A method to compute the transition function of

a piecewise deterministic Markov process with application to reliability. Stat.

Probab. Lett. 78, 1397 (2008).

[51] J. Chiquet, M. Eid, and N. Limnios. Modelling and estimating the reliability

of stochastic dynamical systems with Markovian switching. Rel. Eng. & Syst.

Safety 93, 1801 (2008).

[52] J. Chiquet, N. Limnios, and M. Eid. Piecewise deterministic Markov processes

applied to fatigue crack growth modelling. J. Stat. Plan. Inf. 139, 1657 (2009).

[53] A. Lorton, M. Fouladirad, and A. Grall. A methodology for probabilistic model-

based prognosis. Eur. J. Oper. Res. 225, 443 (2013).

[54] H. Zhang, F. Dufour, Y. Dutuit, and K. Gonzalez. Piecewise deterministic

Markov processes and dynamic reliability. Proc. Inst. Mech. Eng., Part O: J.

Risk and Reliab. 222, 545 (2008).

[55] A. Lorton, M. Fouladirad, and A. Grall. Computation of remaining useful life

on a physic-based model and impact of a prognosis on the maintenance process.

Proc. Inst. Mech. Eng., Part O: J. Risk and Reliab 227, 434 (2013).

[56] A. J. McKane and T. J. Newman. Predator-prey cycles from resonant amplifi-

cation of demographic stochasticity. Phys. Rev. Lett. 94, 218102 (2005).

[57] D. Alonso, A. J. McKane, and M. Pascual. Stochastic amplification in epidemics.

J. Royal Soc. Interface 4, 575 (2007).

[58] R. P. Boland, T. Galla, and A. J. McKane. Limit cycles, complex Floquet

multipliers, and intrinsic noise. Phys. Rev. E 79, 051131 (2009).

[59] W. Horsthemke. Noise induced transitions. In Non-Equilibrium Dynamics in

Chemical Systems, pages 150–160. Springer, New York NY (1984).



BIBLIOGRAPHY 39

[60] C. W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, Berlin (2004).

[61] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. North-

Holland, Amsterdam (2007).

[62] H. Risken. The Fokker–Planck Equation: Methods of Solution and Applications.

Springer-Verlag, Berlin (1989).

[63] G. B. Arfken, H. J. Weber, and F. E. Harris. Mathematical methods for physi-

cists: a comprehensive guide. Academic Press, Cambridge MA (2011).

[64] B. Munsky and M. Khammash. The finite state projection algorithm for the

solution of the chemical master equation. J. Chem. Phys 124, 044104 (2006).

[65] N. Kumar, T. Platini, and R. V. Kulkarni. Exact distributions for stochastic

gene expression models with bursting and feedback. Phys. Rev. Lett. 113, 268105

(2014).

[66] R. Grima, D. Schmidt, and T. Newman. Steady-state fluctuations of a genetic

feedback loop: An exact solution. J. Chem. Phys. 137, 035104 (2012).

[67] J. Peccoud and B. Ycart. Markovian modeling of gene-product synthesis. Theor.

Popul Biol. 48, 222 (1995).

[68] J. Hornos, D. Schultz, G. Innocentini, J. Wang, A. Walczak, J. Onuchic, and

P. Wolynes. Self-regulating gene: an exact solution. Phys. Rev. E 72, 051907

(2005).

[69] V. Shahrezaei and P. S. Swain. Analytical distributions for stochastic gene

expression. Proc. Natl. Acad. Sci. U.S.A. 105, 17256 (2008).

[70] D. T. Gillespie. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. J. Comput. Phys. 22, 403 (1976).

[71] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.

Phys. Chem. 81, 2340 (1977).

[72] D. F. Anderson. A modified next reaction method for simulating chemical sys-

tems with time dependent propensities and delays. J. Chem. Phys. 127, 214107

(2007).



40 BIBLIOGRAPHY
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Intrinsic noise in systems with

switching environments

2.1 Preface
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calculations and analysis therein, coding and executing all simulations, producing all

data and all figures, writing all sections of the paper, and responding to the reports

of referees.
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Abstract

We study individual-based dynamics in finite populations, subject to randomly switch-

ing environmental conditions. These are inspired by models in which genes transition

between on and off states, regulating underlying protein dynamics. Similarly switches

between environmental states are relevant in bacterial populations and in models of epi-

demic spread. Existing piecewise-deterministic Markov process (PDMP) approaches

focus on the deterministic limit of the population dynamics while retaining the ran-

domness of the switching. Here we go beyond this approximation and explicitly include

effects of intrinsic stochasticity at the level of the linear-noise approximation. Specif-

ically we derive the stationary distributions of a number of model systems, in good

agreement with simulations. This improves existing approaches which are limited to

the regimes of fast and slow switching.

2.2 Introduction

There is now a broad consensus that noise plays a crucial role in most dynamical

systems in biology, chemistry and in the social sciences. The theory with which to

describe these stochastic processes is well established and has its roots in statistical

physics. Modelling tools such as master equations, Fokker–Planck equations, and

Langevin dynamics are standard and can be found in a number of textbooks [2–4].

Much of this work focuses on processes between discrete interacting individuals, which

can be members of a population in epidemiology [5–7], atoms or molecules in chemical

reaction systems [8, 9], or proteins in the context of gene regulatory networks [10,11].

Many of these models are Markovian and their natural description is in terms of

a master equation which describes the time evolution of the underlying probability

distribution of microstates.

Solving the master equation analytically is often a difficult task: only very simple

linear model dynamics allow further treatment [2–4, 12, 13]. It is therefore common

to employ approximation techniques, most notably ones built around the assumption

that the size of the population is large, but finite. The inverse system size (or its square
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root) then serves as a small parameter in which an expansion can be performed. The

lowest order in this expansion corresponds to the limit of infinite systems, and provides

a deterministic description devoid of stochasticity. The second-order term in the ex-

pansion introduces some stochastic effects of noise in the population, but approximates

the individual-level dynamics by a simpler Gaussian process on a continuum domain

[14]. These techniques have been very successful in capturing elements of noise-induced

phenomena, for example the weak selection of competing species [15–19], cyclic be-

haviour, patterns and waves [20–22]. The main techniques used to characterise these

effects are system-size expansion methods, most notably the Kramers–Moyal and van

Kampen expansions. The latter is also known as the linear-noise approximation (LNA)

[2,3].

These methods are now used routinely for the analysis of individual-based models

with intrinsic noise in the weak-noise limit. Most applications so far focus on sys-

tems in which the reaction rates are set by constant model parameters, and the only

time dependence is in the evolution of the population of individuals itself. Recently,

exceptions have gained attention [7, 23–27]. In these models, reaction rates vary con-

tinuously and deterministically in time, for example to capture periodically varying

infection rates to model seasonal variation in epidemic spreading. Crucially, no addi-

tional stochasticity is introduced in these dynamics by the environment, and the only

discreteness in the dynamics is in the evolution of a finite population of individuals.

Other authors have considered models with an environment which varies stochastically

and continuously [28–30].

For many model systems it is more realistic to assume that model parameters switch

between different discrete states. This includes phases of antibiotic treatment in the

context of bacteria [31,32], genetic switches [10,33–39], evolutionary game theory [40]

and predator-prey models in switching environmental conditions [41,42]. Such models

describe two types of discreteness: that of the state of the environment and that of

the population of interacting individuals. In principle, the environmental switching

can occur stochastically or follow a deterministic pattern (e.g., prescribed periods of

antibiotic treatment, regularly interspersed with periods of no antibiosis).

In the present work we focus on stochastically switching environments. Assuming

again a large, but finite population, the demographic noise in the population can be
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approximated using the above expansion techniques. The noise relating to switches in

the environmental state, however, cannot be dealt with in this way: there is no large

parameter to expand in when the number of environmental states is small.

In models with switching environments the lowest-order expansion in the strength

of the intrinsic noise leads to a so-called ‘piecewise-deterministic Markov process’

(PDMP) [43,44]. In this approximation the dynamics of the population of individuals

is described by deterministic rate equations between stochastic switches of the envi-

ronment. This approach neglects all intrinsic stochasticity from the reaction dynamics

within the population—the population scale is taken to be infinite. The only type of

randomness retained is that of the switching of the environmental states. The appli-

cation of PDMPs has recently gained attention in the description of genetic networks

[33,45,46].

The PDMP approximation has been surprisingly effective in modeling systems

with very large populations [33, 46, 47]; however, it does not produce accurate results

outside this limit. Recently, an alternative approach has incorporated some effects of

demographic noise, but it is only valid if there is a very large separation between the

time scales of environmental switching and that of the population dynamics [38, 39].

Here, we develop the theory further and construct a systematic expansion in the noise

strength about the PDMP.

The remainder of this paper is organised as follows: In Section 2.3 we give a more

formal introduction to the problem using a relatively simple linear model. We show

how the system-size expansion can be applied in the presence of switching environments

and we analytically derive the resulting stationary distribution for the linear model.

In Section 2.4 we construct a more general theory and describe how the method can

be applied to a larger set of model dynamics. Section 2.5 contains applications to

a number of model systems with nonlinear reaction rates and/or other additional

features. In Sec. 2.6 we summarise our findings and give an outlook on future work.

The Appendix contains further details of the relevant calculations.



2.3. INTRODUCTORY EXAMPLE 51

2.3 Introductory example

2.3.1 Model definition

We first focus on a simple example with linear reaction rates. We consider a popu-

lation of individuals of type P , and we write n for the number of individuals in the

population at a given time. Individuals can be created and they can decay, so that

the model describes a birth-death process. The death rate per individual is assumed

to be a constant d. The creation rate is taken to depend on the state of the external

environment; individuals are born with rate Ωbσ, where σ represents the state of the

environment. This can be summarised as follows:

∅ Ωbσ−−→ P ,

P d−−→ ∅,
(2.1)

for times at which the environment is in state σ. The parameter Ω has been introduced

as per normal convention to set a typical scale of the population size [2, 3]. If the

environment were to be fixed at σ the number of individuals in the system would

fluctuate around the value Ωbσ/d in the long run. These fluctuations can be expected

to be of order Ω1/2 and reflect the demographic stochasticity.

At any given time, the state of the full system is completely described by the state

σ of the environment and the number of individuals in the population n. We restrict

ourselves to cases in which the environment has two states, σ ∈ {0, 1}. The switching

between these states is assumed to be independent of the state of the population n

and it occurs with constant rates. We write λ1 for the rate of switching from state 0

to state 1, and λ0 for the rate of switching from state 1 to state 0.

This stylised model can be interpreted in the context of genetic networks as follows

[10]. The two states of the environment, often labelled as G0 and G1, correspond to

regimes in which a certain promoter—a region on DNA which initiates transcription—

is either inactive (G0) or activated (G1). A protein (P) is produced with rates b0

and b1 in the corresponding state. Independently of the state of the gene, proteins

degrade at a constant rate d. This simple model has been studied for example in
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Refs. [10, 38,39,46,48], and it can be written in the form

G0
Ωb0−−→ G0 + P ,

G1
Ωb1−−→ G1 + P ,

G0
λ1−−→ G1,

G1
λ0−−→ G0,

P d−−→ ∅.

(2.2)

The reaction rates of this model are linear in n. It is possible to develop exact solu-

tions to linear models of this type using a generating-function approach [12,13,48–51].

However, such solutions are often limited to simple model systems and frequently they

only provide limited insight into the actual physical dynamics. We use this linear

model to introduce our approximation method. In later sections we will then apply

this approach to cases with nonlinear reaction rates, where an exact solution is no

longer feasible.

2.3.2 Simulation of results and general behaviour

To illustrate the general behaviour of the model, we first show the outcome of a set

of characteristic simulations in Fig. 2.1. Panels (a, c, e) depict individual simulation

runs. In each of these panels a trajectory of the population density x(t) = n(t)/Ω is

shown as a solid line, and the switching of the environmental states is indicated by the

shading of the background. Panel (a) shows an example of relatively slow switching. In

each environmental state, the population tends to a fixed point, φ∗σ = bσ/d, specific to

the environment. It then fluctuates about this fixed point. The stationary distribution

(b) is bimodal. As the switching rate is increased, panels (c) and (d), the stochastic

dynamics spends more time in between the two fixed points and the bimodality of

the stationary distribution is lost; we observe a nearly flat distribution between the

two fixed points. At very fast switching, panels (e) and (f), the stationary distribution

becomes unimodal, peaked at a value between the two fixed points. The system spends

most of its time fluctuating about a point in the interior of phase space, away from

either of the two fixed points.

We set out to characterise this behaviour analytically, and our aim is to approxi-

mate the stationary outcome of the dynamics. We will develop a general approximation
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Figure 2.1: Sample paths of the dynamics and the stationary distribution of the linear
birth-death process described by Eq. (2.2). Panels (a) and (b) show the regime of
slow environmental switching (λ1 = λ0 = 0.1), panels (c) and (d) show intermediate
environmental switching (λ1 = λ0 = 1), and (e) and (f) show fast environmental
switching (λ1 = λ0 = 10). Panels (a, c, e) show individual trajectories (solid line) and
the state of the environment (shaded background). Panels (b, d, f) on the right show
the stationary distribution from simulations, averaged over multiple runs (histogram).
We also plot the theoretical prediction for the stationary distribution Π∗(x) obtained
from Eqs. (2.16), shown as solid lines for the three scenarios. The trajectories and
stationary distributions have been obtained by application of the Gillespie algorithm
[52,53]. Model parameters are b0 = 1/3, b1 = 5/3, d = 1 and Ω = 150.
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technique, which is applicable to a wider class of models, in the next section. Before

we do this, it is useful to outline our approach and to describe the main steps of the

analysis in the simple model defined in Eqs. (2.2).

2.3.3 Master equation

We write n(t) for the number of individuals at time t, and σ(t) for the state of the

environment. These follow random-jump Markov processes [3]. We write P (n, σ, t) for

the probability to find the system and environment in state (n, σ) at time t. We will

frequently suppress the explicit time dependence to keep the notation compact.

The master equation governing the time evolution of this distribution can then be

written as

d

dt
P (n, 0) =M0P (n, 0)− λ1P (n, 0) + λ0P (n, 1),

d

dt
P (n, 1) =M1P (n, 1) + λ1P (n, 0)− λ0P (n, 1).

(2.3)

These equations consist of two components. The operators M0 and M1 characterise

the creation and removal of individuals assuming a fixed state of the environment.

They are given by

Mσ = Ωbσ
(
E−1 − 1

)
+ d (E − 1)n, (2.4)

where E is the shift operator [2]: Ef(n) = f(n + 1). It is important to note that

operators, such as E or Mσ, act on everything that follows to their right throughout

our paper, e.g., Enf(n) = (n+1)f(n+1). The latter two terms in the master equation

describe the switching between the two environmental states.

The master equation (2.3) describes the time evolution of the full process, and in

our analysis, we wish to calculate the joint stationary distribution of the number of

individuals n and environmental state σ, P ∗(n, σ).

2.3.4 Approximation of the master equation

We now proceed to approximate the above master equation. To this end, it is useful

to define the population density x(t) = n(t)/Ω. Assuming that the typical system size

Ω is large but finite, the operators, M0 and M1, can be approximated by a Taylor
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expansion in powers of small parameter Ω−1,

Mσ ≈ Lσ = −∂x(bσ − xd) +
1

2Ω
∂2
x(bσ + xd). (2.5)

This is the Kramers–Moyal expansion [2, 3] in terms of the variable x = n/Ω, while

keeping the state of the environment, σ, discrete. We write Lσ for the operators

obtained from this expansion, retaining only leading and sub-leading orders in Ω−1.

The state of the system is now expressed in terms of x and σ, and we will write Π(x, σ)

for the resulting probability density. The explicit time-dependence is again suppressed

in this notation.

Substituting this into the master equation (2.3) allows us to approximate the pro-

cess by

∂tΠ(x, 0) = L0Π(x, 0)− λ1Π(x, 0) + λ0Π(x, 1),

∂tΠ(x, 1) = L1Π(x, 1) + λ1Π(x, 0)− λ0Π(x, 1).
(2.6)

This expansion differs from the standard Kramers–Moyal expansion in that the en-

vironmental states are not included in the expansion. Equation (2.6) accordingly is

not a standard Fokker–Planck equation; it retains the discrete switching terms, akin

to terms in the master equation of a conventional telegraph process. Equations (2.6)

describe a diffusion process with a Markovian switching in between two sets of drift

and diffusion [54,55], which we refer to as a piecewise-diffusive process.

Since Eqs. (2.6) contain multiplicative noise, it is difficult to solve these equations

directly. In the following sections, we propose an approximation method to analyse

these dynamics. Our approach is similar to the conventional linear-noise approxima-

tion, and describes the effects of intrinsic noise to sub-leading order.

2.3.5 Leading-order approximation: piecewise-deterministic

Markov process

In the above expansion we have retained leading and sub-leading terms in Ω−1. To

proceed, it is useful to first consider the leading-order terms only, i.e., to study the

limit Ω→∞. We obtain

∂tΠ(φ, 0) = − ∂φ(b0 − dφ)Π(φ, 0)− λ1Π(φ, 0) + λ0Π(φ, 1),

∂tΠ(φ, 1) = − ∂φ(b1 − dφ)Π(φ, 1) + λ1Π(φ, 0)− λ0Π(φ, 1),
(2.7)



56 CHAPTER 2. INTRINSIC NOISE IN SYSTEMS WITH SWITCHING...

� = Ͳ 

� = ͳ 

�଴∗ 

�ଵ∗ 
Figure 2.2: Illustration of the Liouville flow of the model described by Eq. (2.7).
Arrows indicate the Liouville flow in each of the two environments, stable fixed points
are shown as filled circles. The PDMP converges into the interval between the two
fixed points (shaded region) at long times.

where we have written φ = limΩ→∞ n/Ω to indicate that we have taken the limit

of infinite populations. In this limit operators Lσ are Liouville operators describing

deterministic flow of φ. The functional form of this flow at any one time is entirely

determined by the state of the environment, σ. The process φ(t) is a piecewise deter-

ministic Markov process [43, 44, 54, 56], a random process composed of deterministic

motion in between the discrete environmental transitions. The PDMP is a descrip-

tion of the system which accounts for the stochasticity of the switching only; the

demographic noise on the other hand is neglected in the above truncation after the

leading-order term.

The long-term behaviour of the system can be determined from inspection of the

Liouville operators. In each state σ the process tends towards a stable fixed point,

φ∗σ = bσ/d. In the following, we assume that b0 < b1 so that φ∗0 < φ∗1. The dynamics

can be illustrated by the flow diagram in Fig. 2.2. When the environment is in state 0

the trajectory of the PDMP moves towards φ∗0, and when the environment switches the

direction is reversed towards φ∗1. In the long-run, the PDMP will always take values

in the interval between the fixed points φ∗0 and φ∗1.

The stationary distribution of the PDMP, Π∗(φ, σ), can be found by setting the

derivatives with respect to time in Eqs. (2.7) to zero, followed by integration and

rearrangement. Further details are discussed in a more general setting in the next

section. For the linear model defined in Eqs. (2.1) we find

Π∗(φ, 0) = N (φ− φ∗0)
λ1
d (φ∗1 − φ)

λ0
d

φ− φ∗0
,

Π∗(φ, 1) = N (φ− φ∗0)
λ1
d (φ∗1 − φ)

λ0
d

φ∗1 − φ
,

(2.8)
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Figure 2.3: Sample paths and stationary distributions of the PDMP for the linear
model in infinite populations. Panels (a) and (b) show the regime of slow environ-
mental switching (λ1 = λ0 = 0.1), panels (c) and (d) show intermediate environ-
mental switching (λ1 = λ0 = 1) and (e) and (f) show fast environmental switching
(λ1 = λ0 = 10). Panels (a, c, e) show individual trajectories (solid line) and the state
of the environment (shaded background). Panels (b, d, f) show the stationary distri-
bution of the PDMP, as obtained from from Eq. (2.8). Comparison with Fig. 2.1 shows
that this stationary distribution does not adequately reflect the stationary distribution
of the full noisy process in finite populations. The sample paths have been obtained
by Runge–Kutta integration of Eq. (2.11) between randomly-generated exponential
switching times. Model parameters are b0 = 1/3, b1 = 5/3, d = 1 and Ω = 150.
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for φ ∈ (φ∗0, φ
∗
1). The pre-factor N is a normalisation constant, determined by the

condition ∫ φ∗1

φ∗0

[Π∗(φ, 0) + Π∗(φ, 1)] dφ = 1. (2.9)

This result is consistent with those reported by other authors [46,56,57].

2.3.6 Comparison against simulations

In Fig. 2.3 we illustrate the behaviour of the PDMP. Panels (a, c, e) show individual

time series for slow, medium and fast switching of the environment (parameters are as

in Fig. 2.1). Panels (b, d, f) depict the corresponding stationary distributions of the

PDMP, as obtained from Eqs. (2.8). For slow switching rates, the marginal stationary

distribution Π∗(φ) = Π∗(φ, 0)+Π∗(φ, 1) is bimodal, with singularities at the endpoints.

In this regime, the PDMP typically spends enough time in each environment between

switches to come close to the corresponding fixed point. For fast switching Π∗(φ) is

unimodal. In this situation, the system typically does not have sufficient time to reach

the vicinity of the fixed points. An intermediate case is shown in panels (c) and (d).

For this particular choice of parameters, the resulting stationary distribution is seen

to be flat between the two fixed points, φ∗0 and φ∗1.

Comparison of the stationary distributions of the PDMP with those of the process

in finite populations (Fig. 2.1) shows that the PDMP approximation recovers some of

the qualitative features of the full system, but not all. The transition from a bimodal

to a unimodal shape is successfully reproduced. On the other hand, the singularities

for slow switching rates seen in the stationary state of the PDMP are not observed

in the full process. The PDMP is confined to the interval (φ∗0, φ
∗
1), while the intrinsic

noise in finite populations allows for fluctuations on both sides of φ∗0 and φ∗1. Thus

the support of the stationary distribution of the model with intrinsic noise includes

concentrations below φ∗0 and above φ∗1.

These results stress the significance of intrinsic noise for the dynamics of the system.

In order to approximate the stationary behaviour to a better accuracy, it is necessary to

include higher-order terms in the above Kramers–Moyal expansion. The corresponding

formalism is well established for systems without random switches of the environment,

and it takes the form of an expansion about the deterministic path of the infinite system
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[27]. In our case, the leading-order behaviour (the PDMP) is a stochastic process itself

due to the randomness of the environmental switching. The sub-leading description

we discuss below is hence an expansion about this random process.

2.3.7 Sub-leading order: linear-noise approximation

Before we present a more detailed account of the expansion to sub-leading order (Sec-

tion 2.4), we briefly outline the general idea. For a fixed realisation of the environmen-

tal switching process, σ(t), we decompose the dynamics of the population as follows:

x(t) = φ(t) +
1√
Ω
ξ(t). (2.10)

This is along the lines of the system-size expansion in systems with time-dependent

rates [27, 58]. For a given path of the environment, σ(t), the trajectory φ(t) of the

resulting PDMP is given by the solution of

φ̇(t) = bσ(t) − dφ(t), (2.11)

where the birth rate bσ(t) at time t is determined by the state of the environment

at that time, σ(t). The dynamics of Eq. (2.11) is the equivalent of the usual rate

equations for systems without environmental switching.

To sub-leading order, systems of this form, but without environmental switching,

are described by stochastic differential equations of the form

ẋ(t) = v(x) +

√
w(x)

Ω
η(t), (2.12)

where we have suppressed the obvious time dependence of x on the right-hand side.

The dependence of the amplitude w(x) on x indicates multiplicative noise, and η(t)

is Gaussian white noise of unit amplitude, i.e., 〈η(t)η(t′)〉 = δ(t − t′). The term v(x)

represents deterministic drift. In a birth-death process with fixed birth rate b and

death rate d one would have v(x) = b− dx, for example.

The equivalent of Eq. (2.12) for the model with environmental switching is given

by the piecewise-diffusive process:

ẋ(t) = vσ(t)(x) +

√
wσ(t)(x)

Ω
η(t). (2.13)
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Equation (2.13) is similar to the outcome of the procedure described in Refs. [27, 58],

where the system-size expansion was carried out for systems with periodically driven

rates. The main difference is the fact that σ(t) is now a stochastic process itself,

whereas the external driving was deterministic in Ref. [27]. In the limit Ω → ∞ the

noise η(t) does not contribute, and we recover the PDMP dynamics of Eq. (2.11).

For the case of the linear model described above we have vσ(x) = bσ − dx and

wσ(x) = bσ + dx. These are the drift term and noise amplitude one would obtain from

a standard Kramers–Moyal expansion at fixed environmental state σ.

In the spirit of the usual linear-noise approximation (LNA) we next write x(t) =

φ(t) + ξ(t)/
√

Ω and obtain

φ̇(t) = vσ(t)(φ),

ξ̇(t) = v′σ(t)(φ)ξ(t) +
√
wσ(t)(φ)η(t).

(2.14)

We have written v′σ = dvσ(φ)/dφ, and we have suppressed the time dependence of φ

on the right-hand side.

From the LNA it is possible to proceed and to approximate the stationary distri-

bution of the process, Π∗(ξ, φ, σ) = Π∗(ξ|φ, σ)Π∗(φ, σ). The distribution Π∗(φ, σ) is

the stationary outcome of the PDMP, and it can be computed exactly, see Eqs. (2.8)

for the linear birth-death model. The general case is discussed in the following section.

In the stationary regime the distribution of ξ will, in principle, depend on the state

σ of the environment and on the variable φ. In order to proceed we now assume that

the dependence on σ can be neglected, so that we write Π∗(ξ|φ, σ) ≈ Π∗(ξ|φ). This is

an approximation, but it turns out to work well for all models we have tested. Making

this assumption we write

Π∗(ξ, φ, σ) ≈ Π∗(ξ|φ) Π∗(φ, σ). (2.15)

The distribution Π∗(ξ|φ) is Gaussian with mean zero, and with a variance which

depends on φ and which can be obtained analytically as described in the next section.

The resulting picture is illustrated in Fig. 2.4. A given realisation of the environmental

process generates a realisation of the PDMP. The state of a finite population, subject

to the same path of environmental states, will fluctuate about the PDMP trajectory,

as indicated by the shading in Fig. 2.4.
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Figure 2.4: Sample path of the PDMP of the linear model (φ(t), solid line) and
environmental state σ(t) (background shading). The dynamics in the finite system for
the same realisation of the environmental process will deviate from the PDMP. The
standard deviation of the deviation is approximated by Eq. (2.36) as discussed below,
and shown here as shading around the PDMP trajectory. Parameters are b0 = 1/3,
b1 = 5/3, d = 1, λ1 = λ0 = 1 and Ω = 150.

From these approximations the stationary distribution of x = φ+ Ω−1/2ξ can then

be estimated as

Π∗(x) =
∑
σ

∫
dφ dξ

[
Π∗(ξ|φ)Π∗(φ, σ)δ(x− φ− Ω−1/2ξ)

]
. (2.16)

Returning to Fig. 2.1, we compare the stationary distribution of the linear model

as obtained from Eq. (2.16) against the results of numerical simulations. The results

from the theory are shown as solid lines, and the simulation data as histograms. We

find that the approximation reproduces the numerical results to a good accuracy.

2.4 General formalism

2.4.1 Definition and master equation

The linear model discussed so far was deliberately simple and the main purpose of

studying it was to develop a general intuition. In order to extend the method beyond

the linear case, we now consider a more general model. This will introduce several

new aspects to the problem.

As before, we restrict our discussion to the case of a single species and two envi-

ronmental states. We write n for the number of individuals in the population, and

σ ∈ {0, 1} for the state of the environment. We use the notation λ1(n/Ω) for the rate

with which the environment switches from state 0 to state 1, and λ0(n/Ω) for the rate
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of switches in the opposite direction. Unlike in the previous sections, we now allow for

an explicit dependence of these rates on the state of the population, λσ = λσ(n/Ω).

We assume that there are M possible reactions in the population, labelled m =

1, . . . ,M . Each reaction m occurs with rate Ωrm,σ(n/Ω) dependent on the current

state of the environment and population. Any occurrence of a reaction of type m is

taken to change the number of individuals in the population by Sm. These are the

underlying stoichiometric coefficients. The propensity functions, Ωrm,σ(n/Ω), together

with the stoichiometric coefficients completely define the dynamics of the population.

The master equation describing the time evolution of P (n, σ) then reads

d

dt
P (n, 0) =M0P (n, 0)− λ1

(n
Ω

)
P (n, 0) + λ0

(n
Ω

)
P (n, 1),

d

dt
P (n, 1) =M1P (n, 1) + λ1

(n
Ω

)
P (n, 0)− λ0

(n
Ω

)
P (n, 1).

(2.17)

The operators M0 and M1 are given by

Mσ =Ω
M∑
m=1

(
E−Sm − 1

)
rm,σ

(n
Ω

)
. (2.18)

The master equation can be expressed in terms of Π(x, σ, t), the probability density of

finding the random processes at x, σ at time t. The dynamics of the joint probability

distribution can be approximated by

∂tΠ(x, 0) =L0Π(x, 0)− λ1(x)Π(x, 0) + λ0(x)Π(x, 1),

∂tΠ(x, 1) =L1Π(x, 1) + λ1(x)Π(x, 0)− λ0(x)Π(x, 1),
(2.19)

where the Fokker–Planck operators L0 and L1 are given by

Lσ =
M∑
m=1

(
−Sm∂x +

Sm
2

2Ω
∂2
x

)
rm,σ(x). (2.20)

As before we have truncated the expansion of the operators in powers of Ω−1 after the

sub-leading terms. It follows we have

Lσ = −∂xvσ(x) +
1

2Ω
∂2
xwσ(x), (2.21)

where we have introduced

vσ(x) =
M∑
m=1

Smrm,σ(x),

wσ(x) =
M∑
m=1

S2
mrm,σ(x).

(2.22)
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Again, the process described by Eqs. (2.19) contains multiplicative noise and it is

difficult to solve these equations in general. In the next section, we begin by analysing

the dynamics in the limit of an infinite population.

2.4.2 Leading-order approximation: piecewise-deterministic

Markov process

We first analyse the process in the limit of infinite system size. Here, we outline the

main steps of the analysis and give the central results. The details of the calculation

can be found in Appendix 2.7.

As before we write φ instead of x in the limit of an infinite system, and we find

the PDMP dynamics

∂tΠ(φ, 0) =− ∂φ [v0(φ)Π(φ, 0)]− λ1(φ)Π(φ, 0) + λ0(φ)Π(φ, 1),

∂tΠ(φ, 1) =− ∂φ [v1(φ)Π(φ, 1)] + λ1(φ)Π(φ, 0)− λ0(φ)Π(φ, 1).
(2.23)

This indicates a flow of the form

φ̇ = vσ(φ), (2.24)

in between switches of the environment. These switches in turn occur with rates λσ(φ).

We now proceed by assuming that the deterministic flow in each of the environ-

ments is towards a unique fixed point, i.e., that there are points φ∗σ for σ ∈ {0, 1} such

that

vσ(φ∗σ) = 0. (2.25)

For the time being we assume that there is only one such fixed point per state; for a

more general case see Section 2.5.3. We assume φ∗0 < φ∗1 without loss of generality. Af-

ter a potential transient the PDMP will eventually be confined to the interval (φ∗0, φ
∗
1).

Our assumption above (only one fixed point in each environmental state) implies that

the vσ do not change sign on this interval, v0(φ) < 0 and v1(φ) > 0 for φ ∈ (φ∗0, φ
∗
1):

the flow is always towards fixed point φ∗0 in state σ = 0, and towards φ∗1 in state σ = 1,

as also illustrated in Fig. 2.2.
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Figure 2.5: Illustration of the physical interpretation of the currents Jσ(φ) (see text).

To analyse the PDMP further, it is useful to introduce currents

J0(φ) = v0(φ)Π(φ, 0)−
∫ φ

φ∗0

[−λ1(u)Π(u, 0) + λ0(u)Π(u, 1)] du,

J1(φ) = v1(φ)Π(φ, 1)−
∫ φ

φ∗0

[+λ1(u)Π(u, 0)− λ0(u)Π(u, 1)] du.

(2.26)

The physical interpretation of these currents is illustrated in Fig. 2.5. We focus on a

domain (φ∗0, φ), where φ∗0 ≤ φ ≤ φ∗1. The first term of the RHS of Eqs. (2.26) accounts

for the probability flowing out of such a domain at location φ due to the Liouville

flow in environmental state σ. The term containing the integral describes the net flow

of probability out of the domain due to switching between the environmental states.

Thus, the quantity Jσ(φ + ∆φ) − Jσ(φ) represents the total amount of probability

leaving the interval (φ, φ+ ∆φ) per unit time.

This leads to equations of continuity

∂tΠ(φ, σ) = −∂φJσ(φ). (2.27)

In the stationary state the currents are divergence-free (∂φJ
∗
σ = 0). Using the zero-

current boundary conditions at φ∗0 and φ∗1 we find J∗σ(φ) ≡ 0 throughout. Sum-

ming the two stationary currents, J∗0 (φ) + J∗1 (φ) = 0, we immediately find Π∗(φ, 1) =

−[v0(φ)/v1(φ)]Π∗(φ, 0), which allows one to replace Π∗(φ, 1) in favour of Π∗(φ, 0) (or

vice versa) in the zero-current conditions. This results in two closed equations for

Π∗(φ, 0) and Π∗(φ, 1) respectively. These can then be integrated directly, and we find

Π∗(φ, 0) =
N

−v0(φ)
h(φ),

Π∗(φ, 1) =
N
v1(φ)

h(φ), (2.28)
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where N is a normalisation constant. The function h(φ) is given by

h(φ) ≡ exp

[
−
∫ φ(λ1(u)

v0(u)
+
λ0(u)

v1(u)

)
du

]
. (2.29)

Further details of the calculation are given in Appendix 2.7.

Later we will need the stationary conditional probability Π∗(σ|φ)—the station-

ary probability of having environmental state σ given the population has state φ.

As discussed above we have v0(φ)Π∗(φ, 0) + v1(φ)Π∗(φ, 1) = 0. Writing Π∗(φ, σ) =

Π∗(φ)Π∗(σ|φ) and using Π∗(0|φ) + Π∗(1|φ) = 1 in Eq. (2.28) leads to

Π∗(0|φ) =
v1(φ)

v1(φ)− v0(φ)
,

Π∗(1|φ) =
−v0(φ)

v1(φ)− v0(φ)
.

(2.30)

It is perhaps surprising that these conditional probabilities are independent of the

switching rates λ1 and λ0.

2.4.3 Sub-leading order: linear-noise approximation

We now proceed by including contributions of intrinsic noise to sub-leading order.

We focus on a time interval between switches of the environment, i.e., we assume σ

is constant. During such time intervals the environmental noise has no effect, and

the problem reduces to that of a conventional individual-based system with a fixed

environment. Following established procedures we write n/Ω = φ(t) + Ω−1/2ξ(t). The

deterministic dynamics are given by φ̇ = vσ(φ). The outcome of a standard LNA can

be expressed as a linear Langevin equation

ξ̇(t) = v′σ(φ)ξ +
√
wσ(φ)η(t) (2.31)

for fluctuations about φ(t), where

wσ(φ) =
∑
m

S2
mrm,σ(φ). (2.32)

These relations describe the evolution of the population (within the LNA) between

switches of the environment. When a change of the environment occurs the variable

σ(t) changes at a discrete point in time, and the next such interval of constant σ

begins.
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Within the LNA the evolution of the probability to observe state φ, ξ, σ is described

by the following set of equations

∂tΠ(φ, ξ, 0) = − ∂φ [v0(φ)Π(φ, ξ, 0)]− v′0(φ) ∂ξ [ξΠ(φ, ξ, 0)] +
w0(φ)

2
∂2
ξΠ(φ, ξ, 0)

− λ1(φ)Π(φ, ξ, 0) + λ0(φ)Π(φ, ξ, 1),

∂tΠ(φ, ξ, 1) = − ∂φ [v1(φ)Π(φ, ξ, 1)]− v′1(φ) ∂ξ [ξΠ(φ, ξ, 1)] +
w1(φ)

2
∂2
ξΠ(φ, ξ, 1)

+ λ1(φ)Π(φ, ξ, 0)− λ0(φ)Π(φ, ξ, 1).

(2.33)

While the expressions on the right-hand side look complicated, the different terms

have a clear physical meaning. The Liouvillian terms −∂φ[vσ(φ)Π(φ, ξ, σ)] describe

the deterministic flow [φ̇ = vσ(φ)] between switches of the environment. The Fokker–

Planck-like terms −v′σ(φ)∂ξ [ξΠ(φ, ξ, σ)] + wσ(φ)∂2
ξΠ(φ, ξ, σ)/2 capture the evolution

of ξ within the LNA of Eq. (2.31). Finally, the terms proportional to λσ(φ) describe

switching of the environment. Consistent with the expansion in the system-size Ω we

have replaced λσ(x) by λσ(φ), i.e., any dependence of the switching rates on the state

of the population is taken to be on the state of the PDMP φ.

2.4.4 Stationary state within the linear-noise approximation

At stationarity the time derivatives on the LHS of Eqs. (2.33) vanish. Using asterisks as

before to denote stationary distributions, and writing Π∗(φ, ξ, σ) = Π∗(φ, σ)Π∗(ξ|φ, σ),

we find

0 = − ∂φ [v0(φ) Π∗(φ, 0) Π∗(ξ|φ, 0)]

− Π∗(φ, 0) v′0(φ) ∂ξ [ξΠ(ξ|φ, 0)] +
1

2
Π∗(φ, 0)w0(φ) ∂2

ξΠ
∗(ξ|φ, 0)

− ∂φ [v1(φ) Π∗(φ, 1) Π∗(ξ|φ, 1)]

− Π∗(φ, 1) v′1(φ) ∂ξ [ξΠ(ξ|φ, 1)] +
1

2
Π∗(φ, 1)w1(φ) ∂2

ξΠ
∗(ξ|φ, 1)

(2.34)

from summing the two equations (2.33) at stationarity.

At this point we introduce a further approximation. We assume Π∗(ξ|φ, 0) ≈

Π∗(ξ|φ, 1), and simply write Π∗(ξ|φ) for either of these. This will be justified below.
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Making this assumption leads to

0 = −
(

Π∗(0|φ)v′0(φ) + Π∗(1|φ)v′1(φ)
) ∂
∂ξ
ξΠ∗(ξ|φ)

+
1

2

(
Π∗(0|φ)w0(φ) + Π∗(1|φ)w1(φ)

) ∂2

∂ξ2
Π∗(ξ|φ), (2.35)

where we have used the relation v0(φ)Π∗(φ, 0)+v1(φ)Π∗(φ, 1) = 0, valid at stationarity,

to show that the terms containing derivatives with respect to φ cancel out.

Eq. (2.35) resembles a stationary Fokker–Planck equation. The drift and diffusion

coefficients are obtained from the v′σ and wσ, weighted by the likelihood to find the

environment in each of its states when the PDMP is at φ.

Solving the stationary equation (2.35) is standard [4]; we find a Gaussian distribu-

tion, Π∗(ξ|φ), with zero mean and with variance

s2(φ) = −1

2

Π∗(0|φ)w0(φ) + Π∗(1|φ)w1(φ)

Π∗(0|φ)v′0(φ) + Π∗(1|φ)v′1(φ)
. (2.36)

Using Eq. (2.30) this can be simplified to give

s2(φ) =
1

2

w0(φ)v1(φ)− w1(φ)v0(φ)

v0(φ)v′1(φ)− v1(φ)v′0(φ)
. (2.37)

We conclude this section with a brief comment on the approximation Π∗(ξ|φ, σ) ≈

Π∗(ξ|φ). In the fast-switching limit the approximation is plausible, the system switches

between environmental states too fast for the variable ξ to equilibrate to a distribution

specific to the environmental state. For this case, the approximation reproduces the

result of Ref. [38]. In the limit of slow switching on the other hand the system spends

most of its time near the fixed points φ∗0 and φ∗1. Our approach then also recovers

appropriate distributions of ξ. For example, when φ ≈ φ∗0 we have v0(φ = φ∗0) = 0

and Eq. (2.37) hence reduces to s2(φ∗0) = −[w0(φ∗0)/(2v′0(φ∗0))]. This is the stationary

variance of the process ξ̇ = −v′0(φ∗0)ξ +
√
w0(φ∗0)η. A similar argument applies when

φ ≈ φ∗1. Outside the limits of fast and slow switching, the quality of the approximation

can be verified numerically. In Fig. 2.6 we illustrate this for a model with nonlinear

dynamics (discussed in more detail in the next section). To test the validity of the

above assumption we have implemented the following measurement protocol: We first

generate a combined realisation of the environmental process and the PDMP, i.e., a

realisation of the process defined by Eqs. (2.23). Subsequently we generate a realisation

of the birth-death dynamics in a finite population for the same path of the environment.
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Figure 2.6: The variance of ξ, conditioned on the state φ of the PDMP and the state of
the environment (see text for details). Results are shown for the dimerisation process
of Section 2.5.1. Solid lines are s2

0(φ) and s2
1(φ) obtained from simulations (see text

for definitions). The dashed line shows the approximation of Eq. (2.37). Parameters
used are b0 = 0.667, b1 = 4.048, d = 2, λ1 = λ0 = 1 and Ω = 150.

In the stationary state we then measure the variance of ξ conditioned on the state φ of

the PDMP and on the environmental state σ. We denote this variance by s2
σ(φ). This

is then averaged over multiple realisations, and compared against the approximation

of Eq. (2.37). The data in Fig. 2.6 shows that the approximation works well, with

only slight deviations in the region away from the two fixed points φ∗0 and φ∗1. For the

linear model numerical results and the theoretical prediction are indistinguishable; in

Appendix 2.10 we show the approximation is exact for the linear model.

2.5 Further Examples

2.5.1 Nonlinear reactions rates

In order to demonstrate the generality of our approach, we now proceed to a model

system with nonlinear reaction rates. The system is identical to the one described in

Eq. (2.2), except that the last reaction (removal of individuals) is replaced by

2P d/Ω−−→ ∅. (2.38)

The above notation indicates that this last reaction occurs with rate dn(n− 1)/(2Ω),

where n is the number of individuals in the system. The reaction can be interpreted

as a dimerisation process, in which two particles of type P form a complex which is

chemically inert and hence effectively removed. In addition to the switches between

G0 and G1, this system is described by two reactions, with stoichiometric coefficients
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and reaction rates

S1 = + 1, r1,σ = bσ,

S2 = − 2, r2,σ =
d

2
x2.

(2.39)

We have written x = n/Ω as before. Using the notation of the preceding sections, we

have the following drift and the diffusion terms

vσ(x) = bσ − x2d, and wσ(x) = bσ + 2x2d. (2.40)

In the limit Ω → ∞, we obtain a PDMP with fixed points φ∗σ =
√
bσ/d for σ = 0, 1.

As before we assume b0 < b1. The stationary distribution of the PDMP is found from

Eq. (2.28),

Π∗(φ, 0) =
N

φ2 − φ∗02

(
φ− φ∗0
φ∗0 + φ

) λ1√
4b0d
(
φ∗1 − φ
φ∗1 + φ

) λ0√
4b1d

,

Π∗(φ, 1) =
N

φ∗1
2 − φ2

(
φ− φ∗0
φ∗0 + φ

) λ1√
4b0d
(
φ∗1 − φ
φ∗1 + φ

) λ0√
4b1d

,

(2.41)

for φ ∈ (φ∗0, φ
∗
1), and where N is the usual normalisation constant.

From Eq. (2.37) finally we find s2(φ) = 3φ/4, i.e.,

Π∗(ξ|φ) =

√
2

3πφ
exp

(
− 2

3φ
ξ2

)
. (2.42)

The stationary distribution Π∗(x) is then obtained by numerically evaluating Eq. (2.16).

Results are compared against simulation in Fig. 2.7, and we find convincing agreement

between theoretical predictions and simulations. This confirms the validity of the as-

sumptions and approximations made during the course of the analytical calculation.

2.5.2 System-dependent environmental transition rates

We now turn to another variation of the original linear model [Eqs. (2.2)]. For the

dynamics within the population we use the same reactions and rates as in Eqs. (2.2),

but we consider the case in which the rates with which the environment switches

between states depends on the state of the population, i.e.,

G0
λ1(n/Ω)−−−−→ G1,

G1
λ0(n/Ω)−−−−→ G0,

(2.43)
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Figure 2.7: Stationary distribution for the nonlinear model of Sec. 2.5.1. The solid line
is the theoretical prediction, and the histogram is data obtained from simulations using
the Gillespie algorithm. Parameters are b0 = 0.667, b1 = 4.048, d = 2, λ1 = λ0 = 1
and Ω = 150.

where we choose the linear form λσ(n/Ω) = ασ + βσ(n/Ω). The coefficients ασ and βσ

are constants, chosen such that λσ remain non-negative.

The drift and diffusion terms of the dynamics within the population are

vσ(x) = bσ − xd, and wσ(x) = bσ + xd. (2.44)

as before. The stationary distribution of the PDMP in the limit of infinite populations

is obtained from Eqs. (2.28) as

Π∗(φ, 0) = N e
β0+β1
d

φ (φ− φ∗0)κ1 (φ∗1 − φ)κ0

φ− φ∗0
,

Π∗(φ, 1) = N e
β0+β1
d

φ (φ− φ∗0)κ1 (φ∗1 − φ)κ0

φ∗1 − φ
,

(2.45)

where the exponents κσ are given by

κσ =
ασ
d

+
βσb0

d2
. (2.46)

The dynamics within the population is the same as in the linear model above, so eval-

uating Eq. (2.37) again leads to s2(φ) = φ. The theoretical estimate of the stationary

distribution Π∗(x), finally, is again found from numerical integration of Eq. (2.16).

Fig. 2.8 shows a sample path of the dynamics and the stationary distribution for the

choice λ1(x) = λ0(x) = x (i.e., α0 = α1 = 0 and β0 = β1 = 1). In this case, transitions

between states are more likely at higher concentrations of the system. Again, we find

good agreement between the predicted distribution and the simulation results. It is

important to note that the parameters we used in the figure are not special in any

way: we have tested other choices of the parameter, and we find an agreement between

simulations and theory of a similar quality.
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Figure 2.8: Model in which rates of environmental switching depends on the state
of the population. Panel (a) shows a typical time course, as generated by the Gille-
spie algorithm. Panel (b) depicts the stationary distribution; the histogram is from
simulations and the solid line represents the approximation from our theory. Model
parameters are α0 = α1 = 0, β0 = β1 = 1, b0 = 1/3, b1 = 5/3, d = 1 and Ω = 150.

2.5.3 Multiple fixed points

In the final example, we consider more complicated dynamics within the population

such that there are multiple fixed points of the flows vσ(x). The switching between

the two environmental states is taken to occur with constant rates λσ. Specifically,

the population dynamics are now modelled by the following reactions

Gσ
Ωc1,σ−−−−→ Gσ + P ,

Gσ + P c2,σ−−−−→ Gσ,

Gσ + 2P c3,σ/Ω−−−−→ Gσ + 3P ,

Gσ + 3P c4,σ/Ω2

−−−−→ Gσ + 2P ,

(2.47)

with constant parameters ci,σ > 0. The corresponding stoichiometric coefficients for

the four reactions are

S1 = S3 = +1, S2 = S4 = −1, (2.48)

and the propensities rm,σ(x) read

r1,σ(x) = c1,σ, r2,σ(x) = c2,σx,

r3,σ(x) =
c3,σ

2
x2, r4,σ(x) =

c4,σ

6
x3.

(2.49)
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Figure 2.9: Illustration of the Liouville flow in the two environmental states σ = 0, 1
for the model in Sec. 2.5.3. Stable fixed points are shown as filled circles, and unstable
fixed points as open circles. The shaded areas represent the two stable dynamic modes
described in the text.

Additional details of the model and the numerical values of the parameters we used

for our analysis can be found in Appendix 2.8.

Again, we first consider the PDMP, i.e., the limit Ω → ∞. For the parameters

chosen for our analysis one finds three fixed points of the dynamics φ̇ = v0(φ), at

φ∗ ≈ 0.20, 0.90, and 1.6. We label these φ(1)∗, φ(3)∗, and φ(5)∗. These fixed points are

linearly stable, unstable, and stable respectively. In the environmental state σ = 1

we have fixed points φ∗ ≈ 0.4, 1.1 and 1.8, labelled φ(2)∗, φ(4)∗ ,and φ(6)∗(again stable,

unstable, and stable respectively). This arrangement of fixed points is illustrated in

Fig 2.9. The dynamics of the PDMP depend on the initial condition. If started

between the fixed points φ(1)∗ and φ(2)∗, the system will be confined between these two

values and follow a dynamics similar to that of the system in Sec. 2.5.1. Similarly, if

the initial condition is between the two fixed points φ(5)∗ and φ(6)∗, the PDMP will

operate in the interval between these two points. We will refer to these as the two

‘stable modes’ of the PDMP dynamics. For other initial conditions the PDMP will

eventually reach one of these two stable modes as well, which one this is will depend

on the starting point and on the exact path the environment takes.

If the system is finite, the dynamics are subject to intrinsic noise. Two represen-

tative trajectories are shown Fig. 2.10. Depending on initial conditions the system

either remains close to the interval between φ(1)∗ and φ(2)∗ or near the interval be-

tween φ(5)∗ and φ(6)∗. Intrinsic noise will allow for excursions outside these intervals,

similar to what was observed in Sec. 2.5.1. The finite system can traverse the region

between φ(2)∗ and φ(5)∗, at least in principle, and move from one of the dynamic modes

to the other. This is similar to escaping from a basin of attraction in systems with
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Figure 2.10: Representative realisations and quasi-stationary distributions for the
model with described in Sec. 2.5.3. Panels (a) and (b) represent one dynamic mode
and panels (c) and (d) represent the other. More precisely, panels (a) and (b) show
the outcome when the initial condition is to the left of φ(3)∗; panels (c) and (d) show
a situation in which the dynamics is started to the right of φ(4)∗. The histograms in
panels (b) and (d) are from Gillespie simulations, and the solid lines are from the ana-
lytical approximation. Model parameters are λ1 = λ0 = 0.2 and Ω = 1000, remaining
parameters as described in Appendix 2.8.
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constant environment. We generally expect that the rate with which this happens is

exponentially suppressed in the noise strength. We will assume that such events are

sufficiently rare so that they can be ignored for the purposes of our analysis.

The general approach we have developed can then be applied to the system in

either of the two dynamic modes. Due to the complexity of the flow fields vσ(x), the

relevant equations have to be evaluated numerically. In Fig. 2.10 we show the resulting

predictions for the stationary distribution in either mode. As in the previous examples,

comparison with data from numerical simulations shows very good agreement.

2.6 Conclusions

In summary, we have constructed a systematic approach with which to investigate

the effects of demographic noise in systems subject to sudden random switches of

reaction rates. We have focused on relatively simple birth-death processes of one

single species and in which birth and death rates depend on both the state of the

population and on the state of an external environment. The states of the environment

follow a telegraph process, with transition rates which may depend on the state of the

population. Previously existing approaches either disregard intrinsic fluctuations and

only account for environmental noise, or they focus on cases in which there is a clear

separation of time scales between the population dynamics and the dynamics of the

environment. The former approach in particular leads to the well-established picture of

so-called piecewise deterministic Markov processes. Our work systematically improves

on this view; we take into account demographic fluctuations to leading order and

carry out a system-size expansion and linear-noise approximation about the PDMP

dynamics.

Using the linear-noise approximation, and retaining the discreteness of the envi-

ronmental process, we then approximate the resulting stationary distribution of the

population dynamics. We have tested the resulting theory on a number of model

systems, both with linear and nonlinear reaction rates, situations in which environ-

mental switching depends on the state of the population, and covering systems with

single dynamic modes and cases where there are multiple attractors. In all cases we

have tested, the approximation is in good agreement with results from simulations. In
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particular no separation of time scales is required.

The technique we provide makes our understanding of processes involving both

intrinsic and extrinsic noise more complete. While the existing PDMP description has

been shown to be successful in many instances, it disregards intrinsic noise entirely.

We are now in a position to describe the effects of demographic noise in systems with

switching environments in the spirit of the van Kampen expansion. This allows us to

investigate models subject to combinations of intrinsic and extrinsic noise, and in par-

ticular systems in which some degrees of freedom can be treated within a linear-noise

approximation, while other variables remain fundamentally discrete. Such systems

can be of relevance for example in the context of genetic switches, bacterial popula-

tions subject to varying external conditions, or to predator-prey dynamics. In order to

make the method more applicable several extensions could in principle be considered

in future work. This includes the case of multiple environmental states, systems with

more than one species, or indeed environmental dynamics beyond simple telegraph

processes. For the former two cases, there are inherent difficulties in finding the sta-

tionary distribution for the PDMP since the equivalent of Eq. (2.52) is not necessarily

a first-order ODE, but rather a higher-order PDE. While the analysis presented herein

considers small fluctuations from demographic noise, it has limited ability to handle

phenomena driven by large demographic fluctuations such as fixation; in such cases

approaches based on WKB methods may be more useful [25,30,59].

2.7 Appendix A: The stationary distribution of the

PDMP

In this section we briefly discuss the calculation of the stationary distribution of the

PDMP. Following on from Eq. (2.26), and writing ∂φJ
∗
σ(φ) ≡ 0 in the stationary state,

we have J∗σ(φ) ≡ 0 throughout, using zero-current conditions at the boundaries. This

leads to

J∗0 (φ) = v0(φ)Π∗(φ, 0)−
∫ φ

φ∗0

[−λ1(u)Π∗(u, 0) + λ0(u)Π∗(u, 1)] du = 0,

J∗1 (φ) = v1(φ)Π∗(φ, 1)−
∫ φ

φ∗0

[+λ1(u)Π∗(u, 0)− λ0(u)Π∗(u, 1)] du = 0.

(2.50)
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Summing the two stationary currents, J∗0 (φ) + J∗1 (φ) = 0, we immediately find

v0(φ)Π∗(φ, 0) + v1(φ)Π∗(φ, 1) = 0 for all φ, i.e., Π∗(φ, 1) = − [v0(φ)/v1(φ)] Π∗(φ, 0).

Inserting this into the first equation of (2.50) gives

v0(φ)Π∗(φ, 0)

+

∫ φ

φ∗0

[
λ1(u)Π∗(u, 0) + λ0(u)

v0(φ)

v1(φ)
Π∗(u, 0)

]
du = 0. (2.51)

Differentiating with respect to φ one obtains

ρ′0(φ) +

[
λ1(φ)

v0(φ)
+
λ0(φ)

v1(φ)

]
ρ0(φ) = 0, (2.52)

where we have introduced ρ0(φ) ≡ v0(φ)Π∗(φ, 0), and where ρ′0 indicates a derivative

with respect to φ. An analogous derivation shows that ρ1(φ) ≡ v1(φ)Π∗(φ, 1) fulfills

the same relation (we note that the expression in the square brackets in Eq. (2.52) is

symmetric with respect to simultaneous exchanges 0↔ 1).

Equation (2.52) and its analogue for ρ1(φ) can directly be integrated and we find

Π∗(φ, 0) =
N0

v0(φ)
h(φ), Π∗(φ, 1) =

N1

v1(φ)
h(φ), (2.53)

where

h(φ) = exp

[
−
∫ φ

du

(
λ1(u)

v0(u)
+
λ0(u)

v1(u)

)]
, (2.54)

and whereN0 andN1 are normalisation constants. Using again the relation v0(φ)Π∗(φ, 0)+

v1(φ)Π∗(φ, 1) = 0, derived above, we conclude N0 = −N1 ≡ −N , and so we have

Π∗(φ, 0) =
N

−v0(φ)
h(φ), Π∗(φ, 1) =

N
v1(φ)

h(φ). (2.55)

Recalling that v0 < 0 and v1 > 0 throughout the domain of the PDMP, N is a positive

constant, to be determined from the normalisation condition

∫ φ∗1

φ∗0

[Π∗(φ, 0) + Π∗(φ, 1)] dφ = 1. (2.56)
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Figure 2.11: The Kullback-Leibler divergence between the true stationary distribution
of the system and our approximation for the linear model. Each line shows a different
parameter regime from Figure 2.1. The true stationary distribution is determined by
fourth order Runge–Kutta integration of the master equation.

2.8 Appendix B: Further details of the model with

multiple fixed points

For the model described in Sec. 2.5.3 the functions vσ(x) and wσ(x) as defined in

Eq. (2.22) are given by

vσ(x) = c1,σ − c2,σx+ c3,σx
2 − c3,σx

4,

wσ(x) = c1,σ + c2,σx+ c3,σx
2 + c3,σx

4.
(2.57)

The parameters chosen for the analysis in Sec. 2.5.3 are

c1,0 = 0.11, c1,1 = 0.31,

c2,0 = 0.76, c2,1 = 1.24,

c3,0 = 2.14, c3,1 = 2.60,

c4,0 = 2.40, c4,1 = 2.40.

(2.58)

2.9 Appendix C: Accuracy of our approach

The accuracy of our approach can be characterised by computing the Kullback–Leibler

divergence [60] between the true stationary distribution and our approximation. Fig-

ure 2.11 shows how the Kullback–Leibler divergence changes with system size for the

linear model. Each line represents one of the parameter regimes displayed in Fig-

ure 2.1. Birth rates, death rates, and switching rates have been chosen such that Ω
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is the average population of the system. The divergence decreases as the system size

is increased, with relatively small system sizes having appreciably small divergences.

Similar results are observed for the nonlinear and feedback models.

2.10 Appendix D: Approximation Eq. (2.15) is exact

for the linear model

In this appendix we provide further support for approximation Eq. (2.15) by showing it

is exact for the case of a linear model. Consider the case of a linear birth-death process

with births and deaths occurring with per capita rates bσ and dσ, respectively, leading

to functions v(φ) = bσ − φdσ and w(φ) = bσ + φdσ. Making approximation Eq. (2.15)

allowed us to write Eq. (2.37), which in this case would allow us to approximate the

variance of process ξ(t) for a given coordinate φ as s2(φ) = φ.

Here we show that, after a transient time, the above gives the exact variance

from demographic noise following the LNA for the linear model. To show this result,

consider the linear Fokker–Planck equation describing the dynamics of process ξ(t) in

environmental state σ:

∂

∂t
Π(ξ, t) = −v′σ[φ(t)]

∂

∂ξ
Π(ξ, t) +

wσ[φ(t)]

2

∂2

∂ξ2
Π(ξ, t). (2.59)

Substituting in the functions for the linear model, the change in variance s2(t) is then

given by (see Ref. [2] pp. 258)

d

dt
s2 = −2dσs

2(t) + bσ + φ(t)dσ. (2.60)

Consider the change in the deviation of variance s2(t) from φ(t):

d

dt

(
s2 − φ

)
= −2dσ

[
s2(t)− φ(t)

]
, (2.61)

where we have used Eq. (2.24). We see s2(t) → φ(t) as t → ∞ in all environmental

states.
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Chapter 3

Phenotypic switching of

populations of cells in a stochastic

environment

3.1 Preface

The contents of this chapter were previously published a paper in the Journal of

Statistical Mechanics: Theory and Experiment in volume 2018, page 023501 in 2018

[1], which was authored by Peter G. Hufton1, Yen Ting Lin1,2 and Tobias Galla1.

P.G.H.’s contribution includes the initial inception of the project, performing all

calculations and analysis therein, coding simulations, producing all data and all figures,

writing all sections of the paper, and responding to the reports of referees.

1Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester
M13 9PL, United Kingdom

2Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los
Alamos, NM 87544, United States of America
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Abstract

In biology phenotypic switching is a common bet-hedging strategy in the face of un-

certain environmental conditions. Existing mathematical models often focus on pe-

riodically changing environments to determine the optimal phenotypic response. We

focus on the case in which the environment switches randomly between discrete states.

Starting from an individual-based model we derive stochastic differential equations to

describe the dynamics, and obtain analytical expressions for the mean instantaneous

growth rates based on the theory of piecewise-deterministic Markov processes. We

show that optimal phenotypic responses are non-trivial for slow and intermediate en-

vironmental processes, and systematically compare the cases of periodic and random

environments. The best response to random switching is more likely to be hetero-

geneity than in the case of deterministic periodic environments, net growth rates are

globally higher under stochastic environmental dynamics. The combined system of en-

vironment and population of cells can be interpreted as a host-pathogen interaction,

in which the host tries to choose environmental switching so as to minimise growth of

the pathogen, and in which the pathogen employs a phenotypic switching optimised to

increase its growth rate. We discuss the existence of Nash-like mutual best-response

scenarios for such host-pathogen games.

3.2 Introduction

Outside of laboratory conditions, microbial cells are often subject to unpredictable

adverse environmental changes. As a mechanism to survive such changes, we now

understand that cells have evolved to switch stochastically between phenotypic states

[2–6]. In contrast to more familiar forms of resistance caused by permanent genetic

mutations, these switches are epigenetic in nature, reversible, and lead to heterogeneity

in the population. Microbial cells have been shown to use this mechanism as a survival

strategy to react to changing environments, for example induced by the administration

of antibiotics or other short-term changes in environmental conditions [7, 8]. Due to
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the continued interest in antibiotic resistance, understanding the use of phenotypic

switching as a survival strategy is essential.

This paper focuses on modelling the dynamics of phenotypic switching in bacte-

rial populations. Within such a population, variability from cell to cell can lead to

a fitness advantage. A classic study by Bigger [9] suggests the existence of a sub-

population of bacterial cells more resistant to antibiotics than other members of the

population; these more resilient cells are often referred to as ‘persisters’ [10–12]. The

difference between ‘normal’ and ‘persister’ cells is phenotypic rather than genotypic.

Consequently, a cell may switch back and forth between the normal and persister

states, and a given population will contain subpopulations of both phenotypes simul-

taneously. This heterogeneity in the population constitutes a strategy to improve

resistance to environmental stresses, a dynamic sometimes described as bet-hedging

[13]. Biological systems use this form of risk-balancing against a number of different

environmental stresses, including differences in temperature, concentrations of nutri-

ents and toxins, or the state of a host immune response [7,14–16]; Thattai et al. [17],

for example, suggest a model considering the growth of cells in the urinary tract where

the environment relates to the state of urination. The effects of environmental sources

of noise on biochemical networks have been an important area of theoretical research,

where it has been shown to modify switching rates [18–20] and induce bistability

[21, 22]. Mathematical models of such bet-hedging strategies often focus on periodi-

cally varying environments, mainly to keep the analysis manageable. Examples can

be found in Refs. [8, 14, 23–30]. To a lesser extent, bet-hedging has also been studied

in stochastically varying environments [17,31–36].

In this paper, we present a mathematical framework to model phenotypic switching

as a mechanism of persistence in a fluctuating environment. We begin by considering

an individual-based model, where possible ‘reactions’ include random birth and death

events and stochastic phenotypic switching of individual cells, both in a periodically

and stochastically changing environments. We use a recently-developed mathematical

approach [37] to characterise the joint random processes and derive formulae for the

fitnesses of the subpopulations and the overall growth rate. Further analysis shows that

heterogeneity is advantageous for slowly switching environments, whereas homogeneity

conveys a fitness advantage for quickly switching environments. By comparing our
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results to the case of a periodic environment, we find that environmental stochasticity

can, in principle, lead to strategies of phenotypic switching which are very different

from those in periodic external environments.

The implications of our analysis are twofold. Firstly, the method advances the

mathematical framework for analysing ecological models in random environments. It

provides not only a more efficient computational scheme for studying growth dynamics

than direct simulations, but also offers mechanistic insights into the problem. Secondly,

the method can be used to investigate effective protocols of administering treatment,

such as antibiotics to bacterial infection in a control-theoretic framework. We demon-

strate both of these applications in idealised scenarios in the later sections of our paper.

We also identify a scenario where the competition between the switching dynamics of

a host environment and the phenotypic response of the pathogen constitute a game-

theoretic scenario. Our analysis allows us to identify the optimal control strategy for

the host and the optimal survival strategy for the pathogen. We show how this can

result in mutual best responses, akin to what is known as Nash equilibria in game

theory [38].

The remainder of the paper is organised as follows. In Sec. 3.3 we set up an

individual-based model of phenotypic heterogeneity in a stochastic environment. We

then approximate the dynamics of this model and obtain a solution for the average

growth rate of the population of cells (Sec. 3.4). Using this solution, we analyse how

the average growth rate changes with the parameters in Sec. 3.5. Specifically, we look

into the optimum bet-hedging strategy for the bacteria to maximise its growth rate,

and conversely the environmental switching strategy that best hinders the bacteria’s

growth rate. In Sec. 3.6 we summarise our results, and discuss possible directions for

future work.

3.3 Model definitions

3.3.1 Individual-based model

We study an individual-based model of a well-mixed population of a species with

phenotypic switching in a changing environment. Figure 3.1 (a) presents a summary of

the model. We consider a simplified scenario of two phenotypes and two environmental
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Figure 3.1: (a) Schematic overview of the model. Each cell can express either pheno-
type A or phenotype B, and switches from A to B with rate p, and vice versa with
rate q. Cells of type A duplicate with rate ασ and die with rate γσ, where σ ∈ {0, 1}
is the state of the environment. The rates for phenotype B are βσ and δσ. The en-
vironment switches from state 0 to state 1 with rate λ1, and vice versa with rate λ0.
The rates are such that the growth rate in environmental state 0 is higher for cells
with phenotype A, and the growth rate in environmental state 1 is higher for cells
with phenotype B (µA0 > µB0 , µA1 < µB1 ). (b) A typical trajectory of the populations
as a piecewise-deterministic Markov process (see text for details, phenotype A orange,
phenotype B purple). The background shading indicates whether the environment is
in state 0 (light) or state 1 (dark). The population of phenotype A is typically greater
than that of phenotype B in environment 0 and vice versa in environment 1. (c) The
corresponding trajectory of the proportion of the population expressing phenotype A.
As the environment switches states the proportion of phenotype A alternately tends
towards the two fixed points, φ+

0 and φ+
1 , discussed in the text. Simulations use param-

eter set (b) (see text and Appendix 3.7). Environmental switching rates are λ1 = 0.10,
λ1 = 0.10 and phenotypic switching rates are p = 0.028, q = 0.043.
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states. Each cell in the population expresses either phenotype A or phenotype B,

representing the ‘normal’ and ‘persister’ phenotypes, respectively. The birth and death

dynamics of the phenotypes depend on an environmental state, which we label σ

and which takes values 0 or 1. State 0 represents the ‘growth state’; in this state

external stresses on the population are absent and the normal phenotype outperforms

the persister phenotype. State 1 on the other hand, is the ‘stress state’ and indicates

that an external stress acts on the population. In this state, the persister phenotype

outperforms the normal phenotype. This stress can for example be the presence of

antibacterial agents, the absence of nutrients, unfavourable temperatures, or the state

of a host immune response.

In our model individuals expressing phenotype A duplicate with rate ασ and die

with rate γσ. The corresponding rates for phenotype B are βσ and δσ. We define

the net growth rates µAσ = ασ − γσ and µBσ = βσ − δσ. Cells expressing phenotype A

are better suited to environment 0, whereas cells expressing phenotype B are better

suited to environment 1. Specifically, parameters are chosen such that µA0 > µB0

and µA1 < µB1 . Individuals switch between the two phenotypes stochastically [6]:

individuals of phenotype A switch to phenotype B with rate p; switches in the opposite

direction occur with rate q. The rates p and q constitute the ‘switching strategy’ of

the population. These rates are assumed to be independent of the environment, i.e.,

cells switch between types A and B without sensing the state of the environment. The

mathematical formalism we develop, however, does not rely on this assumption and

can readily be extended to include environmental sensing, as considered in Refs. [17,

33, 39–42]. More specifically, all equations in this section can be modified to consider

environmental sensing under the replacement of phenotypic switching rates p and q

with environment-dependent quantities pσ and qσ.

We focus mainly on the case when the environmental switching follows a Markov

process, i.e., the environmental process is memoryless. We also assume that the dy-

namics of the environment are external, in particular it is independent of the popu-

lation. Switches from state σ = 0 to state σ = 1 occur with constant rate λ1, and

switches from 1 to 0 occur with constant rate λ0. As a consequence, the lengths of the

episodes spent in either environment are identically and independently distributed ran-

dom variable sampled from exponential distributions with rate parameters λ0 and λ1,
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respectively. Mathematically, the environment is described by an asymmetric random

telegraph process [43].

In real-world systems the environmental switching process will often have memory

and will not occur at constant rates. Instead, transitions of the environmental state will

be more likely to occur at certain moments in time. In the extreme case of a laboratory

setting they may be strictly prescribed by a definite experimental protocol. The case

of strictly periodic switching between environmental states is regularly assumed in the

literature, mostly for mathematical convenience. But, just like the Markovian case

this is not entirely realistic either. The main motivation for comparing the cases of a

Markovian environment on the one hand, and a strictly periodic environment on the

other, is that these cases serve as two extremes; they delimit the regime of real-world

controlled environmental switching statistics, and by studying the two extremes, we

shed light on more realistic scenarios operating in-between.

In principle, the model described above could be simulated using the Gillespie

algorithm [44]. In practice, this method is slow, in particular if the total population

grows with time. Instead we therefore use a set of approximations which allow us to

simulate the processes more efficiently, and also to obtain analytical results. Starting

from the master equation for the model, we approximate the dynamics in the limit of a

large but finite system size. This leads to a diffusion process with Markovian switching

[45], or piecewise-diffusive process, and allows us to perform the so-called linear-noise

approximation [46]. From this we obtain explicit expressions for the average growth

rate of the population.

3.3.2 Diffusion process with Markovian switching and linear-

noise approximation.

Since our model is Markovian, the evolution of the probabilities of the system being in

a specific state is described by a master equation [43,46,47]. Except for a few special

cases, however, there exists no analytical solution for a general master equation. We

build on recent work [37,48,49] to approximate the dynamics of systems with switching

environments, and perform a Kramers–Moyal expansion [43, 46, 47] in the limit of a

large population of cells, but maintaining the discreteness of the environment. Further
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details can be found in Appendix 3.8. The result of this expansion for our model is

a set of two coupled Itō stochastic differential equations (SDEs) for the number of

individuals at and bt with phenotypes A and B, respectively. These equations are

dat =
(
µAσ at − pat + qbt

)
dt+Bσ11(at, bt)dW

(1)
t +Bσ12(at, bt)dW

(2)
t , (3.1a)

dbt =
(
µBσ bt + pat − qbt

)
dt+Bσ21(at, bt)dW

(1)
t +Bσ22(at, bt)dW

(2)
t . (3.1b)

In the limit of large populations, the formerly-discrete numbers of individuals at and

bt are approximated as continuous variables in Eqs. (3.1). The quantities W
(1)
t and

W
(2)
t are independent Wiener processes (Brownian motion). The subscript t is used

throughout this paper to indicate a random process. The coefficients Bσij(a, b) charac-

terise the strength of the demographic noise arising from the random birth-and-death

process and the phenotypic switching events [43, 46]. We provide the exact forms of

Bσij in Appendix 3.8.

Equations (3.1) describe the random evolution of the population of bacteria between

switching events of the environment [45]. In particular the quantities on the right-

hand side with a subscript σ depend on the current state of the environment. For

Markovian switching of the environment as described above, the environmental process

σt is governed by the master equation

d

dt
Pσ(t) = λσP1−σ(t)− λ1−σPσ(t), (3.2)

where Pσ(t) denotes the probability that the environment is in state σ ∈ {0, 1} at time

t.

In our analysis, we also consider a periodic environment. In this case the state of

the environment is a deterministic function given by

σ(t) =

0 for 0 ≤ t′ < 1
λ1
,

1 for 1
λ1
≤ t′ < 1

λ1
+ 1

λ0
,

(3.3)

and then repeated with period T = 1/λ0 +1/λ1. This is chosen such that the duration

of episodes spent in environments 0 and 1 respectively in the periodic case match the

mean episode durations of the random environmental process.
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The above equations provide us with a computational scheme for simulating trajec-

tories of the system. For stochastically-switching environments, environmental switch-

ing times are generated randomly from an exponential distribution, using rate param-

eters λ1 and λ0 in environments 0 and 1, respectively.

Equations (3.1) are numerically integrated using the current σ until the next switch-

ing time is reached. When the prescribed switching time is reached, we switch envi-

ronmental state and repeat the process. This procedure is more efficient than direct

simulations of the individual-based system, especially for large populations. In partic-

ular the time to simulate Eqs. (3.1) does not increase with increasing population size,

in contrast to the computing time required by the Gillespie algorithm.

By virtue of the central limit theorem, the strength of the demographic noise

scales with the inverse square root of the total size of the population. Hence in

the limit of large populations, the contribution of the diffusive terms in the SDEs

[Eqs. (3.1)] becomes negligible. Ignoring the diffusive terms leads to a so-called

piecewise-deterministic Markov process (PDMP) [50,51],

dat =
(
µAσ at − pat + qbt

)
dt, (3.4a)

dbt =
(
µBσ bt + pat − qbt

)
dt. (3.4b)

This process evolves deterministically between stochastic environmental switching

events, which occur at discrete times. This simplification allows for analytical so-

lutions, and much of our further analysis will be carried out in this limit.

Figure 3.1 (b) shows a typical trajectory for both phenotypes and the environment

using the PDMP method in a stochastically switching environment. The size of both

populations increases approximately exponentially with time. This provides an a pos-

teriori justification for our approximation to neglect intrinsic demographic noise. We

note that the population of phenotype A tends to be larger in environmental state 0,

and in state 1 phenotype B is usually more abundant, at least once enough time has

passed since the last environmental switch.
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3.4 Analysis

3.4.1 Stochastic differential equations for population size and

composition

The model above is deceptively simple. By ignoring demographic noise, the population

dynamics of Eq. (3.4) is a linear dynamical system, described by two coupled ordinary

differential equations with Markovian switching. The standard technique to solve the

dynamics of coupled linear ODEs is to find the eigenvalues and eigenvectors of the

propagating matrix. Along the eigenvectors, growth or decay is exponential with rates

equal to the corresponding eigenvalues. There are two subtleties in our particular

case. First, when we have Markovian environmental switching, the time between

environmental switches is random, and so the matrix describing the propagation of

the population from the start of an episode to the end is also random. Second, the

eigenvectors of the propagating matrix in one environment do not generally align with

those in the other environmental state. As a result, the propagation of the population

in the long run is described by products of a sequence of non-commuting random

matrices. This makes further analysis difficult. Progress can however be made by

introducing the processes

nt = at + bt, (3.5a)

φt =
at

at + bt
. (3.5b)

They describe the total number of individuals in the population, and the proportion of

individuals of phenotype A, respectively. Together, the processes nt and φt provide an

alternative coordinate system for describing the state of the system; such coordinates

have been used previously to describe competition in growing populations [52, 53].

With these definitions, Eqs. (3.1a) and (3.1b) become

dnt =nt
[
µAσφt + µBσ (1− φt)

]
dt+ n

+ 1
2

t Cσ11(φt)dW
(1)
t + n

+ 1
2

t Cσ12(φt)dW
(2)
t , (3.6a)

dφt = [∆σφt(1− φt)− pφt + q(1− φt)] dt+ n
− 1

2
t Cσ21(φt)dW

(1)
t + n

− 1
2

t Cσ22(φt)dW
(2)
t ,

(3.6b)

where ∆σ = µAσ −µBσ . Details of the coefficients Cσij(φ) are given in the Appendix 3.8.
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Equation (3.6a) describes the growth of the total population; the average per capita

growth rate is given by the expression in the square bracket. Equation (3.6b) describes

the evolution of the proportion of cells expressing phenotype A.

Suppressing again the demographic noise leads to a PDMP description of nt and

φt, valid in the limit of a large system. The corresponding dynamics are given by

Eqs. (3.6), with the noise terms dW
(1)
t and dW

(2)
t removed. Interestingly, in this limit

the evolution of the fraction φt decouples from the evolution of the total population:

the proportion of each phenotype in the population is independent of the size of the

total population and follows the nonlinear logistic equation obtained from Eq. (3.6b).

It is important to stress that the decoupling of the two processes is a consequence of

the linearity of the model. More general dynamics will not have this property—for

these models the dynamics of φt and the growth rate may depend on the population

size nt.

Nevertheless, our approach may still offer insight into cases with non-linear inter-

actions, when the dynamics of φt do not decouple from nt. For such cases, there will

not necessarily be a single optimal phenotyptic switching strategy for all values of

nt, but rather different strategies which are optimal at different values. Therefore it

makes sense to study the growth dynamics in a particular region of biological relevance,

rather than for every value of nt. A standard technique for analysing competition in

laboratory experiments involves successive dilution steps of a population, in order to

limit the population size to some region of biological interest and experimental prac-

ticability [54, 55]. The dynamics and growth rates are thus considered in this limited

region of nt only. For our mathematical framework we propose an analogous technique

as a potential area of future research, namely to fix the population size at some specific

n, and then to study the effective growth rate—the contents of the square bracket in

Eq. (3.6a). This technique may also be compared to a birth-death model such as the

Moran process, in which the population size is fixed through paired birth and death

events [56].
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3.4.2 Calculation of average growth rate

The right-hand side of Eq. (3.6a) shows that the instantaneous growth rate is given

by

µt ≡ µAσφt + µBσ (1− φt). (3.7)

We are interested in computing the average growth rate of the system, which we write

as E (µ). This quantity can be understood as the instantaneous growth rate ṅ/n,

averaged over many realisations of the random processes (after a transient time has

passed). Since the process φt is ergodic, this ensemble average is equivalent to an

average over a long time. Furthermore, it is easy to show that this average instanta-

neous growth rate is equivalent to the average rate of the exponential growth of the

population over a long time, the so-called ‘dominant Lyapunov exponent’ [57]. To

proceed, it is useful to first consider the average growth rate in a given environmental

state σ, for which we write E (µ|σ). This is the instantaneous growth rate averaged

over all points in time at which the environment is in state σ. In order to compute

this object and given Eq. (3.7) it is sufficient to know E (φ|σ)—the average value of

φ in environmental state σ. In order to obtain this object, an average over intrinsic

and environmental fluctuations is required. We note that these intrinsic fluctuations

are represented in the stochastic differential equations Eqs. (3.6) by multiplicative

noise. Further simplification can be achieved in the linear-noise approximation (LNA)

[43, 46], valid also for large but finite populations. The LNA consists in replacing φt

in the noise correlators (the coefficients Cσij) by the trajectory of the PDMP. In this

limit, all fluctuations about the PDMP trajectory due to intrinsic noise will then be

symmetrical, and so performing the average of φ with respect to intrinsic fluctuations

is equivalent to considering the PDMP process only (see also Ref. [58]); the quantity

E(φ|σ) then needs to be computed at as an average over the environmental process.

Thus, for the remainder of the analysis we concentrate on the PDMP description of

φt,

dφt = [∆σφt(1− φt)− pφt + q(1− φt)] dt. (3.8)

Figure 3.1 (c) shows a sample path of the PDMP for the proportion of the pop-

ulation with phenotype A, φt. The process tends towards two different fixed points

depending on environmental state. An analysis of Eq. (3.8) shows that there are two



96 CHAPTER 3. PHENOTYPIC SWITCHING OF POPULATIONS...

fixed points for each environmental state: one stable φ+
σ , and one unstable φ−σ . These

are given by

φ±σ =
∆σ − p− q ±

√
(∆σ − p− q)2 + 4q∆σ

2∆σ

. (3.9)

For our model, φ+
1 < φ+

0 since state 0 favours phenotype A and state 1 favours pheno-

type B. As the environment switches between states, the process φt alternates between

tending towards these two stable fixed points. After sufficient time has passed, the

process will be confined to the interval between the two stable fixed points (φ+
1 , φ

+
0 ).

Equation (3.8) describes a single-variable PDMP in a Markovian, two-state envi-

ronment. Processes of this form have been the subject of recent studies, particularly

in the context of gene regulatory networks [37, 48, 59, 60]. Reference [37] provides a

general solution for the stationary probability density distribution Π∗σ(φ) for such a

process. In the context of the present model, we find

Π∗0(φ) = +N
∆0

(
φ+

0 − φ
)g−1 (

φ− φ−0
)−g−1 (

φ− φ+
1

)h (
φ−1 − φ

)−h
, (3.10a)

Π∗1(φ) = −N
∆1

(
φ+

0 − φ
)g (

φ− φ−0
)−g (

φ− φ+
1

)h−1 (
φ−1 − φ

)−h−1
, (3.10b)

for φ ∈ (φ+
1 , φ

+
0 ). These densities are to be interpreted as follows: Π∗0(u)du is the

probability to find the system in environmental state 0 and with φ ∈ (u, u + du] in

the stationary state. A similar interpretation applies to Π1(φ). The exponents g and

h are given by

g =
λ1

∆0(φ+
0 − φ−0 )

, h =
λ0

∆1(φ+
1 − φ−1 )

, (3.11)

and N is determined by normalisation,
∫ φ+

0

φ+
1

[Π∗0(φ) + Π∗1(φ)] dφ = 1.

Panels (a)–(f) in Figure 3.2 show the resulting stationary distributions for three

different rates of environmental and phenotypic switching. In panels (a)–(c) we depict

results for stochastic environmental dynamics, and in panels (d)–(f) the environment

is periodic. The calculation of the stationary distribution for the periodic case is

outlined in the Appendix 3.9. The orange line in each panel shows Π∗0(φ) and the

purple line shows Π∗1(φ). As seen in the figure, the distributions are peaked near the

two fixed points when environmental switching is slow [panels (a) and (d)]. At fast

environmental switching rates, the system spends most of its time in the central region

away from the fixed points [panels (c) and (f)].
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Figure 3.2: Panels (a), (b), and (c) show the stationary distributions of φ—the propor-
tion of cell in phenotype A—for the case of a stochastic environment. These distribu-
tions are obtained from Eq. (3.10). From left to right, panels correspond to increasing
environmental switching rates. The orange line shows Π∗0(φ), and the purple line Π∗1(φ)
(see text for details). In the case of slow environment switching (a), the distribution
is sharply peaked at the two fixed points whereas in the case of fast environmental
switching (c) the distribution is peaked in the central region between the two fixed
points. Panels (d), (e), and (f) show the stationary distributions for the case of a
periodic environment. Panels (g), (h), and (i) depict the positions of stable and un-
stable fixed points and the direction of flow in each state. Parameters are from set (a)
(see text and Appendix 3.7), along with: (a),(d), and (g) λ1, λ0 = 0.10, p, q = 0.064;
(b),(e), and (h) λ1, λ0 = 1.0, p, q = 0.24; (c),(f), and (i) λ1, λ0 = 10, p, q = 0.40.
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Figure 3.3: Distributions of the instantaneous growth rate for the case of stochastic
environmental dynamics [panels (a), (b), and (c)], and periodic environment [panels
(d), (e), and (f)]. Environmental switching rates increase from the panels on the
left to those on the right. Each distribution consists of two distinct components,
corresponding to the two environments. The dashed line indicates the average growth
rate. Parameters are the same as in Fig. 3.2.

The distributions in Eqs. (3.10) can be used to calculate the probability density of

growth rates via Eq. (3.7). For the case of stochastic environments these are shown in

Fig. 3.3 (a–c). We proceed to study the fitness of a given phenotypic switching strategy

(i.e., given switching rates p and q). To do this we focus on the average growth rate

E (µ) = P ∗0 E (µ|0) + P ∗1 E (µ|1) , (3.12)

where we have

E (µ|σ) = µAσE (φ|σ) + µBσ [1− E (φ|σ)] , (3.13)

and where P ∗σ is the probability of finding the environment in state σ in the stationary

state. In the two-state system these are given by P ∗0 = λ0/(λ1 + λ0) and P ∗1 =

λ1/(λ1 + λ0). The expectation value E (φ|σ) is given by

E (φ|σ) =

∫ φ+
0

φ+
1

φΠ∗σ(φ)

P ∗σ
dφ. (3.14)

Using Eqs. (3.10) we therefore have a closed integral equation for the average growth

rate of the population. Evaluating Eq. (3.14) numerically, and substituting into

Eq. (3.12) provides a very efficient way of calculating the average growth rate in
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terms of the model parameters. Results for the mean growth rate are indicated as

dashed vertical lines in Fig. 3.3. The analysis below is for phenotypic switching rates,

p and q, which do not depend on the state of the environment. We note that the

mathematical formalism applies to the case of environment-dependent switching rates

as well; the calculation of the average growth rate can still be carried out if we replace

p and q with environment-dependent phenotypic rates pσ and qσ. The dynamics are

still reducible to a two-state PDMP for a single degree of freedom, and the stationary

distribution can be obtained. Thus, the theory above provides an analytical formalism

to investigate this case.

In the following section we use our solution to investigate the optimum switching

strategy, i.e., the switching rates p, q which allows the cells to best proliferate. Con-

versely, we also identify the optimum environmental switching rates, i.e., the switching

rates λ0, λ1 which best inhibit the growth of cells.

3.5 Results

In the context of our model, the biological strategy of bet-hedging refers to hetero-

geneity in the population to increase resilience against environmental changes, while

at the same time maintaining the capability of growth. Specifically, we will quantify

‘temporal’ heterogeneity below—the extent to which both phenotypes are present over

the course of time, but not necessarily simultaneously. For example, a population may

largely consist of only one phenotype at any one time, but as the environment changes

state, both phenotypes may be expressed in turn. Viewed over time such a population

would be heterogeneous.

In our model, in the absence of external stress (state σ = 0), phenotype A has

a higher fitness. On the other hand, not having any individuals of type B in the

population is risky, as phenotype A is more susceptible to the stresses in environment

σ = 1. The bet is hence hedged (the risk limited) by maintaining the capacity for

a population of persister cells to establish itself should an external stress occur. The

analysis in Sec. 3.4 provides the tools necessary to investigate the mechanics of bet-

hedging. In particular, we have obtained an expression for the average growth rate,

which can be evaluated numerically by a single integration. This significantly reduces
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Figure 3.4: Heatmap plot of the average growth rates for different values of the phe-
notypic switching rates p and q. Panels (a), (b), and (c) show the case of a stochastic
environment, and panels (d), (e), and (f) show that of a periodic environment. Envi-
ronmental switching rates λ1 and λ0 increase from left [(a), (d)] to right [(c), (f)]. The
black circle in each panel indicates the switching strategy which optimises the growth
rate. When the environmental switching rates are slow, there is a non-trivial p and q
maximising the growth rate. This means heterogeneity has a fitness advantage. When
the environmental switching is fast, homogeneity is favoured. The stochastic case is
found to have a higher growth rate than the periodic case for every value of p and
q. Parameter set (a) (see Appendix 3.7) is used, along with: (a) and (d) λ1 = 0.010,
λ0 = 0.033; (b) and (e) λ1 = 0.10, λ0 = 0.33; (c) and (f) λ1 = 1, λ0 = 3.3.

the computing time required to analyse the dynamics, in contrast to direct Monte

Carlo simulation of the individual-based model [44]. This allows us to explore a wide

range of parameter space to investigate bet-hedging strategies.

3.5.1 Optimal rate of phenotypic switching rate for stochastic

environments

We first study the dependence of the average growth rate on phenotypic switching

rates, for given environmental switching dynamics. We consider different regimes of

environmental dynamics, ranging from slow to fast, relative to the time scale of the

growth of the population.

Figure 3.4 shows how the average growth rate depends on the phenotypic switching



3.5. RESULTS 101

rates p and q. The parameters µAσ and µBσ , describing the growth rates of each phe-

notype, are fixed; panels (a), (b) and (c) correspond to regimes with increasingly fast

environmental switching rates λ0 and λ1. When the environment switches relatively

slowly, as in panels (a) and (b), there is a non-trivial phenotypic switching strategy

which maximises the average growth rate, indicated by a black circle. When the envi-

ronment switches very quickly, as in panel (c), the optimum strategy is found at the

extremes of p and q, indicating that it is best for the population to express only a single

phenotype [phenotype A in the case of Fig. 3.4 (c)]. These results are in agreement

with previously reported work in similar systems [28, 61, 62]. In other words, when

environmental changes are slow, heterogeneity conveys a fitness advantage, whereas

homogeneity is more beneficial in the face of fast environmental changes.

This behaviour is further illustrated in Fig. 3.5 (a). Here, we show how the optimum

phenotypic switching rates vary as we increase the environmental switching rates λ0

and λ1, but keeping their ratio λ0/λ1 fixed, (i.e., the relative amount of time spent in

each environment). We identify three regimes. When the environmental switching is

slow, the optimum switching strategy is achieved when the phenotypic switching rates

match the environmental rates: p = λ1 and q = λ0.

For environmental switching in an intermediate regime, the optimum strategy

involves phenotypic switching rates which are much slower than the environmental

switching rates. When the environment switches very quickly, the optimum strategy

is not to switch between phenotypes at all, as discussed above. Instead, it is best

for the cells to keep expressing whichever phenotype is better on average. That is,

always express phenotype A if P ∗0 µ
A
0 + P ∗1 µ

A
1 < P ∗0 µ

B
0 + P ∗1 µ

B
1 , and always phenotype

B otherwise. The growth rate is then P ∗0 µ
A
0 + P ∗1 µ

A
1 , or P ∗0 µ

B
0 + P ∗1 µ

B
1 , respectively.

Our analytical findings for the regime of a slow environmental process are consistent

with previous results by Thattai et al. [17], who studied both periodic and stochastic

environments in numerical simulations. Results for periodically-switching environ-

ments can also be found in Refs. [28, 61]. Kussell and Leibler [33] report analytical

results for randomly switching environments, using an approach based on maximising

the average growth rate by minimising the transient time it takes a population to reach

its environment-dependent quasi-stationary state.

Several quantitative measures of heterogeneity can in principle be considered. We
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Figure 3.5: (a) The optimum phenotypic response as a function of environmental
switching rates for a stochastic environment. The ratio of the environmental switch-
ing rates is fixed at λ0 = 10

3
λ1. The vertical axis shows the phenotypic switching

rates p and q which maximise the average growth rate. The grey, dashed lines show
the environmental switching rates λ0 and λ1 for comparison. When the environment
switches slowly, the optimum strategy is given by matching the environmental rates:
p = λ1, q = λ0. At faster environmental switching rates, the optimum strategy involves
switching more slowly than the environment. At very fast environmental switching
rates, the best strategy is to stay in one particular phenotype (p→ 0). (b) The opti-
mum phenotypic as a function of environmental switching rates for a periodic environ-
ment. The periods the environments spends in state 0 and 1 have fixed durations, 1/λ0

and 1/λ1, respectively. At slow environmental switching rates, the optimum strategy
is for the phenotypic switching rates to match the environment. At faster switching
rates, the optimum strategy is to stay in a particular phenotype. For intermediate
switching rates, phenotype switching rates slightly faster than the environment max-
imise the growth rate. The transition from heterogeneity to homogeneity occurs at
slower environmental dynamics as in the stochastic case. The green dotted lines in
panels (a) and (b) show the measure of temporal heterogeneity defined in the text. (c)
Mean growth rate achieved by optimum choice of phenotypic switching rates p and q
as we proportionally increase environmental switching rates. The markers indicate the
results of Monte Carlo simulation of the PDMP and the periodic process. The mean
growth rate in the case of stochastic environments is found to be universally larger
than in periodic environments. Parameters µAσ and µBσ are as in the previous figures
(set (a)).
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focus on measuring ‘temporal’ heterogeneity, i.e., the extent to which both phenotypes

exist over the course of time. To this end, we use a variation of Simpson’s diversity

index [63], and define heterogeneity as the probability that two cells selected at random

from the population at two different times are of different phenotypes. Assuming that

the individuals are sampled at two widely spread times, this probability is given by

2 〈φ〉 (1− 〈φ〉). We have indicated this quantity in Fig. 3.5 (a) and (b). The data

confirms that the population is heterogeneous for slow environmental switching, but

homogeneous when the environmental dynamics are fast.

Our calculation of the mean growth rates and composition of the population allows

us to address a related question concerning the dependence of phenotypic heterogeneity

and the optimal phenotypic switching rate on the ratio of the two environments λ0/λ1.

We summarise our findings here, rather than present the details. In the regime of very

slow environmental switching, the optimum strategy involves phenotypic switching for

all values of the ratio λ0/λ1. This is because enough time passes in each environmental

episode for the population to reach and benefit from its optimising quasi-stationary

distribution. In the intermediate-switching regime, however, if a much longer time is

spent on average in one environment than in the other it becomes optimal to express

only the phenotype which performs best in this more frequent environment.

3.5.2 Optimal rate of phenotypic switching rate for periodic

environments

We perform a parallel study of the model with periodic environmental switching,

described by Eq. (3.3). When the environment switches periodically and the infinite-

population limit is taken, the dynamical system becomes deterministic. In the long

run, the trajectory of φ(t) then converges to a limit cycle. In environment 0 phenotype

A is favoured; φ(t) increases until it reaches a ‘turning point’ φhigh when the environ-

ment switches. Then, in environment 1 phenotype B is favoured; φ(t) decreases until

turning point φlow, at which point the environment returns to state 0. It is straightfor-

ward to numerically evaluate φhigh and φlow. As the trajectory tends to a limit cycle,

we can compute the stationary distribution, i.e., the probability density of finding the

variable φ(t) at a given point in the interval [φlow, φhigh] at a randomly chosen time.
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Further details of the mathematical method can be found in the Appendix 3.9.

A comparison between the distributions of φ for stochastic and periodic switching

environments is presented in Fig. 3.2. This figure shows that the domain in which

the distribution of φ is non-zero is larger in the case of stochastic switching than

for periodic environments. The effect is less pronounced for slow switching than for

fast switching. When the environment switches stochastically, it is possible for the

duration of each episode in a fixed state σ to last longer than in the periodic case. As

a result the trajectory of the PDMP can exceed the deterministic extremes φlow and

φhigh of the periodic case.

This difference has significant consequences for the growth rates and resulting

phenotypic switching strategies. Figure 3.3 shows the distribution of growth rates for

both cases. As one can see, these distributions are broader for the case of stochastic

environments than for periodic environmental changes, especially for intermediate and

fast switching. Figure 3.4 (d)–(f) shows the numerically computed average growth rate

in periodically switching environments as a function of phenotypic switching rates p

and q (and for given λ0, λ1). The growth rates for each p and q is generally lower than

that of the system with stochastic environmental dynamics with the same parameters.

Similarly to Figure 3.5 (a), Figure 3.5 (b) shows the optimum phenotypic switch-

ing strategy, but for the case of a periodically switching environment. Superficially,

the two figures look similar. In each we identify two extreme regimes of behaviour:

(i) the limit of slow environmental switching where the optimum phenotypic strategy

is to switch with the same rates as the environment, and (ii) the fast environmental

regime where homogeneity is preferred. In the case of stochastic environmental dy-

namics, Figure 3.5 (a), an intermediate regime can be detected; this is however largely

absent in the case of deterministic periodic environmental dynamics, where the tran-

sition between regimes (i) and (ii) is more abrupt [Figure 3.5 (b)]. A closer analysis

reveals further differences between the cases of stochastic and periodic environments.

For environmental dynamics at intermediate rates, i.e., between regimes (i) and (ii),

the optimum phenotypic switching rates differ by as much as an order of magnitude

between the stochastic and periodic cases. We also see that the stochastic case favours

heterogeneity at much higher switching rates than the periodic case.
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Figure 3.5 (c) shows how the average growth rates compare in the cases of a Marko-

vian environment and a periodically switching environment when the optimum phe-

notypic strategy is in effect. Stochastic switching produces a growth rate that is

universally larger than in the periodic switching case. We found the same result for

all tested parameters and for all values of phenotypic switching; similar results were

previously also reported in Ref. [17]. We note that even small differences in the growth

rate can lead to significant differences in population size over long times, as the growth

is exponential.

The explanation for this enhancement in growth rate is as follows: At any point

in time, the instantaneous growth rate is given by Eq. (3.7). The distribution of φ

hence directly translates into a distribution of µ, as illustrated in Figs. 3.2 and 3.3.

The difference between the growth rates for stochastic and periodic environments

is most pronounced in the intermediate switching regime; the distributions of φ in

this regime are shown Figs. 3.2 (b) and (e), for the cases of stochastic and periodic

environments respectively. Figs. 3.3 (b) and (e) show the corresponding distributions

of growth rates. For periodic switching the distribution of φ is largely flat, with only

minor peaks near the fixed points when the flow field in either environment is slow.

Conversely, stochastic environmental dynamics permit long episodes of time spent in a

particular environment. In such long episodes the variable φ will mostly reside near the

relevant fixed point, generating the peaked behaviour seen in Fig. 3.2 (b). Recalling

that phenotype A grows more quickly than B in environment 0 and vice versa in

environment 1, we conclude that the system is well-adapted to the environmental

state at each of these peaks. This leads to an overall enhanced growth rate, relative

to the periodic case.

The case of Markovian switching and the case of periodic switching are two extreme

descriptions of the environmental process; we might expect a real-world environment

to change with dynamics somewhere in-between [17]. Our analysis suggests that, for

an environment with dynamics between these two extremes, the average growth rate

would fall somewhere in-between as well, and similarly for the optimum phenotypic

switching rate.
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Figure 3.6: (a) Heatmap plot of the average growth rate as a function of λ1 and λ0

using parameter set (a) as in the previous figures. The phenotypic switching rates are
p = 0.1 = q = 0.1. For these parameters the lowest growth rate is achieved when
permanently in the stress state, λ0 = 0. (b) The same quantity for parameter set (b),
where µA0 > µA1 and µB0 < µB1 . The phenotypic switching rates are fixed at p = 0.0275,
q = 0.0425. The growth rate decreases as both switching rates are decreased in
proportion. For a given λ0 there is a non-trivial value of λ1 which minimises the
growth rate, shown here as a white line. It tend towards a straight line–a constant
ratio which is given by Eq. (3.15): λ0/λ1 = 0.557 resulting in an average growth rate
of 〈µ〉 = 0.194. (c) Heatmap plot for the optimum average growth rate as a function
of the environmental switching rates: at each position on the graph the population
of cells uses the optimum phenotypic switching strategy for the given environmental
process. Parameters µAσ and µBσ as in panel (b). When the switching is sufficiently
fast, there is a ratio of environmental switching rates which minimises the cell’s best
possible growth rate. This ratio is given by Eq. (3.16).

3.5.3 Optimal environmental switching strategy to inhibit pop-

ulation growth

The environmental switching dynamics can be used to model a host immune response

[12, 17]. By switching between the two states, we assume the host aims to minimise

the average growth rate of the population. In another application, the phenotypes can

be wildtype bacteria and antibiotic-resistant strain, and the two environmental states

represent the absence and presence of antibiotic treatment. The goal is then again to

minimise growth, by varying the environmental protocol. Our analysis allows us to

investigate the dependence of the growth rate on environmental switching rates λ0 and

λ1. In this Section we investigate which environmental switching strategy best inhibits

the growth of the population. The figures shown here are for stochastic environmental

switching, however we found qualitatively similar results for periodic environments.

Figure 3.6 (a) and (b) show how the average growth rate changes if we vary the

environmental switching rates for fixed phenotypic switching rates p and q. Each

panel represents a different set of parameters. The case shown in Figure 3.6 (a) is a
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representation of bacteria in which both phenotypes are disadvantaged by the presence

of an antibacterial agent, but in which the persister phenotype is affected less by

the external stress than the normal phenotype. Mathematically one has µA0 > µA1 ,

µB0 > µB1 , µA0 > µB0 , and µB1 > µA1 . Specifically, we use the parameter set used in

previous studies [23], and we will refer to this as parameter set (a) in the text which

follows; the numerical values can be found in the Appendix 3.7. Unsurprisingly, the

average growth rate is minimised when the environment stays in environmental state

1 (i.e., λ0 = 0), which can be seen as representing the antibiotic state. Another trend

shown by our results is that proportionally increasing both environmental switching

rates universally decreases the average growth rate. That is, proportionally faster

switching rates better inhibit the growth of a population. This result has been found

for all tested parameters, suggesting that the best way apply antibiotics may involve

many short periods of antibiotic treatment.

The parameters used in Fig. 3.6 (b) differ from those in Fig. 3.6 (a) in that here µA0 >

µA1 and µB0 < µB1 . We use the parameters of Ref. [24], and will refer to this as parameter

set (b) in the text which follows; numerical values are again given in Appendix 3.7.

Here, phenotype A performs better in environment 0 than in environment 1, and

phenotype B performs better in environment 1 in environment 0. In this case, the

optimum environmental strategy involves non-trivial switching. The white line in

panel Fig. 3.6 (b) indicates the optimum choice of λ1, for given λ0. When both λ0 and

λ1 are large growth is minimised for a non-trivial ratio, λ1/λ0.

The limit of infinitely fast environmental switching can be characterised analyti-

cally. In this limit, the dynamics can be modelled using ordinary differential equations,

using effective mean birth and death rates [64,65]. Minimising the growth rate in this

limit leads to an equation describing the optimum environmental strategy to inhibit the

growth of the population. The minimal growth rate is found when P ∗0 , the probability

of being in environmental state 0, is given by

P ∗0 =
−∆1 + p− q

∆0 −∆1

−
(

−pq
(µA0 − µA1 )(µB0 − µB1 )

)1/2

. (3.15)

The argument of the square root indicates a necessary condition (up to relabelling) for

the existence of this optimum, µA0 > µA1 and µB0 < µB1 . This explains why we have no

non-trivial minimum in the fast-switching limit for the parameters used in Fig. 3.6 (a),
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but there is one for the parameters used in Fig. 3.6 (b). The analytical optimum given

by Eq. (3.15) agrees with the results shown in Fig. 3.6 (b).

3.5.4 Co-evolution of host and pathogen

The interplay between the growth-maximising strategy of the cells and the growth-

minimising strategy of the environment provides an interesting scenario. Given a set of

environmental switching rates, there can be phenotypic switching rates which maximise

the average growth rate. Conversely, for given phenotypic switching rates, there can

be non-trivial environmental switching rates which minimise the growth rate. This

suggests the possibility of a combined set of rates, from which the growth rate cannot

be increased by unilaterally changing p and q (the ‘strategy’ of the population), and

from which the growth rate cannot be decreased by unilaterally changing λ1 and λ0

(the strategy of the hosting environment). From a game-theoretic perspective, neither

player of the game (the population of cells and the immune system) can improve their

performance by changing their strategy. This can be viewed as a Nash equilibrium

[38].

For a given set of model parameters, µAσ , µBσ and given environmental switching

rates, optimal phenotypic switching rates can be found by evaluating Eq. (3.12) for

different values of p and q, and then identifying the maximum. This maximum can

then be studied as a function of λ0 and λ1. For parameter set (a) the evolutionarily

optimising strategy is found to be trivial: the environment stays in the stress state

and the cell expresses the persister phenotype only, leading to an overall growth rate

µB1 .

For parameter set (b), however, the results are less trivial, since each phenotypes

prefers a different environment. Figure 3.6 (c) shows the average growth rate given

optimal phenotypic switching in this case. This figure was constructed as follows: for

each combination of λ0 and λ1 we found the values of p and q maximising the growth

rate. The value of this maximum is then plotted in the figure. For each value of λ1

the white line in the figure depicts the value of λ0, which minimises this maximum

achievable growth rate; from the point of view of the hosting environment this line

shows the best choice of λ0 for each λ1. As before, the growth rate decreases as the

environmental switching rates are increased proportionally. Hence, the environment’s
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best strategy is to switch states quickly, and with a choice of λ0/λ1 so that switching

rates fall on the white line in Figure 3.6 (c).

As discussed in earlier sections the maximising phenotypic strategy in the limit

of fast environments leads to homogeneity, i.e., it is best for the population to only

express the phenotype does better in a (weighted) average over both environmental

states. This gives a growth rate which is the greater of P ∗0 µ
A
0 +P ∗1 µ

A
1 and P ∗0 µ

B
0 +P ∗1 µ

B
1 .

Inspecting these expressions, one finds that changing the ratio of λ0 and λ1 increases

one of the quantities and decreases the other. It follows that the greater of the two

growth rates is minimised when both growth rates are equal. This the case when

λ0

λ1

= −∆1

∆0

. (3.16)

This gives us the proportion of each environmental state which minimises the average

growth rate in the limit of fast environmental switching, given an optimally switching

population. This minimum optimum growth rate is given by

〈µ〉 =
µB1 µ

A
0 − µB0 µA1

µA0 + µB1 − µB0 − µA1
. (3.17)

The phenotypic switching strategy of the cell cannot change to increase the growth

rate. Similarly, if the environment assumes that the cell population will optimise its

phenotypic switching strategy, the environment cannot move to minimise the growth

rate. We remark that the final rate is independent of the phenotypic switching rates

p and q, i.e., the environment’s minimisation of the growth rate removes the effect of

the phenotypic switching strategy altogether.

The analytical result from Eq. (3.16) agrees with the ratio given defined by the

fast-switching asymptote of the white line in Fig. 3.6 (c). The minimum growth rate

in this case is 0.197, which is significantly less than if the environmental states did

not switch, which would result in growth rates 0.5 or 0.325, respectively, for the two

environmental states.

3.6 Conclusions

In conclusion we have studied a stylised model of phenotypic switching strategies in

the face of changing environments. We have focused on the role of time scales of
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phenotypic and environmental switching for the growth of the population, and our

analysis addresses in particular the case of stochastically switching environments.

In contrast to some existing work, our analysis starts from an explicit individual-

based model of the population dynamics, defined by birth events, death events, and

stochastic phenotypic switching. Our analysis then proceeds through the formula-

tion of a piecewise-deterministic Markov process. This allows us to derive closed-form

solutions for the resulting growth rates of the population for general environmental

and phenotypic switching rates. Our work complements existing literature which, for

mathematical convenience, has often concentrated on strictly periodic environmen-

tal dynamics. We systematically compare the cases of periodic versus stochastically

switching external conditions. Our main results can be summarised as follows: (i)

Using our theory, we demonstrated that the optimal phenotypic switching rates are

equal to the rates of the environmental process (p = λ1, q = λ0) for slow stochastic

environmental dynamics. This result was previously reported in simulations [17, 33].

For environmental dynamics in an intermediate regime the optimal switching rates are

markedly lower than those of the environment. (ii) The optimal bet-hedging strategy

of the bacterial population favours heterogeneity (both phenotypes present) in slow

environments, but is replaced by a homogeneous strategy (one phenotype only) for

fast switching. The transition between these regimes is sudden as the switching rates

of the environmental process are increased. We find that stochastic environments

favour heterogeneity over a larger range of environmental dynamics than a strictly

periodic environment. (iii) Instantaneous growth rates are universally higher in the

case of stochastic environments than in the periodic case. Our analysis shows that this

due to the possibility to spend long periods of time in either environment when the

environmental process is stochastic—a possibility that is absent for strictly periodic

environments. (iv) The combined system of population and environment can be in-

terpreted as the interaction between a hosting environment and a pathogen. The host

tries to control environmental switching to minimise growth of the pathogen. The

pathogen, on the other hand, attempts to maximise its growth rate by phenotypic

switching with optimised rates. Our analysis shows that mutual best-response sce-

narios can be identified, in which neither the host nor the pathogen can improve by

unilateral changes of their strategy. This is akin to the concept of Nash equilibria in



3.6. CONCLUSIONS 111

game theory.

In this paper, we developed a mathematical framework for the analysis of pheno-

typic switching in stochastic environments. More broadly, our work is applicable to

ecological models of competition in dynamic random external conditions. Such prob-

lems are widespread in theoretical ecology, in predator-prey models effectively random

environments could for example account for external shocks such as earthquakes and

epidemics [66–68]. Our work can provide insights into the mechanics of such problems,

and as a key contribution, the analytical computation of average growth rates allows

one to dispense with costly Monte Carlo simulations.

We stress that the model we have focused on is stylised and could naturally be

extended in many different ways to describe more realistic and complicated features.

This may include models in which the dynamics of the environment are coupled to the

state of the population of microbial species [35]. Further complications also occur when

there are more than two environmental states. We have chosen the stylised scenario

of a binary environment as it represents situations in which an external stress is either

absent or present. A model with two environmental states and two phenotypes, each

doing best in one of the two environments, is a minimal, but non-trivial baseline. While

it is unsurprising that much of the existing literature has focused on this case, models

with more environmental states have for example been studied in [33]. To obtain

interesting scenarios it is then also necessary to introduce multiple phenotypes. While a

detailed extension of our analysis to such cases is pending we expect many of the results

to be qualitatively similar in this case. Several recent papers [69–71] consider the role

of a continuous environment, and it would be interesting and challenging to establish

the exact relation between these two approaches. We highlight this as a potential

area for future research. We note in particular that environmental processes based on

stochastic differential equations may lead to scenarios in which the environment spends

significant time in intermediate states, a possibility that is excluded by construction

in our model. It is not clear if, when, and how these differences affect the response

of the population. The phenotypic switching rates themselves are treated as static in

our model; this is an approximation as well, bacteria have been demonstrated to sense

and adapt to external conditions [72, 73]. Incorporating this type of SOS response is

another line of future work to make models of phenotypic switching more realistic.
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The formalism we have presented can be applied to study such cases.

3.7 Appendix A: Model parameters

We consider the model for two different sets of parameters, µA,Bσ . Parameter set (a)

was previously used by Patra and Klumpp [23], and is shown in Table 3.1 (a). In

this case, both phenotypes A and B perform better in environment 0 (no external

stress) than in environment 1 (with external stress). The persister phenotype B grows

more slowly state 0, but also decays less quickly in state 1. This model is a classic

representation of bacteria in which both phenotypes are disadvantaged by the presence

of an antibacterial agent, but in which the persister phenotype is affected less by

the external stress than the normal phenotype. Mathematically one has µA0 > µA1 ,

µB0 > µB1 , µA0 > µB0 , and µB1 > µA1 .

The second set of parameters was previously used by Belete and Balázsi [24], see

Table 3.1 (b). These parameters have different properties: phenotype B now performs

better in environment 1 than it does in environment 0; i.e., µA0 > µA1 , µB0 < µB1 ,

µA0 > µB0 , and µB1 > µA1 .

(a)

µA0 2.0 h−1

µB0 0.2 h−1

µA1 −2.0 h−1

µB1 −0.2 h−1

(b)

µA0 0.5000 h−1

µB0 0.0001 h−1

µA1 0.0001 h−1

µB1 0.3250 h−1

Table 3.1: The two parameter sets: (a) from Ref. [23], and (b) from Ref. [24].

3.8 Appendix B: Derivation of diffusive process with

Markovian switching

3.8.1 Kramers–Moyal expansion

The individual-based model describes the evolution of three random processes: the

number of individuals with phenotype A (at), the number of individuals with pheno-

types B (bt), and the state of the environment (σt ∈ {0, 1}). The master equation

describes the time evolution of the probability distribution of these random processes,
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and is given by

d

dt
Pa,b,σ(t) =

(
E−1
a − 1

)
ασaPa,b,σ(t)

+
(
E−1
b − 1

)
βσbPa,b,σ(t)

+
(
E+1
a − 1

)
γσaPa,b,σ(t)

+
(
E+1
b − 1

)
δσbPa,b,σ(t)

+
(
E+1
a E−1

b − 1
)
paPa,b,σ(t)

+
(
E−1
a E+1

b − 1
)
qbPa,b,σ(t)

+λσPa,b,1−σ(t)− λ1−σPa,b,σ(t)

(3.18)

where Pa,b,σ(t) is the probability of random processes (at, bt, σt) having values (a, b, σ)

at time t.

For compactness, we suppress the explicit time dependence of the probability dis-

tribution. The notation E±a and E±a represents the step operators,

E±a f(a, b) =f (a± 1, b) ,

E±b f(a, b) =f (a, b± 1) ,

where f(a, b) is a generic function of a and b.

We proceed to approximate the master equation by means of a Kramers–Moyal

expansion [34,46], i.e., we replace the step operators by the first two non-trivial terms

in their Taylor expansion. The variables a and b become continuous during this process,

which is valid in the limit of large populations. Collecting terms up to order a−2 or

b−2 and maintaining the discreteness of the environmental switching we find that the

probability density Πσ(a, b) is governed by the following equation

∂tΠσ(a, b) = −∂a
(
µAσ a− pa+ qb

)
Πσ(a, b)

−∂b
(
µBσ b+ pa− qb

)
Πσ(a, b)

+1
2
∂2
a (ασa+ γσa+ pa+ qb) Πσ(a, b)

+1
2
∂2
b (βσb+ δσb+ pa+ qb) Πσ(a, b)

−∂a∂b (pa+ qb) Πσ(a, b)

+λσΠσ′(a, b)− λσ′Πσ(a, b).

(3.19)

The first two terms on the right-hand side are the drift terms as found in the Fokker–

Planck equation [47], describing the flow of probability along the a and b directions,
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the next three terms describe diffusion, and the final two terms represent the random

switching between the two environmental states. This Fokker–Planck equation has

the diffusion matrix

Dσ =

 a (ασ + γσ) + pa+ qb −pa− qb

−pa− qb b (βσ + δσ) + pa+ qb

 . (3.20)

The process described by the Fokker–Planck equation can be equivalently formulated

as a stochastic differential equation,

dat =
(
µAσ at − pa+ qb

)
dt+Bσ11(at, bt)dW

(1)
t +Bσ12(at, bt)dW

(2)
t , (3.21a)

dbt =
(
µBσ bt + pa− qb

)
dt+Bσ21(at, bt)dW

(1)
t +Bσ22(at, bt)dW

(2)
t , (3.21b)

where the matrix Bσ fulfills B2
σ = Dσ. Specifically, we have

Bσ(a, b) =
1

r

 a (ασ + γσ) + pa+ qb+ s −pa− qb,

−pa− qb b (βσ + δσ) + pa+ qb+ s,

 (3.22)

where we have introduced the shorthand

s =
[
ab (ασ + γσ) (βσ + δσ) + a (ασ + γσ) (pa+ qb) + b (βσ + δσ) (pa+ qb)

] 1
2 , (3.23a)

r = [a (ασ + γσ) + b (βσ + δσ) + 2pa+ 2qb+ 2s]
1
2 . (3.23b)

The process σt remains discrete and is described by the master equation

d

dt
Pσ =λσP1−σ − λ1−σPσ. (3.24)

3.8.2 Transformation of coordinates

We are able to make analytical progress by changing to relative coordinates. We

introduce the random processes nt = at + bt and φt = at/nt, describing the total

population and fraction expressing phenotype A, respectively. Using Eq. (3.21) and

applying the rules of Ito calculus we find

dnt = nt
(
µAσφt + µBσ (1− φt)

)
dt

+ n
1
2
t Cσ11(φt)dW

(1)
t + n

1
2
t Cσ12(φt)dW

(2)
t +O(n0), (3.25a)

dφt = [∆σφt(1− φt)− pφt + q(1− φt)] dt

+ n
− 1

2
t Cσ21(φt)dW

(1)
t + n

− 1
2

t Cσ22(φt)dW
(2)
t +O(n−1), (3.25b)
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where the matrix elements of Cσ(φ) are given by

Cσ11(φ) =
1

r′
[φ (ασ + γσ) + s′] ,

Cσ12(φ) =
1

r′
[(1− φ) (βσ + δσ) + s′] ,

Cσ21(φ) =
1

r′
{(1− φ) [φ (ασ + γσ) + s′] + pφ+ q(1− φ)} ,

Cσ22(φ) =
1

r′
{−φ [(1− φ) (βσ + δσ) + s′]− pφ− q(1− φ)} .

(3.26)

and where

s′ =
{
φ(1− φ) (ασ + γσ) (βσ + δσ) + φ (ασ + γσ) [pφ− q(1− φ)]

+ (1− φ) (βσ + δσ) [pφ+ q(1− φ)]
}1/2

,

r′ = [φ (ασ + γσ) + (1− φ) (βσ + δσ) + 2pφ+ 2q(1− φ) + 2s′]
1/2
.

(3.27)

3.9 Appendix C: Growth rate in periodic environ-

ments

In the periodic case the environment is described by Eq. (3.3). Neglecting intrinsic

fluctuations the entire dynamical system becomes deterministic, and the evolution of

φ is described by the ordinary differential equation

dφ

dt
= ∆σ(t)φ(1− φ)− pφ+ q(1− φ). (3.28)

In the long run, any trajectory of φ(t) converges to a limit cycle: in environmental state

0 phenotype A is favoured, and so φ(t) increases to a ‘turning point’ φhigh at which point

the environment switches. In environmental state 1 phenotype B is favoured, so φ(t)

decreases until another turning point φlow at which point the environment switches

again. The turning points φlow and φhigh can be found by numerical integration of

Eq. (3.28).

As the trajectory tends to a limit cycle, we can compute the resulting distribution

for φ, i.e., the fraction of time φ(t) spends in a given interval during a cycle. This

distribution is limited to the on the domain [φlow, φhigh]. We let T = 1/λ1 + 1/λ0 be

the period of the limit cycle. Since the time dt spent in a specific range dφ is given by

Eq. (3.28), we find

Π∗σ(φ) =
1

T

1

|∆σφ(1− φ)− pφ+ q(1− φ)|
, (3.29)
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for φ ∈ [φlow, φhigh] . These distributions are analogous to the stationary distributions

when the environments switch stochastically. The remaining analysis the same as

Eq. (3.13) onwards.

We remark another method of finding the average growth rate in periodically-

switching environments involves finding the eigenvalues of a propagating matrix [24–26]

(and additional analytical results become available when assuming small switching

rates [23] and symmetric parameters [28]). The approach used here, however, produces

a distribution of φ which is useful to compare with the stochastic case.
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Chapter 4

A stochastic and dynamical view of

pluripotency in mouse embryonic

stem cells

4.1 Preface

The contents of this chapter were previously published a paper in PLOS Computational

Biology in volume 14, page 1 in 2018 [1], which was authored by Yen Ting Lin1,2, Peter

G. Hufton1, Esther J. Lee3, and Davit A. Potoyan4,5. All four authors share joint first

authorship for this work.

It is important to note that the contents of this chapter arose from a collaboration

between the theoretical physics department at the University of Manchester, and the

biological physics and chemistry departments at Rice University, Houston, Texas. The

major aim of this collaboration was to expound the use of the PDMP as an efficient

tool for simulation and parameter exploration to audiences in more applied, biological

areas. While the methods were mostly developed by P.G.H. and Y.T.L, the biolog-

ical expertise came primarily from D.A.P. and E.J.L. P.G.H.’s contribution includes

1Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester
M13 9PL, United Kingdom

2Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los
Alamos, NM 87544, United States of America

3Department of Bioengineering, Rice University, Houston, Texas, United States of America
4Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
5Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Hous-

ton, Texas, United States of America
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developing the model (along with Y.T.L. and D.A.P.), performing mathematical anal-

ysis (along with Y.T.L.), jointly writing all sections of the paper (along with Y.T.L.,

E.J.L., and D.A.P.), and responding to referee reports (along with Y.T.L. and D.A.P.).

Although the final data for Figs. 4.2–4.7 was obtained by Y.T.L., P.G.H. simultane-

ously developed independent code and performed simulations to (1) discover results

and shape the direction of the paper, and (2) as a confirmation of the results pro-

duced by Y.T.L. This included Monte Carlo simulation of the individual-based model,

the PDMP, and finding parameter sets which minimise the Hamming distance from

experimental data.
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Abstract

Pluripotent embryonic stem cells are of paramount importance for biomedical sciences

because of their innate ability for self-renewal and differentiation into all major cell

lines. The fateful decision to exit or remain in the pluripotent state is regulated by

complex genetic regulatory networks. The rapid growth of single-cell sequencing data

has greatly stimulated applications of statistical and machine-learning methods for

inferring topologies of pluripotency-regulating genetic networks. The inferred network

topologies, however, often only encode Boolean information while remaining silent

about the roles of dynamics and molecular stochasticity inherent in gene expression.

Herein we develop a framework for systematically extending Boolean-level network

topologies into higher-resolution models of networks which explicitly account for the

promoter architectures and gene state switching dynamics. We show the framework

to be useful for disentangling the various contributions that gene switching, external

signaling, and network topology make to the global heterogeneity and dynamics of

transcription factor populations. We find the pluripotent state of the network to be a

steady state which is robust to global variations of gene switching rates which we argue

are a good proxy for epigenetic states of individual promoters. The temporal dynamics

of exiting the pluripotent state, on the other hand, are significantly influenced by the

rates of genetic switching which makes cells more responsive to changes in extracellular

signals.

4.2 Author summary

In the embryonic stage mammalian cells are pluripotent: they have not yet committed

to any specific cell type. The commitment to a cell type is controlled by pluripotency

networks, the bio-molecular inventory of which is unsurprisingly complex, spanning a

myriad of transcription factors, genes, and epigenetic factors. Thanks to advances in

high-throughput sequencing and related computational tools for data analysis, we are

beginning to unravel basic topological features of pluripotency networks. Networks
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inferred from sequencing data are often cast in Boolean representations which spec-

ify the existence and nature of regulatory connections between pairs of biomolecules.

While immensely useful, the Boolean networks remain silent about the stochasticity

and dynamics of molecules that are indelible features of bio-molecular life inside cells.

Understanding stochastic and dynamic features of pluripotency networks is crucial

if one is to have a mechanistic understanding of cell fate determination rationalized

in terms of fundamental physico-chemical processes. The computational framework

proposed in this work offers a way of bridging the divide between Boolean networks

and higher-resolution views of networks in a predictive and quantitative manner. The

usefulness of the framework is demonstrated by reproducing a number of experimen-

tal trends and creating new insights about the stochastic and dynamical nature of

pluripotency.

4.3 Introduction

Embryonic stem cells derived from mammalian blastocysts are pluripotent: they show

an indefinite capacity for self-renewal and the ability to differentiate into every cell

type constituting an adult organism [2–4]. The development of healthy tissues hinges

on the ability of these pluripotent stem cells to make critical decisions determining

when and into which kind of cells to differentiate in response to the environment. It

is therefore unsurprising that fates of embryonic cells are decided through sophisti-

cated biological computations by a tightly-integrated regulatory network consisting of

genetic, epigenetic, and signaling layers [4].

The expression of genes is subject to intrinsic noise due to finite molecular copy

numbers [5] and due to randomness in extracellular environment. Thus, while at the

level of the organism development is often predictable, with a well-defined order of

events, at the level of single cells fate determination is fundamentally stochastic [6,7].

Indeed, many studies probing the transcription of pluripotency-regulating genes in

single cells have found high variability in distributions of transcription factors and

mRNA molecules [8–10].

Several hypotheses about the functional roles for the highly heterogeneous expres-

sion of pluripotency transcription factors (TFs) have been put forward. One idea
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is that stochastic excursions in the population levels of transcription factors help by

steering cells towards distinct states [11, 12]. A different hypothesis claims transcrip-

tional noise to be advantageous by facilitating the exploration of the state space of a

gene network such that, at any instant, a sub-population of cells is optimally primed

to be responsive to differentiation signals [13]. The heterogeneity of populations of

pluripotent cells has also raised some concerns that pluripotency is ill-defined at a

single-cell level [13] and instead should be viewed as a macroscopic state emerging at

the level of an ensemble of cells. A comprehensive physical picture of pluripotency at

the single-cell level therefore remains unclear.

In this regard, the roles of modeling and computational approaches are seen as

especially important for bridging the gap between our understanding of molecular

dynamics of regulatory networks and phenotypic outcomes. A rapid growth in single-

cell sequencing data has opened many avenues for carrying out statistical inferences of

pluripotency-regulating genetic networks [14–16]. In vitro studies of mouse embryonic

stem cells (mESC) in different culture conditions, in particular, have become an ideal

model system for computationally inferring gene networks and exploring mechanistic

issues surrounding pluripotency and lineage commitment [16]. In a tour de force

study of mESCs by Dunn et al. [17], regulatory relationships between transcription

factors were uncovered through analysis of pairwise correlations in gene expression.

Using mean values of RNA-seq counts as constraints, a minimal network topology was

derived showing a high degree of predictive power with respect to perturbations of the

network, such as gene knockouts.

Network topologies in general, however, remain silent about the roles of molecu-

lar noise and dynamics in stem cell differentiation governed by stochastic biochemi-

cal reactions. Higher-resolution views may incorporate populations of TFs and logic

describing the dynamics of production and of binding and unbinding. One has to

ultimately test such a view using mass-action-based kinetics which integrate relevant

molecular factors. The inclusion of such complications increases the number of pa-

rameters, and hence the likelihood of overfitting. The key challenge lies in finding the

adequate resolution for the network which is able to be predictive and does not pose

insurmountable computational burden.

In the present work, we outline a framework for extending Boolean-resolution
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networks—a commonly derived product from high-throughput experimental results—

into stochastic and dynamical models with microscopic resolution of promoter archi-

tecture and individual gene-switching events. The computational scheme utilizes static

Boolean information about the network topology and uses novel analytical model re-

duction to increase the computational efficiency, allowing for extensive searches in the

space of microscopic reaction rates. This framework is successfully applied to the

network topology inferred by Dunn et al. [17] in order to build a mass-action-based

stochastic dynamic model which is capable of describing both the discrete states of

all the genes and the populations of transcription factors. Starting from minimal as-

sumptions about the rates of various reactions, we find parameter regimes where a

remarkable agreement with the experimental gene expression profiles [17] is achieved

for all combinations of external signals. We show that average gene-expression levels

in complex regulatory networks are not uniquely determined by gene-switching rates,

which cautions about the limitations of mean expression data and suggests strategies

of inference which utilize higher moments in distributions of transcription factors. Us-

ing single-cell experiments which have probed expression of pluripotency factors [8,9],

we are able to argue that gene switching in pluripotent states happens primarily on the

intermediate scale relative to the reactions of production and degradation (dilution).

This regime better agrees with the diverse set of experiments available [8–10, 17] and

provides an explanation for the multimodality in distributions of transcription factors

and burst-like expression dynamics for some genes.

In the second half of the paper, armed with a predictive and physically-motivated

model of a pluripotency network, we explore the dynamics of lineage commitment

driven by withdrawal of various well documented signals (LIF, 2i) for maintaining

the näıve state of pluripotency. We find a number of non-trivial consequences of

molecular noise and gene-switching dynamics. We show that global variations of gene-

switching rates (which may mimic epigenetic changes) yield a significant leverage over

stability, sensitivity and exiting dynamics of pluripotent states. We also show that the

intermediate gene-switching regime generates higher sensitivity for the network when

responding to external signals.
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4.4 Results

4.4.1 Framework for deriving microscopic-resolution networks

from experimentally inferred Boolean network topolo-

gies

In this Section we outline the steps for constructing higher-resolution regulatory net-

works with explicit promoter architecture, gene states, and transcription factor copy

numbers, starting from experimentally-inferred Boolean network topologies. To illus-

trate the potential of our modeling framework we have chosen the most comprehen-

sive Boolean network to date, which describes the regulation of pluripotency factors

of mouse embryonic stem cells [17]. In the next subsection we describe how Boolean

logic is converted into the molecular logic of promoter states via a set of simplifying

assumptions. Once promoter logic is defined, in the second subsections we go on to

define the resolution of protein to promoter interactions.

These assumptions lead to a set of chemical reactions describing transitions between

gene states. In the third subsection we introduce the rules defining the production

and degradation of transcription factors. In the fourth subsection we give an overview

of the multi-scale simulation techniques appropriate for the simulation of stochastic

switching of genetic states with a single-molecule-level resolution. In particular we

contrast the rigorous-yet-computationally-inefficient individual-based model (IB) with

a more efficient piecewise-deterministic Markov Process (PDMP) which we adopt and

extensively validate in the present work.

4.4.2 Extending the Boolean logic to molecular logic

The Boolean model of Dunn et al. specifies twelve genes in the network. We use Gi to

denote a gene and Pi to denote the corresponding functional TFs (i ∈ {1, 2, ..., 12}) in

the following framework. The network topology (Fig. 4.1) contains static information

about the types of interactions between pairs of genes. The interactions are classified

as being either repressing or activating. To study the dynamics of complex genetic

networks, one has to extend the Boolean-level description to account for the molecular

logic of gene regulation. This molecular logic specifies the precise relation between the
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Figure 4.1: Network topology and molecular logic. The left panel shows a
schematic diagram of the network topology, reproduced from Dunn et al. [17]. Each
node corresponds to a given gene and their placement from left to right is chosen to
indicate a trend of downstreamness from three external inputs. In our mechanistic
model, each gene produces a unique transcription factor at a rate which depends on
the binding state of its promoter site. These transcription factors then go on to bind
and activate (black arrow) or repress (red bar) other genes. The three nodes on left
correspond to extra-cellular signals, which are either absent or present. The right
panel shows our assumed molecular logic of transcriptional regulation when there are
N = 2 promoter sites per gene. Each circle is a binding site: it can be either empty
(white), bound by an activator (green), or bound by a repressor (red). The right panel
lists possible combinations of the promoter sites. Depending on the configuration of
the promoter site, transcription factors are produced with rates 0, Ωαm, and Ωαmax,
modeling the effects of cooperative binding.

binding of transcription factors to the promoters and the regulatory outcome in terms

of gene activation or repression. In the case where the same sites can be bound to

different transcription factors, the combinatorial nature of regulation can give rise to

ambiguity in molecular logic. Indeed, even on the level of Boolean networks, the logic is

ambiguous and many possible truth tables have to be enumerated in order to select an

appropriate picture for the dependence of a gene on its regulating signals. Ideally, such

ambiguities should be resolved by directly inferring regulatory logic. Alternatively,

one could simulate different combinatorial possibilities until sufficient agreement with

experiments is reached.

In our case, we assume a set of rules which applies to every gene in the network.

This is a simplifying assumption, the justification for which is obtained a posteriori ;

networks with optimized parameters yield gene expression patterns consistent with

the experiments. The fact that these simplifying assumptions work surprisingly well

implies a dominance of the global network topology over the local details of molecular
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regulatory logic of gene promoters.

For each gene, we assume a fixed number N of promoter sites. The genes which

are only regulated by activators are always “OFF” unless N promoter sites are bound

to activators. Similarly, the genes which are only regulated by repressors are always

“ON” unless N promoter sites are bound to repressors. For those genes which are

regulated by both activators and repressors, their activity is up-regulated to “ON”

(resp. down-regulated to “OFF”) only when N promoter sites are bound to activa-

tors (resp. repressors), otherwise they have a “MEDIUM” activity. These rules are

illustrated quantitatively in the right panel of Fig. 4.1.

4.4.3 Binding and unbinding of transcription factors to pro-

moter sites

From the topology, we know that each gene is regulated (activated or repressed) by

a subset of TFs; we denote the subset of the TFs which regulates gene i by Si ∈

{P1, P2, ..., P12}. For example, the subset of the TFs which regulates the core gene

Nanog is the set of transcription factors {Klf2, Sox2,MEKERK} (see Fig. 4.1). The

binding and unbinding of the transcription factors to the promoter sites of gene i can

be summarized by the following binding and unbinding reactions:

Gi + Pj
NkonΩ−1

−−−−−⇀↽−−−−−
koff

GiPj for Pj ∈ Si, (first TF)

...

GiPj . . . Pk + Pl
konΩ−1

−−−−⇀↽−−−−
Nkoff

GiPj . . . PkPl for Pl ∈ Si, (final TF)

(4.1)

where the rates are written per the reactants, i.e., a given Pj binds to a given unbound

promoter Gi with rate NkonΩ−1 etc. The “system size” parameter Ω has been intro-

duced which sets the scale for a typical number of TFs in the system [5, 18] without

loss of generality. The scaling of these switching reactions is chosen such that the time

scale of gene switching is independent of Ω [19]. Notice that we have adopted the

parallel-binding mechanism [20] which assumes the transcription factors bind to any

of the unbound promoter sites independently with a rate constant kon.
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4.4.4 Production and degradation of transcription factors

Each gene Gi “produces” its own transcription factor Pi with a rate which depends

on the promoter state of Gi. We use a one-step model of transcription [21] whereby

transcription factors are produced via a unimolecular step. This approximation coarse

grains several sequential intermediate reactions (polymerase recruitment, mRNA pro-

duction, RNA splicing, etc.) into one effective step [22, 23]. This approximation has

become popular in models of protein production [19, 24, 25]. All of the transcription

factors are assumed to have finite lifetimes set by the rate of degradation, thus en-

suring the existence of stable steady states with a finite number of molecules. The

absolute time is set to be ∼ 1hr which is consistent with experimental measurements

reported on the lifetimes of pluripotency transcription factors [26–29].

The reactions are

Gi
Ωα−−→ Gi + Pi, (TF production)

Pi
γ−−→ ∅. (TF degradation)

(4.2)

Here, the rate constant of the production of TFs (Ωα) depends on the promoter’s

configuration and is determined by the molecular logic defined previously. We further

assume the production rate when the gene is “ON”, “MEDIUM”, and “OFF” to be

Ωαmax, Ωαm, and 0 (see Fig. 4.1). These rates are taken to be identical among all the

genes.

We note that one can adopt a view with a higher resolution of the network de-

pending on the available experimental data and the nature of the question posed. The

computational framework can readily incorporate in an explicit manner more steps,

for instance to model the effects of cell cycle regulation, different epigenetic states, and

binding of non-coding RNAs. Herein we consider the most simplified dynamical model

which describes only the promoter configurations and the population dynamics of the

transcription factors. This model aims to use the optimal resolution for capturing

trends in gene expression while remaining feasible for efficient stochastic simulations.

After converting the Boolean topology into a higher-resolution network of biochemical

reactions, our next goal is to exhaustively sample a vast space of parameters in or-

der to identify the optimal parameter regimes with which the model best reproduces

experimental results.
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4.4.5 Multi-scale simulation of complex genetic networks

Biochemical reactions in gene networks are of a fundamentally probabilistic nature;

this demands a stochastic description of the kinetics. The conventional mean-field

mass-action-based kinetics only describe the dynamical behavior in the thermodynamic

limit, and ignore the stochastic effects which arise from the discreteness of the system.

In our model, the system might be considered highly discrete, as there is only a single

copy of each gene, and their discrete promoter states dictate the dynamics of the

transcription factors. The most rigorous way to simulate such a reaction system is

by numerically solving the chemical master equation which accounts for all possible

states of the network down to the level of single molecules [5,21]. In high dimensions,

i.e., when the number of species is large, this approach is not computationally efficient.

Instead, kinetic Monte Carlo algorithms are the most straightforward way to generate

sample paths of the stochastic process. We refer to the stochastic process modeling

the reactions down to the single-molecule level with the well-mixed assumption as the

individual-based model (IB).

The state of our individual-based model is characterized by the state of each gene’s

promoter sites—how many sites are bound to specific kinds of transcription factors—

and the integer populations of the transcription factors. The rates at which the pro-

cess stochastically transitions from one state to another are specified by the reactions

Eqs. (4.1) and (4.2). Fully individual-based models, however, suffer from a steep

scaling of computational time with the number of discrete system states. This fact

renders them inefficient for simulating large gene networks, especially when it comes

to scanning or exploring the parameter space.

A wide range of approximate schemes have been employed to simulate complex gene

regulatory networks [30–32]. Most conventional approximations so far have been the

size-expansion methods [33,34] which are known for being problematic when the molec-

ular noise induced by discrete genetic switching becomes non-negligible [19, 35, 36].

On the other hand, for embryonic stem cell networks it is essential to account for the

stochastic nature of genetic switching events which give rise to multimodality in the

probability distributions of transcription factors populations. These local maxima in
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the multidimensional probability distributions of a stochastic genetic network corre-

spond to metastable states and are also known as local attractors which correspond-

ing to distinct promoter configurations and hence likely also to distinct phenotypic

states [37–39]. Theoretically a network with M independently functioning genes can

generate up to ∼ 2M distinct phenotypic states [40].

Thus, even if populations of all the other species are present in large quantities,

the stochastic fluctuations caused by the genetic switches (due to stochastic binding-

unbinding events of the transcriptional factors to a discrete number of promoter sites)

between ON, MEDIUM, and OFF states cannot be ignored, unless the switching

is operating in the extremely fast limit compared to any other reactions, known as

the “adiabatic regime” [36, 40, 41]. In the other cases—the non-adiabatic regime—

gene switching can completely dominate the dynamics in the network [36, 42]. Eu-

karyotic gene regulatory networks are often found in the intermediate regime where

gene-switching events are dynamically interwoven with the rest of the reactions in the

network and cannot be ignored [6, 43, 44]. Single-cell studies of mESCs in particular

have shown bursty behavior in gene expression with sudden jumps in the levels of

proteins resulting in multi-modal distributions of core transcription factors [8].

The sheer volume and complexity of information that is emerging from experiments

on embryonic stem cells have motivated the application of a wide variety of modeling

strategies for confronting the observed patterns of gene expression in ESCs [45, 46].

Some of the computational techniques used so far include Boolean networks [17,47–49],

Hopfield neural networks [50–52], systems of coupled ordinary [53, 54] and stochas-

tic differential equations [11, 55, 56] with Hill coefficients, agent-based models [57],

individual-based models [44, 58, 59], and small noise approximations to individual-

based models [60–62].

Many of the early computational models of embryonic stem cells focused on small

fragments of pluripotency networks, typically involving bistable switches [11,53]. These

early pioneering studies yielded many insights on stochastic decision making in regards

to fate determination and self-renewal [45]. Relatively few studies have also looked

at larger portions of regulatory networks while including a stochastic treatment of ge-

netic switching dynamics by either carrying out individual-based simulations [44, 58]

or small-noise approximations [60–63].
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Because of the computationally-demanding nature of individual-based models and

the restricted validity of small-noise approximations to the near-adiabatic gene switch-

ing, the full range of stochastic and dynamical regimes displayed by different gene-

switching time-scales has remained unexplored. Additionally with very few excep-

tions [44], the kinetic parameters in many of the previous models have been not

thoroughly explored or informed by data and have had to be selected from physi-

cal intuition alone. These limitations have now been overcome in the present work.

Thanks to a series of recent developments in modeling of gene expression dynamics [19,

24, 25, 36, 64–66], a novel computational framework utilizing piecewise-deterministic

Markov processes (PDMPs) [67] has emerged as a rigorous approximation to the fully

individual-based model.

The idea behind the PDMP is simple: reactions with large number of molecules

are evolved deterministically, while reactions with smaller numbers of molecules are

propagated as discrete, random switching events. This approach treats discrete genetic

switching events exactly, while assuming noise due to the finite nature of populations

of transcription factors to be negligible in comparison. As shown in the subsequent

sections, the assumptions underlying the PDMP approach turn out to be sound as we

go on to obtain a nearly perfect quantitative agreement with full blown kinetic Monte

Carlo schemes even for the case of the complex networks of mESCs operating in the

intermediate gene-switching regime.

For the present study, we find that simulation of the PDMP is nearly O(103)-fold

faster at generating stochastic trajectories than conventional individual-based kinetic

Monte Carlo techniques. This rigorous and rapid sampling of gene-switching events has

not only allowed us to investigate the stochastic dynamics of the regulatory network

at a longer time scale compared to conventional kinetic Monte Carlo methods, but

also enabled us to explore a vast parameter space efficiently. We used the obtained

information to inform our parameters in the microscopic-resolution models of mESCs.

The mathematical details of the PDMP described in greater detail can be found in

Sec 4.6.
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4.4.6 In the pluripotent state the mean levels of gene expres-

sion are robust with respect to changes of gene state

switching rates.

After converting the Boolean topology to a higher-resolution genetic network, we use

the PDMP to efficiently explore the kinetic parameter regimes. This is done in order

to: (i) identify the steady states for a particular set of parameters; (ii) obtain a set

parameters that best reflects the experimental constrains; and (iii) study the response

of the network to changes in gene-switching rates. The experimental data used for

constraining rate coefficients are the binarized gene expression levels of pluripotency

transcription factors under well-defined culture conditions consisting of different com-

binations of leukemia inhibitory factor (LIF), glycogen synthase kinase 3 (CH), and

mitogen-activated protein kinase (PD). Identical culture conditions were used by Dunn

et al. [17] to infer the original Boolean topology.

The optimization of rate coefficients is done by defining a uniform threshold η

among all the TFs and with different external conditions; TFs whose population den-

sities are higher than η are classified as expressed, while those below the threshold are

not expressed. Then, we employ the Hamming distance (the number of discrepancies

between the simulated and experimental profiles) as a cost-function for the optimiza-

tion. The Hamming distance is minimized through multiple rounds of simulations

where we vary the uniform threshold η and four free and non-dimensional model pa-

rameters (see Ssec. 4.6.3): the number of promoter sites per gene N , the rate constant

of TFs binding to the promoter kon, rate constant for a bound TF to dissociate from

the promoter koff, and the production rate αm when the gene is in the “MEDIUM”

state.

Through this procedure, we find that the binary expression patterns can be closely

reproduced (minimal Hamming distance = 3) by the model when the number of the

promoter sites N ≥ 2. We remark that, given the small number of free parameters,

this is a very small amount of deviation from the experimental results; the remain-

ing deviations are likely to have been caused by the simplifications to the logic and

dynamics in the construction of our individual-based model. The qualitative features

for N = 2, 3, . . . 5 cases were found to be similar (not shown). We here choose to
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present the data for the simplest case N = 2. We note that various other forms of

cooperativity, including cases when bound TF at the promoter recruits other TFs

(either of its own kind or other type), can be readily incorporated into the current

computational framework by changing the association rates kon as promoter-state de-

pendent. For simplicity, we only illustrate the most basic form of cooperativity in this

pilot paper. We find for any given N there exists a “valley” in the remaining model

parameter space kon, koff, αm, as illustrated in Fig. 4.2(A). The inferred parameter αm

is consistently low (. 0.02), meaning that the “MEDIUM” production rate is almost

zero. This implies that the negative regulation of those genes which are regulated

both by activators and repressors (Tfcp2l1, Esrrb, Nanog, and Oct4) in the model are

technically fulfilled by inhibition (i.e., regulating TFs by blocking the promoter sites),

instead of actually down-regulating the production activity. In addition, the valley

suggests a relationship between kon and koff, where kon ≈ 10koff. This implies a certain

asymmetric time scale between the binding and unbinding processes.

We chose three parameter sets in this valley of cost function, corresponding to three

distinct dynamical regimes of binding and unbinding reactions between the TFs and

the promoter sites: slow (kon = 3.2, koff = 0.2, αm = 0.02), intermediate (kon = 16,

koff = 1.5, αm = 0.01), and fast (kon = 102, koff = 10, αm = 0.005) compared to the

time scale of the TF dynamics. We remark that as we non-dimensionalize the model

using the protein degradation rate γ (see Sec. 4.6.3), the time scale of the binding

and unbinding are fast, intermediate, or slow relative to the time scale of the protein

dynamics, also set by γ (see Eq. 4.3). All of the parameter sets successfully reproduce

the experimental gene expression patterns (Fig. 4.2) corresponding to pluripotent and

lineage committed cells.

The fact that the rate parameters of the network occupy finite regions and cover

different regimes suggests that distinct gene expression profiles can tolerate some fluc-

tuations in reaction rates. Such rate fluctuations, reflecting the effect of extrinsic noise,

are inevitable in dynamic cellular environments of embryonic cells which experience

frequent epigenetic and extracellular perturbations [16, 27, 68]. In a way, changes in

gene-switching rates can be seen as a proxy for how global epigenetic changes govern

the rates of transcription factor binding to target genomic regions.

From the methodology point of view, the absence of a unique regime of rates
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Figure 4.2: PDMP stochastic simulations identify three genetic switching
regimes that are consistent with experimental data. When switching is slow,
intermediate, or fast we find certain parameters which closely match the experimental
results obtained by Dunn et al. [17]. The consistency of our model with experimen-
tal results is measured using a Hamming distance—a measure where one counts the
number of discrepancies between the binary expression of each TF for both cases.
(A) Shown are the identified regions in parameter regimes that minimize Hamming
distance. There are three free parameters: the binding rate kon, unbinding rate koff,
and basal transcription rate αm. For slow switching, the parameters are kon = 3.2,
koff = 0.2, αm = 0.02; for intermediate switching, kon = 16, koff = 1.5, αm = 0.01;
for fast switching, kon = 102, koff = 10, αm = 0.005. The selected parameter sets
are presented as red dots in the landscapes in the upper panel, hereby referred to as
the slow, fast and intermediate parameter regimes. (B) Comparison of computed and
discretized gene expression profiles (blue) with those of the experiments (Benchmark
panel) [17]. External inputs are shown in green.

implies the following: inferring networks using only mean levels of gene expression (as

is done for Boolean networks) may lead to the loss of valuable information contained

in higher moments of distribution. Thus new approaches of inference need to be

developed in order to account for broad distributions of transcription factors. For

this reason, we look beyond the comparisons of mean expression levels and turn to

comparing stationary distributions of transcription factors observed in experiments

with the computationally generated distributions in three chosen parameter regimes

identified in Fig. 4.2. We generate the stationary distributions of the TF concentrations

in the model, with eight different environmental conditions, in the specified three

parameter sets in Fig. 4.3. We observe qualitatively that in the “fast” parameter
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Figure 4.3: Gene expression profiles of pluripotency factors predicted by
PDMP simulations. Each column corresponds to different external inputs, and each
row corresponds to regimes of slow, intermediate, and fast gene switching. 2i refers to
the dual inhibitor (PD+CH) external input. Parameters used are those identified in
Fig. 4.2. More than 105 sample paths were used for generating each condition.

set the distribution of each TF is unimodal, and in the “slow” parameter set, the

distribution of each TF is peaked near 0 and 1 in non-dimensional units. In the

intermediate regime, on the other hand, with some environmental conditions, broader

distributions of the gene expression are observed.

The pluripotent state of mESCs has been the subject of intense investigations

by nucleic acid-based single-cell techniques such as RNA-seq, sm-FISH, qPCR and

there is now extensive data on the steady-state distributions of RNA and transcrip-

tion factors maintained under pluripotency-favoring culture conditions [8,9,69]. These

experiments have revealed a heterogeneous nature of gene expression with many TFs,

such as Nanog and Esrrb, having long-tailed or bimodal distributions (see for example

Fig. 5a in Ref. [8]). Additionally, the single-cell stochastic trajectories of TFs have

shown sharp, bursty transitions implying infrequent genetic-switching events [8]. Qual-

itatively, these experimental observations are more consistent with the intermediate

regime of genetic switching as seen from Fig. 4.3, as in the case of slow switching nearly

all of the transcription factors express bimodality and in the case of fast switching the

expressions of all the factors are narrow and unimodal.
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In Fig. 4.3, consistent with experiments, we also find that under LIF gene expres-

sion is more heterogeneous than under 2i, but also that the overall levels of expression

are higher [8, 9]. In all three regimes of genetic switching supporting pluripotency

(LIF+2i,LIF+PD, LIF+CH, LIF and 2i), core transcriptions factors such as Nanog,

Oct4, Sox2 are highly expressed. The same factors are also repressed in conditions fa-

voring differentiation (CH, PD and none) irrespective of gene-switching regime. In the

next section, we show the routes and dynamics of lineage commitment from pluripotent

states strongly depend on the level of noise in different gene-switching regimes.

Although the PDMP approach accurately captures the effects of genetic switch-

ing, it assumes demographic noise arising from finite populations to be negligible. To

test the validity of this assumption and assess the contribution of different sources of

noise in establishing the steady-state distribution of the pluripotent state, we carry

out individual-based simulations for the intermediate switching regime of the network,

Fig 4.4. In the individual-based model all reactions are treated stochastically thereby

accounting for all of the sources of noise in the system. The resulting gene expression

profiles follow closely those obtained by PDMP simulations, showing that the noise

arising from stochastic switching events of promoter configuration accounts for the

significant part of overall variability in the network. Trajectories of individual tran-

scription factors show that indeed most of the variance in the molecular distributions

are generated by genetic switching events which appear as abrupt stochastic jumps.

4.4.7 Dynamics of lineage commitment is significantly affected

by the dynamical changes of individual gene-switching

rates

We next ask how the steady-state gene expression patterns displayed by the gene

network respond to extracellular perturbations in the form of the initiation or termi-

nation of pluripotency signals. Both dual inhibitor 2i (PD+CH) and Leukemia factor

LIF based signaling have been shown to provide a stable environment for maintaining

pluripotency of stem cells in vitro [4, 17]. Conversely, withdrawal of either LIF or

2i leads to irreversible lineage commitment after a 24-hour period. Despite a similar

ability to guard pluripotent cells against lineage commitment, these factors deploy



4.4. RESULTS 141

Figure 4.4: Gene expression profiles of pluripotency factors predicted by
individual-based simulations. The intermediate switching regime is chosen to be
presented as it is the regime which best captures the experimentally measured distribu-
tions [8,9]. (A) Shown are two representative trajectories and full distributions of select
few transcription factors under three different conditions generated by individual-based
simulations. Typical lifetime for pluripotency transcription factors [26–29] (∼ 1 hr)
is used for setting the absolute time-scale of simulations (B) Gene expression profile
showing the near quantitative agreement with results of PDMP simulations shown in
Fig. 4.3. (C) Gene expression profile of individual-based model, for comparison with
the PDMP and experimental benchmark shown in Fig. 4.2.

different regulatory mechanisms reflected in distinct distributions of core TFs: Nanog,

Oct4, and Sox2. As a result, stem cell differentiation by withdrawal of different signals

proceeds via different routes. To gain a mechanistic understanding of how the interplay

of signaling, molecular noise, and network architecture gives rise to the steady-state

expression profiles, we study the dynamics of transitioning between the pluripotent

and lineage committed states induced by rapid initiation and withdrawal of signaling

conditions (LIF, CH, PD).

The temporal evolution of distributions of the TFs exiting (LIF/2i withdrawal) and

entering (LIF/2i immersion) pluripotent states reveals rich, dynamical signatures of

these transitions (Fig. 4.5). To reveal the role of stochasticity in these transitions, we
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Figure 4.5: The dynamical behavior of the distributions of transcription
factor densities for the intermediate and fast switching regimes. At time
t = 0, the external inputs are changed. The plots show the evolution in probability
density for a large ensemble (105) of PDMP sample paths. The times and populations
are respectively rescaled by 1/γ and αmax/γ (see Sec. 4.6.3). We assume the proteins
are stable and so the their estimated half-life is of an order 8 hour [8]; in other words
γ ∼ 1/8 hr−1, and the entire course of simulation (t ∈ (0, 30)) corresponds to physically
240 hours.

compare the intermediate regime—which is dominated by genetic switching—to the

fast regime—in which transitions are largely governed by the network topology and the

fluctuation of promoter configuration is almost-completely ignored. The irreversible

nature of transitions manifests clearly in different routes exiting and entering the

pluripotent state (transitions to and from the None state in Fig. 4.5).

In the intermediate regime of genetic switching rates, expression noise greatly facil-

itates transitions out of the pluripotent state by making the network more responsive

to changes in environmental signaling. In contrast, in the fast-switching regime, upon

withdrawal of pluripotency signals the downstream regulation happens on a much

slower time scale with some factors remaining virtually unresponsive to changes of sig-

naling. This signaling enhancement in the intermediate regime reveals the importance

of molecular noise in making pluripotent states more sensitive to environmental condi-

tions. There are qualitatively different patterns of re-entrance into pluripotent states

upon LIF vs 2i addition, with LIF being much more efficient at reversing pluripotency

compared to the 2i. The different potentials of signaling cultures for pluripotency
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Figure 4.6: Transition times between the stationary distributions of different
external conditions. A larger, darker arrow indicates that a given transition takes
a longer time to converge to its stationary state. This time scale is measured by
simulating a large ensemble (105) of PDMP sample paths to provide a simulated
probability density and finding the Jensen–Shannon divergence [70, 71] between the
instantaneous distribution of each TF and its final stationary distribution. The time
for the each divergence to fall below a threshold (:= 0.3) is recorded, and we choose
the largest of these as a quantification of the transition time. The numerical values
can be found in Tables S1 and S2 in the Supporting Information.

reversal has been established in experiments [4] which have shown that in the later

stages of commitment only the LIF is able to reverse lineage-primed cells back to their

naive pluripotent states. The exit and re-entrance from pluripotency upon withdrawal

and addition of LIF shows complex signatures of hysteresis and bifurcations. This

suggests that there can be multiple pathways of entering or exiting pluripotency. The

transition times for all signaling-induced changes of the steady states of the network

are visualized on a kinetic diagram, Fig. 4.6. This figure shows an underlying structure

to these transitions where conversion among pluripotent states takes place with lower

“activation barriers” compared to transitions accompanying loss of pluripotency. In

the intermediate-switching regime there is a clear time-scale separation between tran-

sitions which keep cells in pluripotent states and transitions out of pluripotent states.

One may argue that such a time-scale separation between signals inducing differentia-

tion and pluripotency allows embryonic cells to execute developmental decisions more

faithfully. In the fast-switching regime this clear time scale separation is partially lost

where only the loss of all three signals is separated from the rest of the transitions.

Detailed analysis of individual distributions and trajectories of transcription factors

can be very informative due to their high information content. It is, however, not



144 CHAPTER 4. A STOCHASTIC VIEW OF PLURIPOTENCY IN mESCs

immediately clear how changes in the expression of individual genes contribute to

global changes corresponding to different phenotypic transitions. To reveal such global

changes, we project stochastic trajectories of all transcription factors onto the first

two eigenvectors obtained by principal component analysis (PCA) of the reference

pluripotent steady state (LIF+2i). Most of the variance of transcription factors is well

captured by the few principal components. The high-dimensional steady state of the

cellular network can thus be conveniently projected onto a 2-dimensional subspace,

allowing us to visualize the attractor states of the network as probability landscapes

π(PC1, PC2) which are often masked by heterogeneous distributions.

Comparing these probability landscapes with different gene-switching regimes re-

veals the distinct roles played by gene-switching-induced molecular noise and the de-

terministic network topology in guiding the transition out of the pluripotent states

(Fig 4.7). The intermediate gene-switching regime, once again, appears to be the

more viable regime underlying pluripotent states since the probability landscape shows

up as a broad attractor with interconnected states. Going towards the limit of slow

switching results in the fragmentation of the landscape into states separated by high

barriers. This gene-switching-induced remodeling of attractors shows the potential for

regulation via global epigenetic changes which are purported to act via silencing or ac-

tivating entire sets of genes at once [16]. Thus one may view gene-switching rates as a

proxy for genome-wide acetylation/methylation patterns which can dramatically alter

the access of transcription factors to key target genomic sites. The sequential removal

of pluripotency-inducing signals reveals a consistent change in the size of the attrac-

tor towards occupying smaller regions on the landscape. This argues for the physical

state of the network corresponding to pluripotent states to be the one with maximal

variance of regulatory transcription factors where lineage commitment is accompanied

by their gradual constraining and repression. A similar idea which views pluripotency

as a macrostate emerging from an ensemble of cells which try to maximizes the infor-

mation entropy with respect to regulatory transcription factors has been postulated

before [13, 72]. The analysis of the steady-state stochastic dynamics of the pluripo-

tency network in this work appears in agreement with this view. Furthermore, we are

able to suggest a microscopic origin of this entropic paradigm. By analyzing pairwise
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Figure 4.7: Mapping the cellular attractors of the genetic network under
different switching and signaling conditions. We project PDMP-simulated gene
expression distributions onto the first two principal components. The reference state
for principal components was chosen to be the LIF+2i/intermediate switching.

correlations among different transcription factors we find that signals like LIF/2i cre-

ate greater independence between the expression of core transcription factors, leading

them to explore a larger range of values. Hence, removal of these signals leads to more

constrained and interdependent patterns of gene expression for the same transcription

factors which greatly diminishes overall variance.

4.5 Discussion

Experimental [17, 52, 73] and computational studies [55, 57, 74,75] of embryonic stem

cell networks have increasingly emphasized a systems-level perspective where pluripo-

tency is a result of sophisticated biological computations done by a tightly-integrated

set of genes, epigenetic and transcription factors [17, 76]. The rapid growth of gene-

expression data on mESCs under many different in vitro conditions has enabled reliable

inferences of the underlying topology of pluriptoency-regulating networks [17]. At the

same time single-cell probes of gene expression in mESCs reveal significant hetero-

geneity and dynamism in bio-molecular populations[8, 9], suggesting that molecular
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stochasticity and non-equilibrium processes could be playing a crucial role in regulat-

ing pluripotnecy and stem cell differentiation. Thus the schematic network topology

models inferred from real data, while immensely useful, are not always sufficient for

rationalizing the single-cell data, which is rich with stochastic and dynamical infor-

mation. On the other hand, full chemical-master-equation-based stochastic simula-

tions of complex ESC networks with complete bio-molecular inventory quickly become

impractical, especially when making data-driven parameter searches and explorative

simulations with a large number of external conditions.

In the present work we have developed a multi-scale computational scheme for

converting experimentally-inferred Boolean topologies into quantitative and predic-

tive models of networks with a microscopic resolution of gene-expression dynamics.

The employed computational model is based on previously proposed hybrid stochastic

dynamics approaches [19,24,25,36] in which the switching dynamics of individual genes

are considered exactly while the rest of the biochemical reactions are approximated as

deterministic processes. This hybrid-stochastic approach is approximately thousand

fold faster than conventional kinetic Monte Carlo methods. This gain in computa-

tional speed allows us to simulate large scale gene regulatory networks of ESC under

different culture conditions and gene-switching regimes. Thanks to rapid hybrid sim-

ulations we are able to use a standard optimization approach to exhaustively sample

the space of rates and find the closest match with the experimental gene expression

data collected different culturing environments [17]. The approximation introduced

due to using the hybrid scheme is validated by showing excellent quantitative agree-

ment of both steady states distributions and dynamical transition times with the fully

stochastic simulations for the identified parameter sets. This agreement also shows

that the switching events of genes—due to stochastic TFs binding to the promoter

sites—is likely a dominant source of variance in transcription factor populations of

ESC networks.

We find that the intermediate regime, in which the gene-switching rate is com-

parable to the other reaction rates in the network, is most consistent with single-cell

measurements [8–10]. This result has also been pointed out by Sasai et al. [44] when

exploring time scale hierarchy in stem cell networks with individual-based models and

concluding that experimentally observed phenotypic heterogeneity likely originates
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from promoter reorganization and genetic switching taking place on the comparable

time-scale with the rest of the biochemical processes. In this intermediate-switching

regime the transcription factors show bursty dynamics which lead to heterogeneous

distributions with some showing long-tailed and bimodal features. Consistent with

many experiments [8–10], our simulations show that the presence of LIF and 2i signals

is crucial for maintaining the stability of pluripotent states, which in our model are

defined as states with an up-regulated triad of pluripotency factors Nanog/Oct4/Sox2.

Withdrawal of either LIF/2i initiates lineage commitment via a robust pattern of re-

duced expression of the Nanog/Oct4/Sox2 triad in the simulations.

To characterize the dynamics of lineage commitment, we have computed the tran-

sition times of going from pluripotent to differentiated steady states. We find that an

intermediate regime of gene switching generates more heterogeneous distributions of

transcription factors, which in turn makes the network more responsive to changes in

signaling conditions. For instance, the response time to LIF/2i withdrawal is much

faster in a more stochastic regime than in the more deterministic regime correspond-

ing to faster gene switching time scales. Next, by carrying out principal component

analysis on ensembles of gene expression profiles, we find a much simpler description

of pluripotency and lineage commitment in terms of effective probability landscapes.

As the signals safeguarding pluripotency are removed, these landscapes reveal a grad-

ual narrowing of the steady-state attractor explored by the network. Thus, we see

a hierarchical organization of differentiation landscapes where pluripotent states pose

the largest attractor which is maintained through the extracellular signals and the

molecular noise of gene switching.

Given the rapid rise of information from high throughput single-cell nucleic acid

based techniques (RNA-seq, RNA-FISH, qPCR, etc.), we expect microscopic resolu-

tion models, such as reported in the present work, to play important roles in bridging

the systems-level behavior of genetic networks with the underlying molecular-level

processes of binding, reaction and diffusion.
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4.6 Methods

4.6.1 Constructing the piecewise-deterministic Markov pro-

cess (PDMP)

In the individual-based description of complex genetic networks studied in the present

work, one models each individual reactive species as a Markov jump process. The

underlying master equation governing the Markvoian evolution of the entire network

is analytically intractable and in general even numerical simulations quickly become

computational inefficient once dimensionality of the system becomes too high [77].

Specifically what contributed to this inefficiency is the population scale of transcription

factors for which it is common to have values on the order of Ω = 104 as is characteristic

for biological cells. Thus the use of standard continuous-time Monte Carlo [18, 78]

sampling techniques becomes unfeasible especially if one wants to sample the kinetic

parameter regimes for finding optimal sets of rate coefficients.

Fortunately the latest efforts of modeling gene-expression dynamics [19, 24, 25, 36,

64, 65, 79] have lead to the emergence of a new class of techniques which are broadly

based on using a piecewise-deterministic Markov process (PDMP) to approximate

the individual-based model with a switching property. In this section, we briefly

recapitulate the construction of the PDMP. A more thorough analysis can be found

in the literature cited [19,24,25,36,64,65,79] .

A PDMP is a process such that, in between discrete random switching events,

the evolution of the process is deterministic. To construct the deterministic evolution

of the TF populations, starting from the chemical master equations, we performed

a Kramers–Moyal expansion [77, 80] in the population of TFs while maintaining the

discreteness of the genetic state; we keep only the first order of the expansion. The

result is a standard Liouville equation governing the deterministic flow of the distri-

bution. The joint probability distribution of our model converges to the deterministic

flow in a given genetic state and in the thermodynamic limit Ω → ∞ [80]. With the

PDMP approach, the demographic noise originating from random birth-death events

are neglected, so that the population density xi(t) of each TF evolves according to

d

dt
xi(t) = αi − γxi(t), (4.3)
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where αi ∈ {0, αm, αmax} is the production rate of the ith TF dependent on the ith

gene’s configuration of promoter sites. While the evolution of the TF population

density is deterministic, the binding and unbinding events of the regulating TFs to

their target genes are still stochastic and formulated according to Eq. (4.1).

We finally emphasize that the PDMP only retains the contribution of switching

noise which arises from the discrete and stochastic binding and unbinding events

between the TFs and the promoter sites, and ignores demographic stochasticity from

the discrete production and degradation processes of the TFs.

4.6.2 Generating exact sample paths of the PDMP

To simulate the stochastic binding and unbinding statistics of the promoter sites,

accurate waiting times must be generated. A waiting time exists for each possible

stochastic transition; the smallest of these times tells us how long the system stays

in the current configuration of promoter sites, and to which promoter configuration it

transitions. In general, waiting times can be generated by mapping a uniform random

variable to a random time using the survival function. Since in our case the transition

rates are functions of dynamical state variables, this involves the numerical integration

of survival functions describing each potential transition [64]. In our case, the simple

form of Eq. 4.3 (and thus of the transition rates) allows us to improve upon this by

generating waiting times without numerical integration, detailed in Appendix 4.7.

4.6.3 Non-dimensionalization of model parameters

Under the assumptions we proposed, there are initially six free model parameters:

Ωαmax and Ωαm as the production rates when each of the genes has an “ON” or

“MEDIUM” activity, γ as the protein degradation rate, N as the number of promoter

sites, and lastly konΩ−1 and koff as the binding and unbinding rates between the TFs

and the promoter sties. We remark that the population scale Ω is fixed at 104.

Through suitable non-dimensionalization of the physical time and concentrations

of the TFs, we reduce the number of parameters. As can be seen from the above for-

mulation (Eq. 4.3), the time scale of the TF dynamics is set by the degradation rate

γ. For stable proteins, the time scale of degradation is of the order of the times of the
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cell cycle. We therefore choose the unit of physical time such that γ is 1. Similarly, the

maximum concentration in the TF can achieve in Eq. 4.3 is αmax/γ. We can choose

a unit for the concentrations of the chemical species such that αmax = 1, so the con-

centration of the TFs are always bounded in (0, 1). After non-dimensionalization, the

model ends up with four free parameters: αm ∈ {0, 1} as the intermediate production

rate of those genes which are regulated by both activators and repressors, kon, koff as

the binding and unbinding rate of the TF to the promoter sites, and N as the number

of promoter sites per gene.

4.6.4 Using the checkerboard diagram to infer the parameter

regime

To narrow down the parameter regime, we match our model predictions to the exper-

imental findings of Dunn et al. [17] in which the authors measured the TF expression

under various combinations of external signals: LIF, CH, and PD. We aim to match

the model prediction to a twelve-by-five “checkerboard diagram” which records the

experimentally measured expression pattern presented in Fig. 4.2. To achieve this

goal, we performed a sweep in a vast parameter space: αm ∈ [0, 1], kon, koff ∈ [0, 110],

and N = 1, 2, . . . , 5. For each parameter set, we simulated 103 PDMP sample paths

for a time to sufficiently reflect the stationary state, and the average TF expression

levels were recorded. Because of the non-dimensionalization, the expression level (the

population density) of each TF is a real number in between 0 and 1. This results

in a twelve-by-five real-valued matrix, which is binarized by a threshold. To find the

optimal threshold, we use the number of discrepancies between the model prediction

and the target matrix—the Hamming distance—as a quantitative measure. For each

parameter set, an optimal threshold which minimizes the Hamming distance was then

found computationally, and the minimal Hamming distance was recorded and plot-

ted in Fig. 4.2 in the main text as a “landscape” of how good the model captures

the experimental results. We found that for N = 1 and N ≥ 2, the global minimal

Hamming distance is 5 and 3 respectively. We chose N = 2 to present our follow-up

analysis, as it incorporates the capacity of modeling cooperative binding which is of-

ten modeled phenomenologically. We find the Hamming distance can be constantly as
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small as 3 in a vast region in the space of binding/unbinding rates when αm is small

(. 0.02). Therefore, in the manuscript we present the landscape of a fast switch-

ing regime kon ≈ 100, an intermediate regime kon ≈ 15 and a slow switching regime

kon ≈ 3.

4.6.5 Validating the PDMP against the individual-based model

For the three selected parameter sets, 104 sample paths of a fully individual-based

model were generated by standard kinetic Monte Carlo simulations—namely Gillespie’s

stochastic simulation algorithm (SSA) [18,78]. The population scale Ω for each TF is

set to be 104. A parallel analysis is carried out and the results are consistent with the

predictions from using the PDMP. We report the results for the intermediate switching

regime in Fig. 4.4.

4.6.6 Visualizing stochastic fluctuations in gene expression on

low dimensional manifolds using principal component

analysis (PCA)

While the joint probability distributions are measured by kinetic Monte Carlo sam-

pling, the dimensionality of the dynamical system is very high: each TF has a real-

valued density, so that even if we marginalize over the genetic states the probability

density is a 12-dimensional object. Although Fig. 4.4 summarizes the marginal dis-

tributions of the real-valued TF density and contains rich information, it is desirable

to visualize the results in a lower-dimensional space to draw qualitative conclusions.

To achieve this goal, we perform the standard principal component analysis [81]. We

chose a baseline external condition to be LIF+2i; the first two principal components

were computed. For the rest of the external conditions, the joint probability distribu-

tions are projected onto the plane spanned by these principal components; the results

are presented in Fig. 4.7.
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4.6.7 Dynamical transitions between different external sig-

nals

To investigate dynamical transitions when the external driving conditions (whether

LIF, CH, and PD are present) change, we prepare 105 independent sample paths with

an initial external condition until the joint probability distribution converges to the

stationary distribution. Then, the external condition is switched instantaneously to

the second condition. We further evolve the dynamical system until stationarity for the

second conditions is reached. The results are summarized in Fig. 4.5. To estimate the

transition times between the stationary distributions with different external conditions,

we measure the Jensen–Shannon distance of the marginal distribution of each TF

density, at any given time during the transition to the final marginal distribution. We

measure and report the first time when all 12 distances are below a threshold value of

0.3, presented in Fig. 4.6.

4.7 Appendix: Efficient generation of waiting times

for genetic-switching events

Our approach requires the generation of accurate waiting times, which dictate how

long the system stays in the current configuration of promoter sites, and to which

promoter configuration it transitions. In our case the simple form of the PDMP, and

consequently of the transition rates, allows us to generating waiting times without

numerical integration of the survival function.

The TF density of a given type, with an initial condition x0 at time 0, is described

by

x(t) =
α

γ
+

(
x0 −

α

γ

)
exp (−γt) . (4.4)

We dropped the subscript i for brevity in this section. It follows that the survival

function—the probability that the switching time is greater than time t—describing a

genetic binding event is given by

S(t) = exp

[
−kon

∫ t

0

x(t′)dt′
]

= exp

{
−kon

γ

[
αt−

(
x0 −

α

γ

)(
e−γt − 1

)]}
.

(4.5)
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To use the inverse method, one generates a random number u ∼ Unif (0, 1) and solves

the equation u = S(t) for t. The solution is a random binding time with the correct

distribution.

When the density is monotonically decreasing (x0 > α), the procedure allows

one to rigorously generate exact switching times [82]. This involves generating two

independent random numbers u1, u2 ∼ Unif (0, 1) such that the random time of a

binding event t is given by t = min(t1, t2) where

t1 =

 −γ (log u1) / (αkon) if α 6= 0,

∞ if otherwise.
(4.6a)

t2 =

 −γ log {(log u2) / [kon (x0 − α/γ)] + 1} if u2 > exp [−kon (x0 − α/γ)] ,

∞ if otherwise.

(4.6b)

The case when the density is monotonically increasing u = S(t) is not analytically

solvable but can be solved numerically and with efficiency using the Newton–Raphson

scheme. Using these two approaches together, the random waiting times for the next

binding event of gene i can be efficiently generated.

The unbinding events are independent of the population of TFs. Since each bound

TF on a promoter dissociate independently and identically with a rate koff, the waiting

time of each of the dissociating events is exponentially distributed (∼ exp (koff)) and

can be efficiently generated [78].

At any given point in time and given the state of the system, we can use the above

procedures to generate the random waiting times for binding or unbinding events.

Before the first event (i.e., the binding or unbinding event with the minimal waiting

times) takes place, the dynamics of TF evolve deterministically and all the promoter

states remains constant. At the time of the earliest binding or unbinding event, the

promoter state corresponding to this binding or unbinding event is updated, and new

random waiting times are generated.
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Chapter 5

Model reduction methods for

classical stochastic systems with

fast-switching environments:

reduced master equations,

stochastic differential equations,

and applications

5.1 Preface

The contents of this chapter constitute a submitted manuscript, which has been made

public on arXiv [1]. The manuscript was authored by Peter G. Hufton1, Yen Ting

Lin1,2 and Tobias Galla1. All authors contributed to this work equally.

P.G.H.’s contribution includes the initial inception of the project, performing all

calculations and analysis therein, coding simulations, producing the data for all figures

(except Figs. 5.3, 5.6, and 5.7), finalising all figures, and writing all sections of the

paper alongside Y.T.L. and T.G.
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Abstract

We study classical stochastic systems with discrete states, coupled to switching ex-

ternal environments. For fast environmental processes we derive reduced dynamics

for the system itself, focusing on corrections to the adiabatic limit of infinite time

scale separation. In some cases, this leads to master equations with negative tran-

sition ‘rates’ or bursting events. We devise a simulation algorithm in discrete time

to unravel these master equations into sample paths, and provide an interpretation

of bursting events. Focusing on stochastic population dynamics coupled to external

environments, we discuss a series of approximation schemes combining expansions in

the inverse switching rate of the environment, and a Kramers–Moyal expansion in the

inverse size of the population. This places the different approximations in relation to

existing work on piecewise-deterministic and piecewise-diffusive Markov processes. We

apply the model reduction methods to different examples including systems in biology

and a model of crack propagation.

5.2 Introduction

Physical and biological systems can never be fully isolated from their environment.

This includes the dynamics of microbes in time-varying external conditions (e.g., an-

tibiotic treatment) [2–5], or protein production in gene regulatory networks, influenced

by the stochastic binding and unbinding of promoters [6–10]. Other examples can be

found in models of evolutionary dynamics [11–14], the spread of diseases [15], and in

ecology and population dynamics [16–19]. Many of models of these phenomena contain

two types of randomness: one intrinsic to the system itself, and another generated by

the noise in the environmental dynamics. Applications of systems coupled to stochas-

tic external environments go as far as reliability analysis and crack propagation in

materials, where environmental states correspond to different strains due to external

loading [20–25]. The study of open quantum systems defines an entire area of research

[26–28].
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These examples share a common structure: there is the system proper and the

environment, and a coupling between them; this interaction can act either in one way or

in both directions. In such situations it is often not possible (or desirable) to track and

analyse in detail the dynamics of the system and that of the environment. Instead the

focus is on deriving reduced dynamics for the system itself, which in some way account

for the influence of the environment on the system. Work on open quantum systems

for example focuses on understanding the dynamics of reduced density matrices after

integrating out the environment [26–28].

Existing work on open classical systems includes those described by stochastic

differential equations (SDEs) coupled to continuous environments [11,29–31], and de-

terministic models with discrete external noise [32–34]. A specific case of Brownian

particles, subject to random external gating is considered in Ref. [35]. In chemical or

biological systems the quasi-steady-state approximation or related adiabatic reduction

techniques can be used to eliminate fast reactions [36, 37].

In this paper we consider open stochastic systems with discrete states. While some

of our theory is applicable more generally, we mostly focus on populations of interacting

‘individuals’. We will often use the words ‘system’ and ‘population’ synonymously.

Examples we have in mind are chemical reaction system with discrete molecules, or

populations in biological systems, composed of members of different species. For a fixed

environment, such a system is described by a (classical) master equation defined by the

transition rates between its discrete states. These transitions are typically events in

which particles are produced or removed from the population, or in which a particle of

one type is converted into another type. In biological populations they can represent

birth or death events. We are interested in cases in which such a population is coupled

to an external environment, which also takes discrete states. The environmental states

in turn affect the transition rates within the population.

Our aim is to study the reduced dynamics of such systems after the environmental

dynamics are integrated out. In particular we focus on the limit in which the en-

vironmental dynamics are fast compared to those of the population, but where the

separation of time scales is not infinite. We show how reduced master equations can

be derived systematically; interestingly negative transition ‘rates’ can emerge in these

reduced dynamics. This is similar to what is observed in the theory of open quantum
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systems [27,38,39], but there are also key differences. We provide an approximation at

the level of sample paths in discrete-time, and comment on different numerical schemes

to address master equations with negative rates. We also describe in more detail how

expansions in the inverse time scale of the environmental dynamics can be combined

with expansions in the inverse system size of the population. These are effectively

weak-noise expansions for the extrinsic and intrinsic stochasticity of the problem. Fi-

nally we apply the formalism to a number of examples ranging from gene regulatory

networks to crack propagation in materials.

Our aim is to study the reduced dynamics of such systems after the environmental

dynamics are integrated out. In particular we focus on the limit in which the en-

vironmental dynamics are fast compared to those of the population, but where the

separation of time scales is not infinite. We show how reduced master equations can

be derived systematically; interestingly negative transition ‘rates’ can emerge in these

reduced dynamics. This is similar to what is observed in the theory of open quantum

systems [27, 38, 39], but there are also key differences. We provide an approxima-

tion at the level of sample paths in discrete-time, and comment on different numerical

schemes to address master equations with negative rates. A main result of this chapter

is a detailed description of how expansions in the inverse time scale of the environ-

mental dynamics can be combined with expansions in the inverse system size of the

population. These are effectively weak-noise expansions for the extrinsic and intrinsic

stochasticity of the problem, which in many cases facilitate analytical results or more

efficient simulation. Finally we apply the formalism to a number of examples ranging

from gene regulatory networks to crack propagation in materials.

The remainder of the paper is organised as follows. In Sec. 5.3 we introduce the

type of model we address, a classical stochastic system with discrete states coupled

to an external environment, also with discrete states. In Sec. 5.4 we present the

detailed mathematics used for the analysis and derive an effective master equation in

the limit of fast time scales of the environmental switching; specifically, our analysis

includes next-order corrections to the adiabatic limit of infinitely fast environments.

We illustrate this using a set of simple examples. In Sec. 5.5 we use this general result

to show how master equations with negative transition ‘rates’ arise, and comment on

their interpretation and on a numerical scheme to sample its statistics at ensemble
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level. Sec. 5.7 describes the effective dynamics on the level of sample paths, and

provides more insight into reduced master equations with negative ‘rates’. In Sec. 5.8

we combine expansions in the inverse size of the population with that in the time scale

of the switching dynamics, and provide a systematic classification of the different

resulting model reduction schemes. We discuss a set of applications in Sec. 5.9, before

we summarise and present our conclusions in Sec. 5.10.

5.3 General definitions

5.3.1 Model

We focus on a classical system with discrete states, labelled `, which is coupled to an

environment also taking discrete states, which we label σ. The system and the envi-

ronment evolve in continuous time. The dynamics of the system itself depend on the

current state of the environment. The environment in turn switches between its states,

with transition rates which can depend on the state ` of the system. The combined

dynamics of system and environment are then governed by the master equation

d

dt
p(`, σ, t) =Mσp(`, σ, t) + λ

∑
σ′

Aσ′→σ(`)p(`, σ′, t), (5.1)

where p(`, σ, t) is the joint probability of finding the system in state ` and the envi-

ronment in state σ at time t. The object Mσ is an operator, and determines how the

state of the system can change when the environment is in state σ. More specifically,

the effect of the operator can be written in the form

Mσp(`, σ, t) ≡
∑
`′

R
(σ)
`′→`p(`

′, σ, t). (5.2)

The matrix element R
(σ)
`′→` describes the rate at which the system transitions from state

`′ to state ` when the environment is in state σ. For a chemical reaction system, the

types of allowed transitions are specified by the stoichiometric coefficients; together

with associated reaction rates these determine the transition matrix. In the context

of population dynamics the matrix R
(σ)
`′→` is defined by the underlying birth and death

processes (e.g., see Refs. [40, 41]).

The second term in Eq. (5.1), proportional to λ, characterises the environmental

switching. The rate with which the environment transitions from state σ to state
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σ′ is λAσ→σ′(`). In the most general setup, these can depend on the state ` of the

system. We write λA(`) for the corresponding transition matrix. The pre-factor

λ > 0 has been introduced to parametrise the time scale of the environment, relative

to the internal dynamics of the population. Large values of λ � 1 indicate a fast

environmental process. To fix the diagonal elements of both transition matrices, we

use the convention R
(σ)
`→` = −

∑
`′ 6=`R

(σ)
`→`′ , and Aσ→σ(`) = −

∑
σ′ 6=σ Aσ→σ′(`).

5.3.2 Simplification in the adiabatic limit

We first consider the so-called ‘adiabatic’ limit of infinitely fast environmental switch-

ing, λ→∞. In this limit we find from Eq. (5.1)∑
σ′

Aσ′→σ(`)p(`, σ′, t) = 0, (5.3)

for all `. We introduce the notation Π(`, t) =
∑

σ p(`, σ, t) for the marginal of the

probability distribution after integrating out the environment. We also write the

joint distribution in terms of this marginal and a conditional probability: p(`, σ, t) =

ρ(σ|`, t)Π(`, t). Substituting this into Eq. (5.3) we find∑
σ′

Aσ′→σ(`)ρ∗(σ′|`) = 0, (5.4)

for all `, for the stationary distribution of the environment conditioned on the state

of the system. We label this stationary distribution by an asterisk. In the adiabatic

limit we then have

p(`, σ, t) = ρ∗(σ|`)Π(`, t). (5.5)

We will use this relation as a starting point for further analysis; in this context we also

obtain the reduced dynamics for Π(`, t) in the adiabatic limit.

5.4 Analysis for fast but finite environments

5.4.1 General formalism

Our next aim is to derive reduced dynamics in the limit of fast environmental switching,

but keeping the time-scale separation finite (i.e., λ large, but finite). Specifically, the

objective is to derive a closed equation for the time-evolution of the distribution of
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states Π(`, t). This is done, in essence, by performing an expansion of the joint master

equation for system and environment in powers of the time-scale separation λ−1. We

then retain the leading and sub-leading terms, and integrate out the environment.

The algebraic steps are similar to those in Ref. [32], in which the authors work in

the context of piecewise-deterministic Markov processes. We carry out the calculation

starting from a system with discrete states `. As we will see below, this leads to

interesting features of the reduced dynamics, not necessarily seen for continuous states.

To separate leading-order terms from sub-leading contributions we start with the

decomposition

p(`, σ, t) = ρ∗(σ|`)Π(`, t) +
1

λ
wσ(`, t). (5.6)

The sub-leading order term wσ(`, t) describes deviations from the adiabatic limit

[Eq. (5.5)], due to a finite time scale of the environment. While the first term in

Eq. (5.6) is the first term in an asymptotic expansion in λ−1, we remark that wσ(`, t)

is inclusive of all higher-order terms. Because of normalisation, this ansatz requires∑
σ wσ(`, t) = 0, for all `. We proceed by inserting Eq. (5.6) into Eq. (5.1), and obtain

ρ∗(σ|`) d

dt
Π(`, t) +

1

λ

d

dt
wσ(`, t) =Mσ [ρ∗(σ|`)Π(`, t)] +

∑
σ′

Aσ′→σ(`)wσ′(`, t)

+
1

λ
Mσwσ(`, t), (5.7)

where one further term has been eliminated using Eq. (5.4). Next, we sum over the

environmental states σ for each `. We find

d

dt
Π(`, t) =

∑
σ

Mσ [ρ∗(σ|`)Π(`, t)] +
1

λ

∑
σ

Mσwσ(`, t). (5.8)

Once the wσ(`, t) are expressed in terms of Π(`, t), this equation describes the time-

evolution of Π(`, t), valid to sub-leading order in λ−1.

To find the wσ(`, t) we collect the terms of order (1/λ)0 in Eq. (5.7),∑
σ′

Aσ′→σ(`)wσ′(`, t) =ρ∗(σ|`)
∑
σ′

Mσ′ [ρ
∗(σ′|`)Π(`, t)]−Mσ [ρ∗(σ|`)Π(`, t)] , (5.9)

where we have used Eq. (5.8) to further simplify the result. Effectively, we have

disregarded terms of order λ−1 in Eq. (5.7). This procedure indicates that the wσ(`, t)

are to be obtained as the solution of Eq. (5.9), subject to
∑

σ wσ(`, t) = 0 for all ` and

t. The truncation of higher order terms leads to an error in Eq. (5.9) of order λ−1. We
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note that in specific cases master equations for the system can be obtained in closed

form without truncation (examples can be found in Refs. [42,43]). These usually rely

on specific properties of the model at hand, such as linearity. Eqs. (5.8) and (5.9),

while constituting an approximation to sub-leading order in λ−1, hold more generally;

we have not made significant restrictions on the dynamics of the system (i.e., on the

operators Mσ).

5.4.2 Switching dynamics independent of state of the system

with two environmental states

We now make a simplifying assumption, and consider the case in which the environ-

mental switching dynamics are independent of the state of the population; that is to

say, the transition rate matrix Aσ→σ′ does not depend on `. In this case, the stationary

distribution of the environment in the adiabatic limit is independent of the state of

population, i.e., ρ∗(σ|`) = ρ∗σ. The more general case is discussed further in Appendix

5.11 and below in Sec. 5.9.

In this simplified case the dynamics in the adiabatic limit are given by

d

dt
Π(`, t) =MavgΠ(`, t), (5.10)

where Mavg =
∑

σ′ ρ
∗
σ′Mσ′ is an effective, average operator. Equation (5.10) is ob-

tained from Eq. (5.8) by sending λ→∞, and using ρ∗(σ|`) = ρ∗σ.

Equation (5.9), on the other hand, reduces to∑
σ′

Aσ′→σwσ′(`, t) = ρ∗σ [Mavg −Mσ] Π(`, t). (5.11)

This relation indicates a balance of the form
∑

σ′ Aσ′→σwσ′(`, t)+[Mσ −Mavg] ρ∗σΠ(`, t) =

0. To understand this in more detail, we recall that wσ(`, t) describes the next-order

deviation of the solution of Eq. (5.1) from the adiabatic limit when the environmental

switching is finite [Eq. (5.6)]. When the environment is in state σ, the first term in

the above balance relation is the influx of probability into state ` induced by these

deviations and due to the environmental switching. Secondly, for finite environmental

switching, the dynamics of the population are governed not by Mavg, but by Mσ

when the environment is in state σ. The second term in the above relation reflects

this; self-consistency of the ansatz requires that these contributions balance.
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While the above procedure applies to an arbitrary number of discrete environmental

states, it is useful to look at the case of two states, which we label σ = 0 and σ = 1.

We then have w0(`, t) = −w1(`, t) for all ` and t. To shorten the notation, we write k0

and k1 for the switching rates A1→0 and A0→1 respectively. In the adiabatic limit, the

probabilities of finding the environment in each of its two states are then given by

ρ∗0 =
k0

k0 + k1

, ρ∗1 =
k1

k0 + k1

. (5.12)

From Eq. (5.11) one obtains

wσ(`, t) =
kσ

(k0 + k1)2
[Mσ −Mavg] Π(`, t). (5.13)

Substituting in Eq. (5.8) and simplifying, we arrive at

d

dt
Π(`, t) =MavgΠ(`, t) +

1

2

θ2

λ
(M0 −M1)2Π(`, t), (5.14)

where we have introduced the constant

θ2 =
2k0k1

(k0 + k1)3
. (5.15)

For systems with two environmental states and with population-independent environ-

mental switching, Eq. (5.14) is a general result approximating the dynamics in the

limit of fast switching. It captures the time-evolution of Π(`, t) up to and includ-

ing sub-leading terms in λ−1. We will refer to this equation (and its analogue for

more complicated setups) as a reduced master equation. An expression similar to

Eq. (5.14) was derived in Ref. [32] for systems with continuous states. We note that

(M0 −M1)2 = (M2
0 − 1) + (M2

1 − 1)− (M0M1 − 1)− (M1M0 − 1), indicating that

Eq. (5.14) preserves total probability, i.e., d
dt

∑
` Π(`, t) = 0.

We will next illustrate this result in the context of two simple, but instructive

examples.

5.4.3 Basic example

We consider a population of discrete individuals who all belong to a single species. The

state of the population is specified by the number n of individuals. Discrete events

involve the removal (death) of existing individuals (n → n − 1), or the production

(birth) of new individuals (n → n + 1). In this first example we assume that the per
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capita death rate δ does not depend on the state of the environment. The birth rate,

however, does: it is Ωβ0 in environmental state σ = 0, and Ωβ1 in environmental state

σ = 1. The scale parameter Ω > 0 sets the typical number of particles; see also the

next paragraph. This simple setup is widely used as an elementary model of protein

production controlled by the state of a gene [6, 10, 44–46].

For this model, the operator Mσ can be written as

Mσ = Ωβσ(E−1 − 1) + δ(E − 1)n, (5.16)

where we have introduced the raising operator E , defined by its action on a function

of n: Ef(n) = f(n+ 1). Operators act on everything to their right. We find

Mavg = Ωβavg(E−1 − 1) + δ(E − 1)n, (5.17)

where βavg = (k0β0 +k1β1)/(k0 +k1). This operator describes the dynamics in the limit

of infinitely fast switching (λ → ∞). The resulting birth rate, Ωβavg, is the weighted

average of the birth rates in the two environments. The total rate with which deaths

occur in the population is δn. These rates balance when n = (βavg/δ)Ω. It is in this

sense that Ω sets the typical scale for the population size.

Inserting the expression for Mσ into Eq. (5.14) and reorganising terms we find

d

dt
Π(n) = δ(E − 1)nΠ(n)

+

[
Ωβavg −

Ω2θ2

λ
(β0 − β1)2

]
(E−1 − 1)Π(n)

+
1

2

Ω2θ2

λ
(β0 − β1)2

[
E−2 − 1

]
Π(n), (5.18)

where we have suppressed the explicit dependence of Π(n) on time. This equation cap-

tures terms up to (and including) order λ−1; higher-order terms have been discarded.

Each term in the reduced master equation can be seen as describing a particular

reaction (or type of event) in the population. The first term on the right-hand side

(RHS) of Eq. (5.18) describes death events which occur with per capita rate δ. These

events occur in either of the two environments, and appear in the reduced dynamics

unaltered. The second term indicates birth events occurring with a rate βeff ≡ Ωβavg−

(Ω2θ2/λ)(β0 − β1)2. The reduced dynamics are derived for λ� 1, and we will always

assume that λ is large enough so that effective rates such as βeff are non-negative.
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The third term on the right-hand side of Eq. (5.18) describes events in which two

individuals are created at the same time. This occurs with rate 1
2
(Ω2θ2/λ)(β0 − β1)2;

we note that this rate is proportional to λ−1. Such events are not part of the original

dynamics in either environment (neither M0 nor M1 contain events of this type).

They come about due to the fast switching with large, but finite time scale separation,

and indicate ‘bursting’ behaviour. This is discussed in more detail in Sections 5.5 and

5.7. We stress that this type of bursting is different from that discussed for example

in Refs. [47–50]; there, bursting in protein production is due to short-lived mRNA as

a source of protein.

For further illustration, we briefly consider a second, albeit similar, example. We

assume now that the birth rate is equal in the two environments (β0 = β1 ≡ β), but

that there are different death rates, δ0 and δ1. We find

d

dt
Π(n) = Ωβ(E−1 − 1)Π(n)

+ (E − 1)[δavg −
θ2

λ
(δ0 − δ1)2(2n− 1)]nΠ(n)

+
1

2

θ2

λ
(δ0 − δ1)2

[
E2 − 1

]
n(n− 1)Π(n) (5.19)

for the reduced dynamics. Again we note bursting behaviour, the last term in Eq. (5.19)

describes ‘double death’ events, which are not present in the original dynamics. The

factor n(n − 1) ensures that such events can only occur when there are at least two

individuals in the population.

5.5 Several species and reduced master equations

with negative transition rates

5.5.1 Model

We next consider an example in which there are two types of particles, labelled A and

B. This is still a relatively simple setup, but it will help reveal a number of interesting

features which can emerge in the reduced dynamics.

Particles of either type are removed with constant per capita rates γ and δ, re-

spectively, and are created with rates Ωασ and Ωβσ. These production rates depend

on the state of the environment, as indicated by the subscript. The population takes
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states ` = (nA, nB), where nA is the number of particles of type A, and nB the number

of particles of type B. We then have operators

Mσ = Ωασ(E−1
A − 1) + γ(EA − 1)nA

+ Ωβσ(E−1
B − 1) + δ(EB − 1)nB, (5.20)

where EAf(nA, nB) = f(nA + 1, nB), and similarly for EB. The switching between

environmental states is the same as in the previous section. Using Eq. (5.14) we find,

to sub-leading order in λ−1,

d

dt
Π = γ(EA − 1)nAΠ + δ(EB − 1)nBΠ

+ Ωαeff(E−1
A − 1)Π + Ωβeff(E−1

B − 1)Π

+
Ω2θ2

2λ
(∆α)2(E−2

A − 1)Π

+
Ω2θ2

2λ
(∆β)2(E−2

B − 1)Π

+
Ω2θ2

λ
∆α∆β(E−1

A E
−1
B − 1)Π, (5.21)

where ∆α ≡ α0 − α1 and ∆β ≡ β0 − β1, and where

αeff = αavg −
Ωθ2

λ
(∆α)2 − Ωθ2

λ
∆α∆β,

βeff = βavg −
Ωθ2

λ
(∆β)2 − Ωθ2

λ
∆α∆β.

(5.22)

The quantity αavg is defined as above, and similar for βavg. We have suppressed the

explicit dependence of Π on nA, nB and t to keep the notation compact.

Again, we can interpret the reduced master equation as a set of reactions. The

first two terms on the RHS of Eq. (5.21) describe particle removal, present already in

the original model, and independent of the state of the environment. The terms in

the second line are single-birth reactions, as appeared originally in the model, but now

with effective birth rates in the reduced dynamics as indicated in Eq. (5.22). Similar to

the example in the previous Section, the effective rates αeff and βeff are non-negative,

provided the switching is fast enough. Given that the reduced dynamics are derived

in the limit λ� 1, we always assume that the time-scale separation λ is large enough

so that αeff , βeff ≥ 0.

The remaining terms in Eq. (5.21) represent reactions which are not present in the

original model; they arise from the effects of integrating out the environment. These
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(b)

nA

(a)

nB

Figure 5.1: Illustration of the possible reactions for (a) the model described by equa-
tions (5.20), and (b) the approximation to the model described by Eq. (5.21). In the
original model the next event can take the population from (nA, nB) to four possible
destinations: (nA ± 1, nB), (nA, nB ± 1). The bursting reactions in the reduced model
lead to further states which can be reached, indicated by grey dashed arrows; these
are (nA + 2, nB), (nA, nB + 2), (nA + 1, nB + 1). For certain choices of parameters the
transition to (nA + 1, nB + 1) can have a negative ‘rate’. In this case the flow of prob-
ability is from (nA + 1, nB + 1) to (nA, nB) as indicated by the red dotted arrow; see
Sec. 5.5.3 for details.

terms represent ‘bursting’ reactions; they describe events in which two particles of

type A are produced simultaneously, or two particles of type B, or one of either type.

This is illustrated in Fig. 5.1. Panel (a) is a schematic showing the four states that the

population can reach from a given state in the next event in the original model. Panel

(b) shows that the reduced dynamics allow three additional destinations (indicated

by grey dashed arrows). The rates of the first two bursting reactions in Eq. (5.21)

are proportional to (∆α)2 and (∆β)2, and are always positive [lines three and four

on the right-hand side of Eq. (5.21)]. The rate of the third bursting reaction [last

term on RHS of Eq. (5.21)] is positive only if ∆α and ∆β have the same sign. If

∆α∆β < 0, this reaction will have a negative (pseudo-) rate, no matter how large the

time scale separation λ. In this case, it is not immediately clear how to proceed with

the interpretation of Eq. (5.21). We will return to this below in Sec. 5.5.3, after we

first briefly consider the case ∆α∆β > 0.

5.5.2 Positive correlation between the species

In the case ∆α∆β > 0, the correlations between nA and nB are positive. There is one

state of the environment which favours both species, i.e., they each have a higher birth

rate in this environmental state than in the other. All rates in Eq. (5.21) are positive
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Figure 5.2: Stationary distribution of the model defined in Sec. 5.5.1 [see Eqs. (5.20)].
The upper panels are for ∆α∆β > 0, the lower row for ∆α∆β < 0. The distributions
are obtained by numerical integration of: (a,e) the full master equation with explicit
environment, (b,f) the reduced master Eq. (5.21), and (c,g) the adiabatic approx-
imation; (d) shows the marginal distribution of nA + nB; panel (h) shows nA − nB.
Markers labelled ‘SSA’ in panel (h) are from the stochastic simulation algorithm (SSA)
described in Sec. 5.6.2. Parameters are α0 = 0, α1 = 1, β0 = 0, β1 = 1 in the upper
row, and α0 = 0, α1 = 1, β0 = 1, β1 = 0 in the lower row. Remaining parameters are
Ω = 20, λ = 20, k0 = k1 = 1.

(provided λ is sufficiently large, so that αeff , βeff ≥ 0), and mathematically there is

then a clear and unique way of interpreting this equation as a continuous-time Markov

process. The events described by the various terms are then as above: single deaths,

single births and bursting reactions in which two particles are produced. The notion

of sample paths is well-defined; they can be generated using the standard Gillespie

algorithm [51,52].

Some support for the validity of the reduced master equation is given in Fig. 5.2,

panels (a)–(c). In panel (a) we show the stationary distribution obtained from nu-

merically integrating the full master equation Eq. (5.1), i.e., from the full dynamics

of population and environment. Panel (b) shows the corresponding distribution from

numerical integration of the reduced master equation (5.21). In panel (c) we have

taken the adiabatic limit λ→∞. In each case the numerical integration is carried out

using a Runge–Kutta scheme (RK4). The reduced dynamics capture the correlations

between nA, nB in the original model; this correlation is no longer seen in the adiabatic

approximation. Panel (d) shows the marginal distribution for the quantity nA +nB to

allow better comparison.
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5.5.3 Anti-correlations and negative transition rates

For cases in which ∆α and ∆β have opposite signs, the interpretation of Eq. (5.21)

presents an interesting feature. In this situation the (pseudo-) rate of the last reaction

(Ω2θ2/λ)∆α∆β is negative, irrespective of the value of λ. The interpretation of this

term is then not clear a priori, and Eq. (5.21) is not a master equation in the usual

sense. We will nevertheless refer to it as the reduced master equation, quotation marks

or a prefix ‘pseudo-’ are implied. Similarly, we will continue to speak of rates, even if

these are negative.

In order to better understand a master equation with negative rates, we focus on a

pair of states, which we label ` and `′, and on a single reaction of type `→ `′ occurring

with a rate R`→`′ . In the specific example above one would have ` = (nA, nB) and

`′ = (nA + 1, nB + 1). The corresponding terms in the master equation are then

d

dt
Π(`, t) = −R`→`′Π(`, t), (5.23a)

d

dt
Π(`′, t) = R`→`′Π(`, t). (5.23b)

In conventional cases the rate is positive, R`→`′ > 0. The master equation then

describes a non-negative probability flow R`→`′ Π(`) from ` to `′ (we suppress the time

dependence of Π(`) for convenience).

For R`→`′ < 0, the flow of probability per unit time in Eqs. (5.23) is |R`→`′ |Π(`) ≥ 0

from `′ to `. This is not a standard Markovian situation: the flow is directed from

`′ to `, but proportional to the probability already present at `. Furthermore, the

magnitude of this flow does not depend on Π(`′). In making this argument, we have

assumed Π(`) ≥ 0. This assumption is not always justified in master equations with

negative rates. However the above argument holds more generally: a negative value

of R`→`′ Π(`) indicates a positive probability flux |R`→`′ Π(`)| from `′ to `. Similar

structures with negative rates are found in open quantum systems, and an approach

renormalising master equations of this type has been proposed for example in Refs. [38,

39]. We illustrate this using Eqs. (5.23), assuming again R`→`′ < 0. For Π(`′) > 0 one

defines the renormalised transition rate

T`′→`(t) ≡
Π(`, t)

Π(`′, t)
|R`→`′| . (5.24)
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Figure 5.3: Time evolution of several entries Π(nA, nB, t) for the example defined in
Sec. 5.5.1. The solid lines show results from integrating the reduced master equation
(5.21), starting from a delta-distribution Π(nA, nB, t = 0) = δnA,10δnB ,10. Markers are
from the numerical simulation scheme described in Sec. 5.6.1. Model parameters are
α0 = 0, α1 = 1, β0 = 1, β1 = 0, Ω = 20, λ = 20, k0 = k1 = 1.

The master equation (5.23) can be then written as

d

dt
Π(`, t) = T`′→`(t)Π(`′, t), (5.25a)

d

dt
Π(`′, t) = − T`′→`(t)Π(`′, t). (5.25b)

Equations (5.25), then, resemble a more traditional master equation, and T`′→` is

the rate for transitions from `′ to `. However, this rate depends on the probability

distribution Π, in particular T`′→` is a function of Π(`). This indicates non-Markovian

properties [27, 38,39].

5.5.4 Lack of positivity in initial transients

Numerically integrating the reduced master equation (5.21), we find transient regimes

of negative (pseudo-) probabilities. For example, if the initial condition is chosen

as a delta-peak concentrated on one state ` = (nA, nB), the numerical solution for

Π(nA + 1, nB + 1) is negative for a limited time as shown in Fig. 5.3. We analyse this

further in Fig. 5.4, where we show the duration t∗ of the initial transient in which

negative probabilities are accumulated. The data suggests that this time window is

limited to a duration of order λ−1.

While we have not attempted to establish formal conditions under which Eq. (5.21)

preserves positivity, we note that negative transients have been observed before in

reduced dynamics for open classical and quantum systems [53–56]. Indeed, it is not
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Figure 5.4: Time scale t∗ over which negative probabilities are accumulated. Specif-
ically, t∗ is the time at which the sum of all negative entries in Π has maximal mag-
nitude; data is from numerical integration of Eq. (5.21). The solid line is a guide and
corresponds to t∗ ∝ 1/λ. Parameters and initial condition are the same as Fig. 5.3.

surprising that Eq. (5.21) should become unphysical on short time scales. The typical

time between switches of the environmental state is of order λ−1, and the reduced

dynamics were derived by integrating out the fast environmental dynamics. We cannot

expect Eq. (5.21) to resolve the physics of the problem on time scales shorter than

order λ−1, as then the detailed mechanics of the environment become important.

We have verified that the appearance of transient negative solutions can be cured

by first integrating the full master equation describing the population and the envi-

ronment for a short period of time, and then subsequently changing to the reduced

master equation (5.21). Alternatively, the reduced dynamics can be started from

‘slipped’ initial conditions [53,55].

Focusing on long times, we find that the stationary distribution obtained from

numerical integration of Eq. (5.21) for ∆α∆β < 0 captures the negative correlation of

nA and nB in the original dynamics. This can be seen in Fig. 5.2(e) and (f). Working

in the adiabatic limit, however, produces significant deviations [panels (g) and (h)].

For the general reduced master equation [i.e., the analogue of Eq. (5.21) for a gen-

eral model], we have not attempted to establish formal conditions where all rates re-

main positive. We remark that positivity in the probabilities is preserved for all initial

conditions only if all rates are positive. When negative rates are included, negative

probabilities exist transiently; negative transients have been observed before in re-

duced dynamics for open classical and quantum systems [53–56]. In a classical setting,

the appearance of negative transients has been observed previously when truncating
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Kramers–Moyal expansions at n ≥ 3 terms; for such a truncation, positivity is violated

over short times as shown by Pawula’s theorem. This does not, however, imply that

such expansions are of no use; rather, the n ≥ 3 truncations of the Kramers–Moyal

expansion can produce better agreement with true probability distributions than the

traditional Fokker–Planck n = 2 truncation [57]. It is not surprising that Eq. (5.21)

should become unphysical on short time scales. The typical time between switches

of the environmental state is of order λ−1, and the reduced dynamics were derived

by integrating out the fast environmental dynamics. We cannot expect Eq. (5.21) to

resolve the physics of the problem on time scales shorter than order λ−1, as then the

detailed mechanics of the environment become important.

5.6 Numerical approaches to a master equation with

negative rates

5.6.1 Distribution-level simulation

The time-dependent solution Π(`, t) can be obtained by direct numerical integration

of the reduced master equation, for example using a Runge–Kutta scheme. However

for large state spaces this approach can become slow. The technique described in this

Section can, in some cases, provide a faster alternative.

We consider a large number M of discrete units of probability, 1/M . At each point

in time the state of the simulation is defined by the ‘occupation numbers’ N` for all

states `; some of the N` may be negative. One has
∑

`N` = M . The algorithms

proceeds along the following steps:

1. For given occupation numbers N` at time t, make a list of all possible reactions,

labelled by index γ. Each reaction has a site of origin, `γ, a destination site, `′γ,

and rate rγ = R`γ→`′γ,N`γ . Some of the rγ may be negative.

2. Draw a random number τ from an exponential distribution with parameter∑
γ |rγ|.

3. Pick a reaction from the list created in 1. The probability to pick γ is |rγ|/
∑

γ′ |rγ′|.

4. If rγ > 0 increase N`′γ by one and reduce N`γ by one. If rγ < 0 reduce N`′γ by

one and increase N`γ by one.
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5. Increment time by τ , and go to 1.

The process in step 4 allows occupation numbers to go negative. The typical time

step of this scheme is given by 1/
∑

γ |rγ|, and reaction γ is triggered with probability

|rγ|/(
∑

γ′ |rγ′ |). Thus |rγ| reactions of type γ are triggered per unit time. The sign

convention in step 4 ensures correct sampling of the reduced master equation.

We tested this procedure for the example given by Eq. (5.21). Results are shown

in Fig. 5.3; there is near perfect agreement between the Monte Carlo procedure and

direct numerical integration of the reduced master equation.

We stress that this algorithm does not generate sample paths for the reduced master

equation. This motivates us to ask whether the notion of a sample path is valid for a

master equation involving negative transition rates.

5.6.2 ‘Path-level’ simulation

As discussed in Sec. 5.5.2 the reduced master equation (5.21) defines a Markovian

process for ∆α∆β > 0. All rates in the reduced master equation are non-negative,

and sample paths can be simulated using the conventional Gillespie method [51, 52].

The solution of Eq. (5.21) can be recovered from the statistics of a large ensemble of

such realisations.

In Sec. 5.5.4 we have seen that reduced master equations with negative rates can—

for certain initial conditions—lead to negative transient solutions. These can be de-

livered by the ensemble-level algorithm in Sec. 5.6.1. A simulation generating sample

paths cannot capture these negative (pseudo-) probabilities.

However, this does not preclude a meaningful notion of sample paths in situations

where the reduced master equation is started from an initial distribution which avoids

subsequent negative transients. For example, one could focus on the stationary state

of Eq. (5.21).

A stochastic simulation algorithm was discussed in Ref. [39] for non-Markovian

jumps in quantum systems. This method simulates processes defined by quantum

master equations with temporarily negative decay rates. Realisations are generated by

combining non-Markovian quantum jumps with the deterministic evolution of quantum

states between jumps [38]. The central idea is to represent the solution of the master

equation by an ensemble of sample paths, which are generated in parallel. In contrast
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with standard methods [51, 52] these paths are correlated with each other. Here, we

show this method fails to produce sample paths which are representative of the full

model.

In order to test the principles of this approach we have adapted it to the case of

the classical master equation

d

dt
Π(`, t) =

∑
`′

R`′→`Π(`′, t), (5.26)

where some of the rates R`′→` may be negative. The algorithm uses Eqs. (5.24)

and (5.25) to convert reactions with negative rates into reactions in the opposite direc-

tion, and with positive renormalised rates. In order to do this we need the entries of the

probability distribution, Π(`) and Π(`′), see Eq. (5.24). These in turn are estimated

from the ensemble of sample paths. In this way, the trajectories are correlated with

each other, because the evolution of a single sample path depends on the ensemble

[38,39].

We index each trajectory individually, so that we can follow the time evolution of

each sample path. At each point in time the ensemble is specified by the state of each

of the sample paths. We write N` for the number of sample paths in state `. To keep

the notation compact we suppress the time dependence of N`. One has
∑

`N` = M

at all times, where M is the size of the ensemble.

Before we detail the algorithm we describe the construction of a matrix S with

elements S`→`′ which give the rate of a reaction `→ `′ to occur in the ensemble. The

matrix is needed frequently in the algorithm, and is constructed as follows: (i) start

with S`→`′ = 0 for all `, `′; (ii) for all reactions `→ `′ with positive rate R`→`′ increase

S`→`′ by R`→`′ ; (iii) for reactions with negative rate R`→`′ and N`′ > 0 construct

T`′→` as in Eq. (5.24), where N`/N`′ is used as a proxy for Π(`)/Π(`′). If N`′ = 0

set T`′→` = 0. Increase S`′→` by T`′→`; (iv) finally, for all pairs `, `′ multiply S`→`′ by

N`. For a given master equation (i.e., a given matrix R) the matrix S is a function

of the current state of the ensemble, i.e., of the {N`}. All entries S`→`′ (` 6= `′) are

non-negative. The diagonal elements are zero. The element S`→`′ indicates the rate for

a reaction `→ `′ to occur, given the current state of the ensemble. One has S`→`′ = 0

if no sample path in the ensemble is in state `. We also note that the total rate for a

reaction of any type to happen,
∑

`6=`′ S`→`′ , scales linearly with M . This guarantees
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Figure 5.5: Spectra of fluctuations for the model defined in Sec. 5.5.1. Panels (a)
and (b) are for ∆α∆β > 0; (c) and (d) for ∆α∆β < 0. We show the power spectral
density SAA(ω) in (a) and (c), and the cross spectral density SAB(ω) in (b) and (d); the
insets show the same quantities on a logarithmic scale. Parameters: α0 = 0, α1 = 1,
λk0 = λk1 = 20,Ω = 20 in all panels; β0 = 0, β1 = 1 in (a,b); β0 = 1, β1 = 0 in (c,d).

that each time step in the procedure below is of order M−1, or in other words, that

order M reactions occur per unit time.

The algorithm proceeds as follows:

1. Given the current state of the ensemble compute the matrix S as described above.

2. Draw a random time increment τ from an exponential distribution with param-

eter s =
∑

`,`′ S`→`′ .

3. Randomly select an origin ` and a destination `′ with a probability weighted by

S`→`′ (i.e., the probability that ` is picked as an origin and `′ as a destination is

S`→`′/s).

4. Randomly (with equal probabilities) pick one of the sample paths currently in

state ` and change its state to `′.

5. Increment time by τ and go to step 1.

We note that this algorithm does not allow for any state ` to ever have a negative

occupancy N`. Furthermore, if all R`→`′ are non-negative the simulation reduces to the

standard Gillespie algorithm [51,52]. In this case the sample paths remain uncorrelated

from each other.

To test the algorithm we use the example in Eq. (5.21). The algorithm captures

the stationary distribution accurately, as illustrated by the markers in Fig. 5.2 (h).

Next, we test whether the simulation reproduces dynamical properties of the sample

paths of the full model.

To this end, we define the power spectral density SAA(ω) = 〈|n̂A(ω)|2〉, where

n̂A(ω) is the Fourier transform of the random process nA(t). Similarly, we also look at
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the cross power spectral density SAB(ω) =
〈
n†A(ω)nB(ω)

〉
(the superscript † denotes

complex conjugation). These are the Fourier transforms of the autocorrelation and

cross-correlation functions respectively. Figure 5.5 shows these quantities, measured

in the regime when Π(nA, nB) has reached the stationary state, and averaged over a

large ensemble of trajectories.

Panels (a) and (b) serve as a benchmark, and show the case ∆α∆β > 0 when

all rates in the reduced master equation are positive. Thus the above simulation

scheme reduces to the standard Gillespie method. As seen in the figure the power

and cross spectra SAA(ω) and SAB(ω) obtained from simulating paths of the reduced

master equation agree well with those from simulations of the full model, at least

at sufficiently low frequencies ω. At larger frequencies deviations are seen, this is

particularly visible for the cross spectrum; see the inset of panel (b). These deviations

between reduced and the full model are not surprising; the reduced model does not

resolve the mechanics of the environment on short time scales. Spectra obtained from

sample paths of the master equation in the adiabatic limit show significant deviations

from those of the full model; we note in particular that the cross spectrum SAB(ω)

vanishes [dotted red line in Fig. 5.5 (b)]; see also Appendix 5.12.1 for further analysis.

Results for the case with negative rates in the reduced master equation are shown

in panels (c) and (d) of Fig. 5.5. We find marked differences between the spectra

generated from the reduced master equation with the above algorithm and those of

sample paths of the full model. This is particularly noticeable in the cross spectrum

in panel (d). Further details can also be found in Appendix 5.12.2.

We conclude that the trajectories generated by the above simulation algorithm

do not represent sample paths of the full model when the reduced master equation

contains negative rates. Our findings invite the question whether algorithms of this

type [38, 39] provide a faithful representation of the full dynamics of open quantum

systems and their environment. It would be interesting to compare the structure of the

reduced dynamics in the classical and quantum cases, and to relate our observations

to the quantum regression theorem [58].
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5.7 An intuition to our expansion on the level of

sample paths

In Sec. 5.4.1 we derived the general formalism for approximating the dynamics of a

system coupled to a fast-switching environment. We found this resulted in an effective

reduced master equation, which can describe ‘bursting’ events not present in the dy-

namics of the original model. From a physical perspective, however, it is not obvious

how such bursting events can arise as a consequence of the coupling to a fast environ-

ment when such events do not occur in any (fixed) state of the environment. In this

section we look at this problem from viewpoint of single trajectories of the full model

in discrete time, in order to provide intuition to this result. Taking this view also

allows us to develop a method to use the reduced dynamics to approximate sample

paths of the full model in discrete time; using a time step larger than λ−1 we avoid

the issues highlighted in the previous section.

5.7.1 Effective time-averaged reaction rates

We focus again on the two-species example given in Sec. 5.5. An interpretation of the

terms in Eq. (5.21) can be obtained by looking at one sample path of the full model

(population and environment) for a time interval I ≡ [t0, t0 + ∆t]. We focus on the

birth reactions. If the production rate Ωα of particles of type A were constant in time,

the number of birth events in the interval would be a Poissonian random variable with

parameter Ωα∆t, and similarly for particles of type B (see also Ref. [59]). In the

present model, the production rates are not constant in time as they depend on the

state of the environment. For a given trajectory of the environment we introduce the

quantity

α =
1

∆t

∫ t0+∆t

t0

dt′ ασ(t′), (5.27)

and a similar definition for β; the quantities Ωα and Ωβ are time-averaged production

rates in the time interval I.

The number of production events of particles of type A in I can then be expected

to be Poissonian with parameter Ωα∆t, and similarly for B. We note that α and β

are random variables when ∆t is finite, as they depend on the random path of the
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environment, σ(t′), t′ ∈ I. The quantities α and β will in general be correlated, as

they derive from the same realisation of the environment. The main principle of the

calculation that follows is to approximate α and β as correlated Gaussian random vari-

ables, while capturing their first and second moments. This Gaussian approximation

is justified provided that there is a large number of switches of the environment during

the time interval I, i.e., when λ∆t� 1.

5.7.2 Averaging out the environmental process

Correlations of the environmental process decay on time scales proportional to λ−1.

This means that the environment is in its stationary distribution, except for a short

period of order λ−1 at the beginning. For λ∆t� 1 this period constitutes a negligibly

small fraction of the time interval, and the distribution of σ(t′) can hence be assumed

to be the stationary one at all times t′ during the interval. Writing 〈. . .〉 for averages

over the environmental process we have 〈α〉 = αavg and
〈
β
〉

= βavg.

Moving on to the second moments we find

〈
α2
〉

= (∆t)−2

∫
I

∫
I

dt dt′
〈
ασ(t)ασ(t′)

〉
,

= (∆t)−2
∑
σσ′

ασασ′

×
∫
I

∫
I

dt dt′ρ[σ,min(t, t′)] ρ
(
σ′, |t− t′|

∣∣σ) ,
(5.28)

where ρ[σ,min(t, t′)] is the probability distribution of σ at the earlier of the two times

t and t′. It is given by the stationary distribution of the environment, ρ[σ,min(t, t′)] =

ρ∗σ, with ρ∗σ as in Eq. (5.12). The notation ρ(σ′, τ |σ) in Eq. (5.28) indicates the

probability of finding the environment in state σ′ if τ units of time earlier it was

in state σ (τ > 0). These can be obtained straightforwardly from the asymmetric tele-

graph process for the environment, ρ(0, τ |0) = ρ∗0

[
1 + k1

k0
e−λ(k0+k1)τ

]
, and ρ(0, τ |1) =

ρ∗0
[
1− e−λ(k0+k1)τ

]
. Using this in Eq. (5.28) we find

〈
α2
〉

= α2
avg +

[
2

λ(k0 + k1)∆t
+

2

λ2(k0 + k1)2∆t2

×
(
e−λ(k0+k1)∆t − 1

) ] k0k1

(k0 + k1)2
(α0 − α1)2. (5.29)

For λ∆t� 1 the first term in the square bracket dominates relative to the second, so
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we can approximate 〈
α2
〉
− α2

avg ≈
θ2

λ∆t
(∆α)2, (5.30a)

with θ2 = 2k0k1/(k0 + k1)3 as before [see Eq. (5.15)]. Following similar steps one finds〈
β

2
〉
− β2

avg ≈
θ2

λ∆t
(∆β)2, (5.30b)〈

αβ
〉
− αavgβavg ≈

θ2

λ∆t
∆α∆β. (5.30c)

We therefore approximate the joint probability distribution of ᾱ and β̄ in the fast

switching limit as a bivariate normal distribution with these parameters.

5.7.3 Resulting event statistics

The probability that exactly mA production events for species A occur during the time

interval ∆t, and mB for species B, is given by

P(mA,mB) =

〈
e−∆tΩ(α+β) (∆tΩα)mA

mA!

(∆tΩβ)mB

mB!

〉
α,β

, (5.31)

resulting from Poissonian statistics for given α, β, subsequently averaged over the

Gaussian distribution for α and β (this average is indicated as 〈. . .〉α,β). Expanding in

powers of ∆t, and carrying out the Gaussian average we find

P(mA=1,mB =0) = ∆tΩ
[
αavg − Ωθ2

λ
(∆α)2 − Ωθ2

λ
∆α∆β

]
−∆t2Ω2(α2

avg + β2
avg),

P(mA=0,mB =1) = ∆tΩ
[
βavg − Ωθ2

λ
(∆β)2 − Ωθ2

λ
∆α∆β

]
−∆t2Ω2(α2

avg + β2
avg),

P(mA=2,mB =0) = 1
2
∆tΩ2θ2

λ
(∆α)2 + 1

2
∆t2Ω2α2

avg,

P(mA=0,mB =2) = 1
2
∆tΩθ2

λ
(∆β)2 + 1

2
∆t2Ω2β2

avg,

P(mA=1,mB =1) = Ω2θ2

λ
∆t∆α∆β + ∆t2Ω2αavgβavg,

(5.32)

where we have ignored higher-order terms (those which go like ∆t3 or ∆t2/λ). Larger

numbers of production events (mA +mB ≥ 3) do not contribute at this order.

It is tempting to consider the limit of infinitesimally small ∆t, and to use the

first-order terms in ∆t in Eq. (5.32) to construct reaction rates. If one does so, one

recovers the rates exactly as they appear in the reduced master equation (5.21); for
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example one would infer a rate of 1
2
(Ω2θ2/λ)(∆α)2 for events in which two particles of

type A are produced and none of type B (mA = 2,mB = 0). The rate of an event in

which one A and one B are produced simultaneously would be (Ω2θ2/λ)∆α∆β, which

is negative if ∆α∆β < 0.

However, taking the limit ∆t→ 0 at fixed λ is not compatible with the assumption

that a large number of environmental switching events occur in a given time-step, i.e.,

λ∆t � 1. To illustrate this further we carried out simulations of the full model of

population and environment, and measured how many birth events of either particle

type occur in a given time interval ∆t. Specifically we focus on the probability P (mA =

1,mB = 1) of seeing exactly one birth event of type A and one birth event of type

B during such a time interval; note that in the full model these births occur in two

separate events. The lines in Fig. 5.6 show the predictions of Eqs. (5.32), results from

simulations of the full model are shown as markers. We first notice that simulations

deviate from the results of Eqs. (5.32) at large values of ∆t. This is to be expected

as Eqs. (5.32) are derived neglecting higher-order terms in ∆t. Simulations and the

above expressions agree to good accuracy at intermediate values of the time step;

we write ∆t∗ for the lower end of this range, and ∆t∗ for the upper end. As seen

in Fig. 5.6, the lower threshold ∆t∗ decreases as the switching of the environment

becomes faster (i.e., λ is increased). The reduction of the threshold is in-line with

the requirement λ∆t � 1 for the theoretical analysis above. As seen in the figure

the results of Eqs. (5.32) are largely determined by the term of order ∆t2 when they

match simulations of the full model (the slope of the simulation data in the log-log

plot of Fig. 5.6 is then approximately two). This term, ∆t2Ω2αavgβavg, is positive,

irrespective of the sign of ∆α∆β. At low values of ∆t . ∆t∗, we observe systematic

deviations between simulations of the full model and the expressions in Eqs. (5.32).

For the case ∆α∆β < 0 it is obvious that this must occur: at small ∆t, Eqs. (5.32)

predict P(mA = 1,mB = 1) ≈ (Ω2θ2/λ)∆t∆α∆β < 0, whereas P (mA = 1,mB = 1) is

non-negative in simulations by definition. Deviations at small time steps are also seen

in the left-hand panel of Fig. 5.6, the expression in Eqs. (5.32) shows a cross-over to

linear scaling in ∆t, whereas simulation results scale approximately as ∆t2.
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Figure 5.6: Probability of seeing mA=1,mB =1 in a given time interval of duration ∆t.
Circles show the results of simulation of the full model (population and environment);
full lines show Eq. (5.32). The dashed line shows a slope of 2 for comparison. Data is
shown for different values of λ, all other model parameters are as in the earlier figures.
Left: ∆α∆β > 0, right: ∆α∆β < 0.

5.7.4 Simulation procedure for discrete-time sample paths

The analysis of the previous section is based on a discretisation of time into intervals

of length ∆t. In the limit of fast switching of the environment it then assumes that the

time-averaged birth rates Ωα and Ωβ are Gaussian random variables with statistics

given in Eqs. (5.30). We will now use this interpretation to define an algorithm

with which to approximate sample paths of the full model in discrete time. We note

that α and β can take negative values in this Gaussian approximation. This issue

arises irrespective of the sign of ∆α∆β and is separate from the problem of negative

rates in the reduced master equation. The probability for α and/or β to be negative is

exponentially suppressed in λ∆t, as the mean of the Gaussian distribution, (αavg, βavg),

does not depend on λ or ∆t, and the covariance matrix is of order (λ∆t)−1 [Eq. (5.30)].

As the switching of the environment becomes faster the distributions of α and β become

increasingly peaked around their mean. For the purposes of the numerical scheme we

truncate the distribution at zero.

The algorithm uses ideas from the τ -leaping variant of the Gillespie algorithm [59],

and proceeds as follows:

1. Assume the simulation has reached time t and that the current particle numbers

are nA and nB. Draw correlated Gaussian random numbers α and β, from a

distribution with 〈α〉 = αavg, and
〈
β
〉

= βavg, and with second moments as in

Eqs. (5.30). If α < 0 set α = 0 and similar for β.
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Figure 5.7: Spectra of fluctuations from direct simulations of the full model (filled
symbols), and using the discrete-time algorithm in Sec. 5.7.4 (open symbols). The
model is the same as in previous figures (k0 = k1 = 1,Ω = 20, λ = 20, α0 = 0, α1 = 1,
∆t = 0.1). Solid lines show the power spectrum/cross spectrum obtained from the
linear-noise approximation of the reduced dynamics, Eq. (5.59).

2. Using the α and β just generated, draw independent integer random numbers

mA and mB from Poissonian distributions with parameters Ωα∆t and Ωβ∆t,

respectively.

3. For the death processes draw Poissonian random variables m′A and m′B from

Poissonian distributions with parameters γnA∆t and δnB∆t respectively.

4. Update the particle numbers to nA +mA−m′A and nB +mB −m′B, respectively

(if this results in nA < 0 set nA = 0, and similar for nB).

5. Increment time by ∆t and go to 1.

We have introduced a cutoff procedure in step 4 of the algorithm, in order to prevent

particle numbers from going negative. This is necessary due to the discrete-time nature

of the process, and well-known in the context of τ -leaping [59]. In particular this is

not related to the appearance of negative rates in the reduced master equation, and

applies in the case ∆α∆β > 0 as well.

We have carried out simulations using this algorithm for both cases ∆α∆β > 0 and

∆α∆β < 0. As shown in Fig. 5.7 the resulting spectra of fluctuations are in agreement

with those of the full model, at least to reasonable approximation. In particular the

cross spectrum SAB(ω) comes out negative in the anti-correlated case. We attribute

remaining discrepancies to the discretisation of time and the assumptions of Gaussian

effective birth rates.

It is important to stress that agreement with the full model requires a careful choice
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of the time step ∆t. On the one hand, one needs ∆t & 1/λ, otherwise it is not justified

to replace α and β by Gaussian random variables. On the other hand, the so-called

‘leap condition’ for τ -leaping must be fulfilled [59], that is, the time step ∆t must not

be long enough for the population to change significantly in one step. More precisely

the changes in particle numbers must remain of order Ω0 in each step.

5.8 Expansion in system size

In the previous Sections we started from a microscopic process in a population of

discrete individuals, subject to a randomly switching environment. We then carried

out an expansion in the limit of fast environmental switching. We discussed different

levels of coarse graining: the switching of the environment was either kept in its original

form (full model), treated as fast but not infinitely so (reduced master equation), or the

adiabatic limit of infinitely fast switching was taken (master equation with effective,

average rates). So far we have considered discrete populations; its intrinsic stochastic

dynamics, due to production and removal events, were not approximated.

Another approximation method for Markov jump processes with small jump sizes

involves carrying out an asymptotic expansion in powers of the inverse population

size. In the context of large populations, and without the complication of environ-

mental switching, this typically is achieved by performing either the Kramers–Moyal

expansion or van Kampen’s system-size expansion [60,61]. These techniques are com-

monly used in a number of applications of population dynamics; they have recently

been extended to the case of jump processes in switching environments [62–64]. Fol-

lowing such an expansion, the state of the population is continuous and, for a fixed

environmental state, described by a stochastic or ordinary differential equation. Al-

ternative approaches, based on the WKB method, have been pursued for example in

Refs. [9, 11, 17, 30, 31, 65]. These approaches, however, do not provide a description of

the population which is dynamical.

The purpose of this Section is to combine Kramers–Moyal-type expansions with

an expansion in the time scale separation between environment and population. This

leads to different dynamical levels of description depending on how the environmental

switching and the discreteness and intrinsic stochasticity of the population are treated.
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corresponds to a successive layer of approximation.

Studying these different levels of approximation is also useful to put our results of the

previous Sections into the context with existing work [32–34,37,46,62–64,66–79]. We

will first give a general overview, and then consider a specific example.

5.8.1 Overview

A schematic overview is given in Fig. 5.8. Broadly speaking the overall picture involves

expansions in the inverse switching time scale (λ−1) and/or the inverse typical size

of the population (Ω−1). The parameters λ and Ω correspond to the vertical and

horizontal directions in Fig. 5.8. In the upper row we perform no expansion in λ−1 (i.e,

we keep all terms), in the middle row we assume λ� 1 but finite (keeping leading and

sub-leading terms), and in the lower row the adiabatic limit has been taken (λ→∞),

i.e., the noise due to the environmental switching is discarded altogether. The left-

hand column describes models with a discrete population (arbitrary Ω), in the middle

column we assume Ω� 1, but finite, and in the right-hand column the limit Ω→∞

has been taken, i.e., all intrinsic noise in the population is disregarded. We now discuss

the relation between the different levels of approximation in more detail.

Expansion in environmental time scale

In the previous Sections we have focused on the left-hand column of Fig. 5.8. The upper

left box is the full microscopic model, involving a discrete population of typical size Ω,
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and an environmental process associated with a switching time scale set by λ. This

full model is defined by the master equation (5.1). Expanding to sub-leading order in

λ−1, but keeping Ω fixed and general, one obtains the reduced master equation (5.8).

Here, we restrict the discussion to processes in which the environmental switching is

independent of the state of the population; the more general case is discussed briefly

in Appendix 5.11. In the case of only two environmental states the reduced master

equation is given by Eq. (5.14). It describes the process with bursting as discussed in

Sec. 5.4.3.

The limit λ→∞ is the adiabatic limit; restricting the master equation to leading-

order terms in λ−1 produces a process described by the master equation

d

dt
Π(`, t) =MavgΠ(`, t). (5.33)

For the case of two environmental states this can be obtained from Eq. (5.14), but

the general form is applicable for multiple environmental states as well. Eq. (5.33)

describes a process with the same types of reactions as the original dynamics, but with

rates that are weighted averages over the stationary distribution of the environmental

states. This is the lower left-hand box in Fig. 5.8. This is conceptually similar to the

quasi-steady-state approximation [36, 37, 74–76, 79], in which the fast-reacting species

are regarded as constant at values obtained from an appropriate weighted average.

Another approach to approximating environmental noise in the fast-switching limit

involves assuming a large number of environmental states, so that the environment

may be approximated as continuous [81,82].

Expansion in powers of inverse system size

In a different approach one can first approximate the intrinsic noise for large system

size (Ω� 1), starting from the full model (environment and population), without any

expansion in the environmental switching time scale. This is done by carrying out a

Kramers–Moyal expansion on the dynamics of the population, while simultaneously

maintaining the discrete environmental states [64]. This corresponds to travelling

horizontally along the first row of Fig. 5.8.

If sub-leading order terms in powers of the inverse system size are retained, one

obtains piecewise-diffusive dynamics [62–64, 83], corresponding to the middle box in
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the first row of Fig. 5.8. Between switches of the environmental state, the population

is then described by a stochastic differential equation. The process is described by

∂

∂t
pσ(x, t) = Fσpσ(x, t) + λ

∑
σ′

Aσ′→σpσ(x, t), (5.34)

where pσ(x, t) is a probability density over continuous states x, obtained from discrete

states ` in the limit of large Ω (see Sec. 5.8.2 for a specific example). The Fσ are

Fokker–Planck operators obtained from a Kramers–Moyal expansion on Mσ.

Combined expansion

Starting from the piecewise-diffusive process [upper row, middle in Fig. 5.8, Eq. (5.34)]

one can follow the same steps as in Sec. 5.4.1 and consider the limit of fast but not

infinitely fast environmental switching. In Fig. 5.8 this means working down the central

column. We simultaneously consider the limit of large Ω and the limit of large λ. In

taking these limits we assume that the ratio Ω/λ remains finite, this will become more

clear in the example discussed below (Sec. 5.8.2). For the case of two environmental

states, the result can be read off from Eq. (5.14) simply replacing Mσ by Fσ, i.e.,

∂

∂t
Π(x, t) = FavgΠ(x, t) +

1

2

θ2

λ
(F0 −F1)2Π(x, t). (5.35)

An interpretation of Eq. (5.35) in terms of a stochastic differential equation can be

obtained by expanding the term (F0 − F1)2 further and keeping only terms to order

1/Ω. This stochastic differential equation contains two different sources of Gaussian

noise, one representing demographic noise and the other the stochasticity of the envi-

ronmental switching.

Finally, we could also take the adiabatic limit λ → ∞; this leads to ∂
∂t

Π(x, t) =

FavgΠ(x, t). In this limit the noise due to the environmental process has been elimi-

nated entirely, and the resulting SDE contains only Gaussian noise coming from the

intrinsic fluctuations in the population.

Piecewise-deterministic process

Finally, we can also take the limit of an infinite population Ω → ∞ first, keeping λ

general. Thus, we neglect intrinsic fluctuations altogether. This is achieved by retain-

ing only the leading-order term in the Kramers–Moyal expansion of the population. In
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each fixed environment the dynamics of the population are then described by an ordi-

nary differential equation. This constitutes what is known as a piecewise-deterministic

Markov process (PDMP) [66, 67]. In Fig. 5.8 this is the right-hand box in the upper

row. Mathematically, the PDMP is described by

∂

∂t
pσ(x, t) = Lσpσ(x, t) + λ

∑
σ′

Aσ′→σpσ(x, t), (5.36)

with Liouville operators Lσ; they are first-order differential operators which describe

the deterministic drift of the system in a given environmental state.

We can now use the PDMP as a starting point, and work down the right-hand

column of Fig. 5.8, following the same steps as in Sec. 5.4.1, replacingMσ by Lσ. For

two environmental states and keeping terms of order λ−1, the result is analogous to

Eq. (5.14). One finds

∂

∂t
Π(x, t) = LavgΠ(x, t) +

1

2

θ2

λ
(L0 − L1)2Π(x, t). (5.37)

This is a Fokker–Planck equation and corresponds to an SDE in which Gaussian

noise reflects the effects of the fast-switching environment. This result was previously

reported in Ref. [32].

A further approximation to the dynamics would again involve taking the adiabatic

limit: this is equivalent to ignoring the final term in Eq. (5.37). The resulting Liouville

equation corresponds to an ODE description of the system. Its dynamics is then

governed by a rate equation, where the reaction rates are weighted averages over

the different environmental states. In such an approximation all stochasticity, both

intrinsic and environmental, has been eliminated. This is the lower entry in the right-

hand column of Fig. 5.8.

5.8.2 Example

We now focus on one of the single-species models in Sec. 5.4.3. The purpose of this

basic example is purely illustrative; specific applications will be discussed in Sec. 5.9.

Particles are produced at constant rate β, and they are removed with per capita rates

δσ in environments σ ∈ {0, 1}. We have

Mσ = βΩ(E−1 − 1) + δσ(E − 1)n, (5.38)
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where n is the number of particles in the population. Keeping the system-size param-

eter Ω fixed, and taking the limit of large but finite λ, one obtains Eq. (5.19). This

corresponds to the middle box in the left-hand column of Fig. 5.8. Taking λ→∞ one

has
d

dt
Π(n, t) = Ωβ(E−1 − 1)Π(n, t) + (E − 1)δavgnΠ(n, t), (5.39)

where δavg = (k0δ0 + k1δ1)/(k0 + k1); this is the master equation with effective average

rates (lower box on the left in Fig. 5.8).

Next, writing x = n/Ω, and starting again from the full model of population and

environment, we carry out a Kramers–Moyal expansion first (keeping terms up to

sub-leading order in 1/Ω). One has the Fokker–Planck operators

F0 = β

(
−∂x +

1

2Ω
∂2
x

)
+ δ0

(
∂x +

1

2Ω
∂2
x

)
x,

F1 = β

(
−∂x +

1

2Ω
∂2
x

)
+ δ1

(
∂x +

1

2Ω
∂2
x

)
x.

(5.40)

These operators together with Eq. (5.34) describe a piecewise-diffusive process (upper

row, central column in Fig. 5.8); in a given environmental state the dynamics are

described by an Ito SDE

ẋ = β − δσ(t)x+

√
β + δσ(t)x

Ω
η(t), (5.41)

where η(t) is Gaussian white noise of unit variance.

Further approximating the piecewise-diffusive process in the limit of fast environ-

mental switching, we can insert the explicit form of Fσ into Eq. (5.35) to give

∂

∂t
Π(x, t) = −∂x

{[
β − δavgx+

1

2
ge∂xge

]
Π(x, t)

}
+

1

2
∂2
x

{[
g2

i + g2
e

]
Π(x, t)

}
, (5.42)

where ∆ = δ0 − δ1, and

gi(x)2 =
1

Ω
(β + δavgx) , (5.43)

ge(x)2 =
θ2

λ
∆2x2. (5.44)

The subscript ‘i’ indicates intrinsic stochasticity (demographic noise), and ‘e’ labels the

contribution to the noise from environmental switching. We note that gi(x)2 ∝ Ω−1,

and g(x)2
e ∝ λ−1. It is interesting to note that the same Fokker–Planck equation is
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obtained by a direct Kramers–Moyal expansion of Eq. (5.19). Details can be found in

Appendix 5.13.1. The contribution ge∂xge/2 to the drift term in Eq. (5.42) is of order

λ−1, and it can safely be neglected to the order we are working at (see also Ref. [32]).

Equation (5.42) then describes an Ito SDE of the form

ẋ = β − δavgx+ gi(x)ηi(t) + ge(x)ηe(t), (5.45)

in which ηi(t) and ηe(t) are independent Gaussian processes of unit variance, and with

no correlations in time. The SDE (5.45), corresponds to the central box in Fig. 5.8.

Equation (5.42) can be used as a starting point for further approximations. In the

case of infinitely fast switching, λ → ∞, the term ge(x) can be neglected, and one

finds

∂

∂t
Π(x, t) = − ∂x [(β − δavgx) Π(x, t)]

+
1

2Ω
∂2
x [(β + δavgx) Π(x, t)] . (5.46)

We note that this relation can also be obtained by direct Kramers–Moyal expansion

of Eq. (5.39). Only the Gaussian noise from the intrinsic stochasticity then remains

in the SDE (5.45). This is the lower box in the central column of Fig. 5.8.

In the case of an infinite population Ω→∞, Eq. (5.42) turns into

∂

∂t
Π(x, t) = − ∂x [(β − δavgx) Π(x, t)]

+
θ2

2λ
∆2∂2

x

[
x2Π(x, t)

]
,

(5.47)

so that the noise term containing gi(x) is no longer present in the SDE (5.45). This

is the centre box in the right-hand column of Fig. 5.8. Equation (5.47) can also be

found from Eq. (5.37) upon using LσΠ(x) = −∂x(β − δσx)Π(x), see Appendix 5.13.2.

If all stochasticity is ignored altogether (λ→∞ and Ω→∞) one has gi = ge = 0.

In our example one then finds the rate equation

ẋ = β − δavgx. (5.48)

This corresponds to the lower box in the right-hand column of Fig. 5.8.

5.8.3 Linear-noise approximation

In order to obtain analytical results, for example approximations to the stationary

distribution and power spectral density of fluctuations, an additional step—the linear
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noise approximation (LNA)—can be taken in Eq. (5.45). The LNA simplifies an SDE

with multiplicative noise into one with additive noise, and is applicable when the noise

is sufficiently small [61], i.e., in our case λ� 1 and Ω� 1.

The stochastic differential equation (5.45) is of the form

ẋ = vavg(x) + gi(x)ηi(t) + ge(x)ηe(t), (5.49)

where vavg(x) = β − δavgx, and where gi = O(Ω−1/2) and ge = O(λ−1/2). The LNA

can then be carried out using the ansatz

x(t) = xavg(t) + Ω−1/2ξi(t) + λ−1/2ξe(t), (5.50)

where xavg(t) is a deterministic function to be determined self-consistently; the quan-

tities ξi(t) and ξi(t) are each stochastic processes describing the deviations due to

intrinsic and extrinsic noise, respectively. Inserting into Eq. (5.49), expanding in pow-

ers of Ω−1/2 and λ−1/2 one obtains ẋavg = vavg(xavg) from the lowest-order terms, and

ξ̇i = v′avg (xavg) ξi + Ω1/2gi (xavg) ηi(t),

ξ̇e = v′avg (xavg) ξe + λ1/2ge (xavg) ηe(t),
(5.51)

for the sub-leading order terms, where v′avg = dvavg/dx. We note that the arguments of

both gi and ge are now given by xavg, so that the multiplicative noise in Eq. (5.49) has

been turned into additive noise. Introducing ζ(t) = Ω−1/2ξi(t) + λ−1/2ξe(t) describing

the total amount of deviation caused by both sources of noise, we can write this more

compactly as x(t) = xavg(t) + ζ(t), with

ζ̇ = v′(xavg)ζ +
[
gi(xavg)2 + ge(xavg)2

]1/2
η(t), (5.52)

where the two Gaussian processes have been combined, so that the stochasticity is

described by a single white noise Gaussian process η(t). In the above example we have

ẋavg = β − δavgxavg, and

ζ̇ = −δavgζ +

[
β + δavgxavg

Ω
+
θ2

λ
(xavg∆)2

]1/2

η(t). (5.53)

5.8.4 Analytical approximation for power spectra

We now return to the model with two species defined in Eq. (5.20). Carrying out a

Kramers–Moyal expansion of the reduced master equation Eq. (5.21) we arrive at the
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following stochastic differential equations for xA = nA/Ω and xB = nB/Ω

ẋA = αavg − γxA + ηA(t),

ẋB = βavg − δxB + ηB(t).
(5.54)

For compactness, we have absorbed the diffusion coefficients (describing both intrinsic

and extrinsic noise) into the white noise terms ηA and ηB, so that they have the

following covariance matrix:

〈ηA(t)ηA(t′)〉 =

(
αavg + γxA

Ω
+
θ2

λ
(∆α)2

)
δ(t− t′),

〈ηB(t)ηB(t′)〉 =

(
βavg + δxB

Ω
+
θ2

λ
(∆β)2

)
δ(t− t′),

〈ηA(t)ηB(t′)〉 =
θ2

λ
∆α∆βδ(t− t′), (5.55)

see also Appendix 5.13.3.

To simplify matters we now restrict the discussion to the case γ = δ and αavg = βavg

(the latter does not imply ∆α = ∆β). In the long run the deterministic trajectory

converges to the fixed point given by x∗A = x∗B = αavg/γ. Applying the LNA at this

fixed point, we find

ζ̇A = − γζA + ηA(t),

ζ̇B = − γζB + ηB(t),
(5.56)

where

〈ηA(t)ηA(t′)〉 =

(
2αavg

Ω
+
θ2

λ
(∆α)2

)
δ(t− t′),

〈ηB(t)ηB(t′)〉 =

(
2αavg

Ω
+
θ2

λ
(∆β)2

)
δ(t− t′),

〈ηA(t)ηA(t′)〉 =
θ2

λ
∆α∆βδ(t− t′).

(5.57)

In order to find the power spectral density of fluctuations, we perform a Fourier trans-

form and obtain

〈ζA(ω)ζ∗A(ω′)〉 = δ(ω + ω′)Ω−2SAA(ω),

〈ζA(ω)ζ∗B(ω′)〉 = δ(ω + ω′)Ω−2SAB(ω),
(5.58)

with

SAA(ω) = Ω2
2αavg

Ω
+ θ2

λ
(∆α)2

γ2 + ω2
,

SAB(ω) = Ω2
θ2

λ
∆α∆β

γ2 + ω2
.

(5.59)



5.9. FURTHER APPLICATIONS 199

This result matches well with the results of Gillespie simulating the full model (for

Ω = 20, λ = 20). A comparison is shown in Fig. 5.7. In the adiabatic limit (λ→∞)

Eq. (5.59) reduces to

SAA(ω) = Ω
2αavg

γ2 + ω2
,

SAB(ω) = 0,

(5.60)

confirming again the absence of correlations between nA and nB in the limit of infinitely

fast environments.

5.9 Further applications

In this Section we will apply the formalism we have developed to a series of specific

examples.

5.9.1 Model of protein production

Motivation and model definitions

The dynamics of gene expression are inherently noisy [8,84], and stochastic approaches

are hence most appropriate to model such processes. They also frequently exhibit a

separation of time scales, see e.g. Refs. [47,79,85,86]. Here, we consider a commonly-

used model which describes two essential steps for gene expression, the transcription

into mRNA and the translation into protein [5, 8, 67, 87–90]. The model describes a

single gene G, which can be in two different states, labelled ‘on’ (σ = 1) and ‘off’

(σ = 0). The gene switches between these states with rates k0 and k1, respectively. In

each state, mRNA molecules are produced with a rate Ωbσ; they decay with rate d.

The presence of mRNA also leads to the production of protein molecules; this occurs

with rate β (per mRNA molecule). Protein molecules finally decay with rate δ. The

model can be summarised by the following reactions

Goff
λk1−−⇀↽−−
λk0

Gon, ∅ Ωbσ−−→M, M
d−−→ ∅,

M
β−−→M + P, P

δ−−→ ∅,
(5.61)

where M and P refer to mRNA and protein molecules, respectively.
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Figure 5.9: The stationary probability distribution of the populations of mRNA and
protein molecules for the model in Sec. 5.9.1. Data is from Monte Carlo simulations of
each different level of approximation in Fig. 5.8: (a) full model; (b) piecewise-diffusive
process; (c) piecewise-deterministic Markov process; (d) reduced master equation with
bursting; (e) SDE with switching noise and demographic noise; (f) SDE with switching
noise; (g) master equation with average rates; (h) SDE with demographic noise; and
(i) rate equation (N represents a delta peak). Parameters: Ω = 20, b0 = 0, b1 = 1, d =
1, β = 25, δ = 2, and λ = 10, k0 = k1 = 1.

Comparison of different approximation schemes

We proceed to consider the full model, and each of the eight levels of approximation

in Fig. 5.8. The reduced master equation for large λ can be derived following the

procedure outlined in Sec. 5.4. The details of this are very similar to the example in

Sec. 5.4.3; we do not report them in full. The reduced master equation describes a

set of effective reactions in which mRNA molecules are made in bursts of sizes one

or two. We stress again that the origin of this type of bursting is different from the

one discussed in Refs. [47–50]. These effective reactions can then be simulated by the

standard Gillespie method, because the reduced master equation for this model does

not contain negative rates.

Similarly, for the adiabatic limit λ → ∞, effective production rates are obtained

by replacing the rates bσ in Eq. (5.61) by their weighted average, bavg. This can then

be used in the Gillespie simulation.
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For large but finite Ω, the piecewise-diffusive process for this model is given by

ṁ =
(
bσ(t) − dm

)
+ Ω

−1/2
√
bσ(t) + dm ηm(t)

ṗ = (βm− δp) + Ω
−1/2
√
βm+ δp ηp(t),

(5.62)

where Ωm and Ωp are the numbers of mRNA molecules and protein molecules, re-

spectively, and where σ(t) is the stochastic trajectory of the switching process for the

gene; ηm(t) and ηm(t) are independent Gaussian white noise processes. For both Ω and

λ large but finite we find the following description in terms of stochastic differential

equations (corresponding to the central box in Fig. 5.8):

ṁ = (bavg − dm) +
[
gm

i (m, p)2 + gm
e (m, p)2

]1/2
ηm(t),

ṗ = (βm− δp) + gp
i (m, p)ηp(t),

(5.63)

where

gm
i (m, p) = Ω

−1/2
√
bavg + dm,

gm
e (m, p) = λ

−1/2

√
2k1k0 (b0 − b1)2

(k0 + k1)3 ,

gp
i (m, p) = Ω

−1/2
√
βm+ δp.

(5.64)

From these it is straightforward to obtain the remaining approximations in Fig. 5.8,

by either sending the amplitude of the environmental noise gm
e to zero, or that of the

intrinsic noise (gp
i , and gm

i ), or both.

Figure 5.9 shows the stationary distributions obtained from Monte Carlo simula-

tions of the full model and the eight different approximations. The arrangement in the

figure corresponds to that in Fig. 5.8. We remark that the population remains discrete

for the panels in the left-hand column, while expanding in powers of the system size

(middle and right column) leads to continuous populations. In each panel we indi-

cate a numerical estimate for the Jensen–Shannon divergence (JSD) of the respective

stationary distribution relative to that of the full model in panel (a) [91].

The data in Fig. 5.9 shows that the successive approximations in powers of the sys-

tem size and the switching rates reduce the accuracy in reproducing the full individual-

based model. The JSD generally increases as one moves down or to the right in Fig. 5.9.

For this model and parameter set, the only exception is the approximation in panel

(f) which shows a smaller JSD than that in panel (c). This is due to the following ef-

fect. The full model in panel (a) can explore arbitrary numbers of mRNA and protein
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molecules. The stationary distribution of the PDMP in panel (c) however has bounded

support, because intrinsic noise is discarded. The distribution in panel (f) does not

include effects of intrinsic noise either, but the environmental stochasticity has been

approximated by Gaussian noise, restoring an unbounded support. This leads to the

seemingly better agreement of (f) with the full model.

We are not necessarily proposing all eight approximations in Figs. 5.8 and 5.9 as

starting points for further analysis or simulation. For instance, it is not easy to find

analytical descriptions for the stationary distribution of the piecewise diffusive de-

scription in panel (b), and the piecewise deterministic model in panel (c). This is only

feasible for simple models, see also our earlier work [64]. The SDE in panel (e) on the

other hand (i.e., approximating both intrinsic and extrinsic randomness as Gaussian

noise) allows for the stationary distribution, among other things, to be approximated

analytically; following a linearisation of the noise terms (LNA) in Eq. (5.63), the result-

ing distribution is a bivariate Gaussian. At this level of approximation the stationary

distribution can be obtained analytically. In this respect, approximation (e) can be

seen as a useful trade-off between accuracy and practical analytical results in our limit

of interest, at least for the unimodal distribution of the current model. We will also

discuss the SDE as a starting point for efficient simulations in the context of the next

example.

5.9.2 Bimodal genetic switch

Model

The simple model of protein production in the previous section shows a unimodal

distribution. Pluripotent stem cells have the ability to differentiate into several pos-

sible cell types [46, 92, 93]; the basic features of the networks of genes, transcription

factors and epigenetic variables leading to these cell-fate decisions are a current focus

of research [84,94–96]. Several hypotheses exist about the mechanisms leading to cell

differentiation; among these it has been proposed that excursions of the genetic circuit

into different areas of state space might contribute to steering cells towards distinct
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Figure 5.10: Stationary probability distribution of the populations of mRNA and pro-
tein molecules for the full model in Sec. 5.9.2, and the eight levels of model reduction
in Fig. 5.8: (a) full model; (b) piecewise-diffusive process; (c) piecewise-deterministic
Markov process; (d) reduced master equation; (e) SDE with switching noise and demo-
graphic noise; (f) SDE with switching noise; (g) master equation with average rates;
(h) SDE with demographic noise; and (i) rate equation (N represents a delta peak).
Parameters: N = 2,Ω = 50, b0 = b1 = 1, b2 = 20, d = 9.2, β = 50, δ = 1, k− =
0.025, k+ = 1 and λ = 1250.

differentiated states [92, 93]. Bimodal distributions are observed in a variety of bio-

logical switches [30,47,97–99]. In this Section we discuss a stylised model of processes

leading to bimodal distributions; the difference to the model in the previous Section

is that this extended model admits a multi-modal stationary distribution. In the con-

text of the above hypothesis, these different peaks would lead to distinct differentiated

states.

The model describes a single gene G, with a promoter site which can bind to a total

of up to N molecules of protein. Each protein molecule binds with a rate λk+/Ω, and

unbinds with a rate k−. Binding and unbinding are sequential [100]. Depending on the

current state of the gene (i.e., the number of bound proteins, σ = 0, 1, . . . , N), mRNA

molecules are produced with rate Ωbσ. As in the previous section mRNA in turn

decays with (per capita) rate d; mRNA leads to the production of protein molecules

with a rate β per mRNA molecule. Protein molecules finally decay with rate δ. The
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model can be summarised by the following reactions

Gσ + P
λk+/Ω−−−−⇀↽−−−−
λk−

Gσ+1, for σ < N

Gσ
Ωbσ−−→ Gσ +M,

M
d−−→ ∅, M

β−−→M + P, P
δ−−→ ∅.

(5.65)

where M and P refer to molecules of mRNA and protein, respectively.

Mathematically, the two main differences compared to the model in the previous

section are the following: (i) the environment (the gene) can take more than two states

(σ = 0, 1, . . . , N); (ii) the overall rate with which switches from state σ to σ+ 1 occur

(σ < N) depends on the number of protein. Each protein molecule contributes λk+/Ω

to the switching rate; the total rate of switching from state σ < N to σ+1 is λk+Np/Ω,

if the number of proteins is Np. This means that the environmental switching depends

on the state of the population.

Different architectures of the genetic switching and associated mRNA-production

rates are discussed in the literature, e.g., [72, 94–96, 101]. We focus on N = 2, i.e.,

there are three possible envirommental states, σ = 0, 1, 2. We also assume that mRNA

molecules are produced with a common basal rate in gene states σ = 0, 1, i.e. we set

b0 = b1. When the maximum of N = 2 proteins are bound to the gene mRNA is

produced with the activated rate Ωb2, where b2 > b0 [46].

Comparison of the different approximation schemes

As in the previous model we test the eight different approximations in Fig. 5.8. In

order to derive the reduced master equation, we need to go beyond the formalism of

Sec. 5.4.2, as the environmental switching depends on the state of the population of

mRNA and proteins. The construction therefore starts from Eqs. (5.8) and (5.9),

with three environmental states σ ∈ {0, 1, 2}. The calculation leading to the reduced

master equation for this model is tedious, but straightforward. The expression for the

reduced master equation is lengthy, and given in Appendix 5.14.1.

For large but finite Ω, the piecewise-diffusive process for this model is as in Eq. (5.62);
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the only difference is in the dynamics governing σ(t). The approximation correspond-

ing to the central box in Fig. 5.8 is given by the stochastic differential equations

ṁ = (bavg(p)− dm) +
[
gm

i (m, p)2 + gm
e (m, p)2

]1/2
ηm(t),

ṗ = (βm− δp) + gp
i (m, p)ηp(t), (5.66)

where

bavg(p) =
b0k

2
− + b0k−k+p+ b2k

2
+p

2

k2
− + k−k+p+ k2

+p
2

,

gm
e (m, p) =

√
2k−k2

+p
2 [k2
− + 3k−k+p+ k2

+p
2]

λ (k2
− + k−k+p+ k2

+p
2)

3 (b2 − b0)2,

gm
i (m, p) = Ω

−1/2
√
bavg(p) + dm,

gp
i (m, p) = Ω

−1/2
√
βm+ δp.

(5.67)

Again it is straightforward to obtain the approximations (f), (h) and (i), by either

sending the amplitude of the intrinsic noise (gm
i and gp

i ) to zero, or of the environmental

noise (gm
e ), or that of both.

Figure 5.10 shows the stationary distributions obtained for the full model, and for

the different approximations. All data is from direct simulations, except (d) which

is discussed further below. As before, the arrangement corresponds to that in the

schematic of Fig. 5.8, and for each approximation we report the JSD relative to the

stationary distribution of the full model in panel (a). The JSD in panel (f) is lower

than that in (d) for the same reason as in the previous section. A similar effect is seen

comparing (h) and (g). The figure also demonstrates the bimodal structure of the

stationary distribution is induced by the intrinsic noise; it is present in each panel in

the left-hand and centre columns, but in none of the panels in the right-hand column.

While the model is stylised and not intended to directly model a particular biological

system Fig. 5.10 demonstrates that analyses of this type may help to establish the

origin of relevant biological features—in this case bimodality linked to pluripotency

and cell-fate decision making is due to intrinsic rather than extrinsic noise.

On a technical note, we add that approximation (d), the reduced master equation,

does not in itself define a Markovian process for this model, due to the appearance

of negative rates (see Appendix 5.14.1). We have generated the data for the station-

ary distribution of the reduced master equation in two different ways. One is direct
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numerical integration of the reduced master equation, this leads to a JSD relative to

the distribution for the full model of approximately 7.6 × 10−5. The second method

consists of Gillespie simulations of an approximation to the reduced master equation

(5.105), in which sub-leading terms of order Ω2/λ are kept, but those of order Ω/λ

are discarded; specifically, we have set $1 = $2 = 0 in Eq. (5.105) for the purpose of

these simulations. This leads to a Markovian process, and sample paths can hence be

generated using the standard Gillespie algorithm. The JSD for the stationary distri-

bution obtained in this way from that of the full model is found to be approximately

9.1×10−5. Visually, the results from the two methods are indistinguishable, and their

JSD from each other is approximately 1.3× 10−5, almost an order of magnitude lower

than the JSD of either of the two from the stationary distribution of the full model.

Other approaches to such systems are based on the WKB method [9,11,17,30,31];

while these approaches do not rely on a particular regime of λ, they have several dif-

ferences from the approach outlined above: (i) The main purpose of the WKB-based

methods is to compute stationary or quasi-stationary distributions. While some dy-

namical properties can be derived from this (e.g., mean first passage times [30]), the

approach is not in itself a dynamic approach, i.e., it does not compute time-dependent

quantities. In particular this method does not allow access to two-time objects such

as correlation functions (or equivalently spectra of fluctuations). (ii) The WKB-based

approaches are based on the limit of large population size. The reduced master equa-

tion [results shown in Fig. 5.10 (d)] and the master equation in the adiabatic limit

[Fig. 5.10 (g)] make no such assumption. (iii) These methods are dependent on the

existence of stable fixed points of the underlying deterministic limiting dynamics [e.g.,

Eq. (1) in Ref. [30]]. The quasi-stationary distributions computed by the WKB-based

methods centre around such stable fixed points. Our model reduction approaches

make no assumptions regarding the fixed-point structure of the limiting deterministic

dynamics. In Fig. 5.10 we see multi-modality in the probability distributions even

though the deterministic dynamics [i.e., the dynamics given by Eq. (5.66) after setting

the noise strengths to zero] include only a single fixed point.
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Efficient simulations and required computing time

Although in the previous two examples we have carried out all eight different approxi-

mations, we remark that some prove more useful than others in terms of providing an

efficient simulation scheme for specific applications. The purpose of collating data from

the different levels of model reduction in Figs. 5.9 and 5.10 was to give an illustration

of the schematic Fig. 5.8 in the context of two concrete examples.

The approximation as an SDE [panel (e) in Figs. 5.8, 5.9 and 5.10] provides a good

starting point for simulations of systems with intrinsic noise of small and moderate

amplitude, and fast-switching environments. The SDE is an approximation, but it

retains both intrinsic and extrinsic noise. In the context of simpler models, we have

already used the SDE to carry out further mathematical analysis using the LNA

(see Sec. 5.8.4). To further illustrate the possible advantages of the approximation

as a SDE, we have investigated the amount of computing time needed to carry out

simulations of the full model in Eq. (5.65), and of the SDE (5.66). Broadly speaking,

the number of environmental switching events per unit time in the full model can be

expected to scale as λ, and the number of events in the population per unit time grows

as Ω. One would therefore expect the computing time required to generate a given

number of sample paths for the full model up to a specified end time to grow when λ or

Ω are increased. This is confirmed in Table 5.1. As seen in Table 5.1 the time required

to generate sample paths of the SDE (5.66) is independent of λ and Ω, as these only

enter in the noise strength. These results indicate that simulations of the SDE can

be carried out more efficiently than those of the full model, especially when either the

environmental switching is fast, or the typical population size large, or both. This is

also the regime in which the SDE approximation becomes increasingly accurate.

5.9.3 Genetic network with multiple genes

A related model, as considered in Ref. [10], involves N identical promoter genes, G(i)

(i = 1, . . . , N), which can each be in their ‘on’ or ‘off’ states, and switch between

these independently. This is different from the model in the previous section where

a single gene can bind up to N molecules of protein. The N genes operate ‘in paral-

lel’; for the dynamics of the population only the total number of genes in each state
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λ Ω
computation time (s) for

full model

computation time (s) for
SDE with switching and

demographic noise

500 50 62.4 34.3
1000 50 74.0 34.4
1500 50 85.0 34.4
2000 50 93.2 34.4

1250 20 40.4 34.5
1250 40 67.4 34.7
1250 60 95.7 34.4
1250 80 123.2 34.3

Table 5.1: Comparison of the simulation time of the full model Eq. (5.65) and the
SDE (5.66). The Gillespie algorithm and Euler–Maruyama method (dt = 5 × 10−3)
are used, respectively, to simulate the system up to time 104. While the simulation
time of the full model increases with λ and Ω, the simulation time for the SDE is
independent of λ and Ω.

matters. As a consequence, there are N + 1 different environmental states describing

the configuration of the genes. We use the number of genes in the ‘on’ state to label

these states, σ ∈ {0, . . . , N}. We leave out the mRNA dynamics, and focus only on

protein production and decay. We assume that each gene in its ‘on’ state contributes

Ωb1 to the total production rate, and each gene in its ‘off’ state contributes Ωb0. As

before the parameter Ω controls the typical size of the population of protein molecules.

We then have Ωbσ = (N − σ)Ωb0 + σΩb1 for the total production rate. The model is

defined by the reactions

G
(i)
off

Ωb0−−→ G
(i)
off + P,

G(i)
on

Ωb1−−→ G(i)
on + P,

G
(i)
off

λk1−−⇀↽−−
λk0

G(i)
on ,

P
δ−−→ ∅,

(5.68)

where the reactions for different genes i = 1, . . . , N run independently. The SDE

description of the model in the limit of large but finite Ω and λ is of the form

ṗ = Nbavg − δp+
[
gi(p)

2 + ge(p)
2
]1/2

η(t), (5.69)

where each gene contributes an average rate of production bavg = (b0k0+b1k1)/(k0+k1).

The contribution to the noise from intrinsic fluctuations has amplitude

gi(p)
2 =

1

Ω
(Nbavg + δp) . (5.70)

The environmental noise comes from the switching between the N + 1 gene config-

urations; each gene switches between its on and off states independently. Following
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Figure 5.11: Stationary distribution for the genetic circuit with exclusive binding
(Sec. 5.9.4) from numerical integration of (a) the full master equation with explicit
environment, (b) the reduced master equation Eq. (5.108), and (c) the adiabatic ap-
proximation which considers average rates. Panel (d) shows the marginal distribution
of nA−nB in order to compare the three distributions. Parameters Ωα1 = 20, Ωα0 = 0,
λκ0 = Ωλκ1 = 20.

the earlier examples, one expects a contribution 2k0k1(b0 − b1)2/[λ(k0 + k1)3] to the

variance of the environmental noise from each gene, so that the total variance is

ge(p)
2 =

2Nk1k0 (b0 − b1)2

λ (k0 + k1)3 . (5.71)

We note that the relative fluctuations of the total production rate [i.e., the ratio

ge(p)/(Nbavg)] scales as N−1/2.

Mathematically, the transition rate matrix for the N + 1 environmental states may

be written as the tridiagonal matrix

Aσ→σ−1 = λk0σ, for σ ≥ 1,

Aσ→σ+1 = λk1(N − σ), for σ ≤ N − 1,

Aσ→σ±j = 0, for j ≥ 2,

(5.72)

together with the convention Aσ→σ = −Aσ→σ−1 − Aσ→σ+1. The formalism of Sec. 5.4

can then be applied, but becomes algebraically tedious. Using numerical algebra

packages we have verified Eq. (5.71) up to N = 100.

5.9.4 Genetic circuit with exclusive binding

Next, we consider a circuit with exclusive promoter binding [102, 103]. The model

describes two genes GA and GB, and two corresponding proteins PA and PB. Proteins

PA and PB bind to genes of the opposing type, GB and GA, respectively, with (per

capita) rates λκ1/Ω and λµ1/Ω. They unbind from these promoters with rates λκ0

and λµ0. These binding and unbinding reactions can be summarised as follows:
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GA
unbnd. +GB

unbnd.

nBλκ1/Ω−−−−−⇀↽−−−−−
λκ0

GA
bnd. +GB

unbnd.,

GA
unbnd. +GB

unbnd.

nAλµ1/Ω−−−−−⇀↽−−−−−
λµ0

GA
unbnd. +GB

bnd.,
(5.73)

where the subscripts ‘bnd.’ and ‘unbnd.’ indicate whether the gene is bound to a

protein or unbound, respectively, and where nA and nB are the numbers of molecules

of proteins of type A and B. In this model either gene GA or gene GB can be bound,

but not both simultaneously. This is due to spatial considerations of the binding

process: owing to the proteins size and the proximity of the genes, the binding of a

particular protein blocks the other protein from binding [102, 103]. When gene GA is

bound, proteins of type A are produced with rate Ωα0, and when it is unbound they

are produced with rate Ωα1. Similarly when gene GB is bound, proteins of type B are

produced with rate Ωβ0, and when it is unbound they are produced with rate Ωβ1. To

summarise, the protein production rates in the three gene configurations are as follows:

production rate PA production rate PB

GA, GB unbound: Ωα1 Ωβ1

GA bound: Ωα0 Ωβ1

GB bound: Ωα1 Ωβ0.

In this model one protein inhibits the expression of the other, i.e., α0 < α1 and β0 < β1.

Additionally, protein A degrades with rate γ and protein B with rate δ.

In this model the birth rates of the two types of proteins are not independent;

rather, they are connected through the state of the environment (the binding status

of the two genes). Furthermore, when production of one protein is inhibited (for

example protein A when GA is bound), the other protein is expressed with a higher

rate (GB unbound). This is an example of a model of the kind considered in Sec. 5.5

where we showed how anti-correlations lead to negative rates in the reduced master

equation. The reduced master equation for this model is lengthy, we present it in

Appendix 5.14.2.
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Figure 5.11 shows the results for the stationary distribution obtained from numer-

ical integration of this reduced master equation; we also show the stationary distribu-

tions of the full model and of the adiabatic approximation. As seen in panel (d) of the

figure the reduced master equation reproduces the stationary distribution of the full

model with greater accuracy than the adiabatic approximation.

5.9.5 Staged switching of the environment

In many situations the switching between environmental states is not purely Marko-

vian. Periodic switching between environmental states has been considered in exper-

imental and theoretical studies of bacterial populations; for example the presence or

absence of antibiotic treatment according to a periodic protocol. As a bet-hedging

strategy, the bacteria respond to time-dependent external stresses with phenotypic

heterogeneity [7, 83, 104–106]. In this context it is therefore important to be able to

study stochastic populations coupled to environments described by a non-Markovian

process.

In this Section we consider an example in which there are two distinct environmen-

tal conditions, labelled 0 and 1. In contrast with the previous examples, each of these

conditions consists of several identical, internal states (or stages), which are traversed

in sequence. Similar setups have been used to model dynamics which fall between the

purely periodic and purely Markovian limits, see e.g. Refs. [7, 107,108].

The model is illustrated in Fig. 5.12(a). There are N environmental states which

correspond to environmental condition 0, and M states that correspond to environ-

mental condition 1. States in condition 0 transition to the next state with rate λk1N ,

and states corresponding to condition 1 transition to the next state with rate λk0M .

The environment cycles through all states in order, as indicated in the figure.

In this way, the time spent in condition 0 before switching to 1 is Γ(N, λNk1)-

distributed, and similarly the time spent in condition 1 follows a Γ(M,λMk0) distri-

bution. Independent of N and M , the environment spends an average time (λk1)−1

in condition 0 before it switches to 1, and then an average time (λk0)−1 in condition

1 before it switches back to condition 0. Increasing the number of states N and M

leads to an increased regularity of time spent in each condition. The limit N,M →∞

in particular corresponds to periodic switching between the two conditions.
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For simplicity we disregard intrinsic noise in this example and focus on a piecewise-

deterministic process. We assume that the dynamics are given by ẋ = v0(x) if the

environment is in condition 0, and by ẋ = v1(x) if it is in condition 1. Based on the

formalism of Sec. 5.4, we use a symbolic algebra package to solve Eq. (5.9), where the

operator Mσ is substituted by the Liouville operator Lσ = −∂xvσ(x). We use this to

derive an SDE in the limit of fast but finite environmental dynamics. We find

ẋ = vavg(x) + ge(x)η(t), (5.74)

where η(t) is white Gaussian noise, and where the drift and diffusion terms are given

by

vavg(x) =
k0v0(x) + k1v1(x)

k0 + k1

,

ge(x) = λ
−1/2

√
k1k0(N +M) [v0(x)− v1(x)]2

NM (k1 + k0)3 .

(5.75)

We have not attempted to formally prove this for general N and M ; rather, we tested

this result for a range of combinations N,M < 150 and found it to be true for all

tested values.

In Fig. 5.12(b) we use a specific example, where the drift is v0(x) = b0 − x and

v1(x) = b1 − x; this choice corresponds to the protein production model considered

in Sec. 5.4.3. In this figure we compare the stationary distributions obtained from

simulation of the PDMP with the stationary distribution obtained analytically from

solving the one-dimensional Fokker–Planck equation for Eq. (5.74). We show this data

for different choices of N and M in Fig. 5.12(b), restricting to N = M for simplicity.

Similarly, we compare the variance of the stationary distributions from the PDMP

and the SDE in Fig. 5.12(c). The parameters λ, k1, and k0 are kept fixed; we focus

again on the case N = M , and vary this number of internal states. Analytical results

from the SDE and numerical simulation of the PDMP agree well for N,M < 100, but

there are deviations when N = M becomes large. This is due to fact that the PDMP

tends to a deterministic limit cycle; this limit cycles leads to a finite variance of the

corresponding distribution, indicated by the dashed line of Fig. 5.12(c)]. These limit

cycle dynamics are not captured by the SDE.

The model as described above is only defined for integer values of N and M .

However, the distribution of waiting times in either environmental condition can be
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Figure 5.12: Schematic and statistics for a model with staged switching of the environ-
ment. (a) Schematic illustrating an environment with two distinct conditions, with N
and M identical stages, respectively. (b) Stationary distribution for different values of
N = M . Histograms show results of simulations, lines are from the theory described
in the text. (c) Variance of the stationary distribution as a function of N (again for
the case N = M). The black line shows the results of the theory, orange circles are
from simulations of the piecewise-deterministic Markov process. Parameters N and M
have been generalised to include non-integer values, by considering gamma-distributed
waiting-time distributions in the two conditions (see text). Dashed line shows the vari-
ance of the limit cycle obtained in the limit of a periodic environment. Parameters:
b0 = 100/3 and b1 = 500/3, λk0 = λk1 = 20.

generalised to the case of gamma distributions with non-integer shape parameters. The

interpretation as a series of internal states within conditions σ = 0 and σ = 1 then no

longer holds, but simulations of the model can still be carried out, drawing waiting

times directly from the appropriate gamma distributions. The SDE (5.75) remains

unaltered, and it provides an accurate description of the dynamics of the model also

when N and M are not integers. This can be seen in Fig. 5.12(c), where many of the

markers (circles) correspond to simulations for non-integer values of N and M .

5.9.6 Reliability analysis and crack propagation

The formalism we have developed can also be applied to the calculation of time-to-

failure in models of industrial systems. One of the challenges in this field is to capture

features of real-world systems in tractable mathematical models. In this context,

many authors have used piecewise-deterministic processes with Markovian external

environments. These models incorporate discrete environmental effects such as dif-

ferent modes of operation, external stresses or loads [23–25]. In these applications

there is often a clear separation of time scales, the environmental switching is a much

faster process than the degradation of the system. For example a piece of material

may be subject to mechanical load which changes several times a day or hour, and the
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Figure 5.13: Panel (a): Sample path of the model of crack growth (Sec. 5.9.6).
Background shading indicates the state of the environment, with states 0, 1 and 2
shown progressively darker. Panel (b): survival probability as a function of time.
The black line shows results from Monte Carlo simulations, the dashed line is the
prediction of Eq. (5.82). Panels (c) and (d) show the same quantities for tenfold
increased switching rates. Model parameters are given in the text.

degradation of the material occurs over months or years.

Specifically, we consider the example of fatigue crack growth; this is an engineering

problem describing the growth in the length of a crack in a mechanical component.

One such model uses a piecewise-deterministic Markov process to describe the growth

of the length of a crack [20–22,109] as follows,

ẋ = xb × vσ(t), (5.76)

where x is the crack length, the exponent b > 0 is a constant, and where as before σ(t)

represents the state of the environment at time t. The factor vσ takes into account

that the crack grows faster in some environments than in others. Transitions from

state σ to σ′ occur with rate λAσ→σ′ .

Given an initial length x0, we are interested in the time it takes to reach the

threshold length x = L; this is when the component is deemed unreliable. We use the

formalism of the earlier sections to approximate the PDMP as an SDE in the limit

of fast (but not infinitely fast) environmental switching (λ � 1). We then find the

first-passage time of this SDE through the threshold value. While diffusive processes

have been used as starting points in models of reliability [110,111], we systematically

reduce the PDMP to an effective stochastic differential equation.

In the simplest case of two environmental states (and writing A0→1 = k1, A1→0 = k0
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as before), Eq. (5.76) can be approximated as by the SDE

ẋ = xbvavg + g xbη(t), (5.77)

where

vavg =
k0v0 + k1v1

k0 + k1

, g2 =
2k0k1(v0 − v1)2

λ(k0 + k1)3
. (5.78)

Higher-order terms in λ−1 have been discarded. For the special case of exponential

growth, b = 1, the SDE approximation turns into geometric Brownian motion. In

a different context this has been implemented in Ref. [32]. We proceed to find the

first-passage time of the process in Eq. (5.77) through the threshold L. This can be

done following Ref. [112], but with a modification allowing for b 6= 1. As a first step

we apply the transformation

y =

 lnx b = 1,

x1−b−1
1−b b 6= 1.

(5.79)

The SDE (5.77) can then be written

ẏ = vavg + g η(t). (5.80)

For such a process, the distribution of first passage times through a given threshold

is known [112]. Returning to the original variables, we obtain the probability density

Q(x0, t) of first-passage times of the process Eq. (5.77) through L, if started at position

x0 at time t = 0. For b = 1 one finds

Q(x0, t) =
|ln(L/x0)|
gt(2πt)1/2

exp

−
[
ln(L/x0)− (vavg − g2

2
)t
]2

2g2t

 , (5.81)

and for b 6= 1 one has

Q(x0, t) =
1

gt(2πt)1/2

∣∣∣∣L1−b − x1−b
0

1− b

∣∣∣∣ −
[
(L1−b − x1−b

0 )/(1− b)− (vavg − g2

2
)t
]2

2g2t
. (5.82)

This approach can be extended to models with more than two environmental states,

leading to modifications in the noise strength g. We demonstrate this with a numerical

example. We use the parameters suggested in Ref. [109], in particular b = 1.5, and

λA =


−40 40 0

54 −60 6

20 0 −20

, v =


1.0

0.9

1.2

.
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The initial crack length is x0 = 9, and we use L = 50 as the threshold for the onset

of failure. Compared to Ref. [109] we have rescaled time. Implementing our theory

shows that the process can be approximated by the SDE (5.77) where vavg = 69/70

and g2 = 141/274400. This is obtained from solving Eq. (5.9) with a numerical algebra

package, again substituting the operatorMσ with the appropriate Liouville operator.

Figure 5.13(a) shows a sample path of the PDMP generated by Monte Carlo simu-

lation, while the background indicates the state of the environment. Figure 5.13(b)

shows the probability that a given component is still reliable at time t. The black line

is obtained through Monte Carlo simulations, whereas the dashed line is the prediction

of Eq. (5.82). For the specified parameters, the two lines show agreement. Increasing

the switching rate [Fig. 5.13(d)] strengthens this agreement.

5.10 Conclusions

We have developed methods for the reduction and approximation of the dynamics

of discrete stochastic systems coupled external environments with a finite number of

discrete states. Our analysis focuses on the limit in which the environmental dynamics

are fast relative to that of the system, but where the time scale separation is not

necessarily infinite. In particular, we have derived reduced dynamics for the open

system, capturing next-order corrections to the adiabatic limit.

The model reduction leads to master equations with bursting, and—in some cases—

with negative transition ‘rates’. Our analysis shows that negative (pseudo-) probabil-

ities can arise from such non-Markov-process reduced dynamics, and it suggests that

these negative transients only occur on time scales shorter than than that of the en-

vironment. The reduced dynamics—obtained by coarse graining the environmental

process—does not resolve the physics of the problem on such fine time scales. The

occurrence of bursting reactions can be understood further by looking at the time evo-

lution of individual sample paths of system and environment over a finite time interval.

This leads to a discrete-time approximation for the dynamics of the open system. The

path of the environment in one time step can be approximated by Gaussian random

variables; bursting in the system results from fluctuations of this discrete-time Gaus-

sian process.
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We find that trajectories obtained using a simulation algorithms adapted from open

quantum systems to the classical case do not reproduce statistical features of sample

paths of the full model of system and environment. This suggests further work on the

relation of full and reduced dynamics in the quantum context. We note one potentially

important difference between the classical and the quantum cases; the origin of non-

Markovianity in open quantum systems is often attributed to a two-way exchange of

information between the system and the environment [27,28]. This mechanism is not

available in some of the examples we have looked at, even though these models still

lead to negative rates in the reduced dynamics (Sec. 5.5).

We placed our reduction schemes in the context of existing work on piecewise-

deterministic Markov processes, and piecewise-diffusive processes. In particular we

study combined expansions in the relative time-scale of the environment and/or the

strength of the intrinsic noise. This provides a more complete picture of different

approximations for systems with intrinsic noise and environmental fluctuations. We

also introduced a scheme approximating such a process as a SDE, capturing both

switching and demographic noise. We expect this tool to facilitate efficient simulation

of open systems.

We have demonstrated how these results can be used to study a number of problems

in different areas. In particular, the reduction schemes we have proposed allow for

an approximation of the open system in terms of stochastic differential equations.

The approximation is valid when populations are large and the environmental process

fast. In this situation simulations of the full dynamics of the population and the

environment are particularly costly. The stochastic differential equation approximates

both the intrinsic and the extrinsic randomness as Gaussian noise, and it can be

used to carry out simulations more efficiently. As we have shown, it also allows for

analytical progress in some cases. We have used the different approximation schemes

for a varied set of applications, including models of genetic circuits, cases in which

the switching between external conditions is non-Markovian, and a model of crack

propagation. These applications are only a selected set of examples of situations

in which switching environments play a role. We expect that the model-reduction

schemes we have developed will be of use for further open classical systems in biology

and the physical sciences, and in other disciplines. In Sec. 5.8 we have related the
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different approximations to each other, and to existing work. This may help to select

the most appropriate approximation method for specific applications.

Our work raises a number of questions for future work. For example, it would be in-

teresting to study in more detail the analogies and differences between non-Markovian

reduced dynamics for open quantum systems and for classical systems coupled to fast

environments. As a first step, one might focus on classical systems in which the dy-

namics of the environment depends on the state of the system itself (such as in the

examples in Secs. 5.9.2 and 5.9.3), and try to characterise the mathematical structure

of the resulting reduced dynamics, and the information flow between system and en-

vironment. We also note that we have found non-Markovian features in the reduced

dynamics at sub-leading order only when the system itself has discrete states, but not

when the population is described by a piecewise diffusive or piecewise deterministic

process. Based on the Pawula theorem [60,80] we expect unphysical terms in the latter

cases when the expansion is truncated at higher-orders. Further work is required to

understand in more detail how these features non-Markovian features emerge in the

combined coarse graining process for the population and the environment. A sepa-

rate further line of research might focus on systems in which the environment takes

continuous states (see e.g. Ref. [11,30,31]), and the comparison with the discrete case.

5.11 Appendix A: State-dependent environmental

process

In this Section of the Appendix we briefly consider the case in which the transition

matrix for the environmental process depends on the state of the system proper, i.e.,

Aσ→σ′ = Aσ→σ′(`). From Eq. (5.8) we have

d

dt
Π(`, t) =

∑
σ

Mσ [ρ∗(σ|`)Π(`, t)] +
1

λ

∑
σ

Mσwσ(`, t), (5.83)

and from Eq. (5.9)

∑
σ′

Aσ′→σ(`)wσ′(`, t) = ρ∗(σ|`)
∑
σ′

Mσ′ [ρ
∗(σ′|`)Π(`, t)]−Mσ [ρ∗(σ|`)Π(`, t)] . (5.84)

This serves as a starting point for the further analysis.
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5.11.1 Adiabatic limit

It is useful to define the following operators, acting on functions f(`),

M̂σf(`) =Mσ[ρ∗(σ|`)f(`)], (5.85)

where the right-hand side indicates that the operator Mσ acts on the object inside

the square bracket. In the adiabatic limit one finds [by sending λ→∞ in Eq. (5.83)]

d

dt
Π(`, t) = M̂avgΠ(`, t), (5.86)

where we now have

Mavg =
∑
σ

M̂σ. (5.87)

Example

To illustrate the principle we use a population with n individuals of a single species,

and a birth reaction with rate bσ(n). We then have Mσ = [E−1 − 1]bσ(n). We find

MavgΠ(n, t) = [E−1 − 1]bavg(n)Π(n, t), (5.88)

where

bavg(n) =
∑
σ

ρ∗(σ|n)bσ(n). (5.89)

We note that bavg(n) carries a dependence on n, even if bσ(n) is itself independent of

n.

5.11.2 Next-order contribution

In order to address the sub-leading term in 1/λ, we focus on the case of two envi-

ronmental states, with switching rates A1→0(`) = k0(`) and A0→1(`) = k1(`). In this

case we have ρ∗(0|`) = k0(`)/[k0(`) + k1(`)], and ρ∗(1|`) = k1(`)/[k0(`) + k1(`)]. From

Eq. (5.84) one then finds

w0(`, t) = −w1(`, t) =
1

k0(`) + k1(`)

[
ρ∗(1|`)M̂0 − ρ∗(0|`)M̂1

]
Π(`, t). (5.90)

Inserting into Eq. (5.83) we have

d

dt
Π(`, t) =MavgΠ(`) +

1

λ
(M0 −M1)

1

k0(`) + k1(`)

[
ρ∗(1|`)M̂0 − ρ∗(0|`)M̂1

]
Π(`, t),

(5.91)
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which can be written as

d

dt
Π(`, t) =MavgΠ(`) +

1

λ

[
M̂0ρ

∗(0|`)−1 − M̂1ρ
∗(1|`)−1

] 1

k0(`) + k1(`)

×
[
ρ∗(1|`)M̂0 − ρ∗(0|`)M̂1

]
Π(`, t). (5.92)

While this object is quite lengthy, it formally describes the reduced dynamics to sub-

leading order in 1/λ, and can be used for further analysis. The next steps would then

depend on the nature of the specific example at hand.

5.12 Appendix B: Further remarks relating to power

spectra in Sec. 5.6.2

5.12.1 Cross spectra in adiabatic limit

We find in simulations of the model in Sec. 5.5.1 that the cross spectrum SAB(ω)

vanishes in the adiabatic limit (see Fig. 5.5). This can be understood by inspecting the

master equation in the adiabatic limit [obtained from Eq. (5.21) by sending λ→∞],

d

dt
Π = γ(EA − 1)nAΠ + δ(EB − 1)nBΠ

+ Ωαavg(E−1
A − 1)Π + Ωβavg(E−1

B − 1)Π. (5.93)

No reaction in this equation involves both types of particles; hence there are no cor-

relations between nA and nB, leading to SAB(ω) = 0.

5.12.2 Indepence of SAA(ω) from ∆β

We focus on the power spectral density SAA(ω) of the dynamics defined by Eq. (5.21).

Since SAA(ω) is a feature only of the dynamics of species A, we can integrate out

the variable nB in Eq. (5.21). We obtain the following equation for the marginal

distribution ΠA(nA):

d

dt
ΠA(nA) = γ(Ea − 1)nAΠA(nA) + Ω

[
αavg −

Ωθ2

λ
(∆α)2

]
(E−1
a − 1)ΠA(nA)

+
Ω2θ2

2λ
(∆α)2(E−2

a − 1)ΠA(nA). (5.94)
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In particular, all terms proportional to ∆α∆β have cancelled out, so that Eq. (5.94)

should apply to both cases, ∆α∆β > 0 and ∆α∆β < 0. Thus, one would expect

the power spectral density SAA(ω) to be independent of the choice of ∆β (all other

parameters kept fixed). This in turn indicates that the spectra SAA(ω) in panels (a)

and (c) of Fig. 5.5 should come out as identical, if the modified Gillespie algorithm

is a valid method of generating sample paths of the reduced master equation (5.21).

At sufficiently low frequencies one would also expect these spectra to agree with those

obtained from simulating the full model. The observations in Fig. 5.5 indicate that

(i) the spectra SAA(ω) for the reduced model for ∆α∆β > 0 and ∆α∆β < 0 are

markedly different from each other [compare panels (a) and (c)]; (ii) for ∆α∆β > 0,

the spectrum SAA(ω) from the reduced model agrees to a good approximation with

that from the full model in the low-frequency range [panel (a)]. For ∆α∆β < 0, these

findings suggest a problem in approximating sample paths of the full model from the

reduced master equation, using the renormalisation technique.

5.13 Appendix C: Kramers–Moyal expansion

5.13.1 Kramers–Moyal expansion of reduced master equation

In this Appendix we carry out a direct Kramers–Moyal expansion of the reduced

master equation (5.19). This master equation can be written as

d

dt
Π(n, t) = Ωβ(E−1 − 1)Π(n) + (E − 1)δeffnΠ(n, t) +

1

2

θ2

λ
∆2
[
E2 − 1

]
n(n− 1)Π(n, t),

(5.95)

where ∆ = δ0 − δ1, and

δeff = δavg −
1

2

θ2

λ
∆2(2n− 1). (5.96)

To carry out the expansion we write E2 = 1 + 2
Ω
∂x + 2

Ω2∂
2
x + . . . , and obtain (writing

x = n/Ω)

∂

∂t
Π(x) = β

(
−∂x +

1

2Ω
∂2
x

)
Π(x) +

(
∂x +

1

2Ω
∂2
x

)
δeffxΠ(x)

+
1

2

θ2

λ
Ω∆2

(
2∂x +

2

Ω
∂2
x

)
x

(
x− 1

Ω

)
Π(x), (5.97)
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where neglected terms are of order 1/Ω2 or of order θ2

λ
/Ω ∝ 1/(λΩ). There will be

further terms in Eq (5.97) which can be neglected at the order we are working at.

Next we collect terms

∂

∂t
Π(x) = − ∂x

{[
β − δeffx−

θ2

λ
Ω∆2x

(
x− 1

Ω

)]
Π(x)

}
+

1

2Ω
∂2
x

{[
β + δeffx+ 2

θ2

λ
Ω∆2x2

]
Π(x)

}
, (5.98)

where another term of order 1/(λΩ) has been dropped. Now we use δeff = δavg −
1
2
θ2

λ
Ω∆2

(
2x− 1

Ω

)
, and find

∂

∂t
Π(x) = − ∂x

{[
β − δavgx+

1

2

θ2

λ
Ω∆2x

(
2x− 1

Ω

)
− θ2

λ
Ω∆2x

(
x− 1

Ω

)]
Π(x)

}
+

1

2Ω
∂2
x

{[
β + δavgx−

θ2

λ
Ω∆2x2 + 2

θ2

λ
Ω∆2x2

]
Π(x)

}
, (5.99)

where yet another term of order 1/(λΩ) has been dropped. This is the same as

∂

∂t
Π(x) = − ∂x

{[
β − δavgx+

1

2

θ2

λ
∆2x

]
Π(x)

}
+

1

2
∂2
x

{[
1

Ω
(β + δavgx) +

θ2

λ
∆2x2

]
Π(x)

}
,

(5.100)

i.e., we recover Eq. (5.42).

5.13.2 Reduced Liouville equation

Using LσΠ(x) = −∂x(β − δσx)Π(x) in Eq. (5.37) gives

∂

∂t
Π = −∂x(β − δavgx)Π(x) +

1

2

θ2

λ
∆2∂xx∂xΠ(x). (5.101)

Next we use ∂x (x∂xxΠ(x)) = ∂2
x (x2Π)− ∂x (xΠ) to write this as

∂

∂t
Π = −∂x

(
β − δavgx+

1

2

θ2

λ
∆2x

)
Π(x) +

1

2

θ2

λ
∆2∂2

x[x
2Π(x)]. (5.102)

This is Eq. (5.47).
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5.13.3 Kramers–Moyal expansion for two-species model

Carrying out the Kramers–Moyal expansion on Eq. (5.21) we find

∂

∂t
Π(x) = γ

(
∂x +

1

2Ω
∂2
x

)
xΠ + δ

(
∂y +

1

2Ω
∂2
y

)
yΠ

+ αeff

(
−∂x +

1

2Ω
∂2
x

)
Π + βeff

(
−∂y +

1

2Ω
∂2
y

)
Π

+
Ωθ2

2λ
(∆α)2

(
−2∂x +

2

Ω
∂2
x

)
Π(t) +

Ω θ2

λ

2
(∆β)2

(
−2∂y +

2

Ω
∂2
y

)
Π

+
Ωθ2

λ
∆α∆β

(
−∂x − ∂y +

1

2Ω
∂2
x +

1

2Ω
∂2
y +

1

Ω
∂x∂y

)
Π. (5.103)

Using Eq. (5.22), this simplifies to

∂

∂t
Π(x) = − ∂x (αavg − γx) Π− ∂y (βavg − δy) Π

+
1

2
∂2
x

(
αavg + γx

Ω
+
θ2

λ
∆α2

)
Π +

1

2
∂2
y

(
βavg + δy

Ω
+
θ2

λ
∆β2

)
Π

+ ∂x∂y

(
θ2

λ
∆α∆β

)
Π, (5.104)

which describes the dynamics of the stochastic differential equations in Eqs. (5.54,5.55).

5.14 Appendix D: Applications—Further details

5.14.1 Reduced master equation for bi-stable genetic circuit

In this Appendix we report the reduced master equation for the model described in

Sec. 5.9.2. The reduced master equation is obtained starting from Eq. (5.8), where the

wσ(`) are determined from (5.9). We do not report the full calculation; it is laborious,
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but ultimately straightforward. The final result for the reduced master equation reads:

d

dt
Π(Np, Nm, t)

= (E−1
m − 1)

{
Ωβavg(Np)−

1

λ
Ω2(β2 − β0)2 1

k−

2ψ2

(1 + ψ + ψ2)3
[ψ2 + 3ψ + 1]

}
Π

+(Em − 1)[δmNmΠ]

+(E−1
p − 1)[αNm +$1]Π

+(Ep − 1)[δpNp +$2]Π

+(E−2
m − 1)

[
1

λ
Ω2(β2 − β0)2 1

k−

ψ2

(1 + ψ + ψ2)3

[
ψ2 + 3ψ + 1

]
Π

]
+(E−1

m E−1
p − 1)(−$1Π)

+(E−1
m Ep − 1)(−$2Π), (5.105)

where we have introduced the following short-hand (σ = 0, 1, 2),

ψ(Np) =
k+Np

Ωk−
,

ρ∗σ(Np) =
ψ(Np)

σ−1

1 + ψ(Np) + ψ(Np)2
,

∆σ(Np) = ρ∗σ(Np + 1)− ρ∗σ(Np),

βavg(Np) =
∑
σ

ρ∗σ(Np)βσ,

$1 =
1

λ
Ω(β2 − β0)

1

k−
{[ρ∗0(Np + 1) + ρ∗1(Np + 1)]∆2 − ρ∗1(Np + 1)∆0}αNm.

$2 =
1

λ
Ω(β2 − β0)

1

k−
{ρ∗1(Np − 1)∆0(Np − 1)

−[ρ∗0(Np − 1) + ρ∗1(Np − 1)]∆2(Np − 1)}δpNp. (5.106)

We note that $1 > 0, irrespective of the choice of λ, so that the rate of the penultimate

reaction in Eq. (5.105) is negative. The rates of all other reactions are non-negative,

provided λ is large enough (all other parameters fixed).

5.14.2 Gene circuit with exclusive binding

In this Appendix we report the reduced master equation for the gene circuit with

exclusive binding, discussed in Sec. 5.9.4. Labelling the statesGA andGB not occupied,

only GA occupied, and only GB occupied as σ = 0, 1, and 2, respectively, we have the

transition matrix elements

A0→1 = nAµ1/Ω, A0→2 = nBκ1/Ω, A1→0 = κ0, A2→0 = µ0, (5.107)
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where all other off-diagonal entries are zero, and the diagonal elements follow from

the convention
∑

σ′ Aσ→σ′ = 0. For the purposes of the numerical analysis we make

the simplification α0 = β0, α1 = β1, and κ0 = µ0, κ1 = µ1, as well as γ = δ.

The reduced master equation in the limit of large but finite λ is then obtained as

d

dt
PnA,nB(t) =

(
E−1
A − 1

){
Ω
nBα1κ̃1 + α0(κ0 + nAκ̃1)
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− Ω2

λ
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+
(
E−1
B − 1

){
Ω
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κ0 + (nA + nB)κ̃1

− Ω2

λ

2nAκ0κ̃1(α0 − α1)2

[κ0 + (nA + nB)κ̃1]3

}
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+
(
E−2
A − 1

) Ω2

λ

nBκ̃1 [κ2
0 + 2nAκ0κ̃1 + nA(nA + nB)κ̃2

1] (α0 − α1)2

κ0 [κ0 + (nA + nB)κ̃1]3
PnA,nB(t)

−
(
E−1
A E

−1
B − 1

) Ω2

λ

2nAnBκ̃
2
1 [2κ0 + (nA + nB)κ̃1] (α0 − α1)2

κ0 [κ0 + (nA + nB)κ̃1]3
PnA,nB(t)

+
(
E−2
B − 1

) Ω2

λ

nAκ̃1 [κ2
0 + 2nBκ0κ̃1 + nB(nA + nB)κ̃2

1] (α0 − α1)2

κ0 [κ0 + (nA + nB)κ̃1]3
PnA,nB(t)

+ γ(E+1
A − 1)nAPnA,nB(t) + γ(E+1

B − 1)nBPnA,nB(t),

(5.108)

where κ̃1 has been introduced as shorthand for κ1/Ω. We have discarded terms of

order Ω/λ.
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Chapter 6

Calculating normal tissue

complication probabilities and

probabilities of complication-free

tumour control from stochastic

models of population dynamics

6.1 Preface
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figures (Fig. 6.5 was coded in partnership with E.B.-J.), and writing all sections of the

paper in partnership with E.B.-J. and T.G.

1Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester
M13 9PL, United Kingdom

2School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
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Abstract

We use a stochastic birth-death model for a population of cells to estimate the normal

tissue complication probability (NTCP) under a particular radiotherapy protocol. We

specifically allow for interaction between cells, via a nonlinear logistic growth model.

To capture some of the effects of intrinsic noise in the population we develop sev-

eral approximations of NTCP, using Kramers–Moyal expansion techniques. These

approaches provide an approximation to the first and second moments of a general

first-passage time problem in the limit of large, but finite populations. We use this

method to study NTCP in a simple model of normal cells and in a model of normal

and damaged cells. We also study a combined model of normal tissue cells and tu-

mour cells. Based on existing methods to calculate tumour control probabilities, and

our procedure to approximate NTCP, we estimate the probability of complication free

tumour control.

6.2 Introduction

When giving a dose of radiation to a tumour it is likely that the surrounding healthy

tissue will also be damaged. A radiotherapy treatment protocol aims to provide enough

radiation to the tumour to control the cancer whilst not causing excessive side-effects

by damaging surrounding tissue. To this end, a protocol must find a balance between

maximising the tumour control probability (TCP) and minimising the normal tissue

complication probability (NTCP). Normal tissue complications (NTCs) encompass a

wide variety of problems ranging in severity from increased urinary frequency from

the treatment of prostate cancers [2, 3] to severe neurological complications such as

myelitis from the treatment of neck cancers [4] and organ failure [2].

There are numerous models of TCP and NTCP in the literature. Broadly, the

term ‘model’ is used to describe two different types of mathematical approaches to

characterising these probabilities. The first is statistical: based on cohorts of patients

statistical models are developed to identify factors contributing to the TCP and the

NTCP. This is then used to find mathematical expressions which allow one to estimate
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the TCP or NTCP of a patient with given characteristics and for given radiation

protocols [5, 6]. The focus of our work is not on this type of model. Instead, we

concentrate on the second type of modelling approach, which seeks to compute TCP

and NTCP ‘bottom-up’ from mechanistic principles of the population dynamics of

tumour or normal cells [7,8]. These models are often stylised, but the key characteristic

they all share is that they describe the dynamics of cell division and death. Many of

these models are intrinsically stochastic. Mitosis and cell death are random events

in such models, and the precise outcome is therefore uncertain; the tumour may or

may not be controlled, and NTCs can arise, but do not have to. The aim of this

line of research is to obtain, for a given model of the population dynamics of cells

and a given radiation protocol, the TCP and NTCP. The word ‘obtain’ includes by

computer simulation of the population, or by direct mathematical computation when

this is possible. While simulations are sometimes viable, the mathematical route,

when it is available, is generally preferable as explicit formulae provide an efficient

way of evaluating TCP or NTCP, often much faster than simulation. Not all types of

population dynamics can be treated mathematically exactly however. In such cases

approximations have to be made in the mathematical calculation of TCP and NTCP.

TCP from a stochastic birth-death model has previously been described by Zaider

and Minerbo [8]; subsequent work includes [9–11]. The generating function meth-

ods used, however, are limited to problems considering the extinction of all cells and

where the dynamics are linear, and so are not directly applicable to NTCP. A stochas-

tic birth-death model of normal tissue cells was described by Stocks et al. [12], but

their mathematical calculation of NTCP ultimately does not take into account intrinsic

stochasticity in the population. We extend this analysis and capture features of intrin-

sic noise in the calculation of NTCP. We use a stochastic birth-death model of normal

tissue cells where cell death rates are affected by the dose and timing of radiotherapy.

NTCP can be seen as the cumulative distribution function of the first-passage time of

this stochastic birth-death process through a boundary; NTC sets in when the number

of functional cells falls below a certain threshold. We obtain estimates of NTCP by

approximating the distribution of first-passage times.

One may ask whether the inclusion of intrinsic noise is necessary in modelling

NTCP. Hanin and Zaider [7] argue that deterministic approaches might be sufficient,
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due to the high numbers of cells involved. However we note that the size of the

population may vary depending on context. For example, the model could describe a

functional subunit (FSU) of an organ, rather than the entire organ [6, 13, 14]. NTCP

would then not necessarily indicate the probability that an organ fails, but instead

that such a subunit no longer fulfils its function. For instance, Niemierko and Goitein

consider a kidney split into 107 FSUs, where each FSU contains 104 cells [6]. In

such circumstances noise in the population (i.e., within a FSU) may become relevant.

Intrinsic stochasticity may also be important in the context of stem cells, especially if

they are present in relatively small numbers [15–18]. It is also interesting to note that

some of the statistical models mentioned above assume a normal distribution of NTC

onset, see e.g., the model proposed by Lyman in Ref. [5]. The resulting NTCP then

takes the form of an error function, i.e., the integral of a Gaussian distribution, similar

to what we find from our approximations. It is important to note though that the

origin of stochasticity may be different, as discussed in more detail in our conclusions.

Mathematically, our main result is intuitive. We find that, for a sufficiently large

population, the distribution of first-passage times through the threshold at which

an NTC sets in is approximately normal. The variance of this normal distribution

decreases proportionally to the size of the population. The deterministic result for

NTCP by Stocks et al. [12] is recovered in the limit of infinite population size (NTCP

as approximated by Stocks et al. was either zero or one).

While our approximation is relatively crude, the mathematical simplicity of our

result is a strength. Using our method to predict NTCP does not require extensive

numerical calculations. In some examples closed-form expressions can be obtained, in

other cases a small set of ordinary differential equations (ODEs) needs to be solved

numerically, which can be done much more efficiently than integrating forward a poten-

tially high-dimensional master equation. Since the linear-noise approximation (LNA),

on which our approach is based, is ubiquitous in statistical physics and applications,

our result may also lend itself to applications in other fields outside of radiotherapy

modelling.

The remainder of this paper is set out as follows. In Sec. 6.3 we present the

microscopic model of normal tissue cells adapted from the model of Stocks et al. [12]

and a definition of NTCP. We use this model to explain the steps of our approximation
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and derive our main results. This involves first writing the master equation, and

subsequently approximating the dynamics by carrying out a Kramers–Moyal expansion

and LNA. We then proceed to approximate the first-passage time across a boundary

by considering the dynamics in a small region near the boundary marking the onset

of NTC. This provides a Gaussian approximation of the first-passage times, and thus

an approximation to NTCP. Following Hanin and Zaider [7] we then consider a more

complicated model of normal tissue in Sec. 6.4. In this model there are two types of

cells (normal and damaged), and we show how our method can be extended to systems

with more than one degree of freedom. In the context of this model we also develop a

second approximation method for NTCP. In Sec. 6.5 we combine models of cancerous

cells and normal tissue to estimate the probability of complication-free tumour control,

i.e., the probability that the tumour is controlled without complications in the normal

tissue. In Sec. 6.6 we finally summarise our results. The Appendix contains further

details of our analysis.

6.3 Logistic model of healthy tissue

6.3.1 Model definitions

We first focus on a model of normal tissue similar to that in Ref. [12], which is itself

an individual-based extension to the deterministic dynamics considered in Ref. [7].

This existing work produced analytical descriptions of NTCP, but the analysis was

restricted to the deterministic limit, in which intrinsic noise within the population is

discarded. Our approach retains some of the effects of demographic noise on NTCP.

The model describes a well-mixed population of cells, we write Nt for the size of

the population at time t. Cells can divide by mitosis at a rate b. We assume that

overall growth is limited by spatial constraints and the presence of nutrients, or other

regulatory mechanisms, so that b is a logistic function of N ,

bN =

 b0

(
1− N

K

)
if N ≤ K

0 otherwise,
(6.1)

where b0 > 0 is a constant parameter. This indicates that the per capita birth rate

decreases with increasing population size, and growth ceases completely when the

carrying capacity K is reached; K is a model parameter and constant in time.
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Cells can die due to natural causes and from external radiation. Natural death

occurs with rate d. We note that explicitly separating death processes from birth

events is necessary for a stochastic treatment of the model; basing the analysis on

an effective net growth rate (i.e., bN − d), as in Ref. [12], is insufficient to model the

dynamics outside of the deterministic limit (models with different birth and death

rates, but with the same net growth rate can lead to different results for NTCP in a

stochastic setting).

External radiation damages cells mainly by inducing single or double strand breaks

in their DNA [19]. The model captures these processes via a hazard function h(t),

denoting the per capita death rate due to radiation. This rate will generally depend

on time, as determined by the details of the applied radiation protocol. For example,

we consider the linear-quadratic (LQ) formalism of brachytherapy in Sec. 6.4.

The model can be summarised as a list of ‘reactions’, with notation similar to that

used in chemical reaction systems. We write N to represent an individual normal cell.

The dynamics are then given by

N
b0

(
1−N

K

)
−−−−−−→ N +N (mitosis),

N d−−−−−−→ ∅ (natural death),

N h(t)−−−−−−→ ∅ (death due to radiation),

(6.2)

where the rates above the arrows are per capita rates.

The deterministic rate equation for this system can be formulated heuristically as

follows,

dN

dt
= b0N

(
1− N

K

)
− [d+ h(t)]N. (6.3)

It can also be derived systematically from the lowest-order terms in an expansion in

the inverse system size, as discussed below.

In the absence of radiation [i.e., when h(t) = 0], the non-zero fixed point of Eq. (6.3)

is given by N∗ = K
(

1− d
b0

)
. Since the population dynamics are stochastic, the size

of the population fluctuates about this value. To simplify the notation we will use

K = Ω
1−d/b0 in the following, such that—in the absence of radiation—the average

population size is Ω.
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6.3.2 Master equation

The process defined by Eqs. (6.2) can equivalently be described by a (chemical) mas-

ter equation (CME). This is a set of ODEs describing the evolution in time of the

probability for the population to be in each of the possible states, N . We write PN(t)

for the probability that the population has size N at time t. The master equation is

then given by

d

dt
PN(t) =

(
E−1 − 1

)
Nb0

(
1− N

K

)
PN(t)

+ (E − 1)N [d+ h (t)]PN(t),

(6.4)

where E is the step operator defined by its effect on a function fN , i.e., we have

EfN = fN+1, and similarly, E−1fN = fN−1. The operators act on everything to their

right.

6.3.3 Definition of normal-tissue complication probability and

strategies to calculate it

Definition

An organ requires a minimum number of cells to function properly [20]. We intro-

duce a threshold, L, and say that a normal tissue complication (NTC) is encountered

when the number of cells in the population Nt falls below L. Given that Nt is a

stochastic process, NTC will occur at different times in different realisations of the

model dynamics (or potentially, it may never occur in a given realisation). This leads

to the definition of normal tissue complication probability (NTCP). We assume that

once NTC has been encountered in a given realisation of the dynamics, it cannot be

repaired, even if the number of cells ultimately recovers to values above the thresh-

old L. We therefore define NTCP(t) as the probability that, at some time before t,

the population contained L cells or fewer. NTCP is then by definition an increasing

function of time. We remark that this definition of NTCP(t) differs from one used

previously in Ref. [12], which allowed NTCP(t) to decrease. In practice results using

the two different definitions are often very similar.

Mathematically the calculation of NTCP constitutes a first-passage time prob-

lem [21]. More precisely, NTCP(t) is the cumulative distribution function of the
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first-passage time through the threshold L. The methods we develop to approximate

NTCP are therefore potentially applicable to a variety of other problems involving the

estimation of first-passage time distributions, beyond the specific example of NTCP.

Strategies for the calculation or simulation of NTCP

Realisations of the process defined by Eqs. (6.2) can be generated using the stochas-

tic simulation algorithm by Gillespie [22, 23]. In principle, a large ensemble of such

simulations can be used to measure NTCP(t). However, in practice this approach is

of limited use since a large number of runs need to be collected to obtain sufficient

statistics. Simulations also offer relatively little in the way of mechanistic insight.

One can also find the NTCP(t) by direct numerical integration of Eq. (6.4). To do

so, one must impose an absorbing boundary at L, i.e., the birth rate bL would have to

be set to zero so that once a trajectory has reached the threshold L it cannot recover

to values above the threshold. In practice, this approach is computationally costly,

especially in more realistic models where there are several different types of cells (see

e.g., Sec. 6.4). The master equation is then a large set of coupled ODEs which would

have to be integrated forward.

An alternative approach involves the use of generating functions (for general prin-

ciples see for example Ref. [24]). However, this technique is usually only viable for

relatively simple models. For example, generating functions can sometimes be calcu-

lated analytically when per capita birth and death rates do not depend on the current

population size, i.e., when bN is independent of N . This indicates that different cells

reproduce and die independently of each other, and for such models explicit equations

for both TCP and NTCP can, in principle, be obtained based on generating functions.

This is not the case in the above logistic growth process however, which involves in-

teraction between cells due to the overall carrying capacity. A notable example of

an exact calculation using generating functions is the work of Zaider and Minerbo in

Ref. [8] who obtain TCP in closed form for a linear-birth death process with time-

dependent death rate (the time dependence is due to irradiation of the population).

Their result for TCP can be expressed in terms of the solution of the rate equation

describing the population in the deterministic limit (see also Ref. [25]). It is important

to note though the result of Ref. [8] for TCP is valid for populations of any finite size,
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whereas the approximation of NTCP in Ref. [12] discards intrinsic fluctuations.

Given the limitations of these numerical and analytical methods, we develop and

use an approximation to estimate the NTCP. The approach is based on Kramers–

Moyal expansion techniques [24,26] and retains features of the intrinsic noise resulting

from the finiteness of the population of cells. At the same time, we assume that the

population is sufficiently large so that the jump process defined by the master equation

(6.4) can be approximated by a stochastic differential equation (SDE).

6.3.4 Kramers–Moyal expansion and linear-noise approxima-

tion

Kramers–Moyal expansion and Fokker–Planck equation

The expansion method is based on the assumption of a large, but finite population, as

will be explained in further detail below. We will refer to Ω as the system size, in-line

with previous literature [24, 26]. As a first step we introduce the population density

nt = Nt/Ω; that is, the population size at time t divided by the typical system size.

We re-scale the threshold for the onset of NTC in the same way and write ` = L/Ω;

NTC thus occurs when nt ≤ `. We also introduce a re-scaled carrying capacity and

write k = K/Ω. Given our above choice K = Ω
1−d/b , we have k = (1− d/b)−1.

Re-writing functions of N as functions of n = N/Ω, we find E±1f(n) = f(n± 1/Ω)

for the action of the step operator. We proceed to consider the limit where the system

size is large, Ω� 1. In this limit one can expand

E±1 = 1± 1

Ω

∂

∂n
+

1

2Ω2

∂2

∂n2
+ . . . . (6.5)

Substituting this into the master equation (6.4) results in a Fokker–Planck equation

for the probability density Π(n, t),

∂

∂t
Π(n, t) =− ∂

∂n
µ(n, t)Π(n, t) +

1

2Ω

∂2

∂n2
σ2(n, t)Π(n, t), (6.6)

where we have neglected higher-order terms in Ω−1. The probability of finding the

random process nt with a value in the interval [n, n+ dn) at time t is Π(n, t)dn.
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For the current model, the drift and diffusion terms in Eq. (6.6) are given by

µ(n, t) = nb0

(
1− n

k

)
− n [d+ h(t)] , (6.7a)

σ2(n, t) = nb0

(
1− n

k

)
+ n [d+ h(t)] , (6.7b)

respectively. Equation (6.6) describes the statistics generated by solutions of the Itō

SDE

dnt = µ(nt, t)dt+ Ω−1/2σ(nt, t)dWt, (6.8)

where Wt is a standard Wiener process.

In principle, trajectories of this SDE can be generated in simulations, for example

using the Euler–Maruyama method [27]. These simulations are more efficient than

simulating the original model, in particular the population size only enters in the

noise strength and does not affect computing time required to generate a set num-

ber of realisations. However, our aim is to make analytical progress. This requires

further approximation, first because µ(nt, t) is a non-linear function of nt, and more

importantly because the noise in Eq. (6.8) is multiplicative. We proceed by making

a further simplification using the LNA [24,26], effectively turning multiplicative noise

into additive noise.

Linear-noise approximation

To carry out the LNA we introduce the stochastic process ξt via the transformation

[26]

nt = φ(t) + Ω−1/2ξt, (6.9)

where φ(t) is a deterministic function of t, to be determined shortly.

We next substitute this ansatz into Eq. (6.8), and expand in powers of Ω−1/2. From

the two lowest-order terms we find

dφ

dt
= µ [φ(t), t] , (6.10a)

dξt = µ′ [φ(t), t] ξtdt+ σ [φ(t), t] dWt, (6.10b)

where µ′ [φ(t), t] is the derivative of the drift µ(n, t) with respect to n, evaluated at

φ(t) and t.
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The first of these equations indicates that φ(t) is the solution of a deterministic

rate equation. Up to re-scaling of N and K this rate equation is identical to Eq. (6.3).

The SDE (6.10b) describes fluctuations about this deterministic trajectory, due to

demographic noise. We note that the LNA is only valid provided corrections to the

deterministic dynamics remain small; if this is not the case higher-order terms in the

system-size expansion become important. The approximation is generally appropriate

if the deterministic trajectory is locally attracting, i.e., if µ′[φ(t), t] < 0 at all times.

This condition is fulfilled in the present model.

The linear SDE (6.10b) can be solved straightforwardly [24,26,28], and, within the

LNA, the distribution of nt is found to be Gaussian, centred around the solution φ(t)

of Eq. (6.10a),

Π(n, t) =
1√

2πΩ−1Σ2(t)
exp

(
− [n− φ(t)]2

2Ω−1Σ2(t)

)
. (6.11)

The variance of this distribution, Ω−1Σ2(t), is a function of time, and can be

obtained from the solution of

dΣ2

dt
= 2µ′ [φ(t), t] Σ2(t) + σ2 [φ(t), t] , (6.12)

see e.g., Ref. [28].

For some cases Eqs. (6.10a) and (6.12) can be solved exactly, and one can obtain

an analytical expression for Π(n, t) in Eq. (6.11). We discuss this in the context of the

current model below. For the general case, these equations can be integrated forward

numerically, using standard Runge–Kutta methods. This only requires the integration

of two ODEs.

Approximation of NTCP(t)

We now proceed to estimate NTCP using the outcome of the LNA. Taking Eqs. (6.10a)

and (6.10b) as a starting point, the calculation of NTCP amounts to a first-passage

time problem for a SDE with time-dependent drift and noise strength. Equation (6.10b)

describes an Ornstein–Uhlenbeck process with time-dependent rates [24]. Due to the

time-dependence of φ(t) in Eq. (6.10a), calculating NTCP amounts to calculating the

first-passage time of this Ornstein-Uhlenbeck process through a moving boundary.

While the first-passage time distribution of Ornstein–Uhlenbeck processes is available
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Figure 6.1: Population size as a function of time for the model in Sec. 6.3.1. In this set-
up constant radiation acts from a given time, here chosen to be t = 0. The size of the
population then decreases and falls below the threshold for the onset of NTCs. Panel
(a): The central, blue line shows the deterministic trajectory [Eq. (6.10a)], the red
lines show a band of one standard deviation as predicted by the LNA, see Eq. (6.12).
The shading of the background indicates the rate of cell death due to radiation h(t).
The dashed line is the threshold for onset of NTC. Panel (b): Magnified look at the
crossing region, shown in the re-scaled coordinates τ and ζ. Shown are three stochastic
trajectories (black noisy lines) from simulation of SDE (6.8); they are approximately
linear with gradient minus one, as predicted by Eq. (6.15). Panel (c): Schematic
representation of our approximation. We start from the Gaussian distribution obtained
within the LNA [Eq. (6.11)] and project trajectories onto the time axis, assuming that
their behaviour is linear with slope minus one. Model parameters are given in Table 6.2
[parameter set (D)].

for constant rates and a static boundary [29], studies of instances with time-dependence

are often based on approximation schemes for specific cases; examples can be found

in Refs. [30,31].

To make progress we therefore use a further approximation. We focus on cases in

which the deterministic trajectory φ(t) crosses the threshold ` = L/Ω, as illustrated in

Fig. 6.1(a); we write t∗ for this time. The exact value of t∗ will depend on the applied

radiation protocol and the other model parameters. The calculation of NTCP(t) by

Stocks et al. [12] is based on this deterministic contribution, and within their calcu-

lation NTCP(t) = Θ(t − t∗) is a Heaviside step function [Θ(u) = 1 for u ≥ 0, and

Θ(u) = 0 otherwise]. Our aim is to build on the results in Ref. [12] and to capture

some of the influence of intrinsic fluctuations on NTCP.

As a next step we look at the dynamics of Eqs. (6.10a) and (6.10b) in a time window

around t∗, as shown in Fig. 6.1(b). Some trajectories of the stochastic system will

cross the threshold ` before t∗, and others after t∗. We expect these fluctuations in the

crossing time to decrease as the system-size parameter Ω is increased. To evaluate this
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Coordinate Interpretation Relations

(A) Nt number of individuals in population at time t —

(B) nt population density nt = Nt/Ω

(C) φ(t) deterministic (mean-field) trajectory nt = φ(t) + Ω−1/2ξt
ξt deviation from mean-field path due to linear

noise

(D) ζτ re-scaled population near boundary ` = L/Ω nτ = `+ Ω−1/2ζτ

τ re-scaled time near deterministic crossing time
t∗

t = t∗ + Ω
−1/2

−µ(`,t∗)τ

Table 6.1: Summary of the different coordinate systems used to describe the popula-
tion in the model of Sec. 6.3.1. Original coordinates (A) appear in the master equa-
tion (6.4), while coordinates (B) and (C) are used in the Kramers–Moyal expansion
and linear-noise approximation, respectively [see Eqs. (6.8) and (6.10)]. Coordinates
(D) are used for our analysis of the dynamics in the narrow, boundary-crossing region.
The subscript t (or τ) is used to denote random processes.

further we consider the Gaussian distribution for the population density nt∗ obtained

by evaluating Eq. (6.11) at time t∗. By construction, this distribution is centred on

`, as shown in Fig. 6.1(c). We now proceed on the basis that trajectories with values

nt∗ > ` will first cross the threshold at a time greater than t∗, and estimate this time of

crossing from the dynamics near t∗. Similarly, trajectories with nt∗ < ` have already

crossed the threshold, and we estimate how long before t∗ this has occurred. This

procedure implies several assumptions, for example a trajectory with nt∗ > ` may

have had its first crossing before t∗ and then returned to values nt above ` due to

further fluctuations. This is not captured by our estimate of NTCP.

In order to focus on the dynamics in a time window near t∗, it is useful to introduce

re-scaled coordinates

t = t∗ − Ω−1/2

µ(`, t∗)
τ, (6.13a)

nτ = `+ Ω
−1/2ζτ . (6.13b)

Considering values of τ and ζ of order Ω0 allows us to magnify the region around t∗

where boundary crossings are likely (ζτ refers to the random process, while ζ is a value

in the process’s state space). In these coordinates, the crossing of the deterministic

trajectory occurs at τ = 0, and the position of the threshold is at ζ = 0. We note that

µ(`, t∗) < 0 so that positive values of the re-scaled time (τ > 0) correspond to t > t∗.

A summary of the coordinates used in our analysis is given in Table 6.1.
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Substituting the new coordinates into Eq. (6.6), and writing Π̃(ζ, τ) for the prob-

ability density in these coordinates, we find

∂

∂τ
Π̃(ζ, τ) =

1

µ(`, t∗)

∂

∂ζ

[
µ(`+ Ω

−1/2ζ, t)Π̃(ζ, τ)
]

+
1

µ(`, t∗)

1

2Ω1/2

∂2

∂ζ2

[
σ2(`+ Ω

−1/2ζ, t)Π̃(ζ, τ)
]
. (6.14)

Expanding in powers of Ω−1/2 we find to lowest order ∂
∂τ

Π(ζ, τ) = ∂
∂ζ

Π(ζ, τ), i.e., near

the threshold the dynamics of the system can be approximated by

ζτ = ζ0 − τ, (6.15)

where ζ0 is the location of the path at time τ = 0 (i.e., at t = t∗). Fig. 6.1 (b) shows

a number of different stochastic trajectories in this region. Broadly, they travel along

approximately parallel straight paths of gradient minus one (in the coordinate system

of τ and ζ).

We now use this result to approximate the distribution of crossing times. To do

this we estimate when a particular trajectory located at ξ0 at time t∗ crosses (or did

cross) the threshold. We write τ×(ζ0) for this crossing time in the re-scaled coordinates.

Using Eq. (6.15) we find

τ×(ζ0) = ζ0 . (6.16)

We show this schematically in Fig. 6.1(c). We now combine this with the Gaussian

distribution for ξ0 obtained from the LNA, also shown in Fig. 6.1(c). Equation (6.11),

evaluated at t = t∗, can be written as

Π(ζ0) =
1√

2πΣ2(t∗)
exp

(
− ζ2

0

2Σ2(t∗)

)
, (6.17)

and we use this together with Eq. (6.16) to approximate the distribution of first-passage

times t× as

p(t×) =

√
Ωµ2(`, t∗)

2πΣ2(t∗)
exp

(
−Ωµ2(`, t∗)

2Σ2(t∗)
(t× − t∗)2

)
. (6.18)

Using the definition of NTCP as outlined above we find

NTCP(t) =
1

2

[
1 + erf

(
(t− t∗)

√
Ωµ(`, t∗)√

2Σ(t∗)

)]
, (6.19)

where erf is the error function.
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Figure 6.2: NTCP as a function of time for the logistic model of healthy tissue in Sec.
6.3.1. Black circles are obtained from numerical integration of the master equation
of the original model [Eq. (6.4)]. Coloured solid lines show the approximation of
Eqs. (6.23) and (6.24). Model parameters are given in Table 6.2.

Parameter Definition Value

(A) (B) (C) (D) (E)

b0 mitosis rate (day−1) 0.019 0.019 0.019 0.019 0.038
d natural death rate (day−1) 0.002 0.002 0.002 0.002 0.004
h0 irradiated death rate (day−1) 0.035 0.032 0.026 0.026 0.026
Ω typical population size (see text) 500 500 500 5000 500
` threshold for onset of NTC 1/3 1/3 1/3 1/3 1/3

Table 6.2: Five sets of parameters used in Fig. 6.2 for the logistic model of healthy
tissue. These parameter sets are the same as those considered in Ref. [12], but we
have defined separate mitosis and natural death rates to be able to analyse stochastic
effects in finite populations (see text). The ratio of mitosis and natural death was
chosen as 10 : 1, consistent for example with Ref. [7].

Closed-form approximation of NTCP for model with logistic growth and

constant radiation

We now test this approximation scheme on the logistic growth model defined in

Eq. (6.2). We focus on a particularly simple case where there is no radiation prior to

a certain time, and a constant rate of death due to radiation thereafter. We choose

time t = 0 as the point at which radiation sets in, so that the hazard function h(t) is

the step function

h(t) =

 0 for t < 0,

h0 for t ≥ 0.
(6.20)

We primarily consider radiation of this type as a simple initial example, following the

study of NTCP in Ref. [12]. More complicated radiation protocols will be discussed

below.
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We assume that the dynamics of the population start long before t = 0, so that the

stationary state of the master equation (6.4) [with h(t) = 0] is reached by t = 0. The

mean and variance of this distribution are given by the fixed points of Eqs. (6.10a)

and (6.12), using µ and σ2 for the logistic model and setting h(t) = 0. We have

φ(t = 0) = 1, (6.21a)

Σ(t = 0) =
d

b0 − d
. (6.21b)

At times t ≥ 0, Eqs. (6.10a) and (6.12) are given by

dφ

dt
= φb0

(
1− φ

k

)
− φ [d+ h0] , (6.22a)

dΣ2

dt
= 2

{
b0

(
1− 2φ

k

)
− [d+ h0]

}
Σ2 + φb0

(
1− φ

k

)
+ φ [d+ h0] . (6.22b)

Eq. (6.22a) can be solved in closed form subject to the initial condition φ(0) = 1.

From the resulting deterministic trajectory φ(t) one then finds the passage time t∗ of

the deterministic trajectory as

t∗ =
1

b0 − d− h0

log

(
h0`

b0`− d`− b0 + d+ h0

)
, (6.23)

assuming the fixed point of the deterministic trajectory is below the boundary `. Next

we turn to Eq. (6.22b) in order to find Σ2(t∗). For constant radiation the path φ(t)

is monotonically decreasing in time. This allows us to trade the time derivative in

Eq. (6.22b) for a derivative with respect to φ, resulting in a linear ODE for Σ2 as a

function of φ. For our specific example this ODE can be solved in closed form, and

we find the variance of first-passage times as

Σ2 (t∗)

Ωµ2(`, t∗)
=

5b+ 2(b0−d)d
h0

+ (b0−2d)h0

b0−d − b0+d+h0

`
+ (b0−d)(b0−d−h0)(d+h0)

[d+h0+b0(`−1)−d`]2 −
(b0−d)[b0+3(d+h0)]
d+h0+b0(`−1)−d`

Ω(b0 − d− h0)3

+
2(b0 − d)(b0 + 2d+ 2h0) log

(
h0`

b0`−d`−b0+d+h0

)
Ω(b0 − d− h0)4

.

(6.24)

This can then be used in Eq. (6.19) to obtain NTCP(t).

In Fig. 6.2 we show the resulting NTCP as a function of time for several sets

of model parameters; these parameter sets are summarised in Table 6.2, and were

previously motivated and used in Ref. [12] to consider normal tissue complications
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arising from the treatment of prostate cancer. For the parameters shown, the standard

deviation in the time for NTCP onset varies from 3% and 21% of the mean onset time.

In order to test the accuracy of our approximation, we have also obtained NTCP(t)

for the original model by numeral integration of the master equation Eq. (6.4); these

values are shown as black circles in Fig. 6.2. These results are compared with the

analytical approximations in Eqs. (6.19) and (6.24), and for most of the parameter

sets tested we find good agreement. The approximation works noticeably less well for

parameter set (E) than for the other four sets. In this case, the speed with which the

deterministic path crosses the boundary is lower than for the other parameter sets.

This leads to a longer time window around t∗ within which crossings are likely, and

thus a larger amount of error in our approximation.

6.4 Extended model of normal and doomed cells

6.4.1 Model definitions

Hanin and Zaider [7] proposed a model which adds complexity by including radiation-

damaged cells. In this model, damaged cells continue to occupy the limited volume

available to the population. Damaged cells also carry out their functions, but fail

to proliferate. The presence of such cells has been offered an explanation for the

observation that, after irradiation, an initial lag period occurs before re-population [7,

32]. Similar models have been proposed for tumour cells for a more realistic calculation

of TCP, where the population is divided into radiation-damaged and unaffected tumour

cells [33].

As before there are ‘normal cells’ N which carry out the functions of the organ;

these cells have the ability to proliferate. However, once damaged by radiation, a cell

does not vanish immediately; rather, it becomes a ‘doomed cell’ X [7]. Doomed cells

continue to contribute to the normal functions of the organ, however they are unable

to proliferate. Thus, although they may temporarily aid the function of the organ,

they ultimately die without reproduction. Doomed cells also consume resources and

so are in direct competition with the normal cells. As a result of this, the per capita

mitosis (birth) rate of normal cells decreases as the total size of the population of both
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types increases. The dynamics of the model can be summarised as follows:

N
b0

(
1−N+X

kΩ

)
−−−−−−−−→ N +N (mitosis of normal cells),

N h(t)−−−−−−−−→ X (radiation damage),

N d1−−−−−−−−→ ∅ (death of normal cell),

X d2−−−−−−−−→ ∅ (death of doomed cell).

(6.25)

We write N and X for the numbers of normal and doomed cells, respectively. As

before, the constant k ≡ (1− d1/b0)−1 is chosen so that—in the absence of radiation—

the stationary average size of the population of normal cells is Ω. An NTC is assumed

to arise when the total number of functional cells, N +X, falls below a threshold L.

Writing s = (N + X)/Ω for the (re-scaled) total number of functional cells in the

population, and x = X/Ω for the (re-scaled) number of doomed cells, one has the

following rate equations in the deterministic limit,

ds

dt
=b0

(
1− s

k

)
(s− x)− d1(s− x)− d2x, (6.26a)

dx

dt
=h(t)(s− x)− d2x. (6.26b)

In this example, we consider brachytherapy where there is a time-varying dose

of radiation acting on the population of normal cells, resulting from the decay of a

radioactive implant. The effect of this type of radiation on the population of normal

cells is obtained using the linear-quadratic (LQ) formalism, which is well established in

the modelling of brachytherapy [34–36]. This formalism accounts for the degradation

of the radioactive implant, both linear and quadratic tissue responses to radiation, and

DNA repair. This leads to a time-dependent radiation hazard rate for the conversion

of normal cells into doomed cells:

h(t) = αR0e
−λt +

2βR2
0e
−λt

γ − λ
(
e−λt − e−γt

)
, (6.27)

where α, β, γ, λ and R0 are model parameters; R0 in particular denotes the initial

dose rate. Further details are given in 6.7. We consider a specific set of realistic

parameters, proposed by Hanin and Zaider [7] and summarised in Table 6.3. These

parameters were chosen to model the treatment of prostate cancer, where the normal-

tissue complication refers to grade 2, or larger, toxicity (‘GU2+’) of the genitourinary

tract.
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Figure 6.3: Behaviour of the model with normal and damages cells defined in Sec. 6.4.1.
Panels (a) and (c): Population density for number of functional cells as a function of
time for two different parameter sets (see Table 6.3). The central blue line shows the
deterministic trajectory [Eq. (6.26b)], red lines indicate a band of one standard devi-
ation as predicted by the linear-noise approximation. The shading of the background
indicates the rate of radiation damage h(t). Panels (b) and (d): NTCP as a function
of time. We compare the results of our two approximations with the outcome of nu-
merical integration of the (chemical) master equation (CME) using a Runge–Kutta
scheme (RK4).

6.4.2 Alternative approximation for NTCP

Results for this model are presented in Fig. 6.3. We first focus on the deterministic

dynamics, indicated by the blue lines in panels (a) and (c). In panel (a) the mitosis

rate b0 is sufficiently low for deterministic trajectory to fall below the threshold ` for

the onset of NTCs. The approximation for NTCP developed in Sec. 6.3.4 can be

applied, as discussed in more detail in Sec. 6.4.3.

The second parameter set in Table 6.3 describes a case with a higher mitosis rate

b0. As shown in Fig. 6.3 (c), the solution of the deterministic rate equations then only

briefly falls below the threshold `. The number of functional cells then increases again

to values above `. In the stochastic system we expect only a fraction of trajectories

to cross the threshold; some realisations may never fall below `, and hence NTCP(t)

can be expected to take a long-time limit below one. This cannot be captured by the

approximation method in Sec. 6.3.4.

With this in mind, we propose the following improved method of estimating NTCP.

Within the LNA, at each moment in time t the distribution of the population of interest
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Parameter Definition Fig. 6.3 (a, b) Fig. 6.3 (c, d)

b0 mitosis rate (day−1) 0.0821 0.246
d1 normal cell death rate (day−1) 0.0164 0.0164
d2 irradiated cell death rate (day−1) 0.0164 0.0164
Ω population size 1000 1000

` = L
Ω critical fraction of population 0.39 0.39

α LQ model parameter (G y−1) 0.109 0.109
β LQ model parameter (G y−2) 0.0364 0.0364
γ rate of DNA repair (day−1) 23.7 23.7
R0 initial dose rate of implant (G day−1) 1.68 1.68
λ decay rate (day−1) 0.0117 0.0117

Table 6.3: Parameters used in Fig. 6.3. Similar parameters were previously proposed
in Ref. [7]. We have explicitly included normal-cell birth and death and made the
assumption that d1 = d2.

(in this case st) is approximately normal with a mean φ(t) and variance Σ2(t) given by

Eqs. (6.10a) and (6.12), respectively. The amount of probability below the threshold

` at a given time is then obtained as1

Q(t) =
1

2

[
1 + erf

(√
Ω[`− φ(t)]√

2Σ(t)

)]
. (6.28)

We now estimate NTCP(t) as the maximum amount of probability below the

threshold at any earlier time t′ ≤ t, i.e.,

NTCP(t) = max
t′≤t

Q(t′). (6.29)

Further steps of the mathematical evaluation are presented in 6.8.

We briefly comment on the limitations of this approximation, before we discuss

the results for the model of normal and doomed cells. Equation (6.29) provides a

lower bound for NTCP of the process described by the LNA. This can be seen as

follows. At a given time t, let the maximum in Eq. (6.29) have occurred at a time

tm ≤ t; the estimate for NTCP(t) is then Q(tm). Consider now a trajectory with a

total population density above the boundary at time tm, stm > `. Such a trajectory

does not contribute to NTCP(t) within our approximation, even though it may have

well have attained population sizes below threshold before tm, or go below threshold

between tm and t. The above approximation therefore underestimates NTCP. We note

that the SDE obtained in the LNA is itself an approximation, so the above calculation

is not necessarily a lower bound to the NTCP of the discrete population dynamics

from which we started.
1We note that the quantity Q(t) in Eq. (6.28) corresponds to NTCP as defined in Ref. [12].
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Figure 6.4: Measure of error for the predictions of NTCP for the model in Sec. 6.3.1.
We use the Earth Mover’s Distance (EMD) [37] as a measure of distance between
two probability distributions. Each set of symbols shows the EMD of the distribu-
tion of first-passage times obtained from the different approximations relative to the
distribution obtained for the original model obtained by numerical integration of the
master equation (6.4). We compare three approximations: the deterministic approx-
imation from Ref. [12] (i.e., the distribution of first-passage times is a delta-peak at
the deterministic crossing time t∗ ), and Approximations 1 and 2 as described in the
text. Results are shown as a function of the population-size parameter Ω. The data
indicates that the EMD of Approximations 1 and 2 from the original model scales as
Ω−1 with the typical size of the population; similar scaling is also observed using the
Kullback–Leibler divergence (not shown). For the deterministic approximation the
EMD decays much more slowly with the system-size parameter (∝ Ω−1/2).
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Despite these limitations, the method provides useful estimates for NTCP. For

example, NTCP(t) obtained from Eqs. (6.28) and (6.29) for the model in Sec. 6.3.1

does not significantly differ from the predictions of the method discussed in Sec. 6.3.4.

To keep the language compact we will refer to the procedure in Sec. 6.3.4 as Ap-

proximation 1 from now on, and to that in Eqs. (6.28) and (6.29) as Approximation

2. A quantitative comparison of the distributions of first-passage time from the two

approximations for the model in Sec. 6.3.1 is shown in Fig. 6.4. The data indicates

that Approximation 2 provides an improvement relative to Approximation 1. Both

methods do considerably better than the deterministic approximation in Ref. [12].

To compare the three approximations we have use the Earth-Movers distance

(EMD), also known as the Wasserstein metric [37]. Intuitively, it is a measure of

the amount of ‘effort’ needed to turn one distribution into the other; it is the amount

of probability that needs to be moved weighted by the distance it has to be moved.

We choose this rather than, say, the Kullback–Leibler divergence [38] or total variation

distance since the distribution of first-passage times from the deterministic approach

is a Dirac delta-distribution [12] which results in infinite Kullback–Leibler divergence.

The EMD gives a more useful measure of error.

6.4.3 NTCP for model of normal and doomed cells

For the model with normal and doomed cells Approximation 2 can provide a signifi-

cantly improved prediction of NTCP compared to Approximation 1, as we will discuss

in this section. In this context it is useful to distinguish the cases in which normal

tissue complication occurs with certainty at long times and those in which long-time

NTCP stays below one.

Certain normal tissue complication at long times

For the first set of parameters in Table 6.3 normal-tissue complication occurs with

probability one at long times. We show results in panel (a) of Fig. 6.3. The source

of radiation is implanted at time zero, assuming that the population of normal cells is

at its stationary state at this time. The population of functional cells then decreases

monotonously, and the number of functional cells crosses the threshold for the onset of

NTC. Panel (b) shows the estimates for NTCP as a function of time for Approximation
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1 and Approximation 2. Their predictions are largely indistinguishable, and they both

agree well with results for the original model found by numerical integration of the

master equation.

We note that for this choice of parameter values, carrying out the numerical inte-

gration of the master equation takes approximately 105 times longer than to evaluate

each of the two approximations. This is because the master equation consists of a set

of Ω2 coupled ODEs, whereas evaluation of each of the approximations only involves

integrating forward five ODEs (for the means of the two degrees of freedom, their

variances and the covariance). Thus, the approximation methods offer a significant

increase in efficiency for large populations, at moderate reduction of accuracy.

Uncertain onset of normal tissue complication

In panels (c) and (d) of Fig. 6.3 we show the same quantities, but for a different choice

of birth rate (see Table 6.3). The deterministic path barely crosses the boundary `,

and for this choice of parameters only a fraction of trajectories of the stochastic model

will lead to an onset of NTC. In this case, the predictions of the two approximations

are widely different. Approximation 1 assumes a Gaussian distribution of first-passage

times and deviates significantly from the NTCP seen in the original model. Most no-

tably, this approximation predicts that all trajectories eventually cross the boundary

so that NTCP(t)→ 1 at large times. Although this is not the case for typical popula-

tion size used in this example (Ω = 1000), we remark that for Ω→∞ NTC becomes

certain at long times in the original model for the present parameter set.

As seen in Fig. 6.3 (d) Approximation 2 outperforms Approximation 1. This is be-

cause, in the narrow region where boundary-crossings are likely, there is a significant

change in the drift for the total population size; the sign of the drift changes from nega-

tive to positive. Approximation 2 takes this into account, whereas Approximation 1 is

based on constant drift within the region near the boundary `. Unlike Approximation

1, Approximation 2 does not (wrongly) predict that all trajectories eventually cross

the boundary. Instead NTCP(t) remains below unity at t→∞ within Approximation

2.
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6.5 Complication-free tumour control

6.5.1 Motivation

The objective of radiation therapy is to successfully eliminate cancerous cells while

avoiding further complications from damaging normal tissue cells. In the preced-

ing sections, we outlined analytical approximations for the efficient calculation of

NTCPs. Tumour control probabilities—the probability of eliminating all cancer cells—

from a stochastic birth-death model have been previously considered by Zaider and

Minerbo [8]; the authors derive a general equation for the probability of the elimina-

tion of all tumour cells. In this section, we combine these two results for NTCP and

TCP respectively to investigate how, in principle, mathematical models can be used

to optimise the application of radiation therapy to achieve complication-free tumour

control. We begin by motivating an extension to the model described in Sec. 6.3 to

include the growth of cancerous cells. For completeness, we then proceed by briefly

reviewing Zaider and Minerbo’s result describing TCP.

6.5.2 Model definitions

We consider a model which contains both normal cells N and cancerous cells C. The

two populations are assumed to be spatially separated from each other. The normal

cells are as described in Sec. 6.3: they undergo mitosis with a rate which depends

on the number of normal cells, leading to logistic growth. They are also subject to

a natural death with rate d1, and to death from a source of radiation with hazard

function h1(t). We label the rates pertaining to normal cells with the subscript 1, and

similarly subscript 2 for cancerous cells. Cancerous cells, on the other hand, undergo

mitosis with a constant rate b2 [8]; numerical evidence suggests that the resulting

exponential growth characterise tumours of small sizes well [39]. Cancer cells are also

subject to a natural death with a rate d2 and to death from a source of radiation with
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hazard function h2(t). The model can be summarised by the following reactions:

N
b1

(
1− N

kΩ

)
−−−−−−→ N +N , C b2−−−−−−→ C + C, (mitosis),

N d1−−−−−−→ ∅, C d2−−−−−−→ ∅, (natural death),

N h1(t)−−−−−−→ ∅, C h2(t)−−−−−−→ ∅, (irradiated death).

(6.30)

Although both cells are subject to the same source of radiation, the hazard functions

h1(t) and h2(t) for the two cell types can differ. This is because each cell type differs

in its susceptibility to radiation and in their ability to repair damaged DNA. We

again consider the case of brachytherapy, as in Sec. 6.4. The hazard function is as in

Eq. (6.27), where the parameters α1,2, β1,2, and γ1,2 depend on the cell type. We also

assume that, due to the presumed spatial separation of normal tissue and cancerous

cells, the treatment can be targeted such that each cell type absorbs a different fraction

of the total dose rate. This is incorporated into the hazard function by replacing the

initial dose rate R0 with an effective dose rate θ1,2R0. The parameters describing the

initial dose rate R0 and the decay rate λ are characteristics of the radioactive implant

and are thus common to the hazard function of both cell types. As before, we initialise

the population of normal cells in its stationary state. We let there be initially C0 cancer

cells.

6.5.3 Tumour control probability, normal-tissue complication

probability, and probability of complication-free control

We now consider the probability as a function of time of eliminating all cancer cells—

TCP(t). Similarly to the calculation of NTCP(t), this is mathematically a first-passage

time problem. Zaider and Minerbo [8] developed an analytical description for TCP

for the linear dynamics of cancerous cells described above. This was achieved using a

generating-function. This approach is feasible due to two features of the problem: (i)

the model is linear (i.e., cells do not interact with each other), and (ii) the boundary

of interest for TCP is at zero (i.e., extinction of tumour cells). The result for TCP(t)

is [8]

TCP(t) =

[
1− C(t)/C0

1 + b2

∫ t
0

dt′ C(t)
C(t′)

]C0

, (6.31)
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Figure 6.5: TCP, NTCP and probability of CFC for the model in Sec. 6.5.2. Panel
(a): Probability that normal tissue complication has not yet occurred, 1− NTCP(t),
as predicted by Approximation 2 (blue line) and from numerical integration of the
master equation (blue squares). Probability that the tumour is successfully eliminated
TCP(t) (dashed red line). TCP is calculated as in Ref. [8]. The shading of the
background indicates the hazard function h(t). Initial dose R0 = 2.5G y. Panel (b):
Resulting probability of complication-free tumour control CFC(t). Black line is using
Approximation 2 for NTCP and TCP as in Ref. [8]; results from direct numerical
integration of the master equation are shown as black squares. Panels (c) and (d):
CFC(t) for different values of the initial dose R0, and for two different sets of model
parameters (see Table 6.4).
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where C(t) is the deterministic path for number of cancerous cells, given by

dC

dt
= [b2 − d2 − h2(t)]C(t). (6.32)

Even though the expression involves the deterministic trajectory C(t) we stress again

that this result is exact for arbitrary population sizes, and does not imply any approx-

imations. While Eq. (6.32) cannot be solved analytically in most cases, the equation

can be integrated numerically for an efficient calculation of TCP(t). The analysis re-

viewed here has also been extended to consider more complicated models, including

the different stages of the cell cycle [9–11].

Complication-free tumour control (CFC) refers to the elimination of all cancer cells

while maintaining enough normally functioning tissue for an organ to operate without

complications [40]. The probability of CFC as a function of time is therefore given by

[40]

CFC(t) = TCP(t) [1− NTCP(t)] . (6.33)

We remark that Eq. (6.33) implies an equal weighting of the importance of tumour

control and NTCs. In the most extreme cases, for example where NTCs relate to organ

failure this is justified. In other cases, for example when NTC refers to increased

urinal frequency, a complication may be preferable to a potentially life-threatening

tumour. In such cases, Eq. (6.33) can be modified by appropriately weighting the

two probabilities to maximise a ‘quality of life’ measure in accordance with clinical

experience [41].

Fig. 6.5 (a) shows the probabilities 1−NTCP(t) and TCP(t) for the model defined in

Sec. 6.5.2, and for a specific choice of parameters (see Table 6.4). These quantities are

obtained by Approximation 2 for NTCP, and Eq. (6.31) for TCP. Similarly, Fig. 6.5 (b)

shows CFC(t) and compares the results from our approximation to those of numerical

integration of the master equation. For this choice of parameters we find a non-trivial

time (∼ 20 days) which maximises the probability of CFC. In the case of a temporary

brachytherapy implant, this would indicate the optimum moment for removal.

The analysis provided here allows us to investigate the optimum application of

brachytherapy to maximise the likelihood of CFC. We consider a fixed set of parameters

describing the cellular birth rates, death rates, susceptibilities and repair rates, shown

in Table 6.4. We consider a temporary implant of a certain radioisotope, 125I, which
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Case b d α β γ threshold frac. of dose pop. size
day−1 day−1 G y−1 G y−2 day−1 for NTC ` absorbed θ

Fig. 6.5 (a–c)
TCP 0.0165 0.0015 0.2 0.05 8.35 1.0 C0 = 103

NTCP 0.055 0.005 0.1 0.01 8.35 0.5 0.2 Ω = 103

Fig. 6.5 (d)
TCP 0.02 0.005 0.2 0.05 2.27 1.0 C0 = 103

NTCP 0.0067 0.0017 0.1 0.01 2.27 0.2 0.4 Ω = 103

Table 6.4: Parameters used in Fig. 6.5, along with λ = 0.0117 day−1. The parameters
in the upper two rows were previously used to model brachytherapy as a treatment for
prostate cancer, where the normal tissue complication refers to rectal proctitis [12].
The parameters in the bottom row are hypothetical, used to show that a change in
the optimum treatment strategy may result upon variation of parameters.

has a decay rate of λ = 0.0117 day−1. In order to achieve CFC, we assume we are able

to control the initial dose rate R0 (i.e., the size of the radioactive seed) and the time

at which the implant is removed.

Fig. 6.5 (c) shows the probability of CFC for different values of time and initial

dose, again efficiently generated using Approximation 2 for NTCP and Eq. (6.31)

for TCP. With the exception of the population sizes, the parameters we choose here

were previously used to model the treatment of prostate carcinoma [12] consistent

with experimentally collected parameters [42]. In this context NTC refers to acute

radiation proctitis [43]. For these parameters, the optimal strategy involves an initial

dose of size 1.7 G y and removal at a time over 50 days. Using this initial dose, the

probability of CFC(t) does not decrease at large times, providing a large window for

the removal of the implant or allowing the use of a permanent implant. This is not

the case for all parameters; the optimum strategy may require the timely removal of

the implant. An example of this is shown in Fig. 6.5 (d), which shows CFC(t) for

parameters where the cancer cells have a three-fold higher growth rate than normal

cells. The probability of CFC is peaked when implanting a high dose of radiation for

a short time. For this case, we see the band where CFC is likely is narrow, indicating

that such a treatment may be very sensitive to the time of removal of the implant.

6.6 Conclusions

To summarise, we have derived approximations for the distribution of first-passage

times through a boundary of a stochastic birth-death model. These approximations
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capture effects of fluctuations in the population discarded in previous approaches.

The improvements rely on an expansion in the inverse typical size of the population.

One can therefore expect the approach to be particularly useful for large, but finite

populations. Intrinsic noise is then weak, but not always weak enough to be ignored

altogether. It is worth noting that the methods we have developed do not require

the birth-death model to be linear, for example we have considered logistic growth.

Our analysis was presented in the context of normal tissue complication probabilities

for radiotherapy treatment, however these mathematical results may also have wider

applicability to other problems in which first-passage times of stochastic processes are

of interest [44].

We note that NTCP takes the form of an error function in our approximation.

This functional form has previously been reported in statistical models of NTCP, see

for example Ref. [5]. This indicates that NTCP can be different from zero or one

for intermediate doses of radiation; NTC then occurs (or does not occur) as a random

process. This is the case as well in our model; the source of stochasticity is the intrinsic

noise in the population of functional cells, i.e., random birth and death events. It is not

clear however what exactly the origin of uncertainty is in statistical models of NTCP.

Intrinsic stochasticity within functional subunits, or resulting from small numbers of

stem cells may be potential sources of randomness, but other factors are likely to

contribute as well.

We have obtained approximations of NTCP for models of normal tissue with a

single type of cell and for an extended model with two different cell types. Our results

demonstrate that these approximations can lead to a significant increase in efficiency

over simulation methods, at a moderate loss of accuracy. This is the case particularly

when the underlying model becomes complex and has many different internal states.

In the final part of the paper we showed how approximations of NTCP and TCP

can be used to estimate the probability of complication-free tumour control. We

have demonstrated how the analytical approximations can be used for the efficient

identification of optimised parameters for treatment planning in brachytherapy. Our

analysis is limited to stylised models, and we do not claim direct clinical applicability.

However, we hope that the methods we have developed can be adapted to more realistic

populations of cancerous cells and normal tissue.
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6.7 Appendix A: The LQ formalisation

We briefly review the LQ formalism for a radioactive implant [34–36]. We first consider

the reaction describing death due to irradiation. The LQ formalism relates the mean

surviving fraction of cells ψ to the total dose delivered in a time interval [0, t], D(t):

ψ(t) = e−αD(t)−βq(t)D(t)2

. (6.34)

Here, there are two radiosensitivity parameters, α and β, which describe a tissue’s

linear and quadratic responses to a source of radiation, respectively. For a radioactive

source exponentially decaying with rate λ and with an initial dose rate R0, the total

dose delivered by time t is given by D(t) = R0/λ [1− exp(−λt)]. The function q(t)

in Eq. (6.34) is the Lea–Catcheside protraction factor [45], which is specific to the

method of treatment involved. In the case of brachytherapy it is given by

q(t) =
2(λt)2

(γt)2(1− λ2/γ2) (1− e−λt)2

[
e−(λ+γ)t + γt

(
1− e−2λt

2λt

)
− 1 + e−2λt

2

]
. (6.35)

Here, γ is the rate at which radiation-damaged cells repair their DNA. The fractional

change in the population over an infinitesimal time ψ̇(t)/ψ(t) gives the hazard function

h(t). This is found to be given by [12]

h(t) = αR0e
−λt +

2βR2
0e
−λt

γ − λ
(
e−λt − e−γt

)
. (6.36)

6.8 Appendix B: Evaluation of Approximation 1

for the model of normal and doomed cells in

Sec. 6.4.1

We write Nt for the number of normal cells at time t and Xt for the number of doomed

cells. We are interested in the population of total functional cells, St ≡ Nt + Xt.

Specifically, we are interested in the time St first passes a boundary L. The master
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equation can be formulated in terms of S and X:

d

dt
PS,X(t) =

(
E−1
S − 1

)
b0(S −X)

(
1− S

kΩ

)
PS,X(t)

+
(
E−1
X − 1

)
h(t)(S −X)PS,X(t)

+
(
E+1
S − 1

)
d1(S −X)PS,X(t)

+
(
E+1
S E

+1
X − 1

)
d2XPS,X(t),

(6.37)

where PS,X(t) is the probability that random processes St, Xt have the values S, X at

time t. The operator ES is the step operator affecting the size of the total population,

and EX is the step operator affecting the number of doomed cells, i.e. ESfS,X = fS+1,X

and EXfS,X = fS,X+1.

We proceed by approximating the master equation via a Kramers–Moyal expansion.

First, we introduce re-scaled processes st = St/Ω and xt = Xt/Ω, and then expand

the step operators in the limit Ω� 1. We arrive at the Fokker–Planck equation

∂

∂t
Π(s, x, t) = − ∂

∂s

[
b0

(
1− s

k

)
(s− x)− d1(s− x)− d2x

]
Π(s, x, t)

− ∂

∂x
[h(t)(s− x)− d2x] Π(s, x, t)

+
1

2Ω

∂2

∂s2
[b0 (1− s) (s− x) + d1(s− x) + d2x] Π(s, x, t)

+
1

2Ω

∂2

∂x2
[h(t)(s− x) + d2x] Π(s, x, t)

+
1

Ω

∂

∂s

∂

∂x
d2xΠ(s, x, t),

(6.38)

where we have neglected higher-order terms in Ω−1. This Fokker–Planck equation can

equivalently be written as an SDE:dst

dxt

 = µ(st, xt)dt+
1

Ω1/2
B(s, x, t)

dW
(1)
t

dW
(2)
t

 , (6.39)

where the drift is given by

µ(s, x) =

b (1− s
k

)
(s− x)− d1(s− x)− d2x

h(t)(s− x)− d2x

 . (6.40)

The diffusion B(s, x, t) is the positive-semidefinite matrix satisfying

B2(s, x, t) =

b (1− s
k

)
(s− x) + d1(s− x) + d2x d2x

d2x h(t)(s− x) + d2x

 . (6.41)
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We proceed by linearising the SDE (6.39). Let st = φ1(t) + Ω−1/2ξ1t and xt = φ2(t) +

Ω−1/2ξ2t, where φ1(t) and φ2(t) are the deterministic functions of time. Substituting

and collecting lowest order terms, we see these functions are given by the ODEs

dφ1

dt
=

(
1− φ1

k

)
b(φ1 − φ2)− d1(φ1 − φ2)− d2φ2, (6.42a)

dφ2

dt
= h(t)(φ1 − φ2)− d2φ2, (6.42b)

i.e., we recover Eqs. (6.26b).

The random processes ξ1t and ξ2t describe deviations from this deterministic tra-

jectory, and are of the Ornstein–Uhlenbeck type

dξt = A(φ1, φ2, t) ξtdt+ B(φ1, φ2, t) dWt, (6.43)

where A(φ1, φ2, t) is given by

A(φ1, φ2, t) = −

b (1− 2φ1

k
+ φ2

k

)
− d1 b

(
φ1

k
− 1
)

+ d1 − d2

h(t) −h(t)− d2

 . (6.44)

We note that the argument of B in Eq. (6.43) is now given by φ1 and φ2, so that the

noise is additive rather than multiplicative.

We are interested in the variation of the total population size from the deterministic

path
〈
ξ1

2
t

〉
; we remark that by construction 〈ξ1t〉 = 〈ξ2t〉 = 0. The variances and

covariance of ξ1t and ξ2t can be seen to evolve in time as follows [28]

d
〈
ξ1

2
t

〉
dt

= 2A11

〈
ξ1

2
t

〉
+ 2A12 〈ξ1tξ2t〉+ (B11)2 + (B12)2, (6.45a)

d
〈
ξ2

2
t

〉
dt

= 2A22

〈
ξ2

2
t

〉
+ 2A21 〈ξ1tξ2t〉+ (B22)2 + (B21)2, (6.45b)

d 〈ξ1tξ2t〉
dt

= A21

〈
ξ1

2
t

〉
+ A12

〈
ξ2

2
t

〉
+ (A11 + A22) 〈ξ1tξ2t〉+B11B21 +B12B22. (6.45c)

For a given set of parameters, we numerically integrate the five coupled Eqs. (6.42)

and Eqs. (6.45). This provides the mean and covariance matrix for the bivariate

Gaussian distribution of the number of normal and doomed cells as a function of time.

For Approximation 1, the time t∗ is defined by φ1(t∗) = `; this is the point in time

when the total number of functional cells crosses the threshold for onset of NTC. The

variance of the number of functional cells at this time is given by Σ2(t∗) =
〈
ξ1

2
t∗

〉
within

the LNA. We then use Eq. (6.19), where µ(`, t∗) is to be replaced by the right-hand

side of Eq. (6.42a), evaluated at t∗.
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Approximation 2 is computed using Eq. (6.28), replacing φ(t) by φ1(t), and Σ2(t)

by
〈
ξ1

2
t

〉
, respectively.
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Chapter 7

Conclusions

Throughout this thesis we have considered the stochastic dynamics of systems in time-

varying environments. The thesis is broadly composed of chapters of two types of

content: Chapters 2 and 5 are focussed on developing new mathematical methods,

while Chapters 3 and 4 are more focussed on specific applications in biology; Chapter 6

contains both new methods and applications.

The major result of the first two of these methods chapters is a palette of approx-

imations schemes, which provides reduced descriptions of systems in switching envi-

ronments when either the system is large, the environmental switching is fast, or both

(Fig. 5.8). In Chapter 2, we developed a systematic expansion method in the limit of a

large system for describing the dynamics of systems coupled to a Markovian switching

environment. The lowest order of this expansion is the piecewise-deterministic Markov

process which ignores demographic noise; for this process we provided the general sta-

tionary distribution for the simplest case of a single systemic species and a two-state

environment. Considering the next order in this expansion allowed us incorporate

the effects of demographic noise into the approximation, resulting in the description

as a piecewise-diffusive process. Using the linear-noise approximation, we were able

to find an analytical approximation for the stationary distribution of this process,

which produced marked improvements over the PDMP description when compared to

simulations of the full, individual-based model. We demonstrated the validity of our

approach by considering models with complications including nonlinear reaction rates,

situations in which the environmental switching depends on the state of the popula-

tion, and systems where there are multiple attractors. A limitation of this work is that

273
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analytical approximations to stationary distributions were only possible for the case of

a single systemic species in a two-state environment; outside of these conditions, the

equations describing the stationary state of the PDMP could not be solved. For such

cases it is possible that other approaches, such as those based on the WKB method

as considered in Refs. [1–6], may produce analytical results.

The second methods chapter (Chapter 5) concerned the dynamics of a system in a

switching environment, where the environmental switching happened on a faster time

scale than the systemic reactions. We described a new expansion in the limit of fast,

but finite, environmental switching. Considering only the lowest-order terms in this

expansion resulted in the adiabatic description where environmental noise is disre-

garded entirely, which is closely related to the quasi-stationary state approximation.

Incorporating sub-leading order terms into the expansion resulted in a reduced master

equation in which bursting events (occasions where two events happen simultaneously)

occurred. We showed how this reduced master equation offered a more accurate de-

scription than the adiabatic description, by comparing stationary distributions and

power spectra with the full model.

The second half of Chapter 5 combined expansions in powers of the inverse switch-

ing time scale with expansions in the inverse system size, resulting in the table of

approximations Fig. 5.8. This involved introducing new approximations, and putting

existing approximations into a wider context. We expect many of these approxima-

tions to be useful in their relevant limit. In particular, we identified the “SDE with

switching and demographic noise” (the centre box in Fig. 5.8) as an ideal candidate

for the facilitation of future research, since it incorporates both demographic and envi-

ronmental sources of noise and takes a form which allows for analytical progress or at

least efficient simulation. We demonstrated these approaches for a number of different

applications, biological and otherwise. While this chapter provided useful results when

their is a large time-scale separation between system and environment, I remark that

the dynamics for general time scales remains an open challenge.

Another major component of Chapter 5 considered master equations with negative

‘rates’. We showed how, in some circumstances, such rates occur from the expansion

of the master equation in the fast-switching limit; these rates show similarities to

cases in open quantum systems. We showed how such dynamics can lead to negative
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‘probabilities’, which occur on time scales shorter than that of the environment. In our

classical setting, we reviewed an existing simulation algorithm for producing sample

paths from master equations with negative rates and showed this failed to capture

statistical features of the full model. We proposed a new tau-leaping scheme for

generating trajectories for the case of negative rates in Chapter 5.

New methods were also developed in Chapter 6; we devised techniques for approx-

imating first passage times for systems with a continuous, deterministic environment.

These approaches relied on the assumption of a large system size, and mathematically

utilised an expansion in powers of the inverse systems-size parameter. Here, I remark

that this approach is equally valid in other weak-noise cases, such as the “SDE with

switching and demographic noise” presented in Chapter 5. Since weak-noise limits are

commonplace in statistical physics, we believe our results may be applicable to a range

of problems. This could potentially include other areas where first-passage times are

of interest, such as financial risk [7].

Chapter 6 considered a specific biological application; we studied normal tissue

complication probabilities arising in the treatment of cancer. We showed how the

probability for the onset of a normal tissue complication could be approximated for a

one-dimensional logistic growth model under a particular radiotherapy protocol. We

later extended this by considering a more complicated model containing both normal

and radiation-damaged cells. In all cases we found our approximations constituted

a more efficient approach to finding the first passage times than integration of the

master equation, at a moderate loss of accuracy, for sufficiently large systems. Lastly,

we combined our approximation for NTCP with an existing result describing tumour

control probabilities, in order to estimate the probability of a complication-free cure.

Using these two approaches we were able to efficiently sweep the parameter space

describing different brachytherapy protocols, we and demonstrate how the probability

of a complication-free cure can be theoretically maximised.

Chapter 3 was the first of the application-focused Chapters. Here we used the re-

sults of Chapter 2 to study a stylised model characterising bet-hedging, in which cells

switch between phenotypes to endure varying environmental conditions. We began by

defining an individual-based model, and proceeded to approximate the dynamics in

the limit of a large system as a piecewise-deterministic Markov process. This allowed



276 CHAPTER 7. CONCLUSIONS

us to obtain a closed-form solution for the average growth rate for a population. We

compared the cases of Markovian environmental switching and a periodic environment.

Our main conclusions were: (i) when the environmental switching rates are slow, the

growth-maximising phenotypic strategy is achieved when the phenotypic switching

rates match the environmental switching rates. This is the case for both stochastic

and periodic environmental dynamics; however, the stochastic regime had different be-

haviour for environments of intermediate speeds; (ii) for both stochastic and periodic

environments, heterogeneity is favoured at low environmental switching rates, while

homogeneity is favoured when the environment switches quickly. Stochastic environ-

ments, however, favour heterogeneity over a larger range of environmental dynamics

than strictly periodic environments; (iii) instantaneous growth rates are universally

higher in the case of stochastic environments than in the periodic case; (iv) the model

can be interpreted as a host-pathogen interaction, in which the host tries to choose

environmental switching so as to minimise the growth of the pathogen, and in which

the pathogen chooses its phenotypic-switching strategy to optimise its growth rate.

We showed how this could leak to a mutual best-response scenario. The mathematical

approach developed in this Chapter may allow for studies into other ecological models

of competition in dynamic random external conditions.

In Chapter 4 we considered a model of mouse embryonic stem cells. We consid-

ered an experimentally-inferred network topology and, using a number of simplifying

assumptions to the molecular logic and dynamics, we extended this to a microscopic

model with a large number of species (i.e., three external inputs, 12 genes, and 12

transcription factors) and a large number of interactions. We approximated the dy-

namics of the individual-based model in the limit of a large system as a piecewise-

deterministic Markov process; this provided an efficient scheme for simulating the

dynamics, and we found an decrease in simulation time of order 103 when compared

to Gillespie simulation. Thanks to this increase in speed, we were able to perform a

large number of simulations using different parameters, and find which of those best

characterised a number experimental results. We found parameters which matched

the Boolean-expression data of Dunn et al. [8] spanning very different gene-switching

regimes (slow, intermediate, and fast), suggesting that mean expression data is insuffi-

cient for uniquely determining the parameters of high-dimensional networks. However,
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Figure 7.1: Growth for the model of phenotypic switching model (Chapter 3) with
different environmental dynamics. Typical trajectories for the case of (a) a discrete
Markovian environment, (b) a discrete periodic environment, (c) a continuous Marko-
vian environment, and (d) a continuous periodic environment. The populations of
phenotypes A and B are orange and purple lines, respectively. The background shad-
ing indicates the state of the environment. Simulations use parameter set Table 3.1 (b),
environmental switching rates are λ0 = 0.10, λ1 = 0.10, and phenotypic switching rates
p = 0.028, q = 0.043. See Appendix 7.1 for details.

we identified the intermediate regime of gene switching, in which genetic-switching

rates are comparable to system reaction rates, as most consistent with other single-

cell measurements [9, 10]. We also found that this intermediate regime had a much

faster response to changing external signals than the fast-switching regime.

The work in my thesis leaves open several areas for future research which, if I

had more time, I would have liked to explore. One direction I would have liked to

take this research is towards considering continuous, stochastic environments. Mod-

els with reaction rates which vary according to an SDE were recently considered in

Refs. [5, 11, 12]. Dynamics of such a type pose both a technical challenge and could

have important applications. Examples of these different environmental dynamics are

shown in Fig. 7.1. Here, I show trajectories for the model of population growth consid-

ered in Chapter 3, which was used to describe phenotypic bet-hedging in a fluctuating

environment. Panels (a–d) indicate four different environmental dynamics: Markovian

switching, periodic switching, continuous stochastic, and continuous periodic, respec-

tively (details are given in Appendix 7.1). In Chapter 3 we focused on the former two

environmental dynamics. In the context of the model therein, however, continuous
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Figure 7.2: Stationary distributions for the populations of transcription factors for
the model of mouse embryonic stem cells considered in Chapter 4. The fast switching
parameters shown in Fig. 4.2 are used, along with external inputs LIF+2i. Histograms
show the results from 48 hours of Gillepsie simulations of the full individual-based
model. Solid lines show analytical approximations found by considering the SDE with
switching and demographic noise from Chapter 5 and linearising around the fixed
point; they were obtained in less than a second.

environments may be appropriate to describe continuous fluctuations in temperature,

the availability of nutrients, or the intensity of light. For the model with a continuous

stochastic environment, there is no obvious analytical solution for the average growth

rates. Further analysis of the average growth rates (and thus the optimal strategies)

could therefore come from either Monte Carlo simulations, or numerical integration

of the Fokker–Planck equation describing the joint distribution of the phenotypes and

environment Π(φ, σ). Such methods will be considerably more computationally ex-

pensive than the integral solution we produced for the discrete case in this thesis.

We also note that different processes for a continuous environment are likely to

produce very different results. Panel (c) shows an Ornstein–Uhlenbeck process which

‘lingers’ (i.e., is most likely to be found) around the mean environmental state. Such

a ‘mean’ environment is not part of the model with discrete states. Panel (d) shows a

periodic continuous environment with sinusoidal time dependence which, on the other

hand, spends more time at the two extremes. Alternative stochastic environmental

processes could be conceived which behave more similarly to the discrete switching or

sinusoidal cases, for example by involving motion in a double-well potential.

Considered as a whole, this thesis forms a consistent body of work describing

the dynamics of systems in switching environments. In this way, each chapter is
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relevant to some or all of the others. An example of this is demonstrated in Fig. 7.2,

where I show how the theory developed in Chapter 5 applies to the model considered

earlier in Chapter 4; The figure shows stationary distributions of the populations

of transcription factors for the model of mouse embryonic stem cells considered in

Chapter 4. The parameters charactering the limit of fast genetic switching are used

(see Fig. 4.2). The coloured histograms show the the results found from 48 hours of

Gillespie simulation of the the full, individual-based model. Later in the course of

my PhD studies (Chapter 5), we developed new approximations for the dynamics of

systems in fast-switching environments, and also approximations for large systems.

For the model of Chapter 4, we consider the “SDE with switching and demographic

noise”, since it includes both sources of noise. Following a linearisation of the noise

terms, the stationary distributions of these SDEs can be calculated. The results from

this approximation are shown as solid lines in Fig. 7.2; this took less than a second to

calculate. The agreement of these two approaches, and the computational benefit from

using our approximation, suggest that our results may be useful in future research. It

is my hope the inter-applicability and interconnectivity of the material in this thesis

can be considered one of its strengths.

The techniques described in the thesis help in completing our understanding of pro-

cesses involving both intrinsic and extrinsic noise. While existing dynamical approxi-

mations to switching environments, the PDMP or the adiabatic description (QSSA),

each ignore one source of noise, we have here developed methods for retaining (to

some approximation) both sources of noise. As discussed in the opening chapter, rele-

vant applications are widespread including genetic networks and predator-prey models.

Since publication of our first paper [13] in 2016, it has been cited a number of times

by other authors (16 at the time of writing), in papers ranging from studies of voter

behaviour [14] to predator-prey models [15]. It is my hope that the methods developed

here will be used in future applications considering systems in switching environments.
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7.1 Appendix A: Additional environmental dynam-

ics

In Fig. 7.1 (c) I show the model described in Chapter 3 but where the environment is

described by an Ornstein–Uhlenbeck process

dσt = θ (m− σt) dt+ s dWt, (7.1)

where parameters θ, m, and s are chosen so that the Ornstein–Uhlenbeck process

has the same mean, variance, and auto-correlation time as the telegraph process in

Chapter 3. I remark that this Ornstein–Uhlenbeck process allows the environmental

state σ to be greater than 1 and to be smaller than 0. The corresponding growth rates

are assumed to be of the form µA,B(σ) = (1− σ)µA,B0 + σµA,B1 .

Similarly, in Fig. 7.1 (d) I consider a continuous periodic environment described by

σ(t) = A sin(2πt/T ) +m, (7.2)

where parameters A, T and m are chosen so the the mean, variance, and period are the

same as the discrete case in Chapter 3. In the periodic case the population dynamics

converge to a limit cycle, and one can, in principle, numerically find the average growth

rate by considering the growth over a single period after a transient time.
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