
 
 

 

Risk prediction following cardiac surgery 

 

A thesis submitted to the University of Manchester for the 

degree of Doctor of Philosophy (PhD) in the Faculty of 

Biology, Medicine and Health. 

 

 

2019 

 

Samuel H Howitt 

 

School of Medical Sciences 

Division of Cardiovascular Sciences 

 

 



2 
 

Contents 

Tables ............................................................................................................................. 9 

Figures .......................................................................................................................... 12 

Abbreviations ............................................................................................................... 14 

Thesis abstract ............................................................................................................. 18 

Declaration ................................................................................................................... 19 

Copyright statement .................................................................................................... 19 

Acknowledgement ....................................................................................................... 21 

Preface ......................................................................................................................... 22 

Rationale for presentation in the journal format ........................................................ 22 

 

 

SECTION ONE: INTRODUCTION ............................................................................... 23 

Structure and design of thesis ..................................................................................... 23 

 General Introduction ..................................................................... 25 Chapter One:

1.1.  Risk prediction in cardiac surgery and critical care – an overview. ..................... 25 

1.1.1. Cardiac Surgery – The ideal setting for early model development? ........................... 27 

1.2.  Summary of the history of cardiac surgery .......................................................... 28 

1.3.  Management of patients on the Cardiac Intensive Care Unit (CICU) following 

cardiac surgery ............................................................................................................. 29 

1.4. “Failure to rescue” following cardiac surgery ....................................................... 38 

 Risk models that utilise postoperative patient monitoring data to Chapter Two:

predict outcomes in adult cardiac surgery; a systematic review (Published journal 

article) ................................................................................................................ 39 

2.1.  Rationale for selecting models which analyse postoperative variables. ............. 39 

2.2. Abstract ................................................................................................................. 40 

2.3. Introduction .......................................................................................................... 41 



3 
 

2.4.  Methods ............................................................................................................... 42 

2.4.1. Literature search and study eligibility ......................................................................... 42 

2.4.2. Data extraction and quality assessment ..................................................................... 42 

2.5.  Results .................................................................................................................. 43 

2.5.1. Models developed for general ICU and validated in cardiac surgery patients ........... 53 

2.5.2. Models designed specifically for cardiac surgery ....................................................... 56 

2.6.  Discussion ............................................................................................................. 58 

2.7.  Conclusion ............................................................................................................ 61 

2.8.  Appendix .............................................................................................................. 63 

2.9.  References ............................................................................................................ 66 

 Summary of introduction and thesis aims .................................... 69 Chapter Three:

3.1.  Summary of introduction ..................................................................................... 69 

3.2. Thesis aims and questions .................................................................................... 70 

3.2.1. Aims............................................................................................................................. 70 

3.2.2. Research questions ..................................................................................................... 71 

 

SECTION TWO: METHODS ....................................................................................... 72 

Introduction ................................................................................................................. 72 

 Project Design and Data collection ................................................ 73 Chapter Four:

4.1.  Considerations regarding project design ............................................................. 73 

4.2.  Data sources ......................................................................................................... 74 

4.2.1. Clinical governance database...................................................................................... 74 

4.2.2. Perfusion database ..................................................................................................... 75 

4.2.3. Blood analyses databases ........................................................................................... 75 

4.2.4. Draeger Innovian electronic patient record (EPR) ...................................................... 77 

4.2.5. Draeger Infinity bedside patient monitors ................................................................. 82 

4.3. Selection of important outcomes (assisted by the patient and public involvement 

group) ........................................................................................................................... 86 



4 
 

4.4.  Ethical approvals .................................................................................................. 87 

4.5. Collaboration with Durham University for statistical analyses. ............................ 87 

4.5.1. Delays related to the collaboration ............................................................................ 88 

 Data cleaning ................................................................................. 89 Chapter Five:

5.1.  Creating the initial patient index.......................................................................... 90 

5.2.  Identifying reoperation not recorded in the Dendrite database and times where 

intubation status is unclear after automated analysis of EPR data ............................. 92 

5.3.  Ensuring data from all tabs is assigned to relevant patient episodes and make 

initial episode summary fields. .................................................................................... 94 

5.4.  Producing the Ventilated Episodes output file .................................................... 96 

5.5.  Cleaning  data from flowsheet tab ....................................................................... 97 

5.6  Cleaning fluids and medication tabs ..................................................................... 99 

5.7.  Cleaning blood test results .................................................................................100 

5.8.  Identifying AKI ....................................................................................................101 

5.9.  Finalisation and anonymization .........................................................................102 

 Statistical Methods ........................................................................ 103 Chapter Six:

6.1.  Univariable analyses ...........................................................................................103 

6.1.1. Continuous outcomes ............................................................................................... 103 

6.1.2. Binary outcomes ....................................................................................................... 103 

6.2.3. Time-to-event outcomes .......................................................................................... 104 

6.2.  Multivariable analyses to adjust for confounders .............................................104 

6.2.1. Continuous outcomes ............................................................................................... 104 

6.2.2. Binary outcomes ....................................................................................................... 105 

6.2.3. Time-to-event outcomes .......................................................................................... 106 

6.3.  Bayesian analyses ...............................................................................................106 

6.4.  Statistical evaluation of model performance .....................................................107 

6.4.1. Discrimination ........................................................................................................... 107 

6.4.2. Calibration ................................................................................................................. 108 



5 
 

 

SECTION THREE: RESULTS ..................................................................................... 110 

 Validation of Three Postoperative Risk Prediction Models for Chapter Seven:

Intensive Care Unit Mortality after Cardiac Surgery (Published journal article) .. 112 

7.1.  Additional data processing for this manuscript. ................................................113 

7.2.  Abstract ..............................................................................................................116 

7.3.  Introduction........................................................................................................117 

7.4.  Patients and methods ........................................................................................117 

7.4.1. Data collection, validation and cleaning ................................................................... 118 

7.4.2. Missing data .............................................................................................................. 118 

7.4.3. Statistical analyses .................................................................................................... 119 

7.5.  Results ................................................................................................................119 

7.5.1. Model performance on the first postoperative day ................................................. 121 

7.5.2. Serial scores .............................................................................................................. 122 

7.5.3. Local recalibration ..................................................................................................... 124 

7.6.  Discussion ...........................................................................................................126 

7.7 Appendices ...........................................................................................................130 

7.8.  References ..........................................................................................................135 

 Incidence and outcomes of sepsis after cardiac surgery as defined by Chapter Eight:

the Sepsis-3 guidelines (Published journal article) ............................................. 138 

8.1.  Additional data processing for this manuscript. ................................................139 

8.2.  Summary (Abstract) ...........................................................................................140 

8.3.  Introduction........................................................................................................141 

8.4.  Methods .............................................................................................................143 

8.4.1. Patients and Data collection ..................................................................................... 143 

8.4.2. Missing Data .............................................................................................................. 143 

8.4.3. Statistical analysis ..................................................................................................... 144 

8.5.  Results ................................................................................................................144 



6 
 

8.5.1. Sepsis ......................................................................................................................... 146 

8.5.2. SOFA rise ≥2 in the absence of sepsis ....................................................................... 148 

8.5.3. Septic Shock .............................................................................................................. 149 

8.6.  Discussion ...........................................................................................................151 

8.7.  Conclusion ..........................................................................................................153 

8.8.  Appendix ............................................................................................................154 

8.9.  References ..........................................................................................................156 

 The KDIGO acute kidney injury guidelines for cardiac surgery patients Chapter Nine:

in critical care: a validation study (Published journal article) .............................. 158 

9.1.  Additional data processing for this manuscript. ................................................159 

9.2.  Abstract ..............................................................................................................161 

9.3.  Background .........................................................................................................162 

9.4.  Methods .............................................................................................................163 

9.4.1. Data ........................................................................................................................... 163 

9.4.2. Statistical Analyses .................................................................................................... 164 

9.5.  Results ................................................................................................................165 

9.6.  Discussion ...........................................................................................................171 

9.7.  Conclusions.........................................................................................................173 

9.8.  Appendix ............................................................................................................175 

9.9.  References ..........................................................................................................179 

 A novel patient-specific model for predicting severe oliguria; Chapter Ten:

development and comparison with KDIGO acute kidney injury classification 

(submitted journal article) ................................................................................ 182 

10.1. Additional data processing for this manuscript. ...............................................183 

10.2. Abstract .............................................................................................................185 

10.3. Introduction ......................................................................................................186 

10.4. Materials and Methods .....................................................................................186 

10.4.1.  Data ........................................................................................................................ 186 



7 
 

10.4.2. Model development ............................................................................................... 187 

10.4.3. Model validation (statistical analyses) .................................................................... 187 

10.4.4. Missing data ............................................................................................................ 189 

10.5. Results ...............................................................................................................189 

10.5.1. Predicting severe oliguria........................................................................................ 191 

10.5.2. Classification task .................................................................................................... 193 

10.6. Discussion ..........................................................................................................196 

10.7. Conclusions .......................................................................................................199 

10.8. References .........................................................................................................200 

 Are serum potassium and magnesium concentrations associated with Chapter Eleven:

atrial fibrillation following cardiac surgery? (journal article) .............................. 206 

11.1. Additional data processing required for this manuscript. ................................207 

11.2.  Abstract ............................................................................................................209 

11.3. Introduction ......................................................................................................210 

11.3. Methods ............................................................................................................210 

11.3.1. Statistical Analyses .................................................................................................. 212 

11.4. Results ...............................................................................................................212 

11.4.1. Primary analyses of electrolyte concentrations ..................................................... 214 

11.4.2. Secondary analyses of electrolyte concentrations ................................................. 216 

11.4.3.  Electrolyte replacement therapy ........................................................................... 217 

11.5. Discussion ..........................................................................................................219 

11.6. Conclusion .........................................................................................................221 

11.7. Appendix ...........................................................................................................222 

11.8.  References ........................................................................................................224 

 

 

 

 



8 
 

 

SECTION FOUR: DISCUSSION ................................................................................. 226 

 General Discussion .................................................................. 226 Chapter Twelve:

12.1. Key findings .......................................................................................................226 

12.2. Narrative review of problems encountered during the data collection phase of 

this thesis ...................................................................................................................229 

12.2.1. Delays related to information technology (IT) infrastructure ................................ 229 

12.2.2. The WannaCry malware attack in May 2017 .......................................................... 231 

12.3. Strengths and limitations of this thesis .............................................................232 

12.3.1.  Data quality ............................................................................................................ 232 

12.3.2.  Study location ........................................................................................................ 234 

12.3.3.  Sample size ............................................................................................................. 235 

12.4. Specific considerations for particular studies ...................................................236 

12.5.  Recommendations for future research ............................................................237 

12.5.1.  Overall plan for research programme .................................................................... 237 

12.5.2.  Recommendations based on the work presented in specific chapters ................. 237 

12.6  Conclusions........................................................................................................239 

REFERENCES ......................................................................................................... 240 

 

74,808 words   



9 
 

Tables 

Chapter Two 

Table 2-1 - Models validated for predicting outcomes following cardiac surgery ........................... 44 

Table 2-2 - Validation studies-quality ............................................................................................... 46 

Table 2-3 - Variables included in each model ................................................................................... 49 

Table 2-4 - Studies validating models in the prediction of mortality in cardiac surgery .................. 51 

Table 2-5 - Studies validating models in the prediction of morbidity in cardiac surgery ................. 52 

 

Chapter Four 

Table 4-1 - Data obtained from the Dendrite Clinical Governance Database .................................. 75 

Table 4-2 - Data obtained from the perfusion database .................................................................. 75 

Table 4-3 - Data obtained from the Pathology Laboratory database ............................................... 76 

Table 4-4 - Data obtained from the Gemstar blood gas analyses .................................................... 77 

Table 4-5 - Data obtained from the Innovian EPR – ADT Tab ........................................................... 78 

Table 4-6 - Data obtained from the Innovian EPR – Flowsheet Tab ................................................. 79 

Table 4-7 - Data obtained from the Innovian EPR – Assessments Tab ............................................. 79 

Table 4-8 - Data obtained from the Innovian EPR – Fluids and Medications Tabs ........................... 81 

Table 4-9 - Data obtained from the Innovian EPR – Ventilator Tabs ................................................ 82 

Table 4-10 - Data obtained from the bedside patient monitor ........................................................ 85 

Table 4-11 - Major complications following cardiac surgery and their frequencies.  Ordered as 

ranked by importance to the members of the Patient and Public involvement group .................... 86 

 

Chapter Six 

Table 6-1 - Patient selection for inclusion in each study contained within this results section ..... 111 

 

Chapter Seven 

Table 7-1 - Patient characteristics in the validation cohort ............................................................ 120 

Table 7-2 - Risk factors and variables included in the analysed models ......................................... 121 

Table 7-3 - Daily performance of the original models for ICU mortality ........................................ 123 

Table 7-4 - Daily performance of the models for ICU mortality in the evaluation dataset following 

local recalibration ........................................................................................................................... 125 

Table 7-5 - The proportion of patients with low, medium and high predicted ICU mortality risk on 

each postoperative day ................................................................................................................... 130 

Table 7-6 - Beta coefficients for the recalibrated SOFA score when predicting ICU mortality ...... 131 

Table 7-7 - Beta coefficients for the recalibrated logCASUS score when predicting ICU mortality132 

Table 7-8 - Beta coefficients for the recalibrated RACE score when predicting ICU mortality ...... 133 



10 
 

Chapter Eight 

Table 8-1 - The SOFA score2 ............................................................................................................ 142 

Table 8-2 - Patient characteristics................................................................................................... 145 

Table 8-3 - Suspected or proven sources of infection in those diagnosed with sepsis .................. 146 

Table 8-4 - Patient outcomes .......................................................................................................... 150 

Table 8-5 - Linear regression model for length of CICU stay accounting for effects of confounders

 ........................................................................................................................................................ 154 

Table 8-6 - Linear regression model for length of CICU stay accounting for effects of confounders 

in those who stayed long enough for 2 or more SOFA scores to be calculated ............................. 154 

Table 8-7 - Logistic Regression model for 30-day mortality ........................................................... 154 

Table 8-8 - Cox Proportional Hazards Ratio Model for 2 year non-survival ................................... 155 

Table 8-9 - Linear regression model for length of CICU stay investigating significance of a SOFA rise 

≥2 in the absence of sepsis ............................................................................................................. 155 

Table 8-10 - Logistic Regression Model for 30-day mortality investigating significance of a SOFA 

rise ≥2 in the absence of sepsis ...................................................................................................... 155 

 

Chapter Nine 

Table 9-1 - KDIGO criteria for diagnosis of AKI in adults[9] ............................................................ 162 

Table 9-2 - Characteristics of patients admitted to the cardiac intensive care unit following cardiac 

surgery ............................................................................................................................................ 166 

Table 9-3 - Influence of urine output and serum creatinine criteria for AKI-1 on outcomes ......... 168 

Table 9-4 - Influence of urine output and serum creatinine criteria for AKI-2 on outcomes ......... 169 

Table 9-5 - Multivariable logistic regression model for PLOS in group of patients with no AKI or 

AKI-1-UO ......................................................................................................................................... 175 

Table 9-6 - Cox proportional hazards regression model for 2-year mortality in group of patients 

with no AKI or AKI-1-UO.................................................................................................................. 175 

Table 9-7 - Multivariable logistic regression model for PLOS in group of patients with AKI-1 ....... 176 

Table 9-8 - Multivariable logistic regression model for RRT in group of patients with AKI-1 ......... 176 

Table 9-9 - Cox proportional hazards regression model for 2-year mortality in group of patients 

with AKI-1 ........................................................................................................................................ 177 

Table 9-10 - Multivariable logistic regression model for PLOS in group of patients with AKI-2 ..... 177 

Table 9-11 - Multivariable logistic regression model for RRT in group of patients with AKI-2 ....... 178 

Table 9-12 - Cox proportional hazards regression model for 2-year mortality in group of patients 

with AKI-2 ........................................................................................................................................ 178 

 

 



11 
 

Chapter Ten 

Table 10-1 - Patient Characteristics ................................................................................................ 190 

Table 10-2 -  Comparison of observed outcomes and model’s predictions for severe oliguria 

occurring within 12 hours ............................................................................................................... 192 

Table 10-3 - Outcome of patients according to classification by the Bayesian model ................... 193 

Table 10-4 - Outcomes for patients grouped according to risk level as determined analysis of urine 

output by KDIGO-AKI guideline and the Bayesian model. .............................................................. 194 

Table 10-5 -  Performance of the Bayesian model, existing KDIGO AKI-UO criterion and severe 

oliguria when identifying those at risk of RRT. ............................................................................... 195 

Table 10-6 - Performance of models when predicting severe oliguria occurring with the next 6 

hours ............................................................................................................................................... 202 

Table 10-7 -Logistic regression model for prediction of Renal replacement therapy .................... 203 

Table 10-8 - Logistic regression model for prediction of prolonged length of stay ........................ 203 

Table 10-9 - Logistic regression model for prediction of hospital mortality .................................. 203 

 

Chapter Eleven 

Table 11-1 - Patient characteristics ................................................................................................ 214 

Table 11-2 - Proportion of patients who did and did not suffer AF who experienced low electrolyte 

concentrations ................................................................................................................................ 215 

Table 11-3 - Comparisons of electrolyte concentrations for those who did and did not develop AF

 ........................................................................................................................................................ 217 

Table 11-4 -  Details of the multivariable logistic regression model showing impact of potassium 

concentration on risk of postoperative AF ..................................................................................... 222 

Table 11-5 -  Details of the multivariable logistic regression model showing impact of magnesium 

concentration on risk of postoperative AF ..................................................................................... 222 

Table 11-6 -  Details of the multivariable logistic regression model showing impact of potassium 

concentration on risk of postoperative AF (sensitivity analysis) .................................................... 222 

Table 11-7 - Details of the multivariable logistic regression model showing impact of magnesium 

concentration on risk of postoperative AF (sensitivity analysis) .................................................... 223 

Table 11-8 -  Details of the multivariable logistic regression model showing impact of potassium 

replacement therapy on risk of postoperative AF .......................................................................... 223 

Table 11-9 -  Details of the multivariable logistic regression model showing impact of magnesium 

replacement on risk of postoperative AF ....................................................................................... 223 

 

 



12 
 

Figures 

Chapter Two 

Figure 2-1 - Manuscript selection for review .................................................................................... 43 

 

Chapter Four 

Figure 4-1 - The tabs within the Draeger Innovian electronic record ............................................... 77 

Figure 4-2 - The Draeger Innovian Flowsheet Tab ............................................................................ 78 

Figure 4-3 - The Draeger Innovian Fluids Tab ................................................................................... 80 

Figure 4-4 - The Draeger Innovian Medications Tab ......................................................................... 81 

Figure 4-5 - The Draeger Innovian Ventilator Tab ............................................................................ 82 

Figure 4-6 - The Draeger Infinity bedside patient monitor output screen ....................................... 83 

Figure 4-7 - The Application programming interface used to capture data from the Gateway report 

server ................................................................................................................................................ 84 

Figure 4-8 - Data flow for the waveform traces recorded by the bedside monitors ........................ 85 

 

Chapter Five 

Figure 5-1 - Unique identifier structure ............................................................................................ 91 

 

Chapter Seven 

Figure 7-1 (a) - Receiver Operating Characteristic (ROC) curves for the validated models on the 

first postoperative day. (b) Calibration plots for the original logCASUS and RACE models and 

recalibrated logCASUS, RACE and SOFA models on the first postoperative day. ........................... 122 

 

Chapter Eight 

Figure 8-1 - Two-year survival according to sepsis status .............................................................. 148 

 

Chapter Nine 

Figure 9-1 - Flow chart for inclusion of patients in analyses. ......................................................... 165 

Figure 9-2 - Kaplan Meier plots stratified according to the KDIGO criteria met for the maximum 

stage of AKI attained up to AKI-2. ................................................................................................... 170 

 

Chapter Ten 

Figure 10-1 -  Receiver operating characteristic curves for the prediction of severe oliguria 

(<0.3ml/kg/hr for 6 hours) during the next 12 hours following predictions made by the model at 

12, 24, 36, 48 and 72 hours............................................................................................................. 191 



13 
 

Figure 10-2 - Calibration plots for the Bayesian model’s prediction of severe oliguria (0.3ml/kg/hr 

for 6 hours) during the next 12 hours at time points a)12 hours, b)24 hours, c)36 hours, d)48 hours 

and e)72 hours.  .............................................................................................................................. 192 

Figure 10-3 - Precision recall curves for the prediction of severe oliguria (<0.3ml/kg/hr for 6 hours) 

during the next 12 hours following each prediction made by the model at 12, 24, 36, 48 and 72 

hours. .............................................................................................................................................. 202 

 

Chapter Eleven 

Figure 11-1 - Flow diagram showing selection of eligible patients................................................. 213 

Figure 11-2 - Boxplot illustrating the administration of potassium replacement therapy to those 

who did and did not develop AF. .................................................................................................... 218 

 

  



14 
 

Abbreviations 

AF – atrial fibrillation 

AKI - Acute kidney injury 

AKICS - Acute Kidney Injury after Cardiac Surgery 

APACHE - Acute Physiology and Chronic Health Evaluation 

API - application programming interface 

ASB – assisted spontaneous breathing 

AUC - area under the Receiver Operator Characteristic curve 

BiPAP – bi-level positive airway pressure 

BP – blood pressure 

CABG - coronary artery bypass graft 

CASUS - Cardiac Surgery Score CICU - Cardiac Intensive Care Unit 

CI – confidence interval 

CNS – central nervous system 

CPB - cardiopulmonary bypass 

CRD – Centre for Reviews and Dissemination 

CSV – Comma separated values 

CT – computed tomography 

CVA – cerebrovascular accident 

CVP - central venous pressure 

CVVH – continuous venovenous haemofiltration 

DARE - Database of Abstract of Reviews of Effects 

ECG – electrocardiography 

ECMO – extracorporeal membrane oxygenation 



15 
 

EPR - electronic patient record 

ETT - endotracheal tube 

EuroSCORE - European System for Cardiac Operative Risk Evaluation 

EWS – Early warning score 

FiO2 – fraction of inspired oxygen saturations 

GCS – Glasgow coma scale 

HIS – Hospital information service 

HL - Hosmer-Lemeshow 

HL7 – Health level seven 

HR – Hazards ratio 

IABP – intra-aortic balloon pump 

ICNARC - Intensive Care National Audit and Research Centre 

ICU - Intensive Care Unit 

ICURS - Intensive Care Unit Risk Stratification Score 

IQR – interquartile range 

IT – Information technology 

KDIGO - Kidney Disease International Global Outcomes 

LODS – Logistic organ dysfunction score 

LOS – length of stay 

LVAD – Left ventricular assist device 

MAP – mean arterial pressure 

MCS – mechanical circulatory support  

MFT – Manchester University Hospitals NHS Foundation Trust 

MODS - Multiple Organ Dysfunction Score 

NA – Not applicable 



16 
 

NG – Nasogastric  

NHS – National Health Service 

O:E – observed to expected  

OR – Odds ratio 

PAR - pressure adjusted heart rate 

PC – pressure controlled 

PEEP – Positive end-expiratory pressure 

PICOS - Population, Intervention, Comparison, Outcomes, Setting  

PLOS – prolonged length of stay 

PMV - prolonged mechanical ventilation 

PO2 – partial pressure of oxygen 

POCD – postoperative neurocognitive dysfunction 

PPI - patient and public involvement 

RACE - Rapid Clinical Evaluation 

RASS – Richmond agitation and sedation score 

ROC – receiver operator characteristic 

RRT - renal replacement therapy 

SAPS - Simplified Acute Physiology Score 

sCr – serum creatinine concentration 

sd – standard deviation 

SIRS - Systemic Inflammatory Response Syndrome 

SMR – standardised mortality rate 

SOFA - (Sepsis Related) Sequential Organ Failure Assessment Score 

SpO2 – pulse oximetry oxygen saturations 

SR – sinus rhythm 



17 
 

STS - Society for Thoracic Surgery 

TOE - transoesophageal echocardiography 

TT - tracheostomy tube 

TTE - transthoracic echocardiography 

UHSM - University Hospital of South Manchester 

UK - United Kingdom of Great Britain and Northern Ireland 

UO - urine output 

VA ECMO – Venoarterial extracorporeal membrane oxygenation   

VAD – ventricular assist device 

VC – volume controlled 

VGNW - Vascular Governance NorthWest 



18 
 

THESIS ABSTRACT 
Samuel H Howitt 
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Degree Title: Doctor of Philosophy (PhD) 

Thesis Title: Risk prediction following cardiac surgery   
March 2019 

 
Objectives: Around 1000 patients die each year in the UK due to complications suffered following 

cardiac surgery.  Early identification of those at risk of specific complications would allow targeted 

interventions aimed at reducing the harm caused by those complications.  However, commonly 

used risk models only quantify overall mortality risk for groups of patients based on analyses of 

pre- and intra-operative data.  These models do not predict specific complications and are unable 

to update risk estimates as postoperative events unfold.  This thesis aims to advance 

understanding of postoperative risk prediction following cardiac surgery by assessing the 

performance of existing risk prediction tools in this population and developing novel risk models. 

Methods: Postoperative physiological monitoring data, blood test results, medication 

administration data and demographics for over 3000 patients were cleaned, analysed using 

computerised processing algorithms and entered into a comprehensive database.  The database 

was used to validate three mortality models, the Sepsis-3 diagnostic criteria and the KDIGO AKI 

criteria.  A novel dynamic Bayesian model which analyses an individual’s urine output to predict 

their risk of severe oliguria was developed and validated.  Finally, the potential usefulness of 

potassium and magnesium concentrations when predicting atrial fibrillation (AF) was assessed. 

Results: While the logistic Cardiac Surgery Score (logCASUS), Rapid Clinical Evaluation (RACE) and 

Sequential Organ Failure Assessment (SOFA) score all discriminated well between survivors and 

those who died, calibration of the models was inadequate.  The Sepsis-3 criteria identified patients 

at increased risk of adverse outcomes.  The KDIGO staging criteria were poorly calibrated, 

overestimating the risk associated with mild oliguria following cardiac surgery.  The Bayesian urine 

output model discriminated excellently between those who did and did not go on to suffer severe 

oliguria and was well calibrated.  Postoperative potassium and magnesium concentrations were 

similar for those who did and did not suffer AF.   

Conclusion: The clinical usefulness of existing risk stratification methods has been assessed and 

weaknesses identified.  It has been demonstrated that serum potassium and magnesium 

concentrations are unlikely to be useful when predicting AF following cardiac surgery. A novel 

approach to modelling urine output has been described and validated.  The model’s performance 

should be assessed in other settings and then the clinical usefulness of the model could be 

assessed in clinical trials. The methodology described in this thesis should be replicated to improve 

postoperative prediction of other complications following cardiac surgery. 
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Anaesthetists in 2012 he took time Out of Training for Research between ST5 and ST6.  The work 

presented in this thesis was conducted during this period which represents the author’s first 

formal experience in research.    

 

Rationale for presentation in the journal format 

This research project was conducted relatively early in my career as an anaesthetist.  It was 

important to me that I developed skills during this period that would be useful to me for the rest 

of my career.  In particular, I wanted to develop my scientific writing and gain experience of the 

peer review publication process.  This approach was agreed during discussions with my 

supervisory team.  The manuscripts produced all relate to the common theme of risk prediction 

following cardiac surgery but equally stand alone as individual studies.  The systematic review 

forms the basis of the thesis’ introduction.  The manuscript describing the validation of RACE, 

logCASUS and SOFA scores as well as those validating risk stratification according to sepsis status 

and stage of acute kidney injury are included as results chapters.  They are followed by two 

manuscripts concerning the development of new risk prediction tools for use following cardiac 

surgery.  The first discusses the development and validation of a novel model to identify those at 

risk of severe oliguria and the second investigates the potential usefulness of serum electrolyte 

concentrations when identifying those at risk of atrial fibrillation. Four manuscripts have been 

published already and one is in the revision process following submission to Critical Care 

Medicine.  The last manuscript is in the final stages of co-author review and will shortly be 

submitted for peer review publication. 
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SECTION ONE: INTRODUCTION 

Structure and design of thesis 

This thesis comprises four sections containing chapters which are either journal articles or thesis 

subsections.  Where the chapter is a journal article, the formatting required by the journal which 

published the article or the journal to which the manuscript has been submitted is maintained.  

Where the chapter is a thesis subsection, it serves to provide background information, expand 

discussion of methodologies employed in this research programme or discuss the thesis’ principal 

findings. 

SHH was first author of all journal articles presented in this thesis.  As first author, SHH was 

responsible for the design of each study, the collection and cleaning of relevant data, the conduct 

of statistical analyses and the writing of the manuscripts.  Co-authors are detailed at the start of 

each relevant thesis chapter alongside their role in the production of that manuscript.  The main 

roles of co-authors were to guide the study design, to develop the Bayesian models described in 

chapter ten and to guide manuscript presentation.  All chapters which are thesis subsections were 

written by SHH. 

Section one contains three chapters. The first is a thesis subsection which provides a summary of 

existing risk prediction in critical care and cardiac surgery.  It also gives background information 

on the subjects of cardiac surgery and in particular the postoperative care delivered to cardiac 

surgery patients.  The second chapter is a systematic review of existing postoperative risk 

prediction models used in cardiac surgery.  This was published in the Journal of Cardiothoracic 

and Vascular Anaesthesia.  The third chapter is a thesis subsection which summaries the 

background to this thesis and details the thesis aims. 

Section two contains detailed descriptions of the methodology used in this thesis.  It comprises 

three chapters which are all thesis subsections.  The first chapter details the design of the 

research programme and the collection of data analysed in this thesis.  The second chapter 

describes the cleaning of the data and the identification of relevant endpoints.  The third chapter 

discusses the statistical methodology used when conducting analyses for the studies included in 

the thesis. 

Section three contains five chapters written in journal article format.  The first chapter is a study 

which validates three mortality models identified during the systematic review.  This was 

published in the Thoracic and Cardiovascular Surgeon.   The second chapter describes the 
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validation of the use of the Sepsis-3 criteria for the stratification of risk related to sepsis following 

cardiac surgery.  This was published in the British Journal of Anaesthesia.  The third chapter which 

was published in BMC nephrology validates the use of the Kidney Disease Improving Global 

Outcomes acute kidney injury guidelines for the stratification of risk related to renal dysfunction 

following cardiac surgery.  This chapter concludes with recommendations regarding future work 

developing models to stratify risk related to renal dysfunction.  The fourth chapter is a study 

which describes and validates a novel model which predicts severe oliguria in patients who have 

undergone cardiac surgery. This manuscript has been submitted to Critical Care Medicine and is 

currently in the revision process.  The fifth chapter is a study investigating the potential roles of 

serum electrolyte concentrations in the prediction of atrial fibrillation following cardiac surgery.  

This chapter informs future work which will aim to develop a model to identify patients at risk of 

atrial fibrillation following cardiac surgery.  

The final section comprises one chapter which is a thesis subsection discussing the findings of the 

research programme.  This section summarises the conclusions drawn from the work carried out 

and makes recommendations for future research.          
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General Introduction Chapter One: 

1.1.  Risk prediction in cardiac surgery and critical care – an overview. 

Identification of patients at risk of poor outcomes has always been key to the practice of 

medicine.  Before the development of formalised risk stratification tools, risk assessment was 

based on information identified from the patient’s history and physical examination.  This 

information was considered by the clinician in the context of the clinician’s own medical 

knowledge and clinical experience to arrive at a diagnosis and an associated prognosis or 

expected outcome.  The prognosis and its accuracy are vitally important to allow the patient and 

their loved ones to understand their condition and how it is likely to affect them.  The prognosis 

also informs the selection of appropriate treatment options.   

If the prognosis is entirely dependent on the knowledge and experience of the treating clinician 

there will be variation in the assessment of illness severity and the estimation of the likelihood of 

poor outcomes.  Risk stratification tools formalise the assessment of the risk of poor outcomes by 

combining the known effects of risk factors present to provide an overall assessment of the 

severity of the patient’s condition.  Simpler tools assign points where known risk factors are 

present, allowing the patients at greatest risk (i.e. those with the greatest number of points) to be 

identified.   Logistic models go further and provide an estimate of the risk of adverse outcomes 

given the presence of combinations of known risk factors.  The clinical usefulness of the risk 

estimates for clinicians treating individual patients is subject to a number of limitations which are 

discussed later in this section.  However, if the risk estimates produced by such models are 

validated in multicentre datasets they can be used to benchmark the performance of institutions 

and clinicians.   Benchmarking is a means of comparing of outcomes between institutions to 

assess the quality of the care they provide.  The most common comparison made is between 

mortality rates.  Analysing the quality of care delivered by comparing crude mortality rates is not 

helpful as the number of deaths in an institution would vary markedly depending on the 

premorbid physiological condition of the patients being treated.  During benchmarking, to 

compensate for differences in patient condition before treatment, risk prediction models are used 

to create estimates of expected mortality risk for groups of patients based upon the presence of 

known risk factors.  Observed outcomes are then compared with predictions and the ratio of 

observed deaths to predicted deaths is termed the standardised mortality ratio (SMR).  In good 

institutions the observed mortality rate will be below the rate predicted by the model and the 

SMR will be less than one.  In cardiac surgery the need for accurate risk predictions to allow 

benchmarking of patient outcomes was a major driver for model development.  A landmark 

report into the high incidence of unexpected deaths in children undergoing cardiac surgery at the 
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Bristol Royal Infirmary in the 1990s stressed the importance of monitoring the performance of 

surgeons and institutions.(1)  As a result, SMRs are now published for all cardiac surgeons and 

institutions providing cardiac surgery in UK.(2)  Various models have been described to calculate 

the predictions used for benchmarking in cardiac surgery; the most widely used include the 

various iterations of the European System for Cardiac Operative Risk Evaluation (EuroSCORE) (3-5) 

and Society for Thoracic Surgery (STS) scores.(6-9) 

Similarly, many Intensive Care unit (ICU) risk scores including the various Acute Physiology And 

Chronic Health Evaluation (APACHE) scores (10-12) and Simplified Acute Physiology (SAPS) scores 

(13-15) have been developed over the past 35 years.(16)  These scores were originally designed to 

quantify the pre-treatment risk levels of different patient cohorts to allow benchmarking of ICU 

performance.  However, when calculated daily, they may also provide an updated assessment of 

risk which can be analysed to show response to treatment and an indication of the clinical 

progress.  Serial use of risk prediction scores provides similar information to the use of scores 

such as the (Sepsis-Related) Sequential Organ Failure Assessment Score (SOFA) score which was 

designed specifically to track a patient’s clinical progress.(17)   

Risk estimates created using logistic regression modelling need to be interpreted with caution 

when treating individual patients.  Such models are developed through analysis of large registries 

to identify risk factors associated with poor outcomes.  The models calculate expected risk, taking 

into account physiological parameters and details from the medical history.  Crucially, the risk 

predictions are for groups of patients with similar risk scores, not for individuals. Within a group 

of 100 patients with a score that is associated with a mortality risk of 5%, five would be expected 

to die and 95 would be expected to survive.  Importantly, the model cannot distinguish between 

survivors and those who will die.  This is a severe limitation of existing models; no model predicts 

outcomes in a manner which is suitable for providing more than a rough context when making 

treatment decisions for individuals.(16)   

This thesis explores the potential use of the vast amounts of data recorded on patients on the 

CICU to quantify each individual’s risk of adverse outcomes.  Rather than focussing solely on 

mortality, specific adverse outcomes such as renal dysfunction and arrhythmia will be considered.  

The rationale for such an approach is that identification of increased risk of a particular 

complication is more clinically useful as it allows interventions targeted at the prevention of (or 

reduction in the harm caused by) the complication.  In order to allow prompt, successful 

interventions, risk will need to be assessed more frequently than the once daily assessment 

described for existing models and should make predictions for individuals rather than groups of 

patients. 
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1.1.1. Cardiac Surgery – The ideal setting for early model development? 

Risk models are most often developed through the retrospective analyses of datasets.  Within the 

dataset, the outcomes to be predicted are identified and patients can then be grouped according 

to whether or not they suffered the outcome.  Candidate predictor variables can then be studied 

with the aim of identifying differences between those who do and do not suffer the outcome 

being predicted. 

It is prudent to start model development in datasets in which interpatient variation is limited to 

increase the likelihood of identifying associations which may be hidden by confounders in more 

heterogeneous datasets.  Any associations identified can then be tested in more heterogeneous 

datasets at a later time.(18)   Postoperative cardiac surgery patients are particularly well suited to 

the early stage of model development.  Cardiac surgery patients have similar risk profiles; they all 

have cardiac disease requiring surgery and (except for those undergoing an emergency 

procedure) they have all been declared fit enough to undergo the surgery.  Patients undergo one 

of a limited number of procedures and their care is typically managed by a small group of 

clinicians.  Unfortunately, the risk of complications following cardiac surgery is relatively high as 

outlined in chapter four of this thesis.  As they are relatively common, complications are usually 

manged according to protocols which ensure all patients receive evidence-based treatments.  As a 

result of the high incidence of complications, models can be developed in datasets with smaller 

sample sizes than would be required if the rates of complications were lower.  Finally, cardiac 

surgery patients are almost uniformly subjected to intensive monitoring for the majority of their 

critical care stay.  As a consequence, a vast number of high quality measurements are made as 

part of routine care.  If those frequently recorded measurements could be preserved they are 

likely to be of high enough resolution to allow detailed analyses to be performed and to allow 

frequent updates of the risk estimates.  Moreover, as these data are recorded routinely any 

findings from this research programme are likely to have a real world impact. 

Before discussing risk prediction further, the remainder of this introduction provides a context to 

the thesis by briefly discussing cardiac surgery and summarising the principals of post-operative 

care provided on the ICU.    
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1.2.  Summary of the history of cardiac surgery 

Cardiac surgery has changed dramatically since the earliest procedures were described in the late 

19th century.(19)     Until the middle of the 20th century, cardiac surgery was largely limited to 

closed heart procedures and was reserved for patients who would die in the near future without 

surgical intervention due to a high risk of operative mortality.(19)   In the early and mid-20th 

century the number of described surgical procedures increased and surgeons performed the 

earliest open-heart repairs using hypothermia amongst other techniques to protect the patient 

from the effects of hypoxia during the procedure.(20)  A major milestone was reached in 1953 

when John Gibbon performed the surgical closure of an atrial septal defect whilst supporting the 

patient using the first cardiopulmonary bypass (CPB) equipment.(21)  Although he struggled to 

reproduce his results after initial success, his work led to the development of more sophisticated 

CPB equipment which allowed surgeons to achieve more reproducible success.(22)  Following the 

widespread adoption of CPB in the 1970s, it was possible to perform open heart procedures 

which took longer to perform and mortality began to fall as more procedures were undertaken. 

(23, 24) 

Today over 35,000 cardiac surgery operations are performed each year in the UK alone.  Coronary 

artery bypass grafting (CABG) is the most common surgical procedure performed.  This is followed 

in order of frequency by aortic valve replacement and mitral valve replacement or repair.   The 

mortality rate associated with cardiac surgery has continued to fall and is currently around 

3%.(25) The vast majority of deaths occur in patients who develop serious complications after 

cardiac surgery while recovering on the Cardiac Intensive Care Unit (CICU).(2)  Some of these 

complications, such as renal failure, are associated with mortality rates of up to 60%.(26-31)  

Patients who survive complications often require specialist treatments and have prolonged CICU 

stays occupying beds that would otherwise be used for other elective surgical patients at a cost of 

>£150million/year to the NHS (National Health Service).(26, 27, 32-42)   
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1.3.  Management of patients on the Cardiac Intensive Care Unit (CICU) following cardiac 

surgery 

In order to provide a context to the complications which occur following cardiac surgery it is 

important to understand the postoperative management of patients.  This subsection discusses 

routine care following cardiac surgery and the key complications which may develop.  

Patients who have undergone major cardiac surgery are routinely admitted to a critical care 

environment after their surgery.(43)  The majority of cardiac surgery patients are managed 

according to similar principles and pass through the same milestones as they recover from their 

operation.(44) 

Patients are routinely transferred to the CICU sedated, intubated and mechanically ventilated(43) 

and are treated according to Intensive Care Society and The European federation of Critical Care 

Nursing Association’s standards governing staffing levels.  These patients are all classified as Level 

2 or 3 patients who are therefore nursed with nurse:patient ratios of 1:1 or 1:2.(45, 46)  The 

patients are subjected to continuous physiological monitoring which is complemented by nursing 

observations which are usually obtained hourly.  Parameters monitored continuously include 

fraction of inspired oxygen, capnography, electrocardiography (ECG), intra-arterial and central 

venous blood pressures and oxygen saturation via pulse oximetry.(43)  Nursing staff record urine 

and drain output hourly and document temperature and neurological assessment every 4 hours. 

Arterial blood gas analyses are performed on an ad hoc basis but usually at least every 4 hours 

and laboratory-based biochemical and haematological analyses are performed daily.(47)  Cardiac 

output was previously assessed almost exclusively using thermodilution techniques via a 

pulmonary artery catheter however a in a recent survey of current practice it was found that the 

majority of units use transthoracic echocardiography (TTE) or transoesophageal echocardiography 

(TOE) to investigate low cardiac output states.  Pulmonary artery catheters are still employed, 

particularly in cases in which pressures in the right side of the heart need to be measured.(47)  

Critical care management aims to normalise physiology while anticipating and detecting early 

signs of any developing complications. If such signs are detected measures are taken to prevent or 

reduce the harm caused by any complications while treating the cause of the complication. 

1.3.1.  Management of the respiratory system  

Protocols vary between institutions but patients are not usually extubated until they are able to 

follow commands, have a good respiratory pattern, good gas exchange and absence of metabolic 

and electrolyte derangement as evidenced by arterial blood gas analyses, and a normal body 
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temperature.   Hypothermia or respiratory failure necessitate prolonged sedation and ventilation 

until successfully treated or corrected.(48)  Some patients display good respiratory parameters 

while sedated but become agitated with an associated deterioration in respiratory function as 

sedation is lightened.   In this scenario, extubation is usually postponed as it is possible that once 

the stimulus of the endotracheal tube is removed the patients will not be alert enough to protect 

their airway and maintain adequate spontaneous ventilation. 

1.3.2.  Respiratory complications 

The two major respiratory complications after cardiac surgery are failed extubation and prolonged 

mechanical ventilation. 

Failed extubation 

Around 4% of patients who have undergone cardiac surgery will fail to maintain their oxygenation 

when the endotracheal tube is removed despite having fulfilled all extubation criteria.(49)  Such 

patients are said to have “failed extubation” and require reintubation and reinstitution of 

mechanical ventilation followed by a subsequent repeat attempt at extubation.(50)  Even among 

patients who have undergone straight forward, off-pump CABG and been assessed as appropriate 

for fast track extubation, 2.5% fail extubation.(51)  In cardiac surgery patients, failed extubation is 

associated with a mortality of up 13-40% and an increase in CICU length of stay of 6 days.(49, 50)  

Much of the increased risk may be related to the contamination of the lungs with oropharyngeal 

or gastric contents during the processes of extubation and reintubation or collapse of alveoli that 

occurs during ineffective self-ventilation.  Identifying those at increased risk of failed extubation 

prior to removal of the endotracheal tube could reduce the harm caused by failed extubation but 

no reliable methods for doing so have been described.   

Prolonged mechanical ventilation 

The second important respiratory complication is prolonged mechanical ventilation (PMV).  In 

most modern fast track protocols for low risk patients, extubation is expected to occur within 8 

hours of CICU admission.  The definition of PMV varies in the literature; it is described in different 

studies as ventilation for longer than 24h(30, 52), 48h(53), 72h(54) or 96h(55).  While the 

definition of PMV varies, it is widely accepted that longer periods of ventilation are associated 

with worse outcomes in terms of mortality, development of other complications and length of 

hospital stay.(52-54)  While the nature of the associations remains unclear, PMV causes increased 

trauma to the respiratory tract and increases the risk of pneumonia.(56)  PMV (except when 

delivered via a tracheostomy) generally requires sedation.  As well as its adverse effect on 
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neurological outcomes, prolonged sedation also worsens other outcomes through causing 

immobility and cardiovascular suppression.(57)  It also prevents usual feeding and is associated 

with increased risk of acute kidney injury.(58)   

1.3.3.  Management of the cardiovascular system 

Cardiovascular management on CICU, as in all ICU settings, aims to optimise oxygen delivery to 

the vital organs while reducing the workload and oxygen demand of the heart.   This is achieved 

through assessment and optimisation of intravascular fluid volume status (preload) and 

haemoglobin concentration, optimisation of systemic vascular resistance (afterload) and control 

of heart rate and myocardial contractility.(43)    

However, surgery on the heart and the use of CPB present specific stresses to the cardiovascular 

system resulting in increased risks of complications that are different to other surgical settings.  

Commonly encountered cardiac complications of open heart surgery include the onset of 

arrhythmias and cardiac tamponade which reduce cardiac output leading to decreased organ 

perfusion.  In addition the cardiovascular system may be stressed by dysfunction of the circulatory 

system due to vasoplegia secondary to CPB and hypovolaemia secondary to haemorrhage or fluid 

shifts.    

1.3.4.  Cardiovascular complications - cardiac 

Low cardiac output state 

Following cardiac surgery, around 2-4 % of patients will suffer from low cardiac output 

syndrome.(59, 60)  This syndrome is usually diagnosed by the requirement for mechanical or 

pharmacological support of cardiac output and carries a substantial burden in terms of mortality 

risk (24-38%) and increases the mean length of post-operative stay by 9 days(59).   

Treatment of low cardiac output state aims to improve oxygen delivery using pharmacological 

therapies to preserve organ function while the precipitating causes are treated or the 

myocardium recovers from the physical and biochemical insult of surgery and reperfusion injury.  

Where pharmacological treatment is not sufficient, advanced treatments such intra-aortic balloon 

pumps or mechanical circulatory support (MCS) may be employed.(61, 62)  The most common 

reversible cardiac causes of low cardiac output are arrhythmias and cardiac tamponade.   

Arrhythmias 

The term “arrhythmias” covers a range of cardiac rhythm disturbances of different frequencies 

with varied associated consequences.   Arrhythmias with a ventricular rate greater than 100 beats 



32 
 

per minutes are termed tachyarrhythmias. The most frequent tachyarrhythmia after cardiac 

surgery is atrial fibrillation/flutter (AF) which occurs in up to 30% of patients.(63-65)   Factors that 

have been shown to be associated with the onset of AF include electrolyte imbalance, reperfusion 

injury, sepsis and post-operative hypovolaemia with associated tachycardia.(66)  For most of 

those who develop AF, normal sinus rhythm will be restored through chemical or, more rarely, 

electrical cardioversion.  However AF, even when transient, is associated with increased lengths of 

CICU and hospital stay, the development of further complications and increased short and long 

term mortality.(67, 68) For some patients AF will persist and they will require lifelong 

anticoagulation to mitigate the associated risk of stroke.(69) 

Clinicians attempt to reduce the risk of arrhythmias by correction of predisposing factors such as 

hypovolaemia, hypoxaemia, electrolyte disturbances and sepsis. Where AF occurs, 

arrhythmogenic agents such as beta-adrenoceptor agonists should be discontinued where 

possible and if the arrhythmia persists class II or III antiarrhythmic agents should be administered.  

Most commonly, beta-blockers or amiodarone are administered.(70) 

There is evidence for the administration of anti-arrhythmics perioperatively to reduce the risk of 

post-operative AF, particularly that those already taking beta-blockers should continue to do 

so.(71, 72) However trials have repeatedly suggested that risk stratification prior to making a 

decision to prescribe prophylactic anti-arrhythmic agents is needed to maximise the benefits of 

AF prevention while minimising the frequency of side effects in patients who would not have gone 

on to develop AF without the prophylactic treatment.(73, 74)  

Other tachyarrhythmias are much less common after cardiac surgery (sustained ventricular 

tachycardia has an incidence of around 1%). However, they carry a risk of mortality of up to 

50%.(75, 76)  They are often related to existing structural abnormalities of the heart or ischaemic 

events although they may also result from administration of medication to treat other 

arrhythmias.(77)  Treatments include class Ia, Ib and III anti-arrhythmics.  

Any tachyarrhythmia associated with syncope, shock, ischaemic pain or congestive cardiac failure 

should be treated with immediate direct current cardioversion.(70) 

Bradyarrhythmias are less frequent and are usually caused by atrioventricular block or sick sinus 

syndrome.(77)   Bradyarrhythmias are relatively more common after valve surgery during which 

the conducting system of the heart is more likely to be disturbed.   Most surgeons routinely insert 

temporary epicardial pacing wires in such cases.  In 1-4% of cardiac surgery patients a permanent 

pacemaker is required because the rhythm does not return to its pre-operative state.(78)    
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Cardiac tamponade 

Bleeding within the surgical field after cardiac surgery can result in a collection of fluid around the 

heart.  The fluid may compress the low pressure cardiac chambers (the atria and right ventricle) 

and drastically reduce cardiac output.   The incidence of re-operation for cardiac tamponade is 

around 3%.(37, 79)  Early studies showed increased mortality (from 4.2% to 10.7%) and incidence 

of prolonged mechanical ventilation (from 8.6% to 24%) in cardiac surgery patients who required 

re-sternotomy for bleeding when compared with those who did not.(80, 81)  However, a more 

recent study found that resternotomy per se was not associated with worse outcomes.  Rather it 

was delayed recognition and treatment of tamponade that was associated with increased rates of 

mortality, renal failure, prolonged mechanical ventilation and increased length of stay on CICU. 

(37)   

Classically, cardiac tamponade presents as Beck’s triad of low arterial blood pressure, distended 

neck veins and muffled heart sounds.(82) However on CICU after cardiac surgery, cardiac 

tamponade is usually diagnosed following a period of decreasing cardiac output despite adequate 

fluid resuscitation.  A fall in arterial blood pressure accompanied by a rise in central venous 

pressure and signs of global hypoperfusion such as hyperlactataemia develop.   Automated 

monitoring algorithms could monitor the physiological parameters described above together with 

the dose of vasoactive medications being administered to identify patients developing tamponade 

before their physiology becomes markedly deranged.  TTE or TOE can identify fluid around the 

heart or compression of the atria and right ventricle.(83)  The treatment of symptomatic 

tamponade involves resternotomy, evacuation of blood or haematoma and haemostasis.  The 

sternum may be left open to prevent recurrence of tamponade if re-accumulation of fluid is 

considered to be likely. 

 

1.3.5.  Cardiovascular complications - non-cardiac 

Hypovolaemia 

Fluid management plays a key role in management of patients following cardiac surgery. Where 

hypovolaemia is suspected, volume expansion is achieved through the use of balanced crystalloid 

solutions, colloid solutions (synthetic and human albumin solution) and blood products.  Fluid 

therapy is routinely guided by response of central venous pressure (CVP) and arterial blood 

pressure to fluid challenges.(47)  The response of cardiac output (measured using thermodilution 

or indicator dilution using pulmonary artery catheters) to fluid challenges was traditionally 
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considered to be the gold standard guide to fluid therapy.  More recently TTE or TOE has become 

the most used method for assessing the filling of cardiac chambers and contractility of the 

myocardium when unable to assess fluid volume status in more complex patients.(47)   

Vasoplegia 

Up to 50% of cardiac surgery patients require vasopressor or inotropic medication postoperatively 

(47) and relative hypovolaemia secondary to vasoplegia occurs in up to 20% (84).  Vasoplegia 

occurs secondary to a systemic inflammatory response triggered by passage of the patient’s blood 

through the CPB machine.(85)   

 

1.3.6.  Other serious complications 

Renal 

Acute Kidney Injury 

There are multiple mechanisms through which renal injury may occur during and after cardiac 

surgery.  Causes are commonly classified as pre-, intra- or post-renal.  Pre-renal causes result in 

decreased renal perfusion during CPB or the post-operative period.  This hypoperfusion may be 

caused by altered renal blood flow or globally decreased cardiac output.  Where cardiac output is 

decreased this is most commonly a consequence of arrhythmias, a decrease in myocardial 

contractility or decreased preload secondary to absolute or functional hypovolaemia. Functional 

hypovolaemia due to excessive vasodilation may itself be caused by a systemic inflammatory 

response to CPB or infection.  Intra-renal causes of renal damage include the administration of 

nephrotoxic drugs such as intravenous contrast, antibiotics and antihypertensives, haemolysis 

secondary to the use of CPB machines and endogenous toxins released as part of the stress 

response to surgery.  Post renal causes include urinary retention and urinary catheter 

obstruction.(86)  

Acute kidney injury (AKI) is diagnosed and classified according to the recently devised Kidney 

Disease International Global Outcomes(KDIGO) Acute Kidney Injury Work Group criteria.(87)  The 

system’s classification criteria include threshold values for serum creatinine concentration and 

hourly urine output.  The most severe category (Stage 3) is also diagnosed if a patient requires 

renal replacement therapy (RRT).  Around 3% of cardiac surgery patients will suffer AKI requiring 

RRT (86) with an associated mortality rate of up to 60% and an average increase in length of stay 

of 13 days.(29, 88, 89)  Even mild AKI is associated with both increased mortality and healthcare 
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costs (88, 90) with risk of mortality correlating with severity of AKI.   Early identification of those 

at risk of developing severe renal dysfunction could allow remedial measures to be taken to 

reduce the severity of the AKI they suffer.  

 

Neurological 

Neurological complications after cardiac surgery include stroke and neurocognitive disturbance, 

the most common example of which is delirium.   

 

Stroke 

Stroke was found to occur in 2.6% of cardiac surgery patients who underwent surgery in the UK 

between 2004 and 2008.(91)  This figure is in keeping with those quoted in studies in other 

populations.(92, 93)  Post-operative stroke carries a mortality risk of 22% and extends hospital 

stay by, on average, 7 days.(94)  Surgical intra-operative strategies to reduce the incidence of 

post-operative stroke include imaging the ascending aorta prior to cannulation to avoid dislodging 

debris from atheromatous plaques and the use of de-airing techniques and filtration devices to 

remove emboli.(95)  Physiological considerations include maintenance of normal haematocrit and 

blood glucose concentration together with relative normotension and mild hypothermia during 

CPB.(96)  Perioperatively, TOE should be used to ensure there is no aberrant communication 

between the systemic and pulmonary circulations and that there are no clots in the atria prior to 

surgery and that cardiac chambers have been de-aired prior to restoration of circulation. (95, 97)  

In the post-operative period to reduce the incidence of stroke, hyperthermia and hypotension are 

avoided while blood glucose concentration is tightly controlled.  Atrial fibrillation is treated early 

as it is a recognised risk factor for stroke.(96)  

Delirium 

Delirium is a syndrome of acute onset characterised by inattention, impaired consciousness and 

disordered cognition which has a fluctuating course.(98) Following cardiac surgery delirium occurs 

in 15-50% of patients.(92, 98-100)  It is associated with increased risk of long term mortality, an 

average ten-day increase in length of hospital stay and in increased risk of need for discharge to a 

nursing home.(100-102)  Identified risk factors for post-operative delirium include intra-operative 

normothermia, prolonged duration of CPB and post-operative mechanical ventilation together 

with the administration of high doses of fentanyl.(99, 103, 104)  Strategies employed on the CICU 
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to reduce the risk of delirium include early cessation of sedative medications and avoidance or 

prompt treatment of known risk factors such as hypotension, hypoxaemia and infection.  Delirium 

screening is widespread and facilitates early detection and treatment to reduce its adverse effects 

on outcomes.(105)  

Postoperative neurocognitive dysfunction 

Cognitive function may decline after any form of surgery(106) and postoperative neurocognitive 

dysfunction (POCD) occurs in up to 50% of cardiac surgery patients.(107)  POCD is usually defined 

as a reproducible decline in performance when undertaking various tasks designed assess 

neurocognitive function but attempts to study POCD are limited by the lack of a standardised 

definition.  POCD has been linked to many adverse outcomes including increased mortality, length 

of hospital stay, and likelihood of early retirement.(107, 108)   

Although the causes of POCD remain unclear, proposed mechanisms by which neuronal damage 

leading to POCD may occur are chiefly related hypoperfusion of the brain, inflammation and the 

adverse effects of anaesthetic agents.   

Absolute hypoperfusion may be global, such as that which occurs during periods of hypotension in 

which blood pressure is out of the range in which cerebral autoregulation of blood flow can be 

achieved (mean arterial pressure<60mmHg).  This may be a particularly important factor in 

patients with pre-existing cerebrovascular disease where flow may be limited by atheroma.  There 

are also many possible causes of localised, absolute hypoperfusion such as microemboli from 

atheroma disturbed during surgery or air bubbles introduced into the circulation during open 

heart surgery.(109)  Relative hypoperfusion may occur when the metabolic demand of the brain is 

exceeds it supply of oxygen.  Avoidance of hyperthermia is therefore an important consideration 

during the conduct of cardiac anaesthesia and recovery on CICU.(110) 

The inflammatory response to surgery has been suggested as a cause of POCD through possible 

detrimental effects on cerebral autoregulation. However, no treatment proposed to reduce the 

effect of inflammation on the brain has proven to be effective. (111-113) 

CPB was thought to be a likely cause of POCD as it is conceivable that its use during cardiac 

surgery would lead to increased delivery of emboli and inflammatory cytokines to the brain.  

However, when comparing rates of POCD in on-pump and off-pump cardiac surgery no clear link 

between CPB and POCD has been elucidated.(114, 115) 

The use of drugs associated with post-operative delirium such as fentanyl has not been shown to 

be linked to the development of POCD suggesting that the effects of such drugs on cognition are 
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temporary.(116)  The effects of anaesthetic agents on POCD are equivocal. Interestingly in non-

cardiac surgery patients the incidence of POCD has been shown to be the same in patients 

undergoing general and regional anaesthesia implying that the use of general anaesthetic agents 

does not contribute to the risk of POCD.(117) 

Until further causes of POCD are identified prevention centres on optimisation of cerebral 

perfusion and oxygenation, reduction in cerebral metabolic demand during surgery and avoidance 

of emboli. 

 

Gastrointestinal 

The rate of major gastrointestinal complications after cardiac surgery is around 2%.(118-120)  The 

most common complications are paralytic ileus, mesenteric ischaemia and gastrointestinal 

haemorrhage(120) some of which are associated with mortality rates of up to 67%.(121)  Studies 

have found that pre-and postoperative markers of poor cardiovascular function and a prolonged 

CPB time are the most significant risk factors for postoperative gastrointestinal complications. An 

association between previous history of gastrointestinal disease has been found in some studies 

but not in others.(118-120) 

Prevention of gastrointestinal complications centres on early mesenteric feeding, maintaining 

oxygen delivery through optimising mesenteric blood flow and avoidance of hypo and 

hypercoagulable states. 

Infective 

Nosocomial post-operative infections occur in up to 14% of CICU patients.  The most common 

infective complications of cardiac surgery include wound infections, line (particularly central 

venous catheter) infections and pneumonia.(122)  Outcomes vary according to the site of 

infection and the general condition of the patient at the time of infection.  The average risk of 

death in patients with infective complications has been estimated  at 25% (123) whereas 

candidaemia carries a mortality risk of 40-80%.(124, 125)    

Risk factors for infection include smoking, diabetes mellitus and complicated clinical course as 

indicated by prolonged operation times, prolonged ICU admission or the need for intra-aortic 

balloon pump counter pulsation.(123, 126) 

Prevention of infection on CICU is a massive area but centres on infection prevention through 

measures such as antibiotic prophylaxis, blood glucose control, hand hygiene, single patient 
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equipment use, and aseptic conduct of invasive procedures.(126)  Specific infections such as 

ventilator acquired pneumonia and central venous catheter infections are minimised through the 

use of care bundles aimed at reduced the incidence of risk factors for infection.(126-128) 

Treatment involves administration of antibiotics which must be targeted to the suspected or 

proven pathogen and continued for an adequate duration.   Treatment of sepsis focuses on 

support of organ systems while the immune system and antibiotics fight the infection. 

 

1.4. “Failure to rescue” following cardiac surgery 

Studies have shown that institutions with the worst patient outcomes following cardiac surgery 

don’t just experience more complications; they also fail to rescue more of the patients who suffer 

complications.(129)  “Failure to rescue” occurs when the lack of appropriate remedial treatment 

leads to increased severity of the complication or other related complications.(130)    Causes of 

this failure to rescue can be divided into two main categories; i) failing to recognise complications 

promptly, and ii) failing to manage complications effectively.(131)  Risk prediction models have 

the potential to improve the quantification of the risk of specific complications.  In doing so, these 

models can reduce the incidence of failure to rescue by allowing identification of impending 

complications before they become established.  Moreover, if these models are validated in 

multicentre studies, they can standardise the assessment of risk across multiple institutions and 

improvements in risk detection in these centres.   
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2.1.  Rationale for selecting models which analyse postoperative variables. 

This chapter is in the form of a systematic review of risk prediction models which have been 

validated for use following cardiac surgery.  This review sought to identify all models which had 

been validated in the prediction of outcomes identified in chapter one.  The manuscript focuses 

on models which analyse postoperative variables to estimate risk because this thesis aims to 

develop models which provide continuously updated risk estimates.  Such models will depend on 

the analyses of postoperative data to provide the risk updates.   
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2.2. Abstract 

Background 

Preoperative risk prediction models are used to provide patients with information on 

perioperative mortality and to risk-adjust surgical outcome analyses.  However, risk estimates 

from preoperative models may become increasingly unrealistic after surgery as they cannot take 

into account postoperative events.  A number of risk models that utilise postoperative data have 

been developed or validated for adult cardiac surgery but none has been widely adopted.   The 

objective of this review was to identify all such risk prediction models and discuss their uses and 

limitations.  

Methods 

A systematic review of the literature was undertaken with Medline, EMBASE and the Cochrane 

Library searched to identify relevant papers.  Identified studies were assessed with regards to 

model discrimination, model calibration and clinical validity.    

Results 

The search identified 1649 publications. 86 met the inclusion criteria from which 14 validated 

models were identified. Eight models were originally designed for use in general intensive care 

units but subsequently validated for use following cardiac surgery.  Six models were designed 

specifically for cardiac surgery patients.  Most models that demonstrated good statistical 

performance were designed for clinical benchmarking purposes. No validated model provides 

predictions for specific complications or patient deterioration more frequently than once daily. 

Conclusions 

This review has identified a number of risk prediction models that utilise postoperative data and 

have been validated for the prediction of outcomes after adult cardiac surgery. The lack of 

adoption of these models may be due to variations in patient monitoring protocols and the 

inability of existing models to guide clinical decision making for individual patients.  The risk scores 

identified are likely to be useful for assessing Cardiac Intensive Care Unit performance, informing 

discussions with patients or relatives and allocating resources.  Future research to develop and 

validate predictive models that utilise postoperative data to produce frequent estimates of risk 

for specific patient outcomes may be of benefit. 
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2.3. Introduction 

The most commonly used risk prediction tools in European adult cardiac surgery are the 

EuroSCORE models.[1, 2] These models use preoperative patient data to predict postoperative 

mortality. They play a vital role in preoperative clinical decision making, informed consent and 

performance monitoring. However, they have limited clinical value in subsequent patient 

management as the predicted risk cannot be modified by the occurrence of significant 

postoperative events or the patient’s response to those events. Consequently, risk estimates may 

become unrealistic as postoperative events unfold. 

Currently, adult cardiac surgery carries a mortality risk of 2-3%.[3, 4]  This risk is significantly 

higher in those who develop postoperative complications. Respiratory [5, 6] and renal failure [7, 

8] following cardiac surgery are associated with mortality rates of up to 18% and 60% 

respectively.  Models that identify patients at risk of such complications could reduce morbidity 

and mortality by alerting clinicians to those who would benefit from early, targeted interventions.   

A number of risk prediction models that utilise postoperative data have been developed or 

validated for use in adult cardiac surgery.  Some models calculate risk based on the initiation of 

treatments or the occurrence of events in the postoperative period.[9-11] These models may 

provide updated risk estimates that guide staff and resource allocation and may also inform 

discussions with patients and their relatives.  However, they often only demonstrate increased 

risk once end organ damage has occurred and remedial measures have been taken.  Accordingly, 

they are of limited use in the early identification of those at risk and may not enable timely 

administration of preventative treatment.  Their usefulness for benchmarking may be limited by 

interinstitutional variation in initiation of treatments according to local protocols.  Models based 

on postoperative physiological monitoring data are potentially better suited to these tasks. Such 

models share similarities with Early Warning Score (EWS) models[12], which have been widely 

adopted to identify ward-based patients at risk of clinical deterioration based on analyses of  

physiological values including heart rate, respiratory rate, oxygen saturation, blood pressure, 

temperature and conscious level. Despite widespread adoption of EWS models on other wards 

and the availability of vast amounts of patient monitoring data in the ICU setting following cardiac 

surgery, no risk model based on patient monitoring data following cardiac surgery has been 

widely adopted. The objective of this review was to identify all validated risk models which use 

postoperative patient monitoring data to predict outcomes in adult cardiac surgery.  Clinical 

validity and statistical performance were evaluated to explore possible reasons for the lack of 

adoption. 
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2.4.  Methods 

2.4.1. Literature search and study eligibility 

The Database of Abstract of Reviews of Effects (DARE) and PubMed Health databases were 

searched using the terms “cardiac surgery” or “coronary artery bypass” or “valve “and “risk 

prediction” or “model” for papers published since 2009 and revealed no existing Cochrane, Centre 

for Reviews and Dissemination (CRD) or PubMed Health registered reviews. A subsequent search 

of the Cochrane library, EMBASE and MEDLINE databases from inception to 2015 was performed 

using the Population, Intervention, Comparison, Outcomes, Setting (PICOS) framework (see 

Appendix). Two "readers" (SHH and DMR) independently screened the titles and abstracts to 

select potentially eligible studies. The full text of potentially eligible manuscripts was assessed by 

both readers independently. Studies were eligible if they reported the validation of a risk 

prediction model using postoperative patient monitoring data to predict outcomes after adult 

cardiac surgery.  In addition to the validation study, the article that first described the validated 

model was identified and reviewed for details concerning model development. There were no 

restrictions on study design.  Only studies presented in English were analysed.   

2.4.2. Data extraction and quality assessment 

Data were extracted from the eligible manuscripts by SHH and included first author’s name, year 

of publication, study design, sample size and population characteristics.  For studies describing 

the development of a risk prediction model information extracted included; statistical model 

used, factors included in the model, model outcomes and method of validation. For articles 

describing the validation (internal or external) of a risk prediction model in cardiac surgery 

patients information extracted included; the quality of the study, statistical performance of the 

model and characteristics of the validation cohort. 

When assessing the models, three main aspects of their performance were considered: 

discrimination, calibration and clinical validity. Discrimination was usually assessed using the area 

under the Receiver Operator Characteristic curve (AUC).[13]  An AUC of 0.5 represents 

discrimination between patients who experience an outcome and those who do not, that is no 

better than chance. An AUC of 1.0 represents perfect discrimination, with values >0.7 generally 

accepted to indicate adequate discrimination, and >0.8 considered good.[14-16]  

Calibration, or how closely the predicted risk matches the observed risk, can be assessed using a 

variety of different methods. The Hosmer-Lemeshow (HL) test was most commonly used. A high 

HL χ2 value with a low associated p value suggests that there is a significant difference between 

predicted risk and observed outcomes across sub-groups of the cohort.[17] Other calibration 
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measures included the Brier and the R2 score. Brier score values approaching zero represent good 

calibration.  The R2 score is used for continuous outcomes e.g. length of stay, with a value of 1 

indicating perfect fit.  Clinical validity was assessed considering the quality of the study design, the 

methodology and the reporting.  

2.5.  Results 

A total of 86 relevant studies were identified.  A flow chart to describe the manuscript selection 

process is shown in Figure 2-1. 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 - Manuscript selection for review 

 

Amongst these there were 14 risk models which had been validated for use in cardiac surgery 

patients (Table 2-1).  Eight of these models were initially developed using data from general ICU 

populations with half of these developed using cohorts from which cardiac surgery patients were 

excluded. Six models were developed using only patients who had undergone cardiac surgery.  

Most models were developed using logistic regression but expert opinion, Bayesian modelling and 

Gaussian processes were also utilised. (Table 2-1) 
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Table 2-1 - Models validated for predicting outcomes following cardiac surgery 

APACHE-II – Acute Physiology and Chronic Health Evaluation-II, APACHE-III – Acute Physiology and Chronic Health Evaluation-III, SAPS-II – Simplified Acute Physiology Score II, MODS – Multiple 
Organ Dysfunction Score , SOFA – (Sepsis-Related) Sequential Organ Failure Assessment, LODS – Logistic Organ Dysfunction Score,  ICURS – Intensive Care Unit Risk Stratification Score, SAPS-3 – 
Simplified Acute Physiology Score 3, CASUS – Cardiac Surgery Score, ICNARC – Intensive Care National Audit and Research Centre, ICU Intensive Care Unit, AKICS – Acute Kidney Injury after Cardiac 
Surgery, CABG – Coronary Artery Bypass Graft, LOS-ICU – Length Of Stay on the Intensive Care Unit, AKI – Acute Kidney Injury  
* Included multiple statistical values for parameters including means, variances and cumulative totals

Model Author Year Country Development 
method 

Design cohort Cardiac 
surgery 
validation  

Outcomes predicted No. of 
physiological 
parameters 

APACHE-II[18] Knaus 1985 USA Logistic regression Excluded  cardiac External Perioperative, ICU and 30 day Mortality;   LOS-ICU ; 
Prolonged mechanical ventilation 

5 

APACHE-III[19] Knaus 1991 USA Logistic regression Excluded  cardiac External Hospital mortality; LOS-ICU; Treatment costs 5 

SAPS-II[20] Le Gall 1993 12 countries Logistic regression Excluded cardiac External Hospital and ICU Mortality; Prolonged mechanical 
ventilation 

3 

MODS[21] Marshall 1995 Canada Logistic regression Surgical ICU External Mortality 5 

SOFA[22] Vincent 1996 16 countries Expert Opinion General ICU  External Hospital and ICU Mortality;  LOS-ICU 3 

LODS[23] Le Gall 1996 12 countries Logistic regression Excluded cardiac External Hospital and ICU mortality 5 

ICURS[16] Higgins 1997 USA Logistic regression Mixed cardiac  External Hospital Mortality; Composite morbidity 4 

SAPS-3[24] Moreno 2005 35 countries Logistic regression General ICU External Hospital and ICU mortality 2 

CASUS[25] Hekmat 2005 Germany Logistic regression Mixed cardiac Internal/ 
External 

30 day and ICU mortality 5 

Biagioli[26] Biagioli 2006 Italy Bayesian CABG Internal Composite morbidity 2 

AKICS[8] Palomba 2007 Brazil Logistic regression Mixed cardiac Internal AKI 2 

ICNARC[27] Harrison 2007 UK Logistic regression General ICU External Perioperative mortality 7 

Salamonsen[28] Salamonsen 2008 Australia Linear regression CABG Internal LOS-ICU 3 

Meyfroidt[29] Meyfroidt 2011 Belgium Gaussian process Mixed cardiac Internal LOS-ICU 13* 
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The overall quality of these studies was good (Table 2-2). The main limitation was a failure to 

clearly describe how missing data were handled. Occasionally, preoperative patient 

characteristics were not included, but in these studies composite measures of patient co-

morbidity such as the mean EuroSCORE were usually provided.   
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Table 2-2 – Validation studies-quality 

Validation study and 
Year 

Models Validated Patient 
selection 
criteria 
detailed 

Consecutive 
Patients 
Studied 

Preop 
health 
status well 
described 

Patient 
demographics 
well described 

Data 
collection 

Handling of 
missing data 

Outcome 
measures 

Validation 
method 

Validation 
group size 

Becker 1995[30]  APACHE-III Yes Yes No Yes Prospective Patients 
excluded 

Mortality and 
ICU-LOS 

External 2,435 

Higgins 1997[16] ICURS Yes Yes Yes Yes Prospective Not discussed Mortality 
Morbidity 

Internal   2125 

Kern 2001[31] SAPS-II, APACHE-II Yes Yes No Yes Prospective Not discussed Prolonged 
Mechanical 
Ventilation 

External  687 

Ceriani 2003[32] SOFA Yes Yes Yes Yes Not specified Not discussed Mortality External  218 

Serrano 2005[33] ICURS Yes Yes No Yes Prospective Not discussed Prolonged 
Mechanical 
Ventilation 

External  569 

Hekmat 2005[25] APACHE-II,MODS Yes Yes No Yes Prospective None missing Mortality External  1057 
 CASUS Yes Yes No Yes Prospective None missing Mortality Internal  1057 
Patila 2006[34] SOFA Yes Yes Yes Yes Prospective Not discussed Mortality External  857 

Biagioli 2006[26] locally customised 
ICURS, Biagioli 

Yes Yes Yes Yes Prospective Not discussed Composite 
Morbidity 

Internal  350 

Gomes 2007[35] SOFA Yes Yes Yes Yes Not specified Not discussed Mortality External  1458 
Palomba 2007[8] ICURS Yes Not specified Yes Yes Prospective Not discussed AKI External   603 
 AKICS Yes Not specified Yes Yes Prospective Not discussed AKI Internal  215 
Salamonsen 2008[28] Salamonsen Yes Not specified Yes Yes Prospective Patients 

excluded 
LOS-ICU Internal  117 
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APACHE-II – Acute Physiology and Chronic Health Evaluation-II, APACHE-III – Acute Physiology and Chronic Health Evaluation-III, SAPS-II – Simplified Acute Physiology Score II, MODS – Multiple Organ 
Dysfunction Score , SOFA – (Sepsis-Related) Sequential Organ Failure Assessment, LODS – Logistic Organ Dysfunction Score,  ICURS – Intensive Care Unit Risk Stratification Score, SAPS-3 – Simplified 
Acute Physiology Score 3, CASUS – Cardiac Surgery Score, ICNARC – Intensive Care National Audit and Research Centre, ICU Intensive Care Unit, AKICS – Acute Kidney Injury after Cardiac Surgery, LOS-
ICU – Length Of Stay on the Intensive Care Unit, AKI – Acute Kidney Injury

 
 
 
 
 
 
 
 
 
 
Table 2-2 – Validation studies-quality (cont.) 

 

        

Validation study and 
Year 

Models Validated Patient 
selection 
criteria 
detailed 

Consecutive 
Patients 
Studied 

Preop 
health 
status well 
described 

Patient 
demographics 
well described 

Data 
collection 

Handling of 
missing data 

Outcome 
measures 

Validation 
method 

Validation 
group size 

Hekmat 2010[36] CASUS Yes Yes No Yes Prospective None missing Mortality Internal  3801 

Doerr 2011[37] CASUS, SOFA, SAPS-
II APACHE-II 

Yes Yes No Yes Prospective None missing Mortality External  2801 

Meyfoidt 2011[29] Meyfroidt Yes Yes No No Not specified Imputed LOS-ICU Internal  499 

Heldwein 2011[38] LODS Yes Yes No Yes Prospective None missing Mortality External  2801 

Badreldin 2012[39] SOFA, CASUS Yes Yes No Yes Prospective None missing Mortality External  2801 

Badreldin 2012[15] SOFA Yes Yes No Yes Prospective None missing Mortality External  2801 

Doerr 2012[40] CASUS Yes Yes Yes Yes Prospective None missing Mortality External  4054 

Doerr 2014[41] SAPS-II, SAPS -III Yes Yes No Yes Prospective None missing Mortality External  5207 

Ariyaratnam 2015[3] APACHE-II, ICNARC Yes Yes Yes Yes Prospective Not discussed Mortality External  1646 

Exarchopoulos 2015[42] APACHE-II, SAPS-II, 
SOFA, CASUS 

Yes Yes No Yes Prospective None missing Mortality External  150 

Tsaousi 2015[43] APACHE-II, SOFA Yes Yes No Yes Prospective None missing Mortality External  1058 
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Five of the 14 models included purely postoperative variables, four included preoperative and 

postoperative variables and five models included intraoperative, preoperative and postoperative 

variables.  The variables used by the validated models are detailed in Table 2-3.  The organ system 

most commonly assessed using patient monitoring data was the cardiovascular system.  Many 

models simply include the mean arterial pressure while some depend on knowledge of cardiac 

output.  Others use the composite measure of Pressure Adjusted Heart Rate which is based on 

heart rate, central venous pressure and mean arterial pressure as shown below. 

 

Pressure adjusted heart rate =  
Heart rate ×  central venous pressure

mean arterial pressure
  

 

The respiratory system was most commonly assessed using the ratio of arterial partial pressure of 

oxygen to inspired oxygen concentration.  The renal system was assessed using blood test results 

rather than urine output in all but four models.  Temperature was measured in five models. 

The statistical performance of the ten models validated for prediction of mortality is shown in 

Table 2-4. The statistical performance of the models validated for the prediction of morbidity is 

shown in Table 2-5. Morbidity outcomes predicted included prolonged ICU stay, prolonged 

ventilation, acute kidney injury (AKI) and composite morbidity. A number of models were 

developed and validated for both mortality and morbidity.  APACHE-II, SAPS-II, SOFA, ICURS and 

CASUS were validated in multiple patient cohorts. These all showed good discrimination in 

multiple studies with AUCs > 0.75.  Of those validated in multiple studies, SOFA and CASUS scores 

consistently demonstrated the best combinations of AUCs >0.8 and p values > 0.05 for the HL χ2 

test in external validation cohorts.   



49 
 

Table 2-3 -Variables included in each model 

Model Pre-operative Intra-
operative 

Postoperative 
physiological monitoring 

Other 
Postoperative  

Timing of capture   

APACHE-II[18] Age, Chronic Disease 
Status, type of 
admission 

 - PaO2/FiO2, Temp, MAP, RR  Blood tests: pH, WCC, 
K+, Na+, Hct, Cr  
GCS, FiO2  

Worst value recorded 
each day (originally 
within first 24hours) 

APACHE-III[19] Age, Previous surgery, 
Gender, Comorbidities 

Number of 
grafts and 
vessels used. 
Urgency 
 

HR, MAP, Temp, RR , A-a 
gradient,  UO  

Blood tests: Hct, WCC, 
Cr, Na+, Albumin, 
Bilirubin, glucose, BUN, 
PaO2 

Worst value recorded 
within first 24hours 

SAPS-II[20] Age, Chronic Disease 
Status, Type of 
Admission 

- PaO2/ FiO2, UO Blood tests: Ur, Cr, 
WCC, K+, Na+, HCO3

- 
GCS 

Worst value recorded 
each day (originally 
within first 24hours)  

MODS[21]  - -  PaO2/ FiO2, PAR Blood tests: Bilirubin, 
Cr, Platelets 
GCS 

Worst value recorded 
each day  

SOFA[22]  - -  PaO2/ FiO2, MAP Blood Tests: Cr, 
Bilirubin, Platelets,  
Vasopressor use, GCS 

Worst value recorded 
each day  

LODS[23]  - -  PaO2/ FiO2, HR, systolic BP, UO Blood tests: WCC, Ur, 
Cr, Bilirubin, PT, 
Platelets, GCS 

Worst value recorded 
each day (originally 
within first 24hours) 

ICURS[16] Age,  Comorbidities,  
Albumin 
 

CPB time 
Need for IABP 
after CPB 

A-a gradient, HR, CI,   Blood tests: HCO3
-  On arrival to ICU 

SAPS-3[24] Age, Comorbidities, 
Reason for Admission, 
Pre-admission events 

Site of surgery Temp, HR Blood tests: Bilirubin, 
Cr, WCC, pH, Platelets 
GCS, FiO2, requirement 
for mechanical 
ventilation 

Within 1 hour of 
admission 

CASUS[25]  -  - PaO2/ FiO2, PAR Blood tests: Cr, 
Bilirubin, lactate, 
Platelets. 
Neurological state,  
Requirement for IABP 
or VAD 

Worst value recorded 
each day 
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Table 2-3 -Variables included in each model [cont.) 

    

Model Pre-operative Intra-
operative 

Postoperative 
physiological monitoring 

Other 
Postoperative  

Timing of capture   

Biagioli[26] Age,  Weight, 
Comorbidities,  Cr,  
Requirement for IABP 

Type of surgery 
Duration of 
CPB  

DO2I, Blood tests: WCC  
Requirement for IABP 

Within 3 hours of 
admission 

ICNARC[27] Age, diagnostic 
category, source of 
admission, CPR before 
admission 

- HR, systolic BP, Temp, RR, PaO2/ 
FiO2, UO,  

pH, Ur, Cr, Na, WCC, 
GCS 

Within 24 hours of 
admission 

Salamonsen[28]  - -  MAP, CVP, CI Blood tests: HCO3
- 

Requirement for IABP 
Cumulative adrenaline 
and noradrenaline 
doses 

Average values over 
first four hours on ICU 

Meyfroidt[29] * Comorbidities, 
Pre-admission events  

 - Multiple derived from BP, RR, 
FiO2,  SpO2, PAP, PEEP, HR, CVP, 
SPAP, UO, Drain Output, CO, 
Temp 

Blood tests  
Medication 

First four hours of 
admission 

AKICS[8] Age, Cr, Glucose, type 
of surgery, 
comorbidities 

Duration of 
CPB 

CO, CVP  On ICU admission 

*see http://www.kuleuven.be/licm/ml/gpdischarge1.html for details of modelled variables  

APACHE-II – Acute Physiology and Chronic Health Evaluation-II, APACHE-III – Acute Physiology and Chronic Health Evaluation-III, SAPS-II – Simplified Acute Physiology Score II, MODS – Multiple Organ 
Dysfunction Score , SOFA – (Sepsis-Related) Sequential Organ Failure Assessment, LODS – Logistic Organ Dysfunction Score,  ICURS – Intensive Care Unit Risk Stratification Score, SAPS-3 – Simplified 
Acute Physiology Score 3, CASUS – Cardiac Surgery Score, ICNARC – Intensive Care National Audit and Research Centre, ICU Intensive Care Unit, AKICS – Acute Kidney Injury after Cardiac Surgery 
A-a gradient – alveolar arterial gradient, Albumin – serum albumin concentration, Bilirubin - serum bilirubin concentration, BP – blood pressure, BUN – blood urea nitrogen, CI – Cardiac index,  CO – 
cardiac output, CPB – cardiopulmonary bypass, Cr – serum creatinine concentration, CVP – central venous pressure, DO2I – oxygen delivery index, FiO2– fraction inspired oxygen, GCS –Glasgow Coma 
Scale, Glucose – serum glucose concentration, Hct – haematocrit, HCO3- – serum bicarbonate concentration, IABP – Intra-aortic balloon pump, K+ – serum potassium concentration, lactate – serum 
lactate concentration, MAP – mean arterial pressure, Na+ – serum sodium concentration,  PAR – pressure adjusted heart rate (HRxCVP/MAP), PaCO2 – arterial partial pressure of carbon dioxide, PaO2 
– arterial partial pressure of oxygen, PAP – Peak airway pressure, PCWP – pulmonary capillary wedge pressure, PEEP – positive end-expiratory pressure, pH – blood pH, Platelets – Platelet Count, PT – 
Prothrombin time, RR – respiratory rate, SPAP – systolic pulmonary artery pressure,  SPO2 – oxygen saturation (pulse oximetry), Temp – temperature, UO – urine output, Ur – serum urea 
concentration, VAD – ventricular assist device,  VT – Tidal Volume, WCC – White Cell Count 
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Table 2-4 - Studies validating models in the prediction of mortality in cardiac surgery 

Model Author Year Country Validation cohort 
(n) 

Measure  of 
calibration* 

Measure of 
discrimination* 

APACHE-II Hekmat[25]^ 2005 Germany Mixed cardiac (1057) HL χ2=6.6‡ AUC=0.89 
 Doerr[37] 2011 Germany Mixed cardiac (2801) HL χ2=30.6 

(p<0.001) 
AUC=0.87 

 Ariyaratnam[3] 2015 UK Mixed cardiac (1646) HL χ2=16.2 
(p=0.001) 

AUC=0.65 

 Exarchopoulos[42] 2015 Greece Mixed cardiac (150) HL χ2=10.9 
(p=0.20) 

AUC=0.82 

 Tsaousi[43] 

 
2015 Greece Mixed cardiac (1058) HL χ2=7.4 

(p=0.49) 
AUC=0.86 

APACHE-III Becker[30] 1995 USA Mixed cardiac (2435) R2=0.22 AUC=0.85 
SAPS-II Doerr[37] 2011 Germany Mixed cardiac (2801) HL χ2=17.15 

(p=0.03) 
AUC=0.89 

 Doerr[41] 2014 Germany Mixed cardiac (5207) HL χ2=57.8 
(p=0.000) 

AUC=0.88 

 Exarchopoulos[42] 2015 Greece Mixed cardiac (150) HL χ2=5.1 
(p=0.75) 

AUC=0.80 

MODS Hekmat[25]^ 2005 Germany Mixed cardiac (1057) HL χ2=5.7‡ AUC=0.90 
SOFA Ceriani[32] 2003 Italy Mixed cardiac (218)   AUC=0.71 
 Patila[34]# 2006 Finland Mixed cardiac (855)  AUC=0.78 
 Gomes[35] 2007 Brazil Mixed cardiac (1458)  AUC=0.74 
 Doerr[37] 2011 Germany Mixed cardiac (2801) HL χ2=6.75 

(p=0.56) 
AUC=0.91 

 Badreldin[39] 2012 Germany Mixed cardiac (2801) HL χ2=6.75 
(p=0.56) 

AUC=0.91 

 Badreldin[15] 2012 Germany Mixed cardiac (2801) HL χ2=14.9 
(p=0.06) 

AUC=0.88 

 Exarchopoulos[42] 2015 Greece Mixed cardiac (150) HL χ2=2.9 
(p=0.57) 

AUC=0.76 

 Tsaousi[43] 

 
2015 Greece Mixed cardiac (1058) HL χ2=4.8 

(p=0.58) 
AUC=0.86 

LODS Heldwein[38] 2011 Germany Mixed cardiac (2801) HL χ2=6.4 
(p=0.49) 

AUC=0.93 

ICURS Higgins[16] 1997 USA Mixed cardiac (2125) Good HL χ2‡ AUC=0.85 
 Gomes[35] 2007 Brazil Mixed cardiac (1458)  AUC=0.77 
SAPS-3 Doerr[41] 2014 Germany Mixed cardiac (5207) HL χ2=15.2 

(p=0.056) 
 

AUC=0.89 

CASUS Hekmat[25]^ 2005 Germany Mixed cardiac (1104) HL χ2 =5.1‡ AUC=0.96 
 Hekmat[36]^ 2010 Germany Mixed cardiac (3801) HL χ2 =7.0‡ AUC=0.95 
 Doerr[23] 2011 Germany Mixed cardiac (2801) HL χ2=14.0 

(p=0.05) 
AUC=0.97 

 Badreldin[43] 2012 Germany Mixed cardiac (2801) HL χ2=14.0 
(p=0.05) 

AUC=0.97 

 Doerr[37] 2012 Germany Mixed cardiac (4054) O/E ratio=0.63 AUC=0.97 
 Exarchopoulos[42] 2015 Greece Mixed cardiac (150) HL χ2=2.2 

(p=0.89) 
AUC=0.89 

ICNARC Ariyaratnam[3] 2015 UK Mixed cardiac (1646) HL χ2 =9.10 
(p=0.33) 

AUC=0.85 

 
APACHE-II – Acute Physiology and Chronic Health Evaluation-II, APACHE-III – Acute Physiology and Chronic Health 
Evaluation-III, SAPS-II – Simplified Acute Physiology Score II, MODS – Multiple Organ Dysfunction Score , SOFA – (Sepsis-
Related) Sequential Organ Failure Assessment, LODS – Logistic Organ Dysfunction Score,  ICURS – Intensive Care Unit 
Risk Stratification Score, O/E ratio –- ratio of observed to expected outcomes, SAPS-3 – Simplified Acute Physiology 
Score 3, CASUS – Cardiac Surgery Score, ICNARC – Intensive Care National Audit and Research Centre, ICU Intensive 
Care Unit, AKICS – Acute Kidney Injury after Cardiac Surgery, HL – Hosmer Lemeshow, AUC - Area under the receiver 
operating characteristic curve. 
*if calculated on multiple days the value on the day of the best AUC is shown, ‡ p values not supplied, # only 
investigated maximum SOFA score, ^ if multiple similar samples of patients were studied in the same paper the values 
for the biggest sample are shown
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Table 2-5 - Studies validating models in the prediction of morbidity in cardiac surgery 

Model Author Year Country Validation cohort 

(n) 

Measure  of 

calibration* 

Measure of 

discrimination* 

      

Length of ICU stay      

APACHE-III Becker[30] 1995 USA Mixed Cardiac (2435) R2=0.08  

Salamonsen Salamonsen[28

] 
2008 Australia CABG (117) R2=0.38  

Meyfroidt Meyfroidt[29] 2011 Belgium Mixed cardiac (499) Good HL χ2 
(p=0.38) 
Brier 0.18 

AUC=0.76 

Composite morbidity      

ICURS Higgins[16] 1997 USA Mixed cardiac (2125) Good HL χ2‡ AUC=0.76 

 Biagioli[26] 2006 Italy CABG (740)  Poor HL χ2‡ AUC=0.82 

Biagioli Biagioli[26] 2006 Italy CABG (350) Good HLχ2 

(p=0.35) 

AUC=0.70 

Acute Kidney Injury      

ICURS Palomba[8] 2007 Brazil Mixed cardiac (603)  AUC=0.70 

AKICS Palomba[8] 2007 Brazil Mixed cardiac (215) HL χ2 good 
(p=0.24) 

AUC=0.79 

Prolonged Mechanical Ventilation     

SAPS-II Kern[31] 2001 Germany Mixed cardiac (687)  AUC=0.90 

APACHE-II Kern[31] 2001 Germany Mixed cardiac (687)  AUC=0.88 

ICURS Serrano[33] 2005 Spain CABG (569) HL χ2= 12.1 

(p=0.10) 

AUC=0.68 

APACHE-II – Acute Physiology and Chronic Health Evaluation-II, APACHE-III – Acute Physiology and Chronic Health 
Evaluation-III, SAPS-II – Simplified Acute Physiology Score II, ICURS – Intensive Care Unit Risk Stratification Score, ICU 
Intensive Care Unit, AKICS – Acute Kidney Injury after Cardiac Surgery 
 
CABG, Coronary Artery Bypass Graft, HL – Hosmer Lemeshow, AUC - Area under the receiver operating characteristic 
curve 
*if calculated on multiple days the value on the day of the best AUC is shown 
‡ p values not supplied 
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2.5.1. Models developed for general ICU and validated in cardiac surgery patients 

Acute Physiology and Chronic Health Evaluation II (APACHE II) 

In 1985 Knaus et al. developed the APACHE II score[18] from the original APACHE score.[44]   

APACHE-II estimates the risk of mortality for ICU patients using data including patient age, co-

morbidity and an Acute Physiologic Score (APS) based on the most abnormal values of 12 

physiological variables recorded during the first 24 hours of ICU admission.  Cardiac surgery 

patients were excluded from the model’s development dataset. 

A 2001 study by Kern et al. demonstrated that APACHE-II discriminated well when predicting 

prolonged mechanical ventilation in 687 cardiac surgery patients.[31] In 2005 Hekmat et al. 

demonstrated that APACHE-II scores calculated daily for 1057 cardiac surgery patients performed 

well, with postoperative day 3 scores best predicting 30 day mortality.[25] In 2011, Doerr et al. 

conducted similar analyses using the records of 2801 cardiac surgery patients.[37]  When 

predicting ICU mortality APACHE-II showed adequate discrimination for each postoperative day 

but calibration was only adequate on the first postoperative day. Mean and worst APACHE-II 

scores for each patient were also used to generate mortality predictions with the mean APACHE-II 

score demonstrating the best discrimination and calibration.  

Exarchopoulos and colleagues demonstrated that APACHE-II scores at ICU admission successfully 

predicted 30 day mortality in 150 cardiac surgery patients.[42] Similarly Tsaousi et al. 

demonstrated that ICU admission APACHE-II score successfully predicted in-hospital mortality in 

1058 cardiac surgery patients.[43] However, in a UK study, Ariyaratnam et al. found admission 

APACHE-II scores predicted perioperative mortality poorly.[3]  

Acute Physiology and Chronic Health Evaluation III (APACHE-III) 

APACHE-III was developed using data from 17,440 patients from 40 hospitals.[19] The same 

physiological variables included in APACHE-II were measured in the first 24 hours of admission, 

together with urine output and four additional blood analyses. The final model included 17 

physiological variables which combined to create the APS. Compared with APACHE-II, APACHE-III 

assigns greater weight to extremely abnormal values. The APS is combined with chronic disease 

status and age to produce the final APACHE-III score. As with APACHE-II, cardiac surgery patients 

were not included in the development cohort.  

A model including APS from APACHE-III, patient information and surgery type was validated in 

2435 coronary artery bypass graft (CABG) patients.[30]  This discriminated well when predicting 
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hospital mortality for groups of patients, but in individuals the APS scores correlated poorly with 

mortality, length of ICU stay and treatment costs.   

Simplified Acute Physiology Score II (SAPS-II) 

The SAPS-II model was developed using data from 137 centres across 12 countries over a six 

month period in 1991-1992.[20] SAPS-II was designed for general ICUs. Cardiac surgery patients 

were excluded. Similarly to the APACHE scores, this model also used the worst recorded value for 

each variable during the first 24 hours of admission.  

The ability of daily SAPS-II scores to predict 30-day mortality after cardiac surgery was also 

assessed in Doerr’s 2011 study.[37]  Discrimination was found to be good but the model was 

poorly calibrated in this group of patients. Derived variables such as maximum and mean SAPS–II 

score showed excellent discrimination and calibration.  The same author subsequently analysed 

mortality predictions for 5207 cardiac surgery patients (including the initial 2801).  The calibration 

of daily SAPS-II scores was inadequate, but again discrimination was acceptable.[41]  

Kern et al. also assessed the ability SAPS-II to predict prolonged mechanical ventilation after 

cardiac surgery, reporting good discrimination but without commenting on calibration.[31]  

Exarchopoulos et al. found that admission SAPS-II score performed well when predicting 30 day 

mortality in a study of 150 cardiac surgery patients.[42] 

Multiple Organ Dysfunction Score (MODS) 

In 1995 Marshall et al. described the MODS as a tool to grade the severity of organ dysfunction in 

patients admitted to a Canadian surgical ICU between 1988 and 1990.[21]   The score was 

developed in order to measure patients’ progress on a daily basis during ICU stay and used data 

from 336 patients to grade dysfunction in 6 major organ systems.   

In 2005 and 2010 Hekmat et al. published validation studies in which MODS was calculated daily 

in two cohorts of 384 and 1057 cardiac surgery patients.[25, 36] MODS had good discriminatory 

abilities with some variation depending on the day on which the score was calculated.  Calibration 

was reported as acceptable, although p values for the HL χ2 test were not supplied.    

The (Sepsis-Related) Sequential Organ Failure Assessment Score (SOFA) 

SOFA score was developed in 1996 to standardise the assessment of a patient’s progress on the 

ICU during a septic episode.[22]  Designed by an expert committee, it grades the dysfunction of 

each organ system depending on the most abnormal value recorded for parameters chosen to 

represent those systems. Daily scores for each organ system can be compared separately with 

previous values or combined into a total score to reflect the overall patient progress.   
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In 2003 a team from Italy calculated SOFA scores for the first 10 postoperative days in cardiac 

surgery patients who stayed more than 96 hours in ICU. [32] The worst daily SOFA score, the 

maximum SOFA score possible when combining the worst scores for each organ system 

(regardless of the days on which they were recorded) and the difference between these two 

values and the first day SOFA score were calculated. All four derivatives of the SOFA score 

demonstrated good discrimination with the worst daily score demonstrating the best 

performance. In 2006 Patila et al. prospectively calculated the SOFA score for 857 cardiac surgery 

patients.[34]  The maximum SOFA score during the first 3 days demonstrated acceptable 

discrimination for mortality with the overall maximum postoperative SOFA performing slightly 

better.  A 2007 study analysed the association between the day 1 SOFA score and hospital 

mortality for 1458 cardiac surgery patients and found that the score had acceptable 

discrimination.[35]  

SOFA scores calculated on each of the first six postoperative days, as well as mean and maximum 

SOFA scores showed good calibration and discrimination in Doerr’s study.[37] In a subsequent 

analysis of the same data, predictions for 30 day mortality made using daily SOFA scores, the 

maximum SOFA score and the mean of all SOFA scores recorded throughout ICU admission were 

compared with predictions made using the mean of all daily SOFA scores up to that point.[15] 

Daily SOFA scores and their derivatives all demonstrated good discrimination. 

In Exarchopoulos’ validation study, the SOFA score demonstrated acceptable discrimination and 

calibration when predicting 30 day mortality.[42] Tsaousi et al. studied the accuracy of in-hospital 

mortality predictions made using day one SOFA scores, maximum and mean SOFA scores and the 

difference between maximum SOFA and the daily SOFA score. Day one SOFA demonstrated good 

discrimination but was outperformed by the other SOFA derivatives.[43] 

Logistic Organ Dysfunction Score (LODS) 

The LODS was developed by Le Gall et al. in 1996.[23]  It aimed to predict hospital mortality using 

a subset of the same database used to develop the SAPS-II score. The LODS uses the worst values 

recorded during the first 24 hours of ICU admission for 12 variables. Cardiac surgery patients were 

again excluded. In 2011 Heldwein et al. showed that daily LODS scores could be used to predict 

mortality in cardiac surgery patients,[38] with the best discrimination observed on the third 

postoperative day. 
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Simplified Acute Physiology Score 3 (SAPS-3) 

The SAPS-3 score was developed using data from 21336 patients from 309 ICUs across 35 

countries [24, 45] including 1657 cardiac surgery patients. Variables were selected using a 

combination of expert opinion and regression modelling. They included existing measures for the 

classification of illness and physiological instability measured within the first hour of ICU 

admission. The model is formed of 20 variables, including those reflecting the geographical 

location of the institution in which it is being used. The total SAPS-3 score is reduced by 6 points 

for cardiac surgery patients to reflect the greater use of vasoactive drugs and the frequency of 

abnormal postoperative physiology in these patients. In 2014 Doerr et al. compared SAPS-3 with 

SAPS-II in 5207 cardiac surgery patients.[41]  They calculated the scores on the first six 

postoperative days and found that SAPS-3 outperformed SAPS-II but was not adequately 

calibrated when predicting ICU mortality. 

Intensive Care National Audit and Research Centre model (ICNARC) 

In 2007 Harrison et al. published the ICNARC model,[27] developed using data from 216,626 

patients admitted to 163 general ICUs in the UK between 1995 and 2003. The score includes the 

worst values for 12 variables, six of which were physiological.  Cardiac surgery patients were 

included in the development cohort. In 2015 Ariyaratnam et al. validated the ICNARC model on 

1646 cardiac surgery patients in a UK centre and found that it performed well in terms of 

discrimination and calibration.[3] 

 

2.5.2. Models designed specifically for cardiac surgery 

Intensive Care Unit Risk Stratification Score (ICURS) 

In 1997 Higgins et al. produced the ICURS based on pre-, intra- and postoperative data recorded 

on admission to ICU after cardiac surgery for 2440 patients.[16]   Separate logistic regression 

models to predict in-hospital mortality and composite morbidity (defined in terms of specific 

measures of organ dysfunction) were developed.  Eight variables were included in the mortality 

model and 13 in the morbidity model.  

ICURS discriminated well in prospective validation sets, and calibration was reported as good.  In 

2005 Serrano validated ICURS’ ability to predict the duration of mechanical ventilation.  ICURS 

performed best when predicting ventilation lasting more than 48 hours, but discrimination was 

below the acceptable threshold.[33]  In 2006 Biagioli et al. studied the predictions generated by 

an ICURS model developed using Higgin’s methods in their own development cohort. In a 



57 
 

separate validation group of 350 cardiac surgery patients this customised model performed 

poorly.[26] In 2007 Palomba et al. used the ICURS scores of 603 cardiac surgery patients to predict 

the development of mild AKI with acceptable discrimination.[8]  

Cardiac Surgery Score (CASUS) 

The Cardiac Surgery Score (CASUS) was developed by Hekmat et al. in 2005 to produce daily 30 

day mortality estimates for cardiac surgery patients.[25]  The development dataset included 384 

patients who underwent cardiac surgery requiring cardiopulmonary bypass followed by admission 

for >24 hours to ICU.  The model based predictions on the most abnormal daily values of 10 

variables.  

The score was validated in two groups of 1057 and 1104 patients and performed consistently 

well. In 2010, a subsequent validation using data from 3801 patients, which included the 1104 

from the 2005 paper, revealed good discrimination and calibration. CASUS performed best on day 

1 and worst on day 5.[36]    

Daily CASUS scores, together with mean and maximum CASUS scores, were validated for 30 day 

mortality prediction at a different German centre in 2011 and were found to perform consistently 

well over the first six postoperative days.[37]  Maximum and mean CASUS scores demonstrated 

superior discrimination and satisfactory calibration.  The same data were used to show that 

CASUS outperformed SOFA in ICU mortality prediction.[39]  The same year a further comparison 

of CASUS with the new logistic CASUS based on 4054 patients (including the 2801 previously 

analysed in other studies) was performed.[40]  Although discrimination was good, calibration was 

found to be poor.  CASUS was validated in the Exarchopoulos study  and demonstrated good 

discrimination and calibration on the first postoperative day.[42]  Log-CASUS[40] and Rapid 

Clinical Evaluation (RACE)[46], both based on CASUS, performed well in development sets but are 

yet to be validated themselves. 

Biagioli Model  

In 2006 Biagioli et al. produced a risk model for cardiac surgery using a Bayes linear approach.[26]  

The authors trained their model to predict morbidity using data for a range of predictor variables 

taken from a group of 740 patients undergoing CABG surgery.  The final model included pre- and 

intraoperative data combined with white cell count and oxygen delivery index measured within 3 

hours of ICU admission.  In a validation set of 350 patients, the model had good discrimination 

and calibration and outperformed models created using logistic regression.[26]    
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Salamonsen Model 

In 2008 Salamonsen et al. produced a risk model designed to predict which patients undergoing 

CABG would not be ready for discharge from ICU within their “fast-track” schedule (<12 

hours).[28]  Pre-, intra- and postoperative variables were used to develop a multiple linear 

regression model to predict length of stay on the ICU. The model was validated in 117 patients. 

The R2 value for the validation set was poor and the 95% confidence intervals for predicted 

lengths of stay of 4 and 12 hours spanned 29 and 70 hours respectively.  Consequently, the 

authors concluded that their model was not useful. 

Meyfroidt Model 

In 2011 Meyfroidt et al. collected a range of admission, medication, laboratory and physiological 

data from the first 4 hours of ICU admission for 461 cardiac surgery patients. They used these 

data to train Gaussian process models to perform two tasks:[29] (i) a classification task to predict 

whether patients would be discharged from ICU on day 2,  (ii), a regression task designed to 

predict the actual day of ICU discharge. Data for five physiological variables were averaged across 

40 minute segments and these averaged values were included in the final model.  The models 

were tested on a validation cohort of 499 patients and were able to adequately identify patients 

likely to be discharged on day 2 but were less successful when predicting the day of discharge. 

Acute Kidney Injury after Cardiac Surgery (AKICS) model 

In 2007 Palomba et al. developed and validated a model to predict mild AKI in patients following 

cardiac surgery.[8]  The model was based on eight variables, two of which were postoperative 

physiological variables. It performed well when validated in 215 patients. 

 

2.6.  Discussion 

This systematic review has identified 14 validated risk models that utilise postoperative patient 

monitoring data to predict outcomes after adult cardiac surgery. The most commonly validated 

predictions were for mortality, but the prediction of composite morbidity, ICU length of stay, and 

specific morbidity outcomes were also tested.  Of the fourteen models, eight were developed on 

non-cardiac surgery patients but have subsequently been validated in cardiac surgery and six 

were developed specifically for cardiac surgery.  

Postoperative risk prediction models may be useful for performing three main tasks after cardiac 

surgery. The first is resource allocation. Future operating lists and staffing levels may be adjusted 

according to the predicted length of stay or mortality rates (used as a surrogate for severity of 
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illness) of patients present on the ICU. Secondly, for benchmarking institutional performance 

where risk estimates can be used to generate standardised predictions for mortality rates against 

which observed outcomes can be measured. Finally, with caution, risk models may be used to 

inform clinical decision making and discussions with patients and their relatives.   

The models identified estimate the risk of adverse outcomes for groups of patients with similar 

scores.  They state the proportion of a group of patients with similar risk scores that would be 

expected to suffer the outcome.  This information may provide a context to clinical decision 

making and prognostic discussions.  Moreover, changes in the predicted risk over time or in 

response to treatment may give an indication of a patient’s progress.  However, it should be 

acknowledged that the scores cannot identify whether or not an individual patient will suffer the 

outcome.   

The majority of models with good discrimination and calibration identified in this review are those 

which calculate 30-day mortality risk daily based upon the worst value for each parameter in each 

24 hour period.  Although models which predict mortality are potentially useful for benchmarking 

and resource allocation they are of limited use in guiding real-time treatment decisions. The 

prediction of specific complications or patient deterioration after cardiac surgery would be much 

more relevant to the treating clinicians.  Such an approach would allow targeted treatment to 

prevent or reduce the impact of these developing complications.[24]  Our review identified only 

the AKICS score as being capable of predicting acute kidney injury while APACHE-II and SAPS-II 

successfully predicted prolonged ventilation. Secondly, these scores are calculated retrospectively 

once the worst values in a 24 hour period are known; by the time increased risk is detected the 

complication may be established.[18-23,25,27] Derivative scores such as the mean or maximum 

value for validated scores over a number of days show even better predictive power.[15, 34, 37]  

However, due to their retrospective nature these scores also have little value in the day to day 

treatment of patients.   Importantly, serial scores and their aforementioned derivatives are not 

independent of the quality of care provided by the ICU; poor care will lead to poor scores.  Serial 

scores should not therefore be used to produce mortality predictions against which observed 

mortality rates are measured when benchmarking ICU performance.  However, trends in serial 

risk scores could be compared to identify institutions where predicted mortality increases during 

specific periods of the postoperative stay.  For example, it may be found that an institution’s 

predicted mortality risk increases around day 3 or 4 in an institution which does not have robust 

procedures in place to allow early detection and effective management of sepsis.   

A number of models provide a snapshot of risk using data obtained within the first four hours of 

ICU admission following cardiac surgery.[8, 16, 24, 26, 27, 29] This may be the most appropriate 
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time to estimate risk for the purposes of benchmarking ICU performance.  However, these models 

cannot reliably guide resource allocation or clinical decision making after the initial period on ICU 

as their predictions may become inaccurate as postoperative events unfold. Some authors 

validated these models as daily assessment tools to be calculated using the worst scores for each 

24 hours with acceptable statistical performance.[25,37] While statistical performance may be 

good, as with scores designed for serial use, the predictions are obtained too late to influence 

patient management and the effect of the quality of ICU care on the scores themselves precludes 

their use for ICU benchmarking.  

Models that would be of most benefit in clinical decision making would utilise up to date clinical 

information and provide continuously updated predictions, however none of the models 

identified utilises real-time patient monitoring data.  The majority of identified models require the 

most abnormal value for each parameter over a given period and categorise continuous variables 

according to the degree of abnormality.   This approach sacrifices predictive accuracy to improve 

the ease of use and minimise the need for computing power. With recent developments in 

computing more ambitious approaches may be possible. The model developed by Meyfroidt 

utilising Gaussian processes does use computerised analyses of a large number of data points.[29]  

However, even this model analysed average values calculated for 40 minute periods rather than 

continuous data.   

This review has demonstrated that models developed for use in general ICU patients such as the 

SOFA, SAPS-II and APACHE-II scores may be applied successfully to cardiac surgery patients.[25, 

26, 30, 32, 34-43].   This is despite their developers’ excluding cardiac surgery patients from 

development datasets due to their low observed mortality when compared with other patient 

groups with similar levels of physiological derangement.[18]   

Despite the good performance of general ICU models, there may be advantages to using cardiac 

surgery specific scores.  Firstly, a number of risk factors included in general ICU models such as 

metastatic cancer and liver cirrhosis are largely irrelevant, as they usually contraindicate cardiac 

surgery.  In addition, there are many significant differences in care protocols between cardiac and 

general ICU’s.  For example, the CASUS developers noted that the conscious level of patients is 

routinely decreased in the early postoperative period secondary to sedation.  Therefore, they 

introduced a ‘neurological state score’ which was quicker and easier to calculate than the 

Glasgow Coma Scale and decreased the impact of appropriately low conscious level on risk 

estimates.  They also recognised the need to correct risk scores for artificially normal physiological 

values which are only present as a direct consequence of supportive treatments frequently used 

following cardiac surgery, such as mechanical cardiovascular support or renal replacement 
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therapy.[25]  As a result, despite general ICU models demonstrating good statistical performance, 

a cardiac surgery specific model may be preferred by clinicians.   

There are however, a number of key limitations of the cardiac surgery specific models identified in 

this review which are likely to explain their limited adoption. First, unlike widely used pre-

operative cardiac surgery risk models [1, 2] and the models developed for general ICUs, most 

cardiac surgery models have been based on data from single centres. This approach optimises 

data quality and completeness for model development but may lead to concerns about the 

application of models to different populations.  For example, the Biagioli, ICURS, Meyfroidt and 

AKICS models require cardiac output measurement using a Swann-Ganz catheter which is not 

routinely used in all cardiac surgery centres.[47] The Meyfroidt model also contains variables 

derived from entropy measurements.  These values describe the variation within a patient’s 

physiological data, but monitoring equipment capable of producing these values may not be 

available in all ICUs.  Similarly, when initiation of specific treatments e.g. intra-aortic balloon 

counterpulsation, are used as surrogates for severity of physiological derangement, local practices 

can affect the validity of these surrogate variables. The cardiovascular component of the SOFA 

score is based on the administration of vasoactive medication using specific protocols (such as 

dopamine being administered before noradrenaline to treat hypotension).  In many centres 

clinicians will know that these patterns of drug administration are not followed and this may lead 

to diminished confidence in the SOFA score despite reports of good performance in multiple 

studies.[15, 32, 34, 35, 36, 39-43] 

 

2.7.  Conclusion  

Risk prediction models based on preoperative data have real value when advising patients on 

their decision whether to undergo surgery and when assessing the performance of cardiothoracic 

units.  However, postoperative models identified in this review have the key advantage of being 

updated throughout a patient’s admission.  If they are used to produce risk estimates at the time 

of admission to ICU, they may be used to assess the quality of the ICU care in isolation from the 

pre- and intraoperative events.  Models which produce daily risk estimates deliver updated 

predictions which enable optimisation of resource allocation planning in cardiac surgery units.  As 

described in this review, most of the models make predictions which are accurate enough to 

perform these two tasks.  SOFA and CASUS are the most extensively validated scores and use 

readily available postoperative variables to produce their risk estimates.  This combination of ease 

of calculation and accuracy defines them as the most appropriate postoperative scores identified 
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in this study.   Their discriminatory power is beyond that displayed by preoperative scores such as 

EuroSCORE and EuroSCORE II. [4, 48]  With caution, these scores may also be used to inform 

discussions with patients and their relatives and provide a broad context for clinical decision 

making.     

However, no existing model provides estimates for the risk of specific complications for 

individuals with sufficient accuracy and frequency to reliably guide specific clinical decisions.  This 

is probably the main reason why such models have not achieved widespread adoption into clinical 

practice.    

Technological developments have the potential to improve risk prediction after cardiac surgery.  

In future, computerised models designed to calculate risk much more frequently could provide 

contemporaneous risk estimates.  The most useful models would predict specific complications 

early enough to allow clinicians time to intervene to prevent the complications occurring or, 

where that is not possible, reduce their impact.  The ideal model would analyse physiological 

variables and not the current treatments, thus avoiding the pitfall of interinstitutional variation in 

management protocols.  Variables could be selected from the huge amount of post-cardiac 

surgery data available on the ICU according to the specific outcome being predicted.  The 

accuracy of such models may be improved by advances in computing which enable real-time 

analysis of raw monitoring data rather than categorical “worst values" recorded over a given time 

period.  Analyses of changes in, rather than absolute values of, an individual’s physiological 

variables may allow identification of those at increased risk of clinical deterioration before 

arbitrary thresholds for abnormality are reached and end organ damage occurs.  
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2.8.  Appendix  

Search strategy details  

Embase Search  

("heart surg*” OR "cardi* surg*” OR coronary adj3 bypass OR "coronary graft” OR “CABG” OR 

(valv* adj3 (rep* OR surg*)).ti,ab OR *HEART SURGERY/ OR *CORONARY ARTERY BYPASS GRAFT/ 

OR *MITRAL VALVE REPLACEMENT/ OR *MITRAL ANNULOPLASTY/ OR *HEART 

TRANSPLANTATION/ OR *VALVULOPLASTY/ OR *CORONARY ARTERY BYPASS SURGERY/ 

AND 

(morbidity OR mortality OR "renal failure" OR "renal replacement" OR "kidney injury" OR 

arrhythmia OR bleeding OR resternotomy OR "re-sternotomy" OR "respiratory failure" OR fail* 

adj3 extubation OR fibrillation OR death OR length of stay OR (renal AND replacement AND 

therapy) OR (prolonged adj3 ventilation) OR fibrillation).ti,ab OR SURGICAL MORTALITY/ OR 

KIDNEY FAILURE/ OR RENAL REPLACEMENT THERAPY/ OR REOPERATION/ OR POSTOPERATIVE 

COMPLICATION/ OR HEART TAMPONADE/ OR MORBIDITY/ OR LENGTH OF STAY/ OR DEATH/ OR 

HEART ARRHYTHMIA/ OR HEART ATRIUM FIBRILLATION/ 

AND 

("intensive care" OR "critical care").ti,ab OR INTENSIVE CARE/ 

AND 

(Predict* OR realtime OR "statistical model" OR "regression model" OR algorithm OR "risk 

stratification" OR "early identification).ti,ab OR CLINICAL DECISION MAKING/ OR DECISION 

SUPPORT SYSTEM/ OR MEDICAL DECISION MAKING/ OR COMPUTER SYSTEM/ OR PREDICTION 

AND FORECASTING/ OR *RISK ASSESSMENT/ 

Medline Search  

("heart surg*" OR "cardi* surg*" OR "coronary artery bypass" OR "coronary bypass" OR "coronary 

graft" OR “CABG” OR (valv* adj3 (replac* OR repair OR surg*)).ti,ab OR exp *CARDIAC VALVE 

ANNULOPLASTY/  OR  exp *CORONARY ARTERY BYPASS/  OR *CARDIAC SURGICAL PROCEDURES/ 

OR  *HEART TRANSPLANTATION/ OR *HEART VALVE PROSTHESIS/ 

AND 
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(morbidity OR mortality OR("renal failure" OR "renal replacement" OR arrhythmia* OR bleeding 

OR resternotomy OR "re-sternotomy" OR "respiratory failure" OR fail* adj3 extubation OR 

death.ti,ab OR "kidney injury" OR prolonged adj3 ventilation OR fibrillation OR (failed AND 

extubation) OR "length of stay".ti,ab OR MORBIDITY/ OR MORTALITY/ OR HOSPITAL MORTALITY/ 

OR RENAL INSUFFICIENCY/ OR *ACUTE KIDNEY INJURY/ OR *RENAL REPLACEMENT THERAPY/ OR 

*REOPERATION/ OR *POSTOPERATIVE COMPLICATIONS/ OR *CARDIAC TAMPONADE/ OR 

*RESPIRATORY INSUFFICIENCY/ OR *DEATH OR *ARRHYTHMIAS, CARDIAC/ OR *ATRIAL 

FIBRILLATION/ OR *ATRIAL FLUTTER/ OR RENAL REPLACEMENT THERAPY/ OR RENAL DIALYSIS/ or 

HEMOFILTRATION/ or TRACHEOSTOMY/  OR LENGTH OF STAY/ 

AND 

("intensive care OR "critical care")ti,ab OR *CRITICAL CARE/ OR *INTENSIVE CARE/ 

AND 

(Predict* OR realtime OR "statistical model" OR "regression model" OR algorithm OR "risk 

stratification" OR "early identification").ti,ab OR *DECISION MAKING, COMPUTER-ASSISTED/ OR 

*DECISION SUPPORT SYSTEMS, CLINICAL/ OR *COMPUTER SYSTEMS/  

 

Cochrane Library Search  

“Cardi* surg*” OR CABG OR “Coronary Artery Bypass” OR “Heart surg*” OR "coronary graft" OR 

“Coronary bypass” OR Valv* adj3 (replac* or repair or surg*) OR (MeSH descriptor: [Coronary 

Artery Bypass] explode all trees) OR (MeSH descriptor: [Thoracic Surgery] explode all trees) OR 

(MeSH descriptor: [Cardiac Valve Annuloplasty] explode all trees) OR (MeSH descriptor: [Heart 

Valve Prosthesis Implantation] explode all trees) OR (MeSH descriptor: [Cardiac Surgical 

Procedures] explode all trees)  

AND 

morbidity OR mortality OR "renal failure" OR "renal replacement" OR arrythmia OR bleeding OR 

resternotomy OR "re-sternotomy" OR "respiratory failure" OR fail* adj extubation OR "kidney 

injury" OR death OR "length of stay" OR prolonged adj3 ventilation OR (MeSH descriptor: 

[Morbidity] explode all trees) OR (MeSH descriptor: [Mortality] explode all trees)OR (MeSH 

descriptor: [Renal Insufficiency] explode all trees) OR (MeSH descriptor: [Acute Kidney Injury] 

explode all trees)OR (MeSH descriptor: [Renal Replacement Therapy] explode all trees)OR (MeSH 

descriptor: [Postoperative Complications] explode all trees)OR (MeSH descriptor: [Reoperation] 
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explode all trees)OR (MeSH descriptor: [Respiratory Insufficiency] explode all trees) OR (MeSH 

descriptor: [Cardiac Tamponade] explode all trees) OR (MeSH descriptor: [Death] explode all 

trees) OR (MeSH descriptor: [Arrhythmias, Cardiac] explode all trees) OR( MeSH descriptor: 

[Tracheostomy] explode all trees) OR (MeSH descriptor: [Length of Stay] explode all trees)  

AND 

realtime OR "statistical model" OR "regression model" OR algorithm OR "risk prediction" OR "risk 

stratification" OR "early identification" OR  (MeSH descriptor: [Decision Making, Computer-

Assisted] explode all trees) OR (MeSH descriptor: [Decision Support Techniques] explode all trees) 

AND 

"intensive care" OR "critical care" OR (MeSH descriptor: [Critical Care] explode all trees) 
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Summary of introduction and thesis aims Chapter Three: 

3.1.  Summary of introduction 

The first section of this thesis has outlined the current state of postoperative risk prediction 

following cardiac surgery.   The systematic review identified models which may be useful when 

making decisions concerning resource allocation and when benchmarking the performance of 

critical care units following cardiac surgery.  Some of the models identified could also be useful 

when discussing patient progress in terms of change in mortality risk estimate.    The review 

identified that while models and scoring systems designed for use in general ICU populations 

perform adequately in cardiac surgery patients, models designed specifically for cardiac surgery 

patients may perform slightly better.  Two models encountered during the systematic review, the 

Rapid Clinical Evaluation (RACE) Score and the logistic Cardiac Surgery Risk score (logCASUS) have 

been developed from the original CASUS score.  Unlike the original CASUS score neither of these 

models has been externally validated.  

 

The main limitation of the models identified during the systematic review is the clinical usefulness 

of the predictions they make.   All identified models predict risk for groups of patients with similar 

risk scores rather than for individual patients.  Within a group of 100 patients with a mortality risk 

of 5%, five would be expected to die, but the model cannot distinguish between the 95 survivors 

and the five who will die. The frequency of the risk estimates was also a limitation with most 

models requiring data collected over a 24-hour period.  None of the models identified provided 

up to date estimates of the risk of a specific complication in a manner which might allow 

intervention to prevent the complication occurring or reduce its severity.   
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3.2. Thesis aims and questions   

3.2.1. Aims 

The overarching goal of this thesis is to advance knowledge in the field of risk prediction 

modelling following cardiac surgery.  This goal will be achieved by accomplishing the following 

three aims: 

1) To collate and clean data from various sources to create a large, reliable dataset of “real 

world data” for patients who have undergone cardiac surgery at Wythenshawe Hospital.    

 

2) To validate existing risk prediction models and risk stratification tools in UK cardiac 

surgery patients.  This will include validating models identified in the systematic review 

which have previously not been validated in UK cardiac surgery patients.  The thesis will 

also validate the use of other risk stratification tools designed for use in the general 

hospital population specifically in cardiac surgery patients.  Assessment of existing 

models will allow greater understanding of their strengths and weaknesses which will 

inform the future development of novel risk prediction models.   The risk prediction tools 

to be investigated will be defined in the research questions outlined in the following 

subsection. 

 

3) To develop risk prediction models which predict complications in a manner which would 

allow intervention to prevent their occurrence or reduce the harm the complications 

cause.  Methods used should be able to run in real-time identifying when risk of adverse 

outcomes increases in order to provide clinical useful warnings to clinicians. 
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3.2.2. Research questions 

Using data collected from cardiac surgery patients from Wythenshawe Hospital (part of 

Manchester University Hospitals Foundation Trust) I aim to answer the following questions during 

this thesis. 

 

1) How well do the logCASUS, RACE and SOFA scores predict ICU-mortality following adult 

cardiac surgery in a tertiary cardiothoracic centre in the UK? 

 

2) What is the incidence of sepsis as defined by the Sepsis-3 criteria in patients who have 

undergone adult cardiac surgery at a tertiary cardiothoracic centre in the UK?  Are the 

Sepsis-3 criteria useful in the stratification of risk of adverse outcomes in patients who 

have undergone non-transplant adult cardiac surgery in a tertiary cardiothoracic centre 

in the UK? 

 

3) Are outcomes different for patients who are diagnosed with the same stage of acute 

kidney injury using different criteria within the Kidney Disease Improving Global 

Outcomes Acute Kidney Injury guidelines following adult in a tertiary cardiothoracic 

centre in the UK? 

 

4) Is it possible to analyse postoperative urine output data to identify patients at risk of 

poor outcomes related to renal dysfunction following adult cardiac surgery in a tertiary 

cardiothoracic centre in the UK? 

 

5) Are serum potassium and magnesium concentrations relevant to the prediction of new 

onset atrial fibrillation following adult cardiac surgery in a tertiary cardiothoracic centre 

in the UK? 
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SECTION TWO: METHODS 

Introduction 

The data used throughout this programme of research was collected from patients who had 

undergone cardiac surgery at Wythenshawe Hospital (part of Manchester University Hospitals 

NHS Trust).  All data were collected as part of the Vascular Governance NorthWest (VGNW) 

database which is based at Manchester University Hospitals NHS Trust.   Amendments to the 

ethical approvals previously granted to the VGNW project were submitted to and approved by the 

Nation Research Ethics Service at Haydock.  

Data were collected, collated and rigorously cleaned by SHH using the R Studio statistical software 

package.(132)  Collection of the data used in this project is described in chapter four.  Algorithms 

were developed which analysed the cleaned data to identify outcomes which were identified as 

relevant by the Patient and Public Involvement group convened to guide the project.  Details of 

the methods used during the production of final dataset are described in chapter five.  Cleaned, 

anonymised data from the VGNW database were released to research partners at Durham 

University.   

The statistical methods used in this programme of research are discussed in chapter 6.  

Statisticians from Durham University guided SHH’s statistical analyses for some of the manuscripts 

and performed the statistical modelling described in chapter 10 where more complex Bayesian 

methodology was employed.  Specific contributions are detailed on the first page of each chapter 

that is based on a journal article. 
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Project Design and Data collection Chapter Four: 

4.1.  Considerations regarding project design 

This programme of research was based on retrospective analysis of data routinely recorded for 

patients who underwent cardiac surgery at Wythenshawe hospital between January 2013 and 

November 2017.  The use of this methodology has key advantages. 

1) Data used in this research programme is “real world” data.  Prospective studies such as 

randomised controlled trials often involve extra resources and record data specifically for 

the study.  Conclusions drawn from such studies may not be reproducible when the same 

methodology is used outside the study itself where resources to record some variables 

are not available or data quality is not as high.  Risk prediction tools validated or 

developed during this research programme will analyse data that are available as part of 

routine patient care.  They will not therefore, suffer the decrease performance sometimes 

seen when models developed using data collected specifically for research are 

subsequently used to analyse real-world data.(133) 

2) As the data were all recorded routinely, it is less likely that any selection bias was 

introduced.  Patients did not have to undergo extra procedures or monitoring to 

participate in the study so patient motivation and health beliefs were unlikely to affect 

participation. 

3) As data were recorded routinely, the gathering of data was relatively cheap both 

financially and in terms of time and resources.  This allowed the collection of data on a 

larger number of patients than would have been possible if interventions were being 

performed or non-routinely collected variables were measured.   

 

There were also disadvantages to this methodology. 

 

1) Compared with randomised control trial methodology, the observational design of the 

programme’s analyses limited the ability to control variables which may have potentially 

confounded the studies’ results.  Potential confounding variables can be adjusted for 

during statistical analyses but as inclusion criteria were relatively lax it is possible that 

some confounders were unaccounted for during this research programme.  However, 

this risk was mitigated by the large number of patients included in the study which 

facilitated robust statistical adjustment to remove confounders.   

2) The data recorded may be of lower quality because it was not recorded specifically for 

research purposes.  All analysed data were recorded by clinicians whose main aim was to 
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provide a clinical record of the patient’s treatment on CICU.  Therefore, data quality is 

likely to be below that which could have been obtained using dedicated, prospective 

data collection for specifically for research purposes.   

In summary, dedicated prospective data collection may result in higher quality data which may 

allow analyses of the research data to achieve greater accuracy.  However, when transferred to 

“real-world” situations where data quality is lower, methods which performed well in the higher 

quality research data might fail.  The aims of this thesis focus on the real world application of risk 

estimation.  Therefore, the use of routinely gathered data was more appropriate.  

4.2.  Data sources 

Data analysed for this thesis was obtained from five main sources at Wythenshawe Hospital: 

1) The hospital’s clinical governance database 

2) The hospital’s perfusion database 

3) The hospital’s pathology laboratory database 

4) The Draeger Innovian  electronic patient record (EPR) on CICU 

5) The Draeger Infinity bedside physiological monitors on CICU 

Details of data available from each source are detailed in Tables 4-1 to 4-10.   

It was not possible to record data from the Draeger Infinity bedside physiological monitors until 

July 2016.  Reasons for the delay in data capture are detailed in the Discussion section of this 

thesis.   

4.2.1. Clinical governance database 

The first source of data identified was the Dendrite clinical governance database.  This database is 

used to provide data for the Society for Cardiac Surgery’s cardiac surgery audit project.  It 

contains demographic, pre-operative, operative and outcome data for all cardiac surgery patients 

(Table 4-1). While all variables shown in Table 4-1 were extracted from the Dendrite database, 

unfortunately the quality of data recorded in some fields was too poor for all of the data to be 

useful. Consequently data concerning variables such as height, weight, length of stay on CICU, 

Readmission to CICU, Time to Extubation, Reoperation were not extracted from the Dendrite 

database.  Data regarding these variables were captured from the Innovian patient record 

instead.   

Interrogation of the Dendrite database allowed the identification of all adult patients who had 

undergone any cardiac surgery after January 2013. As well as providing data summarised in Table 
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4-1, the Dendrite database also contained the patients’ hospital numbers which were used to 

extract all relevant entries from the Draeger Innovian EPR.  

 

Table 4-1 - Data obtained from the Dendrite Clinical Governance Database 

Variable  Frequency recorded 

Date of Birth Once 
Gender Once 
Admission Date Once per admission 
Operation Start Once per operation 
Operation End Once per operation 
Urgency Once per operation 
Procedure details Once per operation  
Hospital Discharge Date Once per admission 
Logistic EuroSCORE Once per operation 
Discharge status Once per admission 
Preoperative cardiac rhythm Once per operation 
Preoperative Renal Support Once per operation 
 

4.2.2. Perfusion database 

The duration of CPB for each surgical procedure were obtained from the hospital’s perfusion 

database.    Height and weight data were recorded consistently well in this database as these 

variables are used by perfusionists to determine target flow rates during CPB.  Therefore, height 

and weight data were also extracted from the perfusion database as shown in Table 4-2. 

Table 4-2 - Data obtained from the perfusion database 

Variable Frequency recorded 
CPB time Once per operation 
Height Once per operation 
Weight Once per operation 
 

4.2.3. Blood analyses databases 

The pathology laboratory database 

There were two sources of blood test results analysed in this programme.  The first was the 

hospital’s pathology laboratory database.  As part of routine care, one set of blood samples are 

sent for testing in the pathology laboratory for each patient on each day of their ICU admission.  

The routine set of analyses requested for patients on CICU includes a full blood count and clotting 

screen performed by the haematology laboratory and urea and electrolyte concentrations 
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(including magnesium), liver function tests and C-reactive protein assay performed by the 

biochemistry laboratory (Table 4-3).  Where indicated more frequent sampling was performed 

and similarly, for patients who were stable but had ongoing requirements for CICU care, the 

frequency of sampling was reduced.  Results of preoperative blood tests performed at the 

preoperative clinic were also obtained from the pathology laboratory database.  Rarely, in life 

threatening emergencies preoperative blood samples were not taken as the patient was taken 

directly to the operating theatre.  Where possible the most recent preoperative and all 

postoperative values for blood analyses recorded during a patient’s CICU admission were 

obtained.   

Table 4-3 - Data obtained from the Pathology Laboratory database 

 

Blood gas analyses 

The second source of blood test results were the Gemstar point of care blood gas analysis 

machines on CICU.  Blood gas analyses (Table 4-4) were performed at the point of care; the 

samples were not sent to the pathology laboratory.  Blood gas analysis results were automatically 

transmitted to the Innovian EPR from where they were obtained for analysis.  Blood gas samples 

were typical taken every four hours on CICU but this schedule was amended according to clinical 

judgement.  

 

 

 

Variable Frequency recorded (routine care) 
Sodium concentration Daily 
Potassium concentration Daily 
Urea concentration Daily 
Creatinine concentration Daily 
Albumin concentration Daily 
Bilirubin concentration Daily 
C-Reactive Protein concentration Daily 
Magnesium concentration Daily 
Haemoglobin concentration Daily 
White Cell Count Daily 
Platelet Count Daily 
Activated Partial Thromboplastin Time Daily 
Prothrombin Time Daily 
International Normalised Ratio Daily 
Fibrinogen Assay Ad Hoc 
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Table 4-4 - Data obtained from the Gemstar blood gas analyses 

 

4.2.4. Draeger Innovian electronic patient record (EPR) 

The majority of data analysed in this research program was extracted from the Draeger Innovian 

EPR.  The EPR is a software suite which allows the documentation of a clinical record to facilitate 

an integrated multidisciplinary approach to postoperative care.  Data are stored in a number of 

tabs within the EPR as highlighted by the red rings in Figure 4-1.  The subsections which follow 

describe the data contained within each tab to allow an understanding of how the data analysed 

in this research program were collected.  All data that are displayed in these tabs in the user 

interface of the EPR are also transferred to and stored within the Draeger report server database.  

Data analysed during this research programme were extracted using SQL queries of this server 

using Crystal Reports software.  This methodology allowed huge quantities of data to be extracted 

efficiently and presented in comma separated values (.csv) spreadsheet files which were then 

processed in R studio software suite.   

 

 

 

 

 

 

 

 

Figure 4-1 - The tabs within the Draeger Innovian electronic record 

 

Variable Frequency recorded (routine care) 
  Arterial pH At least four hourly 
  Arterial Partial Pressure of Carbon Dioxide At least four hourly 
  Arterial Partial Pressure of Oxygen At least four hourly 
  Mixed Venous Oxygen Saturation Ad hoc 
  Lactate concentration At least four hourly 
  Chloride concentration At least four hourly 
  Bicarbonate concentration At least four hourly 
  Base Excess At least four hourly 
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The ADT Tab 

The ADT tab is populated by the nurse admitting the patient to the CICU.  Most of the data are 

pulled automatically from the Hospital Information System (HIS) using the “Get HIS” function but 

some fields such as height and weight are entered manually (Table 4-5).  

Table 4-5 - Data obtained from the Innovian EPR – ADT Tab  

Variable Frequency recorded 
  Date of Birth Once 
  Gender Once 
  Time and Date of arrival on CICU Once 
  Time and Date of discharge from CICU Once 
  Height Once 
  Weight Once 
 

The FlowSheet Tab 

The Flowsheet tab documents physiological measurements recorded for each patient.  The tab 

chiefly contains fields which populate automatically from the patient monitoring equipment 

connected to the patient’s bed space via the Health level seven (HL7) interface.  For these fields 

(e.g. Heart rate, blood pressures) values must be verified by the nursing staff before they are 

saved.  Additional data fields are completed manually by clinicians at the bedside (Table 4-6).  

Such fields contain data which are not measured by monitoring devices that have a connection to 

the EPR (e.g. thermometers, gas flow meters) or clinical assessments which are performed by the 

nurses such as sedation scores (Figure 4-2). 

 

 

 

 

 

 

 

 

Figure 4-2 - The Draeger Innovian Flowsheet Tab 
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Table 4-6 - Data obtained from the Innovian EPR – Flowsheet Tab 

Variable Frequency recorded (routine 
care) 

Input method 

Heart Rate Hourly Pulled via HL7 from monitor 
Heart Rhythm Hourly Inputted by nursing staff 
Systolic Blood Pressure Hourly Pulled via HL7 from monitor 
Diastolic Blood Pressure Hourly Pulled via HL7 from monitor 
Mean Arterial Pressure Hourly Pulled via HL7 from monitor 
Central Venous Pressure Hourly Pulled via HL7 from monitor 
Temperature Four Hourly Inputted by nursing staff 
Richmond Agitation and Sedation 
Scale score 

Hourly Inputted by nursing staff 

Glasgow Coma score Hourly Inputted by nursing staff 
Respiratory rate Hourly Inputted by nursing staff 
Oxygen saturations Hourly Pulled via HL7 from monitor 
Fraction of inspired oxygen Hourly Inputted by nursing staff 
Intra-aortic balloon pressures Hourly Inputted by nursing staff 
Mechanical circulatory support flows Hourly Inputted by nursing staff 
 

The Assessments Tab 

Data recorded in the assessments tab are entered manually by the clinician caring for the patient.  

The tab consists of a number of checklists which contain information regarding the treatments 

being delivered (Table 4-7).  Data from fields contained within this tab were used to identify 

patients who received specific treatments and helped pinpoint the times such treatments were 

initiated and completed.  

Table 4-7 - Data obtained from the Innovian EPR – Assessments Tab 

Variable Frequency recorded 
Endotracheal tube insertion date Daily 
Tracheostomy insertion date Daily 
VasCath insertion date Daily 
LVAD clamps available Daily 
Intra-aortic balloon pump insertion date Daily 
LVAD – Left ventricular assist device 

 

The Fluids and Medications Tabs 

These tabs are considered together as data from both tabs are combined to calculate the fluid 

intake and output for the patients (Table 4-8).  All data in these tabs are inputted by the nursing 

staff at the bedside. 
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The fluids tab (Figure 4-3) details all fluids (including blood products) administered to the patient 

through any route.  The type of fluid and the volume administered each hour is recorded. Hourly 

fluid outputs including urine, drain and nasogastric aspirates are also recorded in this tab.  

 

 

 

 

 

 

 

 

 

Figure 4-3 - The Draeger Innovian Fluids Tab 

 

The medications tab (Figure 4-4) contains the name of each drug administered, the dose 

administered and the volume of fluid the drug is contained within when it is administered.  The 

total volumes of all fluids and medications recorded across the fluids and medications tabs are 

determined hourly and total hourly input totals are displayed in the fluids tab.  Similarly, all fluid 

output is summed to give hourly fluid output.  The main limitation to the data recorded in the 

Innovian EPR is the lack of data concerning oral medication.  Only intravenous medication data 

are recorded electronically; oral medication administration is only recorded on paper charts at the 

patient’s bedside.  While the majority of medication is given intravenously, particularly in the 

early postoperative stay, for those patients who experienced prolonged CICU admissions, more 

medication is given orally.  Beta-blockers and other antihypertensives are generally given orally 

throughout the CICU stay and the lack of data regarding administration of these drugs is one of 

the main weaknesses of this dataset.  
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Figure 4-4 - The Draeger Innovian Medications Tab 

 

Table 4-8 - Data obtained from the Innovian EPR – Fluids and Medications Tabs 

Variable Frequency recorded 
  Total fluid in Hourly 
  Total fluid out Hourly 
  Urine output Hourly 
  Vomit/NG output Hourly 
  Drain output Hourly 
  Gastric aspirates Hourly 
  Fluid Type Hourly 
  Fluid Volume Hourly 
  Blood product transfusion Hourly 
  NG feed input Hourly 
  Name of drug administered intravenously Ad hoc 
  Dose of drug administered intravenously Ad hoc 
NG – Nasogastric  
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Ventilator Tab 

The ventilator tab (Figure 4-5) is populated automatically from the ventilator via an HL7 

connection.  If this connection fails, there is the option for clinicians to manually enter data on an 

hourly basis.  A new column of variables is populated whenever there is a change of settings or a 

marked change in measured values.   Variables extracted from this tab are detailed in Table 4-9. 

 

 

 

 

 

 

 

 

 

Figure 4-5 - The Draeger Innovian Ventilator Tab 

 

Table 4-9 - Data obtained from the Innovian EPR – Ventilator Tabs 

Variable Frequency recorded 
Mode of ventilation Upon significant change typically multiple times per hour 

Respiratory Rate Upon significant change typically multiple times per hour 

Peak inspiratory pressure Upon significant change typically multiple times per hour 

PEEP Upon significant change typically multiple times per hour 

PEEP – Positive end-expiratory pressure 

 

4.2.5. Draeger Infinity bedside patient monitors 

Patients in the CICU are monitored continuously using Draeger Infinity bedside monitors.  The 

layout of the monitor’s output and an example of the parameters recorded is shown in Figure 4-6.   

The bedside monitors display the previous 9 seconds of data continuously; the traces sweep from 
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left to right and then start again on the left and overwrite the previous images.  The recorded 

traces are analysed by the monitor and used to determine the discrete variables which populate 

the Flowsheet tab (e.g. heart rate, blood pressures etc.) as discussed in the previous subsection.   

All waveform data are also transmitted to a report server where it can be viewed in real-time by 

Draeger’s PatientWatch software (Figure 4-6).  PatientWatch allows a clinician to view the output 

from the monitors at any bedside remotely via the hospital’s intranet network.  However, there is 

no capability to save data either on the monitor itself or using the PatientWatch software. 

 

  

 

 

 

 

 

 

 

 

Figure 4-6 - The Draeger Infinity bedside patient monitor output screen  

 

For this project it was necessary to record and analyse the waveform traces in order to identify 

information contained within the traces which could help identify patients at risk of 

complications.  In order to record the waveforms the bespoke application programming interface 

(API) shown in Figure 4-7 was developed from a generic diagnostics API provided by Draeger.  This 

modified API was designed and built by staff from Rinicare Ltd who acted as a research partner on 

this project.  Using the API it is possible to record all monitoring data by “listening” to the report 

server through which data were flowing (Figure 4-8) before it was deleted.  The principal 

limitation of the API is that data can only be recorded prospectively by telling the API to listen to 

the output from the monitor at a bed space.  Thus for this project the Innovian EPR was accessed 

multiple times every day to determine which beds were occupied by cardiac surgery patients.  
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Once the appropriate bed spaces were identified, the API was executed and the .csv were 

produced and saved in a patient specific file.  Where a patient moved to a different bed within the 

CICU, all data recorded from the different bed spaces for that same individual were collated in 

one patient folder.  The variables recorded using the API and the resolution of the traces recorded 

are shown in Table 4-10.   

 

 

Figure 4-7 - The Application programming interface used to capture data from the Gateway report 
server 
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Figure 4-8 - Data flow for the waveform traces recorded by the bedside monitors  

 

 

Table 4-10 - Data obtained from the bedside patient monitor 

Variable Resolution (Hz) 
ECG trace (Leads I,II and III) 200 
Pulse plethysmography trace   100 
Arterial pressure waveform trace 100 
Central venous pressure waveform trace 100 
Ventilator Airway pressure trace 50 
Ventilator volume trace 50 
Pulse oximetry oxygen saturations 6 
 

Data recorded prospectively from continuous monitors were combined with data collected 

retrospectively from the other data sources as detailed in the next chapter.  
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4.3. Selection of important outcomes (assisted by the patient and public involvement 

group) 

It was important to ensure that this project targeted the prediction of outcomes that were 

important to patients and clinicians.  As discussed in chapter two, models should predict these 

complications in a manner which would allow interventions to be performed to prevent the 

complication or reduce its consequences.  The major complications which occur following cardiac 

surgery were identified in the literature report for this research programme.  A patient and public 

involvement (PPI) group was convened to gain a patient’s perspective regarding the importance 

of different clinical outcomes.  Complications were ranked in order of importance by the PPI 

group and the results of this process are detailed in Table 4-11 alongside the frequencies of the 

complications obtained from the literature search.  

Table 4-11 - Major complications following cardiac surgery and their frequencies.  Ordered as 
ranked by importance to the members of the Patient and Public involvement group 

 

Subsequent discussions with the PPI group informed the choice of complications this thesis would 

aim to predict.  The complications selected were mortality, sepsis, AKI (including need for RRT) 

and cardiac arrhythmias.  Cardiac arrhythmia was selected despite its low initial ranking because 

of its relatively high frequency.  This increased the likelihood of developing successful risk 

prediction algorithms for this complication.  Moreover, clinicians could provide prophylactic 

Complication Frequency 

Mortality 3% (2) 

Return to theatre for post-operative bleeding 3% (37, 80) 

Renal replacement therapy (including dialysis) 2% (29, 134) 

Acute kidney injury 50% (135, 136) 

Post-operative infection 5%  (56, 137) 

Respiratory failure requiring reintubation and ventilation 5% (49, 50, 138) 

Tracheostomy 2% (26) 

Prolonged mechanical ventilation (>24 hours) 8% (26, 49, 50)  

Readmission to CICU  7% (139, 140) 

Prolonged CICU stay (>24 hours for CABG, >48 hours for valve surgery) 15% (141, 142) 

Cardiac arrhythmias 18% (143) 
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antiarrhythmic medication to those at highest risk of cardiac arrhythmias meaning that a 

prediction model which stratified risk of arrhythmias would have a large clinical impact.  

Unfortunately due to delays in the appointment of a postdoctoral researcher at the department 

of statistics at Durham University discussed below, the arrhythmia model was not completed in 

time to be included as part of this thesis. 

 

4.4.  Ethical approvals 

Although all data analysed during this research programme was recorded routinely during clinical 

care, approvals were obtained from the Research and Development department at Manchester 

University Hospitals NHS Trust (2017CD007) and the National Research Ethic Service – Haydock 

(09/H1010/2+5) to store and analyse the data.   The chief considerations were to ensure security 

of the data and to anonymise the data prior to sharing it with research partners.  As all data were 

recorded during routine clinical care it was agreed that verbal consent to participation in the 

research project was adequate for all prospectively patients enrolled after the ethical approval 

had been granted.  For similar reasons the ethics committee allowed historical data recorded 

prior to the start of this project to be added to the database.   

 

4.5. Collaboration with Durham University for statistical analyses. 

This research programme involves the development of novel Bayesian models to analyse the vast 

amounts of data recorded on the CICU to identify trends in a patient’s own data indicative of 

increased risk of complications.  The analyses are complex and require collaboration with experts 

in the field of Bayesian statistics.  Prof McCollum had previously worked on a pilot study which 

preceded this programme with a team of statisticians at Durham University led by Prof Goldstein 

and Dr Caiado.  This pilot study analysed heart beat variation on ECGs to identify when the heart 

rate was becoming unpredictable.  A decrease in stability of the patient’s heart rate was found in 

18 patients who died on CICU within hours of their death but was not identified in 40 healthy 

controls.(144)  As part of this research programme the British Heart Foundation funded the salary 

cost of a post-doctoral researcher in the department of our collaborators at Durham University.  

Under the guidance of Dr Caiado and Prof Goldstein the researcher was to conduct the complex 

Bayesian analyses require to produce the novel risk prediction models.   
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4.5.1. Delays related to the collaboration 

Unfortunately the statistician who was appointed to the post originally did not perform 

adequately and was ultimately dismissed.  The work performed in the six months that the 

researcher spent on the project resulted in no useful output and this delayed the analysis of data 

and design of models.  Fortunately, Dr Caiado and her colleague Jordan Oakley were able to 

continue to work on the urine output model described in chapter ten of this thesis but work using 

continuous monitoring data stalled.  In February 2018, Ben Lopez was appointed to the post-

doctoral researcher post and has produced work of the highest quality.      

Despite the delays, this thesis still presents the validation of a novel urine output model which 

employs Bayesian analyses to identify patients at risk of severe oliguria based on trends within 

their own previous urine output values.  Work continues on a model to identify those at risk of 

arrhythmia based on changes in their ECG traces relative to their own previous waveforms but 

this work was not ready for inclusion in this thesis.     
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Data cleaning Chapter Five: 

This chapter summarises the steps involved in cleaning the data and the rationale for performing 

the cleaning process in this manner.  All data were obtained in the comma separated value (.csv) 

file format from the sources described in the previous section.  Each file was loaded into R Studio 

and cleaned using code written in the programming language R (R foundation for statistical 

computing).  All data points were assigned to the appropriate patient episodes using the steps 

detailed in the subsections of this chapter.  Once assigned appropriately, all variables were 

cleaned using semi-automated algorithms in a reproducible way.  The cleaning steps are 

described in detail in later sections but in summary there were three key parts to the initial 

cleaning process. 

1. The format of all entries in each field was standardised to allow fair comparison of values. 

E.g. FiO2 of “21%” and “.21” were both recoded as “0.21”, ventilator mode of 

“Bipap/ASB” and “bIPAP+asb” were both recoded as “BiPAP/ASB”. 

2. Cleaned variables were examined and values which fell outside the range of possible 

values were excluded. 

3. Semi-automated algorithms were used to identify incidences of missing data and to 

generate “manual lookup” files.  These files were used to guide manual inspection of the 

case notes which was then performed using the Draeger Innovian user interface.  Missing 

data identified during this lookup process was entered into the “manual lookup” files 

which were then loaded back into R Studio and used to fill in the data gaps identified in 

the original dataset. 

4. In general, suspicious data points were identified and flagged as suspicious.  Such entries 

could then be omitted from analyses but were distinguished from missing data. 

Data was cleaned in two distinct datasets.  First, all data recorded between January 2013 and May 

2015 was processed.  Later, all data collected between July 2016 and November 2017 was 

processed in a separate batch using the original cleaning code.  This approach allowed the 

analyses for chapters seven, eight and nine to be performed while data were still being recorded 

in the second batch.  As the data processing was predefined and semi-automated, the output files 

from each batch were equivalent and data from both batches was subsequently combined for the 

analyses performed in chapters ten and eleven.  Details of the specific cleaning steps required for 

each stage of the data cleaning process are provided in the following subsections.   Subsequent 

analyses of the dataset for specific studies required additional data processing steps which are 

detailed at the start of each relevant results chapter. 
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5.1.  Creating the initial patient index 

Key considerations 

The goal of this section was to create a Patient Index which classified all episodes of data 

recording ensuring that every data point was be assigned to the correct episode.  Data from the 

Dendrite database, Fluids, Ventilator and FlowSheet Tabs were loaded into the workspace in 

RStudio.   Data were cleaned and divided into episodes related to each Hospital Admission, 

Operation Number and CICU Admission number (Figure 5-1).  The start and endpoints of each 

episode were determined. 

The first classification of episodes was performed by hospital admission.  As our data collection 

period was over four years long, some patients were admitted to hospital multiple times during 

the project.  The first time each patient was treated on CICU following cardiac surgery they were 

assigned an “Admission Number” of 1.  Where a patient was then discharged home but 

readmitted to hospital and treated on CICU following cardiac surgery for a second time, the 

“Admission Number” was increased to 2.  Each subsequent readmission resulted in further 

increase in Admission Number.   

The second classification was performed according to “Operation Number.”  Postoperative data 

recorded following the first cardiac surgery operation of any hospital admission were assigned an 

“Operation Number” of 1. Data recorded following a subsequent operation during the same 

hospital admission were assigned an “Operation number” of 2.  Subsequent operations resulted in 

a further increase in Operation Number. 

The final element of the unique identifier for each episode was the “CICU Admission Number.”   

Data from each patient’s first CICU admission for each “Operation Number” were assigned a 

“CICU Admission Number” of 1. Where patients were discharged from CICU to the ward and 

subsequently readmitted to CICU without having had further surgical intervention the data 

recorded were assigned a “CICU Admission Number” of 2.   Subsequent readmissions resulted in 

further increases in the “CICU Admission Number”.  Importantly, if the readmission to CICU was 

preceded by further surgery, the “Operation Number” increased by 1 and the “CICU Admission 

Number” reset to 1 as it was considered to be the first CICU admission related to that operation.  

The unique identifier for each patient episode was made by combining Patient Id, Admission 

Number, Operation Number and CICU Admission Number as shown in Figure 5-1. 
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Figure 5-1 - Unique identifier structure 

 

Cleaning Steps 

Step 1. Load FlowSheet, Dendrite, Fluids, Fluids summary and Ventilator sheets. 
Step 2. Standardise all dates and times to the posix format. 
Step 3. Assign each operation an Admission Number based on Hospital Admission 

date/time recorded in dendrite. 
Step 4. Assign Operation Number to each operation recorded in Dendrite.   
Step 5. Extract key parameters from Dendrite data frame creating Patient Index data 

frame. 
Step 6. Remove operations recorded in Dendrite which occurred outside the study period 

using OpStart field. 
Step 7. Remove any duplicated entries (entries within the same sheet which contained 

identical data) in any sheets. 
Step 8. Remove empty readings at the end of fluids where discharge has not been 

actioned. 
Step 9. Merge FlowSheet and Fluids with PatientIndex  to make Check data frame.   
Step 10. Ensure that only data recorded after each operation but before each patient’s 

next operation or hospital discharge are labelled with the relevant episode label. 
Step 11. Create a field which reflects the time interval between consecutive entries in 

Check. 

XXX-1-1-1   

XXX-2-1-1   

XXX-1-2-1   

XXX-1-2-2   

Patient undergoes reoperation 

Patient is discharged to ward then 

readmitted to CICU 

Patient is discharged home then 

readmitted to CICU following 

further surgery 

Patient Id 

Operation 

Number 
Admission 

Number CICU 

Admission 

Number 
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Step 12. Where the interval between consecutive entries for a patient is >3 hours assign all 
subsequent data a new CICU Admission Number. 

Step 13. Find first and last ITU entry date/times for each episode 
Step 14. Rationalise Patient Index1 by selecting one entry for each ITU admission with 

fields: Id, AdmitDateTime, OpStart, FirstITUEntry, LastITUEntry, Admission, AdmissionOp 
and ITUAdmission 

Step 15. Verify the list of patient Ids against the zlog of prospectively gathered continuous 
data collected (where applicable).  Identify typographical error made when entering 
Patient identifiers and correct these errors.     
 
 

5.2.  Identifying reoperation not recorded in the Dendrite database and times where 

intubation status is unclear after automated analysis of EPR data  

Key considerations 

It was found that a number of “re-operations” were absent from the Dendrite database.  Often 

these procedures were performed out of hours or in an emergency and these factors may have 

led to the lapses in data entry into the Dendrite database.  In order to identify missed operations 

all incidences in which a break in monitoring data of > 1 hour occurred were identified and 

manually investigated through examination of the case notes section of the EPR.   This exercise 

was combined with a second lookup task which is required to accurately categorise each patient’s 

intubation status (whether invasive mechanical ventilatory support was in place) at each time 

point of their admission.   The tasks were conducted at the same time to prevent repetition when 

examining the case notes section of the EPR and to reduce the total amount of time required to 

extract relevant information.  The intubation statuses looked up during this process were then 

inputted back into the dataset during the production of the ventilated episode output files (Stage 

4). 

The steps detailed below describe how the intubation status was determined using a reproducible 

algorithm using data recorded in the Ventilator, FlowSheet and Assessment tabs of the EPR.  Once 

the automated classification of intubation status had been performed, the periods for which 

intubation status was unclear were identified and added to the lookup file.   Periods for which no 

data were recorded in FlowSheet fields used to determine intubation status for longer than 1 

hour were also included as they may have signified absence from the CICU during a missed re-

operation.   

Occasionally, the mode of ventilation label pulled automatically from the ventilator into the 

patient monitor and subsequently into the EPR was a label which is only assigned by ventilators in 
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the operating theatre.  Where one of these modes of ventilation was recorded, this time point 

was also added to the lookup file as it was likely to signify reoperation.  Once the case notes 

section of the EPR had been examined and relevant data regarding intubation status and missed 

reoperations had been extracted, the Dendrite data frame was amended to ensure its 

completeness.   

The cleaning steps described in section 5.1 were then repeated to produce a completed patient 

index. 

 

Cleaning Steps 

Step 16. Make FlowSheet$Intubated by categorising entries in FlowSheet$VENT.M into: 
“ETT or TT”, “def No ETT or TT”, “Unsure if FM, ETT or TT and Def TT”.  This step involves 
identifying all strings entered in the VENT.M field of FlowSheet which will only be entered 
in the EPR if a patient is intubated (e.g.”BIPAP/ASB”) and strings which will only be 
entered if a patient was not intubated (e.g. “Nasal High Flow”).  Ambiguous entries in the 
Ventilation Mode field (e.g. “CPAP”)  resulted in a provisional “Unsure if FM, ETT or TT 
and Def TT” status.  

Step 17. Assign definitive status to “Unsure” entries if possible after categorising strings 
entered in FlowSheet$VentilationMode  

Step 18. Merge FlowSheet and Ventilator data frames to make FlowVent data frame. 
Step 19. Where VENT.M contains strings similar to “CPAP” and a flow rate is present in the 

O2 flow field then this CPAP must be provided by the Draeger CPAP bellows.  As this 
equipment is only provided via a facemask, the intubation status can be set “def No ETT 
or TT”. 

Step 20. If we are unsure because there are no data in VENT.M and Ventilation Mode 
fields assign and intubation status of  “no data” 

Step 21. If we are unsure at a given time point but we were sure within the previous 60 
minutes use the previous value.  This was needed because the VENT.M and 
Ventilation.mode fields from Flowsheet (which are verified by nurses) are only populated 
hourly.  However, entries from the Ventilator Tab may be made many times each hour.  
Consequently, in between two known statuses obtained from FlowSheet one hour apart 
there may be multiple ambiguous entries from the Ventilator Tab’s X.VENT.MODE field.  It 
is important to note that an entry occurring in the Ventilator Tab between hourly entries 
made in FlowSheet which clearly identified the intubation status would still result in a 
change in classification of intubation status; only ambiguous entries were ignored.     It is 
also important to note that this step extends a previously known intubation status a 
maximum of 1 hour into the future. 

Step 22. If there are no readings after a period of no data label this as “End Readings No 
data.” This classification is made using the “intubated2” field. 

Step 23. Generate a lookup file for tracheostomy timings based on entries in FlowSheet 
and/or assessments tab.  In this step any patient for whom there is any indication of the 
presence of a tracheostomy being present including “Trachy Mask” string recorded in the 
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VENT.M field or a string present in the $DateTracheostomyInserted field of the 
Assessments data frame is identified.   

Step 24. Complete manual lookup using the case notes section of the EPR to identify the 
date of tracheostomy insertion and removal. 

Step 25. Merge his file back into FlowVent data frame.  
Step 26. Assign “def TT” status to all times between tracheostomy insertion and 

decannulation. This updated intubation status is labelled Intubation3. 
Step 27. Where ventilator is off at the end of an admission and we are unsure of 

intubation status assign a status of “def no ETT or TT” between last entry and last 
“known” intubation status.  This only corrects ambiguous entries.  A patient would not 
leave CICU while on CPAP through an ETT. 

Step 28. If a no data/unsure entry is in the same hour as a definite intubation status pull 
that status forwards to replace the unknown for a maximum of 1 hour.  This is done for 
the same reason outline in step 21. 

Step 29. Write the file identifying all instances where we have no knowledge of intubation 
status for >1 hour due to a complete lack of data (which might represent absence from 
the unit during re-operation).  Also included in this file are all periods lasting >1 hour 
where intubation status is unclear due to ambiguous entries or PC or VC in ventilation 
mode.   

Step 30. Lookup all periods identified in the file produced in step 29, by examining 
manually the case notes section of the EPR. 

Step 31. Amend the Dendrite data frame appropriately to include all newly identified 
operations. 

Step 32. Reload all files and rerun steps 1-15 to produce a complete Patient Index 
 
 

5.3.  Ensuring data from all tabs is assigned to relevant patient episodes and make initial 

episode summary fields. 

Key considerations 

Once all re-operations which had been missed initially had been included in the Dendrite data 

frame and the updated PatientIndex1 data frame had been produced, final amendments to the 

PatientIndex1 data frame were made to ensure consistency and remove data which should not be 

included in the final dataset.  Initial summary statistics were also produced calculating the time 

between consecutive CICU admissions and lengths of stay on the CICU. 

Failed discharge from ICU was defined as readmission within 48 hours of CICU discharge.  In cases 

where a patient left CICU but only to undergo reoperation before returning CICU this was not 

classified as a failed discharge.    Finally, attributes such as weight and gender were added to the 

patient index file and the procedure details fields were standardised. 
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Cleaning Steps 

Step 33. Amend lastITUentry where required to ensure removal of any data identified 
during the lookup process as being recorded erroneously due to a malfunction of the 
ventilator data streaming.   

Step 34. Remove those pts for whom no Innovian data are identified (these few patients 
were not admitted to CICU)  or where age <18  

Step 35. Look for single entry admissions and remove them.  Manual case note inspection 
revealed that these entries were caused in Step 12 when patients who were close to 
discharge were monitored less frequently than 3 hourly.  LastITUentry was corrected for 
each of these episodes. 

Step 36. Where reoperation occurs, ensure Flowsheet data from during the second 
intraoperative period are not labelled as coming from the subsequent CICU admission.  
This is not an issue for other tabs as only data which populate automatically from the 
monitors were entered. No data would be manually entered into fluids or assessments 
tabs during a theatre episode.  All ventilator data pulled from a Primus ventilator (used 
exclusively in theatres) were removed from the ventilator data frame. 

Step 37.  Find time between CICU discharge and readmission for each patient where 
applicable 

Step 38. If discharge is followed within 2 hours by another operation and another CICU 
admission then assign the value “Surgery” to the Failed DC 48 hrs field. 

Step 39. If no surgery occurs within 2 hours of discharge and time to next admission is 
<48Hrs this is classed as a failed discharge.  

Step 40. Determine the Cumulative LOS on CICU. This is all time for which admissions are 
only separated due to reoperation 

Step 41. TotalITUTime= total time on ICU during each hospital admission and includes 
readmission to CICU following initial discharge to the ward. 

Step 42. Eliminate those not in PatientIndex from dendrite and attach operation details to 
each operation in PatientIndex1. 

Step 43. Calculate age at time of operation 
Step 44. Check for excessively long/short operations and correct any by amending 

operation start and end time accordingly using information from the EPR case notes 
Step 45. Standardise the names of operations performed.  This is particularly relevant for 

reoperation where the operation details were entered manually during the lookup 
exercise in step 20. 

Step 46. Where the primary Procedure details  field is blank substitute in data from 
“additional cardiac surgery” and “other non-cardiac surgery” fields into ProcDetails field  

Step 47. Calculate 30day and ITU mortality 
Step 48. Check which repeat operations were for bleeding and make finalreoperation 

sheet 
Step 49. Load weights and CPB times from the Perfusion database 
Step 50. Where they are missing look in Dendrite data frame 
Step 51. Make all weights data frame and manually lookup missing weights in Innovian. 
Step 52. Load these as allweightsdone.   Add height and weight to patientindex1 from this. 
Step 53. Add gender to PatientIndex 1 from dendrite 
Step 54. Impute weight (gender specific where weight is missing). 
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5.4.  Producing the Ventilated Episodes output file 

Key considerations 

The aim of this stage was to finalise the classification of the intubation status of all patients at 

every point of their CICU stay.  Initially the same steps 16-28 were rerun.  This automated process 

was able to confidently identify the intubation status for the majority of all patients’ CICU stays.  

Where there was any uncertainty concerning data that had been obtained, manual examination 

of the case notes section of the EPR in step 30 was used to confirm the intubation status.  

Subsequent cleaning steps then identified all incidences where the intubation status changed and 

labelled extubation and reintubation events appropriately.  The time between extubation and 

reintubation was also determined together with the total time spent ventilated.   All periods of 

ventilation via a tracheostomy identified in step 24 were also labelled. 

It was identified that rarely the automated classification system had incorrectly classified an 

intubation status due to erroneous data entries.  To ensure all such episodes were corrected all 

EPR records were manually examined for all patients who were identified as experiencing a period 

of intubation which lasted less than 4 hours (or less than two hours if it was a first episode).  The 

records of all patients who suffered reintubation within 48 hours of extubation were also 

identified. 

The output file produced in this section was a data frame which detailed times of extubation and 

intubation for all patients.  Summary statistics including length of ventilation and time to 

reintubation were also recorded along with time of insertion or removal of tracheostomy tube. 

Cleaning Steps 

Step 55. Rereun 17-30 to produce best estimates of intubation status 
Step 56. Merge in Vent Changes from FinalLookUp file 
Step 57. Manually correct any missing intubation statuses 
Step 58. Create admitted tubed column 
Step 59. Create tubed during admission column to mark reintubation 
Step 60. Create admitted extubated column  
Step 61. Create extubated during admission to mark extubation 
Step 62. Create date tubed for all incidences of intubation  
Step 63. Create dateextubated for all incidences of extubation 
Step 64. Create tubed episodes 
Step 65. Manually check and correct entries where patients arrived without ETT in situ 
Step 66. Check how long there was between extubation and any subsequent reintubation 
Step 67. Highlight where extubation was followed within 48hrs by reintubation (failed 

extubation)  –  Reintubated48hrs 
Step 68. Calculate duration of ventilated episode 
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Step 69. Calculate cumulative time ventilated 
Step 70. Insert trachyin and trachyout  status into tubed episodes 
Step 71. Merge tubed episodes with relevant fields from patient index to make 

tubedepsfinal 
Step 72. Manually inspect and correct any failed extubations and any  intubation episodes 

lasting <4 hours if not first episode or <2hours if first episode 

 

5.5.  Cleaning  data from flowsheet tab 

Key considerations 

The variables within this data frame represented a large proportion of the predictor variables 

derived from physiological monitor outputs.  Many of the fields were of the free text format and 

with data from over 3500 patients being analysed there were are large number of typographical 

errors.   In addition to incorrect spelling, character strings were present in some fields which were 

supposed to contain numerical data.  The initial steps in this cleaning section were to remove 

characters from numeric fields and then to format the fields as numerical data.  All string 

variables were recoded to ensure standardisation.  For example, “Sinus”, “SR”, ”sr”  and “Sr” 

entries in the Heart Rhythm field were all re-classified as “SR”.  A label was added to all blood 

pressure readings where the values were not physiologically probable.  This label was applied to 

values that were too high or low to be compatible with life together with blood readings which 

were likely to have been recorded from severely damped waveform traces.  Similarly, impossible 

values were removed from all fields pertaining to blood gas analyses and temperature and SpO2 

measurements.   

The presence of intra-aortic balloon pump pressure readings or pump flow rates which implied 

the presence of intra-aortic balloon pumps or mechanical circulatory support (MCS) respectively 

were extracted and used to generate a lookup file.  The EPR records of all patients with data 

entered in these fields or data entered in fields from the “Assessment” tab associated with 

treatments were manually examined.  Following this examination the time of instigation and 

cessation of the therapies was recorded and every recorded blood pressure was classified as 

having been recorded in the presence or absence of MCS. 

Using this information it was possible to identify patients whose arterial blood pressure traces 

appeared damped due to the presence of MCS.  Having identified these patients, revised labels of 

“reliable” arterial blood pressures were produced.  All values which were physiologically possible 

taking into account whether or not MCS was present were labelled as reliable. 
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Blood gas samples were typically labelled as containing arterial or venous blood but where this 

labelling was absent an algorithm was devised to determine the source of the sample depending 

on the absolute value of the PO2 and the SPO2 measurement recoded at the time the blood 

sample was taken.  Where ambiguity remained case notes within the EPR were examined 

manually and often it was found that clinicians had stated the source of the sample in this section.  

The classifications identified on analyses of case notes were then copied into the Flowsheet data 

frame and all PO2 blood gas samples taken from arterial samples were labelled to distinguish them 

from PO2 values measured in venous samples. 

Fields for Glasgow Coma Scale(145) score and Richmond Agitation-Sedation Scale (146)scores 

were standardised by removing characters and reclassifying any GCS <3 as 3.  The Central Nervous 

Systems score as proposed by Hekmat et al(147) was also calculated.   

Cleaning Steps 

Step 73. Recode HR by removing symbols 
Step 74. Clean rhythm by standardising rhythm into one of 12 rhythms 
Step 75. Find first occurrence of AF 
Step 76. Where AF was not in preop rhythm field of dendrite create first new AF field in 

PatientIndex 
Step 77. Clean blood pressure removing words and symbols 
Step 78. Where BP is blank label it missing 
Step 79. Where Pulse pressure is <25 and mean is >100, MAP <30 or MAP>250  label 

erroneous 
Step 80. Clean pH standardising full stops 
Step 81. If <6.8 put 6.8 
Step 82. If pH<6 or >7.8 label as not possible 
Step 83. If lactate <0 or >40 label as not possible 
Step 84. Find all incidences of IABP being recorded in flowsheet or assessments tab 
Step 85. Manually look up insertion and removal times for all those with an IABP – 

IABPLookUP 
Step 86. Merge IABP details into flowsheet 
Step 87. Make a field which determines if IABP is present at every row according to IABP.in 

and IABP.out times 
Step 88. Recode temperature removing parentheses, letters, commas etc. 
Step 89. Set temp <15 or >42 to not possible 
Step 90. Clean SPO2 removing words and symbols and letters 
Step 91. Set SPO2 >100 to not possible and <50 to unreliable-low 
Step 92. Clean pO2 removing letters etc. 
Step 93. Where sample type is not recorded determine if sample was venous/arterial.  If 

PO2<4 – venous, ifPO2 <5 and SPO2>85 venous, if PO2>7.5 arterial otherwise lookup 
manually 

Step 94. Merge ABG lookup into flowsheet 
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Step 95. Create ART.PO2 from all ABGS where sample was arterial 
Step 96. Clean FiO2 removing words and symbols 
Step 97. Clean RASS recoding non-specified entries 
Step 98. Clean GCS removing words 
Step 99. Create CNS score as per Hekmat N, S, C 
Step 100. Identify all incidences of VAD flows recorded in flowsheet, VAD recorded in 

dendrite and clamps available being present in Assessments 
Step 101. Manually check ECMO/VAD on and off times 
Step 102. Merge ecmovadlookupinto flowsheet 
Step 103. Make fields describing whether for each timestamp ECMO, short-term VAD or 

long term VAD or Any of the above were present. 
Step 104. Where ECMO or VAD was present overwrite any bloodpressure erroneous==Yes  

entries with No as the values may have been accurate. 
Step 105. Make reliable ART.S, ART.M, and ART.D for all BP where BPerroneous ==No 

 

5.6  Cleaning fluids and medication tabs 

Key Considerations 

In this cleaning stage, data from the Fluids tab were divided into the appropriate patient episodes 

using the time for which the data were entered and the first and last CICU entries for each 

episode recorded in the Patient Index data frame. 

Urine output data were occasionally entered at multiple points during the same hour.  Where this 

occurred the values were summed, creating the Urine60 field which represented the total urine 

output for each hour.  Any entries indicative of the use of renal replacement therapy were also 

extracted at this point and all such incidences were later verified manually. A key part of this stage 

was the averaging of urine output where no value was recorded.  Where urine output was 

recorded as “0” this value was preserved.  However, where an hourly urine output was blank, this 

was considered to represent an absence of recording not an absence of urine output.  In clinical 

practice urine output is recorded on the hour. Often nursing staff are too busy to note the urine 

output at a given hour, rather than enter a number measured 15 minutes late, the recording is 

often omitted and the total value recorded at the next measurement time.   Therefore, where 

blank entries were observed, the next recorded value of urine output was divided equally 

amongst the preceding blank hours.    
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Cleaning Steps 

Step 106. Merge fluids with patient index 
Step 107. Assign data to correct episodes using first and last ITU entries 
Step 108. Check for filter use using CVVH fields 
Step 109. Combine UO into hourly segments 
Step 110. Where 0 is entered preserve it 
Step 111. Where NA is entered divide any subsequent UO by that number of hours missing 

a value 
Step 112. Label where the patient is in their last 6, 12 and 24 hours on ITU 

 

5.7.  Cleaning blood test results 

Key considerations 

In this stage blood results obtained from the pathology laboratory database were each assigned 

to the appropriate patient episode.  For each episode, where available, the most recent 

preoperative blood test results were also obtained.   All postoperative blood results were 

obtained by searching the pathology database for all blood tests sent for CICU and pairing the 

results with the patient identifiers contained in patient index.  It was found that some samples 

had been sent to the lab labelled with the incorrect location and so were missed by the initial 

search.  A cleaning code was therefore written to identify all days for which there were no 

postoperative blood results for a given patient. Using this list, the pathology database was 

searched manually using the relevant patient identifiers and all missing blood results were added 

to the appropriate data frames. A similar procedure was performed to ensure that all 

preoperative blood results were also identified. 

Cleaning Steps 

Step 113. Load Biochem and haemCoag 
Step 114. Make a data frame containing each day for each patient between first firstITU 

entry and last lastITU entry  
Step 115. Pair this with the blood results to identify days with no blood results 
Step 116. Manually check this wasn’t due to a location error 
Step 117. Merge preop bloods with Patient index 
Step 118. Manually check all operations have a preop sample 
Step 119. Manually check all multiple ops have been updated appropriately 
Step 120. Merge preop with post op bloods – link is NewId 
Step 121. Only keep bloods entries where the postop blood came from within the first and 

last entries 
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5.8.  Identifying AKI 

Key considerations 

The Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury (AKI) guidelines(87) 

stratify the severity of AKI in adults using hourly urine output measurements and serum 

creatinine concentrations.  In order to determine the onset of each stage of AKI suffered by each 

patient on CICU, data from the blood results and fluids data frames were analysed together.  

Serum creatinine concentrations 

First for each patient, every postoperative creatinine concentration was compared with the pre-

operative value for that episode.  Where the postoperative concentration exceeded a threshold 

to diagnose a stage of AKI the timestamp of the postoperative result was noted.  Secondly, a code 

which created a moving 48 hour window was used to identify all occasions when the 

postoperative creatinine value increased by more than 26.5 micromol/L within 48 hours (this is 

one of the KDIGO stage 1 AKI criteria).  Finally, all incidences when creatinine increased above the 

absolute threshold for stage 3 AKI (353.3 micromol/L) were also identified. 

Hourly urine output 

All hourly urine output values produced for each patient during step 111 were divided by the 

weight of the patient to give an hourly urine output value per kilo.  For a very small number of 

patients the patient weight was not recorded.  Where this was the case the imputed weight 

derived in step 34 was used instead.  Next, code was written which analysed the urine output 

data in moving windows of six, twelve and 24 hours.  Where urine output was below the 

thresholds described in the KDIGO guidelines for the required time period, the date and time at 

which this happened were recorded.  This process resulted in a record which contained the first 

incidence where each criterion contained within the KDIGO guidelines was fulfilled by each 

patient.  These incidences were analysed in combination to give the time the onset of each stage 

of AKI experienced by all patients.  Occasionally AKI was diagnosed by urine output through 

analysis of a period during which the original record contained a blank value.  Where this occurred 

the EPR was examined manually to determine whether there was any reason to doubt the 

diagnosis.  If it was found that the blanks represented a note inserted into the record to describe 

urine output lost into the bed or toilet, the diagnosis was disregarded and the rest of the record 

examined to ensure any later onset of AKI by urine out was recorded instead.  All incidences 

where anuria lasted > 12 hours (stage 3 AKI) were also examined.  Where this occurred in a 
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patient who did not have a catheter in situ and the patient went on to pass urine, the oliguria was 

labelled as “Anuric no catheter.” 

Cleaning Steps 

Step 122. Check where creat has increased 1.5 x preop baseline 
Step 123. Create time interval 
Step 124. Flag where postopcreat has gone up by 26micromol/l within 48 hours 
Step 125. Check where creat increased 2x preopbaseline 
Step 126. Check where creat is 3 x baseline or goes >353.3 micromoll-1 
Step 127. Divide hourly UO by weight 
Step 128. Where UO is below 0.5ml/kg for 6 hours set stage1 hourly outputs to Yes 
Step 129. Where UO is below 0.5ml/kg for 12 hours set stage2 hourly outputs to Yes 
Step 130. Where UO is below 0.3ml/kg for 24 hours set stage3 hourly outputs to Yes 
Step 131. Where UO is 0 for 12 hours set stage3Anuria to Yes 
Step 132. Find all those patients with diagnoses made where NAs were present in the time 

during which AKI was diagnosed 
Step 133. Ensure the AKI wasn’t diagnosed when urine was discarded/lost by accident 
Step 134. Assign the reason for AKI diagnosis 
Step 135. Work out which criteria for AKI were fulfilled at any time 
Step 136. Check UO related diagnosis was not due to lost UO where this occurred after the 

creat diagnosis 
Step 137. Manually check all instances of AKI where AKI3 was reached without RRT being 

started have been correctly assigned 
Step 138. Note where AKI 3 anuria occurred in healthy people with no catheter – Anuric no 

cath 

5.9.  Finalisation and anonymization 

Key considerations 

Haematological blood results (including those identified in step 118 were linked to the relevant 

patient episode).  Cleaned versions of variables including age, urgency, procedure details and CPB 

time were the transferred to the Patient Index file.  Finally, all patient identifiers were replaced by 

unique ID numbers.  All data transferred from VGNW for analysis were non identifiable.  A “key” 

file was stored on the VGNW database to allow a link back to the original data.  

Cleaning Steps 

Step 139. Clean haem assigning a preop and all available PostOp haem and coag to each 
episode 

Step 140. Add in age and CPB time and urgency 
Step 141. Add in Proc details cleaned from dendrite 
Step 142. Anonymise every data frame and write the output .csv files. 
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Statistical Methods Chapter Six: 

During this research programme associations between predictor variables and outcomes were 

tested using different statistical methods.  Generally, initial comparisons were made using 

univariable tests and then the effect of potential confounding variables was adjusted for using 

multivariable analyses.(148)   This thesis subsection discusses the rationale for the statistical 

analyses employed. 

6.1.  Univariable analyses 

Univariable analyses compare outcomes between patients grouped by one variable e.g. sepsis 

status.  Outcomes compared during this research programme include binary outcomes such as 

ICU-mortality, continuous outcomes such as length of stay and time-to-event analyses such as 2-

year survival.   

6.1.1. Continuous outcomes 

When analysing continuous outcomes, before a choice of statistical test was made, the normality 

of the data was assessed.  If the outcome data followed a normal (parametric) distribution,  tests 

such as the Student’s t-test (149) were used to compare the outcomes of the groups.  Such 

analyses compare the mean values in each group and assume that the outcomes are normally 

distributed.  If data are not normally distributed (non-parametric) these assumptions are not valid 

and can cause inappropriate conclusions to be drawn.(150, 151)  Non parametric data were 

therefore analysed using tests which do not assume the normality of the data being analysed.  

Non-parametric tests used in this thesis include the Mann Whitney U test(152) (also known as the 

Wilcoxon rank-sum test) and the Kruskal-Wallis(153) test.  

6.1.2. Binary outcomes 

The choice of univariable test used to analyse the association between a predictor variables and a 

binary outcome was determined by the expected number of outcomes in the smallest group of 

patients analysed.  Although a large number of patients were included in this programme, some 

of the groups used in the analyses were relatively small.  Where the expected number of 

outcomes for the smallest group was less than ten, Fisher’s exact test (154)  was employed(151). 

Where the smallest expected number of outcomes was ten or more the Chi square (155) test was 

used.  
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6.2.3. Time-to-event outcomes 

Time to event analyses were conducted using Kaplan-Meier plots(156) which provide a graphical 

representation of survival taking into account loss to follow up during a study.  The statistical 

significance of differences in survival rates was analysed using the log-rank test.(157) 

6.2.  Multivariable analyses to adjust for confounders 

Multivariable analyses were used to adjust for the effect of known and suspected risk factors for 

adverse outcomes on the observed outcomes.  Controlling for all possible confounders is likely to 

result in overfitting of any model, leading to results which are not reproducible in other 

populations.(158)  Therefore, only the most important known confounders were adjusted for.  

The confounders controlled for during this research programme were the CPB time, type of 

operation performed and logistic EuroSCORE(5).  The logistic EuroSCORE is an extensively-

validated risk score which quantifies the risk of operative mortality following cardiac surgery 

based on pre-and intraoperative variables.(159, 160)  Prolonged CPB has similarly been shown to 

be associated with increased mortality risk and prolonged length of stay.(161, 162)  The operation 

type (valve surgery or not valve surgery) was controlled for during analysis of postoperative AF as 

heart valve surgery is an important risk factor for the development of postoperative AF.(163)  

6.2.1. Continuous outcomes 

To control for the confounding effects of other variables on continuous outcomes such as length 

of stay, linear regression modelling was used.  Multiple linear regression allows the size of the 

effect of a one unit change in each variable on the outcome to be estimated.  The expected value 

of Y (Ŷ) can be calculated by summing the products of each predictor variable’s value and beta 

coefficient.  

Ŷ=b0+b1X1+b2X2…+biXi 

Where Ŷ is the expected outcome value, b0  is the value of Y when all predictor variables are equal 

to 0,  b1 to bi  are the beta coefficients of given predictor variables and X1  to Xi  are the values 

of those predictor variables.  Using this equation Y can be predicted based on the known 

values and beta coefficients of the predictor variables. 
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6.2.2. Binary outcomes 

For binary outcomes, confounding predictor variables are adjusted for using multivariable logistic 

regression modelling.  This approach is similar to the multiple linear regression described above.   

However as the outcome is binary rather than continuous, instead of estimating the value of the 

outcome variable, the equation estimates the natural logarithm of the odds (also known as the 

logit function) of the binary outcome occurring.   

ln(𝑜𝑑𝑑𝑠) = 𝑙𝑛
𝑃

1 − 𝑃
= 𝑏 + 𝑏 𝑋 + 𝑏 𝑋 +  … + 𝑏 𝑋  

 

Where P is the probability of the binary outcome occurring, b1 to bi  are the beta coefficients for 

each of the predictor variables whose values are given by X1  to Xi . 

It is possible to quantify the effect of a change in each variable on the odds of the outcome 

occurring.  This is done using the odds ratio which, for binary predictors, is the odds of the 

outcome occurring if the predictor variable is present divided by the odds the outcome occurring 

if the predictor variable is not present.  Through algebra it can be shown that the odds ratio for 

each predictor variable may be found by raising e to the power of the variable’s beta coefficient in 

the equation above.(164)  The odds ratio for each variable takes into account the effects of other 

predictor variables on the likelihood of the outcome occurring.  It shows the effect on the odds of 

the outcome occurring if the chosen predictor changes but all other predictor variables remain 

constant.  In other words, the odds ratios are a means of displaying the effect size related to a 

change in given predictor adjusted for the confounding effect of other variables.  For this reason 

they are properly called adjusted odds ratios.  

During the development of logistic regression models, Wald tests(165) were performed to assess 

the likelihood that the beta-coefficient for each variable was in fact 0.  These probabilities are 

displayed as p values for each variable included in any model.  It is widely accepted that a p value 

of <0.05 (which represents a probability of less than 5% that the outcome is not related to the 

predictor variable) is sufficient to conclude that the relationship is statistically significant.   
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6.2.3. Time-to-event outcomes 

For time to event outcomes, Cox proportional hazards regression analyses were performed.  

These are similar to the multivariable logistic regression models.  The hazard rate at any time can 

be found using the following equation. 

ℎ(𝑡) = ℎ (𝑡)exp (𝑏 𝑋 + 𝑏 𝑋 + ⋯ + 𝑏 𝑋 ) 

Where h(t) is the hazard rate at time (t), h0 is the hazard at time 0 when all predictor variables X1 

to Xi are set to 0 and b1-bi and X1-Xi are the beta co-efficients and values of predictor variables.  

Similarly to logistic regression, e raised to the power of the coefficient for a given variable gives 

the hazard ratio for that variable.  The hazard ratio shows the change in hazard rate which occurs 

where one variable changes and all other remain constant.  It is therefore another means of 

displaying the effect size related to a change in a given predictor adjusted for confounders.  As 

with logistic regression, when producing Cox proportion Hazards models in R Studio the 

probability that the coefficient is 0 is calculated and displayed as a p value for that variable.  

6.3.  Bayesian analyses 

Chapter ten of this thesis describe the development and validation of a Bayesian model.  Bayesian 

analyses are an alternative to regression analyses which also predict and outcome based on 

multiple dependent variables.  A full description of Bayesian modelling is well beyond the scope of 

this thesis but a brief summary of the methodology used is presented below. 

Bayesian analyses centre on the use of information already known (priors), to modify inferences 

drawn from the analyses of sample data (likelihood) to make revised predictions (posterior 

estimates).  The analyses are based on the Bayes’ theorem which states that. 

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) .
𝑃(𝐴)

𝑃(𝐵)
 

Where A and B are events with a probability not equal to 1. 

In this thesis the Bayesian methodology was used to predict future values for urine output for 

each individual patient based on that individual’s previously observed urine output values and 

prior knowledge of usual patterns seen in the dataset as a whole.   

 

 

 



107 
 

6.4.  Statistical evaluation of model performance 

While logistic regression is mainly used to adjust for confounders in this thesis, its main use in 

medicine is to produce estimates expected frequencies of outcomes based on the presence of 

known risk factors.  Logistic regression models developed using one sample of patients may not 

perform as well in a different sample of patients.   It is therefore important to externally validate 

models before using them in clinical settings where the patients being analysed and the 

institutions in which they are being treated are different to those of the development dataset. In 

chapter seven of this thesis the performance of previously described models is assessed in a 

process known as external validation.  This subsection discusses the methods used when 

assessing performance of risk prediction models. 

There are two main characteristics to be considered when measuring model performance; 

discrimination and calibration.  Discrimination is the ability of the model to identify which patients 

within a cohort are at the highest risk of an outcome.  Calibration is a measure of how closely the 

predictions made by a model match observed outcomes in the cohort of patients being studied.  

Assessments of discrimination and calibration are combined with an assessment of the model’s 

clinical usefulness to give an overall evaluation of model performance.         

 

6.4.1. Discrimination 

Discrimination is generally assessed through the analysis of receiver operating characteristic 

(ROC) curve plots.  The output of a logistic regression model is a probability that an outcome will 

occur.   A perfect model would assign a probability of 1 to patients who went on to suffer an 

outcome and 0 to those who did not.  It would, therefore, have a false positive rate of 0 and a 

true positive rate of 1.  A model which performed no better than chance would exhibit an equal 

number of true positive and false positive.  For real world models the threshold for classifying a 

predicted probability to be positive can be set anywhere between 0 and 1.  A ROC curve is formed 

by plotting the rate of true positive test results against the rate of false positive test results across 

the full range of possible threshold values.  If the threshold value is moved closer to 1 there will 

be fewer false positives at the expense of identifying fewer true positives and vice versa.  The ROC 

plot provides a graphical representation of this trade-off between the false positive rate and the 

true positive rate.(166)  The area under the receiver operating characteristic curve (AUC) is also 

known as the c-statistic and is a measure of the model’s ability to identify which patients are 

more likely than others to experience an outcome.  The AUC for a perfect model would be 1 

whereas that of a model performing no better than random chance would have an AUC of 0.5.   
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6.4.2. Calibration 

Calibration is assessed by comparing outcomes predicted by the model with the observed 

outcomes in groups of patients within a validation cohort.  In this thesis three indicators of 

calibration were used.  The simplest is the ratio of observed to expected outcomes (O:E) ratio.  

The total number of expected outcomes is found by summing the predicted probabilities of the 

outcome for all patients.  The total number of observed outcomes in the group is then divided by 

the expected number of outcomes.  Perfect calibration would results in an O:E ratio of 1.  A model 

which under-predicted risk would result in an O:E ratio > 1 whereas a model which over-predicted 

risk would result in and O:E ratio of <1.(167) 

The main weakness of using overall O:E ratios is that the model’s calibration may be good overall 

but may be poor for those with particularly high or low predicted risk.  Calibration plots and the 

Hosmer-Lemeshow test (168) were therefore used to test risk across the full range of predicted 

probabilities.  Calibration plots are formed by plotting the observed risk of outcome against the 

predicted risk of outcome for equally sized groups of patients grouped according to their 

predicted risk.  Perfectly calibrated models would result in a plot where the observed and expect 

risk are identical in each group with the plotted points forming a straight line which has a gradient 

of 1 and passes though the origin.  In reality these plots can show groups of patients for whom the 

model over or under predicts risk.(169)  The Hosmer-Lemeshow test divides the patients into 

groups (normally ten) according to their predicted risk.  The observed risk is then compared with 

the predicted risk for each group and a probability of there being no difference between the 

predictions and the observations is calculated.  In this test a p value of >0.05 is generally accepted 

to represent predictions that are accurate as it indicates a high probability that any difference 

between predictions and observations across the groups is due to chance alone.  The Hosmer-

Lemeshow test results are dependent on the sample size and number of groups used in the 

analysis.  However the main disadvantages of the test are that the test’s output gives no 

indication of whether a model under or over-predicts risk and does not quantify the calibration 

error.(170)  

The usefulness of a model is dependent on its calibration and its discriminative ability in the 

context of the purpose for which it is being used.  A model which is used to identify those at 

greatest risk within a sample population in order to target resources appropriately can be useful 

even where calibration is poor if it discriminates well between those who will and will not suffer 

an outcome.  In this scenario the accuracy of the estimated risk is not as relevant.  However, if the 

risk predictions are to be used to risk adjust outcome data then the calibration of the model must 

be good.  With caution, well calibrated risk predictions may also be used to inform patients and 
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their relatives of risk based on known predictor variables.  However, predictions made by logistic 

regression models are only accurate for groups of patients not individuals.  In a group of 100 

patients who all had a predicted mortality risk of 40% (assuming a perfect model) 40 people 

would die.  However, each individual within that high risk group will either survive or die and the 

model cannot tell those who will die from those who will survive.    
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SECTION THREE:  RESULTS 

Data analysed for this thesis were collected and processed in two main batches due to a delay in 

the initiation of waveform data recording from the Draeger Infinity bedside physiological 

monitors.  Reasons for this delay are detailed in the Discussion section of this thesis.   

The first batch of data was collected for patients who underwent cardiac surgery at Wythenshawe 

Hospital between January 2013 and May 2015.  This batch contained data from 2284 patients and 

data cleaning began on this batch in June 2015.  Data from all sources detailed in section four of 

this thesis except for the Draeger Infinity Bedside monitors were collected for these patients.  

After collection of waveform traces from the bedside monitors was implemented (July 2016) data 

from all sources were recorded for a further 1318 patients admitted to CICU between July 2016 

and November 2017.   

The results chapters of this thesis were written as journal articles. The first three chapters of this 

section only analysed data recorded between January 2013 and May 2015.  In chapters ten and 

eleven data from both cohorts was combined to give a final dataset containing data from 3602 

patients.  Depending on the outcomes being studied in each chapter and often at the request of 

peer-reviewers, certain patient groups were excluded from different studies.  Table 6-1 therefore 

details which patients were included in each of the studies presented in the results section of this 

thesis. 
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CICU – Cardiac Intensive Care Unit, KDIGO – Kidney Disease Improving Global Outcomes, AKI – 

Acute Kidney Injury, RRT – Renal Replacement Therapy, AF – Atrial Fibrillation/Flutter 

 

 

 

 

Table 6-1 – Patient selection for inclusion in each study contained within this results section 

Relevant thesis chapter Patient groups excluded  Patients included in 
chapter’s analyses 

Patients admitted between January 2013 and May 2015 (n=2284)  

 Chapter Seven: 
Validation of 
existing mortality 
models 

Patients whose initial CICU stay was not long 
enough to allow a full dataset to be collected (n= 
29) 

2255 

 Chapter Eight: 
Incidence and 
outcomes of sepsis  

Patients who underwent cardiac transplantation 
(n=54) 

2230 

 Chapter Nine: 
Validation of KDIGO 
AKI criteria 

Patients who required RRT preoperatively (n=7) 

and those for whom preoperative creatinine 

concentrations were not available (n=10) 

2267 

Full patient cohort - Admitted between January 2013 and November 2017 (n=3602) 

 Chapter Ten: 
Development of 
novel urine output 
model 

Patients who received mechanical circulatory 
support or transplantation (n=228) and patients 
undergoing eligible surgery but who required 
RRT preoperatively (n=4)   

3370 

 Chapter Eleven: 
Electrolytes and AF 

Patients who received mechanical circulatory 

support or transplantation (n=228) and patients 

undergoing eligible surgery but who suffered AF   

preoperatively (n=306)   

3068 
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7.1.  Additional data processing for this manuscript. 

This study required the daily assessment of patient data to find the most abnormal value for each 

variable included in three post-operative risk prediction models.  Once the worst values for each 

variable were identified they were entered into the models to calculate a risk score as described 

in the original papers.  A number of additional data cleaning steps were required to adapt the 

dataset produced as described in Chapter five of this thesis for the analyses required in this study. 

Firstly, the hospital’s radiology database was interrogated and all incidences of computed 

tomography (CT) scans of the head performed on patients who were present on CICU were noted.  

This information was required because the presence of suspect or proven cerebrovascular 

accident (CVA) was a variable included in the logCASUS and RACE scores. 

Secondly, it was identified that the central venous pressure (CVP) values were absent for many 

patients towards the end of their CICU stay.  This lack of data was caused by the central venous 

catheter being removed in healthy patients prior to discharge to the ward.  The CVP was required 

to calculate the pressure adjusted heart rate (PAR) variable used in the logCASUS model.  To 

compensate for the missing CVP values a generalised linear model was developed to predict the 

PAR for patients with missing CVP data using heart rate and arterial blood pressure alone. 

Next, a unique identifier was then created for each patient-day on the CICU.  Using this unique 

identifier it was possible to find the most abnormal parameter for each value for each patient on 

each day as per the original model descriptions.  For the logCASUS model (171) the worst daily 

value for each parameter was simply multiplied by the beta coefficient described in the original 

paper.  For the RACE score (172) the worst value was categorised according to the thresholds 

described in the original paper.  This categorical variable was then multiplied by the beta 

coefficient stated in the original paper.   Both the logCASUS and RACE score were calculated in 

this way for each day of the first week of each patient’s first ICU admission.   The SOFA score (17) 

was calculated for each patient on a daily basis for the same period using the threshold values 

described in the original paper.  

The discrimination of each model was assessed as described in the manuscript.  The calibration 

was assessed for the logCASUS and RACE scores but not for SOFA as SOFA was not a logistic score.   

Finally all models were recalibrated using a subset of the patients in the cohort and the new 

calibration was tested in the remaining patients within the dataset. 
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Additional cleaning steps 

Step 1.  Load in all patient data. 

Step 2. Select only data from the first seven days of each patient’s first post-operative 

CICU admission. 

Step 3. Create Truncated Day variables and merge with patient ID to create unique 

PtAndDay identifiers. 

Step 4. Identify the worst daily Glasgow Coma Scale scores and calculate the worst daily 

CNS scores. 

Step 5. Identify intubation status at the time each ABG is analysed (for SOFA score). 

Step 6. Calculate daily urine output (for SOFA score). 

Step 7. Identify all dose of vasopressors administered each hour for each patient. 

Step 8. Create the CICU episode day number variable (required for logCASUS and RACE) 

Step 9. Calculate PAR and impute missing values where CVP was unavailable and 

therefore prevented PAR calculation using usual methodology. 

Step 10. Where FiO2 is not recorded use last recorded value. 

Step 11.  Identify worst daily value for presence of intra-aortic balloon pump. 

Step 12.  Identify worst daily value for presence of mechanical circulatory support. 

Step 13. Identify maximum daily PAR. 

Step 14. Identify minimum daily ratio of arterial to inspired oxygen concentrations.  

(P/F ratio) 

Step 15. Identify minimum daily mean arterial blood pressure. 

Step 16. Identify maximum daily creatinine concentration. 

Step 17. Identify maximum daily bilirubin concentration. 

Step 18. Identify maximum daily lactate concentration. 

Step 19. Identify minimum daily platelet count.  

Step 20. Identify worst daily intubation status. 

Step 21. Identify worst daily value for presence of renal replacement therapy. 

Step 22. Identify worst daily score for vasopressor use (SOFA score). 

Step 23. Update worst daily score for central nervous system according to CT head data. 

Step 24. Manually inspect the EPR to determine values for all variables if there is no daily 

score and update fields accordingly.  

Step 26. Where no variable is present use the last known value.  If no previous value is 

present use the median value for all patients. 

Step 27.  Calculate log CASUS score using the worst daily values and beta coefficients for 

each variable. 
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Step 28. Calculate RACE score using the worst daily values and beta coefficients for each 

variable. 

Step 29. Calculate SOFA score using the worst daily values and beta coefficients for each 

variable. 

Step 30. Merge in mortality data. 

Step 31. Create ROC curves for all three tests. 

Step 32. Create three new linear models which use the daily score calculated by each of 

the three models as the sole predictor of mortality. 

Step 33. Recalibrate models by recalculating the mortality risk for each patient each day 

based on their risk score and the mortality events observed in this patient cohort   

Step 34. Plot calibration curves for original and recalibrated calibrated models. 

Step 35. Perform Hosmer-Lemeshow tests for original and recalibrated calibrated models. 

Step 36. Calculate observed: expected mortality ratios for original and recalibrated 

calibrated models. 
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7.2.  Abstract  

Background 

A number of cardiac surgery risk prediction models based on postoperative data have been 

developed. However, unlike preoperative cardiac surgery risk prediction models, postoperative 

models are rarely externally validated or utilised by clinicians. The objective of this study was to 

externally validate three postoperative risk prediction models for 30-day mortality after cardiac 

surgery. 

Methods 

The logistic Cardiac Surgery Scores (logCASUS), Rapid Clinical Evaluation (RACE) and Sequential 

Organ Failure Assessment (SOFA) scores were calculated over the first seven postoperative days 

for consecutive adult cardiac surgery patients between January 2013 and May 2015. Model 

discrimination was assessed using receiver operating characteristic curve analyses. Calibration 

was assessed using the Hosmer-Lemeshow (HL) test, calibration-plots and observed to expected 

ratios. Models were locally recalibrated . 

Results 

2255 patients were included with an ICU mortality rate of 1.8%. Discrimination for all three 

models on each postoperative day was good with areas under the receiver operating 

characteristic curve of >0.8. Generally, RACE and logCASUS had better discrimination than SOFA. 

Calibration of the RACE score was better logCASUS, but the ratios of observed to expected 

mortality for both were generally <0.65.  Locally recalibrated SOFA, logCASUS and RACE models all 

performed well. 

Conclusion 

All three models demonstrated good discrimination for the first seven days after cardiac surgery. 

After recalibration, logCASUS and RACE scores appear to be most useful for daily risk prediction 

after cardiac surgery. If appropriately calibrated, postoperative cardiac surgery risk prediction 

models have the potential to be useful tools after cardiac surgery. 
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7.3.  Introduction 

Preoperative cardiac surgery risk prediction models such as the EuroSCORE models [1-3] have 

been widely adopted and extensively studied. The primary purpose of such models is to allow the 

risk of mortality to be estimated prior to intervention. The risk estimates can be used to inform 

clinical decision making when considering intervention and to risk-adjust surgical outcome data 

on an ‘intention to treat’ basis.  

However, once an intervention has taken place preoperative models become less useful because 

intraoperative and postoperative events that may affect risk are not taken into account. Following 

intervention, models which include risk factors from the intra- and postoperative periods may be 

more useful for estimating risk and could aid postoperative clinical decision making and allow 

benchmarking of Cardiac Intensive Care Unit (CICU) performance.  

A number of potentially useful models which analyse postoperative data have been developed. 

Some models designed for use in general intensive care unit (ICU) patients also accurately predict 

mortality after cardiac surgery,[4-14] with the Sequential Organ Failure Assessment (SOFA) score 

generally demonstrating the best performance.[7, 15] The Cardiac Surgery Risk Score (CASUS) and 

its derivatives are examples of models designed specifically for use following cardiac surgery.  The 

CASUS model has been validated in Germany using data from multiple institutions [4,6,11,12,16] 

and in a study of 150 patients in Greece.[17] The derivative Logistic Cardiac Surgery Risk Score 

(logCASUS)[18] and Rapid Clinical Evaluation (RACE)[19] models which calculate ICU mortality risk 

have not been externally validated.   

Despite a number of models being available, few are utilised in clinical practice. This lack of 

adoption may be due to the absence of comparative external validation studies in contemporary 

cohorts. The objective of this study was therefore to validate the logCASUS, RACE and SOFA 

scores for the prediction of ICU mortality in cardiac surgery patients. The performance of serial 

daily scores for each model was also assessed.  

7.4.  Patients and methods 

Prospectively collected data for consecutive adult patients admitted to the CICU at our institution 

following cardiac surgery between 1st January 2013 and 31st May 2015 were analysed. Our 

institution is a tertiary adult cardiac surgery centre and our case-mix includes patients undergoing 

cardiac transplantation and mechanical circulatory support. As in the original studies which 

described the logCASUS[18] and RACE[19] scores, only data from each patient’s first CICU 

admission after cardiac surgery were included. Patients whose CICU admissions were too short to 



118 
 

allow calculation of risk using the models were excluded. The primary outcome for the study was 

ICU mortality.   

7.4.1. Data collection, validation and cleaning 

Preoperative patient characteristics and postoperative outcome data were collected from the 

clinical governance database which is compiled by clinicians and validated by database managers. 

Postoperative data from the patients’ CICU admissions were obtained from the electronic patient 

record. Results of blood analyses were obtained from the pathology laboratory database and data 

concerning postoperative cerebrovascular accidents were obtained from the radiology database. 

As described in the original studies [15,18,19] the most abnormal value for each variable recorded  

on each day was entered into the models. Data from all four sources were collated and cleaned 

using reproducible algorithms in R Studio (R Foundation for Statistical Computing).[20]  

All data were entered into the Vascular Governance North West database and managed according 

to the protocol and ethical approvals governing this database.  As data were pseudonymised prior 

to analysis the Research Ethics Committee concluded that ethical approval for these analyses was 

not necessary.  

 

7.4.2. Missing data 

Where a variable was not measured on a given day, the patient’s most recent postoperative value 

was used to calculate the risk score. Except for bilirubin, substituted blood test data were 

required in <3% of risk score calculations. Previous postoperative bilirubin concentrations were 

not available for 8.3% of daily calculations and therefore missing values were substituted using 

the nearest subsequent value for that patient.  Where the above substitutions were not possible 

due to a complete absence of data for a given patient, the median value for that parameter in all 

patients was imputed. Bilirubin was imputed in this way for 6.2% of patients but other variables 

were only imputed for 0.1% of patients.  

For the logCASUS score, calculation of the pressure adjusted heart rate (PAR) (which combines 

information from heart rate, central venous pressure (CVP) and mean arterial pressure) was not 

possible for 7% of score calculations. This was most commonly because the central venous 

catheter had been removed before CICU discharge.  To address missing CVP data, a logistic 

regression model was developed using data from patients for whom data were complete.  This 

model was then used to calculate a modelled PAR. There were no missing outcome data. 
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7.4.3. Statistical analyses 

Central tendency of variables is described using mean and standard deviation where the 

distribution was parametric and median and interquartile range where the distribution was non-

parametric.   

The logCASUS, RACE and SOFA scores were calculated for each patient on a daily basis for 

postoperative days one to seven. The discrimination of all scores for the prediction of ICU 

mortality was assessed using the area under the receiver operating characteristic curve (AUC). De 

Long's method for calculating AUC variance was used for the calculation of AUC 95% confidence 

intervals.[21] AUC values of ≥0.7 were considered acceptable and values of ≥0.8 were considered 

good.  

The calibration of logCASUS and RACE ICU mortality estimates was assessed using the ratio of 

observed outcomes to predicted outcomes (O:E ratio), the Hosmer Lemeshow (HL) test and 

calibration plots. A high HL χ2 value with a low p value suggests that there is a significant 

difference between predicted risk and observed outcomes.[22] The calibration plots illustrate 

how the mean predicted probability of ICU mortality compares with the observed incidence of 

ICU mortality for five equally sized groups based on the ranked predicted risks calculated by the 

model. Calibration of the original SOFA score could not be evaluated because it is a non-logistic 

score.  

A sub-group analysis excluding patients who underwent cardiac transplantation or initiation of 

mechanical circulatory support was also performed.  Finally, local recalibration of the models was 

performed. Data were divided randomly into two equally sized datasets; a training dataset and an 

evaluation dataset.  Each model was fully recalibrated using data for each variable from the 

training dataset. The calibration and discrimination of each recalibrated model was then tested in 

the evaluation dataset.   

7.5.  Results 

Patient characteristics 

There were 2284 consecutive patients who met the inclusion criteria.  29 patients were excluded 

because their admission to CICU was too short to allow calculation of the risk scores.  The mean 

(sd) age of the patients was 65.8 (11.8) years and 27.3% were female. The most common 

procedure was isolated coronary artery bypass graft surgery (53.3%).  Additional patient and 

operative characteristics are shown in Table 7-1. The overall ICU mortality rate was 2.0%. The ICU 

mortality rate in the final validation cohort was 1.8%. 
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Table 7-1 - Patient characteristics in the validation cohort 

Variable  Total n =2,255 

Age, mean (sd), years 65.8 (11.8) 

Female Gender, n(%)  616 (27.3) 

Height, mean (sd), cm  170 (9.2) 

Weight, mean (sd), Kg  81 (15.8) 

Surgery  

     Isolated CABG, n(%) 1202 (53.3) 

     Isolated Valve, n(%) 477 (21.2) 

     Isolated Aortic, n(%) 23 (1.0) 

     Combined cardiac procedures, n(%) 397 (17.6) 

     Cardiac transplantation, n(%) 51 (2.3) 

     Mechanical circulatory support, n(%) 41 (1.8) 

     Other, n(%) 64 (2.8) 

Urgency  

     Elective/Scheduled, n(%) 1309 (58.0) 

     Urgent, n(%) 884 (39.2) 

     Emergency/Salvage, n(%) 62 (2.7) 

CPB Duration, median(Interquartile range), minutes 101.0 (80.0-130.0) 

Logistic EuroSCORE, median (Interquartile range)   4.0 (2.1-7.7) 

CABG=Coronary Artery Bypass Graft, CPB=Cardiopulmonary Bypass 
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7.5.1. Model performance on the first postoperative day 

The variables included in each model are detailed in Table 7-2. A day-by-day description of the 

levels of risk predicted by the models is shown in the Appendix (Table 7-5).  All three models 

demonstrated good discrimination when calculated on the first postoperative day (Figure 7-1a).  

The AUC for the RACE and logCASUS scores were the same at 0.94 (95%CI 0.91-0.97) for both. The 

AUC for the SOFA score was 0.91 (95%CI 0.86-0.96). The HL tests, together with the comparison of 

the O:E ratios and calibration plots implied poor calibration of both logistic models (Table 7-3). As 

seen in Figure 7-1b, predictions were least accurate for those patients who had the highest 

predicted risk. Sub-group analysis demonstrated no significant effect on model performance 

when patients undergoing cardiac transplantation or initiation of mechanical circulatory support 

were excluded.  

Table 7-2 - Risk factors and variables included in the analysed models  

System logCASUS RACE SOFA 

Cardiovascular PAR 

Lactate concentration 

Ventricular assist device 

Intra-aortic balloon pump 

MAP 

Lactate concentration 

Ventricular assist device 

Intra-aortic balloon pump 

MAP 

Vasoactive medication 

Respiratory PaO2/FiO2 ratio Intubation PaO2/FiO2 ratio 

Coagulation Platelet count Platelet count Platelet count 

Hepatobiliary Bilirubin concentration Bilirubin concentration Bilirubin concentration 

Renal Creatinine concentration 

Renal replacement therapy 

Creatinine concentration 

Renal replacement therapy 

Creatinine concentration 

Urine output 

Central Nervous Neurological state score Neurological state score Glasgow coma scale 

Other Postoperative day number Postoperative day number  

PAR=Pressure adjusted heart rate=heart rate x central venous pressure/mean arterial pressure,   
MAP=mean arterial pressure, PaO2=arterial partial pressure of oxygen, FiO2=inspired fraction of 
oxygen.  
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Figure 7-1 (a) Receiver Operating Characteristic (ROC) curves for the validated models on the first 
postoperative day. (b) Calibration plots for the original logCASUS and RACE models and 
recalibrated logCASUS, RACE and SOFA models on the first postoperative day.  

The dashed line represents the line of perfect calibration. 

 

7.5.2. Serial scores 

The daily measures of discrimination and calibration for the models are shown in Table 7-3.  

LogCASUS and RACE scores calculated daily up to day seven of the postoperative CICU admission 

demonstrated good discrimination. The AUC of the SOFA score was generally lower than those of 

the cardiac surgery-specific scores in the early postoperative period but the difference reduced 

towards the end of the first postoperative week. Calibration plots, HL test and O:E ratios 

suggested poor calibration for logCASUS.  Calibration for RACE was better but remained 

suboptimal. 
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Table 7-3 - Daily performance of the original models for ICU mortality  

AUC=Area under the receiver operation characteristic, HL=Hosmer-Lemeshow, O:E ratio=observed expected ratio. The best AUCs are given in bold      

Day No (N) Number of 

events 

logCASUS RACE SOFA 

AUC (95% CI) HLχ2 (p value) O:E ratio AUC (95% CI) HLχ2 (p value) O:E ratio AUC (95% CI) 

1(2255) 41 0.94 (0.91-0.97) 43.81 (<0.01) 0.41 0.94 (0.91-0.97) 22.84 (<0.01) 0.52 0.91 (0.86-0.96) 

2(1705) 36 0.92 (0.85-0.98) 23.36 (<0.01) 0.52 0.93 (0.88-0.99) 5.04 (0.75) 0.87 0.90 (0.84-0.96) 

3(957) 27 0.93 (0.90-0.96) 51.77 (<0.01) 0.34 0.94 (0.91-0.98) 14.42 (0.07) 0.59 0.89 (0.82-0.96) 

4(607) 21 0.93 (0.89-0.96) 40.99 (<0.01) 0.35 0.90 (0.85-0.95) 12.54 (0.12) 0.57 0.91 (0.86-0.96) 

5(399) 21 0.88 (0.80-0.95) 36.12 (<0.01) 0.41 0.87 (0.81-0.94) 9.39 (0.31) 0.63 0.88 (0.82-0.95) 

6(273) 17 0.89 (0.83-0.95) 31.12 (<0.01) 0.39 0.87 (0.79-0.95) 13.94 (0.08) 0.60 0.86 (0.78-0.93) 

7(183) 16 0.84 (0.73-0.95) 27.18 (<0.01) 0.45 0.85 (0.76-0.94) 12.42 (0.13) 0.62 0.88 (0.81-0.96) 
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7.5.3. Local recalibration 

The AUC, O:E ratios and HL test results for the recalibrated models’ performance in the evaluation 

dataset are detailed in Table 7-4. The analyses of recalibrated model performance were limited to 

the first five days as the training dataset only contained seven patients who died after being on 

CICU for more than 5 days. Local recalibration of models using the training dataset generally 

resulted in marginal improvement in discrimination for all scores. The calibration of the 

recalibrated logCASUS model was adequate on every day. The HL tests for RACE and SOFA 

suggested adequate calibration on every day except day 5.  Calibration plots for the original and 

recalibrated models are shown in Figure 7-1b.  Full details of the recalibrated models are provided 

in Tables 7-6 -7-8. 
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Table 7-4 - Daily performance of the models for ICU mortality in the evaluation dataset following local recalibration 

Day No (N) Number  

of events 

LogCASUS RACE SOFA   

AUC (95% CI) HLχ2(p value) O:E 

ratio 

AUC (95% CI) HLχ2 (p value) O:E 

ratio 

AUC (95% CI) HLχ2 (p value) O:E ratio 

1(1127) 18 0.96 (0.93-0.99) 2.79 (0.94) 0.85 0.96 (0.92-0.99)  4.77 (0.78) 0.82 0.93 (0.87-0.99) 5.75 (0.67) 0.76 

2(850) 15 0.96 (0.94-0.99) 5.15 (0.74) 0.67 0.97 (0.95-0.99) 4.24 (0.83) 0.72 0.93 (0.88-0.98) 3.29 (0.91) 0.73 

3(461) 12 0.92 (0.85-0.99) 5.23 (0.73) 0.85 0.94 (0.88-1.00) 3.11 (0.93) 0.80 0.92 (0.88-0.97) 3.60 (0.89) 0.76 

4(303) 11 0.93 (0.88-0.97) 2.28 (0.97) 1.14 0.90 (0.83-0.97) 10.11 (0.25) 0.92 0.87 (0.79-0.95) 14.23 (0.08) 0.96 

5(195) 11 0.92 (0.86-0.98) 4.39 (0.82) 1.26 0.80 (0.62-0.98) 22.14 (<0.01) 1.26 0.87 (0.80-0.95) 18.46 (0.02) 1.14 

AUC=Area under the receiver operation characteristic, HL=Hosmer-Lemeshow, O:E ratio=observed expected ratio. Best AUCs in bold      
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7.6.  Discussion 

This study has validated the performance of the logCASUS, RACE and SOFA scores in a cohort of 

2255 patients from a tertiary cardiac centre in the UK.  The observed ICU mortality (1.8%) is in line 

with that for all cardiac surgery in the UK [23].  This is despite the cohort including 62 patients 

who underwent emergency/salvage procedures and 41 who underwent instigation of mechanical 

circulatory support.  In these groups ICU mortality was 21.0% and 24.3% respectively.  In the 

remaining patients the ICU mortality rate was 1.2%.  

All models demonstrated good discrimination throughout the first postoperative week with 

discrimination declining slightly towards the end of the week. Both the logCASUS and RACE scores 

demonstrated poor calibration in our cohort and significantly over-predicted risk. The poor 

calibration demonstrated by the RACE and CASUS models may be due to a similar calibration drift 

effect to that observed with preoperative risk models due to improvements in care and clinical 

outcomes over time.[24]  Assuming that our findings of poor calibration of the original models are 

replicated elsewhere, the models would need to be recalibrated before the risk estimates could 

be clinically useful.[25] After recalibration in our training cohort, all models demonstrated 

improved calibration as assessed by the HL test but under-predicted risk in lower risk groups and 

over-predicted risk in the highest risk group.  Overall, the logCASUS was slightly better calibrated 

that the SOFA and RACE scores. 

This study represents the first external validation of the logCASUS and RACE models and the first 

validation of the SOFA score in UK cardiac surgery.  We utilised contemporary data from a tertiary 

cardiac centre with excellent clinical results and undertook a comprehensive assessment of model 

performance.  As with any clinical study, there were missing data but the proportion in this study 

was low.  The variables with the most missing data were PAR (required for logCASUS calculation 

only) and serum bilirubin.  A clinically robust approach to handling missing data was adopted.   

A potential limitation of the study is that it is based on data from a single centre and includes 

relatively few outcomes. The division of our dataset for development and evaluation of locally 

recalibrated versions of the models exacerbated this problem and so we limited the evaluation of 

the recalibrated models to the first five postoperative days. When the number of outcomes is low, 

validation results and performance statistics need to be interpreted with caution.  Potential 

options to increase the sample size would be to expand the number of participating centres or 

increase the timeframe for data collection. The first option is not feasible at present due to a lack 

of UK centres currently collecting the necessary data in a suitable format.  Although the second 
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option is feasible, this would introduce temporal issues related to changes in practice and 

performance over time that could affect the results.[25]  

The SOFA score was the first of the validated models to be developed and was designed based on 

expert consensus in 1996 to assess the progress of patients suffering from sepsis.[15]  It has since 

been validated as a prediction tool for adverse outcomes in general ICU patients[26] and also 

specifically in patients who have undergone cardiac surgery.[7, 10] It grades the function of six 

organ systems using a five point scale for each with totals ranging between zero and 24 (Tables 7-

2 and 7-6).  

The logistic logCASUS[18] and RACE[19] scores were developed by the same team as the additive 

CASUS score[4] using data from a single centre.  The RACE score was designed as a user friendly 

version of logCASUS. Unlike SOFA, these scores were developed exclusively for patients who have 

undergone cardiac surgery.  They both include use of mechanical circulatory support and intra-

aortic balloon pump counterpulsation which are more common in cardiac surgery patients than 

the general ICU population.  Both scores grade neurological status using a scale which reduces the 

impact of the low conscious level expected immediately after cardiac surgery and adjust the 

predicted risk based on the time since surgery (Tables 7-7 and 7-8).   

During the recalibration process we were able to identify which variables within each model were 

significantly associated with ICU mortality.  We found that variables which can be controlled by 

physicians such as MAP and PAR were not significantly associated with outcome.  Conversely 

interventions which may affect those parameters such as use of mechanical ventilation, renal 

replacement therapy, or mechanical circulatory support were shown to have significant and 

relatively large effects on risk.  Serum creatinine and lactate concentrations and the platelet count 

were the most significant of the blood analyses assessed (Tables 7-6 – 7-8). 

Despite generally superior discriminatory ability compared to preoperative models,[27] none of 

the validated models has been widely adopted in clinical practice. Possible reasons for this include 

problems with the ability to easily calculate the scores, a perceived lack of clinical utility or validity 

and inadequate external validation studies. Clinical utility of the scores is limited by the fact that 

they are inherently retrospective as they rely on the worst value obtained over a 24-hour period. 

Importantly, the cardiac surgery-specific scores are designed to be used only during a patient’s 

first admission to CICU.  In addition, in these models the first postoperative day is the reference 

for the “ICU day” variable, i.e. the beta-coefficient for postoperative day one is zero.  The models 

do not provide an “ICU day” coefficient for the operative day and consequently cannot produce 

risk estimates until the first postoperative day.  As a result of these limitations in model design, 
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the logCASUS and RACE risk scores could not be calculated for 29 patients for whom the first ICU 

episode finished on the operative day. This is clinically relevant because for 24 of these patients, 

the short initial admission was due to reoperation for bleeding and the ICU mortality rate in this 

group was 17%. Although this did not significantly change the overall ICU mortality rate (2.0% 

versus 1.8%) the inability to assess risk in these patients is a limitation of the models.   

Despite limitations, the models studied could potentially be utilised for three main purposes.  All 

models discriminate well between patients at high and low risk of mortality therefore clinicians 

could use the scores to identify patients with the highest risk amongst those present on CICU and 

to target resources including staff allocations accordingly.  Secondly, if validated in multicentre-

studies the models could be utilised for the risk-adjustment of CICU benchmarking data in a 

similar way to that in which preoperative models have been used to risk-adjust surgical outcome 

data. [28] Utilising models that include postoperative variables to generate risk predictions allows 

risk estimates to be modified by the occurrence of intra- and early postoperative events.  Such 

estimates would be better suited for the assessment of CICU performance.  If the models were to 

be used for this purpose risk predictions should be made early in the CICU stay because scores 

calculated later are likely to be influenced by the quality of care already received on the CICU.  

Comparison of serial scores recorded in different institutions could however be used determine 

possible deficiencies in care.  If it was noted that for one institution, risk predictions made at a 

certain point in the postoperative stay generally increased in a manner which differed from 

predictions made in other institutions at a similar time-point, the protocols and procedures in use 

during that period of the CICU stay could be analysed to identify possible improvements.  

Lastly, if the models are appropriately calibrated, daily scores could be used to assess patient 

progress, assist clinical decision making and to inform discussions with patients and their relatives 

by providing the most up to date assessment of patient risk possible.  Although predictions will 

never be completely accurate for individual patients, they may be used as a guide.  

In conclusion, all three models showed good discrimination when used during the first 

postoperative week after cardiac surgery.  In their original forms the cardiac surgery specific 

models were poorly calibrated, particularly in patients with the highest risk, but all three models 

could be recalibrated using local data. Further research into optimising postoperative models to 

maximise their clinical utility is required if they are going to be widely adopted.      
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7.7 Appendices 

Table 7-5 -  The proportion of patients with low, medium and high predicted ICU mortality risk on each postoperative day 

 
Model Estimated ICU 

mortality risk 
Percentage of Patients with stated level of mortality risk (%) 
Day 1  Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

LogCASUS <2% 89.4 87.9 82.6 78.5 72.8 70.6 65.9 

2-10%  7.6 6.8 10.0 14.5 16.4 18.4 17.6 

>10% 3.0 5.3 7.4 6.9 10.8 11.0 16.5 

RACE <2% 86.7 88.4 82.6 77.6 72.8 75.7 61.5 

2-10% 10.0 7.9 10.4 14.9 16.4 11.8 18.7 

>10% 3.3 3.8 6.9 7.6 10.8 12.5 19.8 

SOFA <2% 82.7 81.6 75.3 75.6 72.3 66.9 65.9 

2-10% 13.3 13.5 18.0 16.2 16.9 23.5 18.7 

 >10% 4.0 4.8 6.7 8.3 10.8 9.6 15.4 



131 
 

 Table 7-6 - Beta coefficients for the recalibrated SOFA score when predicting ICU mortality 

 

PF ratio - ratio of arterial partial pressure of oxygen to fraction inspired oxygen; GCS – Glasgow 
Coma Scale; UO – urine output; *=p value <0.05  

System Factor Β-coefficient 

Estimate 95% CI P value 

 (Intercept) -6.34 -9.34 -4.53 <0.01* 

Respiratory PF ratio ≥400mmHg 0.00 
  

- 

 PF ratio <400mmHg 0.63 -1.11 3.58 0.56 

PF ratio <300mmHg 0.29 -1.36 3.20 0.79 

PF ratio <200mmHg and MV 1.60 -0.12 4.54 0.14 

PF ratio <100mmHg and MV 1.96 0.07 4.96 0.08 

Coagulation 
 

Platelets  >150 x109 L-1 0.00 - 

Platelets  100-150 x109 L-1 0.75 0.09 1.43 0.03 

Platelets 50-99 x109 L-1 1.20 0.50 1.91 <0.01 * 

Platelets 20-49 x109 L-1 2.25 1.04 3.43 <0.01 * 

Platelets ≤20 x109 L-1 1.36 -2.26 4.72 0.41 

Liver 
 

Bilirubin <1.2 mgdL-1 0.00   - 
Bilirubin 1.2-1.9 mgdL-1 0.24 -0.41 0.87 0.46 

Bilirubin 2.0-5.9 mgdL-1 0.28 -0.39 0.93 0.41 

Bilirubin 6.0-11.9 mgdL-1 1.73 0.18 3.21 0.02 * 

Bilirubin ≥12 mgdL-1 15.94 -50.10 - 0.98 

CNS 
 

GCS 15 0.00 - - - 

GCS 13-14 -0.57 -2.03 0.50 0.36 
GCS 10-12 0.22 -1.99 1.68 0.81 

GCS 6-9 1.01 -0.93 2.44 0.22 

GCS <6 1.25 1.11 2.25 0.02 * 

Renal 
 

Creatinine <1.2 mgdL-1 0.00 
  

- 

Creatinine 1.2-1.9 mgdL-1 0.31 -0.52 1.07 0.44 

Creatinine 2.0-3.4 mgdL-1 1.83 1.16 2.50 <0.01 * 

Creatinine 3.5-4.9 mgdL-1 

or UO < 500ml day-1 
0.46 2.30 2.08 <0.01 * 

Creatinine ≥5.0 mgdL-1 
  or UO <200ml day-1 

2.02 1.26 2.79 <0.01 * 

Cardiovascular 
 

MAP ≥70mmHg 0.00 
  

- 

MAP < 70mmHg 0.57 -0.46 1.75 0.30 

Dopamine ≤5µgkg-1min-1  
  or Dobutamine 

1.34 0.55 2.85 <0.01 * 

Dopamine >5µgkg-1min-1  
  or Adrenaline ≤0.1µgkg-1min-1  
  or Noradrenaline ≤0.1µgkg-1min-1 

0.34 -0.62 1.48 0.52 

Dopamine >15µgkg-1min-1  
  or Adrenaline >0.1µgkg-1min-1  
  or Noradrenaline >0.1µgkg-1min-1 

1.43 0.44 2.60 <0.01 * 
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Table 7-7 - Beta coefficients for the recalibrated logCASUS score when predicting ICU mortality 

 

PF ratio = ratio of arterial partial pressure of oxygen to fraction inspired oxygen, PAR – Pressure 
adjusted Heart Rate; IABP – Intra-aortic balloon pump; VA ECMO – venoarterial extracorporeal 
membrane oxygenation; VAD – ventricular assist device.*=p value <0.05 

 

Factor β-coefficient β-coefficient in 
original study Estimate 95%CI P value 

(Intercept) -5.05 -6.72 -3.43 <0.01* -5.65 

Minimum daily PF ratio (mmHg) -0.01 -0.03 0.01 0.47 0.00 

Maximum Daily Creatinine (mgdL-1) 0.01 0.00 0.01 <0.01 * 0.31 
Renal Replacement Therapy - No 0.00   - 0.00 
Renal Replacement Therapy - Yes 1.39 0.79 2.01 <0.01 * 0.41 

Maximum Daily Bilirubin (mgdL-1) 0.01 -0.00 0.02 0.10 0.22 

Maximum Daily PAR  0.01 -0.02 0.04 0.42 0.06 
Maximum Daily Lactate (mmolL-1) 0.26 0.11 0.41 <0.01 * 0.21 
IABP – No 0.00   - 0.00 
IABP - Yes  0.55 -0.08 1.15 0.08 0.68 
VA ECMO or VAD -No 0.00    0.00 
VA ECMO or VAD - Yes 1.28 0.62 1.93 <0.01 * 2.30 
Minimum Daily Platelets( x109L-1) -0.01 -0.02 -0.00 <0.01 * 0.00 

Neurological state - Normal 0.00   - 0.00 
Neurological state - Confused 0.39 -0.70 1.35 0.45 0.47 
Neurological state - Sedated 0.81 0.08 1.56 0.03 * 0.70 
Neurological state - Focal 
Neurological Damage 

3.01 2.00 3.98 <0.01 * 1.47 

ICU Day 1 0.00   - 0.00 
ICU Day 2 0.31 -0.46 1.09 0.43 0.01 
ICU Day 3 0.25 -0.62 1.11 0.57 0.84 
ICU Day 4 0.24 -0.75 1.19 0.62 1.04 
ICU Day 5 0.44 -0.59 1.43 0.39 1.26 
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Table 7-8– Beta coefficients for the recalibrated RACE score when predicting ICU mortality  

 

MAP – mean arterial pressure; IABP – Intra-aortic balloon pump; VA ECMO – venoarterial 
extracorporeal membrane oxygenation; VAD – ventricular assist device.  * = p value<0.05 

Factor β-coefficient β-coefficient in 
original study Estimate 95% CI P value 

(Intercept) -6.41 -7.38 -5.53 <0.01* -6.23 
Intubated -  No 0.00   - 0.00 
Intubated -  Yes 1.80 0.88 2.71 <0.01* 0.66 

Creatinine <1.2 mgdL-1 0.00   - 0.00 

Creatinine 1.2-4.0 mgdL-1 0.55 0.01 1.10 0.04* 0.74 

Creatinine >4.0 mgdL-1 -12.4 - 29.14 0.98 0.88 
Renal Replacement Therapy -  No 0.00   - 0.00 
Renal Replacement Therapy -  Yes 1.62 1.01 2.26 <0.01* 0.57 

Bilirubin <1.2 mgdL-1 0.00   - 0.00 
Bilirubin 1.2-7.0 mgdL-1 0.19 -0.41 0.80 0.53 0.60 
Bilirubin >7.0 mgdL-1 1.96 0.10 4.17 0.05 2.01 

MAP >70mmHg 0.00   - 0.00 
MAP 50-70mmHg 0.34 -0.31 1.04 0.32 0.45 
MAP < 50mmHg 0.60 -2.04 2.46 0.59 0.91 

Lactate <2.1 mmol L-1 0.00   -  
Lactate 2.1-8.0 mmol L-1 0.34 -0.24 0.93 0.25 0.80 
Lactate >8.0 mmol L-1 1.86 0.35 3.33 0.01* 2.40 

IABP – No 0.00   - 0.00 
IABP – Yes 0.50 -0.12 1.10 0.11 0.74 
VA ECMO or VAD - No 0.00   - 0.00 
VA ECMO or VAD - Yes 1.31 0.64 1.99 <0.01* 1.90 
Platelets >120 x 109L-1 0.00   - 0.00 
Platelets 51-120 x 109L-1 0.43 -0.18 1.04 0.16 0.54 
Platelets <51 x 109L-1 1.85 0.73 2.93 <0.01* 0.94 

Neurological State - Normal 0.00   - 0.00 
Neurological State - Confused 0.20 -0.99 1.22 0.72 0.44 
Neurological State - Sedated -0.62 -1.65 0.45 0.24 0.75 
Neurological State - Cerebral 
Damage 

2.27 1.14 3.38 <0.01* 1.25 

ICU Day 1 0.00   - 0.00 
ICU Day 2 0.60 -0.18 1.38 0.13 0.01 
ICU Day 3 0.54 -0.33 1.40 0.22 0.84 
ICU Day 4 0.44 -0.56 1.40 0.37 1.04 
ICU Day 5 0.49 -0.55 1.47 0.34 1.26 
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Recalibration was performed by making new logistic regression models using data from the 

training dataset.  The models all predicted ICU mortality in the training dataset using variables 

described in the original studies.  Where variables had been categorised in the original studies, 

the same thresholds for categorisation were used in the recalibration process.  For some 

variables, despite containing data from over 1000 patients, the training dataset did not contain 

enough patients in each category for each variable to allow a sensible beta coefficient for that 

category to be generated.  This can be seen in particular with the coefficient for >12mg/dl in the 

SOFA score and creatinine >4mg/dL in the RACE score.   
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Rationale for inclusion of this chapter in the thesis 

The Sepsis-3 guidelines were developed to aid the early diagnosis of sepsis in a range of health 

care settings.  They define sepsis and provide criteria for its diagnosis.  While the guidelines were 

not designed specifically to be used on CICU following cardiac surgery, this chapter set out to 

examine whether they could identify those at risk of adverse complications within this cohort.  If 

an association between sepsis according to the new definitions and poor outcomes could be 

demonstrated then the first instance where the Sepsis-3 criteria were fulfilled could be used as an 

endpoint.  This endpoint could then form the target of future risk predictions models which aim to 

predict sepsis in cardiac surgery patients.
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8.1.  Additional data processing for this manuscript. 

The cleaning code used to conduct the analyses for this manuscript built upon the code created 

during the production of the paper which validated the SOFA score in the previous chapter.  The 

daily SOFA scores for each patient were analysed and where a rise of ≥2 in the SOFA score was 

detected the date and time of the SOFA rise was recorded.  The code produced an index file of all 

times when the SOFA score had increased by ≥2.    The clinical case notes and medication records 

within the EPR were the examined manually and each incidence of SOFA rise was inspected to 

identify whether clinical suspicion of infection, initiation of antimicrobial therapy or 

microbiologically proven infection had been recorded.  Where suspected or proven infection 

coincided with a rise of ≥2 in the SOFA score, sepsis with suspected or proven infection was 

diagnosed.  Length of CICU stay, 30-day survival and 2-year survival were compared for those with 

sepsis, SOFA rise in the absence of infection and those without a SOFA rise ≥2. 

Additional cleaning steps 

Step 1.  Load in all the data from the validation paper. 

Step 2. Compare every SOFA score for each patient with all previous values. 

Step 3. Identify all days where the SOFA score rises by ≥2. 

Step 4. Manually lookup all incidences of a SOFA rise ≥2 in the EPR identifying suspected 

or proven infection, source of the infection and causative organism where infection was 

proven.   

Step 5. Collate all data regarding infections, sepsis and outcomes.  

Step 6. Compare associations between sepsis category and outcomes using univariable 

analyses. 

Step 7. Adjust for CPB time and logistic EuroSCORE using multivariable logistic regression 

comparing each group with “No sepsis” group.  

Step 8. Create Table 8-1. 

Step 9. Compare outcomes for sepsis with proven infection with those for suspected 

infection 

Step 10. Compare-2 year survival rates between the different groups using Kaplan-Meir 

plots, Log rank test and Cox proportional hazards regression. 
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8.2.  Summary (Abstract) 

Background   

The Sepsis-3 guidelines diagnose sepsis based on organ dysfunction in patients with either proven 

or suspected infection. The objective of this study was to assess the incidence and outcomes of 

sepsis diagnosed using these guidelines in patients on the Cardiac Intensive Care Unit (CICU) after 

cardiac surgery.  

Methods 

Daily Sequential Organ Failure Assessment (SOFA) scores were calculated for 2230 consecutive 

adult cardiac surgery patients between January 2013 and May 2015. Patients with a rise in SOFA 

score of ≥2 and suspected or proven infection were identified. The length of CICU stay, 30-day 

mortality and 2-year survival were compared between groups. Multivariable linear regression, 

multivariable logistic regression and Cox proportional hazards regression were used to adjust for 

possible confounders.    

Results 

Sepsis with suspected or proven infection was diagnosed in 104 (4.7%) and 107 (4.8%) patients 

respectively. After adjustment for confounding variables, sepsis with suspected infection was 

associated with an increased length of CICU stay of 134.1 (95%CI 99.0-168.2) hours (p<0.01) and 

increased 30-day mortality risk (odds ratio 3.7, 95%CI 1.1-10.2, p=0.02). Sepsis with proven 

infection was associated with an increased length of CICU stay of 266.1 (95%CI 231.6-300.7) hours 

(p<0.01) and increased 30-day mortality risk (odds ratio 6.6, 95%CI 2.6-15.7, p<0.01).   

Conclusions 

Approximately half of sepsis diagnoses were based on proven infection and half on suspected 

infection. Patients diagnosed with sepsis using the Sepsis-3 guidelines have significantly worse 

outcomes after cardiac surgery. The Sepsis-3 guidelines are a potentially useful tool in the 

management of sepsis following cardiac surgery. 

 

Word count 250  
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8.3.  Introduction 

The Sepsis-3 guidelines were introduced in 2016 and define sepsis as organ dysfunction in the 

presence of proven or suspected infection.1  In the critical care setting, organ dysfunction 

identified using the Sequential Organ Failure Assessment (SOFA) score (Table 8-1)2 replaces the 

Systemic Inflammatory Response Syndrome (SIRS) as the means by which the adverse 

physiological effects of infection are identified.3  According to the new guideline, suspected or 

proven infection with proven organ dysfunction (defined as an increase of ≥2 in SOFA score) 

results in the diagnosis of sepsis.  In previous definitions, suspected infection could only result in a 

diagnosis of suspected sepsis until infection was proven on microbiological culture.3 4   

There are limited published data on the frequency of sepsis following cardiac surgery.  Previous 

studies often limited their investigations to patients with positive microbiological cultures from 

specific sites such as the wound or the respiratory tract. Such studies used previous definitions of 

sepsis and identified sepsis in 0.5% -2% of cardiac surgery patients.5-7  In these studies, sepsis was 

associated with mortality rates in the range of 17%-79%.  As organ dysfunction is frequent 

following cardiac surgery due to the inflammatory response to surgery and cardiopulmonary 

bypass, Sepsis-3 criteria could potentially diagnose sepsis in patients with transient organ 

dysfunction due to surgery and coincidental minor infection.  

The objective of this study was to ensure that adoption of the Sepsis-3 guidelines is appropriate 

for patients undergoing cardiac surgery. To achieve this objective we have assessed the incidence 

of sepsis as defined by the new guidelines and also investigated whether diagnosis with proven or 

suspected infection influences short and mid-term clinical outcomes.  
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Table 8-1 -The SOFA score2 

SOFA score 1 2  3 4 

Respiration 
PaO2 / FiO2 (kPa) 

 
<53.3 

 
<40.0 

 
<26.7 
and mechanical 
ventilation 

 
<13.3 
and mechanical 
ventilation 

Coagulation 
Platelets x103 µl-1 

 
< 150 

 
< 100 

 
< 50 

 
< 20 

Liver 
Bilirubin  (μmol L-1) 

 
20-32 

 
33-101 

 
102-204 

 
> 204 

Cardiovascular 
Hypotension 

 
MAP 
<70mmHg 

 
dopamine 
≤ 5µgkg-1min-1 
or dobutamine 
(any dose) 

 
dopamine > 5µg kg-
1min-1 or 
adrenaline ≤  0.1µg 
kg-1min-1 or 
noradrenaline 
≤  0.1µg kg-1min-1 

 
dopamine > 15µg 
kg-1min-1 or 
adrenaline > 0.1µg 
kg-1min-1 or 
noradrenaline 
> 0.1µg kg-1min-1 

Central nervous 
system  
Glasgow Coma 
Score 

 
13-14 

 
10-12 

 
6-9 

 
<6 

Renal 
Creatinine (μmol L-1)  
or urine output 
(mlday-1) 

 
106-177 

 
178-309 

 
310-442 
< 500  

 
> 442 
< 200  

PaO2, arterial partial pressure of oxygen; FiO2, fraction of inspired oxygen; MAP, mean arterial 
pressure
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8.4.  Methods 

8.4.1. Patients and Data collection 

All relevant clinical and monitoring data were collected prospectively from consecutive adult 

patients admitted to the Cardiac Intensive Care Unit (CICU) after cardiac surgery at University 

Hospital of South Manchester (UHSM) between January 2013 and May 2015.  Patients undergoing 

cardiac transplantation were excluded from the study.  

Data were collected for the duration of the patients’ first CICU admission following cardiac 

surgery from three sources.  i) Patient demographics, preoperative morbidity and outcome data 

were collected from the hospital’s clinical governance database. ii) Physiological variables, 

medication data, and case note data regarding the suspicion or diagnosis of infection were 

collected from the electronic patient record (EPR). iii) Haematology and biochemistry results 

together with all microbiology reports were collected from the hospital’s pathology database.  

Hourly recordings of physiological variables, medication administrated and all available 

biochemical and haematological results were cleaned using cleaning algorithms in R Studio (R 

Foundation for statistical computing)8.    

Daily SOFA scores (Table 8-1) were calculated for each patient using the most abnormal value 

recorded for each variable on each day.2  For all patients who experienced a SOFA score increase 

of ≥2, the clinical notes were examined to identify suspected or proven infection.  Proven 

infection was confirmed by microbiological cultures (excluding isolated c.albicans-positive sputum 

cultures, mixed growth urine samples or screening swabs which indicated colonisation).  Infection 

was classified as suspected if antibiotics other than those given as standard prophylaxis were 

administered or suspicion of infection was documented in the clinical notes section of the EPR. All 

indicators of suspected or proven infection recorded within 24 hours of the day of the SOFA ≥2 

rise were included to ensure that no suspected or proven infection was missed. 

 

8.4.2. Missing Data 

Where blood analyses necessary for calculation of daily SOFA scores were missing, the last known 

appropriate result recorded for that patient was substituted. Bilirubin concentrations were not 

routinely measured for low risk patients, so there were 340 occasions (5.2% of all SOFA score 

calculations) when there was no bilirubin level available for the SOFA score calculation. In 257 of 

these cases a bilirubin level subsequently measured for that patient was used.  In the remaining 

83 calculations (total of 39 patients), SOFA was calculated incorporating the median bilirubin 
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concentration for all patients. In the one patient with no available creatinine level and two with 

no available platelet count, the median for the missing variable was used.   All other data were 

complete. 

8.4.3. Statistical analysis 

Normally distributed data were described using the mean and standard deviation; data with non-

parametric distributions were described using the median and interquartile range (IQR).  Outcome 

measures were length of CICU stay (hours), 30-day mortality (defined as death due to any cause 

within the first 30 days after cardiac surgery) and 2-year survival.  The relationship between sepsis 

and length of CICU stay was analysed using the Kruskal-Wallis test as length of stay was not 

normally distributed.  Univariate analyses of the relationship between sepsis and 30-day mortality 

were conducted using Fisher’s exact test due to the low observed mortality rate.   Two year 

survival rates were compared using the log-rank test.   

Logistic EuroSCORE and cardiopulmonary bypass (CPB) time were adjusted for using linear 

regression analyses for the multivariable length of CICU stay analysis.  Multivariable logistic 

regression analyses were performed to adjust for the effect of logistic EuroSCORE on 30-day 

mortality.  The low number of deaths prevented the inclusion of additional confounders in these 

analyses.9  Finally, Cox proportional hazards analyses were performed to adjust for the influence 

of logistic EuroSCORE and CPB time, on 2-year survival. The Logistic EuroSCORE10 is an extensively 

validated preoperative risk prediction model for perioperative mortality that includes patient co-

morbidities, variables reflecting cardiac function and operative risk factors. It demonstrates good 

discriminative ability for UK cardiac surgery.11  

Data collection was approved by the National Research Ethics Service–Haydock as part of the 

Vascular Governance Northwest Project (09/H 1000 10/2+5) and all analyses were performed 

using R.8   

8.5.  Results 

During the study period, 2230 patients were admitted to CICU after cardiac surgery. The mean 

(range) age was 66.1 (18-93) years and the majority of patients were men (1615, 72.4%). Full 

patient characteristics for the study population are shown in Table 8-2.  Median length of CICU 

stay (IQR) was 48.8 (40.1-93.0) hours. Overall 30-day mortality was 1.5% and 2 year survival was 

93.0%. SOFA rises of ≥2 were identified on 710 occasions in 323 patients. A total of 573 patients 

were discharged from the CICU on the first postoperative day. In these patients only one SOFA 

score was available preventing the calculation of a difference between the daily SOFA scores. As a 

result these patients were classified as not suffering sepsis during the CICU admission.  
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Table 8-2 - Patient characteristics 

Variable All (n=2230) Unable to calculate 
SOFA rise (n=573) 

No SOFA rise 
(n=1334) 

SOFA rise > 2 but no 
infection (n=112) 

Sepsis Suspected 
Infection (n=104) 

Sepsis Proven 
Infection (n=107) 

Age, Mean (range), years 66.1 (18-93) 63.2 (23-86) 66.9 (19-93) 69.6 (28-87) 65.5 (29-89) 68.6 (18-91) 

Female Gender, n (%)  615 (27.6) 99(17.3) 418 (31.3) 36 (32.1) 31 (29.8) 31 (29.0) 

Height, mean (SD), cm  169.6 (9.2) 171.5 (8.7) 168.9 (9.3) 169.1 (8.2) 169.5 (8.8) 168.0 (10.6) 

Weight, mean (SD), Kg  81.0 (15.9) 81.7 (14.1) 81.7 (16.6) 81.6 (14.4) 81.6 (15.2) 80.1 (17.8) 

Type Surgery       

     Isolated CABG, n (%) 1214 (54.4) 479(83.6) 619 (46.4) 46 (41.1) 31 (29.8) 39 (36.4) 

     Isolated Valve, n (%) 482 (21.6) 37 (6.5) 367(27.5) 26 (23.2) 26 (25.0) 26 (24.3) 

     Isolated Aortic, n (%) 23 (1.0) 2 (0.3) 13 (1.0) 2 (1.8) 4 (3.8) 2 (1.9) 

     Combined cardiac procedures, n (%) 404 (18.1) 19 (3.3) 296 (22.2) 30 (26.7) 32 (30.8)  27 (25.2) 

     Other, n (%) 107(4.8) 36 (6.3) 39 (2.9) 8 (7.1) 11 (10.6) 13 (12.1) 

Urgency       

     Elective/Scheduled, n (%) 1324 (59.3) 317 (55.3) 823 (61.7) 61 (54.5) 62 (59.6) 61 (57.0) 

     Urgent, n (%) 842 (37.8) 244 (42.5) 488 (36.5) 45 (40.1) 29 (27.9) 36 (33.6) 

     Emergency/Salvage, n (%) 64 (2.9) 12 (2.1) 23 (1.7) 6 (5.4) 13 (12.5) 10 (9.3) 

Duration of CPB, median  
(interquartile range), minutes 

100.0 (79.0-128.0) 87.0 (69-105.0) 104.0 (84.0-134.0) 101.0 (84.0-135.5) 118.0 (94.0-165.0) 108.0 (84.0-147.0) 

Logistic EuroSCORE,  
median (Interquartile range)   

4.0 (2.1-7.7) 2.3 (1.4-3.5) 4.6 (2.4-8.4) 5.1 (3.3-11.8) 7.5 (3.1-19.7) 7.8 (3.6-15.1) 

Requirement for Renal Replacement 
Therapy, n (%)  

107 (4.8) 7 (1.2) 24 (1.8) 10 (8.9) 26 (25.0) 40 (37.4) 

Mechanical Ventilation > 72 hours n (%) 147 (6.6) - 37 (2.8) 7 (6.3) 29 (27.9)  50 (46.7) 

CABG, coronary artery bypass graft; CPB, cardiopulmonary bypass
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8.5.1. Sepsis 

The Sepsis-3 criteria for sepsis were met by 211 (9.5%) of the 2230 patients.  Sepsis with 

suspected infection occurred in 104 patients (4.7%) and sepsis with proven infection was 

demonstrated in 107 (4.8%).  The respiratory tract was the most frequent source of both proven 

(72.1%) and suspected infection (55.4%). Other sources of infection are shown in Table 8-3.   

Table 8-3 - Suspected or proven sources of infection in those diagnosed with sepsis 

Suspected source Suspected infection* 

 

Proven Infection* 

 

Not specified (antibiotics started) 51 NA 

Unknown 10 NA 

Respiratory 148 96 

Abdominal/Gastrointestinal 6 - 

Wound 6 8 

Genitourinary 3 5 

Bacteraemia/catheters 6 24 

Endocarditis/myocarditis 9 - 

Dental 1 - 

* Multiple sites were implicated in many patients 

 

The median length of CICU stay (IQR)  was 145.2 (114.5-261.7) hours for those with sepsis due to 

suspected infection, 211.5 (117.2-478.1) hours for those with sepsis due to proven infection, and 

47.0 (28.8-72.6) hours for those without sepsis (p <0.01 for both).  After controlling for the logistic 

EuroSCORE and CPB time using linear regression modelling, patients with sepsis had significantly 

longer CICU stays than those without.  The increase in length of CICU stay (95% CI) was 134.1 

(99.0-168.2) hours for those with suspected infection and 266.1 (231.6-300.7) hours for those 

with proven infection (p<0.01 for both). The linear regression model is detailed in the Appendix.   

To ensure the length of stay analysis was not skewed by the 573 patients discharged on the first 

post-operative day, a sensitivity analysis using the same linear regression model on data taken 

exclusively from patients with two or more daily SOFA scores (n=1657) was performed.  The 
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increase in length CICU of stay (95%CI) attributed to a diagnosis of sepsis with suspected infection 

in this subgroup remained significant at 135.7 (99.1-172.3) hours; the increase related to proven 

infection was 265.8 (229.7-301.9) hours (p<0.01 for both).  

The 30-day mortality was 6.6% for those who suffered sepsis compared with 1.0% for those who 

did not (p<0.01).   The mortality rates for sepsis with suspected infection (5.8%) and sepsis with 

proven infection (7.5%) were both significantly higher than the rate of 1.0% for those without 

sepsis (p<0.01 for both).  After adjusting for pre-and intraoperative confounders using the logistic 

EuroSCORE (full model detailed in the Appendix), the odds ratio associated with sepsis was 3.7 

(95%CI 1.1-10.2, p=0.02) for suspected infection and 6.6 (95% CI 2.6-15.7, p <0.01) for proven 

infection.    

Among those who suffered from sepsis, the main differences between survivors and those who 

died were that those who died had a higher median logistic EuroSCORE (16.7 vs 6.7, p<0.01) and 

were less likely to have undergone isolated CABG or valve surgery (21.4% vs 60.4%, p=0.01).  

Rates of renal replacement therapy (71.4% vs 28.4%, p<0.01) and prolonged mechanical 

ventilation (92.9% vs 33.5%, p<0.01) were higher in non-survivors than survivors.   

Among patients with sepsis the 2-year survival was 87.5% for those with suspected infection and 

73.8% for those with proven infection compared with 94.3% for those without sepsis (p<0.01 for 

both).  As seen in Figure 8-1 the greatest difference in mortality rates was seen in the first 12 

postoperative months.  A second log-rank analysis which included only those patients alive one 

year post surgery showed a smaller difference in the rates of survival to two years between those 

who had suffered sepsis (98.1%) and those who had not (96.0%) which was no longer statistically 

significant(p=0.06).   
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Figure 8-1 - Two-year survival according to sepsis status 

 

The confounding effects of preoperative logistic EuroSCORE and CPB time on 2-year survival were 

adjusted for using Cox proportional hazards regression.  For those with sepsis due to suspected 

infection the hazard ratio was 1.1 and the effect on survival was not statistically significant (95%CI 

0.5-2.4, p=0.76).  However, for sepsis due to proven infection compared with those without sepsis 

the hazard ratio was 3.6 (95%CI 2.2-5.9 p<0.01).  The model is detailed in the Appendix. 

8.5.2. SOFA rise ≥2 in the absence of sepsis 

112 patients developed a SOFA rise ≥2 in the absence of proven or suspected infection. The 

median length of CICU stay (IQR) for these patients was 83.2 (48.5-124.9) hours.  This was 

significantly shorter than the median CICU stay of 211.5 hours for both those with sepsis due to 

proven infection and 145.2 hours for those with suspected infection (p<0.01 for both). On 

multivariable analysis (full model detailed in the Appendix), a SOFA rise ≥2 without sepsis was 

associated with a statistically insignificant difference in length of stay of 6.9 hours (95%CI -28.2-

41.9, p=0.70).  

The 30-day mortality rate for those with a SOFA rise ≥2 in the absence of sepsis was 2.7%. This 

was higher than that for patients with lesser increases in SOFA scores and lower than that for 
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those with sepsis and suspected or proven infection but none of these differences was statistically 

significant. (p=0.10, p=0.32 and p=0.13 respectively).  After adjusting for pre-and intraoperative 

confounders using the logistic EuroSCORE (full model detailed in the Appendix), a SOFA rise≥2 in 

the absence of sepsis was not significantly associated with 30-day mortality (odds ratio 2.1 (95% 

CI 0.5-6.2, p =0.23).    The 2-year survival rate for patients who suffered a SOFA rise ≥2 without 

sepsis was 91.1%. This was not significantly different to the rate of 94.3% for patients with stable 

or small rises (<2) in the SOFA score (p=0.13) neither was it significantly different from the 87.5% 

in those with suspected infection (p=0.38). It was however, significantly higher than the 73.8% for 

those with proven infection and sepsis (p<0.01).   

8.5.3. Septic Shock 

Of the 211 patients diagnosed with sepsis, 159 patients (75.4%) met criteria relating to serum 

lactate concentration and use of vasopressors compatible with a diagnosis of septic shock.  For 

this subgroup, median (IQR) length of CICU stay was 193.2 (139.5-364.0) hours, thirty day 

mortality was 8.8%, and the 2-year survival rate was 76.7%.  All of these results were significantly 

worse than for patients with sepsis who did not suffer septic shock (p<0.02 for all).
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Table 8-4 - Patient outcomes 

Sepsis Status Subgroup n (%) 30-day mortality,  

         n (%) 

Median ICU stay, hours 

(interquartile range) 

2 year survival, n (%) 

No Sepsis All patients 2019 (90.5) 20 (1.0) 47.0 (28.8-72.6) 1904 (94.3) 

SOFA rise not calculable 573 (25.7) 4 (0.7) 22.6 (20.0-25.3) 553 (96.5) 

SOFA rise < 2 1334 (59.8) 13 (1.0)  52.6 (45.4.-86.2)  1248 (93.6) 

SOFA rise ≥ 2 without infection 112 (5.0) 3 (2.7)  83.2 (48.5 -124.9)  102 (91.1) 

Sepsis All patients 211 (9.5) 14 (6.6)* 176.0 (115.7-404.6)* 170 (80.5)* 

Suspected infection   104  (4.7) 6 (5.8)* 145.2 (114.5-261.7)* 91 (87.5)* 

Proven infection 107 (4.8) 8 (7.5)* 211.5 (117.2-478.1)* 79 (73.8)* 

* indicates p value of <0.05 when compared with the frequency of the outcome in the No Sepsis group during univariate analyses 
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8.6.  Discussion   

This is the first study to validate the Sepsis-3 guidelines in a cohort of patients after cardiac 

surgery. The new guidelines allow patients with only suspected infection to be diagnosed with 

sepsis. This may be one reason why the incidence of sepsis following cardiac surgery in this study 

(9.5%) is higher than that reported in studies which only included those with infection proven by 

microbiological culture.5-7 12 The frequency of sepsis with positive cultures (4.8%) was also higher 

than most previous studies of sepsis after cardiac surgery.  However, the majority of the previous 

studies only including specific sources of infection such as the wound or respiratory tract. 5 6 12 13 

Despite the higher incidence of sepsis observed in our cohort, the 30-day mortality of 6.6% for 

patients with sepsis was lower than that found in previous studies in cardiac surgery. 5 7 14 15   

Sepsis based on the Sepsis-3 guidelines was a significant risk factor for adverse outcomes in our 

cohort.  30-day mortality risk increased 6-fold in patients who met the Sepsis-3 criteria.  Patients 

who suffered sepsis also had significantly longer CICU stays compared with patients who did not. 

Overall 2-year survival rates were lower for patients with sepsis, although our secondary analysis 

including only those who survived to 1 year illustrates that most of the impact of sepsis on 

mortality risk appears to be observed in the first 12 months. This relatively short term effect on 

risk is different to that reported in patients from general ICUs which detected impact on survival 

in the longer term.16  This difference may be due to the cohort of patients included in our study. In 

the cardiac surgery patients studied, the organ dysfunction that triggered the diagnosis of sepsis 

often progressed to organ failure in patients who had already been physiologically stressed by 

their surgery.  31% of those with sepsis required renal replacement therapy and 37% required 

prolonged mechanical ventilation.  Patients either recovered from these critical complications or 

died as a result of them within a relatively short period.  

Studies in general ICU populations found that when Sepsis-3 criteria and SIRS-related sepsis 

criteria were applied to the same patients with suspected infection, the Sepsis-3 criteria identified 

fewer patients than SIRS-related criteria.  They also showed that patients identified by the Sepsis-

3 criteria were likely to suffer worse outcomes.17 18  However, the variables included in the SIRS 

criteria are influenced by the inflammatory response to major surgery as well as treatments such 

as mechanical ventilation, patient warming and perioperative beta-blockade which are frequently 

employed following cardiac surgery.  Importantly, unlike the SOFA-related definitions, the SIRS 

criteria cannot recognise the effects of interventions on the absolute values of these parameters.  

Moreover, in our cohort, 88% of patients fulfilled the criteria for SIRS postoperatively.  Therefore, 

using SIRS-related criteria to diagnose sepsis would have led to the vast majority of suspected 

infections resulting in a diagnosis of sepsis, even where inflammation did not progress above the 
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postoperative baseline.   Consequently, the Sepsis-3 definitions seem to provide the most 

appropriate means for detecting sepsis after cardiac surgery.  This may be also true for patient 

groups who require critical care treatments after undergoing other types of major surgery or 

suffering from conditions which result in non-infective, inflammatory responses such as 

pancreatitis or severe burns.  

A significant proportion of the patients diagnosed with sepsis in this study went on to meet the 

criteria for septic shock. The length of CICU stay, 30-day mortality and 2-year survival rate 

associated with septic shock were significantly worse than those for patients who suffered sepsis 

without septic shock.  Further work to identify patients at the highest risk of developing septic 

shock would therefore be of clinical importance.    

Approximately half of the patients diagnosed with sepsis in our study had proven infection and 

half had suspected infection; a proportion similar to that documented in the general ICU 

population.19 The new Sepsis-3 guidelines include suspicion of infection to ensure all patients with 

sepsis were identified and treated early.1  This analysis demonstrates that patients with suspected 

infection suffered outcomes more similar to those with proven infection than to those with no 

sepsis.  While outcomes for patients with proven infection were worse than for those with 

suspected infection, it is clearly appropriate to adopt Sepsis-3 as this improves the early 

identification of patients at a high risk of adverse short term outcomes.  

Limitations 

The new Sepsis-3 criteria identify worsening organ function by the change in the daily SOFA score 

rather than absolute values.  The guidelines state that the baseline SOFA should be assumed to be 

0 unless a patient has “pre-existing organ dysfunction (acute or chronic)”. Following cardiac 

surgery, the mean day one SOFA score was 5.4 and over 90% of patients had a day one SOFA 

score >2.  Consequently, assuming a baseline SOFA score of 0 for patients undergoing this major 

surgery would be inappropriate.  As a result, we required two daily postoperative scores in order 

to calculate the change in SOFA score and were therefore unable to diagnose sepsis before the 

second postoperative day.  26% of our patients were discharged on the first post-operative day 

and therefore could not be classified as having sepsis.  The median CICU stay in these early 

discharge patients was 22.6 hours and their 30-day mortality was only 0.7%. Although sepsis 

would be unusual on the first day following cardiac surgery we have performed a sensitivity 

analysis excluding these patients and the conclusions from the analysis are unchanged.   

The small 30-day mortality rate in the study (34 deaths) prevented the inclusion of additional 

confounders into the logistic regression analyses for 30-day mortality.9  Logistic EuroSCORE was 
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chosen to be the sole confounder entered into the model as it was considered the most clinically 

relevant variable.  

As with any observational study there were missing data. The incidence of missing data was 

however very low and SOFA scores were calculated using imputed bilirubin values for less than 

two percent of patients.  In three of these patients creatinine concentration or platelet count 

were also imputed. A further potential limitation of this study is that it was conducted at a single 

centre. Although our centre performs almost all aspects of adult cardiac surgery, a larger, 

multicentre study would be the optimal method to validate these findings further.    

Case notes were only examined for patients who suffered a SOFA rise ≥ 2.  Therefore, this study 

was not able to characterise outcomes for those who suffered proven or suspected infection in 

the absence of significant organ dysfunction. 

 

8.7.  Conclusion 

This is the first study exploring how Sepsis-3 criteria influence the diagnosis of sepsis in cardiac 

surgery patients. Patients with sepsis due to both proven and suspected infection suffered 

prolonged CICU stays and increased 30-day mortality justifying the adoption of Sepsis-3 guidelines 

in cardiac surgery. 
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8.8.  Appendix  

Tables describing multivariable adjustment models 

Table 8-5 - Linear regression model for length of CICU stay accounting for effects of confounders 

Variable Beta-coefficient 
(hours) 

95% Confidence 
Interval 

p value 

Intercept 2.5 -14.0 19.1 0.76 
Sepsis - Proven Infection 266.1 231.6 300.7 <0.01 
Sepsis -Suspected Infection 134.1 99.0 168.2 <0.01 
Logistic EuroSCORE (per point) 2.4 1.5 3.3 <0.01 
Cardiopulmonary Bypass Time (per minute) 0.5 0.4 0.6 <0.01 

 

 

Table 8-6 - Linear regression model for length of CICU stay accounting for effects of confounders 
in those who stayed long enough for 2 or more SOFA scores to be calculated 

Variable Beta-coefficient 
(hours) 

95% Confidence 
Interval 

p value 

Intercept 28.3 7.9 48.6 <0.01 
Sepsis - Proven Infection 265.8 229.7 301.9 <0.01 
Sepsis - Suspected Infection 135.7 99.1 172.3 <0.01 
Logistic EuroSCORE (per point) 2.1 1.1 3.1 <0.01 
Cardiopulmonary Bypass Time (per minute) 0.3 0.2 0.5 <0.01 

 

 

Table 8-7 - Logistic Regression model for 30-day mortality 

Variable Beta coefficient Odds Ratio 95% Confidence 
Interval 

p value 

Intercept -5.2    <0.01 
Sepsis - Proven Infection  1.9 6.6 2.6 15.7 <0.01 
Sepsis - Suspected Infection 1.3 3.7 1.1 10.2 0.02 
Logistic EuroSCORE (per point) 0.0 1.1 1.0 1.1 <0.01 
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Table 8-8 - Cox Proportional Hazards Ratio Model for 2 year non-survival 

 Variable Hazard Ratio 95% Confidence 
Interval 

p value 

Sepsis – Proven Infection 3.6 2.2 5.9 <0.01 
Sepsis – Suspected Infection 1.1 0.5 2.4 0.76 
Logistic EuroSCORE (per point) 1.0 1.0 1.0 0.02 
Cardiopulmonary Bypass Time (per minute) 1.0 1.0 1.0 <0.01 

 

 

Table 8-9 - Linear regression model for length of CICU stay investigating significance of a SOFA rise 
≥2 in the absence of sepsis 

Variable Beta-coefficient 
(hours) 

95% Confidence 
Interval 

p value 

Intercept 6.3 -11.4 24.1 0.48 
SOFA rise ≥2 without sepsis 6.9 -28.2 41.9 0.70 
Logistic EuroSCORE (per point) 3.6 2.7 4.6 <0.01 
Cardiopulmonary Bypass Time (per minute) 0.6 0.4 0.7 <0.01 

 

 

Table 8-10 - Logistic Regression Model for 30-day mortality investigating significance of a SOFA 
rise ≥2 in the absence of sepsis 

Variable Beta-
coefficient  

Odds 
ratio 

95% Confidence 
Interval 

p value 

Intercept -4.9    <0.01 
SOFA rise ≥2 without sepsis 0.7 2.1 0.5 6.2 0.23 
Logistic EuroSCORE (per point) 0.1 1.1 1.0 1.1 <0.01 
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9.1.  Additional data processing for this manuscript. 

This manuscript compares outcomes of patients who met different criteria for the same stage of 

AKI while on CICU following cardiac surgery.  Before such analyses could be performed the 

cleaning code needed to be modified from that used to create the original output files.  In the 

original cleaning code only the new onset of each stage of AKI was labelled.  For this study, if the 

AKI stage was diagnosed by urine output but the diagnosis of AKI had been made using data 

which contained blank values checks were made to ensure the diagnosis was correct (Steps 132 

and 133 of the cleaning code).  For the manuscript which forms the basis of this chapter, the first 

time each specific criterion for each level of AKI was also analysed.  Therefore the EPR was 

reviewed manually for all incidences where a urine output criterion for any stage of AKI were met 

using blank urine output entries regardless of whether or not that stage of AKI had already been 

diagnosed by creatinine criteria. 

Additional cleaning steps 

Step 1.  Load in all the data from the original dataset. 

Step 2. Label the first time each criterion was met for each level of AKI for each patient. 

Step 3. Identify incidences where urine output criteria are met for the first time where a 

blank hourly value was present in the hours used to make the diagnosis.  

Step 4. Manually lookup all incidences where this occurred and if it is due to loss of urine 

in to the toilet/bed etc. remove the label and check it should not be applied later in that 

patient’s admission. 

Step 5. Label those who suffer AKI 3 due to anuria when not catheterised and go on to 

void large volumes as “Anuric no catheter.” 

Step 6. Import Dendrite and PatientIndex data frames from original dataset. 

Step 7. Match each outcome to each patient.  

Step 8. Remove those with preoperative RRT and those with no preoperative creatinine 

concentration. 

Step 9. Create the summary characteristics table. (Table 9-2) 

Step 10. Disregard all incidences where urine output or creatinine criteria were only met 

after RRT had been established. 

Step 11. Conduct univariable analyses of progression to RRT, LOS and 30-day mortality by 

criteria met for AKI-1.  

Step 12. Conduct univariable analyses of progression to RRT, LOS and 30-day mortality by 

criteria met for AKI-2. 
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Step 13. Conduct multivariable analyses of progression to RRT, LOS and 30-day mortality 

by criteria met for AKI-1 controlled for logistic EuroSCORE. 

Step 14. Conduct multivariable analyses of progression to RRT, LOS and 30-day mortality 

by criteria met for AKI-2 controlled for logistic EuroSCORE. 

Step 15. Conduct univariable analyses comparing LOS and 30-day mortality between 

those with no AKI and AKI-1 by UO alone. 

Step 16. Conduct multivariable analyses comparing LOS and 30-day mortality between 

those with no AKI and AKI-1 by UO alone for logistic EuroSCORE. 

Step 17.  Add in 2 – year survival data from hospital clinical governance database. 

Step 18. Conduct univariable analyses comparing 2-year survival between those with no 

AKI and AKI-1 by UO alone 

Step 19. Conduct univariable analyses 2-year survival by criteria met for AKI-1.  

Step 20. Conduct univariable analyses 2-year survival by criteria met for AKI-2. 

Step 21. Conduct multivariable analyses comparing 2-year survival between those with no 

AKI and AKI-1 by UO alone for logistic EuroSCORE. 

Step 22. Conduct multivariable analyses of 2-year survival by criteria met for AKI-1, 

controlled for logistic EuroSCORE. 

Step 23. Conduct multivariable analyses of 2-year survival by criteria met for AKI-2, 

controlled for logistic EuroSCORE. 

Step 24. Construct a variable showing maximum AKI level reached and reason for reaching 

that level of AKI for each patient. 

Step 25. For comparative analyses between groups, plot 2 year survival Kaplan Meier 

curve according to the maximum level of AKI reached and criteria met for that level.  

 

  



 

161 
 

9.2.  Abstract 

 

Background: The Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury (AKI) 

guidelines assign the same stage of AKI to patients whether they fulfil urine output criteria, serum 

creatinine criteria or both criteria for that stage. This study explores the validity of the KDIGO 

guidelines as a tool to stratify the risk of adverse outcomes in cardiac surgery patients. 

Methods: Prospective data from consecutive adult patients admitted to the cardiac intensive care 

unit (CICU) following cardiac surgery between January 2013 and May 2015 were analysed. 

Patients were assigned to groups based on the criteria they met for each stage of AKI according to 

the KDIGO guidelines. Short and mid-term outcomes were compared between these groups.   

Results: A total of 2267 patients were included with 772 meeting criteria for AKI-1 and 222 

meeting criteria for AKI-2. After multivariable adjustment, patients meeting both urine output and 

creatinine criteria for AKI-1 were more likely to experience prolonged CICU stay (OR 4.9, 95%CI 

3.3-7.4, p<0.01) and more likely to require renal replacement therapy (OR 10.5, 95%CI 5.5-21.9, 

p<0.01) than those meeting only the AKI-1 urine output criterion. Patients meeting both urine 

output and creatinine criteria for AKI-1 were at an increased risk of mid-term mortality compared 

to those diagnosed with AKI-1 by urine output alone  (HR 2.8, 95%CI 1.6-4.8, p<0.01). Patients 

meeting both urine output and creatinine criteria for AKI-2 were more likely to experience 

prolonged CICU stay (OR 16.0, 95%CI 3.2-292.0, p<0.01) or require RRT (OR 11.0, 95%CI 4.2-30.9, 

p<0.01) than those meeting only the urine output criterion.  Patients meeting both urine output 

and creatinine criteria for AKI-2 were at a significantly increased risk of mid-term mortality 

compared to those diagnosed with AKI-2 by urine output alone (HR 3.6, 95%CI 1.4-9.3, p<0.01).   

Conclusions: Patients diagnosed with the same stage of AKI by different KDIGO criteria following 

cardiac surgery have significantly different short and mid-term outcomes.  The KDIGO criteria 

need to be revisited before they can be used to stratify reliably the severity of AKI in cardiac 

surgery patients. The utility of the criteria also needs to be explored in other settings. 

348/350 words 

Keywords: Acute kidney injury; Cardiac surgery, Critical care 
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9.3.  Background 

Acute Kidney Injury (AKI) occurs in up to 50% of patients following cardiac surgery.[1, 2]  Even in 

its mildest form, AKI is associated with increased mortality and prolonged Critical Care Unit 

stay.[3-6]   AKI requiring renal replacement therapy (RRT) occurs in 2-5% of patients following 

cardiac surgery and is associated with mortality of up to 60%.[1, 7, 8]  The Kidney Disease: 

Improving Global Outcomes (KDIGO) AKI guidelines were designed to standardise the criteria for 

AKI based on serum creatinine and urine output (Table 9-1).[9] Patients are assigned the same 

stage of AKI regardless of which criteria (urine output, serum creatinine or both) for that stage are 

met.  However, concerns have been raised that the guidelines’ urine output criteria are poorly 

calibrated.[10]  

 

Table 9-1 - KDIGO criteria for diagnosis of AKI in adults[9] 

Stage of AKI Serum Creatinine Urine output 

1 
1.5–1.9 times baseline 

OR 

≥0.3 mg/dl (≥26.5 µmol/l) increase within 

48 hours 

<0.5 ml/kg/h for 6–12 hours 

2 2.0–2.9 times baseline  <0.5 ml/kg/h for ≥12 hours 

3 ≥3.0 times baseline 

OR 

Increase in serum creatinine to ≥4.0 

mg/dl (≥353.6 µmol/l) 

OR 

Initiation of renal replacement therapy 

 

<0.3 ml/kg/h for ≥24 hours 

OR 

Anuria for ≥12 hours 

Each stage of AKI is diagnosed when any of the criteria for that stage of AKI are met. 
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Studies validating the KDIGO guidelines following cardiac surgery have frequently stratified 

patient risk based on serum creatinine alone as reliable urine output data are difficult to 

collect.[1, 11-13] Studies that have had access to urine output data have tended to be relatively 

small and have disagreed on the importance of urine output when identifying those at risk of 

adverse outcomes.[2, 14, 15] A recent study with access to urine output data after cardiac surgery 

did demonstrate that patients with AKI diagnosed on oliguria alone had increased long-term 

mortality but due to the relatively small sample size they were unable to assess the importance of 

urine output within each AKI level.[6]        

The objective of this study was to validate the KDIGO guidelines for AKI by assessing the outcomes 

of patients meeting different criteria for each stage of AKI after cardiac surgery.  

 

9.4.  Methods 

9.4.1. Data 

Data from 2,284 consecutive patients admitted to the cardiac intensive care unit (CICU) following 

cardiac surgery at Wythenshawe Hospital (part of Manchester University NHS Foundation trust) 

were collected prospectively between January 2013 and May 2015. Wythenshawe Hospital is a 

tertiary centre for adult cardiac surgery, cardiothoracic transplantation and mechanical circulatory 

support as a bridge to cardiac transplantation or recovery. Patients requiring RRT preoperatively 

and those with no preoperative creatinine values were excluded as shown in Figure 9-1. Patients 

who received mechanical circulatory support were excluded from length of stay (LOS) analyses as 

their CICU stay was prolonged while awaiting definitive treatment. All data were collected as part 

of the Vascular Governance North West (VGNW) database and processed according this project's 

protocols and ethical approvals.   

Serum creatinine concentration was usually measured daily and all available results were 

extracted from the hospital’s pathology laboratory database. Our institution’s laboratory 

measures creatinine using techniques based on Jaffe chemistry with a total imprecision of <6%.    

Every creatinine value for each patient was analysed and both relative and absolute increases in 

creatinine were used to classify AKI stages according to the KDIGO criteria (Table 9-1).  The 

relative increases were calculated using the most recently recorded preoperative level as the 

baseline value. Urine output was recorded hourly on the CICU electronic patient record. Where 

the hourly value was recorded as none or zero, this value was accepted whereas when no value 

was entered for a given hour the next volume of urine recorded was divided equally by the 

number of blank hours prior to this recording. Whenever urine output fell below the thresholds in 
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the KDIGO criteria, the time and appropriate stage of AKI was recorded. The need for RRT and 

postoperative LOS on CICU were identified from the electronic patient record.  Serum creatinine 

concentration and urine output measurements recorded after initiation of RRT were not included 

in analyses as both are influenced heavily by RRT itself. 

The hospital clinical governance database recorded 2-year all-cause mortality and the 

preoperative comorbidity, urgency and complexity of surgery as measured by the logistic 

EuroSCORE.[16]  Prolonged LOS was defined as a CICU stay longer than 120 hours for cardiac 

transplant patients or >72 hours for all other patients.   

9.4.2. Statistical Analyses 

Patients were assigned to groups based on the stages of AKI they reached according to the KDIGO 

guidelines.  Within the groups that reached each AKI stage, patients were categorised as either i) 

meeting the urine output criteria ii) meeting the serum creatinine criteria or iii) meeting both 

urine output and serum creatinine criteria. Rates of prolonged LOS, RRT and 2-year mortality for 

those who did not develop AKI were compared with those for patients diagnosed with AKI-1 by 

urine output alone. Analyses within groups of patients meeting different combinations of criteria 

for each stage of AKI were then performed. The null hypothesis was that outcomes would be 

similar between patients diagnosed with the same stage of AKI based on the different KDIGO 

criteria.  

Univariable analyses of categorical outcomes were performed using the chi-square test or Fisher’s 

exact test in the event of sparse data.  The logistic EuroSCORE [16] which calculates mortality risk 

for cardiac surgery based on 13 preoperative variables (including preoperative renal function) and 

four operative variables was used to adjust for surgical risk in a multivariable logistic regression 

model. The logistic EuroSCORE has been shown to have adequate discriminatory ability in UK 

cardiac surgery.[17] The results of the multivariable analyses are detailed in the appendix. 

Univariable and multivariable analyses of long term mortality rates were performed using the log-

rank test and Cox proportional hazards regression modelling respectively. Data cleaning and 

statistical analyses were conducted using R (R Foundation for statistical computing).[18]  
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9.5.  Results 

Data from 2284 patients were available. Seven patients who required RRT preoperatively and ten 

patients with no preoperative creatinine values were excluded leaving 2,267 patients for the 

analysis (Figure 9-1). Patient characteristics are shown in Table 9-2. There were 1448 patients who 

did not develop AKI during their CICU stay. A total of 819 (36.1%) developed AKI and 147 (6.5%) 

required RRT. There were 177 (7.8%) patients who died within two years of surgery. Of the 1448 

patients who did not develop AKI, 255 (15.5%) had a prolonged LOS on CICU and the 2-year 

mortality rate for this group was 3.9%.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-1 - Flow chart for inclusion of patients in analyses.  

RRT = renal replacement therapy, sCR = serum creatinine result, MCS = mechanical circulatory 

support, PLOS = prolonged length of stay 

 

 

Included in RRT 
and mortality 

analyses (n=2267) 

Eligible Patients 

(n=2284) 

Included in PLOS 
analyses  
(n= 2228) 

  

Preoperative RRT 

(n=7) 

No preoperative 

sCr results (n=10) 

Postoperative 

MCS (n=39) 
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Table 9-2 - Characteristics of patients admitted to the cardiac intensive care unit following cardiac surgery 

Characteristic All (n=2267) AKI-1UO  (n=370) AKI-1 sCr (n=192) AKI-1 Both (n=210) AKI-2 UO (n=97) AKI-2 sCr (n=92) AKI-2 Both (n=33) 

Age, mean (sd) , years 65.9 (11.6) 67.3 (10.5) 67.6 (12.7) 68.5 (11.8) 67.7 (10.9) 66.7( 12.3) 64.4 (12.3) 

Female gender, % 27.2 30.8 28.1 26.7 34.0 27.2 24.2 

Weight, mean (sd), Kg 81.5 (15.8) 89.4 (16.6) 75.3 (14.0) 87.2 (17.7) 96.5 (17.3) 80.1 (16.3) 89.1 (18.0) 

Logistic EuroSCORE, median 

(Interquartile range) 

4.0 (2.1-7.7)     4.4 (2.5 -7.7)    7.7 (3.5-18.1)  6.3 (2.8-13.0) 4.3 (2.5-7.6) 9.7 (4.2-18.4) 5.6 (2.3-15.6) 

Operation, n (%)        

  CABG  1211 (53.4) 177 (47.8) 56 (29.2) 92 (43.8) 49 (50.5) 28 (30.4) 10 (30.3) 

  Valve 477 (21.0) 93 (25.1) 50 (26.0) 39 (18.6) 26 (26.8) 23 (25.0) 8 (24.2) 

  CABG and Valve 301 (13.3) 60 (16.2) 41 (21.4) 39 (18.6) 13 (13.4) 12 (13.0) 5 (15.2) 

  Aortic 122 (5.4) 19 (5.1) 16 (8.3) 16 (7.6) 4 (4.3) 11 (12.0) 3 (9.1) 

  Cardiac Transplantation 53 (2.3) 5 (1.4) 19 (9.9) 10 (4.8) 1 (1.0) 8 (8.7) 4 (12.1) 

  MCS 39 (1.7) 6 (1.6) 8 (4.2) 6 (2.9) 2 (2.1) 4 (4.3) 2 (6.1) 

  Other – minor 20 (0.9) 3 (0.8) 1 (0.5) 5 (2.4) 0 (0.0) 3 (3.3) 1 (3.0) 

  Other – major 44 (1.9) 7 (1.9) 1 (0.5) 3 (1.4) 2 (2.1) 3 (3.3) 0 (0) 

Urgency, n (%)        

  Elective 1321(58.3) 217 (58.6) 99 (51.6) 110 (52.4) 56 (57.7) 42 (45.7) 14 (42.4) 

  Urgent 890 (39.3) 145 (39.2) 83 (43.2) 89 (42.4) 38 (39.2) 43 (46.7) 17 (51.5) 

  Emergency 40 (1.8) 7 (1.9) 8 (4.2) 7 (3.3) 3 (3.1) 5 (5.4) 1 (3.1) 

  Salvage 16 (0.7) 1 (0.3) 2 1.0) 4 (1.9) 0 (0.0) 2 (2.2) 1 (3.1) 

CPB time, median (Interquartile 

range), minutes 

101.0 (80.0-130.0) 100.0 (81.0-133.2) 129.0 (97.0-182.0) 107.5 (83.3-132.8) 99.0 (75.5-120.0) 112.0 (90.0-155.0) 123.0 (81.0-157.0) 

UO - urine output; sCr - serum creatinine; CABG - coronary artery bypass graft; MCS - mechanical circulatory support, CPB - cardiopulmonary bypass 
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Acute Kidney Injury Stage 1 (urine output only) vs no AKI 

AKI-1 was diagnosed in 772 (34.1%) patients (Table 9-3) with 370 (47.9%) of these patients 

meeting only the urine output criterion (AKI-1-UO). As AKI-1-UO patients had the best outcomes 

these patients were compared with the no AKI group. On univariable analysis, the rate of 

prolonged LOS for AKI-1-UO (39.6%) was significantly higher than for patients without AKI 

(p<0.01).  There were 22 (5.9%) AKI-1-UO patients who died within 2-years although this was not 

statistically significantly higher than the 2-year mortality rate in the no AKI group (p=0.10). On 

multivariable analysis adjusted for the logistic EuroSCORE the risk of prolonged LOS for AKI-1-UO 

was higher (OR 2.8, 95%CI 2.2-3.6, p<0.01) but the mortality risk within the first two years was not 

significantly higher (HR 1.4, 95%CI 0.9-2.3, p=0.18) than for those without AKI. 

 

Acute Kidney Injury Stage 1 

Of the other patients diagnosed with AKI-1, 192 (24.9%) met only the serum creatinine 

concentration criteria (AKI-1-sCr) and 210 (27.2%) met both urine output and creatinine criteria 

(AKI-1-both). Details of the outcomes for these groups are shown in Table 9-3.  On univariable 

analysis, rates of prolonged LOS and RRT were significantly higher for AKI-1-sCr than for AKI-1-UO 

patients (p<0.01 for both).   The 2-year mortality rate for AKI1-sCr was also significantly worse 

than that for AKI-1-UO (p<0.01).  Outcomes for those with AKI-1-both were worse still with 

prolonged LOS and RRT rates significantly worse than those for the AKI-1-sCr group (p<0.02 for 

both).  The 2-year mortality rate for AKI-1-both was higher than that for AKI-1-sCr but this 

difference did not achieve statistical significance (p=0.09).  The 2-year mortality rate for AKI-1-

both was however significantly higher than that for AKI-1-UO (p<0.01).  
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Table 9-3 - Influence of urine output and serum creatinine criteria for AKI-1 on outcomes  

Criteria met  N (%) Progressed to 

RRT, N(%)  

Prolonged LOS 

N(%) 

2-year mortality, 

N(%) 

Urine output 

alone 

370 16 (4.3)  145 (39.6) 22(5.9) 

Creatinine alone 192 28 (14.6) * 119 (64.7)* 24 (12.5)* 

Urine output 

AND Creatinine 

210 58 (27.6) *† 155 (76.0)* † 39 (18.6)* 

AKI - acute kidney injury, RRT - renal replacement therapy, LOS - length of stay. 
* = p values for comparison with urine output alone group <0.01 on univariable analysis  
†= p values for comparison with serum creatinine alone group <0.02 on univariable analysis 
 

On multivariable analysis adjusted for the logistic EuroSCORE, compared with AKI-1-UO, those 

with AKI-1-sCr had higher risks of prolonged LOS (OR 2.6, 95%CI 1.7-3.9, p<0.01) and RRT (OR 3.2, 

95%CI 1.5-7.2, p<0.01).  Similarly compared with AKI-1-UO, AKI-1-both was associated with even 

greater risks of prolonged LOS (OR 4.9, 95% CI 3.3-7.4, p<0.01) and RRT (OR 10.5, 95%CI 5.5-21.9, 

p<0.01).  Mortality risk within the first two years following surgery was greater for AKI-1-both 

than that for AKI-1-UO (HR 2.8, 95% CI 1.6-4.8, p<0.01) but the smaller difference in mortality risk 

between AKI-1-sCr and AKI-1-UO over the same period (HR 1.4, 95%CI 0.7-2.7) was not 

statistically significant (p=0.29). 

   

Acute Kidney Injury Stage 2 

There were 222 (28.8%) patients with AKI-1 who progressed to AKI-2.  In 97 (43.7%) of these 

patients, AKI-2 was based on urine output alone (AKI-2-UO), in 92 (41.4%) it was based on serum 

creatinine concentration alone (AKI-2-sCr) and in 33 (14.7%) diagnosis was based on both criteria 

(AKI-2-both). Outcomes for these groups are shown in Table 9-4. On univariable analysis, the rates 

of prolonged LOS and RRT for AKI-2-sCr were significantly higher than for AKI-2-UO (p≤0.01 for 

both) but the difference in 2-year mortality was not statistically significant (p=0.20). Again, the 

rates of prolonged LOS and RRT for AKI-2-both were significantly higher than for AKI-2-sCr (p≤0.02 

for both) but the difference in 2-year mortality rates was not significantly different (p=0.16).  2-

year mortality in the AKI-2-both group was however significantly higher than that in the AKI-2-UO 

group (p=0.01).   On multivariable analysis, compared with AKI-2-UO, AKI-2-sCr was associated 
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with increased risks of prolonged LOS (OR, 2.1 95%CI 1.0-4.4, p=0.04) and RRT (3.2, 95%CI 1.4-7.7, 

p<0.01). Similarly compared with AKI-2-UO, AKI-2-both carried even greater risk of prolonged LOS 

(OR 16.0, 95% CI 3.2-292.0, p<0.01) and RRT (OR 11.0, 95%CI 4.2-30.9, p<0.01).  Mortality during 

the first two postoperative years was significantly higher for AKI-2-both than AKI-2-UO (HR 3.6, 

95% CI 1.4-9.3, p<0.01) but the difference in mortality risk between AKI-2-sCr and AKI-2-UO was 

not statistically significant (HR 1.5, 95%CI 0.6-3.5, p=0.40).   

 

Table 9-4 - Influence of urine output and serum creatinine criteria for AKI-2 on outcomes 

Criteria met  N 

(%) 

Progressed to 

RRT, N(%)  

Prolonged ICU 

LOS, N(%) 

2-year mortality, 

N(%) 

Urine output 

alone 

97 11 (11.3)  58 (61.1) 10 (10.3) 

Creatinine 

alone 

92  30 (32.6) * 70 (79.5)* 15 (16.3) 

Urine output 

AND 

Creatinine 

33  20 (60.6) *† 30 (97.0)* † 9 (27.3)* 

AKI - acute kidney injury, RRT - renal replacement therapy, LOS – length of stay. 

* = p values for comparison with urine output alone group ≤0.01 on univariable analysis  
†= p values for comparison with serum crea nine alone group ≤0.02 on univariable analysis 

 

Acute Kidney Injury Stage 3 

AKI-3 by KDIGO criteria was diagnosed in 173 patients. In 47 (27.2%) of these patients criteria for 

AKI-1 or AKI-2 had not been met before RRT was started almost immediately after surgery.  There 

were 26 (15.0%) patients who met AKI-3 criteria based on urine output or creatinine without 

needing renal replacement therapy. In 16 of these patients, AKI-3 was based on a high serum 

creatinine levels with preserved urine output. For nine AKI-3 patients, anuria was observed for 12 

hours but only because the patient was not catheterised prior to discharge to the ward. 157 (85%) 

patients diagnosed with AKI-3 suffered a prolonged LOS.  The small numbers within the subgroups 

precluded further analyses for AKI-3. 
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Comparative survival analysis 

To allow a visual comparison of survival between AKI stages rather than simply within AKI stages, 

patients were grouped according to the urine output and serum creatinine criteria met for the 

maximum stage of AKI attained by the patient (up to and including AKI-2). The group of patients 

who went straight to AKI-3 due to early initiation of RRT is also shown. The survival curves for 

these groups are shown in Figure 9-2 which demonstrates clear overlap of the 2-year mortality 

risk for AKI-1 and AKI-2 patient subgroups.    

 

 

Figure 9-2 - Kaplan Meier plots stratified according to the KDIGO criteria met for the maximum 
stage of AKI attained up to AKI-2.   

A separate group of patients who went straight to AKI-3 is shown for comparison. AKI – Acute 
Kidney Injury, UO – urine output, sCr – serum creatinine. 
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9.6.  Discussion 

This represents the first study to explore the associations between different criteria for multiple 

stages of KDIGO-defined AKI and morbidity and mortality after cardiac surgery. The frequency of 

AKI in our population was broadly similar to that previously reported in cardiac surgery 

patients.[1, 19, 20]  RRT was more frequent than reported elsewhere [1, 6-8, 14] possibly as a 

substantial number of high risk tertiary referral, transplant and mechanical circulatory support 

patients are referred to our centre.   

Univariable analyses identified stepwise increases in the risk of prolonged LOS, RRT and 2-year 

mortality within each stage of AKI where patients met urine output criteria, creatinine criteria or 

both.  The increases in risk of poor outcomes were confirmed on multivariable analysis.  This 

trend was previously reported in general ICU patients [21] and in cardiac surgery patients [6] 

although in the latter study the differences were not statistically significant.  

In this study, when comparing outcomes for patients diagnosed with the same stage of AKI, all 

patients who met any criteria for that stage were included. This approach was chosen to improve 

the clinical relevance of our findings.  In practice, clinicians cannot know whether a patient with 

AKI-1 will subsequently develop AKI-2 until the higher stage is diagnosed or the patient has left 

CICU without meeting AKI-2 criteria.  As a consequence of this approach, some patients appear in 

both the AKI-1 and AKI-2 analyses. However, for comparison of survival outcomes between 

patients suffering different stages of AKI, each patient was placed retrospectively into a subgroup 

according to the maximum AKI stage reached during their CICU stay to avoid double counting.  

The KDIGO AKI guidelines were developed using expert opinion at a conference of the Kidney 

Disease: Improving Global Outcomes group.[9]  The guidelines drew on previous diagnostic 

criteria such as AKIN[22] and RIFLE[23] using urine output and creatinine to grade severity of renal 

dysfunction.  The guidelines referenced several studies which demonstrated that patients with 

increasing stages of AKI had greater subsequent need for RRT and increased mortality risk.  These 

findings were used to support the stratification of AKI within the KDIGO guidelines.  However, 

none of the validation studies cited assessed the risk associated with AKI diagnosed by hourly 

urine output measurement.[24-30]  The authors acknowledged that the urine output thresholds 

were less well substantiated than those related to serum creatinine concentration.  Indeed, they 

noted that “the influence of urinary output criteria on AKI staging needs to be further 

investigated” and these concerns have been echoed in subsequent work validating the guidelines 

in their entirety.[10]  The calibration of urine output thresholds might be particularly poor for 
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cohorts such as those who have undergone major surgery for whom oliguria may be an 

appropriate response to surgery.   

Many studies assessing the KDIGO guidelines in cardiac surgery patients used creatinine criteria 

alone to classify AKI and explore its association with subsequent adverse outcomes.[12, 20] Those 

which have included urine output disagreed on whether UO diagnosed by AKI was associated with 

adverse outcomes.[2, 6, 14] The current study contains more than three times the number of 

participants as the largest similar study into this topic in cardiac surgery patients.  It is also the 

first to explore differences between with rates of adverse outcomes in those who meet different 

criteria within the same AKI stage for both AKI-1 and AKI-2.   

Our findings support conclusions drawn from earlier studies that the risk of adverse outcomes 

associated with AKI diagnosed by UO alone is relatively low.[2, 14].  In many cases the oliguria 

which resulted in diagnoses of AKI-1 and AKI-2 by urine output alone was almost certainly an 

appropriate physiological response to the stress of surgery.  It is understandable that 

physiologically appropriate oliguria was associated with a prolonged LOS on CICU, but equally it is 

unsurprising that such oliguria was not associated with significantly increased 2-year mortality 

rates.  In contrast, the risk of adverse outcomes in patients who met both urine output and 

creatinine criteria for AKI-1 or AKI-2 was markedly higher.  Patients who suffered AKI-1 meeting 

both criteria had worse 2-year survival than those who suffered AKI-2 by urine output alone. This 

is highly relevant to treating clinicians; in these instances an AKI-1 diagnosis may be falsely 

reassuring. To ensure that the direct relationship between increasing AKI stages and risk of 

adverse outcomes is maintained, the AKI classification criteria may need to be adjusted to reduce 

the importance placed on isolated oliguria and increase the risk attributed to fulfilling both urine 

output and creatinine criteria.  While we have studied patients undergoing cardiac surgery, similar 

findings may be reproduced in other cohorts, particularly those undergoing other types of major 

surgery and this should be the focus of further investigation. 

Study Limitations 

This study is based on consecutive data from a large tertiary cardiac surgery centre in the UK. The 

data utilised have been rigorously cleaned using reproducible algorithms. There were very few 

missing data and very few cases excluded from the analysis. Postoperative urine output and 

serum creatinine concentration data were available every patient.  Creatinine was measured on 

the first postoperative day for 2265 of the 2267 patients (99.7%) and while this proportion did 

decline gradually as the length of admission increased, even on the seventh postoperative day, 

220 of the 240 (91.7%) patients who remained on CICU had a daily creatinine measurement. Urine 

output data were available for all patients throughout their admission. 
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Survival data were extracted from our hospital’s clinical governance database which is populated 

automatically by data from the NHS digital spine database.  This approach is potentially less 

robust than using a dedicated follow-up process due to potential time delays in updating the 

status of the patient after death. However, as at least three months elapsed between the end of 

the follow up period for all patients and the extraction of survival data, this is unlikely to have 

affected the results.  

We are confident that we have controlled for most relevant preoperative and intraoperative 

differences between the groups in our regression analyses by using the well validated logistic 

EuroSCORE. Although most known confounders including pre-operative renal function were 

included as variables in the logistic EuroSCORE we cannot guarantee that all potential 

preoperative confounders have been adjusted for.  Differences in postoperative management can 

have profound effects on urine output and serum creatinine. In addition, variations in post-

operative management could influence the outcome measures utilised in this study. Adjusting for 

variations in post-operative management was beyond the scope of this study and is unlikely to 

have influenced the results as at the time of the study there were no institutional guidelines 

regarding management of AKI which would have led to systematic differences in treatments 

between the patient groups. 

This study aimed to test the KDIGO criteria across the most heterogeneous sample possible. The 

cohort included those undergoing cardiac transplantation and those receiving mechanical 

circulatory support.  Such patients are known to have greater risks of AKI, RRT and other adverse 

outcomes than the general cardiac surgery population.  Patients from these higher risk groups 

made up 46%(n=21) of those who started RRT prior to any urine output or creatinine criteria for 

AKI being met and this may have contributed to the high mortality rate associated in the “straight 

to AKI-3” group (Figure 9-2). 

9.7.  Conclusions 

The current KDIGO guidelines assign the same AKI stage to patients with markedly different risks 

of adverse outcomes after cardiac surgery. This study identified a stepwise increase in the 

frequency of poor outcomes following cardiac surgery where urine output criteria, creatinine 

criteria or both criteria for each AKI stage were met.  Moreover, 2-year mortality for some 

subgroups within AKI-1 clearly overlapped that of some subgroups within AKI-2. The KDIGO 

criteria need to be revisited before they can be used to reliably stratify the severity of AKI in 

cardiac surgery patients on the critical care unit.  The applicability of these criteria to other 
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patient groups within the critical care unit, particularly those in whom oliguria may be an 

appropriate physiological response also requires further evaluation. 
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9.8.  Appendix  

Tables describing multivariable adjustment models 

Table 9-5 - Multivariable logistic regression model for PLOS in group of patients with no AKI or 
AKI-1-UO 

 
Variable 

 

Odds Ratio 95% confidence interval P value 

(Intercept) 

 

0.15 0.12 0.18 <0.01 

Logistic EuroSCORE 

 

1.06 1.04 1.08 <0.01 

AKI-1-UO 

                            

2.80 2.16 3.64 <0.01 

 
EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-1-UO – acute kidney 
injury stage 1 by urine output 
 
 
 
 
Table 9-6 - Cox proportional hazards regression model for 2-year mortality in group of patients 
with no AKI or AKI-1-UO 

 
Variable 

 

Hazard ratio 95% confidence interval P value 

Logistic EuroSCORE 

 

1.05 1.03 1.06 <0.01 

AKI-1-UO  

                           

1.41 0.85 2.34 0.18 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-1-UO – acute kidney 
injury stage 1 by urine output 
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Table 9-7 - Multivariable logistic regression model for PLOS in group of patients with AKI-1 

 
Variable Odds ratio 95% confidence interval P value 

(Intercept) 0.51 0.40 0.66 

 

<0.01 

Logistic EuroSCORE 1.03 1.01 

 

1.05 

 

<0.01 

AKI-1-UO                            0.00 

 

- - - 

AKI-1-sCr 2.58 1.74 

 

3.85 

 

 

<0.01 

AKI-1-both 4.85 3.25 7.35 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-1-UO – acute kidney 
injury stage 1 by urine output, AKI-1-sCr– acute kidney injury stage 1by serum creatinine 
concentration, AKI-1-both – acute kidney injury stage 1 by urine output and serum creatinine 
concentration. 
 
 
Table 9-8 - Multivariable logistic regression model for RRT in group of patients with AKI-1 

Variable Odds ratio 95% confidence interval P value 

(Intercept) 0.03 

 

0.01 

 

0.05 

 

<0.01 

Logistic EuroSCORE 1.03 

 

1.01 

 

1.04 

 

<0.01 

AKI-1-UO                            0.00 

 

- - - 

AKI-1-sCr 3.19 

 

1.46 

 

7.23 

 

<0.01 

AKI-1-both 10.54 5.51 21.93 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-1-UO – acute kidney 
injury stage 1 by urine output, AKI-1-sCr– acute kidney injury stage 1by serum creatinine 
concentration, AKI-1-both – acute kidney injury stage 1 by urine output and serum creatinine 
concentration. 
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Table 9-9 - Cox proportional hazards regression model for 2-year mortality in group of patients 
with AKI-1 

 
Variable 

 

Hazard ratio 95% confidence interval P value 

Logistic EuroSCORE 

 

1.03 

 
1.02 1.05 <0.01 

AKI-1-UO  

                           

0.00 - - - 

AKI-1-sCr 

 

1.42 

 
0.75 2.70 0.29 

 

AKI-1-Both 2.81 1.64 4.82 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-1-UO – acute kidney 
injury stage 1 by urine output, AKI-1-sCr– acute kidney injury stage 1by serum creatinine 
concentration, AKI-1-both – acute kidney injury stage 1 by urine output and serum creatinine 
concentration. 
 
 
 
Table 9-10 - Multivariable logistic regression model for PLOS in group of patients with AKI-2 

 
Variable Odds ratio 95% confidence interval P value 

(Intercept) 1.26 0.77 2.08 

 

0.26 

Logistic EuroSCORE 1.03 

 

0.99 1.08 0.14 

AKI-2-UO                            0.00 

 

- - - 

AKI-2-sCr 2.10 

 

1.03 

 

4.37 

 

0.04 

AKI-2-both 15.99 3.16 292.04 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-2-UO – acute kidney 
injury stage 2 by urine output, AKI-2-sCr– acute kidney injury stage 2 by serum creatinine 
concentration, AKI-2-both – acute kidney injury stage 2 by urine output and serum creatinine 
concentration. 
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Table 9-11 - Multivariable logistic regression model for RRT in group of patients with AKI-2 

 
Variable 

 

Odds ratio 95% confidence interval P value 

(Intercept) 

 

0.11 0.05 0.22 <0.01 

Logistic EuroSCORE 

 

1.01 0.98 1.04 0.62 

AKI-2-UO 

                            

0.00 - - - 

AKI-2-sCr 

 

3.18 1.40 7.65 <0.01 

AKI-2-both 11.00 4.17 30.94 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-2-UO – acute kidney 
injury stage 2 by urine output, AKI-2-sCr– acute kidney injury stage 2 by serum creatinine 
concentration, AKI-2-both – acute kidney injury stage 2 by urine output and serum creatinine 
concentration. 
 
 
Table 9-12 - Cox proportional hazards regression model for 2-year mortality in group of patients 
with AKI-2 

Variable 

 

Hazard ratio 95% confidence interval P value 

Logistic EuroSCORE 

 

1.04 

 

1.02 1.06 <0.01 

AKI-2-UO  

                           

0.00 - - - 

AKI-2-sCr 

 

1.46 

 

0.60 

 

3.51 

 

<0.01 

AKI-2-Both 3.58 1.38 9.30 <0.01 

EuroSCORE- European System for Cardiac Operative Risk Evaluation; AKI-2-UO – acute kidney 
injury stage 2 by urine output, AKI-2-sCr– acute kidney injury stage 2 by serum creatinine 
concentration, AKI-2-both – acute kidney injury stage 2 by urine output and serum creatinine 
concentration. 
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A novel patient-specific model for predicting severe oliguria; development Chapter Ten: 

and comparison with KDIGO acute kidney injury classification (submitted journal article) 

Chapter type: Journal article 

Status: Undergoing 2nd peer review by Critical Care Medicine following revisions 

Submission Date: 17/01/2018 

Reference:  Howitt SH, Oakley J, Grant SW, Caiado C, Goldstein M, Malagon I, McCollum CN. 

Development of a novel patient-specific model for predicting severe oliguria and associated 

adverse outcomes. 

Author contributions, SH devised the study, collected and cleaned the data and guided the 

development and validation of the model.  SH performed the statistical analyses of the model’s 

performance and wrote the first draft.  JO and CC developed the Bayesian risk prediction model 

and ran the model in the validation cohort under the guidance of MG. SWG revised the first draft 

and guided the evaluation of model performance.  IM and CM revised the first draft.  All authors 

approved the final manuscript. 

 

Rationale for inclusion of this study in the thesis 

The previous chapter identified key limitations of the existing KDIGO classification of AKI 

according to urine output.  In particular the guidelines’ criteria classify a large number of patients 

as suffering AKI-1 by urine output and in our study this group experienced relatively good 

outcomes.  The aim of this chapter was to devise a novel method of analysing urine output to 

better identify patients at the risk of adverse outcomes.  As discussed within this chapter, a 

stricter urine output criterion of 0.3ml/kg/hour for six hours (severe oliguria) was identified in the 

literature.  However, potentially serious renal damage may occur while waiting for this stricter 

criterion to be achieved.  In order to mitigate this risk, this chapter attempts to use Bayesian 

forecasting to identify those who would suffer severe oliguria in advance of it happening.  This 

was achieved through collaboration with statisticians at Durham University.  The discrimination 

and calibration of the model’s risk predictions at multiple time points are tested.   Outcomes of 

patients with high predicted risk of oliguria are then analysed. 
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10.1. Additional data processing for this manuscript. 

This chapter describes the development of a novel risk prediction model which identifies patients 

at risk of severe oliguria based on the analysis of their previous urine output.  The cleaned urine 

output data were created in steps 106-11 of the main cleaning code described above.  The 

development of the model was performed by Jordan Oakley under the supervision of Camila 

Caiado.  Classification of the model was then analysed by the author of this thesis.  

 

Step 1. Remove all data for patients who underwent mechanical circulatory support, cardiac 

transplantation or preoperative RRT. 

Step 2. Supply the urine output/kg data to the team of statisticians at Durham University. 

Step 3. Determine the severe oliguria status for each patient for each hour of their CICU 

admission. 

Step 4. Compare predictions made by the model for each patient at 12, 24, 36, 38 and 72 hours 

with outcomes observed within the next 12 hours using ROC curves. 

Step 5. Determine the O:E ratio for severe oliguria prediction using the model. 

Step 6. Produce calibration plots for the model’s predictions at each time point. 

Step 7. Select the subgroup of patients who were classified as high risk of urine output. 

Step 8. Select the subgroup of patients who were always classified as low risk of urine output. 

Step 9. Determine how often frusemide was given to each patients in each risk group. 

Step 10. Determine which patients fulfilled the AKI-1 UO criterion and the time at which the 

criterion was met. 

Step 11. Select only data recorded during the first CICU admission for each patient. 

Step 12. Group patients according to whether they met the AKI-1 UO criterion and whether the 

model identified them as high risk. 

Step 13. Determine the incidence of RRT which occurred following model high-risk classification or 

fulfilment of AKI-1 UO criterion. 
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Step 14. Where onset of RRT occurred before high risk prediction or AKI-1 UO classify this as a 

false negative prediction. 

Step 15.  Compare rates of RRT for those classified as low and high risk by the model. 

Step 16.  Compare rates of prolonged length of stay for those classified as low and high risk by the 

model. 

Step 17.  Compare rates of hospital mortality for those classified as low and high risk by the 

model. 

Step 18. Perform logistic regression analysis to account for confounders when using model 

classification to predict subsequent RRT. 

Step 19. Perform logistic regression analysis to account for confounders when using model 

classification to predict prolonged length of stay. 

Step 20. Perform logistic regression analysis to account for confounders when using model 

classification to predict hospital mortality. 

Step 21. Calculate the time difference between high risk classification and onset of severe oliguria. 

Step 22. Determine the sensitivity, specificity, positive predictive value and negative predictive 

value of the model’s classification and the AKI-UO classification when identifying those at risk of 

RRT. 

Step 23. Create the precision recall curves for prediction of severe oliguria at 12, 24, 36, 38 and 72 

hours. 

Step 24. Repeat analyses from steps 4-6 using the outcome of severe oliguria occurring within the 

next 6 hours only (sensitivity analysis). 
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10.2. Abstract  

Objective 

The KDIGO urine output criteria for acute kidney injury (AKI) lack specificity for identifying 

patients at risk of adverse renal outcomes.  The objective was to develop a method to analyse 

hourly urine output values to identify those at risk of developing severe oliguria.        

Design 

This was a retrospective cohort study utilising prospectively collected data.  

Setting 

A cardiac intensive care unit in the UK. 

Patients 

Patients undergoing cardiac surgery between January 2013 and November 2017 

Measurement and main results 

Patients were randomly assigned to development (n=981) and validation (n=2389) datasets.  A 

patient-specific, dynamic Bayesian model was developed to predict future urine output on an 

hourly basis.  Model discrimination and calibration for predicting severe oliguria (<0.3ml/kg/hr for 

6 hours) occurring within the next 12 hours were tested in the validation dataset at multiple time 

points. Patients with a high-risk (probability of severe oliguria >0.8) were identified and their 

outcomes were compared with those for low-risk patients and for patients who suffered AKI 

based on KDIGO urine output criteria.   

Model discrimination was excellent at all time points (AUC >0.9 for all).  Calibration of the model’s 

predictions was also excellent. After adjustment using multivariable logistic regression, patients in 

the high-risk group were more likely to require renal replacement therapy (OR 10.4, 95%CI 5.9-

18.1), suffer prolonged hospital stay (OR 4.4, 95% CI 3.0-6.4) and die in hospital (OR 6.4, 95%CI 

2.8-14.0) (p<0.001 for all).  Outcomes for those identified as high-risk by the model were 

significantly worse than for patients who met the KDIGO urine output criterion for AKI.  

Conclusions 

This novel, patient-specific model accurately identifies patients at increased risk of severe oliguria.  

Classification according to model predictions outperformed the KDIGO urine output criteria.  As 

the new model identifies patients at risk before severe oliguria develops it could potentially 

facilitate intervention to improve patient outcomes.   
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10.3. Introduction  

Acute kidney injury (AKI) is defined and stratified by the KDIGO AKI guidelines(1) and occurs in up 

to 75% of patients in general intensive care units (2, 3) and up to 30% of patients following cardiac 

surgery.(4)  The KDIGO guidelines stratify the severity of AKI based on serum creatinine 

concentration and urine output.  Studies in both cardiac surgery and general ICU patients have 

shown that the guidelines’ creatinine criteria successfully identify patients with increased risk of 

prolonged length of stay, short-term mortality and long term mortality.(3, 5-8)  However, there is 

less agreement about the value of the guidelines’ urine output criteria which define AKI as urine 

output below 0.5ml/kg/hr for more than 6 hours.  Most large studies were unable to obtain 

enough urine output data to adequately assess the importance of the urine output criteria in the 

prediction of adverse outcomes.(3, 7, 8)  Some smaller studies demonstrated that calibration of 

the KDIGO urine output thresholds may be inadequate by showing that patients diagnosed with 

AKI by urine output alone had relatively good outcomes compared with those who also met the 

guideline’s serum creatinine criteria.(2, 9-11)  Ralib et al demonstrated that a urine output 

threshold of 0.3ml/kg/hr for 6 hours (severe oliguria) was more closely associated with adverse 

outcomes in general ICU patients.(9)  However, use of this threshold rather than the 0.5ml/kg/hr 

for 6 hours threshold specified in the KDIGO stage 1 definitions could lead to adverse patient 

outcomes related to the 6 hours of marked oliguria required before risk stratification could occur.  

Dynamic Bayesian modelling (12, 13) has been used in related settings (14, 15) and could provide 

a solution to this problem by identifying those at greatest risk of severe oliguria early enough to 

allow treatment to be administered.  The objective of this study was to develop and validate a 

patient-specific dynamic Bayesian model which could run in real time to predict the risk of 

developing severe oliguria.  Associations between those at a high predicted risk of severe oliguria 

and adverse outcomes were investigated and outcomes in this high-risk group were compared 

with those patients who met existing KDIGO urine output criteria for AKI.    

 

10.4. Materials and Methods 

10.4.1.  Data 

Prospectively collected data from adult patients admitted to the cardiac intensive care unit (CICU) 

following cardiac surgery between January 2013 and November 2017 were analysed.  Patients 

receiving mechanical circulatory support (MCS) or cardiac transplantation were excluded.  

Patients who received renal replacement therapy (RRT) preoperatively were also excluded.  
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Hourly urine output values and their timings together with the timing of any decision to initiate 

RRT were extracted from the electronic patient record.   Only urine output data recorded before 

the initiation of RRT was analysed.   Outcome data was collected from the hospital’s clinical 

governance database.  All data was cleaned and stored in the Vascular Governance NorthWest 

(VGNW) database, handled according to the database’s ethical approvals and pseudonymised 

prior to analysis.  As data was pseudonymised prior to analysis, the Research Ethics Committee 

concluded that ethical approval for these analyses was not necessary.   All data cleaning and 

analysis was performed using R (R Foundation for statistical computing).(16) 

 

10.4.2. Model development 

Eligible patients were randomly assigned to either model development or model validation 

datasets in a ratio of 1:2.5 to ensure a development group of around 1000 patients.  A dynamic 

linear model was developed using data from the development dataset.  The model analysed each 

patient’s own hourly urine output values and then from the 6th hour on CICU predicted the 

individual’s urine output for the next 6 hours.  Calculations were repeated on an hourly basis 

allowing the model to produce updated predictions throughout the CICU stay as each new 

measurement became available.  The probability of the next 6 hours’ urine output being below 

0.3ml/kg/hr was calculated using Bayesian forecasting.   The model applied weightings to the 

contributions of urine output values according to how recent they were with the most recent 

values deemed the most relevant.  This allowed the forecast to update quickly in response to 

changing trends.  During model development, it was identified that for the majority of patients 

the trajectory of urine output was relatively stable. However, a reproducible trend was identified 

in the urine output of those who developed oliguria.  The model’s performance was tested with 

and without the inclusion of the trend term and the trend term was found to improve model 

performance.  A detailed description of model development is described in the appendix. 

 

10.4.3. Model validation (statistical analyses) 

It was recognised that for a subgroup of patients, the model could potentially provide 

inappropriate reassurance to clinicians.  The model could correctly predict a low risk of severe 

oliguria occurring within 6 hours in patients whose urine output remained >0.3ml/kg/hr for the 

next 6 hours but who went on to suffer severe oliguria soon afterwards.  The validation analyses 

therefore tested the model’s ability to identify which patients would suffer severe oliguria (UO 
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<0.3ml/kg/hr for 6 hours) within 12 hours of the prediction.  Risk predictions made during the last 

12 hours of a patient’s admission were disregarded as it was not possible to confirm if severe 

oliguria subsequently occurred following discharge from CICU.  For completeness, performance of 

the model when predicting severe oliguria limited to the six hours following predictions was also 

assessed with full results in the appendix.  The validation studies were described according to the 

criteria outlined in the Transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) statement.(17) 

Discrimination (the ability to distinguish those who would suffer severe oliguria from those who 

would not) was assessed using Receiver Operator Curve (ROC) analyses.   The 95% confidence 

intervals for the area under the curves (AUC) were calculated using DeLong’s method.(18)  Due to 

the low incidence of severe oliguria, precision recall curves were also used to assess the impact of 

the large proportion of true negative results on the model’s performance in the ROC analyses.(19)  

Calibration (how well predicted risk matched observed outcomes) was assessed using the ratio of 

observed to expected outcomes (O:E ratio) and calibration plots.(20)  The calibration plots were 

used to illustrate the agreement between predicted and observed and risk of severe oliguria for 

patients assigned to twenty evenly sized groups according to their predicted risk.   

It is anticipated that in clinical practice clinicians are likely to interpret the model’s continually 

updated predictions for the risk of severe oliguria rather than a binary high/low risk classification.  

However, to allow comparison of the model’s predictions with the existing categorical KDIGO 

classification, patients were assigned to either a high-risk or a low-risk group.  Patients for whom 

the probability of severe oliguria reached >0.8 during their stay were arbitrarily classified as high-

risk and those who did not were classified as low-risk.  This relatively high threshold was selected 

a priori as the aim was to produce a classification with a high specificity.  Associations between 

this classification and postoperative RRT, prolonged length of stay (PLOS) and hospital mortality 

were tested using univariable and multivariable analyses. Outcomes for patients grouped 

according to classification by the model and the KDIGO criterion were also compared.  PLOS was 

defined as a hospital stay >10 days.  If RRT was initiated within three hours of CICU admission, the 

patient was excluded from the analyses as case note analyses revealed that all of these decisions 

to start RRT had been made during surgery before the patient arrived on CICU.  If the decision to 

initiate RRT was made before a high-risk classification the RRT was considered to have been 

administered to a low risk patient.  Univariable analyses were performed using the Chi Square test 

or Fisher’s exact test in the event of sparse data. Multivariable logistic regression was used to 

adjust for the confounding effects of pre- and perioperative variables associated with adverse 

outcomes using the extensively validated logistic EuroSCORE model.(21, 22) Cardiopulmonary 
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bypass (CPB) time was used as a surrogate marker to adjust for intra-operative procedure 

complexity. 

The sensitivity, specificity, positive predictive value and negative predictive value of classification 

by the new model based on the arbitrary threshold of 0.8 for the identification of those at risk of 

subsequent RRT were calculated.  These values were compared with equivalent values obtained 

when classifying patients according to i) the KDIGO UO criterion (UO <0.5ml/kg/hr for 6 hours) 

and ii) observed severe oliguria (UO<0.3ml/kg/hr for 6 hours). 

 

 10.4.4. Missing data 

Where hourly urine output was recorded as “0” this value was used.  Where hourly values were 

blank, the next recorded urine output was divided by the number of hours that had elapsed since 

the previous reading and this value was substituted for the blank values.  Where this imputation 

resulted in urine output lower than the 0.5ml/kg for 6 hours the cases notes were examined and 

the urine output entries verified through entries in the nursing notes.  Where weight was missing, 

the value was imputed using the median weight for a patient of that gender. 

 

10.5. Results 

In total 3,602 patients were admitted to CICU following cardiac surgery, 228 were excluded as 

they underwent cardiac transplantation or received  MCS and four patients were excluded as they 

received RRT preoperatively.  Of the eligible 3370 patients, 981 were randomly assigned to the 

development group and the remaining 2389 patients were assigned to the validation group.  The 

patient characteristics of each group are shown in Table 10-1.  Patient weight was missing for 13 

(1.3%) and 23 (1.0%) patients in the development and validation cohorts respectively. 
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Table 10-1 - Patient Characteristics 

Characteristic Development group (n=981) Validation group (=2389) 

Age, mean (sd) , years 66.4 (11.2) 66.7 (10.9) 

Female gender, % 279 (28.2) 660 (27.6) 

Weight, mean (sd), Kg 82.2 (15.9) 81.8 (16.4) 

Logistic EuroSCORE, median 

(Interquartile range) 

3.8 (2.1-7.4) 3.7 (2.0-7.0) 

Operation, n (%)   

  CABG  544 (55.5) 1394 (58.4) 

  Valve 227 (23.1) 505 (21.1) 

  CABG and Valve 125 (12.7) 337 (14.1) 

  Aortic 65 (6.6) 118 (5.0) 

  Other – minor 3 (0.3) 5 (0.2) 

  Other – major 17 (1.7) 30 (1.3) 

Urgency, n (%)   

  Elective 574 (58.5) 1380 (57.8) 

  Urgent 395 (40.3) 958( 40.1) 

  Emergency 9 (0.9) 44 (1.8) 

  Salvage 3 (0.3) 7 (0.3) 

CPB time, median (Interquartile 

range), minutes 

102.0 (81.0-129.0) 102.0 (82.0-129.0) 

CABG – coronary artery bypass grafting, CPB – cardiopulmonary bypass  

 

In the validation cohort, 2088 (87.4%) patients suffered at least one hour of urine output below 

0.3ml/kg/h. There were 197 (8.2%) patients who experienced severe oliguria and 89 (3.7%) 

patients who required RRT.  In total, 4942 (2.8%) hourly urine output entries were missing and 

these values were imputed using the methods described in the previous section.  A total of 19 

(0.8%) patients received RRT within three hours of arrival on CICU and these patients were 

excluded from the RRT analyses.  PLOS was observed in 589 (24.7%) patients and 36 (1.5%) died 

prior to hospital discharge.  There were no missing outcome data. 
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10.5.1. Predicting severe oliguria  

The AUCs for the prediction of severe oliguria within the next 12 hours for predictions made at 12, 

24, 36, 48 and 72 hours are shown in Figure 10-1.  At each time point the AUC for the predictions 

was >0.9 representing excellent discrimination between those who did and did not go on to suffer 

severe oliguria within the next 12 hours.  

 

 

Figure 10-1 - Receiver operating characteristic curves for the prediction of severe oliguria 
(<0.3ml/kg/hr for 6 hours) during the next 12 hours following predictions made by the model at 
12, 24, 36, 48 and 72 hours. 

As illustrated by Figure 10-2 and the O:E ratios detailed in Table 10-2, calibration was also 

excellent.  
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Figure 10-2 - Calibration plots for the Bayesian model’s prediction of severe oliguria (0.3ml/kg/hr 
for 6 hours) during the next 12 hours at time points a)12 hours, b)24 hours, c)36 hours, d)48 hours 
and e)72 hours.  Patients were split into groups according to predicted risk.  For each of the 
twenty groups, mean observed risk is plotted against mean predicted risk. 

 

 

Table 10-2 - Comparison of observed outcomes and model’s predictions for severe oliguria 
occurring within 12 hours  

Time point (number of 

patients still on CICU) 

Observed severe oliguria 

within 12 hours, n(%) 

Predicted severe oliguria 

within 12 hours, n(%) 

O:E ratio 

12 hours (1947) 61 (3.1) 82 (4.2) 0.74 

24 hours (1694) 57 (3.4) 61 (3.6) 0.93 

36 hours (1137) 51 (4.5) 44 (3.9) 1.16 

48 hours (909) 54 (5.9) 48(5.3) 1.13 

72 hours (545) 35 (6.4) 30 (5.6) 1.15 

CICU – coronary artery bypass grafting, severe oliguria – urine output <0.3ml/kg/hr for 6 hours, O:E ratio – 
ratio of observed to expected outcomes 
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The precision recall curves (Figure 10-3 in the appendix) illustrate the trade-off between ensuring 

that every patient who will go on to suffer AKI is identified and that the number of false positives 

is minimised.  As shown in Figure 10-3, as recall (also known as sensitivity) approaches 1 the 

Precision (positive predictive value) falls.  This effect was most pronounced for predictions made 

in the first 24 hours. 

Table 10-6 of the appendix describes the model’s performance when predicting severe oliguria 

occuring within 6 hours of prediction. Discriminination was consistently better than when 

predicting severe oliguira occuring within 12 hours following predictions but risk was consistenty 

overestimated.  Across the five time points analysed there were 258 incidences where a patient 

developed severe oliguria within 12 hours of predictions, however on 109 occasions severe 

oliguria only developed between 7 and 12 hours after prediction. 

 

10.5.2. Classification task 

In the validation dataset 158 patients experienced a probability of severe oliguria >0.8 and were 

assigned to the high-risk group. The remaining 2231 patients were assigned to the low-risk group.  

Outcomes for these two groups are reported in Table 10-3.   

 

Table 10-3 - Outcome of patients according to classification by the Bayesian model 

Group RRT, n(%) PLOS, n(%) Mortality, n(%) 

High-risk (n=158) 29(18.4)* 93 (58.9) * 14 (8.9) * 

Low-risk (n=2231) 41(1.8%) 496 (22.2) 22 (1.0)  

* p<0.001 when compared to low-risk classification by the model 
RRT = renal replacement therapy, PLOS = prolonged length of stay in hospital 

 

High-risk patients experienced increased rates of subsequent RRT, PLOS and hospital mortality 

compared with those classified as low-risk (P<0.001 for all outcomes).  On multivariable analysis, 

high-risk classification was associated with increased risk of RRT (OR 10.4, 95%CI 5.9-18.1), PLOS 

(OR 4.4, 95% CI 3.0-6.4) and hospital mortality (OR 6.4, 95%CI 2.8-14.0) (p<0.001 for all 

outcomes).  The multivariable models used for risk adjustment are shown in the Appendix (Tables 

10-7 to 10-9).  The median (IQR) time from high-risk classification to the onset of severe oliguria 

of 3.0 (0.0-4.0) hours 
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The KDIGO urine output criterion identified 628 patients (26.3%) as suffering AKI by urine output.  

The outcomes for patients classified according to the model’s predictions and the KDIGO criterion 

are compared in Table 10-4.  Outcomes for those classified as being at high risk by the model and 

those meeting the KDIGO criteria were not compared directly as some patients would have been 

included in both groups. 

 

Table 10-4 - Outcomes for patients grouped according to risk level as determined analysis of urine 
output by KDIGO-AKI guideline and the Bayesian model. 

Group n (%) RRT, n (%) PLOS, n (%)  Hospital mortality, 
n(%) 

Low-risk by model and 
no KDIGO AKI  

1725 (72.2) 15 (0.9) 320 (18.6) 10 (0.6) 

Low-risk by model but  
KDIGO AKI  

506 (21.2) 18 (3.6) 176 (34.8) 12 (2.4) 

High-risk by model but 
no KDIGO AKI  

36 (1.5) 3 (8.3) 30(83.3) 3 (8.3) 

High-risk by model and 
KDIGO AKI  

122 (5.1) 26 (21.3) 73 (59.8) 11 (9.0) 

KDIGO =Kidney Disease Improving Global Outcomes,  UO = urine output, AKI = Acute Kidney Injury, PLOS = 
prolonged length of stay in hospital, RRT = renal replacement therapy 

 

Patients who met the KDIGO urine output criterion for AKI but were classified as low-risk by the 

model (n=506) experienced rates of RRT (3.6%), PLOS (34.8%) and mortality (2.4%) which were 

significantly lower than the risks for those classified as high-risk by the Bayesian model (p<0.001 

for all).    When used to predict future RRT requirement, the Bayesian model classification 

achieved greater specificity and positive predictive value (but lower sensitivity) than the KDIGO 

AKI criterion.  The performance of the dynamic Bayesian model was almost identical to that 

achieved by classification according to actual observed oliguria.  (Table 10-5)   
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Table 10-5 - Performance of the Bayesian model, existing KDIGO AKI-UO criterion and severe 
oliguria when identifying those at risk of RRT. 

Classification 

Method 

Sensitivity Specificity Positive Predictive 

Value 

Negative Predictive 

Value 

AKI-UO 0.74 0.75 0.08 0.99 

Model 0.41 0.94 0.18 0.98 

Severe oliguria 0.41 0.94 0.18 0.98 

Severe oliguria = observed UO <0.3ml/kg for 6 hours, AKI-UO = observed UO <0.5ml/kg for 6 hours, RRT = 
renal replacement therapy 
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10.6. Discussion 

This patient-specific dynamic Bayesian model was developed and validated in separate cohorts 

which together contained high quality, prospectively-gathered data for over 3000 patients. The 

number of patients and observations included in the study were considered large enough to 

justify the split sample approach of the study.  As shown in Table 10-1, the characteristics of 

patients in each group were similar.   

The model successfully identified patients at risk of severe oliguria demonstrating excellent 

discrimination and calibration at each time point. Outcomes were significantly worse for patients 

deemed to be at a high-risk (probability >0.8) of severe oliguria than for those assigned to the 

low-risk group.  Those identified as high-risk by the model also suffered worse outcomes than 

those who only met the KDIGO urine output criterion for AKI. 

In clinical practice, classification into high and low-risk groups based on an arbitrary threshold is 

unlikely to be necessary and significantly diminishes the usefulness of the model.   Rather, patient 

monitoring software would analyse the individual’s urine output data in real-time and display 

predictions of hourly urine output for the next six hours alongside the probability that these value 

would fall below a chosen threshold.  The use of threshold values for hourly urine output is 

established in all widely used AKI classifications (1, 23, 24) and is therefore well understood by the 

majority of clinicians.  This information, together with the trend of risk for that patient would 

inevitably be much more useful to a treating clinician than knowledge of the patient’s risk group 

based on an arbitrarily dichotomised risk classification.  In this study, a threshold was used to 

dichotomise the patients to allow the comparison of outcomes observed in patients classified as 

high and low-risk by the model.  The categorisation also allowed comparison of outcomes 

between patients classified as high-risk by the model and patients who met the existing KDIGO 

AKI criteria. The threshold used for the classification exercise was deliberately high at 0.8 to 

reduce the number of false positive high-risk classifications which are a weakness of the existing 

KDIGO AKI classification.(2, 9, 10)  As a result a large subgroup (n=506) met the KDIGO AKI 

criterion but were classified as low-risk by the model. Outcomes for these patients were 

significantly better than for the group classified as high-risk by the model suggesting that for a 

large proportion of those who meet the KDIGO urine output criterion, the risk of adverse 

outcomes is actually relatively low. 

The significant increase in risk of adverse outcomes found to be associated with a predicted or 

observed fall in urine output to < 0.3ml/kg/hr for 6 hours is similar to that found in general ICU 

patients(9) and justifies the selection of this threshold in this study.  Risk stratification was not 
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significantly improved when classification was made according to observed rather than predicted 

severe oliguria.  The main advantage of using the dynamic Bayesian model is that it provides 

reliable, early warnings of impending severe oliguria before it occurs, allowing time to deliver 

treatments with the aim of preventing severe oliguria and its consequences. Even if a warning 

were only raised when a probability of 0.8 for severe oliguria was reached - as in our classification 

exercise – this would allow interventions aimed at preserving renal function.  In reality patients 

for whom risk of severe oliguria is increasing are likely to be reviewed before a probability of 0.8 is 

reached, affording even more time for intervention. 

Clinical use of a urine output screening protocol which employs this dynamic Bayesian model is 

perfectly feasible because although mathematically complex, the model is computationally 

inexpensive and can run on standard computers or tablets available at the bedside. The model 

uses the trend of urine output rather than comparison of point values against arbitrary 

thresholds.  The progressive decline in urine output towards the defined threshold of 0.3ml/kg is 

intuitively more relevant than the occurrence of a point value below an arbitrary “normal”.  

Indeed, over 85% of those classified as low-risk suffered at least one hour of urine output below 

0.3ml/kg/hr but this group had excellent outcomes.  As the only data required by the model are 

patient weight and hourly urine output values, the model should be transferrable across all 

patients on critical care units. In this study we chose to calculate the probability of urine output 

dropping below 0.3ml/kg/hr but this threshold could be altered to suit different patient cohorts.   

Under these circumstances the model could be useful across a range of settings, alerting clinicians 

to the risk of urine output dropping below a threshold they consider to be clinically significant.  

While these results are encouraging, analyses of urine output alone cannot identify all patients at 

risk of adverse outcomes related to renal dysfunction.  Indeed, 41 patients received RRT despite 

being classified as low-risk because their urine output was maintained around or above 

0.3ml/kg/hr.  Analysis of the EPR for these patients, identified deranged biochemistry (elevated 

urea and/or creatinine concentrations, hyperkalaemia or metabolic acidosis) (n=31), fluid 

overload (n=16), hyperlactataemia (n=4) and sepsis (n=1) as the indications for RRT initiation.  In 

addition, while the novel model accurately predicted severe oliguria, less than 20% of those who 

suffered severe oliguria went on to require RRT.   

Currently, creatinine concentration performs a key role in the identification of those at risk of 

adverse outcomes related to renal dysfunction.  The existing KDIGO(1) creatinine criteria - which 

are shared by the AKIN and RIFLE guidelines (23, 24) - have been shown to stratify risk accurately 

in both cardiac surgery patients (25, 26) and the general inpatient population (27, 28).  Similarly, 

recent advances in the use of biomarkers have been shown to enable the early identification of 
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those at increased risk of adverse outcomes related to renal dysfunction (29-31).  Moreover, the 

combination of biomarkers and serum creatinine analyses increases the accuracy of patient risk 

classification. (30, 31)  Future work should focus on integrating the novel analysis of urine output 

described in this study with other physiological variables measured in real-time together with 

biomarker and serum creatinine results to optimise the early detection of deranged renal 

physiology. 

Most patients in this study received interventions such as fluid challenges aimed at normalising 

urine output.  A total of 488 (20.4%) patients also received diuretics during their ICU admission. 

Data on the success of such interventions has not been investigated as part of this study but is 

likely to be of value as part of future work. The impact of treatment on urine output was a reason 

for selecting a 12-hour window when validating the model’s predictions for severe oliguria.  In 

some patients, a response to treatment triggered by observed low urine output was successful 

leading to fewer patients than predicted developing severe oliguria.  In a subgroup of patients the 

response to intervention was transitory, causing the urine output to rise briefly above the 

0.3ml/kg/hr threshold before falling back to a level consistent with severe oliguria.  There were 

109 incidences identified in which a patient suffered severe oliguria between 7 and 12 hours 

following predictions.  Therefore, although the model was designed to predict six hours of urine 

output values it was considered clinically more relevant to assess the performance of the model 

based on the selected threshold over a longer period of time.   

Limitations  

The unbalanced nature of the data had the potential to make the AUC statistics seem overly 

impressive.  Indeed, precision recall curve analyses showed that the excellent discrimination 

identified on ROC curve analyses of predictions made at 12 and 24 hours was influenced by the 

large proportion of patients who did not suffer severe oliguria and whom the model correctly 

identified as being at low risk of oliguria.  However, this effect was less significant for predictions 

made after this time.    

The development of this model benefited from being conducted in a group of patients undergoing 

cardiac surgery in one institution where the risk of complications is well known but the single 

centre design could limit transferability across other health care settings.  The methodology 

developed will therefore need to be validated in different patient groups and in different 

institutions. With appropriate development, it could easily be applied to all intensive care unit 

patients.  The ability of the model to improve patient outcomes through early recognition of 

impending severe oliguria should then be tested. 
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10.7. Conclusions 

This dynamic Bayesian model, which analyses hourly urine output values, can be used to 

accurately predict the risk of severe oliguria occurring within the next 12 hours.  Classification 

according to the model’s predictions was shown to outperform the current method for screening 

patient urine output; the KDIGO AKI criteria. Crucially, the use of dynamic Bayesian modelling 

allows those at high-risk to be identified before they suffer a prolonged period of severe oliguria 

and in time to offer treatment.  The model requires no additional information other than hourly 

urine output values and the patient’s weight, can be easily run by computers routinely available at 

the bedside and provides an output that is easily interpreted by the clinical team. Before 

widespread adoption, the model requires validation in a range of critical care units and across the 

full range of critical care patients. The effect of implementation of the model in clinical practice on 

outcomes should then be assessed.   
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10.9. Appendix

 

Figure 10-3 - Precision recall curves for the prediction of severe oliguria (<0.3ml/kg/hr for 6 hours) 
during the next 12 hours following each prediction made by the model at 12, 24, 36, 48 and 72 
hours. 

 

Table 10-6 - Performance of models when predicting severe oliguria occurring with the next 6 
hours  

Time point (number of 

patients still on CICU) 

AUC (95% CI) Observed severe 

oliguria within 6 

hours 

Predicted severe 

oliguria within 6 

hours 

O:E ratio 

12 hours 0.98 (0.96-0.99) 21 90 0.23 

24 hours 0.98 (0.97-0.99) 30 61 0.49 

36 hours 0.99 (0.98-1.00) 34 49 0.69 

48 hours 0.99 (0.98-1.00) 36 49 0.73 

72 hours 0.99 (0.98-1.00) 38 31 0.92 

CICU-cardiac intensive care unit, AUC – area under the curve, severe oliguria – urine output 
<0.3ml/kg/hr for six hours   
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Logistic regression models used to adjust for confounders during multivariable analyses 

 

Table 10-7 - Logistic regression model for prediction of Renal replacement therapy  

Variable Beta coefficient Odds ratio 95% CI for Odds 

ratio 

P value 

Intercept -4.53   <0.001 

Model high-risk 
classification 

2.34 10.36 5.86-18.07 <0.001 

Logistic EuroSCORE 0.04 1.03 1.01-1.06 <0.001 

CPB time (minutes) 0.00 1.00 1.00-1.01 0.34 

CI – confidence interval, CPB – cardiopulmonary bypass 

Table 10-8 - Logistic regression model for prediction of prolonged length of stay 

Variable Beta coefficient Odds ratio 95% CI for Odds 

ratio 

P value 

Intercept -2.41   <0.001 

Model high-risk 
classification 

1.48 4.38 2.99-6.44 <0.001 

Logistic EuroSCORE 0.07 1.08 1.06-1.09 <0.001 

CPB (minutes) 0.01 1.00 1.00-1.01 <0.001 

CI – confidence interval, CPB – cardiopulmonary bypass 

Table 10-9 - Logistic regression model for prediction of hospital mortality 

Variable Beta coefficient Odds ratio 95% CI for Odds 

ratio 

P value 

Intercept -6.13   <0.001 

Model high-risk 
classification 

1.86 6.44 2.82-13.98 <0.001 

Logistic EuroSCORE 0.03 1.03 1.00-1.05 0.06 

CPB (minutes) 0.01 1.01 1.00-1.01 <0.001 

CI – confidence interval, CPB – cardiopulmonary bypass 
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Model development 

For the Bayesian analysis done throughout this paper we use a transformed second order 

polynomial dynamic linear model, with an unknown constant observational variance, 𝑽𝒕, and an 

unknown evolution variance , 𝑾𝒕. When forecasting, since many trends are exponentially 

decreasing and also to avoid negative values in the prediction intervals, we decide to use a log 

transform of the response (from investigation into the data it is noted that there is no difference 

between anuria and the very low urine outputs and hence we replace zero urine outputs by the 

minimum non-zero urine output) and the model is given by  

𝐥𝐨𝐠(𝒀𝒕) =  𝝁𝒕 + 𝝂, 

𝝁𝒕 =  𝝁𝒕 𝟏 + 𝜷𝒕 𝟏+ 𝝎𝟏𝒕, 

𝜷𝒕 =  𝜷𝒕 𝟏 + 𝝎𝟐𝒕. 

Where 𝒀𝒕 is the predicted urine output, 𝝁𝒕 is the level and 𝜷𝒕 is the rate of change in level at time 

𝒕. Here 𝝂𝒕~𝑵(𝟎, 𝑽𝒕) (normally distributed with zero-mean and covariance matrix 𝑽𝒕) and 

𝝎𝒕 ~𝑵(𝟎, 𝑾𝒕) (normally distributed with zero-mean and covariance matrix 𝑾𝒕), where the 

unknown observational variance and an unknown evolution variance are modelled using 

information discounting where 

𝑽𝒕
𝟏|𝑫𝒕 ~ 𝑮𝒂(𝜹∗

𝒏𝒕

𝟐
, 𝜹∗

𝒅𝒕

𝟐
)   𝑾𝒕 =

𝝎𝜶𝒕 𝝎𝝁𝜷𝒕

𝝎𝝁𝜷𝒕 𝝎𝜷𝒕
 

 

and 𝑮𝒂 represents the Gamma distribution. 

The discount factors allow for “information loss” in the observation and system evolution 

equations respectively. In other words, urine output from 6 hours ago is less useful in modelling 

the patients next urine outputs compared to the most recent urine output. The discount factors 

(like all other parameters) were chosen to minimise the number of false negatives so that a low 

risk classification can be trusted.  

The dynamic model that we described above is updated using algorithms defined by West et al 

(13) and the starting prior (𝜽𝟎|𝑫𝟎)~ 𝑵(𝒎𝟎, 𝑪𝟎) which describes our initial beliefs about the 

system is, for a second order polynomial model, a bivariate normal distribution. We have 

𝜽𝟎│𝑫𝟎 ~𝑵
𝒎𝟎

𝑪𝟎
,

𝑪𝝁𝟎 𝟎

𝟎 𝑪𝜷𝟎
, 

where 𝐷  refers to the information that we have available to us at time 𝑡. This initial prior 

represents our initial beliefs about the expected urine output for patients entering CICU and is 

required to initiate the system evolution recurrence relations. Using the notation that we have 

defined, the recursive procedure that is used to provide the forecasts is, 
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Updating Recurrence Relationships  

𝜽 |𝐷  ~ 𝑡 (𝒎 , 𝑪 ), 

ϕ |D ~Ga(
n

2
,
d

2
) 

𝒎 =  𝒂  + 𝑨 𝒆 , 

𝑪  =  𝑹  − 𝑨 𝑨 𝑄 , 

𝑾 = (𝛿 − 1 )𝑮𝑪 𝑮′  

𝑒  =  𝑌 − 𝑓 , 

𝑛 = 𝛿∗𝑛 + 1  

𝑑 = 𝛿∗𝑑 + 𝑆 𝑒 /𝑄  

𝑆 = 𝑑 /𝑛   

𝑨  =  𝑹 𝑭 /𝑄 . 

Updating Forecasting Distributions   

 

𝜽 |𝐷  ~ 𝑡 ∗ (𝒂 , 𝑹 ), 

𝑌 |𝐷  ~ 𝑡 ∗ (𝑓 , 𝑄 ), 

𝒂 =  𝑮𝒂 , 

𝑹 =  𝑮𝑹 𝑮 +  𝑾 , 

𝑓 =  𝑭 𝒂 , 

𝑄 =  𝑭 𝑹 𝑭 +  𝑘𝑆 , 

𝒂  =  𝒎 , 

𝑹  =  𝑪 .  
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Rationale for inclusion of this study in the thesis 

This research project aims to deliver a risk prediction model which analyses postoperative 

parameters to identify patients at increased risk of atrial fibrillation (AF) following cardiac surgery.  

The first stage of this process was to examine whether postoperative concentrations of potassium 

and magnesium were likely to be useful when predicting postoperative AF.  To do this the 

postoperative potassium and magnesium concentrations for patients who did and did not develop 

AF were compared.        



 

207 
 

11.1. Additional data processing required for this manuscript. 

Step 1.  Remove patients who received cardiac transplantation or mechanical circulatory support 

Step 2.  Select data only from the first postoperative CICU admission 

Step 3.  Subclassify surgery into “valve surgery” and “not valve surgery” 

Step 4.  Exclude patients who were known to suffer from AF preoperatively. 

Step 5.  Limit dataset to events occurring within 72 hours of CICU admission 

Step 6.  For those who suffered AF limit the dataset to before the occurrence of AF. 

Step 7. Determine the mean and minimum potassium concentrations for those who suffered AF 

(overall and for 12 hours before AF). 

Step 8. Determine the mean and minimum potassium concentrations for those who did not suffer 

AF. 

Step 9. Compare the rates of profound hypokalaemia (<3.5mmol/l) in those who did and did not 

suffer AF (Chi square test) 

Step 10.  Compare mean potassium concentrations for those who did and did not develop AF 

(Student’s t-test). 

Step 11.  Merge in logistic EuroSCORE and CPB time data. 

Step 12.  Perform logistic regression analysis to test association between AF and [K+]<4.5mmol/L 

or controlling for surgery type, logistic EuroSCORE and CPB time. 

Step 13.  Determine difference between preoperative and mean [K+] in the 12 hours before onset 

of AF for those who suffered AF ([ΔK+]).     

Step 14.  Determine difference between preoperative and mean [K+] for those who did not suffer 

AF ([ΔK+]). 

Step 15. Compare [ΔK+] for those who did and did not suffer AF (Student’s t-test). 

Step 16. Determine the mean and minimum magnesium concentrations for those who suffered AF 

(overall and for 24 hours before AF). 

Step 17. Determine the mean and minimum magnesium concentrations for those who did not 

suffer AF. 
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Step 18. Compare the rates of profound hypomagnesaemia (<0.7mmol/l) in those who did and did 

not suffer AF (Chi square test) 

Step 19.  Compare mean magnesium concentrations for those who did and did not develop AF 

(Student’s t-test). 

Step 20. Perform logistic regression analysis to test association between AF and 

[Mg2+]<1.0mmol/L controlling for surgery type, logistic EuroSCORE and CPB time. 

Step 21.   Identify all incidences of electrolyte replacement therapy within the first 72 hours. 

Step 22.  Limit the dataset to the onset of AF for those who suffered AF. 

Step 23.  For those who did not suffer AF limit the dataset to the median time of AF onset in the 

AF group. 

Step 24.  Determine the number of electrolyte replacement doses given to patients. 

Step 25.  Compare the number of doses of electrolytes replacement therapy given to those who 

did and did not suffer AF (Wilcoxon rank sum test). 

Step 26. Perform logistic regression analyses to test association between AF administration of 

electrolyte replacement therapy controlling for surgery type, logistic EuroSCORE and CPB time. 

Step 27. Calculate median time from last potassium and magnesium measurement to onset of AF. 

Step 28. Divide postoperative stay for those who did not suffer AF into 12 and 24 hour “blocks” 

for potassium and magnesium analyses respectively.  

Step 29. Determine the mean potassium and magnesium concentrations for each postoperative 

“block.”  

Step 30. Determine whether the mean concentrations were above the classification thresholds 

(4.5mmol/L for potassium, 1.0mmol/L for magnesium) for the majority of the postoperative 

“blocks”. 

Step 31.  Where the electrolyte classification for the majority of “chunks” is different to the 

classification of the overall mean concentrations, change to the classification to that of the 

majority of “blocks”. 

Step 32.  Repeat analyses in Steps 12 and 20 using the revised classification of postoperative 

electrolyte concentrations.   
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11.2.  Abstract 

Introduction 

Potassium and magnesium are frequently administered following cardiac surgery to reduce the 

risk of atrial fibrillation (AF); although the evidence for this practice is unclear.  This study was 

designed to evaluate the relationship between serum potassium and magnesium levels and AF 

following cardiac surgery.    

Methods 

Prospectively collected data for all patients who underwent cardiac surgery between January 

2013 and November 2017 was analysed. Cardiac rhythm was assessed using continuous ECG 

monitoring in 3068 patients on the cardiac intensive care unit and associations between serum 

potassium and magnesium concentrations and post-operative AF were assessed using univariable 

and multivariable analyses. The association between electrolyte replacement therapy and AF was 

also analysed.     

Results 

AF developed within 72 hours of cardiac surgery in 545(17.8%) of the 3068 patients. After 

adjusting for logistic EuroSCORE, operation type and cardiopulmonary bypass time, mean serum 

potassium concentration<4.5mmol/L was associated with an increased risk of AF (OR 1.4 (95%CI 

1.3-2.7, p<0.001).  Mean magnesium concentration <1.0mmol/L was not associated with an 

increased risk of AF (OR 0.82, 0.65-1.03, p=0.09) but the administration of magnesium increased 

the risk of developing AF (OR 1.55, 1.28-1.88, p <0.01). 

Conclusions 

Maintaining a serum potassium concentration>4.5mmol/L following cardiac surgery may reduce 

the incidence of postoperative AF.  Low magnesium levels were not associated with postoperative 

AF but magnesium replacement conferred an increased risk of AF.   
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11.3. Introduction 

Postoperative atrial fibrillation or flutter (AF) occurs in 18%-30% of patients undergoing cardiac 

surgery,(1-3) and is associated with prolonged stay in hospital,(4) increased healthcare costs(5) 

and increased short(6) and long term mortality risk.(7)  The plasma concentrations of potassium 

and magnesium are thought to be important factors in the development of AF.(8) The 

administration of potassium replacement therapy to prevent postoperative AF is a common 

practice and is based on cardiac myocyte electrophysiology,(9) and supported by studies in the 

literature.(10, 11)  Magnesium replacement is also frequently used in the prevention and 

treatment of AF.  It is administered to both increase the response to potassium 

supplementation(12) and to lower the risk of AF directly.(8, 13) 

Recently, Lancaster et al reported that higher concentrations of magnesium and potassium 

increased the risk of AF following cardiac surgery.(14) Hoekstra et al also failed to identify a 

benefit from potassium administration with the target of achieving higher postoperative serum 

potassium concentrations in this setting.(15) Most studies focused on predicting postoperative AF 

failed to included postoperative electrolyte concentrations or replacement therapy.(16-19) The 

objective of this study was to explore the role of serum potassium and magnesium concentrations 

and the administration of electrolyte replacement therapy in the development of AF following 

cardiac surgery.   

11.3. Methods 

Prospectively gathered data from 3068 patients admitted to the cardiac intensive care unit (CICU) 

following cardiac surgery between January 2013 and November 2017 were collected and analysed 

as part of a major study on complications following cardiac surgery funded by the British Heart 

Foundation. Patients undergoing transplantation or requiring mechanical circulatory support and 

those diagnosed with atrial fibrillation or atrial flutter preoperatively were excluded.   Any patient 

for whom no post-operative serum potassium and magnesium levels were available were also 

excluded. 

Hourly cardiac rhythm assessments performed by the treating clinicians examining the continuous 

ECG traces recorded by the Draeger Infinity bedside monitors (Draeger) and all potassium 

concentrations measured by the Gem5000 (Instrumentation Laboratory) point of care blood gas 

analysers were extracted from the electronic patient record (EPR) for the first 72 hours on CICU 

following cardiac surgery.  All administrations of intravenous potassium or magnesium 

replacement therapy were also extracted from the EPR along with the date and time of 

administration.  Preoperative magnesium and potassium concentrations for each patient and 
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post-operative magnesium levels over the same time period were extracted from the hospital’s 

pathology laboratory database together.  All laboratory analyses were performed using the 

Architect C1600 (Abbott) analysers use for routine biochemical assays in our institution.   

The primary question was whether potassium concentrations < 4.5mmol/L or magnesium 

concentrations <1.0mmol/L were associated with postoperative AF.  The threshold value for 

potassium (4.5mmol/L) was chosen as this had been the threshold used in previous studies (10, 

20) and it is also the target potassium concentration in our institution. The magnesium threshold 

of 1.0mmol/L was chosen based on our institution’s treatment protocol as there is a general lack 

of consensus for a threshold value in the literature.   For those who suffered AF, the mean 

potassium concentration in the twelve hours immediately prior to onset of AF was calculated.  For 

those who did not suffer AF the overall mean potassium concentration was calculated. Similar 

magnesium concentration values were calculated but as magnesium concentrations were 

routinely measured daily, the mean magnesium concentration for those who developed AF was 

calculated over 24 rather than 12 hours.   To ensure that the overall classification of the mean 

electrolyte concentrations was appropriate, a sensitivity analysis was conducted in which the 

patients’ CICU stays were divided into portions of 12 hours for potassium concentrations and 24 

hours for magnesium concentrations.  The mean value of each electrolyte during each block was 

calculated and classified using the same thresholds (4.5mmol/L for potassium and 1.0mmol/L for 

magnesium).   All patients whose overall classification was not the same as that observed in the 

majority of their discrete blocks were identified and reassigned according to the group in which 

their electrolyte concentrations fell during the majority of their blocks.  Analyses were then 

repeated using the revised classifications.     

Further analyses compared the distributions of the concentrations of these electrolytes in those 

who did and did not suffer AF.  To test whether lower target thresholds might be useful the 

incidences of potassium concentrations <3.5mmol/L and magnesium concentrations <0.7mmol/L 

for those who suffered AF were compared with those for patients who did not.  To test whether 

change relative to preoperative concentration was relevant we compared the difference between 

pre-and postoperative potassium concentrations ( Δ [K+]) in those who did and did not suffer AF.  

For those who developed AF, Δ [K+] was defined as the difference between a patient’s mean 

potassium concentration during the 12 hours before the onset of AF and the preoperative 

concentration.  For those who did not suffer AF Δ [K+] was defined as the difference between the 

patient’s mean postoperative potassium concentration and the preoperative potassium 

concentration over 72 hours.  Preoperative magnesium concentrations were not assessed as they 

were not routinely measured.   
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Finally, we compared the electrolyte replacement therapy administered before the onset of AF 

for those who developed AF with that administered to those who did not develop AF.  To allow a 

fair comparison, for those who did not develop AF only doses administered before the median 

time of onset of AF in the AF group were counted. Outcome data were extracted from the 

hospital’s clinical governance database.  All data were pseudonymised prior to analysis.  Data 

collection, cleaning and storage were performed according to the ethical and R&D approvals for 

the Vascular Governance NorthWest database.  

11.3.1. Statistical Analyses 

Univariable analyses of differences between proportions were performed using Chi square tests 

except for the comparison of the proportion of patients experiencing a magnesium concentration 

below 0.7mmol/L.  This comparison was performed using Fisher’s exact test due to the small 

number of outcomes.  Electrolyte concentrations were compared using the Student’s t-test as 

they were found to be normally distributed.  Univariable comparisons of the number of doses of 

electrolyte replacement therapy administered were made using the Wilcoxon rank sum test as 

these variables were not normally distributed.   

The associations between postoperative AF and potassium concentrations below 4.5mmol/L and 

magnesium concentrations <1.0mmo/L and were assessed using multivariable logistic regression 

analyses adjusting for type of surgery, cardiopulmonary bypass (CPB) time and preoperative co-

morbidity (using the logistic EuroSCORE.(21)  These analyses were repeated for the sensitivity 

analyses using the revised classifications as described above.   Similar multivariable models were 

also used to assess whether electrolyte replacement therapy was associated with AF.  All analyses 

were conducted using R (R foundation for statistical computing).(22) 

11.4. Results 

During the study period 3602 cardiac surgery patients were admitted to CICU.   228 were 

excluded as they underwent cardiac transplantation or required mechanical circulatory support 

and 306 were excluded as they were in AF before admission to CICU.  A total of 3068 eligible 

patients (mean [sd] age was 66.1 [11.0] years) were identified of whom 19 were excluded from 

the potassium analyses due to a lack of postoperative potassium values within the specific time 

period (within the 12 hours preceding AF for those who suffered AF or during the CICU stay for 

those who did not).  Similarly, 112 were excluded from the magnesium analyses due to an 

absence of postoperative magnesium concentrations within specified time period.  Preoperative 

potassium values were missing from a further 45 patients so the Δ K+ analyses included only 3004 

patients.(Figure 11-1) 



 

213 
 

 

 

 

 

 

 

 

 

 

 

 

The most common procedure performed was isolated CABG which was performed for 1867 

(60.8%) patients and the median length of CICU stay was 46.3 (25.2-69.2) hours.  Detailed 

characteristics of the patients are shown in Table 11-1. 

  

3602 

3374 

228 - Transplantation or MCS 

19 - missing potassium data 112 - missing Magnesium data 

306 - Pre-existing AF 

2956 included in magnesium analyses 3049 included in potassium analyses  

3068 
eligible 
patients 

Figure 11-1 - Flow diagram showing selection of eligible patients 
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Table 11-1 - Patient characteristics 

Characteristic AF (n=545) No AF (n=2523) 

Age, mean (sd) , years 70.1 (9.9) 65.3 (11.0) 

Female gender, % 152 (27.9) 680 (27.0) 

Weight, mean (sd), Kg 82.5 (15.9) 81.9 (16.2) 

Logistic EuroSCORE, median 

(Interquartile range) 

5.3 (2.9-9.7) 3.1 (1.7-6.2) 

Operation, n (%)   

  CABG  268 (49.2) 1599 (63.4) 

  Valve 127 (23.3) 454 (18.0) 

  CABG and Valve 103 (18.7) 308 (12.2) 

  Aortic 43 (7.9) 121 (4.8) 

  Other – minor 5 (0.9) 41 (1.6) 

Urgency, n (%)   

  Elective 333 (61.1) 1399 (55.4) 

  Urgent 198 (36.3) 1080 (42.8) 

  Emergency 13 (2.4) 36 (1.4) 

  Salvage 1 (0.2) 8 (0.3) 

CPB time, median (Interquartile 

range), minutes 

107.0 (83.0-138.5) 100.0 (80.0-126.0) 

AF – Atrial fibrillation/flutter, CABG – coronary artery bypass graft, CPB – cardiopulmonary bypass  

 

A total of 545 patients (17.8%) developed AF within 72 hours of CICU admission.  The median 

(IQR) time to onset of AF was 39.0 (29.2-51.0) hours.  The median (IQR) time from last potassium 

concentration measurement to onset of AF was 2.0 (1.0-3.0) hours.   The median (IQR) time from 

last recorded magnesium concentration to onset of AF was 12.0 (4.5-18.0) hours.    

11.4.1. Primary analyses of electrolyte concentrations 

As seen in Table 11-2, in the 12 hours preceding onset of AF, 274 patients (51.6%) experienced a 

mean potassium concentration <4.5mmol/L.  Of those who did not suffer AF, 1057 (42.0%) 

experienced a mean potassium concentration <4.5mmol/L during the first 72 hours of their CICU 

stay (p<0.001).   
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Table 11-2 - Proportion of patients who did and did not suffer AF who experienced low electrolyte 
concentrations 

Group [K+]  <4.5mmol/L N(%) [Mg2+] <1.0mmol/l N(%) P value 

AF  274 (51.6)  145 (30.2) <0.001 

No AF  1057 (42.0) 973 (39.3) <0.001 

[K+] – potassium concentration; [Mg2+] – magnesium concentration 

 

On multivariable analysis (detailed in the appendix), potassium concentration <4.5mmol/L (OR 

1.41, 95% CI 1.15-1.72), increased logistic EuroSCORE (OR 1.04, 95% CI 1.03-1.05) and valve 

surgery (OR 1.46, 95% CI 1.17-1.83) were associated with the development of AF (p<0.001 for all).   

Of those who did not suffer AF but did experience an overall mean potassium concentration of 

≥4.5mmol/L, 125 (8.6%) experienced 12 hourly mean potassium concentrations <4.5mmol/L for 

the majority of their twelve hour blocks.  Of those who did not suffer AF and did experience an 

overall mean potassium concentration of <4.5mmol/L, 33 (3.1%) experienced 12 hourly mean 

potassium concentrations ≥4.5mmol/L for the majority of their twelve hour blocks.   When logistic 

regression analyses were repeated using potassium concentrations classified according to the 

mean values of the majority of the twelve hour blocks, potassium concentration <4.5mmol/L (OR 

1.23, 95% CI 1.0-1.50, p=0.04), increased logistic EuroSCORE (OR 1.04, 95% CI 1.03-1.05, p<0.001) 

and valve surgery (OR 1.46, 95% CI 1.17-1.83, p<0.001) were associated with the development of 

AF.   

Only 145 (30.3%) patients who suffered AF experienced a magnesium concentration <1.0mmol/L 

in the 12 hours prior to onset of AF compared with 973 (39.3%) of those who did not suffer AF 

(p<0.001). After multivariable adjustment, magnesium concentration <1.0mmol/L (OR 0.82, 95% 

CI 0.65-1.03) was not found to be associated with an increase in the developing of AF (p=0.09).  

Details of the multivariable analyses are included in the Appendix.   

Of those who did not suffer AF but experienced an overall mean magnesium concentration of 

≥1.0mmol/L, 37 (2.5%) experienced 24 hourly mean magnesium concentrations <1.0mmol/L for 

the majority of their 24 hour blocks.  Of those who did not suffer AF and experienced an overall 

mean magnesium concentration of <1.0mmol/L, 27 (2.8%) experienced 24 hourly mean 

magnesium concentrations ≥1.0mmol/L for the majority of their 24 hour block.   When the logistic 

regression analyses were repeated using magnesium concentrations classified according to the 

mean values for the majority of the twelve hour blocks, magnesium concentration <1.0mmol/L 

was not associated with the development of AF (OR 0.81, 95% CI 0.64-1.01, p=0.06).  
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Full details of the sensitivity analyses are also displayed in Tables 11-6 and 11-7 of the appendix. 

 

11.4.2. Secondary analyses of electrolyte concentrations  

Of those who suffered AF, 31 (5.8%) experienced a potassium concentration below 3.5mmol/L 

prior to the onset of the arrhythmia compared with 149 (5.9%) of those who did not develop AF 

(p=1.0). A magnesium concentration below 0.7mmol/L was observed in one (0.2%) patient who 

went on to develop AF and 20 (0.9%) of those who did not (p=0.23). 

The overall mean [sd] potassium concentrations recorded before the onset of AF (4.63mmol/L 

[0.30]) was for clinical purposes identical to the mean potassium concentration for those who did 

not develop AF (4.58mmol/L [0.26]).  However, the small difference (0.05mmol/L) was statistically 

significant (p<0.001).  Univariable comparisons between the mean potassium concentration 

recorded in the 12 hours before the onset of AF and potassium concentrations recorded in those 

who did not suffer AF are shown in Table 11-3. Minimum potassium concentrations for those who 

did not suffer AF occurred relatively early in the postoperative period; the median time from CICU 

admission to the minimum potassium concentration recorded was 17.8 hours (IQR 2.0-32.8).  
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Table 11-3 - Comparisons of electrolyte concentrations for those who did and did not develop AF 

AF group  No AF group  

Derivative Mean (sd) 

concentration 

mmol/L 

Mean (sd) 

concentration 

mmol/L 

Derivative p value 

Mean [K+] in the 12 hours 

before onset of AF 

        4.50 (0.35)     4.58 (0.26) Mean[K+] in first 72 

hours 

<0.001 

      3.96 (0.36) Minimum[K+] in first 72 

hours 

<0.001 

Δ [K+]   (Mean [K+] in the 

12 hours before onset of 

AF – Preoperative  [K+]) 

        0.21 (0.48)      0.26 (0.41) Δ [K+]    (Mean [K+] in 

first 72 hours - 

Preoperative [K+]) 

0.05 

Mean [Mg2+] in the 24 

hours before onset of AF 

       1.09 (0.26)      1.05 (0.21) Mean [Mg2+] in first 72 

hours 

<0.001 

       0.95 (0.18) Minimum [Mg2+] in first 

72 hours 

<0.001 

[K+] – potassium concentration; [Mg2+] – magnesium concentration 

 

As shown in Table 11-3, those who suffered AF exhibited a smaller rise in mean potassium 

concentration relative to the preoperative value (Δ [K+]) than those who did not.  For both groups 

the mean postoperative potassium concentration was greater than the preoperative value.   

The mean [sd] of all magnesium concentrations recorded before onset of AF (1.17mmol/L [0.27]) 

was 0.12mmol/L higher than the mean magnesium concentration for those who did not develop 

AF (1.05mmol/L [0.21], p<0.001).  Univariable comparisons between the mean magnesium 

concentration recorded in the 24 hours before the onset of AF and magnesium concentrations 

recorded in those who did not suffer AF are also shown in Table 11-3.  The minimum magnesium 

concentration recorded in those who did not suffer AF was observed slightly later than for 

potassium with a median time from ICU admission of 34.8 hours (IQR 14.8-40.4) but this was still 

before the median onset time of AF in the AF group.    

11.4.3.  Electrolyte replacement therapy 

Potassium replacement therapy was administered to 2551 (83.2%) patients and magnesium to 

1240 (40.4%) patients.  The median (IQR) number of doses of potassium (20mmol IV) and 
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magnesium replacement therapy (20mmol IV) administered during the first 72 hours of ICU 

admission were 3 (1-5) and 0 (0-1)  respectively. 

As seen in Figure 11-2, patients who developed AF received a similar number of potassium doses 

to those who did not (median 2.0 vs 2.0, p=0.70).  139 (25.5%) of those who suffered AF received 

magnesium compared with 470 (18.6%) of those who did not (p<0.001).  These findings were 

confirmed on multivariable regression analyses controlling for logistic EuroSCORE, CPB Time, and 

valve surgery.  There was no association between potassium administration and AF (OR 1.01, 95% 

CI 0.97-1.05, p=0.56) but AF was more likely in those who received a higher number of doses of 

magnesium replacement therapy (OR 1.55, 95%CI 1.28-1.88, p<0.001).  Details of the 

multivariable analyses are displayed in Tables 11-8 and 11-9 of the appendix. 
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Figure 11-2 - Boxplot illustrating the administration of potassium replacement therapy to those who 
did and did not develop AF. 
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11.5. Discussion 

The frequency of postoperative AF identified in this study is at the lower end of the ranges 

reported in the literature.(1-3, 18)  This may be because the study was truncated at 72 hours in 

order to avoid comparing electrolyte concentrations from the immediate postoperative period, 

where risk of AF is highest, with concentrations measured much later in a prolonged CICU stay.  It 

is also possible that our postoperative treatment protocols, including routine beta blocker 

prophylaxis and replacement of potassium to a target concentration of 4.5mmol/L may have 

favourably impacted the frequency of AF.  This target resulted in an overall mean potassium 

concentration for all patients of >4.5mmol/L during the first postoperative 72 hours.  Differences 

in potassium concentrations between groups who did and did not suffer AF may have been larger 

had the high target not been in place.   

Investigating the potential impact of high-normal target electrolyte thresholds such as the 

potassium thresholds of 4.5mmol/L described by Auer(10) and Hoekstra(20) was the primary 

objective of this study.  A potassium concentration below 4.5mmol/L was associated with an 

increase in the risk of AF, whereas the impact of a magnesium concentration below 1.0 mmol/L 

was the opposite of that expected.  During their first 72 hours on CICU, the group who did not 

suffer AF experienced minimum potassium and magnesium concentrations which were, on 

average, lower than those recorded in the 12 hours before AF onset in those who suffered the 

arrhythmia.  The median times at which the minimum potassium and magnesium concentrations 

were recorded were both earlier than the median AF onset time for the AF group.  Despite 

suffering lower electrolyte concentrations at times when AF was most likely to develop, such 

patients remained in sinus rhythm.    It is therefore clear that electrolyte concentrations alone do 

not adequately explain the risk of AF and that models aiming to identify those at risk of AF are 

unlikely to rely heavily on the analyses of such electrolyte concentrations.  However, electrolyte 

optimisation may still prevent AF developing in some patients.  The benefits of maintaining a 

potassium concentration above 4.5mmol/L in particular were confirmed in this study.  It is 

possible that Hoekstra’s study failed to identify a benefit of maintaining higher potassium 

concentrations because the mean plasma concentration achieved in their higher target 

concentration group was only 4.33mmol/L and this was only 0.11mmol/L higher than the mean 

concentration achieved in their lower target concentration group (4.22mmol/L).(20)  

Our secondary analyses demonstrated that use of low normal thresholds for potassium 

(3.5mmol/L) and magnesium (0.7mmol/L) concentrations would be unhelpful as few patients 

experience these low concentrations on our CICU.   
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The trend between greater magnesium replacement doses (together with higher magnesium 

concentrations) and increased risk of AF supports similar findings from Lancaster et al.(14)  It may 

be that magnesium was supplemented more aggressively when clinicians suspected an increased 

risk of AF.   The prophylactic administration of magnesium to patients with normal magnesium 

concentrations should therefore be the subject of a prospective randomised controlled trial.  

Existing models designed to predict AF following cardiac surgery are largely based on preoperative 

patient characteristics.(16-19)  However, only postoperative risk factors can be modified once the 

patient has undergone surgery and as such these risk factors are more important in clinical care 

on the CICU. Where postoperative risk factors are analysed by existing risk scores, the 

postoperative variables included are mainly based on the administration of medications or 

therapies which have since been studied in more detail.(19)  Consequently, some of the 

medications included as variables, such as beta blockers, are widely administered as routine care 

following cardiac surgery as part of treatment protocols. 

Limitations 

In order to maximise the number of potassium concentration measurements included in the 

study, we used point of care measurements from the CICU blood gas analysers.  This achieved a 

median time interval between the latest potassium concentration and the onset of AF of only 2.0 

hours.   Concerns have been raised previously about the accuracy of electrolyte concentration 

measurements made by point of care analysers at extremes of expected ranges. However, their 

accuracy has been demonstrated repeatedly to meet internationally recognised calibration 

targets.(23-25)  As all post-operative potassium readings were measured using the same 

instrument, they can probably be relied upon to the extent required by this study design. 

The retrospective nature of this study necessarily limited analyses to the data available from our 

EPR which only includes medications administered intravenously.  As our cardiac surgery protocol 

includes the routine administration of beta blockade daily using a pre-printed prescription chart 

unless actively omitted by treating physicians it is unlikely that the prescription of beta blockers 

influenced our results.  Although oral electrolyte replacement data was not available to us, 

intravenous replacement is almost universal following cardiac surgery in patients on our CICU.   

The retrospective design also precluded the strict standardisation of patient management.  In 

particular, while our institution’s protocol only aimed to keep magnesium concentrations 

>1.0mmol/L it is likely that unless a patient was experiencing hypermagnesaemia, additional 

magnesium would be administered to any patient whom clinicians identified as being at increased 

risk of developing AF.  
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The large number of patients in the study allowed the inclusion of preoperative logistic 

EuroSCORE, CPB time and surgery type into the logistic regression models used to adjust for 

potential confounders.  Unfortunately, high quality data on other possible confounders such as 

cross-clamp time were not available.  

The mean electrolyte concentrations recorded during a shortened period immediately before 

onset of arrhythmia were analysed for those who suffered AF as this was thought to best 

represent the levels of electrolytes present at that time.  As no event regarding arrhythmia onset 

was available in the control group, comparisons were made with mean and minimum values 

recorded in those who did not suffer AF over the first 72 hours of their admission. This issue was 

also experienced by previous retrospectives studies such as that by Lancaster et al.(14)  The 

sensitivity analyses in which we assigned the patients to groups based on the mean electrolyte 

concentrations for each 12 hour block of the admission aimed to address this issue.  The similarity 

of the results observed in our primary analyses and the associated sensitivity analyses indicate 

that inappropriate classification of electrolyte concentrations is unlikely to have affected our 

findings. 

 

11.6. Conclusion 

This study confirms that maintaining potassium concentrations above 4.5mmol/L in the early 

postoperative period contributes to preventing AF following cardiac surgery.  Replacement of 

magnesium was unexpectedly associated with increased risk of developing AF suggesting that 

magnesium replacement therapy in particular should be the subject of a prospective randomised 

controlled trial. 
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11.7. Appendix 

Table 11-4 - Details of the multivariable logistic regression model showing impact of potassium 
concentration on risk of postoperative AF 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.05) <0.001 

CPB Time (hours) 1.00 (1.00-1.00) 0.862 

[K+]<4.5mmol/L 1.41 (1.15-1.72) <0.001 

Valve surgery 1.46 (1.17-1.83) <0.001 

 

Table 11-5 - Details of the multivariable logistic regression model showing impact of magnesium 
concentration on risk of postoperative AF 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.05) <0.001 

CPB Time (hours) 1.00 (1.00-1.00) 0.581 

[Mg2+] < 1.0mmol/L 0.82 (0.65-1.03) 0.093 

Valve surgery 1.43 (1.13-1.81) 0.003 

 

In the sensitivity analysis, for those who did not suffer AF, the mean potassium concentration 

classification (<4.5mmol/L or ≥4.5mmol/L) of the majority of the 12 hour blocks was entered into 

the model.  

 

 

 

 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.05) <0.001 

CPB Time (mins) 1.00 (1.00-1.00) 0.83 

[K+] <4.5mmol/L 1.23 (1.00-1.50) 0.04 

Valve surgery 1.46 (1.17-1.83) <0.001 

Table 11-6 -  Details of the multivariable logistic regression model showing impact of potassium 
concentration on risk of postoperative AF (sensitivity analysis) 
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Table 11-7 - Details of the multivariable logistic regression model showing impact of magnesium 
concentration on risk of postoperative AF (sensitivity analysis) 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.05) <0.001 

CPB Time (mins) 1.00 (1.00-1.00) 0.59 

[Mg2+] < 1.0 mmol/L 0.81 (0.64-1.01) 0.06 

Valve surgery 1.43 (1.13-1.81) 0.002 

In the sensitivity analysis, for those who did not suffer AF, the mean magnesium concentration 

classification (<1.0mmol/L or ≥1.0mmol/L) of the majority of the 24 hour blocks was entered into 

the model.  

 

Table 11-8 -  Details of the multivariable logistic regression model showing impact of potassium 
replacement therapy on risk of postoperative AF 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.05) <0.001 

CPB Time (hours) 1.00 (1.00-1.00) 0.679 

Potassium doses 1.01 (0.97-1.05) 0.564 

Valve surgery 1.44 (1.15-1.80) 0.001 

CPB – cardiopulmonary bypass 

 

 

Table 11-9 -  Details of the multivariable logistic regression model showing impact of magnesium 
replacement on risk of postoperative AF 

Variable Odds ratio (95% CI) P value 

Logistic EuroSCORE 1.04 (1.03-1.06) <0.001 

CPB Time (hours) 1.00 (1.00-1.00) 0.738 

Magnesium doses 1.55 (1.28-1.88) <0.001 

Valve surgery 1.47 (1.18-1.84) 0.001 

CPB – cardiopulmonary bypass 
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SECTION FOUR: DISCUSSION 

General Discussion Chapter Twelve: 

This thesis has been presented in the journal format and so the findings of each chapter have 

been outlined within the manuscripts included in the results section.  The research programme 

has answered the research questions posed at the start of this thesis and those answers will be 

summarised in this section.  A narrative description of problems encountered during the data 

collection phase of the project will be discussed as these problems affected the progression of the 

project and the studies performed.  The key strengths and limitations of the methodology used 

within the programme of research overall and within each results chapter will also be discussed.  

The relevance of this research programme’s findings to the postoperative care of patients who 

have undergone cardiac surgery will be explored.  Finally, taking into account the findings of this 

thesis, as well as insights gained during the collection and analysis of the dataset, 

recommendations for future work and the potential impact of this research programme within 

cardiac surgery and critical care as a whole will be summarised.  

12.1. Key findings 

The first stated aim of this research project was to create a dataset suitable for the validation of 

existing risk stratification systems and the development of novel risk prediction models.  Although 

this task was more difficult than anticipated, the complete dataset has been collated and cleaned 

and important outcomes have been identified and labelled.  The dataset contains millions of data 

points and is cleaner and better annotated than any dataset present in publicly available biobanks 

such as PhysioNet.  This high quality dataset allowed the analyses described within this thesis to 

be conducted and will be used to develop more risk prediction models following the submission 

of this thesis.  

Chapter seven detailed the validation of the Rapid Clinical Evaluation (RACE) and logistic Cardiac 

Surgery Risk Score (logCASUS) alongside the SOFA score.  This was the first validation of the RACE 

and logCASUS scores, and the first validation of the SOFA score in cardiac surgery patients in the 

UK.  All models discriminated well between those who would go on to survive to CICU discharge 

and those who would not.  Consequently, all three models could be used to identify patients at 

the greatest risk on the critical care unit and guide the allocation of clinical resources accordingly.  

For example, those with the highest levels of risk could be seen first on ward rounds or their beds 

could be moved closer to the main doctors’ station or sisters’ office.  The daily calculation of the 
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scores was also validated, confirming the potential for such scores to be used on a daily basis to 

provide an updated assessment of mortality risk for patients on the CICU.  

The RACE and logCASUS score are logistic scores i.e. the models’ outputs are estimates of risk for 

groups of patients.  The calibration of these scores was found to be poor in the dataset used for 

this research programme.  Reasons for the poor calibration are discussed in detail in chapter 

seven but are likely to include: 

i) differences in management between institutions used to create and validate the models, 

ii) improvements in treatments related to technological advances and the incorporation of 

the findings of studies shown to improve outcomes into routine care.  This phenomenon 

is known as calibration drift and has previously been reported in preoperative models 

used in cardiac surgery.(173)  

Recalibration of the models was performed using a training subset and this improved their 

calibration when tested in a separate testing cohort.  However, calibration was still suboptimal 

reflecting the major limitation when attempting to predict mortality; mortality is a rare 

complication which has become increasingly infrequent over time.  Models which predict 

mortality therefore require calibration and validation in vast datasets before the accuracy of their 

predictions can be relied upon.  

Chapter eight quantified the incidence of sepsis in patients who had undergone cardiac surgery 

and described the first validation of the Sepsis-3 criteria in this setting.  The incidence of sepsis 

following cardiac surgery identified using the new definition was higher than previously described 

when older definitions were used to define sepsis.  Importantly, physiological derangement in the 

presence of either “suspected” or “proven” infection qualified as sepsis and was associated with 

poor outcomes.  This is highly relevant because older definitions had required microbiologically 

proven infection in order for the diagnosis of sepsis to be made.  Around half of suspected 

infections identified in this study were never microbiologically proven.  Older definitions would 

have effectively excluded a large number of patients who were identified using the new 

definition.  The fact that sepsis with suspected infection carried increased risk of poor outcomes 

supported the decision made by the Sepsis-3 team to include suspected infection within the 

guideline.  The study also answered questions about the applicability of the Sepsis-3 criteria to 

cardiac surgery.  As the Sepsis-3 criteria rely on the identification of physiological derangement 

using the SOFA score it was conceivable that the physiological derangement due to cardiac 

surgery and cardiopulmonary bypass could mask physiological deterioration due to sepsis.  The 

study demonstrated even after the substantial, non-infective physiological insult of cardiac 
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surgery, the Sepsis-3 criteria identified those with the worst outcomes.  Consequently, the use of 

the Sepsis-3 criteria for cardiac surgery patients can be recommended.       

Chapter nine investigated the outcomes of patients who fulfilled different criteria for various 

stages of acute kidney injury as defined in the KDIGO guidelines.(87)  The study showed that 

patients who were diagnosed with the same stage of AKI by different criteria experienced 

different rates of adverse outcomes.  AKI diagnosed due to low urine output alone carried less risk 

than AKI diagnosed by creatinine criteria.  Patients meeting both urine output and creatinine 

criteria were at the greatest risk of adverse outcomes.  Moreover, patients diagnosed with the 

supposedly less severe AKI-1 by both urine output and creatinine actually experienced worse 

outcomes that those diagnosed with the supposedly more severe AKI-2 by urine output alone.  

These findings are important because when the guidelines were written the authors recognised 

that the thresholds used within the urine output classification were arbitrarily defined.  Indeed 

they stated that “the influence of urinary output criteria on AKI staging needs to be further 

investigated.”  Alongside similar studies in both cardiac surgery patients (136) and the general ICU 

population (174, 175), the findings of this chapter provide evidence that recalibration of the urine 

output thresholds contained within the KDIGO AKI guidelines is required.  The findings also 

informed the decision to design the alternative method for the stratification of risk according to 

urine output following cardiac surgery described in chapter ten of this thesis. 

The novel model described in chapter ten identifies patients at greatest risk of severe oliguria 

(urine output <0.5ml/kg/hr for 6 hours) based on analyses of their own previous urine output.  

The discrimination of the model was excellent throughout the first 72 hours although when 

calibration was tested, the model overestimated risk in the first 24 hours.  The unpredicted 

recovery in urine output observed within the early postoperative period may be explained by 

positive response to treatments and natural resolution of the stress response to surgery.  To test 

the associations between the risk of severe oliguria and adverse outcomes, the predicted risk 

levels were categorised as high or low risk.  Patients at high risk of severe oliguria were found to 

have the greatest risk of adverse outcomes.   Outcomes for those who were identified as high risk 

by the model were worse than outcomes for those who fulfilled KDIGO urine output criteria for 

AKI but remained classified as low risk by the model. The model’s predictions were so accurate 

that high predicted risk of severe oliguria was found to identify those who would go on to require 

RRT equally as well as classification according to observed severe oliguria.  The fact that increased 

risk can be identified before the severe oliguria occurs is clinically important as it provides 

additional time for intervention to deliver preventative treatments.   
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Chapter eleven was designed to inform the development of risk prediction models to predict the 

onset of atrial fibrillation following cardiac surgery.  Serum electrolyte concentrations have been 

associated with the onset of arrhythmias including atrial fibrillation.(176-178)  This study found 

that patients who developed AF were more likely to have experienced a mean potassium 

concentration <4.5mmol/L than those who did not.   The study concluded that maintaining 

potassium concentrations >4.5mmol/L may reduce the risk of developing AF.  However, most 

patients who did not suffer AF experienced potassium concentrations below the mean potassium 

concentration recorded in the AF group prior to the onset of the arrhythmia.   This is important 

because it suggests that monitoring postoperative potassium concentrations to predict 

postoperative atrial fibrillation is unlikely to be successful.  This finding will inform future work on 

the development of models for this purpose.  Magnesium replacement therapy was associated 

with the development of AF.  This may be due to the administration of magnesium as prophylaxis 

in patients who a clinician deemed to be at high risk of AF (e.g. those experiencing multiple 

premature atrial ectopic beats) and this finding should be explored in a randomised controlled 

trial. 

 

12.2. Narrative review of problems encountered during the data collection phase of this 

thesis 

12.2.1. Delays related to information technology (IT) infrastructure 

The extraction of data from the clinical governance database, the perfusion database and the 

hospital pathology databases was relatively was straightforward.  As described in chapter 5, 

manual checks were required to ensure the completeness of data from these sources.  However, 

the vast majority of data was obtained reliably and quickly with no need for particular upgrades to 

any IT infrastructure. 

Conversely, data extraction from the Draeger Innovian EPR and bedside monitors was much more 

complicated and resulted in delays to the project.    After gaining ethical approval for the research 

programme, a substantial amount of funding was spent on the acquisition and installation of a 

dedicated Draeger Infinity Gateway report server.  This server was acquired to safeguard the 

clinical data on the live clinical server.  If searches and data extraction exercises were performed 

on the live server, the increased workload could have impaired function of the EPR on the ICU.  

There was also a small potential risk of corrupting the live data while accessing it to generate 

reports.  Once the Gateway server was installed, data from the live clinical server were 

transferred to the report server.  Data searches and extraction could then be performed on the 
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report server without any effect on the live clinical server.  Unfortunately the setup of the server 

ran into problems.   

The transfer of the EPR data to the report server was performed relatively quickly.  This allowed 

the extraction of data from the EPR to be performed relatively early in the research project.  Data 

collected from the EPR were therefore cleaned and ready for analysis early enough to allow the 

work presented in chapters seven to ten to be performed. 

Unfortunately the recording of waveform data from the Draeger infinity bedside monitors was 

much more complicated.  Prior to registering for the thesis, enquiries were made to Draeger and 

it was understood that the waveform data would be exported from the monitors via HL7 protocol 

and saved onto the report server.  When the Gateway server was delivered (four months after 

registration on the PhD programme) it was discovered that the HL7 export only supported a 

frequency of 6Hz. Clearly, no waveform could be reproduced using data of such low resolution.  

Consequently, a whole new approach to access the data was devised.   The solution required 

access to an extra piece of Draeger software, the Win API, which was kindly installed free of 

charge after a delay of a further six months.  During this period other compatibility issues were 

identified and overcome during the installation of the Gateway report server.  Fortunately no EPR 

data were lost due to these delays.  The data were all still recorded onto the live clinical server.  

Once the Gateway server was available all data were transferred over and accessed 

retrospectively.  

The Win API software was to be used to interrogate the report server and record the data passing 

through the report sever as shown in Figure 4-8.  Unfortunately, the software was unable to 

perform as intended in its original format.  Fortunately, software engineers from our research 

collaborator in the BHF funded programme, Rinicare Ltd, were able to re-engineer the software to 

make it fit for our purpose.  This process took an additional three months and identified a final 

problem with the hospital’s IT infrastructure.  Some of the switches which were transferring data 

from the live server to the report server did not have enough bandwidth to transmit all of the 

data contained within the waveform files.   Identifying the source of the problem and upgrading 

the switches took a further three months.  In total, collection of the waveform data was delayed 

by 14 months.  Unfortunately as shown in figure 4-8, until the API was functioning there was no 

mechanism to prevent waveform data being deleted after it had been displayed on the bedside 

monitor. 
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12.2.2. The WannaCry malware attack in May 2017 

In May 2017 the WannaCry malware attack infected a number of NHS computers throughout the 

UK.(179)  In response to the potential risk of harm posed to the hospital trust all computers and 

servers running Windows XP were shut down for a prolonged period.  Unfortunately, this included 

the bedside monitors on the CICU.  Consequently all data recording was stopped for a 10 day 

period.  This unfortunate event enforced the division of data into two subsets; that collected 

before the shutdown and that collected afterwards.  This unexpected event resulted in the loss of 

data from around 30 patients who were admitted to the CICU during the period when the 

electronic records were shut down.  However the enforced division of the dataset allowed the 

early subset of live data to be analysed while collection of data continued in the second subset.   

As the early subset was available earlier than expected, the processing of the ECG output files 

began ahead of time.  This was useful because the removal of noise and identification of key 

components within the waveform was a complicated process.  When the final dataset (containing 

both the early and late cohorts) was produced, techniques developed on the early dataset could 

be transferred easily to the complete dataset. 
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12.3. Strengths and limitations of this thesis  

This subsection discusses the key strengths and weaknesses of the methodology used in this 

research programme to provide context for its findings.  Firstly, considerations pertaining to the 

research programme as a whole are discussed. Subsequently, strengths and limitations of 

analyses performed within specific chapters are discussed.    

12.3.1.  Data quality 

The methodology of data capture for the studies presented in this thesis is a key strength of the 

project.  As outlined in the introduction, cardiac surgery patients are an ideal group in whom to 

conduct risk prediction analyses.  The patients have broadly similar clinical backgrounds; they all 

have cardiovascular disease but are fit enough to survive major surgery.  Patients all undergo one 

(or occasionally more than one) procedure performed by one of a small number of specialist 

surgeons.  All patients treated in this institution are managed on the same critical care unit and 

are at risk of a well described range of complications.  This homogeneity increases the chance of 

identifying associations within the dataset.(18) Moreover, physiological monitoring data are 

reproducibly collected during and following cardiac surgery using dedicated monitoring 

devices.(47)  The overall quality of the data analysed for this thesis was therefore high.  This was 

not because the data were recorded specifically for research but because the data were “real 

world” data that were clinically important.  The clinical necessity of high quality data resulted in 

the high quality of the collected dataset.  Nevertheless, data quality was not perfect and the 

reasons for and consequences of lapses in the quality of data are discussed below.  

Erroneous data 

“Real world” data contain erroneous information despite the best efforts of those involved.  The 

vast majority of data points analysed in this research program were entered into the Draeger 

Innovian EPR.  Therefore, the EPR-derived data contained the most errors.  The reasons for the 

presence of erroneous data within a database are often related to the method by which data 

entry occurs.  Many of the parameters contained within the dataset were entered manually into 

the EPR or the clinical governance database by clinicians or administrators.  These variables 

included measured physiological parameters such as urine output and temperature as well as 

oxygen, medication and fluid administration.  Wherever manual data entry occurs there is 

potential for introduction of errors.(180)  In the database used in this thesis, implausible manually 

entered values were identified using automated algorithms during data cleaning.  Errors 

encountered included “wrong field” errors where a parameter was recorded in the box related to 
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a different parameter.  The other common type of error was the typographical error in which the 

entry in the correct box contained a spelling mistake or inappropriate punctuation.    

Where “wrong field” errors were identified, erroneously entered data were removed so that 

erroneous data were effectively ignored.  Data that had been entered into an inappropriate field 

were not reassigned to another field as there was an element of uncertainty as to field in which 

the values were supposed to be recorded.  Consequently, “wrong field” errors resulted in the loss 

of data entered into the wrong field.   

Typographical errors were corrected wherever possible using reproducible algorithms.  For 

example, a temperature of “36..7” °C or a ventilatory mode of “BiPAPABS” was easily corrected to 

“36.7” °C or “BiPAP/ASB” respectively.  However, clearly implausible entries which were likely to 

have been entered by mistake but which resulted in ambiguous entries e.g. a GCS of “18” were 

removed.         

Many parameters were recorded automatically from patient monitors rather than requiring 

manual input.  This approach minimises the risk of “wrong field” and typographical input errors.  

However, the use of automated entry introduces the risk of recording values which have been 

measured when equipment was not recording appropriately.  For example, where artefacts were 

present on the ECG the monitor’s algorithms may have calculated a heart rate inaccurately.  

Similarly, if medication was being administered through a central venous catheter lumen which is 

also being used to transduce central venous pressure, inaccurately elevated central venous 

pressures may have been recorded.   To mitigate the risks associated with automated data 

collection clinicians are required to manually verify values entered automatically into the EPR.  

Despite this failsafe, clearly erroneously recorded values were encountered. In particular, for 

central venous pressure, a large number of implausibly high values were encountered.  Where 

physiologically improbable values were recorded a “flag” was attached to the reading.  During 

analyses flagged readings were excluded.   

While the treatment of erroneous data during the cleaning process resulted in data loss, as the 

cleaning codes developed were semi-automated, they were reproducible and are unlikely to have 

introduced bias into the analyses. Erroneous readings which remained within the physiologically 

appropriate range could not be identified and will have remained within the data analysed.    

Missing data 

Missing data were also identified as an issue across the majority of data sources used to construct 

the final dataset.  It was apparent that some episodes of re-operation had been omitted from the 

clinical governance database.  This may be because these procedures tended to be performed as 
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emergencies and many such procedures were performed out of hours.  As reoperation is an 

important event as well as a risk factor for other adverse outcomes a robust cleaning code was 

created to identify any missed trips to theatre.  Once identified, missed trips were added 

manually to the final database. 

Some blood test results were also missed during the automated data capture.  This usually 

occurred because the patient’s location (which was used to extract all bloods results for patients 

on CICU) was entered incorrectly.  To remedy these omissions, cleaning code was created to 

identify every day for which a patient’s results were not present.  A list of potentially missing data 

was then used to guide manual interrogation of the clinical records and wherever a previously 

unidentified value was identified this was entered into the dataset. 

Due to the complex nature of the surgery performed and the critical care required 

postoperatively, physiological values are usually recorded hourly for all patients receiving ICU care 

following cardiac surgery.  Occasionally, where patients were fit for ward care but were not 

discharged for logistical reasons the frequency of observations was reduced to four hourly.  Urine 

output was particularly well recorded as almost all patients were catheterised at the time of 

surgery making hourly urine output measurement straightforward.  There is a well-established 

practice of leaving the value blank if no recording was made and only entering “0” where no urine 

was produced rather than when the output was simply not measured.  The analyses performed 

within this thesis were therefore performed using high quality and frequently recorded data 

points.  Occasionally, missing data did cause a problem. For example, central venous pressure 

values were unavailable after the central venous catheter had been removed.  However, missing 

data were always handled in a reproducible way as described in the methodology of each results 

chapter.  It is therefore unlikely that missing data had a significant effect on the results obtained.  

12.3.2.  Study location 

All analyses were performed on data that were collected from one site.  Patients were managed 

according to local protocols and even where management was individualised, decisions were 

made by a small number of clinicians.  Consequently, differences in postoperative treatment 

methods were a relatively small.  This is important because differences in postoperative 

management represent a potential confounding variable within this dataset.  Patients were 

monitored according to standardised protocols so there was also little variation in the availability 

of data for different patients.    

Importantly, treatments and outcomes observed in this single centre dataset may not be 

representative of care delivered across different sites.  As a result, any associations between 
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independent variables and outcomes identified during this thesis may not be replicated in other 

centres.  This potential problem is exacerbated by the case-mix encountered at Wythenshawe 

Hospital.  As a quaternary referral centre, the institution receives patients from all over the North 

West of England and Wales.  The unit performs cardiac transplantation and provides mechanical 

circulatory support which are specialist treatments which may not be available elsewhere.  The 

patients at Wythenshawe hospital may therefore be more unwell than the general cardiac surgery 

population across the UK as a whole and may receive treatments that are not available elsewhere.  

The cardiac surgery specific scores validated in chapter seven were designed using datasets which 

included patients who had undergone cardiac transplantation and those receiving mechanical 

circulatory support.  Therefore, such patients were included in the validation study in chapter 

seven.  To increase transferability of findings across UK cardiac surgery centres, patients who 

underwent transplantation surgery or received mechanical circulatory support were excluded 

from analyses in chapter eight, ten and eleven.  Patients who underwent transplantation and 

mechanical circulatory support were included in the study comparing outcomes for patients who 

developed AKI in chapter nine.  However, the prolonged length of stay outcome was categorised 

taking into account whether transplantation was performed or mechanical circulatory support 

was initiated.   

Finally, all patients included in this study had undergone cardiac surgery.    While such patients 

have much in common with other patient groups on the critical care unit it cannot be assumed 

that the findings of this thesis will be confirmed in studies involving different patient groups.   

12.3.3.  Sample size 

Despite the datasets used for each study containing over 2200 patients the numbers of adverse 

outcomes, particularly mortality, were low.  The low number of outcomes affected the analyses 

used in each of the results chapters.  The main effect of the low number of outcomes was the 

limitation of the number of confounding variables for which adjustment could be made.  It is 

widely accepted rule that there should be at least five and ideally ten outcomes in the dataset for 

each predictor variable included in a logistic regression model.(181, 182)  Consequently, logistic 

regression analyses adjusting for the effect of confounders on mortality rates in this thesis were 

limited to the inclusion of one or two confounders.  To mitigate this limitation, the logistic 

EuroSCORE(5) was used widely throughout this thesis to control for overall pre-operative 

morbidity and surgical complexity.  The Logistic EuroSCORE has been extensively validated.(173, 

183-185)  While calibration of the score has decreased overtime, resulting in over-prediction of 

risk, the discriminative ability of the model remains good.  Risk adjustment using the logistic 

EuroSCORE is therefore statistically appropriate. Effects of sample size on the specific studies 
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reported in specific chapters are discussed in the relevant results chapters.  Any attempt to 

increase in the size of the dataset would require either a multicentre approach or a prolonged 

study duration.  The consequences of these strategies are also discussed below in the section 

focused on future work.  

12.4. Specific considerations for particular studies  

The three models validated in chapter seven predict mortality following cardiac surgery.  

Mortality following cardiac surgery is low and has been falling in recent years.  Consequently, 

despite including over 2000 patients, only 41 deaths were observed in the dataset analysed. This 

limited the quality of the recalibration that could be performed as reliable recalibration is 

dependent on the dataset containing an adequate number of outcomes.   

In chapter eight, the use of the Sepsis-3 criteria were modified slightly.  In the original guideline it 

was stated that the baseline SOFA score should be assumed to be zero and changes should be 

measured relative to this assumed baseline.  The study showed that the more than 90% of cardiac 

surgery patients had SOFA score >2 on the first postoperative day.  Therefore, it was decided to 

use the day one score as a baseline for each patient.  This meant that a change in SOFA score 

could only be assessed from day two onwards.  This precludes the identification of sepsis before 

the second postoperative day.  While it would be unusual for a patient, particularly a patient 

undergoing elective surgery, to develop sepsis on the first postoperative day, this remains a 

limitation of the study.    

The design of the new risk prediction model for the analysis of urine output described in chapter 

ten was subject to a particular limitation.  It was not possible to adjust risk estimates for severe 

oliguria taking into account the administration of fluids or medication or the use of renal 

replacement therapy. The model has been shown to work well for cardiac surgery patients on our 

critical care unit.  However, interventions may be performed slightly differently in our institution 

than at other centres and results may therefore not replicate across other centres where different 

approaches to interventions to correct low urine output are made.  The calibration of the model 

in the cardiac surgery cohort was best after the initial 24 hours.  The calibration in the first 24 

hours may have been influenced by the success of clinical interventions aimed at improving urine 

output in this early postoperative period.  The overestimation of risk in the early stages may also 

have been due to recovery from the major but temporary physiological insults of cardiac surgery 

and cardiopulmonary bypass. For patients on the general ICU who have not experienced the same 

surgical insult, the models predictions may be more reliable in the early stages of their ICU stay.  

Performance of the model in such populations should be investigated.     
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In chapter 11 it was demonstrated that the association between serum electrolyte concentrations 

and the onset of atrial fibrillation after cardiac surgery was not straightforward.  The analyses in 

this chapter were based on the classification of patients into groups who did and did not develop 

atrial fibrillation during the postoperative period.  This classification was made based upon the 

heart rhythm recorded in the electronic patient record by doctors and nurses treating the patient.  

While there is no reason to believe the classifications to be inaccurate it was not possible to verify 

that heart rhythm diagnoses were correct. 

 

12.5.  Recommendations for future research 

12.5.1.  Overall plan for research programme 

As stated previously the work described within this thesis lays the foundation for future research 

using the dataset that has been created.  The continuation of the BHF-funded project will ensure 

that the dataset continues to be expanded using protocols designed as part of this thesis.  The 

project’s collaborators at Durham University will continue to develop risk prediction models 

guided by the author of this thesis and the supervisory team.  Models developed using the dataset 

created for this thesis will require validation in other cardiac surgery cohorts.  Transferability 

across different critical care populations should then also be confirmed in further validation 

studies.  Finally, clinical usefulness of models developed should be tested in clinical trials.   It is 

envisaged that during such trials outcomes for groups of patients treated by clinicians who have 

access to the model’s predictions will be compared with outcomes for groups treated by clinicians 

who do not.      

Rinicare Ltd, a collaborator in this project, will develop software which can run the risk prediction 

models that are developed in real-time to provide up-to-date estimates of patient risk at the 

bedside.  Such software would be used in the trials mentioned above.  If such trials are successful, 

it is anticipated that within five to ten years a software suite will be available as an “add on” to 

existing software produced by the major providers of patient monitoring equipment. 

12.5.2.  Recommendations based on the work presented in specific chapters 

While the models validated in chapter seven discriminated well, they should be recalibrated in a 

larger cohort of patients before their predictions can be considered to be accurate.  Successful 

recalibration would require a dataset much larger than that used in this thesis.  Consideration 

should be given to the purpose of recalibration before selecting the means of increasing the size 

of the dataset.  If the predictions are to be used to guide treatments or inform discussions with 
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relatives then the recalibration should be performed using a larger dataset from the institution in 

which the model will be used.  Collecting such a large dataset from even the largest single centre 

would take many years.  Consequently, such a dataset is likely to be susceptible to the effects of 

calibration drift.  If the models are to be used to benchmark performance of cardiothoracic critical 

care units, the models should be calibrated using a large dataset gathered from across multiple 

centres.  If this is the case predictions will not be as accurate when used in an individual 

institution as they would if the recalibration were performed using data from that institution 

alone. The discrimination of all three models was adequate to recommend their use for 

stratification of risk within the critical care unit.  Future trials could investigate whether targeting 

resources according to predicted mortality risk is associated with an improvement in clinical 

outcomes. 

The validation of the use of the Sepsis-3 criteria to identify those with sepsis discussed in chapter 

eight should encourage further studies to validate the use of the criteria across different patient 

groups in multiple institutions.  The validated definition defines the onset of sepsis as the time 

when infection is suspected in the presence of an increase >2 in the SOFA score.  This endpoint 

point could be used to identify patients who suffer sepsis and the time at which a diagnosis of 

sepsis is made.  Further work could then seek to identify trends in the physiological data of these 

patients leading up to the diagnosis.  Novel risk prediction algorithms could then be designed to 

recognise these trends and identify those at greatest risk of developing sepsis. 

Chapter nine concludes by recommending that the KDIGO AKI guidelines be revisited to modify 

the significance attached to isolated oliguria.  Such a recalibration would make the system more 

clinically useful by reducing the number of patients who are classified as suffering AKI by urine 

output alone; the vast majority of whom have very good outcomes.   As discussed in the previous 

subsection, the model developed in chapter ten should be applied to other patient groups in 

other settings to ensure its transferability.  The use of the model should be the subject of a clinical 

trial in which outcomes for a group patients treated by clinicians who have access to the model’s 

urine output predictions are compared with outcomes for group treated by clinicians who only 

have access to raw urine output data and KDIGO AKI stage classification.   Importantly, this 

chapter demonstrated the feasibility of analyses where a patient’s own parameters are analysed 

and modelled to predict future values.  Further work will aim to transfer this approach to other 

physiological parameters.  Work already underway by the team working on this project will aim to 

use a similar approach to develop a risk prediction model to identify those at highest risk of 

developing atrial fibrillation after cardiac surgery.  The work described in chapter eleven of this 

thesis demonstrated that analyses of serum electrolyte concentrations are unlikely to be useful 
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for this purpose.  Rather, the model will analyse the ECG data collected as part of this project with 

the aim of identifying subtle differences in the ECG waveforms compared with the modelled 

predictions which indicate increased risk of subsequent atrial fibrillation.  The surprising 

association between magnesium replacement and onset of postoperative AF should form the 

basis of a randomised controlled trial.  

 

12.6  Conclusions 

A comprehensive dataset has been created for patients undergoing cardiac surgery at 

Wythenshawe Hospital.  Analyses performed using this dataset validated three risk scores for ICU 

mortality as well as the Sepsis-3 criteria for the identification of those at risk of poor outcomes 

related to sepsis.  Analyses of the performance of the KDIGO-AKI guidelines provided evidence 

that the criteria used to stratify AKI according to urine output require recalibration before they 

can reliably be applied to cardiac surgery patients.  An alternative means of analysing urine output 

to better identify those at risk of adverse outcomes related to renal dysfunction has been 

proposed and validated.  Finally, work that will inform the development of models to predict atrial 

fibrillation has been presented.  The established research programme will continue with the 

overall aim of producing a patient monitoring software suite which can alert clinicians to 

increasing risk of various complications in individual patients.  
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