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Chapter 1

Introduction

In functional data, an interest in classification arises in many fields of applications. In

supervised classification for functional data, the goal is to construct a classifier that predicts

the group label for each of the observed random curves. Since the beginning of the 21st

century the problem of classification for functional data has been studied from a multivariate

perspective (Baillo and Cuevas, 2008). Many classification techniques have been adapted

from the multivariate case to functional data and only a few of them are developed exclusively

for functional data.

In real life, large problems fall into the framework of supervised classification. In such

problems, the aim is to construct a function or decision rule that assigns new objects to

one and only one of a pre-specified set of classes or groups, based on some descriptive

information. The rule is usually constructed from a training set: data for which the true class

labels are known. From the training set, we usually extract the information which is relevant

to distinguish between the classes regarding the given measurements. The name supervised

classification comes from the fact that the classes are known for the members of this initial

data set, as if a supervisor has provided these class labels in advance (Hand et al., 2006). Once

the decision rule is constructed, we are interested in evaluating the classification performance.

For such purposes, different methods are proposed. This thesis studies the challenges in

supervised classification for functional data and proposes two main contributions.

The 1st contribution, described in Chapters 3 and 4, is based on using nearest neighbours

methodology which refers to a family of techniques based on distances from observed

functions to their kth nearest amongst the sample cases. Their use in statistics dates back to

the original report by Fix and Hodges Jr (1951) where it was mainly used for the k-nearest

20
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neighbour classifier and density estimator. We study the k-RNN as an alternative of the k-NN

for functional data and propose a first classifier based on ranks of signed depth. The proposed

classifier uses the simplicity of the k-RNN making it efficient for practical implementation.

Along with the signed depth, we propose a classifier based on generalized additive model. By

introducing a second covariate to the study of the classifier, we investigate the performance

of a logistic generalized additive model using the signed depth and the distance to the mode.

This classifier is extended to more than two classes, and we compare its performance with

different classifiers using a simulation study.

Another characteristic we investigate in this thesis is the performance of the k-RNN in

the imbalanced case. This is where the proportion of data belonging to each class is not

evenly distributed. Such scenarios appear more frequently in the classification problem. In

the imbalanced case, the data is split into a minority and majority class and the minority class

usually represents the most important concept to be learned. Usually, multiple problems arise

in the imbalanced case; one problem is the classification of boundary observations. Boundary

observations are observations near the classification borders. They are susceptible to being

misclassified and thus are more important for classification. Using oversampling techniques,

we propose a new method to strengthen observations that are near the borders and generate

new observations by using a linear combination of the observations at the border and the

observations closest in depth.

The 2nd contribution is described in Chapter 5 and deals with a Bayesian classifier which

is based on log ratios of density estimates computed using functional principal component

scores. We propose a nonparametric adaptive density Bayesian classifier using log ratios

density estimates of functional principal component scores, based on different semimetrics

and a fixed dimension. We study some of the main properties of such a density estimator in a

finite dimensional space and by means of a simulation study; we investigate the performance

of the proposed classifier under two semimetrics: the semimetric based on principal com-

ponents scores and the semimetric based on partial least squares. Finally, we compare the

performance of the proposed classifier against different methods using simulated and real

datasets.

We begin by setting the scene for the thesis; Section 1.1 introduces the background

and terminology for functional data; Section 1.2 introduces the notation used; Section 1.3

introduces the major tools for functional data; Section 1.4 introduces the classification
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problem and discusses the optimality of a Bayesian classifier. Finally, Section 1.5 gives the

structure of the remaining chapters of this thesis.

1.1 Background and terminology for functional data

Within the field of functional data analysis, there exist two schools of thought based on how

to conceptualise functional data. On one hand, some authors believe that functional data

analysis can be considered as a smoothed version of multivariate data analysis and that it

expresses the analytical tools for multivariate analysis in the language of functional analysis.

On the other hand, the second line of development has been the statistical application of

nonparametric function estimation (Silverman, 1986; Wahba, 1990; Green and Silverman,

1993; Eubank, 1999). In both cases, the primary goal is to analyse the entire set of functional

observations.

This thesis follows a nonparametric approach using as few assumptions as possible. We

assume that our observations are continuous functions x1(t), . . . ,xn(t), for t ∈ T , T = [a,b],

which possess two main features (Ramsay, 2006):

Replication: Taking measurements on the same subject repeatedly over different functional

space (usually time).

Smoothness: The underlying curve has a certain degree of smoothness.

Functional data make use of different tools from multivariate statistics and dimension

reduction. Some of the common reduction techniques present in functional data are principal

component analysis (PCA) and partial least squares (PLS). PCA was one of the first methods

to be adapted to the functional case (Dauxois et al., 1982). We summarise the difference in

notation between principal component analysis and functional principal component analysis

as described in Table 1.1.
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Table 1.1: Difference in notation between the principal components in the multivariate and

functional case for a fixed dimension p.

PCA Functional PCA

Sample Space Rp A function space F

Parameter Space θ ∈ Rp Rp, or a function space

Variables Xi ∈ Rp Xi(t) ∈ F

Covariance Cov(Xi,X j) K(s, t) =Cov{X(s),X(t)}

Functional data deals with a parameter space which can be multivariate Rp, or a function

space. The research in this area is still very active and focuses mainly on two approaches: a

truly functional data approach and a multivariate approach.

When it is of interest to make inference about the parameter space (in Rp), the most

common approach is to project the data into a finite dimensional representation space. While,

in a functional space a common approach is to do inference in a Hilbert space.

A Hilbert space is a space which generalises the notion of Euclidean space by extending

the methods of vector algebra to high and infinite dimensional objects. An in-depth theory

of Hilbert space is developed in Akhiezer and Glazman (2013). In the functional case

the functions are infinite-dimensional objects in a L2[a,b] space, i.e., the set of all real

functions X(t) defined on T satisfying
∫ b

a X2(t)dt < ∞. The L2 space is a Hilbert space

with the inner product 〈X1(t),X2(t)〉=
∫ b

a X1(t) ·X2(t)dt for X1(t) and X2(t) and the equality

X1(t) = X2(t), ∀ t means

∫ b

a
(X1(t)−X2(t))2dt = 0.

The L2 space is sufficient to handle most procedures considered in this thesis.

A single curve X(t) represents a random function supported on an interval t ∈ T and x(t)

represents its observed value at point t. The mean of X(t) is µ(t) = E [X(t)]; the variance is

Var(X(t))< ∞ and the covariance operator between two functions X(s) and X(t), at points

s and t ∈ T is K(s, t) =Cov{X(s),X(t)}.

A functional dataset in a single sample can be defined as a collection of indepen-

dent and identically distributed (i.i.d.) random functions which we will represent by

{Xi(t), t ∈ T , i = 1, . . . ,n}. In practice, functional data are often observed at a grid of
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data points. In this thesis, we will assume that each sample curve is observed on a common

grid of data points (t1, t2, . . . , tM), which are equally-spaced in the time interval. If all the

sample functions are observed on t1, . . . , tM, then we have a discretised functional data set

represented by

{
xi(t j), i = 1, . . . ,n, j = 1, . . . ,M

}
.

1.2 Notation

We represent a univariate random variables in upper case, for example X and Y , and their

observed realisations are represented in lowercase, for example x and y or x1, . . . ,xn for

a sample of n observations of X . A multivariate random p-vector is represented by X =

(X1, . . .Xp) ∈ Rp, while an observed vector is represented by x = (x1, . . . ,xp). The trace or

sum of the diagonal elements of a square matrix A is written as tr(A). Given an observed

vector x= (x1, . . . ,xp), diag(x) represents the p× p diagonal matrix with ith diagonal element

xi.

The most common probability distributions like the Gaussian (normal) distribution and

the binomial distribution are denoted by N(µ,σ2) and B(n, p), respectively. Similarly, the

multivariate Gaussian distribution is written Np (µµµ,Σ). Where the dimension p is clear its

inclusion in the notation will be suppressed.

For multivariate supervised classification, we consider the observed pairs (x1,y1) , . . . ,(xn,yn)

and the categorical variable yi taking values in {0,1,2, . . . ,G−1} for G classes or groups

associated with the observations xi ∈ Rp and for some p ∈ N.

For functional data, we have the sample functions x1(t), . . . ,xn(t) where t = (t1, . . . , tM)

denotes the vector of M common time points in the interval [a,b] at which the sample

functions are observed. In supervised classification for functional data we consider the

observed pairs (x1(t),y1) , . . . ,(xn(t),yn). For the observed sample data which will be used

to estimate a classification rule we know the true value of each yi, i = 1, . . . ,n. Later we will

also denote the G classes or groups by Π0,Π1, . . . ,ΠG−1.
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1.3 Major Tools for Functional Data

To obtain uncorrelated, significant variables, several methods have been proposed. The most

popular is Principal Component Analysis (PCA), popularised by Hotelling (1933). In the

Hotelling (1933) approach, the variance of a linear combination of standardised variables is

maximised. However, a different approach is the one suggested by Pearson (1901), where low

rank approximations to the data matrix are fitted. In this section, we discuss how to formulate

the tools utilised in later chapters of the thesis. We mainly discuss the Mercer’s theorem

(Mercer, 1909) in the functional form which relates to the singular value decomposition

of the data matrix and implies that the Karhunen-Lòeve expansion or generalised Fourier

expansion of the random function X(t) is simply its representation in terms of the functional

principal component basis ψ j(t).

Mercer’s theorem (Mercer, 1909) Given a continuous symmetric non-negative definite

kernel, K, there exists an orthonormal basis ψ j(t) on a close interval T = [a,b] consisting of

eigenfunctions such that the eigenvalue sequences, θ j, is non-negative. The eigenfunctions

corresponding to non-zero eigenvalues are continuous on [a,b] and K can be represented as

K(s, t) =
∞

∑
j=1

θ jψ j(s)ψ
′
j(t), (1.1)

where the convergence is absolute and uniform.

Mercer’s theorem, implies that the Karhunen-Lòeve expansion or generalised Fourier

expansion of a random function X(t) is simply its representation in terms of the functional

principal component basis. More precisely, we can consider the spectral decomposition of

the variance covariance matrix be given by:

K(s, t) =Cov{X(s),X(t)}

=
∞

∑
j=1

θ jψ j(s)ψ j(t)

where θ1 ≥ . . . ≥ 0 are the eigenvalues, with their respective orthonormal eigenfunc-

tions ψ j(t) of K(s, t). We can represent each random function in the functional dataset

{Xi(t), i = 1, . . . ,n,} in terms of a linear combination of the orthonormal principal compo-

nents. More precisely we can write



CHAPTER 1. INTRODUCTION 26

Xi(t) =
∞

∑
j=1

Ξi jψ j(t) for i = 1, . . . ,n, (1.2)

where Ξi j, for j ≥ 1, i = 1, . . . ,n are the functional principal component scores defined

by

Ξi j = θ
−1/2
j

∫
T
(Xi(t)− X̄(t))ψ j(t) dt for i = 1, . . . ,n, j = 1,2, . . . . (1.3)

In practice, we consider a sample of functions x1(t), . . . ,xn(t) observed on a grid of points

t = (t1, . . . , tM). Thus, an estimator of the eigenvalues θ and the orthonormal eigenfunction

ψ j(t) are denoted by θ̂ and ψ̂ j(t) respectively. To find such estimators, in the functional case,

we follow one of the following approaches: the discretisation - interpolation approach, the

basis function expansion approach and the numerical quadrature approach. Such approaches

are explained in detail in Ramsay et al. (2009). Each method aims to approximate the

solutions of the functional eigen-equation:

∫
T

Ĉov(s, t)ψ(t)dt = θ jψ j(s), (1.4)

for positive eigenvalue/eigenfunction pairs,
(
θ j,ψ j(t)

)
and an estimator Ĉov(s, t) of the

covariance function. Mercer’s theorem for functional data, guarantee that there exists some

estimator of eigenvalues and orthonormal eigenfunctions, ψ̂ j(t), such that for all pair of

elements in s and t:

Ĉov{x(s),x(t)}= Ĉov(s, t)

=
1
n

n

∑
i=1
{xi(s)− x̄(s)}{xi(t)− x̄(t)}

=
M

∑
j=1

θ̂ jψ̂ j(s)ψ̂ j(t). (1.5)

Now, we can represent each case in the functional dataset {xi(t), i = 1, . . . ,n,} in terms

of a linear combination of the orthonormal principal component scores. More precisely, ψ̂ j(t)

corresponds to the estimated jth functional principal component (eigenfunction) calculated

from the sample and so we can write

xi(t) =
M

∑
j=1

Ξ̂i jψ̂ j(t) for i = 1, . . . ,n, (1.6)
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where Ξ̂i j, j = 1, . . . ,M; i= 1, . . . ,n are the functional principal component scores defined

by

Ξ̂i j = θ̂
−1/2
j

∫
T
(xi(t)− x̄(t))ψ̂ j(t) dt. (1.7)

Where the mean function, x̄(t), is estimated from the observed functional dataset and the

integral is usually evaluated using numerical integration methods.

1.4 Misclassification

The goal of this section is to discuss minimax solutions for the 0-1 loss function. We start by

exploring the decision rule based on the Bayes’ rule.

1.4.1 Decision rule based on Bayes’ rule

Let y1, . . . ,yn be the true population indicator, with values in {0,1}, for the observations

x1, . . . ,xn ∈ R. We will assume that we are working in the one dimension but this can be

extended to p > 1. Denote by π0 = P(x ∈Π0) the prior probability that a randomly selected

observation is in population Π0, and by π1 = P(x ∈Π1) the prior probability that a randomly

selected observation is in population Π1.

The posterior probability of Y = j given x, for j ∈ {0,1} can be calculated using Bayes’

theorem. More specifically,

P(Y = j | x) =
P(x in population Π j and x)

P(x)

=
P(x | x in population Π j)P(x ∈Π j)

P(x)
.

(1.8)

Where the denominator in equation (1.8) can be written as

P(x) = P(x | x in population Π0) ·π0 +P(x | x in population Π1) ·π1.

The Bayes’ rule assigns x to population Π0 if

P(x in population Π0 | x)> P(x in population Π1 | x) (1.9)
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and to population Π1 otherwise. Errors can happen two in different ways; we can have an

error if we decide to assign x to population Π0 but x ∈ Π1 or by assigning x to population

Π1 but x ∈ Π0, i.e., the probabilities of an error when classifying an observation x are

P(x ∈ Π0 | x) if we decide Π1 and P(x ∈ Π1 | x) if we decide Π0. Where the minimum

P(Error | x) be defined as min{P(x ∈Π0 | x),P(x ∈Π1 | x)}.

The average probability of an error is defined as

∫
∞

−∞

P(Error, x)dx =
∫

∞

−∞

P(Error | x) ·P(x)dx. (1.10)

Bayes’ rule minimises the average probability error and is optimum in that sense.

In a more general setting, we need a rule, C (·), which will assign x to either one of the

populations Π0 or Π1. This rule will divide the real line into two intervals or regionsR0 and

R1 such that R0∪R1 = R. Then the probability of an error can be written as

P(Error) = P(x ∈ R0 | x ∈Π1)+P(x ∈ R1 | x ∈Π0)

=
∫

R0

P(x,x ∈Π1)dx+
∫

R1

P(x,x ∈Π0)dx. (1.11)

We are free to decide the decision boundary between R0 and R1. To minimise P(Error) for a

given x we will assign x according to which is the smallest integrand in equation (1.11), i.e.,

if P(x,x ∈Π0)> P(x,x ∈Π1) we assign x to population Π0 as the error will be smallest or

similarly if

P(x | x ∈Π0) ·π0 > P(x | x ∈Π1) ·π1.

Suppose that we have estimates of the probability density for observations in two popula-

tions, such densities can be represented in Figure 1.1 where x̂ is a decision boundary.

Our decision rule will assign a new observation x∗ to the population Π0 if x∗ ∈ R0 and to

population Π1 if x∗ ∈ R1. For x < x̂ an error arises when we misclassify x as x in Π0 but it

belongs to population Π1. In this case, the overall error can be expressed in terms of the area

of the probability densities in Figure 1.1. More precisely,

P(x ∈ R0 | x ∈Π1) = Area A+Area B. (1.12)

For x > x̂, an error arises when we misclassify x as x in Π1 but it belongs to population

Π0 and in this case the overall error is
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R1 R1

P(x | x in population Π0)

P(x | x in population Π1)

A

B

C

x̂ x∗
x

Density

Figure 1.1: Decision Boundaries.

P(x ∈ R1 | x ∈Π0) = Area C. (1.13)

As we vary the location of x̂, the combined areas of A and C stay the same but area B varies.

Thus, the optimal choice for x̂ = xopt is where the two density curves cross, i.e., when

P(x0,x ∈Π0) = P(x,x ∈Π1), (1.14)

since Area B vanishes and the misclassification probabilities are as small as possible.

1.4.2 Using loss functions

Suppose now that we have an action α0 which assigns x to population Π0 and an action α1,

which assigns x to the population Π1. Suppose also that a loss (or cost) function L(·) is

available. The loss function states exactly how costly each action is, and is used to convert a

possible course of action determined by a probability into a decision. It also indicates the

losses involved when taking particular actions, e.g.,
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l00 = loss in assigning x to Π0 when x ∈Π0,

l01 = loss in assigning x to Π0 when x ∈Π1,

l11 = loss in assigning x to Π1 when x ∈Π1,

l10 = loss in assigning x to Π1 when x ∈Π0.

We can summarise the losses as shown in Table 1.2.

Table 1.2: Loss functions for different actions and true classes.

True Class

Class 0 Class 1

Action α0 l00 l01
Action α1 l10 l11

In this thesis we use the 0-1 loss function which assigns no loss to a correct decision and

a unit loss to any error. Under this loss, all errors are equally costly. The risk corresponding

to this loss function is the average probability of an error. For the two category problem, the

losses takes the specific values l00 = l11 = 0 and l10 = l01 = 1, respectively.

The expected loss (or class conditional risk) associated with taking action α0 is written as

combination of weighted probabilities

R (α0 | x) = l00 ·P(x ∈Π0 | x)+ l01 ·P(x ∈Π1 | x), (1.15)

and similarly, the expected loss associated with taking action α1, is given by

R (α1 | x) = l10 ·P(x ∈Π0 | x)+ l11 ·P(x ∈Π1 | x). (1.16)

Using the 0-1 loss function, we have that

R (α0 | x) = l01 ·P(x ∈Π1 | x) = P(x ∈Π1),

R (α1 | x) = l10 ·P(x ∈Π0 | x) = P(x ∈Π0).

We choose the action which minimises the conditional risk, i.e., assigning x to population

Π0 if R (α0 | x)< R (α1 | x) or to population Π1 otherwise.
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This can be written as

P(x | x ∈Π0)

P(x | x ∈Π1)
>

(l01− l11) ·π1

(l10− l00) ·π0

>
π1

π0
,

if l01 = l10 = 1. We now specifically make our action a function of x such that

α(x) =

Assign to Π0 if x ∈ R0.

Assign to Π1 if x ∈ R1.

We have divided R into R0∪R1 to denote the intervals for x leading to assigning x to

either population Π0 or Π1. The overall risk (OR ) is given by

OR =
∫
R

R(α(x) | x)P(x)dx

=
∫

R0

[l00P(x | x ∈Π0) ·π1 + l01P(x | x ∈Π1) ·π1]dx

+
∫

R1

[l10P(x | x ∈Π0) ·π0 + l11P(x | x ∈Π1) ·π0]dx. (1.17)

Therefore, under the 0-1 loss function, we can rewrite equation (1.17) as

OR =
∫

R0

P(x | x ∈Π1) ·π1dx+
∫

R1

P(x | x ∈Π0) ·π0dx

=
∫

R0

P(x,x ∈Π1)dx+
∫

R1

P(x,x ∈Π0)dx.

We have shown that to minimise the average probability of an error, which is equivalent

to the overall risk here, we choose the decision boundary to be the value of x that satisfies

P(x,x in Π1) = P(x,x in Π0). Good classifiers, minimise the maximum possible overall

risk.
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1.5 Thesis Structure

Chapter 2 describes in detail different simulation settings and techniques to simulate func-

tional data. Functional data can be seen as sample paths of a stochastic processes that vary

over a continuum. We explore the flexibility of the Gaussian process to generate different

functions and combine this with the kernel or covariance function. To set up our simulations,

we focus on the stationary covariance function. This type of covariance function is a flexible

covariance function that generates rough or smooth curves according to the combination of

parameters. A second method we explore to is the simulation method based on Fourier basis.

An advantage of this method is that we generate functions allowing the basis coefficients

to be chosen randomly from a Normal distribution with a decaying variance as the the

number of coefficients increases. This chapter also explains how we contaminate the data, by

introducing atypical observations. Finally, we introduce the real (balance and imbalanced)

datasets on which we based our simulations.

Chapter 3 starts by introducing the k-RNN as an alternative of the k-NN. We then propose

a first classifier based on signed depth. Using a running example, we explore different

features of the classifier including choosing the value of k and using different functional

depths. Motivated by the simplicity of the k-RNN classifier, we explore how the k-RNN

classifier can be interpreted in terms of conditional probabilities and as a moving average.

Utilising the fact that the k-RNN classifier obtains conditional probabilities that the signed

depth of the a curve belongs to a particular group, we construct point-wise confidence intervals

for the estimated probability that an observed signed depth corresponds to a particular group.

Using logistic regression, we follow a generalized additive model to estimate the predicted

probabilities in the k-RNN classifier based two covariates: the signed depth and the signed

distance to the mode. At the end of this chapter some simulations with artificial and real

datasets are shown to demonstrate the performance.

Chapter 4 deals with the problem of imbalanced observations. In the imbalanced case,

the number of observations in the majority class exceeds the number of observations in the

minority class, thus different problems arise. We explore boundary observations in terms

of the nature of the classification rule and propose a method to strengthen the minority

observations in the boundary. Our method is based on sampling techniques involving the

functional principal component scores. We generate new curves by considering a linear
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combination of the observations in the border and the observations closest in depth. We apply

our proposed methodology to simulated and real datasets.

In Chapter 5 we propose a novel nonparametric adaptive density Bayesian classifier using

log ratios of density estimates computed using functional principal component scores. It is

based on different semimetrics and linked to a particular dimension. The adaptive kernel

density estimation plays an important role in high dimensions. We study some of the main

properties of such a density estimator with selected particular dimensions. By means of

a simulation study, we investigate the performance of the proposed classifier under two

semimetrics. The first semimetric we study is the semimetric based on principal components

scores. The second semimetric is the semimetric based on partial least squares. For the

adaptive approach, we also investigated the behaviour of the classification under different

norms. This approach was applied to real and simulated datasets.



Chapter 2

Some suggested methods for simulating

functional data

Simulations can have different aims and play an important role in statistics (Tocher, 1967).

In functional data, simulations are usually used to make inference about the distribution of an

estimator or to estimate the variability associated with a descriptive statistic to construct its

confidence interval. In supervised classification, simulations of functional data are used to

illustrate the performance of the classifier under different scenarios.

The aim of this chapter is to describe in detail different simulation settings and techniques

to simulate functional data. Such techniques provide the basis to carry out simulations for

the proposed methods in the later chapters. We describe two different approaches to simulate

functional data. The first approach is motivated by Gaussian Processes, a continuous-time

process that can generate different functions, forced to pass through specific points and in

which the degree of smoothness can be controlled by the covariance function. The second

approach is the motivated by Fourier basis. We choose the Fourier basis coefficients to be

independent and normally distributed such that the contribution tend to decay as the number

of basis increase.

The methods of generating samples of functional data following a given structure will

be extended to including sample curves which are atypical from the main body of the data.

Firstly, such curves can be specified to differ with respect to magnitude if such a curve is

distant from the mean curve of the underlying process. Secondly, we can specify curves

which follow a different pattern or shape from the majority. For example, such a curve could

be tending in an opposite direction to the rest or be very irregular when the others are quite

34
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smooth. We will look to contaminate samples of regular function with sub-samples of such

atypical observations to be able to create a more demanding scenario with which to evaluate

our classification methodology. We will use the abbreviated form atypicals to refer to such

simulated curves later in the thesis.

We begin in Section 2.1 by providing a brief description of the methods considered

for simulating functional data using a Gaussian Process and the influence of covariance

functions to generate irregular curves. Section 2.2 discuss the role of Fourier basis functions

in simulating functional data. Section 2.3 explains in detail different models to contaminated

the data. Section 2.4 discusses the real datasets utilised in this thesis and the creation of

imbalanced real datasets. Finally, in Section 2.5 we state some conclusions.

2.1 Simulation using a Gaussian Process (GP)

Functional data can be thought of as sample paths of a stochastic process with a mean

and covariance function that varies over a continuum. This approach uses the covariance

function of a stochastic process as the fundamental tool for assessing the variability. A very

important class of continuous-time processes is that of Gaussian Processes which arise in

many applications. The flexibility of the Gaussian Process allows us to generate different

functions and forces us to pass through some specific points. For a more detailed introduction

on Gaussian Processes see Rasmussen (2006), Stein (2012) and Cressie (1993).

A Gaussian Process, {X(t)}t∈T indexed by a set T (often time), is a collection of random

variables such that the joint distribution of any finite number of them follows a Normal

distribution.

More formally we may say that a stochastic process in continuous time is Gaussian if and

only if, for every finite set of indices t = (t1, . . . , tM) ∈ T , the joint distribution of the random

variables X(t1), . . . ,X(tM) is multivariate normal with mean vector (m(X(t1)), . . . ,m(X(tM)))

and covariance function

Cov(X(s),X(t)) = E [(X(s)−m(s))(X(t)−m(t))] ∀ s, t,∈ T. (2.1)

For t = (t1, . . . , tM) the random variable X is observed at a finite set of time points, the

covariance matrix for X(t) can be written as
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Cov(X(t)) =


Cov(X(t1),X(t1)) Cov(X(t1),X(t2)) . . . Cov(X(t1),X(tM))

Cov(X(t2),X(t1)) Cov(X(t2),X(t2)) . . . Cov(X(t2),X(tM))
...

... . . . ...

Cov(X(tM),X(t1)) Cov(X(tM),X(t2)) . . . Cov(X(tM),X(tM))

 .

Therefore, a Gaussian Process, is specified by its mean function E [X(t)] = m(t) and

the covariance function Cov(X(s),X(t)). The first two moments of a Gaussian Process are

sufficient for a complete characterisation of the process. It can be convenient to assume that

the mean function is simply zero everywhere. The covariance function Cov(X(s),X(t)) can

be more simply denoted by K(s, t). A Gaussian Process is stationary in the mean if E [X(t)] =

m(t) = µ(t) and constant ∀ t. It is said to be second order stationary if Cov(X(s),X(t)) =

K(s, t) only depends on the value of |s− t|.

In this thesis, we write a Gaussian Process as GP (m(t),Cov(X(s),X(t))). The covariance

function is a crucial component in a Gaussian Process. It encodes the degree of similarity

between X(t) and X(s) as a function of s and t and importantly, the covariance function must

be positive semi-definite.

There are many possible choices of the covariance function, and we can specify a wide

range of models just by specifying the covariance function of the Gaussian Process. To begin

understanding the types of curves that we can express by using a Gaussian Process, we start

by briefly describing the most commonly used covariance functions in the literature. For

more types of covariance functions see Rasmussen (2006).

The Squared Exponential Covariance Function The Squared Exponential Covariance

Function has the form

Cov(X(s),X(t)) = σ
2 exp

(
−(X(s)−X(t))2

2l2

)
. (2.2)

This covariance function has two parameters which specify the shape of the covariance

function. The first parameter is the length-scale l, which describes how smooth the function

is. Small length-scale value generates roughness functions, while large values generates

smooth functions that change slowly. The second parameter, σ2, is a scaling factor and can

be interpreted as signal variance, i.e., Var(X(t)) = σ2, a constant ∀ t. A small value of σ2
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characterises functions tend to stay close to their mean value, over the interval T , while

larger values allow for more variation.

The Periodic Covariance Function The Periodic covariance function is a function which

repeats itself and has the form

Cov(X(s),X(t)) = σ
2 exp

(
−2sin2(π×|X(s)−X(t)|/P)

l2

)
. (2.3)

The period P simply determines the distance between repetitions of the function. While

the length scale l determines the smoothness of the function. As in the square exponential

covariance function, small length scale value means that the function values can change

quickly, while large values have the opposite effect.

The Locally Periodic Covariance Function The form of the Locally Periodic Covariance

Function is given by

Cov(X(s),X(t)) = σ
2 exp

(
−2sin2(π×|X(s)−X(t)|/P)

l2

)
×

exp
(
−(X(s)−X(t))2

2l2

)
,

(2.4)

where the interpretation of the parameters is the same as the Squared Exponential Covariance

and the Periodic Covariance Function.

The Linear Covariance Function The Linear Covariance Function is one of the simpler

linear covariance functions. Its form is given by

Cov(X(s),X(t)) = σ
2
a +σ

2
b(X(t)− c)(X(s)− c), (2.5)

where σ2
a and σ2

b are both positive and c is a finite constant. A restriction on the parameters

we need is that

σ2
a

σ2
b
> (X(t)− c)2,

in order that Var(X(t))> 0,∀ t.
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The Stationary Covariance Function The Stationary Covariance Function has the form

Cov(X(s),X(t)) = κ · exp{−c |s− t|µ} , (2.6)

with the hyper-parameters c, κ and µ that control the roughness of the curves. Increasing µ

and κ yields softer curves, while increasing c results in more irregular curves. This family

of models was previously studied in Wood and Chan (1994) for a simulation of stationary

Gaussian vector fields.

We can find different similarities between the previously described covariance function.

For example, in the Squared Exponential Covariance Function and the Periodic Covariance

Function, both can control how the function values change according to the length scale.

On one hand, the Locally Periodic Covariance Function is a combination of the Squared

Exponential Covariance and the Periodic Covariance Function, which results in functions

which are periodic, but can slowly vary over time. On the other hand, the Stationary

Covariance Function describes a different covariance function involving different parameters

which play a different role to those in the other covariance functions described above.

To simulate from a Gaussian Process, we consider the Stationary Covariance Function.

As we can see from equation (2.6), it depends on the hyper-parameters c, κ and µ , which

relate to the variability of curves generated by this Gaussian Process. We can use the value

of the parameter c to control how close simulated curves are to each other. A large value of

approximately 102 can generate curves which are close together, while curves more disperse

can be generated with a value of c < 10. A combination of the value of κ and µ controls

the roughness of the curves, for a combination of a small κ < 1 and µ > 2, we can generate

smooth curves. To generate roughness curves, we start by increasing the value of κ > 1 and

µ > 2. Increasing κ > 2 and µ > 2, generates very rough curves.
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Figure 2.1: Simulated functional data using a Gaussian Process GP (m(t),Cov(X(s),X(t)))
with same mean function m(t) = 80× (1− t)× t2 and Stationary Covariance Function,
using (top:) Model 1 with hyper-parameters c = 100, κ = 0.1 and µ = 2, (middle:) Model
2 with hyper-parameters c = 0.125, κ = 1.55 and µ = 1.24 and (bottom:) Model 3 with
hyper-parameters c = 3.5, κ = 1.85 and µ = 1.35 for 10 observations, in each group.
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2.1.1 Algorithm to simulate using Gaussian Process (GP)

We now detail an algorithm to simulate from a Gaussian Process. Given a random number

generator that generates multivariate normal distributed random numbers, we can sample

from a Gaussian stochastic process by sampling from a multivariate normal distribution.

To simulate from a Gaussian Process with a pre-specified choice of a mean function and

covariance function, GP (m(t),Cov(X(s),X(t))), we use the algorithm described below.

Step 1. Give a positive integer, M, representing the number of points in the process, to simulate

for each curve in the time interval T .

Step 2. Generate an equally spaced time sequence t = (t1, . . . , tM) ∈ T , starting at t1 = 0.

Step 3. Generate a M-dimensional random vector, X , simulated from a multivariate normal

distribution with mean vector 0 and positive definite covariance function, i.e., X ∼

N (0,Cov(X(s),X(t))). Where the M×M elements of Cov(X(s),X(t) are specified by

the choice of the covariance function.

Step 4. Generate a discretised curve according to X(t) = m(t)+X for a pre-specified choice

of mean function m(t).

Step 5. Repeat Step 2 - 4 to generate n vectors.

This represents our simulated discretised sample functions observed at M time points.

We simulate from three different Gaussian Process using the previous algorithm. Model 1

considers a simulation of a Gaussian Process GP (m(t),Cov(X(s),X(t))) with mean function

m(t) = 80× (1− t)× t2 and Stationary Covariance Function with hyper-parameters c = 100,

κ = 0.1 and µ = 2. Model 2 considers the same mean and Stationary Covariance Function

with hyper-parameters c = 0.125, κ = 1.55 and µ = 1.24. While Model 3 uses a Gaussian

Process GP (m(t),Cov(X(s),X(t))) with mean and Stationary Covariance Function as in

Model 1 but with hyper-parameters c = 3.5, κ = 1.85 and µ = 1.35. For the three different

model, we generate two different groups. The groups differs in the mean function, for

group 1, the mean function is m0(t) = 80× (1− t)× t2, while for the second group, we

set m1(t) = δ+m0(t), with δ = 0.25 and we generate 200 curves in each group. We set

M = 1000, to have a finite grid, the sample functions are equally spaced with a gap between

the two time points set to be 0.150. A graphical representation of a sample of ten curves
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from such simulations is shown in Figure 2.1. In this figure the points have been connected

by straight lines to create joined up curves for the plot.

2.2 Simulation by using Fourier basis functions

In this section we consider a method to simulate functional data using Fourier basis functions.

To this end we start by defining a Fourier basis system on the interval [a,b]. This is

φ0(t) = 1

φ1(t) = cos
(

πt
L

)
φ2(t) = sin

(
πt
L

)
φ3(t) = cos

(
2πt
L

)
φ4(t) = sin

(
2πt
L

)
... (2.7)

where L = (b−a)/2. Observe that the first basis function is constant, while the successive

basis functions are either cosine or sine functions with arguments being multiplied by integers

1,2, . . .. Such functions, φ0(t),φ1(t),φ2(t), . . . have the property that we can represent a

function X(t) by taking a linear combination of these basis functions, i.e.,

X(t) =
ξ0

2
+

∞

∑
j=1

(
ξ j cos

(
π jt
L

)
+ξ j+1 sin

(
π jt
L

))
=

∞

∑
j=0

ξ jφ j(t) (2.8)

for particular values of the ξ j’s. In practice, we can represent a sample function x(t) as in

equation (2.8) by replacing summing to infinity with to 2M. More precisely,

x(t) =
2M

∑
j=0

ξ jφ j(t). (2.9)

To simulate a single function x(t), on [a,b], we can obtain a random coefficient ξ j for

j = 0, . . . ,2M, by assuming it is a sample value from a univariate normal distribution N(0,σ2
j).
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We will set σ2
0 > σ2

1 > .. . > σ2
2M, so the values of the weights tend to diminish as j increases.

If we just require the values of x(t) at t1, . . . , tM ∈ [a,b] we can evaluate them as follows



x(t1)

x(t2)

x(t3)
...

x(tM)


=



1 φ1(t1) φ2(t1) . . . φ2M−1(t1) φ2M(t1)

1 φ1(t2) φ2(t2) . . . φ2M−1(t2) φ2M(t2)

1 φ1(t3) φ2(t3) . . . φ2M−1(t3) φ2M(t3)
...

...
... . . .

...
...

1 φ1(tM) φ2(tM) . . . φ2M−1(tM) φ2M(tM)





ξ0

ξ1

ξ2
...

ξ2M


.

To generate a sample of size n curves using Fourier basis functions, we repeat the same

process obtaining a new random set of (ξ0, . . . ,ξ2M) for each new curve and the Var(ξ j) = σ2
j

is set according to one of the following scenarios:

Scenario 1. The basis coefficients ξi j are chosen to be independent and normally distributed

with mean 0 and decaying variance σ2
j = 2.5e− j/2, j = 0, . . . ,2M; i = 1, . . . ,n.

Scenario 2. The basis coefficients ξi j are chosen to be independent and normally distributed

with mean 0 and decaying variance σ2
j = 2.5e− j/20, j = 0, . . . ,2M; i = 1, . . . ,n.

For computational purpose, the simulations are implemented via the R package fda, we

use the function create.fourier.basis to create an Fourier basis with specified period and the

function eval.basis to evaluate the Fourier basis functions at different time points.

Figure 2.2(A) shows a slow decrease in terms of the variability of the basis coefficeints,

while a rapid decrease in terms of the variance can be seen in Figure 2.2(B). In fact in

Scenario 1 more than 90% of the variability is explained by the first 15 basis coefficients,

while in Scenario 2 it is necessary to use only the first five principal basis coefficients explain

the same variability. Figure 2.3 shows the shape of the simulation of Gaussian Process

GP (m(t),K(s, t)) for Scenario 1 and Scenario 2.

Another way to simulate functional data is by means of trigonometric functions. Simu-

lated functional data using trigonometric functions was proposed by Ferraty et al. (2013). In

such cases, the simulated functions are generated in the restricted interval [0,π] and use a

weighted cumulative distribution of univariate normal distributions. Let F1 be the cumulative

distribution function of a univariate normal distribution N(µ1,σ
2
1) and F2 the cumulative

distribution function of a univariate normal distribution N(µ2,σ
2
2) with some weights ω1 and
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Figure 2.2: Decaying variances of the coefficients for the Fourier basis functions for (A)
Scenario 1 and (B) Scenario 2.

ω2 such that ω1 +ω2 = 1. The simulation by means of trigonometric function generates

realisations from an independent, identically distributed random variable Zi according to

Zi ∼ FZ = ω1F1 +ω2F2, (2.10)

and generates a sample function, at t = (t1, . . . , tM) according to

xi(t) = Zi cos(2t), for i = 1, . . . ,n. (2.11)

A disadvantage of this method is that choosing a high value of the variance does not

allow for heterogeneity in the data; the functions are similar smooth functions following a

trigonometric defined function.
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2.3 Simulation of samples containing atypical observations

A sample containing atypical curves is said to be contaminated. In this section, we describe

models by which we can generate such contaminated samples. These methods will be applied

to generating samples of data to be used in our simulations in Chapter 3, Chapter 4 and

Chapter 5.

We consider the following models: a base model (or uncontaminated model), M1, the

asymmetric contaminated model, M2. These models are called Linear Asymmetric Con-

tamination Models (LACM) as in Kwon et al. (2016). We also consider a linear peak

contamination model, M3 and a shape contamination model M4. Such models are specified

below. The main difference between the models consists of introducing asymmetry into the

curves and generating noisy data in the peaks (Kwon et al., 2016; Cuevas et al., 2007).

Model 1 - Uncontaminated Model This model is one of the simplest models and assumes

that there are no atypical observations in the data. The uncontaminated model generates

random functions according to

Xi(t) = µ(t)+Gi(t), for i = 1, . . . ,n. (2.12)

Where µ(t) is the mean function and Gi(t) is a realisation for the ith sample curve from the

Gaussian Process GP (0,K(s, t)) using a particular choice of the covariance function.

Model 2 - The Asymmetric Contaminated Model Let M∈R be a constant determining

the degree of movement of the atypical away from the uncontaminated observations. The

symmetric contaminated model generates a functional dataset according to

Xi(t) = µ(t)+Gi(t)+M ·Ci for i = 1, . . . ,n, (2.13)

where Ci takes the values of 1 with probability α and 0 with probability 1−α for 0 < α < 1.

The Asymmetric Contaminated Model generates curves which appear to be different in

magnitude from the rest of the curves. By modifying the value of α we can control the

expected number of asymmetric curves generated. In the simulations in Chapter 3 and

Chapter 5 the value of α is set to be 0.25.
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Model 3 - The Linear Peak Contaminated Model The Linear Peak Contaminated Model

generates curves that are contaminated only in a short subinterval of length l. For a fixed

value of l and a random number Ti ∼U(0,1) the Linear Peak Contaminated Model generates

a functional random variables according to

Xi(t) =

 µ(t)+Gi(t)+M ·Ci for Ti ≤ t ≤ Ti + l and i = 1, . . . ,n,

µ(t)+Gi(t) for t /∈ [Ti,Ti + l] .

Where l ∈ R is a constant that determines the time length of the of the peak and M is a

constant determining the magnitude of the systematic movement away from µ(t). As before,

Ci takes the values of 1 with probability α and 0 with probability 1−α for 0 < α < 1. Again,

α = 0.25 is used for the simulations in Chapter 3 and Chapter 5.

Model 4 - Shape Contamination Model This model generates curves that have a different

shape from the other curves, but are not necessarily far away from the main body of the

distribution in terms of distance. To generate such curves, we consider a mixture of Gaussian

Process. And we include functions with a different mean but the same covariance structure as

the Gaussian Process used to generate the data. Let G1(t) be a GP (0,K(s, t)) and covariance

function K(s, t) and let G2(t) be a GP (m(t),K(s, t)) with mean m(t) = µ2(t) = 70× (1.1−

t)× t2 but with the same covariance function as in G1(t). The Shape Contamination Model

generates a functional random sample according to

Xi(t) = ε×Gi1(t)+(1− ε)×Gi2(t), for i = 1, . . . ,n, (2.14)

where ε is a Bernoulli random variable, Be(p), where p = 0.025 is the probability of contam-

ination. Gi1(t) and Gi2(t) are realistations of G1(t) and G2(t) for the ith sample curve.

Figure 2.4 shows the simulation of the contaminated models for 100 functions in each

group. The curves are equally spaced with a gap between the two time points set to be

0.150. The simulated functions are generated according to a Gaussian Process with the

same mean function, m(t) = 80× (1− t)× t2, and Stationary Covariance Function with

hyper-parameters c = 100, κ = 0.1 and µ = 2. Similar to the simulations using Gaussian

Process the groups differs in the mean function. We consider the mean function of the first

group to be m0(t) = 80× (1− t)× t2, while for the second group, we set m1(t) = δ+m0(t),

with δ = 0.25.
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Figure 2.4: Contaminated models generated over a finite time interval with a gap between
the two time points set to be 0.150. For (top-left:) The Uncontaminated Model, (top-right:)
The Asymmetric Contaminated Model, (bottom-left:) The Linear Peak Contaminated Model
and (bottom-right:) Shape Contamination Model.
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2.4 Real Data sets utilised in this thesis

We consider three different real datasets. The first two real datasets are datasets for binary

classification while the third dataset contains more than two groups.

The Orange Juice dataset: The orange juice dataset discussed in Li et al. (1996) is a

well-known dataset corresponding to the near-infrared spectra of sugar (saccharosa) in the

orange juice samples. The original dataset has a total of 218 orange juice samples collected

from different countries in Europe. The curves are illuminated by a light beam at 700 equally

spaced wavelengths, t1, . . . , t700 in the near-infrared range of 1100 and 2500 nm. For each

wavelength t, and each index i, the absorption log(1/R), where R is the light reflection on the

sample surfaced of radiation, was measured. Along with the dataset, it contains a sucrose vari-

able, a response, of an orange juice from its observed near-infrared spectrum. To form equally

balanced groups, we split the original data
{

xOJ
i (t j), for j = 1, . . . ,700 and i = 1, . . . ,218

}
into two equally balanced groups using the sucrose content. The first group contains n0 = 109

curves (sucrose > 40) and the second group is formed by n1 = 109 curves with (sucrose <

40). We can observe from this dataset that there are some curves which appear to be different

from the rest of the curves. Curves that are different with respect to shape and distance from

the mayority of the curves can be seen in Group 1 in Figure 2.5, while what appear to be

some atypical curves can also be seen in Group 2 in Figure 2.5.

The NIR spectra of gasoline dataset: The NIR spectra of gasoline dataset (Kalivas,

1997) is a data set containing sixty gasoline samples with a specific octane number. The

samples were measured using the diffuse reflectance calculated using log(1/R), where R

is the light reflectance on the surface, which varies from 900 to 1700nm in 2nm intervals

giving a total of 401 wavelengths. The NIR spectra functional dataset can be represented

as
{

xNIR
i (t j), for j = 1, . . . ,401 and i = 1, . . . ,60

}
. To form equally balanced groups, we

split the data into two equally balanced groups according to the octane content. The first

population Π0 is formed by n0 = 30 curves with (octane < 88) and the second population

Π1 is formed by n1 = 30 curves with (octane > 88). The gasoline dataset divided into two

equally balanced groups is depicted in Figure 2.6.
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Figure 2.5: The near-infrared spectra of sugar in the orange juice samples. Group 1 consists
of those with sucrose > 40 and Group 2 consists of those with sucrose < 40.
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Figure 2.6: The NIR spectra of gasoline dataset. Group 1 consists of those with octane < 88
and Group 2 are those with octane > 88.

The phoneme dataset The third real dataset that we consider in this thesis is the digitised

speech phoneme data, also known as the phoneme dataset. The phoneme dataset is used
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in Ferraty and Vieu (2003) and Hastie et al. (1995). It is a widely used dataset in speech

recognition and it is available from the website: www-stat.stanford.edu/ElemStatLearn.

The data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic Continuous

Speech Corpus, NTIS, US Dept of Commerce). The original dataset was formed by selecting

five phonemes for classification based on digitized speech from this database. The phonemes

are considered the following: sh as it sounds in the word she, dcl as in the word dark, iy as the

vowel in she, aa as the vowel in the word dark, and ao as the first vowel in the word water.

However, we consider a reduced version of the dataset, with only the three different phoneme

classes sh, iy and dcl. From each speech frame, the log-periodograms are constructed from a

32ms recording of a male pronouncing the three different phonemes. Thus, the data consists

of 1200 log-periodograms each recorded at 256 equally-spaced points, with known classes

(phoneme) memberships. For the three phonemes classes sh, iy and dcl, there are 400 samples

of log-periodograms in each. The reason we consider these three groups of log-periodograms

is that they are difficult to distinguish between them due to the overlap of the curves.

For the purpose of the plot we have smoothed the 256 observations in a single log-

periodogram using a linear polynomial kernel smoother with a smoothing parameter chose

for each curve using least squares cross-validation. For implementation the locpoly function

in the R package MASS was used. We kept only the least noisy part by truncating all the

curves to the interval spanning the first 150 observed values as shown in Figure 2.7.

2.4.1 Creation of real grouped dataset with imbalanced group size

In real classification problems, the scenario of imbalanced group sample sizes appears

frequently. In binary classification, strongly imbalanced classes can lead to unsatisfactory

results. The main problem with imbalanced groups arise when we have many more samples

functions in one group than the other. When creating a classification rule with such data we

have far more information about the distribution of function in one group than the other. Such

a rule may then be quite inaccurate. We discuss more in detail the scenario of imbalance

observations for functional data in Chapter 4. However, we start describing how imbalanced

datasets can be created from the first two binary real dataset. For the first imbalanced dataset,

we used the sucrose content in the orange juice data to separate the data into two populations,

while for the gasoline dataset, we use the octane content.

To form unequally groups in the orange juice dataset, we split the original data into two
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Figure 2.7: The phoneme dataset. The log-periodograms of three different phoneme classes.
Group 1 correspond to the phoneme sh, Group 2 to the phoneme iy and Group 3 to the
phoneme dcl.

groups according to a threshold of the univariate variable sucrose content. By considering

this, the new dataset is an imbalanced dataset, with n0 = 48 (sucrose < 30) curves in the

first population and n1 = 170 curves (sucrose > 30) in the second population Π1. Figure 2.8

shows the near-infrared spectra of sugar in these two orange juice samples.

To create the second imbalanced dataset, we consider the NIR spectra of gasoline dataset.

As we mentioned before, the original data set contains 60 gasoline samples each associated

with a specific octane content. To form two imbalanced groups, we split the data into two

groups according to the octane content. The first group is formed by n0 = 15 curves with

(octane < 86) and the second group is formed by n1 = 45 curves with (octane > 86). Table 2.1

summarise the sample sizes in each group.

Table 2.1: Different sample sizes of each group for the real imbalanced data sets.

Real Dataset 1 Real Dataset 2

n0 48 15
n1 170 45
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Figure 2.8: The imbalance near-infrared spectra of sugar in the orange juice samples. (A)
Boxplot of the sucrose content divided into two different groups according to the sucrose
content. (B) Group 1 consists of those with sucrose > 30 and (B) Group 2 consists of those
with sucrose < 30.
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Figure 2.9: The imbalance NIR spectra of gasoline dataset. (A) Boxplot of the NIR spectra
divided intro two different groups according to the octane content. (B) Group 1 consists of
those with octane < 86 and (B) Group 2 are those with octane > 86.
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2.5 Conclusions

This chapter introduced different settings and techniques for simulating functional data.

We saw that the simulation methods for functional data use Gaussian Processes or Fourier

basis functions. Such techniques provide the basis to carry out simulations for the proposed

methods in the later chapters. By simulating data using Gaussian Processes we saw that

the degree of smoothing in the data can be controlled by modifying the parameter of the

covariance function.

The second approach is motivated by Fourier basis functions and the representation of a

curve as a linear combination of these basis functions. The method considered here generates

functions allowing the basis coefficients to be chosen randomly from a Normal distribution

with a decaying variance as the the number of coefficients increases.

Finally, we described the real datasets that we use in the simulation studies and the creation

of imbalanced datasets. We described three real datasets that are part of our simulation studies,

including a real dataset with more than two groups.



Chapter 3

k-Ranked Nearest Neighbours

3.1 Introduction

The k-Nearest Neighbours (k-NN) rule is one of the popular rules among the machine

learning community. The report written on February 1951 by Evelyn Fix and J.L. Hodges, Jr.

contained not only work on probability density estimation and nonparametric discriminant

analysis, but also contained one of the most simple rules of discrimination analysis, the

k-NN rule. Functional data makes use of different nonparametric tools to address certain

statistical problems, and the use of nearest neighbours techniques, due to its straight forward

implementation, is not an exception.

The k-Ranked Nearest Neighbours (k-RNN) algorithm using functional depth is the

motivation behind this chapter and it serves as the basis of our first contribution which

is based on using nearest neighbours methods. We start this chapter by proposing a new

algorithm to classify curves from different groups using a k-RNN approach. Our algorithm

is based on using functional depth as a means of ranking the curves relative to the center

of the data. We start by describing the proposed algorithm in detail along with a running

example. Later, we exploit the fact that our k-RNN algorithm can be interpreted in terms of a

conditioned probability function which can be used to classify new curves. In particular, we

use a generalized additive logistic regression model to estimate the conditional probability

function with covariates corresponding to the signed depth and the distance to the mode

for functional observations. By means of an extensive simulation study we compare the

performance of the proposed classifier against other nearest neighbours and depth classifiers.

We also looked at the performance of the proposed classifier on real datasets.

54



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 55

The structure of this chapter is as follows: Section 3.2 describes the proposed algorithm

for supervised classification based on functional depth. Section 3.3 illustrates various parts of

the proposed methodology using a simulated Gaussian Process. In Section 3.4 we describe

the k-RNN as a regression approach and we introduce the k-RNN as a moving average.

Section 3.5 and Section 3.6 introduces the signed distance integral as a classifier and proposes

a Bayesian approach to classify new observations using the signed depth. The use of logistic

regression to model the signed depth and the distance to the mode, is presented in Section 3.7.

A discussion about generalized additive models (GAM) is given in Section 3.8 along with

an iterative procedure to prevent over-fitting of the training data. Section 3.9 discusses the

extension to more than two groups. Section 3.10 describes the simulation study we carry out,

along with the methods that will be used to compare with our proposed classifier based on

signed depth and distance to the mode. Results of the comparisons are given in Section 3.11,

while Section 3.12 details the real datasets applications. Finally, conclusions are stated in

Section 3.13.

3.2 The k-RNN as an alternative of k-NN

The k-nearest-neighbour classifier k-NN, proposed by Fix and Hodges Jr (1951), is a non-

parametric classification rule that searches in a metric space. Given a fixed value of k,

it assigns an unlabelled observation, x0 ∈ Rp, to the class with the maximum number of

representatives in the set of k labeled observations closest (in metric) to x0. In the case of

a tie, a random tie breaking procedure is used. Formally, consider a vector in which the

observations are coupled with a group membership indicator variable, i.e., {(xi,yi)} for

i = 1, . . . ,n, where yi is called the group label (or class labels) and yi ∈ {0,1,2, . . . ,G−1}

for G classes or groups associated with the the observations xi ∈ Rp and for some p ∈ N.

We assume that each of xi’s and yi’s represent observations of the random vectors X and Y.

In the classical k-NN algorithm, a new observation x0 is classified by finding the k nearest

observations, using a distance metric, i.e., d(i) =
∥∥x(i)−x0

∥∥, among these k neighbours and

assigning it the label which is most frequently represented among the k nearest neighbours,

where the distance metric is commonly taken to be the Euclidean norm.

The k-NN classifier can be modified by introducing a degree of robustness to the algorithm.

One approach is introduced by using the concept of ranks, which provide a monotonic
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ordering for the data. Suppose that F is a probability distribution in Rp, then a depth function,

D(·) : Rp→ R+, measures how deep a central observation xi ∈ Rp is with respect to F or

with respect to a sample {x1, . . .xn}. Such a function D(·) can provide an ordering of the

points xi ∈ Rp. Observations with high values of depth correspond to central observations,

and the point xi that maximises the depth function represents the centre of the distribution.

Several depth definitions for multivariate data have been proposed. For instance we can

find the Halfspace (Tukey) depth (Tukey, 1975), Mahalanobis depth (Mahalanobis, 1936), the

simplicial depth (Liu et al., 1999), the projection depth (Donoho, 1982), the simplicial volume

depth (Zuo and Serfling, 2000), the Oja depth (Zuo and Serfling, 2000) and the Zonoid depth

(Koshevoy and Mosler, 1997), among others. All of these have the same purpose, i.e., to

measure how central a given point xi ∈ Rp is with respect to F or with respect to a sample.

Consider the Mahalanobis depth to measure how deep is an arbitrary point x0 ∈ Rp with

respect to some observations {x1, . . . ,xn}. It assigns to x0 its degree of centrality according

to D(x0 | x1, . . . ,xn) = (1+(x0− x̄)′Σ̂−1(x0− x̄))−1, where x̄ is the mean vector and Σ̂ is the

covariance matrix of the data points. The vector x0 which will maximise D(x0 | x1, . . . ,xn)

is x̄ and, as such, can be interpreted as the center of the empirical distribution of the data.

Values of D(x0 | x1, . . . ,xn) which are close to 1 will indicate that x0 is close to x̄ and so to

the center of the distribution of the data.

The k-RNN classifier can be applied to multivariate and univariate data. For a new

observation x0 ∈ Rp and a known multivariate depth function, we start by computing the

depth for the new observation with respect to the combined sample of the new observation

and the available observations, then we rank all the observations according to the depth. For

a fixed value of k, and to predict the label of the new observation, we select k observations

above the ranking of x0, and k observations below the ranking of x0. The new observation is

classified by a majority vote in this 2k neighbourhood.

The k-NN classifier can be extended to the functional case. However, there are two main

difficulties. The first one is that in the infinite dimensional space, the k-NN classifier is

not consistent, as discussed by Cérou and Guyader (2006) (in finite dimensional space the

k-NN classifier is consistent, i.e., that the probability of error converges to the Bayesian error,

irrespective of the distribution of (x,y) see Stone (1977a)). The second difficulty is that most

of the multivariate depth measures are computationally intensive and are not appropriate for

functional data as discussed by López-Pintado et al. (2010) and Liu et al. (1990).
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Therefore, different concepts of depth for functional data have been proposed. Fraiman

and Muniz (2001) introduced a concept of depth for functional observations based on the

integrals of univariate depths, while López-Pintado and Romo (2009) introduced the notion

of functional depth based on the graphic representation of the functions and the bands these

graphs determine in the plane. In the functional case, functional depth again introduces

the notion of a centre as the maximal depth point and can this provide an ordering of the

observations inwards to the centre. Functional depths are useful for outlier detection and

rank test as shown in Hubert et al. (2015) and López-Pintado and Romo (2009).

Our goal is to introduce the k-RNN for functional data as an alternative to classifiers

based on functional depth. This work is motivated by Anderson (1966), who originally

proposed the k-RNN classifier for multivariate data and was rediscovered in Bagui et al.

(1995). The k-RNN classifier has been studied by Bagui et al. (2003) with some applications

in the context of multivariate data and by Bagui and Pal (1995) who extended the idea to

more than two populations. Discussion of using the k-RNN classifier for functional data has

not up to now been considered in the literature.

3.2.1 The k-RNN using depths

We start by describing the k-RNN classifier using depths for the classification of functional

data. Let us consider a binary classification task and suppose that we observe an equally

balanced collection of curves coming from two different populations Π0 and Π1, taking

values in a functional space, F , in the same close interval t ∈ [a,b]. We denote by n0 and n1

the number of observations in each group. The total sample size, N, is obtained by adding

the number of observations in each population.

In supervised classification, we observe a finite number of curves coupled with a group

membership {(xi(t),yi)}. The group label yi takes values according to

yi =

 0 if xi(t) ∈Π0,

1 if xi(t) ∈Π1,

for i’s in the total sample size and the aim is to construct a classifier C (·) : F →{0,1}, which

maps a new observation x0(t) to a predicted label. Usually, classifiers are constructed based

on a training sample T rain = {(xi(t),yi)} for i = 1, . . . ,nT rain, which contains a sample of

the two populations Π0 and Π1, and where the model learns from the data and a test sample
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T est = {(xi(t),yi)} for i = 1, . . . ,nT est , is used to evaluate a given model.

Suppose that a finite number of curves, {(xi(t),yi) , t ∈ T , i = 1, . . . ,N}, coupled with

a group membership is available and contains an equally balanced sample of the two pop-

ulations Π0 and Π1. To classify using the k-RNN classifier, we begin by ranking all the

observations in the functional dataset by their depth values. The depth of x0(t) is calculated

with respect to the combined samples and it determines where the observation falls in terms

of its ranking when combined with both groups. Given k ∈ Z+, the unknown observation,

x0(t), is assigned to the population Πi if the majority of the k rank nearest neighbours of x0(t)

come from population Πi (i = 0,1), and in case of ties, break the ties randomly.

The k-RNN classifier using depths as described has the drawback that two or more curves

which are in different groups and positions in the plane G(x(t)) = {(t,x(t)) ; t ∈ T }, relative

to the center, can have the same depth. Therefore, to overcome this difficulty, we propose

to introduce a new method to assign a sign to each rank by considering the position of each

curve relative to a reference curve.

To achieve an ordering of the curves, we need to select a reference curve from the sample.

One such choice is the curve in the combined groups which have the largest sample depth.

The choice of the particular reference curve is not unique, but serves to provide an order of

the sample functions. For instance, alternatives, such as the maximum or the minimum curve

will still provide an ordering to the observations.

Subsequently, we will choose the reference curve, xre f (t), to be the sample median curve

calculated using the two groups of data based on using a depth measure which is a maximum

at the sample median. The concept of the sample median for functional data will be discussed

in detail in Section 3.7.1. More formally,

xre f (t) = max
1≤i≤N

D(xi(t)).

If there is not a unique highest value, the reference curve is taken to be the average of the

curves maximising the depth function; this will be discussed in more detail in Section 3.3.2.

The next step is to assign a sign to each curve xi(t) in the sample; to achieve this we compute

the signed distance integral

∫
T

(
xi(t)− xre f (t)

)
dt, (3.1)
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which enables us to order or rank the curves in a monotonic fashion from top to bottom or

vice versa. The signed depth (sdp) of an observed curve xi(t), is then calculated as

sd p(xi(t)) = sgn{D(xi(t))}×D(xi(t)), (3.2)

where

sgn{D(xi(t))}=

 +1 if
∫

T

(
xi(t)− xre f (t)

)
dt > 0,

−1 Otherwise,

for i ∈ {1, . . . ,N}. Therefore, for curves deemed above the reference curve, the signed depth

will be positive. While for curves below the reference curve, the signed depth will correspond

to a negative depth. By doing this, we obtain a new set of paired variables {(sd p(xi(t)),yi)}

for i = 1, . . . ,N.

The reference curve plays an important role in the case of the k-RNN. It is used to deter-

mine the sign of each of the depth values, via the signed distance integral in equation (3.1),

which assigns a sign to each depth by considering each curve position relative to the reference

curve. However, it can be the case where curves intersect the reference curve.

Intersections of a curve or curves with the reference curve can happen in two different

cases. In the first case, where curves do not intersect, curves with a positive signed distance

integral judge to be above the reference curve, while curves with a negative signed distance

integral are below the reference curve. In the second case, when a function crosses the

reference curve, the signed distance integral is divided into different regions. In the regions

where the curve xi(t) is below xre f (t), the signed distance integral calculates the area between

xi(t) and xre f (t) as being negative. Similarly, for the regions where the curve xi(t) is above

xre f (t), the signed integral calculates the area between xi(t) and xre f (t) as positive. The

overall value is obtained by adding all the areas in such regions which will result in either a

positive or negative value for the integral in (3.1).

Figure 3.1 shows a graphical description of this procedure in the case that curves do not

intersect while Figure 3.2 show the case when there is only one cross of the curve with the

reference curve.

Formally, the k-RNN classifier based on the signed depths (sdp), may be described by the

following steps.

Suppose that the signed depths of a sample of functions are available, {(sd p(xi(t)),yi)}
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Figure 3.1: Graphical representation of the reference curve when curves do not intersect.
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Figure 3.2: Graphical representation of the reference curve when there is only one intersection
when a larger proportion is positive.

for i = 1, . . . ,N, contain an equally balanced sample of the two populations Π0 and Π1.

To classify a new observation x0(t) using the k-RNN classifier, we start by ranking all the

observations by their depth values. We then calculate the depth of x0(t) with respect to the

combined samples and assign a sign to the depth of the new observation according to the

signed distance integral, forming the signed depth of the new observation sd p(x0(t)). Then,

we take k observations below the sd p(x0(t)) and k observations above the sd p(x0(t)) and

form a 2k neighbourhood formally defined in Section 3.4.1. If the signed depth of the new

observation we want to classify falls near one of the boundaries, the k-RNN use as many

observations as available. We summarise the k-RNN signed depth classifier in Algorithm 1.
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Algorithm 1: The k-RNN algorithm based on signed depth (sdp) for functional

data.
Input : A depth function D(·), a fixed k ∈ Z+ and a functional dataset{(

xi j(t),yi j
)}

, for j = 0,1 in the two group case. The respective group

sizes are n0 and n1 with N = n0 +n1

Output : Classifications for the functional dataset.

1 Calculate D(·) for each
{(

xi j(t),yi j
)}

in the combined samples and then compute

the sd p(xi j(t)) for i = 1, . . . ,N and j = 0,1 with reference to xre f (t), the median

curve calculated using the two groups of the data.

2 Rank all
{(

xi j(t),yi j
)}

, i = 1, . . . ,N; j = 0,1 according to sd p(·).

3 Let x0(t) be a new curve we want to classify to a predicted label.

4 Compute the signed depth of x0(t), according to equation (3.2).

5 Rank the signed depth of sd p(x0(t)) among the signed depths of the sample

functions in both groups.

6 Consider the observations having ranks k above and k below x0(t). Assign sd p(x0(t))

to the population for which the majority of the k-RNN’s belong.

7 if exactly k observations belong to each group then

8 break the tie randomly with probability 1/2.

9 else if there are not k observations smaller and k larger than sd p(x0(t)) (or the other

way around as occurs in the boundary regions) then

10 just use those available.

3.3 Running example

To illustrate various parts of the methodology of the k-RNN classifier, we consider a Gaussian

process to simulate from functional data. Let GP (m(t),K(s, t)) be a Gaussian process with

mean m(t) = 80∗ (1− t)∗ t2 and K(s, t) = 0.1∗ exp(−100∗ (s− t)2), t ∈ [0,150] as detailed

in Chapter 1. We generate two different populations Π0 and Π1, that differ in terms of the

mean function, with n0 = 200 and n1 = 200 curves in each population. The mean function for

the population Π0 is m0(t) = 80∗(1− t)∗ t2 while the mean for the population Π1 is replaced

by m1(t) = δ+m0(t) where δ = 0.35, i.e., in Π1 the mean function is shifted upwards by δ

units over the whole range of t. The simulated curves are observed over a grid of t1, . . . , t1000.
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With a gap between the two time points set to be 0.150. Figure 3.3 shows a simulation of the

Gaussian process with two different populations Π0 and Π1.

Group 1 Group 2
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Figure 3.3: Samples drawn from Gaussian process GP (m(t),K(s, t)) with mean m(t) =
80∗ (1− t)∗ t2 and K(s, t) = 0.1∗ exp(−100∗ (s− t)2) of size 200 observed over M = 1000
time points and a gap between the two time points to set to be 0.150.

Observe that δ, allows us to control the overlapping of both groups. A large value of

δ generates populations far apart from each other and vice versa. To start showing how

we achieve an ordering of the curves and how we select the reference curve, we started

by considering the Fraiman-Muniz depth. The Fraiman-Muniz depth is strictly defined in

Section 3.3.2.

Depth functions will be explained in more detail in Section 3.3.2. We start by ranking all

the simulated data according to the Fraiman-Muniz depth. We choose the reference curve,

xre f (t), to be the curve that maximises the Fraiman-Muniz depth with respect to the combined

samples.

Figure 3.4 shows the reference curve, for the simulated data as a solid line. The dashed

lines in Figure 3.4 shows the the lower and upper bands for each population in the running

example. The upper bands are calculated by determining the proportions of time each curve

stays above the other curves in each group and the lower bands are determined by estimating

the proportion of time that the curve stays below the other curves. For example, if we

consider curves xk(t) and x j(t) (k 6= j) in the same group and using t as the discretised vector
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(t1, . . . , tM) then we count the number of ti’s for which

xk(ti)> x j(ti).

0
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10

Time

X
(t
)

Group

Group 0

Group 1

Minimum and Maximum curves in each population

Reference Curve

Figure 3.4: Reference curve in solid line for the simulated data.

3.3.1 Choosing the value of k

Cross-validation is widely used in supervised classification problems to chose the value of

the k, known as the tuning parameter. For the k-RNN, by training and testing the classifier on

separate subsets of the data, we get an estimate of the misclassification error rate as a function

of the number of neighbours. This estimate admits many properties (see Stone (1977b) for a

discussion of asymptotic consistency and efficiency).

As previously discussed, the k-RNN classifier depends on two main considerations, the

first consideration is the depth function D(·) and the second considerations is the number of

the nearest neighbours considered, k, which plays an important role. To determine the value

of k, we consider R-fold cross-validation, which can be described with the following four

steps.
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Step 1. For the pairs of observations {(sd p(xi(t)),yi)}, where i = 1, . . . ,N, divide the data set

of signed depth observations into R subsets (or folds) and let F1, . . . ,FR, be the indices

of the signed depth in each of the folds. Note that the size of each subset is either

bN/Rc or bN/Rc+1, where bxc= max{m ∈ Z+ | m≤ x}.

Step 2. For κ= 1, . . . ,R and a fixed kmax ∈Z+, consider a training set formed by (sd p(xi(t)),yi) ,

∀i /∈ Fκ and then validate on the the pairs (sd p(xi(t)),yi) ,∀i ∈ Fκ. For each value of k

in k ∈ {1, . . . ,kmax}, classify the observations according to the k-RNN classifier and

estimate the misclassification error as

Errκ(k) = ∑
i∈Fκ

1
nκ

1{yi 6=ŷi},

where the indicator variable 1{yi 6=ŷi} takes the value of 1 when the classifier makes the

right prediction and zero otherwise, ŷi is the predicted label for yi and nκ is the number

of observations in the κth fold.

Step 3. For each value of k in k ∈ {1, . . . ,kmax}, compute the average error over all folds, given

by

CV (k) =
1
R

R

∑
κ=1

Errκ(k).

Step 4. Choose the value of k that minimises the average error, i.e.,

k∗ = argmin
k∈{1,...,kmax}

CV (k). (3.3)

This R-fold cross-validation procedure estimates the misclassification error rate as a

function of the number of neighbours. Usually, a large value of R is desirable because there is

a better performance estimate and the training size is closer to the full data size but reasonable

values can be achieved for R = 10 (Kohavi et al., 1995).

The one standard deviation rule for cross-validation, also known as one standard error

rule is an alternative rule for choosing the value of the tuning parameter. It is an empirical

rule applied in the literature without a theoretical justification, for example in Breiman et al.

(1984), Friedman et al. (2001) and Tibshirani et al. (2015). The one standard error rule for
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choosing number of k nearest neighbours, as opposed to the rule in equation (3.3), can be

described as follows.

Suppose that the cross validation curve initially decreases rapidly then plateaus, the

minimum occurs somewhere in the flat valley region, where the function CV (k) is constant

except for up-down changes within the one standard error range. In the one standard error

rule, we select the value of k whose error is within one standard error of the minimal

misclassification error. If k∗ denotes the value that minimises the cross-validation curve

CV (k), we then move k in the direction until it is satisfied, subject to the restriction

CV (k)≤CV (k∗)+SE(k∗),

where the standard error (SE) of the CV is given by:

SE(k∗) =
ŜD(k∗)√

R
,

and the sample standard deviation of CV1(k∗), . . . ,CVR(k∗), is obtained by

ŜD(k∗) =
√

Var(CVi(k∗)) for i = 1, . . . ,R.

To choose the value of k for the simulated data and use it in the k-RNN classifier,

the first step is to implement a R = 10 fold Cross-Validation. For the running example,

using equal sized groups, we varied the number of neighbours k ∈ [1,40] and averaged the

misclassification rate over ten folds. The results of calculating the misclassification rate for a

10-Fold Cross Validation can be seen in Figure 3.5.

Note from Figure 3.5 that several local minima of the cross-validation function can be

seen. For the simulated data a minimum misclassification rate can achieved using eleven

nearest neighbours, therefore the value that minimises the CV error curve is k∗ = 11 with a

misclassification error rate of CV (11) = 0.1525. Applying the one standard error rule selects

k = 18 neighbours; the misclassification error rate does not decrease, but instead increases

the number of neighbours. Considering a model with the same misclassification error rate

but less neighbours involves less computational time.
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Figure 3.5: Missclassification error rate plotted against different neighbours for the simulated
data.

3.3.2 Functional depth

The second consideration we discuss is the depth function D(·). In particular, let us consider

the multivariate depth followed by the functional depth.

To start introducing the multivariate depth, we started by considering the one dimensional

depth. Suppose we observe one dimensional observations x1, . . . ,xn ∈ R, usually ranked

in an ascending or descending order. For a univariate dataset, the median is defined as the

order statistic of rank (n+1)/2 when n is odd, and as the average of the order statistics of

ranks n/2 and (n+2)/2 when n is even. When x1, . . . ,xn ∈ Rp, the notion of median can be

generalised; instead of being a single value in the univariate case, the depth is a point with

maximal depth.

In the one dimensional case, the depth is given by

min{#{xi ≤ x} ,#{xi ≥ x}} ,

where # counts the number of observations according to a corresponding condition, i.e.,
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those above and below the point x. Under this consideration, univariate points may be ranked

from the outside inward by assigning depth 1 to the furthest data point, the second smallest

and second largest data points depth 2, etc., and the median is the point (or points) with

maximal depth.

In the multivariate case, we can find different depth functions, all have the same purpose,

i.e., to measure how deep (or central) a given point x ∈ Rp is with respect to its underlying

distribution, F , or with respect to a data cloud, admitting certain properties (Zuo and Serfling,

2000). We focus on two multivariate depths, the half-space depth and the simplicial depth.

For visualisation purposes, Tukey (1975) introduced the notion of halfspace depth (HD)

and depth contours. Let F be a probability distribution in Rp where p≥ 1, and assume that

F is an absolutely continuous common distribution of the sample x1, . . . ,xn. For x ∈ Rp the

half-space depth (or half-space Tukey depth) by Tukey (1975) and developed by Donoho and

Gasko (1992), with respect to the underlying distribution F , is defined as

T D(x) = inf
H
{F(H); H is a closed half-space in Rp and x ∈ H} .

The minimal probability attached to any closed halfspace with x on the boundary. In particular,

the sample halfspace depth of x is the minimum fraction of data points in any closed halfspace

containing x.

In contrast to associated depth contours to the depth function, there exists the simplicial

depth by Liu et al. (1990). The simplicial depth at the point x ∈ Rp is defined by

SD(x) = PF (x ∈ S[x1, . . . ,xp+1]) ,

where S[x1, . . . ,xp+1] denotes the closed simplex formed by (p+ 1) observations from F .

In other words, the simplicial depth represents the number of subsets that contain x in their

convex hull.

A case of interest in the Tukey and the simplicial depth appears when p = 1. In the

univariate case, the Tukey depth takes the form

T D(x) = min{F(x),1−F(x)} .

While, on the real line the simplicial depth at x counts how many times the point x is in the

closed simplex with vertices in the sample; when p = 1,
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SD(x) = 2F(x)(1−F(x)) ,

which can be defined through the one dimensional depth

SD(x) = 1−
∣∣∣∣12 −F(x)

∣∣∣∣ .
The corresponding sample versions of the Tukey depth and the simplicial depth are defined

by replacing F by the empirical distribution Fn.

In the functional case, similar to the multivariate case, we look for an estimator of the

functional median, which allows us to rank the curves based on their depth. This leads to the

notion of functional depth, see López-Pintado and Romo (2009) and Cuevas et al. (2006) for

more details. For functional data, we want to consider a function that provides an order of

the observations outwards from the centre. Thus, we focus in the oldest depth of functional

data: the Fraiman-Muniz (FM) depth proposed by Fraiman and Muniz (2001).

The Fraiman-Muniz depth is a function that not only provides an order of the observations

outwards from the centre but also considers a mapping from the functional space to the real

positive line D(·) : F → R+. Let {xi(t), i = 1, . . . ,N} be a collection of observed functional

variables and let FN,t be the empirical distribution of the collection of functional random

variables. Then, for every t ∈ [a,b] the quantity

Zi(t) = D(xi(t)) , for i = 1, . . . ,N, (3.4)

provides a univariate depth of xi(t) at time t ∈ T , with respect to the collection of random

variables. In this way, at every single point t, we rank the curves according to their depths

Zi(t). The Fraiman-Muniz depth of the function xi(t) is defined as the integral:

FMi (xi(t)) =
∫ b

a
Zi(t)dt, for 1≤ i≤ N. (3.5)

The choice of the univariate depth function, D(·), modifies the behaviour of the FM

depth and, for instance, the deepest curve may have a different meaning, depending on this

selection. To exemplify this point, consider the two multivariate depths on the real line, the

Tukey depth and the simplicial depth. Observe that we can write the version of equation (3.5)

appropriate for a sample in the following form:
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Simplicial - FMi (xi(t)) =
∫ b

a
1−
∣∣∣∣12 −FN,t(xi(t))

∣∣∣∣dt

=
∫ b

a

[
1
2
+min{FN,t(xi(t)),1−FN,t(xi(t))}

]
dt (3.6)

and

Tukey - FMi (xi(t)) =
∫ b

a
min{FN,t(xi(t)),1−FN,t(xi(t))}dt, (3.7)

where

FN,t(xi(t)) =
1
N

N

∑
j=1

1{x j(t)≤xi(t)},

represents the empirical distribution function that counts the number of times x j(t) is below

xi(t). To visualise the mapping of both functions, we set M = 100, thus the functions are

equally spaced with a gap between them to 0.01.

Figure 3.6 shows the implementation of the simplicial-FM and the Tukey-FM depths. We

can observe that the simplicial-FM depth maps Simplicial - FMi (xi(t))→ [0.5,1.0], while

the Tukey-FM depth maps Tukey - FMi (xi(t))→ [0,1]. Additionally, the simplicial- FM

depth takes values with a mean of 0.75, while the Tukey-FM depth takes values with a mean

of 0.5. From the definition, it is easy to see that the variance for the Tukey depth is four times

larger than that of the univariate-FM depth. This relationship is observed by calculating the

ratio

Var(Tukey - FMi (xi(t)))/Var(Simplicial - FMi (xi(t))).

Also, it is easy to transform from one depth measure to another using the following relation-

ship:

Tukey - FMi (xi(t)) = 2
(

Simplicial - FMi (xi(t))−
1
2

)
. (3.8)

For a discretised functional dataset,
{

xi(t j), i = 1, . . . ,N, j = 1, . . . ,M
}

, for each obser-

vation we can compute the Simplicial-FM in terms of the sum

FMn,i
(
xi(t j)

)
=

M

∑
j=2

(t j− t j−1)

[
1−

∣∣∣∣∣12 − 1
N

N

∑
k=1

1{xk(t j)≤xi(t j)}

∣∣∣∣∣
]
, (3.9)
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Figure 3.6: Graphical representation of (A) the Tukey-depth mapping values of Fn,t to [0,1],
and (B) the simplicial depth mapping Fn,t to [0.5,1.0].

for M equally spaced points such that the value of (t j− t j−1) is 1/M.

Different depth measures lead to different estimators of the median function. We can

observe that different depths map to different real and positive intervals. Therefore, the

estimation of the median curve differs with respect to the functional depth function used. For

our purposes, we use the version given by Tukey-FM.

3.3.3 Estimated probabilities

For classification, a useful approach to predict the population from which a signed depth

originates is to consider the probabilities that an observed signed depth sd p(x(t)) belongs to

each of the two populations Π0 or Π1. In the binary case, this provides a way to estimate the

conditional probability for each group. Here we describe how the k-RNN procedure can be

interpreted in terms of such conditional probabilities.

Let (sd p(X(t)),Y ) be a random pair, for t ∈ T , with two possible outcomes for Y . To

classify sd p(X(t)), we estimate the conditional probability,

P
(

Y = y | sd p(X(t)) = sd p(x(t))
)
. (3.10)
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We can construct an estimate of equation (3.10) using the k-RNN algorithm introduced

in Section 3.2. First, observe that sd p(x1(t)), . . . ,sd p(xn(t)) represent the signed depths

for a collection of curves and yi denotes the vector of the membership indicator variable

where yi = 1 if sd p(xi(t)) ∈Π1 and yi = 0 if sd p(xi(t)) ∈Π0. Given a value of k ∈ Z+, the

k-RNN classifier starts defining half-closed intervals between the observations of the form

[sd p(xi−1+k(t)),sd p(xi+1+k(t))), given by

{
sd p(x j(t)) ∈ R; sd p(xi−1+k(t))≤ sd p(x j(t))< sd p(xi+1+k(t))

}
. (3.11)

Thus, for a known population, Π0, an estimator of equation (3.10) is given by

P̂
(

yi = 0 | sd p(x(t))
)
=

1
2k ∑

i∈[sd p(xi(t)),sd p(xi+1(t)))
yi, (3.12)

for i’s in the total sample size. An advantage of this approach is that we only need

to consider the conditional probabilities with respect to one group, since the conditional

probability for Π1 adds to one. Another advantage of considering this approach is that the

estimated probabilities can be visualised as a step function form.

Figure 3.7 represents the step function for the depths against the probability that the depth

belongs to population Π0. The predicted conditional probabilities reveal an increasing shape

with respect to the reference group. This is because observations from population Π1 have a

negative signed depth while observations with positive signed depth are more likely to belong

to population Π0.

By considering a graphical representation of the step function of the conditional prob-

ability of the signed depth belonging to the reference group, we can classify a new ob-

servation x0(t) by calculating its signed depth sd p(x0(t)). And for a fixed value of k, the

P(y = 0 | sd p(x0(t))) can be read off from the already generated plot and assigned to popula-

tion Π0 if P(y = 0 | sd p(x0(t)))> 0.5.

Observe that equation (3.10) summarises the dependence of the class label on the signed

depth. A more general type of function that summarises such dependence and produces a

smooth function is the running-mean smoother or moving average. The moving average

approach is explained in detail in Section 3.4.1.

There are two main features we want to consider about this approach. The first feature is

when an observation falls into one of the boundaries. When we are interested in classifying
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Figure 3.7: Graphical representation of the step function of the conditional probability of the
signed depth belonging to the reference group Π0.

an observation that falls into one of the boundaries, the k-RNN classifier uses as many

observations available. However, this influences the estimation of the conditional probabilities.

If the number of observations is not the same above and below, we say we have an unbalanced

number of observations, and the estimated probabilities only consider the observations

available. By considering this, we induce a bias for the conditional probabilities in the

reference group.

The second feature we want to illustrate is the fact that the estimated probabilities

vary with respect to the number of neighbours we consider. To illustrate how the estimated

probabilities vary, we consider different values for the number of neighbours, and we estimate

the conditional probabilities. Figure 3.8 shows the different behaviours of the conditional

probabilities when k = 15,25 and 35, respectively.

Observe that by varying the number of neighbours k, we can achieve a wide range of

flexibility in the estimated conditional probability, with small k corresponding to a more

flexible fit, and large k being less flexible. From Figure 3.8, we notice that a larger number of

nearest neighbours produces flattened curves, and the semi-closed intervals become narrow

around the signed depth. For small values of nearest neighbours, observations near the

boundaries show conditional probabilities below 0.50, while increasing the numbers of

neighbours tends to increase the conditional probability of belonging to Π0 more than 0.50.
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Figure 3.8: The predicted probabilities for different values of k, using (top:) k = 15, (middle:)
k = 20, and (bottom:) k = 35.
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3.4 The k-RNN as a regression approach - A model for the

smoothing

To study the smoothing problem in detail and to look in more detail how the moving average

works, we start by introducing the k-RNN algorithm as a regression approach. Assume that

we can relate the response Y to a predictor X in the following way

Y = f (X)+ ε, (3.13)

where ε denotes the uncorrelated random error, with expectation E(ε) = 0 and Var (ε) = σ2.

To study such dependence, we consider a linear regression model of the form

E[Y | X ] = f (X), (3.14)

where the function f (X) is an arbitrary unspecified function. A regression procedure consid-

ers describing the dependence of the mean of a response variable Y as a function f (generally

unknown to some degree) of a variable (or covariate) X . Equation (3.13) suggests that, given

some data, we can estimate the dependence of the mean of Y , conditional on the covariate as

follows

E[Y | X = x] = f (x), (3.15)

and under this formal framework the smoother is defined as an estimate of the function f (X)

that is less variable than Y . Smoothers do not assume any rigid form of the dependence,

thus sometimes they can be referred to as nonparametric smoothers, e.g., see Hastie and

Tibshirani (1987).

Formally, a nonparametric smoother is a tool for summarising the relationship between

the response Y and one or more covariates X1, . . .Xp. It produces an estimate of the response

that is less variable than Y ; see Hastie (2017). If the dependence is linear, we can estimate a

regression line which provides a useful summary about the relationship. For more about the

topic, see Conover and Conover (1980), Silverman (1986) and Hastie (2017).

Smoothers usually depend on two main parameters: a smoother matrix denoted by S and

a span which we will describe later and can have two main uses. The first use is to estimate

the dependence of the mean of Y on the covariates X1, . . .Xp and the second use is to make a
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prediction of Y for new values of X .

3.4.1 The k-RNN as a Moving Average.

When Y is a categorical variable, to smooth Y we can average the values of Y in each category.

By doing this, we capture the relationship between Y on X which is smoother than the Y

values themselves. This simple averaging process is the conceptual basis for smoothing in

the more general setting. Most smoothers, attempt to mimic category averaging through local

averaging, i.e., we average the Y values of observations having predictor values close to a

target value. Usually, this averaging is done in neighbourhoods around the target value.

The k-RNN assumes that our target value sd p(x0(t)) is equal to sd p(xi(t)). If we have

replicates of sd p(xi(t)) we can just simply average the y values as our estimate f
(
sd p(xi(t))

)
.

However, we usually do not have replicates, so instead we can average y values correspond-

ing to values close to sd p(xi(t)). We can define a neighbourhood Nk(sd p(xi(t))), which

represents the indices of these observations sd p(xi(t)) inside this neighbourhood and close

to sd p(xi(t)). A formal definition of a this neighbourhood Nk(sd p(xi(t))) for the k-RNN

classifier is

Nk(sd p(xi(t))) = {max{i− k,1} , i−1, i+1, . . . ,min{i+ k,n}} . (3.16)

For example, if an observation is in the fifth place sd p(x5(t)) out of a total of n = 10

observations using k = 2, the neighbouhood N2(sd p(x5(t))) is going to be formed by the

observations of the signed depth sd p(xi(t)) with indices

N2(sd p(x5(t))) = {max{5−2,1} , . . . ,min{5+2,10}}

= {3,4,6,7} .

The running mean smoother or moving average for the k-RNN classifier, with a span of

2k has the following form

f̂k(sd p(xi(t))) =
1
2k ∑

j∈Nk(sd p(xi(t)))
y j. (3.17)

As we saw before, a drawback of this method is its behaviour near the endpoints. Note

that if it is not possible to take k points to the left or to the right of sd p(xi(t)), we take as many
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as possible resulting in a non symmetric neighbourhood. Usually in the k-RNN the span is

an even number which includes k yi’s below sd p(xi(t)), k yi’s above sd p(xi(t)), resulting in

an even span of the form 2k.

This simple smoother is popular in the time series literature and for evenly-spaced time-

series data see Zivot and Wang (2003). However, a disadvantage of working with the moving

average is that in practice does not work well and it tends to be wiggly and flattens out trends

near the endpoints and hence can be severely biased (Buja et al., 1989; Trexler and Travis,

1993).

One of the most popular approaches when we consider the study of a classifier in

functional data is to consider a regression model. Some of the approaches in the literature

estimate posterior probabilities in a nonparametric manner. In fact, equation (3.17) provides

an estimator of the conditional probabilities which can be formulated in terms of conditional

expectations

P(yi = 0 | sd p(x(t))) = E(yi = 0 | sd p(x(t))) . (3.18)

Note that equation (3.18) corresponds to the same conditional probability as in equa-

tion (3.10) using the fact that conditional probabilities can be expressed in terms of conditional

expectations.

3.4.2 Smoother Matrix and Shrinking Smoothers

Smoothers have the advantage that they can be expressed as a mapping acting on the response

vector y = {y1, . . . ,yn}. Note that the linearity is in y and we can write the smoother as

yk = Sky, (3.19)

where Sk is called the smoother matrix S : Rn→ Rn. Therefore we can consider it as an

estimator of a regression function and a conditional probability. For simplicity, we refer to

the case where the conditional probability we are interested in estimating is the one provided

in equation (3.10).

The smoother matrix depends on the number of neighbours k and the observed signed

depths {sd p(x1(t)), . . . ,sd p(xn(t))}. In this case, the matrix Sk which depends on k is a

non-symmetric band matrix whose matrix elements are zero outside a diagonally bordered
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band and the range is determined by the number of neighbours k we consider to estimate

such a matrix. The smoother matrix for the k-RNN as a running mean smoother is a square

matrix of dimension n×n given by

Sk =
{

s{i, j}
}
=

 0 if j < i− k or j > i+ k; k ≥ 0,
1
2k otherwise ,

for i = 1, . . . ,n, and j = 1, . . . ,n. The value of k forms the lower and the upper limit and

the values inside the diagonal band are given by the probabilities 1/2k. A running-mean

smoother not only estimates the number of observations of one particular population but also

estimates the probability that the signed depth of the new observation x0(t) belongs to the

reference population Π0. An example of the smoother matrix for the k-RNN using six ranked

signed depth and k = 2 is given by

S2 =



1/2 1/2 0 0 0 0

1/3 1/3 1/3 0 0 0

1/4 1/4 1/4 1/4 0 0

0 0 1/4 1/4 1/4 1/4

0 0 0 1/3 1/3 1/3

0 0 0 0 1/2 1/2


.

Notice that the truncated neighbourhood is near the boundaries. A smoother can also

be described qualitatively by the eigenvalue and singular value decompositions of the corre-

sponding smoother matrix. We consider the eigenvalue decomposition of the k-RNN classifier

as a running mean smoother. Let {u1, . . . ,un} be an orthonormal basis of the eigenvectors of

S with a sequence of non decreasing eigenvalues θ1 ≥ θ2 . . .≥ θn. The smoother matrix S

admits a decomposition of the following form

S = UDθU
′

=
n

∑
j=1

θ ju ju
′
j, (3.20)

where Dθ is a diagonal matrix with the diagonal formed by the eigenvalues of S. The columns

of U and U′ are called the left and right singular eigenvector of S, respectively. The k-RNN

as a running mean smoother is a smoother where the smooth matrix S is not symmetric.
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However, the singular value decomposition is always a real-valued function. We investigate

the behaviour of the running mean smoother by applying a singular value decomposition to

the smoother matrix.

To show this behaviour, we consider different values of k and different samples sizes

n and calculate the smooth matrix S. Then a singular value decomposition for the smooth

matrix is obtained. Results of this behaviour can be seen in Figure 3.9 and Figure 3.10. The

results show that the first two eigenvalues capture most of the variability which decreases as

the number of neighbours decreases. In addition, we plot the first ordered eigenvalues and

we investigate the behaviour of the singular eigenvectors.

We considered exploring the effect of the sample size on the first two singular vectors.

First, we show the results of applying the singular value decomposition and plotting the right

and left eigenvector for n = 20 with k = 2, n = 200 with k = 4 and n = 200 with k = 20

which can be seen in Figure 3.9.

These demonstrate that the first two singular vectors tend to be a quadratic function. Next,

we investigate if the smoother S belongs to the class of shrinking smoothers. For a vector of

observations y = {y1, . . . ,yn}, we say a smoother S is a shrinking smoother (Hastie, 1996;

Hastie and Tibshirani, 1987) if

‖Sy‖ ≤ ‖y‖ ,

and strictly shrinking if

‖Sy‖< ‖y‖ ,

for all the values of y, where ‖·‖ denotes the Euclidean norm. Note that this is related in the

case of its singular values. If all of its singular values of the smoother matrix S are ≤ 1 the

smoother is a shrinking smoother and strictly shrinking if < 1. For the k-RNN as a moving

average, the largest singular value is slightly greater than one and therefore is not a member

of the class of shrinking smoothers.

Observe that equation (3.20) can be expressed as Su j = θ ju j for j = 1, . . . ,n, and if

S is a shrinking smoother, it shrinks the component of y along u j by an amount θ j as in

equation (3.20).

An advantage of considering a shrinking smoother is that prediction accuracy can some-

times be improved by shrinking, e.g., Copas (1983). Under some special considerations, a

smoother S can be a shrinking smoother. In fact Buja et al. (1989) provides some conditions
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Figure 3.9: The first left and right singular eigenvectors for (top:) n = 20 and k = 2; (middle:)
n = 200 and k = 4 and (bottom:) n = 200 and k = 20.
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to guarantee that S is shrinking. If the smoother matrix S is double stochastic, the smoother S

is a shrinking and symmetric smoother with non-negative elements that are shrinking if each

row adds to 1. However, we can find counter examples, such as the cubic spline smoother,

with a smoother matrix with negative elements, and real positive eigenvalues less than one.

Demmler and Reinsch (1975) provide the mathematical proof.

A major use of a smoother is to prediction. Thus, given data on a response variable and

associated predictor variables Xi, our aim is to find a function of the Xi values which is a

good predictor of Y . Suppose that

yi = f̂k(sd p(xi(t)))+ εi

is the regression model where fk(·) is the true function and the errors are uncorrelated

with E(εi) = 0 and common variance σ2. When yi ∼ Bin(1, p) the variance - covariance

matrix of Sy is given by

Var(Sy) = S
′
diag{pi(1− pi)}S. (3.21)

Point-wise confidence bands can be useful to get an idea of how variable the function

f̂k(sd p(xi(t))) is. However, they are not be very helpful when we want to see how variable the

function f̂k(sd p(xi(t))) is as a whole. Equation (3.21) provides an estimator of the variance -

covariance matrix that can be used to form point-wise standard-error bands. Under normality

assumptions, this can be used to form point-wise error bands for the probabilities that the

signed depth belongs to a particular group Π0 or Π1, therefore we can get an idea of how

variable our estimator is. In fact, Tibshirani and Hastie (1987) discuss this approach to form

point-wise confidence bands for the estimated smoother. From a Bayesian perspective, Wahba

(1983) provides evidence that posterior bands derived from a Bayesian model for smoothing

splines can have good sampling properties. An alternative to forming the point-wise standard

errors for the estimated smoother is to use a parametric bootstrap approach discussed in

Section 3.4.4.

3.4.3 The bias-variance trade-off

In smoothing, there is a trade-off between the bias and variance of the estimate, and this

trade-off is governed by the smoothing parameter or span. In the case of the k-RNN as
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a regression approach, we detailed the trade-off between the bias and the variance. First,

assume that the observation sd p(xi(t)) is near the middle of the data, therefore, we are

containing the total 2k observations. The fitted running mean smoother for the k-RNN can be

written as

f̂k(sd p(xi(t))) =
1
2k ∑

j∈[sd p(xi(t)),sd p(xi+1(t)))
y j

=
1
2k ∑

j∈Nk(sd p(xi(t)))
y j (3.22)

The expected value of E
[

f̂k(sd p(xi(t)))
]

can be written as

E
[

f̂k(sd p(xi(t)))
]
=

1
2k ∑

j∈Nk(sd p(xi(t)))
f (sd p(x j(t))), (3.23)

while the variance can be expressed as

Var
[

f̂k(sd p(xi(t)))
]
=

σ2

2k
. (3.24)

We can get an approximate expression for the bias in terms of f (·) using a Taylor

series expansion for the function f (x j) = f (sd p(x j(t))) and assuming that the quantity

∆ = sd p(x j(t))− sd p(xi(t)) is small. The Taylor series expansion, around sd p(x j(t)) is

given by

f (sd p(x j(t))) = f (sd p(xi(t)))+(sd p(x j(t))− sd p(xi(t))) f
′
(sd p(xi(t)))

+
(sd p(x j(t))− sd p(xi(t)))

2
f
′′
(sd p(xi(t)))

+O(sd p(x j(t))− sd p(xi(t))) (3.25)

where O(sd p(x j(t))− sd p(xi(t))) is the remainder. To explicitly derive the quadratic term,

let y j = j2/2, so that f
′′
(y j) = 1 and all high order differentiations are zero. In this case, the

first two terms of the Taylor series in equation (3.25) are the same. At the value of j = 0, the

running mean smoother for f (sd p(x j(t))) = j2/2 is given by

1
2k

k

∑
j=1

j2 =
(k+1)(2k+1)

12
.

Thus, the first two terms of the Taylor Series expansion can be written as
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f (sd p(x j(t)) = f (sd p(xi(t))+
(k+1)(2k+1)

12
f
′′
(sd p(x j(t)). (3.26)

After some algebra, we can see that the bias in fk(sd p(xi(t))) is given by

Bias [ fk(sd p(xi(t)))] = E
[

f̂k(sd p(xi(t)))− fk(sd p(xi(t)))
]

≈ (k+1)(2k+1)
12

f
′′
(sd p(xi(t)))∆2, (3.27)

where ∆2 =
(
sd p(x j(t))− sd p(xi(t))

)2. An optimal choice of the span is the one that

trades the bias against the variance. One reasonable criterion is the Mean Square Error

(MSE). We select the value of the span that minimises the MSE, which relates the number of

neighbours in the following way:

MSE( fk(sd p(xi(t)))) = Bias2 [ fk(sd p(xi(t))]+Var [ fk(sd p(xi(t))]

=
((k+1)(2k+1))2

144

{
f
′′
(sd p(xi(t)))

}2
∆

4 +
σ2

2k
. (3.28)

From equation (3.28) we can see that increasing the value of the span k, the variance

tends to decrease but on the other hand increases the bias. However, decreasing the value of

k increases the variance but tends to decrease the bias. Therefore there is a trade-off between

the bias and the variance.

Using the derived expressions in equation (3.23) and equation (3.24) the k that minimises

the mean square error is approximately,

kopt ≈

{
9σ2

2∆4
(

f ′′(sd p(xi(t)))
)2

}1/5

.

However, this is not useful in practice since we do not know the function f
′′
(sd p(xi(t))).

3.4.4 A parametric bootstrap approach

Since the work of Efron and Tibshirani (1993), bootstrap techniques have received increasing

popularity in Statistics. Despite its general applicability, bootstrap techniques have been

mainly applied in univariate and multivariate data. There exists comparably less work on

bootstrapping functional data, with some exceptions of Hall and Vial (2006). Bootstrap
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techniques have been widely used for determining the critical value for testing hypotheses

and constructing confidence intervals (Gervini, 2008). Different approaches were developed

to estimate confidence bands following smoothing splines. From a Bayesian approach,

Wahba (1990) discusses confidence bands for smoothing splines and Nychka (1988) provides

evidence that the posterior confidence band derived from the Bayesian model has good

properties. The goal of this subsection is to provide confidence intervals for the conditional

probability of observing population Π0 given the signed depths. Observe that equation (3.21)

provides an expression for the variance-covariance matrix of the response. When yi is

assumed to follow a 0/1 random variable we can assume that yi ∼ Bin(1, p) where p is the

probability that the depth belongs to the reference group and Bin(1, p) denotes the Bernoulli

distribution with probability p of success.

An advantage of considering a parametric bootstrap approach in this setting is that we can

resample from a known parametric distribution. Assuming that yi ∼ Bin(1, p) and we have

some fixed value of k, for all the sd p(x1(t)), . . . ,sd p(xn(t)), the conditional probability of ob-

serving the reference group is denoted by p1(y1 = 0 | sd p(x1(t))), . . . , pn(yn = 0 | sd p(xn(t))).

For the given value of k, we select all the ranked signed depths sd p(1)(x1(t)), . . . ,sd p(n)(x1(t))

in Nk(sd p(xi(t))) and simulate a Bernoulli distribution yi with probability pi(yi = 0 | sd p(xi(t)))

for each sd p(n)(xi(t)) ∈ Nk(sd p(xi(t))). Using this approach, we can simulate as desired to

obtain a bootstrap sample of the conditional probability to belong to the reference population.

We denote our bootstrap samples for the conditional probability as

p∗11 (y1 = 0 | sd p(x1(t))), p∗21 (y1 = 0 | sd p(x1(t))), . . . , p∗B1 (y1 = 0 | sd p(x1(t))),

and we repeat this for each sd p(i)(xi(t)) ∈ Nk(sd p(xi(t))). Note that this approach allows us

to have a bootstrap sample for each observed depth in the training set and we can compute

point-wise bootstrap confidence intervals.

3.4.5 Bootstrap-t Confidence Intervals (CI)

We can obtain a bootstrap sample of the conditional probability that sd p(xi(t)) belongs to

the reference group, from which we can estimate some characteristics of the correspond-

ing sampling distribution. There are several approaches to estimating the end-points of a

confidence interval (CI) using the bootstrap method. We focus on the bootstrap-t interval



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 85

which generalises the well-known Student-t method of constructing confidence intervals. The

algorithm for constructing the confidence intervals for the conditional probability proceeds

as follows:

Step 1. For a fixed value of k, generate the neighbourhood Nk(sd p(xi(t))) and B bootstrap

samples

p∗1i , p∗2i . . . , p∗Bi ,

for each sd p(i)(xi(t)) ∈ Nk(sd p(xi(t))) and i = 1, . . . ,n.

Step 2. For 1≤ j ≤ B and i = 1, . . .n, compute the Z-Score Z∗( j) given by,

Z∗( j) =
p̂∗ j

i − p̂i

σ̂∗j
,

where p̂∗ j
i is the value of p̂i for the jth bootstrap sample and σ̂∗j is the estimated standard

error of p̂∗ j
i from the jth bootstrap sample.

Step 3. The αth percentile of the Z-Score Z∗( j) is estimated by the value t̂(α) such that

1{Z∗( j)≤t̂(α)}
B

= α

Step 4. Then an α- bootstrap-t confidence interval for the conditional probability is given by(
p̂i− t̂(1−α)

σ̂, p̂i− t̂(α)σ̂i

)
,

for each i = 1, . . . ,n and σ̂i the estimated standard error of p̂i.

Using the procedure described, we can estimate a point-wise confidence interval for the

probability that the depth of the new observation belongs to the reference group. For the

simulated data and for all the signed depths in our running example

{sd p(x1(t)) . . . ,sd p(xn(t))} ,

a 95% confidence interval using a total of B = 100 bootstrap samples for each signed

depth of the conditional probability that the observed depths are in the reference group was

constructed. Results of our implementation can be seen in Figure 3.11.
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Figure 3.11: A 95% Bootstrap Confidence Intervals for the simulated data.

3.5 The signed distance integral as a classifier

Note, that all the previous work was motivated in terms of the signed depth which requires

using the signed distances. However, we can consider the signed distance integral as a

measure of dissimilarity between the curves and the reference curve. The goal of this section

is to introduce the signed distance integral as an alternative to classification given in terms of

the principal component scores. To achieve this goal we start by considering the expansion of

the curve for the signed distance integral in equation (3.1) in terms of the principal component

scores.

Consider X(t) to be a function on a closed interval T = [a,b]. Using the Karhunen-Lòeve

expansion for random functions, we can express a curve in terms of a linear combination of

the principal component scores and a complete orthonormal basis functions {ψ1(t),ψ2(t) . . .}.

Let {Xi(t), t ∈ T } for i = 1, . . . ,n, be a collection of random curves and consider that each

of the curves is centered, i.e., Xi(t)− X̄(t). The expansion for each curve in terms of the

principal component scores is given by
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Xi(t) =
∞

∑
j=1

Ξi jψ j(t) for i = 1, . . . ,n, (3.29)

where the matrix Ξi j for j ≥ 1 consists of the functional principal component scores. The

reference curve, Xre f (t), admits an expansion of the following form:

Xre f (t) =
∞

∑
j=1

ξ
re f
j ψ j(t). (3.30)

Substituting equation (3.30) into equation (3.1), we can observe that

∫
T

(
Xi(t)−Xre f (t)

)
dt =

∫
T

( ∞

∑
j=1

Ξi jψ j(t)−ξ
re f
j ψ j(t)

)
dt

=
∫

T

( ∞

∑
j=1

(
Ξi j−ξ

re f
j

)
ψ j(t)

)
dt

=
∞

∑
j=1

(
Ξi j−ξ

re f
j

)∫
T

ψ j(t)dt

=
∞

∑
j=1

(
Ξi j−ξ

re f
j

)
, (3.31)

for i = 1, . . . ,n. By Fubini’s theorem due to Fubini (1907) we can interchange summation

with integration here because the second integrand in equation (3.31) is infinite. Note that

the integral
∫

T ψ j(t)dt integrates to one using the fact that we are working on a complete

orthonormal basis. In practice, we can not compute infinite sums, but we can approximate

the sum using a small finite number of principal components. Thus, an approximation to

equation (3.31) is given by

∫
T

(
Xi(t)−Xre f (t)

)
dt ≈

p

∑
j=1

(
Ξi j−ξ

re f
j

)
. (3.32)

To construct a classifier using equation (3.32), we select a fixed dimension p, and for a

new observation x0(t), we estimate the principal component score ξ̂0p and the corresponding

eigenfunction ψ̂0(t). Then, we assign the new observation to the population Π0 if

p

∑
j=1

(
ξ̂0 j− ξ̂

re f
j

)
> 0.5.

An advantage of considering the signed distance integral as a classifier is that we can

not only classify a new observation, but we can also visualise the signed distance integral.
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We start by exploring the density of the signed depth values using one functional principal

component score. Results of the estimated density using one principal component score can

be seen in Figure 3.12, where a total of 35.51% of the variance can be explained for the

simulated dataset.

0.0

0.1

0.2

0.3

−8 −4 0 4

Signed Depths

Group

0

1

Figure 3.12: Kernel density estimation of the signed distance integral in terms of the first
principal component score. The dashed vertical line at the value of zero indicates the reference
curve (or signed depth of zero).

Next, we consider more that one principal component score. For the simulated dataset,

the first two principal components account for 49.40% of the variability of the data, with

the first eigenfunction capturing most of the variability. The plot of the first two principal

component scores, in Figure 3.13, reveals a clear structure and distinguishes between two

groups.

An interesting feature in Figure 3.13 is the area when there is an overlap in the two

groups. We called this region of overlap to be the border line of a classifier. To achieve

better prediction, most of the classifiers attempt to learn the borderline of each class from the
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Figure 3.13: The first two principal component scores for the simulated data.

training data. We discuss this issue with more detail in Chapter 4.

3.6 Dealing with Equal Samples Sizes

In this section we explore the behaviour of a Bayesian classifier and we explore how we can

construct a Bayesian classifier when dealing with equal and unequal sample sizes. We first,

start exploring the Bayesian approach when the number of observations is the same in each

group.

To start with, assume that we are considering two classes. Let f0(sd p(xi(t))) for i =

1, . . . ,n, be the density of the signed depth in population Π0. Suppose

πG ≥ 0 for G = 0,1. (3.33)

are the prior probabilities of the observed signed depths belonging to each of the groups. The

resulting posterior probability that the observed signed depth belongs to group 0 (reference
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group) is given by

P(sd p(xi(t)) ∈Π0 | sd p(Xi(t)) = sd p(xi(t))) =
f0(sd p(xi(t)))π0

f0(sd p(xi(t)))π0 + f1(sd p(xi(t)))π1
,

(3.34)

where f1(sd p(xi(t))) represents the density of the signed depth observations in the population

Π1 and π1 is the prior probability that the observed signed depth is in population Π1.

The Bayes’ rule classifier assigns a new observed depth sd p(x0(t)) to the class with the

highest posterior probability. The density f0(sd p(xi(t))) is estimated using kernel density

estimation while the prior probabilities are estimated by considering the number of curves in

each group, i.e., π̂1 =
n1

n0+n1
and π̂0 =

n0
n1+n0

, respectively.

When dealing with equal sample sizes, we can simplify equation (3.34) and assign a new

signed depth sd p(x0(t)) to the group with the highest density. In other words,

P(sd p(x0(t)) ∈ y0 | sd p(Xi(t)) = sd p(xi(t))) = max{ f0(sd p(x0(t))), f1(sd p(x0(t)))} .

(3.35)

A random assignment can be used (in case of a tie) to break the tie between the appropriate

classes. The Bayes’ rule classifier can be rewritten in an equivalent form by pairwise

comparisons of posterior probabilities. We define the log-odds as follows:

L(sd p(xi(t))) = log
{

f0(sd p(xi(t)))π0

f1(sd p(xi(t)))π1

}
= log

{
f0(sd p(xi(t)))
f1(sd p(xi(t)))

}
+ log

{
π0

π1

}
. (3.36)

We discuss the Bayes’ rule classifier for imbalance data in Chapter 4.

3.7 Logistic regression

When the response variable is dichotomous and the data analysis is aimed at relating this

outcome to the predictors, one simple approach for modelling binary data is: the logistic

regression. Logistic regression is a special case of a broad class of models known as

generalized linear models (GLMs). Generalized linear models consists of a link function

linking a random component and a systematic component.
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Assume that the response Y is a random variable with distribution in the exponential

family, i.e., the random variable Y is assumed to have probability density of the form

fY (y,θ,φ) = exp
{

yθ−b(θ)
a(φ)

+ c(y,φ)
}
,

where θ is called the natural parameter and φ is called the dispersion or scale parameter,

known as the random component of the model. Generalized linear models also assume that

the expectation of Y denoted by µ is related to the covariates X1, . . . ,Xp, through a systematic

component η = β0 +β1X1 +β2X2 + . . .+βpXp via E(Y ) = g−1 (η), where the function g(·)

is the link function. When the response Y takes values in {0,1}, a natural choice for g−1 (·)

is the inverse logistic link function

g−1(x) =
exp(x)

1+ exp(x)
.

Then, the resulting model is known as logistic regression. In logistic regression, one compares

the probabilities of each class by modelling the log ratio as a linear relationship. Let

p0 = P(Y = 0 | X1, . . . ,Xp) and p1 = 1− p0 = P(Y = 1 | X1, . . . ,Xp). The log ratio (or logit)

of the response probability is given by the log odds

log
(

p1

p0

)
= log

(
p1

1− p1

)
= β0 +β1X1 +β2X2 + . . .+βpXp, (3.37)

where
{

β0,β1,β2, . . . ,βp
}
∈ Rp+1. The unknown regression coefficients are often estimated

using maximum likelihood (OLS, WLS, and GLS) and we derive the expressions

p1 =
exp(β0 +β1X1 +β2X2 + . . .+βpXp)

1+ exp(β0 +β1X1 +β2X2 + . . .+βpXp)
,

and

p0 = 1− p1 =
1

1+ exp(β0 +β1X1 +β2X2 + . . .+βpXp)
.

Logistic regression can be applied to classification. In the multivariate regression model,

the probabilities p0 and p1 naturally lead to a logistic regression discriminant rule. Sup-

pose we have a set of n independent realisations of these random variables denoted by{
(y1,xi1, . . . ,xip) , . . . ,(yn,xn1, . . . ,xnp)

}
. To classify a new observation xnew

1 , . . . ,xnew
p with a

logistic regression discriminant rule, the first step is to derive estimates β̂0, β̂1, β̂2 . . . , β̂n of

the coefficients β0,β1,β2, . . . ,βp. Then, we estimate
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p̂new =
exp(β̂0 + β̂1xnew

1 + β̂2xnew
2 + . . .+βpxnew

p )

1+ exp(β̂0 + β̂1xnew
1 + β̂2xnew

2 + . . .+ β̂pxnew
p )

,

and assign to xnew
1 , . . . ,xnew

p to the class 0 if p̂new > 0.5. A drawback of the logistic regression

discriminant rule is when we have more than two groups. Even though the logistic regression

discriminant rule can be extended to more than two groups, such generalisation require

multiple pairwise comparisons, which in the case of many groups can be complex and

tedious.

Observe that a sensible model for the probabilities in Figure 3.15 is to model such

probabilities using logistic regression and predict the class membership by only considering

a single covariate (the signed depth). However, this is not the only option and in fact we can

consider a second covariate.

3.7.1 A second covariate: Distance to the mode estimation

In classification problems for functional data, where the population consists of two or more

well-separated sub-populations, the mean and the median functions are not representative

of any sub-population (Delaigle and Hall, 2010). To avoid this, we can consider the modal

function which represents the most likely function in one of the sub-populations. The mode

estimation has been studied by Hall and Heckman (2002) and Gasser et al. (1998).

Our goal is to introduce the mode as an alternative to the median for estimating the

location for functional data. We start by describing the estimation of the mode in terms of the

functional principal component scores and we consider using the signed distance to the mode

as a second covariate.

Motivated by the Karhunen-Lòeve expansion, we can represent a function X(t) in terms

of the principal component scores. Let h j be the density of the jth principal component score.

The modal function is given by

X(t)mode =
∞

∑
j=1

θ
1/2
j m jψ j(t), (3.38)

which, for each j, has the jth principal component score ξ j equal to the mode m j of h j. In a

finite sample, the x(t)mode can be estimated by

x̂(t)mode =
T

∑
i=1

θ̂
1/2
j m̂ jψ̂ j(t), (3.39)
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where ψ̂ and θ̂ are estimators of ψ j(t) and θ j, the orthonormal eigenfunctions and eigenvalues

of the spectral decomposition of the variance-covariance matrix, respectively, m̂ j is the mode

of h j, obtained as a value which produces a local maximum of ĥ j, where ĥ j an estimator of

h j, usually estimated using kernel density estimation methods and T is a truncation point.

For implementation purposes we consider the value of T = 10, since the effect of changing T

from 10 to higher values is almost indistinguishable. While the mode estimation was carried

out using the Parzen’s kernel mode estimator, i.e, taking the value maximising the kernel

density estimate, implemented via the R package modeest. An advantage of considering the

mode is that it is a more robust function and not as susceptible to the problem of atypicals as

the mean and in some cases the median. In our running example, an implementation of the

modal curve for the two populations can be see in Figure 3.14.
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Figure 3.14: Modal curves, maximum and minimum curves for each population with a
truncation point T = 10 for the simulated data.

To investigate if the distance to the mode can be used as a second covariate in our analysis

and to avoid multicollinearity, we start investigating the correlation between the distance

to the modal function and other different depths. We consider the FM depth, the h-modal

depth, the random projection (RP) depth and the double random projection (DRP) depth. The

correlation matrix for the simulated data set can be found in Table 3.1.

Observe that the correlation between the FM depth and the modal distance ρ = 0.307

suggests that we can include the modal distance as a second covariate in our proposed model.
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Table 3.1: Correlation matrix between the FM depth, different functional depths and the
modal distance.

FM Depth h-Modal RP DRP Modal distance

FM Depth 1 - - - -
h-Modal 0.684 1 - - -

RP -0.964 -0.484 1 - -
DRP -0.964 -0.484 0.999 1 -

Modal distance 0.307 0.295 -0.278 -0.279 1

Moreover, the modal function also makes use of the signed distance to the mode as a second

covariate in our analysis.

Now, we can consider a model with two independent variables, the signed depth X1 =

sd p(Xi(t)) for i = 1, . . . ,n, and the signed distance to the mode X2 = sdm(Xi(t)) for i =

1, . . . ,n, and a response variable Y , constrained to be either zero and one indicating the

true class membership. By considering this, we can fit a logistic regression using R to the

following set of models: Model 1 using X1 = sd p(Xi(t)) as a single covariate, Model 2 using

X1 = sd p(Xi(t)) and X2 = sdm(Xi(t)) and Model 3 including an interaction term, X1 : X2.

The results of fitting a logistic regression are shown in Table 3.2, giving a summary of the

fitted model which includes the estimated coefficients, standard errors of the coefficients, the

number of observations, the log likelihood and the AIC.

Table 3.2: Summary of fitted logistic regression using the population label as a dependent
variable.

Variable Model 1 Model 2 Model 3

Signed Depth 4.70*** 9.42*** 17.96***
(0.52) (2.41) (4.79)

Signed Distance 0.86** 0.595***
(0.05) (0.13)

Signed Depth : Signed Distance -2.06**
(0.75)

Observations 200 200 200
Log Likelihood -61.28 -29.16 -24.4
Akaike Inf. Crit. 124.57 62.33 54.84

*** p < 0.01, ** p < 0.05, * p < 0.1

Figure 3.15 shows the fitted line to examine the relationship between the groups and the

signed depth logit regression curve fitted to the simulated data. Some atypicals observations
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can be seen to have very large positive depth values from the reference group influencing the

logit curve. Figure 3.16 shows the fitted line to examine the relationship between the groups

and the signed distance to the mode logit regression curve fitted to the simulated data.
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Figure 3.15: The signed depth logit regression curve fitted to the simulated data.

Measuring the performance of the logistic regression discriminant rule using the mis-

classification error provides a way to understand the data. Yet, when we consider modelling

the estimated probabilities as a binary regression, we want to assess the adequacy of a fitted

logistic regression model to the simulated data. For such a purpose Lemeshow and Hosmer Jr

(1982), Hosmer and Lemesbow (1980) and Hosmer Jr et al. (2013) proposed a goodness

of fit test called the Lemeshow goodness of fit test for the logistic regression model. The

test is based on a contingency table type approach to develop the Lemeshow goodness of fit

statistics, Ĉ, obtained by calculating the Pearson Chi-Square statistic from the g×2 table of

observed and estimated expected probabilities. The Lemeshow goodness of fit statistic, Ĉ is

defined as

Ĉ =
g

∑
k=1

(
Ok−n

′
kπ̄k

)2

n′kπ̄k(1− π̄k)
, (3.40)
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Figure 3.16: The signed distance to the mode logit regression curve fitted to the simulated
data.

where n
′
k represents the total number of observations in the kth group, ck denotes the

number of covariate patterns, which is defined as every possible combination of a model’s

independent variables, in the kth decile. The number of responses among the ck covariate

patterns are given by

Ok =
ci

∑
j=1

y j,

and the average estimated probabilities are given by

π̄k =
ci

∑
j=1

m j p̂ j

n′k
.

In Hosmer and Lemesbow (1980), it is demonstrated that the distribution of the statistic,

Ĉ is well approximated by χ2
(g−2). The results of applying the Hosmer-Lemeshow goodness

of fit test, to the simulated data in Figure 3.3 and for the three different models are shown

in Table 3.3. Observe that the corresponding p-values for model 1, model 2 and model 3

are less than 0.05. This indicates that a logistic regression model using a single covariate,

two covariates and two covariates and an interaction term is not an appropriate fit for this
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particular simulated dataset. The test was carried out using the R package generalhoslem and

using 10 groups.

Table 3.3: Hosmer and Lemeshow goodness of fit (GOF) test applied to the simulated dataset.

Hosmer and Lemeshow goodness of fit (GOF) test

Model 1 χ2 = 67.398 df = 8 p-value = 1.616e-11
Model 2 χ2 = 32.449 df = 8 p-value = 7.737e-05
Model 3 χ2 = 59.196 df = 8 p-value = 6.7e-10
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3.8 Generalized additive models (GAMs)

Generalized additive models (GAMs) proposed by Hastie and Tibshirani (1987), Hastie and

Tibshirani (1990) and Wood (2006), are a more flexible extension of Additive Models. Here,

we discuss the additive logistic model for binomial response data. Generalized additive

models provide an extension of the standard linear regression model by allowing smooth

functions of the covariates. More precisely, they model a transformed mean response as a

sum of smooth functions of individual covariates. For a chosen link function g(·), we have

g(E [Y | X1, . . . ,Xp]) = f0 +
p

∑
j=1

f j(X j), (3.41)

where f0 ∈ R, and f j are smooth functions. Implicit in equation (3.41) is the assumption

that E
[

f j(X j)
]
= 0, otherwise there would be free constants in each of the functions. We are

interested in estimating E[Y |X1, . . . ,Xp]. An estimator for E[Y |X1, . . . ,Xp] is naturally given

by

g−1

(
f̂0 +

p

∑
j=1

f̂ j(X j)

)
,

where the estimated smooth functions are fitted usually by a Generalized Local Scoring

Algorithm (GLSA), Backfitting or Penalised least-squares; see Hastie and Tibshirani (1987)

for more.

A generalized additive model with the inverse logistic link function can serve to generalize

the linear predictor of the logit function with an additive one, i.e.,

log
{

P(Y = 1 | X1, . . . ,Xp)

1−P(Y = 1 | X1, . . . ,Xp)

}
= f0 +

p

∑
j=1

f j(X j). (3.42)

As an alternative to Hastie and Tibshirani (1987), Generalized Additive Models by Wood

(2006) can be represented using penalised regression splines, usually estimated by penalised

regression methods where the smooth components are modelled using splines or another

appropriate function basis. The appropriate degree of smoothness for the function can be

estimated from the data using general cross validation. GAMs allow the data to determine the

shape of the response curves, rather than being limited by the shapes available in a parametric

class. For this reason, GAM modelling provides a more flexible tool for data exploration than

standard GLM modelling as discussed by He et al. (2006).
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To start explaining approach to the Generalized Additive Models by Wood (2006), assume

the simple model with one smooth function of a single covariate, f1(X1), and let it have a

basis representation given by

f1(X1) =
q1

∑
j=1

β1 jb1 j(X1), (3.43)

where β1 j are the unknown parameters for f1, q1 is the number of unknown parameters of

f1, and b1 j(t) is the jth basis function. A single univariate function can be represented using

cubic splines with knots occurring at specific locations or wherever is a datum. For the

regression splines, the locations of the knots must be chosen. Let us denote the locations

knots for f1 by
{

x∗1i : i = 1, . . . ,q1−2
}

. Let the basis be given by b11(x) = 1, b12(x) = x and

b1 i+2 = R(x,x∗1i) for i = 1 . . .q1−2, where

R(x,z) =
[
(z−1/2)2−1/12

][
(z−1/2)2−1/12

]
/4

−
[
(|x− z|−1/2)4−1/2(|x− z|−1/2)2 +7/240

]
/24. (3.44)

An additive model of this form can be written in the linear form y = Xβ+ ε, where the ith

row of the model matrix is given by:

Xi =
[
1,x1i,R(x1,x∗11),R(x1,x∗12), . . . ,R(x1,x∗1q1−2)

]
. (3.45)

An alternative to controlling smoothness is to add a wiggliness penalty to the least squares

fitting objective. Then, the penalised regression spline fitting problem is to minimise

‖y−Xβββ‖2 +λ1

∫ 1

0
[ f
′′
1 (X1)]

2dX1. (3.46)

where the penalty term for f1(X1) can be written as

λ1

∫ 1

0
[ f
′′
1 (X1)]

2dX1 = βββ
′
S1βββ,

and the matrix S1 is a matrix of known values and contains zero everywhere except for the

entries Si+2, j+2 = R1(x1,x∗1 j) for i, j = 1, . . . ,q1−2. The λ1 parameter controls the weight

associated to the objective of making the function f1 smooth. Some special cases are when

λ1 = 0, i.e., no constraint on in the function f1, and when λ1 = ∞ the function f1 has to be

linear. In summary, the penalised regression spline fitting problem minimises
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‖y−Xβββ‖2 +βββ
′
S1βββ, (3.47)

with respect to βββ. Using some algebra, it can be see that the penalised least square estimator

of βββ is given by

βββ =
(

X
′
X+λ1S1

)−1
X
′
y.

Similarly, the influence or hat matrix H, can be written as

H = X
(

X
′
X+λ1S1

)−1
X
′
.

To choose λ, we use general cross validation (GCV). Choosing the adequate smoothing

parameter is an important issue; if the smoothing parameter is too high, then the data is over

smoothed, and if the parameter is too low, then the data will be under smoothed. Choosing

the smoothing parameter using GCV has computational advantages over ordinary cross

validation. For the model in equation (3.49) the general cross validation score can be written

as

GCV (λ1) =

n
n
∑

i=1

(
yi− f̂1(x1i)

)2

tr (I−H)2 , (3.48)

where I represents the identity matrix, f̂1(x1i) is the fitted function using the observations

from the first covariate X1, and H is the hat matrix. Usually the GCV score is obtained by a

search for each value of λ1 = (λ1i) for i = 1, . . . ,m.

We follow a generalized additive model to estimate the predicted probabilities in the

k-RNN classifier based on signed depth and the signed distance to the mode. To remain

consistent with our previous investigation using the logistic regression approach in Section 3.7,

we considered the same set of models: Model 1 using X1 = sd p(Xi(t)) as a single covariate,

Model 2 using X1 = sd p(Xi(t)) and X2 = sdm(Xi(t)) and Model 3 including an interaction

term, X1 : X2. The approach we consider was implemented via the R package mgcv.

A first proposed model - One covariate

Consider a model based on one covariate X1 = sd p(Xi(t)). The proposed model to fit for

predicting the class membership is in the form of an additive smooth function with a single

covariate X1 : the signed depth. The probabilities for each group are given by
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P [Y = 1 | X1] =
exp{ f0 + f1(X1)}

1+ exp{ f0 + f1(X1)}
,

and

P [Y = 0 | X1] =
1

1+ exp{ f0 + f1(X1)}
,

respectively, with f0 ∈ R, and f1 is a smooth function. Equivalently, the logit transformation

can be expressed as

log
{
P [Y = 1 | X1]

P [Y = 0 | X1]

}
= f0 + f1(X1), (3.49)

and instead of directly estimating the probabilities, we estimate the smooth function f1. For

the classification problem with groups of data from two population we have known population

labels Y = 1 and Y = 0 for all the sample data, i.e., we observe (X1i,Yi) for i = 1, . . . ,N and

we use them to estimate the constant f0 and the function f1(X1). For a new observation

with observed covariate X10 we will assign this to population Π1 if the GAM estimated

P [Y = 1 | X10]> P [Y = 0 | X10] and to population Π0 otherwise.

One way of measuring the flexibility of the fitted model is to define the effective degrees

of freedom. This can be defined as the trace, i.e., tr(A) = tr(XH). The maximum of tr(A) is

the number of parameters less the number of constraints. While the smoothing parameters

vary, from zero to infinity, the effective degrees of freedom moves smoothly between these

limits.

In this GAM implementation, the smooth function f1 is represented using penalised

regression splines and the Generalized Cross Validation (GCV) technique is used to estimate

smoothing parameters. Results of the fitted model to the simulated data can be seen in

Table 3.4, where the smoothing parameter is given by λ1 = 0.074.

Table 3.4: The approximate significance of smooth terms.

Smooth terms edf Ref.df Chi.sq p-value

S(Signed Depth) 5.631 6.977 112.1 < 0.0001

In the last column of Table 3.4, we can observe a p-value. This is testing the significance

of smooth terms. The details behind this calculation are found in Section 4.8.5 of Wood

(2006). Clearly, there is a strong evidence that the Signed Depth is important.
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The estimated smooth GAM function for the simulated data is displayed in Figure 3.17

along with 95% confidence limits shown using dashed lines. We observe that atypicals

influence the smooth curve on the left-hand side by leading to higher than expected probability

estimates when the depth has a large negative value. For instance, some observations are

pulling up the estimated smooth GAM function for f̂ (X1).
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Figure 3.17: Estimated smooth GAM function for f̂ (X1).

The confidence intervals for the component functions of a GAM are constructed using

a Bayesian approach, which are obtained by simulating from the posterior distribution

of interest. More details on the form of the posterior distribution can be found in Wood

(2006). The Bayesian confidence intervals are obtained from the quantiles of the posterior

distribution. Some previous approaches to finding confidence intervals involved the use of

bootstrap techniques, but Bayesian confidence intervals are cheaper than performing one

bootstrap replicate.

A second proposed model - Two covariates

In the second model, suppose that we have two covariates variables X1 = sd p(Xi(t)) and

X2 = sdm(Xi(t)) and a response variable. We are interested in predicting the class membership
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in the form of additive smooth functions of two covariates X1 : the signed depth and X2 : the

signed distance to the mode. As before, the probabilities for each group are given by

P [Y = 1 | X1,X2] =
exp{ f0 + f1(X1)+ f2(X2)}

1+ exp{ f0 + f1(X1)+ f2(X2)}
,

and

P [Y = 0 | X1,X2] =
1

1+ exp{ f0 + f1(X1)+ f2(X2)}
,

with f0 ∈ R, and f1 and f2 are smooth functions. Equivalently, the logit transformation can

be expressed as

log
{
P [Y = 1 | X1,X2]

P [Y = 0 | X1,X2]

}
= f0 + f1(X1)+ f2(X2), (3.50)

In this GAM implementation, each smooth function is fitted using penalised regression splines

and the Generalized Cross Validation (GCV) technique is used to estimate the smoothing

parameters. Note that in terms of the estimation, we need to add a penalty term for f2(X2),

which is given by

λ2

∫ 1

0
[ f
′′
2 (X2)]

2dX2 = βββ
′
S2βββ.

Now, the penalised regression spline fitting problem is to minimise

‖y−Xβββ‖2 +βββ
′
S1βββ+βββ

′
S2βββ, (3.51)

with respect to βββ. To choose λ1,λ2, as with the model with a single covariate, we use general

cross-validation. For the model in equation (3.50), the general cross validation score can be

written as

GCV (λ1,λ2) =

n
n
∑

i=1

(
yi− ( f̂1(x1i)+ f̂2(x2i)

)2

tr (I−H)2 , (3.52)

where I represents the identity matrix, f̂1(x1i) is the fitted function using the observations

from the first covariate X1 and f̂2(x2i) is the fitted function using the observations from the

second covariate X2. The hat matrix H is written as

H = X
(

X
′
X+λ1S1 +λ2S2

)−1
X
′
.
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In this case, the GCV score is obtained by a grid search for each combination of (λ1i,λ2 j)

for i = 1, . . . ,m and j = 1, . . . ,n. We applied the proposed model to the simulated dataset.

Results of the fitted smoothed terms using two covariates are shown in Table 3.5, where the

values of the smoothing parameters are λ1 = 0.12765 and λ2 = 0.0283. Figure 3.18 shows

the fitted functions for the signed depth and the signed distance.

Table 3.5: Table showing the approximate significance of smooth terms.

Smooth terms edf Ref.df Chi.sq p-value

s(Signed Depth) 4.467 5.457 38.09 < 0.0001
s(Signed Distance) 1.858 2.253 29.69 < 0.001
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Figure 3.18: First and second estimated smooth GAM functions for the simulated dataset.

We can observe from Figure 3.18a, that the estimated smooth function for the signed

depth is influenced by atypicals, while Figure 3.18b shows that the estimated smooth function

for the distance to the mode seems to be linear for this particular dataset. In terms of the

approximate significance of smooth terms, both terms, the signed depth and the signed

distance to the mode, seem to be important in our model.
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A third proposed model - An interaction term

One might add an interaction term like f12(X1,X2) to equation (3.50) and estimate with a

surface smoother. We can consider a pairwise interaction between two the two covariates X1

and X2, where the probabilities for each group are given by

P [Y = 1 | X1,X2] =
exp{ f0 + f1(X1)+ f2(X2)+ f12(X1,X2)}

1+ exp{ f0 + f1(X1)+ f2(X2)+ f12(X1,X2)}
,

and

P [Y = 0 | X1,X2] =
1

1+ exp{ f0 + f1(X1)+ f2(X2)+ f12(X1,X2)}
.

The logit transformation can be expressed as

log
{
P [Y = 1 | X1,X2]

P [Y = 0 | X1,X2]

}
= f0 + f1(X1)+ f2(X2)+ f12(X1,X2), (3.53)

where f0 ∈ R, and f1, f2 and f12 are smooth functions. As the components of this model are

not identifiable, we need to add some restrictions in f12(X1,X2). A convenient choice is

E
[

f12(X1,X2) | X j
]
= 0 for j = 1,2. (3.54)

Observe that such restrictions are analogous to those put on each f j(Xi), E
[

f j(Xi)
]
. The

model in equation (3.53) is a hierarchical model, which means that the subterms f1(X1)

and f2(X2) are in the model as well. Using penalised regression splines, the function f12 in

equation (3.53) has a penalty of the form

∫ (
∂2 f 2

12

∂X2
1

)2

+2
(

∂2 f12

∂X1∂X2

)2

+

(
∂2 f 2

12

∂X2
2

)2

dX1dX2. (3.55)

We can observe that the expression involves second order terms. To see how we can write

the penalty form, let d = d j(X1) = b
′′
j(X1) be the basis expansion for the second derivative of

the function f
′′
(X1), then, the first term in equation (3.55) can be written as

∫ 1

0

(
f
′′
(X12)

)2
dX1 =

∫ 1

0
βββ
′
dd
′
βββdX1

= βββ
′
∫ 1

0
dd
′
dX1βββ

= βββ
′
Sβββ, (3.56)
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with S =
∫ 1

0 dd′dX1. Treating each integral on the right hand side of equation (3.55) in a

similar way, we can observe that the penalty term can be written as β
′Sβ where the coefficient

matrix S is given by

S =
∫ 1

0
dX1,X1(X1,X1)dX1,X1(X1,X1)

′
+2dX1,X2(X1,X2)dX1,X2(X1,X2)

′

+dX2,X2(X2,X2)dX2,X2(X2,X2)
′
, (3.57)

and βββ is a parameter vector with β j in its jth element. The coefficient matrix can be expressed

in terms of the known basis functions b j providing that these possess at least two (integrable)

derivatives with respect to X1 and X2. For the simulated dataset, results of the fitted smoothed

terms using the interactions terms are shown in Table 3.6.

Table 3.6: The approximate significance of smooth terms when we consider an iteration
between the signed depth and the distance to the mode.

Smooth terms edf Ref.df Chi.sq p-value

S(Signed Depth) 4.3974 5.392 38.398 < 0.0001
S(Signed Distance) 1.0009 1.001 14.264 < 0.001
S(Signed Depth, Signed Distance) 0.8706 2.000 2.712 < 0.05

In this case, the GCV score is obtained by a grid search for each combination of

(λ1h,λ2i,λ12 j) for h = 1, . . . ,2 and i = 1, . . . ,25 and j = 1, . . . ,1.5. We applied the pro-

posed model to the simulated dataset. Results of the fitted smoothed terms using two

covariates are shown in Table 3.5, where the values of the smoothing parameters are given by

λ1 = 0.132125, λ2 = 22.7966 and λ12 = 0.003786. Here, the interaction between the signed

depth and the signed distance to the mode seems to be significant.

3.8.1 Preventing over-fitting in the data

Unfortunately, generalized additive models can be very sensitive to the presence of a small

proportion of observations that deviate from the assumed model. Therefore, a few atypical

observations could seriously affect the non-parametric estimates of the smooth regression

function. We observed such behaviour in Figure 3.17 and Figure 3.18. Where for instance,

some observations are pulling up the estimated smooth GAM functions.

To overcome this situation, we proposed an iterative procedure for down-weighting such

observations, which is part of the methodology but very useful in our case. There are multiple
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ways to approach the estimation of the generalized additive models. We followed the more

stable approach of a GAM fitting process in Wood (2006).

The estimation for GAM models proceeds as follows:

Step 1. Construct basis functions and a set of one or more quadratic penalty coefficient matrices

for each smooth term.

Step 2. Obtain a model matrix for the parametric component of the GAM. These matrices are

combined to produce a complete model matrix and a set of penalty matrices for the

smooth terms. Iteratively re-weighted Least Squares (IRLS) is then used to estimate

the model; at each iteration of the IRLS, a penalised weighted least squares model is

run, and the smoothing parameters of that model are estimated by GCV.

Step 3. Repeat the process until convergence is achieved.

Before, explaining in detail the iterative procedure, first consider the estimation of

the GAM when the distribution of Yi | Xi , i = 1, . . . ,n, belongs to an exponential family.

Let Y1, . . . ,Yn be independent random variables following a GAM model with associated

covariates X ∈ Rp and let µi = g−1(ηi), ηi = βββ
′
Xi, υi = v(µi) and v be a known function.

Suppose we have a set of n independent realisations of these random variables denoted by

{(x1,y1) , . . . ,(xn,yn)}, then the maximum likelihood estimate (MLE) satisfies the following

equations

n

∑
i=1

(
yi−µi

υi

)
∂µi

∂βββ

∣∣∣
βββ=β̂ββ

. (3.58)

Using some algebra, we can see that these equations can be written as

n

∑
i=1

(yi−µi)
∂ηi

∂µi
Wixi = 0, (3.59)

where the weights are given by

Wi = υ
−1
i

(
∂µi

∂ηi

)
. (3.60)

To solve equation (3.59), a penalised iterative re-weighted least squares (P-IRLS) algo-

rithm is used. The algorithm consists of two steps which are repeated until convergence:
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1. Given the current parameter estimates β( j), and a corresponding estimated mean

response vector µ(k), calculate:

Wi ∝
1

υ

(
µ(k)i

)
g′
((

µ(k)i

)) and zi

(
βββ
( j)
)
= ηi(βββ

( j))+
(

yi−µi(βββ
( j))
)

∂ηi

∂µi

(
βββ
( j)
)
.

2. Minimize

∥∥∥√W(z−Xβββ)
∥∥∥2

+λβββ
′
Sβββ,

with respect to βββ to obtain βββ
(k+1), where S = [S1, . . . ,Sp] is the matrix of known values

and W is a diagonal matrix such that Wii =Wi.

A drawback of the penalised iterative re-weighted least squares schema is that it can only

be used to estimate the model coefficients, βββ, given the smoothing parameter λ. To perform

down-weighting on atypicals, we first start by considering a loss function. The role of this

loss function is to give less weight to the vector of scaled Pearson residuals, r, of a first fitted

GAM model which does not uses weights.

In our implementation, we consider the Huber loss function introduced in Huber (1964)

and Huber (1973). The Huber loss function, for a vector of residuals r = {r1, . . . ,rn} is

defined piecewise by

Lδ(r) =


1
2r2, for |r| ≤ δ,

δ(|r|− 1
2δ), otherwise.

where δ is the down-weighting threshold. Observe that the Huber loss function is a quadratic

function for small values of r. Thus, this function gives less weight to the observations that

are far from the centre as demonstrated in Figure 3.19.

When the residuals follows a standard Gaussian distribution, usually the value of the

threshold parameter is δ = 1.345. When we are dealing with generalized additive model, a

better way to check the model fit is to consider scaled Pearson residuals. Scaled Pearson

residuals are raw residuals divided by the standard deviation of the data. More precisely,

rPi =
ri− µ̂i√

v(µ̂i)
. (3.61)
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Figure 3.19: Hubert loss function with a threshold parameter δ = 1.345 and a set of simulated
residuals.

The name of Pearson residuals is taken from the fact that for the Poisson distribution,

the Pearson residuals are defined as the signed square root of the component of the Pearson

χ2 goodness of fit statistics. Note that observations with an absolute Pearson residual value

larger than δ will be down-weighted; the larger the residual, the lower the weight. For

down-weighting atypicals, we consider a set of Huber weights using the residuals previously

fitted. In our case we set δ = 1.65, which produced good results in this situation. Note that

as the value of δ gets larger, the robust fit resembles the classic one.

The procedure for down-weighting atypicals can be summarised in the following steps.

Step 1. Fit a GAM model which does not use weights. We called this model M.

Step 2. Find the scaled Pearson residuals from the model M.

Step 3. Find a set of Huber weights using the residuals from Step 2.

Step 4. Fit a new model now using the weights determined in Step 3 and now let this be M.

Step 5. Iterate steps 2 to 4 until the difference between the log likelihood of the previous model

is small.

However, a drawback about down-weighting the effects of atypical in the data is that
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this process tries to guard against the model overfitting on the training set which could then

possibly lead to it not working as well on independent data.

In terms of the implementation, we use the weights option in the gam() function in

the mgcv package to down-weight atypicals. Figure 3.20 shows the first two iterations of

this procedure. Figure 3.20(a) shows the value of the scaled Pearson residuals, the Huber

residuals, an estimated GAM function and the fitted probabilities for the signed depth. We

observe some atypicals in the data and we see observations with a Huber residual greater

than 1.5. After the second iteration, the fitted probabilities in Figure 3.20(b) show the outlier

observations down-weighted. Comparing Figure 3.20(a) and Figure 3.20(b) we can observe

that the atypicals are down-weighted after the first iteration.



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 111

0 100 200

−4
−2

0
2

4

Index

s.r
es

id2

0 100 200

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

1

Index

Hu
be

r.r
es

id

−0.6 0.2

−1
2

−1
0

−8
−6

−4
−2

0
2

depth.training

s(d
ep

th.
tra

ini
ng

,8.
87

)
−0.6 0.2

0.0
0.2

0.4
0.6

0.8

depth.training

f.p
ro

bs

(a)

0 100 200

−1
5

−1
0

−5
0

5
10

Index

s.r
es

id2

0 100 200

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2

Index

Hu
be

r.r
es

id

−0.6 0.2

−1
0

−5
0

depth.training

s(d
ep

th.
tra

ini
ng

,8.
75

)

−0.6 0.2

0.0
0.2

0.4
0.6

0.8
1.0

depth.training

f.p
ro

bs

(b)

Figure 3.20: Scale Pearson residuals, the Huber residuals, an estimated
GAM function for the signed depth and the fitted observations for (a) first
iteration and (b) second iteration using a set of Huber weights.
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3.9 The GAM as a classifier

In this section we explain how we can use the distance to the mode and an interaction term

between those two variables to estimate the predicted probabilities and predict the group

membership of a new curve, x0(t). We start by describing the binary problem and then we

extend this approach to more than two groups.

Recall that the logit transformation can be expressed as

log
{
P [Y = 1 | X1,X2]

P [Y = 0 | X1,X2]

}
= f0 + f1(X1)+ f2(X2)+ f12(X1,X2), (3.62)

where f0 ∈ R, and f1, f2 and f12 are smooth functions. The probabilities for each group are

given by P [Y = 1 | X1,X2] and P [Y = 0 | X1,X2] as defined in Section 3.8. As we saw before,

GAMs provide a flexible tool to estimate such probabilities. For a two class problem and

equally balanced number of observations in each group, we can assign a curve x(t), with

covariates X1 : the signed depth and X2 : the signed distance to the mode, according to the

following rule

C (X1,X2) =

 1 if P̂ [Y = 1 | X1,X2]> 0.5

0 if P̂ [Y = 0 | X1,X2]< 0.5

where P̂ [Y = 1 | X1,X2] and P̂ [Y = 0 | X1,X2] are estimated as we described in Section 3.8. To

classify a new observation, x0(t), we first derive estimates of f̂1(X1), f̂2(X2) and f̂12(X1,X2),

then we calculate

pnew =
exp( f̂1(X1)+ f̂2(X2)+ f̂12(X1,X2))

1+ f̂1(X1)+ f̂2(X2)+ exp( f̂12(X1,X2))
, (3.63)

and assign the new observation to population Π1 if pnew > 0.5. Similarly, we can consider

using the subterms f1(X1) and f2(X2) to classify new observations. Table 3.7 shows the

classification results for three different GAMs. Model 1 refers to the model using the signed

depth as a single covariate. Model 2 is the model formed by two covariates, the signed depth

and the signed distance to the mode. Model 3 is the model formed by using an interaction

between the two covariates.

We decided to use model 3 with the interaction terms because it achieves a higher

accuracy compared with the models formed by considering the subterms f1(X1) and f2(X2).

An advantage of working with with an interaction between two covariates is that we can
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Table 3.7: Several performance measures for different GAMs.

Model Measure of Performance

Error Rate Accuracy AUC

Model 1 0.1525 0.8475 0.8475
Model 2 0.0625 0.9375 0.9375
Model 3 0.0325 0.9675 0.9675

visualise the interaction between the distance to the mode and the signed depth. For the

running example, we considering the population Π0 as the reference group. The estimated

classification surface can be seen in Figure 3.21. It shows the signed depth against the signed

distance to the mode along with the contours of the surface fitted using the interaction terms.

The contour edges are set to be 0.5, because observations above this level are assigned to

population Π0 and observations below are assigned to population Π1.
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Figure 3.21: Estimated surface for the two functional predictors the distance to the mode in
the reference group and the signed depth in the simulated dataset when the response is 0 or 1.
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3.9.1 Extending to more than two groups

In many applications, we may, for instance, be considering different curves generated from

different groups. In this section, we consider extending the proposed approach to more than

two classes. We start by exploring the extension of the logistic additive model regression to

classification with multiple classes.

Let {0,1,2, . . . ,G−1} be the G classes or groups associated with the the observations.

When we consider more than two classes, the model is called multinomial logistic regression

which generalises the logistic regression to multiple classes. This is similar to fitting G

separate logit models. The fitting procedure uses the log-odds ratio and assumes that the

log-odds ratio for class i relative to population Π0 has the following form

log
{
P [Y = i | X1,X2]

P [Y = 0 | X1,X2]

}
= f i

0 + f i
1(X1)+ f i

2(X2)+ f i
12(X1,X2), (3.64)

for i ∈ {1,2, . . . ,G−1}. Here f i
1(X1), f i

2(X2) and f i
12(X1,X2) are smooth functions consider-

ing only observations from the ith group. As before, the conditional probability for population

Π0 is given by

P [Y = 0 | X1,X2] =
1

1+ exp{ f1(X1)+ f2(X2)+ f12(X1,X2)}
.

while the conditional probability of observing population Πi is given by

P [Y = i | X1,X2] =
exp
{

f i
1(X1)+ f i

2(X2)+ f i
12(X1,X2)

}
1+ exp

{
f i
1(X1)+ f i

2(X2)+ f i
12(X1,X2)

} .
In the same sense, this provides a comparison between observations in population Πi and Π0.

To demonstrate the multinomial logistic regression for more than two groups, we start

simulating an additional group. Let GP (m(t),K(s, t)) be a Gaussian process with mean

m(t) = 80 ∗ (1− t) ∗ t2 and K(s, t) = 0.1 ∗ exp(−100 ∗ (s− t)2) as specified in Chapter 1.

Then, we generate three different populations Π0, Π1 and Π2 with equal sample sizes:

n0 = n1 = n2 = 200 curves in each population. The mean for Π0 is m0(t) = 80∗ (1− t)∗ t2

where the mean for Π1 is replaced by m1(t) = δ+m0(t) and the mean for population Π2

is m2(t) = 2δ+m0(t) where δ = 0.25. In terms of computing, the package mgcv includes

multinomial logistic regression which we implemented.

We assume that the categories of the response variable are coded 0,1, or 2. In the three

outcome category model we require to compute two logit functions. We decided to use
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population Π0 as the reference population and form logits comparing population Π1 and Π2

to it. More specifically, we fit

log
{
P [Y = 1 | X1,X2]

P [Y = 0 | X1,X2]

}
= f 1

0 + f 1
1 (X1)+ f 1

2 (X2)+ f 1
12(X1,X2), (3.65)

and

log
{
P [Y = 2 | X1,X2]

P [Y = 0 | X1,X2]

}
= f 2

0 + f 2
1 (X1)+ f 2

2 (X2)+ f 2
12(X1,X2). (3.66)

Observe that we only form logits comparing population Π0 versus Π1 and Π0 versus

Π2, because the logit function comparing Π1 versus Π2 is the difference between these two

logits. Next, we examine the predicted probability in each group and classify the observation

according to the highest probability. Results in terms of the confusion matrix for three

different classes are shown in Table 3.8

Table 3.8: Confusion Matrix or Error Matrix for three classes 0, 1 and 2.

Predicted Class 0 Predicted Class 1 Predicted Class 2
True Class 0 181 17 2
True Class 1 63 81 56
True Class 2 4 7 189

Observe that observations in class 1 are often misclassified because they are very similar

to observations in class 0 and class 2. For visualisation, we estimate the surface for the two

functional predictors in the three groups. Results of the estimated surface can be seen in

Figure 3.22.

3.10 Simulations

In this section, we conduct a simulation study to compare the performance of the k-RNN

classifier based on depth, and the GAM additive model with the two proposed covariates

and outlier down-weighting. To compare the proposed methods, we consider a variety of

scenarios; we mainly explore the effectiveness of the methods for a set of different simulation

methods for functional data and for different contaminated models. To show the robustness

of our method we introduce atypicals observations in our data according to the models

introduced in Chapter 2.



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 116

0

5

10

15

20

−1.0 −0.5 0.0 0.5 1.0

Signed Depth

D
is

ta
n

c
e

 t
o

 t
h

e
 m

o
d

e

Group Label

0

1

2

 Signed Depth vs Distance to the mode 

Three Groups 

Figure 3.22: Estimated surface for the two functional predictors the distance to the mode in
the reference group and the signed depth in the simulated dataset with three different groups.

3.10.1 Comparison Methods

We start by describing the methods that will be used to compare our proposed classifier based

on signed depth and distance to the mode. The competing methods we use here are methods

based on depth functions. The first method we start describing is the k nearest neighbour

method based on depth, the k ranked nearest neighbour, the GAM classifier based on two

covariates, the distance to the α - trimmed mean and finally we describe the within maximum

depth method. The last two methods we compare are methods derived from the classification

rules, based on depth introduced in López-Pintado and Romo (2006).

The k-NN based on depths

The k-NN rule, introduced by Fix and Hodges Jr (1951), classifies each element in the test set

by finding the k nearest observations in the training set and assigning the observation to the

most frequent class among these k neighbours. In this setting, we consider a modification of

the k-NN rule. Instead of considering the Euclidean distance to measure the observations, we
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based our computations on the univariate Euclidean distance between depths. The basic idea

behind the k-NN is simple and intuitive: close patterns, in depth, are more likely to belong

to the same class. The k-NN based on depths predicts the label of a new observation, x0(t),

based on the classes associated to the k closest to the new curve, using a majority decision

rule. The k-NN based on depth can be summarised in Algorithm 2.

Algorithm 2: The k-NN Algorithm based on depths.
Input : The set of training curves of size ntrain and a test set of curves of size ntest .

A depth function D(·) and a fixed value of k.

Output : Classifications for the set of test curves.

1 For a depth function, compute the functional depth value of the curves in the training

set.

2 foreach Curve in the test set do

3 Compute the depth D(·) of the curve with respect to the combined sample of the

new observation and the curve in the training set.

4 Compute the univariate Euclidean distance among the different depths and select

the set of k closest (in depth) curves to the new observation.

5 Assign a label based on the predominance of a particular class in this k

neighbourhood.

6 If there are exactly k observations closest in depth, classify according to either of

the two populations with probabilities 1/2 to break the tie.

The value of k is selected by a grid search that minimises the misclassification error of

the curves in the training set and the functional depth we consider is the Tukey-FM depth.

The k-RNN based on depths

The k-RNN based on depth was introduce in Section 3.2. To classify a new observation x0(t)

using the k-RNN we begin by ranking the data by their depths. After we obtain the ranks,

we calculate to depth of x0(t) with respect to the combined samples and determine where

it falls in terms of its ranking when combined with both groups. The detailed algorithm is

summarised in Algorithm 1.
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The GAM Classifier

The proposed GAM classifier use two covariates X1, the signed depth and X2, the distance to

the mode of the reference group, which are available for a response Y . Using a generalized

additive model, we get estimates of the probabilities P [Y = 0 | X1,X2] and P [Y = 1 | X1,X2].

For a new observation, x0(t), the GAM classifier calculates

pnew =
exp( f̂1(X1)+ f̂2(X2)+ f̂12(X1,X2))

1+ exp( f̂1(X1)+ f̂2(X2)+ f̂12(X1,X2))
, (3.67)

where f̂12(X1,X2) is a smooth function that describes the interaction between the two co-

variates X1 and X2. The generalized additive model classifier assigns the new observation to

population Π0 if pnew > 0.5. In case of atypicals, the methodology developed in Section 3.8.1

is applied.

The α - trimmed mean

L-estimates or L-statistics form an important class of estimators in nonparametric statistics.

Working with L- statistics provides the advantage that L - estimates are often a robust statistic

(Tyler, 2008). Examples of such estimators are the trimmed mean and the Winsorized mean.

L-estimates are defined in terms of a linear combination of order statistics. In particular, the

trimmed means are defined in terms of the average of the most central (1−α)n observations,

for α∈ [0,1], and constitute estimates that range from the sample mean to the sample median;

see Maronna et al. (2006).

In the functional case, the version of the α - trimmed mean, due to Fraiman and Muniz

(2001) and López-Pintado and Romo (2009), is defined as the average of the n− [nα] deepest

curves from the sample x1(t), . . . ,xn(t), where [nα] denotes the integer part of nα. Let

x(1)(t), . . . ,x(n)(t) be the ordered sample of curves, where x(1)(t) represents the deepest

observation and x(n)(t) is the least deep one. The α - trimmed mean estimator is defined as

m̂α
n (t) =

n−[nα]

∑
i=1

x(i)(t)

n− [nα]
. (3.68)

A functional binary classifier, based on the α - trimmed mean first calculates the distance

from the new observation to the trimmed mean of each group. The steps can be summarised

as follows:
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Step 1. For a fixed value of α, compute the trimmed mean for each group m̂α
ni(t) and i ∈ {0,1}.

Step 2. Calculate the distance, from a new observation x0(t) to the trimmed mean for each

group m̂α
n0(t) and m̂α

n1(t). Usually the distance between the new observation and the

the trimmed mean of each group d (x0(t), m̂α
ni(t)) is calculated as

d (x0(t), m̂α
ni(t)) = ‖x0(t)− m̂α

ni(t)‖1

=
∫ b

a
|x0(t)− m̂α

ni(t) |dt (3.69)

for i ∈ {0,1} for curves observed in a close interval T = [a,b].

Step 3. Classify x0(t) to the population such that the distance to the trimmed mean is the

minimum, more specifically,

d (x0(t), m̂α
ni(t)) = min

i∈{0,1}
d (x0(t), m̂α

ni(t)) .

A more robust version of the α - trimmed mean algorithm is the Trimmed Weighted Averaged

Distance. This method, proposed in López-Pintado and Romo (2006), obtains the distance

from an observation to a group as a weighted average of distances to each element in the

group. The weights are determined by the depths of the points within the group. Thus, the

influence of any observation on the distance depends on its depth. However, as pointed out by

López-Pintado and Romo (2006), the result depends strongly on the number of observations

in each group. An alternative approach, termed the Trimmed Weighted Average Distance

(TWAD), considers only the m≤ n0,n1 deepest observations from each group to compute

the distance. The Trimmed Weighted Average Distance is given by

TWAD(x(t),Πg) =

m
∑

i=1
d
(
x(t),x(i)(t)

)
D
(
x(i)(t)

)
ng

∑
i=1

D
(
x(i)(t)

) . (3.70)

where D(·) is a depth function and d
(
x(t),x(i)(t)

)
is the distance calculated as

d(x(t),x(i)(t)) =
∥∥x(t)− x(i)(t)

∥∥
1

=
∫ b

a

∣∣x(t)− x(i)(t)
∣∣dt, (3.71)
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for the observed functions xi(t) with t ∈ [a,b]. A classifier based on the Trimmed Weighted

Average Distance calculates the distance from an observation to a group as a weighted average

of distances to each element in the group and classifies a new observation x0(t) to the group

which the Trimmed Weighted Average Distance is the minimum.

3.10.2 Within maximum depth method

The within maximum depth (WMD) classification method, computes the depth values of

the curves relative to the data in both groups. Originally proposed in Ghosh and Chaudhuri

(2005), the WMD classifier is one of the simplest classifiers based on depth. An advantage

of the within maximum depth (WMD) classification method is that it does not assume any

specific parametric form or any probability distribution for the populations. Instead, they

classify a new observation into the class with respect to which has the maximum depth.

However, within maximum depth classifiers have the drawback that they lead to a linear

or a quadratic classifier. So, if we are interested in a more flexible procedure than just a

classifier with a linear or quadratic class boundaries, then within maximum depth classifiers

will not be an appropriate choice. A maximum depth classifier assigns a new observation

x0(t) to the population with the maximum depth. More specifically,

dD(x0(t)) = argmax
j

D(xn j(t)) for j ∈ {0,1} . (3.72)

where n j is the number of observations from the jth group and D(xn j(t)) is the depth of the

curve x(t) in the jth group. Observe that we can modify equation (3.72) by multiplying by

the prior probabilities of the classes. More generally,

dD(x0(t)) = argmax
j

π jD(xn j(t)) for j ∈ {0,1} . (3.73)

where π j is the prior probability that the observed depth belongs to the jth population. In

the multivariate case, as pointed out in Ghosh and Chaudhuri (2005), this type of classifiers

leads to a linear or quadratic classifier depending the type of depth and if a common matrix

is used for the observations in each population.
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3.11 Simulation Setup and Simulations Results

In this section we compare the performance of the proposed k-RNN based on the signed

depth, the generalized additive model, the k-NN, the classifier based on maximum depth and

the classifier based on the trimmed mean depth. We start by setting the simulation parameters.

We compare the performance with different ways to simulate a Gaussian Process using

different kernel functions, different models to introduce atypicals in the data, and different

sample sizes. To investigate their performance, when we introduce atypicals we follow the

methods discussed in Section 2.3.

To start with, we generated curves from three different Gaussian Processes.

1. Model 1: Simulation using a GP (m(t),K(s, t)) with mean m(t) = 80(1− t)t2 and

K(s, t) = 0.1exp
{
−100(s− t)2}.

2. Model 2: Simulation using a GP (m(t),K(s, t)) with mean m(t) = 80(1− t)t2 and

K(s, t) = 1.55exp
{
−0.125 |s− t|1.25

}
.

3. Model 3: Simulation using a GP (m(t),K(s, t)) with mean m(t) = 80(1− t)t2 and

K(s, t) = 1.85exp
{

3.5 |s− t|1.35
}

.

A graphical representation of the above models can be seen in Section 2.1. For the

clarity and conciseness, we restrict our simulation study to these methods. For each of the

three main models, we consider two different sample sizes, n = 50 and 200 and consider the

contamination models: No contamination Model, Asymmetric Contamination, Linear Peak

Contamination and Shape Contamination. A low sample size generates a low contamination

rate in the data while a large sample size generates more atypicals in our data. The first and

third models generate smooth curves, while fairly rough sample curves are generated using

the second model model.

Additionally, a single non contamination model and a sample size of N = 400 was run as

a pilot study discussed in the simulation results to measure the burden of the computational

time. We ran 100 simulations for each scenario. In each case we sampled the curves on 150

equidistant points over the close interval [0,150]. For all the functional depths, we use a

discretised version of their definitions as we explained in Section 3.3.2 . We perform the

comparison among methods in terms of misclassification, specificity and sensitivity.
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For the classification method using maximum depth, we consider the use of the random

projection (RP) depth, which is based on medians and is robust to atypicals in the data. To

reduce variability, the RP depth is implemented by projecting the discretised trajectories

over 50 independent normalised standard Gaussian random directions and taking the average.

While for the alpha trimmed mean classifier, we consider the Trimmed Weighted Average

distance with m = n− [nα] and α = 0.2 to increase robustness.

The simulations have been conducted in R using the functions in the packages depth,

depthTools, and for the implementation of the Tukey-FM depth we use the version in the

fda.usc, although a similar function can be found in the depth packages. We use the library

MASS for the simulation of Multivariate Normal Distribution used in the simulation of

Gaussian Process, modeest for the estimation of the mode of the kernel density estimation,

pROC for the specificity and sensitivity and mgcv for the generalized additive model. We

implemented our own version of the contaminated models.

3.11.1 Simulations Results

We start by discussing our simulation results over the different simulation models and samples

containing atypical observations. We compare the newly proposed methods against the

competing methods and we compare the performance in terms of misclassification, specificity

and sensitivity and we report their means and standard deviations in the next tables. However,

most methods of functional data, especially methods involving depth computation, can be

time consuming. Hence, we ran a pilot study to measure the computational time required

to classify a total of N = 400 observations split into two equally size groups n1 = n2 = 200

which we repeated over a total of 100 simulations.

A Pilot Study

Most methods in functional data and for functional classification tend to be time consuming

and if these methods involve parameter tuning, smoothing technique and preprocessing data,

the computational time significantly increases. The methods proposed here are not an excep-

tion. Most of our proposed methods require simulating random variables, parameter tuning

and multiple integrations. However, when running multiple scenarios the computational time

is an important practical issue.
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The goal of this pilot study is to measure the computational time required for five

classification methods and a total of N = 400 curves equally split. To have an idea of the

relative computational burden of the different methods, we ran the simulations using R

version 3.4.3 on a Windows 7 computer with an Intel Core i5-3470 CPU at 3.20GHz and

8GB of RAM. To measure the time, we use the function system.time() which returns the user,

system and elapsed CPU time. In this case, we report the elapsed time, which is the is the

wall clock time taken to execute the function. User CPU time is the time spent by the current

process while the system CPU time returns the time spent by the operating system. Note that

to avoid extra computations, we only consider the functions that produce the necessary output

and for functions that produce a plot, the plotting option is disabled. Notice that we load the

required libraries only once so there is no extra computational time for loading the libraries.

To start measuring the time, we begin preprocessing the data; this is a common procedure in

all the different methods and involves loading the required libraries, loading our functions,

creating the functional objects and simulating the data. After this procedure is done, we

then apply the corresponding classification method. Thus, the total measured computational

time involves preprocessing the data, and classifying according to the classification methods.

Going through all these procedures constitutes an iteration and this is repeated a total of 100

times.

Table 3.9: Time and relative ratio of preprocessing, and classifying for the k-NN, k-RNN,
GAM, Maximum Depth and α-Trimmed Mean method over one iteration.

Proceduce Time (in seconds) Relative Computational Ratio
Preprocessing 23.005 2875.271
k-NN 26.977 3371.629
k-RNN 27.214 3401.252
GAM 0.008 1.000
Maximum Depth 213.123 26636.790
α-Trimmed Mean 1.422 177.744

Table 3.9 shows the time in seconds to run each classification procedure and the relative

computational ratio of the different methods. We can observe that if we take the smallest

CPU time (0.008 sec) for the generalised additive model as a unit, the relative compu-

tational ratio which measures the performance is defined as the corresponding quotients

CPU(k-NN)/CPU(GAM), CPU(k-RNN)/CPU(GAM), CPU(Maximum Depth)/CPU(GAM)

and CPU(α-Trimmed Mean)/CPU(GAM). Observe that the GAM method has the smallest

CPU time( 0.008 sec) while the largest CPU time is for the Maximum Depth classifier. Our
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implementation, in terms of the code, is efficient due to three main reasons.

1. Firstly, we vectorise the functions when it was necessary.

2. Secondly, in order to avoid loops in R, we consider using the apply function.

3. Thirdly, we use the replicate function to simulate from the Gaussian Process several

times instead of considering a loop.

Note that the computational time can vary according to the platform used. Using Windows

7 and going over a single iteration takes 4.77 minutes, including the functions to calculate

the misclassification error, specificity and sensitivity and the necessary functions to save

the results and preprocess as functional data objects. However, when we increase to 100

iterations, the total computational time is 8.28 hours per contamination model and a fixed

sample size. A similar computational time is obtained when we consider a different method

to introduce atypicals in the data and a different same sample size.

Multiple scenarios lead us to big computational times. In fact if we run all the different

scenarios in a single computer (without parallelisation) we can expect more than 192 hours for

a total of 2 different sample sizes, 4 contamination models and 3 different Gaussian Process.

To speed up the computations we use the High Throughput Computing (HTC) system at the

University of Manchester by using the EPS Condor cluster. The idea is to consider many

independent computations running over many machines, which is a particularly suitable

when we consider multiple simulation studies. A more detailed introduction to the Condor

cluster can be found here: http://condor.eps.manchester.ac.uk/. An advantage of

using the EPS Condor cluster is that we can request the number of CPUs in the machine.

Using the EPS Condor cluster there is a reduction in the computational time to 5.48 hours

per contamination model and a large sample size. On average the same computational time is

obtained when we consider different contamination models and different sample sizes. For

the small sample size scenario, the computational time reduces dramatically to 1.54 hours.

The results are obtained requesting 4 CPUs and using a Linux architecture. This encourages

users to use the EPS Condor cluster to save computational time. An example of the submitted

file use to run a single model can be found in Appendix 6.1.3.
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Numerical Simulation Results

We compare the performance of the k-NN, the k-RNN, the generalized additive model

classifier, the classifier based on maximum depth and the classifier based on the trimmed

mean depth and for each contaminated model and each sample size we summarise the

misclassification error rate in terms of boxplots and the mean specificity and mean sensitivity

along with the standard deviation in a tabular form. For methods that require a value of k to

be chosen, the number of neighbours is optimised in each simulation experiment.

To start with, we consider the first model for which data is simulated and not contaminated

by atypicals. We also consider three different scenario: a scenario where the data is generated

following a Gaussian Process described in Model 1, a scenario where the data is generated

simulated a Gaussian Process described in Model 2 and a scenario where the data follows a

Gaussian Process with parameters described in Model 3. For all the different scenarios, we

use a modest sample size scenario of n1 = n2 = 50, based on previous simulation studies

for functional data, for example Delaigle and Hall (2012), and a bigger sample size of

n1 = n2 = 100. We repeat the simulation experiment 100 times. We present the comparison

of the k-NN (KNN), the k-RNN (KRNN), the generalized additive model using the signed

depth and the distance to the mode (GAM), the maximum depth classifier (MD) and the α -

trimmed to the mean classifier (TM).

Figure 3.23 shows that the proposed method based on the signed depth and the distance

to the mode outperforms all its competitors, when the data are not contaminated by atypicals.

In second place, the k-RNN method performs better that the k-NN based on depth. This is

because the k-RNN based on depth uses more robust rankings of nearest neighbours. In terms

of the variability of the misclassification error, we observe that all the proposed methods

exhibit roughly the same variability. Among the other depth classifiers, the distance trimmed

to the mean method performs better than the maximum depth classifier. In terms of the

sensitivity and specificity; we summarise the results of all the models in Table 3.10 and

Table 3.11.

Figure 3.24 shows the boxplots of the misclassification error rate considering an Asym-

metric Contamination Model described in Section 2.3. We can observe that generalized

additive model based on the signed depth and the distance to the mode, outperforms all its

competitors. Under this scenario, the k-NN and the k-RNN methods also perform favourably
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with the generalized additive model. However, the maximum depth classifier does not per-

form as well. This is because when we introduce asymmetric contamination, the depth values

change significantly and there is more variation in the data. We can also observe that the

misclassification error variability is higher for the maximum depth classifier, while there

is small variability for the generalized additive model based on the signed depth and the

distance to the mode. We can observe that in second place, the k-RNN method performs

as good as the k-NN based on depth. Now, we consider introducing atypicals to the data

using the asymmetric contamination model. The sensitivity and specificity for this model is

summarised in Table 3.10 and Table 3.11.

Figure 3.25 shows the boxplot of the misclassification error rate considering the peak con-

tamination model. We can observe that all the methods except the k-NN perform favourable.

In this scenario, we can observe that the trimmed mean method slightly outperforms the other

methods with a small misclassification error rate. This is caused by the type of contamination

considered under this scenario. When the contamination occurs in a short time interval,

the depth of the contaminated curves is low, and if there is an overlap in the curves and

depth, classification procedures based on depth are robust. In terms of the variability of the

misclassification error, we can observe that for the first two simulated Gaussian Processes,

the variability is small across different classifiers while for the third simulated Gaussian

Process, the misclassification error exhibits higher variability.

Finally, we consider the scenario where we introduce the shape contamination. Fig-

ure 3.26 shows the results of considering shape contamination model and different samples

size. We can observe that all models considered perform better than the k-NN method, which

is the worst model due not to being robust to the the contamination model. Moreover, the

misclassification error variability seems to decrease using a bigger sample size and remains

almost the same for the other methods.

We summarise the results of the sensitivity and specificity in Table 3.10 and Table 3.11,

respectively. Table 3.10 summarises the specificity over all the different models divided by

Gaussian Process, simulated model and sample size. While Table 3.11 shows the results of

considering the specificity for all the different models using the same division.

For the first Gaussian Process, the mean sensitivity rate, averaged across all the simula-

tions, shown in Table 3.10 is higher for generalized additive classifier based on the signed



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 129

0
.0

0
.2

0
.4

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate
 L

in
e

a
r 

P
e

a
k
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
1

 (
n

=
5

0
)

0
.0

0
.2

0
.4

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate

 L
in

e
a

r 
P

e
a

k
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
2

 (
n

=
5

0
)

0.
3

0.
4

0.
5

0.
6

KN
N

KR
NN

G
AM

M
D

TM
Cl

as
sif

ie
rs

Missclassification Rate

Li
ne

ar
 P

ea
k 

Co
nt

am
in

at
io

n,
 G

p3
 (n

=5
0)

0
.1

0
.2

0
.3

0
.4

0
.5

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate

 L
in

e
a

r 
P

e
a

k
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
1

 (
n

=
2

0
0

)

0
.1

0
.2

0
.3

0
.4

0
.5

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate
 L

in
e

a
r 

P
e

a
k
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
2

 (
n

=
2

0
0

)

0.
35

0.
40

0.
45

0.
50

KN
N

KR
NN

G
AM

M
D

TM
Cl

as
sif

ie
rs

Missclassification Rate

Li
ne

ar
 P

ea
k 

Co
nt

am
in

at
io

n,
 G

p3
 (n

=2
00

)

Fi
gu

re
3.

25
:B

ox
pl

ot
s

of
m

is
sc

la
ss

ifi
ca

tio
n

er
ro

rr
at

es
ob

ta
in

ed
fo

rt
he

L
in

ea
rP

ea
k

C
on

ta
m

in
at

ed
M

od
el

fo
r(

Fi
rs

tr
ow

:)
sa

m
pl

e
si

ze
n 1

=
n 2

=
50

ac
ro

ss
th

e
di

ff
er

en
tG

au
ss

ia
n

Pr
oc

es
se

s
an

d
(S

ec
on

d
ro

w
:)

fo
ra

sa
m

pl
e

si
ze

of
n 1

=
n 2

=
20

0.



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 130

depth and the distance to the mode and the same behaviour is exhibited for a larger sam-

ple size. In the second Gaussian Process, the mean sensitivity seems to be higher for the

generalized additive model, except in some situations when the maximum depth classifier

outperforms the other methods.

In terms of the mean specificity rate and Gaussian Process 1, we can observe in Table 3.11

that the highest rates are achieved for the k-RNN method for Models 1 and 2 and the α -

trimmed to the mean classifier for Model 3 and Model 4. For the second Gaussian Process,

we can observe that there is a higher specificity for the classifier based on two covariates

except for some contamination models. For last Gaussian Process, our proposed classifier

has a higher specificity across different scenarios.

Overall, we prefer a classifier with high values for all the three measures, sensitivity,

specificity and accuracy. When there is no contamination in the data our proposed method

based on the signed depth and the distance to the mode outperforms all its competitors

and exhibits a high values of specificity and sensitivity. In the Asymmetric Contaminated

Model, we also have the same behaviour with the k-NN and the k-RNN methods also

performing favourably. In the peak contamination model, methods other than the generalized

additive model based on signed depth and signed distance to the mode also have small

misclassification error. However, it depends on the type of contamination considered. Finally,

the shape contamination model is a difficult scenario where other classifiers like the trimmed

mean, perform better than our proposed classifier based on two covariates.



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 131

0
.1

0
.2

0
.3

0
.4

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate
S

h
a

p
e

 C
o

n
ta

m
in

a
ti
o

n
, 
G

p
1

 (
n

=
5

0
)

0
.1

0
.2

0
.3

0
.4

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate

 S
h

a
p

e
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
2

 (
n

=
5

0
)

0.
1

0.
2

0.
3

0.
4

KN
N

KR
NN

G
AM

M
D

TM
Cl

as
sif

ie
rs

Missclassification Rate

Sh
ap

e 
Co

nt
am

in
at

io
n,

 G
p3

 (n
=5

0)

0
.1

0
.2

0
.3

0
.4

0
.5

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate

 S
h

a
p

e
 C

o
n

ta
m

in
a

ti
o

n
, 
G

p
1

 (
n

=
2

0
0

)

0
.1

0
.2

0
.3

0
.4

K
N

N
K

R
N

N
G

A
M

M
D

T
M

C
la

s
s
if
ie

rs

Missclassification Rate
 S

h
a

p
e

 C
o

n
ta

m
in

a
ti
o

n
, 
G

p
2

 (
n

=
2

0
0

)

0.
35

0.
40

0.
45

0.
50

KN
N

KR
NN

G
AM

M
D

TM
Cl

as
sif

ie
rs

Missclassification Rate

Sh
ap

e 
Co

nt
am

in
at

io
n,

 G
p3

 (n
=2

00
)

Fi
gu

re
3.

26
:B

ox
pl

ot
s

of
m

is
cl

as
si

fic
at

io
n

er
ro

rr
at

es
ob

ta
in

ed
fo

rt
he

Sh
ap

e
C

on
ta

m
in

at
io

n
M

od
el

fo
r(

Fi
rs

tr
ow

:)
sa

m
e

sa
m

pl
e

si
ze

n 1
=

n 2
=

50
ac

ro
ss

th
e

di
ff

er
en

tG
au

ss
ia

n
Pr

oc
es

se
s

an
d

(S
ec

on
d

ro
w

:)
fo

ra
sa

m
pl

e
si

ze
of

n 1
=

n 2
=

20
0.



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 132

Ta
bl

e
3.

10
:M

ea
n

se
ns

iti
vi

ty
ra

te
s,

an
d

th
ei

rs
ta

nd
ar

d
de

vi
at

io
ns

in
pa

re
nt

he
se

s.

n 1
=

n 2
=

50
n 1

=
n 2

=
20

0

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

G
P1

k-
N

N
0.

55
37

(0
.0

35
0)

0.
83

16
(0

.0
56

2)
0.

55
23

(0
.0

37
8)

0.
63

67
(0

.0
45

8)
0.

53
12

(0
.0

18
6)

0.
86

85
(0

.0
29

1)
0.

53
45

(0
.0

20
4)

0.
54

60
(0

.0
21

7)

k-
R

N
N

0.
56

97
(0

.0
46

7)
0.

81
03

(0
.0

49
0)

0.
88

68
(0

.0
51

6)
0.

81
93

(0
.0

53
1)

0.
55

99
(0

.0
23

5)
0.

86
01

(0
.0

26
6)

0.
90

52
(0

.0
48

4)
0.

88
60

(0
.0

39
8)

G
A

M
0.

59
27

(0
.0

64
7)

0.
88

26
(0

.0
48

2)
0.

91
35

(0
.0

57
5)

0.
88

49
(0

.0
61

1)
0.

56
81

(0
.0

27
3)

0.
87

46
(0

.0
26

7)
0.

91
45

(0
.0

51
8)

0.
88

84
(0

.0
41

1)

M
ax

D
ep

th
0.

53
00

(0
.0

80
2)

0.
60

26
(0

.0
80

4)
0.

90
95

(0
.0

33
4)

0.
86

21
(0

.0
24

0)
0.

55
69

(0
.0

27
1)

0.
58

75
(0

.0
62

9)
0.

91
16

(0
.0

18
3)

0.
90

08
(0

.0
19

6)

α
-T

M
D

0.
56

51
(0

.0
40

7)
0.

80
73

(0
.0

91
8)

0.
92

05
(0

.0
31

7)
0.

85
25

(0
.0

24
6)

0.
55

97
(0

.0
24

4)
0.

83
50

(0
.0

49
9)

0.
91

82
(0

.0
19

2)
0.

89
83

(0
.0

18
1)

G
P2

k-
N

N
0.

55
40

(0
.0

49
7)

0.
84

46
(0

.0
61

3)
0.

55
50

(0
.0

50
5)

0.
55

41
(0

.0
29

6)
0.

52
55

(0
.0

21
8)

0.
87

93
(0

.0
27

7)
0.

53
47

(0
.0

23
6)

0.
56

79
(0

.0
20

9)

k-
R

N
N

0.
56

92
(0

.0
40

8)
0.

90
58

(0
.0

45
2)

0.
56

66
(0

.0
42

1)
0.

58
42

(0
.0

67
8)

0.
55

06
(0

.0
25

6)
0.

86
92

(0
.0

25
5)

0.
90

79
(0

.0
48

1)
0.

87
77

(0
.0

34
2)

G
A

M
0.

58
91

(0
.0

55
5)

0.
88

86
(0

.0
50

8)
0.

58
24

(0
.0

59
9)

0.
60

40
(0

.0
66

3)
0.

56
39

(0
.0

29
0)

0.
88

42
(0

.0
22

8)
0.

91
38

(0
.0

51
6)

0.
89

17
(0

.0
43

8)

M
ax

D
ep

th
0.

54
22

(0
.0

65
7)

0.
80

44
(0

.0
78

3)
0.

53
50

(0
.0

70
5)

0.
49

51
(0

.1
39

8)
0.

54
51

(0
.0

35
5)

0.
57

38
(0

.0
58

5)
0.

91
00

(0
.0

17
6)

0.
89

06
(0

.0
13

4)

α
-T

M
D

0.
56

54
(0

.0
41

7)
0.

71
78

(0
.0

84
5)

0.
56

28
(0

.0
42

1)
0.

56
03

(0
.0

61
0v

0.
55

14
(0

.0
25

9)
0.

80
34

(0
.0

74
4)

0.
91

46
(0

.0
17

9)
0.

88
17

(0
.0

14
0)

G
P3

k-
N

N
0.

55
37

(0
.0

47
9)

0.
55

17
(0

.0
41

8)
0.

55
04

(0
.0

36
3)

0.
56

10
(0

.0
52

5)
0.

53
67

(0
.0

23
5)

0.
53

63
(0

.0
21

8)
0.

53
01

(0
.0

19
5)

0.
53

29
(0

.0
22

3)

k-
R

N
N

0.
56

24
(0

.0
46

8)
0.

55
84

(0
.0

43
5)

0.
57

18
(0

.0
50

0)
0.

58
33

(0
.0

51
5)

0.
56

96
(0

.0
27

8)
0.

55
65

(0
.0

25
2)

0.
56

49
(0

.0
26

1)
0.

56
37

(0
.0

22
1)

G
A

M
0.

59
33

(0
.0

55
1)

0.
57

28
(0

.0
51

0)
0.

59
51

(0
.0

51
9)

0.
60

43
(0

.0
57

8)
0.

58
22

(0
.0

30
2)

0.
56

54
(0

.0
26

5)
0.

58
03

(0
.0

28
5)

0.
57

86
(0

.0
24

0)

M
ax

D
ep

th
0.

53
92

(0
.0

99
7)

0.
52

62
(0

.0
65

7)
0.

54
67

(0
.0

82
9)

0.
55

51
(0

.0
73

1)
0.

56
98

(0
.0

28
4)

0.
54

60
(0

.0
25

2)
0.

56
70

(0
.0

27
7)

0.
56

50
(0

.0
24

7)

α
-T

M
D

0.
59

11
(0

.0
45

2)
0.

58
08

(0
.0

40
5)

0.
59

88
(0

.0
43

3)
0.

59
61

(0
.0

39
5)

0.
57

92
(0

.0
24

6)
0.

55
82

(0
.0

19
2)

0.
57

61
(0

.0
24

1)
0.

57
32

(0
.0

20
3)



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 133

Ta
bl

e
3.

11
:M

ea
n

sp
ec

ifi
ci

ty
ra

te
s,

an
d

th
ei

rs
ta

nd
ar

d
de

vi
at

io
ns

in
pa

re
nt

he
se

s.

n 1
=

n 2
=

50
n 1

=
n 2

=
20

0

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

G
P1

k-
N

N
0.

58
71

(0
.0

63
4)

0.
84

48
(0

.0
52

2)
0.

58
91

(0
.0

62
8)

0.
67

50
(0

.0
58

0)
0.

55
08

(0
.0

28
8)

0.
84

21
(0

.0
34

6)
0.

55
15

(0
.0

30
4)

0.
56

57
(0

.0
29

8)

k-
R

N
N

0.
60

53
(0

.0
70

9)
0.

88
62

(0
.0

45
5)

0.
89

99
(0

.0
64

8)
0.

85
04

(0
.0

72
3)

0.
57

92
(0

.0
29

4)
0.

88
81

(0
.0

25
6)

0.
89

82
(0

.0
57

1)
0.

89
25

(0
.0

50
4)

G
A

M
0.

58
97

(0
.0

58
7)

0.
87

99
(0

.0
46

4)
0.

89
84

(0
.0

65
6)

0.
84

80
(0

.0
65

8)
0.

57
38

(0
.0

31
2)

0.
88

09
(0

.0
23

4)
0.

89
64

(0
.0

60
9)

0.
89

92
(0

.0
52

9)

M
ax

D
ep

th
0.

54
02

(0
.0

82
6)

0.
68

04
(0

.1
15

1)
0.

90
09

(0
.0

36
5)

0.
84

26
(0

.0
38

0)
0.

55
59

(0
.0

30
2)

0.
64

76
(0

.0
80

2)
0.

91
22

(0
.0

16
2)

0.
89

37
(0

.0
20

5)

α
-T

M
D

0.
56

44
(0

.0
39

2)
0.

74
81

(0
.0

57
3)

0.
91

88
(0

.0
34

6)
0.

91
05

(0
.0

42
1)

0.
55

98
(0

.0
24

8)
0.

75
62

(0
.0

24
3)

0.
91

72
(0

.0
16

6)
0.

90
74

(0
.0

18
7)

G
P2

k-
N

N
0.

58
14

(0
.0

67
3)

0.
82

04
(0

.0
74

7)
0.

58
09

(0
.0

65
5)

0.
57

93
(0

.0
70

3)
0.

53
86

(0
.0

34
9)

0.
84

77
(0

.0
27

8)
0.

55
14

(0
.0

33
5)

0.
59

51
(0

.0
31

1)

k-
R

N
N

0.
60

57
(0

.0
56

0)
0.

78
38

(0
.0

66
3)

0.
60

02
(0

.0
60

3)
0.

60
27

(0
.0

58
1)

0.
56

61
(0

.0
31

2)
0.

88
48

(0
.0

27
5)

0.
89

76
(0

.0
55

3)
0.

86
94

(0
.0

50
6)

G
A

M
0.

59
15

(0
.0

59
9)

0.
87

28
(0

.0
60

4)
0.

58
43

(0
.0

63
6)

0.
59

31
(0

.0
55

0)
0.

56
18

(0
.0

26
5)

0.
87

88
(0

.0
25

4)
0.

89
82

(0
.0

57
7)

0.
87

41
(0

.0
57

0)

M
ax

D
ep

th
0.

54
07

(0
.0

56
3)

0.
39

46
(0

.2
07

0)
0.

52
94

(0
.0

74
9)

0.
51

05
(0

.1
06

8)
0.

54
78

(0
.0

31
1)

0.
64

19
(0

.0
82

8)
0.

91
48

(0
.0

17
9)

0.
87

93
(0

.0
19

3)

α
-T

M
D

0.
56

60
(0

.0
43

2)
0.

79
96

(0
.1

22
7)

0.
56

31
(0

.0
42

1)
0.

55
99

(0
.0

60
5)

0.
55

18
(0

.0
26

3)
0.

75
00

(0
.0

33
2)

0.
92

07
(0

.0
17

9)
0.

90
55

(0
.0

19
9)

G
P3

k-
N

N
0.

58
69

(0
.0

68
7)

0.
58

51
(0

.0
80

3)
0.

58
59

(0
.0

65
3)

0.
59

83
(0

.0
71

5)
0.

55
32

(0
.0

31
7)

0.
55

21
(0

.0
32

8)
0.

54
94

(0
.0

36
6)

0.
55

39
(0

.0
40

2)

k-
R

N
N

0.
60

00
(0

.0
73

7)
0.

58
26

(0
.0

61
0)

0.
61

26
(0

.0
67

0)
0.

61
21

(0
.0

67
6)

0.
58

41
(0

.0
30

5)
0.

56
81

(0
.0

27
5)

0.
58

16
(0

.0
30

4)
0.

58
24

(0
.0

30
4)

G
A

M
0.

59
17

(0
.0

53
4)

0.
57

48
(0

.0
50

3)
0.

59
27

(0
.0

48
1)

0.
59

67
(0

.0
53

3)
0.

57
82

(0
.0

28
6)

0.
56

22
(0

.0
22

7)
0.

57
66

(0
.0

29
4)

0.
57

73
(0

.0
25

6)

M
ax

D
ep

th
0.

54
36

(0
.0

78
9)

0.
53

50
(0

.1
02

7)
0.

54
75

(0
.0

73
6)

0.
55

37
(0

.0
66

0)
0.

57
09

(0
.0

28
5)

0.
54

66
(0

.0
61

5)
0.

57
05

(0
.0

28
6)

0.
56

65
(0

.0
24

6)

α
-T

M
D

0.
59

05
(0

.0
43

0)
0.

58
09

(0
.0

40
1)

0.
59

82
(0

.0
43

3v
0.

59
74

(0
.0

40
5)

0.
57

96
(0

.0
25

2)
0.

55
81

(0
.0

19
1)

0.
57

59
(0

.0
23

6)
0.

57
34

(0
.0

20
5)



CHAPTER 3. DEPTHS FOR FUNCTIONAL DATA 134

3.12 Application to some Real data sets

In this section, we apply our methods to three different real datasets previously introduce

in Section 2.4 to illustrate the performance of our proposed classification method, based on

signed depth and distance to the mode, and its competitors. For binary classification, the

datasets we analysed are the orange juice dataset and the NIR gasoline spectra. While for

more than two groups, we consider the phoneme dataset with three groups.

As we mentioned before, classifiers are constructed based on a training and a test sample.

To demonstrate how our proposed classifier works when a training T rain and a T est sample

is available, we start analysing the orange juice dataset. For the orange juice dataset, we

start by randomly splitting the data into a training and test set. The size of the learning set

is set to be equal to nT rain = 150 and the size for the test set is nT est = 68. The number of

observations in each group is considered to be equally balanced. We have constructed the

100 samples to be random observations but subject to each group having an equal number of

observations. All the competitor methods previously described were applied. For the k-NN

and the k-RNN methods the value of k is selected such that it minimises the misclassification

error in the training set and then we apply them to the test set. Figure 3.27 shows the boxplot

of the misclassification error rate of these 100 samples of the real dataset. For this example,

we can observe that the classifier based on the generalised additive model with two covariates

outperforms all the different methods. In the second place, the classifier based on maximum

depth perform best while the k-NN perform worst.

The second real dataset we consider is the NIR gasoline spectra. As before, for this real

dataset, we start splitting the data into a random training and test sample. The size of the

training set is set to be equal to nT rain = 80, while the size of the test set is nT est = 58 and the

data in both groups is equally balanced. We generated 100 random samples and we apply the

five different classifiers. Boxplots of the misclassification error rate over these samples can

be seen in Figure 3.28. As before, for the k-NN and the k-RNN methods, the value of k is

selected such that it minimises the misclassification error in the training set and then apply to

the test set.

From Figure 3.28 we can observe that the proposed classifier based on the generalised

additive model considering both covariates outperforms the other methods. Also, we can

observe that the methods based on k-NN and k-RNN perform very similarly.
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Real Dataset 1: Orange Juice

Figure 3.27: Boxplots of the misclassification error rate when applied to the orange juice
dataset.
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Figure 3.28: Boxplots of the misclassification error rate when applied to the NIR gasoline
spectra.

The last real dataset we consider is the phoneme dataset used in Ferraty and Vieu (2003)

widely used in Hastie et al. (1995). In this dataset we consider n1 = n2 = n3 = 400 curves in
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each group. From each speech frame, we compute the log-periodogram, which is the one

suitable for speech recognition. Thus the data consists of 1200 log-periodograms of length

256, with know class (phoneme) memberships. For this real dataset, we created a training set

of 600 observations based on n0 = n1 = n2 = 200 curves in each class, while the remaining

curves were considered to be in the test set. Then, we repeated this procedure 100 times.

Figure 3.29 shows the boxplots of the misclassification error rate over 100 iterations for the

five different classification methods we considered.

An interesting feature we can observe in Figure 3.29b, which is a plot of the two covariates

used for classification, is that we can clearly distinguish three main groups formed. Each

of these groups belongs to each phoneme class. This explains the good performance of the

classifier based on the signed depth and the distance to the mode.
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Figure 3.29: (a:) Boxplots of the missclassification error rate and (b:) signed depth against
the distance to the mode, for the phoneme dataset.

We summarise the results of the applying to real datasets in Table 3.12. We can observe

from Table 3.12, that in general, the proposed classifier demonstrates a better performance

than their maximum depth classifier counterparts as shown in the three real data examples.

Also for more than two groups, the proposed classifier not only performed better but also

correctly identified clusters in the data.
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3.12.1 Point Misclassification

We also computed point misclassification error rates which are shown in Figure 3.30. The

results of the point misclassification error rate for the five methods show that the best method

with respect to the misclassification error rate is the generalised additive model using the

distance to the mode and the signed depth as covariates.
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Figure 3.30: Point misclassification error rates for the k-NN, k-RNN, GAM MD and α-TM
classifiers applied to real datasets.

To conclude this simulation study, we observe through an extensive simulation method

that the proposed method based on the signed depth and the distance to the mode is a

robust classifier under different outlier scenarios. Also, by considering the computational

time, we observe that it is faster than the other compared methods and does not require any

optimisation in term of the parameters, which is required for the k-NN and the k-RNN.
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3.13 Conclusions

Through this chapter, we introduced a new classifier for functional data based on a generalized

additive model using two covariates, the signed to the depth and the distance to the mode.

We started by considering the study of the k-RNN classifier using functional depths and

introducing the signed distance integral, with respect to the reference curve, to assign a sign

to the depth of a function xi(t). By considering this, we proposed a nearest neighbour type of

algorithm based on the signed depth for functional data.

By means of a running simulated example, we model the k-RNN as a regression type

approach and we developed bootstrap confidence intervals for the probability that one curve

belong to an specific population. By introducing generalized additive models, we showed

the performance of the classifier using the distance to the mode and the signed depth. We

compare the performance of the proposed classifier against different robust classifiers, the

k-NN based on depth, the k-RNN, which uses the ranking of the depth, and classifiers based

on a linear combination of a functional depth. Our proposed classifiers, outperform the other

classifiers based on robust measures. In all the examples, the proposed classifier performs

better than the competitor methods, suggesting that in these examples, there is atypicals

contained in the data. In the presence of more atypicals in the data, the proposed method

performs better to the other competitors.

Even though we only consider a single functional depth there are other functional depths

available and could be useful to consider evaluating the proposed classifier in comparison

with these functional depths.



Chapter 4

Dealing with Imbalanced Observations

for functional data

4.1 Introduction

Imbalanced sample sizes is a common scenario in the classification problems. When the

imbalance in the data is not too extreme, a Bayesian classifier can overcome such a difficulty

by incorporating the sample size via a modification of the prior probabilities. However,

strongly imbalanced classes often lead to unsatisfactory results with respect to the prediction

of new observations, especially for the small class.

In this chapter we use imbalanced to refer to the case where the number of observations

in the majority class exceeds the number of observations in the minority class. This definition

has also been used for this special setting by He and Garcia (2009), Chawla et al. (2002),

Chawla et al. (2003) and Chawla et al. (2004). The word unbalanced or imbalanced can be

used interchangeably - among which the word imbalanced seems to be more popular.

In the literature, there is little research which has focused on the supervised classification

problem with imbalanced samples sizes in either the multivariate case or the functional

case. In the multivariate case, we can find the works undertaken by Chawla et al. (2004),

García et al. (2012), López et al. (2013), Japkowicz et al. (2000) and Han et al. (2005). The

functional case, has even less attention, with only Lin and Chen (2012) who have studied

imbalanced classifiers for high dimensional data by incorporating a new strategy in the

training phase to account for different sample sizes.

When dealing with imbalanced observations two main problems arise. First, traditional

140
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classifiers might behave undesirably, because it does not take into consideration the distri-

bution of the minority class. The second problem is concerned with boundary observations.

Boundary observations are observations near to the borderline and are therefore more suscep-

tible to being misclassified than the ones far from the borderline. Thus, accurate classification

of these would reduce the overall error rate.

This chapter proposes different methods to strengthen the borderline minority obser-

vations in terms of the functional principal component scores. The proposed methods are

based on bootstrapping techniques in terms of the principal component scores, applied to

resampling functions in the minority class. However, when this approach is insufficient, we

also generate boundary observations from the majority class. We explore different methods

to generate new curves by considering a linear combination of the observations in the border

and curves closest in depth. We apply our proposed methodology to simulated and real data

sets.

The structure of this chapter is as follows. Section 4.2 describes different methods to deal

with unequal sample sizes. In Section 4.3 we discuss the methods to evaluate imbalanced

classifiers. Section 4.4 deals with methods for imbalanced data for the functional case.

Section 4.5 explains what is understood for boundary observations and different methods to

generate observations in the border set. Section 4.6 describes the simulation setup and results

are shown in Section 4.7. Section 4.8 describe the application to real imbalanced data sets.

Finally, conclusions are stated in Section 4.9.

4.2 Methods to dealing with unequal sample sizes

When we are working with imbalanced observations, usually, traditional machine learning

algorithms such as k-NN, decision trees and neural networks among others behave undesir-

ably; see Akbani et al. (2004). In this scenario, classifiers can have good accuracy for the

majority class but poor accuracy for the minority class. This occurs because the distribution

of the imbalanced dataset is not taken into consideration. Along with this, most classification

algorithms aim to minimise the error rate and they ignore the unequal distribution of the data

and implicitly assume that all misclassification errors cost equally.

To tackle this problem, a number of different solutions were previously proposed for
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example, Estabrooks et al. (2004). These solutions include many different forms of resam-

pling techniques and adjusting the misclassification costs of the classes, so misclassification

of minority instances is weighted as more important than misclassification of majority in-

stances. However, resampling techniques have been proved to be more efficient and provide

a balanced distribution. Balanced distributions can be obtained in different ways; the most

common approaches to obtain balanced distributions are:

• Over-sampling of minority class.

• Under-sampling of majority class.

In this section, we briefly describe the most popular methods of under-sampling the

majority class and over-sampling the minority class. For an in depth overview of the different

techniques see Chawla (2009).

Under-sampling of majority class. This consists of down-sizing the majority class by

removing observations, usually at random, until the dataset is balanced. There are several

under-sampling methods proposed in recent years and some of the methods to under-sampling

the minority class are based on a k-NN approach, the most common being the condensed

nearest neighbours and the one side selection approach, Kubat et al. (1997). On one hand, we

can assume that many observations of the majority class are redundant and that by removing

some of them at random, the data distribution will not change significantly. On the other hand,

by removing some observations it is a possibility that we are removing relevant observations

from the dataset, losing information. In practice, this technique is often adapted since it is

simple and speeds up the computation.

Over-sampling of the minority class. One approach consists of up-sizing the minority

class at random. Up-sizing consists of replicating the minority class until the two classes have

an equal number of observations. However, by doing this, we increase the risk of over-fitting

by biasing the model towards the minority class, since it makes exact copies of the minority

class observations, Guo et al. (2008). Some drawbacks of this approach are that the increase

in the size of the data increases the computational time and if the original dataset is large, we

cannot add new valuable minority observations.

The synthetic minority oversampling technique (SMOTE) is one of the most popular

techniques for minority oversampling. It was proposed for multivariate data and introduced
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by Lusa et al. (2013). The main idea of the SMOTE is to create a new minority class of

observations by interpolating several minority class instances.

The SMOTE uses the k nearest neighbours approach; for a fixed value of k, neighbours

from the neighbourhood are randomly chosen and added to the minority class until both

classes have the same length. By using this technique, the minority class is over-sampled, and

new observations are introduced by interpolating rather than over-sampling with replacement.

Let xi ∈ Rp be a vector of features in the minority class. The SMOTE algorithm searches

its k nearest neighbours and one neighbour is randomly selected, say x′ . Then for a random

number δ ∈ [0,1], the SMOTE algorithm generates an artificial sample as

xnew = xi +(x
′
−xi)×δ. (4.1)

Details of the SMOTE algorithm can be found in Chawla et al. (2002). Some other derivations

of the SMOTE are SMOTEboost, Chawla et al. (2003); RAMOBoost, Chen et al. (2010);

Kernel Based SMOTE, Mathew et al. (2015); and borderline SMOTE, Han et al. (2005). In

this chapter, we focus on observations near the boundary, borrowing some concepts from the

borderline SMOTE.

The borderline SMOTE is a method in which only the boundary observations of the

minority class are over-sampled. It considers a fixed set of k nearest neighbours and over-

samples or strengthens the observations that are near the boundary. Depending upon the

amount of oversampling required, neighbours from the k nearest neighbours are randomly

chosen. The borderline SMOTE calculates the k = 5 nearest neighbours of the same class

for every minority example and then select some examples at random according to an

oversampling rate. After that, new synthetic observations are generated along the line

between the minority example and its selected nearest neighbours according to equation (4.1).

The borderline SMOTE only over-samples or strengthens the boundary minority examples,

Han et al. (2005). A drawback of the borderline SMOTE is that when the number of minority

class samples is particularly smaller than that of the majority class, then most of the minority

class samples are regarded as noise. Thus, few synthetic samples are generated which

improve the accuracy of the method, leading to little overall improvement.
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4.3 Methods to evaluate imbalanced classifiers

Evaluating the classifiers of an imbalanced dataset plays an important role. In fact, the

accuracy (or misclassification error rate) is not a reliable metric. For instance, consider an

extremely imbalanced dataset with n0 = 10 and n1 = 500 observations in each class, respec-

tively. Even when the classifier classifies all of the observations to group one, completely

misspecifying group zero, the accuracy is 0.98 which is high because there are many more

majority examples than minority examples. Under these circumstances, accuracy does not

reflect reliable prediction for the minority class. Thus, more reasonable evaluation metrics

are needed. In this section, we start by briefly reviewing the methods to evaluate imbalanced

classifiers.

In the imbalanced case, we can group the evaluation metrics, according to Ferri et al.

(2009) and Caruana and Niculescu-Mizil (2004), into two main groups. These are:

1. Threshold metrics.

2. Ranking methods and metrics.

The threshold metrics consider the overall performance of the algorithm on all the classes

in the dataset. These can have multiple or a single class focus. When the threshold metrics

have only a single class focus, the most common performance measures are the accuracy

and the misclassification rate. Because the varying degree of importance of the different

classes is not considered, the threshold metrics for a single class focus do not perform well

in the imbalanced situation, unless the class ratio is taken into consideration (Caruana and

Niculescu-Mizil, 2004). To handle this, different pairs of distinct measures are considered,

often referred to as a multiple class focus. Examples of measures with a multiple class

focus are the sensitivity/specificity, precision/recall, Geometric mean (G-mean), F-measure,

Generalized Index of Balanced Accuracy (IBA), Macro-Averaged Accuracy, Mean-Class-

Weighted Accuracy, Optimised Precision and Adjusted Geometric Mean, among others.

Ranking methods and metrics are considered based on the fact that cost or other infor-

mation related to the classification is not known. For this purpose, it more useful to use

evaluation methods that enable visualisation or summarise the performance over the range

of the classifier. The receiver operating characteristics (ROC) and the area under the curve

(AUC) are examples of ranking metrics for such purposes. Most of the criteria for the

performance of the classifiers are based on the confusion matrix.
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The confusion matrix, also known as the error matrix, is a two by two table that visualises

the performance of the classifier in supervised classification. Each column represents the

instances in a predicted class and each row represents the instances in an actual class (or

vice versa). The name, confusion matrix, arises from the fact that it makes it easy to see if

the system is confusing two classes. The shape of the confusion matrix is a square matrix

containing all the possible classes in both the horizontal and vertical directions and lists the

classes along the top of a table as the predicted outputs, and then down the left-hand side as

the targets.

Suppose we have a binary classification problem with two populations: Π0 and Π1. If

we count the number of times that the predicted output was class 0 when truly belongs

to class 0, and similarly for class 1. We can construct a square matrix. Table 4.1 shows

an example of the associated two by two confusion matrix. The row position represents

the actual class label, while the column position represents the predicted class label. True

Positive (TP) and True Negative (TN) denote the number of positive and negative examples

that are classified correctly, while False Negative (FN) and False Positive (FP) denote the

number of misclassified positive and negative examples, respectively.

Table 4.1: Confusion Matrix or Error Matrix for two classes 0 and 1.

Predicted Class 0 Predicted Class 1
True Class 0 TP FN
True Class 1 FP TN

To evaluate the performance of our classifier we will consider threshold and ranking

metrics. More specifically, we will consider the F- measure, G-mean, the Generalized Index

of Balanced Accuracy (IBA) and the area under the curve (AUC) as metrics to evaluate the

performance of the imbalanced classifiers. These various metrics attempt to get a better

summary of how good the classifier is when the data are imbalanced. We now briefly describe

the evaluation metrics.

The F - measure

The F-measure is a popular evaluation metric for imbalanced problems (Japkowicz, 2013).

Also known as the weighted harmonic mean of precision and recall, it is a combination of

recall and precision rates. The precision is the percentage of positive predictions made by the

classifier that are correct:
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Precision =
T P

T P+FP
,

and the recall is the percentage of true positives that are correctly detected by the classifier.

Recall =
T P

T P+FN
.

The recall rate explains the prediction accuracy among minority class instances, while

precision is the rate of correct predictions among all instances predicted to belong to the

minority class. It indicates how many of the positive predictions are correct (He and Garcia,

2009). The F-measure is defined as the harmonic mean of recall and precision, which tends

to be closer to the smaller of the two. In other words,

F-measure =
(1+β2)×Precision×Recall

β2×Precision+Recall
.

Note that the F-measure depends on β ∈ [0,∞) which is used to control the influence of recall

and precision separately. When β = 0, then F-measure reduces to precision and conversely

when β→ ∞ then the F-measure approaches the recall rate. When β = 1, the F-measure is

suggested to integrate these two measures as an average. The F-measure is high when both

recall and precision are high and can be adjusted by changing the value of β. In practice, the

value of β is usually set to 1, i.e.,

F-measure =
2×Recall×Precision

Recall+Precision
.

For interpretation, a high F-measure value ensures that both recall and precision are reasonably

high.

G-Mean

When the performance of both classes is concerned, both the True Positive Rate (TP) and

the True Negative Rate (TN) are expected to be high simultaneously. A metric that captures

both rates is the G-mean proposed in Kubat et al. (1997). The G-mean indicates the balance

between the classification performance in both classes. This metric takes into account the

sensitivity and the specificity (which is the accuracy of the negative examples). The G-mean

is defined as:
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G-mean =
√

Sensitivity×Specificity,

where Sensitivity = Recall and the Specificity is defined as

Specificity = 1− FP
TN + FP

.

This metric tries to maximise accuracy to balance both classes at the same time. It is an

evaluation measure that allows us to simultaneously maximise the accuracy in positive and

negative examples with a good trade-off. Examples of this metric being used to evaluate the

classifier on an imbalanced dataset can be found in Chawla (2009).

Generalized Index of Balanced Accuracy (IBA)

The Generalized Index of Balanced Accuracy was proposed by García et al. (2012). This

measure is defined in terms of the performance metric M and a weight parameter α which

reduces the influence on the result of the particular metric M. The IBA is defined as

IBAα (M) = (1−α×Dom)×M,

where the dominance, Dom ∈ [−1,1], is defined as

Dom = T P−T N.

Note that the dominance is used to estimate the relationship between the two rates T P and

T N. The closer the dominance is to 0, the more balanced both individual class accuracies are.

The IBA metric quantifies a certain trade-off between a measure of overall accuracy and an

index of how balanced the two-class accuracies are. Unlike most performance metrics, the

IBA metric not only takes care of the overall accuracy but also intends to favour classifiers

with better results on the minority class (usually the most important class); see López et al.

(2013).

From the definition of IBA, note that if α = 0, the quantity IBAα (M) simplifies to the

performance metric and, in practice, one should select a value of α depending on the metric

used. When we compare the performance of the classifier in the imbalanced case we set the

performance metric M= G-Mean2 and α = 0.1.
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The area under the ROC curve (AUC)

The AUC provides a single measure of a classifier’s performance by summarising the

performance of the classifier into a single metric. The AUC is another performance metric

that can be used to evaluate the performance of an imbalanced classifier (Bradley, 1997). It

is based on the Receiver Operating Characteristic (ROC) curve, which can be considered

as one of the most popular metrics to measure the performance of imbalanced classifiers

(Hanley and McNeil, 1982). The ROC curve plots the True Positive (TP) rate against the

False Positive (FP) rate. A single run of a classifier produces a single point on the ROC plot,

and a perfect classifier would be a point at the point (0,1) (100% true positives, 0% false

positives), while the worst classifier that got everything wrong would be at the point (1,0).

The closer to the top-left-hand corner the result of a classifier is, the better the classifier has

performed and any classifier that lies on the diagonal line from (0,0) to (1,1) behaves exactly

at random; we call this a random classifier. To generate a ROC curve, each point is generated

by moving the decision boundary. That is, points nearer to the left in ROC space are the

result of requiring a higher threshold for classifying an instance as a positive instance.

The reason why the ROC curve is suited to evaluated the performance of a classifier for

imbalanced observations, according to Japkowicz (2013), is because the performance on each

class is decomposed into a pair of distinct measures. For example, for the sensitivity and the

specificity, the ROC curve gives an evaluation of what may happen in these diverse situations.

The AUC provides a single scalar measure of a classifier’s performance by summarising the

performance of the classifier into a single metric. It is computed by obtaining the area of the

graphic. In other words,

AUC =
1+T P−FP

2
,

where TP is the true positive rate, which is the percentage of positive instances correctly clas-

sified, FP is the false positive rate which is the percentage of negative instances misclassified.

For our purpose, when dealing with imbalanced data we will consider the AUC as a metric to

evaluate the performance of the imbalanced classifiers.

Note that all the above evaluation metrics can reasonably evaluate the performance of a

classifier for imbalanced datasets because their formula is relative to the minority class.
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4.4 Methods to deal with imbalanced data

for functional data

In this section, we start by commenting on the Bayesian approach to deal with imbalanced

observations.

4.4.1 A Bayesian Approach

Bayes’ theorem can be used to estimate the posterior probability that the observed signed

depth belongs to one of the classes. The posterior probability that the signed depth sd p(xi(t))

belongs to population Π0 is given by

f̄0(sd p(xi(t)))π0

f̄0(sd p(xi(t)))π0 + f̄1(sd p(xi(t)))π1
, (4.2)

where f̄1(sd p(xi(t)) represents the density of the signed depth observations in the popu-

lation Π1, π1 is the prior probability that the observed signed depth is in population Π1,

f̄0(sd p(xi(t)) represents the density of the signed depth observations in the population Π0

and π0 is the prior probability that the observed signed depth is in population Π0. The

densities f̄1 and f̄0 are estimated using a kernel density estimation approach.

In the case when the data is imbalanced, a Bayesian classifier is a flexible classifier that

allows us to incorporate information about the sample size of the observations in each group

by modifying the prior probabilities. To investigate the effect of the prior probabilities when

we consider a Bayesian classifier, we study how sensitive the evaluation metrics are to the

effect of the prior probabilities. We consider different values for the number of observations

in the minority class and it is important to note that the prior probabilities are estimated by

considering the number of curves in each group. In other words,

π̂1 =
n1

n0 +n1
and π̂0 =

n0

n1 +n0
, (4.3)

where n1 is the number of observations in the minority class and n0 is the number of

observations in the majority class. Using the Bayesian classifier, we assign a new observed

signed depth sd p(x0(t)) to the class with the highest posterior probability. A Bayesian

classifier for imbalanced data classifies a new observation to population Π0 if
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f̄0(sd p(x0(t)))π0 > f̄1(sd p(x0(t)))π1.

To demonstrate of the performance of the Bayesian classifier with a different set of priors,

we start by first considering different scenarios. We briefly summarise the scenarios in

Table 4.2. For each of the different scenarios, we consider the misclassification rate, the area

under the curve, the generalised index of balanced accuracy with M= G-Mean2 and α = 0.1,

the G-Mean and the F-Measure with β = 1.

The data we consider in this example is generated using the same model introduced in

Section 3.3. We consider a Gaussian process GP (m(t),K(s, t)) where m(t) = 80∗(1− t)∗ t2,

K(s, t) = 0.1 ∗ exp(−100 ∗ (s− t)2) and the number of observations in each class varies

according to each scenario.

Table 4.2: Different scenarios for the Bayesian approach.

S1 S2 S3 S4 S5

n0 25 50 75 100 150
n1 200 200 200 200 200

To measure the performance of the Bayesian classifier when the data is imbalanced

we implement the Bayesian classifier for the different scenarios. Figure 4.1(A) shows the

kernel density estimation for scenario S2, with n0 = 50 and n1 = 200 observations in their

respective classes. The value of the bandwidth was calculated using cross validation. For

the observations in both groups, and using the priors probabilities as in equation (4.3), we

compute the posterior probabilities

P(sd p(xi(t)) ∈ y0 | sd p(xi(t))) =
f̄0(sd p(xi(t)))π0

f̄0(sd p(xi(t)))π0 + f̄1(sd p(xi(t)))π1
, (4.4)

and

P(sd p(xi(t)) ∈ y1 | sd p(xi(t))) =
f̄1(sd p(xi(t)))π1

f̄0(sd p(xi(t)))π0 + f̄1(sd p(xi(t)))π1
. (4.5)

The posterior probabilities against the signed depth are shown in Figure 4.1(B) and

Figure 4.1(C), respectively.

To investigate the effect of the prior probabilities when dealing with imbalanced observa-

tions, we perform a small experimental study. The study consists of varying the number of
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Figure 4.1: (A) Kernel density estimation for the observations in the minority and majority
class with the posterior probabilities for the the signed depths to belong to (B) the minority
class (B) and (C) the majority class.

observations in each group by modifying the prior probabilities. The resulting calculations of

the error rate, the area under the curve, IBA, G-mean and F-measure can be seen in Table 4.3.

Table 4.3: Several performance measures for different scenarios considered.

Scenario Measure of Performance

Error Rate AUC IBAα=0.1 G-Mean F-Measure

S1 0.066 0.823 1.526 0.286 0.963
S2 0.108 0.813 2.651 0.401 0.933
S3 0.138 0.830 3.411 0.506 0.904
S4 0.114 0.889 3.795 0.622 0.912
S5 0.103 0.901 2.797 0.779 0.907

We can see that there is an increase in the G-mean for all the scenarios. While from

scenario 3 onwards, both the AUC and the G-mean increases as the data become more

balanced. For all the considered scenarios, the F-measure is greater than 0.90, indicating a

good performance of the classifier on the minority class.
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Another important observation from Table 4.3 is that the value of the index of balanced

accuracy, were high for scenarios S3 and S4. However, the IBA function does not take care of

the overall accuracy only, but tends to favour classifiers with better results on the minority

class. Results of this small simulation study show the flexibility of the information we can

incorporate about the minority class through prior probabilities.

4.4.2 Oversampling techniques for functional data

When dealing with functional data, a better approach to using only prior probabilities is to

oversample the distribution of the principal component scores in the minority group. By

doing this, we create as many new observations we require from the same distribution.

To oversample the distribution of the principal component scores, we start by estimating

the functional component scores in the minority group and use the the fact that observed

functions can be decomposed into functional principal components and their uncorrelated

principal component scores.

Let Xi(t) for t ∈ [a,b], be a collection of random functions; the Karhunen-Lòeve decom-

position can be written as,

Xi(t) = X̄(t)+
∞

∑
p=1

Ξipψp(t) for i = 1, . . . ,n, (4.6)

where X̄(t) is the mean function, Ξip is the pth principal component score of the ith observation

and ψp(t) is the pth functional principal component eigenfunction. Using the Karhunen-

Lòeve expansion for random functions, a collection of observed curves at times t1, . . . , tM can

be approximated by

x(p)
i (t j)≈ x̄(t j)+

p

∑
p′=1

Ξ̂ip′ψ̂p′(t j) for i = 1, . . . ,n, j = 1, . . . ,M, (4.7)

where x̄(t j) is the sample mean, Ξ̂ip is the estimated pth principal component score of the

ith observation and ψ̂p(t) is the pth estimated functional principal component eigenfunction,

for a fixed dimension p. Hereafter, the couple
(
Ξ̂ip, ψ̂p(t j)

)
will form the foundation of

our subsequent methodology. The approaches we will consider in the methodology are the

following:

1. Sampling with replacement from the principal component scores.
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2. Sampling with replacement from the principal component scores and adding Gaussian

noise in the curves.

3. Smoothed bootstrapping and randomly generation from kernel densities with Gaussian

noise in the curves.

4. Synthetic Minority Oversampling Technique (SMOTE) and adding Gaussian noise in

the curves.

5. A refinement of the data-driven (Taylor - Thomson) algorithm, allowing us to generate

as many simulated observations we require, with Gaussian noise in the reconstructed

curves.

We start by summarising the methods.

Bootstrap

In multivariate data analysis, the use of bootstrap techniques has been popularized since the

work of Efron (1979), Efron (1982) and Efron and Tibshirani (1993). For functional data,

there is little work on bootstrapping. For bootstrapping the functional principal component

scores, Shang (2015) provides a study of the distributional properties of sample eigenvalues,

while Hall and Vial (2006) use the bootstrap approach to assess the finite dimensionality for

functional data.

Selection of principal components has been a recurring topic in PCA, and no consensus

has emerged yet. It is an important model selection problem in most practical problems

and is not an easy task. A popular method is the scree plot by Cattell (1966). The work

of Li et al. (2013) discusses selecting the number of principal components based on an

AIC criterion. While more sophisticated methods, in a theoretical and computational sense,

are those based on cross-validation Wold (1978), a more recent approach is the minimum

description length (MDL) method proposed by Poskitt and Sengarapillai (2013), where each

principal component is counted as one parameter, and is considered as a parameter problem.

The process to generate bootstrap samples from the principal component scores is as follows.

Given a collection of observed functions
{

xi(t j)
}

for i = 1, . . . ,n observed on a grid of

points t1, . . . , tM,
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B1. Hold the sample mean x̄(t j) and the principal component functions ψ̂p(t j) for p′ =

1, . . . , p, and j = 1, . . . ,M, fixed at their realised values for the observations in the

minority class.

B2. For i = 1, . . . ,n, generate bootstrap replication Ξ̂∗ip by sampling with replacement from

the rows of Ξ̂ip.

B3. Construct the bootstrap sample
{

x∗i (t j)
}

where the bootstrap realisation x∗i (t j) for i =

1, . . . ,n, and j = 1, . . . ,M, is constructed by replacing the Ξ̂ip by Ξ̂∗ip and reconstructing

the data functions

x(p)
i (t j) = x̄(t j)+

p

∑
p′=1

Ξ̂
∗
ip′ψ̂p′(t j) for i = 1, . . . ,n, j = 1, . . . ,M.

For approach 2, we also have the additional step.

B4. Finally, add some Gaussian noise to the reconstructed x(p)
i (t j) curves.

Smoothed Bootstrap

The smoothed bootstrap is an extension of the standard bootstrap method using kernel

densities. It is based on the fact that obtaining a smoothed bootstrap sample from the

data is equivalent to sampling from a kernel density estimate of the distribution and it is

a modification to the bootstrap procedure to avoid samples with these properties. For an

introduction to the smoothed bootstrap see Silverman and Young (1987).

Suppose that x1, . . . ,xn ∈Rp are n observations drawn from an unknown p-variate density

f . Let f̂ be the estimated p-variate density from the observations. New realisations Y∗ from

f can be generate as follows,

1. Choose I uniformly with replacement from {1, . . . ,n}.

2. Generate ε to have probability density function N(0,I ).

3. Set Y∗ = X̄+(XI− X̄+hε)/(1+h2)1/2.

where X̄ is the mean vector, I is the identity matrix and the smoothing parameter h is set to

be 0.5. Density estimates are explained in more detail in Silverman and Young (1987).

We can simulate different realisations from the principal component scores in the minority

class using the smoothed bootstrap approach, outlined below.
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SB1. For the observations in the minority class, hold the sample mean x̄(t j) and the estimated

principal component functions ψ̂p(t j) for p′ = 1, . . . , p, and j = 1, . . . ,M, fixed at their

realised values.

SB2. For i = 1, . . . ,n, generate new realisations Ξ̂∗ip by estimating a product kernel density

Ξ̂ip using Silverman’s rule of thumb, Chacón et al. (2011) for bandwidth selection, and

taking i.i.d. random draws from the estimated density. The random generation from

the product kernel is done by drawing with replacement the rows of Ξ̂ip and adding

Gaussian noise from univariate kernels, parametrised by the corresponding bandwidth

parameter of the sampled values.

SB3. Construct a bootstrap sample
{

x∗i (t j)
}

where the bootstrap realisation x∗i (t j) for i =

1, . . . ,n, and j = 1, . . . ,M, is constructed as

x(p)
i (t j) = x̄(t j)+

p

∑
p′=1

Ξ̂
∗
ip′ψ̂p′(t j) for i = 1, . . . ,n, j = 1, . . . ,M.

where Ξ̂ip is replaced by Ξ̂∗ip from the estimated density with Gaussian noise. Add

some Gaussian noise to the reconstructed x(p)
i (t j) curves.

The density can be estimated with respect to different kernel functions. When we consider

the multivariate Gaussian kernel, the bandwidth parameter matrix H is a covariance matrix,

and the Gaussian noise is simulated from a multivariate normal distribution centred at the

data points and parametrised by corresponding bandwidth matrix H.

SMOTE for Functional Data

The Synthetic Minority Oversampling Technique (SMOTE), proposed by Chawla et al.

(2002), is one of the most popular approaches for dealing with imbalanced data. It is used

mainly for multivariate data but we consider a modified version for functional data.

The main idea of the SMOTE is to create a new minority class of observations by

interpolating several minority class instances in the training set, Lusa et al. (2013). Using

this technique the minority class is over-sampled and new observations are introduced by

interpolating rather than over-sampling with replacement. The SMOTE uses the k nearest

neighbours approach and, for a fixed value of k, neighbours from the k-neighbourhood are

randomly chosen and added to the minority class until both classes have the same size. This
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approach effectively forces the decision region of the minority class to become more general

(Chawla et al., 2002). The detailed algorithm for the SMOTE can be found in Chawla et al.

(2002).

An alternative to the SMOTE is the borderline SMOTE. It was introduced by Han et al.

(2005) and is a method in which only the observations near the boundary in the minority

class are over-sampled. The borderline SMOTE also considers a set of nearest neighbours

usually k = 5, with the idea being to over-sample or strengthen the observations that are near

the boundary (Wang et al., 2015).

We start describing the SMOTE to increase the number of observations in the minority

class for functional observations.

SMOTE 1. For the observations in the minority class, hold the sample mean x̄(t j) and the principal

component functions ψ̂p(t j) for p′ = 1, . . . , p, and j = 1, . . . ,M, fixed at their realised

values.

SMOTE 2. For all the observations in the minority class generate a SMOTE realisations Ξ̂S
ip by

synthetically generating new observations from Ξ̂ip.

SMOTE 3. Construct a SMOTE sample
{

xS
i (t j)

}
where the SMOTE realisation xS

i (t j) for i =

1, . . . ,n, and j = 1, . . . ,M, is constructed by replacing the Ξ̂ip by Ξ̂S
ip and reconstructing

the data functions as

x(p)
i (t j) = x̄(t j)+

p

∑
p′=1

Ξ̂
S
ip′ψ̂p′(t j) for i = 1, . . . ,n, j = 1, . . . ,M.

SMOTE 4. Finally, add some Gaussian noise to the reconstructed x(p)
i (t j) curves.

A refinement of the Taylor - Thomson algorithm

The Taylor - Thompson algorithm proposed by Taylor and Thompson (1986) does not require

estimation of the underlying density as the smoothed bootstrap approach. Instead, it borrows

concepts from density estimation. The method uses the k nearest neighbours of a randomly

selected data row (k−1 nearest neighbours and the original row itself) and it was originally

developed for multivariate data for its computational simplicity (Demirtas and Hedeker,

2011). The value of k plays the role of the smoothing parameter as in the density estimation

approach.
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The original algorithm considers a matrix of dimension n× p and generates a pseudo-

random matrix of simulated draws whose dimension is the same as the original data. However,

the original Taylor - Thomson algorithm has the drawback that it is not possible to generate

more observations from the original data but only from the original dimension itself. In other

words, if the original data is of dimension n× p, the Taylor - Thomson algorithm generates

the same same number of observations n with same dimension p. To overcome this limitation,

we consider a refinement of the Taylor - Thomson algorithm to simulate from the principal

component scores. We briefly describe the algorithm below.

Let Ξ̂ip be the matrix of size n with the p estimated principal component scores. In

other words each {ξ1, . . . ,ξn} is a vector of length p denoting the ith row of the matrix of the

principal components scores. The steps of the refinement of the Taylor - Thomson algorithm

are as follows:

TT1. For the observations in the minority class, hold the sample mean x̄(t j), and the principal

component functions ψ̂p(t j) for p′ = 1, . . . , p, and j = 1, . . . ,M, fixed at their realised

values.

TT2. For i = 1, . . . ,n, generate new realisations Ξ̂T T
ip in the following way:

1. Select a row from ξi from Ξ̂ip at random and determine its k nearest neighbours

using the Euclidean distance.

2. Centre the vectors ξi around the sample mean ξ̄ =
1
k

k

∑
i=1

ξi and define ξT
i = ξi− ξ̄.

3. Generate a random sample u1, . . . ,uk from the uniform distribution

U
(1

k
−3(k−1)/k2,

1
k
+3(k−1)/k2

)
.

4. Generate a realization forming the linear combination

ξ
T T
i =

k

∑
i=1

uiξ
T
i + ξ̄.

5. Add the generated realisation to the original matrix and call it Ξ̂MT T
ip .

6. Sample another row from the matrix Ξ̂MT T
ip with replacement, and repeat the

above steps until the desired number of simulations is reached. The output will

be a new matrix Ξ̂MT T
ip of simulated draws whose dimension is the number of

simulations nsim× p.
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TT3. Construct the modified Taylor-Thompson sample
{

xMT T
i (t j)

}
where the realisation

xMT T
i (t j) for i = 1, . . . ,n, and j = 1, . . . ,M, is constructed by replacing the Ξ̂ip by

Ξ̂MT T
ip and reconstructing the data functions

x(p)
i (t j) = x̄(t j)+

p

∑
p′=1

Ξ̂
MT T
ip′ ψ̂p′(t j) for i = 1, . . . ,n, j = 1, . . . ,M.

TT4. Finally add some Gaussian noise to the reconstructed x(p)
i (t j) curves.

In the original Taylor - Thompson algorithm, the first and the second empirical moments

are compatible with the original data. The proof can be found in Taylor and Thompson

(1986). Note in the case where k = 1, the procedure is simply a classical bootstrap. As the

value of k increases, we arrive at something similar to the smoothed bootstrap approach,

where a small amount of (normally distributed) zero-centred Gaussian noise is added on to

each re-sampled observation. An iterative procedure to select the value of k can be found in

Demirtas and Hedeker (2011).

4.4.3 Performance Comparison

To compare the performance of the previously discussed methods and to evaluate the perfor-

mance of generating more observations from the minority class, we implement a simulation

study. We start by considering the second scenario S2, where the minority class n0 consist

of 50 observations and the majority class consists of 200 observations. For scenario S2, we

compare the area under the curve before and after oversampling the data. Figure 4.2 shows

the original data (before preprocessing the data) in terms of the signed depth and distance to

the mode.

To compare the performance of our different methods of oversampling the data to the

simulated dataset, we implemented all algorithms in R building on the smotefamily and

kernelboot package for the SMOTE and the smoothed bootstrap approach. For the original

data, the area under the curve applying the k-RNN classifier based on depth corresponds to

0.803. Results of the implementation can be seen in Figure 4.3 for the bootstrap method,

while Figure 4.4 shows the implementation for the remaining methods.
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Figure 4.2: A scatterplot of signed depth against the distance to the mode for the simulated
data. The number of observations in each group are n0 = 50 and n1 = 200.

We use M1 to refer to the sampling with replacement from the principal component

scores approach, M2 to be the sampling with replacement with Guassian noise approach,

M3 the smoothed bootstrap approach, M4 the SMOTE approach and M5 the refinement of

the data-driven Taylor-Thomson algorithm approach. For all the different approaches we

consider the same number of principal components (p = 2) to reconstruct the curves. The

variance of the added Gaussian noise to the curves is the total variation minus the variation

explained by the two principal component scores, except in the first approach.

The corresponding values of the area under the curve are AUCM1
= 0.928, AUCM2

=

0.927, AUCM3
= 0.908, AUCM4

= 0.921 and AUCM5
= 0.914. Compared with the Bayesian

rule incorporating prior probabilities shown in Table 4.3, all the approaches achieve a higher

AUC value.

The results show that even there is even an improvement in terms of the area under the

curve for the bootstrap method which generates many ties in the distance to the mode and

signed depth. We observe the same behaviour in terms of the AUC in the second approach.

In this case, the bootstrap oversamples too many observations and there is an overlap in the
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Figure 4.3: A scatterplot of signed depth against the distance to the mode after the original
data is oversampled by bootstrapping the functional principal component scores. After
oversampling the data both groups contain the same number of observations n0 = n1 = 200.

data.

The remaining approaches M3, M4 and M5 show an improvement in terms of the area

under the curve and a more realistic method to sample the curves efficiently. For concise-

ness, we focus on only two approaches for the generation of data from the minority class;

we consider the smoothed Bootstrap and Random Generation from Kernel Densities with

Gaussian noise in the curves and the Synthetic Minority Oversampling Technique (SMOTE)

with Gaussian noise in the curves.

4.5 Boundary observations

To achieve better prediction, we are interested in developing new methods that can be

applied to observations at the boundary where the misclassification tends to occur. These

are observations near to the borderline and are therefore more apt to be misclassified than

the ones far from the borderline, and thus more important for classification. This set of
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Figure 4.4: Scatterplots of the signed depth against the distance to the mode using (top-left:)
Bootstrap with Gaussian noise, (top-right:) smoothed bootstrap with Gaussian noise, (bottom-
left:) SMOTE with p=2 and Gaussian noise, and (bottom-right:) the Taylor-Thompson
algorithm.
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observations can be defined in terms of a distance function or in terms of the discriminant

rule. We focus on the latter. We propose a new method to generate new observations from

the minority class by oversampling the observations in the minority class and generating new

curves by using a linear combination of the curves at the borderline and later we extend this

method by sampling from the majority group as well. Note that this proposed method differs

from the previous methods when the whole minority class is over-sampled using the principal

component scores.

4.5.1 Running Example

To illustrate the borderline in terms of the discrimination rule we consider the example

introduced in Section 3.3. We consider a Gaussian process GP (m(t),K(s, t)) with mean

m(t) = 80 ∗ (1− t) ∗ t2 and K(s, t) = 0.1 ∗ exp(−100 ∗ (s− t)2). We let the number of

observations in each different population be imbalanced with n0 = 50 and n1 = 250 curves

sample from Π0 and Π1 respectively, such that population Π0 is the minority class.

Usually when we validate our k-RNN classifier, we have a training and test dataset. In

the balanced case, a common method for choosing the appropriate number of neighbours k,

is to use R-fold cross-validation. R-fold cross-validation splits the data into R sets arbitrarily,

which may introduce additional biases. We use this for our proposed method which allows

us to oversample the minority class and train our classifier in the original data, and then we

test our classifier on the fold.

For the imbalanced case, a common approach is to perform stratified cross-validation

where instead of sampling completely at random, the original class distribution is preserved

in each fold; see Japkowicz (2013) and Forman and Scholz (2010) for a discussion about this

approach. However, a drawback of this method is that it introduces overfitting in the data. A

proposed variation of the R-fold cross-validation in the imbalanced case works as follows:

Step 1. Oversample the minority class using any of the above methods previously discussed.

Step 2. Split the original data (not oversampled) into R equally size subsets (or folds).

Step 3. Perform a R-fold cross-validation as described in Section 3.3.1.

Step 4. In each of the folds, train the classifier in the original data and test the classifier on the

fold.
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Step 5. Repeat this process R times and take the average of the metric.

The results of applying this method can be seen in Figure 4.5. In this case we vary the num-

ber of neighbours with k ∈ {1, . . . ,45}. A minimum can be seen from this cross-validation

curve at k = 9 neighbours. For this purpose we consider the overall misclassification rate but

other different metrics as F-Measure, G-mean and AUC can be used. A further investigation

considering different metrics showed that the optimum number of neighbours is the same

when considering overall accuracy, overall error rate and AUC.
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Figure 4.5: The misclassification error rated plotted against the number of neighbours for
imbalanced data.

4.5.2 Border Set

Once we determine our value of k using 10-fold cross validation, we focus on the observations

at the boundary. The first step is to find the borderline observations from the minority class

and form a new set of observations called the border set.
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Observations that belong to the border set are more apt to be misclassified than the

ones far from the borderline. We can define border bands, which are determined by a fixed

parameter τ and a decision threshold dτ. When the data is balanced, the decision threshold,

dτ ∈ [0,1], is calculated based on equal prior probabilities, and usually the decision threshold

is set to be 0.5. To form our border bands, we consider a more general version; the value of τ

is added and subtracted to dτ forming a closed interval of the form [dτ− τ,dτ + τ].

For the first inspection of our running example, we consider a fixed value of k determined

by the 10-fold cross validation previously discussed. The number of neighbours that min-

imised the misclassification error for the imbalanced data was k = 9. To start determining the

border band we consider a fixed value of τ = 0.15 and a decision threshold dτ = 0.5, i.e., we

consider the observations from the minority group that are in the closed interval [0.35,0.65].

Implementations of the border bands can be seen in Figure 4.6. Note that this value was

determined for demonstration of the border bands, but later we choose the border bands in

terms of the classification rule.

Another important observation is that the area under the curve changes with respect to the

number of principal components used to reconstruct the curves. For this reason, we consider

a fixed value of p = 4, explaining 98% of the variability in the data. Also, when we consider

the number of observations in the border bands, for each observation in the border bands the

variability explained by the principal component scores varies.

After we determine the observations in the border band, it is possible to visualise these

observations in terms of the signed depth and distance to the mode. Figure 4.7 demonstrates

this for observations in the majority group, minority group and the border set group as defined

in Section 4.5.2. Note that the observations in the border region belong to the observations in

the minority class which overlap with or are close to the observations in the majority class.

We have seen that when we want to determine the classification of the observations

in the border set, it is necessary to define a threshold τ and a decision threshold dτ = 0.5.

Therefore, we investigate how the classification performance varies with respect to the

upper and lower bounds. For this purpose, we start varying the upper and lower bound

by different distances from the decision threshold dτ = 0.5, with different values of τ =

0,0.025,0.050,0.075,0.100,0.125,0.150,0.175,0.200,0.225 and 0.250. Note that a value

greater than these will result in including more than 70% of the data from the minority class.

The results of the implementation can be seen in Table 4.4.
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Figure 4.6: Border bands for the imbalanced data. The border observations are the observa-
tions in the minority class that fall in the closed interval of [0.35,0.65] with respect to the
probability that it belongs to the population Π0.

Table 4.4 shows how the number of observations in the border set, the area under

the curve, the precision, recall F-measure and G-mean vary with respect to the threshold

parameter. Results shows an improvement with respect to the AUC against the Bayesian

rule incorporating prior probabilities and moreover, with respect to the proposed sampling

approaches. The value of τ = 0 corresponds to considering all of the observations from the

minority class as observations on the borderline. Note that a maximum in terms of the area

under the curve can be achieve when we consider a threshold of τ = 0.075 and τ = 0.200

with an AUC of 0.922.

4.5.3 Generating observations in the border set

One of the drawback of the previously proposed approach is the computation time involving

generating new observations in the minority class and finding the observations in the border
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Figure 4.7: Observations in the border region for the simulated dataset. Observations in
group 1 correspond to the majority class. Observations in group 0 correspond to those in the
minority class and observations in group 2 correspond to those in the border set.

set. Another drawback of the previous approach is when that when we oversample the data

some of the observations in the majority class are misclassified. To avoid the computational

time and to investigate if we can avoid observations in the majority class to be misclassified,

we propose a new method to generate observations in the border set which involves using k

nearest neighbours and captures the shape of the curves in the minority group. Capturing

the shape of the curves in the minority group can be achieved by introducing the difference

curve.

To start explaining the proposed method, we consider the running example previously

discussed in Section 4.5.1. Once we have obtained the data and estimated the signed depth as

explained in the Algorithm 1 in Chapter 3, we obtain the ranked observations. To visualise

the observations from each group we estimate the density strip for the observations in both

groups. Figure 4.8(a) represents the density strip estimation for both observations in the
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Table 4.4: Observations in the border set, the area under the curve, precision/recall, F-measure
and G-mean for different values of the threshold parameter.

τ Observations in the border set AUC Precision Recall F-measure G-Mean

0 4 0.895 0.981 0.814 0.876 0.398
0.025 4 0.920 0.991 0.880 0.932 0.411
0.050 13 0.920 0.991 0.880 0.932 0.411
0.075 13 0.922 0.991 0.884 0.934 0.412
0.100 21 0.920 0.991 0.880 0.932 0.411
0.125 27 0.866 0.985 0.792 0.878 0.385
0.150 27 0.860 0.984 0.780 0.870 0.382
0.175 33 0.920 0.990 0.880 0.932 0.411
0.200 33 0.922 0.991 0.884 0.934 0.412
0.225 35 0.920 0.990 0.880 0.932 0.411
0.250 35 0.914 0.990 0.868 0.925 0.408

minority and majority class, while Figure 4.8(b) represents the first two functional principal

component scores of the observations in both groups.
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Figure 4.8: (a) Density strip and (b) first two principal components for observations in the
majority and minority classes.

The proposed algorithm consists of four different steps. The first step is to select before-

hand a value of the k-nearest neighbours by a method of cross-validation, as we explained

before. Once we determine the number of neighbours, the next step is to determine the

observations in the border set. To determine the observations in the border we consider the
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following approach.

Suppose that a functional dataset
{(

xi(t j),yi
)
, i = 1, . . . ,N, j = 1, . . . ,M

}
is available

consisting of two different populations and containing an imbalanced number of observations

in each group. We represent the majority class by the set of curves

M a jority =
{

xMa j
1 (t j), . . . ,xMa j

nM a jority
(t j)
}
,

and the minority class by the set of curves

M inority =
{

xMin
1 (t j), . . . ,xMin

nM inority
(t j)
}
,

where nM a jority represents the number of curves in the majority set and nM inority represents

the number of curves in the minority set, respectively.

Step 1. For every curve xMin
j (t j) ∈M inority class, calculate the k nearest neighbours of the

signed depth for the observations in the training set, where the value of k is even. The

number of majority examples among the k nearest neighbours is denoted by k
′
with

0≤ k
′ ≤ k.

Step 2. If k/2≤ k
′
< k, i.e., the number of majority nearest neighbours is larger than the number

of the minority ones, then xMin
j (t j) ∈M inority is considered to be misclassified and

we put it into the border set. If 0≤ k
′
< k/2, then the observation is safe and we do

not consider it in the next steps. Finally, if k
′
= k, then all the k nearest neighbours of

xMin
j (t j) ∈M inority are from the minority class thus we do not consider it to be in the

border set.

Step 3. The border set is a subset of the minority class and we denote the border set by

Border - set =
{

xBor
1 (t j), . . . ,xBor

nBorder
(t j)
}
,

where nBorder denotes the number of curves in the border set, with the restriction

0 ≤ nBorder ≤ nM inority. For each curve in the border set we calculate its k nearest

neighbours in signed depth from the minority set.

Step 4. Generate new curves from the data in the border set. For each observation in the border

set, calculate its k nearest neighbours from the curves in the minority set and call

this curve xk
j(t j). Then, generate a new curve, called the difference curve, denoted
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Di f f , to be the difference between xBor
j (t j) ∈ Border - set and its k nearest curve, in

Euclidean distance, from the minority set. Then multiply the difference curve by a

random number δ ∈Uni f [0,1] and generate a new sample as

xnew(t j) = xBor
j (t j)+(Di f f )×δ

= xBor
j (t j)+(xk

j(t j)− xBor
j (t j))×δ

= xBor
j (t j)× (1−δ)+δ× (xk

j(t j)), (4.8)

and repeat for each xBor
j (ti) in the border set.

Note from equation (4.8), that when δ = 1, we are only generating curves according to

k nearest neighbours from the curves in the minority set xk
j(t j), while when δ = 0, we only

generate curves from the border set.
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Figure 4.9: For (A) Observations in the border region for the simulated dataset and (B) new
set of generated curves in the border region.

Recall that in our running example, the observations in class Π0 are the observations in

the minority class, with n0 = 50 and n1 = 250. We implement our methodology and the new

set of curves in the border set are shown in Figure 4.9. From this we can see that out method

only oversamples the observations in the border set which are curves from the minority class.
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We implement our methodology to generate a fixed number of observations from the border

set (30 new observations for each curve in the borderset) and results are shown in Table 4.5.

They show an improvement in terms of the AUC, the Precision and the G-Mean. However,

for other metrics like the accuracy, there is a small decrease.

Table 4.5: The value of the metrics before and after we oversample the observations in the
border set.

Metrics Before After

Error Rate 0.1933 0.1966
Accuracy 0.8066 0.8033
AUC 0.5800 0.7940
Precision 0.8582 0.9483
Recall 0.9200 0.8080
F-measure 0.8880 0.8725
Sensitivity 0.9200 0.8080
G-Mean 0.2101 0.3550
IBA 1.0068 2.1806

Note that the random variable δ shrinks the observations to be closer to the original curve

in the border set. Therefore, considering smaller values for δ will generate observations

closer to the curves in the border set. Combined with the fact that the curves in the border set

can be generated at random, we can generate observations from the border observations as

close as we need. For a fixed number of iterations (nsim), we start simulating a different set

of Di f f curves:

Step 1. First, identify the observations in the border set and for an even fixed value of k = k f ix,

calculate the observations closest in depth by looking k/2 above and k/2 observations

below.

Step 2. For a random number δ, generate k new samples following equation (4.8). For this first

iteration, classify all the observations, and record all the saved observations.

Step 3. Repeat these steps for the total number of iterations.

By repeating the above procedure, we have a distribution over the labels of the obser-

vations in the border set. This allow us to classify the observations using a majority voting

approach.
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We investigated the performance of this procedure with different values of δ. We consid-

ered δ = 0.5 and δ = 1 to generate observations closer to the original curves in the border

set and the value of the number of simulations we consider was nsim = 100. The results

are given in Table 4.6 and show an improvement in terms of the AUC, the precision and the

G-Mean. We also observe that for δ = 0.5, the AUC and the G-Mean is the highest value

achieved.

Table 4.6: The value of different metrics before and after oversampling the data.

Metrics Before δ = 0.5 δ = 1

Error Rate 0.1933 0.1833 0.1900
Accuracy 0.8066 0.8166 0.8100
AUC 0.5800 0.8180 0.8140
Precision 0.9558 0.9577 0.9573
Recall 0.9200 0.8160 0.8080
F-measure 0.8880 0.8812 0.8763
Sensitivity 0.9200 0.8160 0.8080
G-Mean 0.2101 0.3658 0.3640
IBA 1.0068 2.315 2.2659

In terms of the confusion matrix, we can compare the matrices before oversampling the

observations in the border set and after oversampling with δ = 0.5. These are shown in

Table 4.7. Before oversampling the data, the classifier correctly classifies the observations in

the majority class. However, when we oversample the data some of the observations in the

majority class are misclassified. This seems to be the penalty when we use oversample to

improve the accuracy of classification for the minority class.

Table 4.7: Confusion matrix for the simulated dataset before and after oversampling.

Before Oversampling Oversampling (δ = 0.5)

Predicted Class 0 Predicted Class 1 Predicted Class 0 Predicted Class 1

True Class 0 12 38 41 9
True Class 1 20 230 48 202
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4.5.4 Improving the observations from the majority set as well as the

minority set

As we saw before, oversampling observations in the border set only increases the correctly

classified observations in the minority set but not the observations in the majority set. To

overcome such a difficulty, we propose a new algorithm that not only oversamples the

minority class samples but also the observations from the majority set that are near the border.

To determine the observations from the majority set we want to oversample, we consider k

nearest neighbour observations from the majority set that are closest in distance and signed

depth. Our proposed algorithm works as follows.

Step 1. For every curve x j(t j) ∈M a jority class we determine the curves in the border set and

we define a new border set called the Majority border set, which is a subset of the

majority class, as

M ajorityBorder - set =
{

xMa jBor
1 (t j), . . . ,xMa jBor

nM ajorityBorder
(t j)
}

Step 2. For a fixed value of k, let k
′
be the number of majority examples among the k nearest

neighbours. If k/2≤ k
′
< k, i.e., the number of minority observations is larger than the

number of the majority ones, then x j(t j) ∈M a jority is considered to be misclassified

and we put it into the majority border set.

Step 3. For each x j(t j) ∈M ajorityBorder - set, calculate its k nearest neighbour, in signed

depth, by looking k/2 observations above and k/2 observations below the signed depth

of the curve and reduce the observations in the M ajorityBorder - set.

Step 4. Finally, for each xMa jBor
j (t j) in the reduced M a jority Border - set, we generate k new

curves by calculating its k nearest neighbours from the observations in M a jority and

generating a new curve, called the difference curve as defined in equation (4.8).

For ease of comparison, we revisit our running example with δ = 0.5 and δ = 1. The

experiment consists of generating observations from both the majority and the minority group

in the border set. We perform a simulation study for a total of 100 simulations. The results are

given in Table 4.8 and show an improvement in terms of the AUC, the misclassification error

rate, G-Mean and F-measure. For the value of δ= 0.5, we achieve the lowest misclassification

error rate.
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Table 4.8: The value of different metrics before and after oversampling the data, using nine
nearest neighbours and the difference curve and sampling from both the majority and minority
group.

Metrics Before δ = 0.5 δ = 1

Error Rate 0.1933 0.1100 0.1133
Accuracy 0.8066 0.8900 0.8866
AUC 0.5800 0.7980 0.7880
Precision 0.9558 0.9322 0.9285
Recall 0.9200 0.9360 0.9360
F-measure 0.8880 0.9341 0.9322
Sensitivity 0.9200 0.9360 0.9360
G-Mean 0.2101 0.3514 0.34610
IBA 1.0068 2.6069 2.5399

Tables 4.9 and 4.10 show the confusion matrix before oversampling the observations

in the border set and after oversampling with δ = 1 and δ = 0.5, respectively. We can see

an improvement in the correct classification in both groups, for both values of δ. These

results illustrate that by oversampling the minority class and also observations from the

majority set that are near the border, we can gain an improvement in terms of the AUC,

the misclassification error rate, G-Mean and F-measure. The proposed approach avoids the

overlapping produced by only sampling the observations in the minority set, by considering

oversampling observations from the majority set.

Table 4.9: Confusion matrix for the simulated dataset before and after oversampling, using
using nine nearest neighbours and the difference curve and sampling from both the majority
and minority group with a value of δ = 1.

Before Oversampling Oversampling (δ = 1)

Predicted Class 0 Predicted Class 1 Predicted Class 0 Predicted Class 1

True Class 0 12 38 32 18
True Class 1 20 230 16 234

Table 4.10: Confusion matrix for the simulated dataset before and after oversampling using
using nine nearest neighbours and the difference curve and sampling from both the majority
and minority group with a value of δ = 0.5.

Before Oversampling Oversampling (δ = 0.5)

Predicted Class 0 Predicted Class 1 Predicted Class 0 Predicted Class 1

True Class 0 12 38 33 17
True Class 1 20 230 16 234
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4.6 Simulation Setup

The goal of this section is to investigate the performance of the k-RNN and the proposed

method to generate observations in the border when the ratio of observations in the classes is

varied. We investigate, under different scenarios, how oversampling the minority class and

also observations from the majority set that are in the border set improves different metrics

like the AUC, the misclassification error rate, G-Mean and F-measure. In order to investigate

this, we make the following considerations:

1. Datasets: We simulate different functional data using the Gaussian process approach

discussed in Chapter 2. We start by simulating functional data using a Gaussian Process

(GP). All the datasets we consider are two class problems and are observed in the same

period of time. Here, the minority class label will be represented by 0, and the majority

class label will be represented by 1. Along with the data, we vary the imbalance

ratio, which determines the number of observations in the majority class to the number

of observations in the minority class. For the simulated datasets we consider three

different scenarios S1,S2,S3, respectively. In each scenario we keep fixed the minority

sample size (n0 =50), while we vary the number of observations in the majority class.

This can be described in terms of a percentage of the majority class, corresponding to

12.5%, 25.0% and 50.0%, respectively.

2. Resampling Strategies: Only the oversampling techniques that represent an im-

provement in terms of the area under the curve are considered. These oversampling

techniques are the smoothed bootstrap and random generation from kernel densities.

However, we consider only the smoothed bootstrap approach, because of its good

performance. We also consider adding Gaussian noise to the curves.

3. Borderline: To determine the observations at the borderline, we consider using the k

observations closest in depth. For the first scenario and both Gaussian processes, we

use k=6, while for the second and third scenario, the choice was k=12, due to a major

variability in the data.

4. Performance metrics: The following unweighted metrics were chosen for the evalua-

tion.

• Accuracy and Missclassification Rate.
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• AUC.

• Precision / Recall.

• Sensitivity.

• Generalized Index of Balanced Accuracy with M= G-Mean2 and α = 0.1.

• G-Mean.

• F-Measure with β = 1.

4.7 Simulations Results

Databases were divided into three different collections according to the imbalance ratio.

We refer to the first group as a strongly imbalanced group, which is represented by S1, the

second group as moderately imbalanced, represented by S2 and the last group as a weakly

imbalanced denoted by S3. We present our results according to the different simulation

models. For both scenarios, we start summarising different statistics. We first consider the

misclassification error rate obtained in the form of a matrix. Results of applying our proposed

classifier with δ = 0.5 and δ = 1 can be seen in Figure 4.10. From this, we can observe that

by considering oversampling both classes in the border set with δ = 0.5, the value of the

misclassification error rate decreases. For the first scenario, the error of classifying without

oversampling the observations is 0.2, while when oversampling both classes is considered

and we let δ = 0.5, the misclassification error drops to 0.155. In the second scenario, there is

a bigger decrease; the misclassification error without oversampling the observations in the

border is 0.188 but applying the oversampling method decreases the misclassification error

to 0.092 with δ = 0.5 and 0.096 with δ = 1. In this case, there is a major gain in terms of the

classification. Finally, the third scenario considered also shows a decrease in terms of the

misclassification error. Before oversampling the data, the misclassification error was 0.1289

and after considering both oversampling using a value of δ = 0.5, we obtain 0.0956. While a

higher misclassification error is obtained with δ = 1.

The results when the second Gaussian Process is applied can be found in Figure 4.11.

Under the second Gaussian process, which generates smoother curves, we can see a similar

pattern; in the first scenario, the misclassification error without oversampling the observations

in the border line is 0.28, as opposed to 0.112 found using the oversampling method and
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Figure 4.10: Misclassification error rates for the proposed methods, applied to the first
Gaussian Process, across the different scenarios and considering an oversampling of both
classes near the border.

δ = 0.5, which decreases further when we consider a value of δ = 1. For the second scenario,

the misclassification error decreases by half when we oversample the observations using

a value of δ = 0.5 and the same occurs when we oversample using a value of δ = 0.5 in

scenario 3.

Along with the misclassification error rate, we also investigate the performance of the

proposed method using different evaluation metrics. We consider the same metrics as before,

the missclassification error rate, the accuracy, the area under the curve, precision, F-measure,

sensitivity, G-mean and IBAα=0.1. The values of these metrics can be seen in Table 4.11.

These show an improvement in terms of the misclassification error rate. After we

oversample the observations in the border set from both classes, we also observe that there

is an improvement in different metrics like the pair precision/recall. For the first Gaussian

process with respect to scenario one, we observe that there is an improvement in terms of
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Figure 4.11: Misclassification error rates for the proposed methods, applied to the second
Gaussian Process, across the different scenarios and considering an oversampling of both
classes near the border.

the missclassfication error, which decreases. However, when we consider different metrics

like the AUC, we observe that it is lower when δ = 0.5 than if δ = 1. Both methods show

a bigger AUC after we oversample the observations in the border set. This can be because

when we improve the observations from the majority set and we repeat the experiment 100

times, some of the observations from the majority group can be misclassified giving a lower

value of the AUC. This behaviour does not happen under scenario 3 and the same Gaussian

Process because of the number of observations we consider is n0 = 50 and n1 = 100.

For the second Gaussian process and the first scenario, we observe that when we oversam-

ple the data with δ = 0.5, the misclassification error rate decreases and it is even lower for

δ = 1. In terms of the AUC, there is also an improvement; the AUC increases from 0.5 to 0.87

when δ = 0.5 and 0.86 when δ = 1. We also observe that there is an improvement in terms of

the of the precision and recall, which increase for our oversampling method. Similarly, for
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scenario 2 and scenario 3, there is an improvement in terms of the misclassification error rate.

However, in the same scenarios, a higher value for the AUC can be achieved considering

δ = 1, rather than δ = 0.5.

Overall, from our extensive simulation study, we have seen that our proposed algorithm

shows an improvement in terms of the different metrics to evaluate our imbalanced classifier.

We showed that for the two different Gaussian Processes, the value of the missclassification

error decreases after oversampling the observations in both groups.

4.8 Application to some Real imbalanced data sets

In this section we apply our methods to two different real imbalanced datasets. The creation

of the imbalanced datasets is discussed in Section 2.4.1. The datasets we analyse are the

orange juice dataset and the NIR gasoline spectra for binary classification. We start analysing

the orange juice dataset; the first population Π0 is a population of size n0 = 48 (sucrose < 30)

and the second population Π1 is formed by n1 = 170 curves with (sucrose > 30).

The second real dataset is the NIR spectra of gasoline dataset. The first population Π0

is formed by n0 = 15 curves with (octane < 86) and the second population Π1 is formed by

n1 = 45 curves with (octane > 86).

We start by classifying the real data before and after we oversample the observations

from the majority and minority classes in the border set. We summarise the results of the

imbalance in Table 4.12. Here, we can observe that there is a gain in terms of different

metrics; for the first real dataset, there is an improvement in terms of the misclassification

error and the AUC. Other metrics also improve like the the accuracy of the classifier.
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4.9 Conclusions

Throughout this chapter, we have introduced an oversampling approach which involves

oversampling the distribution of the principal component scores. When it comes to classifying

observations which are close to the border, we propose a new method that shrinks the

observations that are closer to the original curve in the border set. This proposed method

has been applied to simulated data and real data. When dealing with imbalanced classifiers,

we considered different metrics to evaluate the performance. By means of simulations we

showed that oversampling the observations in the border set and setting a value of δ = 0.5

outperforms the standard method in terms of the misclassification error. Therefore, our

approach should be used for classifying imbalanced datasets, since it is better in terms of the

misclassification error rate.

Even though the smoothed bootstrap approach is the standard method we compared

method to, there are other methods available. It could be useful to consider evaluating the

performance of our approach in comparison to these. In addition, we have limited ourselves to

the case of imbalanced observations, we could also consider the performance of our approach

when this is not the case.



Chapter 5

Principal Component Analysis for

Functional Data

5.1 Introduction

The main goal in supervised classification for functional data is to predict the true group

label for each of the observed curves. The main challenge for classifiers based on the density

for functional data is that the probability density function does not strictly exist (Delaigle

and Hall, 2010). Hence, classifiers based on density estimation need to be modified. Yet,

functional component scores capture most of the variability of the data, it is possible to define

a meaningful concept of density through representation of principal component scores for a

specific scale which is linked to a particular dimension.

In high dimensions, the larger the dimension the sparser the data. So, usually, nonparamet-

ric density estimators with a fixed bandwidth procedure are not effective for high dimensional

problems (Liu et al., 2007). To tackle this problem we want to rely on a method which

adapts the amount of smoothing to the local density of the data. The adaptive kernel method

is a method that works well in this situation. The estimate is similar to the nonparametric

density estimators with fixed bandwidth, but with the bandwidth proportional to a function

that allows to vary from one data point to another (Silverman, 1986).

To start introducing the concept of semimetrics, we first define a norm. A norm, defined

on a vector space F, is a real valued function ‖·‖ satisfying: ∀ υ1,υ2 ∈ F; ‖υ1‖ ≥ 0,

‖υ1‖ = 0 if and only if υ1 = 0, for c ∈ R, ‖cυ1‖ = |c|‖υ1‖ and ‖υ1 +υ2‖ ≤ ‖υ1‖+‖υ2‖.

And a seminorm is a norm satisfying the above properties except ‖υ1‖ = 0 if and only if

182



CHAPTER 5. PCA FOR FUNCTIONAL DATA 183

υ1 = 0. In multivariate data, the most popular approach for measuring closeness is to select

the Euclidean norm. If we apply the norm to the distance between υ1,υ2 ∈ F then we can

define a metric space.

A space D is called a metric space if there is a real valued function d(υ1,υ2) between

υ1,υ2 ∈ D, such that for a pair ∀ υ1,υ2 ∈ D; d(υ1,υ2) = d(υ2,υ1) ≥ 0 provided that

υ1 6= υ2, d(υ1,υ2) = 0 if and only if υ1 = υ2 and for every υ1,υ2,υ3 ∈ D; d (υ1,υ2) ≤

d (υ1,υ3)+ d (υ3,υ2). Semimetrics can be defined on this metric space D satisfying the

above properties except d(υ1,υ2) = 0 if and only if υ1 = υ2.

In the functional case, and when we are dealing with function, we can not define a

vector norm for functions. But what is possible is to have semimetrics such that the rate of

convergence in the functional case is similar to the one of the finite dimensional one and is

usual to consider semimetrics based on seminorms (Ferraty and Vieu, 2006).

A commonly used measure of proximity between two different functions is to use

the semimetrics based on the principal component scores and multivariate partial least

squares. Such semimetrics form fundamental part of our study in this chapter allowing a

density estimate to be constructed in a p dimensional space. We use semimetrics to study a

nonparametric adaptive density Bayesian classifier using density of log ratios of functional

principal component scores based on different semimetrics linked to a particular dimension.

The structure of the chapter is as follows. Section 5.2 introduces the problem formulation

and the Bayes classifier for multivariate data. Section 5.3 introduces a Cross-Validation (CV)

procedure to select the number of principal components for functional data based on the

Integrated Square Error (ISE). Section 5.4 discusses in detail the role of semimetrics for

functional data. Section 5.5 introduces the adaptive variable kernel method and the selection

of the smoothing parameters. In Section 5.6, we describe the Bayesian classifier based on

the density of the functional principal component scores and we extend the problem to more

than two classes. In Section 5.7, the performance of our proposed classifier is investigated

numerically. In Section 5.8, we apply our simulations to real datasets. Finally, conclusions

are stated in Section 5.9.
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5.2 Problem formulation & Background

In this section, we start by discussing multivariate density and we introduce the Bayes

classification rule for multivariate data. Later, we extend this idea to the functional case,

where we consider a p-dimensional representation of each function.

Suppose that we have an observed vector, x, of a multivariate random p-vector. The

observed vector x is known to belong to one of the G classes or groups, which we can denote

by Π0,Π1, . . . ,ΠG−1 but the true class for x is unknown. It is of interest to estimate the

posterior probability P(Πi | x) which is the conditional probability that x comes from class

Πi.

Let πi = P(Πi) be the probability that a random selected observation is in class Πi.

The πi’s may be regarded as the prior probabilities of a population membership which are

formulated without regard to the values in x. Let fi (x |Πi) be the conditional probability

density function of x given that it is an observation from Πi. Using Bayes’ rule we have that

P(Πi|x) =
P( Member of Πi and we observe x)

P(We observe x)

=
P(πi)P(x |Πi)

P(x)

=
πi fi(x |Πi)

G−1
∑
j=0

π j f j(x |Π j)

,

(5.1)

which gives the posterior probability. The numerator is the probability that a randomly

selected observation x occurs given that it comes from class Πi multiplied by the probability

that a random selected observation is in class Πi. While the denominator is the sum of the

probabilities of observing x given that the true class is Πi, multiplied by the corresponding

prior probabilities for each class. The classification rule assigns x to the class Πi for which

P(Πi|x) is the largest. This procedure is known as the Bayes classification rule.

In the case when we have two populations we can consider the ratio of the two posterior

probabilities. We will assign x to Π1 if

π1 f1(x |Π1)

π2 f2(x |Π2)
> 1, (5.2)

i.e., if
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f1(x |Π1)

f2(x |Πi)
>

π2

π1
. (5.3)

Note that the denominator in equation (5.1) is the same for all values of i so the decision rule

is to assign x to the class for which the value of πi fi(x |Πi) is the largest.

We can extend the Bayes classification rule to the functional case. Suppose that x(t) is an

observed curve on an interval T . The Bayesian classifier that minimises the Bayesian risk

assigns x(t) to population Π1 if

π1 f1(x(t) |Π1)

π2 f2(x(t) |Π2)
> 1, (5.4)

where f1(x(t) |Π1) is the conditional probability density function of x(t) given that it is an

observation from Π1 and f2(x(t) |Π2) is the conditional probability density function of x(t)

given that it is an observation from Π2. In the functional case, a drawback of this approach is

that the probability density function does not strictly exist. A meaningful alternative is to

define a density estimation based on the functional component scores which capture most of

the variability of the data (Delaigle and Hall, 2010).

In the finite dimensional case, if X is a random vector of finite length, then there exists

a probability density function f (X |Π1) which is defined as the limit when ε→ 0 of the

probability that X is inside a ball of radius ε and divided over the Lebesgue measure of the

ball. More precisely,

f (X |Π1) = lim
ε→0

P(‖X−x‖ ≤ ε)

εpvp
, (5.5)

where vp represents the volume of the p-dimensional unit sphere. In the functional case,

we might expect the same, but instead of being divided over the volume it is expected to be

divided over a function that depends on ε. Delaigle and Hall (2010) proved that the density

for functional data strictly does not exist but it is meaningful to define a density estimator

based on the functional component scores, which are linked to the probability mass contained

in a small ball around a given fixed function and this property can be used to define a simple,

easily estimable surrogate for the density.

Let x(p)(t) be a p-dimensional representation of the curve x(t), observed at a grid of time

points t1, . . . , tM, Delaigle and Hall (2010) propose an estimator of the log density of x(p)(t)

conducted via the product of the densities f j of the principal component scores, given by
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l̂(x(p)(t)|p) = 1
p

p

∑
j=1

log f̂ j(ξ j), (5.6)

where ξ j is the version of the score for the function x(t). More precisely,

ξ j = θ
−1/2
j

∫
T
(x j(t)− x̄(t))ψ j(t) dt for j = 1, . . . , p, (5.7)

where x̄(t) is the mean function and θ1 ≥ θ2 ≥ . . .θp ≥ 0 are the eigenvalues with respective

orthonormal functions ψ j(t). To find estimators of the quantities θ j and ψ j(t), three different

strategies are suggested by Ramsay et al. (2009). These strategies are: the discretisation -

interpolation approach, the basis function expansion approach and the numerical quadrature

approach. We do not discuss these in detail, but each method aims to approximate the

solutions of the functional eigen-equation:

∫
T

Ĉov(s, t)ψ(t)dt = θ jψ j(s), (5.8)

for positive eigenvalue/eigenfunction pairs,
(
θ j,ψ j(t)

)
and an estimator Ĉov(s, t) of the

covariance function.

Having found the estimators using any of the strategies suggested, θ̂ and ψ̂ j(t) represent

the estimators of the eigenvalues and the eigenfunctions, respectively. If x(p)
i (t), . . . ,x(p)

n (t)

represents some sample curves in a p-dimensional space, then the decomposition of the

curves can be expressed via a linear combination of the principal component scores and an

orthonormal basis. More precisely,

x(p)
i (t) =

p

∑
j=1

Ξ̂i jψ̂ j(t) for i = 1, . . . ,n, (5.9)

where Ξ̂i j is given by

Ξ̂i j = θ̂
−1/2
j

∫
T
(xi(t)− x̄(t))ψ̂ j(t) dt for i = 1, . . . ,n, j = 1,2, . . . , p. (5.10)

Then the density f j of the principal component scores is estimated using kernel density

estimators. More precisely

f̂ j(ξ̂ j) =
1

nh

n

∑
i=1

K

(
Ξ̂i j− ξ̂ j

h

)
for j = 1,2, . . . , p, (5.11)
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where K(·) is a positive function, also known as the kernel function, and h is the bandwidth.

For an introduction to kernel density estimation see Wand and Jones (1994) and Bowman

and Azzalini (1997).

An attractive feature of the estimator in equation (5.6), as pointed out by Delaigle and

Hall (2010), is that it can be computed for a range of values of p. To obtain estimators of

θ̂ j and ψ̂ j(t), we followed the basis function expansion approach implemented via the R

package fda package (Ramsay et al., 2014).

5.3 Determining a finite dimensional space

When we deal with an infinite dimensional space, in practice it is not possible to compute

infinite sums or infinite integrals, so we need to determine a fixed dimension p where we

want to work. Perhaps the most popular method to determine a fixed dimension p is the scree

plot by Cattell (1966). This method consists of plotting the eigenvalues in decreasing order

of magnitude and looking for an elbow in the graph. The method is simple and useful when

it works, but in many cases, there is no recognisable elbow in the plot.

In this section, we present a Cross-Validation (CV) procedure to select the number of

principal components for functional data using the definition of the Integrated Squared Error

(ISE). Different procedures that maximise or minimises different criterion can be proposed.

In the functional case, we saw that this criterion performs well. The 10-fold Cross-Validation

approach to select the number of principal components is based on the ISE, which is given

by,

ISE
(

x(p)(t)
)
=

∫
T

(
x(p)(t)− x(t)

)2
dt. (5.12)

Here x(t) represents the true curve and x(p)(t) the curve projected using the first p scores,

curves are observed over an interval T . The Mean Integrated Squared Error (MISE) is given

by the expectation of the integrated square error, i.e.,

MISE = E
[
ISE
(
x(p)(t)

)]
. (5.13)

To select the number of principal components in the functions, the 10-fold cross-validation

approach can be summarised as follows:
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Step 1. For p = 1, . . . , pmax and a fixed pmax ∈ Z+, split the data, from both groups, into a

randomly selected training set and omit 10% of the data from class Π1 to generate a

test set called T est.

Step 2. Use all of the data from from class Π0 and the reduced set of Π1 data to estimate the

functional principal component.

Step 3. Using the fitted model to estimate each of the omitted curves from class Π1 calculate

the ISE,

ISE(x(p)(t)) =
∫

T

(
x(p)(t)− x(t)

)2
dt,

between the estimate and actual curve each time.

Step 4. Average the ISE’s calculated in the previous step.

Step 5. Repeat steps (2) to (4) above for each remaining 10% subset of data in Π1.

Step 6. Repeat steps (2) to (5) above now keeping all the Π1 data and omitting 10% of the Π0

data each time.

Step 7. Average the 20 average ISE values you have obtained in steps (2) to (6) above to get a

cross-validation score.

The above cross-validation algorithm chooses the value of p by omitting and keeping data

from both groups.

Different Cross-Validation (CV) procedures with different criteria can be used, e.g.,

Yao et al. (2005) which includes an AIC criterion for selecting the number of principal

components in sparse functional data and Hall and Vial (2006) which used bootstrap methods.

More recent contributions to select the number of principal components includes Poskitt

and Sengarapillai (2013). A possibility is to compare the numerical performance of the

different methods, however, due to time limitations this was not possible. In practice and for

classification purposes, the Cross-Validation (CV) procedure using the Integrated Squared

Error works well.
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5.4 The Role of semimetrics in Functional Data

In this section we discuss the role of semimetrics in representing a function x(t). We introduce

two main semimetrics that are the core of our simulation study. The first is the semimetric

based in principal component analysis and the second one is the semimetric based in partial

least squares.

Proximities between two different functions play an important role in functional data,

e.g., Ferraty and Vieu (2003) and Ferraty and Vieu (2006). They can be used for different

purposes such as classification and we see that the choice of the norm becomes crucial and

have a strong impact on the results. We start by introducing closeness notions for functional

data.

In the functional case, if xi(t) and x j(t) are two functions observed on the closed interval

T , we can define the square distance between two functions by

d(xi(t),x j(t)) =
∫

T

(
xi(t)− x j(t))

)2 dt. (5.14)

and more general

∥∥d(xi(t),x j(t))
∥∥

q =

(∫
T

(
xi(t)− x j(t))

)q dt
)1/q

. (5.15)

Let x(p)(t) be a p-dimensional representation of the curves constructed using equa-

tion (5.9), where the dimension p is usually determined using Cross-Validation procedures.

Thus, the curves in equation (5.14) and equation (5.15) are replaced by their p-dimensional

representation. In a p-dimensional space, the L2-norm can be written as

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

2
=

(∫
T

(
x(p)

i (t)− x(p)
j (t))

)2
dt
)1/2

. (5.16)

A natural extension is to consider the Lq-norm. More precisely,

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

q
=

(∫
T

(
x(p)

i (t)− x(p)
j (t))

)q
dt
)1/q

. (5.17)

As an alternative to equation (5.14), we can consider the Karhunen-Lòeve expansion for

random functions and we can express a curve in terms of a linear combination of the principal

component scores and a complete orthonormal basis functions. To achieve this, we followed

an approach similar to Section 3.5. Let
{

x(p)
i (t j), i = 1, . . . ,n, j = 1, . . . ,M

}
be a collection
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of observed curves constructed using equation (5.9). The expansion for each curve in terms

of the principal component scores is given by

x(p)
i (t) =

p

∑
j=1

Ξ̂i jψ̂ j(t) for i = 1, . . . ,n, (5.18)

where the matrix Ξ̂i j for j = 1, . . . , p consists of the functional principal component scores.

Thus, x(p)
j (t) admits an expansion of the following form

x(p)
j (t) =

p

∑
j=1

ξ̂ jψ j(t), (5.19)

where ξ̂ is the version of the score for the function x j(t). An expression for the square distance

difference defined in equation (5.14) between two observed functions in a p-dimensional

space constructed using equation (5.9) is given by

∫
T

(
x(p)

i (t)− x(p)
j (t)

)
dt =

∫
T

( p

∑
j=1

Ξ̂i jψ̂ j(t)− ξ̂ jψ̂ j(t)
)

dt

=
∫

T

( p

∑
j=1

(
Ξ̂i j− ξ̂ j

)
ψ̂ j(t)

)
dt

=
p

∑
j=1

(
Ξ̂i j− ξ̂ j

)∫
T

ψ̂ j(t)dt

=
p

∑
j=1

(
Ξ̂i j− ξ̂ j

)
, (5.20)

for i = 1, . . . ,n and the integral
∫

T ψ̂ j(t)dt integrates to one. This can be used to rewrite the

L2-norm in equation (5.16) as

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

2
=

(
p

∑
j=1

(
Ξ̂i j− ξ̂ j

)2
)1/2

. (5.21)

And similar, the Lq-norm as in equation (5.17) as

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

q
=

(
p

∑
j=1

(
Ξ̂i j− ξ̂ j

)q
)1/q

. (5.22)

Equation (5.21) represents a finite dimensional representation of the curves and can be

used to compute the distance between the principal component scores.
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Principal Components Using Mercer’s theorem, a decomposition of the curves can

be expressed via a linear combination of the principal component scores and a complete

orthonormal basis. The semimetric based on principal components scores uses a truncated

version of the linear combination. It is defined as

d(x(p)
i (t),x(p)

j (t))PCA =
p

∑
k=1

(∫
T

(
x(p)

ik (t)− x(p)
jk (t))

)2
dt
)

ψk, (5.23)

where ψ1, . . .ψp are the orthonormal eigenvectors of the covariance matrix associated with

their corresponding eigenvalues. More generally, the Lq-norm has the following form

∥∥∥d(x(p)
i (t),x(p)

j (t))PCA
∥∥∥

q
=

(
p

∑
k=1

(∫
T

(
x(p)

ik (t)− x(p)
jk (t))

)
dt
)q

ψk

)1/q

. (5.24)

From a numerical perspective, integrals in equation (5.23) and equation (5.24) can be

approximated using quadrature weights. Thus, for equation (5.24), the semimetric based

on principal component scores can be approximated, on a grid of times, using its empirical

version:

d(x(p)
i (t),x(p)

j (t))PCA =
p

∑
k=1

(
M

∑
l=1

ωl
(
xik(tl)− x jk(tl)

)
ψk

)2

, (5.25)

where ω1, . . . ,ωM are the quadrature weights.

5.4.1 Multivariate Partial Least Square Regression (MPLSR)

The Multivariate Partial Least Square Regression (MPLSR) is a statistical method for re-

gressing a multivariate response on a multivariate predictor. It was originally developed

in economic science and is extensively used in image processing and the chemometrics

community. It was developed to predict a multivariate response from independent variables

when there is a high degree of collinearity among the predictors and when the number of

predictors is large with respect the number of observations.

Multivariate Partial Least Square Regression is used to compress a matrix of observed

predictors X = [x1, . . . ,xp] that contains the values of p predictors for n samples, into a vector

of factors
[
ψ

p
k

]
. This is usually determined sequentially using the nonlinear iterative partial

least squares (NIPALS) algorithm (Wold, 1966). Then the orthogonal factors scores are

used to fit a set of n observations to p dependent variables. An attractiveness feature of this



CHAPTER 5. PCA FOR FUNCTIONAL DATA 192

method is that it finds a parsimonious model even when the predictors are highly correlated

or linearly dependent. In the functional case, the semimetric based on partial least squares is

defined as

d(x(p)
i (t),x(p)

j (t))PLS =
p

∑
k=1

(
M

∑
l=2

ωl
(
xik(tl)− x jk(tl)

)[
ψ

p
k

])2

, (5.26)

where
[
ψ

p
k

]
is a vector performed by MPLSR on the curves, and ω1, . . .ωM are the quadrature

weights. Similar to the PCA, the semimetric based on partial least squares can be applied

with the Lq-norm in the following way

∥∥∥d(x(p)
i (t),x(p)

j (t))PLS
∥∥∥

q
=

(
p

∑
k=1

(
M

∑
l=2

ωl
(
xik(tl)− x jk(tl)

)[
ψ

p
k

])q)1/q

. (5.27)

The number of factors plays a similar role to the number of dimensions considered in

PCA. The main difference with functional principal components comes from the fact that the

components performed with PCA explain only the predictors, whereas in the PLS approach,

the components are also relevant for the multivariate response (Preda et al., 2007; Escabias

et al., 2007).

Additionally to the semimetric based on partial least squares and PCA, we have the semi-

metric based on derivatives. However, the computation of semimetrics based on derivatives

is numerically intensive and involves a numerical stability problem (Ferraty and Vieu, 2006)

due to the fact that the approximation of the curves is obtained using B-spline expansion for

each curve. Thus, successive derivatives lead to numerical stability problems.

Motivated by Hall et al. (2001), semimetrics based on principal component scores and

partial least squares allows a density estimate to be constructed in a p-dimensional space.

Using kernel density estimation techniques, we can define a semimetric kernel density

estimation (SKDE) given by,

f̂
(

x(p)(t)
)
=

1
nh

n

∑
i=1

K
(

h−1
∥∥∥d(x(p)

i (t),x(p)(t))
∥∥∥

q

)
, (5.28)

where h is the bandwidth and K(·) : Rp → R is a positive compact function defined on

[0,∞) that integrates to 1, known as the kernel function. Observe that the semimetrics map

p-dimensional representations of curves into the real positive line. Thus, a suitable kernel

function is the half normal kernel defined as
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K(x) =

√
2
π

ex2/2.

5.5 Variable Kernel Density Estimation

When the value of p is large, fixed kernel density estimators are not effective for high

dimensional problems. This is not only because of the scarcity of the data over the estimation

space, but also because of the computational costs of cross validation when bandwidths need

to be selected for each dimension, and the slow rate of convergence (Liu et al., 2007). For

example, if we consider observations following a Gaussian distribution, in the univariate

case, the mass is concentrated around the mean. However, as the dimension increases, the

probability mass is heavy around the tails. A fixed bandwidth procedure will have difficulties

with densities that exhibit large changes in magnitudes (Cacoullos, 1966).

Note that from equation (5.28), the most common approach is to fix h, but two different

approaches have been put forth to vary h. In this section, we briefly discuss both approaches.

The first proposal is the k-nearest neighbour by Loftsgaarden et al. (1965) and the second

proposal is the adaptive kernel density estimate of Breiman et al. (1977).

5.5.1 Nearest Neighbour Methods

The nearest neighbour method is widely used in nonparametric discriminant analysis. Some

examples can be found in Mack and Rosenblatt (1979). It takes its name from the fact that

the density depends on near neighbours rather than nearest neighbours to a particular point

and it has its roots in univariate and multivariate data.

To start describing the nearest neighbour kernel method, let us assume that x(p)
1 (t), . . . ,x(p)

n (t)

is a collection of p-dimensional representation of the curves observed in the interval t ∈ [a,b]

and let

d
(

x(p)
1 (t),x(p)

2 (t)
)
=
∣∣∣x(p)

1 (t)− x(p)
2 (t)

∣∣∣ ,
be the distance between x(p)

1 (t) and x(p)
2 (t). For each x(p)(t) in the sample, we define the

distances dk(x(p)(t)) =
∣∣∣x(p)(t)− x(p)

k (t)
∣∣∣ and arrange them in an ascending order from x(p)(t)

to the kth nearest curve in the sample. In other words,
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d1(x(p)(t))≤ d2(x(p)(t))≤ . . .≤ dn(x(p)(t)).

Then, the nearest neighbour density estimation is defined by

f̂k(x(p)(t)) =
k/n

2dk(x(p)(t))
, (5.29)

with dk(x(p)(t)) =
∣∣∣x(p)(t)− x(p)

k (t)
∣∣∣.

A drawback of the nearest neighbour density estimation is that it is not a smooth curve

and the function dk(x(t)) has discontinuity derivatives. Another drawback about the nearest

neighbour density estimation is that it is not a probability density, since it fails to integrate

to unity (Silverman, 1986). Thus, it is not recommended when we try to estimate the entire

density.

The nearest neighbour method can be generalised as a kernel based method. For a

semimetric, d(·, ·), the generalised kth nearest neighbour density estimation is then defined

by

f̂k

(
x(p)(t)

)
=

1
nh

n

∑
i=1

K
(
(dk(x(t)))−1

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

q

)
, (5.30)

where K(·) which is a kernel function integrating to one and dk(x)(t) is the distance between

the observation x(p)(t) and the kth nearest observation.

5.5.2 The Adaptive Kernel Method

The adaptive kernel methods is another method that proposes to vary the smoothing parameter.

As opposed to the Nearest Neighbour Methods, this method relates the k-nearest distances

to the amount of smoothing to the local density of the data. To relate both quantities, we

estimate the density similarly to the local density estimation in the data as in equation (5.28).

However, the scale parameter is placed on the data points to allow them to vary from one

data point to another. Let dk
i (x

(p)(t)) be the Euclidean distance between the curve x(p)
i (t) and

the kth nearest curve in the set of n−1 observations. Then we can define the adaptive kernel

density estimation with a smoothing parameter h and a kernel function K(·), given by,

f̂k

(
x(p)(t)

)
=

1
n

n

∑
i=1

1
hdk

i (x(p)(t))
K
(
(hdk

i (x
(p)(t)))−1

∥∥∥d(x(p)
i (t),x(p)

j (t))
∥∥∥

q

)
. (5.31)
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Observe now that the window width is proportional to dk
i (x(t)), therefore, regions where

the data is sparse will have flat kernels associated with them (Silverman, 1986). For a fixed k,

the overall degree of smoothing will depend on the smoothing parameter h and the choice of

k will determine how responsive the window width is to very local detail. In contrast with

the generalised kth nearest neighbour kernel based method defined in equation (5.30), the

adaptive kernel density estimation integrates to unity provided the kernel K(·) integrates to 1.

5.5.3 Choosing the Smoothing parameter h and k

Bandwidth selection is the main problem of kernel density estimation. In order to construct

a density estimate from observed data it is necessary to choose a value for the smoothing

parameter h and the number of nearest observations k. When the kernel density estimation

only depends on the smoothing parameter h, procedures based on minimising the mean

integrated square error or the asymptotic mean integrated square error are common, but for

high dimensions, these methods are computationally intensive.

Clearly equation (5.31) depends on two different parameters: the k nearest points and

a smoothing parameter h. To select both parameters, we propose an algorithm which, for

a fixed value of k, maximises the accuracy. It explores a range of values of h and finds a

value which tries to maximise the accuracy of the classifier. Algorithm 3 explains in detail

this method. Thereafter, this algorithm will form part of the training of the classification

rule based on the original sample data. Note that we select a global smoothing parameter by

selecting the smoothing parameter h to be the same in both groups.
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Algorithm 3: Optimal value of k and h that minimises the misclassification error.
1 Choosing (h,k) Input : Functional Principal Components Scores in a finite

dimensional space x(p)(t), a set of labels for each curve, a norm || · ||q, a

semimetric, d(·, ·) , an initial smoothing parameter range h ∈ [h1,h2] and a

fixed kmax ∈ Z+.

Output : A pair of (h∗,k∗) that maximises the empirical accuracy.

2 Fix an initial value of h0 > 0 ∈ [h1,h2] and

3 foreach k = 1, . . . ,kmax do

4 Let x(p)
i j (t) be an observed curve belonging to the jth group and let x(p)

0 (t) be a p

dimensional representation of a new curve we are interested in classifying.

5 Compute the distance based on the semimetric
∥∥∥d(x(p)

i (t),x(p)
j (t))

∥∥∥
q

between the

curve we want to classify and the principal component scores in the jth group.

6 Assign the new curve x(p)
0 (t) to the the class Π1 if f̂1(x

(p)
0 (t))> f̂2(x

(p)
0 (t)),

using the adaptive kernel method with k = 1, . . . ,kmax and h = h0.

7 Form a confusion matrix and calculate the misclassification error rate E , defined

as E = ∑
n
i=1

1
n1{yi 6=ŷi} where ŷi are the predicted labels.

8 Choose k such that it has the lowest misclassification error rate, i.e.,

k∗ = min{E}.

9 For k∗, generate a sequence of values for h with step size δ = 1
n .

10 foreach h in the sequence do

11 Reclassify the data according to the adaptive discrimination approach with

k = k∗.

12 Calculate the confusion matrix and calculate the misclassification error rate.

13 Select h which achieves the lowest misclassification error rate, i.e.,

h∗ = argmin{E}.
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5.6 Statistical discrimination for functional data

In this section, we describe the Bayesian classifier based on the densities of the functional

principal component scores. We start by considering a binary classification problem.

Let x(p)
0 (t) be a new curve is known to belong to one of the classes Π0 or Π1, but the true

class for the curve is unknown. A classification rule will assign the curve x(p)
0 (t) to the class

for which P̂(Π0 | x
(p)
0 (t)) or P̂(Π1 | x

(p)
0 (t)) is the greatest. Let π̂0 = P̂(Π0) be the estimated

probability that a random selected observation belong to class Π0 and let f̂ j

(
x(p)

0 (t) |Π j

)
be

the estimated conditional probability density function of x(p)
0 (t) surrogated by the principal

components scores in a p dimensional space conditional on the class j. Using Bayes’ rule we

can estimate the posterior probability for the class Π0, given by

P̂(Π0|x
(p)
0 (t)) =

π̂0 f̂0(x
(p)
0 (t) |Π0)

π̂0 f̂0(x
(p)
0 (t) |Π0)+ π̂1 f̂1(x

(p)
0 (t) |Π1)

, (5.32)

and similarly for Π1

P̂(Π1|x
(p)
0 (t)) =

π̂1 f̂1(x
(p)
0 (t) |Π0)

π̂0 f̂0(x
(p)
0 (t) |Π0)+ π̂1 f̂1(x

(p)
0 (t) |Π1)

, (5.33)

where

f̂0(x
(p)
0 (t) |Π1) =

1
n0

n0

∑
i=1

1

hdk(x(p)
0 (t))

K
(
(hdk0(x(p)

0 (t)))−1
∥∥∥d(x(p)

i (t),x(p)
0 (t))

∥∥∥
q

)
, (5.34)

and

f̂1(x
(p)
0 (t) |Π1) =

1
n1

n1

∑
i=1

1

hdk(x(p)
0 (t))

K
(
(hdk1(x(p)

0 (t)))−1
∥∥∥d(x(p)

i (t),x(p)
0 (t))

∥∥∥
q

)
. (5.35)

The quantities n0 and n1 denote the sample sizes of the observations in the classes Π0

and Π1, respectively, h is the global smoothing parameter and x(p)
i0 (t) and x(p)

i1 (t) are i.i.d.

samples drawn belonging to population Π0 and Π1, respectively. The quantity dk0(x(p)
0 (t)) is

Euclidean distance between the x(p)
0 (t) curve and the kth nearest curve in the set of n0−1

observations, and dk1(x(p)
0 (t)) is the Euclidean distances between the x(p)

0 (t) curve and the

kth nearest curve in the set of n1− 1 observations. In practice the number of kth nearest

neighbours is set to be the same in both populations Π0 and Π1. When comparing two classes,
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it is sufficient to look at the ratio (or log-ratio) and we can classify an observation belonging

to class Π0 if

log
(
P̂(Π0|x(p)(t))
P̂(Π1|x(p)(t))

)
> 0. (5.36)

More precisely, if

log
(
P̂(Π0|x(p)(t))
P̂(Π1|x(p)(t))

)
= log

(
f̂0(x(p)(t) |Π0)

f̂1(x(p)(t) |Π1)

)
+ log

(
π̂0

π̂1

)
> 0. (5.37)

The prior probabilities are estimated by the number of curves in each group, i.e.,

π̂0 =
n0

n1 +n0
, (5.38)

and

π̂1 =
n1

n1 +n0
. (5.39)

If all the classes have the same prior probabilities, i.e., π0 = π1, equation (5.37) reduces

to

log
(
P̂(Π0|x(p)(t))
P̂(Π1|x(p)(t))

)
= log

(
f̂0(x(p)(t) |Π0)

f̂1(x(p)(t) |Π1)

)
> 0, (5.40)

and we classify an observation to class Π0 if and only if

log

(
P̂(Π0|x(p)(t))
P̂(Π1|x(p)(t))

)
> 0.

5.6.1 Statistical discrimination for more than two classes

Here, we extend the Bayesian classifier to scenarios with more than 2 classes. Consider

G classes, and assume that the densities of the functional principal component scores are

available, i.e., f̂0, . . . , f̂G−1. Let π̂g = P̂(Πg) be the estimated prior probability that a random

selected observation is in population Πg. The resulting posterior probability that the observed

curve x(p)(t) belongs to the gth class is given by

P̂(Πg|x(p)(t)) =
π̂g f̂g(x(p)(t) |Πg)

G−1
∑

g=0
π̂g f̂g(x(p)(t) |Πg)

. (5.41)
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The Bayesian classifier for G classes assigns the curve to that class with the highest posterior

probability. Because the denominator in equation (5.41) is the same for all πg, we assign a

curve to the gth group, with the highest posterior probability

max
0≤g≤G−1

{
π̂g f̂g(x(p)(t) |Πg)

}
. (5.42)

Observe that random assignment can be used (where needed) to break the tie between the

appropriate classes. In other words, a new curve x(p)(t) is assigned to the gth population if

π̂g f̂g(x(p)(t) |Πg)> π̂l f̂l(x(p)(t) |Πl) ∀ g 6= l. (5.43)

We can define the Bayesian classifier in an equivalent form by pairwise comparisons of

posterior probabilities. We define the log-odds as

Lg,l(x(p)(t)) = log
(

π̂g f̂g(x(p)(t) |Πg)

π̂l f̂l(x(p)(t) |Πl)

)
. (5.44)

Then, we assign a new curve x(p)
0 (t) to the gth population if

Lg,l(x
(p)
0 (t))> 0 ∀ g 6= l. (5.45)

5.7 Simulations

In this section we propose three main practical implementations of the Bayesian classifier

with simulated data and real data. The goal of this section is to compare the proposed adaptive

method based on two main semimetrics: a semimetric based on the principal component

scores and the semimetric based on partial least squares. For both semimetrics, we compare

the methods: the fixed kernel density estimate, the proposed adaptive approach, the k-NN

density estimate, the product kernel density method, and finally a regression approach. All

the methods we consider here involve the choice of tuning parameters (mainly bandwidths

and number of principal components) and we describe how these parameters are specified.

For conciseness, we restrict our simulation study to generating data according to two main

methods which vary the amount of the variability explained by the numbers of components.

The simulations are structured with the data, i.e., we train and test on the same data, which
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may be over optimistic. Even though we train and test on the same data the simulation

methods are still comparable.

For the first scenario, more that 90% of the variability is explained by the first 5 principal

components. While, for the second scenario, 15 principal components were needed to explain

more than 90% of the total variability. For each of the two main models, we consider a modest

sample size scenario, with n1 = n2 = 50 and a larger sample size scenario with n1 = n2 = 200.

In terms of atypicals in the data, we generate samples containing atypicals observations as we

described in Chapter 2. For each simulation scenario a total of 100 simulations were run. We

sampled the curves on 100 equidistant points over the compact interval [0,100]. We perform

the comparison among methods in terms of misclassification percentages and we report their

means and standard deviations. To start with we consider two different scenarios in which

we vary the basis coefficients previously introduced in Section 2.2.

Scenario 1. The basis coefficients ξi j are chosen to be independent and normally distributed

with mean 0 and decaying variance σ2
j = 2.5e− j/2, j = 0, . . . ,2M; i = 1, . . . ,n.

Scenario 2. The basis coefficients ξi j are chosen to be independent and normally distributed

with mean 0 and decaying variance σ2
j = 2.5e− j/20, j = 0, . . . ,2M; i = 1, . . . ,n.

The general mean function in both scenarios is considered to be the same x̄(t) =

50× (1− t)× t2 and we consider the following set of sub-models: a no contamination

model, an asymmetric contamination model, a linear peak contamination model and a shape

contamination model.

The simulations have been conducted in R using the functions from the package fda.usc

(Febrero-Bande and Oviedo de la Fuente, 2012) and fda (Ramsay et al., 2014) to obtain

estimates of the functional principal component scores. We also use the packages RSpectra

and caret for creation of the folds, and the package fds for the use of real datasets. To compute

the semimetrics, we use the functions from the https://www.math.univ-toulouse.fr/

~ferraty/SOFTWARES/NPFDA/, the first function was the semimetric.mplsr which com-

putes the distance between curves based on the partial least squares method. The second was

the semimetric.pca, which computes the distance between curves based on the functional

principal components analysis method. For the method based on regression approach, we

choose the smoothing parameter using a global choice from the routine funopare.knn.gcv
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and a quadratic kernel. To compare the classifiers, we use the misclassification error rate,

sensitivity and specificity.

5.7.1 Competing methods

We start by describing the fixed kernel density estimate, followed by the adaptive method.

We also describe the k-NN kernel density estimation method, the product kernel method and

methods based on a regression.

In our simulations, we consider an optimisation routine for the parameter selection. For

the kernel methods that depend on only one parameter, we started by exploring a range of

values of the smoothing parameter h, to minimise the misclassification error. Except for the

regression methods where the optimal value of the smoothing parameter is chosen using a

CV approach.

1. Fixed Kernel Rule Method

The fixed kernel rule method is similar to the proposed adaptive kernel estimator,

except that the bandwidth is fixed. A fixed bandwidth can result in under-smoothing

areas with only sparse observations while over-smoothing in others. Let π̂1 = π̂2 be the

same prior probabilities in both groups. The fixed kernel rule assigns a new observation

x(p)
0 (t) to class Π0 if and only if

log
(

f̂0(x
(p)
0 (t) |Π0)

f̂1(x
(p)
0 (t) |Π1)

)
> 0. (5.46)

We estimate the density according to

f̂0(x
(p)
0 (t) |Π1) =

1
n0

n0

∑
i=1

1
h

K
(
(h)−1

∥∥∥d(x(p)
0i (t),x(p)

0 (t))
∥∥∥

q

)
, (5.47)

and

f̂1(x
(p)
0 (t) |Π1) =

1
n1

n1

∑
i=1

1
h

K
(
(h)−1

∥∥∥d(x(p)
1i (t),x(p)

0 (t))
∥∥∥

q

)
. (5.48)

The quantities n0 and n1 denote the sample sizes of the observations in the classes Π0

and Π1, respectively, and d(x(p)
0i (t),x(p)

0 (t)) is the semimetric based on PCA or PLSE

with x(p)
0i (t) to be the ith observation of the curve in population Π0. The semimetric
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based on PCA or PLSE is given by d(x(p)
1i (t),x(p)

1 (t)), where x(p)
1i (t) is the ith observa-

tion of the curve in population Π1. The global smoothing parameter h is optimised

such that it minimises the misclassification error.

2. Proposed Adaptive Method

The adaptive approach is the method we proposed in Section 5.5.2. Using this ap-

proach and letting the prior probabilities be the same, i.e., π̂1 = π̂2 we classify a new

observation, x(p)
0 (t), to class Π0 if and only if

log
(

f̂k0(x
(p)
0 (t) |Π0)

f̂k1(x
(p)
0 (t) |Π1)

)
> 0.

Here f̂k0(·) and f̂k1(·) are estimated using the adaptive kernel density estimation with a

smoothing parameter h and a kernel function K(·). More precisely,

f̂k0(x
(p)
0 (t) |Π1) =

1
n0

n0

∑
i=1

1
hdk0(x0(t))

K
(
(hdk0(x0(t)))−1

∥∥∥d(x(p)
0i (t),x(p)

0 (t))
∥∥∥

q

)
,

(5.49)

and

f̂k1(x
(p)
0 (t) |Π1) =

1
n1

n0

∑
i=1

1
hdk1(x0(t))

K
(
(hdk1(x0(t)))−1

∥∥∥d(x(p)
1i (t),x(p)

0 (t))
∥∥∥

q

)
.

(5.50)

The quantities n0 and n1 denote the sample sizes of the observations in the classes Π0

and Π1, respectively, and dk0(x(p)
0 (t)) is Euclidean distance between the x(p)

0 (t) curve

and the kth nearest curve in the set of n0− 1 observations. The Euclidean distance

between x(p)
0 (t) curve and the kth nearest curve in the set of n1−1 observations is given

by dk1(x(p)
0 (t)), and the semimetrics based on PCA or PLS are written d(x(p)

gi (t),x(p)
0 (t))

with x(p)
ji (t) being the ith observation of the curve in jth group.

The adaptive approach we considered requires that the optimisation of the smoothing

parameter h and the optimal number of k nearest neighbours is the same in both

populations. In our simulations we consider the PCA and the PLS semimetrics. The

optimisation procedure is described in the Algorithm 3, using a grid of proposed values.
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The distance is multiplied by the global smoothing parameter when the density is

estimated.

3. k-NN Kernel Method

As before, the k-NN kernel rule assigns a new observation, x(p)
0 (t), to class Π0 if and

only if

log
( ˆ̃fk0(x

(p)
0 (t) |Π0)

ˆ̃fk1(x
(p)
0 (t) |Π1)

)
> 0. (5.51)

For a given semimetric, the generalised kth nearest neighbour density estimation for

the gth group is then defined by

ˆ̃fk0(x
(p)
0 (t) |Π1) =

1
n0h

n0

∑
i=1

K
(
(dk0(x0(t)))−1

∥∥∥d(x(p)
0i (t),x(p)

0 (t))
∥∥∥

q

)
, (5.52)

and

ˆ̃fk1(x
(p)
0 (t) |Π1) =

1
n1h

n1

∑
i=1

K
(
(dk1(x0(t)))−1

∥∥∥d(x(p)
1i (t),x(p)

0 (t))
∥∥∥

q

)
. (5.53)

The quantities n0 and n1 denote the sample sizes of the observations in the classes Π0

and Π1, respectively, dk j(x)0(t) is the Euclidean distance between the new observation

and the kth nearest observation in the jth group and K(·) is kernel function integrating

to one.

4. Product Kernel Method

The product kernel method assigns a new observation, x(p)
0 (t), to class Π0 if and only if

log
( ˆ̄fH0(x

(p)
0 (t) |Π0)

ˆ̄fH1(x
(p)
0 (t) |Π1)

)
> 0. (5.54)

In its most general form, the product kernel method (Wand and Jones, 1994) is a

multivariate kernel density estimation given by

ˆ̃fH0(x
(p)
0 (t) |Π1) =

1
n0 ∏

p
j=i h0 j

n0

∑
i=1

p

∏
j=1

K


∥∥∥d(x(p)

0i (t),x(p)
0 (t))

∥∥∥
q

h0 j

 , (5.55)
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and

ˆ̃fH1(x
(p)
0 (t) |Π1) =

1
n1 ∏

p
j=i h1 j

n0

∑
i=1

p

∏
j=1

K


∥∥∥d(x(p)

1i (t),x(p)
0 (t))

∥∥∥
q

h1 j

 , (5.56)

for each group, respectively. As before, the function K(·) is a kernel function integrating

to one, n0 and n1 denote the sample sizes of the observations in the classes Π0 and

Π1, the semimetrics based on PCA or PLS are written d(x(p)
gi (t),x(p)

0 (t)) with x(p)
ji (t)

being the ith observation of the curve in gth group, and the quantities h0 j and h1 j are

the entries of the diagonal matrix H0 and H1, chosen in the same way for both groups:

H0 = diag
{

h10 . . .hp0
}
= 0.9A0n−1/5

0 , H1 = diag
{

h11 . . .hp1
}
= 0.9A1n−1/5

1 .

Let SD(ξ̂ j)g for j = 1, . . . , p, be the standard deviation of the jth principal component

score in the gth group, as in equation (5.7). Let A0 = min
{

SD(ξ̂ j)0, IQR/1.34
}

being the minimum of the standard deviations of the jth principal component scores

and the interquartile range of the observations in the population Π0, and let A1 =

min
{

SD(ξ̂ j)1, IQR/1.34
}

be the standard deviation and interquartile range of the

observations in population Π1. The asymptotically optimal bandwidth, which is

defined so that the squared distance between the density estimator and the true density

has the same convergence rate, it is of the order n−1/5 in one dimension. While in

higher dimensions usually asymptotically optimal bandwidth suggest to use a power

n−(1/p+4), where p is the dimension. If the jth principal component score is normal

distributed with mean zero and standard deviation σ, then expected value of the IQR of

the samples is 2q0.75σ≈ 1.34 where q0.75 is the 75% percentile of a standard normal

variable.

5. Regression Methods

In functional data, it is common to consider regression estimates based on Nadaraya

- Watson estimators (Ferraty and Vieu, 2003). The use of a Nadaraya-Watson type

estimator is to ensure that it converges in functional regression estimates and the

classifier is consistent (Devroye, 1978). We consider a comparison between kernel

methods (Nadaraya, 1964; Watson, 1964) and an appropriate way to estimate the
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regression function is using the Nadaraya-Watson estimators. More precisely, we

consider estimators of the form

E(Π0|x(p)(t)) = P(Π0|x(p)(t)) =

n0
∑

i=1
1{yi∈Π0}K(h−1d(x(p)

i (t),x(p)(t)))

n0
∑

i=1
K(h−1d(x(p)

i (t),x(p)(t)))
, (5.57)

where K(·) is the defined kernel K(u) = (1−u2)1[0,1](u). To classify a new observation

x(p)
0 (t), based on ratios. We consider the following:

P(Π0|x
(p)
0 (t))

P(Π1|x
(p)
0 (t))

=
E(Π1|x

(p)
0 (t))[

1−E(Π0|x
(p)
0 (t))

] , (5.58)

with

E(Π1|x
(p)
0 (t)) = P(Π1|x

(p)
0 (t)) =

n1
∑

i=1
1{yi∈Π1}K(h−1d(x(p)

i (t),x(p)
0 (t)))

n1
∑

i=1
K(h−1d(x(p)

i (t),x(p)
0 (t)))

. (5.59)

To select the bandwidth, h, we followed a global cross-validation approach (Ferraty and

Vieu, 2003). This approach selects the bandwidth, h, regarding the global choice of the

number of neighbours and selects the kopt in h−1
kopt

using a cross-validation approach. The

main goal is to compute the quantity

RKNN
CV =

N
∑

i=1
1{yi∈Π0}K(h−1

kopt
d(x(p)

i (t),x(p)(t)))

N
∑

i=1
K(h−1d(x(p)

i (t),x(p)(t)))
, (5.60)

where kopt is the bandwidth which corresponds to the optimal number of neighbours obtained

by a cross-validation procedure, i.e., the kopt is chosen such that it minimises the CV function

kopt = argmin
k

N

∑
i=1

(
yi−RKNN

−i

(
x(p)

i (t)
))

, (5.61)

and RKNN
−i

(
x(p)

i (t)
)

is the term with the ith curve removed, for all j 6= i. The global term

means that the same number of neighbours are used for all curves. For implementation

purposes, the routine funopare.knn.gcv computes the quantities
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RKNN
CV (x(p)

1 (t j)), . . . ,RKNN
CV (x(p)

N (t j)). (5.62)

for a set of discretised curves over t j = t1, . . . , tM.

5.7.2 Simulation Results

For both scenarios, we summarise the misclassification error rate in terms of boxplots. We

also report the mean specificity, mean sensitivity and mean error rate along with the standard

deviation in a table form.

In each of the simulations, the number of principal components is selected in a way

that minimises the mean integrate square error (MISE) as defined in Section 5.3 using the

L2-norm. In the adaptive kernel method, the values of the smoothing parameter h and k are

selected such that the misclassification error rate is minimised and we use the Euclidean

distance for both semimetrics.

We report the results of the proposed adaptive method with the two different semimetrics,

except for the larger sample size, where only the results of the semimetric based on principal

components is reported. We start by summarising our results in a boxplot form against all the

different classifiers.
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Figure 5.1 and Figure 5.2 show the boxplots of the misclassification error rates over the

different classification scenarios for the different outlier models using the PC semimetric.

In Figure 5.1 we observe that in most scenarios the adaptive approach outperforms all

other methods. Howevever, when the data is contaminated by introducing atypicals, the

k-NN kernel approach performs similarly to the adaptive approach, but still, the adaptive

outperforms the remaining different methods.

Results of the simulations for the second scenario can be seen in Figure 5.2. In this case,

we can observe that the adaptive approach outperforms all the different methods under most

of the different scenarios. However, the variability is higher in this scenario. This suggests

that by increasing the number of principal components in the data, we obtain more variability

for the adaptive classifier. This can be explained because the adaptive approach now requires

exploration of the data in a higher dimensional space. In the case where there is asymmetric

contamination, the product rule perform as well as the adaptive approach.

In all examples, the adaptive method performs better than the methods based on Nadaraya-

Watson estimates and outperforms classifiers based on density estimation. However, in the

second scenario we see that when the number of principal components increases, this tends

to increase the variability of the classifier.

We also investigate the performance when we increase the sample size to n1 = n2 = 200

observations in each population. Results of considering a different sample size can be seen in

Figure 5.3 for the first scenario, and Figure 5.4 for the second scenario.
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Figure 5.3 shows the misclassification error rate of the adaptive approach against different

methods. In Figure 5.3 we observe that in all the different scenarios the adaptive approach

performs better than the other competitor methods. In all the different scenarios, we can

observe that the adaptive approach, along with the other kernel methods approach (the fix

kernel method, the k-NN and the product kernel method) perform better than the regression

approach based on Nadaraya-Watson type estimates.

In Figure 5.4 we observe that the adaptive approach often performs as good as the other

competitors but the variance of the classifier greatly increases. For the uncontaminated model,

the adaptive approach performs better than the other methods. While when we consider an

Asymmetric Contaminated Model the variability increases but the product kernel method

perform as good as the adaptive approach. For the other contaminated models, the adaptive

approach performs better even when we consider a Shape Contamination Model.

When increasing the sample size in both groups we can conclude that the not only the

misclassification error rate decreases in all the different scenarios but also the other methods

performs better in different scenarios. For the first scenario when there is a low variance, the

adaptive approach performs better than the other competitor methods except for the Shape

Contamination Model. For the second scenario, the adaptive approach outperform all the

different methods.
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To investigate the performance of different metrics, we conduct a simulation experiment

in which we consider the partial least square semimetric. Figure 5.5 and Figure 5.6 show

the boxplots of the misclassification error rates over the different outlier models under the

first scenario and using the partial least square semimetric. As in the previous scenarios, the

dimension is selected in a way that minimises the mean integrated square error (MISE) using

the L2-norm. The smoothing parameters h and k are selected such that they minimise the

misclassification error rate. For partial least squares, the number of factors in each simulated

dataset is selected in a way that minimises the misclassification error rate.

When there is no contamination in the, data the Nadaraya-Watson type estimates perform

as good as the adaptive approach. However, when we consider an asymmetric contamination

model, the Nadaraya-Watson regression estimate performs better than the other methods; we

can observe the same behaviour under the third model but not under the atypicals observations,

where the adaptive approach outperforms the different methods.

For the second scenario, under the no contamination model, the methods based on

Nadaraya-Watson estimate perform better than all the other methods. However, the variability

of the misclassification error rate in the others classifiers increases. This can be explained

because the adaptive approach now requires us to explore the data in a higher dimensional

space. Under the asymmetric and linear peak contamination models the Nadaraya-Watson

estimate performs best but not under the shape contamination model where the adaptive

approach perform best. In all the examples, the variability of the misclassification error is

higher.

From the second scenario, we conclude that the use of a different semimetric influences

the behaviour of the classifier along with the number of factors we consider. The variability

of the misclassification error rate is higher than when we consider a semimetric based on

principal components. Under this semimetric the adaptive approach does not perform as well

as using principal components and the variability of the misclassification error rate is higher.
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We summarise the misclassification error rate, the sensitivity and the specificity of the

simulations for the first scenario and using the principal component semi-norm in Table 5.3

and similarly for the second scenario in Table 5.4. In this scenario, it can be seen that the

adaptive approach outperforms other competitors across different contamination models.

For the partial least squares semimetric, the simulation results of the misclassification

error rate, the sensitivity and the specificity are reported in Table 5.5 and Table 5.6 for the first

and second scenario, respectively. The performance of the adaptive approach deteriorates

somewhat under this semimetric but still performs better under the shape contamination

model.

To conclude this simulation experiment, we can observe that the use of the different

semimetrics influences the behaviour of the classifier, not only in the misclassification error

rate but also in the variability of the misclassification error rate in all classifiers. The adaptive

approach outperforms all the other competitors under a principal component semimetric and

in both scenarios. When there are differences between the semimetric and the contamination

model, the adaptive approach deteriorates rapidly exhibiting a large amount of variability

and a higher misclassification error rate. In practice, a classifier with a lower variability and

lower misclassification error rate is preferred.

5.8 Real Data Study

In this section, we present three different real datasets previously introduced in Section 2.4, to

illustrate the performance of the proposed adaptive kernel method under the same semimetric

but using different norms.

The first data example concerns classifying the orange juice spectra data. As we men-

tioned before, we form the groups to be two equally balanced groups using the sucrose

content. Defining the first population Π0, of size n0 = 109 (sucrose > 40) and the second

population Π1, formed by n1 = 109 curves with (sucrose < 40) and the group membership

as the binary response to be predicted. For this dataset, 99.96% of the variability can be

explained with five principal components scores. We showed in Figure 5.7 the kernel density

estimates of the first four projection scores; the densities are not normal and the third principal

component score appears to be bimodal. For this particular example, we can observe that the

difference between each pair of densities is not only limited by the location and scale, but
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also to the shape of the densities.
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Figure 5.7: Kernel density estimates for the first four principal component scores for the
orange juice dataset.

To illustrate the performance of applying the adaptive approach under different semimet-

rics, we consider the adaptive kernel method where the values of the smoothing parameter h

and k are selected such that they minimise the misclassification error rate (detailed in Algo-

rithm 3). In terms of the norm, we vary q over a set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2}.

In the second example, we analyse the NIR spectra of gasoline dataset. The dataset

contains two equally balanced groups according to the octane content and the predictors are

diffuse reflectance observed at from 900 to 1700nm in 2nm intervals giving 401 wavelengths.

The first population Π0 is formed by n0 = 30 curves with (octane < 88) and the second

population Π1 is formed by n1 = 30 curves with (octane > 88). For the NIR spectra gasoline

dataset a total of 10 principal component scores explain 99.21% of the variability in the

data. To investigate the densities of the principal component scores, density estimates of the

first four principal component scores can be seen in Figure 5.8. From Figure 5.8 the kernel

density estimate is far from normal and the first, second and third projection of the principal

component scores appear to be bimodal.
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Figure 5.8: Kernel density estimates for the first four principal component scores for the NIR
gasoline spectra.

As in the first real dataset, we classify the observations using the adaptive kernel method,

where the values of the smoothing parameter h and k are selected such that minimises

the misclassification error rate. Additionally, we investigate the performance of differ-

ent fractional norms. For such proposer we consider to vary the norm starting from

q = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 and 2. This is to see if fractional norms also

minimises the misclassification error rate.

In Section 5.6.1 we extended the adaptive approach to more than two groups. The third

real example consists of more than two groups and is the phoneme dataset introduced in Sec-

tion 2.4. The phoneme dataset consist of 400 curves in each group. From each speech frame,

we compute the log-periodogram, which is the one suitable for speech recognition. Thus the

data consists of 1200 log-periodograms of length 256, with known class memberships. For

this real dataset, we construct an adaptive approach based on all the observations, for each

of these examples, we applied the proposed adaptive approach across different norms and

present the results in Table 5.7.
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As we can see from Table 5.7, the proposed adaptive approach works particularly well for

functional classification and performs better when we consider using different norms. Also,

the proposed adaptive approach perform better than using the traditional L2 norm. Thus, a

higher accuracy can be obtained with a fractional norm.

Overall, this demonstrates how fractional norms combined with the adaptive approach

allow us to achieve better results in terms of classification. As we saw for all the datasets, the

use of the fractional norm increases the accuracy of the classifier.

5.9 Conclusions

Principal Component Analysis plays a very important role in functional data. We saw that

in general it is not possible to define a density for functional data, but is possible to define a

meaningful concept of density for a specific scale which is linked to a particular dimension.

Throughout this chapter we have introduced an adaptive density Bayesian classifier using

density of log ratios of functional principal component scores.

We studied the performance of different semimetrics linked to a particular dimension.

Techniques such as R-fold Cross-Validation are very useful to determine the number of

principal components when combined with the definition of Integrated Squared Error. By

means of a simulation study, we saw the performance of the proposed classifier under two

semimetrics and different contamination models. We explore two different semimetrics

important in the study of functional data: the semimetric based on principal components

scores and the semimetric based on partial least squares. Simulation results showed that

under different scenarios the adaptive approach outperforms other competitors. Fractional

norms can be combined with the adaptive approach to achieve better results in classification.

Using real datasets we showed how fractional norms can increase the accuracy of the adaptive

classifier.

Even though we consider the semimetric based on principal components it could be useful

to consider a semimetric based on a robust approach and compare our approach. We limited

ourselves to the case of balanced observations but we could also consider the performance of

our approach when this is not the case.



Chapter 6

Summary and Further Research

Functional data analysis has an inherent nonparametric approach and most of the method-

ologies we developed do not assume any parametric distribution. Functional data possesses

multiple challenges and we have tackled a number of them. This thesis deal with supervised

classification problems for functional data and proposes two main contributions. The first

contribution is based on Nearest Neighbours methods and the second contribution is based

on densities ratios and different semimetrics. We summarise our contributions by chapters.

In Chapter 2, by using a Gaussian Process we explored the flexibility to generate different

functions and we utilised the form of the covariance function to generate rough or smooth

curves according to its parametric form. We explored a method to simulate functional data

based on Fourier basis. We controlled the basis coefficients to be chosen randomly from a

Normal distribution with a decaying variance as the the number of coefficients increases an

we simulate functional data using two different scenarios. We also included different methods

to generate atypicals for functional data. Finally, we introduced functional real (balance and

imbalanced) datasets which are later used for testing our proposed methodologies. Overall,

the chapter provides a basis for the simulations and applications of methodologies throughout

the thesis.

In Chapter 3, we study the k-RNN as an alternative of the k-NN for functional data and

with the use of a running example, we explore different features of the classifier including

choosing the value of k and the exploration with different functional depths. Motivated by the

simplicity of the k-RNN classifier, we investigated how this classifier can be interpreted in

terms of conditional probabilities and as a moving average. We also saw how, by considering

conditional probabilities that the signed depth of a curve belongs to a particular group, we can
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construct point-wise confidence intervals for the estimated conditional probability. To study

the k-RNN more in detail, we followed a generalized additive model approach based on the

signed depth and the signed distance to the mode. We extended this classifier to more than

two classes and by means of a numerical simulation study, we observe an advantage of the

proposed classifier under different contamination scenarios and against different competitors,

with respect to the misclassification rate for both real and simulated dataset.

Within Chapter 4, we explored the imbalanced problem in which the number of ob-

servations in the majority class exceeds the number of observations in the minority class.

We focused on borderline observations in terms of the nature of the classification rule and

proposed a new methodology to strengthen the borderline minority observations in terms

of the functional principal component scores. We also proposed generating new curves

by considering a linear combination of the observations in the border and the observations

closest in depth. We then applied our proposed methodology to simulated and real datasets

and we saw that the proposed method outperforms the standard methods in terms of the

misclassification error.

In Chapter 5, we proposed a nonparametric adaptive density Bayesian classifier using

log density ratios of functional principal component scores based on different semimetrics

for a fixed dimension. Selecting the number of principal components is an important model

selection problem in almost all practical contexts of functional data analysis; for the Bayesian

classifier we selected a particular dimension using Cross Validation. Thus, working in a finite

dimensional space allows us to estimate a density linked to a particular dimension. By means

of a simulation study, we investigated the performance of the proposed classifier under two

semimetrics: PCA and PLS. We saw that the choice of the semimetric plays an important

role in classification. We then tested our classifier in real and simulated datasets. For the real

datasets, the use of the fractional norm increased the accuracy of the classifier.

6.1 Limitations and Further work

In this section, we provide a discussion of several issues that are not addressed in the thesis

and worth investigating in the near future. A common limitation is computational power,

however recent advances mean that computations of multiple integrals are less burdensome.
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These types of calculations are needed to compute the signed depth, hence apply to our

methodology.

6.1.1 k- Ranked Nearest Neighbours for functional data

The concept of ranks in functional data provides a monotonic ordering for the data. In

Chapter 3, we proposed a generalized additive model based on the signed depth and the

distance to the mode. However, in the k-RNN we restricted ourselves to the use the Fraiman

and Muniz (FM) depth. In recent years, new measures of depth for functional data have been

developed, for example we can mentioned the modified band depth by Arribas-Gil and Romo

(2014) and the modified epigraph index by López-Pintado and Romo (2009). It is important

to explore the behaviour of the proposed classifier under different depth measures to those

explored in the thesis.

Although, we ran our simulations with a particular degree of separation in the data, for

example δ = 0.35 in our running example, an alternatives is to explore how effective the

methods become when there is a different degree of separation in the data.

When the signed depth and the distance to the mode is visualised on the plane, the

proposed method can help us to identify clusters and outlier observations. As a further work,

we can explore the problem of clustering. For instance, functional depth as the FM depth

previously introduced in Chapter 3 is the basis of robust clustering methods such as K-means.

6.1.2 Dealing with Imbalanced Observations for functional data

In Chapter 4 we proposed an approach which involves oversampling the distribution of the

principal component scores. We focused on observations that are close to the border and we

proposed a new method that shrinks the observations that are closer to the original curve in

the border set. We also explored the borderline observations in terms of the classification

rule where the borderline observations can be defined in terms of a distance function. Thus,

we can explore different distance functions in a the near future and compare the performance

of our approach with these methods.

Even though the bootstrap approach is the standard method we compared to, there are

other sampling methods and it could be useful to consider and evaluate the performance of

our approach in comparison to these. In addition, we have limited ourselves to the case of
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imbalanced observations; we could also consider the performance of our approach when this

is not the case.

6.1.3 Principal Component Analysis for Functional Data

In the presence of outliers, the covariance operator is not robust. As a result, the estimated

functional principal components extracted from the covariance operator can lead to wrong

estimates. In Chapter 5, we proposed a nonparametric adaptive density Bayesian classifier

using a density of log ratios of functional principal component scores, based on different

semimetrics for a fixed dimension.

For further research, we can consider a robust approach of the functional principal

components of which there is little discussion about in the literature. Although the proposed

Bayesian classifier was tested on balanced datasets, we can use the flexibility to study its

performance under the imbalanced case, by modifying the prior probabilities. We could also

investigate the performance of our approach when this is not the case and with a suitable

semimetric for classification.

The simulations in Chapter 5 are structured with the data and this may be overoptimistic.

However, to mimic what happens in practice and to incorporate a test set in the simulations, we

explored two different approaches. The first approach started by considering an independent

test set of size nT est = 100 generated from the same model and containing equally balanced

of observations from each group. In this approach, the dimension of the data is obtained

by minimising the MISE. We trained our classifiers in our simulated data and we saved

the optimised parameters, which we then used in the simulated test set to predict the new

100 observations. The second approach consisted of having an independent test set of

size nT est = 100 containing equally balanced observations from each group but instead of

determining the dimension using MISE, we used a fix the dimension. Again, we saved the

optimised parameters for the competing methods and the proposed adaptive approach. As a

preliminary numerical study, we implemented both approaches. For the first approach we

implemented the uncontaminated case as we described in Section 5.7. Table 6.1 shows the

distribution of the number of principal components of the simulated test data and the number

of times that the correct dimension is selected. In this case we can observe that the 96 of the

times it selects the principal component that counts for most of the variability and minimises

the MISE.
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Table 6.1: Distribution of the number of principal components in the simulations including a
test set and minimising the mean integrate square error.

PCs 3 4 5 6

2/100 1/100 96/100 1/100

In terms of the misclassification error rate, we summarise the results of both approaches in

Table 6.2 where we show the mean error rate, sensitivity rate, specificity and their variances.

In the first approach, we can observe that the mean misclassification error for the proposed

adaptive is 0.0144, for the fix kernel rule method it is 0.0406, for the k-NN kernel method it

is 0.0431, for the product kernel method it is 0.0276 and for the NW regression approach it is

0.1517. All these exhibit a higher misclassification error rate than that in Section 5.7.2.

The second approach, which does not require us to select the dimension by minimising

the MISE, exhibits the mean misclassification value for the proposed adaptive as 0.0136, for

the fix kernel rule method classifier it is 0.0402, for the k-NN kernel method it is 0.0425,

for the product kernel method it is 0.0276 and for the NW regression approach it is 0.1513.

We saw that the first approach shows a higher variability when applied to the new data. In

general, we observe that both approaches may be much more variable when applied to new

data compared to reclassifying the training data.

As further work, we can investigate the behaviour of the proposed adaptive approach

under different scenarios and when a simulated test dataset is available. Finally, we can

explore fractional norms combined with the adaptive approach in our simulations, since we

saw that the use of fractional norms of the adaptive with real data achieve better results in

terms of classification.
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Table 6.2: Mean error rate, sensitivity rate, mean specificity and their variances in parentheses,
for the first scenario testing over 100 simulated test dataset n1 = n2 = 50 and using the PCA
semimetric.

Scenario 1 (Uncontaminated) - PCA Semimetric

Approach 1 Approach 2

n1 = n2 = 50

Adaptive Error 0.0144 (0.0002) 0.0136 (0.0002)

Sensitivity 0.9852 (0.0003) 0.9879 (0.0002)

Specificity 0.9863 (0.0002) 0.9853 (0.0003)

Fix Error 0.0406 (0.0003) 0.0402 (0.0002)

Sensitivity 0.9608 (0.0007) 0.9600 (0.0005)

Specificity 0.9592 (0.0005) 0.9607 (0.0005)

KNN Error 0.0431 (0.0004) 0.0425 (0.0003)

Sensitivity 0.9577 (0.0007) 0.9567 (0.0006)

Specificity 0.9585 (0.0006) 0.9583 (0.0006)

Product Error 0.0276 (0.0003) 0.0268 (0.0003)

Sensitivity 0.9744 (0.0005) 0.9721 (0.0007)

Specificity 0.9729 (0.0005) 0.9738 (0.0005)

NW Error 0.1517 (0.0007) 0.1513 (0.0010)

Sensitivity 0.8522 (0.0018) 0.8488 (0.0017)

Specificity 0.8507 (0.0020) 0.8506 (0.0020)
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Appendix A

In this appendix we present the code of the submitted file to use the High Throughput Com-

puting (HTC) system at the University of Manchester to interact with the EPS Condor cluster.

High Throughput Computing (HTC) - Code

1

2 Universe = vanilla

3

4 Requirements = (Target.Opsys == "LINUX" &&

5 Target.Arch == "X86_64" && HAS_R_3_4=?=True)

6 Request_Memory = 1000

7 Request_CPU = 4

8

9 Log = KRNNSimulations.log

10 Output = KRNNSimulations.out

11 Error = KRNNSimulations.error

12 Notification = Error

13

14 Should_Transfer_Files = Yes

15 When_To_Transfer_Output = ON_EXIT

16

17 # GetEnv=True is required for the gcc compiler to work on Condor *clients*

18 GetEnv = True

19 Environment = R_LIBS_USER=.

20 Executable = /opt/R-3.4.3/bin/Rscript

21 Transfer_Executable = False

22 Arguments = --no-save M1K2N50.R
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23 Transfer_Input_Files = M1K2N50.R

24 Transfer_Output_files = M1K2N50Results.rds

25

26 Queue

27


