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ABSTRACT 

This research is aimed at identifying and evaluating experimental factors which 

influence variations in results from sludge sampling and analysis, and 

investigating the feasibility of an in-situ solution for sludge characterisation. Due 

to the challenges present in removing sludge from wet nuclear storage facilities 

for laboratory-based analysis, it is difficult to generate characterization maps with 

high confidence as typically only very limited measurements can be made. 

This research presents a method of estimating the percentage confidence in sludge 

characterization results, specifically focusing on the Particle Size Distribution 

(PSD) as a representation of other sludge properties relevant to UK’s nuclear 

decommissioning programme. Also introduced is a novel algorithm, referred to as 

Recursive Relative Accuracy (RRA), which is shown to provide an indication of 

the benefits of taking more samples. Access to real nuclear site data is restricted; 

hence the chapter adopts the use of a real-life non-radioactive corroded 

magnesium sludge simulant tank. 

Sludge samples were collected from computer modelled and real-life simulant 

sludge beds under varying experimental conditions such as: the number of 

sampled locations, sampling strategy, the penetration depth and the selective bias 

of the sampling device used. These samples were in some cases, analysed for their 

PSD under varying experimental conditions such as: type of instrument model 

used, the concentration of samples and the dispersion medium used. Using PSD 

data measured at sampled positions and inferring data at non-sampled positions, 

three-dimensional sludge characterisation maps were obtained and analysed. 

It was observed that the factor “depth of penetration of the sampling device” 

contributes about 48 % to result variability, while the instrument model used and 

the sample concentration chosen each contribute about 40 % and 7 %, 

respectively, to variations in the PSD laboratory analysis results. The feasibility 

study conducted on ultrasonic spectroscopy failed to confirm the existence of an 

analytical model for interpreting PSD data in-situ. The average error margin in the 

inference of PSD mean values was over 600 µm.   
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GLOSSARY 

 

LIST OF ABBREVIATIONS 

 

• 3D – Three Dimensional 

• ANOVA – Analysis Of Variance 

• CLD – Chord Length Distribution 

• CM – Confusion Matrix  

• FBRM – Focused Beam Reflectance Method 

• FGMSP – First Generation Magnox Storage Pond  

• HLW – High Level Waste 

• HSAC – Horizontal Spatial Autocorrelation 

• ILW – Intermediate Level Waste  

• LDM – Laser Diffraction Method 

• LLW – Low Level Waste•  

• MSSS – Magnox Swarf Storage Silo  

• NNL – National Nuclear Laboratory 

• OKA – Ordinary Kriging Algorithm 

• PFCS – Pile Fuel Cladding Silo  

• PFSP – Pile Fuel Storage Pond 

• PSD – Particle Size Distribution•  

• ROV – Remote Operated Vehicle 

• RRA – Recursive Relative Accuracy  

• SOP – Standard of Procedure 



17 
 

• TDA – Triangular Delaunay Algorithm 

• UAS – Ultrasonic Attenuation Spectrum 

• UVS – Ultrasonic Velocity Spectrum 

• VSAC – Vertical Spatial Autocorrelation 

DEFINITION OF TERMS 

 

• Active Samples – also known as “Radioactive Samples” refers to substances 

which may spontaneously emit ionizing rays or contain one or more 

components of nuclear fuels or are contaminated with such substances. [1] 

• Particle Size Distribution – is described [2]  as a representative indication of 

the array of sizes of particles present in a given medium, and their respective 

proportions in the particulate sample group measured. 

• Data Quality – this refers to the degree to which the data integrity, accuracy 

and data completeness of a data resource satisfies the implied information 

need. [3] 

• Sampling Intensity – as used in this report refers to the average number of 

samples collected per unit area in a given population. 

• Sludge – refers to a settling or precipitated solid matter commonly formed 

underwater by activities of treatment processes. [4] 

• Tomography – refers to a technique for developing a graphical representation 

of the cross section through a solid object, by detecting changes made in the 

properties of the incident signal, for example using X-rays or ultrasound. [5] 

• D10 – refers to “the particle diameter corresponding to 10 % of the cumulative 

undersize distribution by volume”  [6]. 

• D90 – refers to “the particle diameter corresponding to 90 % of the cumulative 

undersize distribution by volume” [6]. 
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• Obscuration – refers to “the fraction of incident light that is attenuated due to 

scattering or absorption by particles” [6]. 

• Sampling Intensity – as used in this thesis refers to the average number of 

samples collected per unit area in a given population. 

• Sampling Uncertainty – refers to “the part of the total measurement uncertainty 

attributable to sampling” [7]. 

• Sludge – refers to a settling or precipitated solid matter commonly formed 

underwater by activities of treatment processes. [4] 

• Spatial Autocorrelation – refers to “the correlation among values of a single 

variable strictly attributable to their relatively close locational positions on a 

two-dimensional (2-D) surface” [8] 

• Spatial Extrapolation – refers to “the estimation of the values of a variable at 

non-sampled locations from observations at surrounding points” [7]. 

• Sludge characterization – refers to the quantitative measurement of the 

behaviour of sludge in the treatment and disposal processes [9]. 

• Variogram – refers to a plot of covariance between all possible pairs of 

sampled data against their respective proximities. 

• Voxel – refers to “each of an array of elements of volume that constitute a 

notional three-dimensional space, especially each of an array of discrete 

elements into which a representation of a three-dimensional object is divided”. 

[5] 
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1 Chapter 1 – Introduction 

1.1 Research Background 

In the 1940s, two Windscale Pile nuclear reactors were commissioned in the 

United Kingdom for military purposes [10]. Another facility known as the 

Calder Hall facility was later commissioned in the ‘50s to meet civil energy 

demands. During this period, there was no clear programme for the 

permanent disposal of the resulting nuclear radioactive waste such as spent 

fuel rods, magnesium and aluminium claddings and environmental debris 

[10].  

For the purpose of temporary waste storage, wet nuclear storage facilities 

were commissioned at the Sellafield sites. These now legacy storage 

facilities are the First Generation Magnox Storage Pond (FGMSP), Pile Fuel 

Storage Pond (PFSP), Pile Fuel Cladding Silo (PFCS) and the Magnox 

Swarf Storage Silos (MSSS) [11]. 

For several decades, these storage facilities have provided steel-concrete 

reinforced containment and underwater storage of radioactive waste. 

However, underwater storage can cause material corrosion and the 

settlement of fine suspended materials. This results in a solid-like slurry 

formation of considerable volume at the bottom of the legacy storage 

facility. This formation is known as sludge.  

 

1.2 Sludge 

Sludge refers to precipitated solid matter commonly formed underwater by 

activities of treatment processes [4]. Sludge is typically formed as a result of 

corrosion of metallic waste stored underwater. However, dirt and debris also 

contribute to sludge formation [12]. In the case of the nuclear storage ponds, 

radioactive sludge is formed mainly by the product of nuclear waste 

corrosion such as corroded fuel rod claddings. 
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An example of sludge is shown in Figure 1. This is the picture of radioactive 

sludge formed at the bottom of a storage pond at the NPP A1 Jaslovske-

Bohunice Reactor in Slovakia [13].  

 

Figure 1: Example of radioactive sludge from the Nuclear Power Plant 

(NPP) A1 Jaslovske Bohunice Reactor [13]. This plant was completed in 

1972 and was operational until 1977 when an accident (International 

Nuclear Event Scale Level 4) led to its closure. [13]  

The safe and efficient removal of such sludge formation is a major concern 

in the clean-up of early nuclear facilities in the UK. The decommissioning 

process requires the transportation, treatment and permanent disposal of 

radioactive waste using appropriately designed mechanisms.  

Unlike with regular sludge, the retrieval and transportation of radioactive 

sludge requires adequate analysis of the risks and implementation of 

appropriate control measures [12]. Hence, a comprehensive understanding 

of the properties and behaviour of the radioactive waste content, especially 

the sludge is critical. This can be achieved through a process known as 

sludge characterisation [9].  

The application of 3-dimensonal (3D) sludge characterisation can provide a 

map of the sludge bed, showing the spatial distribution of chemical, physical 

and/or radiological properties. Properties of interest include: rheology, 

morphology, viscosity, density, temperature, and particle size distribution. 

For example, prior to decommissioning, a legacy nuclear storage tank in 

Hanford, United States was characterised in order to assess the suitability of 

pump transportation and to determine suitable control measures [14].  
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1.3 Waste Classification, Treatment and Disposal 

Radioactive waste may be in itself radioactive or may be so contaminated. 

In managing radioactive waste, there exists a classification which enables 

efficient management, treatment, storage and disposal.  

1.3.1 Classification of Radioactive Waste in the UK 

 

1. High Level Waste (HLW): 

This refers to waste which have an activity high enough to generate 

significant heat, thereby increasing its temperature and that of the 

surrounding. This activity is usually higher than 4 GBq/te (giga-

becquerels per tonne) of alpha activity or 12 GBq/te beta-gamma 

activity. Therefore, when designing the storage and disposal plan for 

HLW, concerns about heat generation during storage must be 

considered. This class of waste is currently stored on site temporarily. A 

typical example of HLW is the liquid waste resulting from the treatment 

of spent nuclear fuel. [15]  

 

2. Intermediate Level Waste (ILW): 

This refers to waste which have an activity higher than 4 GBq/te of 

alpha activity and 12 GBq/te beta-gamma activity but does produce 

significant heat (unlike HLW) and therefore does not require concerns 

about heat generation during storage. This class of waste is currently 

stored on site temporarily. This is because there is still a need to prevent 

exposure of its radiation to the environment. A major source of ILW is 

also the treatment of spent nuclear fuel as well as from maintenance 

operations within a nuclear site. Common examples of ILW include 

graphite and radioactive sludge from wet storage facilities. [15]  

 

3. Low Level Waste (LLW): 

This refers to waste which have an activity higher than 4 Bq/g but not 

exceeding 4 GBq/te of alpha activity or higher than 400 kBq beta-

gamma activity but not exceeding 12 GBq/te beta-gamma activity. 

LLW is usually light contaminated waste produced during maintenance 
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and monitoring routines as part of the operations of a nuclear site. 

Typical examples include daily wastes such as papers, plastic containers 

and disposable personal protective equipment (PPE). [15]  

 

4. Very Low Level Waste (VLLW): 

This refers to any waste which has an activity less than that of LLW 

such as disposable plates and utensils used in the kitchen area as well as 

other regular kitchen and office waste. These types of waste do not need 

any special treatment. They are disposed as parts of the general refuse.  

 

1.3.2 Treatment of Radioactive Waste 

Radioactive waste must be retrieved and separated based on the waste 

classification. The waste must then be decontaminated. The treatment of 

waste could be thermal, chemical or physical. [15] [16] 

 

An example of the thermal treatment can be observed in the treatment of 

the highly active aqueous effluent known as Highly Active Liquor 

(HAL) resulting from the treatment of spent fuels. HAL is treated using 

the method of evaporation. One purpose of this is to reduce the total 

volume of waste. With the aid of low pressure steam heating for up to 15 

days, the concentrate can then be collected and stored for disposal, while 

the vapour is collected via a cooling tower tube exchanger and stored. 

[15] [16] 

 

Another treatment method is the radionuclide decontamination of sludge 

waste streams. To achieve this treatment, either of two methods are 

applicable, the site-ion exchange or the enhanced actinide removal. The 

method of site-ion exchange is particularly useful for decontaminating 

pond waters prior to discharge into the environment. Similarly, the 

method of enhanced actinide removal is commonly applied for 

decontaminating aqueous effluents resulting from treatment operations. 

[15] [16] 
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1.3.3 Long-term Disposal of Waste 

Ahead of disposal, waste must be conditioned into a wasteform that 

ensures the retention of radionuclides when disposed. This is because in 

this wasteform, the radionuclides become immobilised as they are 

dissolved in the solid structural network at an atomic level. In this state, 

the wasteform can then be encapsulated for long-term storage. [15] [16] 

 

While ILW is encapsulated by solidification in cement, HLW is 

encapsulated by vitrification in a glass matrix. Vitrification converts 

highly active liquors into dense solid glass blocks further reducing their 

volume.  After immobilisation and encapsulation, the waste can then be 

packaged into steel reinforced drums for storage. [15] 

 

The appropriate long-term repository for encapsulated ILW and HLW is 

the Geological Disposal Facility (GDF). There are a number of 

considerations to be given before a suitable GDF site is chosen. Such 

sites should not have mineral resources, and should not be permeable to 

water or viscous fluid. It should also be able to provide thermal 

insulation where necessary. It may therefore be a challenge to find a 

suitable GDF site and obtain the support of the community. However, 

until there becomes a conclusive disposal route, encapsulated waste 

must remain safely stored on site.   [16] [17] 

 

LLW is suitable for long-term disposal after containment in near surface 

engineered facilities. The authorised disposal site for this class of waste 

is at the Low Level Waste Repository (LLWR) near Drigg, Cumbria, 

UK.  

1.4 The Legacy Storage Facilities 

The legacy storage facilities at Sellafield are the pioneering storage ponds 

and silos used in the early days of nuclear activities in the United Kingdom. 

They date back to the early ‘50s and are located in Sellafield sites. They are 

listed as follows: 
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1. Magnox Swarf Storage Silo (MSSS). 

2. Pile Fuel Cladding Silo (PFCS). 

3. Pile Fuel Storage Pond (PFSP). 

4. First Generation Magnox Storage Pond (FGMSP). 

 

Records of the original designs of these facilities and the inventories of their 

waste content may no longer represent the current situation at these legacy 

sites. This is as a result of over 50 years of physical and chemical changes 

which the waste may have undergone. A clear understanding of what these 

storage facilities now contain is beneficial to the planning of a suitable 

approach for nuclear decommissioning. This section therefore discusses the 

history of these legacy storage facilities, the complexities in their design, 

and the challenge involved in adequate monitoring.   

1.4.1 Magnox Swarf Storage Silo (MSSS) 

The Magnox Swarf Storage Silo (MSSS) as shown in Figure 2 comprises 22 

water filled concrete silos. Each silo has a depth of about 16 metres [18]. 

They contain waste which is predominantly the product of magnox 

treatment. This waste has over time degraded into sludge and is therefore 

expected to be mainly corroded magnox alloy.  
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Figure 2: (a) Magnox Swarf Storage Silo (MSSS) (b) Some of the 22 

silos inside the MSSS. The top picture shows the external view of one of UK’s 

legacy nuclear storage facilities. A schematic of the composition of these silos 

is shown in the bottom picture. 

A product of sludge corrosion is hydrogen gas which is flammable [18]. For 

safety reasons therefore, this gas should not be allowed to get trapped 

anywhere within the silo. The heat produced from any such corrosion must 

also be controlled by convectional cooling [18]. Hence, it is important to 

consistently monitor changes in the physical properties of the sludge as 

large porosity within sludge could be an indication of gas entrapment. 

Similarly, uneven temperatures may sometimes be an indication of various 

degrees of on-going chemical or radiological reactions within the sludge. 

1.4.2 Pile Fuel Cladding Silo (PFCS) 

Another storage silo is the PFCS shown in Figure 3. This was designed in 

the ‘50s to be a locked vault never to be opened again [19] [20]. In March 

2017 however, the first of six large holes was cut into the side of the PFCS 

in order to reach inside the silo for waste retrieval. Although these holes are 

known as the “waste retrieval access penetration” [20], they do provide an 

opportunity for waste inspection and characterisation ahead of 

decommissioning.  

 

b 

a 
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Figure 3: Pile Fuel Cladding Silos (PFCS). This picture shows the external 

view of one of UK’s legacy nuclear storage facilities commissioned in the ‘50s. 

The silos house intermediate level waste at the Sellafield sites. 

 

1.4.3 Pile Fuel Storage Pond (PFSP) 

 

There are two legacy storage ponds at Sellafield. One of them is the PFSP. 

The 100 m × 25 m × 7 m pond containing skips of irradiated fuel and waste 

(algae, corrosion products and wind-blown material) facility is an outdoor 

storage pond [21] [22]. This pond, as shown in Figure 4 was constructed in 

1948 and became operational in 1952. The pond served as a facility for 

storing, cooling and decanning fuel from the Windscale Piles in preparation 

for treatment. In mid ‘50s, this facility was modified to allow for the receipt 

of another high level waste, spent Magnox fuel from the Calder hall reactors 

[11] [23]. 
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Figure 4: Pile Fuel Storage Pond (PFSP).This picture shows the top view of 

one of UK’s legacy nuclear storage ponds. The PFSP is a 100 m by 25 m by 7 

m pond comprising radioactive sludge formed from nuclear fuels and debris . 

 

In 1962, when decanning operations of spent fuel were stopped, the pond 

remained in use as a storage facility for fuel contaminated items and 

operational waste. The pond remained in active use until the ‘70s when all 

operations in the pond ceased. During its active regime, the pond is 

estimated to have received about 2100 tonnes of pile fuel and 300 tonnes of 

Magnox fuel. It is noted that the pond therefore contains water, Magnox 

cladding, aluminium, steel and uranium. [11] [23] [24] 

 

1.4.4 First Generation Magnox Storage Pond (FGMSP) 

In view of the expanding UK nuclear programme, the construction of the 

FGMSP also began in the ‘50s and ended in the 1960s. During this period, 

the pond, shown in Figure 5, served as a facility for receiving, storing and 

cooling irradiated fuel from the Magnox reactors and to remove the Magnox 

cladding in preparation for treatment. [11] [23] 
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Figure 5: First Generation Magnox Storage Pond (FGMSP) [18]. This 

picture shows a schematic drawing of the external view of one of UK’s legacy 

nuclear storage ponds, the FGMSP used until the ‘90s. 

In 1974 however, due to a long shutdown of the treatment facility at 

Sellafield, the FGMSP ended up storing fuel underwater for a period longer 

than required. This resulted in Magnox fuel corrosion and increased 

radiation levels [11] [23]. Visibility through the pond waters also became 

obscured and this slowed down the rate of decanning, further compounding 

the problem. The FGMSP remained in active use up until 1992 when it 

received the last fuel. The waste content of this pond is similar to that of the 

PFSP except that it was not used for Pile fuel. There is the need for a safe 

removal and processing of these various levels of wastes through separate 

routes. [11] [23] 

 

1.4.5 Remarks 

The construction of these legacy storage facilities was for the purpose of 

improved operational safety and hazard reduction. The use of water was 

deliberate. Water serves as a radiological barrier and also serves as heat sink 

for any on-going reactions. However, the use of water introduced additional 

challenges to the decommissioning of these facilities. For example, magnox 

cladding material was deemed fit as a barrier between a fuel rod and the 

environment due to its neutron transparency. The problem with the alloy 

however, is that it offers weak resistance to underwater corrosion. Hence, it 
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should not be left underwater for longer than a set time; otherwise it 

corrodes, forming a toxic and radioactive sludge. [25]  

Unfortunately, corrosion is aided by acidity and as a control measure; low 

pH values of water should therefore be avoided. It is for this reason that 

alkaline liquor is regularly pumped into the storage ponds with the aim of 

maintaining the pH at 11.5. [25] The challenge with this is that these ponds 

are in the open. With rainwater pouring in, lowering the pH through the 

process of carbonation, the corrosion may be minimised but may not be 

halted. 

Other sources of sludge in these ponds include bird droppings, and other 

organic waste in the environment. These could lead to an imbalance or 

variation in chemical properties of the pond water. Unless the chemical 

parameters of the water are carefully maintained, there could be corrosion.  

Attempts at controlling the chemical properties of legacy storage ponds may 

be a challenge, especially as they were not designed to serve as long-term 

waste storage facilities. 

1.5 Problem Definition 

 

Due to the inherent complexities in the design and logistics within and 

around the legacy nuclear storage facilities, the decommissioning of each of 

these four facilities could take over two decades [18].  The inadequate 

knowledge about the content of these facilities also poses a challenge to the 

decommissioning process [22] [25]. The possibility of having trapped 

gasses, ongoing exothermic reactions and significant radioactivity within the 

sludge makes it necessary for the industry to develop a means of monitoring 

the physical, chemical and radiological state of the sludge before and during 

decommissioning.  

The sludge will need to be pumped out of the pond for treatment and 

packaging before it is disposed in a permanent geological facility. The 

logistics and design of an adequate transportation system needs to be 

supported by a thorough understanding of the rheological properties and the 
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sizes of particles found within the sludge. The method of waste treatment 

and eventual permanent disposal also requires a detailed understanding of 

the chemical and physical behaviour of sludge during all stages of nuclear 

decommissioning through to permanent disposal. [18] 

Presently, this understanding of the physical properties of sludge is carried 

out by analysing (in a laboratory) sludge samples retrieved from accessible 

locations within temporary storage ponds [25]. This can be referred to as an 

ex-situ approach because of the onward transportation of retrieved sludge 

samples to the laboratory. Figure 6 shows a summary of this procedure. 

 

Figure 6: A typical ex-situ procedure for sludge characterisation involving 

the safe retrieval and transportation of sludge samples to a laboratory. 

A useful example of where such procedure is outlined in detail is the 

technical report [26] by the United States Department of Energy. The report 

was produced in the year 2000 to support the management of 

characterisation campaigns ahead of the nuclear decommissioning of 

Hanford K Basin, United States. In that report, emphasis was placed on the 

need for quality controls relating to the characterisation activities. Following 

this, a remotely operated method of sludge retrieval was carried out in 2010 

[27]. In this exercise, 99.7 % of the radioactive sludge was successfully 
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protective equipment. 
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evacuated from ten submerged tanks and transported 45 m away for 

treatment.  

There is a limit to the depth and position from which sludge samples can be 

retrieved in a nuclear pond given the internal design of the ponds and silos 

which has not made certain areas of the facilities readily accessible. 

Furthermore, as the sampling procedure in use requires some level of direct 

human involvement [28], there is a legal limit to radiation dose exposure of 

UK radiation workers (20 mSv). The impact of this is the inevitable delay in 

the time required for adequate monitoring of sludge properties.  

Thus, comprehensive and precise real-time monitoring at these sites has 

proven to be very difficult. This is because in order to produce a spatial map 

representation of the physical properties of sludge within any facility, an 

adequate number and spread of collected samples is required for data 

processing [29]. 

In order to appreciate the present challenge, it is essential to analyse the 

uncertainties that may have been introduced to historical sludge 

characterisation data as a result of the method shown in Figure 6. In so 

doing, there is need to identify and evaluate technical and environmental 

factors (such as sample size, position of samples and method of sample 

collection and analysis) which may contribute to the result uncertainty or 

confidence [30].  

Adequate knowledge of the confidence is useful in assessing the quality of 

decisions which can be taken based on any available sludge characterisation 

result. Such knowledge is also useful in supporting the development of more 

reliable techniques for sludge characterisation [24].  

For example, concerns about validity of laboratory results obtained ex-situ 

arise due to uncertainties introduced when sludge samples are exposed to 

varying transportation and handling conditions [29]. However, with the 

growing confidence in the use of Remote Operated Vehicles (ROVs) to 

support nuclear decommissioning [25], it is now vital to assess the 

obtainable benefits (such as reduction in uncertainty, cost effectiveness and 



32 
 

general safety). This is because ROVs can be used to support sludge 

characterisation underwater by an in-situ approach which eliminates the 

need for sludge transportation out of the ponds.  

By taking in-situ measurements, sludge samples may become retrievable 

from areas within the pond which may have been inaccessible to humans 

and with even less disturbance to the sludge conditions. The development of 

an in-situ approach requires adequate investigation into a suitable 

mechanism for collecting samples and conducting relevant analysis under 

the water at varying depths and spread within the pond.  

1.6 Scope of Research 

Real particulate systems are known to comprise particles of various shapes 

and sizes, with diameters ranging from nanometres to millimetres. 

Measuring the geometric properties of these particles provides a means of 

characterising the system. Characterisation is useful for quality control, 

process planning and research purposes [31]. Particle Size distribution 

(PSD), one of such properties, characterises a system based on the array of 

individual particle sizes contained therein. Aside variation in size, particles 

within a given sample may also vary in shape, colour, rheology, chemistry 

and density. All of which are of interest to the nuclear industry.  

In this research however, Particle Size Distribution (PSD) is chosen as the 

sludge property of interest. It characterises sludge based on the array of 

particle sizes within any given sample. PSD is a key aspect of quality 

monitoring in nuclear storage facilities as well as drug, food and detergent 

manufacturing and water purification. It is expected that the findings 

contained in this research will be applicable to other physical properties for 

which sludge may be characterised.  
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1.7 Research Aim and Objectives 

1.7.1 Aim of Research 

The aim of this research is to identify, evaluate, and optimise experimental 

factors which influence confidence in the results obtained from sludge 

characterisation mapping, and using Particle Size Distribution (PSD) as a 

case study. 

1.7.2 Key Research Objectives  

1. To understand the available techniques for measuring particle size 

distribution. 

i. To identify what parameters should be evaluated in order to 

assess the quality of results. 

ii. To review literature on existing techniques for particle size 

measurement. 

iii. To understand their limitations and applicability to radioactive 

sludge samples. 

iv. To conduct simulation and experimental validation of 

preferred solutions.  

v. To determine whether there are techniques available that could 

be used to determine particle size distribution in-situ. 

 

2. To understand how sampling and analytical procedures affect the 

overall result confidence. 

i. To set up a simulant sludge bed which can be used to analyse 

the effects of sampling and instrumentation on measurements 

of particle size distribution. 

ii. To obtain particle size distribution measurements from existing 

sludge samples that have been collected from the storage 
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ponds, using different sampling procedures and measurement 

techniques. 

iii. To employ statistical tools to analyse the measurements and 

draw conclusions.  

iv. To ascertain the appropriate sampling strategy and procedure 

required in order to satisfactorily improve the repeatability and 

reproducibility of sludge characterisation results. 

v. To ascertain the number of sampled locations required in order 

to satisfactorily improve the repeatability and reproducibility 

of sludge characterisation results. 

3. To investigate, using bench-top experiments, the feasibility of an in-

situ analysis technique. 

i. To understand the particle size measurement techniques 

available for in situ application. 

ii. To understand the design amendments required on an existing 

Remote Operation Vehicle (ROV) that has been developed at 

the University of Manchester.  

1.8 Deliverables, Benefits, Contributions and Challenges  

1.8.1 Key Deliverables 

1. Following from objectives 1 and 2 above, a statistical evaluation of 

how the various sampling and analytical factor settings relate to the 

overall confidence level and uncertainty of observed results will be 

conducted. 

2. With the findings in the deliverable (1) above, a recommendation for 

how Sellafield should therefore undertake sludge sampling and PSD 

analysis campaign towards obtaining optimal representation of the 

PSD characteristics of the sludge will be made and how overall data 

confidence should be evaluated. 
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3. In line with objective 3, a demonstration will be made of how an in-

situ particle size distribution analysis can be conducted using 

ultrasonic spectroscopy.  

 

1.8.2 Benefits of this Research 

A thorough understanding of the characteristics of the sludge bed will 

provide insight into the physical changes that may have occurred in the 

storage facilities over time. 

Secondly, optimizing confidence in PSD measurements is not only useful 

in the design of appropriate transportation facilities [32] but is of general 

importance to other fields such as water treatment, detergent 

manufacturing, food and drug quality monitoring [33] [34] [35] [36]. 

Thirdly, an improved quality in sludge characterisation is beneficial to the 

design of appropriate simulant sludge and other test materials, thus 

supporting further research works. 

Furthermore, an investigation into the feasibility of in-situ sludge 

characterisation techniques seeks to promote data quality for efficient 

nuclear decommissioning. 

1.8.3 Contribution to Knowledge 

At the end of this research and for any sludge characterisation exercises, it 

will become possible to estimate an overall uncertainty and confidence that 

account for the effect of varying experimental factors across sludge 

characterisation campaigns. This will also be retrospectively applicable to 

old data from previous campaigns. There has not been sufficient research 

focus on the evaluation of measurement uncertainties that account for 

differences in experimental procedures occasioned by having different 

operators.  

This research also seeks to contribute to the list of viable techniques for in-

situ particle size analysis with particular consideration of ultrasonic 

spectroscopy. The main challenge in the wide adoption of ultrasonic 
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spectroscopy has been that the widely employed theoretical models require 

a number of thermo-mechanical properties of materials which are majorly 

unavailable for unknown samples. If an analytical model is proffered, this 

will be another major contribution to knowledge. 

1.8.4 Technical Challenges Involved 

For the outcome of a sludge sampling and PSD analysis campaign to be 

useful for decision making, the characterisation results must be proven to 

be consistent and reproducible. It must also be ensured that the samples 

provide representative information regarding the properties of the sludge 

across the ponds. To achieve this theoretically, a significantly high number 

of samples are required for high confidence levels. Working within 

practical restrictions in a radioactive environment therefore represents a 

challenge if the same confidence must be realised. 

In using non-active samples for the experimental phase of this research, 

the analysis technique adopted must be validated and confirmed to be 

reliable. Also, the samples to be used must be stable and non-reactive. 

These factors if not well designed, may introduce systematic errors in the 

experimental results of this research. Similarly, the simulation results 

derivable will depend on the suitability of the treatment models used. 

Hence, ensuring that the models fairly represent the actual behaviour of the 

field situation is a challenge that will need to be addressed. 

While the sludge PSD spatial distribution and spatial autocorrelation in the 

legacy ponds remain largely uncertain, the research will need to develop a 

design solution that is robust enough against such unpredictable 

disturbances. Another factor that the design will need to be robust against 

is the inaccessibility of certain areas in the pond for sampling. The ability 

to model the sludge bed and other crucial factors appropriately will go a 

long way in ensuring reliable simulation test results. 
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1.9 Thesis Layout 

 

Chapter 1 introduces the theme of the research with details of the aim and 

objectives.  

Chapter 2 describes the fulfilment of objective 1 of the research (see 

Section 1.7.2). It provides theoretical backgrounds in the process of sludge 

sampling, sludge analysis and the statistical analysis involved in sludge 

characterisation.  

Chapter 3 details the fulfilment of objectives 2(ii), 2(iii) and 2(v) of the 

research. It provides a discussion on the experimental factors (relating to 

sludge sampling only) that affect the quality of sludge characterisation and 

their percentage contribution to the overall confidence.  

Chapter 4 fulfils the objectives 2 (i) and 2(iv) of the research. This 

includes relevant theory in sludge sampling, spatial extrapolation, result 

confidence and statistical evaluation tools. It also includes a discussion of 

results from simulated and experimental sludge sampling exercises. 

Chapter 5 is in fulfilment of objectives 1, 2(ii), 2(iii) and 2(v) of the 

research. This includes theoretical backgrounds in PSD analysis 

techniques and results from laboratory experiments on PSD measurements. 

This chapter focuses on the aspect of laboratory analysis of sludge 

samples. It discusses the contribution of relevant experimental factors 

(relating to the laboratory analysis of sludge only) on the confidence 

obtainable. 

Chapter 6 is in fulfilment of objective 2. This chapter brings together the 

findings in Chapters 3 and 5 (comprising experimental factors relating to 

both sludge sampling and laboratory analysis of sludge) to develop a 

useful parameter known as the “cross-campaign confidence”. 

Chapter 7 is in fulfilment of objective 3 of the research. This includes 

discussions on the theory, simulations and experiments conducted on 

ultrasonic spectroscopy as a method for in-situ PSD analysis.  



38 
 

Chapter 8 gives a summary of the overall research findings, general 

conclusions and future recommendations.  

All relevant records in support of the research findings can be found in the 

DCF robotics shared folder. 
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2 Chapter 2 – Theoretical background 

 

2.1 Motivation 

 

The removal of sludge as part of the UK’s nuclear decommissioning 

programme involves decision making. Making the right decisions is 

necessary to improve safety, reduce cost and reduce the duration of the 

programme. It is therefore important that decision makers have adequate 

knowledge of any sludge population before deciding on a technique for 

sludge removal. This is because there are a number of techniques by which 

sludge may be transported, reprocessed and stored. The choice of any 

technique is dependent on a number of properties of sludge such viscosity, 

settling time, particle sizes, chemistry and radiology.  

Experimental data can be obtained by retrieving sludge samples, and 

analysing such samples in a laboratory. The level of accuracy of any such 

experimental data obtained would impact on the effectiveness of decisions 

made concerning the method of sludge retrieval, transportation, treatment and 

disposal. Unfortunately, the accuracy of any such experimental data cannot be 

evaluated when the true values are unknown. The accuracy however depends 

on the adequacy of both the sludge samples and analysis procedure involved. 

In seeking to improve this quality, there is the need to be able to measure 

quality.  

In a definition of the term “quality”, Montgomery [37] refers to it as being 

inversely proportional to variability. The author also suggests that by 

reducing such variability, quality is improved. By adopting this definition, 

this research considers the variation of results from a number of repeated 

sludge characterisation exercises as a useful measure of the quality of the 

sampling and analysis procedure involved.  
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With knowledge of the existing quality, it would be useful to have an 

understanding of the mitigating factors that seek to affect such quality. This 

involves the application of relevant statistical tools.   

The  essence  of  such  learning  is  the  need  to  re-engineer  the  overall  

data  collection  and  analysis  procedure.  One  aspect  of  procedure  re-

engineering  is  the  possible  introduction  of  an  in-situ  monitoring  and  

characterisation  system.  With  such  a  system  in  place,  and  by  

incorporating  the  desired  safety protocols,  time  and  cost  reduction  can  

be  achieved.   

This research derives further motivation from a 1999 study on ecology by 

Hansen et al. [38]. In the study, a two-dimensional (2D) map characterising 

the ecosystem of a place called Greater Yellowstone was generated. The 

characterisation of that ecosystem was based on an ecological parameter 

known as Aboveground Net Primary Productivity (ANPP) which indicates 

the presence of life in the give area. While it was only possible to take ANPP 

measurements at only selected locations in Greater Yellowstone, statistical 

tools were used to infer the spatial distribution of ANPP across the ecosystem 

as can be seen in Figure 7(a). 

In addition to the characterisation map of Figure 7(a), the study went further 

to develop a counterpart map known as a variance map showing the 

coefficient of variation of the inferences made on the characterisation map of 

Figure 7(a). This map can be seen in Figure 7(b). 
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Figure 7: (a) Inferred distribution of Average Net Primary Production 

(ANPP) over the study area (b) Coefficient of variation in the ANPP 

inferred in (a) [38]. This figure is taken from an ecological research on 

the ANPP characteristics of a region called Yellowstone.  

Highlighting the relevance of the variance map, it was shown in Figure 8b 

that the northern part of the ecosystem had higher variance values compared 

to the southern part, thus implying that the results in the southern part were of 

higher precision and confidence. The resulting variance map of Figure 7(b) 

therefore provided an indication that the confidence in the characterisation 

map of Figure 7(a) could have been improved if further sampling had been 

conducted in the northern part. 

The study [38] is evidence that the characterisation map of a given area can 

be statistically inferred using an adequate number of sampled data. It is also 

evidence that a variance map is a useful tool for evaluating the confidence in 

any characterisation map and for indicating whether the number of sampled 

data had been adequate or not. 
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This research is motivated by the evidence in Figure 7(a) and Figure 7(b), and 

seeks to develop similar maps for the radioactive sludge bed in the legacy 

nuclear storage ponds at Sellafield. A three-dimensional map (3D) is however 

of interest to this research as against the 2D maps of Figure 7(a) and Figure 

7(b). The similarity between this research and the ecological study [38] is that 

the nuclear industry also requires a thorough understanding of the physical, 

chemical and radiological properties of nuclear waste in storage facilities.  

There are however site restrictions which limit the amount of sampled data 

and map accuracy obtainable. Therefore, the concept of a confidence or 

variance map as seen in Figure 7(b) which indicates the quality of inferred 

results will aid decision making. Especially decisions on how to improve the 

sampling, analyses and data processing standards. 

 

2.2 Sludge Characterisation 

 

To facilitate the decommissioning of wet nuclear storage facilities, all of the 

sludge contained therein need to be retrieved and transported, either to a 

permanent repository or to a re-processing facility. However, a thorough 

understanding of the composition of sludge is a prerequisite [39]. Haugan and 

Mininni [9] describe sludge characterization as the quantitative measurement 

of sludge behaviour during treatment and disposal processes. The outcome of 

sludge characterization provides an understanding of the cost of treatment and 

disposal, and their potential hazards to the environment [9]. Sludge 

characterization involves the analyses of particulate sludge samples for a 

number of properties such as chemical composition, rheology, radioactivity 

and particle size distribution.   

Particle Size Distribution (PSD) is a key aspect of quality monitoring in 

nuclear storage facilities. Simpson et al., [40] points out the possible effect of 

fine sludge particles on visibility and airborne contamination during clean-up 

induced agitations. A number of techniques for the analysis of particle sizes 
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have been developed over the years including laser diffraction method, sieve 

analysis and microscopy [41].  

Whilst concerted efforts have been made towards the improvement of 

analytical techniques [42] [43], the influence of limited sampled data and 

extrapolation techniques on the overall quality of maps requires further 

investigation. This research seeks to understand how field operators can 

practically estimate the number of samples required for adequate sludge 

characterisation and to investigate how this number may be reduced with 

minimal effect on confidence in results. This research also seeks to identify 

the various experimental factors which affect confidence in maps generated. 

 

2.3 Particle Size Distribution 

 

Real particulate systems comprise particles of various shapes and sizes, with 

diameters ranging from nanometres to several millimetres. Measuring the 

geometric properties of particles in the system provides a means of 

characterising the system’s behaviour during transportation and permanent 

disposal. Besides variation in particles sizes, variations may also exist in 

particle shapes, colour, rheology, chemistry, and density. Ignoring any of 

these variations while measuring PSD could introduce errors in PSD results. 

This is why the various techniques for measuring PSD potentially give 

different results and have varying degrees of reliability [44]. With each 

technique being uniquely dependent on and influenced by certain physical 

properties of the sample, it is important to carefully consider the applicability 

of an analysis technique to sludge characterisation in order to improve 

repeatability and reproducibility of PSD results.  

It is also noteworthy that irregular shapes tend to have different diameter 

readings depending on the location of the observer. In determining a PSD 

however, the diameter size of particles are represented regardless of shape, in 

terms of the ‘equivalent diameter size’ of a spherical particle which is 
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expected to behave similarly to the irregular shaped particle, under the exact 

same condition of analysis used for the measurement. 

In general, particle size measuring techniques can be categorised into 

counters, fractionation methods and macroscopic fitting method [45]. These 

methods involve measuring certain properties of the particulate medium and 

deriving a PSD graph therefrom using appropriate mathematical theories. 

Relevant theories are known and defined in the ISO Standards [46]. The 

counters and fractionation methods are quantitative and direct measurement 

techniques while the macroscopic fitting method is qualitative and indirect. 

Common techniques for particle size analysis are: sieve and hydrolysis 

analysis, microscopic image analysis, laser diffraction, dynamic light 

scattering principle and ultrasonic spectroscopy [47] [48] [49]. Before 

carrying out a particle size analysis, it must be ensured that the analysis 

technique has an appropriate size detectability range. Also, the size of the 

particulate sample taken must be understood to be a satisfactory 

representation of the bulk medium and adequate for the derivation of a 

normal distribution. Sampling factors must also be given due attention so as 

to allow for a collection and retention of qualitative information contained in 

the samples.  

2.3.1 Representation of Particle Size Distribution 

 The result of a particle size distribution may be represented graphically in a 

number of ways. These include: density histogram, cumulative distribution 

curve and a density distribution curve as shown in Figure 8 (a), (b) and (c) 

respectively. The cumulative distribution allows for visual interpretation of 

the percentile regions, while the density distribution allows for a visual 

interpretation of the mean and spread.  

 The x-axis is usually the equivalent size diameter 𝑥𝑖 while the y-axis is the 

frequency density 𝑞𝑖 of the particles that belong to the respective size 

diameter class. This frequency density may be measured in terms of volume, 

mass, length, surface or number. It is very important to clearly state what the 

frequency density represents.  
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Figure 8: (a) A discrete histogram    (b) A cumulative frequency curve   (c) A 

frequency density curve. These figures show three methods of representing 

the result of the particle size distribution measurement of a given sample. 

This is because a change in the frequency quantity parameter may lead to a 

totally different distribution graph for the same particulate sample. The 

cumulative frequency curve offers a measure of the particle diameters which 

correspond to 10 % and 90 % of the cumulative undersize distribution by 

volume [6]. Similarly, the density function curve offers an understanding of 

the nature of the spread, the mean and mean deviation of the distribution. 

2.4 Sludge Sampling in Extreme Environment 

 

In order to generate a three-dimensional map of the sludge characteristics in a 

nuclear storage pond, an important criterion is the collection of an adequate 

quantity of sludge samples for analysis. Unfortunately, this is constrained by 

radiation exposure and access limitations within and around the sludge bed. 

In a practical sense, it could require several years of regular sludge sampling 

and analysis in order to retrieve representative samples. This is because of the 

limited dose of radiation to which field operators may be exposed to within 

any given period, as well as the cost involved in such campaigns.  In doing 

this, it is necessary to keep an adequate record of relevant experimental 

factors, settings and conditions.  
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Such records should include the exact position coordinates from which each 

sample has been retrieved, the sludge property observed for each sample, 

details of the sampling and laboratory analysis method and relevant procedure 

documentations [50] and environmental conditions.  

At any point in time, the sludge property in areas of a sludge bed yet to be 

sampled can be statistically inferred using a variety of methods. With 

observed and inferred data, a 3D map of sludge characteristics can be 

generated at any point in time.  

The procedure of inferring data at non-sampled positions, by efficiently 

analysing data at sampled positions is referred to as spatial extrapolation.  

The resulting 3D characterisation map, being a collation of sampled and 

inferred data, is therefore regarded as an inferred map. The accuracy and 

reliability of such an inferred map is dependent on that of the sampling, 

analysis and spatial extrapolation procedures. 

Therefore, in relying on the data contained on an inferred map, there needs to 

be a measure of the level of confidence. It is expected that the evaluation of 

confidence should require a statistical analysis of the data as well as the 

experimental factors, settings and conditions involved. This therefore 

underscores the relevance of keeping records of inventory and experimental 

logs. Knowledge of the following would also be relevant:  

 The identification of relevant sampling and analysis factors. 

 The influence of sampling and analytical factors on result confidence. 

 The adequacy of the quantity of sludge samples used. 

 The appropriateness of sludge sampling and laboratory analysis techniques 

used.  

 The adequacy of the method of spatial extrapolation used 

Although historical data exists from various attempts at sludge 

characterisation in the past, the non-recording of any relevant experimental 

factor could affect the evaluation of confidence of such data. This may 

therefore diminish its relevance for decision making. However, an 



47 
 

investigation of all major experimental factors, to quantify their influence on 

confidence will be of essence going forward. 

2.4.1 Experimental Factors Involved in Sludge Sampling 

a) The Number of Sampled Locations 

A sampled location refers to any sub-division of the top surface area of a 

sludge bed. The top surface of a sludge bed can be sub-divided into pixels 

(as shown in Figure 9). The total number of sampled locations per total 

number of pixels is referred to as the ‘sampling intensity’. 

 

Figure 9: (a) 8 sampled locations (0.04 % Sampling Intensity)    (b) 200 

sampled locations (1 % sampling Intensity). These pictures illustrate a two 

dimensional plan view of a sludge bed. The different colours indicate the 

class to which the average particle size found in the different regions belong. 

 

The desirable size of a pixel is the surface area of the sludge which the 

particular sampling device being used can retrieve from any given 

position. However, this high resolution may not be feasible as it could lead 

to challenges in data processing. However, compared to the relative size of 

a sludge bed, the number of pixels can be increased considerably. For 

example, in a 100 m × 50 m sludge bed, to restrict the number of sampled 

and non-sampled locations to 20,000, a pixel size of 0.5 m × 0.5 m is 

required. Although this pixel size is significantly large compared to the 

size of a sludge sample surface area, it improves the manageability of the 

data being processed.    

 

A pixel  (a)  (b)  
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The ideal number of sampled locations that is required in order to achieve 

sample representativeness is typically calculated using Equation (1) [32].  

                              

𝑛 =
(𝑧𝛼
2

2) (𝑠2 )

( 𝑅2 )( 𝑥̅2)
 

(1) 

 

This calculation relies on the following parameters: the desired level of 

risk 𝑅, the desired level of significance 𝛼, the estimated standard deviation 

𝑠 and mean value 𝑥̅ of the data across the population. Where 𝑧 is the z-

score.  

In a study [51] to determine the effect of sampling intensity on the overall 

accuracy of landscape classification mapping, it was observed that an 

increase in sampling intensity from 10 % to 90 % resulted in an 

improvement in map accuracy from 59% to 67 %. It is important to note 

that increasing sampling intensity does not proportionally lead to an 

increase in the accuracy of results. While an early increase in sampling 

intensity may cause accuracy to increase significantly, depending on the 

heterogeneity of a population, there is a critical value (of sampling 

intensity) above which further increase would only cause accuracy to 

steadily approach 100 %. 

In hazardous environments however, achieving a sampling intensity above 

0.04 % as seen in Figure 9(a) may pose significant challenges. By 

implication, the recommended value of 𝑛 in Equation (1) may not always 

be realisable without some form of automation. It is therefore important to 

determine the influence of the number of sampled locations (or sampling 

intensity) on the confidence in characterisation maps generated. 

b) The Sampling Strategy 

The strategy for selecting the locations that are to be sampled is referred to 

as the sampling strategy. The three major sampling strategies often 

considered are: simple random sampling, systematic random sampling and 
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stratified random sampling [52]. The merits and demerits of these 

strategies have been discussed by a number of authors [53, 54].  

For example, simple random sampling is considered a less challenging 

approach compared to the systematic and stratified random sampling 

methods. This is because unlike simple random sampling, the stratified 

random and systematic sampling methods require a predetermination of 

the specific locations to be sampled. Simple random sampling could in 

some cases lead to under-sampling in instances where the heterogeneity of 

the population is significantly high. 

For this reason, the systematic sampling method may be introduced. This 

method requires that sampling locations are predetermined and are evenly 

spread out and with precisely equal spacing. This method is expected to 

enable a more representative sampling, the disadvantage in this however, 

is that it may consistently miss out on sludge properties that occur at 

regular intervals.   

Hence, a combination of the simple random and systematic sampling 

methods is the stratified sampling method. This allows a predetermination 

of grids within which samples will be collected. Such grids are uniform 

and evenly spread-out. However, the choice of a sampling location within 

each grid is completely random. 

The number of the grids and their dimension may be determined based on 

the number of locations to be sampled and the dimension of the sludge 

bed. The aim is to achieve grids of equal dimensions and shapes, unless 

where for historical reasons the grid distribution has to be biased to allow 

for a more detailed investigation.  

For a sludge bed of dimensions 100 m × 50 m, in order to achieve a square 

grid, the number of grids must only be to the powers of 2. Hence, the 

number of grids required is 2𝛷. Where Φ is any integer which belongs to 

the set {0, 1, 2, 3 …, log2 𝑛} and ‘n’ is the number of locations to be 

sampled. The basic implication of this method is that a number of grids 

can be any integer from 1 to n but in squares of 2.   
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The dimension of the chosen grid is given by (
𝑎

𝑟
,
𝑏

𝑠
) where (𝑎, 𝑏) is the 

dimension of the sludge bed. 𝑟 and 𝑠 are any two numbers which multiply 

to give the number of grids to be produced.  

Regardless of the sampling strategy adopted, it is important to ensure a 

high precision underwater positioning system for the sampling devices 

used. A global positioning system (GPS) is recommended [55] for 

reliability and improved data quality. 

In hazardous environments however, the implementation of the theoretical 

sampling strategies discussed is usually affected by access limitations. In 

most cases, it is only possible to collect sludge samples from the 

surrounding areas of the sludge bed. It is therefore important to fully 

understand the impact of variations in sampling strategies on result 

variability. 

c) The Bias of the Sampling Device 

The objective of sludge characterisation will be defeated if the device used 

in collecting samples alters the physical or chemical state of the collected 

samples. The type of sampling device used may be considered to be the 

most critical factor [56].  

A sampling device is used in penetrating the sludge bed, entrapping and 

retaining an adequate volume of representative sludge samples for 

analysis. This requires understanding the limitations and peculiarities of 

different sampling devices.  

A sampling device may introduce bias into the sampling process if it filters 

the samples based on properties such as particle size, rheological 

properties or morphology [57]. For instance, it was reported [32] that the 

use of a grab sampler as in the case of Figure 10 may fail if large particles 

attempt to prevent the grab from closing, leading to loss of some amount 

of smaller particles during transit.  
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Figure 10: A Grab Sampler [22] 

The grab sampler is a type of sampling device which can be used to collect 

sludge samples from the surface of a sludge bed. 

Hence, the collection bias is an important factor to be considered when 

choosing a suitable sampling device [58]. Consideration may also be given 

to the resistance to breakage and the holding capacity [59] of the device. 

The minimisation of sludge disturbance to the entire sludge population is 

also an important consideration [60].  

Due to the heterogeneity of a typical sludge population analysis [57], there 

cannot be any one sampling device that satisfies all sludge conditions. 

There is therefore the possibility of a chosen sampler to exhibit bias 

towards certain elements of the population. In a 2014 report on sampling 

device validation, the National Nuclear Laboratory (NNL), UK determined 

the applicability of a number of sampling devices to depth and particle size 

types. Due to the confidentiality of that report, reference will not be made 

to it. However, a 1991 document [61] by the New York State Department 

of Environmental Conservation provides guidelines for choosing sampling 

devices. Table 1 is a summary of the guideline. 
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Table 1: Sampling devices and their applicability to sludge 

Sampling Device Applicability 

Scoop/Spade/Trowel Surface or near surface sampling. 

 

Trier Sampling of sticky or moist samples. 

Could reach depths below 15 feet. 

Thief Sampler Sampling of dry powdered material. 

Hand Auger Sampling at different depths. 

Sludge Getter Grab 

Sampler 

Penetration into a desired depth of a viscous 

sludge material. 

Ponar Grab Suitable for most types of sludge but cannot 

penetrate below several centimetres. 

Dipper or Pond Sampler Sampling surface water. 

 

d) Penetration Depth of the Sampling Device (in 3D 

Characterisation Mapping) 

The syringe sampler and scoop sampler are examples of sampling devices 

that can be used for shallow sludge bed sampling. A sludge core sampler is 

however appropriate for sampling at different depths below surface.  

The depth from which a sampling device can collect sludge samples is very 

important in 3D characterisation mapping. For this reason, a multi-level 

adaptation of the bottle-on-pole sludge sampler was designed [62] with a 

capacity to collect samples at two or more vertical levels. Similarly, the use 

of a core sampler was proffered [63] for a study that sought to understand 

the vertical distribution of a particular biological organism.  

Unless the data being monitored is known to be a function of depth, in 

which case a 2D data acquisition and processing is appropriate, a 3D 

sampling should be implemented [64, 65]. This involves the labelling of 

sludge samples with reference to their sourced positions (x-, y- and z- 

coordinates). The vertical resolution should be given due consideration [66]. 

It is however dependent on the design of the sampling device used. 
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2.5 Particle Size Analysis: The Influence of Experimental Factors  

 

The PSD property of the sludge provides a measure of what the expected 

behaviour of sludge will be during transportation, treatment and disposal 

processes [9]. This information has been identified [40] as an important 

decision making factor in the planning and execution of the clean-up project. 

For example, in research [67] to assess the stabilisation process within a 

sewage sludge landfill, the authors observed an over 400% increase in the 

median particle size from 37 micrometres on the first day to 143 micrometres 

after the 300 days. This suggested the rate of stabilisation which had taken 

place. Similar examples that have identified the importance of PSD to sludge 

management and disposal exist in the study of the effect of anaerobic 

digestion [68] and water treatment systems [36]. With regards to the design of 

efficient transportation systems for radioactive sludge, Luckham and Ukeje 

[69] have observed that the viscosity in a given dispersion medium is 

influenced by the PSD. In that study, it was observed that the narrower the 

particle size distribution, the higher is the relative viscosity.  

There are a number of techniques for measuring PSD ranging from the 

coulter-counter method and sieve analysis method to more technologically 

advanced methods like the Laser Diffraction Method (LDM) [68] and 

Ultrasonic Spectroscopy [70], each having its merits and limitations.  

Other PSD measurement techniques include: microscopy and image analysis, 

electrozone sensing and light scattering [71]. Most techniques operate by 

taking direct measurement [45] of a certain property of the sample, and then 

use such measurements to mathematically deduce the PSD data. Accordingly, 

each technique could yield a different PSD result from any other technique 

[72]. Similarly, adopting different experimental procedures and laboratory 

conditions could give a different result. Hence, Kane [72] and Jones [73] 

recommend the elimination of variable operator discretion. They propose the 



54 
 

introduction of an adequate standard of procedure (SOP) and the use of 

consistent and correct parameters for data interpretation. 

 

2.5.1 The Principle of Laser Diffraction Method 

Laser Diffraction Method (LDM) is an indirect technique for particle size 

characterisation. It is based on the principle of light diffraction. There are four 

events that occur when light waves come in contact with an obstacle. These 

are: reflection, refraction, absorption and diffraction [49].  

 

 Hence, because diffraction occurs at the edge as depicted in Figure 11, two 

properties of the diffracted light can be observed at the aftermath of a 

diffraction event. They are the angle of the diffracted wave, and the intensity 

of it. These properties correspond to the diameter of as spherical obstacle or 

the equivalent (spherical) diameter of an obstacle. This is with an assumption 

the assumption that particles are spherical and volumetric [74]. 

 

 

Figure 11: Diffraction occurring at the edge of an opaque spherical particle. 

This picture is a schematic diagram describing the deflection of light when it 

is incident on the edge of a particle.  

 Smaller particles are known to effect wider diffraction angles and lower 

intensities relative to those effects from larger particles [49]. In order to 

measure PSD, light from laser sources are emitted unto a particulate medium. 

Upon interaction with the particles, the light photons tend to scatter at 

different angles based on the wavelength and the size of the particle. With the 

aid of photo-detectors, the diffraction angle as well as the intensity of 

scattered light can be recorded.  Mie scattering theory and the Fraunhofer 

DIFFRACTED 
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Approximation Model [49] provide methods of mathematically interpreting 

these scattering data as particle size distribution data. 

 

Modern LDM based instruments such as the Malvern Mastersizer 3000
TM

 

shown in Figure 12 are flexible, fast and have the capacity to measure size 

diameters between 2 µm and 2000 µm [49, 75, 76]. They are therefore 

commercially employed across industries.  

 

 

Figure 12: Malvern Mastersizer 3000 [49] used for analysing the particle size 

distribution of a given sludge sample. It is a laboratory based instrument 

which works on the principle of laser diffraction. 

 

2.5.2 Alternative PSD measurement techniques 

 

a. Ultrasonic spectroscopy 

Ultrasonic spectroscopy involves the transmission and reflection of 

ultrasound within a medium for the detection of particulate obstacles of 

various sizes contained within. In transmitting ultrasonic waves, a number 

of its properties may be altered by certain characteristics of the particulate 

medium. The velocity and attenuation of sound waves are usually affected 

by the number of particulate obstacles within the medium. The frequency 

of the sound wave however determines what size of an obstacle will have a 
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significant effect on the wave propagation. By decreasing the frequency, 

larger sized particles can be detected.  

Therefore, by varying the frequency from very high to very low, the 

presence of sample sizes may be observed. The amount of velocity or 

attenuation occurring at various frequencies will be mathematically 

interpreted into particle quantity associated with the respective size class. 

In implementing particle size analysis using ultrasonic spectroscopy, a 

wide frequency (f) range allows for the detection of a wide particle size 

range. The ability to gradually vary this frequency will also improve data 

resolution. 

 

c = f λ 

 

        (2) 

 

In summary, ultrasonic spectroscopy requires the development of an 

Ultrasonic Velocity Spectrum (UVS) or an Ultrasonic Attenuation 

Spectrum (UAS) which is more widely used [47]. Ultrasonic spectroscopy 

does not require sample conditioning; it is not destructive and may be 

designed to be non-intrusive [45].  

Another feature of ultrasonic spectroscopy is its suitability for optically 

opaque systems [77] [78] as well as its non-dependence on the electrical 

properties of samples [79] [80].  

Therefore this technique is able to overcome the problem of opacity of a 

particulate medium [81] which may influence the performance of other 

macroscopic but optical techniques. Chapter 7 contains a detailed 

discussion on the procedure for implementing ultrasonic spectroscopy for 

PSD measurement. 

Alba et al. [77] even found ultrasonic spectroscopy to be suitable for 

volume concentrations ranging from 0.5 to 50%. It can however be argued 

that concentrations below 2.6% could lead to invalid results as observed by 

Inam et al. [82]. Notwithstanding, it has been reported that some systems 

become unstable upon dilution [77], while in some other cases, it is desired 
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to maintain a sample in its original state while being analysed. Ultrasonic 

spectroscopy therefore becomes a technique of choice. 

Furthermore, ultrasonic spectroscopy can be used to measure particle sizes 

in the range of 10 nanometres to 1 millimetre [78] [77]. In addition to 

particle sizes, information about the compressibility and dispersion state of 

the samples can be obtained from ultrasonic spectroscopy data [78].  

For example, Hu et al. [83] considered the role of an accurate PSD 

determination on the optimisation of combustion efficiency. To test this, a 

continuous in-line PSD measurement was conducted on glass beads using 

a peak detection technique algorithm to analyse the impact of the sample 

solution on acoustic emissions. Similarly, Pierre et al. [84] conducted an 

experiment involving the transmission of ultrasonic signals of frequency 

range 60 to 600 kHz through foam bubbles. In this experiment, the 

ultrasonic attenuation and velocity data was found to be sensitive to the 

sizes of foam bubbles.  

Notwithstanding the numerous merits of ultrasonic spectroscopy, the 

impact of fluctuating temperature on the measurement of acoustic 

attenuation has been noted. It has been argued that temperature affects 

material properties of particulate media thus influencing acoustic 

behaviour within them [85].  

This is however not found to be the case with the measurement of sample 

concentration [86]. This is because of the adoption of a multi-distance 

measurement and low frequency technique. Unlike in the measurement of 

sample concentration, PSD measurement involves high level frequencies. 

For this reason, it is recommended to measure and seek to limit 

temperature variation to not more than 2 degrees Celsius for any 

meaningful result [87].  

b. Sieve analysis 

Sieve analysis is one of the traditional methods of particle size analysis. It 

involves the use of sieves stacked in order of decreasing mesh sizes. The 

representative sample is first placed on the top mesh and allowed to filter 
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through to the bottom. If a particle has a diameter size smaller than the 

mesh size, it filters through to the next smaller size. To ensure that the 

sieving process is complete, the samples are vibrated mechanically or 

using sonic methods [48]. The samples collected by the various meshes are 

then weighed and recorded against their diameter size class. If there is a 

significant difference between the sum of the overall weights recorded and 

that of the initial sample, the experiment is repeated. According to [88] a 

difference below 1% is acceptable. The challenge with this method of 

analysis is that the chance of a particle of a given size filtering down does 

not depend solely on its physical diameter but also on its physical shape 

and orientation as well as its chances of encountering the mesh openings. 

c. Dynamic light scattering 

Taking advantage of the concept of Brownian motion, where small 

particles in a medium are understood to engage in constantly random 

motion, measuring the random changes in intensity of light scattered 

through such a medium gives an insight into the inherent particle sizes. 

The dynamic light scattering principle, sometimes called the quasi-elastic 

light scattering [89] or photon correlation spectroscopy [90] therefore 

requires a laser source and one or two very fast photon detectors 

positioned at a known scattering angle, usually 90 degrees (right angle) or 

173 degrees (back angle) [49]. As the detector records the fluctuating 

intensity of scattered light and transmits this data to a digital processing 

device known as the correlator [49] for analysis of the delay time and 

diffusion constant obtained, the Stokes-Einstein relationship is employed 

to produce a particle size distribution. This technique is appropriate for 

detection of particle sizes which are below 1 nm [89]. For a wider range, 

more photo detectors positioned at different angles are required. 

d. Microscopy and image analysis 

Microscopy and image analysis is seen to be a primary technique for 

particle size characterisation [49].This is because it allows for a direct 

observation and measurement of the particle shapes and size. The need to 

expand the capacity of this technique, from the regime of manually 
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inspecting each sample, to an automated system of analysing much more 

samples has led to the development of a dynamic image analyser or static 

image analyser where the samples are directed to flow past the cameras or 

are made to slide onto an automated stage past the camera, respectively. 

The underlying principle however remains the same. Particles are placed 

in the measurement chamber, very high resolution images are captured 

with the aid of digital cameras. This image taken is processed through an 

image analysis software such as ImageJ and Image-Pro plus [91] to 

distinguish between particles and background and to measure shapes and 

sizes of particles observed. 

2.5.3 Recent Development in Particle Size Analysis 

There have been efforts towards improving the data processing 

methodologies involved in the measurement of particle size as well as the 

introduction of new analytical techniques for particle size measurements. 

Amongst such methodologies include; the proposal for the use of an analogue 

computer in processing real time sample images for analysis of particles [92]. 

There are also proposals for the use of electronic principles similar to the 

coulter counters, for volumetric particle size analysis [93], and for the use of 

magnetic properties to predict corresponding particle sizes [94].  

There is a proposal for the use of an image analysis method for water 

treatment applications [95] and a hardware modification to the image analysis 

technique. This modification involves introducing the concept of multi-flash 

imaging to enhance image segmentation and consequently, to enhance the 

computer vision [96]. Other emerging technologies include real-time 

reflection terahertz time-domain spectroscopy [97], computer synthesized 

holography [98], use of resonant vibration data [99] and electrostatic charge 

distribution analysis [100]. 

Of particular interest is the focused beam reflectance method (FBRM) which 

is fast becoming a popular technique for in-situ particle analysis [101]. This is 

especially so as the FBRM, just like the ultrasonic spectroscopy technique, 

does not require a very low sample concentration [102]. In an application to 

radioactive slurry analysis, Daymo et al. [103]  noted the capacity technique 
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to monitor PSD changes at sample concentrations up to 35 vol %. In the 

FBRM technique, the chord length distribution (CLD) of a sample is 

measured and mathematically converted to a corresponding particle size 

distribution (PSD) using established mathematical models [104].  

A chord length, being the distance from one edge of a particle to another, is 

obtained by focusing a laser beam, through a sapphire window on sample. By 

rotating at a fixed velocity, the focused beam scans across each particle as 

they flow across. The time between the commencement of laser 

backscattering at one edge of a particle and its completion at an opposite edge 

of the same particle is used to determine the chord length [104].  

Although particles are likely to be in motion during this event, De Clarcq 

[105] opines that the motion of the particles is not significant owing to the 8.4 

mm scan diameter of an FBRM probe. The FBRM method has been 

investigated in a number of studies [106] [107] [108]. In one of these studies 

[108], it was reported that the position of the focal point of the probe also 

does have an effect on the result.  

It is noteworthy that while the CLD data is a sufficient end result in some 

applications [109], in others, the need to convert CLD to PSD brings up the 

issues of uncertainty relating to the presumption of particle shapes. To 

support the analysis of non-spherical particles, Wilkinson and Li [102] 

proposed a modification in the mathematical model used for CLD-PSD 

translation. A non-negative least squares method was recommended as 

against the Least squares or Constrained Least Squares method. This was 

experimentally validated [110] and observed to have been successful.  

In a separate investigation, with regards to waste water treatment applications 

[105], it was observed that FBRM agrees with image analysis and laser 

diffraction on number-weighted mean diameters above 150 microns, but 

records inflated data for below 150 microns. A major problem with FBRM, 

and perhaps any other technique that may be considered for in-situ 

application is that of fine particles loitering around the probe window thus 

resulting in a PSD with a false high particle count at small sizes. 
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2.5.4 Comparative Analysis of some PSD Measurement Techniques 

Table 2 provides a comparative analysis in summary of some of the techniques available for PSD measurement.  

Table 2: Comparative analysis of some PSD measurement techniques 

Techniques Applications Advantages Limitations 

Image Analysis 

& Microscopy 

Applied in pharmaceuticals for quality 

control for particles below 150 microns 

[111]. 

It provides absolute information 

about the particles 

1. Time consuming [111] 

2. Counting and Sizing is 

subject to human judgment 

[111]. 

Laser 

Diffraction 

Method 

Applied in Pharmaceuticals [112] and soil 

science [113]. Modern instruments can 

analysis sizes between 2 microns and 2000 

microns [76] 

Useful for bulk analysis and 

improved accuracy. 

1. Requires sample preparation 

2. Requires Optical parameters. 

Sieving 

Analysis 
Applied in pharmaceuticals [112] It is the simplest method [112]. It is an offline approach 

Ultrasonic 

Spectroscopy 

Applicable to extremely high particle 

concentrations [114]. 

1. This technique is applicable to as 

high as 20% sample concentration 

[114].2. It does not require 

extensive sample preparation 

It requires thermodynamic and 

mechanical parameters. 
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Remarks 

In summary, the laser diffraction method (LDM), an indirect and laboratory 

based method of particle size measurement has been undergoing development 

over the years into a commercially reliable solution. This is because of the 

need for an online or in-situ measurement solution. Considering that LDM 

technique requires the samples to be conditioned before analysis, Ultrasonic 

spectroscopy is considered a viable option. Although relatively new, this 

technique has been observed to have certain limitations which have affected 

its wide applicability.  

This study seeks to understand the sensitivity of the commercially deployed 

LDM method, especially as it involves a theoretical assumption that particles 

are spherical in shape [115]. This assumption in itself introduces some degree 

of uncertainty to the results derived. It has become important to understand 

how different choices made in the course of implementing the LDM method 

contribute to the level of variation or confidence in results.  

A number of qualitative analyses conducted with a view to optimise 

measurement conditions have suggested that there is an influence by 

experimental factors and conditions on the reliability or otherwise of the 

various methods for measuring PSD [42, 116].  

Nonetheless, there is the need to conduct a quantitative analysis of the 

influence on the data quality of measurements [43]. This will enable an 

experimental determination of appropriate conditions and settings required to 

yield a desired level of precision (as recommended by the British standard 

[6]). Therefore, the aim of this study is to identify and evaluate the 

contribution of relevant experimental factors to result variation and 

confidence.   

Furthermore, in line with efforts to advance in-situ analysis, the identified 

limitations of ultrasonic spectroscopy will be discussed and investigated 

using bench-top experiments and computer simulations as described in 

Chapter 7. 
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2.5.5 Experimental Factors involved in LDM 

 

The susceptibility of most analytical techniques to procedural and technical 

errors is dependent on their principle of operation, thus making it important to 

investigate the analytical uncertainty related to techniques on an individual 

basis. Most techniques for particle size analysis operate by taking direct 

measurement of certain parameters of the investigated sample, and 

mathematical interpret such observed data into indirectly deduced particle 

size distribution information. The direct data being measured are most often 

not a complete reflection of the particle geometry. This is especially the case 

with automated techniques [117].  

These issues raise concern especially if results are to be harmonised or 

compared. It has become important to understand how different choices made 

in the course of analysis contribute to the uncertainty in results (analytical 

uncertainty). This knowledge is useful in deciding which change in measured 

properties are statistically significant and should be accepted as a true 

occurrence or be ignored. Although a number of researchers have sought to 

identify and qualify the effect of some analytical factors on the uncertainty of 

measurement results, not many have made attempt at quantifying these 

contributions, particularly factors that are procedural in nature such as sample 

preparation or handling.  

One of such studies was conducted by Gu et al. [42] where factors that 

influenced the result of laser scattering method were investigated with a view 

to optimising measurement conditions. Another study was conducted by 

Zhang et al. [118] and although it was also research to investigate the 

influence of experimental factors on the PSD measurements conducted by 

LDM, the difference was that the focus was on experimental factors relating 

to the properties of the sample.  

The British standard [6] places emphasis on the need for an experimental 

determination of appropriate conditions and settings required to yield a 

desired level of precision. It particularly goes on to request that the influence 

of optical model such as refractive index be investigated. More so, Virden 
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[43] holds that the success of analytical techniques depends on a thorough 

and systematic examination of influential factors. The importance of studies 

on influence quantification is further supported by [116] and [7].  

The following experimental factors have been selected for investigation: 

a) Measuring Time 

The duration for any LDM analysis on a sample may vary from one operator 

to another. An increase in measuring time is expected to cause the generation 

of more data about the sample. This will result in an increased data precision 

and reduced variability. Similarly, insufficient measuring times result in 

unrepresentativeness and must be avoided [43].  

However, excessively long measuring times must also be avoided as it will 

reduce the efficiency of the analytical process. Storti and Balsamo [119] in a 

test of laser diffraction technique observed that low strength materials are 

susceptible to errors due to the measuring time. It is important to identify the 

significance of the “measuring time” factor on result variability.  

The two contrasting settings that will be considered under this factor are 10 

seconds and 30 seconds. 

b) Stirrer/Pump Speed 

Before introducing a sample into the measurement chamber, there is the need 

to agitate the samples and keep them unsettled for adequate sample 

dispersion. Sample agitation involves either the use of a stirrer, a pump or 

ultrasonic waves [43]. Agitation of particles especially dense particles helps 

to prevent agglomeration while the pump enables flow alignment [43]. 

Nonetheless, excessive agitation may cause the breaking up of primary 

particles, and should be avoided. 

The speed of the stirrer and the pump has been identified as factors that may 

contribute to variability in results [120, 121]. It is however important to 

investigate the extent to which the “Stirrer/Pump Speed” factor affects result 

variability and confidence. 
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The two settings that will be considered under this factor are 1500 rpm and 

3000 rpm. 

 

c) Dispersion Medium 

Samples must be dispersed in a medium which reduces the possibility of 

agglomeration. Two major dispersants, deionised water and sodium 

hexametaphosphate (SHMP) are usually considered. In a study, Dias [122] 

investigated the effect of using each of these two dispersants. Dias concluded 

that the effect was insignificant.  

However, the argument that SHMP helps to prevent agglomeration of 

particles still arises. Similarly, on the relevance of deionized water, it has 

been suggested [43] that tap water may introduce flocculation of the particles 

in the samples and should be avoided. This underscores the need to quantify 

the contribution of the “dispersion medium” factor on result variability. 

The two contrasting settings that will be considered under this factor are tap 

water and SHMP dispersants. 

d) Sample Concentration 

The volume concentration of particles in the dispersion medium as well as the 

sizes of particles in the medium affect the amount of light that is able to travel 

across to the optical detectors (laser obscuration) [43]. A laser obscuration of 

5 to 25 % is desirable [6] in order to avoid multiple scattering.  

Variations in sample concentration will cause variations in the PSD results 

[123]. Such variations may be as a result of deliberate operators’ decisions 

across experiments or as a result of on-going agglomerate decomposition 

within the same experiment.  

The two contrasting settings that will be considered under this factor are 0.5 

and 4.0 %V concentration of samples in the dispersant. 

 



66 
 

e) Optical Parameters – Refractive Index and Absorption Constant 

A number of studies [124, 121, 125] have shown that in the use of the LDM 

technique for PSD analysis, the optical parameters namely: refractive index 

and absorption coefficient, of the particulate sample and that of the dispersion 

medium are vital to the computational algorithm. They influence the final 

PSD result obtained. In order to reduce variations across experiments, the use 

of generic optimal parameters for unknown sample mixtures has been 

recommended [124]. In this research, the influence of optical parameters is 

investigated. This requires the choice of two contrasting optical parameter 

settings for analysis. 

  

The two contrasting settings that will be considered under this factor are the 

values 0.1 and 1.0 for absorption constant, and 1.52 and 1.9 for refractive 

index. 

 

f) Instrument 

Lastly, the resolution of the measured PSD is dependent on the number of 

detectors in place. With more advancement in the LDM technology, in areas 

such as the sensitivity of the optical detectors and mathematical interpretation 

algorithms, the accuracy of PSD measurements is expected to improve. There 

is therefore the need to investigate the effect of using different models of an 

LDM instrument on the variability of results.  

The two contrasting settings that will be considered under this factor are the 

Malvern
TM

 Mastersizer 3000 and Malvern
TM

 Mastersizer 2000. This is due to 

significant modifications that have taken place in the design of the Malvern
TM

 

Mastersizer Instrument [74] which has made the 3000 model more robust and 

user friendly. 

It should be noted that while individual analytical factors contribute 

individually to measurement uncertainty, in the event of interactions between 

factors such combined effect acting together may likely produce an effect 

greater than their individual sum, as will be observed in Chapter 5. [126].  
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2.6 Remarks 

It has been mentioned in this chapter that an objective of sludge 

characterisation is the generation of a sludge characterisation map. This is a 

map showing the spatial distribution of sludge properties across the bed. This 

map may either be produced as a two-dimensional or a three-dimensional 

map. In order to carry out sludge characterisation however, a sufficient 

quantity of representative sludge samples must be retrieved from across the 

length, width and depth of the sludge bed. An understanding of how to 

determine what quantity may be sufficient is contained in Chapter 4.  

Similarly important is the determination of an appropriate sampling strategy. 

The theoretical advantage and disadvantages of the various sampling strategy 

options have already been discussed. Nonetheless, there is a need to 

understand the influence of such choice on result variation. If the influence is 

observed to be significant, then emphasis will be placed on the need for 

adopting stratified random sampling because of its merits.  

With regards to the choice of sampling device, this research does not seek to 

validate any particular type of device. Such reports already exist and have 

been discussed in this chapter. These reports validate sampling devices based 

on a number of factors. Two of such factors are the penetration depth and the 

bias of the sampling device to particle sizes. Other factors include the bias of 

the device towards samples of a particular density, chemical reactivity and 

rheology.  

However, within the scope of this research, the penetration depth and particle 

size bias will be considered. It has been mentioned that it is a challenge to 

design a sampling device that meets all of the desired requirements. However, 

by evaluating the influence of each of these factors on data quality, a decision 

can be made on which of the existing sludge sampling devices is the most 

appropriate. 

Aside carrying-out sampling, a comprehensive laboratory analysis of sampled 

sludge must thereafter be conducted to obtain sampled data. This research 

identifies seven experimental factors involved in the use of an LDM 

instrument to measure particle size distribution of sludge samples. The LDM 
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is being considered because it is the method widely adopted for ex-situ 

measurement of sludge PSD.   

From the foregoing discussion, Table 3 shows the experimental factors which 

will be assessed for their influence on result variation. 

 

Table 3: The experimental factors to be considered in this research 

Label Description Remark 

Factor A The Number of Sampled Locations 

Experimental 

Factors Related 

to Sludge 

Sampling 

Factor B The Sampling Strategy 

Factor C The Penetration Depth of the Sampling 

Device  

Factor D The Bias of the Sampling Device 

Factor H The Measuring Time 

Experimental 

Factors Related 

to PSD Analysis 

using LDM 

Factor I The Stirrer/Pump Speed 

Factor J The Sample Concentration 

Factor K The Refractive Index of Sample 

Factor L The Absorption Constant of Sample 

Factor M The Dispersion Medium Used 

Factor N The Instrument Model Used 

 

At the end of the PSD analysis of sludge samples, the measured data are fed 

into a spatial extrapolation algorithm in order to infer PSD data at non-

sampled positions of the sludge bed. An understanding of relevant statistical 

tools required to achieve this is contained in Chapter 3. Also contained in 

Chapter 3 and Chapter 5 is the deployment of statistical tools to evaluate the 

influence of experimental factors listed in Table 3. 
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2.7 Conclusion 

A typical sludge characterisation cycle can be allowed to span a sufficiently 

long period of time. This helps to minimise radiation exposure to operators 

while allowing for a significant number of sampled locations. In this long 

period, it may be inevitable to involve various teams of operators at different 

times, with each team introducing unique methods and procedures. Such 

variations in procedure could be expected to introduce variation in map 

results. 

It therefore becomes a challenge to combine historical data with recent data to 

produce one map when adequate records of certain influential factors are not 

maintained. It also makes it difficult to ascertain genuine changes in the 

characteristics of the radioactive sludge when comparing characterisation 

maps produced from historical data with those produced from recent data.  

Attempts have been made at limiting the variations in methods and 

procedures such as the introduction of an international standard on sludge 

sampling [50] and other standards of procedure documentations. Nonetheless, 

with continuous technological advancements, variations in methods and 

procedures over lengthy periods are unavoidable.  

  



70 
 

3 Chapter 3 - Evaluating the Influence of Sampling Factors on 

the Accuracy of Sludge Characterisation Mapping 

 

3.1 Introduction 

 

This chapter seeks to understand and quantify the effect of variations in 

sludge sampling procedures on the variance in the results and their 

contribution to data quality. The factors of interests which have already been 

identified in Chapter 2 are as follows:  

1. The Number of Sampled Locations 

2. The Sampling Strategy 

3. Penetration Depth of the Sampling Device  

4. The Bias of the Sampling Device 

3.2 Spatial Extrapolation and 3D Map Generation 

 

If a population field is completely homogenous in terms of the physical or 

chemical characteristic being measured, then just one sample collected from 

only one location will be sufficient to precisely characterise the entire 

population.  Unfortunately, such a population field, like any other field, must 

be presumed to be heterogeneous as a result of spatial variability until it is 

perfectly characterised by analysing every sample from every location in the 

field. In reality however, it is only practical to collect samples from a few 

selected locations and conduct analysis on these samples. Data for the non-

sampled locations can only be predicted by processing the sampled data using 

an appropriate spatial interpolation/extrapolations algorithm. The success of 

the data prediction algorithm translates to a reduced spatial uncertainty and 

improved characterisation accuracy for the population.  

The concept of spatial extrapolation is common to 1D and 2D analysis. In 

environmental applications, particularly in sub-surface monitoring, 2.5D 

(pseudo-3D) or 3D analyses are necessary to include a representation of the 
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vertical spatial variability as recognised by French [127]. Contreras et al. [66] 

in estimating the spatial continuity and lateral extent of lithology and flow 

units penetrated by wells used 3D stack data. The 3D spatial distribution had 

a vertical resolution that was relative to well logs and 3D data available. 

Similarly, Heaney [65] in an assessment of the levels of ambient noise in 

regional waters, considered a 3D modelling approach to estimate the overall 

impact of man-made sounds underwater. Although a 3D extrapolation 

introduces further complications in the extrapolation algorithm, there have 

been some efforts to reduce such complexities. One such effort was reported 

by Mousa et al. [128]where an improvement on an existing algorithm reduced 

iterations by 98 %.  

3.2.1 Methods of Spatial Extrapolation 

There are two major approaches to spatial extrapolation; geostatistical and 

deterministic approach. The deterministic approach is similar to a basic linear 

regression model as it involves a predetermined assumption of the statistical 

spread of sampled data, structure of population variance and the 

autocorrelation amongst population data [129]. Miller et al. [129] remarks 

that these assumptions are not easily applicable to ecological analysis and 

thus, an approach that seeks to ignore the independence among observed data 

may not be an entirely appropriate. There have been a few modifications to 

the approach thereby accommodating a non-linear spread of data. Triangular 

Delaunay Algorithm (TDA) method is an example of a deterministic 

approach. In the TDA method, prediction of data at a non-sampled location is 

made by taking the proportionate contribution of sampled data from the 

nearest sampled location or from a set of nearest surrounding points weighted 

by their distance [130]. 

Geostatistical approach on the other hand is considered most suitable for 

populations where spatial dependence is suspected [131]. It employs spatial 

statistics tools, For instance, Ordinary Kriging Algorithm (OKA) method, an 

example of geostatistical approach, employs an autocorrelation tool to guide 

predictions [132]. A variogram model is first developed from a statistical 

analysis (variance and co-variance tests) of all the sampled data and locations. 

This provides the prediction algorithm with qualitative information about the 
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spatial correlation between sampled data [133] in the form of sill, range and 

nugget values.  

The predictions at non-sampled locations are then made using a weighted 

average of all statistically relevant sampled data locations. Two studies [134, 

135] provide an extensive description of the Kriging method. It must be 

stressed however, that the validity of information from a variogram is 

dependent on the adequacy of number and spread of sampled locations in 

relation to the degree of heterogeneity in that population. Also, sensitivity 

analyses conducted in [66] indicated that the predicted results were slightly 

conditioned by the choice of variogram model used. 

Therefore, geostatistical approach is not necessarily the best approach for all 

ecological monitoring campaign. Bolstad et al. [136] in a comparative study 

on the accuracy of four extrapolation methods in predicting forest vegetation 

patterns observed that linear regression models were more accurate than the 

geostatistical approach and thus concluded that the nature of spatial 

dependence in the population, being not wide spread, would only be captured 

by dense sampling. Bohling [137] however remarks that an improvement in 

sampling density, while maintain uniformity of spread, will be beneficial to 

all types of algorithms.  

Furthermore, he opines that except in the event of an uneven spread of 

sampling points, all algorithms are fairly similar in accuracy, thus defeating 

the need to undertake a complicated matrix inversion operation where an 

easier alternative is available. Discussing the relevance of Kriging in the 

event of sample clustering, [138] agrees that although Kriging is certainly 

more time-consuming, its dependence on statistical distance as against 

geometric distance allows for improved data prediction. It is therefore 

advisable to quantify the spatial uncertainties associated with any chosen 

extrapolation algorithm [129]. 
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3.3 Materials  

The initial study of the experimental factors related to sludge sampling was 

based on a representative simulated sludge bed. The model which was 

designed with the aid of MATLAB is a sludge bed having dimensions 100 m 

× 50 m × 5 m. This nominal size is representative of a pond on the Sellafield 

site.  

 

This sludge bed was uniformly sub-divided into 200,000 voxels, which are 

cubic pixels, each having sides of length 0.5 m, with each voxel assigned a 

specific PSD class value ranging from 1 to 6, with each class representing a 

range of particle sizes. The reason for this was to section the sludge bed into a 

population of 200,000 locations with a predefined PSD characteristic for each 

location.  

 

By doing this, the simulation defines a sampling location as a voxel of 

dimension 0.5 m × 0.5 m × 0.5 m. This volume is significantly greater than 

what a typical sludge sampling device can retrieve from one location. 

Therefore, this simulation adopts the assumption that the PSD within a 0.5 m 

× 0.5 m × 0.5 m voxel is homogenous. 

 

The diameter of particles typically found in sludge samples can be as high as 

15,000 µm. However, the range 10 to 1,500 µm used in the sludge bed model 

reflects the particle sizes that a common industrial technique for particle size 

analysis, e.g. Laser Diffraction Method (LDM), can be used to detect [76]. 

For this reason, samples are first sieved to filter out sizes that are outside of 

this range.  Therefore, the modelling and simulation of PSD characteristics of 

the sludge bed is based on an assumption that the sludge samples contain only 

particles within the size range 10 µm to 1,500 µm. 

 

For the purpose of this analysis, the range of particle sizes is segmented into 

six PSD class values using the following classification for the mean particle 

size of any sample: Class 1 (0 – 150 µm), Class 2 (150 – 250 µm), Class 3 
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(250 – 450 µm), Class 4 (450 – 700 µm), Class 5 (700 – 1000 µm) and Class 

6 (1000 – 1500 µm). This size classification is as shown in Figure 13. 

 

 

Figure 13: PSD classification used for the sludge bed models. This figure 

shows that in the sludge bed model used in this study, the mean particle size 

at any given location ranges up to 1500 micrometres.  

 

The choice of size range, size classes and the number of classes can be 

modified to model any sludge bed model and should not be restricted to the 

choice of this research. In essence, such classifications should be designed to 

suit the purpose for which the sludge characterisation is needed. If the entire 

range of particle sizes can be approximated as belonging to a single class, 

then it may be said that the pond is simply homogeneous. Alternatively, if the 

purpose for which the results are to be applied is sensitive to PSD sizes, then 

the population may have to be put into several small classes. The more the 

classes, the more heterogeneous the population appears to be.   

The spatial distribution of the various PSD classes in a sludge bed can be 

influenced by either natural or man-made activities. Examples of natural 

activities of influence include underwater current, rainfall and wind as these 

affect the movement of waste into and around the storage pond. Similarly, 
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human-made activities of influence include the deliberate deposit of certain 

waste materials in large quantities at specific locations of the pond. 

The dominance of natural or human-made activities of influence will result in 

either of two scenarios. In the first scenario, the PSD map will exhibit 

continuity at inter-class borders (spatial autocorrelation). By implication, the 

transition of sludge characteristics from one PSD class to another across 

borders will be gradual. This is evidenced in a number of reported studies 

[139] [140]. In one of the studies [140] for example, the regional pattern of 

the mean particle size of sea-floor samples was used to infer the speed of 

bottom-current.  

In the second scenario, the PSD map will be characterized by immediate 

transitions across inter-class borders [141]. This scenario may be considered 

as the worst-case scenario as there could be no predictable pattern in the 

spatial distribution of PSD across the map.  

In modelling a heterogeneous PSD topography of the 3D sludge bed, there are 

four possible spatial configurations. These configurations depend on the 

presence or absence of Spatial Auto-Correlation (SAC) of PSD along the 

horizontal or vertical direction. 𝑯𝑺𝑨𝑪 and 𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  represent the presence and 

absence of Horizontal Spatial Auto-Correlation respectively while 𝑽𝑺𝑨𝑪 and 

𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  represent the presence and absence of Vertical Spatial Auto-

Correlation in the PSD topography.  

The sludge bed is produced by developing a three dimensional matrix of size 

200 × 100 × 10 to represent the 100 m × 50 m × 5 m size of a nominal sludge 

bed. By implication, each element in the matrix represents the mean particle 

size data of a 2 m × 2 m × 2 m voxel. Each element in the three-dimensional 

matrix is any of 1, 2, 3, 4, 5 or 6. This number corresponds to the mean PSD 

class which is found in that coordinate of the sludge bed. 

The mean PSD class 1 to 6 is shown in Figure 13. It is based on the 

understanding that several numbers of sludge samples can be retrieved from a 

given voxel with each having different mean PSD values. However, the 

distribution of the mean PSD obtainable from within a voxel will follow a 
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normal distribution. This distribution is either classed as PSD class 1, 2, 3, 4, 

5 or 6. 

In modelling a sludge bed therefore, an algorithm was developed (see 

MATLAB code in Appendix B) to randomly generate the overall PSD mean 

for each pixel. This algorithm ensured that any PSD mean falls within the 

range of class values 1 to 6. In allocating PSD mean values (and the 

corresponding PSD class values) to pixels, the algorithm ensured that there 

was either a gradual spatial progression of PSD mean along the horizontal or 

vertical plane, or that the distribution was random. This is what results in the 

presence or absence of spatial autocorrelation in a sludge bed model. 

The four models, Beds 1 to 4 are as shown in Figure 14 (a) to (d) 

respectively. The colours and PSD of each voxel on the maps correspond to 

the colours and their corresponding PSD class (1 to 6) as provided in Figure 

13.  
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Figure 14: Map showing the spatial distribution of the Particle Size 

Distribution (PSD) classes in Sludge Bed Models. These picture shows a three 

dimensional schematic representation of a sludge bed with the different 

colours indicating the various classes to which the mean particle size found in 

a given are belongs to. 

Figure 14 (c) depicts a scenario for Sludge Bed 3 wherein there exists no 

spatial autocorrelation along both the vertical and horizontal cross-section of 

the sludge population. This may be considered the worst-case scenario for a 

heterogeneous PSD topography. Hence, this research places emphasis on 

results concerning Bed 3. The patterns of spatial distribution of PSD classes 

used in the four sludge bed models have not been generated from real-world 

data. 

(a) Bed 1                                     𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪 

  

(b) Bed 2                                  𝑯𝑺𝑨𝑪  𝑽𝑺𝑨𝑪 

 

 (c) Bed 3                                    𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

 (d) Bed 4                                 𝑯𝑺𝑨𝑪 𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

1 2

A 

3 4 5 6 
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It is important to note that even in the absence of spatial autocorrelation, it 

would be noticed that a given number of voxels would fall within the same 

PSD class value. This is because of the broad range of PSD mean values that 

define each PSD class. 

3.4 Experimental Factors Related to Sludge Sampling 

An algorithm was implemented in MATLAB which simulated the process of 

retrieving and analysing the sludge samples. The input to the sampling 

algorithm includes the number of sampled locations (Factor A), the sampling 

strategy (Factor B), the penetration depth (Factor C) and the bias (Factor D) 

of the sampling device. This allows for variations in sampling procedure and 

for observation of the outcome. For each of the factors under investigation, 

two settings are chosen – A high, and a LOW setting as shown in Table 4.  

Table 4: A summary of sampling factors and settings tested in the 2k 

ANOVA 

Factor Description Low Setting High Setting 

A 
Number of 

Sampled Locations 

8 (0.04 % sampling 

intensity) 

200 (1 % 

sampling 

intensity) 

B Sampling Strategy Simple Random 
Stratified 

Random 

C 
Penetration Depth 

of Sampler 
10% of sludge depth 

100% of 

sludge depth 

D 
Particle Size Bias 

of Sampler 

Collects only particles that 

are less than 400 microns 

Collects all 

sizes of 

particle 

 

OTHER FACTORS CONSIDERED 

Sludge bed 

topography 

Bed 1 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶 

Bed 2 

𝐻𝑆𝐴𝐶 𝑉𝑆𝐴𝐶 

Bed 3 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 4 

𝐻𝑆𝐴𝐶 𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

A sample number of eight was chosen as the low setting for Factor A because 

this is a practical setting that is achievable in the real world. While retrieving 

only 8 samples may not yield an accurate characterisation result unlike the 
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high setting 200, it is a more practicable choice in a real hazardous 

environment. This is based on historical sampling campaigns undertaken at 

Sellafield. This pair therefore offers an opportunity to switch from a low to a 

high setting of Factor A and to study the effect that this has on result 

variations and confidence.  

For Factor B, the low and high settings chosen are the ‘simple random’ and 

the ‘stratified random’ sampling strategy. This is based on the merits and 

demerits of both strategies discussed in Chapter 2. 

In regards to the penetration depth of a sampling device, the collection of 

sludge sampling can either be implemented by shallow sampling or by core 

sampling. Hence, the low and high settings for Factor C are chosen to be 10 

% penetration depth and 100 % penetration depth, respectively. By using such 

a low setting, only the sludge population within the top-most voxel (a three-

dimensional pixel) of the bed is available for sampling. The high setting 

however enables the sampling of sludge at various depths of considerable 

intervals of a given sampling location. 

With regards to the bias of the sampling device, the chosen low setting 

represents the use of a device which only has the ability to collect only 

particles that have a diameter less than or equal to 400 µm. This is a low 

setting in the sludge bed model which is designed to contain particles sizes up 

to 1500 µm. The use of a syringe sampler having a nozzle of diameter 4 mm 

in a pond where the maximum particle size is actually 15 mm is a practical 

example of a low setting for Factor D. A high setting which may not be 

practicable is the use of an unbiased fit-for-all-purpose sampling device 

which can collect and retain all the particles in the sampled area. 

 

3.5 Analysis of Simulation Results 

3.5.1 2k Factorial Analysis of Variance (ANOVA) 

To evaluate the effect of the experimental Factors A, B, C and D on 

variations in results, a statistical tool known as the 2𝑘 Factorial Analysis of 

Variance (ANOVA) [36] can be used. This method involves the 
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implementation of a number of unique sampling configurations (also referred 

to as treatments). Each configuration is also further repeated a number of 

times to observe the effect of random errors on result variation.  

A sampling configuration refers to the unique combination of ‘low’ or ‘high’ 

setting of each factor. A list of all unique configurations can be made by 

representing ‘high’ and ‘low’ by digits ‘1’ and ‘0’ respectively. For a set of 

four factors under investigation therefore, there are 16 unique configurations 

listed as 0000 to 1111. Generally, the total number of unique sampling 

configurations for a set of 𝑘 factors is 2𝑘. 

The result of implementing any sampling configuration is observed by 

comparing the characterisation map generated to the model of the sludge bed. 

This result can be further quantified by calculating the accuracy of the 

generated map. This accuracy is obtained using the method of confusion 

matrix [51, 129].  

 

Sub-chapters 3.5.2 to 3.5.6 describe the methods by which the following can 

be achieved: 

- The generation a characterisation map from available sampled data. 

- The estimation of the accuracy of a characterisation map. 

- Statistical evaluation of how experimental factors A, B, C and D influence 

map accuracies. 

 

3.5.2 Spatial Extrapolation Algorithm for Map Generation 

The development of a three-dimensional sludge PSD characterization map 

involves the inference of sludge PSD characteristics at non-sampled positions 

of the sludge bed. To achieve this, spatial extrapolation is performed by 

analysing the PSD measurements collected at each of the sampled positions. 

A general equation [142] for spatial extrapolation is provided by Equation (3) 

.  

 
 

(3) 
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𝑍𝑘 = ∑𝜆𝑗𝑘𝑍𝑗

𝑛

𝑗=1

   

 

Where 𝑍𝑘 is the inferred PSD data at any non-sampled position 𝑘, 𝑍𝑗 is the 

observed PSD data at sampled position 𝑗, 𝑛 is the total number of sampled 

positions available and 𝜆𝑗𝑘 is the weighting factor of the contribution of the 

any measurement from a sampled position 𝑗 to the inferred measurement at a 

non-sampled position 𝑘. 

Two standard methods of calculating the weighting factor, 𝜆𝑗𝑘, are the 

deterministic and the geostatistical methods [131]. An example of a 

deterministic method is the Triangular Delaunay Algorithm (TDA), where 𝜆𝑗𝑘 

is dependent on the proximity of the position j to the position 𝑘 [9]. In this 

method, given a set 𝐽 of all sampled positions 𝑗, let {𝛼, 𝛽, 𝛾}  ⊂  𝐽 be the 

vertices of the nearest triangular enclosure around a non-sampled position 𝑘 

as shown in Figure 15. 

 

Figure 15: Nearest triangular enclosure around a non-sampled position k. 

This figure provides a diagrammatic representation of the method of the 

Triangular Delaunay Algorithm used to infer data at a non-sampled location 

based on the data from the three nearest sampled locations.  

k 

𝞫 γ 

α 
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Equation (4)  [138] provides a method for calculating 𝜆𝑗𝑘. 

 

(

𝜆𝛼𝑘
𝜆𝛽𝑘
𝜆𝛾𝑘

) = (

𝐴𝛽𝛾𝑘
𝐴𝛼𝛾𝑘
𝐴𝛼𝛽𝑘

)/𝐴𝛼𝛽𝛾 
(4) 

 

 

  𝜆𝑗𝑘 = 0, for all 𝑗 ∉  {𝛼, 𝛽, 𝛾} 

Where 𝐴 represents the area of a triangle. For example 𝐴123 refers to the area 

of a triangle with vertices at positions 1, 2 and 3. This can be calculated using 

available mathematical techniques where the position vectors of the three 

vertices are known. 

The Ordinary Kriging Algorithm (OKA) [134] is an example of a 

geostatistical method. In this method, a spatial autocorrelation tool known as 

a variogram is used in the calculation of 𝜆𝑗𝑘 [132]. The variogram is a plot of 

covariance between all possible pairs of sampled data against their proximity. 

An example of a variogram is as shown in Figure 16 [143]. This method is 

considered most suitable for populations where spatial autocorrelation is 

suspected [130]. 

 

Figure 16: An example of a variogram, typically obtained as a line of best fit 

on a scatter diagram of sampled data variance against spatial distance across 

samples.  
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From the variogram, the peak co-variance between sampled data points, 

known as the sill (𝜎𝑜
2) and the distance at which this occurs, known as the 

range (𝑎) are obtained. These are parameters that are known to characterize 

the spatial dependence of the data. Based on the variogram plot observed, a 

suitable variogram model is adopted for estimating the co-variance matrix 

element 𝑣𝑗𝑘 between any two positions 𝑗 and 𝑘. Equations (5) and (6) 

respectively, may then be applied to calculate 𝜆𝑗𝑘  [138]. 

 
𝑣𝑗𝑘 = 𝜎𝑜

2 𝑒−
3
𝑎
|ℎ𝑗𝑘| 

(5) 

 

   

 

(

 
 
 

𝜆1𝑘
⋮
𝜆𝑗𝑘
⋮
𝜆𝑛𝑘
µ𝑘 )

 
 
 
= 

(

 
 
 

𝑣11 ⋯ 𝑣1𝑛 1
⋮ ⋱ ⋮ 1
𝑣𝑗1 𝑣𝑗𝑗 𝑣𝑗𝑛 1

⋮ ⋱ ⋮ 1
𝑣𝑛1 ⋯ 𝑣𝑛𝑛 1
1 ⋯ 1 0)

 
 
 

−1

(

  
 

𝑣1𝑘
⋮
𝑣𝑗𝑘
⋮
𝑣𝑛𝑘
1 )

  
 

 
(6) 

 

 

Where ℎ𝑗𝑘 is the distance between two positions 𝑗 and 𝑘.  

The Triangular Delaunay Algorithm (TDA) and the Ordinary Kriging 

Algorithm (OKA) techniques have been selected to represent the 

deterministic and geostatistical methods respectively. Both techniques are 

compared in order to determine which method is appropriate for the given 

case study. Although it is generally suggested [129, 131] that geostatistical 

methods such as OKA are particularly relevant in the presence of spatial 

autocorrelation.  

However, OKA is dependent on the choice of variogram model used [66]. In 

addition, the suitability of an OKA method to a population which has a 

significant presence of spatial autocorrelation depends on the accuracy of the 

variogram plot. The accuracy of any variogram is also dependent on how 

adequate and representative the collected samples are. The implication of this 

is that while it is generally expected that OKA should produce a more 

accurate spatial extrapolation in the presence of spatial autocorrelation, such 
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performance may be limited by sampling intensity and sampling strategy 

factors.  

Linear regression based methods may even be more accurate [136] in the 

presence of spatial autocorrelation. It is therefore important to compare the 

performance of OKA and TDA in the presence and absence of spatial 

autocorrelation under certain experimental conditions. 

For example, a study [144] compared the performance of four different 

spatial extrapolation methods in a complex terrain different from the expected 

spatially continuous surfaces. It was found that OKA performed poorly due to 

the absence of spatial autocorrelation, while the method involving linear 

regression proved to be more appropriate under this condition.  

However, the use of the OKA technique is common in geological and 

ecological related studies. This is because of the general expectation of the 

existence of spatial autocorrelation. Recent examples of the usage of OKA 

can be found in [145], [146] and [147]. The similarity in these three studies is 

the existence of spatial autocorrelation within the population under study.  

The general expectation is therefore that a method such as the OKA is most 

appropriate in the presence of special autocorrelation. It is similarly expected 

that TDA is most appropriate in the absence of spatial autocorrelation. This 

research is however concerned about the usage of either of this two methods 

for conducing spatial extrapolation on an unknown population where such 

knowledge of the existence of spatial autocorrelation is lacking. By 

determining the significant performance of the TDA in the presence of spatial 

autocorrelation, and comparing that to the performance of OKA in the 

absence of spatial autocorrelation, a suitable choice would be made. 

 

3.5.3 Estimating Map Accuracy using Confusion Matrix 

In modelling and simulation studies, the ground-truth map (𝑇) of the sludge 

bed model is known. Therefore, when an inference map (𝑃) is generated, 

both the inferred and the ground-truth data can be compared to assess the 

performance of both the sampling method and the inference algorithm used. 
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One method of achieving this is by observing the ratio of the number of 

correct inferences made to that of incorrect inferences. This involves the use 

of a confusion matrix [51]. 

A confusion matrix 𝐶𝑀 is a matrix that classifies as either TRUE or FALSE 

the agreement of each voxel on map 𝑃 with its corresponding voxel on map 

𝑇. The accuracy of the map is considered to be equal to the proportion of the 

total number of correct inferences to the total number of inferences made. The 

confusion matrix therefore provides information about the total number of 

inferences that are true or false for each of the classes of PSD. 

Figure 17 gives a basic illustration of how a confusion matrix is obtained. The 

map accuracy as obtained by method of confusion matrix is considered to be 

equal to the proportion of the total number of correct inferences to the total 

number of inferences made. It is calculated using Equation (7). Where 𝑡𝑟 is 

the sum of the diagonals of a given matrix and 𝑐𝑚𝑏,𝑐 refers to an element of 

the confusion matrix 𝐶𝑀 located on row 𝑏 and column 𝑐. 

 
𝑀𝑎𝑝 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

tr(𝐶𝑀)

∑ ∑ 𝑐𝑚𝑏,𝑐𝑏=1𝑐=1
 

(7) 

 

 

GROUND TRUTH MAP INFERRED MAP CONFUSION MATRIX 
 

      

      

      

      

      

      
 

      

      

      

      

      

      

 Inferred 

Red 

Inferred 

Blue 

Inferred 

Yellow 

TOTAL 

Truly 

Red 

5 2 0 7 

Truly 

Blue 

0 9 5 14 

Truly 

Yellow 

5 4 6 15 

TOTAL 10 15 11 36 
 

 

Figure 17: An illustration of a confusion matrix. This figure is an example of 

the application of confusion matrix. The confusion matrix is a statistical 

method of determining the percentage agreement between any two maps. 
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From the illustration shown in Figure 17, the map accuracy is given by: 

𝑀𝑎𝑝 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
5 + 9 + 6

36 
 𝑥 100 % = 55.56 % 

An inference map accuracy of 55.56 % implies that on average, in every 100 

inferences made, approximately 56 of them were correct. 

Understandably, this method of evaluating map accuracy is not feasible in 

real applications where the ground-truth map remains unknown. In such 

situations, alternative methods for assessing the performance are discussed in 

Chapter 4. 

Furthermore, the results of all sampling runs and their corresponding 

sampling configurations can be analysed using statistical tools such as the F-

ratio statistics, P-value, Half-normal plot of effects and the eta squared 

effects. These tools are used in evaluating the influence of each experimental 

factor. They also detect the presence of interactions (interdependence) among 

factors. Factor interactions indicate the interdependencies amongst interacting 

factors. This implies that the influence of one of the interacting factors on 

result variability depends on the set value of the other interacting factors. For 

example, supposing the interaction between Factors B and A (represented as 

BA) is observed to have significant influence on result variability, this would 

imply that the effect of varying either factor A or B may or may not be 

significant enough to cause result variability. The significance would depend 

on the current setting of its interdependent factor. 

 

3.5.4 The F-ratio Statistic and Probability (P) Values 

For each experimental factor, the entire set of results obtained from a 2
k
 

ANOVA experiment can be divided into two equal sets: the ‘group 0’ and 

‘group 1’ sets. ‘Group 0’ is a set of results obtained from all ANOVA 

experiments in which the given experimental factor was set to its LOW 

setting. While the ‘group 1’ is a set of results obtained from all ANOVA 
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experiments in which the given experimental factor was set to its HIGH 

setting.  

Similarly for analysing interactions that exist among µ number of factors, the 

entire set of results obtained from the 2
k
 ANOVA experiment can be divided 

into 2µ equal sets. For example, to analyse the F-ratio of the interaction 

between two experimental factors, ANOVA results will be divided into the 

following groups: ‘group 00’, ‘group 01’, ‘group 10’ and ‘group 11’. 

The F-ratio of any factor or interaction is the ratio of the mean squared error 

between the groups (𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛) to the mean squared error within the groups 

(𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛) [148]. An F-ratio greater than 1 implies that the variation due to a 

change in the settings of that factor is greater than the variation which could 

have occurred by chance. While an F-Ratio value close to or less than 1 

implies that a change in the settings of that factor has no significant influence 

on the variability of the result [149].  

Nonetheless, the significance of any F-ratio needs to be examined. This can 

be achieved by obtaining a Probability (P) value. This represents the 

probability that the F-ratio may be false and misleading, thus an indication of 

the risk of a type I error [150] in which an F-ratio may have occurred by 

chance. It is therefore desirable to have a Probability (P) value to be less than 

0.05, an acceptable risk benchmark corresponding to a 95 % confidence in 

rejecting a null hypothesis. By rejecting a null hypothesis, it can then be held 

that a factor has a significant influence on result variability.  

 

3.5.5 The Half Normal Plot of Effects and Interactions 

Following the completion of an ANOVA, a half normal plot of effect 

provides a graphical indication of the significance of the influence of all the 

factors and interactions on result variation [151, 152]. The construction of a 

half normal plot involves the calculation of the effect of each factor or 

interaction using Equation (8) [153]. The absolute values of the calculated 

effects are then ordered from smallest to largest and are assigned values 𝑖, 

(where 𝑖 =  1, 2, … , 2𝑘–  1). This list is used in obtaining a corresponding list 
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of theoretical half-normal probability 𝑄𝑡ℎ values using Equation (9), also 

known as Blom’s proportions [154, 155]. 

 𝐹𝑎𝑐𝑡𝑜𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 =  𝑌+ − 𝑌− (8) 

 

Where 𝑌+ and 𝑌− denotes the average of the result of “group 1” and “group 0” 

for which the factor takes on a "high" or a “low” setting respectively. In the 

case of factor interactions, there will be more groups as explained in the 

subchapter 3.5.4. 

 
𝑄𝑡ℎ(𝑖) =  0.5 +

𝑖 –  0.055

2(2𝑘–  1) + 1.2
 (9) 

 

The half normal plot of effect is then produced as a scatter plot of the 

magnitudes of these effects against the theoretical probability values. A line 

of best fit can be drawn for low ranking factors and interactions. A number of 

factors and interactions may be observed to deviate from this line. For any 

factor or interaction, the degree of deviation from the drawn line provides a 

qualitative assessment of the influence of such factor or interaction on result 

variation, uncertainty and confidence [156, 157]. 

3.5.6 The Eta-Squared Effects 

The eta-squared effect 𝜂2  is a useful tool for quantifying the actual influence 

of any factor or factor interactions [158]. Similar to the eta squared effect 

value are the partial eta squared effect, the omega squared effect and the 

epsilon squared effect values [158] which have their advantages and 

disadvantages. The eta-squared effect value 𝜂2 is defined by Equation (10). 

Where 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the sum square between groups in factor 𝑖 and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is 

the total of all sum squares in the ANOVA. 

 
𝜂𝑖
2 =

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 (10) 

The eta-squared effect for all influence factors, factor interactions and the 

residual (unexplained) error indicates their proportional contributions to the 

overall uncertainty.  
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3.6 Results and Discussions 

3.6.1 Ordinary Kriging versus Triangular Delaunay Spatial Extrapolation 

Algorithm 

Firstly, in order to select a suitable extrapolation algorithm, the accuracies of 

the inferred maps from both Ordinary Kriging (Kriging) and Triangular 

Delaunay (Nearest) algorithms were compared. An attempt to run the 3D 

Kriging algorithm simulation using up to 100 % depth of penetration or a 

number of samples collected greater than 200 could not yield a timely 

response. Hence, this comparison was made over different bed models (Beds 

1 to 4), and using stratified sampling strategy, 30% depth of sampler’s 

penetration and no particle size bias of sampler as factorial settings while 

varying the number of samples collected from 2 to 200.   

 

Figure 18: Kriging versus Delaunay (nearest) - for Bed 1 

(𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪). In this figure, the sludge bed model has spatial auto-

correlation only along the vertical. This data was obtained by 

simulation. 
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Figure 19: Kriging versus Delaunay (nearest) - for Bed 2 

(𝑯𝑺𝑨𝑪 𝑽𝑺𝑨𝑪). In this figure, the sludge bed model has spatial 

auto-correlation along the horizontal and vertical. This data 

was obtained by simulation. 

 

Figure 20: Kriging versus Delaunay (nearest) - for Bed 3 

(𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅ ). In this figure, the sludge bed model no spatial 

auto-correlation along the horizontal or vertical. This data was 

obtained by simulation.. 
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Figure 21: Kriging versus Delaunay (nearest) - for Bed 4 (𝑯𝑺𝑨𝑪 𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅ ). In 

this figure, the sludge bed model has spatial auto-correlation only along the 

horizontal. This data was obtained by simulation. 

 

Figure 22 shows the result from Bed 3 of TDA prediction accuracy as number 

of sampled locations and depth of penetration increased. 

 

 

Figure 22: Map Accuracy against Number of Sampled Locations and 

Penetration Depth of the Sampling Device for Bed 3. The darker contours 

correspond with regions on the graph where accuracy is low 
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Discussion  

The graphs in Figure 18 to Figure 21  shows the behaviour of OKA and TDA 

(nearest) as spatial auto-correlation (SAC) becomes present or absent either 

along the horizontal or vertical. Figure 18 shows that in Bed 1 (𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶) 

where only vertical SAC exists, TDA is more accurate than OKA when the 

number of sampled locations is below 85 (about 0.4 % sampling intensity). 

With an increase in number of sampled location, OKA can be seen to become 

more accurate than TDA. Figure 21 shows that in the case in Bed 4 

(𝐻𝑆𝐴𝐶 𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅) where only horizontal SAC exists, OKA only performs better 

than TDA when the number of sampled locations is set between 5 and 100.  

Figure 19 and Figure 20 represent the best and worst case scenario of PSD 

topography as represented by Bed 2 (𝐻𝑆𝐴𝐶 𝑉𝑆𝐴𝐶) and Bed 3 (𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅) 

respectively. While Figure 20 shows that OKA works increasingly better than 

TDA for Bed 2 (when SAC exists in along all directions), TDA gives about 

15 % higher map accuracy compared to OKA in Bed 3 (𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅). It can 

therefore be concluded based on the performance of TDA in Bed 3 

(𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅) that in the case of an unknown PSD topography, TDA is the 

more suitable method.  

Furthermore, TDA (nearest) proved to be a faster algorithm as it required an 

average data processing time of 10 seconds while OKA took from 50 seconds 

to 5 minutes data processing time. As sampled data increased even further 

particularly by increasing penetration depth to 30 % of sludge depth, OKA 

became almost non-responsive as it kept running one analysis for over 48 

hours and had to be terminated. This is because the OKA involves matrix 

inversion. The size of the matrix is dependent on the number of sampled data 

available. An attempt to invert very large sized matrixes may result in 

singularity problem, hence the need to adopt the pseudo inverse approach 

which makes the process more time consuming. TDA (nearest) algorithm on 

the other hand involves computational logic and thus, faster. 
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From Figure 22, it can be seen that 3D map inference accuracy increases with 

penetration depth and number of sampled locations. This provides an 

understanding of how both factors interact in order to improve map accuracy. 

 

3.6.2 ANOVA RESULTS: F-Ratio Statistics and P Values 

Figure 23 and Figure 24 show the result of an ANOVA test carried out on 

experimental factors A, B, C and D. The interaction amongst a number of 

factors is represented by a combination of their names. For example, BA 

represents the interaction between Factors B and A. Other examples include 

CBA and DCBA. F and P represent the values obtained for the F-Ratio 

statistics and the Probability values, respectively. These results are also 

depicted in Table A1 (see Appendix A), respectively. 

 

 

Figure 23: Chart Showing F-Ratio Statistics for all factors on all bed models. 

This chart provides the result for the four configurations of sludge bed 

models as represented by the different colours. 
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Figure 24: Chart Showing P-Values for all factors on all bed models. This 

chart provides the result for the four configurations of sludge bed models as 

represented by the different colours. 

Discussion 

The F-Statistic value obtained from an ANOVA test indicates how influential 

a factor is to result variation. Any factor with an F-Statistic value greater than 

1 is understood to have a significant degree of influence. This implies that 

where a factor is known to be of significance, any attempt to change its 

settings from the high to the low or vice versa will cause the entire result to 

vary. On the other hand, the Probability value represents the probability that 

the F-statistic may be false and misleading, thus an indication that the null 

hypothesis is true. Note that the null hypothesis simply says that a factor has 

no significant influence on result variability.  

It is therefore desired for the Probability value to be less than the adopted risk 

factor, usually 0.05 for a 95 % result confidence for one to conveniently set 

aside the null hypothesis. This is achieved by increasing the number of runs 

for each treatment. The result used in this ANOVA test is the TDA (Nearest) 
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map prediction accuracy obtained from all sampling procedure treatments as 

required by ANOVA. 

It can be seen from Figure 23 that the F-ratio statistics of the four main 

factors A, B, C and D are greater than 1 in all of the four sludge bed models. 

This confirms the expectation that the four identified experimental factors 

involved in sludge sampling do contribute to result variability. However, 

Factor A and B having the highest and lowest value, respectively, is an 

indication of the strength of their influence. All the F-ratio statistics recorded 

were satisfactorily valid because their Probability values were below 0.05.  

The presence of factor interactions was also observed. This may be ignored 

where the F-ratio statistics are relatively insignificant compared to the main 

factors. Nonetheless, for strong interactions such as ‘AD’, a further ANOVA 

test involving only Factors A and D may be required before any interpretation 

may be given. In other cases, theoretical explanations are available. For 

example, Factors A and C are both factors which contribute to the overall 

number of sludge samples collected, hence the presence of a strong 

interaction AC is as expected. This is also similarly in the case of Factors C 

and D which are both factors related to the choice of any sampling device.   

3.6.3 Half Normal Plot of Effects 

For a graphical interpretation of the ANOVA results, the Half-Normal Plot of 

effects could be relied on. 

The red dots belong to the four experimental factors (A, B, C and D) and their 

interactions (such as BA, CB, DA, DBA, CBA, DCBA) and represent the 

actual positions of their effects. The straight blue dotted line represents the 

expected half-normal plot of effects when all effects are insignificant. The 

distance of a red dot from the blue straight line therefore indicates the 

significance of such effect [157]. The blue straight line is a line of best fit of 

the ten lowest effect sizes (not seen in the abridged figures) obtained using 

Matlab functions polyfit and polyval. 
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Figure 25: Half normal plot of effects - Bed 1. This is a pictorial 

representation of the ANOVA Results. It indicates how significant a main 

factor or factor interaction is to the variation of the result of an inferred 

map. The result depicted in this figure pertains to sludge bed model 1  

 

Figure 26: Half normal plot of effects - Bed 2. This is a pictorial 

representation of the ANOVA Results. It indicates how significant a main 

factor or factor interaction is to the variation of the result of an inferred 

map. The result depicted in this figure pertains to sludge bed model 2. 
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Figure 27: Half normal plot of effects - Bed 3. This is a pictorial 

representation of the ANOVA Results. It indicates how significant a main 

factor or factor interaction is to the variation of the result of an inferred 

map. The result depicted in this figure pertains to sludge bed model 3. 

 

 

Figure 28: Half normal plot of effects - Bed 4 This is a pictorial 

representation of the ANOVA Results. It indicates how significant a main 

factor or factor interaction is to the variation of the result of an inferred 

map. The result depicted in this figure pertains to sludge bed model 4.  
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Discussion 

The half-normal plots of effect shown in Figure 25 to Figure 28  further 

confirm the relative significance of factors and their interactions on result 

variability. The blue dotted line shows the path which effect sizes ought to 

follow if they were normally distributed. The red dots however represent the 

actual effect sizes observed. Any red dot that deviates from the blue dotted 

line is considered to have significant influence on variability. These plots are 

therefore a pictorial description of the results in the ANOVA. 

It can be seen from the figures that Factors A, C and D showed significant 

deviations from the normal path (represented by the blue dotted line) with 

Factor A being most significant factor for sludge Bed 3. It is clear from the 

figure that Factor B (sampling strategy) appears to be the least significant 

factor for all four sludge bed models. It must be noted that Factor B still 

remains a significant factor of influence, except that its influence is 

overshadowed by that of the other three factors and their interactions. 

3.6.4 Eta-Squared Effect of Factors and Interactions 

Having observed the qualitative significance of all factors and interactions, it 

is useful to quantify their contributions to overall result variation. The eta-

squared effect has been earlier described as the tool required for such 

evaluation. Figure 29 shows the percentage contribution of each factor and 

interaction to result variation.  
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Figure 29: Bar Chart showing Eta-Squared Effects for all bed models. This 

chart shows the percentage contribution of each of the four experimental 

factors related to sludge sampling and their interactions to the variation of 

the inferred map produced from any given sludge characterisation exercise. 

Discussion 

This discussion is based on the results pertaining to bed 3 (the worst-case 

scenario). As can be observed from Figure 29, the ‘number of sampled 

locations’ (Factor A) accounts for 42 % of the variation in the results of 

sludge characterisation mapping. This reflects the sensitivity of results to the 

number of locations sampled. Similarly, the ‘depth of penetration of the 

sampling device’ (Factor C) has a high influence of 22.7 %. This describes 

the sensitivity of the resulting 3D characterisation map to the penetration 

capabilities of a sampling device in a heterogeneous sludge bed. 

It was also observed that the ‘Residual R’ (unexplained) variance accounted 

for 10 % of the result variation. The residual variance of any ANOVA test 
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refers to the variance that is not strictly associated with only one factor or 

interaction group. It is the variance that may best be considered to have 

occurred due to the inherent randomness of any experiment. Hence, by 

maintaining the same sampling configuration of Factors A, B, C and D across 

a number of sludge characterisation exercises, only 10 % of the result 

variations observed in this experiment will occur.  The source of this residual 

contribution can be further investigated by introducing other experimental 

factors present in sludge characterisation.  

In this simulation study, the residual contribution was a result of the 

randomness introduced into the sludge sampling algorithm. In order words, a 

sludge sample belonging to PSD class A was modelled to have particle sizes 

that are randomly chosen within the domain of the expected mean and spread 

for that class.  In real applications however, additional factors present in the 

laboratory analysis of sludge may be involved. 

 

3.7 Further evaluation of the four experimental factors related to sludge 

sampling 

The foregoing discussion has sought to evaluate the four experimental factors 

related to sludge sampling. In this attempt, four examples of a sludge bed 

models were used. These models included one example each of the four 

possible spatial autocorrelation configurations. The results from statistical 

analyses have so far indicated that the sludge bed model (Sludge bed 3) which 

has no spatial autocorrelation (either along the horizontal or vertical plane) 

may sometimes behave differently compared to the other three sludge bed 

models. This sludge bed model, by nature of it not having spatial 

autocorrelation, could be regarded as being the worst case scenario for any 

sludge bed and hence, should be the focus of evaluating experimental factors.  

For example, in the determination of an appropriate method of spatial 

extrapolation, the other sludge bed models (sludge bed models 1, 2 and 4) 

indicated no significant preference (based on map accuracy performance) for 

either TDA or OKA. However, results from sludge bed 3 indicated that the 

TDA was a more accurate method of spatial extrapolation in the absence of 
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ground truth and in the event of no spatial autocorrelation. This led to the 

conclusion that the TDA would be most appropriate as it is of greater 

performance in a worst case scenario. 

A similar observation occurred in the determination of the level of 

significance of the various experimental factors and factor interactions related 

to sludge sampling in relation to their influence on result variability. From the 

ANOVA table of results, it was observed that for sludge bed 3, the number of 

sampling locations recorded the highest significance amongst all other 

experimental factors.  

However, results from sludge bed models 1, 2 and 4 indicated that this factor 

was not the most significant of all experimental factors. One way to interpret 

this observation is that the influence of the various experimental factors on 

result variability may be dependent on the presence or absence of spatial 

autocorrelation. However, from another perspective, it could be argued that 

the particular sludge bed model 3 designed for this simulation is only one 

example and does not provide an overall assessment of the behaviour of 

sludge bed in the worst case scenario of no spatial autocorrelation.    

It is therefore important to consider further evaluation of the four 

experimental factors using five more examples of sludge bed models which 

have no spatial autocorrelation. The sludge bed models 5, 6, 7, 8 and 9 are as 

shown in Figure 30. 

Although all the five additional bed models have no spatial autocorrelation 

along the horizontal and vertical planes, sludge bed model 9 is modelled to 

represent an extreme case with a higher degree of heterogeneity in the spatial 

distribution of PSD class. Hence, sludge bed model 9 may be observed to 

behave differently from the other models. 

Using these bed models, the results earlier observed on sludge bed model 3 

are re-evaluated and are discussed in the following sub-chapter. 
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(a) Bed 5                                   𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

 

(b) Bed 6                                  𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

(c) Bed 7                               𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

(d) Bed 8                               𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

  (e) Bed 9                                   𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  

 

1 2

A 

3 4 5 6 

Figure 30: The five additional sludge bed models developed for re-

evaluation purposes. These are sludge bed models which have no 

spatial autocorrelation. The coloured pixels indicate the class size 

values of the particle size distribution of sludge found 
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3.7.1 Re-evaluation of the Comparison between the Ordinary Kriging and the Triangular Delaunay Spatial Extrapolation Algorithm  

(a) Bed 3                                   

 

(b) Bed 5                                   

 

(c) Bed 6                                

 

(d) Bed 7                    

 

(e) Bed 8                                    

 

 (e) Bed 9                                    

 

Figure 31: Kriging versus Delaunay (nearest) for 𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  Beds 
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Figure 31 shows the performance of both the OKA and TDA methods of 

spatial extrapolation in each of the five additional sludge bed models and bed 

3. When compared to sludge bed model 3, it is evident that the sludge bed 

models 5, 6, 7 and 8 all agree with the earlier observations that in the absence 

of spatial autocorrelation, TDA delivers higher map accuracy than OKA.  

However, as may be expected, sludge bed model 9 gives a different result. In 

this result it shows that although OKA performs better than TDA, the 

accuracy is relatively low under such extreme heterogeneity conditions.  The 

observation in sludge bed model 9 was carried out on a similarly 

heterogeneous sludge bed model with the same outcome. It can therefore be 

concluded that the observations in sludge bed model 3 remain valid for the 

worst case scenario of a no spatial autocorrelation. 

 

3.7.2 Re-evaluation of the ANOVA Results: F-Statistics and P Values 

In the ANOVA results of sludge bed models 1 to 4 of varying spatial 

autocorrelation configurations, sludge bed model 3 was the only model 

which indicated that Factor A (number of sampling locations) had the most 

significant influence (as represented by the magnitude of the F-Statistic 

value). In the other sludge bed models, Factor A was in a third position 

behind Factors C and D (Sampler device).  However, results from Table 5 

shows that the five additional sludge bed models 5 – 9 do not agree with 

sludge bed model 3.  
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Table 5: A summary of the ANOVA test showing F-Statistic and Probability (P) results 

 Factor Bed 3 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 5 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 
Bed 6 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 
Bed 7 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 
Bed 8 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 
Bed 9 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

F P F P F P F P F P F P 
M

a
in

 

F
a
ct

o
rs

 A 1284.5 0 147.33 0.00 133.84 0.00 778.78 0.00 459.84 0.00 2.79 0.10 

B 28.9 0 24.97 0.00 39.68 0.00 49.39 0.00 33.18 0.00 0.28 0.60 

C 693.2 0 3680.85 0.00 5287.96 0.00 7489.69 0.00 8131.77 0.00 0.83 0.36 

D 371.3 0 4096.60 0.00 905.10 0.00 4442.71 0.00 5609.13 0.00 1355.60 0.00 

F
a
ct

o
r 

In
te

ra
ct

io
n

s 

AB 4.7 0.03 7.06 0.01 1.95 0.16 1.33 0.25 1.59 0.21 1.53 0.22 

AC 35.3 0 48.84 0.00 19.10 0.00 472.08 0.00 220.53 0.00 13.33 0.00 

AD 226.2 0 112.27 0.00 61.29 0.00 247.33 0.00 112.58 0.00 0.48 0.49 

BC 15.7 0 12.93 0.00 22.03 0.00 27.73 0.00 33.80 0.00 0.11 0.74 

BD 6.6 0.01 5.22 0.02 6.85 0.01 2.79 0.10 1.33 0.25 1.03 0.31 

CD 48.35 0 343.55 0.00 979.71 0.00 3394.85 0.00 3419.22 0.00 0.05 0.83 

ABC 4.1 0.04 13.93 0.00 6.37 0.01 5.87 0.02 0.92 0.34 0.77 0.38 

ABD 5.4 0.02 11.75 0.00 14.95 0.00 15.29 0.00 16.98 0.00 0.17 0.68 

ACD 11.8 0 37.15 0.00 51.46 0.00 356.10 0.00 129.92 0.00 2.45 0.12 

BCD 8.1 0 12.12 0.00 11.20 0.00 1.05 0.31 4.31 0.04 1.84 0.18 

ABCD 6.9 0.01 6.84 0.01 10.14 0.00 18.33 0.00 8.60 0.00 1.40 0.24 
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In each of the sludge bed models 5 to 8, Factor C and D displayed higher 

significance compared to Factor A. While Factor C (penetration depth of the 

sampling device) had the most significant F-Statistic in bed models 6, 7 and 

8, Factor D (particle size bias of the sampling device) had the most significant 

F-Statistic in bed model 5 and 9. This result is significantly different from 

what was observed in sludge bed model 3. Plots of half normal effect as 

shown in Figure A1 – A5 (see Appendix A) further confirm these 

observations. 

 

3.7.3 Re-evaluation of the eta-squared effect of factors and interactions 

Table 6: Eta Squared Effect of Sampling Factors and their Interactions 

 

Factor 

Eta-Squared Effect (%) 

Bed 3 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 5 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 6 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed  7 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 8 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 9 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

M
a

in
 F

a
ct

o
rs

 A 42.0 1.7 1.7 4.4 2.5 0.2 

B 0.9 0.3 0.5 0.3 0.2 0.0 

C 22.7 41.5 67.3 42.5 44.0 0.0 

D 12.2 46.2 11.5 25.2 30.3 80.4 

F
a

ct
o

r 

In
te

r
a

ct
io

n
s 

AB 0.2 0.1 0.0 0.0 0.0 0.1 

AC 1.2 0.6 0.2 2.7 1.2 0.8 

AD 7.4 1.3 0.8 1.4 0.6 0.0 

BC 0.5 0.1 0.3 0.2 0.2 0.0 

BD 0.2 0.1 0.1 0.0 0.0 0.1 

CD 1.6 3.9 12.5 19.3 18.5 0.0 

ABC 0.1 0.2 0.1 0.0 0.0 0.0 

ABD 0.2 0.1 0.2 0.1 0.1 0.0 

ACD 0.4 0.4 0.7 2.0 0.7 0.1 

BCD 0.3 0.1 0.1 0.0 0.0 0.1 

ABCD 0.2 0.1 0.1 0.1 0.0 0.1 

 Residual R 10.0 3.4 3.9 1.7 1.6 18.0 

 TOTAL 100 100 100 100 100 100 
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Table 6 shows the Eta Squared Effect of the experimental factors related to 

sampling. It can be seen in this table that unlike what was observed with 

sludge bed model 3, the highest contribution of Factor A to result variability 

is 4.4 %. The table also shows that in the extreme case of heterogeneity (bed 

model 9), Factor D accounts for about 80 % of the result variability observed 

in sludge PSD campaigns. In sludge bed models 5, 6, 7 and 8, Factor C has an 

average contribution of about 48 % to result variability while Factor D has an 

average contribution of 23 %. Factor A takes a distant third position with an 

average contribution of 2.6 %. This observation is significantly different from 

what was previously observed. It can here be concluded that the penetration 

depth and particle size bias of the sampling device being used are the most 

significant and influential experimental factors related to sampling. 

Nonetheless, this observation does not eliminate the significance of Factor A 

(number of sampling locations). 

 

3.8 Conclusion 

 

The performance of both the Ordinary Kriging Algorithm (OKA) and the 

Triangular Delaunay Algorithm (TDA) methods of spatial extrapolation have 

been compared against each other. While the results confirm the general 

expectation that the accuracy of the OKA method is greater than TDA in the 

presence of spatial autocorrelation, this observation only held where the 

number of sampled locations was greater than 30. However, in the absence of 

spatial autocorrelation, it was observed that the accuracy of TDA was about 

15 % more than that of OKA. By considering that the worst case scenario of 

an unknown sludge bed is where there is a total absence of spatial 

autocorrelation, the results hereby suggest that TDA is the more suitable 

method to be used. 

The 2
k
 ANOVA test conducted on the four identified experimental factors 

related to sludge sampling provided a measure of their influence. The result 

of the test indicated that all main factors had their F-ratio statistics above the 
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threshold value of 1, and their P-values were satisfactorily below the 

threshold value of 0.05. This confirmed that all of the four main factors are of 

significant influence to the variability of sludge characterisation results. 

In evaluating the influence of each of the experimental factors using their Eta 

Squared Effect, the ‘sampling strategy’ factor recorded the least percentage 

influence, below 1 %. In the absence of spatial autocorrelation, the ‘number 

of sampled locations’ factor recorded the third highest influence of about 4.4 

%. Under this condition, the ‘penetration depth of the sampling device’ factor 

and the ‘bias of the sampling device’ factor recorded 48 % and 25 % 

influence respectively.  

Going forward, with an observed influence of 4.4 % due to variations in 

number of sampled locations alone, it is important to understand how to 

determine an adequate setting. In seeking such understanding, Chapter 4 

establishes an algorithm that can be used to support field operators in real-life 

sludge characterisation. It is also expected that the development of an in-situ 

sampling mechanism will enhance the capacity of sampling devices to collect 

and analyse sludge samples from an adequate number of locations, with 

minimal bias, deep penetration and less variation in procedures.  
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4 CHAPTER 4: Estimating and Improving Confidence in 

Radioactive Sludge Characterization Maps 

4.1 Introduction 

A number of experimental factors that influence the success of any such 

sludge sampling have now been identified and their influence has been 

evaluated. It has also been observed that one of the significant sampling-

related experimental factors is the number of sludge sampling locations used. 

With about 4.4 % influence on the variation of characterisation map 

accuracy, it has become necessary to determine how to choose an adequate 

setting for this influential factor. If this setting is determined and maintained 

across multiple sludge characterisation exercises, result variability would 

decrease. 

From Chapter 3, it has also been shown that as the number of sampled 

locations increases, the map accuracy increases. This increase is similar to an 

exponential rise. By implication, with further increase in the number of 

sampled locations, the rate of change of map accuracy decreased. This was as 

map accuracy approached the 100 % limit. 

Unlike with computer simulated sludge bed models, the observations in 

Chapter 3 cannot be made on real-life sludge beds. This is because map 

accuracies can only be obtained when the ground-truth map is available for 

comparison with generated maps. This means field operators need an 

appropriate method of evaluating the quality of map results in the absence of 

such ground-truth map. 

This chapter considers two questions in regard to sludge characterization 

mapping: 

 What are the percentage confidence estimates in the results inferred at 

non-sampled areas relative to that of the actual samples?  

 What is the number of samples that are required, such that any further 

samples are unlikely to significantly improve the accuracy or confidence 

of the resulting characterization map? [57] 
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A measure of the percentage confidence in the data presented on the three-

dimensional characterization map will be useful in evaluating the adequacy of 

any sampling choices made and the reliability of the results [38]. This chapter 

provides results from computer simulated sludge bed models and a real-life 

sludge bed. 

4.2 Percentage Confidence in Generated Map 

The confidence in a resulting three-dimensional map depends on three 

factors:  

- the method used in the collection of the sample [51], covered in Chapter 3,  

- the method of spatial extrapolation [138], and  

- the method of sample analysis undertaken in the laboratory [159].
 

In many real-life applications, it is not possible to quantify the accuracy 

because the actual sludge characteristics across the entire bed will be 

unknown. In fact, regardless of the method of spatial extrapolation used, the 

generated map of sludge characteristics will not always be accurate. What can 

be quantified however, is the probability that the ground-truth value at a 

specific location lies within an interval ±𝜀 of the value that has been inferred. 

This is referred to as the percentage confidence (%𝐶𝑘) in the inferred 

measurement. The error margin ±𝜀 is referred to as the confidence interval.  

In calculating the value of %𝐶𝑘 for any inferred measurement, the desired 

value of ε should be fixed. For example, if the data of interest is the PSD class 

value at a position, which is expected to be any integer from 1 to 6, an ε value 

of 0.5 is appropriate as it provides the class boundary for each PSD class. The 

method of calculating %𝐶𝑘 depends on the chosen method of spatial 

extrapolation. If OKA is utilized then this relies on the relationship that has 

been established between variance and error [149], which uses Kriging 

variance 𝜎𝑘
2, defined in Equation (11) to represent the degree of uncertainty in 

an inferred measurement at any position 𝑘.  
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𝜎𝑘
2 = 𝜎𝑜

2 −(∑𝜆𝑗𝑘𝑣𝑗𝑘

𝑛

𝑗=1

+ µ𝑘) 
(11) 

 

In contrast, the TDA is based on regression, which is achieved using the 

modified t-distribution equation given in Equation (12) [160]
. 
 

   

𝜀 =  𝑡
(
𝛷
2
 ,𝑛𝑝−2)

√𝑠2 (1 +
1

𝑛𝑝
+
(𝑥𝑘 − 𝑥̅𝑜)2

𝑆𝑥𝑥
) 

(12) 

 

                                                

Where 𝑡 is the t-score, 𝛷 = (1 −%𝐶𝑘 𝑥 0.01) is the risk of error, 𝑛𝑝 is the 

number of particles in the reference samples, 𝑠 is the standard deviation at the 

reference sampled position, 𝑥𝑘 is the position of a non-sampled point, 𝑥̅𝑜 is 

the mean position of the reference sample, and 𝑆𝑥𝑥 is the variance of 𝑥. 

By re-arranging Equation (12) and replacing ε with 0.5, Equation (13) is 

derived and can be used to estimate %𝐶𝑘 at a specific inference point 𝑘.  

 

%𝐶𝑘 =  100 % ∗ 𝑡𝑛𝑝−2
−1

(

 
 
 

0.5

√𝑠2 (1 +
1
𝑛𝑝
+
(𝑥𝑘 − 𝑥̅𝑜)2

𝑆𝑥𝑥
)
)

 
 
 

 
(13) 

 

 

Where 𝑡−1 is the t-score inverse function. 

From Equation (13), it can be seen that by increasing 𝑛 or by decreasing 𝑠2, 

%𝐶𝑘 at location 𝑘 will increase. Similarly, as the proximity (𝑥𝑘 − 𝑥̅𝑜) 

between the non-sampled position and the reference sampled position 

increases, %𝐶𝑘 decreases.  

It is important to note from Equation (13) that the percentage confidence %𝐶𝑘 

at a non-sampled location is not directly dependent on the total number of 

sampled locations used. It is also not directly dependent on the bias of the 

sampling device or the penetration depth of the sampling device. Similarly, 

%𝐶𝑘 is not dependent on the sampling strategy adopted.  
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What can be deduced from Equation (13) however, is that %𝐶𝑘 directly 

depends on the size of the sludge sample collected from sampling location 𝑥̅𝑜. 

This is because the size of the sample may determine the value of 𝑛𝑝. This 

underscores the need to maximize sludge samples and the need to adopt an 

analytical technique which supports the analysis of bulk samples as discussed 

in Chapter 2. 

From Equation (13) it can be further observed that %𝐶𝑘 at any non-sampled 

location is directly dependent on the distance between such non-sampled 

location and its nearest sampled location. This implies that the further away a 

non-sampled location is from any sampled location, the less the percentage 

confidence in the inferred PSD at that non-sampled location. By implication, 

%𝐶𝑘  is indirectly related to the sampling strategy. By ensuring that sampling 

locations are uniformly distributed across the population space, %𝐶𝑘 may be 

improved. Similarly, %𝐶𝑘 is indirectly related to the number of sampled 

locations and penetration depth of the sampling device because with more 

sampled locations spread uniformly across and through the depth of the 

population space, the distance between a non-sampled location and a sampled 

location would decrease. 

The direct dependence of %𝐶𝑘 on the standard deviation 𝑠 within a sampled 

location implies an indirect dependence on the sample bias of a sampling 

device. This is because a sampling device which is biased has the potential to 

distort the measured PSD standard deviation obtained from the sampled 

location. 

 

4.2.1 Development of a Confidence Map 

The %𝐶𝑘 value, when obtained for locations within the sludge bed and 

plotted on a map, provides a pictorial representation of the spread of 

percentage confidence across the population. This confidence map is used to 

qualitatively assess the adequacy of the sampling factors.  

To illustrate confidence mapping, consider the computer simulated sludge 

bed model Bed 3 (𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅). Given that this sludge bed is sampled at 
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eight sampling locations, with a non-biased sampling device which penetrates 

only through 10 % of the sludge depth. The resulting PSD inference map is 

shown in Figure 32.  

 

Figure 32: PSD inference map with 8 sampled locations. The different 

colours indicate the various classes to which the mean particle size found in a 

given are belongs to. 

In order to show the percentage confidence that there is in accepting that the 

PSD class values inferred on the map are within ± 0.5 of their true values 

(relative to the accuracy of the measured PSDs), Equation (13) was applied. 

The resulting confidence map is shown in Figure 33 
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Figure 33: Map of sludge bed showing percentage confidence for 8 

sampled locations. The sampled positions are the eight white spots visible 

on the map   

 

At each of the 8 sampled locations, a 100 % confidence value can be 

observed. This 100 % confidence at a sampled location does not imply that 

the measured PSD at that location is 100 % accurate relative to the ground 

truth. This is because the accuracy of any measured PSD is dependent on the 

adequacy of the sampling device used and the accuracy of the PSD 

measurement. In effect, the 100 % confidence is relative to the accuracy of 

the measured PSD value. The percentage confidence values are observed to 

decrease as the samples go further away from sampled positions. This is 

illustrated in Figure 34 which shows the variation of the % Confidence values 

along the length of the pond at the surface of the sludge bed and 16m into the 

width of the pond. 
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Line drawn across the length of the pond and 16 m into the width 
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Figure 34: Plot of Percentage Confidence against distance along the 

length of the pond and 16 m into the width (reference to Figure 33.) The 

plot was taken from data points on a line drawn on the surface of the 

sludge bed confidence map produced using eight sampling locations. 

 

The plot on Figure 34 indicates that there is a 100 % Confidence value at 

length 78 m, 16 m into the width of the pond. This can be verified on Figure 

33. However, it shows how the Percentage Confidence decreases as distance 

from the sampled point increases. From Figure 34, it was observed that the 

Percentage Confidence 2.8 m away from the sampled location was 60 %. The 

gradient decreases as Percentage Confidence further drops to 50 %.  The 

observed average Percentage Confidence along the length was 53.83 % 

 

To further illustrate the significance of percentage confidence, corresponding 

locations in the PSD inference map and confidence map to the same location 

in the ground truth map were compared. It can be seen in Figure 35 that the 

inferences at locations having 100 % confidence were true (see red arrows). It 

can also be observed that the worst results were of positions of 50 % 

confidence where PSD inferences were observed to have been either true (see 

yellow arrow) or false (see blue arrow).  
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Figure 35: Comparing (a) Ground truth, (b) Inference map and (c) 

Confidence map. This figure illustrates how the percentage confidence values 

validate the inferred data.  

Therefore, in order to increase the general percentage confidence across the 

sludge bed, the number of samples may be increased.  Given that the number 

of sampled location is increased to 200, with sampling devices penetrating 

through 100 % of the sludge depth, the result of the confidence map is shown 

in Figure 36. This result indicates that deeper penetration enhances 

percentage confidence in sampled/non-sampled data from all positions of the 

bed.  

(b) 

(c) (a) 
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Figure 36: Map of sludge bed showing percentage confidence for 200 

sampled locations. The map was generated using two hundred sampled 

locations. 

 

The improvement in the general Percentage Confidence across the bed can be 

observed in Figure 37 which is the plot of Percentage Confidence along the 

length and 16 m into the width of the pond. This graph shows significant 

improvement compared to Figure 34 as the OBSERVED average percentage 

confidence along the length has increased to 63.78 %.  
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Figure 37: Plot of Percentage Confidence against distance along the 

length of the pond and 16 m into the width (reference to Figure 38). This 

plot was taken from data points on a line drawn on the surface of the 

sludge bed confidence map produced using eight sampling locations. 

 

4.2.2 Remarks 

 

Figure 33 also shows that for a 10 % penetration depth of the sampling 

device, the confidence reduces vertically. This is different in Figure 36 where 

a 100 % penetration depth has been used, resulting in a uniform percentage 

confidence in the vertical direction. This confirms the expected benefit of 

using deep penetrating sampling devices on data confidence and map 

accuracy. 

Considering that the percentage confidence in Equation (13) is significantly 

dependent on the specific sampling procedure, the confidence map obtainable 

does not provide a tool for comparing the results from one sludge 

characterisation campaign to another. It may therefore be known as a measure 

of “single-campaign” confidence. In Chapter 6 however, the results from 

Chapter 3 and 5 which indicate the influence of various experimental factors 

on result variation will be adopted and introduced to Equation (13) in order to 
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develop a measure of “cross-campaign” confidence. It will then become 

possible to compare and harmonise the results from a number of sludge 

campaigns. 

However, the scope of this chapter is focussed to a specific sludge 

characterisation campaign, and seeks to identify and improve the single-

campaign confidence in the sampled/non-sampled data from each position 

within the sludge bed.  

From a general perspective, the concept of confidence maps suggests that 

data quality and resulting confidence may continually increase with the 

number of sampled locations. However this may be bounded such that 

beyond a certain number of measurements, any further samples have little 

impact on the inference map produced of the bed. A plot of map accuracy 

against the number of sampled locations can be used to determine such 

adequate number of sampled locations. 

4.3 Improving Map Accuracy 

 

In real applications where the ground-truth map is unknown, alternative 

methods for assessing the accuracy of maps include the single-deletion jack-

knife cross-validation with replacement method and the model-based 

uncertainty estimates method [160]. Evaluating the accuracy of inferred data 

over time as new sampled data become available has also been suggested 

[161, 162]. 

These existing techniques can be used for comparing different spatial 

extrapolation methods or for validating them. This is achieved by estimating 

the mean absolute error and other error statistics of extrapolations made at 

positions that have already been sampled. Methods such as leave-one-or-

more-out cross-validation can be incorporated within these techniques to 

avoid over-fitting. However, reliance on such error statistics does have some 

limitations. One of these is that the method of cross-validation does not 

provide an assessment of the inference error at non-sampled locations. 

Another limitation is that the method of confidence estimation as mentioned 
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earlier relies, in part, on the same assumptions as the extrapolation algorithm 

used [160].
 
 

A key objective in this study is to determine when an adequate number of 

locations have been sampled such that a satisfactory inference map of the 

sludge bed can be obtained. This requires measuring the map accuracy, 

however without reference to a ground-truth map (𝑇), and observing how the 

map accuracy improves as the number of sampled data points increases. 

To enable this, a new algorithm referred to as the Recursive Relative 

Accuracy (RRA) is introduced. This algorithm takes advantage of both the 

leave-one-or-more-out cross-validation method and the confusion matrix 

method of calculating absolute map accuracy. One advantage of this method 

is that unlike existing techniques, it maintains the use of map accuracy as a 

parameter for assessing map validity rather than relying on the error statistics 

measured only at sampled positions. Another benefit with the proposed 

method is that it does not require knowledge of the ground-truth map.  

 

4.3.1 The RRA Method 

The first step in implementing the RRA algorithm is to generate inference 

maps using a selection of subsets of the data points that are available. The 

relative accuracy of the resulting inference maps is then compared to the 

inference map produced using all the data points.  

Let 𝑛 be the total number of sampled data points collected at a given time. 

The proposed technique works by initially generating an inference map 𝑃 

using all 𝑛 data points. This inference map will be denoted by 𝑃1,𝑛. 

Inference maps are then generated from a data subset obtained by choosing 

one or more of the n data points at a time but not exceeding (𝑛 − 1) data 

points. Let the number of data in a given subset be denoted by 𝑖. For any 

𝑖 ∈  {1, 2, 3, . . . 𝑛 − 1}, the data subset to be created from the 𝑛 available 

measurements can be chosen in (𝑛
𝑖
) unique ways.  
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If 𝑖 is very large, then time restrictions may prevent the processing of all 

possible (𝑛
𝑖
) data selections. In the investigations described in this paper, a 

limit of 20 possible data selections for any 𝑖 was applied. 

Let 𝑟, an integer in the range 1 ≤  𝑟 ≤  (𝑛
𝑖
), denote the serial number of each 

unique data subsets containing 𝑖 number of data points. The inference maps 

so generated are then denoted by 𝑃𝑟,𝑖. The total number of 𝑃𝑟,𝑖 maps that are 

generated is given by ∑ (𝑛
𝑖
)𝑛−1

𝑖=1 . 

For example, if there are 4 sampled measurements available at a given time, 

then all 4 measurements will be used to generate the initial map denoted by 

𝑃1,4. Subsequently, several other inference maps can be generated using all 

the unique combinations of the measurements. This will result in 14 more 

maps denoted by:  

𝑃1,1, 𝑃2,1, 𝑃3,1, 𝑃4,1, 𝑃1,2, 𝑃2,2, 𝑃3,2, 𝑃4,2, 𝑃5,2, 𝑃6,2, 𝑃1,3, 𝑃2,3, 𝑃3,3 and 𝑃4,3. 

The next step involves the calculation of the relative accuracy, denoted by 

𝑅𝑅𝐴𝑟,𝑖 , of each of the 𝑃𝑟,𝑖 maps. In the proposed approach this determines 

the confusion matrix, when the unknown ground-truth map 𝑇 is replaced by 

𝑃1,𝑛 , using Equation (14).  

 
𝑅𝑅𝐴𝑟,𝑖 = 

𝑡𝑟(𝐶𝑀𝑟,𝑖)

∑ ∑ 𝑐𝑚𝑟,𝑖  (𝑏,𝑐)𝑏=1𝑐=1
 

(14) 

 

 

Where 𝐶𝑀𝑟,𝑖 is the confusion matrix (previously described in Chapter 3) 

between 𝑃𝑟,𝑖 and 𝑃1,𝑛 and 𝑐𝑚𝑟,𝑖  (𝑏,𝑐) refers to any element of the matrix 𝐶𝑚𝑟,𝑖 

located on row 𝑏 and column 𝑐. 

All the values of 𝑅𝑅𝐴𝑟,𝑖 are then plotted against 𝑖, either as a scatter-plot or 

an error-plot. By observing the response of 𝑅𝑅𝐴 to an increase in 𝑖, it is 

possible to determine whether the response is in a transient state or at a steady 

state. If the value of 𝑖 is relatively low and unable to adequately represent the 

entire population, then the response will be transient. Each new data point 

will continue to add information to the inference map to improve its relative 
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accuracy. However, as 𝑖 increases, the response will begin to approach steady 

state, as it approaches 100 %. In interpreting this steady-state observation, it 

can be said that beyond a certain number of sampled measurements 𝑖𝑜, any 

further measurements introduced into the spatial extrapolation algorithm will 

make no significant change to the inference map.  

The proposed method is recursive because until a steady-state response is 

observed, further measurements would have to be collected, thereby 

increasing the value of 𝑛 and recalculating the 𝑅𝑅𝐴𝑟,𝑖 values. A weakness of 

this algorithm is the possible occurrence of false-maxima. This is a situation 

where the 𝑅𝑅𝐴 value successfully reaches 100 % when there are very few 

measurements. These false-maxima can only be avoided by using a-priori 

understanding of the properties of the sludge bed. 

It is important to note that although 𝑅𝑅𝐴 may converge to 100 % at steady 

state, this is not an indication of absolute map accuracy. 100 % absolute 

inference accuracy of the map can only be determined if the ground-truth map 

is known.  

4.3.2 An Illustration of the RRA Method on Simulated Sludge Bed 3 Model 

To illustrate the outcome of the RRA algorithm and how it can be interpreted, 

consider the simulated sludge bed model Bed 3 (𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅) as the 

population to be sampled. For the purpose of the RRA algorithm, it is 

assumed that the simulated bed is unknown. By conducting sludge sampling 

in a given number of locations, e.g. 200, a PSD inference map of the 

population is then produced and named 𝑃1,200. The RRA algorithm can be 

implemented by following the flow chart of Figure 39. 
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𝑖 = 1 

Stop 

𝐶𝑜𝑢𝑛𝑡 < 20  

𝑜𝑟 𝐶𝑜𝑢𝑛𝑡 <  (
200

𝑖
) 

Stop 

Count = 0 

Generate a PSD inference map called 𝑃𝑐𝑜𝑢𝑛𝑡,𝑖 using any collection of “i” number 

of sampled PSD data out of the available 200 sampled data 

Count = Count + 1 

Evaluate the accuracy of this map relative to the map shown in figure 23 and 

record as 𝑅𝑅𝐴𝑐𝑜𝑢𝑛𝑡,𝑖  

Consider a unique collection 

of “i” number of sampled data 

𝑅𝑅𝐴𝑖. = summation of all 𝑅𝑅𝐴𝑐𝑜𝑢𝑛𝑡,𝑖 

divided by count.  

 𝑠𝑑𝑖 = standard deviation of 𝑅𝑅𝐴𝑐𝑜𝑢𝑛𝑡,𝑖. 

Record 𝑅𝑅𝐴𝑖, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖.and 𝑖 

i= i+ 1 

 

Plot Error Bar of 𝑅𝑅𝐴𝑖. 

against 𝑖. 

 

𝑖 < 200  

 

YES 

NO 

NO 

YES 

Figure 39: A flowchart for the RRA algorithm 
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The flowchart considers a case where the total number of available sampled 

data is 200. However, this may not always be the case. For example, field 

operators may decide to implement an RRA algorithm when only 8 sampled 

data are available. The outcome of which would be used to determine whether 

to carry out further sampling.  

Figure 40 shows the result of implementing RRA on Sludge Bed 3. In this 

exercise, four scenarios were examined. The four scenarios had 𝑛 and 

penetration depth values as being: 8 at 10 %, 200 at 10 %, 200 at 30 % and 

200 at 100 % depth respectively.  

 

 

Figure 40: Plot of recursive relative accuracy (RRA) with error bars 

against number of sampled locations (i) – from simulation. This figure 

helps to understand how the accuracy of an inferred map improves with 

an increase in the number of sampled locations. 

From Figure 40, it can be observed that the RRA error-plot for 𝑛 = 8 did not 

approach steady state. However, by recalculating the 𝑅𝑅𝐴 values using 

𝑛 = 200, and increasing the penetration depth from 10 % to 100 %, it can be 

observed that the plot begins to approach steady state. In fact for penetration 

depths of 10 % and 30 % there would appear to be limited value in taking 

more than approximately 50 samples. 



125 
 

Figure 40 has a significant resemblance to the “map accuracy versus number 

of sampled locations” plots of Chapter 3. The similarity in the shape of the 

plots can be observed. This is in spite of Figure 40 being non-reliant on the 

use of a ground-truth map for result validation. This result suggests that for 

this simulation, the RRA plot provides a convenient tool in identifying how 

the inferred map accuracy improves as the number of samples increases. In 

particular, the estimation that 50 is a sufficient number of sampled locations 

in the case where the sampling depth is 10 % or 30 % agrees with the 

accuracy plots of Chapter 3. This confirms the reliability of the RRA 

algorithm in the absence of ground truth. Similar results were also obtained 

when this technique was applied to different simulated sludge bed.  

 

4.4 Experimental Validation using a Real-Life Sludge Bed 

 

For result validation purpose, a real-life sludge simulant tank shown in Figure 

41 was used. This six year old simulant sludge bed is located at the National 

Nuclear Laboratory’s (NNL’s) facility in Workington, UK. The aim of the 

validation experiment was to demonstrate the real-life application of the RRA 

algorithm. This was done using a test bed which is considered to be 

representative of a nuclear storage pond. The test bed used contained non-

radioactive Corroded Magnesium Sludge (CMgS) with dimension of 120 cm 

× 30 cm × 14 cm.  
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Figure 41: Top View of a Corroded Magnesium Sludge Simulant Tank at the 

National Nuclear Laboratory, UK (2017). This picture shows that there are a 

number of different sludge formations in the bed.  

4.4.1 Sludge Sampling 

Figure 42 shows 20 locations earmarked for sample collection. This choice of 

these locations was based on stratified random sampling. The strata 

demarcation was made to be spherical, rather than square shaped. This was 

because of historically facts available. In 2011 when this particular simulant 

tank was commissioned, sludge was introduced into the tank at sampling 

location “1”.  Hence, outward dispersion of sludge from location “1” would 

be spherical. Each sample location/pixel is of surface dimension 2 cm × 2 cm 

and is further subdivided into 5 depth intervals of 2.8 cm each for three-

dimensional spatial characterisation. This is because the diameter of the 

sampling device was about 1.5 cm and the depth of the sludge was about 14 

cm.  
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Figure 42: Plan view of sampling locations. This figure shows (from a plan 

view) how the method of stratified random sampling may be applied to the 

sludge bed at the National Nuclear laboratory, Workington, UK in order to 

select twenty sampling locations.  

The × and Y coordinates were identified with the aid of a cross wire  system. 

This is shown in Figure 44. Samples were collected using a combination 

sampler methods; syringe and core sampler. As samples per location were 

collected along one consistent depth, they were deposited into labelled sample 

containers in order of the depths they were collected from. Figure 43 shows 

an array of labelled samples in containers. Challenges faced and observations 

are discussed in the subsequent section.  

 

Figure 43: An array of sludge samples collected at the National Nuclear 

Laboratory (NNL), UK from various sample locations and depth. 
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4.4.2 Experimental Observations during Sampling 

Holding the sludge samples in the collection tube was challenging as the 

pressure differential produced by the syringe was not enough to oppose the 

weight of the sample. Secondly, penetrating the top layer of the sludge bed 

was challenging. This was observed at sampling location “4” (see Figure 44) 

of the sludge bed where increased downward thrust was required. This was 

beyond the capabilities of the collection tube. A steel rod had to be attached 

to the collection tube for support penetration.  

Interestingly and in most cases, under such hard surface of sludge was a layer 

of water before another layer of sludge. This created a scenario whereby 

excessive water from surrounding non-sampling locations found their way 

into the collection tube, replacing already collected but loosely held sludge 

samples.  

In some cases as it was observed, very fine sludge particles formed into 

agglomerates of very high viscosity and compactness to the extent of 

blocking access to and out of the collection tube. This was particularly the 

case at sampling location 16. There were also some obvious rock-like sludge 

formations within the tank which suggests the agglomeration capabilities of 

the sludge with time. 

Furthermore, while the sampling procedure required that samples collected 

from any single location be subdivided into sample bottles based on sample 

location depth, it was observed that there was recombination and resettling of 

particles within the collection tubes. There were areas which were 

inaccessible as a result of refuse deposit within the tank such as at sampling 

location “18” which had to be moved 2 cm downwards. 

It is also important to note that the cross-wire used was not adequate. The 

recorded sampled locations could therefore have had errors. Care was taken 

to minimise errors such as by attaching a metal rod to the collection tube. 

This was useful in keeping maintaining a vertically downward penetration.  
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Figure 44: Sludge sample collection set-up. The picture on the left shows the 

use of cross-wire for sample localisation. The picture on the right shows the 

use of syringe for sludge retrieval. 

 

4.4.3 Remarks on the Sludge Sampling Regime and Methodology 

Unlike in the sludge bed sampling simulations discussed in Chapter 3, this 

experiment presented a relatively smaller sized sludge bed. The minimal pixel 

size is the surface area of the sludge sample which can be captured using the 

sampling device. In a larger sludge bed, this choice of pixel size could be 

constrained by a limited data processing power, but in this sludge simulant 

tank of size 1.2 m × 0.3 m, a pixel size of 0.02 m × 0.02 m does not present 

any significant data processing challenge. Hence, this was adopted as the 

pixel size. 

In using the method of stratified random sampling, grids (or strata) need to be 

created. While the aim is typically to ensure equal sized square grids, the 

reliance on historical background could influence the bias in the distribution 

of grid sizes and shapes. In this particular experiment, the historical 

background of the sludge bed is that sludge was introduced into the tank by 

pouring corroded magnesium sludge into the tank, but at a particular location. 

This location is therefore labelled as ‘sample location 1’. In order to ensure 

that sample is collected at this critical location, the location itself must be 

made a grid.  

In creating other grids, and for the purpose of understanding how the sludge 

particles filtered into the rest of the sludge tank from ‘location 1’, the grids 

were created in a circular shape. This is with background knowledge that 

filtration into the tank must have occurred in all directions.   The number of 
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sampled locations was made to be 20 only. Physically, it was possible to 

retrieve more samples and increase the overall sampling intensity. However, 

doing so would deplete the sludge bed at NNL and affect its use for other 

research. Secondly, doing so would make the exercise achieve a sampling 

intensity which is highly unrealistic in a real-life sludge bed on a nuclear site. 

The method of retrieving sludge samples from specific pre-determined 

locations required a method of two dimensional localisation of the sampling 

device. This informed the decision to use a cross-wire system. However, due 

to the construction of this cross-wire system, it may not be accurate and may 

introduce positional errors which would create further uncertainties in the 

spatially extrapolated results for non-sampled locations. The use of a LIDAR 

based positional system would have been a more suitable solution. 

4.4.4 Laboratory analysis of Particle Size 

Prior weighing and measurement of sample volume and density were carried 

out. The samples were analysed for their PSD using a Malvern Mastersizer 

3000TM instrument with method development parameters set as follows:  

Sample concentration: 1.0 % 𝑣/𝑉  [161], average sample density:                  

1.525 g cm
-3

, Dispersion medium: Water, Dispersant density: 1.0 g cm
-3

, 

Stirrer/pump speed: 2500.0 rpm, Sample refractive Index: 1.559, sample 

absorption constant: 0.1, dispersant refractive index: 1.33, measuring time: 

30.0 seconds, number of runs per aliquot: 5 

4.4.5 Experimental observations during analysis 

There was the need to combine samples from different depth levels within a 

sampling location in order to meet the sample concentration requirement of 1 

% V/V. This however did not reduce the obscuration levels which ranged 

from 39 % to about 99 %. This was found to be as a result of the high 

proportion of tiny particles within the sample volume, thus leading to a high 

total amount of particles in the sample. A further limitation faced was the 

limit of 2000 µm recommended for the laser diffraction technique within 

which measurements can be reliable. This limit may have been exceeded as 

some particles in the sample were visibly large and results from some 
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analyses indicated extreme sizes. In fact, high level agglomeration was 

observed during the analysis of samples from position 13, 16 and 18. 

4.4.6 Data Processing 

 

Given the PSD results from only 20 sampling locations out of 900 possible 

sampling locations, the TDA was used in predicting the mean, lower and 

upper quartiles and the median size of the PSD at non-sampled locations 

within the tank. 3-D spatial maps of PSD predictions and percentage 

confidence were obtained. Attempts were also made to obtain prediction and 

confidence maps for scenarios where even less than 20 locations were 

sampled.  

The accuracies of these predictions were estimated relative to the result from 

20 sampled locations. Accuracy measurements were based on size 

classification from class 1 to 201. This classification is based on the fact that 

the Malvern Mastersizer 3000 detects particle sizes within the range 1 to 3500 

µm at a resolution of 0.0554 on the logarithmic scale.  

 

4.5 Experimental Results and Discussions 

 

The characterisation map of the sludge simulant bed was obtained and is shown in 

Figure 45. Similarly, the confidence map was obtained and is shown in Figure 46. 
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Figure 46: 3-D Confidence Map for the Inferred PSD of Figure 45. This map 

was generated based on the sampling locations selected for the sludge 

simulant tank  

 With 20 being the maximum number of sampled locations across the sludge 

simulant tank, Figure 45 shows the expected distribution of particle sizes 

within the sludge bed. Considering that samples from some locations were 

combined, and the analysis result distributed along the depth, it would appear 

that the sizes do not vary vertically at some locations. For some other 

Figure 45: 3-D Characterisation Map of Sludge Simulant Tank at NNL showing Inferred 

PSD. The different colours show the class of mean particle size which can be found in the 

different locations. This map was produced by inferring data at non-sampled locations 

from the data collected at 20 sampled locations. The method of data collection was by the 

use of a laser diffraction method ( Malvern Mastersizer 3000). 
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sampled locations where samples from each depth was individually analysed, 

there was no fixed pattern of variation along the depth. While some locations 

had larger particles at lower depths, some had the same mean size at all 

depths. At position 1 however, it was observed that the particles at the top 

were larger than particles below.  

The reason for this inconsistency may have been the mixing of samples 

collected from different depths within the collection tube as a result of water 

in flow from neighbouring locations. This could be understood as suggesting 

the in adequacy of syringe sampling system for a sludge bed of varying 

viscosity and hardness. 

Figure 46 shows the distribution of percentage confidence when 20 sampled 

locations are used to make PSD predictions. This % confidence shows the 

probability of predictions made at non-sampled locations to be true within an 

error margin of +/- 0.5 of the predicted particle class size (1-201). 

Considering that the class size increases logarithmically, this tends to favour 

higher particle size predictions. 

In assessing the performance of the accuracy of the PSD predictions and 

estimated percentage confidence, Figure 46 shows (in black print) the actual 

mean particle size at each of all 20 sampled locations measured. In red print 

however are the predicted particle sizes at 12 locations which for the purpose 

of this test, were deemed to be non-sampled locations and thus were not 

supplied to the TDA extrapolation algorithm. It can be seen that there is a 

wide disparity between what was predicted and their actual results. At those 

positions, the percentage confidence had suggested a close to 50 % 

probability of the result being within the size class. 
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4.5.1 Interpreting the Results from the RRA Method on Real-Life Sludge 

Bed at NNL 

 

Figure 47: Plot of recursive relative accuracy (RRA) with error bars against 

number of sampled locations (i) – from experiment. The plot in red was 

obtained after sampled data from a total of 10 sampling locations were 

available, while the plot in blue was obtained when the total available 

sampling locations had been increased to 20.  

 

 

Figure 47 shows the result of an RRA implementation on the characterization 

of sludge in the simulant tank at the National Nuclear Laboratory. The RRA 

algorithm was repeated twice: after practically retrieving samples from 10 

locations and subsequently when the number of sampled locations was 

increased to 20. In both cases, it can be observed that as the number of 

measurements increases, so too does the relative accuracy of the inference 

map. This means that every sample contributes extra information about the 

characterization map of the population.  

It is evident that even with 20 samples collected, steady state has not been 

reached, however it is noticeable that beyond 𝑖 =  4, the slopes of both RRA 

plots remain consistently low and positive. Hence, the benefits in further 

sampling may not be entirely significant. This is also an indication of the 

degree of homogeneity of the sludge characteristics, based on the PSD 

classification of Chapter 2.  
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4.6 Summary 

A suitable method for estimating the percentage confidence in inferences 

made has been presented. The resulting percentage confidence maps indicated 

a visible increase in the spread of confidence in non-sampled locations when 

there was an increase in the quantity of samples obtained.  

The quantity of samples needed for improved map accuracy can be 

determined by using the recursive relative accuracy (RRA) method. In the 

simulated exercise, it was observed that with a sampling device of 

30 % penetration depth, the maximum map accuracy was about 60 %. The 

RRA plot suggested that with a penetration depth of 30 % there was limited 

benefit in sampling from more than 50 locations. While the confidence map 

provides guidance in choosing areas for further sampling, the 𝑅𝑅𝐴 provides 

indication of when to stop further sampling.  
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5 Chapter 5 - Evaluating the Influence of Experimental Factors 

on Particle Size Distribution Measurement Using Laser 

Diffraction 

 

5.1 Introduction 

Notwithstanding the importance of adequate sludge sampling (as exemplified 

in Chapters 3 and 4), the success of laboratory analyses of sludge samples is 

as well critical to the overall objective of a sludge PSD characterisation 

campaign. This is because such measured data will be relied upon in inferring 

the PSD at non-sampled positions of the sludge bed. Hence, in this chapter, 

the focus is on the procedure involved in the laboratory analysis of sludge 

samples from which measured data is obtained.  

Just as PSD is vital for sludge waste management decisions, it is also vital for 

measuring the quality and efficiency of general industrial products and 

processes. Evidence can be found in the detergent making [163, 35], drug 

manufacturing [112, 111], food processing [164, 34], and wastewater 

management [165, 166] related industries. To this effect, the relevance of 

PSD has been established by a number of authors [163, 34, 159, 33] with a 

focus on the quality of measurements obtainable. 

To address these quality concerns, seven experimental factors which are 

suspected to have the potential of influencing result variation have been 

identified (see Chapter 2). These are factors which relate to the use of Laser 

Diffraction Method (LDM) as a technique for measuring PSD. They are: 

1. Measuring Time 

2. Stirrer/Pump Speed 

3. Sample Concentration 

4. Refractive Index of Sample 

5. Absorption Constant of Sample 

6. Dispersion Medium 

7. Instrument Model 
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5.2 Background Theory 

5.2.1 Sources of Error in LDM  

LDM involves the illumination of adequately dispersed samples by a laser 

beam generated from a monochromatic source [6]. The interactions between 

this laser beam and individual particles lead to a variety of optical phenomena 

including laser scattering and absorption [43]. Smaller particles produce a 

lower intensity scattering while larger particles produce higher intensity 

scattering. Similarly, the scatterings due to smaller particles are at wider 

angles compared to that due to larger particles. Forward scattered lights are 

detected and recorded by multi-element detectors, and characterised by their 

angle of scattering and the intensity as expressed in Equation (15). This 

recorded data provides a signature which is mathematically translated to a 

volumetric particle size distribution by method of de-convolution and using 

an appropriate mathematical algorithm such as the mie algorithm or 

Fraunhofer approximation. 

 
De − convolution 

𝐼(𝜃)                →                     𝑣(𝑥) 

 

(15) 

 

Where, 𝐼(𝜃) is the angular intensity distribution and 𝑣(𝑥) is the particle size 

distribution obtained by de-convolution using a pre-determined scattering 

theory and mathematical model. 

The data interpretation process either takes into consideration the optical 

property of the sample components or makes appropriate assumptions about 

them, as well as about the shapes and condition of the measurement cell. In 

all of the steps involved, a few sources of likely errors are likely, they are 

discussed below. 

1) Errors due to technicalities 

 There are few aspects in the design of laser diffraction method that are 

bound to introduce some random errors. One of these technical errors is 

the assumption that scattered patterns originate from spherical particles. 

Thus, any deviation of the real shape of a particle from the ideal spherical 
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shape will introduce uncertainty in the measurement outcome. Another 

assumption made is that the scattering signature recorded during 

measurement is the sum of all individual scatterings received [6]. This 

implies that all scatterings, with the inclusion of multiple scatterings are 

all recorded as single scattering. This will result in technical error.    

 In addition, the record of scattering angles is only as definite as the 

physical stability of the optical bench on which detectors are mounted, 

the focus lenses and the light source. In the event mechanical 

disturbances caused by electrical noise or wind draft, there could be a 

disturbance to the pre-set optical alignment. Any such disturbance causes 

the LDM instrument to lose calibration. In the Malvern Mastersizer 2000 

instrument, this disturbance leads to downtime of about three minutes.  

 Lastly, the resolution of particle sizes measured is dependent on the 

number of detectors in place. Hence, with inherent limitations in the 

obtainable size measurement resolution, technical errors may be 

unavoidable. 

 Technical errors may however be avoided by adopting precautions such 

as the following:  

a) Ensure that samples are dispersed in a suitable dispersion medium 

such as diluted water at an adequate concentration and that such 

dispersion is sufficient to maintain adequate laser obscuration; 

preferably 5 % to 25 % [6] depending on the size of particles 

involved. This is to reduce the likelihood of multiple scattering. A 

modified algorithm that reduces technical errors in the data 

interpretation process was proposed by a study on LDM [167]. 

Another study [168] also sought to improve the robustness of data 

interpretation algorithms by proposing a ‘mahalanobis’ distance. 

b) Place the instrument on a rigid bench and away from electrical, 

mechanical and thermal noise to avoid realignment of the optical 

bench [6]. 

c) Proper calibration tests should be performed on the instrument to 

identify any existing system bias [6]. 
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d) Run the experiments more than once to detect random errors. 

2. Errors due to sample preparation 

To determine the particle size distribution of any given sample, as earlier 

mentioned, it is advisable to run the test more than once. Hence, the first 

step in reducing result variation is the division of a bulk sample into the 

corresponding number of test samples, known as an aliquot. It must be 

ensured that the aliquots are ‘representative’ of the bulk sample. This is 

done by coning [7]  or by using a rotary riffler [6] to achieve an unbiased 

distribution of heterogeneous particles in each aliquot.  

This does not totally eliminate sampling errors, but any attempt to 

distribute samples manually may increase the likelihood of an error 

thereby rendering the results invalid. It has been pointed out [43] that 

sampling errors are possibly the greatest errors in laser diffraction 

method, especially if the data being sort is a percentile data such as the 

D90. The reason is that LDM is volume sensitive, and any drop in 

volume of either larger or smaller particles will create a significant shift 

in the volumetric particle size distribution. In fact, the British standard 

[6] discourages the use of such specification based data. 

The second step in sample preparation is the selection of an adequate 

dispersant. There have been arguments concerning the need to investigate 

the role of dispersant suitability on result variation. In a study, Dias [122] 

considered the effect of using deionized water and using sodium 

hexametaphosphate Na(PO3)6 (SHMP). The argument had always been 

that SHMP helps to prevent agglomeration of particles, but after a series 

of experiments, Dias concluded that the suspension medium has an 

insignificant effect on the results, with the exception of a 74% glycol 

solution that resulted in a consistently lower median gran size. This only 

supports calls for further investigation into the role of a dispersion 

medium in affecting analytical uncertainty. On the use of water as a 

dispersant, and choice of pH, [43] makes a case for deionized water on 

the basis that tap water may introduce flocculation. 
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Finally, sample concentration is equally critical. As mentioned 

previously, adequate sample concentration is necessary in attaining an 

appropriate laser obscuration. It has also been observed that the wider a 

particle size distribution is suspected to be, or the bigger the particle sizes 

are in general, then the higher the volume of samples required in an 

aliquot while maintain concentration [43].  

3. Errors due to method development 

One of the first steps to take in a laser diffraction experiment before 

running the samples into the measurement zone is to mechanically excite 

the samples and keep them unsettled for optimal sample dispersion. To 

do this, there are three complementary methods that may be employed; 

the use of a stirrer, a pump, and sonification [43].  

The stirrer speed and sonification agitate the particles, thus preventing 

agglomeration while the pump speed allows for flow alignment [43] 

especially where the particles have high aspect ratios. However, the 

speed at which agitation and pump are set to must not be too high as to 

cause primary particles to break up. It is also noteworthy that more dense 

particles would require higher agitation [43].  

The measurement time is another critical factor to consider. It is expected 

that the longer the measurement duration, the higher the precision. 

Although excessively long measurement duration will be inefficient, 

obtaining an unrepresentative result due to insufficient measurement time 

must be avoided [43].  

Storti and Balsamo [119] in a test of laser diffraction technique under a 

number of conditions, observed that while low strength materials are 

susceptible to errors due to the choice of agitation, pump speed and 

measuring time, high strength materials are not affected. Nonetheless, it 

may be interesting to determine the limit at which agitation could begin 

to affect material strength. 
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5.3 Laboratory Experiment to Investigate Influence Factors related to 

Laser Diffraction Method 

The challenge is to investigate the influence factors involved in LDM 

technique using an ANOVA test. This test will be conducted on results 

obtained from laboratory data. There are two forms of experimental data 

which may be used to represent a PSD; mean size of particles, or the 

percentile values of the distribution such as D90 or D10. 

To evaluate the contribution to PSD result variance of the experimental 

factors, a laboratory experiment is required. For this purpose, soda-lime glass 

microspheres of well-defined characteristics were purchased from 

Whitehouse Scientific Ltd.  100 bottles each containing 10 grams were 

purchased. The density of the glass beads was given as 2.49 𝑔 𝑐𝑚−3. The 

particle size range of each bottle was 170 µm – 710 µm. This was the widest 

PSD range available within the 10 nm – 1500 µm suitable for LDM 

application.  

When re-distributing samples into aliquots, it is important to avoid bias. One 

instrument that is recommended for unbiased distribution of samples is a 

rotary-riffler. In this experiment, a rotary-riffler (shown in Figure 48) was 

constructed at low cost and used to obtain sub-samples of 2.5 grams and 4 

grams aliquots (depending on the intended sample concentration).  
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Figure 48: In-House built rotary riffler for unbiased distribution of samples. 

It allows for a continuous spin of the funnel or of the cups while the other 

part remains static. 

Other materials used include: SHMP, tap water, weighing scale, Malvern 

Mastersizer 3000
TM

 at the National Nuclear Laboratory (NNL) Workington, 

United Kingdom, the Malvern Mastersizer 2000
TM

 at The Mill, The 

University of Manchester, United Kingdom, and the use of MATLAB. 

5.3.1 Method  

A statistical tool used in analysing the influence of k number of experimental 

factors on PSD result variance is the 2
k
 analysis of variance (ANOVA) test 

[36]. This test involves the repetition of an experiment m × 2
k
 number of 

times. After every run, the experimental conditions are changed and this is 

repeated from one run to another.  

To vary the experimental conditions, a pair of contrasting “high” and “low” 

settings should be determined for each of the k experimental factors under 

investigation. 2
k
 represents the total number of unique experimental 

conditions (treatments) available and m is the number of experimental runs 

subjected to the same treatment.  

In compliance with the procedure for conducting a 2
k
 ANOVA test, a total of 

256 aliquots of soda-lime glass microspheres were required. PSD 

measurements were conducted on each of them using the principle of LDM as 

Inclined Funnel 

Collection Bottles 

9V Battery 
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represented by the Malvern Mastersizer Instrument. The measurements were 

conducted in the laboratory under varying experimental conditions. 

There were 128 unique experimental conditions (treatment) to choose from. 

Each treatment was characterised by a unique selection of experimental 

conditions based on “high/low” settings of the experimental factors (Factors 

H to N) under investigation, as given in Table 7.  

Table 7: A summary of experimental factors and their contrast settings 

Factors Description 
Low 

Setting 

High 

Setting 

H Measuring Time 10 Seconds 30 Seconds 

I Stirrer/Pump Speed 1500 rpm 3000 rpm 

J Sample Concentration 0.5 %V 4.0 %V 

K 
Refractive Index of 

Sample 
1.52 1.9 

L 
Absorption Constant of 

Sample 
0.1 1.0 

M Dispersion Medium Tap Water SHMP 

N Instrument Model 
Malvern

TM
 

2000 

Malvern
TM

 

3000 

 

Each treatment was applied to the PSD measurement of 2 separate aliquots of 

soda-lime glass in order to allow for random errors resulting from irregular 

aliquot distributions. There were only 2 aliquots per treatment due to limited 

material resources. Further repetitions were made by repeating the PSD 

measurement of each aliquot 10 times within the Malvern Mastersizer 

instrument. 

Of the 256 aliquot technically required for this test, only 64 aliquots were 

physically required. This is because Factors K and L (the absorption constant 

and refractive index) represent optical parameters. Variations in these two 

factors were simply implemented offline on the mathematical interpretation 
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algorithm of raw LDM data. This reduced the number of required aliquots 

from 27 to 25. 

At the end of the laboratory experiment, all PSD results are collated and 

statistically analysed on MATLAB to determine the F-ratio statistics [148], 

half-normal plot of effects [157], and Eta-squared effect [158]. These provide 

a measure of the influence of each factor on PSD result variation. They also 

indicate the degree of interactions that may exist among experimental factors. 

PSD results may be represented by the mean value, or by a measure of the 

spread. A number of field operators are more interested in the measure of 

spread of PSD rather than the mean PSD. However, the British Standard [6] 

cautions on the reliance on PSD spread as a parameter. The reason is that 

LDM is volume sensitive, and any drop in volume of either larger or smaller 

particles will create a significant shift in the cumulative curve, thus affecting 

the percentile values [43]. 

This study will however analyse the results of both the PSD mean and the 

PSD spread. The measure of PSD spread used is the ratio of the 90
th

 

percentile to the 10
th

 percentile (D90/D10) of the particle size distribution. 

5.4 Results and Discussions 

5.4.1 ANOVA Test for PSD Measurement 

F-ratio statistic provides an indication of how significant the contribution of a 

factor is to result variation. An F value greater than “1” implies that the factor 

is of significant influence. Table 8 and Figure 49 show the F-ratio statistic (F) 

and Probability values (P) of the ANOVA test for the seven experimental 

factors under investigation. 

However, a “type I error” [150] which in statistical hypothesis testing refers 

to the acceptance of a “false positive” finding may occur. The probability of a 

type I error occurring is represented by the P value. Where P is less than 0.05, 

it is more than 95 % probable that the F-ratio statistic value is true. 
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Table 8: Abridged ANOVA table showing F-Ratio Statistic (F) and 

Probability (P) values for experimental factors of influence on 

PSD mean 

 PSD Spread (D90/D10) PSD Mean 

Factor F P F P 

H 9.87 0.00 0.43 0.51 

I 0.16 0.69 0.91 0.34 

J 0.46 0.50 61.32 0.00 

K 58.15 0.00 0.01 0.94 

L 36.25 0.00 0.00 0.98 

M 24.83 0.00 0.08 0.77 

N 7.37 0.01 359.32 0.00 

 

 

 

Figure 49: Chart Showing F-Ratio Statistics for all factors related to laser 

diffraction method. This chart shows the significance of each of the seven 

experimental factors related to particle size analysis to the variation of the 

result of particle size measurements using a laser diffraction method based 

Malvern Mastersizer.  
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It can be seen from Table 8 that Factors J and N (the sample concentration 

and the instrument model used) are the only two factors of significant 

influence to variations in the result of mean PSD observed. However, 

variations in PSD spread (D90/D10) values are more significantly influenced 

by Factors K, L and M (the optical parameters and the dispersion medium 

used). 

Factors H and N (measuring time and the instrument model used) also have 

some significant influence on variations is the PSD spread observed. 

Similarly, the presence of factor interactions can be observed on 

Table 9. The table shows only the four most significant two-way factor 

interactions present. Factor interaction refers to the degree of mutual 

dependence in the contribution of two or more factors to result variations. 

This indicates that choosing a certain pair of settings for two interacting 

factors may influence the PSD result [169]. 

The most significant factor interactions occurred between Factors I and N 

(stirrer/pump speed and the instrument model used) with an F-ratio statistic 

value of 169.8. 

 

Table 9: Abridged ANOVA table showing F-Ratio Statistic (F) and 

Probability (P) values for experimental factors of influence on PSD 

mean 

PSD Spread (D90/D10) PSD Mean 

Interactions F P Interactions F P 

IN 40.92 0.00 IJ 29.99 0.00 

JK 38.11 0.00 IM 17.67 0.00 

KM 51.32 0.00 IN 169.8 0.00 

LM 36.62 0.00 JN 43.52 0.00 
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5.4.2 Half-Normal Plot of Effects for PSD measurement 

The half-normal plot of effects provides a graphical representation of the 

influence of each experimental factor. It involves the calculation of the 

absolute value of standardised effects and plotting these values against the 

theoretical half-normal distribution probabilities. The algorithm for 

implementing this is well established in a number of literatures.   

Figure 50 and Figure 51 show an abridged half normal plot of effects in 

regards to the influence on PSD mean and PSD spread results respectively.  

 

Figure 50: Half-Normal plot of effects - PSD mean. This figure indicates how 

significant a main factor or factor interaction is to the variation of the result 

of an inferred map. The significance is assessed by the distance of the red dot 

(the observed effect of a given factor or factor interactions) from the blue line 

(a line of best fit from the 10 lowest effect sizes). The 10 lowest effect sizes 

with which the blue line of best fit was drawn are not seen in the figure for 

the purpose of high resolution. 
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Figure 51: Half-Normal plot of effects - PSD D90/D10 Ratio. This figure 

indicates how significant a main factor or factor interaction is to the 

variation of the result of an inferred map.  

To reduce congestion on Figure 50 and Figure 51, only a few of the red dots 

have been labelled. It can be seen on Figure 51 that Factor N (Instrument 

model used) had the most significant effect on PSD mean result variation. 

The figure also shows that Factor M (the dispersion medium) had no 

significant effect. 

On Figure 51 however, Factor K and L (optical parameters) can be seen to 

have the most significant effects on the PSD spread result. 

 

5.4.3 Eta-Squared Effects for PSD measurement 

To quantify the actual contribution of individual experimental factors to PSD 

result variation, a statistical tool known as the eta-squared effect can be used. 

The eta-squared effect [170] of a factor is obtainable from the ANOVA table 

as a ratio of the sum squared due to changes in settings within that factor to 

the total variance observed in the 2
k
 ANOVA test.  

Table 10 shows the eta squared effects of the experimental factors on PSD 

measurement. Similarly, Figure 52 provides a bar chart representation of this 

result. 
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Table 10: Eta-squared effect of the experimental factors on PSD 

results 

 Eta squared effect (%) 

Factor PSD Spread  PSD Mean 

H 0.78 0.05 

I 0.01 0.10 

J 0.04 6.94 

K 4.61 0.00 

L 2.87 0.00 

M 1.97 0.01 

N 0.58 40.66 

Interactions 78.94 37.74 

Residual 10.20 14.50 

 

 

Figure 52: Bar Chart showing Eta-Squared Effects for Factors related to 

laser diffraction method. The result in this chart pertains to the mean 

particle size measurements obtained from a series of experiments involving 

soda-lime glass microspheres from Whitehouse Scientific Laboratory, UK. 
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From Table 10, it is evident that factor N (the instrument model used) 

contributed 40.7 % of the total influence on result variation in PSD mean 

measurements, while factors K, L and M (Optical parameters and the 

dispersion medium used) had the least effect. About 37.7 % of the total 

influence was as a result of multi-factor interactions.  

 Similarly, with regards to their influence on PSD spread variations, the most 

influential factors observed were Factors K and L (the optical parameters – 

refractive index and absorption constant) with effect sizes 4.61 % and 2.87 % 

respectively. However, the highest contributions to result variations were 

observed to be due to multi-factor interaction. This contributed a total of 

78.94 %.  

The residual factor which refers to unknown sources of random errors was 

observed to contribute significantly to result variations. It had a contribution 

of 14.5 % to PSD mean results and 10.2 % to PSD spread results.  

5.4.4 Remarks 

It has been observed that Factors N (the instrument model used) and J 

(sample concentration) had the most significant influence on the variation of 

the PSD mean size result observed. This observation is in agreement with 

theoretical expectations [43].  

Laser diffraction method is sensitive to laser obscuration levels within the 

sample. Hence, any variation in sample concentration will cause variations in 

laser obscuration. This will therefore affect the accuracy of the PSD 

measurement.  

Furthermore, the half-normal plot of effects indicates a significantly high 

interaction (JN) between the sample concentration (J) and the instrument 

model used (N). This was also observed for the interaction (IN) involving the 

stirrer/pump speed (I). This underscores the influence of agitation on laser 

obscuration level. 

While the sample concentration factor (J) was observed to have significant 

effect on PSD mean results, it did not have a similar effect on PSD spread 

(D90/D10). This may imply that the PSD spread parameter, being a ratio of 
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the upper and lower percentile, would not change in a case where both 

percentiles D90 and D10 are affected in equal proportion by any factor.  

 

5.5 Conclusion 

The variance recorded in PSD results obtained by repeating such experiments 

is a measure of the uncertainty caused by any variations in experimental 

conditions, as well as residual random experimental errors. This also 

translates to a measure of percentage confidence in the results obtainable in 

any single experiment.  

The choice of the instrument model (a choice between the Malvern 

Mastersizer 3000 model and the Malvern Mastersizer 2000 model) used for 

the PSD measurement and the choice of the sample concentrations (a choice 

between 0.5 and 4.0 % V) are two experimental factors which are directly 

responsible for 40.66 % and 6.94 % (respectively) of the variations in PSD 

mean size results observed across experiments. This is based on an 

assumption that the samples used across experiments are of the same true 

PSD value. Similarly, the measuring time, optical parameters, dispersion 

medium and the type of instrument model used all affect the variations of the 

PSD spread results observed. Indirect contributions to variations may be 

attributed to multiple factor interactions and random experimental errors. 

It is therefore important to decide on a unique setting for each influential 

experimental factor. By doing so, contributions to uncertainty will 

significantly reduce and cross-campaign confidence will improve. 
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6 CHAPTER 6 – Evaluating the Cross-Campaign Confidence in 

a Sludge Characterisation Campaign 

 

6.1 Classification of Errors  

 

Errors are classified into two; random errors and systematic errors. Random 

errors affect precision and introduce variability in results while systematic 

errors affect accuracy and introduce a bias in the result. Reducing random 

errors, and consequently, reducing variability, generally requires an increase 

in sample size, an improvement in analytical methods and an increase in the 

number of observations [171] [172] [72]. While random errors can be 

statistically determined, systematic errors cannot, thus the need for adequate 

calibration of instruments before use [173] [174]. In cases where the 

magnitude and direction of a systematic error is largely unknown, such an 

error cannot be eliminated [72].  

In analysing uncertainties however, one may only focus on random errors 

[174] or ‘technical errors of measurement’ (TEM) as considered by Harris 

and Smith [149] where TEM was explained to be a part of the residual 

variance in a statistical test which if analysed, provides a basis for 

determining statistically significant differences.  Technical errors are usually 

due to a number of sources of variability such as data collection method, 

instrument used, sample handling and any other procedural variability.  

The remaining residual variance may be due to having different operators, or 

differences in samples analysed as suggested by Cameron [175]. It may 

therefore be sufficient to centre the discussion on errors on two broad classes; 

technical (or procedural errors) and general random errors. For example, if an 

operator who is required to prepare a 1% sample concentration goes ahead to 

prepare a 1.2% concentration, such a flaw may introduce a procedural error 

especially where sample concentration has been established to be a major 

influential factor. If the contribution of this error has been earlier quantified, 

it may be possible to reverse its effect. The issue of uncertainty becomes vital 
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where one is not sure of the procedural flaws that may have been involved in 

the course of several experiments.  

It is important to make clear that there may be a minor conflict in the choice 

of nomenclature amongst researchers in this field. Batista-Fouget et al. [148] 

while maintaining the concept of random and systematic error classification, 

suggests that systematic errors may be further decomposed into two 

components; bias and variance, where the variance component is the error 

introduced by varying the experimental methods or influence factors. It is 

however easy to see that there is a consensus in that errors may be categorised 

based on their sources as follows; bias of the system, variability of the 

procedure and noise.  

 

6.2 Adoption of Eta-squared Effect as a Tool for Variance 

Harmonisation 

 

In investigating the influence of different experimental factors to variance, 

there are three steps; the first step is to identify the sources of uncertainties in 

an experiment, the second step is to estimate the uncertainty in each 

component that makes up the overall result, the third step is to combine the 

individual uncertainties to give the overall uncertainty in the final result [176] 

[173]. Combining individual uncertainties is commonly done by the method 

of error propagation as discussed in the uncertainty analysis of non-

destructive nuclear waste assays [177].  

It has however been mentioned that the mathematical method of error 

propagation as extensively explained in [178] is only applicable when there 

exist a mathematical relationship between the error variables [173], in the 

absence of which a statistical method becomes most appropriate. 

Thus, the use of t-test and ANOVA test [148] [149] have been suggested as 

viable statistical methods. Other methods have been suggested such as the 

test-retest, intra test and the inter-rater reliability tests [149]. In bringing all of 

these individual uncertainties together to form the overall uncertainty, the eta-
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squared effect value (described in Chapter 3) becomes a useful tool [158]. 

Similar to the eta squared effect value are the partial eta squared effect, the 

omega squared effect and the epsilon squared effect values [158] which have 

their advantages and disadvantages when compared to the use of the eta-

squared effect value 𝜂2 as recalled in Equation (16). 

  

𝜂𝑖
2 =

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 

 

(16) 

 

Where 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the sum square between the two treatment group as 

categorised by settings within the factor 𝑖 and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total of all sum 

squares. Thus, the eta-squared effect of an experimental factor is a ratio of a 

factor’s contribution to variance and the total variance observed in the 

ANOVA test. 

The eta-squared effect when calculated for all influence factors, factor 

interactions and the residual (unexplained) error, indicates their proportional 

contributions to the overall uncertainty. By decomposing the overall 

uncertainty into controllable and uncontrollable uncertainty; where the 

controllable uncertainty refers to the contributions of influence factors and 

interaction of factors, while the uncontrollable uncertainty refers to the 

residual error inherent in the experiment, it thus can be suggested that by 

conducting an experiment using any procedure, the random error variance 

observed can be extrapolated to infer an overall variance which takes account 

the potential impact of procedure variation.  This provides a platform for the 

comparison of experimental results obtained by different operators. 

Furthermore, it can be suggested that by restricting procedure variation, a 

certain fraction of the overall uncertainty can be eliminated.  

For example, consider an experiment to determine the influence of two 

factors namely: “duration” and “temperature” on the electrical energy 

consumed by a kitchen oven. Given that at the end of an ANOVA analysis, 

Table 11 was obtained as a summary of the ANOVA results: 
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Table 11: Summary of an ANOVA test (For illustration purpose only) 

Factor Sum Squared 

(𝐽2) 

Eta-Squared 

Effect (%) 

Temperature 1355.34  40.31 

Duration 600.20  17.85 

Temperature*Duration 407.98 12.13 

Error (residual) 998.54  29.70 

Total 3362.06 100 

 

Therefore, uncontrollable variance is equal to 29.7% of overall variance 

inclusive of procedure variation. Overall variance is (100/29.7) times the 

residual variance. 

If a number of runs of the experiment is conducted using a particular Duration 

and Temperature Setting, and a variance of 65.5 𝐽 is observed, then the 

overall experimental variance can be estimated for experiments involving 

variable Temperature and Duration Settings. Based on the Eta-Squared 

Effects of Table 11, if a number of operators repeat the same experiment, 

each using a randomly different procedure, then the overall experimental 

variance will be; 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  (

100

29.7
) ∗ 65.5 𝐽 =  220.5 𝐽 

 

(17) 

 

Furthermore, considering that factor ‘Temperature’ accounts for 40.3% of the 

overall variance, it implies that if all operators are instructed to stick to the 

same procedural setting under factor ‘Temperature’, say all operators are 

instructed to use a temperature of 40 degrees Celsius, the overall variance is 

reduced by 40.3%. The contribution of factor interaction 

‘Temperature*Duration’ to uncertainty can be further decomposed by 

conducting further correlation analysis. Factor interaction means that the 

effect of one factor is affected or determined by the setting of another factor. 
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6.3 Method of Variance Harmonisation 

 

The eta-squared effects of experimental factors obtained in Chapters 3 and 5 

indicate the percentage influence of the identified experimental factors on 

result variability. In making use of these eta-squared effects to determine the 

cross-campaign uncertainty associated with a sludge characterisation map 

result, the flowchart in Figure 53 provides an algorithm. The algorithm 

describes how the uncertainty contributions of the various experimental 

factors can be harmonised to produce the overall cross-campaign uncertainty 

in sampled data as well as in predicted data. The key to the flowchart is as 

follows:  

LV: Laboratory observed variance due to random errors during experiments. 

LV is obtainable from laboratory data; hence it is a known value. 

AnV: This is the analytical variance and it is caused by variability in 

analytical procedures as influenced by analytical factors and their 

interactions: {H, I, J, K, L, M, N, HI, HJ, . . ,HIJKLMN, residual r}. The 

percentage contributions of each of these factors and interactions have been 

calculated as shown in Table 10 of Chapter 5. The ‘residual r’ component 

here represents the LV value.  

SmV: This is the sampling variance and it is caused by variability in sampling 

procedures as influenced by sampling factors and their interactions: {A, B, C, 

D, AB, AC, . . .  ABCD, RESIDUAL R}. The percentage contributions of 

each of these factors and interactions have been calculated as shown in Table 

6 of Chapter 3. The ‘RESIDUAL R’ component here represents the AnV 

value.  

SpV: Spatial Prediction variance (applicable to predicted data for non-

sampled locations) SpV is obtainable from the spatial extrapolation algorithm 

method used and hence it is a known value but unique to each spatial 

position. It has a value of zero for data at sampled locations. 

Also, let ‘r %’ and ‘R %’ represent the percentages of residual components in 

the analytical and sampling uncertainties, respectively. 
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. .  

 

 

Figure 53: Chart showing variance harmonisation. shows the inter-

relationship amongst the various percentage contributions and how this 

can be used to estimate the overall confidence. 

 𝐿𝑉 =  𝑟 % 𝑜𝑓 𝐴𝑛𝑉 
(18) 

 

 𝐿𝑉 =  𝑟 % 𝑜𝑓 (𝑅 % 𝑜𝑓 𝑆𝑚𝑉) 
(19) 

 

 𝐿𝑉 =
𝑟 ∗ 𝑅

104
𝑜𝑓 𝑆𝑚𝑉 

(20) 

 

 𝑆𝑚𝑉 =
𝐿𝑉

𝑟 ∗ 𝑅
∗ 104 

(21) 

 

 𝑂𝑉 =  𝑆𝑝𝑉 +  𝑆𝑚𝑉 
(22) 
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 𝑂𝑉 =  𝑆𝑝𝑉 +
𝐿𝑉

𝑟 ∗ 𝑅
∗ 104 

(23) 

 

 

For example, in applying Equation (23) to the outcome of an experiment, 

where R and r have values 10.0 and 14.5, respectively; 

 𝑂𝑉 =  𝑆𝑝𝑉 + 69 𝐿𝑉 (24) 

   

Remark 

Equation (24) provides a relationship between the variance observed in the 

laboratory result and the overall variance of the experimental result. This is 

however a worst-case scenario in which all experimental factors have been made 

to contribute (according to their eta-squared effect) to the overall variance. This is 

evident in Equation (19) where the two residual components are only a certain 

percentage r% and R% of the AnV and SmV respectively.  

In cases where the setting of any influential experimental factor is known to have 

been kept constant across campaigns, then its contribution to overall variance 

becomes zero, and the residual component increases in percentage. This therefore 

reduces the overall variance calculated. 

In the best-case scenario where the settings of all influential experimental factors 

are kept constant across campaigns, the two residual components assume values 

of 100 %. By substituting the new values of r and R into Equation (23), Equation 

(26) is obtained. This equation indicates that in the best-case scenario, the overall 

variance at any sampled location is only a function of the laboratory variance 

observed on sampled data and the spatial variance as obtained from a confidence 

or variance map discussed in Chapter 4.  

 𝑂𝑉 =  𝑆𝑝𝑉 + 𝐿𝑉 (25) 

Therefore, in an attempt to harmonise the results of sludge characterisation carried 

out by two or more different teams, the method of variance harmonisation can be 
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adopted. This provides a tool for laboratory-to-laboratory comparison meetings 

when held. 

 

 

6.4 Summary 

 

In this chapter, the need to estimate errors and uncertainty was discussed. The 

relationship between data variance and uncertainty was also highlighted. In 

order to identify data variance due to procedural variability in sampling and 

analytical procedures, and the effect of influence factors on result confidence, 

the use of statistical tools such as ANOVA and eta-squared effects was 

discussed. Going forward, sampling simulations and analytical experiments 

will be conducted to obtain results that will be run on separate ANOVA tests 

to evaluate the effect of sampling and analytical factors on single-campaign 

and cross-campaign percentage confidence. However, combining both the 

sampling and analytical factors in one ANOVA test is unlikely because the 

sampling will be conducted by computer simulation while the analytical 

experiments with be conducted in the laboratory. 
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7 Chapter 7 – The Feasibility of using Ultrasonic Spectroscopy 

to Measure the Particle Size Distribution of Underwater 

Radioactive Sludge  

 

7.1 Introduction 

 

The measurement of PSD of the radioactive sludge in a nuclear storage 

pond may be conducted ex-situ or in-situ. However, with ex-situ methods, 

the process of sample collection, handling and preparation prior to analysis 

may introduce uncertainties to the PSD results obtained. Discussions about 

the influence of certain experimental factors involved in sludge sample 

collection and laboratory analysis are contained in Chapters 3 to 6.  

Furthermore, the challenge of retrieving an adequate amount of radioactive 

sludge as well as providing adequate storage for them involves a 

significant amount of time, man-power, logistics, and cost. As an 

alternative, this chapter considers the feasibility of an in-situ measurement 

of the PSD of radioactive sludge underwater.  

In-situ methods generally provide improved safety and accessibility, and 

the possibility of a reduction in experimental uncertainties. For example, 

the use of an underwater remote operated vehicle (ROV) to carry a mobile 

PSD analyser around the pond enables an improvement in the number of 

sampling locations. According to findings in Chapter 6, this is capable of 

reducing result variations by 4.4 %. 

In addition to increasing the number of sampling locations, an ROV also 

has the ability to access locations within the pond which may be 

considered inaccessible to humans. It is therefore expected that by in-situ 

sampling, such as the use of an ROV, there would be improvement in the 

sampling strategy factor. According to findings in Chapter 6, this factor is 

responsible for about 8 % of map result variation. 
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However, in order to improve the penetration depth capability of a 

sampling device mounted on an ROV, as well as the bias of the sampling 

device, a number of design considerations need to be made. This includes 

equipping the ROV with an appropriate sludge penetration and retrieval 

mechanism such that there is an adequate downward and upward thrust 

during penetration. The method of sludge collection must also be designed 

to reduce bias.  

Aside the design of an appropriate ROV, there is a major task in the 

development of an in-situ method is the choice of an appropriate PSD 

analysis technique, suitable for underwater mobility. In Chapter 2, a 

number of techniques and their limitations have been discussed. A major 

setback to the deployment some techniques for in-situ underwater PSD 

analysis is their dependence on sample preparation.  

For example, LDM requires adequate sample preparation [113] such as the 

dilution of samples to a volume concentration of about 1 % v/V in de-

ionised water. The LDM is also susceptible to mechanical disturbances 

which distorts the optical alignment of the lenses and by implication, 

causes downtime. 

A PSD measurement technique which could be a prospective choice is the 

ultrasonic spectroscopy, also referred to as acoustic attenuation 

spectroscopy [77], or acoustic emission [179]. It is a relatively new 

technique for measuring particle sizes and other physical properties of a 

particulate sample [180]. Unlike the laser diffraction method and some 

other techniques of particle characterisation which strongly require that 

samples are diluted to as low as 1% in volume concentration [77], 

ultrasonic spectroscopy has proved to be applicable to samples with 

volume concentrations as high as 20 % [70]. A comparison of the various 

techniques is provided in Chapter 2. 
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7.2 The Principle of Ultrasonic Spectroscopy for PSD Measurement 

Ultrasonic spectroscopy involves the transmission of multiple ultrasound 

waves at high frequency usually in the range of 100 to 100 MHz [87], 

through a particulate sample of appropriate concentration in water, and 

studying the speed and attenuation properties of the received wave. The 

speed and attenuation of the received signals are subsequently analysed 

and compared to mathematical models based on existing theories to predict 

the particle characteristics [78] [181] such as particle size distribution and 

sample concentration. Riebel [70] provides a detailed discussion on the 

method of data interpretation as will also be addressed later in this chapter.  

Figure 54 shows a schematic of an ultrasonic spectroscopy system. An 

electrical impulse signal kδ(t) of appropriate pulse width τ and amplitude k 

is generated. This signal is sent to an appropriate transducer which 

converts it to an acoustic wave of known bandwidth. The wave then 

travels through the measuring chamber, to the other end and bounces off 

the reflector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54: A schematic layout for ultrasonic spectroscopy using 

the pulse-echo approach. The signals sent and received are 

analysed by the computer in order to determine the size of 

particles in the medium. 
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The backscattered wave returns to the transducer at a time t, having 

travelled a total distance of 2L (where L is the length of the measurement 

chamber). Particles in the measuring chamber create resistance to the wave 

transmission causing power loss (attenuation). This typically involves 

scattering losses, intrinsic absorption losses, thermal dissipation losses and 

visco-inertial dissipation losses [44]. These losses are dependent on the 

physical properties of the particulate sample. The received signal y(t) is 

subsequently recorded for FFT analysis and for onward interpretation.  

Aside being dependent of the particle characteristics, the attenuation 

coefficient observed is also a function of the sound frequency [182] and 

thus is measured at multiple frequencies to produce an attenuation 

spectrum. Wines et al. [183] in an experiment to determine droplet size 

distribution used acoustic spectroscopy with a frequency of 3 MHz to 100 

MHz in 18 logarithmic steps. This was applied to droplets of size diameter 

ranging between 0.0001 µm and 1 µm. The wider the frequency range, the 

broader the size range for which measurements can be taken. However this 

must be done with due consideration of the signal-to-noise ratio as 

transducer sensitivity does have an influence on result validity. In addition 

to this, attention must also be paid to the transducer alignment as this 

becomes critical for frequencies over 10 MHz [87]. Unless the particle 

suspension is stable, it may be necessary to introduce stirrers to the 

measurement cell to agitate the particles and avoid sedimentation [87]. It 

has been observed that the stirrer speed does not introduce any additional 

acoustic attenuation dynamics to the system. [184] [185].  

The ultrasonic spectrometer may be setup in a number of ways based on 

the number of transducers and the type of ultrasonic signal employed and 

this has been previously discussed extensively [44]. When only one 

acoustic transducer is used for both transmission and reception, requiring 

that a reflector is positioned at the other end of the transmission, then 

either of two techniques could be adopted; one is the pulse-echo technique 

if the transducer is supplied with a pulse signal, or the resonance technique 

if the transducer is supplied with a continuous wave [186]. Instead of re-

running experiments for individual frequency values, as applicable to 



164 
 

continuous waves, pulse technique provides an opportunity to run multiple 

frequencies all at once and subsequently conduct a Fast Fourier Transform 

(FFT) to obtain the required attenuation and velocity spectra [44] [187].   

While it is possible to increase the bandwidth of an excitation pulse by 

decreasing the pulse width [87], the bandwidth capacity of the transducer 

is limited and thus may require that two or more transducers with 

complementary bandwidth envelopes are employed to cover a wide 

broadband [44]. With regards to concentration measurements, a group 

velocity is required at only one frequency [80]. 

Also, there is a choice to make with regards to taking measurements at 

fixed or variable path lengths as this has an effect on data processing speed 

and result uncertainty. In the case of fixed path lengths, all measurements 

are done at a fixed distance between the transmitting and receiving 

transducers or reflector.  

The observed signal is then compared with a background signal taken at 

the same gap but in a reference sample of the continuous phase only. In the 

case of a variable path length, data collected at two or more distance 

settings between the transmitter and receiver or moveable reflector are 

analysed for regression parameters without the need for a background or 

calibration data [188] [189].  In this regard, Wines et al. [183] in an 

acoustic spectroscopy experiment used a DT-1200 Dispersion 

Technologies Spectrometer. In this instrument, the path length was made 

variable in 21 steps from 0.15 mm to 20 mm. 

The implementation of the ultrasonic spectroscopy technique involves 

three stages as highlighted by Alba et al. [77]. The first step is to make 

predictions of expected attenuation spectra for an array of likely sample 

configurations, such as PSD and dispersion concentrations. The second 

step is to experimentally obtain the actual attenuation spectra from the 

sample understudy.  

The third step is to perform an appropriate inversion algorithm that 

produces the best fit particle characteristics from the available attenuation 
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spectrum and model prediction data. According to Watson [190], based on 

the concept that a sound wave, upon interaction with a material, is either 

reflected or absorbed for onward transmission with inherent losses during 

this interaction, it is possible to model expected interactions.  

 

7.2.1 Mathematical Theories Required for PSD Measurement 

There exist a number of theories that guide model predictions. One of such 

is the one proposed by Epstein and Cahart [191] and Allegra and Hawley 

[192] known as the ECAH theory which is widely used for samples 

containing heterogeneous sizes [79]. These theories have identified a 

relationship between fundamental wave equations and the interaction 

between sound waves and particles. This relationship enables the 

calculation of energy losses in the form of viscous, thermal, absorption or 

scattering losses. It has therefore become possible to predict the expected 

attenuation of a sound wave based on knowledge of the particulate 

medium.  

This implies that knowledge of the thermodynamic and mechanical 

properties of the continuous and dispersed phase of a sample may be a 

crucial component of ultrasonic spectroscopy.  

If there is no knowledge about the sample being characterised, there will 

be no appropriate prediction model to support data interpretation [87]. By 

simply monitoring changes in the attenuation, time of flight or speed of 

transmitted ultrasound, relative changes in corresponding sample 

characteristics such as sample concentration can be estimated and 

displayed [187] [193].  

Another theory is the coupled phase model theory [194] which gives a 

similar result as the ECAH theory for a less concentrated system. 

However, as concentration increases, and the effect of multiple scattering 

can no longer be overlooked, the relationship between particle 

concentration and observed attenuation becomes nonlinear [80] at which 

stage, coupled phase model is more reliable. This is so because while the 
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ECAH theory involves the assumption of independent scattering, the 

coupled phase model, in calculating total loss, gives less significance to 

the losses due to intrinsic scattering effect and more to thermal and viscous 

losses [80]. 

 

7.3 Theory Formulation 

7.3.1 Translation of Ultrasonic Data to PSD 

 

An ultrasonic impulse kδ(t) is composed of a range of frequencies. This 

range is dependent on both the width of the impulse and the bandwidth of 

the transducer in use. For a frequency component w, let the amplitude of 

the original incident wave be 𝐴(𝑤, 0). After travelling to the reflector and 

back to the transducer, over a total distance of 𝑥𝑖, the new amplitude of 

that frequency component is represented by 𝐴(𝑤, 𝑥𝑖).  

𝐴(𝑤, 0) and 𝐴𝑖 (𝑤, 𝑥𝑖) can be obtained for all frequency components 

within the bandwidth by conducting a Fast Fourier Transformation (FFT) 

on the sent signal kδ(t) and the received signal y(t). Equation (26) is then 

used to obtain the attenuation coefficient. 

 
𝛼𝑖(𝑤) =

1

𝑥𝑖
 𝑙𝑜𝑔𝑒 | 

𝐴(𝑤, 0)

(𝐴𝑖 (𝑤, 𝑥𝑖)
𝑒
−
𝑗𝑤𝑥
𝑐(𝑤)|   

(26) 

 

 

Where, 𝛼(𝑤) is the attenuation coefficient, measured in nepers per meter. 

𝑐(𝑤) is the speed of any sound wave of frequency w.  

This experiment is performed a number of times i ∈ {1, 2, 3, …, N}. In 

each repetition, the distance 0.5𝑥𝑖 between the transducer and the 

moveable reflector is varied. Data collected at two or more transducer-

reflector distance settings are analysed for regression parameters. This 

eliminates the need for background or calibration data. 
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 The mean attenuation coefficient for every frequency component is 

thereafter obtained using Equation (27). This is known as the ultrasonic 

attenuation spectrum (UAS).  

 
𝛼 (𝑤) =

1

𝑁
∑𝛼𝑖(𝑤) 

𝑛

0

 

 

(27) 

 

The UAS is a function of the properties of the particulate medium 

contained in the measuring chamber. The properties include an array of 

particle sizes of radius 𝑅𝑤, the fractional volume φ of the dispersion, and a 

number of thermo-mechanical parameters 𝐴𝑛. This is defined by the 

imaginary component of Equation (28) [195]. 

 𝑤

𝑐(𝑤)
+ 𝑗𝛼(𝑤) = 𝑘𝑐 (1 +

3𝜑

𝑗𝑘𝑐
3 𝑅𝑤

3) (𝐴𝑜 + 3𝐴1 + 5𝐴2)
0.5   

(28) 

 

Where 𝐴2 is negligible at less than 100 MHz. 𝐴1 accounts for visco-inertia 

effects while 𝐴0 includes other physical quantities. Having obtained the 

UAS array from Equation (27), the PSD can be obtained using Equation 

(28), to find 𝑅𝑤. 

The 𝐴𝑛 parameters are derived by using either of two theories namely: the 

ECAH theory [191] [192] and the coupled-phase model theory [194]. The 

ECAH theory is valid at lower sample concentrations [196], while the 

coupled-phase model is more appropriate at extremely high sample 

concentrations. This is because of the difference in the power loss models 

adopted by these theories. 

By assuming that particles are isolated in a low concentration medium, 

where only single-scatterings occur, and by considering sound waves of 

wavelength 𝜆 << 𝑅𝑤 (the Short-Wavelength Region), Equation (28) may 

be further simplified [197]. 

 
𝐾𝑐 =

𝑤

𝑐(𝑤)
  

(29) 

 

 𝐴𝑛(𝑅,𝑤) =  −𝑗 sin(𝜂𝑛(𝑅, 𝑤)) . 𝑒
−𝑗𝜂𝑛(𝑅,𝑤)   (30) 
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𝐾𝑖,𝑗(𝑅𝑖, 𝑤𝑗) =  −

4𝜋

𝐾𝑐2
∑(2𝑛 + 1)|𝐴𝑛(𝑅𝑖 , 𝑤𝑗)|

2
𝑛

0

 
(31) 

 

𝜂𝑛 is the phase shift of the partial scattered waves and 𝐴𝑛(𝑅,𝑤) is the 

scattered amplitude coefficient. The relationship between UAS and PSD 

can therefore be linearised as given by Equation  

(32) and referred to as the Lambert-Beer Equation [198]. 

  

𝛼(𝑤) =  𝐶𝑝.𝑎𝛥𝐿 𝐾(𝑅,𝑤)𝑑𝑄2(𝑅) 

 

(32) 

𝐶𝑝.𝑎 is the projection area concentration, 𝛥𝐿 is the gap width between the 

transducer and the reflector, 𝐾(𝑅,𝑤) is known as the Matrix of related 

extinction cross-section and 𝑑𝑄2(𝑅) is the PSD of the particulate sample. 

From Equation (33), the PSD can be obtained by re-arranging the matrix 

operation and solving for 𝑑𝑄2(𝑅). This is a direct method. An indirect 

method however involves substituting 𝑑𝑄2(𝑅) with pre-selected mono-

modal or bi-modal log-normal distribution models to determine a best-fit 

PSD model that satisfies the equation, based on a least-square analysis 

[44].  

At low concentrations, parameters such as the density, thermal expansion 

coefficient, speed of sound in the fluid, sample concentration, density and 

heat capacity of the particle are of significance influence to the thermo-

mechanical properties of the particulate sample [80] [199]. Without 

adequate knowledge of these relevant thermo-mechanical parameters, 

neither of 𝐴𝑛 nor 𝐾(𝑅, 𝑤) will be available for Equations (32) and (33). 

 

7.3.2 Challenges involved in the Deployment of Ultrasonic Spectroscopy 

Although significant progress has been achieved in the application of 

ultrasonic to relatively homogenous material mixture, Kress-Rogers [200] 

identified a problem in that most industrial applications involve 

inhomogeneous materials with varying acoustic impedance values 

particularly in the food industry. Any attempt by an acoustic signal to 
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travel across the boundary layer of two materials with contrasting acoustic 

impedances creates a high probability of reflection thus decreasing the 

likelihood of further acoustic penetration and spectroscopy. 

Kress-Rogers therefore suggested that in such a situation, it may be 

necessary to employ an array of acoustic transducers firing and listening 

from all angles, similar to a work by Schlaberg et al. [201] where an array 

of 36 transducers were mounted around the cross-section of a pipe. The 

impact of a transducer’s sensitivity on particle size analysis has also been 

queried. Lopez-Sanchez and Schmerr [202] proposed a new model-based 

approach that includes the determination of both the electric impedance 

and sensitivity of a single element transducer used in the pulse-echo setup.  

Similarly, the adverse effect of irradiation on a transducer’s characteristics 

has been observed [203].  

There are drawbacks to the proposal of multiple transducer-reflector 

distance settings. DosRamos [204] remarked that one of these drawbacks 

is the possible abrasion issues that may arise when moveable reflectors or 

transducers are exposed to slurries and another drawback may be the 

requirement of a high resolution motion stepper motor to drive the 

systematic movements. Therefore, instead of employing moveable 

reflectors, the author proposed the use of an arrangement of multiple fixed 

reflectors in a step-wise position known as the AREPA (Acoustic 

Reflection Particle Analysis).  

This development is similar to a recommendation by Kummritz et al. [205] 

wherein it was suggested that in measuring the focal point of transducers 

as a means to improving material characterisation of multi-layered 

samples, instead of moving the probe as was proffered in [206], the same 

could be achieved by implementing delayed excitations of the segments of 

an annular array. 

With regards to reliable model predictions, it was discussed earlier that the 

ECAH theory assumes that particles are relatively isolated at low 

concentrations and thus provide single and independent scattering of 

acoustic signals. Hipp et al. [196] sought to investigate the implication of 
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having multiple-particle effect in a concentrated colloidal dispersion. It 

was observed that while there could be an occurrence of multiple lossless 

scatterings which have no significant effect on results, the existence of 

another multiple-particle effect known as the particle-particle effect does 

have an effect. The particle-particle effect creates the possibility of energy 

interactions between neighbouring particles thus modifying dissipative 

energy and absorption characteristics. 

Forrester et al. [207] identified the challenge inherent in monitoring and 

interpreting severe attenuations in highly concentrated and dense samples 

of sizes in the nano scale. The authors recommend that for frequencies in 

the range 1 MHz to 20 MHz and in samples with concentration below 20 

%, a shear-wave reconversion model which recognises the conversion of 

sound waves from compressional waves to shear waves and back to 

compressional waves at liquid/particle boundaries would enable a more 

accurate interpretation of the resulting ultrasonic attenuation spectrum. 

The authors however noted as frequency and sample concentration 

increase, the model becomes less accurate. Hence, there is the need to 

consider the effect of neighbouring interactions on visco-inertial and 

thermal dissipations in high concentration particulate samples. 

Another factor that limits the usability of ultrasonic spectroscopy is its 

dependence on a number of mechanical and thermodynamic properties of 

the sample being investigated. For example, in a research by Zozulya et al. 

[208] using pulsed acoustic spectroscopy to determine bubble size 

distribution, it was remarked that it is necessary to specify the visco-elastic 

properties of the bubble shell. The authors also identified the difficulty in 

obtaining such parameters n-situ. For this reason, the authors 

recommended the use of acoustic spectroscopy only when such parameters 

are provided.  Most often, these properties are not readily available in fact, 

they could be unknown. In such situations, it is important to know the 

extent to which parameter assumptions could be made.  

Babick et al. [80] investigated the stability of particle size results obtained 

by ultrasonic spectroscopy when incorrect relevant material properties are 
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used in the model prediction. It was observed that at low concentrations, 

the density, thermal expansion coefficient and sound speed of the fluid, as 

well as the concentration, density and heat capacity of the particle were of 

significance influence. Mougin et al. [199] also observed a similar 

outcome.  

Similarly, Zozulya et al. [208] in a study on bubble size distribution 

suggests that visco-elastic properties can be recovered indirectly if the 

bubble size distribution is first obtained using a different technique. 

Babick et al. [80] suggested the need to investigate the extent to which 

ultrasonic spectroscopy may also be used to measure these parameters.  

There may be some hope in this regard as Holmes et al. [184] in an 

experiment observed the applicability of acoustic spectroscopy in 

determining temperature dependent bulk viscosity of fluids.  

7.3.3 Solving the Challenges 

Rather than use theoretical models that require an array of material 

properties, Babick et al. [209] suggests the use of analytical models when 

faced with the challenge of partly unknown samples. One of the strategies 

proposed therein was the development of an empirical model using 

statistical methods of correlating the physical properties of particulate 

samples with corresponding components of the attenuation spectra. It was 

observed that this method was successful in determining at least the mean 

PSD of a sample whose material properties are largely unknown.  

The observation by Babick et al. [209] is similar to the findings reported in 

Chapter 5 about the LDM method. In the case of the LDM method, the 

choice of optical parameters provided was found to have no direct 

influence on the mean of the particle size distribution observed. However, 

there was a 5 % influence on the spread of the size distribution observed.  

However Babick et al. [209] warned that the method of an empirical 

model to replace knowledge of some thermo-mechanical properties 

requires a significant amount of training data set, and that the model 

produced is only applicable to the particular product or process for which 
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it was designed. In the worst case scenario of a nuclear storage pond 

however, during in-situ analysis, there is no restriction to the variety of 

unknown materials which may be collected and analysed. The challenge 

this poses is that either the empirical model becomes significantly 

inaccurate or there is a need for a continuous increase in the number of 

training datasets.  

To determine the feasibility of ultrasonic spectroscopy as a technique for 

measuring PSD of radioactive sludge in-situ, this chapter examines the 

success of an empirical model as a replacement of thermo-mechanical 

properties in an unknown sludge environment. 

  

7.4 Developing an Empirical Model for Converting UAS to PSD 

 

By discretising Equation (30), the term that is dependent on thermo-

mechanical parameters can be substituted with an m × m K-Matrix 𝐾𝑚.  

The UAS and PSD can be discretised into an array of m-elements 𝐴𝑚 and 

𝑄𝑚 respectively. This results in Equations (34) and (38). 

 

𝑨𝒎 = 𝑲𝒎  𝑸𝒎     

 

(33) 

 

 𝜶𝟏
𝜶𝟐
𝜶𝒎

= [
𝒌𝟏𝟏 ⋯ 𝒌𝟏𝒎
⋮ ⋱ ⋮
𝒌𝒎𝟏 ⋯ 𝒌𝒎𝒎

]

𝒒𝟏
𝒒𝟐
𝒒𝒎

 

 

(34) 

 

To be able to solve for 𝐾𝑚, the matrices 𝐴𝑚 and 𝑄𝑚 can be populated into 

sizes m × m as in Equation (35).  To achieve this, additional samples of the 

exact same non-homogeneous material need to undergo analyses. The first 

analysis involves the collection of the UAS raw data from each sample by 

conducting ultrasonic spectroscopy. This may be performed in-situ, after 

which the material may be taken into a laboratory. The second analysis is 

the measurement of the PSD data of each of the samples. This involves the 
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use of the LDM method or any other reliable method of PSD measurement 

in a laboratory. A total of m samples are required. 

 

[

𝜶𝟏𝟏 ⋯ 𝜶𝟏𝒎
⋮ ⋱ ⋮
𝜶𝒎𝟏 ⋯ 𝜶𝒎𝒎

] = [
𝒌𝟏𝟏 ⋯ 𝒌𝟏𝒎
⋮ ⋱ ⋮
𝒌𝒎𝟏 ⋯ 𝒌𝒎𝒎

] [

𝒒𝟏𝟏 ⋯ 𝒒𝟏𝒎
⋮ ⋱ ⋮
𝒒𝒎𝟏 ⋯ 𝒒𝒎𝒎

] 

 

(35) 

 

 

    𝑨𝑨𝒎  =  𝑲𝒎 𝑸𝑸𝒎 

 

(36) 

 

 

 𝑲𝒎 = 𝑨𝑨𝒎 𝑸𝑸𝒎
−𝟏   

 

(37) 

 

As the number of unique samples m increases, the resolution and the 

accuracy of the K-matrix is expected to increase. However, it is possible to 

have samples which are not entirely unique in their PSD and UAS data. 

This could cause the matrix operation of Equation (38) to result in non-

singularity. For this reason, a pseudo-inverse of 𝑄𝑄𝑚 may be substituted 

for the inverse matrix 𝑄𝑄𝑚
−1. 

The K-matrix obtained by using Equation (38) can be tested on a different 

set of sludge samples to understand the degree of uncertainty involved in 

using this for data interpretation.  

The series of experiments performed to develop an empirical model as 

described is best performed on a singular type of sample material. 

Otherwise, the resulting learning datasets may not agree. However, there is 

neither an assurance that the sludge material is homogenous across the 

population nor that the non-homogeneity of sludge material is uniformly 

distributed across the population. Thus, the material composition of each 

of the m samples analysed may vary. This underscores the need to use a 

significant number of samples and the need to have a statistical evaluation 

of the uncertainty associated with any K-Matrix. 
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7.5 Laboratory Experiment to Obtain raw UAS data of Soda-lime 

Glass Microspheres 

In order to test the feasibility of empirical models, laboratory experiments 

were performed to obtain raw UAS data of soda-lime glass microspheres. 

These soda-lime glass microspheres were the used earlier in the analysis of 

the LDM method of Chapter 5. Collection of their raw UAS data would 

therefore provide learning datasets for the development of an empirical 

relationship between PSD and UAS of soda-lime glass. 

This experiment involved the use of soda-lime glass microspheres of two 

different PSDs. A 170 – 710 µm size range (Whitehouse Scientific Ltd) 

and a 465 – 600 µm size range (produced by Sigma-Aldrich) as obtained 

from their technical documentation at a sample concentration of 10 % v/V 

in distilled water. The soda-lime glass microspheres were sampled using 

an ultrasonic spectroscopy setup at the University of Leeds, UK to obtain 

UAS raw data. Figure 55 shows the experimental set-up used. Alastair 

Tonge, PhD student in the acoustics research group, University of Leeds 

was very helpful in the setup of the acoustic system and in the operation of 

the data acquisition software. 
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Figure 55: Acoustics Experimental Set-up at Leeds University, UK. 

The set-up comprises three acoustic transducers, a stirrer, soda-

lime glass microspheres, water medium, and a container.  

The experimental set-up comprised three acoustic transducers with each 

operating at three discreet frequencies. They were: 

• Transducer 1: {0.85 MHz, 1 MHz and 1.15 MHz} 

• Transducer 2: {1.75 MHz, 2 MHz and 2.25 MHz} 

• Transducer 3: 3.75 MHz, 5 MHz and 6.25 MHz} 

These transducers were used simultaneously so as to provide attenuation 

readings for a total of nine frequencies. The sample was kept at 10 %v/V 

in distilled water.  A stirrer operating at 400 rpm was used to keep the 

concentration uniform during measurement. 

Stirrer 

The Three 

Transducers 

Sample 
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7.6 The Results of the Ultrasonic Experiment Conducted at Leeds 

University, UK 

 

The acoustic transducers received voltage signals for each of the nine 

discrete frequencies. The signals were returned against sample time (which 

had been converted to travel distances). This result showed significant 

back reflection even before travelling to the reflector. By collecting 

voltage signals received at times which correspond to the set distance 

between the transmitters and the reflector, the attenuation coefficients were 

calculated and recorded. This was done for each of the four tests run. The 

results are shown in Figure 56. 

 

Figure 56: UAS for 4 samples at different gaps between transmitter and 

reflector. This experiment was carried out for four different sets of 

soda-lime glass microspheres samples of different mean particle sizes as 

represented by the different colours.  

 

The received signals were observed to have significant noise levels. This is 

however understandable considering that the acoustic machine used was 

not designed to perform PSD analysis. The non-reliability of the UAS 
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results can be seen in the UAS plots which should typically show a 

continuous increase in attenuation as frequency increases. 

7.6.1 Remark 

The experiment to obtain raw UAS datasets and seek to determine an 

empirical  K-Matrix model using PSD results from LDM experiments in 

Chapter 5 could not achieve meaningful results. One reason for this was 

the significant noise observed in the device used. Another reason was the 

available acoustic transducer frequency bandwidth which was inadequate. 

There were only nine discrete frequencies (between 850 kHz and 6.25 

MHz) available as against the required 100 kHz to 150 MHz for ultrasonic 

spectroscopy. Although this was the only available resource, it was not 

designed specifically for ultrasonic spectroscopy. Rather it was designed 

for the determination of settling rates of suspensions. 

Due to the failure to obtain raw UAS data, computer simulated PSD and 

UAS data would be used in developing the required learning datasets. 

7.7 Computer Simulation Tests of the Feasibility of an Empirical 

Model for Unknown Sludge 

 

Given a sludge sample which has a mean PSD of 126 µm and a lognormal 

distribution variance of 0.09 µm
2
, by running a suitable algorithm on 

MATLAB, the PSD lognormal distribution and cumulative distribution 

plots can be obtained as shown in Figure 57 and Figure 58, respectively. 
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Figure 57: PSD Lognormal Distribution of the given sample. The particle size 

distribution shown in this figure is a histogram representing the lognormal 

distribution. 

  

 

Figure 58: PSD Cumulative Distribution. The particle size distribution shown 

in this figure is a cumulative frequency curve on a logarithmic scale. 

 

The UAS data which corresponds to this sludge sample can also be 

obtained by using Equation (32). In implementing this equation, the PSD 

data already obtained is used, as well as the parameters in Table 12. 
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Table 12: Parameters used in ultrasonic spectroscopy simulation 

Parameter Value 

Distance between transmitter and reflector 0.01 m 

Sample concentration 10 % 

Frequency Range 100 KHz – 150 MHz 

 

This frequency range was chosen to be able to detect particle sizes across 

the 10 µm to 2500 µm size range similar to an LDM method. By adopting 

a generic Matrix of related extinction cross-section, the corresponding 

UAS data is shown in Figure 59. This is the ultrasonic attenuation 

spectrum expected to be observed on this particular sample in an ultrasonic 

spectrometer. 

 

 

Figure 59: Ultrasonic Attenuation Spectrum (UAS) derived from 

Simulation. This figure shows UAS against a logarithmic scaled 

frequency axis. 
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7.7.1 Collection of Learning Datasets 

To develop an empirical model for converting UAS data to PSD for 

unknown sludge samples, PSD and UAS datasets of ten sludge samples 

were collected as learning datasets. The PSD data were chosen by a 

random selection of PSD mean and lognormal distribution variance values.  

This is shown in Table 13. 

Table 13: List of PSD characteristics of ten samples used for learning 

Sample 

S/N 

Mean PSD 

(micrometres) 

PSD Variance 

(Lognormal) 

Sample 1 70 0.09 

Sample 2 150 0.04 

Sample 3 200 0.25 

Sample 4 350 0.49 

Sample 5 450 0.09 

Sample 6 500 0.04 

Sample 7 650 0.64 

Sample 8 700 1.69 

Sample 9 750 0.04 

Sample 10 840 2.89 

 

Using the method described for obtaining the PSD cumulative distribution 

and the UAS plots, Figure 60 and Figure 61 were produced as PSD-UAS 

learning datasets from ten samples. 
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Figure 60: PSD cumulative frequency learning dataset of ten samples. This 

figure shows the particle size distribution of ten simulated samples with 

various mean particle sizes. This set of data is to be used for learning an 

analytical method of interpreting particle sizes from ultrasonic attenuation 

spectrum. 
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Figure 61: UAS learning dataset of ten samples obtained by simulation. This 

figure shows the ultrasonic attenuation spectrum (UAS) of ten simulated 

samples with various mean particle sizes. This set of data is to be used for 

learning an analytical method of interpreting particle size distributions from 

a given ultrasonic attenuation spectrum. 

 

7.7.2 Identification of an Empirical Model 

The empirical model of the K-matrix which relates UAS and PSD, as 

given in Equation (37) is then obtained by back substitution of the learning 

datasets. To do this, the number of data points per dataset had to be equal 

to the number of datasets used in the learning. This is because the K-

matrix can only be a square matrix. Hence, in order to produce a 10 × 10 

K-Matrix, the resolution of the PSD-UAS datasets were reduced to 10 data 

points per dataset.  

 

7.7.3 Implementation and Analysis of the Empirical Model Obtained 

Having obtained a 10 × 10 K-Matrix, a simulation was carried out to test 

the empirical model. This involved the collection of PSD test datasets of 

random test samples and obtaining their corresponding UAS datasets using 
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already stated procedures. The expectation was that adopting the empirical 

model of the K-Matrix and the test UAS datasets into Equation (35), the 

PSD inferred would agree with the test PSD dataset.  

Subsequently, by analysing the root mean square error and standard 

deviation of error of the inferred PSD mean, the suitability of the learned 

10-by-10 K-matrix would be ascertained. Where the error margins are 

significant, the empirical model would be found to be non-suitable and an 

empirical model with a higher resolution would be suggested. The block 

diagram on Figure 62 illustrates the test procedure. Table 14 shows the 

results obtained. 

 

Figure 62: An illustration of a K-Matrix validation test procedure. 

This figure describes the method of validating the analytical model.  

Table 14: Analysis of the 10 × 10 K-Matrix 

Size of K-Matrix Root Mean Square of 

Error 

Standard Deviation of 

Error 

10 × 10 701.9 µm 529.6 µm 

20 × 20 939.5634  µm 298.1556 µm 

100 × 100 1958.3 µm 305.9772 µm 

It can be observed on Table 14 that the root mean square of the error of the 

inferred mean PSD was significantly high when the empirical model relied 

 

Test UAS Dataset 

Test PSD Dataset 

Collect Test Dataset 

K-Matrix  

(empirical model) 
Inferred PSD result 

COMPARATOR 

RMS Error 
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on only ten learning datasets. By increasing the number of learning 

datasets to 20, and subsequently to 100, the resolution of the K matrix also 

increased up to 100 × 100. However, against the expectation that such an 

increase in learning datasets would cause a decrease in the error margin, 

the results did not provide any such indication.  

From the forgoing simulation results, the use of an empirical model 

obtained from a number of learning datasets to convert raw UAS data into 

PSD of unknown samples is non-feasible.  

7.8 Conclusion 

The simulation results showed that while UAS can be derived from PSD in 

situations where necessary parameters of the material properties are 

known, the option of inferring PSDs from UAS based on learned K-Matrix 

empirical models is not feasible. 

This confirms the opinion of authors who maintain that there needs to be 

knowledge of relevant thermo-mechanical properties for ultrasonic 

spectroscopy method to be employed.  

Alternatively, for the purpose of conducting in-situ experiments while 

maintaining the use of the existing method of Laser Diffraction (LDM), a 

stable robotic platform could be deployed unto the water surface. By 

mounting a Malvern Mastersizer 3000 instrument of such surface vehicle, 

sludge samples can be retrieved using a remote operated mobile sampling 

device and analysed on-board the surface vehicle. This solution however 

requires further research.  
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8 Chapter 8 – General Conclusion and Recommendations 

 

8.1 Emphasis on Key Research Findings and their Implications  

 

8.1.1 Quantifying the Influence of Experimental Factors related to Sludge 

Sampling 

 

This research identified four factors involved in Sludge Sampling. The 

results confirmed expectations that one of these factors known as the 

‘depth of penetration of the sampling device has the highest influence on 

result variability. The choice of depth of penetration in this study was 

made between a 10 to 100 % penetration of the sludge bed. This factor is 

responsible for about 48 % (on average) of the overall map result variation 

in cases where the sludge bed has no spatial autocorrelation.  

Similarly, the ‘bias of sludge sampling device’ and ‘number of sampled 

locations’ record significant influence of about 23 % and 4.4 % (on 

average), respectively. The ‘bias of the sludge sampling device’ factor was 

a choice between a sampling device which retains only particles that are 

less than 400 microns and a sampling device which has no bias, while the 

‘number of sampled locations’ factor was a choice between 8 and 200. 

The fourth factor known as the ‘strategy of selecting sampling locations’ 

(a choice between simple random sampling and stratified random 

sampling) recorded the lowest influence (0.3 %) amongst sludge sampling 

related factors irrespective of the presence or absence of spatial 

autocorrelation.  

It was generally observed that interactions amongst factors were 

significant. This implied the dependence of the influence of one factor 

based on the settings of another factor. It was concluded that the use of an 

in-situ sampling mechanism and a determination of an adequate setting for 

the experimental factors involved would help to improve data quality. 
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The implication of this result is that it allows field operators seeking to 

improve the quality of results from sludge characterisation to know what 

experimental factors to focus on. The number of sampled locations should 

be a priority. This means there should be concerns on how to improve the 

number of samplings.  

There are also implications for further research. This follows the 

significant influence of the sampling device’s penetration capabilities and 

bias. Extensive works should be carried out to ensure that appropriate 

sampling devices are used and that the limitations and bias of the sampling 

device used is adequately recorded. 

The significant influence of the ‘number of sampled locations’ factor 

provides a direct implication to this research. It requires a determination of 

what minimal ‘number of sampled locations’ will be enough to eliminate 

result variability amongst field operators. This knowledge will support 

future sludge sampling standards.  

  

8.1.2 The Recursive Relative Accuracy (RRA) Algorithm 

 

This research found that the challenge of determining the accuracy of 

characterisation maps in order to assess whether more samples are required 

or not, can be solved using the RRA algorithm. This is because the RA 

algorithm does not require ground-truth map of the population. In spite of 

this, the trend observed in the RRA plot of a computer simulation 

compared satisfactorily with the plot of actual map accuracy.  

In an actual accuracy plot observed on a computer simulated sludge bed 

model, sludge sampling of 20 locations using a device which penetrated 

through 30 % of the sludge while collecting samples at 10 % depth 

intervals was able to generate a map with a PSD inference accuracy of 

about 60 %. The accuracy plot had a steep rise from 2 to about 200 

sampled locations before appearing to converge at about 100 %. The RRA 

plot on a similar sampling procedure, but using real-life data, and with 

sampled locations increased from 2 to 20 indicated a similar trend. This 
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confirms it as a useful tool for improving sludge characterisation accuracy 

in the absence of ground-truth. 

The introduction of the RRA algorithm is of benefit to future research. For 

example, a recent study on soil exploration [147] identified the importance 

of the variance map (if OKA is used) or confidence map (if TDA is used) 

for assessing the quality of the characterisation map produced. The 

authors’ expectation is that by observing the variance or confidence map, 

the need for further sampling can be determined.  

Furthermore, the authors rightly recommend that further sampling is 

conducted at an appropriate location such that the variance or confidence 

map is improved. While the authors seek to maximise the benefit of 

variance or confidence mapping, this research provides a single plot 

(known as the RRA plot) which indicates the need for any further 

sampling. This helps to reduce the effect of human error and reduces the 

cost of excessive sampling and time duration. 

 

8.1.3 Quantifying the Influence of Experimental Factors Related to the use 

of Laser Diffraction Method for PSD Measurement. 

 

Seven other experimental factors were evaluated. These are factors which 

relate to the use of Laser Diffraction Method (LDM) for measuring PSD in 

a laboratory. From the results obtained, it was observed that the choices of 

LDM instrument model used (a choice between the Malvern Mastersizer 

3000 model and the Malvern Mastersizer 2000 model) and the 

concentration of the sample in water (a choice between 0.5 and 4.0 % V)  

do contribute about 40 % and 7 % (respectively) to variations observed in 

the PSD mean value obtained per sample.  

However, on their influence on the PSD spread which was represented by 

the ratio of the upper to lower percentiles, the choice of optical parameters 

(Refractive Index and Absorption Coefficient) has the most significant 

influence with about 5 % and 3 % contribution respectively. Interestingly, 
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factor interactions were predominant in the evaluation of these LDM 

experimental factors.  

This aspect of the research is of immense contribution to knowledge. 

Although there have been previous studies which identified influential 

experimental factors in relation to PSD measurements, this research builds 

on that by quantifying the influence of these factors. 

The implication of this result is that field operators using the LDM 

analytical method for PSD measurement will be required to maintain the 

same experimental settings across sample analysis in order to minimise 

result variation. The result also confirms that optical parameters do not 

have significant influence on the PSD mean observed. They however do 

influence the PSD spread represented by the ratio of the upper to lower 

percentiles.   

 

8.1.4 The Feasibility of an In-Situ Sludge PSD Characterisation using 

Ultrasonic Spectroscopy 

 

The research investigated the feasibility of conducting PSD measurements 

underwater in situ. Ultrasonic Spectroscopy was initially identified as a 

potential in-situ technology due to its scalability. However, there were 

concerns about its applicability to samples with unknown 

thermomechanical properties. This was because ultrasonic spectroscopy 

involves exposing sludge samples to ultrasonic waves and observing the 

resulting Ultrasonic Attenuation Spectrum (UAS). The UAS is then 

converted to PSD using a suitable mathematical model. The available 

mathematical models require knowledge of thermomechanical parameters. 

The option of using an empirical model was considered. 

The expectation was that by obtaining learning data, an empirical model 

could be developed to provide a “K-Matrix” relationship between UAS 

and PSD. However, results showed no such relationship, as the average 

error margin between the true and the inferred PSD mean values was over 
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600 µm. It was also observed that by increasing the number of learning 

datasets, the expectation that the error margin would decrease was not met.  

The implication of this result is that towards adopting Ultrasonic 

Spectroscopy, field operators will be required to fully acquire the 

thermomechanical properties of the sludge in the pond. This will therefore 

require extensive laboratory experiments with a number of sludge samples. 

The procedure of characterising sludge for its thermomechanical properties 

then becomes identical to the procedure of sludge characterisation already 

discussed in this research. 

There could indeed be arguments suggesting that carrying out another ex-

situ sludge characterisation in order to determine thermomechanical 

parameters of sludge before using such parameters for in-situ sludge PSD 

characterisation is pointless. Such arguments would suggest that a more 

cost effective solution is to continue with ex-situ sludge PSD 

characterisation.  

However, in-situ sludge PSD characterisation provides the opportunity for 

sampling and analysing a higher number of locations unlike ex-situ sludge 

PSD characterisation. This is because by having a mobile sampler-analyser 

underwater, the hazards associated with taking out radioactive sludge from 

ponds into laboratories is eliminated. Hence, continuous PSD 

measurements can be conducted. This is vital as the ‘number of sampled 

location’ has been observed to contribute 4.4% influence on result 

confidence. For these reasons, there is merit acquiring thermomechanical 

parameters of sludge by ex-situ means, prior to the use of ultrasonic 

spectroscopy for in-situ sludge PSD characterisation. 
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8.2 Future Research Works 

 

The findings in Chapter 7 indicate that Ultrasonic Spectroscopy is 

probably not a feasible in-situ analyser for measuring the PSD of 

radioactive sludge underwater. Going further, the future work is the 

development of an underwater based ultrasonic spectrometer for 

monitoring the ultrasonic attenuation spectrum of sludge. Another work is 

the development of a remote operated laboratory based on the commonly 

employed LDM technique for analysing sludge samples in-situ.   

8.2.1 Development of an Underwater Ultrasonic Attenuation Spectrum 

(UAS) Analyser 

 

To use ultrasonic spectroscopy, it has now been concluded that there is the 

need to have the thermomechanical parameters of sludge. This has to be 

obtained via ex-situ sludge characterisation methods and by undergoing 

spatial extrapolation, parameters at non-sampled locations can be inferred. 

This investigation can be carried out within a three year research program. 

This is because it requires the use of laboratory techniques for determining 

thermomechanical properties of variant sludge simulants. It also involves 

the construction of a mobile ultrasonic spectroscopy chamber as well as a 

technique for collecting and disposing sludge samples. The job of the 

mobile ultrasonic spectroscopy chamber is to continuously collect UAS 

data which would be converted to PSD data when the required 

thermomechanical parameters become available. 

8.2.2 Development of an LDM Based In-Situ Sludge PSD Analyser 

 

An alternative to the use of a mobile ultrasonics based in-situ analyser is 

the deployment of a Malvern Mastersizer (LDM based) instrument to the 

pond surface. This involves developing a floating platform on which the 

LDM instrument can be mounted. A disadvantage of LDM is that it 

requires a more detailed sample preparation. It is therefore useful to 

consider the involvement of robotic techniques to cater for the sludge 
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sample collection and preparation requirements. In the design of a suitable 

retrieval system, the challenges of collecting sludge samples at different 

penetration depths, as identified in Chapter 5 should be investigated. 

 

8.2.3 Mobile Laboratory for In-Situ Analysis on Land or in Water 

 

Beyond measuring the particle size distribution of radioactive sludge, the 

nuclear decommissioning programme involves a number of other tasks. 

For example, developing a mobile laboratory with automated sample 

retrieval and preparation platform would be useful for regular monitoring 

and maintenance of legacy ponds. This could be deployed for routine 

monitoring of water pH levels, radiological dose rate and underwater 

contamination. This could also be deployed for routine filtration of the 

pond water. 

In order to achieve this, future research should seek to develop on existing 

projects such as the MallARD [210] and the AVEXIS [211] projects and 

attempt to develop autonomous coordination between both systems to such 

an extent that the AVEXIS ROV can serve as the sample collector while 

MallARD provides the mobile laboratory platfirm. 

Similarly, the decommissioning of nuclear waste in dry storage facilities 

such as Sellafield’s Thermal Oxide Reprocessing Plant (THORP) does 

require in-situ sampling and laboratory analysis such as the evaluation of 

radionuclide distribution (radionuclide speciation). 

For the purpose of on-land operation, the future research could build on 

the progress made in the Continuous Autonomous Radiation-Monitoring 

Assistance (CARMA) project by the University of Manchester’s robotics 

research group. [212] This could be developed into a mobile laboratory 

platform with sampling and analysis capabilities. 

The mobile laboratory platform should therefore be designed as a remote 

vehicle operational on water or on any terrain. This mobile laboratory 

should be equipped with a positioning and communication system to 
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support the deployment and coordination of multiple mobile sludge 

sampling vehicles. 

The fore-going discussion is not only applicable to the nuclear 

decommissioning programme. Related projects include the automated 

clean-up of crude-oil contaminated waterbodies and the routine sampling 

of ecological parameters across a given region. These projects would also 

benefit from this development.. 

8.2.4 Application of the Recursive Relative Accuracy Method for Intelligent 

Sampling 

 

As a result of findings in this research which indicate that the choice of 

sampling device has significant influence on the quality of sludge 

characterisation, appropriate sampling devices for various tasks must be 

developed. Particular attention must be paid to ensure that the penetration 

depth is maximised, and the sample bias is minimised. 

Future research should take advantage of the Recursive Relative Accuracy 

(RRA) to determine when to collect further samples. The confidence 

mapping method can be used in taking decisions regarding which sampling 

location is most appropriate and to understand the attained percentage 

confidence. 

The procedure adopted in this research for analysing the sampling related 

experimental factors can be used by operators to further understand and 

improve their sampling operations and data quality. 

Most importantly however, future research should work towards 

introducing the RRA and other statistical tools to the machine learning 

algorithm of the mobile robots used for sample collection in order to 

provide the overall operation with artificial intelligence. 

In trying to make this platform multi-functional, and to enable multiple 

robots coordination, an application software known as Robotics Operating 

System (ROS) should be installed on it for general robot coordination and 

communication.  
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APPENDIX 

 

APPENDIX A : Additional data on Sludge Sampling Related Factors 
 

Table A1: A summary of the ANOVA test showing F-Statistic and 

Probability (P) results 

 Factor Bed 1 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

 𝑉𝑆𝐴𝐶 

Bed 2 

𝐻𝑆𝐴𝐶 

 𝑉𝑆𝐴𝐶 

Bed 3 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅   

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 4 

𝐻𝑆𝐴𝐶 

 𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

F P F P F P F P 

M
a

in
 F

a
ct

o
rs

 A 1054.1 0 3666.9 0 1284.5 0 3199.4 0 

B 40.1 0 18.1 0 28.9 0 46.1 0 

C 3502.9 0 7257.9 0 693.2 0 1396.5 0 

D 1277.9 0 6710.1 0 371.3 0 3857.3 0 

F
a

ct
o

r 

In
te

ra
ct

io
n

s 

AB 4.5 0.03 43.5 0 4.7 0.03 41.4 0 

AC 290.8 0 1343.2 0 35.3 0 267.1 0 

AD 163.6 0 547.5 0 226.2 0 1026.6 0 

BC 26.2 0 22.0 0 15.7 0 19.5 0 

BD 3.9 0.05 3.6 0.06 6.6 0.01 4.1 0.04 

CD 1313.4 0 6712.2 0 48.35 0 143.5 0 

ABC 6.0 0.02 21.0 0 4.1 0.04 14.6 0 

ABD 14.0 0 2.0 0.16 5.4 0.02 4.0 0.05 

ACD 153.1 0 545.4 0 11.8 0 73.9 0 

BCD 7.4 0.01 4.9 0.03 8.1 0 9.8 0 

ABCD 9.3 0 1.3 0.26 6.9 0.01 12.0 0 
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Table A2: Eta Squared Effect of Sampling Factors and their Interactions 

 Factor Eta-Squared Effect (%) 

Bed 1 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅  

 𝑉𝑆𝐴𝐶 

Bed 2 

𝐻𝑆𝐴𝐶 

 𝑉𝑆𝐴𝐶 

Bed 3 

𝐻𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅̅   

𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

Bed 4 

𝐻𝑆𝐴𝐶 

 𝑉𝑆𝐴𝐶̅̅ ̅̅ ̅̅ ̅ 

M
a

in
 F

a
ct

o
rs

 A 12.9 13.5 42.0 30.7 

B 0.5 0.1 0.9 0.4 

C 42.9 26.7 22.7 13.4 

D 15.6 24.7 12.2 37.0 

F
a

ct
o

r 

In
te

ra
ct

io
n

s 

AB 0.1 0.2 0.2 0.4 

AC 3.6 4.9 1.2 2.6 

AD 2.0 2.0 7.4 9.9 

BC 0.3 0.1 0.5 0.2 

BD 0.0 0.0 0.2 0.0 

CD 16.1 24.7 1.6 1.4 

ABC 0.1 0.1 0.1 0.1 

ABD 0.2 0.0 0.2 0.0 

ACD 1.9 2.0 0.4 0.7 

BCD 0.1 0.0 0.3 0.1 

ABCD 0.1 0.0 0.2 0.1 

 Residual R 3.7 1.1 10.0 2.9 

 TOTAL 100 100 100 100 
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Figure A1: Half normal plot of effects - Bed 5. This is a pictorial 

representation of the significance of each experimental factor. 

 

Figure A2: Half normal plot of effects - Bed 6. This is a pictorial 

representation of the significance of each experimental factor. 

 

Figure A3: Half normal plot of effects - Bed 7. This is a pictorial 

representation of the significance of each experimental factor. 
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Figure A4: Half normal plot of effects - Bed 8. This is a pictorial 

representation of the significance of each experimental factor. 

 

Figure A5: Half normal plot of effects - Bed 9. This is a pictorial 

representation of the significance of each experimental factor. 

 

 

  



221 
 

APPENDIX B: Matlab Code for 𝑯𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  𝑽𝑺𝑨𝑪̅̅ ̅̅ ̅̅ ̅̅  Bed Generation 
 

clc 
clear 

  
layer_set=[1 2 4 5 6;1 2 2 3 4;1 2 4 5 6;1 2 3 3 4;1 2 3 4 5 ;1 2 

3 5 6;1 3 4 5 6;1 3 3 5 6;1 2 4 3 5;2 3 4 6 6 ]; 
%could be anywhere really, it just describes the PSD class 

contained in 
%each layer, it increases with depth 

  
for ico=1:2 
    %that means run for sludge bed 1 and bed 2 
   aprop=1; 
for layercount = 1:10 
    %that means run for sludge layer 1 to 10 
Bedlayer = zeros(100,200); 
count = 0; 
storelayer=zeros(100,20000); 
for r = 1:100 
    for c = 1:200 
        count = count+1; 

         

         
        A = 30*randn(100,1) + 100; 
        B = 40*randn(100,1) + 200; 
        C = 48*randn(100,1) + 350; 
        D = 50*randn(100,1) + 585; 
        E = 68*randn(100,1) + 800; 
        F = 85*randn(100,1) + 1250; 

  
        roam=[A,B,C,D,E,F]; 
        layerchoice=layer_set(layercount,:); 

         
  if ico==2 

             
        CVqq=sqrt((r-50)^2+(c-100)^2); 
        if CVqq>=100 & CVqq<120 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=90 & CVqq<100 

             
                Bedlayer(r,c) = layerchoice(2);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=80 & CVqq<90 

             
                Bedlayer(r,c) = layerchoice(3);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=70 & CVqq<80 

             
                Bedlayer(r,c) = layerchoice(4);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
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        if CVqq>=60 & CVqq<70 

           
                Bedlayer(r,c) = layerchoice(5);  

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=50 & CVqq<60 

             
                Bedlayer(r,c) = layerchoice(5);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=40 & CVqq<50 

          
                Bedlayer(r,c) = layerchoice(4);   

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=30 & CVqq<40 

            
                Bedlayer(r,c) = layerchoice(3); 

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        if CVqq>=20 & CVqq<30 

            
                Bedlayer(r,c) = layerchoice(2); 

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        if CVqq<20 

            
                Bedlayer(r,c) = layerchoice(1); 

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 

    
  elseif ico==1 
        if r>=1 && c<=60 

             
            Bedlayer(r,c) = layerchoice(1);storelayer(:,count) = 

roam(:,Bedlayer(r,c)); 

             
        elseif c>60 && c<=130 
            if r<50 

             
             Bedlayer(r,c) = layerchoice(2); storelayer(:,count) = 

roam(:,Bedlayer(r,c)); 

             
            else 

                 
                Bedlayer(r,c) = layerchoice(3);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 

               
            end 
        else 
            if r<40 

               
                Bedlayer(r,c) = layerchoice(4);  

storelayer(:,count) = roam(:,Bedlayer(r,c)); 

                
            else 
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                Bedlayer(r,c) = layerchoice(5);   

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
                asa=round(1+ 40*rand); 

            

             
            end 
        end 

        
        CVX=sqrt((r-aprop*70)^2+(c-aprop*160)^2); 
        if CVX<=10*aprop 

            
                Bedlayer(r,c) = layerchoice(1); 

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        CVY=sqrt((r-aprop*60)^2+(c-aprop*100)^2); 
        if CVY<=10 
            Bedlayer(r,c) = layerchoice(1);storelayer(:,count) = 

roam(:,Bedlayer(r,c)); 

                 
        end 
        CVZ=sqrt((r-aprop*20)^2+(c-aprop^2*100)^2); 
        if CVZ<=10*aprop 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVW=sqrt((r-aprop*35)^2+(c-aprop*160)^2); 
        if CVW<=10*aprop 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVV=sqrt((r-aprop*70)^2+(c-aprop*90)^2); 
        if CVV<=10*aprop 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVA=sqrt((r-aprop*30)^2+(c-aprop*30)^2); 
        if CVA<=15*aprop 

             
                Bedlayer(r,c) = layerchoice(2);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVB=sqrt((r-aprop*100)^2+(c-aprop*60)^2); 
        if CVB<=40*aprop 

             
                Bedlayer(r,c) = layerchoice(3);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVCC=sqrt((r-aprop*57)^2+(c-aprop*150)^2); 
        if CVCC<=30*aprop 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 
        CVD=sqrt((r-aprop*90)^2+(c-aprop*200)^2); 
        if CVD<=23*aprop 
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                Bedlayer(r,c) = layerchoice(2);  

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        CVE=sqrt((r-aprop*15)^2+(c-aprop*15)^2); 
        if CVE<=30*aprop 

             
                Bedlayer(r,c) = layerchoice(4);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 

         
        CVG=sqrt((r-aprop*73)^2+(c-aprop*100)^2); 
        if CVG<=25*aprop 

            
                Bedlayer(r,c) = layerchoice(2); 

storelayer(:,count) = roam(:,Bedlayer(r,c)); 
        end 
        CVt=sqrt((r-aprop*20)^2+(c-aprop*150)^2); 
        if CVt<=20*aprop 

             
                Bedlayer(r,c) = layerchoice(1);storelayer(:,count) 

= roam(:,Bedlayer(r,c)); 
        end 

        

     

     

     

         

    
    end 

     
    end 

  
    end 

  

  
storelayer=abs(storelayer); 

  
storagename=['SCA_storeANDbed' num2str(ico) 'layer' 

num2str(layercount)]; 
save([storagename '.mat'],'storelayer','Bedlayer') 

  

  
end 
end 

 

 

 

 

 


