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ESI Electrospray ionisation 

FA Factor analysis 

FAB Fast atom bombardment 

FOV Field of view 

FT-ICR Fourier transform ion cyclotron resonance 

FWHM Full-width half maximum 

HPLC High performance liquid chromatography 

ICA Independent component analysis 

iCAT Isotope-coded affinity tags 

iid Independent, identically distributed 
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IR Infrared 

ITO Indium tin oxide 

iTRAQ Isobaric tag for relative and absolute quantification 

LAESI Laser ablation electrospray ionisation 

LD Laser desorption 

LP-ICA Linear Poisson independent component analysis 

LPM Linear Poisson modelling 

LSIMS Liquid secondary ion mass spectrometry 

m/z Mass-to-charge ratio 

MALDI Matrix-assisted laser desorption/ionisation 

MAX SEP Maximisation separation 

MCP Microchannel plate 

MRI Magnetic resonance imaging 

MS Mass spectrometry 

MS/MS or MSn Tandem mass spectrometry 

MSI Mass spectrometry imaging 

NMR Nuclear magnetic resonance spectroscopy 

NNMF Non-negative matrix factorisation 

PC Phosphatidylcholine 

PCA Principal component analysis 

PCoA Principal coordinate analysis 

PD Plasma desorption 

PE Phosphatidylethanolamine 

PET Positron emission tomography 

PG Phosphatidylglycerol 

pLSA Probabilistic latent semantic analysis 

PMF Probability mass function 

PNA Paranitroaniline 

PNS Peripheral nervous system 

PSD Post-source decay 

REIMS Rapid evaporative ionisation mass spectrometry 
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RF Radiofrequency 

RGB Red-green-blue 

RMS Root mean square 

S/N Signal-to-noise ratio 

SA Sinapinic acid 

SALDI Surface-assisted laser desorption/ionisation 

SILAC Stable isotope labelling of amino acids in cell culture 

SIMS Secondary ion mass spectrometry 

SM Sphingomyelin 

SRM Selected reaction monitoring 

SSIMS Static secondary ion mass spectrometry 

SVM Support vector machine 

t-SNE t-distributed stochastic neighbour embedding 

TAG Triacylglycerol 

TFA Trifluoroacetic acid 

TIC Total ion count 

TLC Thin layer chromatography 

TOF Time-of-flight 

UV Ultraviolet 

YAG Yttrium aluminium garnet 

YLF Yttrium lithium fluoride 
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Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry is an 

analytical technique used for identifying molecules on the basis of their mass-to-

charge ratio, facilitating the analyses of intact large biomolecules through soft 

ionisation. The technique suits a wide range of biomedical applications, with 

potential for biomarker discovery. However, quantitative MALDI analysis is very 

difficult because of the complex variations introduced during sample preparation, 

the ionisation process and data acquisition. An analysis method was therefore 

developed based on linear Poisson independent component analysis (LP-ICA) that 

appropriately addresses signal and noise statistical modelling. It was validated on real 

MALDI mass spectra that have been pre-processed using in-house algorithms. LP-ICA 

works by extracting independent components within the mass spectral data set, 

describing underlying variations in the mass spectra. 

In order to validate the LP-ICA approach, three data sets were acquired using 

different binary mixtures of complex biological lipid samples, chosen to mimic the 

complexity of different types of biological tissues that might be imaged by MALDI-

MS. These include cow and goat’s milk, lamb brain and liver, and lamb brain’s white 

and grey matter, at varied relative concentrations to provide known “ground truth” 

data sets for the analysis. The resulting quantitative analysis achieved twice the 

accuracy of the conventional approach using a single mass-to-charge peak associated 

with a particular biological sample composition. Moreover, it made use of 

information from the entire mass spectrum, without bias. 

The application of LP-ICA analysis was then extended to MALDI-MS imaging data, 

where mass spectra are acquired at an array of locations across a thin tissue section. 

Extraction of mass spectral components from a post-ischemic stroke rat brain tissue 

cross-section image was successful, where the component images can distinguish 

sub-types of brain tissue. The brain contains a number of different types of lipid-rich 

tissue phenotypes which can be differentiated by biomolecules found to be specific 

to distinct anatomical regions. LP-ICA is also shown to have potential for the 

automatic identification and characterisation of healthy and diseased tissue regions. 
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Chapter 1  

Introduction 

 

1.1   Important Concepts 

Mass spectrometry (MS) is an analytical tool for molecular characterisation by the 

measurement of the mass-to-charge ratio (m/z) of gas-phase ions. MS technologies 

have been actively developed throughout recent decades for higher performance, 

including, mass resolution, precision and sample throughput. A variety of ionisation 

methods coupled with appropriate mass analysers can be selected, to give optimal 

performance, matched to the analytical application. 

Matrix-assisted laser desorption/ionisation (MALDI) is a soft ionisation mass 

spectrometry technique, invented by Karas and Hillenkamp (1988). Koichi Tanaka 

and co-workers (1988) made key developments leading to intact ionisation of the 

large proteins with masses above 30 kDa. Tanaka was later awarded a share in the 

Nobel Prize in Chemistry in 2002, sharing with John Bennett Fenn who developed 

electrospray ionisation (ESI) and Kurt Wüthrich who used nuclear magnetic 

resonance spectroscopy for determining the three-dimensional structure of 

biological macromolecules in solution. MALDI has particular usage in analysing 

biomolecules, which are normally large and involatile. When a laser irradiates a 

sample surface, the energy is preferentially absorbed by a matrix compound which 

has been deposited and co-crystallised with the analytes in the sample. The matrix 

assists in ionisation of analytes with which they have been co-crystallised. The use of 
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a matrix prevents unwanted damage to large molecular structures, yielding intact 

ions of the analytes of interest. MALDI-TOF-MS is well-known for its ability to acquire 

spectra across a wide mass range, and is a powerful qualitative analytical tool. The 

technique is increasingly used in proteomics, lipidomics, metabolomics, and studies 

of other large organic/inorganic molecules such as polymers, with a wide range of 

applications, including medical, pharmaceutical, forensic, food and environmental 

sciences (Fuh et al., 2017; Bonnel et al., 2018; Li et al., 2017; de Koster and Brul, 2016; 

Avanzi et al., 2017). One of the strengths of MS is that it can determine the m/z ratio 

for multiple analytes in a sample within the same acquisition. Thus, MS data is very 

informative, containing many m/z peaks, which allows flexibility in targeting the 

molecules to be investigated. 

Biomolecules can be large, complex, and challenging to characterise. The advantages 

of MALDI mass spectrometry outlined above, make the technique able to bridge the 

gaps and/or complement other well-established in-vitro analysis techniques. 

Immunohistochemistry, is a widely used imaging technique to detect an antigen-

antibody binding site for protein within cells or tissues, providing microscopic views 

of biological samples. Note that more than one antibody is often required to target 

a particular protein as one might not be specific enough to that protein. Other 

standard analytic spectroscopy techniques such as nuclear magnetic resonance 

(NMR) or infrared (IR) spectroscopy, are widely used too. Relative to MS, NMR is 

considered a better method for structural identification, whereas IR, shows only the 

functional groups of molecules within the sample but IR is also capable of direct 

tissue imaging. However, NMR requires the analytes to be purified. Biomolecules are 

unlike synthetic polymers, which are composed of identical serially repeated units 

throughout their molecules. Instead, greater variation of monomers is observed 

within large biomolecules of typically >1000 Da (Jacobsen, 2016). This usually reduces 

the specificity of the NMR to determine molecules. For this reason, NMR typically 

only works well when analysing smaller peptides of a few repeated amino units. On 

the other hand, tandem MS or MSn with 𝑛 multiple MS stages, can provide structural 

information for an analyte based on its fragmentation. Furthermore, MALDI-MS 

together with other soft MS methods, e.g. desorption electrospray ionisation (DESI), 
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laser ablation electrospray ionisation (LAESI), secondary ion mass spectrometry 

(SIMS), are capable of molecular imaging on thin tissue slices. 

MS in medicine and biology has grown rapidly since the developments of MALDI and 

ESI. Current research has major focuses in oncology and neurology (Liu et al., 2018; 

Kaya et al., 2017), uncovering the biology/pathology that can guide treatment 

directions for diseases. Given that MS techniques are sensitive to trace analytes 

within small volumes of sample, it has potential for biomarker discovery, 

toxicological studies, etc. Expanding the medical applications of MS from routine 

clinical laboratories, to use during surgical operations, is also becoming a promising 

possibility (Phelps et al., 2018). This approach could provide rapid and accurate 

diagnoses, directing personalised medicine and influencing clinical decision making 

in real time. Medical imaging using MALDI-MS, can give local information of chemical 

compositions in tissue sections, and hence normal or abnormal regions can be 

recognised. Combining results of mass spectrometry imaging (MSI) with other 

medical imaging modalities, e.g. magnetic resonance imaging (MRI), positron 

emission tomography (PET) is possible, when available, to study the biology 

associated with stages of disease and understand the causes (Lohöfer et al., 2018; 

Henderson et al., 2018). The complexity of the technical procedures used requires 

experienced users to perform the experiments, and gain optimal outcomes – i.e. 

from appropriate parameter adjustment. 

However, analysis of MALDI-MS results is complicated by a number of sources of 

variance produced before, during, and post-acquisition. These may come from 

complex MALDI ionisation processes, contaminants, chemical noise, suppression 

effects, and other uncontrollable parameters, such as a drift in the flight-time 

measurement of same ion species. Sample preparation techniques can also introduce 

significant variability. Typically, a time-of-flight (TOF) mass analyser is coupled to a 

MALDI ion source, providing reasonably good mass resolution, which varies across 

m/z values. For example the 7090 MALDI-TOF-MS (Shimadzu) can achieve a mass 

resolution of 10,000 (full-width half maximum) at m/z 1200 (Shimadzu, 2013). 

However, mass shift can be observed between acquisitions due to misalignment, 

which happens to be within around 1 Da for simple instruments. All these factors 
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contribute to variation in the resultant mass spectra, causing problems for data 

analysis, and especially quantification. 

Scientific analyses can either be qualitative or quantitative. Qualitative analysis refers 

to descriptive interpretations of data via observation of a process, which is therefore 

considered subjective. On the other hand, quantitative analysis involves numerical 

measurements, allowing for further investigation such as in-depth statistical 

assessments and mathematical modelling. Quantitative or semi-quantitative 

measurements are essential to some experiments, where numerical values are 

required to confirm the basis of theory. In mass spectrometry experiments, the 

measurements usually involve determination of how much of a substance or material 

is present, in absolute or relative terms. Some indicators, generally a change in 

amount of specific analyte detected relative to some form of standards, would 

characterise and/or distinguish complex samples. Several approaches have been 

described for quantitative analysis of MALDI-MS, including computational 

multivariate analysis methods. However, the statistical properties of the data have 

not normally been considered, despite the fact that appropriate assumptions about 

the statistical properties of the data are necessary to form a mathematical solution 

that matches the data behaviour. Also, as measurements cannot be exact, an 

understanding of associated errors and uncertainties is particularly important, so 

that the closest estimation/approximation is obtained when the right assumptions 

are made. An analysis method should be testable by comparing predictions from a 

hypothesis against the measured values from experiments. This topic is still open to 

improvement. 

The aim of this PhD project is therefore to develop a reliable method for quantifying 

the relative signal contributions of the underlying components found in complex 

biological mixtures measured by MALDI-MS, looking deeply into the nature of the 

acquired mass spectra and their sources of variation, aiming for a more accurate 

quantitative MS analysis. This can be related to the absolute concentration of the 

component through the use of an internal or external reference standard. The 

method should look for the source of mixture signal variability and extract 

components (based upon the correlated set of signals) which best describe the 
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relative proportions of molecules present in the sample. This is a model of the 

underlying material as a whole, not focusing only on an individual m/z peak. A mass 

spectrum is normally recorded in the format of histogram, showing the frequency of 

ion counts as a function of m/z. In the case of mass spectra produced on a MALDI-

MS instrument, they are confirmed to have a Poisson error distribution (Deepaisarn 

et al., 2018), in contrast, many data analysis algorithms assume Gaussian errors for 

convenience. Due to the complex characteristics of MALDI-MS, as described above, 

with expected contamination and instability of signal detection, spectral pre-

processing is clearly needed prior to performing further analysis. In-house pre-

processing algorithms employed include resolution reduction, alignment, baseline 

correction (background subtraction) and peak detection. The mass spectral data set 

is not only huge and complex, but it is also high in dimensionality – i.e. each mass 

peak represents the presence of one or a few molecules and thousands of molecules 

may be present in a tissue sample. Spatial variations in signal intensity are also taken 

into account in MS imaging. However, a commonly used approach to quantitative 

analysis using MS data is based on a change in a single peak through multiple samples 

of interest. Other approaches including principal component analysis (PCA) and 

conventional independent component analysis (ICA) are very often used with the 

assumption of Gaussian noise statistics of signal variability (errors of the 

measurements) for the ease of calculation (Gut et al., 2015). If a robust error model 

is to be established, this Gaussian assumption is found statistically inappropriate for 

analysing MALDI-MS data which are expected to have a Poisson behaviour due to 

their sampling process. Therefore, an in-house computational modelling method 

called linear Poisson independent component analysis (LP-ICA) was applied to extract 

the most information contained in the MS data set quantitatively, dealing 

appropriately with the spectral signal and noise statistics. Available modelling 

options are discussed in terms of assumptions on data properties as summarised in 

Table 3.2 – see Section 3.4.3 of Chapter 3, showing the suitability of the LP-ICA 

assumptions to mass spectral data. LP-ICA was initially developed for quantitative 

analysis of planetary images, by Paul Tar (2013) (TINA vision). The method works for 

quantitative analysis of histogram data in general (Tar and Thacker, 2014). It has 

proven to be applicable to the analysis of the MRI parameter: apparent diffusion 
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coefficient (ADC) with applications in cancer imaging. The method was also applied 

to time-of-flight mass spectrometry data, produced by the RELAX system (Gilmour et 

al., 1994), which generates relatively simple mass spectra with only few peak of 

xenon isotopes. This resulted in the quantitation accuracy being doubled in a 

contaminated peak (Tar et al., 2017). On this basis, it was anticipated that the LP-ICA 

method would be applicable for use with MALDI-TOF-MS data which has appropriate 

signal and noise statistical behaviour. By fitting the model to the data, the noise 

distribution shape was confirmed as matching the Poisson assumption via the Bland-

Altman plot (Figure 5.6 – see Section 5.4.2 of Chapter 5). 

 

1.2   Aims and Objectives 

The aims of the research project are;  

 To demonstrate that variability in the MALDI-MS data follows Poisson 

statistics, 

 to develop and validate a quantitative approach for the analysis of MALDI-

TOF-MS / MSI data, using LP-ICA algorithms as a standard platform to obtain 

numerical results and errors,  

 and to demonstrate the use of this approach in biomedical applications. 

These aims break down into the following objectives: 

 Optimisation of the mass spectral signal-to-noise by improving preparation 

protocols for the selected samples, and finding optimal acquisition 

parameters for the MALDI-MS instrumentation used 

 Testing the statistical characteristics of MALDI mass spectra to confirm 

agreement with the assumption on LP-ICA 

 Creation of the LP-ICA routine to model underlying sub-components within 

MALDI mass spectra of biological mixtures (simulated concentrations of 

known biological materials were used to mimic the complexity in real 

biological systems) 
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 Application of the LP-ICA to MALDI mass spectra of a real-world sample: MS 

imaging data of biological tissues 

 Prediction of quantities of underlying sub-spectra which can be linearly 

summed to have a biologically meaningful interpretation 

 Measurement of errors associated with the model’s quantity estimates, 

minimising the errors using an automatic approach, and evaluating the 

resultant model based on theoretical errors 

 Identifying classes of underlying variables in biological samples as modelled 

by LP-ICA – i.e. the ability to classify extracted ICA components as belonging 

to some specific tissue types, and comparing these results with the literature 

 

1.3   Thesis Overview 

The relevant background provided for this thesis includes mass spectrometry 

instrumentation and applications (Chapter 2), and quantitative mass spectrometry 

(Chapter 3). The experimental work was divided into 3 main parts, set out in Chapter 

4, 5 and 6. At the end, the overall summary of the work is discussed with suggestions 

for potential future work (Chapter 7). 

 

Brief Experimental Description 

Chapter 4: Sample preparation protocols and data acquisition parameters were 

assessed for the Kratos AXIMA MALDI-TOF-MS instrument in order that the signal-

to-noise characterisation for mass spectra (for non-imaging, and some aspects 

related to imaging) of selected lipid mass range were optimised. The ability to 

quantify MALDI mass spectra was initially assessed. The general instrumental 

specification of the AXIMA was compared with the superior Kratos 7090 MALDI-TOF-

MS used in acquiring the imaging data presented in Chapter 6. 
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Chapter 5: Binary mixtures of biological samples that varied in proportion, including 

lipid extracts of cow and goat’s milk, of lamb brain and liver, and of lamb brain’s white 

and grey matter, were selected as examples of complex lipid mixtures for generation 

of mass spectral data sets. They are used as artificial samples of complex lipid 

mixtures that mimic real-world variations that might be expected within tissue 

samples but prepared with known relative quantities of underlying composition. The 

analysis is therefore performed on a set of known samples and hence the errors can 

be assessed accordingly. The in-house pre-processing steps were applied to the mass 

spectral data sets prior to the LP-ICA analysis. From these data sets, the LP-ICA 

method of modelling and quantifying variability within the mass spectra can be 

tested and validated. A model was fitted using an extended maximum likelihood 

estimation, based on an expectation maximisation algorithm. Weighted linear 

combinations of certain components provided the quantity estimates for underlying 

biological samples. The prediction accuracy using the model can be calculated and 

assessed with respect to the ground truth. 

Out of the three data sets, white and grey matter samples were considered the most 

sophisticated choice of binary mixtures to test the capacity of the LP-ICA. Dissected 

white and grey matter of lamb’s brain was expected to be more relevant to the goal 

of imaging a brain section, and was used as a final test for the LP-ICA to justify sub-

spectral components of biologically similar samples. 

 

Chapter 6: The LP-ICA analysis was applied to mass spectrometry imaging of a brain 

tissue section taken from a rat model of ischemic stroke where mass spectra were 

acquired on a grid of locations across the brain tissue section. As the brain contains 

different types of lipid-rich tissue which can be differentiated by biomolecules 

specific to anatomical regions, a set of component images showing sub-types of brain 

tissue were extracted. If the identification and characterisation of various tissues in 

brain regions can be automated, the application is likely to move on toward 

identification of other tissue types. 
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Overview of the work done in this PhD thesis is summarised in the flow chart (Figure 

1.1) below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.1  Work flow chart: Outline of the experiments 
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1.4   List of Outputs 

The outputs from research reported in this thesis are listed here as journal 

publications and international conference posters. Other relevant document 

(internal reports, TINA memos: accessible via http://www.tina-vision.net/docs/ 

memos.php), including my first and second year PhD continuation reports, are also 

listed. Note that some materials in this thesis, mainly in Chapter 5 and parts of 

Chapter 6, are mostly covered in the published work. The contributions to these are 

noted on the list of co-authors named below. 
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 Deepaisarn, S., 'First year PhD continuation report: Spectral analysis and 

quantitation in MALDI-MS imaging'; Internal report, TINA memos, 2015-016: 

University of Manchester – Nov 2015 
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 Deepaisarn S., Paul D. Tar, Neil A. Thacker, Ashley Seepujak and Adam W. 

McMahon; ‘Quantifying biological samples using linear Poisson independent 

component analysis for MALDI-TOF mass spectra’; Bioinformatics journal, 

Oxford University Press – OCT 2017 

 

 Deepaisarn S., Adam W. McMahon, Neil A. Thacker, Paul D. Tar and Ashley 

Seepujak; ‘Towards quantitative analysis of MALDI mass spectral data using 

linear Poisson independent component analysis’; 65th ASMS Conference on 

Mass Spectrometry and Allied Topics, American Society for Mass 

Spectrometry (ASMS), Indiana, USA – JUN 2017 
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Chapter 2  

Background I: 

Mass Spectrometry 

Instrumentation and Applications 

 

Generally, mass spectrometers comprise 4 main parts: an ion generator, an ion 

accelerator, a mass analyser, and a detector. There are many combinations and 

varieties of these components suitable for specific analyses. In Section 2.1, a broad 

but brief overview of mass spectrometry is provided, including the types of ionisation 

techniques and mass analysers. MALDI-MS, which is frequently combined with a TOF 

mass analyser, will be discussed thoroughly in Section 2.2 because of its specific 

relevance to this work. A basic introduction to lipidomics and the application of 

MALDI-MS in lipidomics are reviewed in Section 2.3. Finally, the application of MS 

imaging to lipid analysis, which is the focus of the experimental work in Chapter 6 of 

this thesis, is introduced in Section 2.4. 
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2.1   Fundamentals of Mass Spectrometry 

Mass spectrometry is an instrumental/analytical method for identifying and 

quantifying a range of types of analyte. Mass spectrometry (MS), involves the 

separation of charged molecules, in the gas phase, on the basis of their mass-to-

charge ratios. These data are presented as a mass spectrum; a plot of ion signal 

intensity against mass-to-charge ratio. 

The principles of mass spectrometry have developed from the work of Eugen 

Goldstein (1886), a German Physicist in late 19th century who observed (positively 

charged) “anode rays” in a gas discharge tube made from glass containing low-

pressured gas. The rays were accelerated along the direction of the applied electric 

field. Wien (1897) investigated the deflection of anode rays when projected through 

either electric or magnetic fields. He found that the degree of bending varied when 

different types of gas were present. One of Wien’s experiments using parallel electric 

and magnetic fields in a discharge tube had led towards the first mass spectrometer 

constructed by J.J. Thomson (1907) and improved by Aston, which could record mass-

to-charge information in a mass photograph. J.J. Thomson reduced the pressure in 

an observation tube so that it reduced scattering of the beam of charged particle 

before reaching the detecting wall. Also, he improved sensitivity by using a Zn2SiO4 

(Willemite) detector that could emit relatively intense visible radiation onto a 

photograph compared to normal glass fluorescence (Münzenberg, 2013). This set-up 

produced the mass spectrograph with the expected parabolic paths for a beam of 

ionised hydrogen atoms (H+) and ionised hydrogen gas molecules (H2
+) that were 

deflected in electromagnetic fields, according to their mass-to-charge ratios 

(Münzenberg, 2013). His invention of the mass spectrometer with the assistance of 

Aston led to Thomson’s discovery of neon isotopes in 1913. Later, Aston (1919) found 

that separate regions of electric and magnetic fields aligned at 90° was a preferred 

design and managed to build the first quantitative mass spectrograph. The literature 

reviews by Karl Wien (1999) and Münzenberg (2013) provide a detailed history of 

mass spectrometry development in the early dates with clear explanations of those 

early experiments. 
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Being an excellent tool for the study of isotopes is not the only advantage of mass 

spectrometry. Today, it plays an important role in analytical chemistry with 

applications in many branches of science such as biology, nuclear physics, 

pharmacokinetics, forensic science, medical imaging, etc. Mass spectrometry 

techniques continue to be developed since its invention. Many types of mass 

spectrometer have been produced for research and also for commercial purposes.  

 

2.1.1   General Background 

The mass-to-charge ratio in mass spectrometry is typically represented by the 

abbreviation m/z indicating a relative molecular mass per net charge number of an 

ion – The unit is the Thomson (Th), 1 Th = 1.04 × 10-8 kg/C. Where the mass of an 

atomic nucleon is equivalent to 1 Dalton (Da) (or 1.66 × 10-27 kg), and the electronic 

charge is 1.60 × 10-19 C. 

The term ionisation describes a method to turn atoms or molecules into an ionic state 

where they carry net positive or negative charge(s). In mass spectrometry, molecules 

require enough energy to both vapourise and then ionise, perhaps in a vacuum, 

which allows them to be accelerated in an electric field. The ionisation and 

acceleration regions together comprise the ion source which generates an ion beam 

that enters the mass analyser. The ionisation method should be matched with an 

appropriate mass analyser. Selection of both ion source and mass analyser should 

suit the applications and analyte types, taking into account the required level of 

sensitivity and selectivity. The ions are separated according to their mass-to-charge 

ratios and then passed to the ion detector separated in space and/or time. The ability 

to distinguish the signals from different mass-to-charge ratio ions is expressed in 

terms of mass resolution, or mass resolving power. The definition can vary as will be 

mentioned in Section 2.2.6. The value of the mass resolution is affected by many 

factors including ionisation method, ion energy distribution and the detection 

system. All types of mass analysers have their relative strong and weak points. 
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Hard and soft ionisation refers to the amount of energy absorbed by the analyte 

excess to that required for ionisation. Hard ionisation means that energy beyond the 

ionisation threshold energy level is given to analyte molecules, where the excess 

energy can pool to break the bonds within an ion, causing ion fragmentation (Sun, 

2009). A widely used hard ionisation technique is the electron ionisation method, 

where the fragmentation pattern aids in identification of the analyte. Soft ionisation 

is a more gentle method that results in a higher yield of molecular ions. Such methods 

include spray ionisation and desorption/ionisation methods. They also allow 

ionisation of involatile molecules. In general, such ionisation processes involve cation 

adduct formation transferring little energy to the analyte and causing little-

fragmentation, thereby allowing molecular weight determinations but giving no 

structural details. Chemical structure can be studied by adding further dissociation 

energy to ions of selected m/z through collisions, reactions or irradiation, and 

operating in tandem mass spectrometry mode. 

Scanning mass analysers detect a mass-filtered ion m/z value at a time. They are most 

suitable for continuous ion sources. In contrast, time-of-flight mass analysers are 

better suited to pulses of ions. Ion trap devices can store ions and enable scanned or 

pulsed mass analysis from a continuous ion source (Dolnikowski et al., 1988). 

 

2.1.2   Ionisation Techniques 

There are a number of ionisation techniques available for use with mass 

spectrometry. Each specific technique has its own characteristics and suits 

appropriate applications. The principle and uses of some of the major ionisation 

techniques, including, electron ionisation, chemical ionisation, fast atom 

bombardment and electrospray ionisation are discussed in this section. 
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2.1.2.1   Electron Ionisation 

Electron (impact) ionisation (EI) is classified as a hard ionisation method. A high 

energy (70 eV) electron beam from a heated filament collides with gas-phase analyte 

molecules. The collision allows energy transfer from the moving electron to a valance 

electron of an analyte molecule. Given that the energy is greater than the first 

ionisation energy, an electron of the analyte molecule is removed causing the 

molecule to have a net positive charge. Multiply charged ions are also possible but 

less common. The physical process is straightforward and its characteristics are 

simple and almost fully-understood. Mass spectra generated from an EI source are 

usually better for structural determination of the analyte using the typical 70 eV 

electron beam where significant fragmentation takes place, whilst molecular weight 

determination can be performed using a 20 eV electron beam where the molecular 

ion is more likely to be observed (Dagan and Amirav, 1995). Many databases are 

available for EI spectra, as they have been widely used in research. However, it is 

limited to the formation of radical cation ions (Gross and Roepstorff, 2011) which are 

not formed in large quantities during soft ionisation of biomolecules.  

 

2.1.2.2   Chemical Ionisation 

Tal’roze and Ljubimova (1952) introduced a softer method of ionisation called 

chemical ionisation (CI) as seen in the republished paper (Tal’roze and Ljubimova, 

1998). Detailed MS analysis of hydrocarbon compounds can be obtained in either 

positive or negative ionisation modes, which is particularly useful for studying 

biological materials (Harrison, 1980; 1992). This is classified as a soft ionisation 

method in which a proton is transferred to the analyte molecule via a reagent gas, 

leading to less fragmentation than using a direct EI process. Whilst typical energies 

transferred in EI are greater than 10 eV, in CI they are less than 5 eV (Chapman, 1995). 

CI involves electron impact ionisation of the reagent gas. Examples of such reagent 

gases are methane, ammonia, isobutane, acetone, benzene, etc. (Gross, 2004). Then, 

secondary reactions between gaseous reagent, ions and molecules create more ion 

species. Analyte molecules subsequently participate in a chemical reaction with 
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these reagent gas ions to form analyte ions. Positive ions are produced by proton 

transfer, anion abstraction, charge exchange, or electrophilic addition, whereas 

negative ions can be created via electron capture or proton abstraction (Gross, 2004). 

Collision rates can be increased with a combination of sufficiently high pressures, and 

ion source residence time, which then give a sufficient ion yield (Field and Munson, 

1965; Griffith and Gellene, 1993). 

 

2.1.2.3   Fast Atom Bombardment 

Fast atom bombardment (FAB) is a soft ionisation technique developed at the 

University of Manchester by Barber and coworkers in 1981 to help ionise thermo-

labile and involatile biological molecules in mass spectrometry. A neutral particle 

beam, normally a noble gas such as Ar, is directed onto the sample surface at the rate 

of about 1010-1011 atoms∙s-1∙cm-2 (Barber et al., 1981). The sample is usually 

dispersed in a glycerol matrix. The matrix is a host material which prevents instant 

transfer of high energy from fast atoms to the analyte that could cause unnecessary 

degradation. During ionisation, the ion chamber is under high vacuum. This ionisation 

method does not require prior sample vapourisation, allowing the analysis of non-

volatile samples by mass spectrometry. The characteristics of the analyte ions are 

defined by the nature of analyte and any added chemicals, such as the matrix 

components. The technique is useful for molecular mass determination and possibly 

structural analysis of high mass organic and inorganic molecules of up to 5.7 kDa and 

25.8 kDa, respectively (Rinehart, 1982). However, high chemical background is a 

significant problem to be avoided. The development of FAB ionisation paved the way 

for the very similar, more sensitive and widely applicable, matrix-assisted laser 

desorption/ionisation method which will be discussed in Section 2.2.1, to the point 

that FAB-MS is now little used. 
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2.1.2.4   Electrospray Ionisation 

Electrospray ionisation (ESI) is another soft ionisation technique where the ionisation 

process differs considerably from the others. In 1914, Zeleny carried out an 

experiment by applying positive electrical potential to ethanol in a glass capillary tube 

and negative potential at a small distance from the tube. He observed positively 

charged ethanol droplets released from the tube towards the negative electrode. 

Electric field strength, sample flow rate, the tube’s diameter and gas pressure are 

important factors, which affect the elongation of the charged sample at the end of 

the tube. All of these influence the size of the droplets, that form from what is known 

as Taylor cone as illustrated by the diagram in Figure 2.1 (Taylor, 1964). The fluid 

droplets evaporate during their flight to the opposite electrode which makes charge 

density increase, until the Coulombic repulsion forces overcome the cohesive surface 

tension of the liquid as expected from Rayleigh’s limit estimation (Rayleigh, 1882). 

The typical voltage applied is around 2 - 4 kV (Standford, 2013). As a result, the 

smaller singly or multiple charged droplets are generated at atmospheric pressure. 

This ionisation method produces a low chemical background. This allows the 

application of electrospray as an ionisation process in mass spectrometry invented 

by Yamashita and Fenn (1984) and the method is still widely used. However, it is 

difficult to control the charge state of the ions formed. Also, the modality requires 

many steps and is selective towards high-polarity analytes. A sample is often 

introduced to the electrospray mass spectrometer via liquid chromatography. 

 

Figure 2.1  Taylor cone (Reproduced from: Wu et al., 2012) 
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2.1.3   Types of Mass Analysers 

The mass analyser is a core part of the mass spectrometer where separation of 

different m/z ions take place. The main methods of mass analysis are 

electric/magnetic sectors, transmission quadrupole, time-of-flight, and various types 

of ion trap. 

Table 2.1 below provides a summary of some features for the 5 types of mass 

analysers. The overviews of principles of these different instruments are given in the 

following parts of this section. However, the mass range and accuracy will depend on 

the instrumental design. Typical values are provided here in the table based on 

literature values. 

 

Table 2.1  Main features for different types of optimised mass analysers 

Mass analyser 
Detection 

mode 

Physical quantity 

for ion separation 

Upper mass 

range (m/z) 

Mass 

accuracy 

Sector Continuous 
Momentum/ 

kinetic energy 
10,000 Sub-ppm 

Quadrupole Continuous Path stability 10,000 20 ppm 

Orbitrap Pulsed Axial frequency 6,000 2-5 ppm 

Fourier 

transform ion 

cyclotron 

resonance 

Pulsed Orbital frequency 

Varies with 

trap size and 

field strengths 

Sub-ppm 

Time-of-flight Pulsed Velocity Unlimited 2-5 ppm 
(Information from: Standford (2013); Marshall et al. (1998); Pedder et al. (1999); Hu et al. (2005)) 

 

2.1.3.1   Electric/Magnetic Sectors 

Sector instruments are types of scanning mass analysers. In a magnetic sector 

instrument, a magnetic field is applied perpendicular to the plane of ion motion so 

that the ions experience centripetal force leading to circular motion. The 180° 

magnetic sector design by Dempster (1918) is the simplest example. At a constant 

magnetic field strength, the ion accelerating voltage is altered in order to scan 

through different values of m/z (Pacey, 1976). In this way, it is possible to adjust ion 

velocities which determine the flight path. In an electric sector instrument, ions with 



45 
 

different kinetic energies are dispersed in circular paths when experiencing a 

centripetal force due to the static electric field in a cylindrically symmetric electrode 

(Herbert and Johnstone, 2002). Ions with the same energy are focused together. 

Much greater mass resolution is achieved using this combined electric and magnetic 

sector design to filter the energy of an ion beam. Various combinations of electric 

and magnetic sectors are possible. 

 

2.1.3.2   Transmission Quadrupole 

For this type of scanned mass analyser, instead of using a magnetic field to disperse 

the ion beam according to mass-to-charge ratios of ions, ions are allowed to pass 

through a quadrupole field (Paul and Steinwedel 1953; 1960). A quadrupole mass 

analyser is composed of 4 parallel rods of monopoles at varying electrical potentials 

(see the diagram presented in Figure 2.2). Opposite pairs of rods at sides have the 

same polarity. They are electrically connected having direct current (DC) voltage and 

radiofrequency (RF) alternating current voltage applied across the pairs of rods. This 

results in an oscillating electric field which can be adjusted to allow only ions with a 

selected mass-to-charge ratio to pass all the way through the gap between parallel 

rods. Quadrupole instruments can apply ion trapping to temporally store ions at a 

given mass-to-charge ratio with use of appropriate Mathieu’s equation parameters 

(March et al., 1989; March, 1997). 

 

 

 

 

 

 

 

Figure 2.2  Quadrupole mass analyser 
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source 



46 
 

2.1.3.3   Orbitrap 

The orbitrap is a modified Kingdon trap. The Kingdon trap is a cylindrical capacitor 

which has a tungsten cathode wire, aligned on the central axis of the anode tube 

made of molybdenum (Kingdon, 1923). The dynamic Kingdon trap has an alternating 

voltage added across the capacitor to trap ions for longer period of time compared 

to the original Kingdon trap which had only a static voltage applied (Blümel, 1995). 

Knight (1981) adapted the shell of the electrodes to be spindle-like where direct 

current voltage is applied such that the centripetal force due to electrostatic energy 

balances the centrifugal force due to ion’s kinetic energy (Perry et al., 2008). This 

induces ion orbits around the wire axis and harmonic oscillation in the longitudinal 

direction. Ions are trapped and their m/z can be determined based upon Fourier 

transform of the axial harmonic oscillation frequency of each ion detected in time 

domain (Hu et al., 2005; Perry et al., 2008), see the diagram shown in Figure 2.3. 

 

Figure 2.3  Orbitrap mass analyser (Reproduced from: Hu et al. (2005)) 

 

2.1.3.4   Fourier Transform Ion Cyclotron Resonance 

Fourier transform ion cyclotron resonance (FT-ICR) can achieve the highest mass 

resolution of all available types of mass analyser. The FT-ICR technique is suitable for 

almost all ionisation methods. A cyclotron frequency is defined as the angular 

frequency at which an ion orbits in a constant magnetic field. This quantity is a 

function of magnetic field strength and ion mass-to-charge ratio. The kinetic energy 

distribution does not influence the cyclotron frequencies. Therefore, high precision 
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and high resolution can be achieved without any energy focusing (Marshall and 

Hendrickson, 2002). The ion cyclotron resonance is then excited by an RF voltage 

pulse causing the charge particles in the detector to oscillate at the resonance 

frequency. Ion image currents detected in the time domain can be converted into 

the frequency domain spectra by a Fourier transform operation. The mass resolution 

of FT-ICR spectra is mass-to-charge dependent. Exceptional resolution is achieved 

using the multi-electrode ICR cell (Nagornov et al., 2014). However, FT-ICR MS is 

relatively time consuming and expensive, as a superconducting device is required to 

produce such a strong magnetic field. Also, the sensitivity is limited since its 

measurements rely on image currents, not a multiplier detector. 

 

2.2   MALDI Mass Spectrometry 

This section aims to give an overview of MALDI mass spectrometry which was 

developed to allow the ionisation of very large biological molecules. Understanding 

MALDI-TOF-MS instrumentation is crucial to describing the nature of mass spectra 

generated and to optimising experimental parameters. The mass spectra not only 

contain useful information associated to analytes, but can also indicate the 

performance of specific instrumental settings and experimental protocols via signals 

and noise behaviour. Obtaining appropriate laboratory methods/conditions are key 

to every analysis, especially in quantitative tasks, where reproducible results are 

necessary. In what follows, the invention, instrumental design, mass resolution, 

matrices and sample preparation of MALDI-MS will be reviewed, with discussion of 

imaging aspect comes later in Section 2.4. 

 

2.2.1   Invention 

Matrix-assisted laser desorption/ionisation is one of the techniques in the desorption 

ionisation family. Desorption ionisation (DI) techniques are classified as soft 

ionisation techniques and include spray methods as well as laser desorption. The 
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processes involve quick transfer of energy to the sample by interactions between 

incoming particles (charged or uncharged) or photons, and analyte molecules in the 

sample, influencing molecular excitations and ionisation state (Busch, 1995). 

Excitation, evaporation and ionisation are almost simultaneous. The desorption 

ionisation techniques were developed specifically to enable vapourisation and 

ionisation of molecules with low volatility that is not possible using EI or CI methods. 

Also, typical methods to bring about sample volatilisation to initiate ionisation might 

introduce too much internal energy to the analyte molecules causing unnecessary 

fragmentation and/or rearrangement. In mass spectrometry applications, the softer 

DI techniques tend to improve the ability to ionise large polymers especially 

biological molecules. 

FAB as discussed in Section 2.1.2.3, is a type of desorption ionisation technique which 

uses fast-moving atoms, as an energetic incident beam. Similar sorts of ionisation 

processes are involved, as for liquid secondary ion mass spectrometry (LSIMS) (Ross 

and Colton, 1983) that was inspired by the previously-developed static secondary ion 

mass spectrometry (SSIMS) (Benninghoven, 1969), except that incident ions are used 

instead of neutral particles. In contrast, plasma desorption (PD) activates sample 

ionisation using high energy ions derived from nuclear fission of the 252Cf isotope 

(MacFarlane and Torgerson, 1976). A time-of-flight mass analyser measures the 

mass-to-charge ratios of the produced sample ions. Typical PD energy is of the order 

of MeV whereas FAB, SIMS and LSIMS use keV energies (Busch, 1995). Moreover, 

primary collision events of the high energy ion beam with a sample molecule could 

trigger secondary impulses with neighbouring molecules, thus increase the ionisation 

and the variety of ion species. In FAB and LSIMS, a matrix material can be added or 

dissolved in the sample solution. The sample-matrix could be removed from the 

deposited area when exposed to the incident beam. Matrix molecules help to absorb 

incident energy and impart the right amount of energy to the sample such that the 

analyte molecules are ionised and separated from the rest of the solvent without 

significant fragmentation. 

Laser desorption (LD) is a distinct approach relative to other desorption ionisation 

techniques where energy exchange is brought about by a beam of photons rather 
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than of particles. LD energy is adjustable and is controlled by choosing the 

corresponding wavelength and fluence of the laser pulses. This method is generally 

used with time-of-flight mass analysers. In mass spectrometry analysis of very large 

biological molecules, a matrix is usually provided so as to mitigate degradation 

problems. The two best-known techniques are matrix-assisted laser desorption/ 

ionisation (MALDI) and surface-assisted laser desorption/ionisation (SALDI) mass 

spectrometry. However, the matrix-free approach is available for light molecules of 

ideally less than 1 kDa (Peterson, 2007). 

MALDI became an ionisation method for mass spectrometry analysis of larger 

molecules, introduced in late 1980s following the interesting work of Japanese 

(Tanaka et al., 1988) and also German (Karas and Hillenkamp, 1988) groups. They 

added matrix substrate into the analyte in such a way that they would form a 

solution. Suitable solvents were added as required. The selected matrix must co-

crystallise with the analytes after solvents are evaporated. Tanaka et al. (1988) 

developed the “ultra-fine metal plus liquid matrix method”, where a mixture of fine 

cobalt powder and glycerol is selected as a matrix in this experiment, which improved 

the capability for producing ions of up to 25 kDa. Karas and Hillenkamp (1988) 

reported the use of nicotinic acid solution as a matrix that enabled 67 kDa bovine 

albumin to be measured. Nitrogen and neodimium-doped yttrium aluminium garnet 

(Nd:YAG) ultraviolet lasers at wavelengths 337 nm and 266 nm were used in Tanaka’s 

and Hillenkamp’s experiments, respectively. The photon-induced MALDI method 

might be used for large polymers e.g. biomolecules with low volatility and usually 

form closed-shell ions. (Li, 2009). The concept is that instead of giving a direct dose 

of laser energy to ionise the analyte, the laser will increase the energy of the matrix 

substance which can then be dissipated to the surrounding analytes in solution. 

Firstly, an energetic fragment of sample-matrix crystal is removed from the sample 

surface. Then, the matrix desorbs, causing itself to evaporate and induces electron-

proton transfers in the analyte molecules. This indirect absorption of laser energy by 

the analyte reduces the damage caused to the molecular structure of analytes, and 

hence, increases the number of useful ions and their stability. However, the 

mechanism behind the MALDI ionisation process is not yet totally interpretable. 
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Typical MALDI-TOF instruments have a mass resolution of more or less 10,000 

(Köfeler et al., 2012). It also tends to have limitations at very high mass due to the 

sensitivity of ion detection systems (see Section 2.2.5) and the complex desorption 

ionisation characteristics of sample-matrix crystals. Therefore, fundamental MALDI 

research focuses on understanding and enhancing its mechanism and performance. 

 

2.2.2   MALDI Ionisation 

The energy source for ion generation in MALDI is the laser photons. Different laser 

sources give different photon wavelengths ranging from the ultraviolet (UV) to 

infrared (IR) regions of electromagnetic radiation. Examples of laser sources and their 

characteristics are provided in Table 2.2. 

 

Table 2.2  Laser sources for MALDI-MS 

Laser type 

Nitrogen 

(gas 

laser) 

Neodymium:YAG (solid-state laser) Erbium:YAG 

(solid-state 

laser) 
Fundamental 

Frequency-

tripled 

Frequency-

quadrupled 

Wavelength 337 nm 1.06 µm 355 nm 266 nm 2.94 µm 

Pulse width Few ns Few ns Few tens ps 
(Information from: O’Connor and Hillenkamp (2007); Menzel et al. (2002); Soltwisch and Dreisewerd, 

(2011)) 

 

A laser shot fired onto a small volume of matrix-analyte crystals on the sample 

surface initiates evaporation and sudden plume expansion due to an increase in 

temperature. This involves electronic, vibrational and kinetic energy excitations, with 

exchange of energy over a short period of time. Energy propagation for MALDI has 

to be completed within a period shorter than the sample’s thermal diffusion time to 

promote proton transfer during the quasi-equilibrium state of the plume, and to 

prevent ions from neutralisation (Knochenmuss, 2013). A pulsed laser generally has 

higher fluence compared to a continuous laser design. It creates ion packets in pulses, 

which works well with the time-of-flight analyser because it allows enough time for 

a packet of ions ionised by a previous laser shot to reach the detector before the next 

one comes. This makes the energy per pulse a more important consideration than 
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that of an individual photon. Therefore, not only the laser wavelength but also the 

pulse width (duration of a pulse) and fluence are taken into account to evaluate the 

energy available for ionisation in each laser pulse. The beam passes through focusing 

optics, in order to generate a near-Gaussian or Top-Hat distribution of energy at the 

surface, to filter out hot spots and to adjust the spot size of the beam on the sample. 

The process of desorption/ionisation is illustrated by the diagram in Figure 2.4. When 

a laser beam is fired at the sample-matrix mixture deposited on a target, some 

fraction of energy is absorbed by the matrix and associated sample molecules. The 

absorbed energy, 𝐸𝑎 in the irradiated sample volume, 𝑉 (determined by spot size and 

penetration depth of beam into the sample), can be expressed in terms of laser 

fluence as follows. 

𝐸𝑎

𝑉
 =  𝛼𝐻                                                           (2.1)                                                                 

Where laser fluence, 𝐻 which is defined as energy per unit area at depth, 𝑧 from 

sample surface decays exponentially as a function of 𝑧 as shown in Equation (2.2) 

(Hillenkamp et al., 2013). 

𝐻 =  𝐻0𝑒−𝛼𝑧                                                       (2.2)                                                             

With 𝐻0 being the fluence at 𝑧 = 0 and 𝛼 being absorption coefficient of sample-

matrix at a specific laser wavelength (Hillenkamp et al., 2013). Therefore, by 

integrating Equation (2.2), Equation (2.1) is obtained. 

 

 

Figure 2.4  Desorption/ionisation process in MALDI 

(Adapted from: Lewis et al. (2006)) 
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As a co-crystallised structure is formed, including molecules of the matrix and the 

sample, energy absorbed by matrix molecules can be pooled in matrix clusters and 

transferred to analyte molecules. Whilst escaping the sample surface, the matrix 

molecules evaporate from sample, some forming matrix clusters, and which are 

involved in ionisation of some of the sample molecules (analytes) as illustrated in 

Figure 2.4. However, the majority of energetic sample molecules are non-ionised and 

leave the sample source as neutrals. Following ionisation and acceleration, an Einzel 

lens brings a divergent ion beam into focus. The ion beam experiences electric fields 

whilst passing through a series of component lenses, causing the ion beam to diverge 

and re-focus (Sise et al., 2005). 

 

2.2.3   Ion Acceleration 

The very first ion accelerator for TOF-MS applications dates back to a simple two-

plate capacitor (Stephens, 1946; Cameron and Eggers, 1948; Wolff and Stephens, 

1953). Where a voltage is applied across the two parallel plates resulting in 

acceleration of ions produced between the plates. The ion potential energy changes 

when an electric field is applied. The sum of the potential energy and the initial 

energy obtained from ionisation procedure (left hand side of Equation (2.3)) will be 

fully converted into kinetic energy (right hand side of Equation (2.3)) after leaving an 

exit grid of the accelerator into the mass analyser, following the law of conservation 

of energy. 

𝑞𝑉 + 𝑈0 =  
1

2
𝑚𝑣2                                                   (2.3)                                                          

Where 𝑞 is ion charge, 𝑉 is electric potential difference at the ion source (typically 20 

kV), 𝑚 is ion mass, 𝑣 is speed of ion when leaving electric field and 𝑈0 is an initial 

energy after ionisation (translational energy). 

However, individual molecules with identical mass-to-charge ratio are rarely ionised 

at exactly the same time or distance, nor do they carry the same momenta. There 

exists some shift in flight-time measurements from ion to ion even though their 

masses are equal. Positional differences at which the ions are formed, transforms to 
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a kinetic energy distribution of ions in the mass analyser (drift) region which expands 

the flight-time distribution (see more details in Section 2.2.4). Applying the Newton’s 

second law of motion, Equation (2.4) determines a value for acceleration in the 

accelerating region. 

𝒂 =  
𝑞𝑬

𝑚
                                                             (2.4)                                                                     

Where 𝒂 is acceleration in the electric field direction and 𝑬 is electric field. 

Accordingly, the time an ion takes to leave the acceleration region, 𝑡𝑎
′  is given by 

Equation (2.5) (Guilhaus, 1995). Assuming that sample molecules are ionised in the 

same plane relative to the electric field direction. 

𝑡𝑎
′ =  −

√2𝑚𝑈0

𝐸𝑞
 ±  

√2𝑚(𝑈0+𝐸𝑞𝑠)

𝐸𝑞
                                        (2.5)                                                 

Where 𝑠 is a displacement of ion while being accelerated (only the displacement 

along the axis of accelerating field is important). Given that the direction of 

acceleration is positive, the sign of 𝑡𝑎
′  indicates whether the direction of ion’s initial 

velocity is the same as that of acceleration. In other words, positive valued 𝑡𝑎
′ s refer 

to ions that continue to travel in the same direction as their initial velocity. On the 

other hand, those with negative values have initial velocities which oppose the 

accelerating field. So they undergo deceleration prior to acceleration which results 

in change in trajectory direction and some extra flight-time over the ones with same 

initial energy which initially travelled downstream. In reality, the time an ion spends 

in acceleration region, 𝑡𝑎 =  |𝑡𝑎
′ |. Where two times the first term of Equation (2.5) is 

known as the turn-around time an opposing ion needs to catch up its original position 

that often occurs in ionisation events (Guilhaus, 1995). 

Space focus is arranged such that ions with different kinetic energies are spread over 

the smallest possible displacement along the acceleration field. This removes the 

spatial and energy shifts to some extent which leads to improvement of the overall 

flight-time resolution. Furthermore, even better temporal resolutions can be 

achieved via additional energy correction steps (see Section 2.2.6). 
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2.2.4   The Time-of-flight Mass Analyser 

Ideally, a group of ions is generated starting from the same position at the same time 

and ions are then accelerated to the same kinetic energy. Their transit time through 

a field-free flight tube can then be measured. However, in reality, “the same 

position”, “the same time” and “the same kinetic energy” are all approximations. The 

relevant parameters and techniques to correct for each are discussed in this section. 

MALDI-MS is usually coupled with a time-of-flight mass analyser. Other types of mass 

analysers such as quadrupole, ion cyclotron resonance are also available but are less 

commonly built for commercial purposes. The reasons which make time-of-flight 

instrument a preferred mass analyser for MALDI-MS is that it is designed to detect 

pulsed ions with ideally no limit in mass range, and no ions are wasted by scanning. 

Also, TOF with a subsequent mass analyser of same or other types can be constructed 

to perform multiple MS analysis. Therefore, in this instrumental design section, only 

MALDI-TOF-MS instruments will be considered. 

In time-of-flight instruments, flight-time is a parameter to be quantified and 

converted into m/z information. The total flight-time can be expressed as the overall 

time spent in acceleration region, 𝑡𝑎, drift region, 𝑡𝐷 and also any delayed time during 

ionisation and detection processes. 

The time-of-flight mass analyser is a simple yet effective tool for determining ion m/z. 

Charged particles from the ion source are accelerated through an appropriate path 

inside the mass spectrometer. The time taken to reach the detector called “time-of-

flight” or “flight-time” is the main parameter to be measured. Suitable detectors can 

measure the flight-time of ion packets with different masses. This information is then 

passed for computer processing to obtain mass spectra (plots of signal intensity vs. 

m/z). 

 

2.2.4.1   Linear Time-of-flight Mass Spectrometer 

An ion enters the drift region of length, 𝐷 with a final velocity from the accelerator 

that can be worked out from the equation of conservation of energy, Equation (2.3). 
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The ion exerts no force in the vacuum drift region. It therefore travels with the 

constant velocity throughout the drift region. The time it takes to pass the drift 

region, 𝑡𝐷 is derived in Equation (2.6). 

𝑡𝐷 =  
𝐷

2
√

2𝑚

(𝑈0+𝑞𝐸𝑠)
                                                (2.6)                                                           

From Equations (2.5) and (2.6), the total flight-time, 𝑡 is directly proportional to the 

square root of mass (𝑡 ∝  𝑚
1

2). Finally, the ion beam hits a detector device which 

generates signals from the distribution of flight-times of the different ions in the 

beam, and the mass-to-charge ratios of the ions are calculated. A diagram for this 

type of mass spectrometer is shown in Figure 2.5. 

 

 

Figure 2.5  A simple diagram for orthogonal acceleration time-of-flight 

mass spectrometer (Picture from: Fjeldsted (2003)) 

 

In this simplest time-of-flight mass spectrometer, there is a limitation due to the fact 

that ions are created in slightly different locations in space as mentioned earlier in 

Section 2.2.3. The spatial variation in the position of ions in the direction of electric 

field affects velocities and therefore the flight-time of ions of the same mass-to-

charge ratio leaving the exit plate of the capacitor. Each ion with the same mass and 

carrying equal charge is accelerated at the same rate in the static electric field 

between the capacitor plates, as described in Equation (2.4). The potential difference 
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in static electric field varies as a function of distance to be accelerated. Thus, the final 

velocity of same ion varies as a function of distance being accelerated within the 

capacitor as a result of differences in kinetic energy. This causes time-of-flight m/z 

peaks in mass spectra to be broaden, influencing the mass resolution (see Section 

2.2.6 for the definition of mass resolution). The uses of linear and curved field 

reflectrons are approaches to overcome this distribution of flight-times. 

 

2.2.4.2   Reflectron Time-of-flight Mass Spectrometer 

The reflectron also known as the ion mirror, retards the incoming ions and causes 

them to reverse their initial direction. This was first designed by Mamyrin et al. 

(1973). It makes use of electrostatic lens components which create a retarding 

electric field gradient. 

Ions with identical mass-to-charge ratio in the drift region have a small kinetic energy 

distribution caused mostly by initial energy when ions are formed. The longer the 

flight path, the more significant shift in flight-time of these same ions would be 

observed as a result of their variation in velocity. Higher velocity ions have a relatively 

short flight-time in the drift region compared to lower velocity ions. To reduce the 

flight-time shift, these ions must be introduced into a reflectron (Cornish and Cotter, 

1993). The reflectron’s electric field decelerates the ions when they are travelling 

inbound until they stop, then reaccelerates them in the outbound direction (Cornish 

and Cotter, 1993). Faster ions (i.e. with greater than average kinetic energy) spend 

more time in the reflectron region as they penetrate slightly deeper than slower 

ones, this corrects for different time spent in the drift region. Also, a focus is made 

at the point where the ion packet is most compressed (in time). This results in far 

better mass resolving power than linear instruments with same drift length. It 

therefore gives high performance without the need to build larger mass 

spectrometers. 
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2.2.4.3   Curved Field Reflectron Mass Spectrometer 

The curved field reflectron (CFR) is a subsequent generation of reflectron developed 

by Cotter and Cornish (1993). This aims specifically to remove imperfections in 

MS/MS time-of-flight mass analysis. When ions are fragmented via collision induced 

dissociation (CID), the kinetic energy of product ions depend solely on their mass, 

leading to separations of focal points associated with the depth travelled by ions into 

a linear field reflectron as from SIMION trajectory simulations (Cornish and Cotter, 

1993). In contrast, a curved field reflectron incrementally reduces the strength of the 

electric field as it goes deeper into the reflectron. In other words, the potential used 

to create the field goes down at a constant rate with the form of “the arc of a circle” 

to satisfy conditions determined by SIMION simulations (Cornish and Cotter, 1993). 

Thus, the focal points of different products (and their parent) ions are brought to 

focus more tightly than with the linear field reflectron. 

 

2.2.5   Ion Detection 

The detection system includes the ion detector, signal amplifier and signal acquisition 

electronics. The output of ion signal vs. mass-dependent flight-time variations of ions 

is recorded and turned into a mass spectrum. A microchannel plate (MCP) detector 

is often used as an ion detector in MALDI-TOF-MS instruments. An incident ion 

collides with the detection surface and activates secondary electrons in parallel 

electron multiplier tubes of few micrometres diameter in order to amplify signals. 

The quality of mass measurements can be affected significantly by the design of the 

detector (e.g. having a planar detector is useful for a time-of-flight mass analyser). 

At a certain kinetic energy, ions with higher masses will travel with lower velocities 

which might not be sufficient for secondary electron emission to occur and can result 

in a decay of MCP detection sensitivity. For example, Liu et al. (2014) reported that 

the detection of immunoglobulin G dimer whose mass is about 300 kDa can be more 

than 10% less sensitive than the detection of the 1 kDa angiotensin ion. If ions are 

accelerated with higher voltage, the kinetic energy and therefore velocity of all ions 
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increase and the sensitivity is then improved. On the other hand, detection of fast 

moving, lower mass ions with high incident energy might be limited by the saturation 

of the detector which can give rise to a poorer resolution. Temporal events can 

currently be resolved down to the order of nanosecond or less (Li and Whittal, 2009). 

In addition to the conventional approach, the ion conversion detector and 

superconducting tunnel junction are attempts to overcome these sensitivity 

limitations as velocity-dependence no longer applies (Wenzel et al., 2006). Higher 

sensitivity can be attained by increasing detector voltage, however, would raise the 

level of electrical background noise at the detector and lead to a corresponding 

reduction of signal-to-noise (Wetzel et al., 2006). 

 

2.2.6   Mass Resolution 

The mass resolution is defined by Equation (2.7). 

𝑚𝑎𝑠𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝑚

∆𝑚
                                           (2.7)                                                    

Where ∆𝑚 is the width of m/z peak centred at 𝑚 in a mass spectrum (width values 

at full width half maximum or at 10% of the peak height may be used). ∆𝑚 represents 

the extent to which the m/z measurements are distributed for that peak. Therefore, 

the mass resolution represents an ability to tell apart different peaks in a mass 

spectrum. 

Mass resolution can be calculated from the flight-time resolution. For time-of-flight 

instruments, flight-time is defined by the relationship 𝑡 ∝ 𝑚
1

2 (see equation (2.6)), 

given that flight-time is approximately equal to drift time providing that accelerating 

time is much smaller than drift time (𝑡𝑎 ≪ 𝑡𝐷). Therefore, mass resolution can also 

be derived using Equation (2.6) and its derivative with respect to 𝑚 and 𝑈0. In 

addition, the kinetic energy resulting from accelerating an ion through the electric 

field dominates the initial translational energy (𝑈0 ≪ 𝑞𝑉) such that 𝑈0 can be 

ignored in the numerator of Equation (2.8). Therefore, the mass resolution for time-
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of-flight mass spectrometer is estimated as in Equation (2.8) in terms of flight-time 

and internal energy, respectively. 

𝑚

∆𝑚
=

𝑡

2∆𝑡
=  

𝑈0+𝑞𝑉

∆𝑈0
 ≈  

𝑞𝑉

∆𝑈0
                                           (2.8)                                                 

Note that the electric field is in fact not perfectly uniform. 

Further improvements of space focus in the acceleration region, include placing 

another electric field next to the initial space focus field following an instrument 

designed by Wiley and McLaren (1955), taking into account appropriate ratios of the 

two electric field strengths and acceleration distances (Weinkauf et al., 1989; Karas, 

1997). These designs eliminate up to the first and the second terms of Equation (2.9) 

of Taylor’s expansion which express the inverse flight-time resolution as a function 

of kinetic energy distribution, respectively (Weickhardt et al., 1996). The results 

predict a much better mass resolution compared to the single field design (see 

Section 2.2.3) without having to extend too far the space focus distance. 

∆𝑡

𝑡
= 𝑎

∆𝑈

𝑈
+ 𝑏 (

∆𝑈

𝑈
)

2

+ 𝑐 (
∆𝑈

𝑈
)

3

+ ⋯                                 (2.9)                                     

Where 𝑡 is the overall flight-time, 𝑈 is the ion’s kinetic energy and 𝑎, 𝑏, 𝑐 are 

constants. 

The arrangements of linear and curved field reflectrons as discussed in Sections 

2.2.4.2 and 2.2.4.3 that lead to better flight-time focus would offer similar 

improvements in temporal resolution. 

 

2.2.7   MALDI Matrices 

The matrix is core to the process of MALDI as described in Sections 2.2.1 and 2.2.2. A 

matrix is selected such that sample and matrix co-crystallise in an analyte-specific 

manner, to suit a particular experiment. Key properties include the ability to 

incorporate a chromophore to absorb the laser light and the ability to generate an 

appropriate ionisation environment for the formation of positive or negative ions. 

Standard matrices for MALDI-MS of biological molecules include α-cyano-4-
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hydroxycinnamic acid (CHCA), dihydroxybenzoic acid (DHB) and sinapinic acid (SA). 

They are able to absorb energy from ultraviolet frequency lasers. The structure of the 

ions created from samples with the use of DHB matrix are more preserved compared 

to ones with CHCA matrix which normally causes significant degradation (Hazama et 

al., 2008). Therefore, CHCA matrix is well-suited for analytes of lower mass range 

whereas DHB as well as SA can be used with higher mass range to avoid 

fragmentations. In contrast, Luo et al. (2002) reported that greater internal energy 

was observed in analytes ionised using DHB, where internal energy influences 

fragmentation and stability of ion signals after shots of laser. However, this is highly 

subject to the laser fluence and depends upon the analyte’s characteristics. 

The more acidic a matrix is, the better positive ion yields are obtained (Schiller et al., 

2007; Dashtiev et al., 2007). Additional trifluoroacetic acid (TFA) could enhance 

signal-to-noise ratios of mass spectra (Damnjanovic et al., 2011). DHB is used as a 

matrix to prepare most lipid samples, especially the 2,5-DHB type which gives the 

best quality mass spectra of all the isomers, as a result of relatively high positive ion 

yield and small crystal size (which gives homogeneous preparation surface – good for 

imaging in particular) relative to other available types, i.e. 2,3-DHB, 2,4-DHB, 2,6-

DHB, 3,4-DHB and 3,5-DHB (Schiller et al., 2007). 

It is possible to make up a matrix compound of more than one component. For 

example, DHB/CHCA as reported in Laugesen and Roepstorff (2003) could combine 

the advantages of the two which accounted for a more complete set of analytes 

within a sample, in a single acquisition. 

 

2.2.8   Sample Preparation (Sample-matrix Depositions) 

Appropriate matrix type and sample preparation methods are selected for each 

analyte and sample type. The main consideration in matrix selection is to optimise 

the signal-to-noise of the analyte signals. This requires increasing ionisation 

efficiency without introducing background signals. Along with appropriate signal 

intensity, the optimal mass accuracy, resolution and reproducibility are desired in 
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each MALDI-MS experiment. These can be achieved by optimising sample 

preparation, together with adjusting instrumental parameters and calibration. In 

general, a sample should be prepared in suitable conditions to form significant 

numbers of analyte-containing matrix crystals. Such crystals should be distributed 

homogeneously throughout the dried drop on the sample target with uniform shape 

and size. Also, the target supporting the sample must be cleaned properly to 

minimise impurities. Optional purification methods of hydration/recrystallisation or 

sublimation/recrystallisation (Yang and Caprioli, 2011) can be used. Contaminants 

that are highly soluble in water will be dissolved and can be removed, and then purer 

crystals remain on the target plate. Solvents can be added to re-dissolve and 

recrystallise which can purify the sample and change crystal morphology. 

The original dried-droplet sample preparation method (Karas and Hillenkamp, 1988) 

involves spotting a sample solution spotted onto the target surface and leaving it to 

dry and then spotting the matrix solution on top of the sample spot. Another 

approach is to make a mixture of saturated matrix and sample solutions, then a small 

droplet of this is spotted onto a metal target. The dried-droplet technique results in 

large crystal sizes. Therefore, useful spectra can be acquired repeatedly from the 

large crystals at selected spatial locations. MALDI targets are usually designed to hold 

an array of sample droplets that can be conveniently analysed in the same session. 

The homogeneity of the MALDI sample surface depends in part on size of the crystals 

being formed which is affected by the type of matrix and analyte concentrations, and 

could be improved by selecting a solvent with high evaporation rate. When crystals 

formed are small in size, better homogeneity of the preparation is achieved but fewer 

ions (lower intensity mass spectra) are produced per crystal. To minimise this 

disadvantage, the dried-droplet can be applied again on top of the preparation to 

increase the crystal size for discrete (non-imaging) MALDI sample. Note that, for 

imaging, a finer and consistent crystal size would be preferred for a uniform spread 

on the prepared surface. This is achieved by appropriate preparation, choice of 

matrix and matrix deposition parameters. Matrix deposition methods for MALDI-MS 

imaging will be mentioned in Section 2.4.3. 
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2.2.9   Tandem Mass Spectrometry 

A tandem mass spectrometry system refers to the use of two or more mass analysers 

each subsequently perform mass spectrometry analysis – MSn where 𝑛 is the number 

of MS stages. Usually 2 mass analysers are used, referred to as: MS/MS or MS2. 

Between the 2 consecutive analysers, there can be a collision chamber containing 

neutral gas, usually helium, argon and nitrogen. Collision with neutral gas molecules 

can fragment a parent ion (Wells and McLuckey, 2005). The process is called collision 

induced dissociation (CID), which can be used in TOF/TOF instruments. More 

fragmentation occurs when target gas of heavier molecular weight is used, providing 

higher centre-of-mass collision energy (Bordas-Nagy et al., 1992). The purpose of 

tandem MS is to extract structural information from the analyte. First of all, the 

analytes’ m/z(s) in the mixture (within a defined mass range) needs to be identified 

in order to select the ion of interest. This can be achieved in a TOF instrument using 

the ion mass spectrum resulting from the first mass analyser by gating a narrow mass 

range that includes the mass peak of interest. Only ions with the selected mass range, 

called precursor ions, undergo decomposition into product ions and suffer neutral 

losses. These product ions then go on to the second mass analyser for further mass 

analysis. The mass spectra of product ions provide the masses of component 

fragments of the precursor (parent) ions. Alternatively, MS/MS spectra of the whole 

mass range can be scanned to observe specific product ions resulting from CID and 

metastable decays which could indicate the possible precursor. For increased 

selectivity, selected reaction monitoring (SRM) is performed at specific precursor’s 

and product’s m/z values (Lange et al., 2008). The other method called a neutral loss 

scan is also applicable by observing for a specific interval between mass peaks, then 

all possible products of a precursor can be determined and vice versa.  

An early tandem MS instrument was the magnetic/electric sector. Ions pass the 

magnetic sector component (constant field) followed by scanning field in the 

electrostatic sector where the mass of product ions are determined based on their 

kinetic energy (Beynon et al., 1973). This paved the way for generations of MS/MS 

instruments. Triple quadrupole (Yost and Enke, 1979) and more accurate FT-ICR 
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instruments, both select precursor ions prior to CID. Not only space separated 

tandem mass spectrometry using multiple mass analysers, but also time separated 

tandem mass spectrometry using ion traps can be performed (Payne and Glish, 

2005). Tandem mass spectrometry based on the TOF/TOF instrument configuration 

is another fast improving method due to its simplicity, robustness and wide mass 

range. The correction for the varying focal length of different mass ions was solved 

by Cornish and Cotter (1993) who developed the curved field reflectron as discussed 

in section 2.2.4.3. A diagram for this design of tandem reflectron TOF MS/MS is 

illustrated in Figure 2.6. 

 

 

Figure 2.6  Tandem TOF/TOF mass spectrometer combining linear and curved field 

reflectron TOF mass analysers  (Picture from: Cornish and Cotter (1993)) 

 

 

Note that hybrid systems that combine different types of analysers are also available 

such as sector/quadrupole, sector/TOF and the commercially most abundant 

quadrupole/TOF (Glish and Burinsky, 2008). 
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2.3   Lipidomics and the Application of MALDI-

MS in Lipidomics 
 

2.3.1   Lipid Types and Functions 

Fahy et al. (2005) divided lipids into 8 main classes, “fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and 

polyketides”. As a result of the diversity of lipid classes, their masses vary across a 

wide range from few hundred daltons to kilodaltons. In general, lipids are organic 

molecules that are present in biological systems and can be produced via 

biosynthesis. Most lipids are highly soluble in organic and other low polarity solvents 

as a result of highly hydrophobic components of these molecules, frequently having 

an alkyl “tail”, see the structure of a fatty acid depicted in Figure 2.7 (a). Fatty acids 

are the most fundamental lipids composed of carbon, hydrogen and oxygen atoms. 

A fatty acid has the structure of carboxylic acid where a long chain hydrocarbon is 

connected to a carboxyl group. They can be attached to functional groups to form 

various head-tail structure of more complex lipid molecules. Fatty acid derivatives 

also count as lipids (Adibhatla et al., 2006).   

Lipids are involved in metabolic and other biological activities as energy storage, 

vitamins, neurological signalling and can function as hormones. Phospholipids are 

major structural components of cells, forming of cell membranes and protein binding 

sites. Most biological cell membranes consist largely of phosphatidylcholine (PC). 

Normal cells differ in the lipid components and distributions of specific organelles 

and cell types (van Meer et al., 2008). Hence, lipid mass spectra might be good 

indicators for tissue phenotypes and some pathological disorders. There have been 

attempts to perform quantitative studies of lipids to possibly trace lipid metabolism 

in cancer tissues that could identify cellular activities stated as hallmarks of cancers 

(Hanahan and Weinberg, 2000; 2011; Santos and Schulze, 2012). As brain tissues are 

lipid-rich, observing the correlations between lipid concentrations and brain 

diseases, disorders and damage has become an interesting topic of research 

(Adibhatla et al., 2006). 
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Figure 2.7  (a) A ω-3 fatty acid where N indicates a number of repeated CH2 (with 

single bond C-C) (Adapted from: Berg et al. (2002)), (b) cis and trans structures, and 

(c) DHA structure (from: www.sigmaaldrich.com) 

 

2.3.2   Cellular Lipids 

 

 

Figure 2.8  Lipid bilayer in cell membrane 

 

Animal cells (eukaryote) are protected by the outer structure called membranes 

which create the boundaries that separate the cell’s contents from its surrounding 

environments. The membrane has a bilayer structure as seen in Figure 2.8 where two 

layers of lipid are aligned such that the hydrophilic parts face inside of the bilayer 

while the hydrophobic parts face outside. The major lipids found in membranes are 

phosphatidylcholine whose structure is shown in Figure 2.9. Glycolipids and 
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glycoproteins are strongly adhesive (via hydrogen bonds) to water part of the inner 

and outer cell environments, assisting the cell structure to retain. Proteins are 

attached to the bilayer and take part in several interactions – e.g. function as 

channels for controlling transportation of molecules in and out of the cell, as 

receptors for different enzymes. The polarity and electrical potential difference 

across the membrane are designed to allow the exchange of ions through the cell. 

Energy storage and cell communication are also fundamental roles of membrane 

lipids. Some organelles within the cell are also surrounded by membrane, for 

example, mitochondria (double-layer membrane with the internal layer responsible 

for energy conversion and storage), lysosome (single-layer membrane with a 

receptor at its surface for as binding site for specific proteins/nutrition/toxins/dead 

cells which can then turn into small bag of phosphatidylcholine vesicles to be 

digested by the associated enzymes). In neurons, the membrane at the axon can send 

signals via electrical transmission to trigger neuronal activity and hence 

communication between cells. Note that local lipids in the membranes are associated 

with specific types of proteins that perform different tasks. Therefore, the lipid 

contents could potentially be used to suggest main functionalities and types of 

biological cell/tissue. Extracellular matrix also consists of various biological 

molecules. In order to analyse all these complex biological components, mass 

spectrometry can be employed. 

 

 

Figure 2.9  Phosphatidylcholine structure 
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Phosphatidylcholines consist of 2 fatty acids structured as hydrocarbon chains 

(hydrophobic tails) attached to the acyl groups. Both fatty acids are linked to the 

glycerol backbone which links to a phosphate that carries the hydrophilic choline 

head group. Each part of the phosphatidylcholine structure is marked in Figure 2.9 

with different colours. 

 

2.3.3   Lipid Extraction Techniques 

An extraction method using chloroform and methanol has been widely used in 

several applications due to its simplicity and robustness. Chloroform, methanol and 

deionised water in an appropriate ratio can be added to a biological compound to 

allow lipid extraction with no need to heat or evaporate the sample (Bligh and Dyer, 

1959). Chloroform and lipids form a solution that sets itself apart from water, 

methanol and other polar substances in the mixture which is seen as a separated top 

layer. This extraction method requires only a small quantity of sample. In comparison 

with the previous methods e.g. Dyer and Morton (1956), Folch et al. (1957), rapidity 

of the procedure is maintained but the yield and purity of lipid extracts are 

significantly improved. Chloroform can be added, followed by adding water to the 

lipid extracts to repeat extractions until a satisfactory level of purification is achieved. 

The use of water is to effectively wash the chloroform-based lipid extract, to remove 

water soluble substances, such as salts. In tissue sample applications, the tissue 

sample could be blended to facilitate extraction. 

Thin layer chromatography (TLC) is a technique to separate components in the lipid 

extracts based on their mass and polarity properties. Lipids move different distances 

on a chromatography plate. Note that silica gel is often used as a stationary phase 

and the chloroform-methanol mixture is a mobile phase solvent. Furthermore, liquid-

solid extraction can be applied by dissolving sample compound in different solvents 

of varying polarity and pH. This allows filtering out the undissolved parts at each step, 

and hence separation for different compound classes before introducing them into 

analysis system. 
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2.3.4   Spectral Analysis (in Lipid Classification) 

Mass spectrometry is widely used in proteomic studies, but can also be used for 

lipidomics. In particular, MALDI is one of the soft ionisation methods that was shown 

to generate useful ions for qualitative (and some quantitative) analysis of a wide 

mass range of biological molecules. MALDI-TOF-MS analysis of phospholipids and 

triacylglycerols by Emerson et al. (2010) requires as tiny portion as 1 µl of extracted 

lipids from beef and egg yolk samples. Mass determination together with structural 

information can be obtained by performing MS/MS (or MSn) which is very useful to 

deal with complex lipid molecules. 

Lipidomics covers the structural and functional study of lipids in living cells, and their 

role in supporting metabolic processes, including interactions between lipids and 

other fundamental biomolecules – i.e. generic and protein molecules contained in 

the cells. There are 2 main aspects for lipid mass spectrometry analysis. The classical 

one is when lipid extracts are separated through appropriate gas or liquid 

chromatography before being introduced to a mass spectrometer. This is so-called 

“comprehensive lipidomics analysis by separation simplification” (CLASS) allows 

selected classes of lipids to be analysed by the mass spectrometer, one at a time 

(Harkewicz and Dennis, 2011). Whereas another method called “shotgun lipidomics” 

applies ESI mass spectrometry to the lipid extracts directly (Han and Gross, 2005). 

The common shorthand notation for fatty acid (carboxylic acid) isomers can be 

written as 𝐶 ∶ 𝐷 representing number of carbon atoms : number of double bonds in 

the fatty acid components of the molecule. This reduces the complexity of writing 

the lipid structure as a standard chemical formula. Molecular information about 

complex lipids can be described by quoting each fatty acid component along with its 

head group. To add clarity, if 𝐷 is non-zero in a fatty acid isomer, the symbol n-x or 

𝜔-x is used with the x being the numerical order of the first double carbon-to-carbon 

bond counting from its methyl end (Harwood and Scrimgeour, 2007), e.g. an essential 

fatty acid, Docosahexaenoic acid (DHA) can be expressed as 22:6 (n-3) means that it 

has 22 carbon atoms with 6 double bonds in the carbon chain, the first double bond 

is at 𝜔-3 position – see the structure in Figure 2.7 (c). If there is a double (or triple) 
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bond between carbon atoms in the molecule, the fatty acid is said to be unsaturated; 

otherwise, it is saturated. Metabolism rates in the organic tissue are thought to be 

increased with the degree of phospholipid unsaturation in membrane (Hulbert and 

Else, 1999). The conformation at each double bond could be either “trans” or “cis” 

as illustrated in Figure 2.7 (b) which are reflected in the properties of lipid molecules 

such as polarity, thermal stability. However, current mass spectrometers might not 

provide enough information to distinguish between these two. 

Typical lipids are saturated and have an even number of carbons, as shown in the 

mass spectrum of lipids from a milk sample presented in Figure 2.10. 

 

 

Figure 2.10  MALDI-MS spectrum of milk sample with an expanded view appearing 

brominated C(36:1) and C(38:1) (Picture from: Picariello et al. (2007)) 

 

If the sample is treated with bromine, a brominated lipid would show up in a mass 

spectrum as a shift in peak with an additional mass per double bond equal to 

molecular mass of Br2 of approximately 160 Da and displaying a bromine isotope 

pattern (Picariello et al., 2007). From the mass spectrum provided in Figure 2.10, 

peaks for brominated C(36:1) and C(38:1) are well illustrated. A determination of 

double bonds can be done by observing degrees of oxygenation as in a study of 

unsaturated oils using MALDI-MS (van den Berg et al., 2004). 
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Figure 2.11  MALDI-MS spectrum for triacylglecerol (12:0/14:0/14:0) using positive 

ion mode (Picture from: Al-Saad et al. (2003)) 

 

Loss of the different carboxylate groups during post-source decay (PSD) in a 

triacylglycerol (TAG) is equally likely. The intensity ratio of the positive ion fragment 

peaks agree with the stoichiometry of these carboxylate groups in the lipid – i.e. the 

intensity of the remaining fragment from loss of C(14:0) is twice as much than loss of 

C(12:0) following the spectrum in Figure 2.11, at m/z 467.4 and 495.4, respectively. 

Therefore, the relative intensities of the fragments can be used to determine the 

relative abundance of each carboxylate group contained in a molecule (Al-Saad et al., 

2003). Phospholipids have a phosphate head group attached to more than one 

carboxylate tails. The phosphate groups are components of the polar part of 

phospholipids. Al-Saad et al. (2003) also reported that only the fragmentations of 

polar heads occurred with the protonated phospholipids whereas salted 

phospholipids rather showed other fragmentations of the molecular structure as 

well. 
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2.3.5   Limitations and Challenges 

In phospholipids, the phospha-

tidylcholine (PC) head group can 

cause severe signal suppression to 

fragment ion signals of other head 

groups, especially in phospha-

tidylethanolamine (PE) which is 

also commonly present in bio-

logical compounds (Emerson et 

al., 2010). The spectrum pre-

sented in Figure 2.12 (d) shows 

the suppression effect of PCs 

acting on PEs and phosphatidyl-

glycerols (PG) when the PC:PE:PG 

lipid mixture mass spectrum was 

acquired. This was compared to 

each individual mass spectrum of 

PGs, PEs and PCs in Figure 2.12 (a), 

(b) and (c), respectively, in a 

positive ion mode. For example, 

all m/z peaks appeared in Figure 

2.12 (a) and in Figure 2.12 (b) 

apart from m/z 740.5 were not observed in the mixture mass spectrum. The negative 

molecular ions of PC cannot be detected using MALDI-MS (Al-Saad et al., 2003). The 

negative ion mode is then favored for a detection of PE and PG which is normally 

suppressed by the PC in positive mode arrangements. Paranitroaniline (PNA) as a 

matrix substance would give non-acidic environment that enhances the detection of 

the negative molecular PE ions (Fuchs et al., 2009). 

Matrix and analyte suppression effects occur in the presence of significant amounts 

of salts as they also give rise to positive ions (Lou et al., 2009). In MALDI-MS 

 

 

 

 

 

Figure 2.12  MALDI-MS spectra of 
phospholipids samples (a) 1-palmitoyl-2-oleoyl-

sn-phosphatidylglycerol, (b) 1-palmitoyl-2-
oleoyl-sn-phosphatidylethanoamine, (c) 1-

palmitoyl-2-oleoyl-sn-phosphatidylcholine, and 
(d) mixture of equal fractions of these 3 lipids 
with DHB matrix, acquired using positive ion 

mode (Picture from: Fuchs et al. (2009)) 
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experiments, alkali metal salts of proteins can be washed after depositing samples 

onto a target in order to minimise the chemical background noise they caused 

(Smirnov et al., 2004). This might be applicable to remove lipid salts as well. 

Nowadays, interest in lipidomics seems to be growing as lipid metabolism can 

diagnose cellular dysfunction (Pirman et al., 2013). However, due to the complexity 

of lipid analyses, there is relatively little research leading to a lower availability of 

lipidomic databases compared to that of proteomics. There are many classes of lipid 

occupying a wide mass range and the MS analysis is difficult to do at high masses. 

However, mass spectrometry technology is continuously evolving. MS/MS analysis of 

lipids with a mass resolution of greater than 30,000 can be achieved using a 

quadrupole mass analyser to select lipids at an increment of 1 Da to pass to a CID 

system and then proceed through a time-of-flight mass analyser for final mass 

analysis (Simons et al., 2011). The “LIPID MAPS Lipidomic Gateway” website 

(http://www.lipidmaps.org/) is a good resource for lipid identification whose 

information is based on lipid classification studies as updated in 2009 by Fahy and 

coworkers which provides a database of lipid structures and MS peaks of all lipid 

classes. This has been reviewed every year. Nevertheless, numerous variations in 

hydrocarbon chain length and bonding could cause a lot of confusion to mass spectral 

analysis of large lipids (Fahy et al., 2005). Therefore, careful TLC or gas 

chromatography separation methods are needed for full resolution. 

 

2.3.6   Lipids in the Brain 

As discussed earlier, a variety of lipids are found in biological cells as structural and 

functional components. Brain tissues in general have very high lipid concentrations. 

Lipid types and distributions should be consistent in normal brains in order to 

perform their proper activities. Therefore, unusually distributed lipids in some parts 

of the brain may link strongly to diseases, disorders and damage. Quantitative 

imaging is therefore a powerful tool to investigate pathological changes giving 
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biochemical composition as well as anatomical information. Uses of MALDI imaging 

will be discussed in Section 2.4.  

There are similarities between human and rat brains that make a rat brain a 

reasonable model for the study of brain disorders relevant to humans. Since the 

1960s (Bayer et al., 1993), it was confirmed that human and rat brains show very 

close correlation with processes of central nervous system (brain and spinal cord) 

development since their embryonic stages. Where same developmental stage occurs 

in the same order but at different time scales. They described details of brain 

structure as a result of cells/neurons generations, tissue formations at different parts 

of the brain. The appearance of human and rat brains have similarities as seen in the 

pictures provided in Figure 2.13. 

 

Human brain Rat brain 

 

 

 

Figure 2.13  Coronal section of Human vs. rat brains (Pictures from: Davis (1913) 

and Bennett et al. (1964), respectively) 

 

From these correlations during early brain development, they are believed to show 

comparable pathological and physical changes in response to brain diseases. Rat 

brains can be modified to better mimic human brain diseases by altering parts of 

brain either in terms of biochemical composition and/or physical degradation. 
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2.4   Mass Spectrometry Imaging for Lipid 

Analysis 

Mass spectrometry imaging (MSI) allows MS information to be represented as an 

image, mapping distribution of analytes in each of its pixels in correspondence with 

the spatial positions on the actual sample. Hence, applications can be in structural 

observations of biological molecule distributions in tissues and their change due to 

pathological conditions. MALDI-MS imaging is widely used to image drug and drug 

metabolite distributions as well as peptides, proteins, and lipids which is the main 

emphasis of this section, will be extensively discussed in Section 2.4.3. 

 

2.4.1   General MS Imaging Instrumentation 

A simple microprobe MSI controls the trajectory of the laser beam relative to spatial 

coordinates of the plane of the sample either by moving the laser beam across the 

sample area, or vice versa. A series of mass spectra is recorded at each point in space. 

The size of the focusing beam influences the spatial precision (McDonnell and 

Heeren, 2007). The number of scans per dimension determines the spatial resolution. 

In contrast, microscope type MSI collects both MS and spatial coordinate data at a 

position-sensitive detector. This allows measurement without the need to determine 

the location at which each MS spectrum is acquired in the initial stage. 

 

2.4.2   Understanding the Mass Spectrometry Imaging Data 

Formats 

All mass spectrometry images in this work were acquired using a Shimadzu 7090 TOF2 

mass spectrometer (Kratos, Manchester). Each image data set was exported as two 

separate files, with filename extensions: .imzML (hundreds of Mb) containing the 

header information, and the accompanying .ibd (few Gb) which containing the 

spectral information acquired at each pixel. This is one of the standard formats for 
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MS image used in commercial instruments. Other major formats include mzXML, 

mzML, RAW, Analyze 7.5, ASCII and HDF5. Data sets are convertible among these 

available formats but it is important to know the data structure or to have conversion 

software to enable analysis. The MS image data can be thought of as contained in a 

cubic matrix format. The diagram drawn in Figure 2.14 illustrates the typical 

components of an MS image data set including: 2-dimensional pixel locations i.e. x-

pixel and y-pixel, specifying a spatial location on the imaging plane where a mass 

spectrum was recorded and the number of mass-to-charge (m/z) bins determines the 

length of the 1-dimensional mass spectral array holding the intensity value at every 

m/z. 

Both mass resolution and spatial resolution are factors influencing the MS image size. 

Reducing these could arise from parameter adjustment either during or post 

acquisition. Most of the time, mass spectrometry imaging data are usually acquired 

by selecting maximum mass and spatial resolutions available for the instrument, 

given a reasonable acquisition time taken. Believing that the higher acquired 

resolution provides higher quality information, is not always the best approach in 

terms of data interpretation for several reasons. For example, there will be an 

enormously large data set to process, and this requires long calculation time which 

scales linearly with the data size. Increasing numbers of data points in both mass and 

spatial dimensions can raise peak-to-peak / pixel area overlapping which can 

introduce additional source of noise into signal. If the acquiring step (pixel size) is set 

smaller than the laser diameter, the acquired area will overlap between pixels. The 

signals would degrade and become inconsistent as the matrix in the acquired area 

has been used unevenly. 

A simple approach to solve these problems is to fix the data after acquisition with 

some appropriate pre-processing to reduce the data size. In the mass dimension, this 

is conventionally done by directly reducing the mass resolution by combining 

adjacent bins and/or filtering to keep only the main peaks with strong signal 

amplitude. Similarly, in the spatial dimension, adjacent pixels can be combined into 

a larger pixel obtaining a coarser spatial structure throughout the image with 
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improved signal quality at each pixel. Clearly, poorer spatial resolution is achieved 

since pixels are combined.  

 

 

Figure 2.14  Diagram for mass spectrometry imaging data structure 

 

2.4.3   MALDI-MS Imaging of Lipids 

Lipids are important in biological systems, and it makes more sense to observe lipid 

distributions in tissue samples. This can be done by mass spectrometry imaging (MSI). 

Using either microprobe or microscope methods (see Section 2.4.1), mass spectra at 

particular spatial locations can be obtained. For each mass-to-charge ratio of 

interest, a map of ion distribution within a tissue slice is acquired. A diagram outlining 

the steps required to obtain MALDI-MS images of tissue samples at a specific m/z 

values is shown in Figure 2.15. Results from all slices of tissue can be combined to 

create a 3-dimentional MS image. Note that a tandem MS mode can be applied using 

collision induced dissociation for more specified molecular information (Steven and 

Bunch, 2013). 
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Figure 2.15  MALDI-MS imaging steps 

(Diagram from:  Murphy and Merrill (2011)) 

 

Matrix must be carefully applied such that it deposits uniformly with suitable 

thickness over the thin section of sample. The application methods range from using 

airbrushes (which are hand-held apparatus and therefore difficult to control uniform 

spread of matrix solution), TLC sprayers, inkjet printers, oscillating capillary 

nebulisers (which usually have a moving nozzle that enable automatic application of 

matrix with selected parameters, e.g. rate of application, number of layers) or 

sublimation methods (which give the most uniform and smallest matrix crystals) 

(Zaima et al., 2010), or other purpose designed instrumentation. 

Mouse brain contains significant lipid concentrations with the main types being 

phospholipids, sphingolipids and glycerolipids (Murphy et al., 2009). Murphy et al. 

(2009) observed concentrations of potassiated PC(16:0a/16:0) to vary from pixel to 
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pixel over the tissue section. The quantitative representation of the PC distribution 

as the relative intensity level of each pixel in the MSI image at m/z 772.5 is seen in 

Figure 2.16. 

 

Figure 2.16  A mass spectrometry image indicating potassiated PC(16:0a/16:0) 

distributions for sagittal slice of mouse brain with labels of brain parts 

(Picture from: Murphy et al. (2009)) 

 

Deterioration of the brain can be involved in various diseases which decrease 

capabilities to carry out normal lipid metabolism at specific brain regions (Adibhatla 

et al., 2006). Lipid MSI analysis can be performed at a target brain region to trace for 

the abnormalities. Alzheimer’s disease (AD) is a common brain diseases in the elderly 

which can cause serious neurodegeneration. It induces abnormal lipid metabolism in 

the central nervous system where a variety of lipids in the tissues are involved in 

neurotransmission. Mass spectra hold molecular phenotyping information. If this 

information was extracted, it could yield better understanding of the physiology and 

pathology with respect to the anatomical structure, and help suggest disease stages. 

However, the accuracy of the spatial mapping is subject to imaging resolution. Also, 

sufficient concentrations of analyte must be present at a location to be detected by 

MS imaging. Veloso et al. (2011) carried out research on real human brain samples 

and studied particularly the lipid distributions of the central nervous system. The 

hippocampus is a part in the central nervous system (located at the prosencephalon 
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of the brain) one of the primary sites attacked by Alzheimer’s (Mu and Gage, 2011). 

For hippocampus MSI, to 100 µm imaging resolution was required due to the 

complexity of the structure (Veloso et al., 2011). 

 

2.4.4   Other Mass Spectrometry Imaging Techniques 

The key mass spectrometry ionisation techniques used in tissue imaging beside 

MALDI, include secondary ion mass spectrometry (SIMS), desorption electrospray 

ionisation (DESI) and laser ablation electrospray ionisation (LAESI). The main features 

and typical parameters of these techniques according to Bodzon-Kulakowska and 

Suder (2016) are summarised in Table 2.3 below. 

 

Table 2.3  Comparison of mass spectrometry imaging techniques (Reproduced 

from: Bodzon-Kulakowska and Suder (2016)) 

Technique 
Ionisation 

source 

Soft/

hard 
Analytes 

Spatial 

resolution 

(µm) 

Upper 

mass 

range (Da) 

SIMS Ion gun Hard 

Elemental ions, 

small molecules, 

lipids 

< 10 1,000 

DESI Solvent spray Soft 
Small molecules, 

lipids, peptides 
100 2,000 

LAESI 

Mid-IR laser 

beam, 

solvent spray 

Soft 

Small molecules, 

Lipids, peptides, 

proteins 

200 2,000 

MALDI 
UV laser 

beam 
Soft 

Lipids, peptides, 

proteins 
20 100,000 

 

SIMS has an advantage of spatial resolution over other techniques, allowing cell 

imaging applications (Passarelli and Ewing, 2013). However, its hard ionisation due 

to the energetic incident ion beam causes fragmentation to larger molecules, hence 

the acquisition is limited to only some smaller analytes. In contrast, MALDI ionisation 

is soft which specifically is good for ionising intact biomolecules up to a very high 
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mass, and can still preserve a reasonably good spatial resolution if coupled with a 

laser source of small diameter. 

DESI is an adaption of ESI used for imaging, works by introducing electrospray 

droplets to carry away analytes from a sample surface (Takáts et al., 2004). It can 

produce cleaner mass spectra compared to those acquired by MALDI because of the 

expected greater stability of the technique (where there is no need to deal with the 

variability due to matrix and laser). Another adaption to DESI called nano-DESI, which 

uses two very thin separate capillaries, one for delivering the solvent to contact on 

the sample surface, and immediately, another one for transportation and 

electrospray ionisation of the analyte solution. This technique resulted in a factor of 

10 - 20 improvement on the spatial resolution, e.g. Laskin et al. (2012). LAESI requires 

two steps to allow ionisation; the mid-IR laser is fired locally onto a sample, allowing 

extraction of analytes via evaporation of existing moisture on the sample, which then 

undergoes ESI (Nemes and Vertes, 2007). Less precision in spatial location can be 

achieved compared to DESI. With DESI, and LAESI, the main limitation is that multiply 

charged ions are largely generated for molecules of higher mass as is normally seen 

in ESI; therefore, the technique are efficient when observing smaller biomolecules. 
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Chapter 3  

Background II: 

Quantitative Mass Spectrometry 

 

This chapter sets out the general scope of quantitative mass spectrometry, outlining 

the challenges and conventional approaches used (see Section 3.1). Some common 

computational methods (pattern recognition) are described in Section 3.2, with 

examples of their uses in analysing mass spectrometry data discussed. The other 

approaches of clustering and linear component decomposition specific to MS 

imaging data analysis are discussed in Section 6.1.3 of Chapter 6. The background 

specific to the analytical approach used in Chapters 5 and 6 of this thesis is described 

in Section 3.3 and Section 3.4. Together, this demonstrates a new, alternative 

approach to data analysis that comprises an error model that is especially important 

for addressing a number of scientific questions. 
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3.1   The Scope of Quantitative Mass 

Spectrometry 

Mass spectrometry has been used by a range of scientific disciplines as a technique 

to acquire information on a variety of molecules within a range of sample types. The 

technical development of today’s spectrometers is based on research in a number of 

fields, particularly, in chemistry and particle/atomic physics. The development of 

mass spectrometry led to the discovery of isotopes – i.e. Francis William Aston 

received a Nobel Prize in Chemistry in 1922, for the development of the mass 

spectrograph (early mass spectrometer) which led to consequent discovery of many 

isotopes. An example of MS use in biological sciences is the use of stable isotope 

tracers such as 13C-enriched tracer. The investigation of isotope ratios, e.g. 

207Pb/206Pb can help predicting the age of a planet, hence the application of MS to 

geology. Many other applications lie in applied fields such as medical, 

pharmaceutical, forensic, and food sciences. More routinely, the technique is often 

used in industry for routine quality control and contaminant assessments. 

Improvement of the method and the development of new techniques are ongoing. 

In whatever application, the method of analysis, experimental protocol, and analysis 

of results, must be optimised. Huge amounts of information are contained in a single 

MS acquisition – i.e. ion counts at every mass-to-charge value within a selected mass 

range are recorded. Therefore, it is important to extract as much relevant 

information as possible from within a data set to get the most out of an experiment. 

Mass spectrometry analysis may be divided into qualitative and quantitative 

approaches. Qualitative analysis aims only on detecting the presence or absence of 

analytes of interest whereas quantitative analysis provides also numerical quantities, 

such as relative or absolute concentrations. For example, qualitative analysis could 

answer the question like “Which drug metabolites can be observed in a sample?”  

Quantitative analysis can answer questions like “Is the concentration high enough to 

be toxic?” Quantitative analysis allows the estimation or prediction of some 

mathematical model parameters. In addition, for completeness of scientific 

interpretation, the errors associated with the measurement must be quoted to 
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determine the level of reliability of the data. Statistical analysis should then play an 

important role in data interpretation. In order to meet these requirements, this 

thesis presents a new approach to mass spectrometry data analysis called linear 

Poisson independent component analysis (LP-ICA) which is demonstrated in Chapters 

5 and 6. This approach is based on a quantity estimation of ions generated on mass 

spectra, with a statistical error model (see Section 3.4). The results of quantitation 

can then be extracted in terms of proportional quantities associated with the 

underlying complex mixtures within samples of interest from either non-imaging or 

imaging data sets. This can be applied in many quantitative problems, including 

relative quantitation covered in this work and absolute quantitation which will be 

discussed in the suggested future work, see Section 7.3 of Chapter 7. 

 

3.1.1   Problems in MALDI-MS Quantitation 

Quantitative analyses using MALDI-MS is difficult due to the high variability of ion 

signals which causes uncertainties in measuring abundance of mass-to-charge 

information in mass spectra. These variabilities are due to the availability of ions 

formed in individual MS acquisitions which vary between different regions of the 

deposited sample under what are apparently the same conditions, largely due to the 

non-uniform spread of sample-matrix crystals, and even shot-to-shot changes at 

exactly the same position (Duncan et al., 2008). Huge differences are also contributed 

by different sample/matrix preparation and deposition methods, and the optimal 

method ought to be carefully selected and defined in a protocol for each experiment, 

as in Section 2.2.8. These significant influences limit repeatability and reproducibility 

in MALDI-MS experiments. Mass spectrometrists have, for some time, been seeking 

methods which could provide more meaningful quantitation in MALDI-MS analysis. 

Approaches that yield significant improvement in MALDI-MS quantitation include 

those that compensate for both physical and chemical variabilities in the various 

processes and should overcome some of the systematic and random errors. 

Techniques are being investigated based on approaches to sample preparation, 



84 
 

instrumentation, calibration using internal and external standards, and mathematical 

approaches to data processing and analysis. 

An effective plume temperature in the early stages of ionisation is one of the 

parameters which influences ion yield (Bae et al., 2013). The ratio of the fraction of 

protonated analyte yield to the fraction of protonated matrix yield, is known to 

correspond to an early effective temperature of the plume. This is because the 

positive charges from the protonated matrix are transferred in order to ionise the 

neighbouring analyte molecules during the desorption/ionisation process. 

Moreover, Bae et al. (2013) appeared to find that keeping the plume temperature 

constant during the desorption/ionisation process improved the stability of the 

ionisation rate. 

The heterogeneity of crystal formation also influences the signal intensity variance. 

This causes lower signal-to-noise values in regions where there are fewer crystals. In 

contrast, the optimum signal intensity obtained from a crystalline region might result 

in saturation of the mass spectrum. An automated system can be used to select only 

the spectra with appropriate quality – i.e. spectra acquired from single laser shots 

with satisfactory levels of signal-to-noise, but without saturation (Duncan et al., 

2008). A collection of these mass spectra that pass predefined thresholds are allowed 

to proceed into the average or accumulative forms. 

 
Figure 3.1  Main components of a mass spectrum (Picture from: Müller et al. (2001)) 

 

The diagram provided in Figure 3.1 illustrates the main components of a mass 

spectrum. The peaks represent the associated m/z values that are detected on an MS 
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sample. The peak’s height or relative signal intensity are determined from the ion 

current. Noise is always generated along with every acquisition, possibly due to 

chemical and/or instrumental background fluctuations. This can cause random 

interference with useful signals which affects the ability to quantify mass spectra. 

Müller et al. (2001) defined the signal-to-noise ratio to be 

Signal

noise
= 2.5 ×

𝑆𝐻−0.5𝑁𝑝𝑝

𝑁𝑝𝑝
                                          (3.1)                                                  

Where 𝑆𝐻 is the peak height measured from the lower boundary of noise and 𝑁𝑝𝑝 is 

peak-to-peak amplitude of noise (as illustrated in the expanded view of the mass 

spectrum shown in Figure 3.1) measured from the lowest to the highest levels of 

noise. 

 

3.1.2   Uses of Standards 

3.1.2.1   Internal Standards 

An internal standard is a selected substance of known concentration added to (and 

uniformly distributed in) the sample under analysis in order to improve quantitative 

accuracy of an analyte of interest. A good internal standard should have properties 

as close to the analyte as possible, allowing it to behave like the original molecules 

and participate in the same desorption/ionisation events as the analyte but would 

yield different mass-to-charge peak in the mass spectrum. This is most often 

achieved using isotopically labelled analyte molecules, where available. A linear 

relationship is expected between the signal intensity of the analyte normalised to 

that of the internal standard, and the analyte concentration, seen as the calibration 

curve in Figure 3.2, given that other experimental conditions are fixed. Hence, the 

calibration curve yields predictive values of analyte concentration when the 

analyte/internal standard peak intensity ratio is measured. The signal-to-noise in 

MALDI mass spectra was observed to increase with analyte concentration (Wilkinson 

et al., 1997). According to Wilkinson et al. (1997), two main choices of method can 

be applied for spectral intensity measurements: 1) linearly average the noise 

intensity selected from the main informative part of the mass spectrum, eliminate 



86 
 

the averaged noise, and obtain peak intensity via integration, and 2) use the least 

squares method to fit a local package of spectral peaks at each molecular mass, 

including the protonated molecular ions, dehydrated molecular ions, and might 

include metastable decay products and salted molecular ions. 

 

Figure 3.2  Calibration curve for insulin where the internal standard is des-

pentapeptide insulin (Graph from: Wilkinson et al. (1997)) 

 

The use of isotopic labelling for internal standards works efficiently on lighter 

molecules (<500 Da) where labels of ≥3 Da are ideally used (Duncan et al., 1993). This 

should generate a distinctive peak outside the distribution of natural isotopes of the 

original molecules. Available techniques such as isotope-coded affinity tags (iCAT), 

stable isotope labelling of amino acids in cell culture (SILAC) and isobaric tag for 

relative and absolute quantification (iTRAQ) are currently in use in quantitative 

proteomic mass spectrometry research. The techniques could be used to generate 

biomarkers for diagnosing and staging of diseases (Hultin-Rosenberg et al., 2013). For 

example, iTRAQ is a technique to label the amino acid lysine by attaching an “isobaric 

tag” to its amine functional group (Hultin-Rosenberg et al., 2013). Isobaric tags of 

almost the same mass are added to different samples to label the same peptide, with 

apparently the same MS characteristics for mixed sample, but will show distinct 
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features in MS/MS for low mass fragments (Unwin, 2010). During MS/MS, an isotope 

“reporter” is fragmented from a labelled molecule of each isobaric species, resulting 

in separate signals in the MS/MS spectra that allow for relative quantification of the 

same peptide in each sample following the analysis described by Thompson et al. 

(2003) and the absolute approach as explained in Ross et al. (2004).  

 

3.1.2.2   External Standards 

An external standard is a chemical with a m/z value selected to match an analyte of 

interest within the analysing sample. The external standard is prepared at different 

concentrations in the range that the concentration of the analyte of interest is 

expected to be in the sample. To construct a calibration curve, the measured ion 

current at the specific m/z is plotted against its known concentration for a linear least 

square fitting. Then, the unknown concentration can be determined from its 

correlation with the observed ion current at the m/z of interest. Note that a series of 

m/z values can also be observed using the corresponding chemicals as external 

standards for more robust control over a wide mass range. 

 

3.1.3   Conventional Peak Analysis 

 

 

 

 

 

 

 

Figure 3.3  Peak detected mass spectrum: A reference peak is selected 

for peak analysis 
 

Peak analysis methods have been used for quantitative spectroscopy analysis. The 

method involves some sort of normalisation – i.e. against total spectral intensity or 
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reference peak intensity. However, lack of signal-to-noise and repeatability problems 

would result in inaccurate measurements, especially for MALDI mass spectra. 

In this work, this single peak analysis approach is used as a conventional method to 

compare with the linear Poisson ICA method. Where the intensity ratio of a single 

peak bin to the reference peak is calculated in every mass spectrum in the data set 

and will be used to quantify the components of the material analysed. Note that the 

same pre-processing steps (Section 3.3) as for linear Poisson ICA were applied prior 

to this analysis. Only strong signal peaks with intensities above the noise level will 

remain in the spectral data set, as ensured by the peak detection (Section 3.3.4). A 

diagram given in Figure 3.3 illustrates the peaks detected in the mass spectrum with 

a reference peak selected for relative quantification. 

A reference peak should be selected at a peak bin that appears consistent across all 

spectra in the data set. The peak would be assessed to have relatively no correlation 

between its signal intensity and the corresponding sample proportions. Usually, one 

of the largest peaks would be chosen, firstly for stability of intensity values, and 

secondly for reasonable ratio representation. For example, the appropriate 

reference peak chosen for every MALDI-MS data sets in Chapter 5 was at m/z 760.5 

[PC(16:0/18:1)+H]+ (Deepaisarn et al., 2018). An alternative strategy can be the use 

of the integral over all data bins as a normalisation factor, e.g. in Chapter 6, which 

should be a more consistent choice across a large data set, particularly for imaging. 

Loss of generalisation is introduced by selecting the one peak, known to be most 

correlated with the ground truth proportion of the underlying sample components 

to represent the quantitation of the whole spectral set. In other words, the 

conventional analysis only relies on a specific molecule. 

One of the main problems in conventional MS peak analysis is that natural salt ions 

(e.g. Na+, K+) exist in biological samples and there is no perfect way to purify such 

samples, especially in imaging experiments. Hence, variation in mass spectral signal 

intensity between sample deposits, or even between repeat measurements of same 

sample deposit may be location dependent. The analysis of a single peak is therefore 

not necessarily advisable when various salted species of the same molecule 



89 
 

contribute to the recorded signals, sharing the signal intensities between those peaks 

with uncertain proportions. 

 

3.1.4   Supporting Software for Mass Spectrometry Data 

Analysis 

The MALDI-TOF-MS instrument used at the Wolfson Molecular Imaging Centre 

(WMIC), the University of Manchester is an AXIMA CFR+ TOF2 model from Kratos (a 

Shimadzu group company). This instrument has been upgraded to have a 200 Hz 

laser, effectively making it equivalent to the more recent “Performance” model of 

instrument. The manufacturer’s “Launchpad” software allows selection of positive-

negative ion, linear-reflectron, MS, MS/MS, MSI modes with ranges of parameter 

adjustments, including laser properties, mass range, data processing properties, etc. 

These primary set-ups allow the users to perform a variety of experiments and to 

acquire the optimised data with the selected sample-matrix types. However, both 

experimental results and data analysis processes can be optimised with support of 

other related software and the semi-automated enhancement of mass spectra is 

possible with the aid of coding.  

MATLAB is a widely used software for statistical and data analysis. As a high-level 

programming language, it allows simple coding. Also, it is convenient and easy to use 

for handling and accessing data. It can be designed to suit custom demands with the 

ability to create graphical user interface format programmes. Moreover, MATLAB has 

special sets of built-in algorithms called the “bioinformatics toolbox” which provides 

several useful functions to improve spectral analysis such as baseline subtraction, 

peak detection, etc., and the “image analysis toolbox” which can be applied for MS 

imaging (http://uk.mathworks.com/products/bioinfo/; White et al., 2005). 

In mass spectrometry imaging applications, mass spectral data match spatial voxels 

to form graphical images of signal distribution throughout the sample (Parry et al., 

2013). Ranges of software designed for displaying, processing and analysing mass 

spectrometry imaging data are available to users as open sources e.g. Biomap 

(https://ms-imaging.org/wp/biomap/), MSiReader (Robichaud et al., 2013; Bokhart 
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et al., 2018), OpenMSI (https://openmsi.nersc.gov/), or commercially e.g. SCiLS Lab 

(Bruker). Biomap allows basic interpretation of MS imaging data, including single ion 

images, averaging of mass spectra in a region of interest. MSiReader (Robichaud et 

al., 2013; Bokhart et al., 2018) is a Matlab based programme which features 

conversion between image formats, pre-processing, pixel interpolation, etc. 

However, the data uploading speed is slow and the computer memory can be a 

problem for large data files since the data are loaded into a spreadsheet. OpenMSI 

(Rübel et al., 2013) allows fast data management on a web-based interactive 

environment, with an interactive view tool function which can represent distribution 

of 3 different ions on RGB (red-green-blue) image at a time. There are vast number 

of contributors globally. The commercial software, SCiLS Lab (Bruker) can perform 

some more sophisticated functions including, correlation analysis, spectral analysis, 

classification of data, etc. 

Available software is easy to use but access to the algorithms that drive the tool is 

limited. Therefore, it is very difficult to know exactly what the software does to 

process the data and made worse by the many versions of updated software 

released. Furthermore, quite often a Gaussian assumption of statistical errors is 

made (without prior assessment of data). Frequently this is done for the sake of 

algorithm simplification. There is still a gap that appears common to all available 

tools, which is the statistical errors in quantitation are not provided. A statistically 

appropriate chemometric analysis method would be required to solve this matter 

properly. 

 

3.2   Computational Analysis Methods for 

MALDI-MS Data 

This section gathers together some of the relevant computational methods for data 

analysis that have been chosen by mass spectrometrists to analyse and report their 

mass spectral data, particularly in imaging MS. A summary of the methods’ basic 

descriptions and general applications are discussed. 



91 
 

3.2.1   Data Mining 

Big data analysis has become one of the topics frequently talked about in the 

information context including management and interpreting of data in the sciences 

and social sciences. Currently in scientific research, real-world data generated by 

state-of-the-art instruments tend to be provided at an increasing size and rate 

promptly delivering the most relevant available information for studies. The data is 

therefore ‘big’ in terms of the amounts and variations in data. This means a lot of 

hidden information may be there to be extracted. Powerful tools are needed to deal 

with this aspect properly, to identify useful components and properties of the data. 

Modelling tasks for such big data are certainly difficult and require either huge or 

complicated efforts to sort out specific problems. The techniques for organising data 

systems and selecting methods to find the optimal solutions that satisfy the question 

of study, are generically called ‘data mining’. Where modelling tasks range from 

classification, regression, outlier detection, to correlation analysis, data mining can 

be employed to build an appropriate method which allows multiple types of analysis 

to uncover hidden information. 

Unsupervised learning: By looking into unseen data, features (i.e. unique properties) 

can be discovered that explain groups, clusters or trends contained in the data set, 

without prior knowledge. 

Supervised learning: A training data set of annotated samples is given. The training 

data set will contain some associated values to train a computer to perform specific 

tasks based on meaningful operations as justified in the training. For example, a data 

set that is known to carry some number of categories and individual samples (already 

determined as belonging to a particular category) can be utilised to train a classifier 

that can then perform classification when applied to a new data set. 
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3.2.2   Computational Approaches 

The following computational approaches can be categorised as pattern recognition 

techniques, which are generally used in machine learning in various applications, e.g. 

to handle multivariate problems, including MS data analysis. Basic descriptions of 

these approaches including support vector machines, nearest neighbours, random 

forests and neural networks are given below. Other machine learning methods, 

particularly clustering approaches are important in terms of their application on 

MALDI-MS imaging analysis – i.e. classification and subsequent segmentation. They 

will be detailed in Section 6.1.3 at the introduction to the imaging experimental 

Chapter 6 where data analysis approaches for MALDI-MS imaging are compared 

specifically. Statistical multivariate analysis approaches that involve extraction of 

linear spectral components (which allows spectral quantitation aimed in this work) 

are also discussed in Section 6.3.1 with comments on data assumptions. 

  

3.2.2.1   Support Vector Machine 

The support vector machine (SVM) was developed as a classifying tool. The method 

attempts to find the hyperplane that maximally separates the margin of classes in 

the data in a multidimensional space, where the margin is defined as the 

(perpendicular) distance from a hyperplane to the closest data point on each side of 

that separating plane. For a data point, separation from the plane can be written as 

the function 𝑔 defining a linear SVM in Equation (3.2). 

𝑔𝒘,𝒃(𝒙) = 𝑦(𝒘𝑇𝒙 + 𝒃)                                           (3.2) 

Given that 𝑦′(𝒘𝑇𝒙 + 𝒃) ≥ 𝑔 for all other data points. The above equation can be 

normalised by a factor of magnitude ‖𝒘‖ for vector 𝒘. This would give the distance 

from the hyperplane in terms of a unit vector. Therefore, a minimum ‖𝒘‖ is needed 

to represent the maximum distance and thus the optimal SVM classifier. 

Corresponding values for each data point, 𝒙 can be calculated using 𝑦(𝒘𝑇𝒙 + 𝒃). 

Note that 𝑦 indicates the positivity and negativity of a data point according to its side 

of the hyperplane. 
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To analyse data with more complicated features (physical properties), a non-linear 

transform of the linear expression above for each data point, 𝒙 can also be achieved 

by multiplying an appropriate kernel of a higher-degree function by the first term in 

𝑦 in order to define more precise boundaries between classes of data. 

 

3.2.2.2   Nearest Neighbours 

“k-nearest neighbours” is probably the simplest method amongst all the methods 

which will be discussed in this section. When data are plotted in a vector space, data 

might be expected to spatially cluster according to their common properties. A data 

point of unknown class/value should be more likely to belong to the same class as its 

nearest neighbour (the data point that is located closest to it). Considering some 

number of nearest neighbours, 𝑘, greater than 1 reduces the effects of noise from 

measurement. However, a large value for 𝑘 can lead to problem of regularisation 

(when trying to fit a model to all data points) if non-relevant data points are taken 

into account. In classification tasks, the unknown variables take the mode class of the 

k-nearest neigbours. In regression tasks, the mean distance from an unknown point 

to the k-nearest neighbours is normally observed, Euclidean distances are measured. 

Although the method works with supervision, there is no need to model the data to 

predict unknown variables. The only parameter that can be freely adjusted is 𝑘. This 

ease of use can be a benefit, but also a problem, as the parametric optimisation is 

too limited. Sometimes, when the distance relies mainly on a few variables, where 

there are huge differences in the range of values, appropriate normalisation or 

weighting techniques can be applied. This is rarely discussed in the literature and 

there is no definition of the statistical principle involved in training the algorithm. 

 

3.2.2.3   Random Forest 

A random forest is a decision tree based method which is used to solve various 

machine learning problems. A good decision tree should optimally separate samples 

according to the distinctiveness of their features/variables. In supervised learning, 
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the method is validated by correctly identifying or estimating labelled samples in the 

training set. Hence, the prediction in the testing data set is used to decide between 

logical design choices. The algorithm is relatively fast to operate, therefore, many 

individual decision trees can be constructed for randomly selected subsets of data to 

achieve satisfying accuracy with the combined trees, or a “random forest”. The 

method is very popular, particularly as a great tool for classification, because of its 

flexibility. It applies little constraints on parametric assumptions of the data 

compared to other methods, which could simply allow non-linear analysis without 

adding much complexity to calculation. Random forests can also provide fair 

solutions to regression problems but are quite limited, as they lack of some important 

statistical assumptions and may introduce problems due to the model’s randomness. 

For example, there may be a problem of overfitting the data, or that there is not 

enough data to train an appropriate regressing estimation. 

Random forests have a large application base, extended to dimensionality reduction 

by ranking the features of data and discarding insignificant ones. Shi and Horvath 

(2006) has also introduced a use of (semi-)unsupervised random forest where 

Monte-Carlo sampling is used for training, providing unknown classes. 

Random forests use votes and mean values to predict, discrete and continuous 

variables, respectively. Whist clustering data samplings, optimal performance for 

each decision tree is achieved when the minimal variance within a cluster, but 

maximal variance between clusters are achieved. Significant tests used with the 

method are based upon approaches such as chi-square, analysis of variance. 

 

3.2.2.4   Neural Networks 

The concept of the (artificial) neural network is to mimic the some aspects of 

structure and connectivity of human brain, to learn based on information received 

and to make decisions on unseen scenarios that comprise similar features. The 

computer system aims to extract knowledge from training data, and can be used to 

solve problems like classification, clustering or regression. In order to build a neural 

network, a number of neurons are connected between layers and define processing 
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of the input variables with some form of activation function in order to generate 

outputs – e.g. classified data. The diagrams presented in Figure 3.4 show the 

structure of a single neuron and a multiple-layer neural network system. A classical 

neural network equation is given below. 

ℎ𝑾,𝒃(𝒙) = 𝑓 (∑ 𝑾𝑇𝒙 + 𝒃)                                     (3.3) 

Where an input vector 𝒙 mathematically expresses underlying feature elements of 

the weighting factor 𝑾. As a result of the activation function 𝑓, the output ℎ from a 

layer provides the inputs for the next layer’s “neurons”. The final outputs are 

obtained after propagation of these “signals” through all layers in the neural 

network. 𝒃 is a bias (intercept) term, allowing for flexibility of the model to fit the 

data. Inputs and outputs take values of continuous variables. 

 

 

Artificial neuron Artificial neural network 

Figure 3.4  Artificial neuron (left), and example of neural network with fully-

connected neurons and with an additional bias term indicated +1 in each layer 

(right) (Diagrams from: http://ufldl.stanford.edu/tutorial/supervised/ 

MultiLayerNeuralNetworks/ (UFLDL Tutorial)) 

 

Examples of non-linear functions, that are employed in the transformation Equation 

(3.3), are Sigmoid functions, hyperbolic tangents (tanh) or other high-degree 

functions. Neural networks seek the best innate features that need to be carried 

through the functional network paths into final stage of fitting data. A convolutional 

neural network, works by multiplying smaller kernels iteratively to different parts in 
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the network in order to represent the whole network in a practical way – e.g. image 

and speech recognition. 

The drawback of using neural network techniques is the model complexity. It 

requires in depth investigation of the behaviour of the processed data and selection 

of suitable functions, number of network layers and elemental features. Moreover, 

there is quite restricted control over intrinsic parametric updates of the network and 

training algorithms can be unpredictable. 

 

3.2.2.5   Discussion and Comparison of Some Approaches to MALDI-

MS Data Analysis 

Mass spectrometry data are very informative and therefore are large in size. 

Especially, mass spectrometry imaging collects spectra acquired at defined locations 

across a region of a thin section of sample (with a focus on biological tissue samples 

in this thesis). Due to the large size and complexity of imaging data, computational 

methods are often applied in analysis tasks. A simple classification algorithm to 

segment regions of the tissue section is based merely on a specific analyte, in this 

case, biological molecules of interest. Spatial distributions of different m/z molecules 

are contained in the same set of data; therefore, several analyses could be 

performed, combined, and compared, from the same acquisition session. In medical 

images, biological structure and its chemical components are usually a known 

distribution. Problems to be solved often relate to pathological conditions that lead 

to changes in the tissue sample under examination. Using suitable mathematical 

methods, it is possible to train a classifier to perform automated diagnoses. As 

medical images, in classes of interest, usually have regular patterns that might be 

recognised as class identification, this can be performed by a human; therefore, 

constraining the training using previous experience, and hence, this is called 

supervised learning. The alternative approach is referred to as unsupervised, where 

the learning machine is constructed (without guidance) and is a useful tool for a 

complex data analysis. Some supervised and unsupervised algorithms are listed in 

Table 3.1, providing a brief introduction to the use of some techniques for mass 

spectrometry data analysis. 
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In the supervised approach, data points are annotated relative to their pixels in each 

of the sample images which presumably contain the corresponding target tissue 

components. Feature information contained in the data points is stored for the 

purpose of training so that a classification model can be built across a series of sample 

images via various algorithms such as the random forest method. In the work by 

Hanselmann et al. (2009), random forest classifiers were generated for the 

classification of breast cancer tissue for mass spectrometry images. This gave a true 

positive rate for correct classification as high as about 90%. MSI data points 

(characterised by mass spectra) amongst training samples of known classes are used 

to build binary decision trees based on a hierarchy of randomly selected features. 

Spectral information contained within each interval of the full spectrum (responsible 

for these features) is used to categorise samples into two classes. The classifications 

are trained sequentially, in a tree using different features until decision paths are 

obtained that ultimately distinguish the sample between two different classes. The 

diagram for structure of trees in Figure 3.5 (a) describes this algorithm. Where a 

tree’s node represents a feature (member of a randomly selected subset of the whole 

set of features) that optimises the separation of the classes with a feature value (e.g. 

ion counts in a mass spectral interval) determining the class separation threshold 

(Hanselmann et al., 2009) (See also the diagram in Figure 3.5 (b) for graphical 

boundaries separating data into 2 distinct classes). The tree is grown by splitting each 

node into 2 branches (representing the classes) starting from the root node. For 

every child node, it undergoes the same procedure until satisfied at the leaf nodes, 

where a final class decision is made. Then, a random forest classifier is formed 

accordingly by combining series of these trees that have been trained randomly and 

independently in order to achieve good generalisation (Criminisi and Shotton, 2013). 

In testing, the same data point is classified through every individual decision tree in 

the forest. In each tree, a decision is made at each node (starting from the root), 

following an appropriate path until it reaches a leaf node, where a vote is generated 

for the preferred class. The testing data are then classified as the class with the 

maximum number of votes as a surrogate for the corresponding class probability. 

Here, the classifier’s sensitivity can be derived from a comparison of the resulting 

and true class of the test data. Note that the wavelet transform is widely used to 
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extract useful features with fewer dimensions and more efficient use of data, thus 

giving better and faster classification performance (Liyen et al., 2013). 

 

 

Figure 3.5  (a) Decision tree characteristics where f1 and f2 are feature values of 2 

different features at each node used as classification thresholds, and (b) plot of data 

with decision boundaries being the feature values in the corresponding trees 

(Adapted from: Hanselmann et al. (2009)) 

 

Multivariate analysis allows many measured variables to be analysed simultaneously. 

Data of high dimensionality are handled using matrix algebra for the convenience of 

interpretation and computation of the multivariate data (Miller and Miller, 2010). 

Approaches using linear decomposition of data components used in the mass 

spectrometry imaging context, e.g. probabilistic latent semantic analysis (pLSA), are 

discussed in Section 6.1.3. These approaches are usually unsupervised and allow 

regression measurements. They can be powerful for analysing mass spectrometry 



100 
 

images in terms of dealing with variabilities in signal and noise, and are independent 

of spatial locations. Therefore, they can also be applied for quantitative classification 

purposes. For example, principal component analysis (PCA) is a statistical method of 

handling and simplifying large data sets for further analysis where only the main 

components of data variance are considered (see details in Section 3.4.2.1). A 

principal component plot is a graph of data points in a coordinate space with the first 

principal component axis indicating the direction of most data variance. The 

complexity is reduced by rejecting the least significant principal components (least 

variant) until left with fewer dimensions, where data points from a specific class are 

distributed within certain deviations and can be distinguished from other classes. 

Note that all principal component axes (the spectral shapes) are orthogonal, as a 

result of the mathematical form of decompositions. In mass spectrometry, data 

points are encoded by mass peaks in a set of MS spectra. A PCA algorithm was applied 

to semi-quantitatively classify MALDI-MS data from different types of bacteria using 

their relative mass peak intensities (AlMasoud et al., 2014). Classification accuracy of 

90% was quoted for this specific data set using PCA, followed by further classification 

using ‘support vector machines with a linear kernel’ (AlMasoud et al., 2014). They 

also introduced an alternative qualitative approach using principal coordinate 

analysis (PCoA) where only m/z signals greater than three times a baseline level were 

considered as peaks (AlMasoud et al., 2014). Classification of MALDI-MS proteomic 

data from serum of (gastric) cancerous and normal tissue samples in humans was 

successfully performed by Shao et al. (2012) using the PCA method. Smaller MS data 

sets were selected by the most useful proteomic peaks derived from PCA, plotted as 

in Figure 3.6 with an accuracy in classifying samples in the patient group determined 

by distribution to be 94.5% (Shao et al., 2012). 
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Figure 3.6  Plot of data points on principal components showing clusters of human 

serum samples using mass spectrometry where red and green spots represent data 

from healthy and gastric cancer training sets, respectively, and the blue spots 

represent data from testing sets (all from gastric cancer patients) 

(Adapted from: Shao et al. (2012)) 

 

 

3.2.3   Understanding Signal and Noise and the Associated 

Analysis Requirements 

Some Definitions 

The terms signal and noise are involved in interpreting the contents of digital data, 

hence, often appear used in data analysis and processing of electrical, imaging, 

spectroscopy data, and so on. 

 

Signal: A measure of the target quantity, acquired using a specific experimental set-

up. 

Noise: Errors generated by a measurement system and superimposed onto the 

actual signal. Note that noise usually refers to random errors. 
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Errors do exist in every measurement, in other words, recorded signals always 

contain some sorts of error. Broadly speaking, errors are classed into 2 main types, 

which are systematic and random errors. Both are expected to occur in several stages 

of experiments, including instrumental, environmental and man-made errors. The 

experimental procedure has to be adjusted to optimise the results such that these 

errors are minimised, giving an accepted level of signal-to-noise ratio (S/N). 

Systematic errors may be recovered by applying some form of function to the data – 

e.g. constant shifting or scaling throughout the recorded signals. This can generally 

be dealt with by calibration methods that suit the apparatus. Random errors are 

determined by limitations of instrumental measuring stability (precision) which 

causes statistically random variations. Pure signals can never be achieved, but 

averaging the results from repeating measurements is a way to help getting rid of 

random variations in many scientific problems. However, acquiring multiple 

measurements may not be possible for some experiments. Attempts to use 

computational techniques are therefore required at this point to address any serious 

noise levels. 

Identifying noise, and splitting separable noise from signal can improve the 

interpretation and quantitation of the data, enhancing the S/N. It is important to 

correctly describe the noise distribution on data as this determines how reliable it 

can be in a prediction of the noise-free data, leading to appropriate analysis and 

optimal solutions. Further discussion on Gaussian and Poisson noise characteristics 

will be noted in Section 3.4.3. There is no explicit role for noise in support vector 

machines, k-nearest neighbours, random forests, neural networks or clustering 

approaches, even though it is clearly important for the valid interpretation of data. 

Appropriate modelling using linear decomposition techniques with correct statistical 

assumptions is required for a proper characterisation of signal and noise. This 

therefore motivates the use of linear Poisson independent component analysis which 

will be described in Section 3.4 and compared explicitly against other approaches for 

analysis of MALDI-MS imaging in Section 6.1.3 of Chapter 6. 
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MALDI-MS: Where does the noise come from? 

In the particular problem of the MALDI mass spectrometry context, noise comes from 

many sources as discussed previously in Sections 2.2 and 3.1.1. There are number of 

instrumental and experimental control parameters that can be optimised to enhance 

S/N so that it satisfies the requirements for qualitative or quantitative analysis. 

Instrumentation: laser power, number of laser shots per profile, pulsed extraction, 

mass range of interest, pressure in flight tube, detector gain, electronics used for 

amplification, etc. 

Sample preparation: homogeneity of the sample and matrix on surface, the amount 

and concentration of sample, the matrix type and its ratio to the sample, etc. 

There are many other parameters that can also cause difficult concerns to MALDI-

MS measurements. For example, the non-planar nature of the sample surface, 

especially with matrix added can contribute to variation of angles of the incident 

laser beam. Temperature changes can affect chemical ionisation (heat from the laser 

pulse raises the energy in the plume) and electrical parts of the machine (heat from 

the laboratory/instrumental environment). Some uncontrollable fragmentation 

introduced post ionisation can result in chemical noise that occurs in the mass 

spectrum apparently at random. This is from matrix clusters and also analytes. 

There are also some other instrumental and/or unintended signal variations and 

systematic errors which interfere with the random noise. Analysis methods that treat 

the data appropriately from a statistical perspective must be used to maintain the 

integrity of both signal and noise characteristics so that they can be separated 

correctly, e.g. via pre-processing, signal decomposition. The MS signals are in the 

form of ion counts, which are peaks in the current above a certain threshold are 

counted. These peaks come from ions, for a TOF-MS instrument, some ions arrive the 

detector at the correct time for their m/z and some are not, hence the mass 

resolution issues. In the event of two or more ions coinciding at the same m/z within 

the range of mass resolution, the quantitation task will become even harder to 

achieve given that a peak is composed of contributions of more than one ion. This is 

not an issue of noise but the real signal that causes a problem when separate signals 
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cannot be discriminated (see Section 6.3.5, and the diagram in Figure 6.12 for the 

analysis solution and discussion). If there is a non-ion induced event at the detector 

e.g. when hit by a comic ray, or if the ion trajectory leads to a small signal below the 

threshold for counting, etc., a non-predictable presence/absence of detected signals 

is expected. However, the statistical assumptions on the data should still be 

preserved. 

All these represent contributions to systematic and random errors whose sources are 

sometimes too complicated to be modelled, or controlled. The remaining factors that 

have not been removed via experimental optimisation eventually add up and appear 

as background noise in the mass spectral readings. Appropriate pre-processing and 

statistical analysis methods, with suitable assumptions based on the data analysed, 

can deal with the signal and noise behaviour in the calculation, allowing for a more 

accurate quantitation of the final results (further quality control is usually required 

given the complex nature of the MS data discussed above). 

 

3.3   Pre-processing of Mass Spectra for LP-ICA 

MALDI mass spectra obtained directly from acquisition are prone to noise and 

variability. It is common for some pre-processing to be required before any 

quantification work can be carried out. Pre-processing generally refers to steps of; 

spectral alignment, background (or baseline) subtraction, and peak detection, prior 

to analysis. 

A complex biomolecule will generate a series of MS features, which undergo 

correlated variations in intensity and position, depending upon equipment settings 

and the local sample environment, e.g. Szájli et al. (2008), or even suppression effects 

due to the influences of different molecules on ionisation. Aside from these 

variations, MALDI mass spectra are approximately linear combinations of sub-spectra 

from a sample’s constituent molecular components. Some sources of variation are 

reduced through pre-processing. Baseline corrections can remove background by 

subtracting a smooth function fitted beneath peaks, e.g. Williams et al. (2005). 
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Alignment can be achieved by shifting spectra, with various forms of interpolation 

applied for sub-bin precision, e.g. Jeffries (2005). Peak detection and integration can 

be achieved by thresholding, direct summation of m/z bins, or by the fitting of 

Gaussians, e.g. Yang et al. (2009). 

For a Linear Poisson Independent Component Analysis (LP-ICA) to be successful, MS 

data must be presented in the form of a set of histograms composed from 

(approximately) independent bins containing Poisson-distributed sample quantities. 

For computational efficiency and convenience, it is desirable to have as few bins as 

possible whilst maintaining the useful information from the original spectra. Each bin 

should be well populated. Reducing the full mass resolution of the spectra (10 - 100 

thousands of bins each spectrum) to a more manageable size can be achieved using 

basic pre-processing steps. Additionally, several sources of MS variation can be 

mitigated against during this pre-processing through some post-acquisition 

calibration. The following steps are designed to: select an appropriate mass range 

and resolution, correct misaligned peaks, correct spectral baselines, and integrate 

significant peaks into individual histogram bins. Full descriptions are provided in 

previous work, see Thacker et al. (2018) for the in-house pre-processing methods for 

use where Poisson noise is dominant in peaks and Gaussian noise is dominant in 

background. 

An example MALDI mass spectrum before and after applying the following pre-

processing steps is shown in Figure 5.2 (see Chapter 5, Section 5.3.1). 

 

3.3.1   Windowing and Resolution Reduction 

Low mass peaks are noisy and imprecise, and matrix related ions contain little 

information regarding the analyte content of samples. As such, the first pre-

processing step is to select a mass range containing the analytes of interest. 

A basic analysis of correlation between bins is performed in the baseline correction 

step (Section 3.3.3), the results of which determine the minimum down-sampling 

required to improve the statistical independence of adjacent bins. Lower resolution 
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spectra are produced by combining whole bins thereby avoiding the need for 

interpolation which can introduce aliasing artifacts. 

 

3.3.2   Alignment 

A peak alignment procedure, that has been validated for use on Poisson samples, is 

applied to minimise unwanted shifting of peaks (e.g. due to changes in TOF due to 

surface height differences, etc.). The algorithm is designed to conserve the pre- and 

post-aligned integral of each spectrum and also maintain statistical independence of 

adjacent bins. 

A reference spectrum is first created by taking an average of all spectra. Each 

spectrum is then aligned to this reference individually. A square-root (Anscombe, 

1948) is applied to each bin to transform the Poisson quantities to approximately 

Gaussian variables. Sub-bin alignment is then performed in the Fourier domain by 

finding the phase shift in data which minimises a least-square difference of each 

spectrum to the average. The same Fourier description is then used to interpret 

shifted data. 

 

3.3.3   Baseline Correction 

Signal peaks are superposed on a non-uniform but smoothly-varying noisy 

background. This means that there is no fixed baseline for ion counts across the range 

of a spectrum. A baseline correction is required which estimates this background, 

subtracts it, and performs some quality control upon the results. The algorithm 

chosen to apply assumes that noise on the background is approximately independent 

and Gaussian with zero mean. Each spectrum is iteratively baseline-corrected, 

converging when a stable background is found. An initial attempt is made to identify 

the location of peaks using hysteresis thresholding. A kernel is applied to the 

identified background that estimates the smooth (noise-free) version and 

interpolates beneath located peaks. The smooth background is subtracted from the 
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original spectrum and the root mean square (RMS) between the corrected baseline 

and new background is computed. The RMS is used to update the hysteresis 

thresholds, stopping when the RMS converges to a fixed value. 

As an additional check, at the solution, the mean run-length – i.e. the mean value of 

same-signed residuals is computed. This should be 2 if the baseline has been 

successfully corrected and if adjacent spectral bins are independent. If this is larger 

than 2, the original spectral resolution can be reduced to improve independence (see 

Section 3.3.1). 

 

3.3.4   Peak Detection and Integration 

The final pre-processing step reduces spectra to a set of histograms containing as few 

bins as possible, whilst attempting to maintain most of the useful information. 

Spectral bins between peaks, and small peaks up to a few standard deviations above 

the noise floor, contain little useful signal. These ranges are also dominated by 

Gaussian noise (so-called ‘background’), whereas Poisson noise must be dominant in 

signal variation for LP-ICAs to be applied. The peak detection and integration method 

of Thacker et al. (2018) is used to perform this reduction. Significant peaks are 

detected by applying hysteresis thresholding. Bins associated with each detected 

peak are summed to give a measurement per peak. Unlike the baseline correction 

step (which operates on a spectrum-by-spectrum basis) this thresholding is applied 

to the sum of all spectra, as significant peaks may vary from one spectrum to another. 

The result is a single common binning across all spectra. The resulting histograms are 

fed through to a conventional analysis (Section 3.1.3) and the new LP-ICA analysis 

(Section 3.4.5). As each bin represents a single peak, the terms bin and peak may be 

used interchangeably from this point. 

Once correlated effects have been removed, there are two main sources of random 

noise that are expected to be present in mass spectra, superimposed on each other. 

They differ in characteristics as seen in the diagram provided in Figure 3.7 (a). The 

need for baseline correction is to correct for the background noise which is 
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introduced mainly by electrical effects of the instrument, which should be uniform 

across all mass values and explainable as Gaussian noise. On the other hand, the ion 

counts recorded are a Poisson sampling process, with the noise level proportional to 

the square-root of signal. The following symbols are used in the rest of this thesis to 

clearly state the distinction of the (signal variants) Poisson noise 𝜎𝑝, and the 

(background) Gaussian noise 𝜎𝑔. The diagram provided in Figure 3.7 (b) and Equation 

(3.4) show the effect of the two noise ground to the observed total noise, 𝜎𝑡𝑜𝑡. 

 

𝜎𝑡𝑜𝑡 =  √𝜎𝑔
2 + 𝜎𝑝

2                                                       (3.4) 

 

 

a 

 

 
 

b 

 

 

Figure 3.7  (a) diagram and (b) graph showing Poisson vs. Gaussian noise behaviour 

 

𝜎𝑔 is constant and independent of signal intensity, and is expected to be small in 

comparison with 𝜎𝑝. Especially, after baseline correction, 𝜎𝑔 should be small. 

Therefore, at higher signal intensity as a result of peak detection, the 𝜎𝑝 is dominant 

in the observed total noise, 𝜎𝑡𝑜𝑡 – i.e. if 𝜎𝑔<<𝜎𝑝, 𝜎𝑡𝑜𝑡 is approximately 𝜎𝑝 (see Figure 

3.7 (b) for the illustrating diagram). 
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3.4   Linear Poisson Independent Component 

Analysis 
 

3.4.1   Correlation of Numerical Data 

This section explains the general correlation properties of numerical data 

distributions. Note that correlation is an important concept in statistics for 

description and interpretation of data. The diagram of an example data distribution 

of two uncorrelated variables is presented as a 2-dimensional plot in Figure 3.8 (a). 

The original horizontal and vertical axes of the plot indicate the two variables 𝑋1 and 

𝑋2 which contribute to the data distribution about their means 𝜇1 and 𝜇2. An ellipse 

indicates the confidence interval of the data points lie within it, with respect to the 

value for standard deviation, 𝜎1 and 𝜎2. Here, the symmetry of the plot about 𝑋1 = 

𝜇1 and 𝑋2 = 𝜇2 shows that the data distribution on one axis is not predictable using 

the value on another axis, the data variables are theoretically uncorrelated – i.e. 

independent. On the other hand, the data variables are said to be correlated if the 

spread of data given one variable relies upon the value of the other variables. In the 

plot presented in Figure 3.8 (b), 𝑋1
′  and 𝑋2

′  are the direct rotational axes crossing the 

mean values of the distribution of both variables at 𝜇1 and 𝜇2, and it can be seen that 

the data lie within the corresponding ellipse are not independent.  

 

  a   b 

 

 

Figure 3.8  Distribution of data on 2-dimensional contour plots of (a) uncorrelated 

and (b) correlated variables 

 𝑋1 

𝑋2 

𝜇2 

𝜇1 

𝑋2
′′ 𝑋2

′  
𝑋1

′′ 

𝑋1
′  

𝛼 
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However, the data shown in Figure 3.8 (b) can be de-correlated mathematically by 

rotating the axes by an angle, 𝛼, so that the new axes 𝑋1
′′ and 𝑋2

′′ are aligned on the 

most separable directions for the given data. The technique of finding most separable 

directions in higher dimensional data is made useful in a well-known statistical 

analysis: Principal Component Analysis (PCA). 

The next sections will describe and compare the 2 types of multivariate data analysis 

methods: Principal Component Analysis (PCA) and Independent Component Analysis 

(ICA) which are often used for the analysis of scientific data. 

 

3.4.2   Standard PCA and ICA 

PCA and ICA have some commonalities in the basis of their principles, both aim at 

simplifying multivariate data. The data are interpreted as a matrix of linear 

combinations derived from the observed variations within data, following the 

selected assumptions for each approach. Such methods involve dimensionality 

reduction into a smaller number of components which best describe the original 

data. Hence, further problems can be solved using fewer parameters. 

 

3.4.2.1   Principal Component Analysis (PCA) 

𝑋 is an 𝑀-dimensional vector of the underlying variables, each of which contributes 

different amounts of variation into the data. 𝑌 is a vector representing the principal 

components, where 𝑁 is the expected number of principal components to be 

extracted. 𝑋 and 𝑌 are functions of some parameter 𝑡 that contain information about 

the origin of variants. 

𝑋 =  [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑀(𝑡)]𝑇                                      (3.5a) 

𝑌 =  [𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑁(𝑡)]𝑇                                      (3.5b) 

In order to work out 𝑌 from 𝑋, a matrix, 𝐴𝑁×𝑀  containing eigenvalues 𝑎𝑛𝑚, needs to 

be determined for the weighting of the linear combinations as in the following 
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Equation (3.6). Note that 𝑚 and 𝑛 are the indices for the original and the reduced 

principal component dimensions, respectively. 

𝑌 =  𝐴 𝑋                                                          (3.6)  

Orthogonality is assumed in PCA for convenience, as it simplifies the interpretation 

and optimisation processes. Each element of vector 𝑋 of underlying parameters are 

then separated onto orthogonal directions expressed in 𝑌 as principal components. 

This means that a set of data composed of a number of underlying parameters can 

be transformed into principal components, instead of looking for the variation in 

each parameter individually. The ability to calculate a covariance matrix and rank the 

principal components in accordance with their variance, makes PCA a useful method 

for extraction of features of interest from a data set. However, physical data 

generators are rarely orthogonal. 

 

3.4.2.2   Independent Component Analysis (ICA) 

ICA analysis is capable of modelling higher-order functions to describe underlying 

variables according to the behaviour of the given data. Unlike PCA, ICA can attempt 

to extract base compositions that were simultaneously produced within the 

measured signal. Also, orthogonality of these components is not required in ICA.  

The structure for elements of independent component analysis can now be 

substituted in the linear formulation in Equation (3.6) where 𝑌 is the vector 

containing the modelled independent components, and 𝑋 is the vector containing 

underlying source signals, each comes with an associated weighting factor 𝑎𝑛𝑚 which 

needs to be estimated. The original signals produced from individual sources 

(generators) are seen as independent components. The measured signal, contains 

the mixed characteristics of the source signals, which could be statistically 

interdependent. A non-parametric assumption can be made for the distribution of 

each of the source signals, which allows a more reliable modelling of real-world 

problems. As the independent components are constructed from several signal 

generators, they are often assumed to be Gaussian distributed and conventional ICA 

is justified on the basis of the central limit theorem. When a single or too few 
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underlying variables exist in a component, the validity of this Gaussian assumption is 

questionable. 

ICA has important applications in signal processing/analysis. The early development 

of the method was so-called “Blind Source Separation”. It was introduced and 

interpreted by solving the “cocktail party problem” where a mixture of sound signals 

(observed by the party goers) can be decomposed into its independent sources. The 

problem was addressed in a speech recognition study by Cherry (1953) where 

listeners had to try to distinguish 2 messages sent at the same time using one or both 

ears. The development of the ICA method has brought interest in developing its 

application in different fields, including the work done by Herault and Ans (1984) that 

recorded neural activities and processed the signals using an unsupervised extraction 

of linear parametric components within the acquired signal. Other later applications 

are, for example, separating signal and noise in complex data from functional 

magnetic resonance imaging data of brain activation (McKeown et.al., 2003), 

electroencephalograms (Krishnaveni et.al., 2005), and planetary image analysis (Tar 

et.al., 2015). 

Note that many of experimental devices producing count signals can be described as 

a Poisson sampling process. Neither conventional PCA nor ICA are based upon this 

statistical model. However, the ICA algorithms may be adjusted using alternative cost 

functions, to approximately suit these characteristics of the data. Hence, a wide 

range of research that involves analysis of data containing multiple variables, has 

made use of ICA, particularly in, chemometrics, bioinformatics, image analysis, and 

speech recognition. 

 

3.4.3   Distribution of Data: Gaussian vs. Poisson 

The Gaussian distribution, also known as the normal distribution, is the most 

common probabilistic distribution used to describe measurements of continuous 

random variables, where the outcomes turn out symmetrical in variance with 

maximum probability occurring at the mean of the distribution. The distribution of 
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the variance (mean square deviation from the mean of measurements) is uniform 

and random throughout regardless of the measurement values. Although, a Gaussian 

distribution is often assumed for convenience in solving statistical problems, based 

on a central limit theorem justification, it is not always applicable for all data sets. 

Hence, there is a need to ensure suitability of the data, especially before quantitative 

analysis in experimental work. 

Poisson noise, instead of being uniform, depends on the value of a particular 

measurement. This type of probability distribution is typical for histogrammed 

(count-based) data. Poisson processes include counting the number of occurrences 

of some (random and independent) events within a definite space or time. Ideally, 

the variance on a measurement is proportional (or equal) to the measurement value, 

which indicates that more measurement variation is predicted for higher counts or 

signals. 

The plots provided in Figure 3.9 (a) and (b) show simulated error distributions for 

Gaussian and Poisson types, presented as Bland-Altman plots (plot of model fitting 

residual against signal intensity) which respectively have uniform error and power-

law error with regard to the measurement values. 

 

 a  b 

  

Figure 3.9  Simulated (a) Gaussian and (b) Poisson Bland-Altman plots 

 

The formulations of standard PCA and ICA algorithms are based upon uniform 

independent Gaussian errors, often conveniently leading to closed-form solutions. 

However, MALDI may not be compatible with these assumptions. In particular, 
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Poisson statistics may better describe the counting of ions. Evidence of MALDI’s 

Poisson nature has been highlighted in the literature, for example, Harn et al. (2015) 

and Piehowski et al. (2009). A number of modifications of standard methods have 

been made in order to allow for data suitability. Properties of data corresponding to 

the choices of modelling method are shown in Table 3.2, and compared with the 

expected MALDI data properties. These include the standard PCA (Jolliffe, 1986), the 

standard ICA (Comon, 1994), PCA/ICA with square-root transform converting Poisson 

noise into approximately Gaussian noise (Anscombe, 1948), Non-negative ICA 

(Plumbley, 2003; Plumbley and Oja, 2004). And finally, the new Linear Poisson ICA 

(LP-ICA) method was originally developed by Tar and Thacker (2014), where the ICA 

method was derived for data with Poisson sampling characteristics: originally called 

Linear Poisson Modelling (LPM). The method has been applied to planetary and 

medical images (Tar et al., 2015; 2017; 2018). The method is also proposed as 

appropriate for the analysis of MALDI data. The properties assessed are noise 

characteristics (either independent, identically distributed (iid) Gaussian noise, or 

Poisson noise), linearity of signal components 𝑥 with weighting factors 𝛼, component 

orthogonality, and the coefficient (positive/negative) on extracted component 

signals. 

 
Table 3.2  Modelling options, with statistical and signal assumptions available for 

varied data properties 

Model Noise Signal Orthogonality Coefficients 

PCA 
iid 

Gaussian 
∑ 𝛼𝑥 Yes +/- 

PCA with 

Anscombe 
Poisson ∑ 𝛼√𝑥 Yes +/- 

ICA 
iid 

Gaussian 
∑ 𝛼𝑥 No +/- 

ICA with 

Anscombe 
Poisson ∑ 𝛼√𝑥 No +/- 

Non-negative 

ICA 

iid 

Gaussian 
∑ 𝛼𝑥 No + only 

Poisson ICA Poisson ∑ 𝛼𝑥 No + only 

MALDI data ≈ Poisson ≈ ∑ 𝛼𝑥 No + only 
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3.4.4   MALDI-MS Data Characteristics 

The time-of-flight measurement of ions in mass spectrometry is potentially a Poisson 

process. Where ions of each specific mass-to-charge ratio (m/z) are grouped together 

with near identical velocity. They drift apart in space from ions of other m/z values in 

the time-of-flight tube before arriving at the detector a certain point in time. The 

flight-time can be written in terms of square root of m/z, and the time intervals for 

ions of specific m/z values to hit the detector can be converted into m/z bins on the 

horizontal axis of a mass spectrum. 

In principle, it is expected that a MALDI spectrum would have Poisson-like signal-to-

noise. That is the measurement error (spectral noise level) increases with signal 

intensity by a power of ½. In reality, a MALDI mass spectrum consists of underlying 

generators, each of which follows Poisson statistics (and the sum of Poisson’s is 

Poisson). Therefore, the intention of this work was to create a model of mass spectra 

based upon these signal generators (so-called components), assuming the model 

parameters are consistent from spectrum to spectrum within a data set. 

Furthermore, there are a number of complex processes involved in the MALDI-TOF-

MS signal generation that give rise to noise. For example, the signal could well be 

contaminated by suppression effects, from chemical compounds of high proton 

affinity, sample-matrix preparation, surface, or electrical noise generated within the 

instrument, etc., not necessarily purely of Poisson type. Therefore, a well 

approximated model is required – i.e. fits every spectrum, so that the noise 

accompanied by each component can be interpreted by the Bland-Altman analysis 

as described in Chapter 5, Section 5.3.5. 

The MALDI-TOF mass spectral data has been assessed and found to follow Poisson 

statistics by observing data distribution via Bland-Altman plot as seen in Figure 5.6 

(Section 5.4.2 of Chapter 5). The generic nature of LP-ICA analysis method is detailed 

in the next Section 3.4.5) and its numerical performance will be presented in later 

chapters (Chapter 5 for discrete MS data and Chapter 6 for imaging MS data). 

Taking appropriate account of the Poisson noise in data should maximise the 

performance of the analysis of the MALDI mass spectra. In addition, the algorithm 
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can automate extraction of modelled components and can seek to identify any 

components that have no association with true sample signals. These extra 

components representing parts of signals that happened to appear in spectra, 

without correlation to analyte quantities, are then called ‘background’. The 

background components found in the spectra can then easily be rejected from the 

spectral analysis. 

 

3.4.5   Linear Poisson Independent Component Analysis 

(LP-ICA) Modelling 

The in-house Linear Poison Independent Component Analysis (LP-ICA) modelling 

algorithm (see also LPM in TINA vision) has been designed specifically to quantify 

histogram data which conforms to a Poisson distribution (Tar and Thacker, 2014; Tar 

et al., 2015). While the standard Independent Component Analysis (ICA) algorithm 

assumes Gaussian-distributed noise. 

An LP-ICA modelling determines the necessary probability mass functions required 

to describe the distribution of spectra. This process is a linear Poisson compatible 

form of Independent Component Analysis. The training is achieved using Expectation 

Maximisation (EM) to optimise the following Extended Maximum Likelihood (Barlow, 

1989), see Equation (3.8). 

 

Cost Function 

A histogram, 𝐻 can be modelled by a LP-ICA probabilistic model, 𝑀, with 𝐾 linearly 

independent components, indices 𝑘, with their associated component of quantities, 

𝑞. Where 𝑖 is the histogram index and 𝑚 is the histogram bin. A probability mass 

function, 𝑃(𝑚|𝑘) defines the underlying signal generator for a component to 

contribute to each histogram bin. This probability is assumed common throughout 

all histogram samplings of a data set. 

𝐻𝑚𝑖 ≈  𝑀𝑚𝑖 =  ∑ 𝑃(𝑚|𝑘)𝑞𝑘𝑖                                         (3.7)

𝑘
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When applied to mass spectra, 𝐻𝑚𝑖  is the histogram bin recording the frequency of 

observed ions of mass 𝑚 within spectrum 𝑖; 𝑀𝑚𝑖  is the frequency predicted by the 

LP-ICA model; 𝑘 is a label indicating an LP-ICA component (sub-spectrum); 𝑃(𝑚|𝑘) is 

the probability of observing an ion of mass 𝑚 from source 𝑘 (note that there is no 𝑖 

subscript here, as an LP-ICA model uses a common set of PMFs to describe multiple 

histograms); and 𝑞𝑘𝑖 is the quantity of component 𝑘 contained in spectrum 𝑖. Given 

a set of 𝑁 spectra, 𝑖 ∈ {1,2, … , 𝑁}, an LP-ICA model is used to provide Likelihood 

estimates for the unknown terms: 𝑃(𝑚|𝑘) and 𝑞𝑘𝑖. Sub-spectra representing 

different modes of variation are encoded as the probability mass functions, 𝑃(𝑚|𝑘), 

with the amount of each present within each spectrum being determined by their 

quantities, 𝑞𝑘𝑖. 

A log likelihood, 𝑙𝑛𝓛 is maximised for this modelling scheme to find the best model 

fit resulting from the additive sum of the quantities of the extracted components, 

see Equation (3.8). The cost function required to be minimised is therefore the 

negative log Likelihood, – 𝑙𝑛𝓛. This is based on the Extended Maximum Likelihood 

which has a renormalisation term added to the standard Maximum Likelihood 

formula to correct for the circumstance where a data quantity varies. In this case, the 

data quantity varies according to the Poisson statistics (where the Poisson sampling 

events are the counts on detected ions). Therefore, the likelihood estimation on data 

is multiplied by the probability at which a certain number of Poisson events occur, 

hence the second term in Equation (3.8) when the logarithm is applied. 

𝑙𝑛𝓛 =  ∑ ∑ 𝑙𝑛 [∑ 𝑃(𝑚|𝑘)𝑞𝑘𝑖

𝑘

] 𝐻𝑚𝑖

𝑚

− 

𝑖

∑ 𝑞𝑘𝑖

𝑘

                        (3.8) 

During training, this function is jointly optimised for a set of example histograms 

giving a set of 𝑃(𝑚|𝑘) components (sub-spectra). The number of components 

required to describe each class is determined by adding additional components until 

the goodness-of-fit, 𝜒2 per degree of freedom (Equation (3.11)) between the model 

and example histograms approaches a stable value (ideally unity). 

In order to find the best linear trend for the underlying sample in the mass spectral 

data, the model was finalised by putting in extra weighting factors, 𝑤𝑘 to the 
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extracted components. 𝑤𝑘 also models efficiencies, etc. which are needed to relate 

measured values to sample quantities. This gives the following relationship for the 

overall component contribution, 𝑄𝑇𝑖. Where 𝑇 contains a class of components that 

contribute to describe an underlying sample proportion. 

𝑄𝑇𝑖 =  ∑ 𝑞𝑘𝑖𝑤𝑘

𝑘∈𝑇

                                                  (3.9) 

Note that suitable 𝑤𝑘 values were initially obtained from linear regression optimising 

the accuracy for some component combinations to predict concentrations of known 

ground truth samples. (See the method of experimental Chapter 5) 

 

Expected Poisson Error  

Propagated error covariance calculated on the 𝑃(𝑚|𝑘) of model components is 

expressed in the equation below, with 𝑎 and 𝑏 are different model components.  

Where available, this can be compared with the measured error (the residual 

between model prediction and ground truth values). (See the results of Chapters 5 

and 6) 

𝐶𝑎𝑏 =  ∑ [(
𝜕𝑞𝑎

𝜕𝐻𝑚
) (

𝜕𝑞𝑏

𝜕𝐻𝑚
) 𝜎𝐻𝑚

2 ]

𝑚

                                   (3.10) 

A chi-square per degree of freedom, 𝜒𝐷
2  determines the goodness-of-fit. The degree 

of freedom, 𝐷 takes values of total number of training histogram examples. The 

adequacy of the model to describe the match score histograms is quantitatively 

testable, unlike many alternative machine learning methods. The number of PMFs, 

𝑘 ∈ {1,2, … , 𝐾}, required to sufficiently approximate the data (i.e. to accuracies 

within the level of Poisson sampling) is determined to minimise 𝜒𝐷
2 : 

𝜒𝐷
2 =  

1

𝐷
∑ ∑

(√𝐻𝑚𝑖 − √𝑀𝑚𝑖)2

𝜎𝑚𝑖
2

𝑚𝑖

                                 (3.11) 

For a large spectral data set, particularly in imaging, the LP-ICA modelling process can 

be time consuming and require heavy computational effort. Therefore, maximally 

compressed data sets should be used. This was achieved by carefully selecting data 
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to keep only the most useful pieces of information, with less time and memory 

consumed. The discussion of this topic is covered under pre-processing methods 

(Section 3.3) designed specific for LP-ICA, and the background to the mass 

spectrometry imaging data formats (Section 2.4.2). 

 

3.4.6   Maximisation Separation (MAX SEP) 

The Likelihood estimates of ICA components and weighting factors need not be 

unique. Due to the possibility of linear degeneracies in the ∑ 𝑃(𝑚|𝑘)𝑞𝑘𝑖𝑘  terms, 

there can be multiple equally good solutions, i.e. different sets of PMFs, which 

combined in the right way can yield the same value for 𝑙𝑛𝓛 (and correspondingly 

equivalent values for 𝜒𝐷
2 ). It can be argued that, given a choice between multiple 

equivalent Likelihood models, the better models are those which have better 

physical meaning. 

What constitutes physical meaning is dependent upon the system being modelled. 

In the case of mass spectra, the components should map onto the correlated 

appearance of different molecules associated with different types of biological 

sample. If this is achieved then 𝑞𝑘𝑖 coefficients will be proportional to the quantities 

of different materials present, i.e. amount of brain or liver. However, the data fitting 

process guarantees only that the extracted linear model passes through a best fit 

hyper-plane; the ICA components themselves are linearly degenerate. ICA 

components may therefore be linear combinations of the underlying biological 

samples. Typically, the components extracted might require modification (via 

subtraction of a common structure) to remove unwanted components of the spectra. 

In order to rectify this problem, it is reasonable to assume that certain molecules will 

exist within some biological materials but not others. This should result in some m/z 

values being zero in one sample and finite in another. Subtracting the maximum 

amount of each ICA component from all others increases the chance of finding 

unique stable solutions and makes model structure ‘simpler’. The criteria for defining 
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components with simple structure were first suggested in Thurstone (1947) with 

respect to unit vector models in Factor Analysis (FA), the first three of which are that: 

 each row [data vector/histogram] contains at least one zero; 

 for each column [factor/component], there are at least as many zeros as there 

are columns (i.e. number of factors kept); 

 for any pair of factors, there are some variables with zero loadings on one 

factor and large loadings on the other factor; 

are consistent without observation of mass spectral behaviour. The ‘loadings’ in unit-

vector models are equivalent to histogram bins found within LP-ICA models. The 

‘factors’ are components, equivalent to probability mass functions in models. When 

using unit-vector models, the above criteria can be achieved using rotations, e.g. 

varimax (Kaiser, 1958). In the case of LP-ICA models of histograms, the criteria can 

be achieved using MAX SEP. 

The most popular rotation for unit vector-based linear models (e.g. PCA, FA) is 

varimax, which maximises the sum of the variances of factors’ squared loadings. Such 

an approach is inappropriate for LP-ICA modelling, as PMFs cannot be rotated in the 

same way unit vectors can, due to the need to maintain positive only values. In 

contrast, the MAX SEP algorithm attempts to achieve the ‘simple structure’ criteria 

by maximising the differences between PMF components to make them as separate 

and unique as possible. If a weighted amount of a PMF can be subtracted from 

another unweighted PMF, such that no probability goes below zero, then a ‘new 

PMF’, can be computed: 

𝑃′(𝑚|𝑘)  =  𝑃(𝑚|𝑘) − 𝛼𝑃(𝑚|𝑙)                                 (3.12) 

arg𝛼  max 𝑃′(𝑚|𝑘) ∶=  {𝛼|∀𝑚 ∶ 𝑃(𝑚|𝑘) − 𝛼𝑃(𝑚|𝑙) ≥ 0}            (3.13) 

A renormalisation step, followed by further application of the model’s ICA EM loop 

can converge upon the simplified components. Varimax solutions do not change the 

linear space that can be reached by original unit vectors; they only provide 

components that may be easier to attribute to physical measurements. MAX SEP, 

however, not only provides components which may map better onto physically 

meaningful measurements, it also widens the reach of the linear space available for 
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describing data with positive loadings. The introduction of a greater number of zero 

bins (loadings) pushes back the origin for data on the hyperplane, permitting data 

points to be reached that would otherwise require negative weights. It also makes 

components more orthogonal (They can never be fully orthogonal when there is a 

spectral overlap). 

MAX SEP is expected to be especially useful for separating sub-spectra when a finite 

quantity of each possible sub-spectrum exists within training data. If a finite amount 

of each molecule is always present, it is more difficult to determine the location of 

zero loadings needed to identify unique components. In these cases, there are no 

Likelihood constraints to force extracted components to be capable of describing 

compositions of data with zero amounts of some sub-spectra. Satisfying the ‘simple 

structure’ criteria, via MAX SEP, should produce more repeatable components. 
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Chapter 4  

Optimisation of 

Experimental Parameters 

 

4.1   Introduction 

As shown in Section 2.2 of Chapter 2, it is clearly seen that MALDI mass spectra 

comprise the signals of interest with a large number of underlying variables. Even 

though there is no way of controlling all of the complex characteristics, nor 

completely removing contamination in MALDI-MS experiments, adjustment of some 

parameters is still possible in order to optimise MS data acquired from a specific 

instrument in terms of the signal-to-noise. 

The sources of the variability in mass spectra are mainly from the sample preparation 

method and the mass spectral data acquisition. The former introduces chemical 

contamination (something that is not interesting measuring), however, it might well 

be deterministic to some extent and could consistently show up in every mass 

spectrum. The latter is more complex to handle as variations may be introduced at 

many stages of the MS process. Different ionised species appear in the mass spectra 

with uncertain abundance, with suppression, unwanted fragmentation, matrix and 

electrical effects all combining to add to signal variance. All these sources of 

unwanted variability add up and appear as an inseparable combination of noise and 

baseline in the measured mass spectra. This represents a significant challenge for the 
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quantitation of real variations in signal quantities. Therefore, when it comes to 

quantifying the amount of a substance of interest using MALDI mass spectra, 

approaches relying on the relative abundance of a single peak (see Section 3.1.3) are 

often utilised. If the intensity of the strongest peaks are highly correlated with the 

amount or concentration of an underlying substance in a sample, the unwanted 

variability might be so negligible that it does not necessarily need to be removed. The 

technique seems a good way to simplify quantitation by avoiding complicated pre-

processing. However, capturing only one or few peaks will never be good 

representatives of the entire data set and will introduce bias and random errors to 

the analysis. This work has developed an alternative method called the linear Poisson 

ICA analysis in which all mass peaks are used (the method is applied in Chapter 5 and 

6). A process of acquiring well-behaved mass spectra is still needed in order to allow 

the linear Poisson ICA tool to detect real variations. 

This chapter defines standard protocols to ensure that the quality of the entire mass 

range of the mass spectra acquired is satisfactory for use in quantitative analysis, 

which will be the basis for data acquisition in later chapters. The properties tested 

include; signal intensity, signal-to-noise and mass resolution, to be optimised against 

laser power. An appropriate amount of sample-matrix solution and a method of 

deposition must be selected for the MS instrument used, in order to improve signal-

to-noise and repeatability of the measurements. The resultant mass spectral data 

must be in an appropriate format suited to the requirements of the analysis tools 

(linear Poisson ICA, TINA tool: Tar and Thacker (2014)). Note that the parameter 

adjustments recommended in this chapter are general guidance for the process to 

optimise conditions in MALDI mass spectral data acquisition. Another aspect of this 

chapter is that it provides a better understanding of the performance of the 

instrumentation and techniques used, including their quantitative capability. Slight 

alterations were made in order to finalise the set of parameters for each particular 

experiment in upcoming chapters. 
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4.2   Instrumentation 

Two different MALDI mass spectrometer models, a Kratos AXIMA and Kratos 7090 

were used in non-imaging and imaging experiments, respectively. The MALDI-TOF-

MS instrument used at the Wolfson Molecular Imaging Centre (WMIC), the University 

of Manchester is an AXIMA CFR+ TOF2 model from Kratos (a Shimadzu group 

company). The 7090 MALDI-TOF2-MS instrument is available at the Kratos Analytical 

Laboratory based in Manchester. Both models are capable of imaging acquisition. 

This section gives general specifications of both models and the standard parameter 

settings used for acquiring lipid MS profiles in the remaining parts of this thesis. 

 

4.2.1   The AXIMA 

The AXIMA model was the instrument used to perform all non-imaging experiments. 

The MALDI laser was a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser, 

frequency tripled to a wavelength 349 nm. This instrument can operate at 200 Hz 

laser repetition rate, with beam diameter of about 100 µm. In each experiment, the 

laser power was adjusted such that the signal to noise is optimised, and kept constant 

throughout the experimental session. Note that only the AXIMA was used in this 

chapter, since only non-imaging experiments were performed at this stage. 

 

4.2.2   The 7090 

The 7090 model was used to perform the MS imaging experiments (See later in 

Chapter 6). It has a 2 kHz laser pulse rate (solid state UV laser, frequency tripled 

Nd:YAG), wavelength 355 nm. It has tunable laser beam diameter which was set to 

be 50 µm when acquired data in the experiment. 
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4.2.3   Standard Apparatus Settings 

In lipid MS acquisition, the mass range 1 – 1500 Da was selected and pulsed 

extraction was optimised at molecular mass of 750 Da. (mass range 1 – 2500 Da, and 

pulse extraction optimised at 1250 Da for calibration) 

 

4.3   Sample Preparation 

4.3.1   Materials 

Samples 

Milk samples were used because they are examples of complex lipid mixtures and 

were selected to set out protocols for MALDI-MS targeting of lipids that might also 

be found in tissue sections. They are easily purchased and expected to have fewer 

numbers of lipids present in mass spectra than in tissues. Strategies to obtain optimal 

conditions and parameterisation for lipid MS experiments were justified. Note that 

specific lipid identifications are not of particular interest here. 
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Chemicals 

Table 4.1  List of chemicals used in experiments 

Chemical 
Molecular 

Formula 
Description Manufacturer 

2,5-

Dihydroxybenzoic 

acid (DHB) 

C7H6OH 
Matrix 

(recrystallised) 

LASER Biolabs, 

France 

Acetonitrile (ACN) CH3CN Solvent Sigma-Aldrich, UK 

Trifluoroacetic acid 

(TFA) 
CF3CO2H Strong acid Sigma-Aldrich, UK 

Methanol CH3OH Solvent Sigma-Aldrich, UK 

Chloroform CHCl3 Solvent Sigma-Aldrich, UK 

Ammonium acetate NH4C2H3O2 
For washing  

brain tissue 
Sigma-Aldrich, UK 

Deionised water 

(dH2O) 
H2O Solvent 

PURELAB Ultra 

ELGA, UK 

Reserpine C33H40N2O9 
Calibration 

standard 
Sigma-Aldrich, UK 

Angiotensin II C50H72N13O12 
Calibration 

standard 
Sigma-Aldrich, UK 

ProteoMass™ P14R 

MALDI-MS Standard 

(P14R) 

C76H112N18O16 
Calibration 

standard 
Sigma-Aldrich, UK 

All chemicals are stored as recommended by manufacturers.  

 

Equipment 

 Indium Tin Oxide (ITO) coated glass slides from Sigma-Aldrich (dimensions 25 

× 75 × 1.0 mm) 

 Normal glass slides from Menzel:Gläser Superfrost Plus (dimensions 25 × 75 

× 1.0 mm) 

 Metal targets (Fleximass target made of stainless steel, part number: TO-

483R00) from Shimadzu Kratos Analytical 
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4.3.2   Preparation of Milk Samples 

Fresh cow’s milk (Sainsbury’s British Whole Milk) and fresh goat’s milk (St Helen’s 

Whole Goats Milk) purchased from a local Sainsbury’s superstore were used in all 

milk experiments. Milk samples were kept in -80ºC freezer for storage, and used 

within 30 days from the date of purchase. 

Fresh milk samples were ready to be prepared, or frozen milk samples were allowed 

to defrost at room temperature for approximately 2 hours before preparation. The 

same preparation steps for both milk types are as follows: 

1.) Milk samples (250 µl) were mixed with methanol:chloroform (2:1) (935 µl) 

and chloroform (620 µl) in a 2 ml Eppendorf tube. 

2.) Vortex each tube containing a milk sample for 15 seconds until the sample 

and solvents were visually mixed. 

3.) Centrifuge all the samples at a frequency of 1,300 rpm, at 20 ºC, for 2 

minutes. A Heraeus Biofuge Fresco centrifuge was used. 

4.) For every milk sample, remove the top aqueous layer and discard the thin 

solid disc, carefully collect the lipid extract solution present at the bottom layer and 

transfer into another tube. 

5.) Purify every lipid extract by adding 500 µl of water and follow step 2 to 4 

6.) Repeat step 5 for a second time 

Lipid extract solutions from individual milk samples are thus obtained. 

 

4.3.3   Preparation of Matrix Solution 

DHB matrix solution was prepared at a concentration of 10 mg/ml using 

acetonitrile:water (1:1) as a solvent with the addition of 0.1% TFA. 
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4.3.4   Sample-matrix Deposition Method for MS Analysis of 

Milk Samples 

Small quantities of sample and matrix solutions (see below for each method) were 

deposited in a well on a metal target plate and allowed to dry before MALDI-MS 

analysis. The metal target used has 48 wells as shown in the diagram in Figure 4.3 

(see Section 4.4.1), which allows measurements of multiple samples and/or repeats 

at the same session. Three droplet spotting approaches, described as: matrix top, 

sample top and pre-mixed methods are defined as follows. 

Matrix top: 

DHB matrix solution (1 µl) is spotted on top of lipid extract solution (1 µl) in a well. 

Sample top: 

Lipid extract solution (1 µl) is spotted on top of DHB matrix solution (1 µl) in a well. 

Pre-mixed: 

Lipid extract solution, DHB matrix solution and methanol were mixed in equal 

volumes. (2 layers × 1.5 µl of this pre-mixed solution was deposited in a well for equal 

sample-matrix deposited materials to the matrix top and sample top methods). 

Note that extra layers were applied after a previous layer was completely dry. 

In addition, an alternative approach using an automatic TLC sprayer (CAMAG 

Automatic TLC Sampler 4) was tested, to apply more homogeneous sample-matrix 

materials onto a metal plate and an indium tin oxide (ITO) coated glass slide, where 

sample and matrix were mixed beforehand (lipid extract solution, DHB matrix 

solution and methanol in a ratio 1:1:1.5). The device is a nebuliser that can be moved 

across the sample at a programmable rate of dispense and movement in x and y 

directions, similar to commercial nebulisers for matrix deposition. The spray builds 

up thin layers of the sample-matrix solution, until the same amount of materials is 

deposited as the above methods. This mimics the nature of samples containing 

complex lipid mixtures, similar to tissue samples (that might be imaged) but where 

matrix was mixed thoroughly with the sample. See also Section 4.3.5 for the TLC 

sprayer apparatus details. 
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4.3.5   Matrix Deposition Method for Imaging Samples 

Two different approaches for matrix deposition were tested by spraying matrix 

solution onto a glass slide surface in order to observe the coating quality under a 

microscope. The quantity of matrix material deposited on the glass slide was also 

measured in order to ensure that the parameters used for both deposition 

techniques resulted in comparable deposited quantities. This was done using high 

performance liquid chromatography (HPLC) using a calibration curve of known 

concentration matrix standards (for the detailed procedure, see Deepaisarn (2015), 

in TINA memos, 2015-016: http://www.tina-vision.net/docs/memos/2015-016.pdf). 

 

SunCollect 

The SunCollect (SunChrom, Germany) is a commercial instrument built specifically 

for use as a matrix applicator for MS imaging samples. The machine generates jet of 

spray using a pneumatic nebulisation. The nozzle has x–y–z adjustable positioning 

and spraying dimensions relative to the surface to be coated (where the z-axis is 

perpendicular to the surface). The number of layers deposited can be programmed 

and run consecutively. 

 

TLC Sprayer 

An instrument designed for TLC sample application (CAMAG Automatic TLC Sampler 

4) was assessed as an alternative approach for matrix deposition on imaging samples. 

The nozzle has x-y adjustable positioning at a fixed spraying distance to the coating 

surface. It has the ability to vary the spray head temperature, and thereby adjust the 

solvent content of the droplets. The number of layers can be programmed but the 

syringe needs to be refilled every 5 successive layers. 
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4.3.6   Calibration Standard 

The standard for mass calibration was a mixed solution of 3 peptides: reserpine, 

angiotensin II and ProteoMass™ P14R MALDI-MS Standard (P14R), as recommended by 

the manufacturer. The molecular weights for the three standards are 608.68, 

1046.18 and 1532.86 Da, respectively.  

  

4.4   Parameter Adjustment for Optimising Mass 

Spectrometry Data Acquisitions 
 

4.4.1   Initial Tests of Instrumental and Technical 

Performance 

This experiment was carried out using the lipids extracted from cow’s milk samples 

and DHB matrix (see Sections 4.3.2 and 4.3.3 for preparing instructions). In each MS 

measurement, 200 mass spectral profiles were accumulated with 5 laser shots per 

profile, whilst the laser was moved at random within the region of interest (within a 

well of 2.8 mm diameter). In general, very poor quality mass spectra can be visually 

rejected. These are selected on the basis of poor signal-to-noise level and/or the 

misalignment of main peaks by more than ± 1 Da. Poor signal-to-noise ratio (S/N) is 

normally observed when the laser does not fire right on the “sweet spots” (dense 

accumulation of crystals) of the sample-matrix mixture. 

First of all, the standard method of sample-matrix deposition, the so-called “matrix 

top” method as referred to Section 4.3.4 was used to test for an appropriate 

thickness of sample-matrix depositions onto the metal surface in terms of 

homogeneity of the deposited materials and the S/N obtained. Optimal thickness 

was determined by varying the number of application layers. For a given thickness, 

laser power was varied to observe S/N, signal intensity and mass resolution of a 

specific peak, m/z 760.5, (N.B. the scale for laser power in the instrument is 

uncalibrated and expressed in arbitrary units). This test was performed for each of 
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the matrix-sample application techniques, i.e. spotting (matrix top) and TLC spraying 

on a metal plate and an ITO glass slide (see Section 4.3.4 for the application 

methods). The laser power that gave the most appropriate results (see the discussion 

below), was selected to be used throughout the repeatability tests in the following 

experimental Section 4.4.2. 

Mass spectra were acquired from calibration spots at various locations on the same 

target plate to test for systematic errors in mass-to-charge measurements due to 

plate misalignment or ion extraction field variations. 

 

Thickness of Sample-matrix Materials 

The images presented in Figure 4.1 show microscopic appearance of how sample-

matrix crystals formed in wells using the “matrix top” method of application with 1, 

2 and 3 layers applied. 

 

(a) 1 layer (b) 2 layers (c) 3 layers 

 

 
 

 

Figure 4.1  Microscopic views of matrix top applications of cow’s milk samples with 

different numbers of sample-matrix application layers  

(all at the same magnification) 

 

Higher energy was needed to generate a similar ion current when there was a thicker 

layer coated on the metal surface of the target plate. 1-layer application formed a 

thin layer of material onto the metal surface, allowing mass spectra to be acquired 

1 mm 
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at the lowest threshold laser power. The mass spectra produced under these 

conditions were relatively noisy, which may relate to the fact that not enough analyte 

was deposited in the well. The image in Figure 4.1 (a) shows also that the crystal size 

for the 1-layer application was relatively large and distributed unevenly. In 

comparison, the image in Figure 4.1 (b) shows the 2-layer application to be a more 

homogeneous distribution through the well as more analyte is present. 3-layer 

deposition not only increases the chances of spilling of material outside the well, but 

also generates a higher background noise level compared to the 2-layer method. 

Thus, the 2-layer application method was selected for use in subsequent 

experiments. 

 

Laser Power 

MS measurements were acquired across a range of laser powers from 90-180 

(arbitrary units) for the different deposition techniques, including the “matrix top” 

spotting on a metal plate, the TLC spraying on a metal plate and the TLC spraying on 

an ITO glass slide. S/N, signal intensity, and mass resolution (see the definition for 

FWHM mass resolution in Section 2.2.6) were observed (using Shimadzu Launchpad 

software of AXIMA mass spectrometer) at varied laser power, for the MALDI-MS peak 

at m/z 760.5 of milk samples. The influence of laser power on these parameters is 

discussed below. 

For all sample-matrix application methods, the measured signal intensity and S/N 

increased with increasing laser power to a plateau at higher laser powers as observed 

at a representative peak (m/z 760.5). In contrast, mass resolution decreased slightly 

as a function of laser power. This decrease was usually observed approximately at 

laser powers where S/N was greater than 200. Saturation of ion detection was 

another factor of concern. On this basis, an appropriate laser power was selected 

such that the detected signal would not exceed 100 mV. Such a laser power was 

observed to prevent saturation for this instrument and still generate good S/N for 

quantitation. The selected laser power of 135 for the “matrix top” method was also 
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used for all other spotting methods. Whereas those TLC spraying method (applied on 

metal and glass plates) used a laser power of 137. 

 

Calibration 

Calibration standards gave an expected MALDI mass spectrum, allowing 500 mDa 

tolerance for peak adjustment, as seen in the spectrum in Figure 4.2. This was 

determined by the precision of the instrument. 

The graphs presented in Figure 4.4 shows how the measured m/z of the calibration 

peaks can vary with the position (see the diagram in Figure 4.3) of the calibration 

standards deposited on the metal target. 

 

 

Figure 4.2  Mass spectrum of the calibration standards with peaks m/z 609.7, 

1046.5 and 1533.9 

 

The m/z values of the three peaks were observed to vary as a function of horizontal 

spatial location at which the laser was fired on the metal target plate, as summarised 

by the graphs plotted in Figure 4.4 (a). Whereas no clear trends were observed by 

varying position in the vertical direction as seen in the graphs plotted in Figure 4.4 

(b), variations for the m/z 609.7 and 1046.5 peaks were within 1 Da (values fluctuate 

within ± 0.5 Da from the accepted values). These may arise from the slide alignment 
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and/or the angle from which the laser beam was fired and/or from variations in the 

local electric field during ion extraction. 

Considering the MS lipid data set’s mass range of interest is below m/z 1000, the 

safest range to allow for alignment of different acquisitions should be ± 1 Da (as this 

applied to the calibration standard peaks in the same mass range). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  Diagram of the metal sample plate indicating well positions (black 

colour) where calibration standards were deposited for the dimensional variation 

test. The diameter of a well is 2.8 mm. 

 

 

 

 

 

 

25 mm 

75 mm 
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a 

 
 

b 

 

 

Figure 4.4  Measured m/z values for the m/z 609.7, 1046.5 and 1533.9 calibration 

peaks vs. (a) horizontal position and (b) vertical position on the metal target plate 
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Discussion 

The fluence (laser energy per unit area) is an important parameter which is a function 

of laser pulse power and laser spot size. It is not constant across the spot as the 

intensity distribution is at best Gaussian and at worst very uneven, with hotspots. 

Therefore, the averaged effect of these local (within spot) fluence variations were 

seen. Varying the laser power alters the fraction of molecules ionised, and hence 

leads to variation in ion signal intensities (as observed in mass spectra, recorded as 

peak height at each m/z value). Relative quantification of peak ratios will be 

considered reliable if the peaks have their S/N above some threshold. The absorption 

and dissipation of energy in matrix-sample crystals and the resulting plume involve a 

variety of possible mechanisms. The energy transfer rates at each step of the process 

also depend on many factors, such as matrix type, temperature, photon penetration 

depth. In the case of thick sample-matrix deposition, as with the 3-layer matrix top 

application, higher laser power is required (the threshold for ion formation is higher), 

as the laser fluence is known to exponentially decrease with depth (see Equation 

(2.2)). The energy deposited may be enough to excite a large amount of matrix but 

not enough to ionise the co-crystallised analytes resulting in a high matrix signal but 

with poor analyte signal-to-noise (Knochenmuss, 2013). Reduction of ion signal 

intensity for the analytes could also occur if the deposited materials are heated to 

some extent, as some matrix might evaporate, especially in the vacuum, due to the 

fact that DHB is quite volatile. The heat could come from irradiating at too high a 

laser power or from the ambient temperature inside the instrument (of 45 ± 2 ºC for 

the AXIMA). 

It can be assumed that laser power was approximately of the order of 108 W/cm2 at 

the threshold for signal detection of most organic molecules crystallised with DHB 

(corresponding to a laser power of about 135 in the AXIMA instrument used in this 

study) as this is usually the threshold for completion of the desorption and ionisation 

processes (Morrical et al., 1998). The experiment on varying laser power has 

illustrated that the signal intensity increases with the laser power, then levels off 

possibly because of a saturation effect causing a high intensity to be recorded up to 

a threshold value. Saturation must be avoided because it introduces non-linear 
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effects on mass spectral signals recorded – i.e. when only the higher intensity peaks 

are saturated. Mass resolution is also worsened at higher laser power as discussed 

earlier in this section. The laser power that provides just enough energy to give 

reasonably good S/N but does not ruin the statistical characteristics of the spectra is 

therefore preferred for quantitative purposes. 

Most of the peaks from the calibration standard spectra at different plate locations 

varied in mass within ± 0.5 Da from the accepted m/z values as shown in the graphs 

plotted in Figure 4.4 which was expected from the tolerance limit of the instrument 

(the figure of ± 0.6 Da was quoted in Yao et al. (2014)). Some major causes of the 

observed mass shift could be due to the electric field inhomogeneity at the surface, 

given that the sample is not in a perfect infinite parallel plate geometry. Rare cases 

with greater uncertainty could come from other influences on mass accuracy. One 

could be inhomogeneity of deposited surface thickness that was not taken into 

account but can affect flight-time measurements of identical analyte. Another one 

could be that measuring and detecting very low concentrations of standard at 

specific points might give poor quality spectra, especially with a distorted distribution 

of major isotopomer peaks of the calibration standards that may be more 

concentrated in some deposited region can lead to a wrong peak being picked as an 

expected calibration peak. It is suggested that mass spectra from a data set acquired 

by this instrument are allowed up to a 1 Da range to align to account for the 

fluctuation of up to ± 0.5 Da away from the true m/z values. 

 

4.4.2   Repeatability Tests of MS Spectra from Milk Samples 

In this experiment, solvent extracted lipids from cow’s milk sample and DHB matrix 

were used. MS measurement were acquired in the same way as described in Section 

4.4.1 (200 profiles of MS spectra, 5 laser shots per profiles). All sample-matrix 

deposition methods described in Section 4.3.4 were compared. The following 2 sets 

of MS measurements were considered for every sample-matrix deposition method. 
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1.) Between-well repeatability: A single MS measurement was acquired from 

each of the 3 repeat depositions of same sample in separate wells. For every 

MS measurement, laser was fired at random within a corresponding well. 

2.) Within-well repeatability: 5 repeat MS measurements were acquired from 

the same deposition of sample in a well. The laser was fired at series of 

different positions within the well in order to yield good S/N. 

Note that when the TLC sprayer approach was used for applying sample-matrix onto 

an ITO glass slide, repeatability tests were conducted onto similarly-defined well 

regions as with the metal plate – i.e. the regions on the glass slide, where each single 

spectrum was recorded, were drawn with equal size and at the same positions as on 

the metal plate. 

 

Simple Pre-processing and Analysis Approach 

This simple approach for baseline correction and the subsequent method to compute 

peak area ratios were used in this chapter only. 

A simple approach for mass spectral baseline correction was performed, where a 

baseline was estimated by linear interpolation of the minima in each of the 30 data 

point intervals (determined by the approximate width of a peak), throughout the full 

range of every spectrum. Then, the estimated baseline was subtracted from the 

original spectrum. Note that the same approach for baseline correction was also used 

in the experiment to observe change in peak area ratios as a function of the relative 

milk concentration (see Section 4.4.3). Integrating over the full-width half maximum 

region of peaks at a specific m/z in a mass spectrum is used here to determine peak 

area and hence peak area ratios in both the repeatability and concentration tests.  

Mass spectra were recorded as the accumulated signals from all profiles acquired. 

After pre-processing, the mass spectra of all sample-matrix deposition methods, 

either the raw data or processed data using spline interpolation (using Matlab to 

smooth the spectra), were compared to determine the variance of ratios between 

peak areas of 2 selected ion peaks (see the result in Table 4.2). Where the peaks m/z 
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760.5 vs. 734.5 were selected from cow’s milk spectra because they were observed 

as major peaks in every acquisition and also in the MSI spectra of rat brain tissue. 

These peaks appear in the phospholipid mass range as stated in Veloso et al. (2011) 

in a study of lipid distribution in human brain. 

 

Variance Analysis 

The appearance of extracted cow milk lipid samples deposited with DHB matrix into 

wells on metal slides, using the different application techniques are shown in the 

images provided in Figure 4.5. The “matrix top” approach produced large matrix-

analyte crystals with quite a uniform distribution in the well. In contrast, the “sample 

top” approach deposition has poor uniformity with limited crystal formation. 

Whereas the pre-mixed sample and matrix gave clear needle-like crystal shapes. 

Because the sample and matrix are pre-mixed in the solvents, they were allowed to 

interact more closely and co-crystallise more evenly on the slide. Spraying methods 

where pre-mixed solution was applied onto both metal and ITO glass surfaces, 

provided a highly uniform distribution of materials with relatively fine crystal sizes 

since small amounts were deposited locally using the TLC sprayer with the constant 

rate of application. 

From these, it appeared that the “sample top” method generated visibly non-

uniformity of deposited materials relative to other methods. Also, when test 

acquisitions were performed, it gave mass spectra of very poor repeatability with the 

worst S/N compared to other deposition techniques. Therefore, the “sample top” 

approach was rejected from this repeatability test. 
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(a) Matrix top (b) Sample top (c) Pre-mixed 

 
 

 
 

 

(d) TLC spraying on metal surface (e) TLC spraying on ITO glass 

surface 

 
 

 

Figure 4.5  Microscopic views of sample-matrix materials deposited using different 

techniques (all at the same magnification) 

 

All other deposition methods were included in the within-well and between-well 

repeatability assessments. From the recorded spectra (see examples of pure cow’s 

and goat’s milk spectra in Figure 4.6 (a) and (b)), the ratio between m/z 760.5 and 

734.5 peak areas (FWHM), was calculated to test for repeatability as the ratio was 

expected to be constant for every acquisition of samples of the same concentration 

across deposition positions. These were analysed through the analysis of variance 

(ANOVA) calculation. The results are summarised in Table 4.2, giving two sets of 

results which arose from the peak area (FWHM) ratios calculated from the raw data 

and the interpolated data (smoothen between data points within mass spectral 

peaks). 

1 mm 
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 a 

 

 b 

 

Figure 4.6  Examples of pure cow’s and goat’s milk mass spectra  

(acquired using the pre-mixed deposition method) 
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The F-statistic values were determined by dividing between-well and within-well 

variances. To test the null hypothesis that all wells are identical, the critical value for 

F with degrees of freedom of 2 and 12 in the first and second sources of variation is 

given as 3.885 (P=0.05) (Miller and Miller, 2010). Only the “matrix top” method 

exceeds this value and leads to rejection of the null hypothesis. Whereas all other 

methods give much lower F-values than the critical value which represent low 

variations of MS measurements between wells compared to within the wells. 

 

Discussion 

It can be suggested that the “matrix top” approach produces quite a uniform spread 

of sample with a large excess of solvent evaporated (chloroform and methanol) 

before the application of matrix, making the sample and matrix mix and interact 

reasonably well in the first sample-matrix application layer. Then, the second layer 

of sample-matrix application may re-dissolve part of the first layer deposition, and 

hence leads to more uniform re-crystallisation given a longer interaction between 

sample and matrix. Different sample-matrix deposition methods led to significantly 

different surface appearance as seen in the images in Figure 4.5. There appears to be 

poor sample uniformity for the “sample top” approach – i.e. matrix-analyte crystals 

were formed only in some places in the well and the acquired mass spectra were not 

visually repeatable. The preferred crystal structure (needle-like) can be seen in the 

pre-mixed sample and matrix. Firing laser onto locations with these crystals 

encourages ionisation and produces a good level of signals. Very uniform deposition 

was observed when using the spray-based methods to apply pre-mixed solution onto 

both surface types, however, no clear sweet spot was visually observed due to 

smaller crystals formed. This supports the observation in Section 4.4.1 where spray-

based deposition methods required a slightly higher laser power than spotting 

deposition methods to give comparable signal levels. 

The analysis of variance of the peak ratios (m/z 760.5 vs. 734.5), using the raw data 

acquired from samples deposited by the pre-mixed spotting method (on metal 

surface), and the spraying method on metal and glass surfaces have their F-values 

equal to 0.54, 0.64 and 0.60, respectively. The conclusion was that the MS 
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measurements did not differ significantly from deposition to deposition when using 

the same deposition method (P=0.05). Also, the spline interpolation method did not 

make significant changes in the F-values, hence, only the raw data were used to 

analyse the milk concentrations in the subsequent experiments. Note that the matrix 

top method was found non-repeatable according to ANOVA with F-value of 6.94. 

So far, it can be confirmed that using pre-mixed sample-matrix solution provides the 

most repeatable results regardless of deposition method. However, the spraying 

method is not practically convenient when dealing with large number of samples, 

and also requires significant effort to prepare. Therefore, the most efficient method 

for use in non-imaging experiments was the “pre-mixed droplet” deposition. 

 

4.4.3   Matrix Coating and Signal Analysis 

Comparison of Matrix Coating Techniques 

The appearance of DHB matrix (10 mg/ml, see Section 4.3.3) coated onto normal 

glass slides using different coating techniques was observed under a microscope as 

illustrated in Figure 4.7, for the TLC sprayer and SunCollect methods of application 

(see Section 4.3.5). The sizes and quantities of deposited crystals were comparable 

in both techniques when the following parameters were set for each instrument. 

TLC sprayer: 2 µl per layer, application area 15 x 15 mm 

SunCollect: Flow rate 20 ml/min, medium nozzle speed 

 

(a) TLC sprayer (b) SunCollect 

  

Figure 4.7  Microscopic views with same magnification of matrix coated onto glass 

slides via (a) TLC Sprayer and (b) SunCollect 

100 µm 
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Nevertheless, there are a number of factors that prevent the TLC spraying technique 

from being used as a substitute for the SunCollect. The major problem is the wait 

time for refilling the syringe which can reduce the smoothness of the deposited 

matrix as they are allowed to dry for different times between layers. In addition, the 

speed at which the nozzle moves cannot be adjusted directly but is controlled by 

setting the application area instead. 

 

Quantifying Milk Concentrations 

The pre-mixed sample-matrix solution can be deposited using the TLC sprayer, which 

is proved to have a good between-well repeatability in Section 4.4.2. It is therefore 

appropriate to use the TLC spraying approach to trial the quantitative measurement 

using a similar method of deposition as for imaging (the SunCollect performance was 

mimicked). Cow’s and goat’s milk samples were mixed at various concentrations 

before solvent extraction at ratios 100:0, 75:25, 50:50, 25:75 and 0:100 (cow’s milk : 

goat’s milk, by volume). Peak area ratios from each milk concentration were 

calculated to find correlations with the relative concentration. 

The simple quantitative analysis as described in Section 4.4.2 was assessed in this 

experiment with deposition on both metal and ITO glass surfaces. The best linear 

fittings of peak area ratio against the known cow’s milk concentration in the milk 

mixtures, observed at peak ratios of m/z 760.5 versus 706.5, are plotted in Figure 4.8. 

When using the TLC sprayer method on a metal plate, 

𝑦 = (−0.036 ± 0.004)x + (5.439 ± 0.267) 

When using the TLC spraying method on an ITO glass slide, 

𝑦 = (−0.042 ± 0.006)𝑥 + (6.069 ± 0.373) 

 

The m/z 760.5 and 734.5 peak area ratios are constant across all concentrations as 

seen in the plot in Figure 4.9. Where mean ratios from metal plate and glass slide 

experiments are 2.09 ± 0.16 and 2.11 ± 0.09, respectively – not significantly different. 
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Figure 4.8  Peak area ratio (m/z 760.5 : 706.5) vs. cow’s milk concentration (% by 

volume) using the TLC spraying method of deposition on a metal plate (blue) and a 

glass slide (red) where error bars represent the standard deviations from the mean 

of peak area ratios at each concentration from 4 repeated MS measurements from 

the same sample deposited in 4 different wells – i.e. 1 measurement per well 

 

 
Figure 4.9  Peak area ratio (m/z 760.5 : 734.5) vs. cow’s milk concentration (% by 

volume) using the TLC spraying method of deposition on a metal plate (blue) and a 

glass slide (red) where error bars represent the standard deviations from the mean 

of peak area ratios at each concentration from 4 repeated MS measurements from 

the same sample deposited in 4 different wells – i.e. 1 measurement per well 
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The quantitative analysis of milk concentrations that results from deposition on both 

surface types agrees very well, suggesting the similarity of the mass peak 

determination on either surface. The spraying device coated the surfaces with good 

adhesion and uniformity. Without clearly seen sweet spots that normally give high 

signals, the signal levels were nonetheless reasonably high and consistent 

everywhere. 

This strongly suggests that deposition by spraying will prepare samples appropriately 

for imaging, with a good signal level, given the correct matrix-analyte proportion. 

 

Discussion 

The SunCollect apparatus has been shown to be able to generate small matrix crystal 

sizes, with diameters of less than 50 µm and lead to a very homogeneous matrix layer 

deposited onto the tissue surface (Römpp and Spengler, 2013). For a simple 

quantitative milk experiment, TLC spraying parameters were adjusted to perform 

similarly to the SunCollect system in terms of the amount of matrix applied per unit 

area per layer. The mass spectra were repeatable as previously observed in Section 

4.4.2 and the signals were also reasonably good. In real imaging sample preparation, 

matrix application rate has an important influence on matrix-analyte interaction 

while depositing. The sprayed matrix solution should not wet the sample too much 

so that analytes are not displaced. With the SunCollect sprayer, appropriate distance 

and the pressure of application can be achieved by adjusting positions of the spraying 

nozzle and flow rate of the matrix solution, with multiple layers applied continuously, 

such that the right amount of matrix is applied.  

The AXIMA instrument requires long acquisition times, as it is limited by the data 

transfer rates between the detector and analysis computer, to a sampling rate of 

about 200 Hz. This affects its imaging capability because an imaging data set contains 

thousands of mass spectra and therefore it can take a few hours to acquire, 

depending on the image size and spatial resolution, and the sample should not be 

left under a vacuum in the instrument for too long. The temperature inside the 

instrument might cause some matrix evaporation and the vacuum can cause 
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shrinkage at the edge of the sample section. The superior 7090 instrument acquires 

the same resolution imaging data set 10 times faster. It can also achieve higher 

spatial resolution (up to 10 µm), better mass accuracy and the mass resolution (up 

to 10,000 FWHM vs. 5,000 FWHM for the AXIMA), due to the longer flight path and 

improvements in the pulsed extraction design. 

A linear correlation was found between the specific peak area ratios (m/z 760.5 vs. 

706.5) and the proportion of milk types. Thus, given appropriate sample preparation 

and analysis, MALDI-MS data does allow quantitation of sample proportions. From 

this basis, in the following chapters, the aim is to improve the analysis with more 

advanced algorithms that utilise all the useful information contained in an MS data 

set, and then progress to adapt the method to quantify mass spectrometry imaging 

data. 

 

4.5   Conclusion 

This first experimental chapter addressed the basic aspects of sample preparation 

and instrumentation used. The capabilities of the instrumentation and the important 

parameters used to optimise performance have been identified and assessed. 

MALDI-MS data acquisition can rely heavily on the experience of the user. 

Consistency depends on optimising key parameters in each experimental step: from 

sample washing/extraction, sample-matrix application, to laser power, diameter and 

beam movement. Important findings that need to be embedded in protocols and 

carried forward to next experimental chapters are; 

 Laser powers with optimal signal-to-noise ratios were determined, giving ion 

signals of ≤100 mV, to achieve reasonable quantitative data analysis. 

 The instrument should be calibrated to an accuracy of ± 0.5 Da to allow for 

the variation in spectral alignment of within 1 Da range across a data set. 

 Repeatability tests for each deposition method for the cow’s milk lipid extract 

samples with DHB matrix were compared by variance analysis. The methods 

where sample and matrix solutions were pre-mixed showed similar 



149 
 

repeatability regardless of the application techniques. The spotting technique 

was preferable for analysing multiple (non-imaging) samples in the same 

session. 

 There exists a linear relationship between the ratio of integrated areas of two 

selected peaks and the concentration of milk mixture. Given that one of the 

selected peak varies with the concentration and the other peak (normalising 

peak in this case) is approximately constant throughout the data set. 

Measurements taken after spraying materials including matrix on MALDI 

target plates provided very consistent signal intensities from laser shot to 

laser shot. This confirms the possibility of quantifying MALDI-MS data in both 

non-imaging and imaging modes. 
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Chapter 5  

Quantifying Binary Mixtures of 

Biological Samples 

 

5.1   Introduction 

In mass spectrometry, the formation of gas phase ions from complex biomolecules 

typically destroys structures of interest. John B. Fenn and Koichi Tanaka overcame 

this problem, sharing the 2002 Nobel Prize in chemistry for matrix-assisted laser 

desorption/ionisation (MALDI) and electrospray ionisation (ESI) (Hillenkamp and 

Peter-Katalinić, 2007). MALDI co-crystallises complex samples within an easy to 

ionise matrix. Samples and matrix are vapourised and ionised with a laser, giving a 

pulsed source of ions ideal for TOF mass analysis. The ability to mass analyse large 

molecules with high detection sensitivity makes MALDI attractive for biological 

sample analysis, with applications ranging from milk adulteration detection, e.g. 

Calvano et al. (2013), to cancer studies, e.g. Rodrigo et al. (2014). MALDI can also 

form images by sampling across a 2D lattice (Fülöp et al., 2016), with mass peaks 

forming pixel values. These data sets are massively rich, with hundreds of mass-

specific images able to be generated per acquisition. A method of data mining such 

images would be a valuable enabling tool, allowing molecular correlations to be 

identified and mapped upon biological structures. Such a system must quantitatively 

model the complex variations and attribute them to classes of interest, e.g. tissue 
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types. This may be achieved using linear modelling approaches, such as Independent 

Component Analysis (ICA), as in Gut et al. (2015). As a step towards a more general 

data mining system, this work presents an ICA approach that is believed to match 

well with the properties of MALDI data and therefore provides additional advantages 

over traditional linear modelling methods, including the ability to build error models. 

MALDI mass spectra (MS) are complex and highly variable. Careful preparation and 

acquisition can mitigate against some factors, e.g. Seeley et al. (2008), but requires 

training, practice and skill. Ideally, a homogeneous specimen might be expected to 

produce spectra that are repeatable to levels of statistical sampling noise. However, 

MS exhibits many other modes of variation: 

 Ionisation and detection vary depending upon local matrix density, chemistry, 

laser intensity and duration of acquisition (Astigarraga et al., 2008). 

 Fragmentation is not a major process in MALDI. However, long chain 

molecules can fragment by a number of mechanisms and also have isotopic 

variations. Matrix molecules which absorb high energy can also fragment in 

many ways. These would introduce background chemical noise. 

 Protonation is not the only process for cation formation. In fact, sodium and 

potassium ionisation is often observed, even following attempts to wash 

away soluble salts. 

 Suppression effects exist, where the presence of certain chemicals can mask 

or change the appearance of others due to different affinities for attracting 

charge. 

 Unwanted ions can contaminate mass spectra, including those from the 

MALDI matrix.                                                                                           

 There is a near-continuous ‘chemical noise’, from ungated post-source decay 

processes and ion scattering, superimposed on any inherent instrumentation 

noise. 

 The instrumentation and the detection process involve a series of electronic 

components which contribute random signal fluctuations – i.e. electrical 

noise. 
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A complex biomolecule will generate a series of MS features, which undergo 

correlated variations in intensity and position, depending upon equipment settings 

and local sample environment, e.g. Szájli et al. (2008). Aside from these variations, 

MALDI mass spectra are approximately linear combinations of sub-spectra from a 

sample’s constituent chemical components. Some sources of variation are reduced 

through pre-processing. In previous work, pre-processing methods were developed 

for use where Poisson noise, 𝜎𝑝 is dominant in peaks and Gaussian noise, 𝜎𝑔 is 

dominant in background (Thacker et al., 2018). Section 3.3 of Chapter 3 provides a 

description of these pre-processing methods and the definitions of notation used for 

the two distinct types of noise are explained in the sub-section, Section 3.3.4. 

A basic approach to MS analysis is to inspect single peaks that correlate maximally 

with the parameters to be measured, e.g. Cahill et al. (2016). A peak can be 

normalised to a second peak (or integral over a total ion current) in order to estimate 

relative compositions. Peaks may also be artificially added to act as internal 

standards, such as in Chumbley et al. (2016). Signals affected by high levels of 

ambiguity or confounding variability are thus excluded, at the cost of discarding 

potentially useful information. More efficient methods, such as Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA), extract correlated peak 

variations. These approximate the data as weighted combinations of unit vectors, 

each representing a correlated set of peaks. Comparisons between linear models can 

be found in Gut et al. (2015) and Nicolaou et al. (2011), with evidence that ICA is most 

beneficial. The formulations of standard PCA and ICA algorithms are based upon 

uniform independent Gaussian errors, often conveniently leading to closed-form 

solutions. However, MALDI may not be compatible with these assumptions. In 

particular, Poisson statistics may better describe the counting of ions. Evidence of 

Poisson nature of MALDI-MS data has been highlighted by others, e.g. Harn et al. 

(2015) and Piehowski et al. (2009), with further investigation by this work. 

The behaviour of noise can be assessed using Bland-Altman plots (Bland and Altman, 

1986). These plot deviations from expected values as a function of signal strength. 

Monte-Carlo generated Bland-Altman plots in Figure 3.9 (Section 3.4.3) illustrates 



153 
 

independent, identically distributed (iid) Gaussian noise, giving residuals with a fixed 

spread, and also Poisson noise, where residuals grow with the square-root of the 

signal. A square-root transform (Anscombe, 1948) can approximately convert 

Poisson noise into iid Gaussian noise, but this invalidates any assumed linear model 

of signal as a consequence. The main modelling options available and their key 

properties are listed in Table 3.2 of Chapter 3, Section 3.4.3. 

Using Bland-Altman analysis, there is evidence that a Gaussian noise assumption of 

the error on measured signals is inappropriate for MALDI data and that a Poisson 

noise, 𝜎𝑝 assumption is more realistic. In recent work, an ICA method for data with 

Poisson sampling characteristics was derived (Tar and Thacker, 2014): Linear Poisson 

Modelling (LPM). It has been applied to planetary and medical images (Tar et al., 

2015; 2017; 2018). This method is believed to provide the best match to the 

properties of MALDI data (according to Table 3.2 of Section 3.4.3 (see the Poisson 

ICA)) and is therefore evaluated here on the task of measuring mixtures of complex 

lipid specimens. This method incorporates a Likelihood estimation procedure and a 

predictive error theory capable of assessing the effects of Poisson noise, 𝜎𝑝 on 

measurements. An extension, ‘MAX SEP’, is designed to reduce degeneracy inherent 

in linear modelling, aiding interpretation of components allowing them to be 

attributed to biologically meaningful MALDI sub-spectra. The aim of MAX SEP which 

is to find a unique solution to the model, is similar to that of the varimax, quartimax 

and equimax rotations, e.g. Kaiser (1958), but is appropriate for positive only data. 

This current study uses mixtures of cow’s milk and goat’s milk; lamb brain and lamb 

liver extracts; and lamb brain white matter and grey matter extracts, targeting mass 

ranges associated with the samples’ lipid content. In addition to applying the new LP-

ICA method, single peak analyses on the same data were performed to corroborate 

mixture measurements and to compare the attainable measurement precision. The 

work-flow diagram (Figure 1.1) is provided earlier in Chapter 1, Section 1.3. 
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5.2   Materials and Methods 

Section 3.4.3 previously discussed the noise distribution characteristics of data. The 

Monte Carlo generated Bland-Altman plots showing behaviour of uniform 

independent Gaussian noise and independent Poisson noise are compared in Figure 

3.9. The modelling options: PCA (Jolliffe, 1986), ICA (Comon, 1994), Non negative ICA 

(Plumbley and Oja, 2004; Plumbley, 2003), Poisson ICA (Tar and Thacker, 2014), etc. 

are shown in Table 3.2 (Section 3.4.3) describing statistical and signal assumptions, 

available for varied data properties. The selected method, linear Poisson ICA, is based 

upon assumptions matching the properties of MALDI mass spectra. Given that MALDI 

data has the properties noted in the same table which matches the proposed 

method. 

In this chapter, the use of the linear Poisson ICA is illustrated through application to 

simple MALDI mass spectral data sets to ensure that the method is appropriate for 

quantifying MALDI-MS data. These include the analysis of simpler lipid mixtures from 

milk samples and biological tissue samples which give more complex lipid mixtures – 

i.e. brain and liver tissues, and brain white and grey matter. Given that brain and liver 

are two different organs that have very different functionalities, they would be 

expected to have enough distinguishable characteristics for the algorithm to 

differentiate. Finally, a more complicated problem was set by working on quantifying 

mixtures of brain white and grey matter, which moved the study nearer to real 

clinical questions – where the underlying samples in the mixtures have complex 

spectra with many common characteristics, and fewer distinguishable mass peaks 

are expected. The existence of background noise/contamination also blurs the 

correlation of any mass peaks with the underlying sample proportion. Hence, it is a 

challenge to confirm the suitability of the linear Poisson ICA method for use as a 

quantitative tool for analysing MALDI-MS data. 
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5.2.1   Materials 

Biological Samples 

 Fresh cow’s milk (Sainsbury’s British Whole Milk, UK) 

 Fresh goat’s milk (St Helen’s Whole Goats Milk, UK) 

 Fresh lamb brain (Worldwide Supermarket, Manchester, UK) 

 Fresh lamb liver (Worldwide Supermarket, Manchester, UK) 

 

Chemicals 

 Recrystallised 2,5 dihydroxybenzoic acid (DHB) 

 Acetonitrile 

 Trifluoroacetic acid 

 Methanol 

 Chloroform 

 Deionised water 

See Chapter 4, Section 4.3.1 for the manufacturer details, related descriptions and 

calibration standards used. 

Equipment 

 Stainless steel plate for MALDI-MS 

 Two pairs of curved forceps 

 Nylon filters of mesh size 40 µm (CorningTM, UK) 

 

Instrumentation 

 AXIMA CFR+ TOF2 MALDI mass spectrometer 

 Power Gen 125 homogeniser (Fisher Scientific) 

 Heraeus Biofuge Fresco centrifuge 
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5.2.2   Sample Preparation 

Binary mixtures in differing proportions (e.g. class A : class B) act as ground truth: 

cow’s milk with goat’s milk mixtures, chloroform extracts of homogenised lamb brain 

and liver, and chloroform extracts of lamb brain white matter and grey matter. For 

each pair, mixtures of lipids were carefully prepared in 11 proportions ranging from 

0% A (100% B) to 100% A (0% B), in increments of 10%, with proportions determined 

by weight. 

Milk mixtures were prepared prior to lipid extraction, whereas brain and liver lipids 

were extracted first, then mixed afterwards. For milk samples, 1 ml at each 

proportion underwent the lipid extraction procedure. For tissue samples, lipid 

extraction was done separately using 2 g of homogenised tissue of each type (5 

preparations per tissue type were repeated in order to get the amount needed to 

create mixtures of varied proportions for the analysis – i.e. 5 x 2 g of each tissue type 

were homogenised and extracted separately as the homogenisation worked well 

with a small amount of tissue). 

 

5.2.2.1   Brain Dissection 

A fresh lamb brain was cut into smaller sections of around 1 cm thick along its coronal 

axis. In each section, careful dissection for white and grey matter was performed 

using two pairs of forceps to pull them apart. The brain must be placed on a glass 

plate with ice beneath it during dissection to keep it in as fresh condition as possible. 

There are nearly equal amounts of each of the two tissue types in a brain. 

Approximately 30 g of each tissue type were obtained for the whole lamb brain used. 

Where 10 g of each were required for this experiment. 

The two tissue types are visually and spatially distinguishable. The image of a coronal 

brain section is presented in Figure 5.1, with the identification of white and grey 

matter regions labelled. 
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Figure 5.1  Lamb brain white and grey matter as shown in a coronal axis 

(Pérez et al., 2013) 

 

5.2.2.2   Tissue Homogenisation 

10 g of each tissue type – i.e. brain / liver / dissected white matter / dissected grey 

matter were homogenised prior to extraction of lipids. Note that the homogeniser 

can only deal properly with a smaller portion of tissue: about 2 g were homogenised 

at a time. The tissue container was placed in ice during homogenisation to minimise 

heat building up in the sample. 

 

5.2.2.3   Lipid Extraction 

Lipids were extracted by adding 2:1 methanol:chloroform (4.5 ml), chloroform (2 ml) 

and deionised water (1 ml) to the samples before mixing well. Samples were 

centrifuged at 1,300 rpm for 2 min at 20 ºC. Levels of natural salts in the resulting 

lipid extracts were reduced by the addition of 1 ml of deionised water before being 

centrifuged again. 

In the white and grey matter samples, nylon filters of mesh size 40 µm were used to 

help remove fibrous tissue from the lipid extracts. However, emulsification occurred 

in white matter, making the lipid extract hard to separate from the water and tissue. 

The extracting solution of white matter was heated using boiling water to maximise 

separation between lipid-tissue-water layers. Finally, chloroform was added into the 

white matter lipid extract to compensate for evaporation. 

 

 

White matter Grey matter 
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5.2.2.4   Binary Mixture 

For each of the three mixtures mentioned at the beginning of this section, the 

chloroform based lipid extracts of biological sample (class A : class B) were mixed into 

11 different proportions. The binary mixture concentration was varied from pure 

sample of class A to pure sample of class B, e.g. pure white matter to pure grey matter 

lipid extracts, with increments of 10%. The Table 5.1 below indicates the exact 

proportions for these class A : class B binary mixtures which determine the ground 

truth used in the analysis. Mixtures were made volumetrically but checked for the 

proportion gravimetrically to account for error associated with pipetting organic 

solvent – i.e. the proportions of mixtures measured by weight, which are more 

accurate than those by volume, are taken as actual values. The proportion was 

calculated as class A concentration versus the total amount of class A and class B in 

the sample – i.e. for milk, brain:liver and white:grey matter; class A are assigned to 

be cow’s milk, brain, and white matter lipid extracts, respectively. 

 

Table 5.1  Binary mixture proportions as measured by weight 

Nominal 
concentration 

by volume 
(Class A %) 

 Actual concentration by weight (Class A %) 

Cow’s milk Brain White matter 

0 0.00 0.00 0.00 

10 10.74 11.00 8.95 

20 19.36 22.41 20.66 

30 30.61 32.73 29.12 

40 40.11 41.53 38.26 

50 49.97 52.34 50.66 

60 59.46 63.34 58.73 

70 69.35 73.45 71.21 

80 80.07 81.94 80.16 

90 90.34 91.28 89.54 

100 100.00 100.00 100.00 
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5.2.2.5   Matrix 

10 mg/ml of 2,5-dihydroxybenzoic acid (LaserBio Labs) in acetonitrile with addition 

of 0.1% trifluoroacetic acid was prepared as a matrix solution. 

 

5.2.2.6   MS Sample Preparation and Deposition 

The matrix : sample solution was mixed with a ratio of 1:1 for the milk and 3:2 for the 

tissue samples to form MALDI specimens. Double layers of a MALDI specimen, 1 µl 

each layer, were deposited into a well of stainless steel MALDI target plate. 8 repeat 

depositions were applied per mixture proportion to provide repeatability data. The 

depositing locations of each proportion were randomly positioned on the target 

plate to avoid correlations between the spatial organisation and the mixture 

concentration. 

 

5.2.3   MS Acquisition 

An AXIMA (curved-field reflectron time-of-flight) mass spectrometer, manufactured 

by Shimadzu Biotech, was used to acquire the MALDI-MS data. Where the MALDI 

ionisation system of the instrument is a 349 nm neodymium-doped yttrium lithium 

fluoride (Nd:YLF) laser of < 5 ns pulse width and approximately 200 Hz repetition rate. 

Using the positive reflectron mode, an ion extraction energy of up to 24 kV was 

allowed with an effective drift length of 2.0 m. Launchpad proprietary software was 

used throughout all of the experiments for controlling acquisition. During acquisition, 

default settings were adopted (i.e. 200 MS profiles, 5 shots per profile, pulsed 

extraction 750 Da, mass range up to 1,500 Da). A total of 88 spectra were obtained 

for each mixture type, one for each of the deposited targets. 
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5.3   Data Analysis Procedure 

5.3.1   Pre-processing 

Low m/z MS peaks (e.g. matrix-derived ions) contain little information regarding lipid 

content. A mass window (m/z) between 650 and 850 was selected for milk mixtures; 

a window between 690 and 890 for brain:liver mixtures and white:grey matter 

mixtures. The total quantity of signal gathered per spectrum is difficult to control, 

making it necessary to pre-filter poor data. Some spectra within this window were 

rejected on grounds of low signal-to-noise. Spectra containing high signal were also 

rejected to avoid saturated peaks. A combination of visual inspection and goodness-

of-fit tests determined which spectra were kept in order to build satisfactory models. 

This left 66 milk mixtures, 80 brain:liver mixtures and 82 white:grey matter mixtures, 

out of the original 88 per group. Pre-processing is performed to ensure that data 

behaves as linearly additive histograms, with independent Poisson noise (𝜎𝑝), as is 

required for LP-ICA modelling to operate correctly. The methods developed in 

Thacker et al. (2018) satisfy this requirement, see Section 3.3 in Chapter 3. A peak 

alignment procedure is applied to minimise unwanted shifting of peaks. A baseline 

correction that assumes noise on the background is approximately Gaussian (𝜎𝑔) with 

zero mean is applied. Finally, histograms are produced containing only bins for 

significant peaks, with peaks integrated into each bin and inter-peak gaps removed. 

A total of 102 peaks were retained in the milk spectra, 76 peaks were retained in the 

brain:liver spectra and 67 peaks were retained in the white:grey matter spectra. The 

appearance of an example raw spectrum, pre-processed spectrum (after alignment 

and background/baseline correction), and pre-processed spectrum (after peak 

detection) are provided in Figure 5.2. 
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Figure 5.2  Example of averaged raw and pre-processed spectrum before and after 

peak detection (acquired from the lamb brain lipid extract) 

 

Following pre-processing steps, the resulting (peak detected) spectra for each data 

set are achieved. The averaged resulting spectra of pure samples are shown in Figure 

5.3. 
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5.3.2   Peak Ratio Analysis 

A simple peak ratio analysis is applied to estimate mixing proportions for the milk, 

brain:liver and white:grey matter mixtures as a benchmark against which the new LP-

ICA analysis can be compared. Within the lipid window, the largest peak is used for 

normalisation. This peak is at m/z 760.5 in all three mixture cases, corresponding to 

a phosphotidylcholine. At each mixing proportion, all peaks are divided by the 

reference peak, with results for each peak plotted against the known ground truth 

proportions. A least-squares fit is computed for each peak, which should correlate 

(or anti-correlate) well with the ground truth if there is useful information present. 

The most informative peaks (providing smallest errors) were compared to the LP-ICA 

results. These peaks were at m/z 706.2 for milk mixtures, m/z 786.5 for brain:liver 

mixtures and m/z 734.5 for white:grey matter mixtures. 

Sources of variability, including efficiency losses and possible contamination, make it 

unlikely that a linear trend extracted from a single peak will have a slope and 

intercept that exactly predicts ground truth. Rather, the fitted line is used to calibrate 

a linear predictor that maps normalised peaks to ground truth proportions. The 

standard deviation of predictions around the calibrated line is used as an estimate of 

the measurement accuracy attainable from each peak. 

 

5.3.3   Linear Poisson ICA Analysis 

LP-ICA models describe the shape and variability of distributions found within 

histograms using a linear combination of simpler fixed components, with Likelihood 

estimates of parameters e.g. Barlow (1989) using Expectation Maximisation. Each 

component can be viewed as a probability mass function (PMF) for a sub-spectrum, 

representing some correlated set of peaks. Unlike other linear models, LP-ICA models 

use mixtures of PMFs, rather than unit vectors. This permits positive-only 

coefficients, appropriate for counting applications such as the ion counting in mass 

spectra. The mixture of components, fitted on a spectrum-by-spectrum basis, 
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describes a spectrum as a weighted sum of sub-spectra – see Equation (5.1), adapted 

from Equation (3.7) in Section 3.4.5 of Chapter 3. The method is illustrated on the 

schematic diagram in Figure 5.4. An LP-ICA model must determine the necessary 

PMFs (i.e. sub-spectra) required to describe the distribution of spectra. This process 

is a Poisson compatible form of ICA, or LP-ICA, which maximises a Likelihood 

formulation of the problem (Equation (3.8), see Section 3.4.5 of Chapter 3). The 

number of components required to describe a set of spectra is determined through 

a model selection process that aims to reach a satisfactory 𝜒𝐷
2  goodness-of-fit 

(Equation (3.11), see Section 3.4.5 of Chapter 3). Satisfactory fits are those that either 

reach a minimum, or lie upon a plateau. In cases of a plateau, failing to achieving a 

true minimum is compensated for in the error theory, as error covariances are scaled 

by the final goodness-of-fit. Details of the full method and its validation in other 

applications can be found in Tar and Thacker (2014) and Tar et al. (2015; 2017; 2018). 

The Likelihood estimates of LP-ICA components and weighting factors need not be 

unique. The models created are potentially degenerate, in the sense that different 

weighted combination of different components could achieve equally good 

likelihood solutions. The MAX SEP algorithm was therefore designed to reduce this 

problem by manipulating components to increase their independence – i.e. subtracts 

quantities of each component from others as far as possible, without generating 

negative values. The linear components are maximally separated to match individual 

physical meaning, in this case the correlated appearance of different chemicals 

associated with different types of biological sample. See Section 3.4.6 for the 

explanation of MAX SEP algorithm. 
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Figure 5.4  Schematic diagram illustrating the linear Poisson ICA modelling method 

 

5.3.4   Mapping Components to Classes 

The mixtures of two different biological materials (e.g. brain, liver) will be considered 

to be composed of proportions from class A and class B. If spectra were stable to 

within the limits of Poisson sampling and if all molecules within samples were 

detected with 100% efficiency, there should be only 2 components extracted from 

such mixtures, i.e. the spectrum for class A and the spectrum for class B. In practice, 

the numerous sources of variation noted in Section 5.1 lead to multiple components 

being required to describe spectra. Additionally, the ground truth measurements are 

based upon the mass of the sample components, which is not, strictly, what is being 



168 
 

measured by the model coefficients. The fragmentation of molecules and their 

different affinities for attracting charge means only a small fraction of what is in a 

sample is ever detected, plus the windowing of data and thresholding of small peaks 

introduces further efficiency losses. As a consequence, the components and their 

quantities need further interpretation. 

Firstly, components must be attributed to classes of material. A component may 

belong to class A, B, or be contamination belonging to neither class. Secondly, the 

relative efficiency with which components contribute to the total mass needs to be 

estimated. These can be solved by the introduction of a new weighting parameter 

for each component. These weights are optimised in order to achieve the best linear 

trend between sums of components and ground truth. This is described in Equations 

(5.1) to (5.3) below. 

The contribution to a spectrum, 𝑖, containing peak bins, 𝑚, from a class, i.e. 𝑐𝑙𝑎𝑠𝑠𝐴, 

composed from a subset of components, indices, 𝑘, is written as: 

𝑆𝐴𝑖 =  ∑ ∑ 𝑃(𝑚|𝑘)𝑞𝑘𝑖𝑤𝑘

𝑘∈𝑐𝑙𝑎𝑠𝑠𝐴𝑚

                                     (5.1) 

where the total contribution to the class, 𝑆𝐴𝑖, for a given spectrum is a product 

involving a 𝑞𝑘𝑖, dependent upon the component and spectrum, and a further 

efficiency weight, 𝑤𝑘, dependent only upon the component. To ensure that 

components are uniquely attributed to classes, a finite weight for one class must 

correspond to a zero weight for the other. The additional weights, 𝑤𝑘, can be 

estimated by least squares fitting (via minimisation of root mean square (RMS)) of a 

line of predicted relative contributions as a function of mixing fractions: 

𝐹(𝑖) =  
𝑆𝐴𝑖

𝑆𝐴𝑖 + 𝑆𝐵𝑖
                                                  (5.2) 

𝑅𝑀𝑆 =  (
1

𝑁
∑([𝛼𝑇(𝑖) + 𝛽]  −  𝐹(𝑖))2

𝑁

𝑖=1

)

0.5

                           (5.3) 
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where 𝐹(𝑖) should linearly correlate well with ground truth fractions 𝑇(𝑖), given best 

fitting 𝛼, 𝛽 and set of efficiency weights, 𝑤𝑘. Additionally, the RMS can be scaled to 

the slope of this line, 
𝑅𝑀𝑆

𝛼
 to give an estimate of the predictive accuracy to ground 

truth. 

 

5.3.5   Spectra Error Analysis 

The values recorded within mass spectral bins are expected to be Poisson in nature, 

as peak heights are proportional to ion counts which are discrete events, occurring 

in time, consistent with a Poisson process. However, there are additional sources of 

noise, therefore the Poisson assumption must be checked. The residuals between 

spectral models and original spectra can be used to assess the validity of the 

assumption. If binned values are indeed Poisson in nature then the residuals should 

grow proportionally to the square root of the bin quantity (the signal variance agrees 

with the Poisson assumption, 𝜎𝑝). Any fixed scaling of the Poisson process should also 

be revealed as a scaling factor on the square-root dependency. 

Bland-Altman plots, i.e. Bland and Altman (1986), can be constructed and a power-

law error model fitted to assess both of these properties. Bland-Altman plots are 

scatter plots which record expected bin values (i.e. expected peak intensity) on the 

x-axis versus deviations away from the expected values on the y-axis. The linear 

model predictions are used as estimates of expected bin values (x-axis), and residuals 

between model and spectra are the observed deviations (y-axis). A power-law 

function can be fitted to resulting plots to determine the behaviour. The following 

function (Equation (5.4)) is fitted to Bland-Altman plots show differences in error 

behaviour away from the Poisson assumption: 

𝜎𝑀 =  𝑎 (
𝐻𝑀

𝑎
)

0.5
𝑏

                                                 (5.4) 

where 𝜎𝑀 is the standard deviation of model-data residuals; 𝑎 and 𝑏 should be unity 

for non-scaled Poisson bins, and 𝑎 should be a variance scaling in cases where 𝑏 is 
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unity. This variance scaling, 𝑎, should also be close in value to the model’s goodness-

of-fit (𝜒𝐷
2 ), which is an average scaling based upon a 𝜒2 per degree of freedom. This 

Bland-Altman approach is a more stringent test than the goodness-of-fit. A value of 

𝑏 deviating too far from unity would suggest that errors are not Poisson. The effects 

of such a deviation can be evaluated via Monte Carlo if necessary (however, in 

practice the power-law matches well with the Poisson assumption). 

 

5.3.6   Measurement Error Analysis 

Once established, the Poisson noise can be propagated to find its effect on measured 

values. An error covariance matrix for model coefficients (i.e. estimated quantities, 

𝑞𝑖) can be estimated as in Equation (3.10), see Section 3.4.5 of Chapter 3. Assuming 

independent Poisson errors (𝜎𝑝), LP-ICA models provide estimates of quantity errors 

by summing the effects of individual Poisson bins into quantity error covariances. 

This is achieved using error propagation. The error covariance can be further scaled 

by 𝜒𝐷
2  (goodness-of-fit) computed from model-data residuals to boost errors to 

better match actual distributions of true residuals, i.e. Poisson scaling factor. 

Together, the Bland-Altman plots, goodness-of-fits and quantity error covariances 

summarise the success (or otherwise) of the analysis without any need to refer to 

ground truth. 

Sampling errors in spectral histograms combine to give a level of uncertainty on the 

estimated quantity measurements. In order to factor these uncertainties into final 

mixture proportions they must be propagated through the EM algorithm using error 

propagation, as described in Barlow (1989). This process uses derivative calculations 

to assess how small changes in inputs (i.e. Poisson noise in data) affects small changes 

in outputs (i.e. proportion measurements). Equations (3.10) and (5.5b) describe this 

process. 

In a mixture containing 2 sample classes, A and B, the proportion of quantity of class 

A to the total quantity, 𝑝𝐴 =  
𝐴

𝐴+𝐵
 has the propagating error, 𝜎𝑝𝐴

. 
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𝜎𝑝𝐴
2 =  (

𝜕

𝜕𝐴
(

𝐴

𝐴 + 𝐵
))

2

𝜎𝐴
2 + (

𝜕

𝜕𝐵
(

𝐴

𝐴 + 𝐵
))

2

𝜎𝐵
2                     (5.5𝑎) 

Take square root on both side of the Equation (5.5a) 

𝜎𝑝𝐴
=  

1

(𝐴 + 𝐵)2
√𝐵2𝜎𝐴

2 +  𝐴2𝜎𝐵
2                                      (5.5𝑏) 

Where 𝜎𝐴 and 𝜎𝐵 are the standard deviations of estimating values for class A and 

class B underlying sample, respectively. These final errors, 𝜎𝑝𝐴
, can be compared to 

actual accuracies computed using knowledge of ground truth values. 

Predicted errors (𝜎𝑝) via this method can be compared to true measurement errors 

(𝜎𝑡𝑜𝑡) by dividing the deviations of measured values from ground truth by the 

predicted errors. These form a Pull distribution, which if unbiased should have a 

mean of zero, and if precision is correctly predicted should have a width of unity. 

In addition to the sampling errors, the Poisson ICA modelling processes is a numerical 

optimisation method that utilises random initialisations leading to multiple local 

optima. Local solutions are similar, but do add a level of variability to results. To 

quantify this, multiple models (i.e. 50) are built to assess the spread of solutions. 

 

5.4   Results and Discussion 

5.4.1   Peak Ratio Analysis 

The peak ratio approach found that the peak at m/z 706.2 correlated best with 

changes in milk proportions, m/z 786.5 correlated best with changes in lamb 

brain:liver tissue proportions, and m/z 734.5 correlated best with changes in 

white:grey matter proportions. These peaks, for each data set, were normalised to 

the largest and most stable peak throughout different proportions at m/z 760.5 and 

the correlation with ground truth via peak ratio analysis is obtained (see the plots 



172 
 

presented in Figure 5.5). The x-axis shows the ground truth proportions. Each cross 

(data point in the plots) is a peak ratio estimate from a different spectrum, with 

repeatability data at each 10% increment. Deviations from the fitted line (least 

square) show typical measurement accuracy. These peaks provide a relative 

measurement precisions of ± 16%, ± 8% and ± 6%, respectively (see the plot in Figure 

5.11 (right)). 

 

a 

 

b 

 

c 

 

Figure 5.5  Linear fitting for conventional peak ratio analysis results: (a) cow’s and 

goat’s milk, (b) brain and liver tissue and (c) white and grey matter 
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5.4.2   Linear Poisson ICA Analysis 

 

Figure 5.6  Bland-Altman plot showing behaviour of model residuals (y-axis) as a 

function of peak intensity (x-axis). Each point represents a residual between 

an LP-ICA modelled spectrum bin and actual spectrum. The fitted curves (power law 

of Equation (5.4)) show ±1 standard deviation error as a function of peak intensity 

consistent with Poisson statistics. 

 

Bland-Altman analysis confirms that the pre-processed MALDI spectra are consistent 

with Poisson statistics (see the Bland-Altman plot in Figure 5.6). The power-law 

growth parameter (𝑏 in Equation (5.4)), was estimated as 1.04 ± 0.02, completely 

consistent with Poisson style growth in residuals as a function of peak intensity. This 

justifies the application of Linear Poisson Modelling to perform ICA and mixture 

quantitation. The power-law scaling parameter (𝑎 in Equation (5.4)) was estimated 

as 23.9 ± 1.4, consistent with the 𝜒𝐷
2  goodness-of-fit, suggesting that each Poisson 

event is equivalent to an increase of 5 units of signal intensity. 
 

 
 

Figure 5.7  Determination of model order for linear Poisson ICA models 
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In the plot presented in Figure 5.7, the curves show the goodness-of-fit (Equation 

3.11 of Section 3.4.5) of linear Poisson ICA models as a function of the number of 

model components, where each component represents a sub-spectrum that is a 

mode of correlated spectral variation. A total of six components were found to be 

required to sufficiently model the milk spectra, at which point the goodness-of-fit 

begins to plateau (see the plot in Figure 5.7). The lamb brain:liver spectra required 

eight components and white:grey matter also required eight components. Extracted 

ICA components (mass spectral components) for milk, lamb brain:liver and 

white:grey matter mass spectra are presented in Appendix A (see sub-spectra in 

Figure A.1, Figure A.2 and Figure A.3, respectively). Once attributed to sample 

classes, one milk component, one brain:liver component and one white:grey 

component were rejected as being uninformative (due to contamination or 

ambiguity), with the remaining compositions showing a clear linear trend against 

known mixtures (see the plots in Figure 5.8, showing composition of spectra in terms 

of weighted contributions of extracted LP-ICA components). Each 10% increment is 

shown as a step, where each step contains repeatability data for independent spectra 

with the same mixing proportions. The black dots show the best fitted trend. Each 

bar shows the relative proportion of each LP-ICA component present within a 

spectrum. The error bars are the LP-ICA model predicted errors. The components 

‘comp 1’, etc. are listed in the keys from top to bottom in the same order as they 

appear in the figure. N.B. The results are also shown as scatter plots with linear fitted 

line in Figure 5.9 in a comparable manner with the peak ratio analysis results in the 

plots shown in Figure 5.5. These provided relative measurement precision of around 

± 9%, ± 4% and ± 4%, up to approximately doubling that attained via peak ratio 

analysis (see the plot in Figure 5.11 (right)). Even when the peak known to correlate 

best with milk mixtures was removed from the LP-ICA analysis, a precision of ± 11% 

could be achieved. 

Pull distribution analysis (actual deviations from ground truth divided by predicted 

deviations, see the histograms in Figure 5.10) show that LP-ICA model measurements 

are unbiased (mean consistent with zero) and predicted errors (𝜎𝑝) successfully 

describe the majority of measurement noise (𝜎𝑡𝑜𝑡), with true errors being 1.6, 1.6 
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and 1.4 times larger than predicted (plotted in Figure 5.11 (left)) in the analysis of 

milk, brain:liver and white:grey matter data, respectively. 

 

 a 

 

 

 

 b 

 

 c 

 

Figure 5.8  ICA component contributions per spectrum: (a) cow’s and goat’s milk,  

(b) brain and liver tissue and (c) white and grey matter 
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   I 

 

 

 

   II 

 

 

b  

c 

 

 

 

 

 

 

 

 

 

   

Figure 5.9  Linear fitting for linear Poisson ICA analysis results: (a) I. cow’s and 

goat’s milk   II. cow’s and goat’s milk with m/z 706.2 excluded, (b) brain and liver 

tissue and (c) white and grey matter 
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a 

   I 

 

 

 

b 

 

 

   II 

 

 

 

c 

 

Figure 5.10  Pull distribution histograms: (a) I. cow’s and goat’s milk   II. cow’s and 

goat’s milk with m/z 706.2 excluded, (b) brain and liver tissue and (c) white and grey 

matter, where pull distribution is defined as the actual differences between ground 

truth and estimated value divided by the predicted error on measurements (sample 

proportions) 

 

5.4.3   Comparison of the Analysis Approach: Linear Poisson 

ICA vs. Peak Ratio 

Two alternative methods to making quantitative measurements from MALDI mass 

spectra of biological samples have been presented: peak ratios and Linear Poisson 

ICA analysis. Both mitigate against confounding variability (caused by local matrix 

density, chemistry, ionisation field, etc.) and also ambiguity (caused by common 
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molecular constituents in different samples) using very different approaches. The 

former avoids problems by simply discarding mass peaks which are adversely 

affected, selecting those which empirically correlate best with sought 

measurements. The latter is far more sophisticated, modelling sources of variability, 

learning correlations between any number of peaks and attributing them to 

meaningful classes of data. This latter method is far more efficient, as much more 

signal is retained. The peak ratio method uses only 14% of the total signal available 

in the pre-processed lamb spectra, whereas the LP-ICA approach uses 90%, which 

immediately should provide an advantage through sample size alone. The LP-ICA 

approach achieves levels of measurement precision double that attainable through 

peak ratio analysis, with 1 standard deviation errors reducing from ± 16% and ± 8% 

to as small as ± 9% and ± 4%, for milk and lamb tissue mixtures, respectively. 

Achieving this increased precision using the peak ratios method would require at 

least quadruple the quantity of data (assuming errors fall with the square-root of 

sample size). White:grey matter measurement errors reduced from ± 6% to ± 4%, 

suggesting that most information is already extracted from the single peak at m/z 

734.5 (see the plot in Figure 5.11 (right) which illustrates that the LP-ICA method is 

more precise than the peak ratio method in all experiments). 

The efficient use of data is perhaps best illustrated by the LP-ICA method when the 

most informative milk peak (m/z 706.2) is removed. Despite the ambiguity of 

remaining peaks, measurements could still be made using the ICA method with errors 

of ± 11%. If the inverse variance is used as a measure of information content, the LP-

ICA analysis precision using all milk peaks (± 9%) is consistent with combining the all-

but-one analysis (± 11%) with the conventional peak ratio results from the m/z 706.2 

peak (± 16%). 
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Figure 5.11  Predictive ability of LP-ICA error theory, as measured using Pull 

distributions (left). Measurement precision of peak ratio analysis versus LP-ICA 

analysis. Values are 1 standard deviation relative errors, expressed as percentage of 

quantity measurements (right). 

 

In addition to the increased precision gained using the new method, the LP-ICA error 

theory (Section 5.3.6) provides the capability to predict measurement errors on a 

spectrum-by-spectrum basis. These predictions explain the majority of measurement 

noise, as confirmed by Pull distributions which should have a mean of zero and width 

(standard deviation) of unity if predicted errors (𝜎𝑝) match the observed errors (𝜎𝑡𝑜𝑡). 

The plot presented in Figure 5.11 (left) shows that there is no bias (mean consistent 

with zero) and that true errors (assessed against ground truth) are close to those 

predicted. Error predictions within a factor of 2 are generally deemed sufficient for 

scientific use, e.g. Barlow (1989) and Press et al. (2009). As these errors are 

predictable from the input data, they do not require ground truth to be computed. 

These predictive powers provide several advantages, permitting goodness-of-fits to 

be constructed, such as 𝜒𝐷
2 , and revealing data-specific errors (see variable-sized 

error bars in the plots shown in Figure 5.8). In contrast, the peak ratio method uses 

empiricism alone to determine measurement precision. This provides a single error 

estimate, the use of which relies upon an assumption of uniform errors across all 

spectra, which logically should not be the case due to differences in normalisation. 

Furthermore, alternative analyses, such as PCA or conventional ICA do not provide 

error predictions, and must also rely upon empiricism and ground truth. 
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Despite the success of the error predictions, observed errors were still larger than 

expected. The additional sources of unpredictable error include: the spread of local 

minima in the numerical ICA solutions; the Gaussian measurement noise superposed 

upon the Poisson sampling process; non-linearity; the potential need for a greater 

number of linear components; and imperfect pre-processing. 

 

5.4.4   Mean Prediction from Multiple Models 

The effect of local optima was assessed by building 50 ICA models. The typical 

(median) precision attainable for milk mixtures was ± 9.77%, for brain:liver mixtures 

was ± 4.59% and for white:grey matter was ± 5.15%. The best local solutions found 

were ± 9.05%, ± 3.96%, and ± 3.98%, from milk, brain:liver and white:grey matter 

respectively, which are the solutions used in the associated figures. Rather than 

relying upon a single model (i.e. one local ICA solution) a mean linear mixing 

prediction can be made from many local solutions, thereby reducing variability. The 

mean predictions from the 50 model attempts provide precisions of ± 8.72% (milk), 

± 3.77% (brain:liver tissue) and ± 4.19% (white:grey matter). 

In addition, the mean prediction from multiple models can also help with selection 

of suitable ICA component combination by comparing this value of models built using 

different component combinations. Tested using the white:grey matter data set, the 

plot in Figure 5.12 illustrates that certain number of components would be required 

for achieving best proportion prediction accuracy. Modelling performance gets 

improved and maximised with more components extracted before becomes plateau 

thereafter. From the plot, better prediction accuracy was generally obtained via 

models that only reject 1 component as contaminating background (i.e. amongst 

models with the same numbers of extracted components, the RMS error values of 

individual models that only reject 1 component tends to be smaller and closer in 

values compared to those with multiple components rejected). However, this effect 

evens out for the averaged models that account for some more variations in 

predicting proportion values from individual models – i.e. higher model order. 
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Figure 5.12  Model fitting performance assessed on averaged white:grey matter 

models built with various number of components 

 

Note that ‘7/8’, as labelled on the horizontal axis of the plot in Figure 5.12, refers to 

a component combination where 7 out of the total of 8 extracted components were 

kept for the spectral model fitting and 1 component was rejected as a 

background/noise component, etc. A small dip at 7/8 component combination is 

seen in the plot. This confirm that it was a reasonable choice of model. 

 

5.4.5   Validation of the Poisson Assumption and Suitability of 

the LP-ICA in Modelling MALDI-MS Data 

The Poisson sampling assumption was validated via Bland-Altman analysis (plotted 

in Figure 5.6), showing that errors grow with the square-root of peak intensity (𝜎𝑝), 

with an overall scaling factor of 24. The scaling factor measured is also consistent 

with the 𝜒2 per degree of freedom of ICA models (i.e. 24 plateau reached in the 

model selection curve provided in Figure 5.7). Alternative modelling approaches, 

such as PCA, and other ICA methods, would be inappropriate due to their Gaussian 

assumptions and lack of predictive error theories. 

If the MS acquisition pipeline was ideal, there would only be two sources of 

variability: changes in signal due to changing mixture proportions; and random 
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Poisson sampling noise (𝜎𝑝). Despite best efforts to homogenise mixtures, wash away 

salts and perform basic pre-processing, resulting spectra still contain numerous 

modes of variation. Six linear components were required to model milk and eight to 

model lamb tissue. Within these components, one was rejected from each model on 

account of its inability to provide information regarding mixture proportions. 

Rejection was on the basis of linear regression applied to map components to classes, 

Section 5.3.4, when the prediction improved with that component belonging to 

neither classes. This could be due to either the component representing 

contamination, or the component could contain common structure indistinguishable 

between the sample classes. The remaining components are presumed to be 

modelling those sources of variation noted in Section 5.1, i.e. fragmentation, 

ionisation modes, isotopic variations, etc. The number of components required to 

model the data could potentially be used as a measure of data quality. Preparation, 

acquisition and pre-processing steps could be optimised to minimise the number of 

required components. 

Despite the numerous components required to describe the data, the MAX SEP 

algorithm (see Section 3.4.6 of Chapter 3) provides the ability to attribute Poisson 

sampled components physical meaning, allowing their quantities to be used for 

measurement. The attribution of component quantities to classes of sample are only 

valid if this physical meaning can be established. An alternative approach, based 

upon PCA or factor rotations for example, would not have been appropriate due to 

enforced orthogonality and non-physical negative weightings. 

Finally, as a tool for future MALDI image data mining, the LP-ICA approach could 

potentially improve the information content of images by replacing pixels based on 

single m/z peaks with pixels based upon LP-ICA component weights. Such images are 

expected to have better signal-to-noise, as pixels would incorporate information 

from many peaks. They may also better correlate with tissue types, giving a higher-

level interpretation than simply being a map of specific chemicals. And finally, 

through the LP-ICA error theory, pixel values are made quantitatively meaningful. 
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The ability to quantitatively assess correlated chemicals and map them onto 

biological structures will be the focus of the next chapter. 

 

5.5   Conclusion 

LP-ICA modelling analysis of MALDI mass spectra has been shown to provide 

improved quantitative accuracy for the measurement of proportions of biological 

samples when compared to a conventional single peak approach. There are only a 

relatively small number of peaks which are applicable to a single peak analysis, as 

most are adversely affected by high levels of uncontrolled variability. LP-ICAs 

successfully model this variability, permitting information in any number of peaks to 

be included in measurement estimation. The accuracy of measuring the proportions 

of milk, brain and liver mixtures were doubled using this new approach. 

In addition, the modes of variation found within MALDI mass spectra, in terms of sub-

spectral combinations, can now be extracted and analysed providing physically 

interpretable models with fewer parameters, marking a step improvement in related 

ICA work in the field. The high levels of variability, sources of ambiguity and lack of 

error predictions also suggests that simple single peak ratios are unlikely to be 

quantitatively trustworthy. The approach demonstrated will be extended in Chapter 

6 to data-mine MALDI images. 

 

5.6   Overview: A Bridge to the Next Chapter 

The brain is built up from many sub-types of tissues. It can be divided into white and 

grey matter which are the two main tissue types of the brain that are readily 

distinguished from one another. They are located in separate sites and are 

responsible for different tasks but are highly associated and must properly co-

operate for the brain to perform normally. 
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The brain is an important organ in a body which is the main part in the central 

nervous system (CNS) connected to the spinal cord. The CNS works in conjunction 

with the peripheral nervous system (PNS) that controls autonomic and somatic 

nervous systems. The brain gains and recognises information and consists of nerves, 

in addition to spinal cord nerves, that receive sensation and deliver motor 

commands.  

 

White Matter 

White matter has more variety of cell types, consists mainly of the tails of nerve cells, 

axons and myelin, lipidic fibres that act as protecting pillow around axons. This is 

what makes the white matter white/light pink and soft. Neuronal signals are 

transmitted between nerve cells (neurons) through axons, allowing communication 

within the complex neuronal network. 

 

Grey Matter 

Grey matter is located at the outer part of the brain. Folds of white matter branch 

into grey matter region, the host for the neurons’ cell body, the receptor for neuronal 

signals. This part of the brain requires most of blood and oxygen supply that comes 

into the brain. Capillaries surrounded neuronal fibres make the region appear 

grey/dark brown. 

 

The brain stays shielded inside the skull and under layers of the brain’s membranes 

called meninges. This is an important organ that must be protected as abnormalities 

of the brain will cause potential risks and damage to other systems all over the body. 

Degradation of brain tissues or changes in nervous system should be diagnosed 

rapidly to avoid permanent damage. Detection of the concentration of molecular 

species within tissues can be performed using mass spectrometry techniques. As with 
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the other biomolecules, MALDI-MS can detect lipids, which have relatively high 

concentrations in brain tissue. Regional determination of detected molecules is also 

capable with imaging MS. Making such analysis quantitative will enable a powerful 

biomarker identification technique which can be extended to use for in vivo (e.g. 

rapid evaporative ionisation mass spectrometry (REIMS) system for real-time analysis 

by Phelps et al. (2018)) or in vitro diagnostics. 

In this Chapter, a lamb brain which has many similarities to human brain has been 

analysed. It has often been used to model the human brain in a variety of 

study/demonstration contexts. It was therefore selected here for this experiment 

where the sample proportions of white and grey matter present in the human brain 

are mimicked. The white and grey matter were expected to show both shared and 

differing mass spectral lipid profiles. Binary mixtures of the two allowed assessment 

of the methods introduced for determining proportions within the mixture. As a 

result of the analysis using the linear Poisson ICA method, all the underlying 

variations were automatically modelled by extracting independent components that 

contribute to the spectra, and hence providing accurate estimates of sample 

proportions. This suggested that the linear Poisson ICA method also has the capability 

for quantifying MALDI-MS image data, which is to be confirmed in the next chapter 

using rat brain imaging example data. If so, the method could be seen as an 

unsupervised approach that can provide quantitative information regarding the 

spatial distribution of biomolecules of which cells and tissues are comprised. This 

consequently can take a step closer towards an interpretation of the tissue’s 

biological composition with potential applications in biomarker identification. 
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Chapter 6  

MALDI-MS Imaging Analysis of 

Brain Tissue Section 

 

6.1   Introduction 

 

6.1.1   Outline of the Chapter 

A mass spectrometry imaging (MSI) data set is obtained by acquiring mass spectra 

across a 2-dimensional array on thin layer of sample. An MSI data set is large in its 

dimensions (mass bins and spatial locations) and therefore potentially extremely 

informative. MALDI allows recording of imaging data as the laser moves (usually in 

discrete steps) through these different spatial locations. However, extracting useful 

information for quantitative analysis is not straightforward. This is partly caused by 

the complex nature of the MALDI mass spectra. Moreover, a slight alteration in 

sample preparation can significantly influence mass spectral behaviour. Unlike 

normal, discrete sample MALDI-MS acquisition, the imaging approach limits the 

number of laser shots fired onto a certain area of sample and can lead to fewer MS 

profiles accumulated into one mass spectrum at a pixel. In order to boost the signal 

intensity, signals acquired within a larger area may be averaged Chumbley et al. 

(2016). This stabilises the spectra for further evaluation but reduces the spatial 

resolution. The spatial resolution is determined by the pitch size (equal to pixel size), 



187 
 

the distance between successive locations of the mass spectra acquired (i.e. stages 

of laser). It is a preferred condition for the quantitative analysis of this work, that the 

pitch size should be selected to be larger than a laser spot size which determines the 

sampling area. These sizes are illustrated by the diagram in Figure 6.1. This is in order 

to maintain the uniformity of sampling area exposed by the laser. Otherwise, there 

will be overlapping areas (oversampling) between neighbouring pixels where the 

sample-matrix materials are already used up by the previous laser shots – i.e. 

although, this improves the spatial resolution, the analytes available in the sampling 

area are no more evenly spread within a same laser shot, and the height of sample 

in a sampling area varies. Also, this could physically cause a blurring artifact (images 

look smoother than reality) due to the common analytes being ionised in the 

overlapping area.  

 

 

 

 

 

 

 

 

 

Figure 6.1  Pixels (blue) and sampling areas (yellow) 

 

By emulating the method developed in Chapter 5, linear Poisson ICA (LP-ICA) 

modelling will extract components from the mass spectra recorded at pixel locations 

across an acquired MSI data set. The result can then be interpreted as images with 

LP-ICA component proportions at each pixel, as opposed to the conventional single 

peak value pixels. The LP-ICA approach works by modelling a more complete set of 

variations within a data set, with the correct statistical assumptions appropriate to 

MALDI-MS data as validated in Chapter 5. It also requires expertise in acquiring 

appropriate MSI data for this method of analysis as well as for binary mixture 

Pitch size 

Pixel size 
Laser 

diameter 
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experiments. An example MSI data set selected for this analysis is a rat brain section, 

from a rat stroke model, prepared and acquired under the optimised conditions 

(Henderson et al., 2018) which had been shown to give a good level of signal-to-noise 

in the mass spectra. Images produced using selected single mass peaks should show 

clear biological structure within the sample. Such images are used to define an image 

quality baseline that the data set could produce. Nonetheless, it is expected that 

more useful images would be formed using the LP-ICA method in terms of biological 

interpretation due to the added uncertainty information produced by LP-ICA. In this 

study, the ratios between those m/z peaks with relatively high intensity and their 

carbon-isotope peaks were utilised as a quality control criteria to differentiate 

between LP-ICA components that comprise useful signal or simply noise. Where the 

accepted range of values (taking into consideration the presence of isobaric species) 

for an isotope ratio can be found in the LIPID MAPS database (http://www. 

lipidmaps.org/). Other effects including the variation in sodium concentrations 

across the imaged brain tissue section were also observed. The proportion of 

molecules ionised as a sodium adduct versus those in the protonated ion form were 

compared. 

At the end of this chapter, the aim is to map the variety of regional tissue types within 

a brain section, suggesting a method for building a lipid atlas of the brain. A tissue 

type will be defined by a series of mass peaks in a particular relative intensity ratio 

that appears in an individual component. They are expected to be distributed across 

anatomical regions with relative concentrations having biological meaning. These 

depend on the type and proportion of cells that exist in each tissue at specific location 

of the brain. The goal is to map all the variations automatically without prior targeting 

of identified lipids of interest. Instead, the important lipids can be identified from the 

m/z peaks that appear in the ICA components modelled. Recently, lipids in brain 

tissues have been actively investigated using MALDI-MS. Given that brain tissues are 

rich in lipids that perform various tasks, changes in lipid concentrations are often 

hypothesised to indicate changes and even abnormalities in brain functions. 

Examples of the earliest work to document the abundance of major lipid species 

sorted by lipid head groups are the studies on lipids extracted from within specific 
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tissue types in human brains (O’Brien and Sampson, 1965) and from homogenised 

regions of rat brains (Chavko and Nemoto, 1992). So far, Delvolve et al. (2011) 

attempted to create complete anatomical segmentation of a rat brain section by 

observing the concentrations of multiple lipids individually. A number of previous 

papers (e.g. Astigarraga et al., 2008; Murphy et al, 2009; Delvolve et al., 2011; 

Mohammadi et al., 2016), have listed the identification of important lipids, especially 

of phosphatidylcholines which are the major species to appear in the imaging mass 

spectra in this work. Therefore, these can be used as a reference to the data analysed 

in this thesis. 

In this chapter, the method of analysing the imaging MALDI-MS data is described 

along with a critical discussion of the method and how it could possibly be improved.  

 

6.1.2   The Importance of Quantitation and Error Analysis 

Scientific quantitation/quantification is the process of determining the value of a 

quantity based on experimental measurements or observations, with the ability to 

quote an error on that value. Every measured value is just an estimate of the true 

value. Without error estimates, the idea of precision or accuracy of the measurement 

cannot be discussed meaningfully. Smaller errors on quantitative analysis contribute 

to lower uncertainties (determined by standard deviations), and therefore greater 

confidence on determination of the quantity of interest. Here, the quantity refers to 

‘any quantity’ that possesses a value, not only include those with units of gram, 

metre, or number of counts, etc., but also include ratios of quantities which can be 

dimensionless. For example, in this work, the ratios of different components across 

spatial locations are quantified, referring to the relative concentrations of the 

underlying sub-tissues within the MALDI-MS imaging sample. In other words, the 

extracted components along with their associated weighting quantities determine 

the absolute amount of ion counts recorded as peaks in the mass spectrum at each 

pixel. Because the ion counts come from only a fraction of molecules contained 

within the sample that were ionised (ideally directly proportional to the amount of 

that existing molecules), the quantities associated with the extracted components 
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must be calibrated in order to estimate the absolute concentrations of particular sets 

of m/z peaks contained in the underlying sub-tissue types (see the future work 

suggested in Section 7.3). 

Segmentation (according to known anatomical structures) is only performed as a 

general check, in terms of information that is supposed to be extracted as component 

images, but is not the main purpose for doing this LP-ICA analysis. A quantitative 

check of these measurements can be based on the error on a physical property, e.g. 

the ratio of isotope peaks (see Section 6.3.5), where the accepted values are available 

to compare with the results from the analysis. Therefore, the expected and the 

measured errors on this quantity can be compared to validate the analysis. 

 

6.1.3   LP-ICA vs. Other Approaches 

The intention of this work was to develop a valid statistical method appropriate for 

the characteristics of MALDI-MS data, to allow the construction of an error model. 

The LP-ICA described in Chapter 5 was shown to improve the accuracy (over the 

method that uses only single peak ratios) of measuring the proportions of samples in 

man-made biological mixtures. In this chapter, the method was then proposed for 

use in label-free quantitation of real-world MALDI-MS imaging data, where mass 

spectral signals can be extracted as linear components. The measure of quantity 

associated with these components can be thought of as the individual contributions 

of the underlying samples that build up signals forming the imaging data. Each pixel 

is therefore analogous to a simple mixture sample but with more than two 

components. LP-ICA provides the spatial distributions of the underlying contributing 

sources of component mass spectra. In this work, sub-tissue types within a brain 

section were of interest. To emphasise this further, the usefulness of the approach 

lies in its potential ability to identify the types of biological tissues (that correspond 

to the independent components) that are quantified here, rather than the individual 

lipids contained within each sample. Because tissues are complex mixtures and 

combinations of biochemicals (such as lipids which are major constituents of brain 

tissue), they comprise signatures of biological components or tissue types. The 



191 
 

regional structure associated with each component can be extracted, but the LP-

ICA’s value is not limited only to segmentation, but rather to indicating the relative 

abundance of each component across the image. 

Prior to building a useful algorithm for the analysis of MALDI mass spectrometry data, 

appropriate assumptions about the input data should be satisfied in terms of their 

physical/statistical properties. The important assumptions, that accord with MALDI-

MS data properties and the intended analysis, include:  

1.) The mass spectral signals are in the form of positive counts only,  

2.) The signal generation process is linear,  

3.) The errors associated with the signal measurements obey Poisson 

statistics,  

4.) Any underlying components can be comprised of some of the same 

molecules – i.e. the mass spectra of the underlying samples must be allowed to have 

some signals at the same m/z bins, data correlation is thereby introduced and an 

orthogonality assumption is not suitable.  

Therefore, the LP-ICA method was designed to ensure that all the requirements listed 

here are addressed. Some other approaches to analysis will be critically discussed 

with comments in relation to the above assumptions. 

There are a large number of existing analysis tools for quantification/classification of 

mass spectral data. Most of these methods make use of dimensionality reduction in 

a variety of alternative ways. Many of them are quite similar, with common core 

principles but are given different names based on variations in the algorithms. These 

methods may be divided into the following main categories. Note that depending on 

the purpose of analysis (i.e. what is needed to be known from the analysis), an 

appropriate method must be carefully selected. 

1.) Linear component decomposition approaches, e.g. principal component 

analysis (PCA), independent component analysis (ICA), non-negative matrix 

factorisation (NNMF), probabilistic latent semantic analysis (pLSA), Linear 

Poisson ICA 



192 
 

2.) Pattern recognition approaches, e.g. random forests, support vector 

machines, k-nearest neighbours, neural-network based methods e.g. t-

distributed stochastic neighbour embedding (t-SNE) 

3.) Clustering approaches, e.g. K-means, Fuzzy C-means 

4.) Normalisation approaches, e.g. linear regression normalisation via peak ratio 

calculation, total ion current normalisation, calibration using isotopically 

labelled/internal/external standard (see Section 3.1.2 of Chapter 3), local 

regression normalisation (Callister et al., 2006), quantile normalisation 

(Callister et al., 2006), regional tissue extinction coefficient normalisation 

(Hamm et al., 2012; Taylor et al., 2018) 

 

The theoretical foundations of the methods listed in each category leads to 

differences between them in terms of cost function and optimisation steps. These 

are selected on the basis of the data characteristics. In mass spectral analysis, 

statistical properties of data are often ignored and simplified without being 

confirmed, and components and some properties of the data are therefore lost, 

compromising appropriate error analysis. Generally speaking, machine learning 

approaches do not use proper statistical models, rather they identify separable 

features from the data set and perform arrangements that result in classification of 

data in most cases. Neural networks are deemed to be the most sophisticated 

method amongst the pattern recognition machine learning approaches listed and 

discussed previously in Chapter 3, Section 3.2.2 because of the complexity of the 

algorithm, involving a large number of connections and the processes of updating 

parameters. They can perform classification and regression tasks – e.g. Fonville et al. 

(2013) used a neural network-based approach (i.e. t-SNE) to segment anatomical 

structures within MS images of biological tissues, or Thomas et al. (2017), used deep 

neural networks as a tool for dimensionality reduction prior to performing other 

classification techniques to increase their performance. 

t-distributed stochastic neighbour embedding (t-SNE) has been used often in MS 

image analysis, e.g. Abdelmoula et al. (2018). t-SNE can be applied to a variety of data 

types because of its loose constraints on the properties of input data. It was not 
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designed specifically to suit the MALDI-MS data behaviour especially for quantitative 

analysis. Its optimising cost function (e.g. the ‘Kullback-Leibler divergence’) is written 

in a form similar to a standard likelihood function for assessing probability of the 

extent of similarity between neighbouring spectral pixels. The result allows 

assessment of the clustering and spread of data on a t-SNE scale and then the full 

segmentation or soft class-labelling can be visualised (Fonville et al., 2013). The data 

are assumed to have a t-distribution which is very close to a Gaussian distribution. 

The analysis often applies to data of small sample size, e.g. reduced-dimensional 

data, which makes this a rapid technique. 

Neural networks adjust a set of hidden parameters during computation, whilst 

learning from known data and can subsequently achieve reasonable classification 

results when solving scientific questions with unseen data sets. The problem for this 

type of method is that the separable features may not necessarily reveal the 

underlying signal generators that give rise to the real variations in the data. These 

underlying signal generators are of interest, because they are the biochemical tissue 

components. Some form of additional statistical testing is required to guarantee the 

suitability of these approaches for quantifying certain tissue/phenotype related 

chemicals by MALDI-MS. 

Clustering methods are relatively rapid approaches, generally used for identification 

of distinct groups of data. In mass spectrometry, Frank et al. (2008) applied clustering 

of tandem MS data where they grouped MS/MS spectra in the format of packets of 

m/z peaks that occur as a result of redundant identical peptide spectral generation, 

to create the representative spectrum, thereby reducing the size of the data set prior 

to further analysis. This gave better stability with more complete information for 

molecular identification when using an available database.  

The K-means method works by associating a data point with the cluster that has the 

minimum Euclidean distance between the data point to the centroid of a cluster, 

where the centroid (centre of the cluster) is located at the mean of data points that 

belong to the cluster. The position of the centroid can be updated iteratively after 

adding a point to a cluster. A subsequent design in the clustering method family, 

Fuzzy C-means, was adapted such that a data point is not restricted to one class. 
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Instead, it assesses how likely it is that a data point may be belong to different classes. 

It uses the concept of Fuzzy logic which was introduced in computer science contexts 

for approximating confidence levels – i.e. an alternative definition of uncertainty that 

cannot be interpreted using standard statistical probability (Dunn, 1973). Therefore, 

this is referred to as “soft K-means” as opposed to the K-means where the data are 

hard-labelled into a specific class. Fuzzy C-means was applied to magnetic resonance 

imaging data (MRI) where the algorithm was modified such that neighboring voxels 

(3-dimensional pixels) take part in the classification of individual voxels (Ahmed et 

al., 2002). This produces homogeneous segmentation of brain MRI images since 

noise levels were reduced (Chuang et al., 2006). When applied to MS imaging of 

myxofibrosarcoma (Jones et al., 2011), the Fuzzy C-means reveals superior 

segmentation compared to PCA, non-negative matrix factorisation or pLSA. 

Clustering performed well in classification. However, it is not based upon statistically 

justifiable modelling assumptions and therefore is not appropriate for regression 

purposes. Consequently, it is not useful in obtaining numerical quantitation. Also, 

where initial clusters’ centroids are defined at the outset, quite significantly affects 

the resulting classification – i.e. results are not unique. 

Non-negative matrix factorisation (NNMF) and probabilistic latent semantic analysis 

(pLSA) are approaches which are frequently mentioned in the MALDI-MS literature 

as data analysis tools. The two algorithms have a very close relationship. In fact, 

NNMF is a broader term describing methods of component decomposition with a 

non-negative value constraint, and whose result is expressed as a linear matrix 

equation via a singular value decomposition-like method. It uses an optimisation 

function (i.e. cost function) to find a matrix of linearly separated factors 

(components) within the data. The choice of a Poisson or Gaussian assumption can 

be selected, depending upon the nature of the data (Brouwer, 2016). Therefore, by 

definition, pLSA is a form of NNMF. pLSA was originally designed for text document 

classification in linguistics research (Hofmann, 2001). The method was adapted for 

use in mass spectrometry data analysis e.g. Hanselmann et al. (2008), and is also used 

in commercial software e.g. SCiLS Lab (Bruker). It is not very clear whether there are 

good links between text and mass spectral data characteristics. 
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A few options are available in NNMF to address different data types, including pLSA 

as discussed, and Poisson matrix factorisation (Canny, 2004; Gopalan et al., 2014) 

with similar assumptions, etc. NNMF has shown comparable segmentation results to 

ICA in the analysis of a mouse brain MALDI-MS image data set, both perform better 

than PCA (Siy et al., 2008). NNMF algorithms are generally unsupervised, however, 

are modified in Leuschner et al. (2018) to be used as a supervised tool with a focus 

on classification of tumour regions on MALDI-MS image. pLSA is the closest algorithm 

to linear Poisson ICA in terms of the assumptions made (see Table 6.1 for analysing 

data properties). Hanselmann et al. (2008) has shown use of Expectation 

Maximisation (EM) in optimisation of a log-likelihood cost function for the pLSA 

algorithm. This was drawn based on Poisson statistics which has be tested 

appropriately for simulated data and real-world MALDI-MS imaging data. In addition, 

the Akaike information criterion was used to calibrate model selection to determine 

the suitable number of components to be extracted. This is equivalent to the plateau 

reached in the model selection curved in Figure 6.4 of this chapter using the LP-ICA.  

There are many more algorithms built with slight alterations but share core 

principles, where the assumptions they make on the data analysed or algorithm 

design are slightly different. Some of the variety is listed in Table 6.1 to compare their 

main properties which reflect their suitability for use with MALDI-MS data. For 

imaging tasks specifically, there is no ground truth to train the algorithm and the 

ability to perform unsupervised tasks is therefore beneficial. A quantitative capability 

is one of the main issues. Depending upon the objective of the research, a regression 

or classification approach may be favoured. Regression approaches are required for 

getting quantitative numerical results (specifying how much things vary between 

different measurements). Whereas classification approaches aim at grouping the 

most similar things together and separate dissimilar things (stating to which group 

something belongs). 

The concept of orthogonality applies mainly to the linear component decomposition 

methods, and also in some other methods which produce equivalent forms of results. 

In conventional PCA, the extracted (principal) components must be orthogonal. Note 

that PCA is sometimes used to reduce a number of dimensions of data before 
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processing clustering methods. In the case of the prior positive only assumption on 

component spectra (counts cannot be negative), having this orthogonality 

assumption would mathematically force each and every component to include a 

different sets of peaks, and therefore prevent components with any degree of 

commonality from being extracted – i.e. orthogonality means the dot products 

between components are zero. As discussed before, it is necessary to have non-

orthogonal components which means that the same m/z peaks are allowed to appear 

in multiple components. This can then interpret underlying signals in a more 

meaningful way. In particular, mass spectra of MALDI-MS imaging data of biological 

tissues comprise the spectra of various biomolecular mixtures present in the 

different sub-tissue types at each pixel location. Similar sub-tissue types of the same 

organ are likely to contain some common biomolecules, but with varied proportions 

depending on the functional characteristics of those regions. Conventional ICA and 

its relevant methods e.g. LP-ICA satisfies this criterion. Conventional PCA vs. ICA 

algorithms were discussed explicitly in Section 3.4.2. 

Normalisation approaches are basic techniques of MS data analysis which work by 

calculating a fraction (ratio) of the interested quantity against a defined reference 

value. They are simple, with no complicated algorithm involved in the calculation. 

The cumbersome tasks for normalisation are the additional sample preparation 

procedures needed with external standards or the selection of appropriate internal 

standards to suit the analysis (see Section 3.1.2). Individual ion peaks associated with 

the variation in the sample must be found and validated; therefore, the 

segmentation and/or quantitation based on this selection process is subjective. More 

sophisticated normalisation methods, including quantile normalisation, central 

tendency normalisation, linear regression/local regression normalisation, are 

reviewed and evaluated in Callister et al. (2006). 

Alternatively, Hamm et al. (2012) and Taylor et al. (2018) introduced region-specific 

normalisation approaches using tissue extinction coefficients to scale mass spectra 

of tissue regions, between organs and within an organ, respectively. The scaling 

factors can be determined by the relative signal intensities between regions of a 

specific molecule that was treated as a calibration standard. Note that spatial regions 
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based on the different tissue types have to be defined beforehand. The method 

explained in Taylor et al. (2018) employed a clustering approach called ‘graph cut’ for 

tissue segmentation. Applying this method can compensate for a problematic 

inconsistency of ion signals throughout an MS image due to varied degrees of 

suppression occurred at different tissues. 

The common limitation for these normalisation approaches is mainly the potential 

introduction of bias because the analysis relies only on a few pieces of information 

contained in a data set, which are sometimes picked manually based on visualisation. 

Nonetheless, a regression analysis can be constructed using these normalisation 

approaches, for example, using the conventional peak analysis as demonstrated in 

Chapter 5 Section 5.4.1. The analysis is very simple, does not require statistical 

assumptions but errors cannot be predicted. 

Although, the available approaches discussed above provide satisfactory results in a 

number of research studies, they lack a statistical error theory where 

predicted/expected errors can be estimated. With these methods (and without 

further error modelling), the associated errors can be calculated only if the ground 

truth exists for a specific data set. This ideal case is impossible in unseen MALDI-MS 

imaging data. It is important in a scientific context to be able to estimate errors in 

measurements because the predicted errors (from theory) and the measured errors 

(deviation from ground truth) can then be compared and where signals differ, the 

significance of that difference can be determined. This can test the whole analysis 

methodology – i.e. the analysis is valid if the agreement or relationship between the 

experimental error and that predicted by theory is observed, and assumptions used 

in the algorithm are valid. 

In this work, the component images that show reasonable segmentation according 

to the anatomical structure can be seen as an independent check of the validity of 

the analysis and are not the primary reason for using LP-ICA. The cost function is 

derived from the likelihood (see Equation (3.8) of Section 3.4.5). The components 

extracted by LP-ICA are the ratios of ion counts at a number of m/z peaks represented 

by probability mass function vectors (of the same size, equal to the number of m/z 

peaks contained) for each pixel. Associated quantities for components are indicated 
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per spectrum (at a specific pixel). The algorithm is similar to that of NNMF and pLSA 

but is more readily formatted as vectors of mass spectrum instead of the matrix 

format. The use of MAX SEP (see Section 3.4.6) is also another novel part of this work 

which features maximal separation of components. Error covariances can be 

calculated for the extracted components. 

The algorithm used will automatically find mass spectral signatures that are common 

to different parts of the brain. The model constructed by quantifying contents of 

spectra will allow the relative contribution of these signatures (components at each 

pixel) to be determined. What will be challenging is to relate each of these 

signatures/components to biological features of the tissue shown by the spectral 

model in specific ways. It is hypothesised that the components relate to biological 

features of the tissue, for example, cell types, white matter, extracellular matrix, etc. 

Referring back to Chapter 5 when binary mixtures of complex lipids were used, cow’s 

milk would be one signature and goat’s milk would be another signature in the milk 

mixture, and also for the brain:liver and the white:grey matter mixtures. Similarly, it 

is expected that the nerve cells/sub-tissue features as mentioned before are a 

number of signatures found differentiable in the brain MS image which comprise the 

underlying tissue phenotypes. Determining the full biological meaning is beyond the 

scope of the current work. Note that it is clear from the component images shown 

later in Figures 6.5, 6.6, 6.16 and 6.17 that the spatial distribution correlates well with 

the tissue anatomy. 

The use of an algorithm must suit the purpose of the analysis. In this case, the LP-ICA 

was selected to perform an appropriate quantitative analysis of the MALDI-MS image 

data set as discussed. Table 6.1 below compares some available approaches for data 

analysis that have been used with MALDI-MSI data, with abilities to perform 

quantitation and/or segmentation. The lists of analysis properties compared include: 

whether the analysis is supervised or unsupervised, performs classification or 

regression, what parameter is measured, what typical statistical assumption involved 

and error model availability. For decomposition methods, the positive/negative and 

orthogonality constraints of the extracted components are also listed. The references 

to examples of MS imaging application are also given. 
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6.2   Methods 

6.2.1   MALDI-MS Imaging Data Format 

The original MALDI-MS imaging data are recorded as two separate files of type .imzml 

and .ibd, which is a standard format for many MS imaging instrument outputs. These 

are readable using commercial software compatible with the instrument used to 

acquire data. Other software, for example, Matlab based MSiReader (Robichaud et 

al., 2013; Bokhart et al., 2018) can convert between known MS file types. However, 

it reads values form the imaging file and writes onto a spreadsheet, taking an 

enormously long time and may reach the memory limits of the computer before 

finishing. OpenMSI allows images produced at selected m/z peaks to be viewed 

instantly on the running webpage, and three m/z peak images can be merged to see 

the image structure more clearly in RGB colour scale (https://openmsi.nersc.gov/ 

openmsi/client/index.html). The original MS file formats can be converted into 

H5/HDF5 Hierarchical Data Format (Askenazi et al., 2017) which is a way of 

simplifying and retaining information from a multidimensional data set, resulting in 

compression of file size by up to a factor of 8. 

Given that .ibd file contains mass spectral information at every pixel of an image, and 

.imzml file contains header information which directs these mass spectra to specified 

pixel locations on the image, the image data were loaded into the in-house (TINA) 

software and then saved in .csv format. This way it can be made certain that the data 

for this analysis is as “raw” as possible – i.e. extracted as recorded in the original file 

and has not been pre-processed in any way, as is often done in most instrumental 

software. The data set in this format is easily manageable and small in size. 

 

6.2.2   MALDI-MS Imaging Acquisition of a Rat Brain Tissue 

Section 

The MALDI-MS image was acquired by Fiona Henderson, PhD as part of her research 

on post-ischemic stroke studies of a rat brain model comparing diseased and healthy 
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regions. MALDI-MS was used to image the distribution of lipids whereas PET was 

used to image biological damage relevant to the disease three-months after the 

stroke (Henderson et al. 2018). Her protocol for sample preparation and MALDI-MS 

imaging data acquisition is outlined below, see Henderson et al. (2018) for the full 

protocol. 

The rat brain specimen with a stroke region was frozen in isopentane, and stored at 

-80 °C before sectioning. Thin (12 µm) brain tissue sections were cut parallel to the 

coronal axis. The sections were placed onto indium tin oxide (ITO) conductive glass 

slides, washed using ammonium acetate solution (150 mM, aqueous). The matrix 

solution contained 10 mg/ml DHB in methanol:water (70:30), with added 0.1% TFA. 

30 successive layers of matrix solution were sprayed onto the thin brain tissue section 

by the SunCollect matrix sprayer at a flow rate of 25 µl per minute, except the first 

three layers which built up with lower flow rates in order to minimise the 

displacement of lipids on tissues. 

The data were acquired using the 7090 MALDI-TOF2-MS (Kratos, Manchester), see 

instrument specifications in Section 4.2.2 of Chapter 4. The laser beam was adjusted 

to a diameter of 50 µm. The distance between adjacent pixels, which determined 

spatial resolution, was 80 µm. At each pixel, 100 laser shots were fired to accumulate 

a mass spectrum.  

 

6.2.3   Pre-processing 

As a result of the white:grey matter experiment in the previous chapter, the same 

mass range of m/z 690-890 was used for the imaging data set where the major 

relevant lipid peaks were expected. Also, the narrow range of data was desirable for 

computational efficiency during method development. Each mass spectrum has 

15,539 original bins in the selected mass range. The size of the image was 219 x 118 

pixels, comprising 25,842 mass spectra in the entire data set. The raw imaging mass 

spectra underwent the same pre-processing process as previously used in the binary 

mixture experiments, with parameters adjusted to suit the data set. Note that the 
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mass spectra of this imaging data set have double the number of original bins to that 

of the binary mixture experiments as a consequence of using a different model of 

mass spectrometer, but still a Kratos model MALDI-TOF2-MS. Therefore, the mass 

spectra acquired should have consistent characteristics to the previous ones. 

Initially, mass resolution reduction was performed by merging neighbouring bins of 

the original mass spectra by a factor of one-sixth. Then, all mass spectra were allowed 

to shift backward and forward by the maximum of 10 bins in order to get a well 

aligned mass spectral data set. Next, the background was subtracted on a spectrum-

by-spectrum basis with mutual parameters: lower threshold, upper threshold and 

the smoothing parameter, set appropriately according to the protocol for the 

baseline correction as stated in Section 3.3.3. Finally, peak detection as described in 

Section 3.3.4 was performed, grouping bins that were expected to contain a single 

ion m/z peak and integrating them into a single bin, resulting in 67 peaks detected 

throughout the selected 200 m/z range. Each of the detected peaks has an associated 

m/z value. Descriptions of the pre-processing algorithm can be found in Section 3.3 

of Chapter 3. 

 

6.2.4   Image Formation 

Conventional Single Ion Image 

A conventional single ion image can be displayed as grey levels representing intensity 

for each ion m/z in mass spectra, plotted at the corresponding pixel locations. In this 

brain image data set, 67 different single peak images can be created. A series of single 

ion images formed using the 20 largest peaks were created. These are used to 

compare image quality to LP-ICA derived images and also show correspondence 

between some tissue segmentations using hand-selected peaks verses the 

automated alternatives. 
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LP-ICA Component Image 

LP-ICA analysis was performed on the brain MS image data set (25,842 mass spectra) 

– i.e. one per pixel location, with each mass spectrum having 67 bins. Models were 

built for different numbers of ICA components: 8, 12, 16, 20 and 24. This had been 

suggested by the model selection curve, see Figure 6.4, that the model fitting started 

to be near optimal when 12 or more components were extracted. The LP-ICA 

algorithm was based on an Expectation Maximisation (EM) algorithm with an EM 

limit being the parameter to control the limit of optimisation divergent point, 

empirically determined for a sufficiently consistent/accurate model fitting with a 

reasonable speed, and with the MAX SEP mode applied for a maximal linear 

separation of components within a model (detailed explanation of the algorithms can 

be found in Sections 3.4.5 and 3.4.6 of Chapter 3). The use of the LP-ICA modelling 

method was similar to that used in Chapter 5, which was for the extraction of spectral 

components, however, the weighting combination scheme was not applied in this 

experiment as the image data contains much more tissue-related underlying 

variability. On average, it took 3.5 days to complete 5 attempts to find the best fitted 

ICA model with this amount of data. 

The extracted components are referred to as probability mass functions, which 

describe a set of variations within the MS image data. Each component shows a mass 

spectrum of multiple peaks. These peaks must have some degree of correlation in 

order to appear in the same component. Therefore, better discriminative 

information is expected using these component-specific mass spectra than using just 

a single peak. A component image can be formed as a grey level image indicating the 

variation in each component quantity at different spatial locations. 

 

6.2.5   Image Normalisation 

Normalisation is another key to constructing MS images, as well as the ordinary MS 

data in most of the existing analysis routines. It is used to make all the mass spectra 

in the whole set of data comparable in terms of the signal intensity scale. MALDI-MS 
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in particular is very sensitive to systematic artifacts produced, for example, by matrix 

or contamination enhanced signals (Deininger et al., 2011). With normalisation, such 

effects are expected to be evened out. However, MALDI mass spectra have a variety 

of underlying complications. 

The input data for the analysis needed to be raw (non-normalised) because any 

normalisation would lead to the Poisson noise on signals, 𝜎𝑝 being scaled unevenly 

across the image, as a result of varied normalisation factors from pixel to pixel – i.e. 

because the signal integral would not be the same in every spectrum. Therefore, raw 

signal quantities are required in the calculation to correctly optimise the log-

likelihood cost function and covariance (see Chapter 3 for Equations (3.8) and (3.10)). 

As a consequence, normalisation can only be used here for the sake of image 

presentation – i.e. images can be visually evaluated and compared. For the LP-ICA 

component images, the mutual dynamic range was used through all the images 

(ranges from 0 - 100%) so that the weighting for each component can be directly 

compared with others. 

In this chapter, the approaches to normalisation are described below, both for the 

LP-ICA component images and the conventional single ion images. Each 

normalisation process was performed on a spectrum-by-spectrum (pixel-by-pixel) 

basis across the image. 

 

Non-normalisation: 

The raw measures of mass spectra in the data set (peak bin intensities as a result of 

the peak detection) in every pixel were used for the input of MS image data into the 

LP-ICA analysis tool. 

 

Normalisation to the signal integral: 

This is basically referred to as normalisation to the total ion count (TIC) in the 

literature. The TIC in this case was calculated by integrating across all bins. That is: 
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 For the conventional single ion images, the signal intensity of the peak of 

interest in each bin was divided by the integral of total signals for that given 

pixel. 

 For the LP-ICA component images, the signal quantity of the component of 

interest was divided by the sum over all the component signal quantity in the 

given model for that given pixel. 

 

6.2.6   Sodium Gradient Analysis 

Sodium is an alkali metal that naturally exists in biological tissues. In this specific brain 

sample, the sodium was at a concentration that led the sodiated ion species [M+Na]+ 

to be majority for all main molecules in the observed lipid range, whilst the 

protonated ion [M+H]+ species were the second largest in abundance. 

As a first step towards understanding biases in quantitative analysis, the relative 

sodium concentration across the imaged sample was measured. This was achieved 

through measurement of sodiated-to-protonated ion peak intensity ratio – i.e. 

[M+Na]+/ [M+H]+ for 3 major molecules, which are at m/z 756.5, 782.6 and 810.6 

versus m/z 734.5, 760.6 and 788.6. 

 

6.2.7   Quality Assessment of the MS Image 

This section includes firstly an image segmentation test as an assessment of visual 

quality of images, and secondly the noise correlation test as an assessment of 

separation between component images. The following processes were repeated for 

8-, 12-, 16-, 20- and 24-component models. 

 

Image Segmentation Test 

All LP-ICA component images of a model were computed. For every possible 

combination of 3 component images, a colour coded image was generated where 
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intensity scale of three distinct colours: red, green and blue was given to each 

component image, and then superimposed. This provided an indication of 

segmentation quality based upon a subset of three images. Some of the colour coded 

images that enhanced the subjective visualisation of tissue segmentation were 

noted. 

 

Noise Correlation Test 

Some anti-correlation between noises in ICA component images might be evidence 

of the need to add two or more components together to explain a single tissue type, 

as was found in the analysis of the binary mixtures. In order to test this, first of all, 

the noise on each of the component images created was estimated. A noise-free 

image of a component was estimated through tangential smoothing, which predicts 

each central pixel using its neighbouring pixels (http://www.tina-vision.net/docs/ 

memos/2016-009.pdf, Thacker et al. (2016)). Therefore, the noise estimate can be 

obtained by subtracting the computed noise-free image from the modelled image of 

a component. 

A correlation plot was then generated for any given pair of the component noise 

images, where noise on one image was plotted against the other on a pixel-to-pixel 

basis. Noise correlation patterns were observed for every possible pair of the 

component images. 

 

6.2.8   Peak Assessment on Individual ICA Component Spectra 

LP-ICA models a set of sub-spectra that can be linearly combined with appropriate 

weighting factors (quantity associated to each component) to approximate the 

original spectra of the data set. The extracted sub-spectra vary depending on the 

number of components in a model. Even when the same number of components are 

extracted, statistical variation leads to differences in those components each time 

they are calculated, as in real-world data there can be multiple solutions (local 

optima). The greater the number of components in the model, the more intimately 
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all the variations in the data are fitted. This is not necessarily a good thing, and when 

there are too many components, the combination begins to model noise, a situation 

known as “overfitting”. The opposite would be “underfitting” when too few 

components extracted leads to failure of fitting enough variations. Continuing from 

Section 6.2.4, the model selection curve estimated that the appropriate component 

number was somewhere between 12 and 24 components – 8 components might still 

be sufficient. Each of these was investigated whether it had modelled the level of 

variation sufficiently, and that there was no obvious evidence of over- or under-

fitting by looking at the sub-spectra and the corresponding component images. This 

was done as a primary quality control test. 

For each of the 8-, 12-, 16-, 20- and 24-component models, individual sub-spectra 

(component spectra) were examined for the 10 most intense peaks amongst the 67 

ion peaks detected. All the m/z values corresponding to these top peaks were 

labelled as they can potentially be used for further investigation of a link to biological 

cause, e.g. Sections 6.2.10 and 6.2.11. 

 

6.2.9   Isotope Analysis 

The ratios between the different natural isotope permutations in molecules are well 

known. An isotope peak at one mass unit higher than the monoisotopic peak (all 12C): 

[M+1]+ for an organic molecule is due mainly to the presence of a single 13C in that 

molecule replacing any one of the (most abundant) 12C atoms. A small contribution 

is also due to the existence of 15N. 17O and deuterium can be considered negligible as 

traced very small abundance in nature, however, they can be significant in larger 

molecules. The larger the molecule, the higher chance finding these rarer isotopes. 

The expected isotopic distribution of a molecule, knowing the distribution of the two 

most abundance isotopes of each atomic type, should follow the general formula for 

binomial expansion (𝑎 + 𝑏)𝑛. When 𝑎 and 𝑏 are the fractional natural abundance of 

the two isotopes, and 𝑛 is the number of atoms in the molecule. The molecular 

isotopic abundance can be derived by adding up distributions from each atomic 
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component. Similarly, the [M+2]+ isotope species incorporates two 13C atoms or an 

18O within a molecule. 

The isotope pattern is therefore a property that determines essential characteristics 

of mass spectra. This property was used as a basis for assessing mass spectral 

components extracted by the LP-ICA model – i.e. whether the isotope peak intensity 

ratio at a selected m/z is consistent with the expected value. Then, any uncertainties 

observed from the measured values were compared with the theoretical predicted 

error, see Section 6.3.5. Isotope ratios were calculated from [M+Na]+ and [M+H]+ ion 

forms of 3 molecules that appears major across every component, which are listed 

in Table 6.2. Note that regardless of sodium concentration across pixel locations, the 

isotope ratio is a conserved physical property. It is calculated from spectral 

components which are derived on a per-pixel basis. 

 

Table 6.2  List of m/z peaks used for the isotope analysis 

m/z 
value 

Ion form 
Molecular 

type 

Expected ratio 
[M+1+H]+/ [M+H]+  or 
[M+1+Na]+/ [M+Na]+ 

[M+2+H]+/ [M+H]+  or 
[M+2+Na]+/ [M+Na]+ 

734.5 [M+H]+ 
PC(16:0/16:0) 0.46 0.12 

756.5 [M+Na]+ 

760.6 [M+H]+ 
PC(16:0/18:1) 0.49 0.13 

782.6 [M+Na]+ 

788.6 [M+H]+ 
PC(18:0/18:1) 0.51 0.14 

810.6 [M+Na]+ 
N.B. These expected isotope ratios were obtained via LIPID MAPS database for mass spectrometry 

isotopic distribution 

 

6.2.10   Tissue Compositions and Stroke Biomarkers 

Component images show different component segments of brain anatomy. 

Components that display specific regions or the stroke lesion were particularly of 

interest. The component sub-spectra that relate to each of these were recorded. 

There must be characteristic chemical (lipid) variations causing differentiation 

between components which cause these specific tissues types to be separated. 

Important differentiating molecules (determined by the 10 most intense peaks for 
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each component, following Section 6.2.8) were identified based on their m/z values 

with reference to previously identification of those molecules in the similar sample 

types reported in the literature and also the LIPID MAPS database online resource 

(http://www.lipidmaps.org/). 

 

6.2.11   Lipid Mapping on Anatomical Brain Atlas 

An anatomical atlas of a brain section may be constructed based on chemical 

labelling (of lipids in this case) at different spatial locations. The construction of 

colour-coded component images as in Section 6.2.7 shows the segmentation of 

different brain regions. Component images represents biochemical distributions 

within the tissue. Tissue-specific functionalities depending on the lipid types 

observed within the brain regions were explored. These were cross-compared to the 

rat brain atlas of approximately the same cut of tissue section as presented in The 

Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (1986). 

The list of top 10 major peaks in each component as assessed in Section 6.2.8 can be 

used at this stage to help identify cell/tissue types according to their biochemical 

compositions. Therefore, the underlying biology of the brain section can be 

investigated, although a full biological functional analysis is beyond the scope of this 

thesis. 

 

6.3   Results and Discussion 

6.3.1   Raw vs. Pre-processed Mass Spectra 

For the rat stroke brain MS image data set, the mass range of m/z 690-890 was 

selected for consistency with the previous white:grey matter binary mixture 

experiment. More importantly, the method of preparation and acquisition favoured 

phospholipids as the main lipid peaks shown on mass spectra, and they sit mostly 
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within this mass range (Henderson et al., 2018). An example of a raw spectrum at a 

single pixel is seen at the top of Figure 6.2. 

The MS imaging data set is high-dimensional. The original binning of mass spectra 

and number of mass spectra acquired are mentioned in Section 6.2.3, creating 

219x118 pixels on MS images. Pre-processing steps were applied to the data in order 

to correct for a number of artifacts and reduce the complexity of the data for more 

efficient computation/quantification. 

Following the parameters indicated in the method Section 6.2.3, the result after pre-

processing, which include mass resolution reduction by a factor of one-sixth, 

alignment, background subtraction, and peak detection; is shown as the resulting 

spectrum at the bottom of Figure 6.2. The m/z values that correspond to the final 67 

detected peaks are listed in Table 6.3. 

 

 

Figure 6.2  Raw vs. Pre-processed mass spectrum (after peak detection) acquired at 

a pixel of the image data set 
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Table 6.3  List of peaks detected with the m/z value and the corresponding binning 

index 

Index m/z value  Index m/z value  Index m/z value 

0 697.98  23 778.66  46 814.60 

1 699.12  24 782.56  47 820.66 

2 699.97  25 783.53  48 822.73 

3 719.39  26 784.66  49 823.66 

4 734.50  27 785.56  50 824.66 

5 735.45  28 786.46  51 828.60 

6 745.50  29 788.49  52 830.67 

7 746.46  30 789.62  53 832.69 

8 747.41  31 790.53  54 833.69 

9 750.49  32 791.58  55 834.62 

10 753.65  33 792.57  56 835.63 

11 754.47  34 794.61  57 836.64 

12 756.53  35 796.64  58 837.65 

13 757.64  36 798.69  59 838.57 

14 758.60  37 804.61  60 848.78 

15 760.67  38 805.60  61 849.71 

16 761.48  39 806.59  62 850.73 

17 762.51  40 808.65  63 851.75 

18 768.60  41 809.49  64 852.68 

19 769.57  42 810.63  65 856.60 

20 772.46  43 811.62  66 864.70 

21 773.51  44 812.46    

22 774.48  45 813.61    

 

 

Conventional Single Ion Image 

Single ion images were formed using the 20 largest peaks from the peak detected 

mass spectra. The full set of these single ion images are provided in Appendix B-2 

(Figure B.4). The image presented in Figure 6.3 below shows an example of these 

images plotted using m/z 782.6 which is the most intense peak of the image data set. 

The tissue segmentations derived from these 20 single ion images are highly similar 

because many molecules are present in common among different tissue regions. This 

limits the ability of single ion images to represent tissue-specific characteristics. 
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Figure 6.3  An example of single ion images plotted using m/z 782.6 – the dynamic 

range has been set to maximise the contrast of the image (the darkest pixel has the 

highest intensity value) 

 

6.3.2   Model Component Spectra and Images 

Primary Model Selection 

The primary model selection is assessed using the chi-square per degree of freedom 

test, as a measure of how well the model fits to the data. A subset of 400 pre-

processed mass spectra was used to build models here to speed up computation 

while preserving the nature of the data set by using mass spectra from 2 rows of 

pixels horizontally across the middle of the tissue section, thereby typifying most of 

the variations likely to be found in the sample. The number of ICA components 

extracted was varied between 2 and 28. The model selection curve in Figure 6.4 

demonstrates that the model fitting dramatically improves as component number 

increases at a small number of components. This improvement starts to change 

gradually until reaches a plateau. At about 12 components, the rate of improvement 

of model fitting is considered to be approximately the point where the fitting value 

begins to level off. This is taken to mean the model should be built with 12 or more 

components. Given that this test only gives a lower limit on component number, this 

value and a small set of component numbers beyond this value (12, 16, 20 and 24) 

were selected for further examination for the rest of the analysis (a model with 

slightly fewer component numbers (8) was also built for a sake of comparison). 
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  Figure 6.4  LP-ICA model selection curve for the brain MS image data 
 

Component Spectra 

Mass spectral components (sub-spectra) extracted from the 12 and 20 component 

ICA models are shown here in Figures 6.5 and 6.6, respectively, as representative 

models built in the range of selected component numbers for the illustrative 

purposes. Other models’ component sub-spectra are provided in Appendix B-1 

(Figure B.1 to B.3). The peak bins were plotted in the index order and were scaled 

here according to the m/z values for each component, making them directly 

comparable with the format of the original mass spectra. For every spectral 

component of both models (sub-spectra in Figures 6.5 and 6.6), the first 10 most 

intense m/z peaks were labelled. They were compared against each other. The 

unique relative concentrations of the major lipid molecules could be associated to 

some sub-type of tissue (anatomical region). Some lipids were only observed in some 

of the components and are not present in others. It is therefore of interest to 

determine the identity of these lipids and then investigate the biological meaning of 

their presence in that tissue. A comprehensive analysis is beyond the scope of this 

thesis. For this purpose, individual component images of both models are provided 

at the corner of the associated plots of component spectra (sub-spectra) in Figures 

6.5 and 6.6. All component images were normalised to the integral intensity at each 

pixel location. Areas outside tissue were masked off to improve visualisation. The 

grey scale at the bottom of each image represents a relative weighting that each 

component has to the total signal quantity as a result of normalisation for visualising 

the LP-ICA component images as described in Section 6.2.5. 
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Figure 6.5  12-component sub-spectra with 10 major peaks marked with green 
arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 1 of 4) 
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Figure 6.5  12-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 2 of 4) 
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Figure 6.5  12-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 3 of 4) 
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Figure 6.5  12-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 4 of 4) 
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LP-ICA component spectra estimated by the model can be used to generate a number 

of 2-dimensional grey level plots for each of the extracted components. In a 

component image, the grey level value at every pixel was determined by the 

associated quantity of that component spectrum in the pixel which can potentially 

be interpreted in terms of the common underlying biological variations distributed 

across the image. The spectra varied slightly when the number of components was 

altered. These component images show much clearer tissue-specific segmentations 

compared to single ion images, which can benefit the determination of tissue 

phenotypes and biomarkers (This will be discussed later in Sections 6.3.9 and 6.3.10). 

The 20-component model showed better segmentation of brain tissue, compared to 

the 12-component model. For example, the stroke region stands out individually in 

the image corresponding to component number 8 of the 20-component model (see 

the component image in Figure 6.6). This was not the case for the 12-component 

model, where the stroke region was not discriminated from the ventricles (see the 

image corresponding to component 6 in Figure 6.5). 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 
arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 1 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 2 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 3 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 4 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 5 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 6 of 7) 
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Figure 6.6  20-component sub-spectra with 10 major peaks marked with green 

arrows (their m/z values are listed in ascending order). The corresponding 

component images are shown. (Part 7 of 7) 
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Major Peaks Listed by Component 

The 10 most intense peaks observed in each component for the 12- and 20-

component models are listed in Tables 6.4 and 6.5, respectively, with bin indices and 

the corresponding m/z values. A tick indicates the components for which each of 

these peaks is detected. This information was used to guide identification of lipids of 

interest. Note that the mass window selected for this analysis was in the 

phospholipids range. There will very likely be important discriminating lipids outside 

this range, such as sphingomyelin, cholesterol, etc. These should be included in 

further work, but would have significantly slowed algorithm development in the 

current project. Most cell membrane lipids are likely to remain in place when in 

contact with solutions, whereas lipids of other class may be displaced on the 

sectioned slice. Additionally, intact phospholipids have a phosphate group which 

easily binds with a positive adduct, e.g. hydrogen or sodium ions. However, the mass 

range chosen for this study clearly had sufficient peaks to test the analysis method 

(as the analysis required a very long computational period: a few days per 5 attempts 

of building models). When the method is validated, it can be extended to include 

wider mass ranges – see the discussion on how the computational efficiency can be 

improved in Section 7.3. 
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Table 6.4  10 major peaks presented in each sub-spectral component of the 12-

component model 

Bin index m/z value 
Component index 

0 1 2 3 4 5 6 7 8 9 10 11 

0 697.98             

1 699.12             

2 699.97             

3 719.39             

4 734.50             

10 753.65             

12 756.53             

13 757.64             

14 758.60             

15 760.67             

17 762.51             

24 782.56             

25 783.53             

26 784.66             

29 788.49             

31 790.53             

36 798.69             

37 804.61             

38 805.60             

42 810.63             

43 811.62             

44 812.46             

45 813.61             

46 814.60             

48 822.73             

49 823.66             

51 828.60             

53 832.69             

54 833.69             

55 834.62             

57 836.64             

58 837.65             

60 848.78             

61 849.71             

62 850.73             

63 851.75             

64 852.68             
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61 bins have been identified as the major peaks in different components for the 20-

component model (Table 6.5) while only 37 bins were observed for the 12-

component model (Table 6.4) using the same criteria. This shows that the model 

managed to extract more variations between components when more components 

were allowed. For example, when there are fewer components than the underlying 

variations within a data set, the peak bins that describe minor variations could be 

hidden by other variations, resulting in peaks not being selected as major 

contributors to the corresponding spectra. The component images acquired this way 

would then be ambiguous. In other words, when the number of components is too 

few, some spectral variations can be merged into a single component instead of 

being appropriately separated. The peaks that appeared in the main peak list for the 

20-component model but not the 12-component model are marked in blue in Table 

6.5. 

Therefore, the 20-component model was considered a reasonable model to 

represent the data, providing sufficient unique components to be interpreted as 

tissue-specific phenotypes. Table 6.7 lists the identified phosphatidylcholines (see 

later in Section 6.3.6), at each m/z value based on previously reported literature for 

brain tissues, using MS/MS analysis. These data can be used to determine which 

molecules are associated with each LP-ICA component and their associated 

anatomical features. 

 

Overlaid Colour Coded Images 

The image segmentation test described in Section 6.2.7 aimed to assess the overall 

segmentation quality of the component images generated. Even though, some 

distinguishable structures can be picked out from the grey scale component images 

(see the images in Figure 6.6), the image constructed using an RGB (red-green-blue) 

colour scheme to combine any 3 component images, provides visually clearer 

segmentation and better contrast. 

The overlaid colour coded images obtained from various groups of components are 

presented in Figure 6.7 allowing enhanced visualisation of tissue segmentation. In 
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other words, this is a clear way of presenting the information seen in the image 

results analysed using the LP-ICA method. These colour combination images 

demonstrate how well the components anatomically segment the image into 

relevant regions, which could support determination of the biological functions each 

lipid plays.  

 

   

Component 0 vs. 3 vs. 12 Component 4 vs. 5 vs. 17 Component 4 vs. 10 vs. 12 

Figure 6.7  Overlaid colour coded images constructed by merging three ICA 

component images of the 20-component model 

 

Noise Correlation Plots 

The technique of using linear combinations of components to describe an underlying 

variation was previously suggested for binary mixture experiments. However, the 

previous data sets were restricted to two underlying sample classes per mixture 

whereas this parameter is completely unknown for the imaging data set. The noise 

correlation test described in Section 6.2.7 was therefore established to look for pixel-

to-pixel cross-correlation of noise in all possible pairs of components. The reason for 

doing this was to seek components whose noise value could have been counter-

correlated with one another – i.e. noise on a pair of components with different signs 

of residuals shown on a correlation plot as negatively skew data points on the axes. 

If that was the case, the chance would be these images have to be added together in 

order to denoise; as evidence for the above component combination suggestion. 

Unfortunately, no obvious anti-correlation was observed in any of the plots. An 

example correlation plot of noise in image pair seen in Figure 6.8 was generated from 

the 24-component model. They are instead considered (slightly) positively correlated 

(i.e. when data are positively skew on the axes, resulted from same sign noise on a 
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pair of components) which means adding the two components together would cause 

an overall increase in noise, as opposed to the anti-correlation. All other pairs of 

component in every model built were tested in the same way. They showed more or 

less similar characteristics. On this basis, it was concluded that components extracted 

already represent independent variations; there was therefore no need to add 

multiple components together to correct for evaluation and enhance the contents in 

MALDI LP-ICA images (for modelling up to 24 components). 

Note that tangential smoothing was available to compute an expected noise-free 

image that could possibly give the closest approximation to this image type where 

there are full of structural contents, e.g. the brain MS images (Thacker et al., 2016). 

However, it is not an absolute ground truth and therefore leads to additional random 

errors during the noise estimation. 

 

 

Figure 6.8  Correlation plots of noise on a selected pair of component images 

(component 7 vs. 12) of the 24-component LP-ICA model – estimated noise on one 

image was plotted against the other on a pixel-to-pixel basis 

 

6.3.3   Sodium Gradient Analysis 

Na+ and K+ are common alkali metal ion adducts observed in the brain tissue spectra. 

Therefore, a single lipid molecule may give rise to multiple peaks separated by known 

mass differences – e.g. sodiated and potassiated ions, respectively, are placed 22 and 

38 m/z units higher than the corresponding protonated ions. With this specific brain 
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tissue sample used, the Na+ adduct ion appears to be dominant over the protonated 

or potassiated forms of same molecule. The distribution of sodiated ions across the 

sample was therefore assessed. 

This section examines whether there is any drift in sodium concentration across the 

tissue sample. This might arise from the step of washing salts from the tissue section 

during sample preparation. If so, it can cause problems regarding variations in the 

model built e.g. an extra component related to sodiated ions may be needed to 

describe a tissue type. On the other hand, if the sodium variation is only observed 

from tissue to tissue but is uniform within a same tissue type, there should be no 

gross change on the number of components due to sodiated ions. The ratio of 

sodiated to protonated peaks, to be called ‘sodium gradient’, was calculated 

throughout the image to look for this as a qualitative check for later model building. 

In order to look for a sodium gradient in the brain tissue section, the pre-processed 

spectra with 67 detected peaks were recorded at all the spatial locations. This rat 

brain sample contained high levels of sodiated phospholipids in the mass range m/z 

690-890. Sodium gradient analysis was performed on the three molecules that 

appeared to produce major sodiated phosphatidylcholines (PC) in this range. This 

follows an earlier study of complex lipids in rat brain myelin using liquid secondary 

ion mass spectrometry (Fenselau et al., 1989). The findings also accorded with the 

rat stroke model MSI data set that the signal strength of sodiated PCs were superior 

to protonated PCs of the same molecular types. The identification of the pronated 

form of these molecules is presented below. They were used here as a normalising 

peak for their corresponding sodiated forms (given that these are the top 3 most 

common molecular species across the mass spectra of this data set, also with 

strongest signal intensities). 

- m/z 734.5 was identified as [PC(16:0/16:0)+H]+ (Henderson et al., 2018; 

Jackson et al., 2005) 

- m/z 760.6 was identified as [PC(16:0/18:1) +H]+ (Henderson et al., 2018; Ma 

and Kim, 1995) 

- m/z 788.6 was identified as [PC(18:0/18:1) +H]+ (Sugiura and Setou, 2009) 
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Three images of the sodium gradient were created by computing the ratio of [M+Na]+ 

/ [M+H]+. Where [M+H]+ peaks were observed at m/z 734.5, 760.6 and 788.6, and 

the [M+Na]+ peaks were 22 mass units higher, at: 756.6, 782.5, and 810.6, 

respectively. The images were smoothed by applying a median filter once (to stabilise 

the image with high fluctuation on local pixels, in this case, due to small intensity 

values), followed by tangential smoothing (Thacker et al., 2016) twice. The images 

for the sodium gradient calculated from each representative molecule are illustrated 

in the left of Figure 6.9 (a), (b) and (c). Where the scan lines across the tissue area in 

the images indicate selected pixels (arranged from left to right) that formed the 

corresponding intensity ratio plots on the right of Figure 6.9 (a), (b) and (c) – N.B. the 

same set of pixel locations was selected for all peak ratios. 

Table 6.6 below shows the ion types for various PCs in brain tissues (from Sugiura 

and Setou (2009)). It shows some common masses for different molecular species, 

observed when cationisation changes. The m/z values highlighted with the same 

colour are different ion forms that happened to have the same m/z. These indicate 

that the sodiated and protonated peaks selected do not represent a single lipid 

species. However, the selected peaks are of the dominant species. Therefore, the 

characteristics for sodium gradient calculated from them should still be preserved.  

 

Table 6.6  Comparison table for different ion forms of given molecular species of 

phosphatidylcholine in brain tissues (Reproduced from: Sugiura and Setou (2009)) 
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(a) m/z 756.5 vs. 734.5 

 

 
(b) m/z 782.6 vs. 760.6 

 
 
(c) m/z 810.6 vs. 788.6 

 

Figure 6.9  Sodium gradient images and the corresponding plots showing the signal 

intensity ratio of [M+Na]+ vs. [M+H]+ m/z peaks: (a) m/z 756.5 vs. 734.5, (b) m/z 

782.6 vs. 760.6 and (c) m/z 810.6 vs. 788.6 at varied pixel positions – the position of 

the line scan is shown on each image in red 

 

The sodium concentration is region-specific as clearly observed by the three different 

molecules. Higher sodium concentration regions include the CSF and the stroke scar. 

The corpus callosum has also moderately high concentration relative to other 

regions. These probably associate with parts of the brain that have high fluid content, 

where sodium is more soluble. Conditions such as edema might occur post-stroke 

where the tissue was damaged, leading to an excess of liquid in the affected site. 
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Luptakova and co-workers (2018) suggested that the sodium adduct ions measured 

within areas of edema in a rat brain were significant increased relative to nearby 

areas, clearly seen in the intensity plots associated to images in Figure 6.9 (a) and (b). 

The sodiated m/z 810 was observed to appear strongly in the corpus callosum region 

(Ozawa et al., 2015), which agrees with the sodium gradient plot for m/z 810.6 vs. 

788.6 shown in Figure 6.9 (c). 

Fortunately, the sodium gradient is relatively consistent locally within a same tissue 

region, although varies in certain anatomical regions as mentioned above, it should 

not generate extra components due to local sodium concentration. 

 

6.3.4   Isotope Analysis 

An independent test to confirm that the LP-ICA method worked was established, and 

made sure that the biological and physical properties correspond appropriately. In 

this section, the raw spectra were tested for behaviour of specific isotopes in order 

to understand the isotopic peaks behaviour on the extracted LP-ICA component 

spectra, as they should behave similarly, if the model is valid. 

The isotope ratio images were generated in a similar manner to the sodium gradient 

images, assessing the sodiated peak for each of the three major molecules used in 

the analysis in Section 6.3.3. Two isotope ratio images per molecule were plotted, 

which are [M+1+Na]+/ [M+Na]+ in Figure 6.10 and [M+2+Na]+/ [M+Na]+ in Figure 6.11. 

Where [M+Na]+ is the most abundant isotope (of the selected isotopic molecular 

species), and [M+1+Na]+ and [M+2+Na]+ are the next abundance isotopes, 

respectively. 

All the [M+1+Na]+/ [M+Na]+ plots (Figure 6.10) fluctuate within a small range about 

the accepted ratios of 0.46, 0.49 and 0.51, for the three molecules in order of mass. 

Whereas the [M+2+Na]+/ [M+Na]+ plots (Figure 6.11) vary significantly, showing also 

region-dependent behaviour. The ratios generally exceed the accepted values of 

0.12, 0.13 and 0.14, respectively, for [M+2+Na]+/ [M+Na]+ of the three molecules. 

This suggested regional dependency with the variation of isotopomer signal specific 
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to location. Theoretically, there should be no variation at all. Although for low ion 

counts, there might be larger influence by multiple variations, any significant spikes 

that deviate from the expected ratios seen in the plots in Figures 6.10 and 6.11 are 

likely due to isobaric interference in those regions which will be discussed later in 

Section 6.3.5. Note that the reference values to the accepted isotope ratios were 

obtained through http://www.lipidmaps.org/. 

 

(a) m/z 757.5 vs. 756.5 

 
 
(b) m/z 783.6 vs. 782.6 

 
 
(c) m/z 811.6 vs. 810.6 

 
 

Figure 6.10  Isotope ratio images of [M+1+Na]+ vs. [M+Na]+ m/z peaks:  

(a) m/z 757.5 vs. 756.5, (b) m/z 783.6 vs. 782.6 and (c) m/z 811.6 vs. 810.6,  

and the corresponding plots showing their signal intensity ratio at varied pixel 

positions – the position of the line scan is shown on each image in red 
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(a) m/z 758.5 vs. 756.5 

 
 

(b) m/z 784.6 vs. 782.6 

 
 

(c) m/z 812.6 vs. 810.6 

 

Figure 6.11  Isotope ratio images of [M+2+Na]+ vs. [M+Na]+ m/z peaks:  

(a) m/z 758.5 vs. 756.5, (b) m/z 784.6 vs. 782.6 and (c) m/z 812.6 vs. 810.6,  

and the corresponding plots showing their signal intensity ratio at varied pixel 

positions – the position of the line scan is shown on each image in red 

 

6.3.5   Criteria for Differentiating Signal and Noise 

Components using Error Distribution on Isotope Peak 

Measurements 

Isobars are different molecules that have the same nominal molecular mass. In a 

MALDI mass spectrum, peaks with a small mass difference might be seen as a single 

peak given the limit of mass resolution – i.e. this could be distinguished only if MS/MS 
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was performed. If the most abundant isotope peaks of the isobaric molecules 

coincide, then the other isotope peaks should still lie at the same mass positions with 

more or less the same intensity ratios within errors. As shown in the previous section, 

the [M+2+Na]+ isotope peaks, however, appear to be contaminated by some other 

main isotope molecules, for example, at m/z 784.6 and 812.6, as their ratio to the 

main isotope peaks deviated from the expected values stated in Table 6.2. Their 

intensity ratios are much greater than their expected abundances and cannot be 

used directly in the following analysis. Hence, only the ratio between the two most 

abundant isotope peaks was of interest in this analysis. Furthermore, the three 

different ion forms (sodiated > protonated > potassiated) also cause complicated 

overlapping between peaks of different molecules, which affect values of isotope 

ratios at the measuring m/z. 

The following criteria were devised for differentiating between ICA components of 

signal and noise based on the error pattern on the isotope ratio from 6 pairs of mass 

peaks defined by [M+1+Na]+ / [M+Na]+ and [M+1+H]+ / [M+H]+ of 3 different 

molecules quoted above. The simplest way for two molecules to have overlap can be 

modelled as follows. 

There are three common cases that might cause the measured value to be different 

from the expected value of isotope ratio, see diagrams expressed in Figure 6.12. 

Possible patterns of isobaric interference that give rise to measuring M1+1 / M1 ratio 

are described in the list below. 

1.) Upper diagram: M1 and M2 are isobars and the abundance of their isotopes 

should be very close to identical, providing they are PC of similar molecular 

masses. The ratio of M1+1 to M1 is conserved at the expected proportion. 

2.) Middle diagram: M2 appears at the M1+1 position. Only M1+1 gets increased 

in intensity. Therefore, the ratio of M1+1 to M1 is above the expected 

proportion. 

3.) Lower diagram: M2 appears at one mass unit below the M1+1 position, 

adding a small fraction to both M1 and M1+1. The ratio of M1+1 to M1 is 

slightly reduced but this should generally be insignificant, given the 

measurement precision.  
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Therefore, in the majority of cases the isotope ratio between a large peak and its 

neighbour should be preserved. When it does differ it can only be larger than 

expected. This can be used as the basis for a test of ICA components. Such a test also 

requires an understanding of measurement error. 

 

 

Figure 6.12  Possible arrangements of isotope pattern of molecules that coincide at 

the same m/z values 
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The Error Estimates on Peak Ratios of ICA Components 

The errors on peak bins’ intensity of the ICA components were estimated by 

computing error covariances through each pair of the probability mass functions 

(PMF) that describe the component sub-spectra. The method is described in Tar and 

Thacker (2018), where they corroborated the theory with simulated data 

(http://www.tina-vision.net/docs/memos/2018-006.pdf). Then, the errors in isotope 

ratios were calculated on this basis using error propagation.  

The stability of each PMF bin, 𝑃(𝑚|𝑘), can be estimated using the minimum variance 

bound applied to the LP-ICA Likelihood function (propagated to give the error 

estimates on peak ratios). This gives an inverse co-variance between bin order 𝑚 in 

component 𝑘 = 𝑘𝐴 and 𝑘 = 𝑘𝐵  as: 

𝐶𝑃(𝑚|𝑘𝐴),𝑃(𝑚|𝑘𝐵)
−1 ≈ ∑

𝑄𝑘𝐴𝑖𝑄𝑘𝐵𝑖

𝐻𝑚𝑖
                                     (6.1)

𝑖

 

Where 𝑄 is the quantity of the corresponding component contained in spectrum 𝑖 at 

a specific pixel, and 𝐻 is a histogram bin value (equivalent to the ion counts). 

 

The Plots of Predicted vs. Measured Error Distribution of Isotope Ratios 

The plots of predicted against measured error distribution of isotope ratios are 

provided in Figure 6.13 (left). The x-axis in the plot is the measured error (difference 

between the isotope ratio computed from the probabilistic model component and 

the expected value as defined in the LIPID MAPS database). The y-axis is the error 

estimate, defined by the model error covariance calculation, of the corresponding 

isotope ratio. Adjusted ratio plots (Figure 6.13 (right)) are generated where a fraction 

equal to some percentage of the main peaks M in an isotope pattern were added to 

M and M+1 peaks to calculate the new isotope ratio, may compensate for a missing 

fraction either from instrumentation off-set or from the background subtraction 

failure, which was found to correct for some negative skew observed in the original 

ratio plots. A small contribution may also occur when a peak (probably different 

molecules with different adduct species) is found at a unit mass below the dominant 
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isotope peak, and hence fractions contribute for M and M+1 are different. In order 

to define a suitable value of the fraction to be added back into peaks, the mean of 

measured deviations from the expected ratios (the x-axis of the plot) should be 

brought closer to zero, hence, the suitable correction – the percentage for these 

correcting fractions is indicated in each plot (Figure 6.13 (right)). 

A line can be drawn to separate noise and signal. For proportional errors, confidence 

limit takes the form of V-shaped symmetrical lines around zero, where data points 

that sit within the two lines are consistent with signal, and statistical significance can 

then be quoted in terms of the p-value. However, a general conclusions can be drawn 

for this type of plot by looking at the common cases of overlapping peaks illustrated 

earlier in the diagrams in Figure 6.12. It is possible for a data point to be on the 

positive side of the x-axis of plots in Figure 6.13. Data points that are too far away 

from the x-axis in the negative direction should be suspected as modelling errors. 

Therefore, this method can suggest the suitable number of components to build a 

model, figure out contamination (background/noise) components, and/or 

inappropriate parameter estimation (fit failure). Where the plot shows the expected 

trend, it proved that the LP-ICA model built, according to the procedure and 

parameters described in Section 6.2.4 e.g. EM, were adequate. 

For the plots in Figure 6.13, a value on the vertical axis is proportional to the 

minimum variance bound estimate of peak ratio error propagated from Equation 

(6.1). The diagonal dotted lines (on all plots on the left of Figure 6.13, the original 

ratio) have common slope as a visual aid to highlight the changes in the negative 

skew of the distributions; these do not constitute error bounds or confidence 

intervals and are for illustration only. 
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Note that the percentage shown in each adjusted plot above came from the 

optimally minimised accumulative distance of the x-axis values away from zero for 

all data points in a reasonable signal range. These error plots could have been 

improved by appointing appropriate weighting according to the estimated errors on 

data points to determine the fraction added to peaks more precisely. – i.e. Currently 

all points are equally weighted to get the optimal correction of peak intensity but 

more accurate (smaller error) data points could be more strongly weighted in this 

calculation. 

 

6.3.6   Lipid Identification in Brain Tissue 

Rat brains are often used in clinical research as models of pathology and treatment 

procedures in mammalian brains. Therefore, there are number of available resources 

for lipid identification from previous MALDI MS/MS studies. The following Table 6.7 

gives a list of major lipid peaks found in the rat brain imaging data set that have 

previously been identified in rat brain tissue, so that important differentiating 

molecules e.g. the 10 most intense peaks for each component based on the 20-

component model (see Table 6.5), can be observed. The m/z values of the analysed 

data were confirmed to match with the identified lipids within the mass tolerance of 

± 0.3 Da based on the LIPID MAPS database (http://www.lipidmaps.org/). 

As expected from the results of the ICA models, some of the peaks comprise multiple 

molecular types. Without access to higher mass resolution, the only way to tell apart 

those molecular species is to perform MS/MS and identify species based on their 

fragmentation patterns. The proportion of each species can also be accessed if the 

fragmentation pattern is known. However, the isotope ratios observed in ICA 

component spectra can also be used to show the presence of unresolved isobars as 

discussed in Sections 6.3.4 and 6.3.5. 
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Table 6.7  List of previously identified phosphatidylcholine species from literature 

survey (Part 1 of 2) 

m/z value Lipid identification Reference 

697.98   

699.12   

699.97   

719.39   

734.50 [PC(16:0/16:0)+H]+ 1,2,5,9 

735.45   

745.50   

746.46 

[PC(15:0a/18:1)+H]+ 
[PC(16:0a/17:1)+H]+ 
[PC(18:1e/16:0)+H]+ 
[PC(16:0e/18:1)+H]+ 

5 
5 
5 
5 

747.41   

750.49   

753.65   

754.47 [PC(14:0/18:1)+Na]+ 9 

756.53 
[PC(16:0/16:0)+Na]+ 
[PC(16:1a/18:2)+H]+ 
[PC(16:0a/18:3)+H]+ 

1,2,9 
5 
5 

757.64   

758.60 [PC(16:0a/18:2)+H]+ 5 

760.67 [PC(16:0/18:1)+H]+ 1,3,5,9 

761.48   

762.51 [PC(16:0a/18:0)+H]+ 5,9 

768.60   

769.57   

772.46 [PC(16:0/16:0)+K]+ * 

773.51   

774.48   

778.66   

782.56 
[PC(16:0/18:1)+Na]+ 
[PC(16:0a/20:4)+H]+ 

1,3,9 
5,9 

783.53   

784.66 
[PC(18:1a/18:2)+H]+ 
[PC(16:0a/20:3)+H]+ 
[PC(16:0/18:0)+Na]+ 

5 
5 
9 

785.56   

786.46 [PC(18:1a/18:1)+H]+ 5 

788.49 [PC(18:0/18:1)+H]+ 4,5,9 

789.62   

790.53 
[PC(18:0p/18:0)+H]+ 
[PC(20:0a/16:0)+H]+ 
[PC(14:0a/22:0)+H]+ 

5 
5 
5 

791.58   

792.57   

794.61   

796.64   

798.69 [PC(16:0/18:1)+K]+ 6 

804.61 
[PC(16:1a/22:6)+H]+ 

[PC(16:0a/20:4)+Na]+ 
5 
9 

805.60   
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Table 6.7  List of previously identified phosphatidylcholine species from literature 

survey (Part 2 of 2) 

m/z value Lipid identification Reference 

806.59 
[PC(16:0a/22:6)+H]+ 

[PC(16:0a/20:3)+Na]+ 
[PC(18:1a/18:2)+Na]+ 

5,9 
7,* 
* 

808.65 [PC(16:0/22:5)+H]+ 9 

809.49   

810.63 
[PC(18:0/18:1)+Na]+ 
[PC(18:0a/20:4)+H]+ 
[PC(16:0a/22:4)+H]+ 

4,9 
5,9 
5 

811.62   

812.46 
[PC(C18:1/C20:2)+H] + 
[PC(C18:2/C20:1)+H] + 

* 
* 

813.61   

814.60 [PC(18:0a/20:2)+H]+ 5 

820.66   

822.73   

823.66   

824.66   

828.60 [PC(16:0/22:6)+Na]+ 9 

830.67 [PC(16:0/22:5)+Na]+ 9 

832.69 
[PC(18:1a/22:6)+H]+ 

[PC(18:0a/20:4)+Na]+ 
[PC(16:0a/22:4)+Na]+ 

5 
9 
* 

833.69   

834.62 
[PC(18:0a/22:6)+H]+ 

[PC(C18:1/C20:2)+Na] + 
[PC(C18:2/C20:1)+Na] + 

5,9 
* 
* 

835.63   

836.64 
[PC(18:0a/20:2)+Na]+ 

[PC(18:0/22:5)+H]+ 
* 
9 

837.65   

838.57   

848.78 
 [PC(18:0a/20:4)+K]+ 
[PC(16:0a/22:4)+K]+ 

6 

849.71   

850.73 
[PC(C18:1/C20:2)+K] + 
[PC(C18:2/C20:1)+K] + 

8 
8 

851.75   

852.68   

856.60 [PC(18:0a/22:6)+Na]+ 9 

864.70   
 

N.B. References to the above table of lipid identification are 1.) Henderson et al., 2018; 2.) Jackson et 

al., 2005; 3.) Ma and Kim, 1995; 4.) Sugiura and Setou, 2009; 5.) Delvolve et al., 2011; 6.) Delvolve and 

Woods, 2011; 7.) Guo et al., 2017; 8.) Kruft, SCIEX online document; 9.) Löhmann et al., 2010. Where 

* is noted, masses of other ion forms were related based on the identified lipids. The grey shadow 

indicates the identified lipids from literature at m/z that were not picked up as major peaks as a result 

of the 20-component model (the 10 most intense peaks for each component). 
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Lipids of the class sphingomyelin (SM) are important in signalling mechanisms 

(Delvolve et al., 2011). The previous work of this stroke rat brain sample by 

Henderson et al. (2018) reported a specific peak at m/z 725 which was identified 

through tandem MALDI-MS analysis as SM (d18:1/16:0), to be a marker for the 

stroke-damaged tissue. However, SM peaks in MALDI mass spectra are usually 

relatively low in intensity in comparison with PCs. Therefore, it is difficult to find a 

specific SM peak to analyse, especially when the background level is comparable with 

small peaks. This situation is quite common in MALDI. 

According to the above discussion, approaches for detecting this type of underlying 

feature is restricted. In other words, small fluctuations might well be missed during 

the procedure of thresholding and found to be statistically insignificant. The 

alternative LP-ICA approach introduced here was designed to automatically select a 

set of peaks that together correlate with the sample biology. This allows systematic 

quantification even though one peak alone does not stand out as differentiating 

between tissue regions. This would give molecular compositions for lipids at each 

location which can then suggest the underlying cell/tissue types. 

Davanlou and Smith (2004) performed a microscopic observation of Nissl-stained rat 

brain sections to differentiate main types of cells in the cerebral cortex. They 

determined three major cell types; neurons, glial cells and endothelial cells 

accounting for 47%, 24% and 17% of the overall tissue volume. Endothelial cells had 

the most distinct optical appearance with heavily stained elongate-shaped nuclei. It 

was more ambiguous telling apart neurons and glial cells as sizes and staining 

characteristics vary across their sub-types, ranging between few to tens of 

micrometres. The study resulted in estimations of cell density by volume. The cell 

densities quoted in the literature were adopted to proportionally calculate expected 

number of cells of each type within a pixel’s sampling area (area irradiated by the 

laser in a single pulse) of the rat brain MS image data as expressed in Table 6.8. For 

this MS image data, the field of view (FOV) was defined by the sampling volume at a 

spatial location to be 94.2×103 µm3 – i.e. a circular laser beam of 50 µm diameter was 

fired onto sample tissue section of 12 µm thick. 
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Table 6.8  Number of cells of main types within the sampling field of view 

Cell type Number of cells within a FOV(*) 

Neuron (cell body) 15.11 

Glia 11.02 

Endothelial 5.75 
* Values calculated proportionally from Davanlou and Smith (2004) where rat brain’s tissues in the 

cerebral cortex were examined. 

 

However, the dendrites and axons (myelinated) that connect one neuron to another 

can branch further away from the cell body. Therefore, whole neurons were not 

necessarily detected within a single pixel. 

 

 

6.3.7   Lipid Mapping on Brain Regions 

Bregma is a location where coronal and sagittal sutures which are main fibrous joints 

of the skull/cranium meet at right angle. It is used as a point of origin on the rat brain 

for referencing to which slice of the brain is referred in the rat brain atlas according 

Paxinos and Watson (1986). The coronal section of rat brain in this experiment was 

cut near the bregma. The colour coded image in Figure 6.14 shows regional 

segmentation as a result of 3 ICA component images, in very good agreement with 

the overlaid Paxinos and Watson functional brain atlas at the slice position -0.40 mm 

away from the bregma. Where the atlas drawn (Wistar rats, 270 - 310 g) was stated 

to have an approximate precision of 0.5 mm. Note that the brain size is a function of 

age and weight of the rat, however, the atlas scaling should be sufficiently consistent 

to compare with the acquired rat brain MALDI image (Wistar rat, 350 g). 
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A more generalised brain atlas, indicating only the main anatomical regions with 

different highlighted colours, is provided in Figure 6.15 (left). This specific coronal 

cross-section of the rat brain shows the obvious structures of (cerebral) cortex, 

corpus callosum, striatum, (lateral) ventricles, etc. The cortex is the outermost part 

of the brain section. It is separated into discrete layers seen as fringes as labelled in 

the generalised brain atlas in Figure 6.15 (left), due to the density (Skoglund et al., 

1996) length, size and arrangement of the myelinated nerve fibre that vary radially 

in the region (Toga, 2015). The ventricles are filled with the ‘cerebrospinal fluid’ (CSF) 

which also has pathways through the cranial cavity and spinal canal. Thus, biomarkers 

can be derived from compositional abnormalities in CSF that report inflammation, 

infection or disease in the central nervous system. External capsules are located next 

to the corpus callosum, separating it from the cortex. Internal capsules are found 

aligned beside the ventricles. The external and internal capsules are considered the 

efferent projection fibres which means fibres projected from cerebral cortex into 

other parts of the brain. Therefore, they are expected to have some biochemical 

correlation with both cortex and their surrounding areas. In addition to the normal 

structure, the stroke region is situated at the cortex of the right hemisphere of the 

brain, and is expected to contain differentiable composition compared to the normal 

tissue nearby. 

 

 

 

 

 

 

 

Figure 6.15  Colour coded component image with the generalised rat brain regions 

labelled (left), compared with microscopic anatomy (right; reproduced from: 

Paxinos and Watsons (2006)) 

 

Cerebral cortex     Corpus callosum     External capsule     Internal capsule 
Stroke region    Striatum     Lateral ventricle     Fringes in the cortex 
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Detailed anatomical structures in the composite component images are consistent 

with microscopic images in Figure 6.15 (right), especially for the fringes on the cortex 

and the granularity of fibre tissues within the striatum areas. They are seen more 

clearly in some component images. Examples are given in images corresponding to 

components 4 and 12 of Figure 6.6 which is for the 20-component model. Note that 

the missing area on the top right side of the cortex is due to a cutting artifact. (N.B. 

it clearly behaves differently to the infarct region in this analysis). 

Looking at grey-scale images created from individual components, the highlighted 

spatial regions that refer to some specific anatomical structures only appear in 

certain component(s). As in the 20-component model, a close component-by-

component investigation allows tissue segmentation along with information of lipid 

constituents. The component 3 and 12 display the segmentation of the white matter, 

whereas component 0, 4, 7 and 11 correspond to the grey matter. 

 

6.3.8   Model Validation 

Like all non-trivial analyses, the modelling approach demonstrated requires a level of 

quality control to ensure results are trustworthy. Data must be pre-processed to 

ensure statistical assumptions are met; an appropriate model order needs to be 

selected; and linear degeneracies inherent in initial model builds must be addressed. 

Failures in any of these areas can invalidate conclusions drawn from identified tissue 

phenotypes. Quality has been assessed through a combination of Bland-Altman 

analysis, goodness-of-fit testing and the checking of physical constraints upon 

possible spectra. The Bland-Altman analysis shows that pre-processed MALDI spectra 

exhibit Poisson sampling behaviour (see the plot in Figure 5.6 in Section 5.4.2). This 

is an important result, as it confirms that an LP-ICA approach is appropriate. LP-ICA 

relies heavily upon a Poisson sampling assumption, in both its Likelihood formulation 

and its error theory. The errors on peak heights given by Equation (6.1), for instance, 

is invalid for other distributions. Alternative linear modeling methods, such as PCA 

and conventional ICA algorithms, make Gaussian noise assumptions (as discussed in 

Section 3.4.2 of Chapter 3), rendering them less appropriate for this type of MALDI 
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data mining. In addition to the Bland-Altman results, the goodness-of-fit used during 

model selection shows that the overall signal distribution successfully describes the 

total spectra. On average, the sum of the extracted tissues matches the observed 

spectrum at each pixel to the level of the Poisson sampling noise, 𝜎𝑝. Whilst the 

overall model describes the total spectrum at each pixel, the individual model 

components require further validation. Inspection of isotopic ratios in Figure 6.13 

shows that at model order 20 the sub-spectra associated with all components are 

consistent with the physical constraints expected due to the naturally occurring 

12C:13C abundances. An ideal result should show a V-shaped distribution centred at 

zero, with a positive skew permitted as discussed in Section 6.3.5. Those components 

that fail these constraints at lower model orders give a negative skew due to poorly 

described spectra, such as component numbers 0, 2, 4 for the 12-component model 

and component numbers 0, 14 for the 16-component model. The improved 

behaviour with higher model order is consistent with the model selection curve in 

Figure 6.4, where 12- and 16-component models have not quite reached a goodness-

of-fit plateau, but the 20-component model has. For this reason, the 8-component 

model deemed a poor fit to the data. There appears to be a net negative bias for all 

model orders that can be explained by inappropriate thresholding of low signal 

during acquisition (a low-level machine setting) and possible biases introduced 

through pre-processing steps. Despite this, the isotope ratio test proves to be a good 

quality control tool, giving more confidence that a model order of 20 is sufficient for 

describing the rat brain data. Note that the 24-component model is considered too 

complex (see the component sub-spectra and associated component images in 

Figure B.3, Appendix B-1) and therefore some common biological features starts to 

split out, and overfitting starts to be an issue. 

 

6.3.9   Tissue Phenotyping 

The spatial resolution in MALDI-MSI dictates that within each pixel there will be a 

number of cells and probably a mixture of cell types. The functionality of each tissue 

type will reflect its cellular composition. The cell types will include neurons, microglia, 
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astrocytes and oligodendrites and their various forms. Some of these cells, especially 

the neurons have processes: the axons that can extend across many pixels and even 

form a tissue type in their own right: white matter. As tissues are formed from a finite 

number of these cellular building blocks, one might anticipate that this would be 

represented in the components extracted. Certainly this is true of white matter. 

The LP-ICA automatically extracts measurable correlations between biomolecules 

that are related to the different tissues, providing soft-segmentations of both wide-

spread tissues (see component images and associated spectra in Figure 6.16) and 

localised structures (see component images and associated spectra in Figure 6.17). 

Of particular interest is component 8 (of the 20-component model), that highlights 

the infarct region. In contrast to the LP-ICA 20-component model images, single ion 

images for the most significant 20 peaks are shown in the Appendix B-2 (Figure B.4). 

The integral of these peaks across all the data constitutes over 90% of the total 

quantity, so they may be expected to reveal important information in regions of 

interest – including the infarct. However, none clearly segment the infarct region, 

even though these top 20 peaks make up 39% of the integral of component 8. A 

comparison between images and spectra from different LP-ICA model orders shows 

that there are some components that are sufficiently unique as to be easily identified 

across multiple models. In particular, component 6, 12 and 14, respectively, of the 

12-, 16-, and 20-component models, are almost identical. A consistent spectrum of 

chemical noise is also identified in component 0, 0 and 15, respectively, of the 12-, 

16-, and 20-component models. In contrast, certain features only become clear at 

higher model orders. For example, the infarct region (see the associated image in 

Figure 6.17) is most distinct when 20 components are extracted.  
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Figure 6.16  LP-ICA component images showing 

some large-scale structures and associated spectra 
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Figure 6.17  LP-ICA component images showing 

some highly localised structures and associated spectra 

 

6.3.10   Compound Biomarker Discovery 

For a single ion image to act as a useful biomarker it must correlate consistently with 

a tissue or region of interest. It must also not appear in other regions, or only appear 

in negligible quantities elsewhere. Given that there are many common chemicals 

found in abundance, distributed throughout the brain and other organs, single-ions 

that fulfill this criteria can be a minimal contribution to total spectra and thus be 
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difficult to find. Once found, it is reasonable to assume that the biomolecule 

discovered plays an important function within the tissue or region of interest that 

differentiates it from others. But if the biomarker is expressed in very small amounts 

close to the noise-floor, or ‘in the grass’, then it may play only a minor role in local 

biological and metabolic processes. Furthermore, it may only be a byproduct of local 

processes or be correlated with, but not causally related to them. Whilst there are 

many biomolecules that are common to multiple regions making them unsuitable as 

individual biomarkers, they can appear together in unique ratios. A combination of 

fixed ratios of multiple single ion images can be harnessed as a useful compound 

biomarker. The LP-ICA components extracted during data mining can be interpreted 

as such biomarkers. This style of marker has many advantages over single ion images. 

Firstly, they make use of much more data, including more abundant biochemical with 

better signal-to-noise. Secondly, a compound biomarker gives a more 

comprehensive account of the regional chemical environment. The spectrum 

associated with component 8 of the 20-component model, for example, shows a 

number of biomolecules that appear in unique ratios (see relative m/z peak 

intensities of the mass spectrum at the bottom of Figure 6.17), making them 

candidates for use as naturally occurring biomarkers in stroke damaged tissue (see 

the image with a highlighted infarct region at the bottom of Figure 6.17). A more 

extensive study will be required to identify the extent of damage or possibly the 

ingress of a particular cell type, generation of an astrocytic scar or ingress of CSF. This 

may answer questions as to the function of this new tissue. 

 

6.4   Conclusion 

A MALDI image is a particularly specialised form of hyper-spectral image, as each 

pixel corresponds to many thousands of masses that can all be visualised 

simultaneously. Conventional approaches to reducing dimensionality are often 

inapplicable, as they typically assume independent, identically distributed (iid) 

Gaussian noise. LP-ICA modelling has been shown to effectively build low 

dimensional models of orders 12 to 20, whilst appropriately taking into account the 
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Poisson nature of spectra and variable per-pixel signal-to-noise. The capability of the 

method to predict errors associated with estimated quantities is useful for model 

validation. Images constructed from LP-ICA weighting quantities correspond well 

with biological structures and evidence from associated PMFs is consistent with the 

discovery of meaningful tissue phenotypes. The discovery of a model component 

highly correlated with stroke damaged tissue demonstrates the potential for the 

method to be used in pathology. Through data mining, a new method for potential 

biomarker discovery has been shown, along with detailed biomolecule correlation 

analysis and spatial mapping validated using well-understood rat brain data. The 

success provides confidence that the method may be applied in future work to less 

well-understood images, including heterogeneous tumours. 
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Chapter 7  

Summary 

 
This final chapter summarises all the main findings of this thesis. Starting from the 

knowledge that MALDI is a technique for biomolecular analysis widely used in many 

research fields and industries but is poor at quantitation. The journey through this 

PhD study was therefore seeking an alternative data analysis approach to quantify 

MALDI-MS data both accurately and automatically. The experiments were designed 

to find suitable solutions such that the aims and objectives of the thesis as outlined 

in Section 1.2 of Chapter 1, were achieved. The detailed background in Chapter 2 

explains the various processes, both instrumental and ionisation mechanisms, that 

affect signal-to-noise in the resultant MALDI-MS spectra. The optimised parameters 

in preparing samples for analysis and acquiring the mass spectral data with the 

available instruments were described in Chapter 4. Chapter 2 also discusses the use 

of MALDI-MS in lipidomics applications (especially the imaging aspect), which is 

relevant to the samples used in Chapters 5 and 6. Attempts to apply computational 

or multivariate analysis techniques to mass spectral data are discussed in Chapter 3, 

which is then followed by the description of the preferred analysis method, namely 

linear Poisson independent component analysis (LP-ICA), justified by the statistical 

tests performed on the MALDI data (see the plot in Figure 5.6, Section 5.4.2 for Bland-

Altman analysis). The suitability of the method compared to other methods that have 

been used to analyse MALDI-MS imaging data is discussed thoroughly in Section 

6.1.3. 
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In what follows, the overall conclusions to the thesis will be summarised. This 

discussion demonstrates the novelty of the work, including the achievements made 

with the current experimental/analysis approach, and any limitations that have been 

experienced. Finally, suggestions for future work are provided. 

 

7.1   Overall Conclusions 

For every MALDI-MS acquisition, the capabilities of the instrumentation and the 

important parameters must be identified and assessed for optimal performance, and 

are kept consistent throughout acquisition of the data set. A number of parameters 

e.g. laser power, number of laser shots per spectrum, crystal sizes and homogeneity 

of the prepared sample, affect signal-to-noise ratio and repeatability which are 

particularly important in terms of getting quantitative analysis. Chapter 4 suggested 

that a pre-mixed sample-matrix method is the most appropriate way to prepare 

discrete MALDI samples so that the repeatability is maximised. 

This PhD project has developed an analysis method which is capable of relative 

quantification of underlying biological sub-samples within mixtures for discrete 

samples, and within spatially located tissues for imaging tissue samples. This new 

analysis approach is well-suited to the properties of MALDI mass spectra, based upon 

an independent component analysis derived for Poisson sampled data – i.e. LP-ICA 

as discussed in Section 3.4.5. 

In chapter 5, the proposed analysis method was tested for validation. Lipid-rich 

binary mixtures of cow’s and goat’s milk, lamb brain and liver, and also lamb brain 

white and grey matter were made, and used as examples of complex biological 

mixtures. These allow measurements of sample proportion and error predictions 

using LP-ICA to be compared to a known “ground truth”. LP-ICA improved 

quantitative accuracy by up to a factor of 2 for the measurement of these biological 

samples, when compared to a conventional approach using only single peak ratios. 

With the LP-ICA, the variations within MALDI mass spectra can be extracted in the 



264 
 

form of sub-spectra, which can be linearly combined to describe mass spectral 

information of the underlying samples with a reduced set of parameters and lower 

dimensionality. The results has validated the use of LP-ICA in MALDI-MS data and 

imply that it can be applicable for larger scale analysis of real-world MALDI-MS data 

– i.e. imaging.  

The final analysis was the application of the LP-ICA method to data mine a MALDI-

MS image data set which is built up from thousands of mass spectra at an array of 

pixel locations. Efficiently extracting the information contained within a large and 

complex image data is more challenging than the previous binary mixture examples. 

In Chapter 6, the LP-ICA was performed on a MALDI-MS image of a post-ischemic 

stroke rat brain tissue cross-section. The results demonstrate an unsupervised 

extraction of tissue phenotypes, and provide estimates of tissue quantities and 

biochemical (i.e. lipid) distributions. Automated probabilistic segmentations reveal 

anatomical structures and their associated mass spectra, which are data-driven, 

requiring no human annotation or use of brain atlases. Results also include the 

automatic identification of infarct region and potential associated biomarkers. A 

range of LP-ICA models of different model order are assessed, with resulting 

independent components being validated against predicted biological and physical 

constraints, e.g. known lipids associated with tissues and patterns of adjacent peaks 

driven by isotopic differences or sodium concentrations. 

 

7.2   Novelty of the Work 

Simple analyses have been limited to the use of a small number of mass peaks, via 

peak ratios, which is known to be inefficient. Most of other peaks have high levels of 

uncontrolled variability which is difficult to address using a single peak, and therefore 

large volumes of information are left unused with this approach. Conventional PCA 

and ICA methods have also been applied, which extract correlations between any 

number of peaks, but these can be argued making inappropriate assumptions 

regarding signal sampling noise, i.e. that it is both uniform and Gaussian. The LP-ICA 
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method successfully models underlying variability within a set of mass spectra, 

permitting information in any number of peaks to be included in measurement 

estimation. 

 

7.2.1   Achievements 

The statistical behaviour of the MALDI-MS data was shown to fit the assumptions 

made for the LP-ICA modelling method. Firstly, the raw spectra were pre-processed 

using the in-house algorithms listed in Section 3.3, assuming that Gaussian noise is 

dominant in the background, 𝜎𝑔. The peak detected format of the spectra were 

analysed using the LP-ICA, and the distribution of the residuals of the model fit 

confirms that the Poisson noise of sampling process, 𝜎𝑝 was an appropriate 

assumption. The quantitation using the LP-ICA method resulted in doubled 

measurement accuracy for the binary mixture experiments. The ratio between 

measured and predicted errors of modelling ranges 1.4 - 1.6 (see the Pull distribution 

histograms in Figure 5.10, Section 5.4.2), meaning that most of the variability within 

the data was successfully modelled. The automation of the method and ability of 

making suitable error predictions, have made LP-ICA superior to the conventional 

PCA, ICA, or single peak analysis. The modelled spectral components are unique and 

refer to the correlated sets of molecular signals in the spectral data set. This provides 

meaningful interpretations of what are contained in the underlying samples without 

prior knowledge for both discrete and imaging data. 

Tissue-specific mass spectral ‘fingerprints’ are commonly acquired by either 

manually selecting regions of interest from an MS image, or through the mechanical 

separation of tissues. Image region selection can be aided by the use of brain atlases, 

but this method relies upon subjective expert judgments and can be limited to 

coarsely shaped annotations designed to avoid contamination from neighboring 

material. The alternative can involve challenging micro-dissections that necessarily 

removes tissue from its spatial context. This can increase the complexity of an 

analysis if both contextual imaging information and tissue-specific spectra are 
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needed. For certain classes of problem neither of these approaches may be 

applicable. Atlases may be of limited use in pathological cases that do not follow 

normal physiology. This includes stochastic structures, such as heterogeneous 

tumors. Similarly, if the effects of drugs or injury are sought, image annotations or 

dissections may be impractical due to a lack of knowledge of the spatial distribution 

of effected regions – indeed, identifying such spatial distributions may be the 

objective of a study. LP-ICA method for automated tissue phenotyping provides many 

advantages over these conventional approaches. Primarily, it is a tool that removes 

human subjectivity from tissue analyses, thus resulting in more objective data-driven 

outputs. The model selection stage can be used to determine the complexity of the 

data by identifying how many linear components exist within the spectra. Assuming 

that non-linearities and chemical gradients are controlled, this number will be 

indicative of the number of (detectable) unique tissue classes present. The LP-ICA 

component images present the fractional tissue content of each pixel. Pixels at tissue 

boundaries are therefore not forced to adopt hard labels and not subject to false-

positive or false-negative classifications that can otherwise contaminate spectra. This 

approach therefore provides complete image coverage via ‘soft’ segmentations that 

naturally address partial volume effects. Tissue-specific spectra can be extracted at 

every location, in images of varying complexity, with no need for atlases or 

dissections. 

 

7.2.2   Limitations 

Every attempt at modelling results in estimate values with some uncertainties. It is 

almost impossible to capture every process present in the data. The limitations for 

the current LP-ICA approach are noted here. 

 Due to the limited computational efficiency, the data sizes had to be reduced 

by re-binning the peaks so that the analysis was done on a reasonable time 

scale. This reduction in mass resolution benefits by evening out the 

correlation between adjacent bins, but it can hide some finer information 
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between main peaks – i.e. smaller peaks might be merged into or split 

between their neighbour peaks. 

 Some factors might partly destroy the linearity in the data assumptions made 

for the LP-ICA modelling method. In reality, the combination of other 

variability that builds up into signals e.g. the suppression of some ions, 

(unintended) fragmentations which occur effectively at a random rate, would 

affect the noise characteristics. However, this is relatively small compared 

with the signal variability due to the Poisson sampling process, 𝜎𝑝. In imaging, 

this problem will become important only if the effects do not occur globally. 

 Where a known ground truth does not exist for the imaging data, the ability 

to test for measurement errors is limited. Although, they may be of 

quantitative value. 

 

7.3   Future Work 

As was demonstrated in the binary mixture analysis in Chapter 5, predicted errors 

can also be determined for each pixel (each spectrum) of the component images. 

This allows the determination of the noise floor in the processed images, depending 

on the signal generators. However, there is no definition of ground truth for real-

world MALDI-MS images; therefore, measurement accuracy is difficult to determine. 

Using a simulated sample would be one of the ways to create a reliable ground truth 

for the analysis. It is certainly not a simple task in imaging, considering the method 

and amount of data taken compared with the non-imaging binary mixture approach.  

A suggestion for the future work would therefore be growing cells (of different types 

that are contained in an interested organ) in cultures, mixing them in varied 

proportions, and then using methods such as inkjet printing to produce a simulated 

sample. Biological materials extracted from separated parts of an organ or cell 

mixtures can be 3-D printed into a model (Ma et al., 2018) with known spatial and 

chemical distribution for subsequent analysis. This method has an advantage of 

having full knowledge of input materials (ground truth). However, there is lack of 
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control over interactions which might occur during the processes after mixing 

biological materials. This limitation might be overcome by acquiring mass 

spectrometry data of these mixtures separately prior to forming a simulated sample 

for comparison. Note that this problem could also exist in a real-world sample 

environment where every tissue part naturally contains mixtures of various 

cells/biochemicals as well (probably much more variety than simulated samples). 

These simulated samples could help with understanding of the associated spectral 

characteristics, the sources of background noise, and the appropriateness of 

background subtraction algorithms in pre-processing or the relevance of the 

background components in LP-ICA. The validity of the LP-ICA modelling method could 

then be systematically tested. Primarily, these models would combine known 

biological components and LP-ICA would be expected to re-extract these from the 

mixture. 

In the binary mixture analysis, a weighted combination of sub-spectra was needed to 

describe a sample class. In contrast, single spectral components were used to explain 

tissue types in the rat brain imaging analysis and there was evidence (based on the 

error correlation between components, see the plot in Figure 6.8, explained in 

Section 6.3.2 and segmentation seen in component images) that single sub-spectra 

represent unique phenotypes for specific biological tissues. For completeness the 

same criteria that were applied to the binary mixture experiments, should be applied 

in the image analysis. The solution requires a mimic ground truth that could be 

achieved through the use of Entropy and Mutual Information concepts (Bollenbeck 

et al., 2009). These can determine the information content within the image created 

from weighted component combinations compared to pixel intensities in an 

independent target image – e.g. a single ion image, an immunohistochemistry image, 

etc. This could lead to a model refinement, when there is a need for multiple 

component images to be added together, for a more complete interpretation of the 

underlying tissues. 

A number of methods to extend the quantitative abilities of LP-ICA could be assessed. 

The current LP-ICA provides an ‘absolute’ measure of the ion counts recorded across 

the mass spectrum corresponding to each of the components. Alternatively, it can 
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be viewed as a ‘relative’ quantitation of the underlying sample quantities – i.e. it 

quantifies the ratio of tissue sub-types contained in the tissue section expressed in 

terms of the spectral components that are themselves comprised of mixtures of 

underlying biochemicals. This enables sample to sample comparison, or between-

pixel measurements, in discrete and imaging samples, respectively. Separate steps 

are required to quantify the things contained in tissue – i.e. to turn LP-ICA into an 

imaging MS sample quantitation tool (as well as the binary mixtures in Chapter 5). 

This is a primary step toward the absolute quantitation of samples. This will require 

calibration with known standards. An internal standard of known concentration can 

be added evenly across the sample surface (e.g. by spraying along with the matrix 

solution). This would provide the calibration factor for the extracted components in 

the absolute sense – i.e. as an approach to measuring the amount of a particular 

biochemical in the sample. Once established, the calibration factor could then be 

applied to a data set of same tissue type under the same conditions but without the 

internal standard. If series of standards are applied to the imaging sample, LP-ICA 

should be able to extract a component corresponding to these standard molecules. 

Alternatively, peaks associated with matrix could potentially be used as calibration 

standards. However, they must be very carefully selected as they are expected to be 

quite unstable. This is because matrix is highly volatile, forms clusters that 

subsequently fragment and sometimes bind with some other ions creating random 

m/z peaks in a spectrum. 

The mass spectral range used in this work was limited for the sake of computational 

speed during development of the methods. It would be interesting to explore the use 

of a wider mass range to cover a greater number of lipid species and determine 

associated advantages in terms of overall signal to noise and the number of extracted 

components. The method developed can also be applied to analyse other classes of 

molecules, e.g. peptides, proteins, where appropriate for the sample of interest. A 

LP-ICA component (sub-spectrum) identifies expected ratios between m/z peaks 

from the associated sub-tissues which is an approach to characterising tissue types. 

Identification of individual m/z peaks within each component (and therefore within 

each tissue type) can then be checked with MS/MS.  
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Component images, as a result of the analysis, give soft segmentation (i.e. the 

distribution) of the underlying sub-tissues, which could contain useful clinical 

information (with more biologically interested and informative details than using 

hard segmentation techniques with definite class labelling). Applications to 

pathological problems such as identification of tumour sub-types and metabolically 

distinct regions within tumours are therefore promising. A lipid atlas of the rat brain, 

which was beyond the scope of this thesis, could potentially be produced. 

Identification of lipids in specific tissue types corresponding to particular anatomical 

regions requires collaboration with a range of expertise in biology, medicine and in 

particular, lipidomics. This will be an extremely valuable resource for the 

interpretation of MALDI-MS tissue images.  

A comparison between the LP-ICA method and some of the other related approaches 

discussed in Chapter 6 could also be considered for future work – i.e. to assess the 

power of LP-ICA relative to the other methods in a range of applications, for 

quantitation, segmentation and classification. However, as already discussed in 

Section 6.1.3, the LP-ICA produces an error model (which is not available with other 

approaches) along with the quantitative analysis using appropriate statistical 

assumptions. The LP-ICA error model, which can be computed from Equation (3.10), 

will allow error bars to be associated with all measurements (every pixel in an MS 

imaging data set will have error bars determined on the quantities associated with 

the extracted components and also on each individual ion count estimate on m/z 

peak). Therefore, a statistical hypothesis test can be constructed using the 

uncertainty information from LP-ICA to determine confidence when analysing real-

world MALDI-MSI data. 

It is almost always possible to improve computational efficiency of every algorithm 

including the LP-ICA. However, this requires effort and whether or not it is worth 

doing depends on the objective of the work. The software for this analysis algorithm 

was written in C. The structure of the algorithm at the moment is not necessary the 

only way to obtain correct values. There is likely a better way to achieve the same 

solution using a shorter computational pathway. In order to improve efficiency, it 

requires a more in-depth analysis of the algorithm, for example, seeking a better 
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update function, initialising independent components closer to optimum points, etc. 

Statistical validity was the main aim for this work. Therefore, it was most important 

to make sure the method worked properly and obtained correct answers to the 

question of the intended analysis, before considering speeding up the algorithm. 

Alternative ways of speeding up the calculation is to increase the processing power. 

This can be done with the help of hardware, using a faster computer and parallel 

calculations. For example, the computer used to run the present analysis has 6-

physical (12-virtual) core processors. However, only one core processor was used, 

which took a few days (i.e. 3.5 days on average) to complete 5 attempts of running 

repeating analyses of the same model (equivalent to less than a day for individual 

attempts). When all the virtual core processors are used in parallel, it can potentially 

run 12 times faster immediately (reducing computation time to approximately 1.5 

hours per attempt). Even with the current efficiency of this approach, the work 

involved running analyses for multiple models simultaneously, and resulted in 

multiple models (not only one model) built in a few days. Combining all of these 

approaches of boosting the computational efficiency and processing power will 

result in significantly higher analysis speed. 

 

In summary, the issues to be addressed in the future work include: 

 Working out how to compute tissue quantities from spectral quantities, e.g. 

using a calibration against a reference set of internal standards. 

 Creating a ground truth for MALDI-MS imaging to test for LP-ICA modelling 

efficiency (e.g. using simulated samples), and observing noise distribution on 

the extracted component images. 

 Applying the concept of mutual information to an independent target image 

to find a suitable weighted combination of component images necessary to 

describe a tissue type. 

 Including a wider mass range of spectra into the analysis. 

 Confirming ratios of m/z peaks in ICA components that relate to tissue 

biochemistry. Note that unique m/z peaks can additionally be confirmed and 

distinguished through MS/MS. 
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 Extending applications to help answer biochemical questions and identify 

region of interest, for example, tissue pathology. 

 Producing a lipid atlas of the rat brain. 

 Performing a statistical hypothesis test on an analysis of MS imaging data 

using the error model available in LP-ICA. 

 Systematic testing of LP-ICA against other approaches for data analysis. 

 Improving computational efficiency. 
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Appendix A: Extracted ICA Component 

Spectra of Binary Mixture Data Sets 

Extracted ICA components (sub-spectra) for milk, lamb brain:liver and white:grey 

matter data sets are presented in Figures A.1, A.2 and A.3, respectively. They are in 

the form of probability mass functions which describe underlying signal generators 

within the mass spectra. Each component is stated as having characteristics of either 

of the underlying sample classes, e.g. of brain or liver for the brain:liver data set, etc., 

or contamination. 

 

  
Figure A.1  Extracted ICA component spectra for the milk data set (Part 1 of 3) 
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Figure A.1  Extracted ICA component spectra for the milk data set (Part 2 of 3) 
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Figure A.1  Extracted ICA component spectra for the milk data set (Part 3 of 3) 
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Figure A.2  Extracted ICA component spectra for the lamb brain:liver data set  

(Part 1 of 4) 
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Figure A.2  Extracted ICA component spectra for the lamb brain:liver data set  

(Part 2 of 4) 
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Figure A.2  Extracted ICA component spectra for the lamb brain:liver data set  

(Part 3 of 4) 
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Figure A.2  Extracted ICA component spectra for the lamb brain:liver data set  

(Part 4 of 4) 
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Figure A.3  Extracted ICA component spectra for the white:grey matter data set 

(Part 1 of 4) 
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Figure A.3  Extracted ICA component spectra for the white:grey matter data set 

(Part 2 of 4) 
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Figure A.3  Extracted ICA component spectra for the white:grey matter data set 

(Part 3 of 4) 
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Figure A.3  Extracted ICA component spectra for the white:grey matter data set 

(Part 4 of 4) 
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Appendix B: Extracted ICA Components vs. 

Single Ion Distributions of the Image Data Set 
 

B-1   Extracted ICA Components of the Image 

Data Set 

Extracted ICA components (sub-spectra) for the rat brain MALDI-MS images of 8-, 16- 

and 24-component models are presented in Figures B.1, B.2 and B.3, respectively. 

The corresponding component distribution images are also shown at a corner of each 

component spectrum, plotted with a normalisation to the integral over all the 

components in the given model. The grey scale at the bottom of each image 

represents a relative weighting each component has to the total signal quantity. The 

10 major peaks of each component spectrum are marked with green arrows, with 

their m/z values listed in the figures. 
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Figure B.1  Extracted ICA component spectra and images for the 8-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 1 of 3) 
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Figure B.1  Extracted ICA component spectra and images for the 8-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 2 of 3)  
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Figure B.1  Extracted ICA component spectra and images for the 8-component 
model of the rat brain MALDI image data with 10 major peaks marked with green 

arrows – their m/z values are listed in ascending order (Part 3 of 3) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 1 of 6) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 2 of 6) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 3 of 6) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 4 of 6) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 5 of 6) 
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Figure B.2  Extracted ICA component spectra and images for the 16-component 
model of the rat brain MALDI image data with 10 major peaks marked with green 

arrows – their m/z values are listed in ascending order (Part 6 of 6) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 1 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 2 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 3 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 4 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 5 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 6 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 7 of 8) 
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Figure B.3  Extracted ICA component spectra and images for the 24-component 

model of the rat brain MALDI image data with 10 major peaks marked with green 
arrows – their m/z values are listed in ascending order (Part 8 of 8) 
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B-2   Single Ion Images 

The single ion images created for the 20 largest peaks as a result of the peak detected 

mass spectra of the rat brain MALDI image data set are provided in Figure B.4. 
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Figure B.4  Single ion images of the rat brain MALDI image data for the top 20 

strongest peaks detected – the dynamic range has been set to maximise the 

contrast of each image where the darkest pixel has the highest intensity value 

 

 


