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Abstract 

Title: Data Analytics Based Demand Profiling and Advanced Demand Side 

Management for Flexible Operation of Sustainable Power Networks    

Miss Jelena Ponoćko, The University of Manchester, April 2019 

 

With the evolution of smart grid paradigm and the consideration of demand side 

management (DSM) as one of the flexibility providers in networks with renewable 

generation, the accurate assessment or prediction of demand profile and advanced DSM 

are becoming essential. This thesis is contributing to both, an accurate demand profiling 

and advanced use of DSM to facilitate flexible and secure network operation. It starts 

by discussing the data and information needed in the future distribution network to 

facilitate flexible network operation. It then illustrates the benefits of using advanced 

data mining techniques (artificial neural networks) for better observability of demand in 

the distribution network with a limited number of smart meters. The first part of the 

thesis thus illustrates how the flexibility and composition of aggregated demand can be 

assessed/forecast with very limited information coming from the end users. Once the 

composition of demand is available, one can assess with high confidence what portion 

of demand is flexible, what types of load that portion includes (e.g., cold appliances, 

heaters, etc.), and when and where (at which buses in the network) it should be 

shifted/curtailed. This enables “tailoring” the DSM program and incentive system to the 

available size and type of flexible loads in an area. At the same time, it allows a more 

confident prediction of the outcome of the DSM program (the resulting load curve). 

Furthermore, it facilitates indirectly a more accurate modelling of demand over a period 

of time. The second part of the thesis focuses on the use of the information about 

demand composition, which is first used to model load at each network bus as a 

composite load model, and then to study different effects of DSM on network 

operation. Wide-scale DSM involving numerous flexible load buses in the network 

changes not only the total demand in that area at given time, but also its composition at 

individual buses, i.e., the shares of different components of the composite load model. 

This change in demand profile could influence both, the steady state network operation 

(critical network loading, losses, etc.) and its dynamic performance (voltage and 

angular stability of the system following a disturbance). Therefore, the second part of 

the thesis demonstrates how DSM program can be optimally planned hours, or day 

ahead, across the network, taking into account forecast demand composition and 

demand flexibility at each bus, in order to meet the requirements of the network 

operator (e.g., facilitating efficient use of available renewable resources), and at the 

same time maintain the relevant steady state and/or dynamic performance indicators of 

the network at the level they were before deployment of the DSM program.   
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1.1 Introduction 

This chapter introduces the two main areas of the research presented in this thesis, with 

some theoretical aspects. It provides an overview of the past work in these areas, with 

respect to both research and real-world practices. After identifying some of the gaps in 

previous research on the topic, the main aims and objectives are defined, followed by 

extracting the main contributions of this thesis.  

1.2 Background 

The two evolutionary changes in power industry paving the way to the smart grid 

concept are the move towards low carbon operation of the power network and the 

introduction of information and communication technologies (ICT). These changes 

have been happening at all stages and all aspects of the electricity generation, 

transmission and distribution. Due to the intermittency of renewable generation, whose 

share is constantly growing at all voltage levels, the need for higher flexibility of the 

network operation has been raised, and thus the technologies such as energy storage 

and demand response (DR) came into the focus. Power system flexibility can be 

defined in different ways, one of them being “the ability to adapt to dynamic and 

changing conditions, for example, balancing supply and demand by the hour or minute, 

or deploying new generation and transmission resources over a period of years” [1]. 

Activation of the demand side, i.e., more active participation of demand in system 

operation and control, is one of the main features of the smart grid. Instead of the 

traditional load-following generation approach, demand is becoming more flexible and 
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adjustable to the available generation, which, due to the volatility of its renewable part, 

is becoming less controllable than before. Furthermore, with the increasing presence of 

and reliance on the ICT in power network and monitoring systems in general for 

enhanced network observability, processing of large amount of diverse data streams 

and extraction of relevant knowledge from the data requires utilisation of data mining 

techniques. Data mining has two benefits; in case of big data it enables fast extraction 

of useful knowledge, while in the case of insufficient observability, it derives 

knowledge from limited available data, i.e., it enables learning from the past or from 

similar cases. Addressing the issues of network flexibility by means of previously not 

harnessed services and technologies and efficient handling of data and knowledge 

extraction became therefore top priorities for smart grid development in general. 

Although the smart grid concept is being developed at all levels of the power system, 

this thesis focuses on distribution network (DN) and examines the extent to which 

activation of the demand side flexibility can facilitate daily operation of the DN, while 

contributing to an extent to the transmission network operation as well. The two 

prerequisites for utilising demand flexibility are existence of controllable demand and 

ICT infrastructure for improved demand observability. Since the power system is 

operated in close to real-time, the traditional load monitoring systems (electricity 

meters), with readings performed several times a year, have become obsolete for the 

demand side management (DSM) requirements. It should be noted that DSM and DR 

will be used interchangeably in the text, even though DSM is a more general term, 

while DR commonly refers to price-based programs. Increasing number of installed 

smart meters (SMs) in residential districts around the world will enable better 

observability of the end-users’ behaviour and their potential to participate in the 

network daily operation. Higher granularity of low-level consumption data in the future 

distribution grid will bring benefits to both consumers and the distribution system 

operator (DSO). On the one hand, smart metering will facilitate awareness of 

consumers about their daily consumption and enable them to make savings by reacting 

to price signals or various types of incentives triggered by their electricity supplier. On 

the other hand, SM data will provide information to the DSO about individual load 

profiles, enabling more advanced profiling of consumers in different areas and at 

different levels of aggregation. Authors in [2] pointed out that the analysis of SM data 
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can be applied for load pattern recognition, assessing DR potential, tariff design, load 

forecasting or sociodemographic identification of end-users.  

There is a wide area of research focusing on the application of data mining methods to 

extract useful knowledge from data coming from readily available and new types of 

monitors, thus enhancing the observability of the demand side and the distribution 

network in general. It has been estimated that monitoring of all the LV networks in the 

UK would cost £2 billion [3]. Therefore, data mining should be used to obtain relevant 

information from small populations of data coming from new meters and maximise the 

use of already existing, to an extent limited number of monitors in the network. 

Following this line of thought, around $3.3 million was invested in China for big data 

analytics-related projects in electrical engineering, covering, among others, energy 

forecasting, equipment monitoring and renewable integration [2].  

The effectiveness of DSM actions largely depends on the flexibility of the demand side. 

Until now, mostly large industrial users have been included in DR programs [4]. 

According to [5], there is more than 500 MW of DR capacity for short-term operating 

reserve in the UK. Nevertheless, there is a significant, though mainly untapped 

potential for DR in residential area. In the US, it is estimated that the participation of 

residential customers in DR might bring up to half of the total peak reduction [6]. 

Changing the electricity consumption habits of residential users would have significant 

environmental implications, e.g., [7] reported that residential demand contributes to a 

quarter of global greenhouse gas emissions. Taking the UK as an example, residential 

(domestic) sector is the largest final user of electrical energy, presenting around 30% of 

overall consumption, followed by industrial and commercial sector accounting for 26% 

and 21% of the total consumption, respectively, see Figure 1.1 [8]. As the impact of 

individual smaller consumers is negligible, DR potential (i.e., load flexibility) of an 

aggregated group of users should be investigated instead. The advantages of the 

“aggregate and dispatch” DSM model are that it overcomes uncertainties of individual 

units and requires minimum local observability [9].  

Aggregators will be very valuable and potentially influential actors in the future 

distribution power system as they will represent groups of numerous small end-users as 

“bulks” of users with increased influence. In other words, changing the load pattern of 

a larger number (e.g., hundreds or thousands) of end-users simultaneously will have 

much larger effect on the network than changing electrical patterns of individual users. 
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Another benefit of having aggregators is provision of anonymity of the end-users and 

their daily and seasonal behaviour through aggregation. The aggregator could collect 

relevant operational information from dispatchable loads and serve as a mediator 

between a utility/network operator and individual loads, as discussed in [10]. Possible 

candidates for dispatch at domestic, individual customer level, include: dishwashers, 

washing and drying machines, electric water heaters, heat pumps, heating, ventilation 

and air conditioning (HVAC) with thermal storage, battery chargers and electric 

vehicles (EVs). Some loads can be deployed for demand dispatch with a relatively 

quick response and without significant effect on end-users’ commodity, while the other 

can be responsive to changes in grid frequency, in which case they respond 

automatically, with no intervention by the aggregator. 

 

Figure 1.1 Electricity demand by sector in the UK 2014 (adopted from [8])  

1.3 Motivation 

In the majority of cases, DSM is triggered by the DSOs, suppliers and aggregators [11]. 

DSOs commonly comprise residential and small and medium size commercial users, 

while aggregators collect flexibility from these or large commercial and industrial 

users. As the effect of aggregated DR at the distribution/aggregation level can be 

significant and transmitted to the transmission level, the network performance 

indicators (such as network losses or different aspects of frequency and voltage 

stability) should be recorded and maintained, if not improved during and after control 

actions. Any planning of DSM program should therefore rely on several inputs: 
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 The aim of the DSM: load shaping, minimisation of cost or carbon-dioxide 

(CO2) emission, etc.; 

 Available demand side flexibility: the size and type of controllable loads within 

the total demand, i.e., the composition of demand and its change during the 

time; 

 Preservation of network performance in cases of wide-scale DSM: minimisation 

of losses, maintenance of voltage levels or loadability of the network, etc. 

The available demand flexibility can be assessed or forecast if appropriate monitoring 

systems are in place. The two main pieces of information that define load flexibility in 

every time step are the size of demand (in MW, for example), and the size (share) of 

controllable (flexible) loads within the total demand. Observability of the end-users is 

enhanced by SMs, which at the moment have limitations with respect to reporting 

demand-side flexibility. In other words, there is no widely-available information about 

the amount of controllable demand at different times of the day and different seasons of 

the year. Nevertheless, existing SMs can be highly useful for classifying daily load 

patterns and tariffing purposes. Due to the lack of detailed demand observability, there 

is a need for alternative approaches that could result in satisfactory accuracy in 

assessing demand flexibility with limited monitoring data. This thesis therefore 

suggests a data mining-based approach for advanced demand profiling, i.e., forecasting 

demand composition in the presence of limited load observability.   

Network performance, as the third prerequisite for DSM planning, is estimated based 

on different indicators (voltage, frequency, line loading, etc.). In this thesis, network 

performance is observed through steady-state voltage stability in distribution network.  

Voltage instability (also referred to as load instability) in the distribution system may 

spread to the transmission system and cause a major blackout [12]. During a heavily 

loaded condition, even a relatively small but sudden increase in demand can result in 

voltage instability [13]. Load margin, as a voltage stability indicator, will be of a 

particular interest once the proliferation of large residential loads becomes significant. 

The penetration of EVs, for example, could double the current distribution network 

load, especially at peak load hours [14]. The UK transmission system operator, 

National Grid, envisages up to 11 million EVs by 2030 and 36 million by 2040 [15]. In 

addition, up to 60% of homes in UK should be using heat pumps by 2050. 
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In a large-scale DSM scenario, load flexibility may be harnessed at different buses of 

the transmission network, by either aggregators or DSOs at the grid supply point 

(GSP). In this scenario, time shift of large portions of flexible loads across network 

buses (and consequently space-shift of demand), will change not only the total demand 

in different regions of the network, i.e., the power flow, but also demand composition 

(shares of static and dynamic loads) at network buses. Demand size and composition 

have been repeatedly shown to have crucial impact on the nature of dynamic response 

of demand following a network disturbance [16, 17], and consequently the impact on 

the overall network voltage and angular stability. Therefore, the study presented in this 

thesis considers two network performance-based limitations of DSM, namely 

distribution network load margin and the composition of aggregated distribution 

network demand (the demand “seen” from the transmission network). 

1.4 The beneficiaries of the research 

The results of demand profiling are of critical importance to the DR responsible entity, 

whether it is a DSO, electricity supplier or an aggregator. Obtaining as much and as 

accurate as possible information about the load, or in other words obtaining a load 

profile, is crucial for the studies of direct load control, DR programs, design of tariffs 

and involvement of local generation [18]. An important part of load profiling is 

flexibility profiling, i.e., assessment of the size of controllable (shiftable/deferrable) 

load within the total load. This information can reduce the uncertainty of the actual 

(available) flexibility of the demand side as a response to the signal sent during a DR 

program. Ability to forecast aggregated demand and the size of controllable load 

facilitates assessment of the actual capacity for operating reserve and energy services 

coming from the demand side (these will be detailed in Section 1.5.3). Flexibility 

profile of aggregated customers is more predictive than the profile of individual 

customers, which is highly random. Furthermore, load can be disaggregated 

(decomposed) into load categories, such as resistive loads, induction motors, lighting, 

etc., in order to obtain a more detailed insight into the types of load utilised on a daily 

or seasonal basis.  

The profiling can be performed in two dimensions:  
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 Time: observing the change in the size of controllable load within the total load 

over a day or season; 

 Space: observing the size of controllable load over a distribution network. In 

this case, different distribution network buses (e.g., 33/11 kV or 33/6.6 kV in 

the UK) will have different flexibility potential, depending on their load mix 

(namely residential, industrial or commercial users). 

Information about the size and composition of controllable demand allows for efficient 

and confident DR planning, and enables participation of aggregated end-users in 

network daily operation by forecasting demand flexibility as one of the distributed 

energy resources (DER). This further drives definition of appropriate incentives that 

can be “tailored” according to the demand profile of the group of users. For example, 

incentive-based system can be introduced in areas of the network where there is a high 

share of wet appliances (e.g., washing machines). Following the direct load control 

scenario, where certain load categories are equipped with smart controllers (e.g., 

electric water heaters), load disaggregation would provide information on the amount 

and profile of the disposable controllable load. Programs such as conservation voltage 

reduction (CVR), which are considered as non-intrusive DR, can be introduced in 

networks with a high share of loads that can be modelled as constant impedance (these 

loads have the highest sensitivity of consumption to voltage changes). In CVR 

programs, load reduction of 0.5% per 1% of voltage reduction were observed during 

winter peak times, as reported in [19].  

Once the observability of demand is high enough to allow for more confident short-

term planning of DR program and its outcome, analysis of network performance 

indicators should also be taken into account to make sure the operation of the network 

is not endangered due to the changes in demand and its composition. Although not very 

common in the literature, voltage stability of distribution network and microgrids has 

been analysed in the past [12, 20-22]. It has been reported that the key factors affecting 

voltage stability of these networks are DER limits and sensitivity of the loads to voltage 

variation [23]. Therefore, DSM action resulting in changing composition of loads and 

such potentially the nature of their dependence on voltage could affect voltage stability 

of the network. The loading limit of the network as a network performance indicator 

related to voltage stability is thus suitable to illustrate the possible effects of aggregated 

DR. 
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Finally, multi-objective DSM, relying on the aforementioned prerequisites (load 

manipulation, available demand flexibility and network performance) brings benefits to 

both the DSM provider and the entity requesting it, for example the TSO. It enables 

confident planning of the DR outcome (changes in loading curve) on one side, and 

preservation of network performance, in this case loadability of the distribution 

network, on the other. 

1.5 Review of the past work in the area 

1.5.1 Demand observability  

As previously mentioned, one of the requirements for successful DSM programs is the 

enhanced observability of the demand side. Two pieces of information are crucial in 

this respect: 

1) Daily loading curve (DLC) of individual or aggregated end-users, which is 

mainly important for load forecasting and billing purposes. The volatility of 

the DLC, although very high at individual end-user’s level, decreases with 

higher aggregation levels (see Figure 1.2 showing DLC at different 

aggregation levels based on actual data coming from a pilot site [24]); 

 

 

Figure 1.2 DLC during one week (top) and one first day of the week (bottom) at different aggregation 

levels 
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2) Composition of demand, i.e., the shares of different load types within the 

DLC, including both flexible (controllable) and inflexible loads. 

1.5.1.1 Daily loading curve 

In case of absence of real-time load measurements for individual consumers, it is useful 

to make an estimation of a typical DLC of the end-users. At this point, load patterns are 

reconstructed according to monthly energy consumption and typical load profile (TLP) 

of the end-users, i.e., the load class they belong to [25]. Load class profiles in the UK 

were introduced in 1994 in order to model involvement of different types of customers 

in the electricity market. This was supposed to save costs of installing half-hourly 

meters into every customer’s premise. Eight classes of load profiles were established 

based on their annual consumption [26] and taking into account the peak load factor 

(LF), which is given as follows: 

𝐿𝐹 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ)∗100

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑘𝑊)∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟
                           (1.1) 

Even when they may belong to the same type of activity or commercial code, the load 

patterns of consumers might be very different [26]. As [25] showed, there was a limited 

correlation between consumers’ activity type (i.e., load class) and their load pattern. 

SMs should therefore be used to obtain more accurate load profiles from the end-users 

and link them to the appropriate class using some of the classification or clustering 

methods, which will be discussed in Sections 2.2.3 and 2.2.4 of the thesis, respectively. 

Classification/clustering of groups of customers is also necessary in cases where 

several retailers supply parts of the same feeder or a group of loads, so the load they 

supply individually can only be forecast by a bottom-up approach, i.e., from each 

customer [27]. When SM data are available, the typical load profile is calculated using 

the following steps: 

1) Categorisation of measurements based on the season and type of the day 

(working day or weekend); 

2) Normalisation of measurements according to the peak load of the consumer: 

𝑧𝑖𝑗 =
𝑥𝑖𝑗

𝑚𝑎𝑥𝑋𝑗
                                                         (1.2) 

where 𝑧𝑖𝑗 and 𝑥𝑖𝑗 are normalized and real values, respectively, of the 𝑖-th element (time 

step) in the 𝑗-th consumer’s load vector, while 𝑋𝑗 is the load vector for the 

representative load pattern of the 𝑗-th consumer [28, 29]. In the case of the UK, where 
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averaging period of a SM is 30 minutes (only the average value of the samples recorded 

over a 30 minute time window is reported), length of the vector 𝑋 would be 24 ∙

2 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 48 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. The reference power is the peak value of the average load 

pattern – therefore it does not correspond to the true peak power reached by the load 

pattern in the period of observation because of averaging [30]. Another approach for 

normalizing may be the max-min normalization formula, given in [31]:  

𝑙𝑚ℎ =
𝑥𝑚ℎ−𝑚𝑖𝑛𝑚=1,…,𝑀{𝑥𝑚ℎ}

𝑚𝑎𝑥𝑚=1,…,𝑀{𝑥𝑚ℎ}−𝑚𝑖𝑛𝑚=1,…,𝑀{𝑥𝑚ℎ}
                                      (1.3) 

where 𝑀 is the number of patterns represented as vectors 𝑥𝑚  (𝑚 = 1, . . . , 𝑀), each 

containing 𝐻 elements, i.e., time steps (ℎ = 1, . . . , 𝐻), and 𝑙𝑚ℎ is the ℎ-th element of 

the 𝑚-th pattern in the normalized dataset; 

3) Smoothing, i.e., filtering choppiness of profiles due to random events or 

noise;  

4) Cluster analysis (data mining method, which will be detailed in Chapter 2 of 

the thesis); 

5) Determination of the TLP. 

Apart from deterministic approaches, total aggregated load curve can be derived 

probabilistically based on limited statistical data from residential users – Monte Carlo 

simulations were used in [18] to generate the DLC of a group of users at the desired 

aggregation level. The authors argued that the probability distribution for characterising 

the aggregated daily load pattern depended on the time of the day and the level of 

aggregation. In addition, gamma and log-normal distribution [18] were recognised as 

the most suitable ones to probabilistically characterise the residential demand supplied 

by the same feeder or by the same substation.   

Going further from assessing a DLC, even more challenging is to estimate impacts of 

different load categories (induction motors, lighting, resistive loads, power electronics, 

etc.) at the aggregation level. As the DLC of the end-users changes during the day, so 

does the load composition and the portion of controllable load. Therefore, the 

flexibility of the demand side varies in time, which is why the assessment (in real-time) 

or prediction (e.g., minutes or day-ahead) of the actual size of controllable loads can 

facilitate DR actions, as it can show whether the DR potential (load flexibility) is big 
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enough for different needs of the DSO (reducing the cost of supply or obtaining 

reliability of the network). This way, timely assessment of the amount and type of 

controllable load facilitates load scheduling operations.  

A formulation of aggregate demand flexibility based on collective behaviour of 

consumers was proposed in [32]. Flexibility is observed with respect to the probability 

to change the behaviour of aggregate users (either increase or decrease aggregate 

demand). The flexibility indicator is given as a percentage of the aggregate load that 

can be curtailed or increased without affecting the average change in aggregate 

demand. The analysis showed the importance of data granularity (i.e., averaging 

window) and aggregation level on the estimation of load flexibility. Higher granularity 

(smaller averaging window) may provide more detailed information about data 

flexibility, however, during low load periods it is affected by the operation of 

appliances with non-synchronous cycles (fridges, for example). At the same time, as 

the higher aggregation level smooths the loading curve (with fewer variations), it 

reduces the estimated flexibility indicator.   

An example of industry practice for estimating TLP and DR potential is reported in [2], 

where historical load profiles of domestic, commercial and industrial users are 

clustered based on similarity. Customers belonging to clusters with low base 

consumption and high daily volatility are identified as those with high DR potential.  

1.5.1.2 Load disaggregation 

Load disaggregation methods refer to disaggregating (decomposing) the total 

consumption of an end-user, recorded by SMs, to individual appliance level, with the 

aim to reduce uncertainties in DSM programs [33]. These methods can be intrusive or 

non-intrusive. Intrusive methods involve measurements performed at each appliance 

circuit, for example using smart home plugs [34]. This approach requires investments 

into the installation of advanced monitoring (sub-metering) devices or smart home 

appliances, which are able to report their daily consumption with high granularity (e.g., 

every second). Installation of such devices may cost between $100 and $1,000 per 

household, as reported in [35].  It is expected that up to 30% of end-users in the UK 

will have smart wet appliances by 2030 [15].  

Non-intrusive load monitoring (NILM) is based on pattern recognition of different 

electric appliances and it is performed at the customer supply point, for example at the 
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cable supplying the end-user’s premise. Most commonly used electrical features or 

“signatures” for load disaggregation are active and reactive power (these differentiate 

between appliances with similar loads), electric harmonic and transient patterns [33]. 

Authors in [36] proposed an artificial neural network (ANN) – based approach for 

identifying individual appliances according to the current waveform measurements at 

the supply point. The multilayer perceptron (MLP) model (which will be detailed in 

Section 2.2.3.2 of the thesis) gave highly accurate results with samples measured in 

laboratory, but in order to deploy this type of solution practically, current waveform of 

each home appliance model would have to be monitored separately in order to record 

its harmonics in different operation modes. Methodology described in [37] used 

appliance consumption data measured every 10 seconds for training the Factorial 

Hidden Markov Model on a case study of 5 houses. However, the energy 

disaggregation results showed noticeable errors higher than 35% in most of the test 

cases.  

The application of deep learning neural networks for load disaggregation was presented 

in [38]. Three architecture types of the neural network were investigated: i) long-short 

term memory, ii) denoising auto-encoders and iii) regress start time, end time and 

power. The method was used to disaggregate 5 types of home appliances, with 6-

second sampling step. A separate network was trained for each appliance, where the 

training target was appliance consumption, and the input to the network was aggregate 

power demand. The results showed that in most cases the deep learning ANNs 

outperformed the benchmark methods (factorial hidden Markov model and 

combinatorial optimisation). However, the method was not validated on longer test 

data, but only on data from a few days. 

A common drawback of the load signature methods is that they require a library of 

high-resolution measurements (usually faster than 1 Hz [39]) of appliance parameters 

needed to disaggregate the total load of an end-user, including current waveform, 

harmonics, switching transient waveform, etc., which are not always easily accessible, 

especially in case of a large number of users and at the scale of real distribution 

network communication systems. 
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Authors in [33] proposed a combination of smart metering technology with device-

level load monitoring to disaggregate demand. The method proposes forming a 

database with recordings of real power load profiles of different appliances with two 

possible solutions: i) Generic load model – active load profile of a certain type of 

appliances, e.g., air conditioners; ii) Specific load model – active load profile of a 

specific model/brand of appliance. This way, customers would be able to choose from a 

library of profiles the one that fits their appliance best and enable the network operator 

to perform disaggregation based on the total load measurements. The application of this 

solution would not be trivial as there are numerous types of appliances on the market, 

especially the electronic ones, and having to update the database regularly would be a 

challenging task. Another problem might be that different appliances have similar real 

power pattern, and reactive power was not taken into account.  

An approach for disaggregation of distribution feeder load in real time was suggested in 

[35]. The methodology relies on two on-line learning methods, namely dynamic mirror 

descent and dynamic fixed share, and aims at disaggregating total feeder load into heat, 

ventilation and air conditioning (HVAC) load and the rest of the load. Learning process 

is performed using historical data about real power measurements on the feeder, SM 

data (including sub-metering of HVAC loads) and outdoor temperature, while the real 

time data include feeder measurements and outdoor temperature. However, the 

suggested methodology did not propose an algorithm for disaggregating other load 

types (heaters, lighting, etc.). For example, in load disaggregation study presented in 

[40], apart from HVAC load, which was identified with relatively high accuracy (20% 

error), other appliances were disaggregated with much lower accuracy (errors higher 

than 90%). 

1.5.1.3 Measurement-based and component-based load modelling 

While load disaggregation is seen as a necessary step towards load profiling and more 

reliable DSM programs, load modelling has a significant impact on power network 

studies, including steady-state and dynamic analysis. Therefore, in order to assess the 

impact of the aggregate DSM on network performance, one needs to model the loads at 

network buses appropriately. Load modelling is a process of deriving parameters of a 

chosen load model, using either top-down or bottom-up approach, to represent load 

behaviour (static or dynamic) using mathematical models. Two basic groups of load 
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models are static and dynamic. The former one models load irrespectively of time, 

while the latter one models load changes with time [41].  

Some of the most frequently used static load models are exponential load model and 

the so called ZIP (polynomial) model [41]. The exponential model for real power (𝑃) 

and reactive power (𝑄) is given with the following expressions: 

𝑃 = 𝑃0 ∙ (
𝑉

𝑉0
)
k𝑃
                                                            (1.4) 

𝑄 = 𝑄0 ∙ (
𝑉

𝑉0
)
k𝑄
                                                           (1.5) 

ZIP model, comprising three components, namely constant impedance, constant current 

and constant power load, can be formulated as follows: 

𝑃 = 𝑃0 ∙ (𝑝𝑧 (
𝑉

𝑉0
)
2

+ 𝑝𝑖 (
𝑉

𝑉0
) + 𝑝𝑝) (1 + 𝐹𝑃∆𝑓)                                   (1.6) 

𝑄 = 𝑄0 ∙ (𝑞𝑧 (
𝑉

𝑉0
)
2

+ 𝑞𝑖 (
𝑉

𝑉0
) + 𝑞𝑝) (1 + 𝐹𝑄∆𝑓)                                   (1.7) 

In the given expressions (1.4)-(1.7) 𝑉 and 𝑉0 are actual and initial (rated) voltage 

values, 𝑃0 and 𝑄0 are initial values (at the rated voltage level) of the real and reactive 

load, and k𝑃 and k𝑄 are voltage exponents of real and reactive power. 𝑝𝑧 , 𝑝𝑖 and 𝑝𝑝 (or 

𝑞𝑧 , 𝑞𝑖 and 𝑞𝑝 in case of reactive power) are load participation indices corresponding to 

the three load components: constant impedance, current and power, respectively. At 

any point in time the sum of these three indices equals 1. 𝐹𝑃 and 𝐹𝑄 are coefficients 

describing frequency dependence of loads, however, in most studies these are neglected 

due to small variation of frequency in most of the networks compared to variation in 

voltage. The ZIP load model is generally considered suitable for representing the 

modern non-linear loads [42]. Furthermore, for voltage stability analysis it is 

recommendable to include dynamic loads, i.e., induction motors (IMs), in the load 

model [43, 44]. This is typically done by presenting the equivalent composite load 

model as a parallel connection of ZIP load components and IM load [45].   

Measurement based approach is a top-down approach deriving parameters of a chosen 

load model from system disturbance data using conventional and artificial intelligence 
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based techniques and pattern recognition [46]. The derived model is then validated by 

comparing the simulated response with the measured one. As the process depends on 

measurements of the changes in load, one should distinguish between load changes due 

to grid events (e.g., sudden voltage drops or frequency change) and natural daily 

changes in load. One way to overcome this issue is using fuzzy inference system 

approach [47]. 

Component-based approach is a bottom-up approach which derives the overall load 

models by aggregating (i.e., summing up with corresponding weighting factors based 

on participation of different load categories in total demand) known individual load 

models within corresponding load sectors/classes at the bulk supply point [46]. The key 

information required for estimating dynamic response of demand at the bulk supply 

point (following a disturbance) is the type and the percentage of different load 

categories, rather than appliance or end-users involved [46]. The most comprehensive 

overview of load models, load modelling approaches and the effect of load models on 

system performance can be found in [48]. 

1.5.1.4 Probabilistic approaches to decomposition of aggregated demand  

In the absence of real measurements, probabilistic approaches are taken to model 

demand composition. For example, Markov chain Monte Carlo approach was used in 

[42] to derive individual residential load profiles (both real and reactive power) in 

residential sector based on statistical data for the UK. Furthermore, a load model at the 

aggregation level (10,000 customers) was developed based on the shares of different 

load categories within the total demand. The following load categories were identified: 

power electronics, resistive loads (heaters), lighting, directly connected motors (white 

appliances and water pumps) and drive controlled motors (HVAC). The proposed 

model gave very high confidence (absolute percentage error up to 5%) in estimating 

aggregate consumption of individual load categories, using UK-wide statistical data as 

the base case. The accuracy of the approach, however, was not investigated at lower 

aggregation levels, where demand tends to be more volatile, nor was it compared 

against actual measurements.    

As another approach to decomposition of demand in the presence of demand side 

uncertainties, probabilistic load disaggregation into load categories was developed in 

[16] based on the measurements of total active and reactive load at a bulk point using 

ANN and statistical data about typical load composition in residential, commercial and 



Introduction | 35 

 

 

 

industrial sectors. This work proved the validity of the approach showing reasonably 

good accuracy in the estimation of load composition (the 95
th

 percentile of the absolute 

relative error of estimating shares of different load categories was between 0 and 10%). 

At the same time, both training and testing data were generated in a probabilistic 

manner, using randomization of voltage at primary substation and participation of load 

categories. Therefore, further validation and adjustment of the approach is required 

with incorporation of more realistic consumption data reflecting data streams coming 

from numerous SMs.  

1.5.2 Demand response programs 

DR is a common name for changes in load consumption (increase/decrease) as a 

response to external signals, motivated by either environmental, market or network 

implications [49]. DR has been recognized as one of potentially cost-effective options 

for operating the power network [50]. Typical aims of DR are maximising the use of 

renewables, maximising the economic benefit, minimising the energy import from the 

main grid, or reducing peak demand [51]. Large-scale (aggregate) DSM can be used to 

provide balancing services by selling flexibility [52], compensate RES volatility [53], 

provide regulation services [10], minimise network losses or defer investment and 

contribute to network security and reliability [54-56].  

The main categories of DR programs are based on the type of the external signal 

motivating the end-users to change their consumption, and given in two groups, as 

follows [57-59]: 

1) Price-based DR, divided into: 

o Time-of-use (ToU); 

o Real-time pricing (RTP); 

o Critical peak pricing (CPP); 

2) Incentive-based DR, with its most common forms: 

o Direct load control; 

o Interruptible load contract (ILC); 

o Demand-side bidding (DSB); 
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o Peak time rebate (PTR). 

Price-based DR programs are relying on different tariffs for the end-users, either 

depending on the period of the day (ToU pricing), following the real change of 

wholesale electricity price on the market every hour or 10-15 minutes (RTP), or 

increasing the price substantially during very high (peak) loading periods – either in 

predefined periods or with a few hours notification (CPP). In CPP programs, the 

number of critical days per year is predefined, but the timing is unknown, the notice 

being usually one day [55]. The EDF in France, for example, has 10 million customers 

on this type of program. 

In the direct load control scenario, the system operator has direct control over the 

demand covered by the DR program [60]. In this respect, load can be dispatchable (i.e., 

it can be curtailed according to a signal from the system operator) or non-dispatchable 

(i.e., curtailed manually, by the customers, following an incentive). Automated DR 

(with dispatchable loads) enables predictability and persistence of end-users’ response 

over longer periods [61]. Control relays which interrupt power to loads are usually 

activated via radio signal, telephone, or using the power lines [62]. Typically reported 

applications of direct load control include voltage control, provision of ancillary 

services and energy arbitrage [9]. 

Interruptible programs are designed for large customers who have to offer significant 

reduction (e.g., of at least 1 MW) and are ready to execute it at any time [55]. The 

minimum notification time (usually 10 minutes to one hour), maximum interruption 

duration and maximum number of interruptions per year are pre-defined. 

Communication is commonly done by phone, email or fax. Larger industrial users 

usually have a back-up generator which is turned on to prevent production losses 

during load curtailment. Demand-side bidding represents participation of load 

flexibility in electricity market. In PTR contracts, the consumers agree to reduce 

consumption during peak pricing times and receive a rebate in return.  

1.5.2.1 Incentivising end-users 

According to [11], the most common methods to incentivise DR are ToU tariffs and 

direct load control. Apart from financial incentives, some end-users may be interested 

in ecological aspects of DR, i.e., the reduction of CO2 emission. It has been reported 

that some companies participate in DR in order to improve their brand image [61]. 
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Environmentally driven DR aims to improve the environmental and social standards by 

reducing energy use through energy efficiency programmes and by reducing 

greenhouse gas emissions [49]. Finally, different groups of end-users will react to 

different incentives, which is why some authors [63] suggest tailoring types of 

incentives based on motivation of the end-users, for example sending climate 

information messages to those who give priority to ecology, or financial savings for 

those with self-interest.  

End-users can be incentivised for efficiency or curtailment behaviour [64]. Efficiency 

behaviour refers to capital (one-off) investment for reducing fossil-energy use, e.g., 

home retrofitting. Curtailment behaviour relates to repetitive reduction of fossil-energy 

use, by changing daily consumption patterns. Social scientists have investigated 

different approaches to change customers’ behaviour with respect to electricity usage 

and sustainability [7]. They have suggested different solutions, for example: i) 

visualisation (e.g., using thermal imaging to show indoor heat losses to encourage 

home retrofitting), ii) tailored information about energy-saving measures and the 

impact these could have on customers’ electricity bills, or iii) social comparison, where 

customers are informed about their electricity usage compared to their neighbours, for 

instance. Report [64] indicated that monetary incentive alone (in this example, €1.7 for 

each 1% reduction in energy use) resulted in lower consumption reduction than when it 

was combined with social comparison. The former program resulted in 5.9% reduction 

of energy use, while the latter one resulted in 8.2% reduction.  

Some drawbacks of the monetary incentives have been recognised in [64]:  

 Rebound effect (savings in electricity bill may induce investments in other 

products that require increased electricity use); 

 Low individual benefit for the consumers, i.e., low cost-effectiveness of 

participation in DSM from the end-user’s perspective; 

 Undermining intrinsic motivation that is based on environmental benefits: a 

research has shown that emphasis on environmental benefits alone attracted 

more participants in DSM than emphasis on monetary benefits only or these two 

benefits in combination, as shown in Figure 1.3. Similarly, social reward (e.g., 
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recognition) also resulted in higher reduction of energy use compared to 

monetary incentives.  

Finally, it can be concluded that socio-economic profiling of the end-users in an area is 

a necessary step before introducing different types of incentives for DSM participation. 

 

Figure 1.3 Willingness to participate in DSM program based on different incentives (adopted from [64]) 

1.5.2.2 Demand response approaches 

Authors in [65] investigated a game theory-based DR for price-responsive appliances. 

The individual appliances schedule their consumption at the times of lowest electricity 

price with the objective of minimising the operating cost. In this distributed approach, 

the price signal is sequentially sent from a centralised entity to each appliance, which 

then performs power change to reduce its energy cost. The proposed methodology 

avoids new demand peaks and successfully flattens the total loading curve of the 

aggregated demand. An incentive-based approach was examined in [59], where the 

end-users’ elasticity is encouraged by voluntary coupon incentives when the wholesale 

real-time price (paid by the retailer) exceeds the fixed retail price (paid by the end-

users). This idea was motivated by the overbooking strategy of airline companies, as 

the end-users are expected to reduce their consumption as long as the revenue they 

receive for that exceeds the benefit they would get if they did not reduce the 

consumption. In other words, participating end-users can only save money. The main 

contribution of the approach is that significant benefits are achieved even with 

moderate participation of the end-users. The difference between this program and PTR 

is that in the former program the rebate rate (i.e., the coupon price) is not fixed, but 

updated iteratively between the retailer and the customers, based on the close to real-

time system conditions.  

Authors in [57] are using demand-side bidding model and propose a two-level 

optimisation – at the upper level, the grid operator minimises the cost of DR by 
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optimising load shifting schedule based on a load shifting bidding curve at each load 

bus. Then, at the bottom (nodal) level, the demand of each node is rescheduled based 

on the requirements coming from the upper level.  

Optimal load scheduling is performed in [66] to minimise the total energy consumption 

cost. The problem is constrained by the capacity limit of the distribution transformer, 

and the delay quality of service for different demand blocks. The scheduling process is 

divided into two steps: capacity planning and real-time scheduling. Similar approach 

was taken in [67], where the individual appliance scheduling was done in two steps: 

first day-ahead, following the hourly price forecast and expected users’ behaviour, 

while the second optimisation step was performed in real time (in minutes), following 

the actual prices and users’ comfort.    

As the high penetration of DER in some areas may have effect on sub-transmission and 

transmission levels, TSOs are advised to control aggregated DERs [68]. Similarly to 

DGs and storage systems, flexible (controllable) loads can also be considered as DERs. 

Following this, authors in [69] presented an energy management system as interaction 

between the DSO, aggregators (clusters of the same type of DER connected to one bus) 

and dispatching centre of the upper grid. In this scenario, DSO first receives 

information from aggregators about available (forecast) flexibility and information 

from upper grid dispatchers’ needs, and then makes the optimal schedule and sends it 

back to the other two actors.  

Another hierarchical DR program was seen in [70], where demand flexibility was 

observed as virtual state of charge (SoC) of aggregated thermostatically controlled 

loads (TCLs) modelled as virtual generators (VG) with negative output. The main aim 

of DR in this example is providing balancing services to the upstream network by 

following a target load curve. The SoC is proposed to define the upward and downward 

regulation capacity of the load group. TCL is defined by a state vector consisting of 

indoor temperature, on/off state and corresponding power. TCLs (heat pumps) are 

controlled sequentially using a state-queueing model, where the control signal 

(ON/OFF) is sent to the units prioritised based on the indoor temperature. The central 

controller, which is equipped with indoor temperature forecaster for the next time step, 

determines the ON/OFF status of the HVAC units and creates the priority list. The 
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feasible (flexible) region of the VG is determined by aggregating rated (real) power of 

ON and OFF devices and adding them to or subtracting them from, respectively, the 

total power consumption without control (the consumption that existed before any of 

the heat pumps was controlled). It is assumed that the state of each heat pump can be 

monitored. In cases where there are multiple VGs in the network area, these can be 

aggregated to virtual power plants (VPP). The flexibility boundaries of VPP would be 

obtained by aggregating boundaries of individual VGs. 

Based on the observed literature examples, typical DR architectures are centralised 

([60, 62]), hierarchical ([62, 69, 70]), and distributed ([59, 65]). A typical hierarchical 

architecture, adopted in this thesis, was proposed by [71], where the main actors are the 

TSO (the DR initiator), the aggregator (managing and selling flexibility from aggregate 

end-users), the DSO (monitoring DR action in order to preserve its operating 

conditions, namely voltages and currents),  and the end-users willing to participate in 

DR programs.  

In spite of potentially significant benefits that could arise from effective DSM, there are 

some notable obstacles for harnessing flexibility from the demand side. These include 

[30, 62]: 

 Lack of controllable loads or infrastructure needed for automatic load control; 

 Demand uncertainties, which are more emphasized at lower aggregation levels; 

 Thermal inertia affecting the scheduling of thermostatically controlled loads 

(TCLs); 

 Load (energy) payback, which, if not properly planned, may result in peak 

loading at time steps following load curtailment. Load payback is often 

modelled in a simplified manner, as a redistribution of curtailed energy during 

the control period; 

 Customers’ lifestyle and comfort, i.e., their willingness to participate in DR 

programs; 

 Inter-temporal constraints (e.g., storage capacity, ramp rates); 

 Costs for the DR responsible entity on one hand and limited revenues for the 

end-users on the other. 
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1.5.2.3 Demand response and load composition 

Unlike conventional generators, DR (similar to energy storage) has limited duration of 

response, hence, load reductions have to be scheduled to provide energy services 

during periods of highest value [72]. Furthermore, the aggregate response is more 

predictable and reliable than the one of individual end-users, especially if the end-users 

from the same demand sector are aggregated. Aggregation allows longer curtailments 

by sequential shedding of individual loads within the aggregated group, and varying 

response times from individual loads within the group [73]. Therefore, there is no need 

to model in detail operating characteristics of different types of load in the aggregation. 

As the communication technologies are already in place, including the smart metering 

systems, it could be argued that the only obstacle to reliable aggregated DR programs 

are appropriate load models and control strategies [62].  

Different approaches to modelling aggregate demand flexibility have been suggested in 

the literature: 

 The use of sensitivity functions indicating each user’s probability of shifting 

usage of each device by a certain time, given the reward in the new period of 

usage [74];  

 The unit commitment optimisation approach, to compare flexibility from 

demand-side resources with the one from fast ramping generation [62, 75, 76];  

 Probabilistic demand curve, similar to generation availability curve of a 

renewable energy source (RES) [77]; 

 Storage model, where demand flexibility is observed as virtual state of charge 

(SoC) [70]. Similarly, load availability is often given as upward or downward 

flexibility, referring to load decrease or increase, respectively [10, 78]; 

 Load shifting bidding curve showing the maximum change demand is willing to 

make based on the price [57, 79]. 

Information about load flexibility is beneficial for the assessment of DR potential and 

the outcome of a DR program. Furthermore, information about the composition of 

demand, with respect to different load categories, informs the DR responsible party 
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about the shares of different types of load that may have different availability for DR 

and bring different benefits. For example, a case study examined in [55] showed that 

participation of one load category (washing machines) in DR brought more financial 

benefits than participation of another one (in this case, water heaters). In [80], end-

users receive a reward for their load shifting participation, as well as for the voltage 

improvement in the supply feeder. Following this approach, prediction of available 

demand flexibility, i.e., short-term forecast of load composition, for example day-

ahead, allows the supplier to adjust the level of incentives in case there is a need for 

attracting more end-users to participate in DR actions. In direct load control programs, 

described in [50], load composition could enable the system operator to have a more 

accurate overview of the size of available controllable loads whose consumption can be 

remotely controlled. 

Another type of DR that can benefit from information on load composition is voltage-

based DR (conservation voltage reduction or CVR), which is a non-intrusive DR 

program, as it does not affect the end-users’ comfort. It has been proven in [81] that in 

this case demand regulation potential (i.e., demand flexibility) depends on the initial 

size of load, as well as on load composition, namely the participation of load that can 

be modelled as constant impedance. Similarly, methodology for assessment of voltage-

based DR potential in UK, described in [82], raised the need for information on the 

load composition at distribution system buses. This way, the operator can estimate with 

higher accuracy what the available load flexibility coming from this type of DR will be 

and whether additional actions are necessary to meet desired aims.  

Load categorisation for DR was performed in [83]. Residential loads were classified 

into three groups: automatically controlled appliances with large demand and one run 

per day (storage heaters), automatically controlled smaller appliances with frequent 

runs during the day (fridges) and semi-automatically controlled appliances operating 

few times a week (e.g., washing machines). The authors showed that load control of 

EVs, batteries and storage heaters could bring the highest DR revenues.  

Identification of controllable HVAC devices and optimal scheduling of these loads to 

meet the aggregate target loading curve were performed in [84, 85], as part of a direct 

load control program. Decomposition was performed using a NILM method applied to 

current subharmonic waveforms of the loads. The target curve is predefined based on 

peak clipping and valley filling, which implies that the total energy consumed during 
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the control period should be the same as the one without any DR program. Meeting the 

target loading curve was accomplished using multivariable predictive control, namely 

sequential quadratic programming, of HVAC groups. The optimisation takes into 

account load payback of each controlled group, and limits it by a predefined value. The 

methodology, however, did not consider other controllable load groups.  

Demand composition, as reported in previous examples, is highly important for 

assessing the available demand flexibility for these programs. On the other hand, 

curtailing or shifting demand during DR actions may change load composition, and 

thereby affect the dynamic response of aggregated demand in case of a network 

disturbance (e.g., a voltage step change). Dynamic response represents change in 

active/reactive power of the load following a step change in voltage, which might affect 

the angular and voltage stability of the power system [39]. The size and shape of the 

dynamic response mainly depends on the size and composition of the load, which is 

why load decomposition finds its application in this area of power system studies. 

It has been shown that induction motors, thermostatic loads and energy efficient 

devices present sources of load dynamics [17], therefore their effect on the aggregated 

load demand response should be further analysed. Special attention should be given to 

new types of load, mostly non-linear power electronic devices (DC power supply loads, 

light emitting diode (LED) and drive-controlled motor loads). These types of load need 

to be modelled using dynamic load models, while resistive loads, common lighting and 

similar can be represented using static models (e.g., exponential or polynomial) [48]. 

Reference [47] examined application of a functional polynomial network (FPN) for 

clustering load responses to voltage and frequency disturbances based on different load 

composition. A load model would then be created for each cluster. The authors proved 

that the use of linear and ZIP load models was not justified in cases of dynamic 

responses. Instead, they used machine learning system (the FPN) trained by real 

measurements to provide more accurate assessment of the dynamic response following 

a voltage and/or frequency change. Finally, knowing the effect of different load 

compositions on system stability, one may take measures, i.e., appropriate DR actions, 

to prevent those compositions of load that might provoke instabilities in the power 

system. Dynamic response of demand-based load shifting as a part of DSM program 

was introduced in [86]. 
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1.5.2.4 Demand response and network performance indicators 

DR programs including large users or aggregations of users visibly change power flows 

in the network and thus may affect different indicators of network performance. Recent 

literature has investigated how DR can be used to support voltage and frequency 

control during regular or disturbed operating conditions. Another area or research has 

been the effect of DR on network losses.  

1.5.2.4.1 Voltage support 

Voltage stability is described as the ability of the system to maintain acceptable 

voltages at all buses during normal operating conditions and after a disturbance [44]. 

Voltage instability occurs when a disturbance, a load increase or a change in system 

conditions cause voltage to drop progressively. Voltage stability is assessed through 

different indicators. One of the most common indices is the calculation of the minimum 

singular value of the power flow Jacobian matrix [87]. The minimum singular value 

represents the distance between the current operating point and the singularity of the 

power flow Jacobian matrix [88]. When the Jacobian matrix is singular there is no 

inverse matrix, i.e., there is an infinite sensitivity of the power flow solution to the 

small changes in parameters, and the power flow solution cannot be obtained. In modal 

analysis [44], eigenvectors and eigenvalues of the reduced Jacobian matrix are 

calculated – this approach is very useful in determining the critical elements in critical 

areas in the network with respect to voltage stability. 

Except for the modal analysis, a typical approach for assessing voltage stability is via 

network load margin. For a certain operating point, the load margin is the amount of 

additional load in the network that would cause a voltage collapse [89]. During a 

heavily loaded condition, even a relatively small, but sudden increase in demand can 

result in voltage instability. The load margin is commonly derived from the real power–

voltage characteristic, the so called PV (or “nose”) curve, depicted in Figure 1.4. The 

PV curve will change due to contingencies, resulting in lower load margin even at the 

same operating point (𝑂𝑃). If the current 𝑂𝑃 is at the upper half of the PV curve, the 

real power margin is the amount of load increase that will cause the power system to 

reach the maximum loading point (𝑃𝑀
′  in Figure 1.4). The change in network 

parameters (due to a contingency, for example) changes the PV characteristic (dashed 

curve in the figure), while the change in load (constant power load characteristic is used 

in Figure 1.4 to illustrate the concept) changes the position of the 𝑂𝑃 on the PV curve, 
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and consequently the load margin (the distance between 𝑂𝑃 and 𝑃𝑀
′  in Figure 1.4). 

Changing the network parameters, by adding FACTS devices, for example [90], moves 

the PV characteristic, while changing the load by DSM action can move the 𝑂𝑃 to left 

or to the right (along the PV characteristic), and such increase or decrease its distance 

to the maximum loading point, respectively.  

 

Figure 1.4 PV curve (adapted from [91]) 

Keeping the load margin as large as possible ensures that the system will be able to 

withstand disturbances and unexpected increase in the load without endangering its 

voltage stability. Typical method for deriving the load margin is continuation power 

flow, which, unlike the Newton-Raphson load flow method, permits convergence 

around the saddle node (tip of the PV curve) [92]. The method uses constant power 

load model and allows for obtaining the load margin and identifying the weakest bus in 

the network. The sensitivity of the bus to load increase is detected by following the 

ratio (𝑑𝑉𝑏𝑢𝑠/𝑑𝑃𝑇𝑜𝑡𝑎𝑙), where 𝑑𝑉𝑏𝑢𝑠 is the change in bus voltage with the change in 

total load (𝑑𝑃𝑇𝑜𝑡𝑎𝑙) of the system. The location of the weakest bus may change with the 

changes in size, characteristics, and location of the load. The sensitivity (𝑑𝑉𝑏𝑢𝑠/

𝑑𝑃𝑇𝑜𝑡𝑎𝑙 l) will be negative if the loading margin is in the stable zone, and close to zero if 

it is far from the maximum loading point.  

Another voltage stability indicator, the L-index, uses reconfigured admittance matrix to 

assign a value from 0 to 1 to each load bus [12] - the higher the value is, the closer the 

bus and the system are to the voltage instability point. Other indices include: sensitivity 
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of impedance ratio index, V-Q sensitivity index, index 𝑖, voltage collapse index 

(Lambda), channel components transform, diagonal element dependent index, etc. [13]. 

An important part of accurate voltage stability analysis is appropriate load modelling 

[44] – for example, at lower network voltages (i.e., below 85-90% of the nominal 

value), some induction motors may stall and draw more reactive power, causing this 

way the voltages to drop even more. In the long-term voltage stability analysis 

performed in [43] distribution network loads were modelled using a combination of 

voltage sensitive and induction motor loads.  

Even though voltage stability phenomena have been widely analysed at the 

transmission network level, voltage stability in distribution networks and microgrids 

has been given more attention recently. Key factors in voltage instability in microgrids 

are DER limits and sensitivity of load to voltage [23]. Even though voltage collapse 

cannot be observed in microgrids, instabilities may be seen in the form of unacceptably 

low steady-state and dynamic voltages [23]. Furthermore, clogging (or “radial”) 

voltage instability happens in distribution, sub-transmission, and occasionally 

transmission network [19]. It occurs due to series reactive losses, on load tap changers 

(OLTCs) reaching tap limits or shunt capacitors reaching susceptance limits. At the 

same time, no support in reactive reserves appears in generators, static VAR 

compensators or synchronous condensers. These can “clog” the network and prevent 

reactive power flow needed to support voltage drop in sub-areas of the network. This 

instability, caused by increased transfer, can be assessed by loadability assessment 

methods or PV curve.  

Distribution network voltages have traditionally been regulated using transformers with 

OLTCs [43], however, with the increased loading of distribution networks (coming 

from proliferation of both new types of load and distributed renewable generation), 

other types of resources may be needed to complement the existing ones. This is of 

particular importance in degraded operating conditions of the transmission network, 

where transmission network voltages are not as stiff as expected, and may need more 

support from the distribution network [43].  

Previous studies have dealt, to an extent, with the influence of DGs and DSM on 

voltage stability. Location of the DGs in the network affects the voltage profile, which 

is why optimal allocation of these resources is very important for appropriate voltage 

support. Candidate buses for installation of DGs, prioritised based on their sensitivity to 
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voltage profile and thus capability to improve the voltage stability margin was 

discussed in [20]. Voltage stability was assessed with the maximum loadability of the 

network, i.e., the load margin. Mixed-integer nonlinear programming was applied for 

this purpose, with an objective function of improving the stability margin. The 

constraints were the system voltage limits, capacity of the feeders, and the distributed 

generation (DG) penetration level. In another example [22], modal analysis and 

continuation power flow were used to determine optimal locations of DGs in 

distribution network. The placement was then evaluated by assessing voltage load 

margin, active and reactive loss reduction and voltage deviation over all network buses. 

In both DG allocation problems the methodology was illustrated using a radial 

distribution network, namely the IEEE 41 bus network [20] and IEEE 33 bus network 

[22],\ while demand was modelled using the constant power load model. 

In [88] DR was used in contingency events, to support voltage stability until reserve 

DGs get connected. Due to the ramp limits of the generators, the approach proposes 

fast responsive flexible loads to support the voltage stability only until the generators 

get fully connected. After a disturbance, it is assumed that the load changes – increases 

in some buses, and decreases in other, keeping the total flexible load constant, until the 

old and additional generators are re-dispatched. Once the generators are dispatched, the 

loads return to their normal consumption plus/minus the load payback from the DR 

period. It was assumed that 100% of the demand was flexible, and that load could be 

completely curtailed at some buses, and increased (by the same amount) at others, to 

maintain the frequency. This approach, however, would be hardly feasible to deploy in 

reality, due to the limitations in load flexibility (both upwards and downwards). 

Authors in [49] used a multi-objective optimisation to allocate a limited number of 

network buses for provision of DR based on Pareto optimal solution, i.e., the solution 

whose improvement in one of the objective functions would deteriorate at least one 

more function from the given set of objective functions. The objective functions 

included: generation scheduling cost, voltage drop, voltage stability margin, network 

loss, and incentive payment while, crucially, the demand-side flexibility was assumed, 

but not clearly evaluated, and the effect of load payback was not accounted for. In both 

of these studies [49, 88] the load was modelled as constant power, though the most 

unfavourable for voltage stability, as it usually does not reflect the behaviour of the 
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actual load in the network. Authors in [93] considered DSM as an alternative to short-

term voltage stability improvement. In this study the load was modelled as a 

composition of different static and dynamic loads, but the criteria for curtailment or 

shifting different load types was not defined. Similarly, [54] examined how DSM can 

affect the estimated voltage stability margin by considering different load models, but 

fell short of performing optimal allocation of DSM for improving voltage stability. 

Optimal DR was presented in [76] where both network requirements (preserved voltage 

stability) and constraints based on end-users’ comfort are met. The approach relies on 

highly distributed heat pumps whose aggregated output can be ramped up or down 

from a centralised controller behaving as a virtual generator, similarly to [70]. Security 

constrained OPF is performed with the end-users’ constraints included. Voltage 

stability margin was observed at initial loading conditions (before any control actions) 

and then, in the periods where it was lower than the critical value, DR was triggered. 

The DR is performed via the central controller (power system operator) who fetches 

flexibility boundaries from aggregated groups of heat pumps and reschedules their 

usage. The flexibility boundaries are imposed by the temperature comfort of the end-

users, so the central controller can only define a new scheduling target, for solving 

voltage instability issues, within these boundaries. The objective of the OPF was 

minimisation of the control cost, constrained by the load margin (which has to be 

higher than the critical one) and the flexibility region of the virtual generator. The load 

margin-induced constraint is incorporated using the sensitivity of the load margin to 

load bus injection at the critical (voltage collapse) point following a contingency. The 

OPF problem is solved iteratively, until there are no contingencies recorded, and the 

solution is given as a vector of power injections at each controllable load bus. Although 

the approach successfully tackled voltage instability issues, it relied only on one load 

type. If other types of load were considered, payback load would have to be modelled 

as well, in order to analyse possible effect of load increase following a load decrease. 

Furthermore, load model used in the study was not defined.  

1.5.2.4.2 Frequency support 

Frequency is seen as a measure of real power balance between generation and load and 

thus should be kept constant (within a predefined range) for normal operation of the 

power system. There are three levels of frequency control in practice: i) primary control 

(provided by frequency containment reserves) is a fast local automatic control adjusting 
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the real power generation and consumption to quickly restore the balance between 

generation and load, ii) secondary or load-frequency control (provided by frequency 

restoration reserves) is a centralized automatic control adjusting the real power 

production or consumption to restore the frequency and the interchanges with other 

systems to their target values, and iii) tertiary control, which dispatches the generators, 

bringing the power flows back to their target values [94]. Primary control should rely 

on resources distributed across the network to avoid large unplanned power transfers 

following a disturbance [95]. Therefore, distributed DSM resources, with the self-

regulating effect of frequency sensitive loads (motors) or frequency sensitive relays, 

can be valuable for this type of frequency control in particular, complementing the 

speed governors of the generator units. Authors in [95] assumed that generators were 

able to provide 7% of their nominal capacity for primary frequency response, and that 

10% of the load was frequency responsive. Participation of the demand drastically 

reduces the amount of response required by the generators. 

Demand-side contribution to primary frequency control was analysed in [96], following 

the fact that individual generator’s response depends on its droop characteristic and 

local frequency measurement, not on a signal from a control centre (this type of signal 

is usually sent for secondary or tertiary control loops). Therefore, for primary 

frequency control, there is no need for generator (or load) to be connected to a 

communication system to participate in frequency response. The proposed appliances 

participating in frequency response are the energy consumers (not power consumers) as 

they can be shifted in time, as long as they consume the predefined amount of energy 

(e.g., fridges/freezers, HVAC units, tumble dryers, water and space heating). This 

paper analysed bounds on the amount of frequency-sensitive (flexible) demand 

response which could be achieved in a power system. In another approach [94], 

primary and secondary frequency support by aggregated EVs and water heaters was 

examined. The DSM program is designed with an aim of providing the requested 

services with maximised social welfare of the end-users. A multi-agent framework 

shifts demand in time and provides the primary or secondary frequency support using 

the available reserve. In this price-based framework, the electricity price reflects the 

changes in frequency. Therefore, the controllable devices adjust their consumption 

based on the price-frequency dependency.  
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As the frequency response of demand always remains uncertain, the operator will need 

information about the aggregated frequency-sensitive demand response characteristic. 

The results in [94, 96] demonstrate that the aggregated active load response 

characteristic is similar to the droop characteristic of a generating unit. The aggregated 

demand can mimic behaviour of a generator in this respect, however the 

recommendation is to use demand as a complement to generation reserve, as otherwise 

the aggregation would need to contain a significant number of loads. Fast response of 

demand can be used to reduce frequency drop during a disturbance before conventional 

generators start restoring the frequency.  

DR for both voltage and frequency support was developed in [97], where all responsive 

devices were classified based on their controllability degree. Once a violation of 

voltage or frequency is detected, the control signal is sent to the most influential (i.e., 

most sensitive) buses to change their active or reactive load. In the proposed scenario, 

hierarchical system is established where a central energy management system sends 

requirements for corrective actions to transmission agents (TAs) who calculate the 

requested active/reactive power change and forward it to the distribution agents (DAs). 

Finally, DAs send requests for active and reactive power change to the controllable 

loads based on the request from the TAs, available demand controllability, and 

distribution network voltage and line flow constraints. The multi-objective problem 

(minimising frequency and voltage deviations, and minimising manipulated active and 

reactive power to meet the overall goal) was solved using particle swarm optimisation 

(PSO). While the optimisation decides on the changes in the amount of active and 

reactive power, it does not consider the types of loads that participate in these changes. 

All the load buses are modelled in the same way, using composite ZIP load model with 

frequency dependence with constant load model parameters. The daily changes in load 

composition, and subsequently, in the parameters of the equivalent load model, 

however, are not accounted for in the analysis, only the time-varying controllability is 

considered. 

1.5.2.4.3 Distribution network losses 

Distribution network losses, i.e., the difference in electrical power delivered to the 

distribution network and the power delivered to the end-users, play an important part in 

the overall operational costs of a DNO, as they are affecting the carbon emissions and 

generator capacity requirements [98]. It was suggested in [71] that power losses, 
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voltage dependency of the load buses and load payback should be considered in DR 

programs. Quantitative analysis of losses in the UK distribution network were provided 

in [98], reporting 1.5% losses at 33 kV level, and 3% losses at 11 kV level.  

DR for minimisation of cost for the end-users and distribution network losses was 

performed in [99] using a two-level optimisation. At the lower level sequential 

quadratic programming (SQP) is applied - loads are shifted, based on the given daily 

electricity price, from periods of higher price to the periods of lower price. At the 

higher level, PSO is used to optimise the daily price that will, indirectly, through load 

shifting, minimise the network losses. For each generated swarm (a “candidate” daily 

price vector) of the PSO algorithm loads are scheduled using the SQP method to 

minimise the overall cost, and the consequent network losses are calculated. Finally, 

the result of the PSO algorithm is the price vector giving minimal losses. The 

distribution network losses were reduced by 12% compared to the base case without 

DR and with constant electricity price. The authors considered participation of 

residential, commercial and industrial loads, however they did not distinguish between 

different load models representing these load sectors. In addition, the power factor of 

each load bus was considered constant even after load shift.  

Minimisation of network losses and generation cost based on real-time scheduling of 

EVs was suggested in [100]. Losses are minimised by prioritising charging of the EVs 

causing minimum impact on the network losses. The EVs are prioritised based on the 

sensitivity analysis of system losses to small variations in EV charging load at a given 

time step. These sensitivities are calculated from the Jacobian matrix of the power 

flow - this approach is called the maximum sensitivities selection. All loads were 

modelled as constant power loads.  

1.5.3 Ancillary services provided by large-scale demand response 

Ancillary services represent network services, provided to the network operator by 

different actors in a deregulated power system, which have two main goals [101]: i) 

maintaining a constant balance between generation and load, and ii) managing power 

flows within the network constraints. The main resources for ancillary services used to 

be conventional generators, which have recently been complemented by DER 
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(including DGs, storage and DSM). Ancillary services can be classified into the 

following groups [101]: 

 Continuous (frequency) regulation: provided by resources with automatic 

control for minute-to-minute balancing between generation and load; 

 Energy imbalance management (load following): slower than continuous 

regulation, bridging regulation service and hour-to-hour or half hourly bid-in 

energy schedules. This mechanism allows market clearing; 

 Instantaneous contingency reserves: provided by sources that have frequency or 

other type of control that can rapidly increase output or decrease consumption 

as a response to a disturbance; 

 Replacement reserves: provided by resources with slower response that can 

replace or complement instantaneous contingency reserve; 

 Voltage control: injection or absorption of reactive power for maintaining 

transmission system voltages; 

 Black start: generation units capable of starting themselves without any support 

from the grid, with sufficient active and reactive power to be used in system 

restoration.  

The first four groups fall into operating reserves which can be further distinguished as 

either spinning (connected and synchronised with the system) or non-spinning 

(available and ready to be connected and synchronised within 10-30 min) [72]. 

Frequency regulation always comes from spinning resources, but the rest of operating 

reserves can come from a combination of spinning and non-spinning resources.  

DR, as one of the new ancillary services providers, is expected to provide energy 

services (shedding or shifting load) and operating reserve (frequency regulation due to 

unpredicted short-term changes in net load/RES generation, contingency reserve 

following a fault, or flexibility/ramping reserve at times of large and unexpected RES 

ramp events) [102]. Energy reserves are sold in kWh (MWh), while operating reserves 

are sold in MW during a particular time period [72].   

Distribution network can also be seen as one of the providers of some of the 

aforementioned ancillary services at the grid supply point (GSP). End-users with 

automatic control may have faster response than the conventional generators as the 
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latter ones have slower ramping characteristics due to the inertia of thermal and 

mechanical systems [103]. It was reported in [62] that the ramp rate of loads is often 

constrained only by the speed of the communication network. Also, control of a large 

number of smaller units is less risky than controlling a small number of large units. DR 

resources could provide ancillary services at a lower cost and with lower carbon 

footprint than conventional generators [104]. There are 225 GSPs (mostly 400 or 

275 kV to 132 or 66 kV) in England and Wales and another 280 in Scotland [98]. This 

gives around 500 points across the transmission network at which the DSOs (i.e., the 

demand side) could potentially be providing ancillary services through DR programs 

and other types of control (e.g., CVR).  

As an example, Customer Load Active System Services (CLASS) project [105] was 

run by Electricity North West (one of the DNOs in UK) and National Grid (TSO in 

UK) to investigate and better understand the effects of network voltage change on 

electricity demand. The project demonstrated that through the deployment of voltage 

control equipment at DNO substations, network transformers could be used to modify 

network voltage and demand and so provide frequency and voltage management 

services to National Grid. The project identified that, if the voltage control techniques 

were applied widely, around 3 GW of demand reduction or demand increase could be 

achieved to provide frequency services, and around 2 Gvar of reactive demand could be 

achieved to help manage transmission voltage.  

The distribution network is expected to provide ancillary services to the transmission 

network using flexibility of the load and distributed generation (DG). In that respect, 

controllable loads (that can be controlled remotely by the system operator through 

direct load control programs) and dispatchable DG sources could participate in 

ancillary services market [106]. Controllable loads could be used for generation-

demand balancing, frequency control, peak reduction and network congestion 

mitigation [107]. Following approach in [97], load buses could be classified based on 

the type of ancillary services they can provide as a support to generators: i) voltage 

control would be obtained from buses providing real power support and those 

providing reactive power support (these buses have higher sensitivity of voltage to 

changes in real/reactive demand); ii) frequency control could be obtained by all system 

buses participating in real power support. 
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Potential benefits of loads participating in ancillary services are as follows [62, 101, 

102]:  

 Improved system reliability (more sources, which are distributed across the 

network, and are thus capable of providing spatially precise responses to 

contingencies); 

 Improved market efficiency (lower price with more participants):  

o as the energy services provider, DR reduces the use of highest cost 

generators; 

o as reserves provider, DR reduces the use of less efficient partially loaded 

thermal units, as well as the variable cost associated to conventional 

generation providing regulation services;  

 Market power mitigation (preventing generators from bidding up the price of 

ancillary services); 

 Improved system efficiency and planning (avoiding uneconomical operations);  

 Improved risk management. 

Furthermore, provision of ancillary services is defined by the following deployment 

times [95]: 

 Deployment start – maximum time between the TSO’s request and the start of 

the response; 

 Full availability – maximum time between receiving the request and delivering 

full response; 

 Deployment end – maximum time during which the service must be provided 

starting from the time of the request. 

Ofgem (The Office of Gas and Electricity Markets) in the UK defined reliability rules 

and market design as source-neutral, allowing equal participation of load and 

generators. PJM (Pennsylvania, New Jersey, Maryland Interconnection, LLC) in the 

US opened most of its ancillary markets to loads in 2006 [101]. The UK was among the 

first to deploy DR for frequency response using aggregated large industrial loads with 

under-frequency load shedding, while in 2007 load already accounted for around 30% 

of the system’s spinning reserves. ERCOT (Electric Reliability Council of Texas) uses 
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2,400 MW of its demand for spinning reserve, mainly by industrial users with peak 

demands of 10 MW and more, equipped by under-frequency relays [104].  

The potential of industrial loads in providing ancillary services via DR was analysed in  

[108]. Several DR products were recognised: 

 Regulation: response to random deviations in scheduled net load; 

 Flexibility: additional load-following reserve for large unforecast RES ramps; 

 Contingency: rapid and immediate response to a loss in supply; 

 Energy: shedding or shifting energy consumption over time;  

 Capacity: alternative to generation.  

Typically requested load size for individual users participating in DR is between 3 and 

25 MW, while in the case of aggregators this size can be smaller [101]. It was reported 

in [108] that the minimum average power demand of an industrial user has to be 

0.5 MW in order to be considered as an appropriate “candidate” for DR. The power 

capacity of 0.5 MW corresponds to about 200 HVAC units, heat pumps or water 

heaters, or an aggregation of about 3,500 refrigerators [78]. The types of load most 

suitable for capacity and energy DR products are those involved in manufacturing 

processes which can be turned ON/OFF for extended period of time without 

modulation. The types of load that can provide all five aforementioned DR programs 

are those equipped with control devices, i.e., loads that can be modulated (fans, pumps, 

air compressors, etc.), and those that participate in continuous processes (furnaces, 

smelters, electrolytic cells, etc.) [108]. Thermostatically controlled loads (TCLs) have 

been recognised to have great potential for fast frequency regulation due to their large 

number and ability to be turned ON/OFF simultaneously [78].  

In the UK and Nordic countries DR for ancillary services initially started with large 

industrial users with SCADA telemetry [101]. However, with the markets being 

developed around aggregators, the minimum size requirement has decreased. 

Aggregators such as ENGIE (former Gaz de France), have successfully included other 

types of smaller load, namely dual-fuel boilers, back-up generators, and combined heat 

and power facilities to provide operating reserves that can meet all the technical 
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requirements of the system operator. Pilot sites in Nordic countries investigated 

aggregated heating loads (water and space heaters) which make 16,000 MW for reserve 

and balancing. 80% of flexible customers in the UK are contracted via an aggregator, 

while some also contract directly with National Grid (20%) and through their DNO 

(10%) [109]. According to an Ofgem survey, there is a great untapped flexibility 

potential in the UK (around 3GW for reducing demand and around 2 GW for 

increasing demand), with motors and pumps being the most flexible, followed by 

lighting, although it is not used frequently [109]. 

Ancillary services which are currently provided to the National Grid via aggregators 

are as follows [109]:  

 Balancing services – firm frequency response (FFR), with response time within 

seconds; 

 Balancing services – reserve (reducing/increasing/shifting consumption), with 

response within minutes; 

 Capacity - reducing/increasing/shifting consumption when electricity demand is 

higher than available generation. In order to ensure security of electricity 

supply, payments are provided to existing and prospective generators and 

demand side providers, in return for a commitment to provide capacity during a 

system stress event; 

 Demand Turn Up – shifting demand to the periods of the day when RES 

production is higher.  

1.5.4 Summary of past work  

Previous sections have provided an overview of the state-of-the-art of research and 

industrial practices in the area of demand observability and DSM motivated by either 

market or network based applications. Some of the main research problems and points 

identified in the literature review are summarised as follows: 

1) Large-scale DSM is getting more attention as one of the flexibility providers 

at distribution and transmission network level, which brings the need to 

characterise aggregate demand at network buses with respect to its 

flexibility, voltage or frequency dependence (i.e., load response to voltage 

and frequency deviation) [10, 62, 70, 74-79]. Apart from real-time 
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estimation, forecasting demand flexibility, e.g., day ahead, is of particular 

importance for any DR program that is planned in advance [67]. 

2) Non-intrusive load monitoring (NILM) methods have shown to be useful for 

demand disaggregation, however the requirement for high granularity of 

measurements poses an issue for existing communication infrastructure in 

distribution networks, especially for disaggregation of a large number of 

users [33, 36-38]. Therefore, applicability of SMs combined with sub-

metering technologies as an alternative for aggregate demand disaggregation 

should be investigated. In addition, SM data compliance with the 

information and operation needs of the DSO in smart grid environment 

should be examined. 

3) Most DR programs are motivated by either economic benefit, maximising 

the use of renewables, or deployment of DR in contingency situations [88, 

94, 95]. Considering network performance as a constraint in daily planning 

of DR is usually missing.  

4) DSO is seen as one of the main flexibility providers supporting the TSO 

[43], apart from aggregators [71]. In many DSM programs [70, 84, 85], the 

aggregate demand is scheduled with the aim to follow a pre-defined loading 

curve.  

5) Load margin in the distribution network is often neglected compared to the 

transmission network analysis. With the proliferation of DER at the 

distribution side, the capability of the distribution network in providing 

services to the transmission network is becoming more critical [43]. New 

large types of load, such as EVs and heat pumps [15], will bring new 

challenges with respect to loadability of the distribution network.   

6) Optimal Allocation of DGs and DR resources for improving voltage 

stability has been performed [20, 22, 49], however optimal allocation of 

load dispatch for voltage stability improvement with respect to static and 

dynamic load components has not been analysed. 

7) In various analyses focusing on DR, voltage stability and load margin, load 

is often modelled using the constant power model and its voltage sensitivity 
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is neglected. This approach does not account for the potential changes in 

network power flows and consequently voltage stability, arising from 

different load control actions over static and dynamic loads at a network 

level. It is important to note that not only composite model should be used, 

including static and dynamic load components (as recommended in [43, 

44]), but also the daily and seasonal changes in load model parameters 

should be observed.  

1.6 Aims and objectives  

Based on the identified research gaps of the research in past work, two main research 

questions have been extracted which will be addressed in this thesis: 

Research question 1: How can we use the existing smart metering technologies to 

estimate/predict aggregate demand flexibility and derive time-changing shares of 

different load components?  

Research question 2: Can a DR program be “tailored” to meet the load profile 

requirements of the transmission or distribution network operator, available demand 

flexibility, while maintaining/improving loadability of the distribution network?  

1.6.1 Aims of the research 

There are two main aims of the research presented in this thesis, addressing the 

identified research questions. The first one is to use data mining to forecast (day-ahead) 

or estimate (in close to real time) the composition of aggregated demand in residential 

sector with limited demand observability enabled by SMs. This methodology is 

referred to as Advanced Demand Profiling. The second aim concerns optimised load 

scheduling in distribution network as a support to the transmission network, taking into 

account the requirements of the network operator, the limitations in load flexibility and 

preservation of network performance indicators, in this case load margin of the 

distribution network. This methodology is referred to as Multi-objective DSM. 

1.6.2 The overview of the research 

Advanced Demand Profiling methodology enables decomposition of forecast real and 

reactive demand at the aggregation level (e.g., a substation) using artificial neural 

networks (ANNs). The methodology builds on historical SM data and appliance level 
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(sub-metering) data from a limited number of residential end-users, and results in load 

shares of six pre-defined load categories within the total aggregated demand. In 

addition to limited observability, the impediments taken into account are missing data 

and different sampling steps of different SMs. The data are therefore pre-processed 

before aggregation in an off-line manner, although future development could include 

methods for on-line processing and restoring on-line data streams with missing values. 

The analysis of results provides an important piece of information – it defines the 

minimum percentage of end-users that has to be observed by SMs having sub-metering 

functionality in order to allow for a confident prediction of the demand composition of 

the overall demand (including both observed and non-observed users).  

Multi-objective DSM feeds on the output of the first methodology, i.e., the time-

varying demand composition at each load bus is used to model the load at each load 

bus using composite (ZIP+IM) load model, where the shares of the load model 

components change following the changes in demand composition during the day. 

Information about demand composition is used not only to plan a DR action and predict 

the behaviour of demand during the load payback at different load buses of the 

network, but also to assess the network performance indicators (in this case, load 

margin) affected by the changes in load flows coming from the changes in the size and 

composition of demand. The controllable components of the composite load model can 

therefore be optimally scheduled (disconnected at one time step and reconnected at 

another time step of the planning horizon) to preserve or improve the network 

performance after the DR action.  

1.6.3 The scope of the research 

The methodology for demand decomposition, which is developed in the first part of the 

research, provides information about the shares (in percentage or per unit) of different 

load categories (e.g., induction motors, resistive loads, etc.), but not of individual 

appliances (e.g., washing machines, water heaters, etc.). Load appliances belonging to 

the same category have similar steady-state and dynamic voltage-dependent load 

characteristic. Rather than disaggregating individual user’s daily demand into electrical 

appliances, as in [36, 37, 110], the methodology aims at decomposing the aggregated 

demand into load categories and controllable load, similarly to [39, 42, 86]. This type 
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of information is deemed acceptable for the DSO (or other DR responsible party), as it 

classifies load flexibility into load categories with similar static and dynamic 

behaviour. As a consequence, aggregated demand flexibility is seen as a type of DER. 

The ultimate aim is to establish what percentage of users would have to be monitored 

using SMs with sub-metering technologies in order to provide relevant information to 

the network operator for efficient deployment of a DSM program.  

After a DR action is triggered, shifting of load will change load composition, and 

thereby potentially the steady state or dynamic response of aggregated demand in case 

of a small or large network disturbance (e.g., voltage step change due to transformer tap 

changes, system faults, etc.), which might affect the angular and voltage stability of the 

power system [39] – this effect would be emphasized at transmission system level. 

Information about the load composition can be highly useful in these cases, as it can be 

used for: i) estimation of the dynamic load response at some given time; ii) prediction 

of the load response at some point in the future based on readily available information 

without having to perform field tests or measurements [16]. The aim is to ensure 

desired (or maintain existing) dynamic response of demand at given hour following the 

shift of the demand. 

Any wide-scale DR program, which changes the load profile across the whole network 

or network area, should be complemented by appropriate network performance 

analysis. The type of the analysis will depend on the type of the network and its voltage 

level. The network performance indicator, chosen for illustration purposes in this 

thesis, is load margin of the distribution network. However, other indicators, such as 

different aspects of angular or frequency stability, or network losses, could be used 

individually or in combination, to accomplish a network performance-aided DSM. The 

methodology for multi-objective DSM presented in the second part of the thesis can be 

easily transferred to transmission network with inclusion of other indicators of network 

stability and security. Finally, the methodology is seen as a decision support tool for a 

network operator or DR responsible entity, when planning (in short term) a wide-scale 

DSM program.  

This work does not analyse ways to incentivise end-users to participate in DSM. It 

does, however, assume a direct load control program for load shifting that would ensure 

a more confident response from the demand-side. The final outcome of a DR program 

depends not only on the flexibility of demand, but also on its availability, i.e., on 
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willingness of the end-users to participate in DR. Therefore, different levels of 

participation of the end-users will be taken into account during the analysis of multi-

objective DSM. 

1.6.4 Objectives of the research 

The objectives of the research contributing to the aforementioned aims are given as 

follows:  

1) To explain the reasons for the use of big data analytics in distribution network 

studies and give an overview of data mining methods typically used in power 

network studies; 

2) To examine the possibilities offered by the availability of SM data with respect 

to present and future data requirements of the DNO; 

3) To illustrate application of data mining methods for knowledge extraction from 

example database of a real distribution network; 

4) To develop a methodology for aggregated demand decomposition using 

conventional SMs and a limited number of SMs having sub-metering 

functionality; 

5) To develop an effective way to aggregate SM data streams containing missing 

samples and arriving to the data concentrator point at different sampling steps 

(one, ten, thirty and sixty minutes); 

6) To illustrate the methodology on a realistic dataset comprising a large number 

of aggregated residential end-users, using a UK statistics-driven per-appliance 

consumption model adopted from [111]; 

7) To develop a methodology for estimating reactive load data, when these are not 

available from existing SMs, based on real power measurements and sub-

metering data; 

8) To test the accuracy of the methodology on a number of cases with different 

SM coverage, i.e., with different portion of end-users monitored with SMs 
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having sub-metering functionality. The purpose of the analysis is to investigate 

the minimum required SM coverage (in %) of end-users connected to the same 

bulk point in a residential area necessary to obtain the desired accuracy of both 

real and reactive demand decomposition of the overall aggregation;  

9) To validate the methodology and achieved confidence level using a dataset from 

a real pilot site with aggregation of end-users with SMs and sub-metering data; 

10) To compare the developed methodology to a time series method and evaluate 

the effect of additional data types in the input data on the accuracy of the 

methodology; 

11) To develop a graphical user interface (GUI) for illustration of demand 

decomposition results foreseen as a decision support tool for DR responsible 

party; 

12) To use demand decomposition results to model demand at distribution network 

load buses using appropriate realistic load model that accounts for the change in 

demand composition during the day;  

13) To develop a methodology and a corresponding optimisation method for 

optimal scheduling of controllable demand in distribution network with three 

objective functions: i) meeting the pre-defined loading curve, ii) maintaining or 

improving load margin of the distribution network and iii) preserving demand 

composition of aggregated demand; 

14) To illustrate the developed methodology on a range of case studies using 

representative distribution network model.  

1.7 Main contributions of the research 

The main contributions of the research presented in this thesis are in the area of demand 

profiling (disaggregation) and optimal demand side management. The following points 

summarise the main contributions of the research with the numbers given in 

parentheses corresponding to the relevant research publications by the author where 

these results are presented (the full list of thesis based publications is given in the 

Appendix B): 



Introduction | 63 

 

 

 

1) A critical overview of different data analytics methods, including pioneering 

use/discussion on use of text mining in power system studies, and their 

possible applications in distribution system studies is provided, followed by 

an illustrative example of data mining application for distribution network 

asset management. {B3, B6, B7} 

2) A comprehensive overview of data requirements for present and future 

power network studies and network operation is given, with a special focus 

on distribution network. In this context, an analysis of smart metering 

technology and its advantages and disadvantages with respect to improved 

observability of the distribution network is also provided. {B4}  

3) A probabilistic methodology is developed for derivation of reactive demand 

data for an aggregation of users based on available real power 

measurements by SMs, as in many cases SMs measure only real power. This 

solution facilitates not only better observability of the distribution network 

with respect to reactive load flows, and consequently, more accurate load 

modelling, but also an assessment of the power factor of demand. {B1} 

4) A pioneering methodology is developed for time varying decomposition of 

forecast real and reactive power demand, using SMs with sub-metering 

functionality and pre-trained ANN. The decomposition is performed into six 

load categories and controllable/uncontrollable load in residential district. 

As a part of this methodology, an effective way for data restoration of 

missing samples prior to aggregation of SM data streams is also provided. 

Considering all the obstacles in deploying SMs, and in particular those with 

sub-metering technologies (whether they are intrusive or non-intrusive), the 

research identifies the minimum share of demand that needs to be monitored 

to “per-appliance level” in order to obtain confident information about 

composition of the load, and more importantly load controllability in the 

area, so that efficient DSM programmes can be applied. {B1, B5, B8, B9, 

B10, B12} 

5) A GUI is developed for visualisation of the results of forecast total and 

decomposed real and reactive demand in a distribution network control 
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centre, foreseen as a practical decision support tool for short-term DR 

planning. {B10} 

6) Particle swarm optimisation – based load scheduling methodology is 

developed for meeting multiple objectives of the DNO – meeting the target 

loading at the GSP, keeping/improving loadability of the distribution 

network, and maintaining the composition of demand at the GSP. Relying 

on a more accurate load modelling provided by the methodology for 

advanced demand profiling, the DSM program can be planned by taking 

into account the forecast flexibility of the aggregate demand at each load 

bus. {B2, B11, B13, B14}  

7) Unlike previous work on DSM, the proposed methodology schedules, 

optimally and simultaneously, two controllable load types, namely constant 

impedance load and induction motors, so that, in addition to meeting target 

loading at GSP, the load margin after the DSM program is at least 

maintained, if not improved, or that load-follows-generation approach is 

facilitated, or that other aspects of distribution or transmission network 

performance are maintained or improved. {B2, B11, B13} 

1.8 Thesis overview 

The thesis is organised into five chapters. This chapter (Chapter 1) is the introductory 

chapter, while the overview of the remaining chapters is given below. 

Chapter 2 The Need for and Application of Data Analytics in Distribution System 

Studies 

This chapter explains the importance of data mining methods in power system studies, 

mainly focusing on the distribution network. It provides an overview of the smart meter 

technology, as one of the main enablers of smart grid evolution and activation of the 

demand side in network daily operation. Present and future data requirements of the 

distribution network operator are critically compared against the data types available 

(now or in the future) from network monitoring systems. A case study illustrating 

application and benefits of data mining methods for asset management is given at the 

end of the chapter. In addition, a pioneering discussion on text mining applications in 

power system studies is provided. 



Introduction | 65 

 

 

 

Chapter 3 Advanced Demand Profiling 

The third chapter of the thesis introduces the methodology for decomposition of 

aggregated residential demand using smart meter data and artificial neural networks. It 

presents several steps in the methodology, from data aggregation and pre-processing, to 

the application of artificial neural networks and decomposition of active and reactive 

load at the aggregation level. An approach for obtaining probabilistic aggregated 

reactive load curve is also discussed as a solution to the lack of reactive load 

measurements at the end-users’ point. A case study validating the approach on an 

actual dataset from a pilot site is presented. Finally, a graphical user interface for 

advanced demand profiling is introduced, as a practical tool foreseen to be used in a 

distribution network control centre for short-term DR planning.  

Chapter 4 Multi-objective Demand Side Management at Distribution Network Level 

The chapter presents a comprehensive methodology for optimal scheduling of 

distribution network loads in support of transmission network operation. The objective 

of the proposed DSM program is the load profile shaping, as a balancing service to be 

offered to the TSO while maintaining the load composition and one or more network 

performance indicators to values they had prior to the DSM action. The case study uses 

the IEEE 33 bus distribution network and takes into account influence of load 

modelling, limited demand flexibility and load payback, illustrating the importance of 

considering realistic assumptions when estimating the success of a DSM program.  

Chapter 5 Conclusions and Further Work 

The last chapter of the thesis provides major conclusions of the research, and 

suggestions for further work and development in the area of load profiling and DSM.   
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2 The Need for and Application of Data 

Analytics in Distribution System Studies 

 

 

 

 

2.1 Introduction 

“Although the amount of data available to us is constantly increasing, our ability to 

absorb and process this information remains constant” [112]. With the introduction of 

information and communication technologies (ICT) and significant deployment of 

monitoring systems resulting in large amount of data streams, the need for utilization of 

data mining techniques has increased. Even though the data volumes power industry is 

dealing with do not compare to those used by Internet, for example, the number of data 

sources in transmission and distribution systems is continuously growing and filling the 

databases of power utilities with data that are much bigger than it used to be the case. 

Although there is an obvious need for increasing the size of the existing databases to be 

able to accommodate new static (e.g., reports) and dynamic data (e.g., real-time 

measurements), an important question is if and to what extent the already existing data 

is being harnessed. In other words, how useful is the data that is already being 

collected, and can some data mining methods facilitate the usefulness, i.e., the 

knowledge extraction from the existing and new types of data? This chapter therefore 

analyses the present and future data needs for the distribution system studies.  

Furthermore, the chapter revises commonly used data mining methods in power system 

studies, with an emphasis on their application in distribution network studies. 

Following this, the benefits, both present and potential, coming from smart meter (SM) 

rollout are investigated. An important benefit should be brought to energy suppliers, 

who will have access to remote monitoring of the end-users, and improved bi-
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directional information exchange with the users. At the same time, the end-users should 

be able to save energy and benefit from reduced energy bills. Therefore, SMs will 

facilitate development of smart(er) grids and contribute to the development of low 

carbon policies.  

Finally, a case study is presented, illustrating how preventive maintenance of 

distribution utility feeders can be facilitated by extracting useful information 

(knowledge) from raw historical data about faults on feeders in HV and LV distribution 

network.  

2.2 Data analytics 

Big data is defined as data that are high in either volume, variety, velocity, veracity, or 

all four of these features [30, 113]. These four features are known as the four Vs of big 

data. Even though the data volume power utilities are dealing with may not be as large 

as in other domains, such as Internet, it is constantly growing and needs to be 

efficiently handled and processed in order to be useful (the fifth V can be defined as the 

value of big data analysis [30]). Variety refers to different types of data (textual, 

numerical, etc.), while velocity refers to the speed at which data is coming and at which 

it needs to be processed. Veracity is reflected in uncertain or missing data. Data mining 

techniques have already been widely used in power industry for power system security 

assessment, fault detection, control, load and price forecasting and power generation 

risk management [114]. It was reported in [115] that the areas with highest priority for 

data analytics applications in power engineering are energy forecasting, SM data 

analytics, asset management, network operation and customer segmentation. The two 

basic tasks for data mining methods are prediction, based on observations of already 

existing records, and knowledge discovery from big databases [116]. The main 

challenges arising with large databases are the following [30, 117]: 

 Database volume, which is equal to the product of the number of instances 

(recordings or measurements) and dimensionality of data (attributes) describing 

those instances; 

 Speed of data acquisition and update; 

 Variety of data sources and data formats; 
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 Incompleteness of data; 

 Quality and security of data; 

 Benefits or usefulness obtained from the data analysis. 

Each instance (measurement or recording) is characterized by the values of attributes 

that measure different aspects of the instance. There are several types of attributes, 

although typical data mining methods deal mostly with numeric and nominal, or 

categorical ones [118]. Additional types of data that may be of interest in power 

utilities are images (e.g., thermal camera recordings of power system assets), textual 

data (from different reports that may be off-line or on-line) or voice recordings (from 

customer services, for example) [113].  

One of the challenges of big data analytics is to make correlations between different 

databases, e.g., between weather and network outages, and use this knowledge to 

prevent further faults and disruptions in the system. Different departments in 

distribution utilities use different styles of record keeping, conventions, time periods, 

levels of data aggregation, and different identifiers, and will have different types of 

errors. All these are aggravating factors for connection and correlation of databases. 

This problem is also referred to as entity identification problem [119]. The data has to 

be assembled, integrated, and cleaned up, taking into account the importance of the 

right type and level of aggregation of data, prior to any future processing [118, 120].  

Any knowledge derived from databases should bring novelty and also be valid, useful 

and presented in a simple way [121]. The number of data mining methods and their 

modifications depending on the application has been constantly increasing, which can 

bring confusion in setting clear boundaries between them. Nevertheless, three groups of 

data mining methods are considered essential: correlation, regression and classification 

[114, 122]. These will be discussed in more detail in the following sections. 

2.2.1 Correlation 

Correlation is a widely used statistical tool for retrieving relationships between data. In 

the case of linear correlation, it gives the strength and direction (positive or negative) of 

the relationship between numerical variables. Also, as a means of feature (attribute) 

selection, it can be very useful for rejecting uncorrelated data (or, on the contrary, 

highly correlated data, where in case of two variables, one can be rejected as redundant 
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[120]), i.e., reducing data size. This makes it a very important step in the data pre-

processing, i.e., cleaning the data for future classification. The typical measure of 

correlation is Pearson’s coefficient 𝑟 [114], calculated as follows: 

𝑟𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)
𝑛
𝑖=1

√[∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1 ][∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1 ]
, −1 ≤ 𝑟𝑋,𝑌 ≤ 1                (2.1) 

where 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance of variables 𝑋 and 𝑌, 𝜎𝑋 and 𝜎𝑌 are their standard 

deviations, and 𝑋 ̅and �̅� are the mean values of variables 𝑋 and 𝑌, respectively. If the 

Pearson’s coefficient is equal to zero, it means that the two variables are independent, 

i.e., there is no correlation. The closer the coefficient is to unity, the stronger the 

correlation is, with the sign defining the direction of correlation. This measure can only 

represent the linear correlation, and is not robust to outliers [114]. If the mutual 

relationship is nonlinear, the Pearson’s coefficient is not appropriate for description of 

the strength and direction of the relationship. Hence nonlinear regression is used to find 

the relationship between variables in cases like this. 

In case of nominal (categorical) attributes, it might be convenient to use chi-square 𝜒2 

(the Pearson statistic) [119] as a measure of correlation test. It can be used to 

investigate the correlation between, e.g., type of a feeder and class of customers 

connected to it. If there is a higher correlation between certain feeder type and a 

customer class, it means that by the customer class one can assess, with higher 

probability, the type of a feeder it is connected to, and vice versa. Let there be two 

attributes 𝐴 and 𝐵, e.g., type of a feeder and customer class, with c and r being the 

number of possible categories of the attributes, respectively. If possible values for 𝐴 are 

𝑎1, 𝑎2, … , 𝑎𝑐, and possible values for 𝐵 are 𝑏1, 𝑏2, … , 𝑏𝑟, chi-square is calculated as 

follows: 

𝜒2 = ∑ ∑
(𝑜𝑖𝑗−𝑒𝑖𝑗)

2

𝑒𝑖𝑗

𝑟
𝑗=1

𝑐
𝑖=1                                            (2.2)      

where 𝑜𝑖𝑗  represents the actual frequency of the joint event (𝐴𝑖, 𝐵𝑗) where 𝐴 takes the 

value 𝑎𝑖 and 𝐵 takes value 𝑏𝑗, while 𝑒𝑖𝑗 shows the expected frequency of the joint 

event, calculated as: 

𝑒𝑖𝑗 =
𝑐𝑜𝑢𝑛𝑡(𝐴=𝑎𝑖)×𝑐𝑜𝑢𝑛𝑡(𝐵=𝑏𝑗)

𝑛
                                      (2.3)      
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with 𝑛 being the number of data pairs (𝑎𝑖, 𝑏𝑗) in dataset and 𝑐𝑜𝑢𝑛𝑡(𝐴 = 𝑎𝑖) shows the 

number of events when 𝐴 = 𝑎𝑖, similarly to 𝑐𝑜𝑢𝑛𝑡(𝐵 = 𝑏𝑗). The Pearson statistic tests 

the hypothesis that the attributes 𝐴 and 𝐵 are mutually independent. 

2.2.2 Regression 

Linear regression is a well-known technique for numeric prediction, used for finding 

numerical relations between a numerical response attribute (e.g., number of faults per 

feeder) and numerical predictor attributes (e.g., dimensions of a feeder, number of 

customers connected to it, etc.). The response (𝑦) is presented as a linear combination 

of predictors (𝑥1, 𝑥2, … , 𝑥𝑛) and weights or regression coefficients (𝑤0, 𝑤1, … , 𝑤𝑛), 

given in the following form [119]: 

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛                            (2.4)      

Weights are calculated based on the training data, i.e. a given set of examples of 

response values and corresponding predictors’ values. Once calculated, these numerical 

weights can be used as predictors of the unknown outcome if the predictor attributes 

are known [118]. In this sense, linear regression can also be used for data cleaning, i.e., 

filling of missing values in a dataset, as an important part of data preparation for further 

analysis. In cases of data with nonlinear dependency, where linear regression gives 

only a rough estimation of the prediction function, more accurate estimation is made 

using non-linear regression model given in the following form [123]: 

𝑦𝑖 = 𝑓(𝑥𝑖, 𝜃) + 𝜀𝑖 ,                                       (2.5) 

where 𝑦𝑖  and 𝑥𝑖 are vectors of response and predictor attributes in the i-th instance, 

respectively, 𝜃 is the vector of weights, while 𝜀𝑖 is a random error. The weight vector 

that is unknown can be estimated from the training set using least squares method, i.e., 

minimization of the following expression: 

∑ (𝑦𝑖 − 𝑓(𝑥𝑖, 𝜃))
2𝑛

𝑖=1  .                                     (2.6)      

If the response variable is nominal (categorical), it is preferable to use the multinomial 

logit model, which gives the relative risk of being in one category against being in the 

reference category 𝑘 expressed as a linear function of predictor variables [122]. The 

probability of each outcome is given as a nonlinear function of p predictor variables 

(attributes). The model is given as follows: 
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 ln (
𝜋1

𝜋𝑘
) = 𝛼1 + 𝛽11𝑋1 +⋯+ 𝛽1𝑝𝑋𝑝

⋮

ln (
𝜋𝑘−1

𝜋𝑘
) = 𝛼(𝑘−1) + 𝛽(𝑘−1)1𝑋1 +⋯+ 𝛽(𝑘−1)𝑝𝑋𝑝

                     (2.7) 

where 𝜋𝑗 = 𝑃(𝑦 = 𝑗) is the probability of the response variable 𝑦 being in category 𝑗 

and 𝑘 is the number of response categories. 𝛽 coefficients are estimated by solving the 

system of 𝑘 − 1 equations. Coefficient 𝛽𝑗𝑖 expresses the fact that probability of the 

response variable being in category 𝑗 compared to the probability of being in category 

𝑘 increases exp(𝛽𝑗𝑘) times for each unit increase in 𝑋𝑖, having all other predictor 

variables constant.  

2.2.3 Classification 

Classification is a general term for all data mining methods that form groups (classes) 

of data based on some categorical rules [119]. It is a two-step process: first, in the 

training step, a model, i.e., a number of classes with defined attributes is formed based 

on available observations (patterns, data items or feature vectors). The second step is to 

classify unseen examples based on their attributes. In supervised classification 

methods, a given set of labelled patterns (training data) is used to learn description of 

each class (group). In other words, grouping of new data is supervised by the training 

data [114]. Thus, description of a new pattern associates it to one of the predefined 

classes [124]. The aim of supervised methods is to build a model that makes predictions 

based on evidence in the presence of uncertainty [122]. 

Classification usually analyses data given in a vector form, having either continuous or 

discrete values [114]. The first part of data classification, as in any other data mining 

process, is pre-processing of raw data, which consists of several stages [121]: 

 Extraction of the data that can be useful for further analysis; 

 Removing data noise; 

 Statistical analysis for generating new useful variables; 

 Organising data in a form suitable for the desired classification method. 
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Some of the commonly used classification methods applied in power system studies are 

decision trees, artificial neural networks (ANN) and Bayes classifiers. 

2.2.3.1 Decision trees  

This method is based on generating comprehensive rules for dealing with both 

continuous and discrete data. The tree structure consists of if-then rules, i.e., tests on 

attributes given in nodes, branches that represent results of the test classes, and leaves 

containing class labels [125]. Class labels can be nominal, in case of classification 

trees, or numerical, in case of regression trees [122]. The ending leaf class value of a 

regression tree refers to the average value of all the instances reaching that leaf [118].  

An important step in constructing a decision tree is deciding on the attribute that will be 

tested in a node (i.e., splitting attribute) and defining further partition of the set of 

instances into subsets (classes). Methods for this (information gain, gain ratio and Gini 

index) are described in more detail in [119]. Depending on the type of splitting 

attribute, the test is given in the following form: 

 If the attribute is given as a discrete value, then possible output branches 

correspond to all values of the attribute; 

 If the attribute is a continuous value, then there are two branches referring to 

values under or above a certain splitting point (usually taken as a midpoint of 

two known adjacent values of the attribute); 

 In case of a binary tree, where the attribute is a discrete value, the test is formed 

based on the condition 𝐴 ∈ 𝑆𝐴, where 𝑆𝐴 is the splitting subset for the attribute 

𝐴. Possible output branches correspond to answers yes (attribute belongs to the 

subset) or no.  

A very important advantage of decision trees is their capability of handling 

multidimensional data [119]. The computational complexity is given as 𝑛 × |𝐷| ×

𝑙𝑜𝑔|𝐷|, where n is the number of attributes and |𝐷| is the number of training instances 

in the dataset 𝐷 [119]. 

2.2.3.2 Artificial neural networks 

Artificial neural networks (ANNs) present an upgrade of logistic (nonlinear) regression 

[118]. ANNs are useful in cases where [126]: 
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 Examples of predictive and response variables exist, but their relationship 

cannot be derived using algorithmic solutions; 

 The relationship changes over time, i.e., the solution has to be adapted to the 

change. 

Although there are various types of ANN, they are all based on the single-layer 

perceptron, depicted in Figure 2.1 [127]. A perceptron is a binary classifier, i.e., a 

function deciding whether an input belongs to a class or not. It is based on a nonlinear 

model of a brain neuron. For a classification into more than two classes the number of 

neurons in the perceptron expands. The summing node of the perceptron computes a 

linear combination of the inputs (denoted as 𝑥1, 𝑥2, … 𝑥𝑚) using a set of weights 

(denoted as 𝑤1, 𝑤2, …𝑤𝑚) and assigns a bias (fixed input), denoted as 𝑏, to it. The 

resulting output is then forwarded to a transfer function (hard limiter in Figure 2.1, 

denoted as 𝜑). The input 𝑣 to the transfer function is defined as: 

𝑣 = ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 + 𝑏                                                (2.8) 

In the simplest case of binary classification, the result of the transfer function is +1 if 

the output 𝑣 (i.e., transfer function input) is positive and -1 if it is negative.  

 

Figure 2.1 Signal flow of the perceptron (adopted from [127]) 

The perceptron’s task is to classify the set of inputs into class 1 if the result of the 

transfer function is +1 and class 2 if the result is -1. If the classification is not binary, a 

differentiable transfer (or activation) function is used, limiting the amplitude of the 

output of the neuron (𝑣). Sigmoid transfer functions are commonly used for pattern 

recognition, while linear functions are used for function fitting [128]. Sigmoid function 

can be given in the following logistic form [127] : 
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𝜑(𝑣) =
1

1+𝑒−𝑎𝑣
                                                      (2.9) 

where 𝑎 is the slope parameter of the sigmoid function, as depicted in Figure 2.2.  

 

Figure 2.2 Sigmoid function (adopted from [127]) 

The weights of the perceptron, which are initially unknown, are adjusted iteratively, 

during the training process. The training process involves determining an optimal set of 

weights based on the observed examples (inputs and corresponding known outputs - 

targets).  

The most common type of ANN is the multi-layer perceptron, consisting of an input 

layer, hidden layers and one output layer [129]. Each layer consists of nodes, whose 

number in the input layer corresponds to the number of inputs, while in the hidden and 

output layer it corresponds to the number of hidden and output neurons, respectively. 

The hidden neurons, which are not “visible” from the input and output layers, perform 

a nonlinear transformation of the input signals, which may characterise the training data 

in a way that was not obvious in the original input [127]. This characterisation evolves 

through the training process of the ANN.  

Let us observe a simple two layer feed-forward (information flow is from input to 

output layer only) ANN with backpropagation. The two layers refer to the fact that the 

ANN contains one hidden and one output layer (the input layer does not count as it is 

not performing any computation). In multi-layer ANN each layer has as the input the 

output of the preceding layer. During the training process the weights, whose values are 

initially randomly generated and assigned to the input, are adjusted iteratively by 

comparing the resulting output with known target values and returning the error 

backwards, through the hidden layer, to adjust the weights values. Once the error is 

smaller than the given threshold, or the predefined maximum number of iterations is 

reached, the training stops. After being trained, the performance of the ANN can be 

validated either with the same set of input data (where the ANN output is compared 



The Need for and Application of Data Analytics in Distribution System Studies | 75 

 

 

 

with the target) or with a new test data set containing known inputs and outputs (where 

the ANN output is compared to the known test output). 

The main disadvantages of ANNs are the empirical design of network structures and 

parameters, over-fitting and the need for numerous training instances [114, 130]. Apart 

from feedforward networks, there are also recurrent networks, which have at least one 

feedback loop – for example, each neuron in a layer can feed its output to the input of 

all the other neurons [127]. Self-Organising maps (SOM) are another kind of neural 

network that performs clustering analysis of the input data. The basic units are the 

neurons organised in two dimensional layers: the input layer, and the output layer, 

which is often referred to as the output map. All the input neurons are connected to all 

the output neurons, and these connections have “strengths” associated with them [28]. 

The output neuron with the strongest response is said to be the winner, and is the 

answer for that input.  

2.2.3.3 Bayes classifiers 

Another way to classify data is using Bayes classifiers that have shown good 

management of datasets with large number of predictors and the advantage of requiring 

a small amount of training data to estimate the parameters necessary for classification 

[122]. Naïve Bayes classifiers assume that the attributes describing an instance 

(feature) are mutually independent – this assumption is called “class-conditional 

independence” [119]. The Bayes theorem is given as follows [119]: 

𝑃(𝐶𝑘|𝑋) =
𝑃(𝐶𝑘)𝑃(𝑋|𝐶𝑘)

𝑃(𝑋)
                                            (2.10)                              

where 𝑃(𝐶𝑘|𝑋) is “a posteriori” probability of instance 𝑋 belonging to the class 𝐶𝑘  of 

the total of 𝐾 classes. 𝑃(𝐶𝑘) is the “a priori” probability of the class 𝐶𝑘  , i.e., probability 

that an instance belongs to the class 𝐶𝑘, regardless of its attributes values, 𝑃(𝑋) is “a 

priori” probability of instance 𝑋 in the dataset, and 𝑃(𝑋|𝐶𝑘) is “a posteriori” 

probability of the instance 𝑋 having as a condition existence of class 𝐶𝑘.  

Bayes classifier assigns instance to a class with the highest “a posteriori” probability, 

i.e., it maximises 𝑃(𝐶𝑘|𝑋), where 𝑘 = 1, … , 𝐾. An instance 𝑋 belongs to a class 𝐶𝑘 if 

and only if 𝑃(𝐶𝑘|𝑋) > 𝑃(𝐶𝑗|𝑋) for 1 ≤ 𝑗 ≤ 𝐾, 𝑗 ≠ 𝑘.  
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Since 𝑃(𝑋) is constant regardless of the class, what should be classified is the 

numerator 𝑃(𝐶𝑘)𝑃(𝑋|𝐶𝑘). If prior probabilities of classes are unknown, they are 

presumed to be either equal or estimated by 𝑃(𝐶𝑘) = |𝐶𝑘,𝐷| ∕ |𝐷|, where |𝐶𝑘,𝐷| is the 

number of training instances of class 𝐶𝑘  in training set 𝐷 [119]. Given the assumption 

that all the attributes values in an instance are mutually independent, it follows that: 

𝑃(𝑋|𝐶𝑘) = ∏ 𝑃(𝑥𝑖|𝐶𝑘)
𝑛
𝑖=1                                         (2.11)                         

Probabilities of the attributes conditioned by the class 𝐶𝑘  can be estimated based on the 

training set. Estimation is done according to the type of attribute:  

a) If the attribute is nominal (categorical), 𝑃(𝑥𝑖|𝐶𝑘) is the number of instances in 

the training set assigned to class 𝐶𝑘, having the value 𝑥𝑖 for the attribute 𝐴𝑖, 

divided by the number of instances of class 𝐶𝑘  in the training set 𝐷 (|𝐶𝑘,𝐷|).  

b) If the attribute has a continuous numerical value, it is considered to have a 

Gaussian distribution with a mean 𝜇 and standard deviation 𝜎, defined as: 

𝑔(𝑥, 𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2                                        (2.12) 

So, probability of an attribute value conditioned by a class 𝐶𝑘 is given as follows:  

𝑃(𝑥𝑖| 𝐶𝑘) = 𝑔(𝑥𝑖, 𝜇𝐶𝑘 , 𝜎𝐶𝑘),                                     (2.13) 

where 𝜇𝐶𝑘 and 𝜎𝐶𝑘 are mean value and standard deviation, respectively, of attribute 𝐴𝑖 

for training instances of class 𝐶𝑘.  

Theoretically, Bayes classifiers have the minimum error rate compared to other 

classifiers [119].  

2.2.4 Clustering 

Clustering is a common name for the group of unsupervised data mining methods, 

which can also be seen as a subgroup of classification methods. It groups patterns 

(observations, data items, or feature vectors) into groups (clusters) with an aim of 

hypothesis formation or decision-making. Classification of measurements is based on 

either (i) goodness-of-fit to a postulated model, or (ii) natural groupings (clusters) 
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revealed through analysis. While classification models assign new data to previously 

defined classes which are specified as a target, clustering models do not use a target. 

Clustering, as an unsupervised method, distinguishes clusters dynamically – in other 

words, “category labels are data driven” [124]. The process of clustering is very 

subjective, which means that the same set of data can be partitioned (clustered) 

differently using different methods. That is why one has to be very careful with the 

choice of approach. An essential advantage of clustering is that it can extract groupings 

automatically - “learning by observation rather than learning by examples” [119]. 

When choosing the optimal clustering approach, two criteria are followed [28]: 

 Compactness: members of each cluster should be as close to each other as 

possible; 

 Separation: the clusters should be widely spaced from each other. 

Clustering is useful for data exploration – if there are many cases and no obvious 

groupings, clustering algorithms can be used to find natural groupings. It can also serve 

as a useful data pre-processing step to identify homogeneous groups on which to build 

supervised models. Clustering may be used for identifying anomalies - once the data 

has been segmented into clusters, cases that do not fit well into any clusters are 

considered as anomalies or outliers [131]. 

There are several different clustering approaches depending on the definition of the 

data and on the clustering mechanism [30]: 

 Hierarchical clustering, which further can be divided into: 

o Agglomerative ("bottom up“) approach, where the N patterns (samples) 

are initially considered as single clusters, and pairs of clusters are 

merged until the required final number of clusters is reached. This 

requires high computational complexity, given with 𝑂(𝑁3); 

o Divisive ("top down“) approach, in which all patterns are included 

initially into one cluster, and the clusters are progressively split. 

Computational burden is also high in this case - 𝑂(2𝑁) or 𝑂(𝑁2) in 

special cases; 



78 | The Need for and Application of Data Analytics in Distribution System Studies 

 Partitional (centroid-based) clustering: each cluster is represented by a centroid, 

which may or may not belong to the dataset. An example is k-means clustering, 

whose computational complexity is given with 𝑂(𝑁) [124];  

 Distribution-based clustering: clusters are formed from data having the same 

distribution. Gaussian mixture models belong to this group; 

 Density-based clustering: clusters are formed of data areas with higher density 

than the rest of the dataset. This method is primarily used for finding clusters of 

non-spherical shape [30]; 

 Information theory-based clustering: clusters are formed on the basis of the 

modes of the probability density function of the initial dataset. 

Hierarchical clustering can also be categorised into three groups [119]: 

 Algorithmic – considering data objects as deterministic and computing clusters 

according to the deterministic distances between objects; 

 Probabilistic – in case of missing data, this method uses probabilistic methods 

to measure distance between objects; 

 Bayesian – advanced method for presenting distribution of possible clusterings, 

i.e., a group of clustering compositions and their probabilities. 

Similarity between data is commonly evaluated by distances, where distance 𝑑 between 

two vectors (patterns) 𝑥𝑗  and 𝑥𝑘 is usually measured through the Euclidean distance 

[25]: 

𝑑(𝑥𝑗 , 𝑥𝑘) = ‖𝑥𝑗 − 𝑥𝑘‖.                                             (2.14) 

Some other similarity measures for objects described with numerical attributes are 

Manhattan and Minkowski distances [119]. Euclidean distance is the most common 

measure of similarity for patterns of continuous variables [132]. For the non-numerical 

data, a convenient method for calculating the distance is Hamming error, detailed in 

[133]. 

In the bottom-up approach, vectors with the smallest distances are merged together into 

one cluster. In the next step, distances between the newly formed clusters and all other 

vectors are computed resulting in new clusters based on the smallest distance. The 

process continues repeatedly until only one cluster remains, visually presented as a 
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cluster tree (Figure 2.3 [29]). Since formed clusters could be merged into one based on 

their similarity, it is easy to overestimate the optimal number of clusters by this method 

[25]. The last step is division of the cluster tree into coherent groups based on a 

similarity criteria (vertical axis in Figure 2.3), usually the distance between clusters or 

inconsistency measure [25]. Final number of clusters depends on this threshold – the 

higher it is the smaller is the number of clusters.       

                                                                                                                                                                                                                                                                                                                                                     

Figure 2.3 Example of a cluster tree (dendrogram) in hierarchical clustering (adapted from [134])  

Partitional methods have the advantage in applications involving large datasets for 

which the construction of a dendrogram is computationally too demanding. On the 

other hand, the main drawback of all partitional methods is the need for defining the 

desired number of clusters in advance [124]. Optimal number of clusters or the quality 

of clustering can be tested in two ways: by extrinsic means (i.e., comparing clusters 

with a ground truth, e.g., comparing customer grouping with already existing tariff 

profiles) or by intrinsic means (i.e., examining the compactness of individual clusters 

and separation between clusters) [119]. 

Apart from the basic methods described above, there are various modifications in 

clustering, including: “follow the leader” procedure (FDL), Self-Organising Maps 

(SOM), Gaussian Mixture Model (GMM), k-means (KM), Fuzzy C-means (FCM), 

Support Vector Clustering (SVC), Ant Colony Clustering (ACC), Renyi Entropy-based 

Clustering (REC), etc. k-means and different variations of ANN have been most widely 

used clustering methods in big data analytics [124]. 



80 | The Need for and Application of Data Analytics in Distribution System Studies 

2.2.4.1 k-means clustering 

k-means is a classical clustering method [118], where initial centres of k clusters are 

randomly chosen from the data set. All other data objects (instances) are assigned to 

their closest cluster centre according to the ordinary Euclidean distance metric (‖𝑥𝑗 −

𝑥𝑘‖, in case of two vectors or patterns 𝑥𝑗  and 𝑥𝑘). In the next step the centroid, or 

mean, of the instances in each cluster is calculated [28]. These centroids are taken to be 

the new centre values for their respective clusters. The whole process is iteratively 

repeated with the new cluster centres, until the same points are assigned to each cluster 

in consecutive rounds, at which stage the cluster centres have stabilized and do not 

change any more. The main drawback of this method, as most of the clustering 

methods, is the need for predefining the expected number of clusters. 

2.2.5 Comparison of data analytics methods 

In order to further analyse performance of data mining methods applied specifically to 

big data systems, comparison of the previously discussed methods is given in Figure 

2.4, in a form of a “radar” diagram. Good performance of the method is marked as 3 

and bad performance is marked as 1, based on the comparative analysis given in Table 

2.1. Mark 2 was given if the quality of performance was not strictly defined. The 

following criteria was used when forming the diagram: 

1) Influence of the initialization process and the need for training data;  

2) Variety of types of data (numerical, textual, nominal/categorical...) that the 

method covers; 

3) How applicable the method is to a very large size data sets; 

4) Speed (computational complexity), i.e., memory usage. 

As seen from Figure 2.4, decision trees, ANN and Bayes classifiers have the best 

performance in handling big and heterogeneous data, even though most methods handle 

big data sets well. k-means also showed the highest computational speed, which 

justifies its frequent use in big data analytics. 
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Table 2.1 Comparison of data mining methods  

 

Figure 2.4 Performance comparison of different data mining methods  

2.2.6 Text data mining 

One of the still undiscovered, or at least, mostly underutilised, possibilities for data 

mining in power systems analysis is using textual data for knowledge retrieval. This 

data is usually given in tables or in the form of plain text in reports and articles. Some 
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Requires numerous samples [130]; 
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Requires only small set of 
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Minimal error 

Sensitive to a-priori probabilities 
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authors [136] have also pointed out the possibility of using Internet as a large database 

from which novel information can be extracted. Similarly to other data mining 

techniques, text data mining includes pre-processing methods, such as text 

categorization, text clustering and information extracting, as well as data analysis, such 

as association rules and link analysis [112].  

Even though text expresses a vast range of information, it is still very hard to 

automatically process it because of the form it encodes that information [137]. In the 

text mining process, textual data is usually represented in a form of feature vectors, 

where values of features in vectors give a measure of the number of occurrences of a 

certain term in a document [138]. An example was given in [124] where a number of 

documents contained several thousand words. Since there was a correlation among 

words (after eliminating common words such as “the”, “an”, etc.), clusters were formed 

by groups of words used in a consistent way that happen with a similar frequency in 

each document. Some authors [138] propose the use of graph models for these 

purposes, since they can reflect relations between data, e.g., co-occurrence of two or 

more terms in a document. In a graph model, n most frequently occurring terms are 

given as nodes with their mutual relations presented as edges of the graph. Figure 2.5 

[138] gives an example of a graph model.  

 

Figure 2.5 Graph model of a text document (adapted from [138]) 

Many methods have been used for text classification: decision trees, ANNs, nearest 

neighbour methods, Rocchio’s method, support vector machines, linear least squares, 

naive Bayes, rule-based methods, etc. [139]. Since there are no tools developed 

specifically for power engineering studies, an attempt has been made to take advantage 

of the existing tools for specialized web browsing and data extraction. Two 

methodologies are explored: one for extracting on-line documents (e.g., journal papers 

and technical reports from Internet) that are highly related to a specific topic, and the 

second one for extracting highly related sentences, providing a literature summary on 

the topic. These methodologies are described in the following sections. 
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2.2.6.1 Retrieval and ranking of textual data from the Internet 

One of the uprising information needs in distribution systems analysis is knowledge 

about customers’ willingness to participate in DSM actions, and conditions under 

which they would accept to change their daily habits in electricity usage. Next to the 

development of numerical data mining methods to retrieve this information (from 

surveys, for example), there is also an untapped potential among existing and publicly 

available textual data to find out these and similar pieces of information with the use of 

text mining methods. Although this data is usually given in tables or in the form of 

plain text in technical reports and research papers (offline), there is a possibility of 

using the Internet as a large database for extracting useful information. 

There is a vast research carried out in different parts of the world about power networks 

and plenty of projects are focusing on the DSM perspective. Many distribution 

companies have selected pilot sites to carry out trials, aiming at investigating operation 

possibilities and consumers’ opinion about DSM. Although these trials are not large-

scale, the corresponding findings are capable of providing basic knowledge in all 

aspects of the DSM. Results of these projects are given in numerous reports and 

research papers, most of them being available on-line. This represents a valuable source 

of textual data accommodating different types of information about DSM.  

In this methodology web crawling (traversing Internet to harvest documents of interest) 

and document ranking are combined to identify documents and sentences, using DSM 

as the topic of interest. The first step towards the discovery of useful information from 

textual data is to acquire adequate textual documents from Internet and then, in the 

following step, filter out less relevant parts of the documents to obtain meaningful 

information. 

After generating a list of relevant search terms (key words) using either experts’ 

knowledge or an automatic term recognition tool (e.g. FlexiTerm [140]) applied to a 

document highly relevant to the topic, the next step is to crawl webpages to obtain 

documents related to the desired topic, i.e., the list of keywords. Web crawl results with 

downloaded content of uniform resource locators (URLs) in the search engine (in this 

example, Google). As the main interest was on research papers and project reports, only 
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web pages containing PDF and PowerPoint (PPT) documents were taken into account, 

since these on-line documents usually carry most information in the power networks 

area. Therefore, as the next stage, the resulting files were converted into text format as 

a necessary step before text mining. 

As mentioned earlier, two parts of the methodology are explored: one to rank 

documents resulting from the web crawling process (using DSM as the topic of 

interest), and the other to extract important sentences, i.e., perform a short literature 

review (using power quality as the topic in this case).  

Ranking of documents has an aim of finding documents that are highly related to a 

predefined topic in a semi-automatic way, with as little of user’s interaction as possible. 

The generation of a ranking table of terms (keywords) is one of the most significant 

steps in this process, as the ranking of documents is based on the quantity of relevant 

terms they contain. There are three criteria combined to derive the final ranking of 

documents: the total number of occurrences of keywords (hits), weighting (importance) 

of the keywords (as shown in Table 2.2), and the percentage of text containing 

keywords in each document. Considering these criteria together, the final output is a 

ranked list of all documents according to their total score.  

Table 2.2 Weightings of terms 

Weighting Relevance to the topic 

5 
Terms that are strongly related to the given 

topic 

4 
Terms that are not likely to be mentioned by 

other topics 

3 Terms that could be mentioned by other topics 

2 Generalised terms and concepts 

1 
Terms that are more likely to be mentioned by 

other topics 

Sentence extraction from a series of documents aims to provide a summary on a given 

topic. A score is calculated for each sentence based on the number of keywords in the 

given sentence and the position of the sentence in the document. The first step towards 

the extraction of sentences is to present the frequency of terms (key words) in a form of 

a matrix called Term Frequency – Inverse Document Frequency (TFIDF) matrix, 

constructed as illustrated in equations (2.15-2.19) [141]. Each document 𝑑𝑖 (𝑖 =

1, . . , 𝑚) in a set of 𝑚 documents is presented as a vector of 𝑛 terms: 

𝑑𝑖 = (𝑓1, 𝑓2, … , 𝑓𝑛)                                                  (2.15)                   
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where 𝑓𝑗  (𝑗 = 1, . . , 𝑛) is the frequency of the term 𝑡𝑗 in the document. Therefore, the 

term-frequency matrix for the set of 𝑚 documents is given as a 𝑚 × 𝑛 matrix: 

𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑚)                                              (2.16) 

In order to eliminate the bias coming from long documents which as a consequence 

have higher frequency of the same term in respect to short documents, augmented 

normalised term frequency is used as follows [142]:               

𝑇𝐹(𝑡, 𝑑) = 0.5 + 0.5 ∗
𝑓𝑡,𝑑

𝑚𝑎𝑥{𝑓𝑡′,𝑑∶ 𝑡
′∈𝑑}

                                (2.17) 

where 𝑓𝑡,𝑑  is the term frequency of term 𝑡 in document d and 𝑚𝑎𝑥{𝑓𝑡′,𝑑 ∶  𝑡
′ ∈ 𝑑} is the 

maximum frequency of any term in the document. Since the common words, such as 

“the”, usually have high term frequency but do not carry any information, the inverse 

document frequency 𝐼𝐷𝐹 for term 𝑡 with respect to database 𝐷 is defined to represent 

the number of documents within database 𝐷 that contain 𝑡, as illustrated: 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑛
𝑚

|{𝑑∈𝐷∶𝑡∈𝑑}|
                                      (2.18) 

where |{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| is introduced as document frequency (𝐷𝐹), representing the 

number of documents within the database that contain term 𝑡𝑗. Finally, 𝑇𝐹𝐼𝐷𝐹 matrix is 

obtained as follows: 

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) =  𝑇𝐹(𝑡, 𝑑) ∗ 𝐼𝐷𝐹(𝑡, 𝐷)                        (2.19) 

The use of 𝑇𝐹𝐼𝐷𝐹 matrix will maximise the impact of a term when both conditions are 

met: high term frequency and low document frequency, i.e., small number of 

documents having high frequency of a specific term. Thus, due to the logarithmic 

characteristic of 𝐼𝐷𝐹 function, the common terms tend to have extremely low 𝐼𝐷𝐹 so 

that they are filtered out after the calculation of 𝑇𝐹𝐼𝐷𝐹 matrix.  

In the following step, each sentence in the documents is given a score as follows [143]: 

𝑠𝑐𝑜𝑟𝑒 =
∑ 𝑇𝐹𝐼𝐷𝐹(𝑡𝑖,𝑑,𝐷)𝑚
𝑡𝑖𝜖𝑠

∑ ∑ 𝑇𝐹(𝑡𝑖,𝑑)∗𝑇𝐹𝐼𝐷𝐹(𝑡𝑖,𝑑,𝐷)𝑀
𝑡𝑖

𝑛
𝑑𝑗

                                  (2.20) 

where 𝑚 is the number of terms in sentence 𝑠 that is also included in 𝑇𝐹𝐼𝐷𝐹 matrix, 𝑀 

is the total number of terms (columns) in 𝑇𝐹𝐼𝐷𝐹 matrix and 𝑛 is the number of 
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documents in the database. In order to include the impact of heading (or the first 

sentence) as the indicator of the topic of a document, another score is added to the one 

defined in (2.21): 

𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑜𝑟𝑒 =
𝑙𝑒𝑛(𝑡)

𝑙𝑒𝑛(𝑇)
∗ 0.1                                    (2.22) 

where 𝑙𝑒𝑛(𝑡) is the number of term/terms shown in both the target sentence 𝑠 and 

heading/first sentence, and 𝑙𝑒𝑛(𝑇) is the number of terms shown in heading/first 

sentence and 𝑇𝐹𝐼𝐷𝐹 matrix. 

The final step is to include the impact of sentence location, as adopted from [143]. The 

position 𝑃 of a sentence is calculated as the line number of the sentence divided by the 

number of all lines in the text and presented in the range between 0 and 1. Based on 

Table 2.3 (adopted from [143]), another measure called distributed probability (𝐷𝑃) is 

obtained. The final score for each sentence is then calculated as follows: 

𝑓𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 = (𝑠𝑐𝑜𝑟𝑒 + 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑜𝑟𝑒) ∗ 𝐷𝑃                  (2.23) 

Table 2.3 Distributed probability of important sentences (adopted from [143]) 

Position 0 < 𝑃 < 0.1 0.1 < 𝑃 < 0.2 0.2 < 𝑃 < 0.3 

Distributed probability (𝐷𝑃) 0.17 0.23 0.14 

Position 0.3 < 𝑃 < 0.4 0.4 < 𝑃 < 0.5 0.5 < 𝑃 < 0.6 

Distributed probability (𝐷𝑃) 0.08 0.05 0.04 

Position 0.6 < 𝑃 < 0.7 0.7 < 𝑃 < 0.9 0.9 < 𝑃 < 1.0 

Distributed probability (𝐷𝑃) 0.06 0.04 0.15 

2.2.6.2 Case study 1: Document ranking 

In order to discover customers’ opinion about DSM, a paper giving a literature review 

on this topic [144] was chosen to derive a list of keywords. After the automatic analysis 

of the paper using FlexiTerm, the terms and their corresponding term frequencies inside 

the given paper were ranked as presented in Table 2.4.  

Finally, all documents from the database (PPT and PDF files) obtained through web 

crawling were ranked according to the level of importance to the defined topic. The 

titles of the first six papers and reports having the highest score are shown in Table 2.5. 

All highly ranked papers from the list showed to be highly related to the topic of both 

DSM and customers’ involvement in DR programs. They provide valuable information 

about users’ flexibility from both technical and economic aspects. Further reading of 

these documents would certainly give deeper insight into the subject. 
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Table 2.4 Key words for the given paper given by FlexiTerm 

Rank Term representative Score Frequency 

1 literature review of major trials 152.97 142 

2 domestic sector 111.36 163 

3 critical peak 110.31 161 

4 trial literature 97.98 145 

5 literature review of major trials overview 97.53 72 

6 literature review 97.34 144 

7 peak demand 87.36 128 

8 peak period 71.56 105 

9 peak reductions 70.81 104 

10 peak demand reductions 70.59 66 

  Table 2.5 Overall ranking of the documents 

Ranking of 

document 
Paper title 

Number of 

pages 

1 
“Demand side response in the domestic sector – a literature 

review of major trials” 
156 

2 
“Residential Demand Response for outage management and 

as an alternative to network reinforcement” 
64 

3 
“Smart Tariffs and Household Demand Response for Great 

Britain” 
93 

4 “Assessment of Demand Response and Advanced Metering” 92 

5 
“Developing the smarter grid: The role of domestic and small 

and medium enterprise customers” 
50 

6 
“The role of demand response in electric power market 

design” 
57 

2.2.6.3 Case study 2: Sentence extraction 

The second case study represents sentence extraction methodology applied to the topic 

of ‘power quality’. The database in this case consists of 783 documents obtained via 

web crawl. With the methodology for allocating score to each sentence, a text file 

containing 30 sentences with higher scores within the database is generated. For 

illustration purposes, there are four sentences with the highest scores presented in Table 

2.6 to show the quality of extracted sentences. 

In these four sentences, it is stated that power electric utilities are trying their best to 

maintain high standard of power quality, especially in open market, and thus they have 

to take into consideration the impact of harmonics and conductive disturbances in 

voltage supply. At the moment, the information provided by these highly ranked 

sentences is not logically and semantically arranged, since it is still at the stage of 

sentence extraction. However, this tool is capable of providing an overall idea of the 

topic after reading all extracted sentences. Another option for the user in this case is to 
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track back from the extracted informative sentence to its original source (paper) and 

obtain more detailed information without having to read other documents in the 

database. 

Table 2.6 Extracted sentences 

paper 

322 

Conductive disturbances in the supplying voltage may also affect the root mean 

square voltage and shape of the voltage curve on the mains which reflect in 

degradation of the power quality.  

paper 

342 

Introduction: The power quality problem is now of a great concern to electric utilities 

of power industry and they are trying hard to supply their customers with a good 

quality of power especially in the open market. 

paper 

71 

Conclusion: the simulation approach provides the researcher the flexibility to create 

power system models to simulate power quality disturbance by connecting various 

functional building blocks in the simulation environment.  

paper 

342 

Today, a new factor, harmonics, has been added to the power quality scenario because 

utility customers, including residential ones, are using electronic devices that require 

non-sinusoidal currents, currents rich in harmonics.  

2.2.6.4 Summary on text mining methods 

The previous subsections have shown that, although still underutilised, text mining 

methods have a great potential for applications in power system studies. Ranking of 

documents, which may be customer surveys or technical reports, could facilitate 

overview of world-wide practices in an area. This can further pave the way to changes 

in regulatory and market frameworks, for example. Sentence extraction, resulting in a 

summary on a certain topic, could bring similar benefits by extracting key information 

from documents or from textual data coming from social media. Potential for 

combining textual data from different sources, such as reports, Internet and social 

media, is yet to be discovered, and this can be achieved in future by collaboration 

between experts in power systems and text data analysts.  

2.3 Data needs in future distribution networks 

As mentioned earlier, one of the most important distinguishing features of future power 

grid operation will be the increased use of ICT in the generation, transmission and 

distribution of electrical energy [145]. With the complexity of modern distribution 

power systems grows the size of their monitoring systems and databases containing 

variety of data coming from numerous monitors and sensors. Databases are increasing 

in two dimensions: in the number of objects (instances) and in the number of fields for 

attributes describing those objects [114].  
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Distribution system utilities’ servers are constantly receiving and storing large amount 

of real-time data keeping enormous memory busy with numbers and text. It has not 

been analysed yet how thoroughly these dynamic data are being processed, i.e., how 

much knowledge has, and can be retrieved from the existing collection of data. 

Similarly, a significant amount of static data is contained in tables and reports, given in 

numerical and textual form. As it is stated in [146], “a very large amount of data is 

being collected whose potential has been untapped”. 

Dynamic data sets in distribution network most commonly involve measurements of 

real and reactive power, voltage, as well as power quality (PQ) measurements (an 

example of monitored parameters is shown in Table 2.7 [147]).  

Table 2.7 Power quality parameters and corresponding time scales (adopted from [147]) 

Parameter Timescale 

Voltage transient <20 ms 

Voltage dip 10 ms to 2 s 

Frequency excursion Possibly one minute 

Phase unbalance Possibly one day 

Harmonics (percentile) 1 week 

Flicker (percentile) 1 week 

Dip/swell statistics 3 years 

Electricity consumption data is collected from conventional meters or SMs at end-

users’ premises, and balancing meters at distribution substations [148]. Depending on 

the source, data is given in various data ranges, i.e., in milliseconds (from phasor 

measurement units - PMUs), seconds (from SCADA systems) or minutes (from SMs) 

[132]. 

Power distribution utilities’ databases are, as many other types of databases, 

characterised by several common features [149]: 

 Large size;  

 Noisiness; 

 Incompleteness or absence of records; 

 Semi-random survey design (redundancy of records of one variety but a lack of 

records of another); 
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 Enormous heterogeneity of response variables and large number of predicting 

variables. 

Much of the collected data from the distribution grid has not been used at all, i.e., it has 

not been transformed into knowledge. The main problem coming from the installation 

of new monitoring systems is the availability of memory space in database servers and 

handling already existing and newly coming data. One of the solutions to these issues 

would be finding hierarchy in the importance of data, i.e., finding redundant data types 

and excluding them from monitoring systems. In addition, granularity of data, i.e., the 

sampling step of measurements, also affects the required memory size, which is why 

there should exist a trade-off between the granularity and the usefulness (application) 

of the data being collected. Another challenge is prediction of the types of information 

future (smart) distribution grid operators will need in a time frame of 10-20 years. 

Therefore, it is very important to perceive future electricity market actors, their 

functionalities and assets that will be used. This may disclose possible additional types 

of data that will have to be collected. In that respect, an overview is made of the types 

of data that distribution utilities are already collecting.  

The existing substation monitoring devices are most commonly collecting the 

following data:  

 Basic measurements: voltage magnitude, real power, reactive power, power 

factor, apparent power, phase sequence, voltage phase angle, current phase 

angle, neutral current; 

 Power quality data: voltage sags and swells, harmonic distortion per voltage and 

per current phase, total harmonic distortion; 

 Asset status: power transformer tap position, breaker status [150]; 

 Faults data: number of outages, date and time of the last outage, cumulative 

power outage time. 

One of the main features of future distribution grid will be the extensive collection of 

electricity consumption data from the end-users via SMs. The aim of the smart 

metering system is to make power metering two-way, so that electricity suppliers could 

pass on the dynamic (daily and seasonal) change of electricity price to customers, 

which would incentivise them to save energy and make savings to both themselves and 

suppliers [75].  
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In addition to SM data, there are some complementary types of information deemed as 

necessary for operating the distribution network in smart grid environment, such as: 

 Home occupancy, i.e., how many household occupants there are, and how much 

time they spend at home, consuming electricity [151]. Customers’ needs, daily 

routines and lifestyles are very valuable pieces of information as they can be 

correlated to the electricity consumption. These types of information have been 

collected through customer questionnaires; 

 Operational characteristics of devices under different environmental conditions 

– this is useful for the investigation of potential types of appliances that might 

be controllable now or in the future as a part of DR programs;  

 The amount of controllable loads in a particular area - automatic control of the 

load is still an aim for the future, although some utilities already operate direct 

load control programs, for example by sending a radio signal to water heaters to 

automatically turn them on and off [152]; 

 Net consumption, i.e., net metering for consumers who own renewable 

generation facilities – this is either in use already (as in the Netherlands, 

Sweden, Italy, Hungary, UK, Finland and Denmark), or is planned to be 

introduced (in Croatia, Cyprus, Estonia, Greece and Romania) [11]; 

 The average installed power per household in an area – this is very important 

with respect to implementation of modern appliances, such as electric vehicles 

or heat pumps. If the existing electrical installation is not designed for the 

increase of load, the size of the additional investment plays a big role in 

decision making. The UK government estimates that the country could have 20 

million new heat pumps installed by 2050. Similar scenario could happen in the 

rest of Europe (except in its southern part), where space and water heating 

account for a big share (usually more than 75%) of home energy consumption 

[153]; 

 Weather conditions – except for their influence on the daily load profile of the 

consumers, this information could also enable DR programs which could shift 

demand to windy or sunny times of the day, when the renewable energy sources 

are generating the most [154];  
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 Statutory voltage limits for the supply of power to customers [154]. In the UK, 

these limits are between -6% and 10% for 230 V, while phase imbalance should 

not exceed 1.3% [155]; 

 Capacity of the circuit to carry power [154] - several variables need to be 

considered, including the thermal capacity of network elements (at both 

transmission and distribution level), the need for operating reserve for stability 

reasons (especially at transmission level) and permissible voltage variations 

(especially at distribution level) [11];  

 Possible network topology changes and longer-term change in demand [154];  

 Number of interruptions in an area [154].  

The state-of-the-art information needs in distribution network are summarised in Table 

2.8. Six areas of interest (knowledge) are presented, together with the appropriate 

groups of data that are already used or might be used additionally to obtain valuable 

information.  

Data types that have to be forecast are weather, demand, available renewable energy, 

state of charge of storage units and price. In addition to the types of data stated in group 

1, it would be highly useful to obtain data about the percentage of customers capable of 

participating in direct load control. Among the controllable loads, of special interest are 

electric vehicles and thermostatically controlled loads (HVAC, heat pumps, water 

heaters, freezers and refrigerators). Also, location of the DR resources is important for 

the power flows and potential “matching” with the available distributed generation. In 

group 2, information that would be of interest is the percentage of distributed 

generation and storage devices that can be controlled as dispatchable resources by the 

DSO [145]. Smart meter measurements in group 3 are of particular importance, as to 

this point distribution utilities do not have any knowledge about outages unless they 

receive calls from customers. The percentage of grid assets that are monitored, 

controlled, or automated could be added to data in group 4. 

As an example of the types of data requirements that can presently be met solely from 

surveys, but that could in the future be provided by monitoring systems, Figure 2.6 

illustrates the DSM potential (flexibility) in transmission networks in South-East 

Europe [156]. The potential is given as capacity in MW, and in the number of potential 
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end-users (large industrial users connected directly to the transmission network) that 

could provide flexibility. 

Table 2.8 State-of-the-art information and data needs in distribution network analysis 

Required information (knowledge) Data collected 

Sampling step 

(commonly 

used) 

Data 

group 

Short-term demand forecasting and flexibility 

assessment (including demand decomposition) 

at primary substation level/aggregator level to 

facilitate the process of network balancing and 

demand response 

Voltage, real and reactive 

power 
1—30 min 

1 

Weather data 30 min—1 h 

Pricing data 15 min—1 h 

Customer’s affinity to 

different types of 

incentives (monetary or 

not) 

/ 

Percentage of customers 

with smart metering 

(including sub-metering) – 

observability level 

/ 

Real and reactive power of 

controllable loads 
1—30 min 

Customer’s willingness to 

participate in demand 

response 

30 min—1 h 

Short-term distributed energy resources forecast 

at primary substation level/aggregator level to 

facilitate the process of network balancing and 

demand response 

Voltage, real and reactive 

power 
1—30 min 

2 

Weather data 30 min—1 h 

Amount of distributed 

energy resources (PVs, 

small wind turbines, 

storage) 

/ 

State of charge of storage 

units/electric vehicles 
1—30 min 

Fault location identification (fault detection) 

Current and voltage 

waveforms 
~ms/s/min 

3 

Smart meter measurements 1—30 min 

Network topology / 

Historical faults data / 

Relays and breakers states ~ms 

Power outage time / 

Condition assessment / Asset management 

Age of assets 

Monitoring data acquired 

during the operation 

Number of faults 

Network topology 

Line capacity 

/ 4 

Electricity price construction and price spikes 

forecast 

Electricity market data 15 min—1 h 

5 
Historical data on 

consumption 
30 min—1 h 

Weather data 30 min—1 h 

Power quality detection for power system 

disturbance 

Voltage and current 

waveforms 
~ms 6 
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Figure 2.6 DSM potential in eight TSOs in South-East Europe (adapted from [156]) 

Following this, the survey identified types of industrial users with the highest DSM 

potential in the observed region, as shown in Figure 2.7. Availability of this type of 

information facilitates more accurate load modelling of the DSM providers, and 

enables more accurate steady-state and dynamic analysis of the power network and the 

effects DSM could introduce in the network. With appropriate smart meters or similar 

sub-metering technologies installed at the premises of these end-uses, one could 

observe and follow the daily changes in demand and its composition, i.e., demand 

flexibility.  

 

Figure 2.7 Largest DSM providers in South-East Europe (adapted from [156]) 

2.4 Smart metering versus future distribution network data 

requirements  

There are numerous sources giving information about the benefits SMs will bring to the 

end-users. On the other hand, more insight is needed into the benefits provided to the 

network operator, at distribution and transmission level. Following a wide scale 

deployment of SMs, customers will benefit from the following advantages [157, 158]: 

 Near real-time information and updates on energy use, the cost and carbon-

dioxide (CO2) emission; 

0

4

8

12

16

20

0

50

100

150

200

250

TSO1 TSO2 TSO3 TSO4 TSO5 TSO6 TSO7 TSO8

N
o

. 
o

f 
C

u
st

o
m

er
s 

D
S

M
 p

o
te

n
ti

al
 (

M
W

) 

South-East European TSOs 

Total DSM (MW) No. of Customers

12% 
3% 

59% 

8% 

1% 17% 

Mining and Quarrying

 Chemicals and Allied

Industry
Steel and Primary

Metal Industries
Stone, Clay, Glass and

Concrete Products
Paper and Allied

Products
Hydro Pump



The Need for and Application of Data Analytics in Distribution System Studies | 95 

 

 

 

 Better management of energy usage, saving money and reduction of CO2 

emission; 

 Billing based on the actual consumption, not estimation; 

 Easier switching to other suppliers with different tariffs; 

 Access to historical consumption data. 

The expected benefits for the network operator are the following: 

 Monitoring of low-level consumption, which facilitates more accurate load 

forecasting at the distribution level; 

 Faster identification of faults and users causing non-technical losses (fraud); 

 More accurate consumer profiling for tariffing purposes and DSM; 

 Facilitating load reduction and load shifting [159]; 

 Financial savings (it was reported in [160] that utility companies are expected to 

save $157 billion by 2035 by using SMs). 

2.4.1 Smart meter specifications 

In the UK, customers have the freedom to choose whether they want the measurement 

data to be sent monthly, daily or every 30 minutes [158]. This, however, will cause 

difficulties to applications requiring the same sampling step of the incoming data 

streams which are to be aggregated and further processed. Another issue may be the 

lack of synchronism between distributed data streams coming to the same concentrator 

(aggregation) point.  

The meter should be recording active and reactive energy import and export and keep 

all the information in its own data store [161]. Based on specifications given in [162-

164], SM accuracy of measurements complies with class 1 (error limits ±1.5%) or class 

2 (error limits ±2.5%) for active power/energy and class 2 for reactive power/energy. 

There should be channels for load profile recording, as well as for appliance profile 

recording. Profiling period can be between 1 and 60 minutes, or one day.  
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According to technical specifications required by the UK Government’s Department of 

Energy and Climate Change (DECC) [161], SMs should also measure average root 

mean square (rms) voltage and record cases of over or under voltage (i.e., when the 

value is over the ‘average rms over-voltage threshold’ or under the ‘average rms under-

voltage threshold’, respectively). It should also detect voltage sags and swells. There 

should be a load switch for enabling/disabling supply, and limiting power consumption. 

Data storage is required to keep minimum of 13 months of active energy imported and 

3 months of active energy exported and reactive energy imported and exported. The 

technical requirements, however, do not mention how the SMs will be monitoring 

smart home appliances in the future, or how the direct control of appliances will be 

actualised. 

The commonly used communication systems for smart metering are Radio Frequency 

(RF) technology and General Packet Radio Services (GPRS) systems. The best known 

RF architecture is RF mesh, where SMs form a Local Access Network (LAN) which, in 

cases when a node fails (drops out of the network), enables the signals to find another 

route via the active nodes [165].  

The European Union (EU) specifies the following requirements for different aspects of 

the smart metering system [166]: 

 The consumer: readings to the consumer and/or a 3rd party should be enabled 

and updated frequently enough to allow energy savings. The recommended 

update rate (sampling step) is 15 minutes; 

 The metering operator: remote and frequent reading should be enabled, as well 

as a two-way communication for maintenance and control; 

 Commercial aspects of supply: smart metering system should support advanced 

tariff system and allow for remote on/off control of supply and/or flow or power 

limitation; 

 Security and data protection: the system should provide secure data exchange 

and enable fraud prevention and detection; 

 Distributed generation: the system should enable real power net metering and 

reactive power metering.  
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2.4.2 Smart meter rollout in Europe 

It is foreseen that around 50 million smart electricity and gas meters will be installed in 

the UK by 2020 [167], out of which 27 million smart electricity meters in the domestic 

sector [4]. The rollout started in 2015 costing an estimated £11 billion, and is expected 

to deliver a net benefit of £6.7 billion [168]. The six main energy suppliers in the UK 

are leading the rollout, coordinated by government with industry support, while the SM 

data is the responsibility of a recently founded Data and Communications Company 

(DCC). The roll-out is being coordinated by the Department of Energy and Climate 

Change (DECC), and, once the meters are in place, the program will be governed by 

the national regulatory authority – the Office of Gas and Electricity Markets (Ofgem). 

In most European countries the target is to have at least 80% of the end-users with SMs 

[166], as illustrated in Figure 2.8. That represents an estimated number of about 195 

million SMs and a total investment of about €35 billion.  

 

Figure 2.8 Smart meter rollout in Europe (adopted from [165]) 

The largest expected number of installations is in Italy (36.7 million), France (35 

million) and UK (32 million). Due to the negative outcome of the cost-benefit analysis 

(CBA), some countries opted out from wide-scale rollout (e.g., Belgium, Lithuania and 

the Czech Republic). In countries such as Germany, Latvia and Slovakia, the CBA 

outcome was reported negative for a large scale rollout, but economically justified for a 

specific group of customers. Even though there are already many SMs installed in 
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residential properties throughout Europe, for the time being there is no data available 

from them, except for a small number of trial installations in pilot sites [154]. 

2.4.3 Benefits of smart meter data 

Compliance between the present SMs’ features and data they provide on one side, and 

information needs for operation of the future distribution network on the other side are 

presented in Table 2.9. As illustrated in the table, most of the present or foreseen data 

needs can be, to smaller or larger extent, met by SM data. The data requirements that 

are still not covered by commercial SMs are indicated by shaded cells in the table.  

Considering the potential use of data coming from SMs, the following system/operator 

functionalities/actions would be greatly enhanced by the use of SM measurements: 

 Load forecasting could be applied to lower levels of aggregation, because it would 

follow daily pattern of customers in a specific distribution network area. This could 

further facilitate local DSM programs.  

Table 2.9 Smart meters features and their compliance with future DSO’s needs 

Smart Meter Features 

Information and Data Requirements 
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Measurements 

imported active power/energy X  X    

exported active power/energy      X 

imported reactive power/energy X  X    

exported reactive power/energy      X 

rms voltage X X X    

Detection  

under voltage  X     

over voltage  X     

voltage sags  X     

voltage swells  X     

Sampling step 

15 min (Italy) X X X   X 

30 min (UK) X X    X 

60 min (Sweden) X X    X 

Additional features load switch  X     

 The accuracy of state estimation could be largely enhanced with the reliance on low-

level consumption (real and reactive power) data, which are presently hardly 

accessible and hence replaced with pseudo-measurements. State estimation 

algorithms will require near real-time (within several minutes) voltage 
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measurements to allow active voltage control, especially in cases of unpredictable 

load profiles in presence of DR, electric vehicles (EV) and heat pumps (HP). If no 

real-time data are available, distribution network voltages can be reliably estimated 

using SM data from the previous-day [167]. 

 Fault detection could be highly improved with smart metering of voltage, enabling 

the network operator to receive notifications about interruptions in supply much 

faster than usual (distribution network operator commonly receives fault 

notifications from customers service). This would drastically reduce the supply 

restoration times. 

 Since the majority of presently installed SMs do not have the functionality of 

monitoring individual appliances, estimation of the amount of controllable loads can 

at this point be made only by using some statistical data and probabilistic approach. 

On the other hand, there are a number of pilot sites with SMs measuring 

consumption of individual appliances. Therefore, it is not far from reality to assume 

that this option might become common in the near future, especially with the 

increasing number of new smart home appliances in the market. Per-appliance 

monitoring could enable observability of the end-users’ flexibility (in real-time or in 

the future), as well as real-time monitoring of the obtained DR.  

 The information about customers’ willingness to participate in DSM actions would 

reduce uncertainties about the actually available load flexibility in cases of voluntary 

DR contracts between customers and the network operator, where customers react to 

DR (i.e., incentives to shift or reduce their consumption). Although SMs do not have 

this feature, signals about confirmation of participation in DSM could also be sent 

through other devices, e.g., smart phones or personal computers. 

 The amount of flexibility offered by distributed energy resources (DER) could also 

be “tracked” thanks to SMs measuring energy flow in both directions, i.e., both 

import and export.  

Some authors [30] stipulate that SMs also need to embed some level of local data 

analysis capabilities, since sending huge datasets (for millions of customers) along the 

communication channels exceeds the current capacity of these channels. In addition to 
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this, SMs are still not considered to be suitable for on-line monitoring of networks for 

control purposes because of the high data latency (time needed to collect and store 

data) of the national communications system which is often chosen to collect SM data 

[154]. 

Another type of information that might potentially be provided via SMs is the total 

capacity of the supplying cable in households, which would be necessary for planning 

deployment of any new technology such as HP or EV.  

2.4.4 Challenges arising with smart meter technology 

Even though the deployment of SM technology offers significant advantages in terms 

of improved accuracy of various functionalities needed for DSM, there are still some 

issues that need to be resolved. Since the customers will decide on the frequency of 

sending their load profiles to the data concentrator, data streams will not be coming 

with the same time steps. This will result in additional missing data, considering that 

some data might be missing anyway due to malfunction of devices or communication 

failures. Therefore, there will be a need for development of off-line or on-line data 

restoration methods, depending on the application. Influence of this data pre-processing 

on the accuracy of aggregated data is yet to be investigated. Furthermore, considering 

that all measurements contain a certain amount of noise, the appropriate filtering of 

measured signals is required. The level of filtering and accuracy of filtered data will 

depend on the type of application that the data will be used for, so adaptive filtering 

techniques need to be developed. 

Operational challenges such as software and hardware faults, and malfunction of SMs 

present a realistic impediment to successful and timely data aggregation [169]. Possible 

technical issues include intermittent communication networks, insufficient signal 

strength and inability to detect a communication network failure. These may also lead 

to missing data and network latency, and hence aggravate the problem further. 

For on-line applications, such as state estimation and DR, higher granularity of data is 

needed (e.g., minute based), so 30 or 60-minute based sampling steps that are presently 

most widely used, may not be appropriate. Also, in order to reduce the computation 

time, it is preferable to receive power data from SMs (averaged over small time steps), 

instead of energy data over a time frame. Finally, for any type of transient stability 

analysis that will include studies of dynamic response of demand [16], granularity of 
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power samples should be even higher, in the range of seconds or even milliseconds. In 

this case signal latency and synchronised sampling become an important issue, in 

addition to significant increase in amount of data that would need to be processed. 

As reported in [167] there are still unresolved questions regarding the rollout and future 

use of SMs, among others: 

 How can SMs be used to report and verify DR effect? 

 Can SMs be used to precisely locate failures at individual consumers’ premises? 

 What techniques can be used to analyse SM data? 

 How to balance between consumers’ privacy and use of data by third parties? 

Furthermore, there are also safety risks coming with application of SMs, in particular 

cyber-attacks, which may result in remote disconnection of a large number of 

customers and changing the loading of the power network, which would affect the 

reliability and security of the system as a whole.  

2.5 Data analytics methods in distribution network analysis  

Distribution system operator (DSO) controls a much larger number of power lines and 

substations than a transmission system operator (TSO), which makes distribution 

network less observable. UK LV network, for example, involves 230,000 HV/LV 

substations, including 580,000 transformers and 376,000 km of overhead lines and 

underground cables [170]. A lot of effort has been put to ensure the optimal control and 

operation of the distribution system despite the reduced observability. Hence, the use of 

data mining methods is taking the lead as a cost-effective means of gaining additional 

and useful information from raw data arriving from a limited number of monitoring 

devices.  

To ensure the effective use of the acquired data, a system for collection and processing 

of the data coming from power system monitoring devices and databases should have 

the following characteristics [171]: 
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 Flexibility for storing data coming in different forms from various sources, such 

as Distribution Management System (DMS), Automatic Meter Reading (AMR), 

Excel files, text files, etc.; 

 Flexibility in dealing with both static (network topology, technical 

characteristics of assets) and dynamic data (on-line and off-line measurements); 

 Automatic calculation of performance indicators; 

 User-friendly interface for reading, editing or managing data; 

 Extensibility for future needs and other forms of incoming data [119]. 

Classification and clustering methods have already been widely used in distribution 

system analysis for grouping individual customers with similar electrical behaviour 

(load pattern) [29] or for grouping feeders with similar features in the network [31]. 

The former can be applied for “tailoring” the tariffs and DSM programs for different 

classes of end-users or for bad data identification, more accurate demand forecasting 

and network planning purposes. Another application is detection of the penetration 

level of low carbon technologies (LCT) at the demand side (EVs, heat pumps, storage, 

renewable generation) by detecting changes in the baseload of the end-users [172]. The 

latter can be used for facilitating network maintenance or for assessing the hosting 

capacity of the numerous feeders in the network. Furthermore, different load buses in 

the distribution network may have similar composition of load types, similar daily or 

seasonal load patterns, similar load location, and so on. Classification or clustering 

techniques bring the possibility of clustering buses into groups based on certain 

features and monitoring only one representative substation (bus) in each group. In this 

case, the load model generated based on load monitoring at the representative bus can 

be applied to all buses assigned to the same group. This drastically reduces the cost of 

implementation of monitoring systems [173]. In [170], LV substations were classified 

according to their location and customer dominant type information, including 

population, consumption and economic situation.  

Load pattern classification is commonly done using k-means clustering or its variations 

(e.g., fuzzy k-means, where samples may belong to multiple clusters, but with a 

different degree of membership), hierarchical clustering or self-organising maps (a type 

of unsupervised neural networks) [135]. When clustering daily load patterns, the main 

steps of the process are as follows: 
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1) Removal of bad data or noise;  

2) Categorisation of measurements based on the type of the day (season, 

working/non-working day); 

3) Normalisation of the data for comparability; 

4) Clustering; 

5) Extraction of the representative pattern for each cluster (these are usually 

the centroids obtained at the end of the clustering process). 

k-means clustering has also been used for missing data restoration in load profiles 

measured by SMs [169]. Segments of load profiles were clustered based on their 

similarity, and the most similar cluster centres were used to restore the missing samples 

at the corresponding time steps.  

Correlation analysis is highly useful for identifying attributes of data which can be used 

as predictors of the unseen data (whether it is missing data or data that has to be 

forecast). For example, due to the high correlation between weather (most commonly 

the outside temperature, humidity and wind speed) and electric load, weather forecast is 

used to predict demand based on a model trained with historical data measurements of 

demand and weather. As another example, correlation analysis of voltage profiles at 

network buses was used in [174] to identify those buses that are most sensitive to 

disturbances. Authors in [175] allocated daily load curves of the predefined (sample) 

end-users to the end-users without a SM based on the correlation between the variation 

of their monthly energy consumption and the variation of the monthly energy 

consumption of the sample end-users. Correlation could also be used to analyse 

connection between SM data and other types of data coming from external databases, 

such as weather data, traffic data, social events (such as concerts or large sport events), 

etc., to enable more accurate demand forecasting or facilitate more effective DSM 

programs. In this case dynamic data processing or event processing [176] can be 

applied, processing events from different sources (meters, sensors, Internet, etc.). The 

aim of this processing is to detect event patterns and give detection or prediction of 

complex events, that otherwise would not be predictable. 
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Decision trees have been applied in power system stability studies using data from 

phasor measurement units (PMUs) [177]. They have also been used in fault detection, 

customer classification and estimation of energy usage [178].  

ANNs are mostly used for load forecasting, stability and security analysis, power 

system control, fault diagnosis, reactive power planning and control and for state 

estimation [126, 179, 180]. As already mentioned, SOM, as a type of ANN for pattern 

recognition, are used in load classification [181, 182]. ANNs are also applied in non-

intrusive load monitoring, for classification of appliances based on their current 

harmonics [36]. The deep learning method, as an upgrade of ANN which has been 

successfully applied in computer vision for object recognition, has recently been used 

for load forecasting of individual end-users [183] and for power quality studies [184]. 

2.6 Case study: data analytics methods applied to a distribution 

utility database 

As an illustration of information retrieval from databases, statistical analysis and some 

of the main data mining methods are applied to a real distribution utility’s SQL 

database with static data about faults on feeders in HV (6.6 kV and 11 kV) and LV 

network. The database consists of numerous tables showing feeder characteristics, i.e., 

feeder type, district, exact location of primary substations (33 kV/11 kV and 

33 kV/6.6 kV), number of connected customers, etc. Also, given are exact dates and 

times of faults followed by the number of interruptions and cumulative duration of 

customer interruptions per fault. Number of customer interruptions (CI) and customer 

minutes lost per customer (CML), as the key indicators of quality of service (QoS) of 

the distribution network, are calculated as follows [185]: 

𝐶𝐼 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
∙ 100 %                       (2.24)      

𝐶𝑀𝐿 =
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
                            (2.25) 

The data are aggregated to a five-year period, i.e., all the records show QoS 

performance from 2007 to 2011. Aggregation and connection of data was performed 

using SQL database queries. Datasets were further analysed in Matlab and Weka [186], 

which is an auxiliary and convenient tool for data mining and presentation. Weka was 

chosen for its simplicity of application – after the input data is uploaded in the form of 
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a table (.csv file), the tool instantly gives graphical view of the statistical analysis. It 

also gives access to SQL databases [114]. 

The analysis is divided into two parts – HV analysis (6.6 kV and 11 kV feeders) and 

LV analysis (feeders up to 1 kV). Further aggregation of data was done at the voltage 

level (dividing HV network data into 6.6 kV and 11 kV data), feeder class (according to 

Ofgem classification of HV feeder types [187]) and district level (in order to compare 

key indicators performance among geographical districts). As the considered database 

is not big enough to justify the use of ANN or k-means clustering, linear regression and 

decision trees are applied in this case study.  

2.6.1 HV analysis 

An overview of QoS indicators performance at HV level is done following two 

approaches: by feeder class and by geographical district. The data were pre-processed, 

i.e., cleaned by removing instances with misleading values. For example, an instance 

could refer to a fault happening on a feeder not supplying any customers, but having a 

number of customers affected by the interruption. Even though it is possible to have a 

feeder whose interruption would consequently influence customers that are not directly 

connected to the feeder, these examples would lead to overestimated QoS indicators, 

such as customer interruption duration, which is why they were excluded from the 

analysis.  

All HV feeders were classified into 11 classes based on the percentage of the overhead 

line (OHL) part with respect to the total length (in km) of a feeder, as well as the 

number of customers supplied by the feeder (Table 2.10). It should be noted that the 

word “All” in the table refers to all feeders, regardless of the number of customers 

connected to it.  

Table 2.10 Characterisation of feeder classes 

 UG1A UG1B UG2A UG2B MA1 MA2 MB1 MB2 MC1 MC2 OH 

% OHL 0 <20 20-50 50-80 >80 

Length 

(km) 
<4 >4 <8 >8 <11 >11 <19 >19 All 

Number 

of 

customers 

<1000 >1000 <2000 >2000 All All All All All All All 
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2.6.1.1 Quality of service analysis based on the class of the feeder 

The average cumulative interruption duration is shown in Figure 2.9, as well as the 

average number of interruptions per feeder and average number of faults per feeder, 

based on feeder class. Following the horizontal axis in the figure, the OHL length 

increases. Letters A and B in the UG class names refer to smaller and bigger number of 

customers connected to the feeder, respectively. It can be observed that the number of 

faults per feeder increases with the length of the OHL part of the feeder, as well as the 

total length of a feeder, while the average duration of interruptions and number of 

interruptions per feeder grow with the number of connected customers.  

2.6.1.2 Cost of compensation for the energy not supplied 

To make an estimation of the cost of compensation for the energy not supplied (ENS) 

to customers during interruptions, the value of lost load (VoLL) is adopted from [188]. 

With the assumption that the ratio of domestic customers and small and medium sized 

businesses (SME) is 74:26 ([188]), and that on a peak winter workday VoLL is around 

10,000 £/MWh for domestic and 35,000 £/MWh for SME users, a load share-weighted 

average VoLL is taken to be around 17,000 £/MWh, i.e., 17 £/kWh. The VoLL for 

industry and commercial (I&C) customers is much lower than for SME (around 

1,400 £/MWh), since these customers use more energy and are more likely to have self-

supply [188].  

Due to the complexity of assessing typical industrial consumption, only cost of 

compensation for the domestic and SME users is estimated in this study. In other 

words, only 11 kV feeders’ data were taken into account for the cost analysis. QoS 

parameters were estimated according to both 6.6 kV and 11 kV feeders. The 

performance of QoS indicators over the 5 year period is illustrated in Figure 2.10 based 

on the feeder class, together with the cost of compensation for ENS. The values are 

normalised for comparison using base values defined in Table 2.11.  

The calculation of the cost of compensation was done as follows:  

1) The number of CML was calculated for every fault and multiplied by the 

number of interrupted (affected) customers; 

2) The value calculated in 1) was then multiplied by the average domestic 

consumption, standing for 1.1 kW [189], giving the ENS per fault. This 
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value was summarised for all the faults happening on each of the feeder 

classes; 

3) The cumulative ENS was multiplied by the value of lost load (VoLL) for 

domestic sector (16.94 £/kWh [188]), giving the compensation cost for each 

feeder class during the given period. 

 

 

 

Figure 2.9 QoS indicators according to feeder class 

 

 

Figure 2.10 QoS indicators performance with normalized values per feeder class  
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Table 2.11 Base values for normalization in Figure 2.10 

Measures Base values 

Average CML per feeder 18,860 min 

Cumulative ENS/Cost of compensation 720 MWh / £12.2 million 

Domestic share 100 % 

Average number of interruptions per fault 1,445 

Number of faults per feeder class 2297 

As it can be seen from the radar diagram, the highest cumulative amount of ENS was 

calculated across HV feeders of class MC2 – feeders with a high share of domestic 

users and also a high share of OHL part. Following this, MC2 showed the highest 

compensation cost rate for domestic users during the period (around 1.8% of the five-

year profit of the DSO managing the network). Feeder class UG1A (underground 

cable) showed the highest rate in average number of CML per feeder, probably due to 

the reduced accessibility for fault removal. This is also the most common type of feeder 

used in the observed HV distribution network, with a contribution of around 27%. 

Feeder class UG2B showed the highest number of interruptions per fault, which is 

justified by the fact that this feeder class supplies more than 2,000 customers on 

average.  

The range of possible cost of compensation for ENS for domestic users, depending on 

the time of the outage, and the use of WTA (willingness to accept payment if an outage 

occurs) model are adopted from [188] and given in Table 2.12. Similarly, the range of 

VoLL for SME users is given in Table 2.13. 

Table 2.12 Range of VoLL for domestic users [188] 

 

Other seasons Winter 

Off-peak Peak Off-peak Peak 
Weekend Weekday Weekday Weekend Weekend Weekday Weekday Weekend 

WTA 

(£/MWh) 
9,550 6,957 9,257 11,145 10,982 9,100 10,289 11,820 

Table 2.13 Range of VoLL for SME users [188] 

 

Summer Winter 

Off-peak Peak Off-peak Peak 

Weekend Weekday Weekday Weekend Weekend Weekday Weekday Weekend 

WTA 

(£/MWh) 
37,944 36,887 33,358 34,195 44,149 39,213 35,488 39,863 

In order to take into account variations of VoLL depending on the season and time of 

the day, an estimation of the ranges of cost of compensation was made, following 

similar steps to those described above. As mentioned before, the ratio of domestic and 

SME users is adopted to be 74:26. Values given in Figure 2.11 show that, regardless of 
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the time of the day or season, the highest rate of compensation for ENS comes from the 

interruptions in MC2 feeder type. 

 

Figure 2.11 Range of cost of compensation per feeder type  

2.6.1.3 Fault analysis 

The statistical analysis of the number of faults can be presented with the Poisson 

distribution [122], since it is appropriate for describing cases in which a random event 

(fault in this case) happens countable number of times in a given period or area. Since 

the mean and variance value are the same in this case, the only parameter needed to 

define the distribution is the mean value (λ) of the sample set. The Poisson distribution 

of the number of faults per feeder for 6.6 kV and 11 kV network is shown in Figure 

2.12. Comparing the intersection surfaces between the distribution of all faults and 

faults on 6.6 kV and 11 kV feeders, respectively, it can be seen that faults at the 11 kV 

level are more frequent.  

  

Figure 2.12 Poisson distribution of number of faults per feeder for 6.6 kV and 11 kV faults 
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(6.33). On the other hand, the number of faults per feeder at 6.6 kV is around 3 (2.8), 

being two times less than the overall average. The reason lies in the fact that 11 kV 

feeders usually supply commercial and residential customers which is why they are 

longer, particularly in their OHL part, and therefore more vulnerable than 6.6 kV 

feeders. A comparison of lengths of the OHL part, underground cable and total length 

of 6.6 kV and 11 kV feeders is given in Figure 2.13. As shown in the figure, 6.6 kV 

feeders are predominantly underground cables, while 11 kV feeders are mostly 

overhead lines. 

 

Figure 2.13 Boxplots for overhead line, underground and total length of feeders 

2.6.1.4 Quality of service performance analysis 

The analysis of the database continued by looking into QoS performance of the 

network. Looking at the QoS performance over the years 2007-2011, it can be noticed 

that there has not been significant change in the number of faults per feeder, as shown 

with the Poisson distribution of the number of faults per year in Figure 2.14. 

Probability distribution of the number of faults per feeder is almost the same, 

concentrated around the mean value of 2.6.  

 

Figure 2.14 Probability distribution of number of faults per feeder over the period 2007-2011 
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At the same time, CDF of the average duration of interruption per feeder over the 

period from 2007 to 2011 is shown in Figure 2.15. Improvement in this aspect is visible 

through the years. For example, in 90% of the cases in 2007, faults in HV feeders 

caused no more than 236.6 ∙ 103 minutes of interruption, while in 2011 this value 

decreased to 153.9 ∙ 103 minutes lost, which represents improvement of around 35%. 

 

Figure 2.15 Cumulative distribution function of average interruption duration  

QoS indicators were then correlated to feeder characteristics (number of customers 

supplied by the feeder, length (km) of the OHL part and underground part and total 

length (km) of the feeder). Linear regression analysis showed that correlation 

coefficients for the same indicators were higher for higher aggregation level. When 

accumulated to primary substation level, QoS indicators showed high correlation with 

feeder parameters, mainly with total length of the feeders and number of customers 

supplied from the substation. Correlation coefficients for no aggregation and different 

levels of aggregation are given in Table 2.14.  

In order to justify high correlation between the number of faults and feeder parameters, 

especially at higher aggregation level, an example of learning based on available data is 

given with regression tree model in Weka tool, called M5 pruned (M5P) model tree. In 
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type of regression trees with linear regression models at their leaves [118]. Regression 

trees are used for describing continuous attributes, unlike the classification trees which 

are used to describe categorical ones [178]. The result is illustrated in Figure 2.16. The 

first number in each bracket represents the number of instances reaching the leaf and 

the second number represents the percentage of misclassified instances. Each leaf 

contains different linear regression model, as given in Table 2.15. Num_Cust refers to 

the number of customers supplied by the feeder/primary substation (depending on the 

aggregation level) and OHL_Length presents the total length (km) of the OHL part of 

the feeder/all feeders connected to the substation. Similarly, UG_Length presents the 

total underground part length and Tot_Length presents the total length of the feeder/all 

feeders connected to the substation. 

Table 2.14 Correlation coefficients  

QoS indicator 

Correlation coefficient (r) to feeder characteristics 

No 

aggregation 

Aggregation per 

feeder level 

Aggregation per 

primary substation 

level 

Number of faults / 0.78  0.84 

Cumulative number of interruptions 

during faults 
0.36 0.60 0.74 

Cumulative duration of interruptions 

(in minutes) during faults 
0.26 0.60 0.72 

 

Figure 2.16 Regression tree for the number of faults per feeder 
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Table 2.15 Regression rules given in 8 nodes of the decision tree 

LM 1 LM 2 LM 3 LM 4 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.0016 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 
+  0.17 ∗ 𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 

− 0.0783 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0643 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 1.5538 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.0001 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 
+ 0.17 ∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
− 0.03 ∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 

+ 0.0339 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 1.4589 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
1.6734 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0026 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0147 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 1.7958 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.5582 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0026 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.3398 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0115 

LM 5 LM 6 LM 7 LM 8 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
−0.0061 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 

+ 0.9965 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0026 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.1359 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 5.715 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.0001 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 
+ 0.2735 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
− 0.0051 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
− 1.5281 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 6.1707 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.0005 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 
+ 2.0667 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.0005 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.2467 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.3354 

𝐹𝑎𝑢𝑙𝑡𝑠 = 
0.0009 ∗  𝑁𝑢𝑚_𝐶𝑢𝑠𝑡 
+ 0.2051 
∗  𝑂𝐻𝐿_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.2448 
∗  𝑈𝐺_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 0.2031 
∗  𝑇𝑜𝑡_𝐿𝑒𝑛𝑔𝑡ℎ 
+ 4.8651 

Validation of the model was done using 10-fold cross validation, which means the data 

set is divided into 10 groups, so that in each of the 10 consecutive training cycles, 

different part of the sample (representing 10% of the overall sample) is used for testing 

(validation), while the remaining 90% is used for training of the tree. Finally, the 

averaged performance of all the 10 cycles (folds) is used for model assessment. 

Correlation between the training data of the M5P model is quite high (𝑟 = 0.81) in the 

case of aggregation to feeder level, with relative absolute error (RAE) and root relative 

squared error (RRSE) equal to 47.13% and 58.51%, respectively. The RAE and RRSE 

are calculated based on the predicted (𝑃) and target (actual) values (𝑇) of the training 

data, using the following expressions: 

𝑅𝐴𝐸 =
∑ |𝑃𝑖−𝑇𝑖|
𝑛
𝑖=1

∑ |𝑇𝑖−𝑇|
𝑛
𝑖=1

                                               (2.26) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑃𝑖−𝑇𝑖)

2𝑛
𝑖=1

∑ (𝑇𝑖−�̅�)
2𝑛

𝑖=1

,                                          (2.27) 

where 𝑃𝑖 is the predicted value, and 𝑇𝑖 is the target value of the 𝑖-th instance, while �̅� is 

the average target value. RAE and RRSE values are relative to the variation of the 

target values, therefore, if their value was 100%, that would mean that the decision tree 

is predicting the average of the target value. Smaller error values are desirable, however 

in this case they are only used to compare the performance of the decision tree when it 

is trained with different datasets, as it will be shown in the remaining of this subsection. 
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The dataset for training of the tree had 1726 instances. As mentioned before, there are 8 

regression rules (LM1-LM8) represented by leaves at every node of the tree, given in 

Table 2.15.  

The same analysis was done for the number of faults aggregated at primary substation 

level, in which case 6 rules were generated during the training process (Figure 2.17), 

similarly to those in Table 2.15. Aggregation reduced the size of the training dataset, 

resulting in 350 instances. Correlation coefficient is higher than in the previous case 

(𝑟 = 0.86) and the relative errors are lower: 40% and 50.78% for relative absolute error 

and root relative squared error, respectively. This implies that a more accurate 

prediction of the number of faults based on feeder length and number of customers can 

be obtained using data aggregated per primary substation level. It can be concluded that 

even though the aggregation reduces the number of instances, i.e., the size of the 

training dataset, it improves the training of the classification tool. Since the classifier 

showed low correlation with the number of customers, this attribute did not participate 

in the tree formation. 

 

Figure 2.17 Regression tree for number of faults per primary substation 

2.6.1.5 District analysis of quality of service 

QoS indicators are next analysed for each of the 7 network districts, all operated by the 

same DSO, and shown in Figure 2.18. This was done in order to investigate possible 
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connection between network performance and some specific characteristics of 

individual districts. All values are normalized according to the base, i.e., maximum 

values per area, as given in Table 2.16.  

 

Figure 2.18 District analysis of key QoS indicators 

Table 2.16 Base values for normalization in Figure 2.18 

Measure Base value 

Average number of CML 94.37 

Average number of CI 125.76 

Share of 11 kV feeders 100 % 

Average number of faults per feeder 14.02 

As seen from the diagram in Figure 2.18, the number of faults per feeder is highly 

correlated with the share of 11 kV feeders in the HV network. The analysis of fault 

causes performed in Weka showed that the faults in HV distribution network were 

mostly caused by the asset deterioration due to the ageing, regardless of the district. On 

the other hand, the average number of CML and CI are mutually correlated, but not 

very dependent on the share of 11 kV feeders. Within the districts with poor QoS 

performance (areas 2, 3, 4, 6 and 7), mostly affected feeder classes are MB2, MC2 and 

OH. These feeders are distinguished by large total length (more than 11 km) and the 

share of OHL part bigger than 20%, which makes them more vulnerable to faults.  

Shares of domestic and non-domestic users per district, based on the shares of 11 kV 

and 6.6 kV feeders, respectively (Figure 2.19), were compared with the estimated ENS 

in the domestic sector for all the observed districts during the five-year period (Figure 

2.20). The calculation was done as follows: 

1) First, number of CML was calculated for every fault and multiplied with the 

number of interrupted customers.  
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2) Value calculated in 1 was then multiplied by the average domestic 

consumption, standing for 1.1 kW, giving the energy lost per fault. This 

value was summarised for all the faults happening in each of the districts, 

giving the accumulated ENS for all the customers per area in the observed 

period (2007-2011). 

3) The accumulated energy lost was finally multiplied by the VoLL for 

domestic sector (16.94 £/kWh), giving the cost of compensation for all the 

districts in the given five-year period. 

 

Figure 2.19 Shares of domestic and non-domestic end-users per district 

 

Figure 2.20 District analysis of estimated ENS and compensation cost in the domestic sector 

The highest estimated expenditure for the compensation for the ENS was in area 2 due 

to supply interruptions, and calculated to be around 3% of the five-year profit of the 

DSO. This area, with domestic share of more than 60%, also showed the highest rate of 

ENS in domestic district, with around one million kWh of ENS. The network in this 

area mainly consists of MA2 and MB2 feeders, which belong to medium length feeders 

with less than 50% of OHL part and with deterioration due to the ageing as the main 

cause of fault occurrence. Distribution network in areas 3, 6 and 7 had significant total 

combined compensation costs (almost two times higher than the cost in area 2). It 

consists of OH and MC2 feeders which showed the highest fault tendency, especially 

since weather (wind and gale) was stated as one of the main causes of faults in these 

three areas.  
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Similarly to the analysis done according to feeder type, the range of estimated cost of 

compensation was done taking into account variations of VoLL depending on the 

season and time of the day (Table 2.12 and Table 2.13). The ratio of domestic and SME 

users is, as before, adopted to be 74:26. Results for the period 2007-2011 are given in 

Figure 2.21. As seen in the figure, estimated costs are around £2 million for districts 

with lower rates of ENS, between £7 million and £15 million for districts with medium 

rate of ENS, and from around £15 million pounds to around £24 million pounds for the 

district with the highest rate of ENS.  

 

Figure 2.21 Range of revenues for domestic and SME users per district 

When the ENS values over the most critical districts (2, 3, 6 and 7) get disaggregated 

down to a year level, as in Figure 2.22, it can be seen that the overall excessive ENS in 

district 2 is dominated by very large ENS in one year. Therefore, further analysis 

should be performed to investigate possible reasons for this.  

 

Figure 2.22 Amount of ENS during five-year period in some districts 

2.6.2 LV analysis 

As part of the LV analysis, probability distribution of the number of faults per feeder in 

LV network was compared to the distribution of faults causing damages on feeders and 

faults which do not cause them. As seen in Figure 2.23, all three distributions have 
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close to normal distribution shape, with different mean values. The sizes of intersection 

areas between distributions show that the majority of faults on LV feeders do not cause 

damage.  

 

Figure 2.23 Probability distribution of faults in LV feeders 

From the CDF of the number of faults per feeder (Figure 2.24), it can be seen that in 

90% of the cases the number of faults causing damages is less than 15, while the 

number of non-damaging faults is higher, about 27 for the majority of cases. The 

analysis of fault causes in Weka showed that the majority of damaging faults were 

caused by the asset deterioration due to the ageing, corrosion or third party. Similarly to 

the fault statistics per year in HV distribution network with somewhat constant rate, the 

number of faults in LV network also did not change much over the five-year period. 

 

Figure 2.24 Cumulative distribution function of the number of faults per feeder 

Histograms in Figure 2.25 and Figure 2.26 refer to the cumulative duration of 

interruptions per fault and the number of interruptions per fault, respectively, classified 

into faults that caused damage on LV feeders, and those that did not.  
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 Figure 2.25 Histogram of the cumulative duration of interruptions during damaging and non-damaging 

faults 

 

 

Figure 2.26 Histogram of number of interruptions during damaging and non-damaging faults 

As seen in Figure 2.25, in case of interruptions with cumulative duration of up to 3.5 

days (5,000 minutes), the frequency of damaging faults is around two times larger than 

the frequency of non-damaging ones. If the cumulative interruption lasts between 3.5 

and 14 days (20,000 minutes), it is also more probable that the fault caused damage. 

The figure also shows that cumulative duration of interruptions longer than 14 days 

almost always happens due to damaging faults. Similarly, as illustrated in Figure 2.26, 

among faults causing less than 40 customer interruptions (i.e., 40 customers 

interrupted), the frequency of damaging faults is drastically bigger than the frequency 

of non-damaging faults. The number of faults that caused more than 100 interruptions 

is much smaller and mainly caused damages on feeders.  

The radar diagram of LV network performance among different districts is shown in 

Figure 2.27. As seen from the diagram, area 1 shows the worst performance with 

respect to the most of the indicators, together with areas 2 and 3 that show a high rate 
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of CML and CI on both, the average and cumulative level. The typical percentage of 

faults that cause damages on feeders, aggregated at primary substation level, is between 

80 and 100%. 

 

Figure 2.27 District analysis of key QoS indicators 

2.6.3 Discussion 

As the database considered in this case study is not particularly large, only some of the 

data analytics methods described in Section 2.2 were applied, namely linear regression 

and decision trees. Results of the correlation analysis presented in this section have 

shown that QoS parameters very much depend on feeder characteristics. Therefore, 

prediction methods, such as decision trees or linear regression, could be used to form a 

model for QoS indicators estimation based on some asset characteristics. At this point, 

this type of model would show significant errors due to a relatively small number of 

instances in the training data set. That means that prediction models bring more benefit 

in case of effectively larger sample size, in this case larger number of feeders observed 

or larger historical data. 

As the analysis showed on the example of a typical database owned by a DSO, useful 

information about the network performance, both spatial and temporal, can be obtained 

from raw data. This is done by appropriate level of aggregation of data (by feeder or by 

primary substation in this case) and classification (by feeder class, for example). The 

first condition that has to be fulfilled is that the data is “cleaned” from instances with 

outliers which could drastically change the output of the data analysis. 

It can be concluded that, with the use of data mining methods, estimation of future 

network performance can be facilitated based only on some static data, such as feeders’ 

attributes. This can be of great help to asset managers in terms of decision making and 
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significant savings for the utility. As the results showed, investments can be focused on 

a particular type of asset (in this example, a feeder class) or a network district showing 

lower QoS performance indicators. Statistical analysis can also show some 

interdependencies of events, as shown with histograms of failures and damages on LV 

feeders.  

2.7 Summary 

This chapter gave an overview of data mining methods typically used in power system 

studies, mainly focusing on distribution network. An analysis was made of the 

presently collected data and data types that may find their use in the future analysis and 

operation of the distribution system. Some of the most important tasks when dealing 

with the ever-growing databases in power utilities are to determine the key data types 

(data prioritisation), their optimal sampling step, the frequency of their collection and 

the appropriate aggregation level. This is a necessary step towards obtaining a trade-off 

between the usefulness (“informativeness”) of data on one side, and the size (and cost) 

of the databases and communication lines required to accommodate these on the other. 

An overview and critical appraisal of different data analytics methods, including text 

mining, for application in distribution system studies represent the first original 

contribution of this thesis.  

An overview of data provided by SMs was made next, based on their reported technical 

specifications and requirements enforced by the regulatory agencies. The analysis of 

future DSO’s requirements and SM specifications shows that SMs play an important 

role in the development of the smart grid. As the SM rollout will have different success 

in different distribution networks, methodologies should be developed to obtain as 

much information as possible from residential areas even with limited SM coverage 

(i.e., observability) of the end-users. Identification of data needs in future distribution 

networks and the extent to which smart metering can help with meeting these needs 

represent the second original contribution of this thesis. Data mining methods could 

also reveal groups of data that are more relevant to extraction of specific information. 

For example, in the presented case study used to illustrate the application of data 

analytics methods in distribution network analysis, regression tree analysis revealed 

that the number of faults at the substation level does not have a noticeable correlation 
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with the total number of customers supplied by the substation. Therefore, this type of 

data does not have to be collected for the purpose of assessing the expected number of 

faults at a substation based on feeder characteristics. In addition, data mining can 

support decision making in asset management and enhance savings for the power 

utility. The study showed that critical assets, as the “candidates” for monitoring or 

replacement, can be identified based on their characteristics and using regression 

models built on historical data.   
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3 Advanced Demand Profiling  

 

 

 

 

3.1 Introduction 

The rollout of smart meters (SMs) in distribution networks should enhance the 

observability of the demand side. In order to make this observability useful to the 

distribution network operator (DNO) and/or other demand response (DR) responsible 

parties, information about time varying demand composition and its flexibility (both in 

close to real time and forecast) should also be provided. The missing piece of 

information necessary for estimating or predicting the demand side flexibility can be 

obtained by more detailed monitoring of the end users, e.g., via non-intrusive load 

monitoring (NILM) methods or by enabling communication between SMs and smart 

home devices. Deployment of these technologies is still at its infancy (if individual 

pilot sites are neglected) and requires additional investments by the distribution 

network utilities and the end-users. The advanced demand profiling should enable 

confident assessment of demand composition and its flexibility at the aggregation (e.g., 

substation) level, including both monitored and non-monitored end-users. Therefore, 

the main question discussed in this chapter is how many, i.e., what portion of, end-users 

should be monitored in detail to allow for advanced demand profiling. In other words, 

how many users in an aggregation would have to provide close to real time appliance-

level consumption data in order to estimate/forecast the composition of aggregated 

demand? The answer to this question is provided in this chapter by developing artificial 

neural networks (ANN) based methodology for aggregated demand decomposition.  
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Decomposition of the aggregated demand provides information about the contribution 

of different load types (induction motors, lighting, resistive loads, etc.) to the total load 

demand, and hence the flexibility (controllability) of the demand. The two main 

uncertainties associated with load decomposition relate to customers’ behaviour and 

quality and availability of SM data (including missing samples and noise caused by 

monitor faults or communication problems). All these are aggravating factors affecting 

the accuracy of load decomposition. As the desired level of the accuracy of the result 

depends on its application, the analysis given in this chapter aims at discovering to 

what extent different factors influence the accuracy of demand decomposition. Even 

though the proposed methodology observes residential demand only, it is equally 

applicable to industrial, commercial or mixed demand sectors.  

3.2 Demand decomposition 

The output of the demand decomposition process, performed at the aggregation or 

substation level, provides the information about the time-varying load shares (in per 

unit or percentage) of different load categories within the (time-varying) total active or 

reactive demand. Following methodology discussed in [86], load categories in this 

study are defined as groups of appliances with similar voltage-dependent steady-state 

and dynamic load characteristics. Furthermore, load categories are divided into 

controllable and uncontrollable, based on their potential to be shifted in time. The 

controllability of some loads is disputable, as in the case of lighting loads - although, 

generally, they are considered to be uncontrollable, some of them can be dimmable and 

therefore controllable. Thus, the given classification should be taken as illustrative 

only, as it could vary to a certain extent for different applications. This study considers 

as controllable all the appliances that may be a part of direct load control (e.g., fridges, 

water heaters) or incentive-based DR programs (e.g., washing/drying machines), i.e., 

appliances that can be controlled/shifted automatically or by the users.  

According to the most commonly used appliances in residential sector in the UK, six 

categories are recognized in this methodology and presented in Table 3.1. They include 

single-phase constant torque induction motors (CTIM1), single-phase quadratic torque 

induction motors (QTIM1), controllable resistive loads (RC), uncontrollable resistive 

loads (RUC), switch-mode power supply (SMPS) loads and Lighting. The full list of 

appliances, apart from heating, ventilation and air conditioning (HVAC) units, was 

adopted from the CREST residential load model [111]. The same model was used to 
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generate individual daily load profiles of the end users, which served as a realistic 

representation of data streams coming from the SMs. Controllable loads mainly consist 

of thermostatically controlled loads which do not affect customers’ comfort drastically 

[190] (space and water heaters, fridges, freezers), and wet appliances (washing 

machines).  

 Table 3.1 Load categories and corresponding types of domestic appliances 

Load 

controllability 
Load categories Residential appliances 

Controllable 

1. CTIM1 
HVAC, dish washer, tumble dryer, washing 

machine, washer-dryer, vacuum cleaner 

2. QTIM1 Chest freezer, fridge-freezer, fridge, upright freezer 

3. RC Water heater, electrical shower, storage heater 

Uncontrollable 

4. RUC Iron, hob, oven 

5. SMPS 

Answer machine, CD player, Clock, telephone, 

high fidelity (HiFi) appliances, Fax machine, PC, 

printer, TV, VCR-DVD, receiver, microwave 

6. Lighting Lighting 

The diagram in Figure 3.1 presents the main steps of the methodology for demand 

decomposition in a smart metering system with partial coverage, i.e., where only some 

users have per-appliance monitoring, as a fairly realistic scenario in the future 

distribution grid. As mentioned earlier, per-appliance monitoring can be achieved either 

by a NILM method, or via communication between smart home appliances and SMs. 

Two assumptions are made in this respect:  

i) SMs can record the real power of individual appliances only, while reactive power is 

derived probabilistically, as it will be detailed in Section 3.4;  

ii) Forecast of the total consumption (real and reactive power) at the aggregation level, 

i.e., at the substation (block {5} in Figure 3.1), is already available.  

As an initial step before the demand decomposition process, the SM data is pre-

processed and aggregated at the data concentrator point (block {1}). Following the first 

assumption, the part of the consumption which has sub-metering can be decomposed 

into categories or controllable/uncontrollable load by simply aggregating consumption 

of appliances belonging to the same category (block {2}), as detailed in Table 3.1. It 

should be noted that a total of 1000 households/end-users supplied from the substation, 

including those with and without sub-metering, is used to illustrate the approach. 
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At the next step, the ANN is trained with the available sub-metering data in order to be 

able to “recognize” the load composition based only on aggregated active and reactive 

load curve of the monitored users. Once trained, the ANN (block {4}) uses forecast of 

the total active and reactive load at the bulk point (block {5}) as the input, and gives 

corresponding load composition, i.e., weighted factors of each load category, as the 

output (block {6}). Figure 3.2 illustrates the decomposed daily loading curve (DDLC) 

for an aggregation of 1000 users. The main steps of the methodology are discussed in 

the following sections. 

 

Figure 3.1 Flow chart for load disaggregation in case of smart metering system with partial coverage 

 

Figure 3.2 Aggregated smart meter data in an aggregation with full SM coverage (1000 houses) 

3.3 Data pre-processing 

In order to present as realistically as possible the future smart metering system, two 

assumptions are made:  
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i) There are missing samples in the data streams coming from SMs  

According to [191], up to 20% of active load measurements at substation points are 

inaccurate. Therefore, it is assumed that there is 20% of missing data in the overall data 

coming from SMs, due to either sensor faults or communication problems. Missing 

data are presented as missing “chunks” of different lengths, distributed over the data 

streams in a random manner, and respecting the constraint of the 20% of the total 

missing data. 

ii) Different SMs have different sampling steps (with one, ten, thirty or sixty minute 

granularity) 

This assumption is based on [192] where it was reported that the active and reactive 

consumption could be measured over periods from 1 to 60 minutes. Following this, 

1000 SMs in the aggregation are randomly assigned to one of these 4 groups.  

One minute is taken as the reference sampling rate, as it avoids under-estimation of 

electrical consumption and provides sufficient data for detailed modelling of 

distribution networks [111]. Based on the two aforementioned assumptions, the missing 

samples in data streams are the consequence of both actual missing data, and the 

different sampling steps of different SMs. For instance, in case of 10 minute-based 

sampling, there are 9 samples (minutes) missing per every sampling step. As the 

proposed methodology uses aggregated SM data, the first step is to pre-process “raw” 

data streams, i.e., restore the missing data and adjust the granularity of all the streams 

to minute-based samples. In the preliminary studies, the noise had been added to some 

data streams using Gaussian White noise with relatively low signal-to-noise ratio. The 

noise was then filtered using locally weighted polynomial regression method [193]. 

This however, had negligible effect on the accuracy of the results and hence the noise 

was not taken into account in further studies, including these. 

For comparison purposes, missing data samples, resulting from both faults (data not 

sent or not delivered) and higher sampling steps, are restored using two different 

methods: linear interpolation (LI) between existing samples and weight adjusted 

k-nearest neighbour (WAkNN) method [122]. The performance of the data restoration 

methods is assessed by calculating the relative error. The relative error is calculated by 
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comparing the total load curve restored by one of the two methods with the load curve 

in case of full data availability (100% SM coverage with no missing data - total load in 

Figure 3.2) over a one day period.  

WAkNN method requires a set of training data (usually historical data) which is then 

used to restore missing samples in the test data using distance (e.g., Euclidean distance 

[118]) minimisation. If a training object has smaller distance from the test object, this 

training object will get a higher weight. In this study the method calculates the missing 

value by weighting the 5 most similar (closest ones based on the Euclidian distance) 

samples from the training data. It is assumed that the historical measurements of the 

total active load, aggregated from SMs from the last 7 days preceding the day with 

missing data, are available as the training data for WAkNN. Therefore, the 5 most 

similar samples from the historical dataset are weighted to restore the missing one. In 

this example, the two attributes of the recorded data are the load and the time label 

(ranging between 1 and 1440 for every minute in the 24 hour period). Therefore, the 5 

most similar samples are those 5 samples which have the same time label as the one 

with the missing load value.  

As an illustration, Figure 3.3 shows a DLC whose part with missing data (20% of data 

in total is missing in this example) is restored using either LI or WAkNN method. In 

this example, aggregation of 50 users is shown.  

 

Figure 3.3 Loading curve restored using linear interpolation and WAkNN method 

The variability of the DLC can be more or less pronounced, depending on the 

aggregation level, as illustrated in Figure 3.4. The difference in DLC between days is 

very visible at the lower aggregation levels of 10 or 200 SMs, while at the higher 

aggregation level it can only be seen between working and non-working days.  
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               Working day 1 Working day 2            Holiday day 

 

Figure 3.4 Daily load curves for aggregation of: 10 houses (first row), 200 houses (second row) and 1000 

houses (third row) 

Figure 3.4 also illustrates how challenging the load forecasting can be in case of lower 

aggregation levels, due to a large variability of load profiles from day to day, even 

when the sample of customers is the same. The randomness of DLC at lower 

aggregation level is affected by the DLC of the individual users. Figure 3.5 presents the 

difference between maximum and minimum load at each minute of the day, for one 

user observed during four consecutive Mondays in August 2015 (Pecan street dataset 

[24]) normalized based on the average Monday demand in the observed month. In 

order to evaluate this variation, variance (𝑣𝑎𝑟) of demand is calculated during the four 

observed Mondays, as follows: 

𝑣𝑎𝑟 =
1

𝑛−1
∑ (𝑑𝑖 − 𝐷)

2𝑛
𝑖=1  = 0.7284 kW

2
,                          (3.1) 

where 𝑛 is the number of samples (here 4 days times 1440 samples), 𝑑𝑖 is the 𝑖-th 

sample of the time series, and 𝐷 is the average demand of the four observed Mondays. 

Based on the Figure 3.5 showing the relatively high variation value, it can be concluded 

that there is almost no repetitiveness in daily consumption even for the same user and 

for the same day of the week.  
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Figure 3.5 Variability of load during four Mondays of the same month of the individual residential user 

In order to compare the two data pre-processing methods, Figure 3.6 presents the 

decomposed daily load curve (DDLC) in cases of full (original) data with no missing 

values, dataset with 20% missing data without restoration (missing, i.e., “NaN” values 

are only replaced with zero values) and data restored by the two aforementioned 

methods, for the aggregation of 1000 SM data. As both methods (LI and WAkNN) 

visually give reasonably good results, their accuracy is compared for three levels of 

aggregation: 1000, 200 and 50 households, and given in Table 3.2. 

 
 

a) Original data b) Replacement with zero 

  
c) Conditioning with LI d) Conditioning with WAkNN 

Figure 3.6 Decomposed daily load curve in case of: original data (a), missing data replaced with zero (b), 

missing data restored by linear interpolation (c) and missing data restored by WAkNN (d) 
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Table 3.2 Accuracy of the two data restoration methods 

Method Emax (%) Eavg (%) RMSE (%) 

1000 houses 

LI 53.39 3.97 5.44 

WAkNN 35.52 4.54 5.52 

200 houses 

LI 123.92 8.40 11.33 

WAkNN 298.22 14.87 14.35 

50 houses 

LI 85.63 14.33 20.66 

WAkNN 676.09 44.25 26.55 

Emax and Eavg stand for the maximum and average values of relative errors across 1440 

minute-based samples (one day) and 𝑅𝑀𝑆𝐸 stands for the root mean square error, 

defined as follows: 

𝑅𝑀𝑆𝐸 =

√(𝑥𝑖−𝑥0,𝑖)
2

𝑁

�̅�
                                               (3.2) 

where 𝑥𝑖 is the calculated (imputed) value, 𝑥0,𝑖is the actual value, and 𝑁 is the number 

of samples (here, equal to 1440). 𝑅𝑀𝑆𝐸 is normalised based on the mean daily power 

value of the original data set (�̅�), at the corresponding aggregation level. As seen in 

Table 3.2, in most cases LI method showed higher accuracy (lower accuracy in each 

case is highlighted in red), and, as expected, the accuracy decreased with lower 

aggregation level.  

In addition to comparison of disaggregation into load categories, the division into 

controllable/uncontrollable load is also performed over the aggregation of 1000 homes. 

This is done to illustrate how the two data restoration methods influence the accuracy 

of demand decomposition into controllable/uncontrollable load. The results of demand 

sub-division into controllable/uncontrollable load are presented in Figure 3.7, while the 

corresponding relative errors are given in Figure 3.8 and Figure 3.9 for total load and 

controllable/uncontrollable load, respectively. Similarly, Table 3.3 shows the maximum 

and average relative errors, as well as the normalized RMSE (lower accuracy is 

highlighted using bold red font). It can be seen that the assessment of uncontrollable 

load is more accurate in general, while the two methods show different performance, 

depending on the type of the error. Nevertheless, as LI method showed higher accuracy 

in the restoration of total load curve, as well as the controllable load curve, it will be 

used for restoration of missing data in the rest of the studies given in this chapter. 
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(a) (b) (c) 

Figure 3.7 DDLCs of: (a) perfect data streams, (b) incomplete data streams conditioned using LI and (c) 

incomplete data streams conditioned using WAkNN 

  

(a) (b) 

Figure 3.8 Relative errors for total load when missing data is restored using: (a) LI method and (b) 

WAkNN method  

  

(a) (b) 

Figure 3.9 Relative errors for controllable/uncontrollable load (C/UC) when missing data is restored 

using: (a) LI method and (b) WAkNN method 

Table 3.3 Accuracy of the restoration methods for controllable/uncontrollable load 

Error Restoration 

method 

Controllable 

load 

Uncontrollable 

load 

Emax 

(%) 

LI 61.46 25.72 

WAkNN 53.25 19.86 

Eavg 

(%) 

LI 6.15 5.15 

WAkNN 7.15 3.81 

RMSE 

(%) 

LI 4.32 2.78 

WAkNN 4.60 2.47 
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3.4 Probabilistic generation of reactive load curve 

In order to make a complete profile of aggregated load in an area, both active and 

reactive load measurements are needed. In cases where SMs do not collect reactive 

power data, it can be assessed probabilistically. A bottom-up approach is therefore 

taken in this study, by considering the possible ranges of power factors (PFs) for 

different home appliances, adopted from manufacturers’ websites. Assuming that the 

active demand of individual appliances is monitored, reactive demand of the monitored 

users can be derived probabilistically for each appliance and in every time step by 

running Monte Carlo simulations over the most common values of PF for each type of 

residential appliance. PF value for each appliance in each time step is sampled 100 

times using randomization with uniformly distributed samples within the considered 

range to account for PFs of different devices and possible variability of this PF from 

one operating condition to the other. Then, the set of probabilistic reactive load 

values 𝑄𝑘,𝑗,𝑖 is calculated for each appliance 𝑗 in each time step 𝑖 based on the 

(deterministic) active load of the appliance 𝑃𝑗𝑖 and the corresponding probabilistic 

values of the 𝑃𝐹𝑘,𝑗,𝑖 (𝑘 = 1 ÷ 100 in each time step), as follows (assuming all the loads 

are inductive): 

𝑄𝑘,𝑗,𝑖 = 𝑃𝑗𝑖 ∙ √1 − 𝑃𝐹𝑘,𝑗,𝑖
2/𝑃𝐹𝑘,𝑗,𝑖                                  (3.3) 

The next step is to decide, at each time step, which value from the probabilistic range 

(namely, the mean value or the most probable value) will be adopted as the resulting 

one and used as the reactive demand of each appliance, load category, and 

consequently, the total reactive demand of the end user. In order to develop the 

approach, real load data from a 15 kV substation was chosen for testing, following the 

steps given in the diagram in Figure 3.10. The main steps in the flowchart, based on the 

available measurements at the pilot site, are highlighted in red, while the “background” 

steps, using CREST tool [111] for deriving PF values for load categories based on 

appliances’ PF, are presented in blue.  

The available substation data included half hour based measurements of voltage and 

current and yearly information on typical values of the PF based on the period of the 
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day (48 samples), type of the day (working day, Saturday or Sunday) and season of the 

year (winter/summer). These data allowed for the calculation of active and reactive 

load values, as presented by boxes 1, 2 and 3 in the flowchart in Figure 3.10. Although 

the PF is not measured, but given by the electric utility, it is adopted as the correct 

value used for calculating reactive load. As there was no sub-metered data in the 

dataset, i.e., no information about the shares of load categories in total demand, the 

demand was decomposed using probabilistic approach (i.e., ANN trained with 

probabilistically generated data originating from statistical data about the electricity 

usage in UK domestic sector [194]). This step, described in more detail in [39], is 

represented by box 4 in Figure 3.10.  

 

Figure 3.10 Flowchart for the validation of probabilistic reactive load curve  

In the next step, after active demand composition was obtained with respect to load 

categories (box 5), a range of min/max PF values for each category was derived to be 

used in subsequent Monte Carlo simulations, as there was no per-appliance data for this 

pilot site. The range was established using the CREST model [111] for 1000 end-users 

(box 6), by extracting two probabilistic values (from a range of 100 randomly generated 

values – box 7) for each appliance in each time step (relying on (3.3)), namely, the 

mean and the most probable value of reactive load (boxes 8 and 9). It should be noted 

that, in the presence of sub-metering data (per-appliance active demand measurements), 
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actual measurements would be used instead of the CREST tool. Finally, by aggregating 

reactive load of corresponding appliances into categories, two sets of PFs per load 

category were derived, one based on the mean and the other based on the most probable 

value of reactive load. This correspondingly resulted in two ranges of PFs (min/max 

value) for each load category (boxes 10 and 11).   

In the following step, PFs were randomized (following uniform distribution) 1000 

times for each load category and in each time step over the two obtained ranges (boxes 

12 and 13). Accordingly, two decomposed reactive load curves (boxes 14 and 15) were 

derived based on the active load measurements of the test site and the probabilistic PF 

values, using ether the most probable value (box 14) or the mean value (box 15).  

The obtained reactive load curves, representing the sum of reactive load of 6 individual 

load categories, are presented in Figure 3.11 and compared with the original reactive 

load curve. The grey area shows the range between maximum and minimum possible 

reactive load, based on minimum and maximum PF values, respectively. It can be seen 

that the reactive curve built up based on mean values of the PF is closer to the actual 

one. The MAPE, defined in (3.4) was used to assess the accuracy of estimation, giving 

a 12.9% error for the curve based on the most probable PFs, and 5.3% for the curve 

based on mean values of the PF.  

 

Figure 3.11 Derived and actual reactive load curves 

Another measure of accuracy is the mean square error (MSE [195]) whose value was 

0.0099 Mvar
2
 for the curve based on the most probable PFs, and 0.0017 Mvar

2
 for the 

curve based on mean values of the PF. The error was calculated as in (3.5). 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑄𝑖−𝑄𝑎𝑖

𝑄𝑎𝑖
|𝑛

𝑖=1                                         (3.4) 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑄𝑖 − 𝑄𝑎𝑖)

2                                          (3.5)                              

where Qi is the estimated value of the reactive load at a time step i, Qai is the actual 

value of the reactive load at the time step, and n is the number of samples. Therefore, in 

the equation (3.3) of the methodology, the mean value of the PF calculated from the set 

of probable values was used to derive the reactive load data and corresponding reactive 

power daily loading curve.  

3.5 Artificial neural network based demand decomposition with 

limited demand observability 

Following the flowchart shown in Figure 3.1, aggregated SM data from the monitored 

end-users are used for training the two-layer feed-forward ANN. The ANN is trained 

using total measured active and reactive power as input data and calculated 

participation (shares) of the six categories as the target data (block {3} in Figure 3.1). 

In addition to missing data restoration, and as a part of data pre-processing, the data 

scaling was performed in order to set all the input values in a comparable range; 

therefore, active and reactive load data was scaled to the range {0,1} taking maximum 

monthly active load of the aggregation as the base value.  

The training process is performed using 7 days data (denoted as 𝑃𝑇𝑅𝑁), which 

includes minute-based real and reactive power measurements, giving 7 ∗ 1440 =

10080 samples in total for each of the variables. The training data are presented in a 

matrix form as follows: 

𝑃𝑇𝑅𝑁 = [
P1    …  Pi   … P7∗1440
Q1   …   Qi  … Q7∗1440

]                                  (3.6) 

The target data represent the participation of each load category in the total demand. If 

in a time step 𝑖, active load of category 𝑗 equals 𝑃𝑗𝑖, then the participation or weighted 

factor (WF) 𝑤𝑗𝑖
𝑃 (in per unit) of that category is given as: 

𝑤𝑗𝑖
𝑃 =

𝑃𝑗𝑖

𝑃𝑖
                                                     (3.7)                              

where 𝑃𝑖 is the total active demand in a time step 𝑖. It is worth mentioning that in each 

time step the following condition has to be fulfilled (𝑁 is the total number of load 

categories, here equal to 6): 
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∑ 𝑤𝑗𝑖
𝑃 = 1𝑁

𝑗=1                                                 (3.8)  

Target data (denoted as 𝑇𝑇𝑅𝑁) can then be presented in a matrix form as follows: 

𝑇𝑇𝑅𝑁 =

[
 
 
 
 
𝑤1,1
𝑃  ⋯ 𝑤1,7∗1440

𝑃

𝑤2,1
𝑃  ⋯ 𝑤2,7∗1440

𝑃

⋮     … ⋮
𝑤6,1
𝑃   ⋯ 𝑤6,7∗1440

𝑃 ]
 
 
 
 

                                       (3.9) 

In case of the reactive power, the participation of each category is calculated as 

follows: 

𝑤𝑗𝑖
𝑄 =

𝑄𝑗𝑖

𝑄𝑖
=

𝑃𝑗𝑖tan (𝜑𝑗𝑖)

𝑃𝑖tan (𝜑𝑖)
= 𝑤𝑗𝑖

𝑃 tan (𝜑𝑗𝑖)

tan (𝜑𝑖)
= 𝑤𝑗𝑖

𝑃

(
√1−𝑃𝐹𝑗𝑖

2

𝑃𝐹𝑗𝑖
)

(
√1−𝑃𝐹𝑖

2

𝑃𝐹𝑖
)

                        (3.10) 

where 𝜑𝑗𝑖 and 𝜑𝑖 are phase angles of category 𝑗 and total load in time step 𝑖, 

respectively, and 𝑃𝐹𝑗𝑖 and 𝑃𝐹𝑖 are corresponding power factors.  

A two-layer feed-forward ANN with Bayesian Regulation Backpropagation, similar to 

the one introduced in [196], was chosen for load decomposition due to its robustness 

and satisfactory accuracy reported in [39]. The data in [39] was generated 

probabilistically, without any measurements available. Therefore, in order to assess, 

under the same conditions, the improvement in accuracy of demand decomposition 

with the inclusion of per-appliance measurement data, the ANN settings were not 

changed. This ANN is a two layer neural network, with one input, one hidden and one 

output layer, where the input layer has two neurons (for total active and reactive load 

inputs), and the output has six neurons – one neuron representing the share of a 

category. The transfer functions of the hidden and output layer are log-sigmoid and tan-

sigmoid, respectively, as suggested in [196]. The sigmoid functions are chosen for the 

transfer functions as the expected output of the ANN (the shares of different load 

categories) is in the range of [0,1]. Even though the hidden layer transfer function is 

log-sigmoid, which limits the output to the range of [0,1], the output layer transfer 

function is tan-sigmoid and its output can range from −1 to 1, hence it provides higher 

sensitivity to its input values. As the number of the training samples (𝑁 = 7 ∗ 1440) is 
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much larger than the number of input variables (𝑑 = 2), the number of neurons in the 

hidden layer (𝑛) is calculated as follows [16]: 

𝑛 = √
𝑁

𝑑 𝑙𝑛𝑁
                                                   (3.11) 

Once trained, the ANN (block {4} in Figure 3.1) uses total active and reactive demand 

forecast at the aggregation (bulk) point (block {5}) as the input, giving its load 

composition as the output (block {6}). Finally, forecast demand composition of both 

monitored and non-monitored end-users is obtained. It should be noted that for real-

time applications of demand decomposition, real time (measured) values of total active 

and reactive demand at the bulk point would be used as input to the trained ANN 

instead of forecast values.                              

Figure 3.12 illustrates the input and output for the ANN, while Figure 3.13 represents 

the architecture of the ANN used in Matlab [128], where w and b correspond to weights 

and biases of the network, respectively, assigned to the inputs in hidden and output 

layer. The number of hidden layer neurons is 23 in this case, as the values for 𝑁 and 𝑑 

in (3.11) are 7 ∗ 1440 and 2, respectively. 

 

Figure 3.12 Detailed presentation of ANN input and output, during training and testing process 

In order to improve the accuracy of the ANN output, the network training can be 

repeated regularly, as the measurement (input) data gets updated. For example, the 

input can be updated every 6 hours with the most recent 7 days data and any historical 

data older than that can be discarded. The results of ANN-based load disaggregation 
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and the influence of missing data and the level of SM coverage will be presented in the 

following sections.  

 

Figure 3.13 Architecture of the feed-forward network used in Matlab, reproduced from [128] 

3.5.1 Case studies 

In order to test the accuracy of the ANN, the network is tested using one day (the 

eighth day) data from the historical dataset, which served as the day-ahead load 

forecast. The effect of larger training data, e.g., 28 days, as well as the effect of the 

inaccuracy of the total load forecast on the accuracy of demand decomposition is 

discussed in Section 3.6. The training of the ANN with 7 days data took between 3 and 

8 minutes using a PC with the 64-bit operating system and 3.40 GHz processor. Once 

the ANN is trained, the forecast active and reactive load curves at the substation (block 

{5} in Figure 3.1) are used as the input to the trained ANN (block {4} in Figure 3.1). 

The output is presented in the form of the decomposed forecast active and reactive load 

curves for all aggregated end-users (monitored and non-monitored ones), similarly to 

the representation in Figure 3.2. It is important to note that the training dataset should 

not include days with activated DR programs, as in this case the data would not show 

the actual DR potential (before the DR action), but the loading curve and demand 

composition after load shifting or curtailment. 

An aggregation of 1000 households is analysed, illustrating a relatively high number of 

users. The CREST load model [111] was used to generate individual load profiles 

(decomposed into home appliances) over one month, which also served as training and 

testing data sets for the ANN. With CREST model it is possible to generate numerous, 

statistically proven, daily load curves (for each appliance in a household) based on the 

month of the year (in this example January was chosen), number of residents per 

household, and type of the day (working/non-working). The residential occupancy 

statistics for the UK (29% of households accommodate a single resident, 35% 
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accommodate two, 16% have three residents and 20% have four) is adopted from [197] 

to generate appropriate load profiles of residential customers.  

The three illustrative case studies analysed in this section are as follows: 

 Case A: Smart metering system with all meters sending data every minute, with 

no missing data; 

 Case B: Smart metering system with meters sending data every minute, with 

20% missing data (“NaN” values); 

 Case C: Smart metering system with different meters sending data at different 

time steps (1, 10, 30 and 60 minutes) and with 20% missing data. 

In order to assess the required percentage of users with sub-metering data for confident 

demand decomposition, five levels of SM coverage are investigated within each case 

study: 5% coverage (50 households out of 1000 have SMs with sub-metering 

technology), 10%, 20%, 50% and 80% SM coverage. The ANN is trained, 

correspondingly, with sub-metering data coming from 50, 100, 200, 500 or 800 

households. The objective of these examples is to illustrate the effect of SM (with sub-

metering functionality) coverage on the accuracy of demand decomposition in an 

aggregation of 1000 households, as well as the effect of missing data. The accuracy is 

assessed based on the composition of the aggregated load (during the eighth day) 

obtained from the actual values in the given dataset with 1000 households. Absolute 

weighted factor error (AWFE) is used for this purpose, and calculated at each time step 

(minute) as follows: 

𝐴𝑊𝐹𝐸𝑐𝑎𝑡 = |𝑊𝐹𝑐𝑎𝑡, 𝐴𝑁𝑁 −𝑊𝐹𝑐𝑎𝑡,𝑟𝑒𝑎𝑙|                               (3.12) 

where 𝑊𝐹𝑐𝑎𝑡, 𝐴𝑁𝑁 is the share of the load category obtained as the result of the ANN, 

and 𝑊𝐹𝑐𝑎𝑡, 𝑟𝑒𝑎𝑙 is the actual share of the category, both given in p.u. based on the 

average aggregated monthly active demand.  

Figure 3.14 illustrates the way errors are accounted for, on the example of two load 

categories, namely controllable and uncontrollable load. If the total load at time 

t equals 0.7 p.u. (where 1 p.u. refers to the average monthly load at the aggregation 

point, which is in this study around 0.6 MW), and the estimated load shares of 

controllable and uncontrollable load are 0.3 p.u. and 0.4 p.u., respectively, then the real 
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values of the shares are within the following ranges: 𝑃𝐶 = 0.3 𝑝. 𝑢. ±𝐴𝑊𝐹𝐸 and 

𝑃𝑈𝐶 = 0.4 𝑝. 𝑢. ±𝐴𝑊𝐹𝐸.  

 

Figure 3.14 Presentation of the confidence level on the example of controllable/uncontrollable load over 

one day (24 hours) 

In all the cases (A to C), the errors are compared to those obtained with 100% SM 

coverage, as the reference case. In this way the error coming from the ANN itself is 

revealed. As previously mentioned, the load forecasting error is not taken into account 

in this analysis – it is addressed in Section 3.6.2. In addition, the errors are compared 

with those in case of 0% SM coverage (no SMs installed at the users’ premises), where 

the ANN is trained with probabilistically derived data, originating from statistical data 

about the electricity usage in UK domestic sector [194]. According to these data, 

controllable load within the total daily load ranged between 15% and 50%. The training 

data was generated following approach described in [39]. At the 0% coverage, the same 

ANN, trained with probabilistically generated data, is used in all three considered cases 

(A, B and C). Therefore, the accuracy of demand decomposition is the same in the 

cases with 0% SM coverage level. 

The results of the analysis are presented in the form of cumulative density functions 

(CDFs) of the AWFE over a range of SM coverage levels, including the reference 

(100%) and 0% coverage, for controllable load shares only. At the same time, the 90
th

 

percentile confidence level of the AWFE for different load categories and controllable 

load are presented in a form of bar plots over a range of SM coverage levels. The 90
th

 

percentile is chosen as it shows the maximum error for 90% of the observed time steps 

(here, 1296 out of 1440 time steps over a 24h period).  
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3.5.1.1 Active load decomposition 

The accuracy of estimation of controllable load shares is very similar between cases A-

C, which is why only case C is presented in Figure 3.15, as the one with the highest 

share of missing data before pre-processing. It can be seen from the figure that all SM 

coverage levels provide errors smaller than 0.1 p.u. (i.e., 10% of the average monthly 

load, which corresponds to around 60 kW) in 90% of the time steps. In cases where 

there is no sub-metering provided and the estimation can only be done probabilistically 

(0% SM coverage), the 90
th

 percentile of the AWFE is 0.23 p.u, which corresponds to 

around 140 kW. It can be also seen that for the SM coverage levels of 50% and higher, 

the accuracy remains the same. The calculated errors for the three cases (A to C) do not 

change notably, confirming that 20% missing data, and different sampling steps, do not 

affect the accuracy significantly if the missing samples are restored. This also confirms 

that the use of simple data restoration method (here, LI) is fully justified.  

 

Figure 3.15 CDF of AWFE for the estimation of controllable active load, case C 

Figure 3.16 illustrates the load composition in the base case and with 5% SM coverage. 

It should be noted that the total active demand is the same in the two figures, only the 

shares of the load categories differ. Finally, Figure 3.17 presents the shares of 

individual load categories in the two cases, i.e., based on actual values and based on 

ANN trained with data from 50 users. The figure shows that most categories are well 

estimated, except categories CTIM1 and Lighting, which show the highest 

discrepancies. It should be noted that CTIM1 and QTIM1, as controllable load 

categories, have lower shares in the daily load curve compared to RC, as another 

controllable load category. The main reason for this is the fact that the observed dataset 

represents demand in January, when heaters are used more than loads modelled as 

induction motors.   
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Figure 3.16 Demand composition of 1000 end-users’ active load based on actual values (top) and based 

on the ANN trained with data from 50 users (bottom) 

 

Figure 3.17 Shares of individual load categories based on actual values and those estimated using ANN 

trained with data from 50 users  

The estimated shares of individual load categories show similar accuracy (errors up to 

0.1 p.u.) in most cases, as seen in Figure 3.18, which represents the 90
th

 percentile of 

AWFE read from the CDF plots for each load category in case C. The highest accuracy 

is seen with QTIM1, and the lowest with CTIM1. The shares of some categories, 



144 | Advanced Demand Profiling 

namely CTIM1 and QTIM1, are very accurately assessed even with 0% SM coverage 

(with errors around 0.1 and 0.05 p.u., respectively), which shows that in these cases 

only statistical data is sufficient for confident load decomposition. For all other 

categories, probabilistic approach introduces higher errors. Different accuracy in 

prediction of participation of different load categories in total demand can be attributed 

to variation of particular load category during the observed period.  

 

Figure 3.18 AWFE with 90
th

 percentile confidence level for real power, case C 

The correlation between total active/reactive demand and shares of different load 

categories is studied using Spearman’s rank coefficient of nonlinear correlation [198], 

as the correlation between the parameters is not linear. The coefficient is shown in 

Table 3.4 and Error! Reference source not found. over the period of one week and 

one month, respectively, for the case C and three aggregation levels.  

Table 3.4 Spearman’s coefficients between the total active/reactive load and shares of different load 

categories for different aggregation levels over the training period (one week), case C 

Total 

load 

Aggregation 

level 
CTIM1 QTIM1 Rc Ruc SMPS Lighting 

P 

1000 users 0.42 -0.89 -0.50 0.53 0.49 0.79 

200 users 0.36 -0.89 -0.34 0.44 0.15 0.67 

50users 0.34 -0.87 0.36 0.25 -0.46 0.47 

Q 

1000 users 0.49 -0.82 -0.66 0.56 0.67 0.92 

200 users 0.51 -0.77 -0.60 0.51 0.44 0.87 

50users 0.54 -0.71 -0.02 0.34 -0.11 0.76 

Table 3.5 Spearman’s coefficients between the total active/reactive load and shares of different load 

categories for different aggregation levels over one month, case C 

Total 

load 

Aggregation 

level 
CTIM1 QTIM1 Rc Ruc SMPS Lighting 

P 

1000 users 0.40 -0.89 -0.51 0.51 0.50 0.78 

200 users 0.31 -0.88 -0.30 0.39 0.26 0.65 

50users 0.25 -0.84 0.26 0.22 -0.30 0.44 

Q 

1000 users 0.48 -0.81 -0.68 0.55 0.70 0.92 

200 users 0.49 -0.74 -0.60 0.50 0.57 0.87 

50users 0.49 -0.65 -0.18 0.34 0.11 0.78 

It can be seen that the correlation is similar for both periods, confirming that there is no 

need for larger historical data to be used for ANN training. Category QTIM1 shows the 

highest Spearman’s coefficient (Spearman’s rho) at most aggregation levels, followed 
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by lighting, hence the high accuracy in prediction. Category CTIM1, on the other hand, 

has lower Spearman’s coefficient than other categories in general, hence lower 

correlation with total active and reactive load, which is leading to the lowest accuracy 

in prediction of the share of CTIM1 in the total load. 

3.5.1.2 Reactive load decomposition 

The estimation of the shares of the controllable reactive load is also very accurate, with 

the 90
th

 percentile AWFE between 0.04 p.u. and 0.08 p.u. over the range of SM 

coverage levels, as shown in Figure 3.19. In case of 0% SM coverage, the 90
th

 

percentile of AWFE is 0.17 p.u., which corresponds to around 100 kvar. Similarly to 

active load, there is only a minor deterioration in the accuracy in cases B and C at 

lower SM coverage levels, compared to case A.  

 

Figure 3.19 CDF of AWFE for the estimation of controllable reactive load, case C 

The estimation of the shares of the load categories results in 90
th

 percentile of AWFE 

between 0 and 0.08 p.u. for all the SM coverage levels, as shown in Figure 3.20. The 

reactive power of the controllable resistive loads (RC) equals zero in all time steps, 

which is why the 90
th

 percentile of AWFE is around 0, except for the case of 

probabilistic approach. The same applies to uncontrollable resistive loads (RUC) which 

are, due to some home appliances, such as oven, modelled as imperfect resistors with 

power factor lower than 1. Except for these two categories, the QTIM1 share is 

estimated with the highest accuracy and the CTIM1 and Lighting with the lowest. 

Figure 3.21 illustrates the reactive load composition in the base case and in the case 

with 5% SM coverage. 
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Figure 3.20 AWFE with 90
th

 percentile confidence level for reactive power, case C 

 

 

Figure 3.21 Demand composition of 1000 end-users’ reactive load based on actual values (top) and based 

on the ANN trained with data from 50 users (bottom) 

3.5.1.3 Discussion 

The results of the case studies have shown the effect of missing data and different SM 

coverage on the accuracy of forecast active and reactive load composition. Based on 

the studies performed and illustrative results shown in the previous section, it can be 

calculated that the overall accuracy of the assessment is not significantly affected by 

SM coverage, nor by missing data. The accuracy, though, changes more with SM 

coverage level, than with missing data. Furthermore, the daily load shares of some load 

categories (CTIM1 and QTIM1), can be estimated very accurately using statistical data 

of electricity usage in the area only, i.e., without any SMs. For other load categories, 

the utilization of ANN with probabilistically generated training data is justified only if 

the target application of demand decomposition does not require high accuracy. It was 

also observed that the estimation of reactive load composition with 0% SM coverage is 

more accurate than the estimation of active load.  
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Furthermore, for the DR programs relying on wet appliances (CTIM1) and cold 

appliances (QTIM1), limited statistical data are sufficient to estimate their load shares. 

At lower SM coverage levels, AWFE values for these two categories are up to around 

0.1 p.u. In case of voltage-based DR programs (namely conservation voltage reduction) 

relying on resistive loads (e.g., water heaters), AWFE of the load share equals 0.06 p.u. 

at 5% SM coverage, while it is lower than 0.05 p.u. for other SM coverage levels.  

For most of the load categories even the lowest SM coverage (5%) enables very high 

accuracy of identification of load composition. The results show that even with 

minimal investments in sub-metering technologies (for only 5% of the users) the 

desired accuracy of load composition forecast can be obtained, and notably improved 

compared to the probabilistic approach, when no sub-metering data is available (0% 

SM coverage). The minimum SM coverage and resulting accuracy of estimation, 

however, may be different for different applications, and needs to be investigated 

further. 

Even though the methodology has been illustrated on residential load sector, it can be 

equally well applied to other load sectors, e.g., commercial, industrial or mixed. 

Finally, it is important to note that the proposed methodology is area-dependent. 

Therefore, the accuracy is higher when the data used for training the ANN comes from 

the electrical or geographical “neighbourhood” of the aggregated users. Finally, if only 

statistical data is available for ANN training, with no sub-metering data coming from 

individual end-users, it has to correspond to the type of the users under analysis, as the 

daily range of controllable load differs among industrial, commercial and domestic 

types of users. 

3.5.2 Validation of the methodology 

In order to validate the methodology on real data, another dataset was chosen, namely 

the Pecan street electricity consumption data [24]. These data include minute-based 

measurement data from 200 residential users located in Austin, Texas, during the three 

month period between June-August 2015. All of the observed time series had all 

samples available, i.e., there was no missing data, similarly to case A described in 

Section 3.5.1. Therefore, only the influence of SM coverage was examined, as a more 
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influential factor on the accuracy of demand decomposition, as discussed in the 

previous section. The sub-metering data are also available in the database covering a 

number of years, starting from 2013. These include circuit-based measurements, e.g., 

total consumption of the living room, bathroom, or kitchen plugs, and in some cases 

measurements of individual appliances (washing machine, furnace, etc.). Therefore, 

some assumptions on the load categories used in different parts of the household were 

made to enable load classification into 6 categories, similarly to Table 3.1. For 

example, it was assumed that half of the loading in the living room consisted of lights 

and half consisted of the electronic appliances (SMPS category). Weather data included 

temperature, humidity and wind speed measurements from the corresponding period of 

the year, together with the day type (1 for working day and zero for non-working day). 

The dataset did not contain reactive load data, so the probabilistic approach was taken 

to derive this, following steps described in Section 3.4. The ANN trained with 

probabilistic data only (with 0% SM coverage) was not taken into account in this study.  

Figure 3.22 presents the CDF of AWFE for controllable active load estimated for one 

day in August based on ANN trained with 7 days historical data. The range of the 90th 

percentile of AWFE is very similar to the ones in the test cases presented in Section 

3.5.1, which confirms the validity of the methodology and the fact that the training data 

corresponding to the observed set of consumers yields high accuracy. 

 

Figure 3.22 CDF of AWFE for the estimation of controllable reactive load for one day in August  

Figure 3.23 and Figure 3.24 illustrate the forecast active load composition in case of 

5% SM coverage and in the base case (actual measurements), respectively. Clearly, 

category CTIM1 has the highest share, as it mainly consists of HVAC units, which are 

highly used in Texas. The second highest share belongs to controllable resistive loads 

(RC), namely water heaters. As both of these categories are controllable and consist of 

thermostatically controlled loads, it can be concluded that there is a large DR potential 

from the residential users in this area.  
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Figure 3.23 Estimated active demand composition of 200 customers with 5% SM coverage (10 

customers monitored) 

 

Figure 3.24 Active demand composition of 200 customers based on field measurements  

In order to verify the methodology on a longer period of the year, and at the same time 

reduce the computational burden, the approach was tested on three consecutive months 

of the Pecan street dataset, namely June, July and August. This period was chosen to 

illustrate end-users’ behaviour during the summer, when there is usually a significant 

change in the load between consecutive months due to the summer holidays. The 

simulations were done iteratively, by estimating the load composition of 200 users 

every day, based on the last 7 days training data. This means that the ANN was 

retrained every day with the most recent 7 days’ data. Therefore, the size of the training 

data is always the same, but updated every day with the newest 1440 samples (the 

“oldest” 1440 samples are discarded in each update). This process was done for each 

SM coverage level individually, and tested versus the base case (actual measured data). 

It should be noted that even with 100% SM coverage, there is only information about 

the demand composition of the previous days, while for the next day only total active 

and reactive load forecast is given as the input to the trained ANN.  

Figure 3.25 presents the AWFE for the forecast of the share of controllable load for 

different SM coverage levels. The range of errors equals the one presented for one day 

testing (illustrated in Figure 3.15). The effective mismatch in the size of controllable 
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load (in kW) is slightly smaller here, due to the smaller base value. The per unit values 

of the errors are obtained based on the mean load during the 3 observed months, which 

was 212.9 kW, giving a maximum mismatch of 12.8 kW (AWFE = 0.06 p.u.) in 90% 

of the cases, at 5% and 10% SM coverage. The maximum possible mismatch in most 

cases at 20%, 50% and 80% SM coverage equals 8.5 kW (0.04 p.u.). In case of 100% 

SM coverage, the 90
th

 percentile AWFE is 0.03 p.u. (6.4 kW mismatch). If a realistic 

assumption is made, based on the observed customers, that the average consumption of 

a residential air-conditioning (AC) unit is around 1kW, this means that the maximum 

mismatch of the size of controllable load at the aggregation level of 200 users is around 

13 AC units for the lowest SM coverage levels, and around 6 AC units for the highest 

SM coverage level.  

 

Figure 3.25 CDF plot of AWFE for controllable load when testing the approach on three consecutive 

months of the Pecan street dataset 

3.5.2.1 Discussion 

As already mentioned, the results are area-dependent, i.e., they depend on the users’ 

daily habits in the observed area. To ensure high accuracy in prediction even for the 

same aggregation of users, it is advised to repeat the training of the ANN by updating 

the training data with the most recent historical data. The reason for this lies in high 

variability in daily consumption, of individual users in particular [199], that happens 

due to the difference in weather, season, holidays, etc. Similarly, for other types of load 

sectors, such as industrial, commercial, or mixed, corresponding 

measurement/statistical data should be used for training the ANN and updated with a 

certain resolution, e.g., every week. Methodology used to obtain the results, however, 

would not have to be changed at all, if different types of customers, different 

geographical locations or time periods or seasons are considered. The only thing that 

needs to be accordingly updated is the training data set. 
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3.6 The effect of input data on the accuracy of demand 

decomposition  

This section analyses how different factors may influence the accuracy of demand 

decomposition, namely the size of training data and the accuracy of total demand 

forecast at the aggregation (substation) level.  

3.6.1 The effect of weather data and the size of training data 

Weather and type of the day (working/non-working) are considered as factors 

influencing the daily loading curve, especially with respect to cooling and heating 

devices [200]. In order to assess the necessity of this data in the training of the ANN for 

demand decomposition, two cases are examined: i) the ANN training input consists 

only of total active and reactive demand, as suggested in the methodology; ii) the ANN 

training input consists of total active and reactive demand, weather data (temperature, 

relative humidity and wind speed) and day type values (1 for working days and 0 for 

weekends/public holidays). Consequently, the ANN in the latter case has 6 input 

parameters. The ANN training target (TTRN, as defined in (3.9)) is the same in both 

cases. When dealing with multifaceted data, an automatic feature selection algorithm 

could be incorporated to extract only the relevant data attributes for the training 

purposes. Based on the past experience and the number of data features considered in 

this case study, that was not deemed necessary, and a simple trial and error approach 

was used to decide on the necessity of inclusion of weather data. It should be noted that 

Pecan street data [24] was used in the analysis in this section.  

Figure 3.26-Figure 3.28 show the CDF of the AWFE for one day in August 2015, 

based on 1440 samples, with the ANN trained with the data from the past two months, 

one month and one week, respectively. In all the figures, cases without and with 

weather data were compared. It can be noted that weather data does not improve 

significantly, if at all, the accuracy of estimation in most of the cases. Also, the use of 

“longer historical data” (e.g., measurements from the past two months compared to past 

week) does not make any improvement in accuracy, quite the contrary, the longer 

historic data results in slightly reduced accuracy at lower SM coverage levels. This 

yields the conclusion that only the most recent historical data (last 7 days) are sufficient 
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for confident load decomposition. Finally, when the ANN is trained and tested using 

the pilot site data, the calculated range of the 90th percentile AWFE corresponds to the 

one when the CREST load model was used (as presented in Figure 3.15), which 

validates the proposed methodology.  

  

Figure 3.26 Controllable load estimation for one day in August with 60 days training (June+July) without 

weather data (left), and with weather data and day type (right) 

  

Figure 3.27 Controllable load estimation for one day in August with one month training (July) without 

weather data (left), and with weather data and day type (right) 

  

Figure 3.28 Controllable load estimation for one day in August with 7 days training (August) without 

weather data (left), and with weather data and day type (right) 

As the mean value of the load during the observed period was 238.4 kW, if the 90th 

percentile AWFE of the estimated controllable load is around 0.04 p.u. (with 10-20% 

SM coverage in Figure 3.28 left), that means that in 90% of the cases the maximum 

over/under-estimation of the size of controllable load is 9.5 kW for the aggregation of 

200 users. For illustration purposes, it can be assumed (based on the observed sample 

of consumers) that the average consumption of an AC unit is 1 kW. Thus the maximum 

mismatch in the size of controllable load equals to the consumption of 10 AC units at 
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the level of 200 users for 10-20% SM coverage. 5% SM coverage usually results in 

slightly higher errors, around 0.06 p.u. (14.3 kW ≈ 14 AC units). 

In order to clarify further the effect of the size of the training data set and the inclusion 

of weather data, Figure 3.29 illustrates the most probable weighting factor error (WFE):  

WFE = WFcat, ANN −WFcat,real,                                (3.13) 

for different SM coverage levels, size of the training data and with/without weather 

data. 𝑊𝐹𝑐𝑎𝑡, 𝐴𝑁𝑁 is the share of the load category obtained as the result of the ANN, 

and 𝑊𝐹𝑐𝑎𝑡, 𝑟𝑒𝑎𝑙 is the actual share of the category, both given in p.u., based on the 

average aggregated monthly active demand. The most probable value was extracted 

from the range of WFE values over the 1440 samples. The following conclusions can 

be deduced from the figure: 

 The use of weather data (patterned bars in the diagram) improves the accuracy in 

cases with higher SM coverage levels, starting from 20% SM coverage (note that 

both positive and negative errors are taken into account), while with lower SM 

coverage levels (5% and 10%) the accuracy is deteriorated. This can be 

explained by higher randomness of aggregated load curve at lower aggregation 

levels.  

 The use of larger training data sets mostly results in similar absolute accuracy to 

the one provided by smaller training data sets. 

 The size of historical data (training data sets) has larger influence on the 

accuracy in cases of higher SM coverage levels (>20%), i.e., greater variation in 

accuracy can be observed with different lengths of data sets. In both cases, with 

and without weather data, the accuracy is slightly higher with shorter data sets.  

The time required for training the network, as presented in Table 3.6, is affected by the 

number of neurons in the hidden layer of the ANN (calculated as 𝑛 = √𝑁/(𝑑 ∙ 𝑙𝑛𝑁) 

[16], where 𝑁 is the number of the training samples - here the number of training days 

times 1440, and 𝑑 is the number of input variables, which is either 2 or 6 in the 

observed cases) – this number is lower in the case of more input variables (such as 
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weather) for the same length of the training data (e.g., for one month of historical data). 

It should be noted that the simulations were run on a PC with the 64-bit operating 

system and 3.40 GHz processor. 

 

Figure 3.29 Most probable WFE based on ANN trained with different SM coverage levels, with and 

without weather data 

Table 3.6 Training time for different size of training data 

Training size Number of hidden neurons (n) Training time 

2 months 62 up to 70 min 

2 months + weather 36 up to 50 min 

1 month 45 up to 20 min 

1 month + weather 26 up to 25 min 

1 week 23 up to 2 min 

1 week + weather 13 up to 80 seconds 

3.6.2 The effect of total demand forecasting error 

This subsection illustrates the influence of the total load forecasting error in the input 

data used for ANN training (presented in Figure 3.12) on the demand decomposition 

accuracy. Total load of 200 users from the Pecan street dataset [24] was thus forecast 

for August 30th 2015 using an ANN trained with historical loading and weather data 

during the period from June 1
st
 to August 29

th
 2015. This ANN, used solely for total 

active/reactive demand forecast at the aggregation level, had the same settings as the 

one used for load decomposition, but with different input and target, as shown in (3.14) 

and (3.15), where P1…Pn are the aggregated active demand samples (1440 per day) 

during the training period (here, 3 months), P1+1440...Pn+1440 are the active demand 

samples for the day ahead relative to P1...Pn, and T, WS, H and DT are temperature, 

wind speed, relative humidity and day type for the corresponding periods. Total 

aggregated reactive demand (Q) was forecast in the same way. This approach is based 

on the load forecasting methodology described in [16]. 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

5%

10%

20%

50%

80%

100%

Most probable WFE 

S
M

 c
o

v
er

ag
e 

Aug 7days

Aug 7days+weather

Jul

Jul+weather

Jun_Jul

Jun_Jul+weather



Advanced Demand Profiling | 155 

 

 

 

𝐼𝑛𝑝𝑢𝑡 =

(

 
 
 
 
 
 

𝑃1 … 𝑃𝑛
𝑇1 … 𝑇𝑛
𝑊𝑆1 … 𝑊𝑆𝑛

𝐻1 … 𝐻𝑛
𝑇1+1440 … 𝑇𝑛+1440
𝑊𝑆1+1440 … 𝑊𝑆𝑛+1440
𝐻1+1440 … 𝐻𝑛+1440
𝐷𝑇1 … 𝐷𝑇𝑛

𝐷𝑇1+1440 … 𝐷𝑇𝑛+1440 )

 
 
 
 
 
 

                              (3.14) 

𝑇𝑎𝑟𝑔𝑒𝑡 = [𝑃1+1440 … 𝑃𝑛+1440]                                   (3.15) 

The results of the active and reactive load forecast are shown in Figure 3.30.  

 

Figure 3.30 Day ahead total load forecast for August 30th 2015 

As the mean of the absolute percentage error (𝑀𝐴𝑃𝐸, defined in (3.16), where 𝑛 is the 

number of samples, 𝑥 is the calculated value, and 𝑥0 is the actual value) is 11% for 

active load and 9% for reactive load, a demand decomposition test was done by 

incorporating a 10% 𝑀𝐴𝑃𝐸 for both 𝑃 and 𝑄 in the ANN input. Therefore, two 

scenarios were examined for the ANN input: 0.9 ∗ 𝑃 and 0.9 ∗ 𝑄 as the lower bound 

input (𝑀𝐴𝑃𝐸 = −10%), and 1.1 ∗ 𝑃 and 1.1 ∗ 𝑄 as the higher bound input (𝑀𝐴𝑃𝐸 =

+10%). The resulting distribution of AWFEs for controllable active demand 

forecasting is presented in Figure 3.31 for -10% total load forecasting error (Figure 

3.31a) and +10% total load forecasting error (Figure 3.31b). When compared to the 

same case presented in Figure 3.28 (left), which is based on the accurate values of total 

𝑃 and 𝑄, it can be seen that there is no degradation in accuracy. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑥𝑖−𝑥0,𝑖

𝑥0,𝑖
|𝑛

𝑖=1                                      (3.16) 
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(a) (b) 

Figure 3.31 Controllable load estimation for one day in August with 7 days training (August), with (a) 

day-ahead total load forecasting error of -10% and (b) day-ahead total load forecasting error of +10% 

Finally, Figure 3.32 illustrates the controllable load forecast with 5% SM coverage 

based on the accurate total active and reactive load forecast (thick line), and the range 

of values considering ±10% MAPE in the forecast of total active and reactive load. The 

actual controllable load curve is given by the dotted red line. As seen in the figure, the 

differences are typically very small and only exceptionally approaching 8-10%. This 

leads to the conclusion that reasonable total load forecasting errors do not drastically 

affect the accuracy of load decomposition. For reasons of clarity, only a part of the day 

is presented in the figure.  

 

Figure 3.32 Forecast and actual controllable load with the possible variation range due to the 10% error 

of the total demand forecasting 

3.7 Comparison of ANN and ARIMA method for demand 

decomposition 

This section tests the eligibility of ARIMA method [201] for demand composition 

forecasting, as it has been widely used in the past for time series forecasting purposes 

[202]. If all the end-users in the observed aggregation have sub-metering facilities, 

based on the historical daily curve of each individual load category, it would be 

possible to forecast (in the short-term, e.g., day ahead) each category’s demand. 

However, in cases of limited number of end-users sending their sub-metering data, 
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ARIMA output would have to be scaled up to the total number of users. In order to 

assess how this could affect the accuracy of demand decomposition, testing was 

performed with the ARIMA model, and the influence of SM coverage level on the 

accuracy of results was investigated. The forecast of the load composition, namely the 

amount of controllable load, was done for day-ahead based on the most recent 7 days 

historical data. The ARIMA model was implemented in Matlab [203].  

For illustration and comparison purposes, the loading curve of controllable load 

(denoted as y) was taken from the data set described in Section 3.4 (aggregation of 

1000 users whose demand was generated using CREST model [111]). It was assumed, 

as previously, that there were missing samples in the SM data, which were processed 

using LI method. The data had to be additionally pre-processed, as it was non-

stationary, i.e., there was a high autocorrelation observed over the entire time series. 

The non-stationarity can be seen from the autocorrelation function (ACF) of the time 

series y (with minute-based samples) in Figure 3.33, where the correlation coefficients 

are far outside the significance limits (defined by parallel blue horizontal lines) at 

almost all lags (time steps). Thus the data had to be differenced (consecutive samples in 

the time series were subtracted from each other) before further processing [204]. As the 

differencing of minute-based data made no improvements, the time series was first 

smoothed (through averaging over 30 min periods), and then differenced. Finally, the 

new time series (with 48 samples per day) had improved stationarity, as the ACF and 

partial autocorrelation function (PACF) show in Figure 3.34 and Figure 3.35, 

respectively. Correlation index at most lags stayed around the significance limits. 

 

Figure 3.33 Autocorrelation function of the original samples y 

The next step was to estimate the parameters of the ARIMA model, which is commonly 

done based on the ACF and PACF of the time series. The parameters are: non-seasonal 
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auto-regressive term (𝑝), non-seasonal differencing term (𝑑), non-seasonal moving 

average term (𝑞), seasonal auto-regressive term (𝑃), seasonal differencing term (𝐷), 

seasonal moving average term (𝑄) and seasonality (𝑆) [203]. Based on ACF and PACF 

of the differenced data, the chosen ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆 model was 

(1,1,1)(1,1,1)48. These values were adopted considering the fact that the seasonality 

was 48 samples (daily), and that the most significant time steps in ACF and PACF were 

around time step 1, while the time series was differenced once.  

For the consistence needed for comparison with the ANN approach, the time series 

forecasting (day ahead) of the controllable load was performed based on the last 7 days 

historical values of the data. The outputs obtained for different SM coverage levels 

were appropriately scaled in order to be compared to the base case (aggregation of 

1000 users). For example, the output (demand of controllable load during one day) 

obtained with 20% SM coverage level was scaled by factor 5 before it was compared 

with the corresponding values in the base case. Figure 3.36 and Figure 3.37 represent 

an example of controllable load forecast based on the measurements from end-users at 

different SM coverage levels (5-20% in Figure 3.36 and 50-100% in Figure 3.37). The 

dotted lines refer to the actual values for days 7 and 8, while the solid lines refer to the 

ARIMA forecast for day 8, at the corresponding SM coverage level.  

 

Figure 3.34 Autocorrelation function of the differenced samples of 𝑦 

 

Figure 3.35 Partial autocorrelation function of the differenced samples of 𝑦 
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Finally, if the obtained forecast of the controllable load at different SM coverage levels 

(5%÷100%) is scaled to 1000 users (by factors 20÷1, respectively), the results for the 

day 8 forecast are as shown in Figure 3.38 and zoomed in Figure 3.39.   

 

Figure 3.36 ARIMA forecast of the 8th day controllable load at different SM coverage (5-20%), with 

days 7 and 8 shown 

 

Figure 3.37 ARIMA forecast of the 8th day controllable load at different SM coverage (50-100%), with 

days 7 and 8 shown 

 

Figure 3.38 Actual load during the 7 days preceding the 8th day and the forecast based on different SM 

coverage 

Figure 3.38 shows the 7 days data (controllable load only) used for training consisting 

of 7*48 samples. The observed inaccuracy (higher than in case of ANN), even at 100% 

SM coverage, can be related to high variability in daily loading curve of the 

controllable load, as well as fewer points used for training. In case of ANN, 7*1440 

samples were used. 
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Figure 3.39 ARIMA forecast of the 8th day consumption of controllable load based on scaled outputs at 

different SM coverage 

The AWFE was further calculated for simulation results for the whole month of August 

(this way, the number of output samples was 30*48=1440, which corresponded to the 

number of output samples in the cases described in Section 3.5.1) and shown in Figure 

3.40. The results were obtained iteratively, by running the ARIMA model for one day 

based on the most recent 7 days and repeating this process for every day in the month. 

It can be seen from the figure that even at higher SM coverage levels, the errors 

obtained with ARIMA are visibly larger than with the ANN based methodology (see 

Figure 3.41, which is a reproduction of Figure 3.15). The 90th percentile of the error 

ranges between 0.15 p.u. and 0.3 p.u., depending on the SM coverage level. It should 

be noted that in the ANN approach, these errors ranged from 0.05 p.u. to 0.1 p.u. (as 

shown in Figure 3.41). This brings the conclusion that at 5% SM coverage, the 90
th

 

percentile AWFE using ARIMA method is 3 times larger than with ANN, hence using 

ARIMA method for demand composition forecasting is not justifiable considering 

more accurate ANN based forecasting.  

 

Figure 3.40 CDF of AWFE for controllable load during one month 
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Figure 3.41 Reproduction of Figure 3.15 CDF of AWFE for the estimation of controllable active load, 

case C 

3.8 Graphical user interface for representing demand composition  

The graphical user interface (GUI) for advanced demand profiling (ADP) of the 

residential load is foreseen as a decision making tool for a DR responsible party (e.g., 

an aggregator or DNO). The overall ADP methodology has been initiated within the 

UK EPSRC project “Autonomic power systems” and EU FP7 SUSTAINABLE project 

and fully developed within the EU H2020 NOBEL GRID project as a micro-service of 

the integrated NOBEL GRID Consumer Profiling Framework. It incorporates two 

functionalities: mid-term (day ahead) and short term (half hour ahead) demand 

forecasting (DF) and demand decomposition (DD), the latter relying on the former. The 

reason for this interdependence is that the necessary input for DD is total active and 

reactive demand, as described in Section 3.4. As most of the DR programs are planned 

based on the forecast flexibility of the end-users (e.g., in [69]), the information about 

demand composition should also be given in advance, most commonly one day ahead. 

Therefore, as a necessary step before DD, information about forecast active and 

reactive demand has to be obtained first. The forecast is done at the aggregation point, 

which is usually the substation supplying the consumers participating in the DR 

programme. Other scenarios, where the aggregation involves consumers scattered 

around a geographical (and electrical network) area, are also possible. 

DF is therefore done at the aggregation level, either at the substation or for a group of 

scattered customers belonging to the same aggregator, and do not necessarily have to 

be connected to the same LV substation. The forecast is performed either a day or half 

hour ahead and it has two main applications:  
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 distribution network operation, where the forecast load is used as the necessary 

information for balancing between demand and available generation, and  

 input for the DD module which uses the total demand prediction to forecast demand 

composition.  

The former application could be complemented by a renewable energy sources (RES) 

forecast, which allows low carbon operation of the distribution network, while the latter 

one actively supports the DR programs, by providing information on forecast amount 

and type of controllable loads of the end-users. 

The information flow between the two modules of the ADP and the GUI is illustrated 

in Figure 3.42. The input data (namely historical and real-time demand and weather 

data) are first sent to the DF module, whose results (forecast active and reactive 

demand) are then fed to the DD module, for finally obtaining the composition of the 

forecast demand. 

 

Figure 3.42 Flowchart of the information flow 

The demand forecasting module is based on the use of ANN, following methodology 

for load forecasting introduced in [86], which uses historical demand data 

(active/reactive load) and weather data (temperature, humidity and wind speed) for 

training the ANN, and most recent historical demand and forecast weather data for 

obtaining the half hour or day ahead demand forecast. The details of this approach were 

provided in Section 3.6.2. The training of the ANN is presented in Figure 3.43, where 

the three rows for weather data correspond to temperature, humidity and wind speed, 

and day type refers to working/non-working day value (1/0). Once the ANN is trained, 

the input data should be in the same format as the training inputs. In order to retain 

acceptable accuracy of the DF module, historical data is regularly updated, with the 

fixed time window of the training data. This means that the ANN for DF (for 

simplicity, referred here as DFANN) is always trained with the same size of historical 



Advanced Demand Profiling | 163 

 

 

 

data (in this example, 3 months) by dismissing the oldest samples every time the 

training data is updated with new measurements, for example daily or weekly.  

 

Figure 3.43 Training process of the DFANN 

Besides historical demand and the weather data necessary for training the DFANN, the 

update rate of weather forecast (input) data is also important. The DF module was 

tested using test data from an actual test site (substation), where historical data 

measurements of active demand (with half hour resolution) and corresponding weather 

(one hour resolution) were available. The weather forecast for the next 24 hours would 

be updated once/twice a day, which affected the accuracy of results. Figure 3.44 

illustrates the importance of input data update on the accuracy of day ahead DF. 

Datasets 1 and 2 represent forecasting outputs where weather data is updated every 12 

hours and 24 hours, respectively. The relative errors (in %) based on the forecast and 

actual (measured) load values are given over a 36 hour period (72 time steps). 

Between time steps 14 (corresponding to 7 a.m.) and 38 (corresponding to 7 p.m.), as 

well as between steps 61 and 72, dataset 1 is forecast based on the updated weather 

data, while dataset 2 still uses the old weather forecast (which only gets updated at 

7 p.m.), resulting in lower accuracy, as highlighted in the dotted frames in Figure 3.44. 

After this period, during the next 24 steps (12 hours), both datasets are forecast based 

on the same weather data, which is why the errors are the same during that period. In 

order to show the dependence on the weather update, Table 3.7 presents the most 

probable relative errors (MPRE) for day ahead and half hour ahead forecasting, for 

datasets 1 and 2. As seen in the table, the weather update shows a higher impact on the 

accuracy of day ahead forecasting than on half hour ahead forecasting. It should be 

noted that two different DFANNs are generated for day ahead and half hour ahead 
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forecasts. The reactive demand forecast can be analysed in a similar way, as long as the 

reactive power measurements (or power factor values, as in this test site’s data) are 

available. In the next step, demand decomposition is performed following the 

methodology described in Section 3.4. 

 

Figure 3.44 Relative error of demand forecasting for datasets 1 and 2 over 36 hours (72 time steps) 

Table 3.7 The most probable relative error for different demand forecasting cases  

Case 

Dataset 1 Dataset 2 

Day 

ahead 
Half hour ahead 

Day 

ahead 
Half hour ahead 

MPRE 4.71% 2.38% 6.74% 2.40% 

Although DF is an on-line application, there is a certain time delay between the input 

data acquisition and the output – forecast active/reactive load. Similarly, additional 

delay will be introduced with DD module, as the ANN for DD (denoted as DDANN) 

relies on the output of DF and takes some time for the simulations. The delays will 

depend on the data latency of the communication system responsible for gathering the 

measurements, data pre-processing time and also on the computational power 

(processor). The overall process of ADP, fully developed within the NOBEL GRID 

project, is illustrated in Figure 3.45. The input data (weather, historical demand and 

real-time SM data) are fed into the ADP engine, consisting of DF and DD modules, 

each introducing a certain time delay (∆t1 and ∆t2, respectively). With the 64-bit 

operating system and 3.40 GHz processor used in this example, delay introduced by the 

DF module was 5 seconds, while the delay caused by the DD module was 7 seconds, 

giving 12 seconds of total delay for the overall ADP process. The results are 

transmitted to the Demand Response Flexibility Market (DRFM) Cockpit. The DRFM 

Cockpit was foreseen in the NOBEL GRID project as an intermediary system between 

the aggregated flexibility of the end-users and other smart distribution grid actors (e.g., 

the DSO or the aggregator). 
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Figure 3.45 Advanced demand profiling, as seen in NOBEL GRID project 

In order to present the ADP output in a user-friendly way, two GUIs have been 

developed, for DF and DD modules. Print-screens of the two GUIs are presented in 

Figure 3.46 and Figure 3.47, showing the ADP results using the historical total 

active/reactive demand and weather data from the aforementioned test site. As the site 

had no sub-metering data, the training data for DDANN was generated using Monte 

Carlo simulations and statistical data about the load composition in residential areas, 

similarly to the approach described in [39] and mentioned in Section 3.5.1. Both GUIs 

(for the DF and DD module) offer day ahead and half hour-ahead forecasting. As the 

GUIs are updated with new measurements arriving in real-time, the actual total demand 

(from substation measurements) and actual demand composition (resulting from the 

DDANN taking measured P and Q data as input), are presented, enabling real-time 

comparison and error calculation between the forecast and actual values. The two GUIs 

“communicate” with each other, the output of the DF module being used as the input 

for DD module.  

Figure 3.46 represents the GUI for DF, where different numbered parts of the interface 

have the following function/meaning: 

 0: Activate/deactivate button serves to start or interrupt the GUI. It should be noted 

that the DFANN is first trained with the most recent, in this case 3 months-long, 

historical weather and demand data. Once trained, only the last half hour/24 hour 
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demand and half hour/24 hour ahead weather forecast data is needed as the input to 

perform the half hour/24 hour ahead demand forecast; 

 1 and 2: Bar plots showing the time change of the key performance indicators 

(KPIs), i.e., relative errors between the forecast and actual values for real and 

reactive demand, respectively. Red bars refer to the half-hour ahead forecasting 

errors, and blue ones to the day-ahead forecasting errors, which are usually higher. 

The presented KPIs are illustrative - additional indicators, for example mean 

absolute percentage error (MAPE) [86], can be added; 

 3: The ‘Latest status’ shows the current time (here, 24/09/2015 at 04:00), and 

current (real-time) measured active and reactive demand at the substation; 

 4 and 5: Graphs presenting day ahead (in blue) and half hour-ahead (in red) forecast 

active and reactive demand, respectively, together with the actual (measured) 

demand (in black). The vertical green line refers to the current time – as the time 

changes, the demand curves move to the left, while the green line stays fixed. The 

curves will move with the same time resolution as the resolution of the 

measurement data, with some time delay, as mentioned. Therefore, the curves on 

the right side of the green line refer to the forecast demand, while those on the left 

side correspond to the most recent historical data, measured and forecast; 

 6 and 7: Numerical values of day-ahead and half hour-ahead forecast active and 

reactive demand, respectively, which were forecast for the current time, followed 

by the calculated relative error based on the actual (measured) demand at the 

current time; 

 8: Training and validation of the ANN for day-ahead and half hour-ahead 

forecasting, respectively. There is an optional “Train” button for the user, who may 

want to retrain the DFANN with the most recent (3 months long) historical data, 

while the ‘Validate’ button performs validation of the ANN, i.e., testing the ANN 

with training data and comparing the outputs with the ANN target. The retraining 

can also be done automatically, after a pre-defined time period, e.g., every day or 

weekly.  
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Figure 3.46 Presentation of the GUI for day ahead and half hour ahead demand forecasting  

Figure 3.47 represents the GUI for DD, where numbered parts of the interface have the 

following function/meaning: 

 0: The drop-down menus offer different datasets (in this case “perfect data”, i.e., 

data with no missing samples was chosen) and half hour or day-ahead forecasting. 

The Activate/Deactivate button serves to start or interrupt the GUI. Current time is 

also shown here.  

 1: Values of relative errors for active and reactive total demand forecasting 

(showing numerical values of the DF outputs for the current time); 

 2 and 3: Bar plots showing the forecast (yellow) and actual (blue) demand of 

individual load categories, within total real and reactive demand, respectively;  

 4 and 5: Diagrams showing forecast demand composition based on the forecast 

total active and reactive demand (illustrated in Figure 3.46) on the right side of the 

red vertical line, and actual demand composition, based on measured total active 

and reactive demand, on the left side of the line. The red line refers to the current 

time. Similarly to the case of DF, the curves move in real time to the left, together 

with the time labels, while the red line stays fixed. Also, the curves will move with 
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the same time resolution as the resolution of the measurement data, with some time 

delay. 

 

Figure 3.47 Presentation of the GUI for day ahead forecasting of demand composition  

 6 and 7: Diagrams showing forecast controllable and uncontrollable load (on the 

right hand side of the vertical red line) based on the forecast total active and 

reactive demand, and historical-actual controllable and uncontrollable load, based 

on measured total active and reactive demand. These curves move accordingly. 

 8 and 9: The values represent the forecast and actual active and reactive demand, 

respectively, of individual load categories, and controllable/uncontrollable load. 

These are followed by the corresponding relative errors. 

The main purpose of advanced demand profiling and the GUI is to support day ahead 

and half hour ahead DR planning, as it provides information about the flexibility 

potential of the demand-side over different times of the day. This information reduces 

the uncertainty of the actual (available) flexibility of the end-users, even before a DR 

signal is sent to them by the DR responsible party. The variety of information provided 

by the GUI can be further adjusted based on the specific requirements of the user. 

Furthermore, information about the types of flexible load (motors, heaters, lighting, 

etc.) that could be potentially shifted to different time (disconnected) enables a proper 

network performance analysis before any kind of load shifting or load curtailment is 

performed.  
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The introduced graphical representation of demand-side flexibility at the local 

(substation or other aggregating point) level can be further extended to a whole network 

and presented in “geographical map format” showing, in both time and space, the 

varying flexibility of the load at each individual substation (bus) in the network at any 

given point in time. The developed GUI for demand forecasting and demand 

decomposition, as a means of representing demand size and its flexibility in a user 

friendly way, can be used in a control room by the distribution system operator, who 

will be able to forecast, with high confidence, when, where (at which buses) and how 

much the demand can participate in, and increase the flexibility of, the low carbon 

network daily operation. 

3.9 Summary 

This chapter presented a methodology for aggregated demand decomposition using 

limited SM data and the application of ANN. The overall methodology results in an 

estimation of the shares of different load categories and controllable and non-

controllable load within the total forecast demand, with a foreseen application in 

various DR programs. The proposed methodology can be used for either real-time or 

forecasting applications, although the focus of this chapter was on day-ahead 

forecasting. The two main assumptions are that the SMs can record active load of 

individual appliances and that only some of the end-users in the aggregation have this 

type of SM. Special attention has been given to data pre-processing, i.e., aggregation of 

data streams coming from SMs in different sampling steps and with missing samples. 

Two data restoration methods were analysed in this respect, linear interpolation and 

weight adjusted k-nearest neighbour method. An approach for obtaining probabilistic 

aggregated reactive load curve is also discussed as a solution to the lack of reactive 

load measurements at the end-users’ point. The methodology was further validated on 

an actual pilot site’s dataset, resulting in similar accuracy and confirming that there is 

no need for weather data and large historical data to be included. Since the 

consumption data is aggregated at a data concentrator point (the substation), the size of 

the data sent to the upstream network, e.g., to the DNO or an aggregator, is also 

reduced. In addition, the ANN-based approach was compared to ARIMA method, 

showing its superiority. Development of the methodology for aggregated demand 
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decomposition using limited SM data represents the third original contribution of this 

thesis.  

In order to fully develop and implement the demand decomposition methodology 

described above it was necessary to develop an approach for estimating reactive daily 

loading curve. The methodology is established based on probabilistic modelling of PF 

of individual appliances and subsequent Monte Carlo simulations. This methodology 

represents the fourth original contribution of the thesis.  

Finally, a GUI for advanced demand profiling was presented and discussed in this 

chapter. It is a practical tool foreseen to be used in a distribution network control centre 

for short-term DR planning. Development of the graphical user interface for advanced 

demand profiling represents the fifth original contribution of the thesis. 
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4.1 Introduction 

This chapter illustrates the concept of multi-objective DSM in a distribution network in 

support of transmission network operation. The methodology builds on the results of 

the methodology on Advanced Demand Profiling, detailed in the previous chapter. 

Information about demand composition is used to model demand at each load bus of 

the network, facilitating that way further studies of the effect DSM may have on 

network performance indicators. Multi-objective DSM optimises sequentially demand 

scheduling, i.e., shifting of demand from one time to another, by taking into account 

three objectives: i) meeting the predefined loading curve at GSP, ii) preservation of 

demand composition, iii) maintenance/improvement of distribution network loadability. 

The optimisation takes into account, sequentially, realistic constraints of the DSM 

programs, namely limited demand flexibility and load payback. The proposed 

optimisation algorithm is foreseen as a decision making tool used by the DNO, as part 

of the day-ahead planning of the DSM (load scheduling) program to meet the 

requirements at the GSP specified by the TSO, while keeping the selected (one or 

more) network performance indicators within predefined limits. The concept can be 
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equally applied to transmission network level, and to other types of network 

performance indicators. 

4.2 System performance indicators and load modelling 

In addition to providing services to the TSO, e.g., providing desired demand profile at 

the GSP over a set period of time, the distribution network should maintain the standard 

of its own network performance before and after the DSM action. This requirement is 

particularly important when a large number of users are involved in a DSM program, as 

this could substantially change the power flows in the distribution network, and such 

influence, to an extent, the transmission network operation as well. Different network 

performance indicators can be observed, individually or in combination, such as 

frequency, voltage levels, line flows, network losses, etc. These indicators will be, 

more or less, affected by large-scale DSM depending on the network architecture (e.g., 

a microgrid in connected or isolated mode) and voltage levels (for example, frequency 

is more critical in transmission network than in distribution network).  

As already detailed in the introductory chapter, Section 1.5.2.4.1, voltage stability 

margin in distribution network, namely network loadability, is chosen as a network 

performance indicator observed before and after a DSM action. The main reason for 

this is the proliferation of DER and large residential loads (EVs and heat pumps) in the 

distribution network and possible effect this could leave on voltage profiles and 

loadability of both, distribution and transmission network.  

Multi-objective DSM observes demand side from the two aspects: 

1) The effect of time-changing composition of demand on demand flexibility 

and the corresponding load model parameters at each load bus in the 

distribution network; 

2) The effect the changes in demand size and composition (i.e., load model 

parameters) following a DSM action can have on the distribution network 

performance. 

The composite (ZIP+IM) load model, as one of the most comprehensive load models 

[45, 48], is used in this methodology in order to account for different voltage 

dependency of different load types, both static and dynamic, and the effect it may have 

on system steady state and dynamic performance. Static performance is observed 
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through load flows and loadability assessment, while the dynamic performance is 

observed through the dynamic response of demand. Load at every load bus in the 

network is therefore represented using the ZIP+IM model. 

In order to illustrate dependence of network loadability (load margin) on the load 

model, PV curves were generated in DIgSILENT/PowerFactory on an example of a 

simple 2-bus network representing a distribution network with a GSP, as given in 

Figure 4.1. Three cases were observed: constant power load model, ZIP load model and 

ZIP+IM model. In all three cases the total network load was equal to 0.8 MW, with 

reactive load equal to 0.16 Mvar. The 𝑟/𝑥 ratio of the distribution line equals 1.2, while 

the equivalent model of the network represents the upstream network. 

 

Figure 4.1 Simple network model for PV curve simulation 

Results in Figure 4.2 show that constant power model gives the most conservative 

critical load (corresponding to the tip of the PV curve in Figure 1.4), in this case 

2.9 MW, while ZIP model gives considerably larger critical load equal to 4.6 MW, due 

to the existence of voltage sensitive load components (namely constant current and 

constant power load model). Finally, ZIP+IM model results in slightly lower load 

margin, showing 4.4 MW as the critical loading of the system. It can be concluded that 

if a more realistic load model is used, such as the ZIP or ZIP+IM load model, the 

critical loading is higher, and consequently, the load margin, i.e., the distance between 

the current operating point and the critical loading is larger. Even though the load 

margins resulting from the ZIP and ZIP+IM load model are not very different, the 

reason IM load is included in the load model is to capture the dynamic response of 

composite demand, which occurs following a disturbance in the network (e.g., voltage 

step change), and depends on the size of demand and demand composition. 

Furthermore, considering that many of the load components in the network that could 

participate in DSM are based on IMs, the use of the composite load model is 

appropriate to reflect the demand composition mix before and after DSM. 
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Figure 4.2 PV curve with different load models 

Simplified distribution network, given in Figure 4.3, is used to show the dependence of 

dynamic response of demand on the composition of demand. The equivalent model of 

the network is used to represent the upstream network. 

 

Figure 4.3 Simple network model with for dynamic response of demand simulation 

Three cases are investigated to illustrate the effect of different shares of ZIP and IM 

loads in the total demand, namely 80:20, 50:50 and 20:80, respectively. Figure 4.4 

represents dynamic response of demand following a 5% voltage drop due to a 

transformer tap change on transformer T shown in Figure 4.3.  

 

Figure 4.4 Dynamic response of demand following a disturbance due to 5% voltage drop (tap change) 

The responses confirm that the higher the share of dynamic (IM) loads is, the more 

oscillatory is the real power response of demand to a voltage disturbance, and larger 

steady state value following a disturbance is attained. The system disturbance was 

simulated on a 33/11 kV transformer, while the response was recorded on the HV side 

of transformer. The total nominal network demand was 40 MW. This is an illustrative 
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example only of the extent to which demand composition may influence the dynamic 

response of demand.  

4.2.1 Load categories and composite load model 

The six load categories identified in Chapter 3 are further grouped into the four 

components of the composite load model (constant Z loads, constant I loads, constant P 

loads and IM loads). Mapping between these two types of demand classification is 

given in Table 4.1. An example of a daily loading curve decomposed into load 

categories and composite load model components is given in Figure 4.5. Furthermore, 

Z loads are divided into controllable and uncontrollable based on their suitability for 

DR, while all IM loads are considered as controllable. The rest of the components are 

deemed uncontrollable. The composite load model at each load bus will thus consist of 

the 4 components (ZIP+IM), whose shares in the total load are different across different 

load buses, and also change during the day. Each load component comprises one or 

more load categories, which were originally defined in [86] and presented in Section 

3.2. 

Table 4.1 ZIP+IM Load Components and Corresponding Load Categories 

ZIP+IM model component Load category 

ZC (controllable constant impedance loads) RC 

ZUC (uncontrollable constant impedance loads) RUC 

I (uncontrollable constant current loads) Lighting 

P (uncontrollable constant power loads) SMPS 

IM (controllable induction motors) CTIM1+QTIM1 

The proposed demand composition may be simplistic from a point of view of an 

aggregator, as individual appliances have different behaviour depending on operating 

cycles (for example, a washing machine may be operating predominantly as a motor or 

as a heater, depending on the part of the operating cycle). These operating features are 

of great importance to the entity controlling and scheduling demand. From the network 

operator’s point of view, however, it is deemed unnecessary to observe these 

differences among different appliances. The methodology mainly focuses on 

aggregated demand, where volatility of operating cycles of individual loads is less 

visible. The aim of demand composition presented in this chapter is to enable as 

realistic as possible modelling of demand using the most advanced, composite 

(ZIP+IM) load model, and to illustrate the extent to which demand flexibility can be 
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harnessed if realistic load modelling is used to represent demand, and intrinsic demand 

limitations (with respect to flexibility and load payback) are taken into account. 

 

Figure 4.5 Demand composition of active demand: 6 load categories (top) and ZIP+IM composition 

(bottom) 

4.2.2 Load payback 

Load payback, i.e., the reconnection of previously disconnected loads at the time steps 

following the disconnection, is accounted for in this methodology in order to illustrate a 

realistic DSM program. One of the most common ways to model load payback is using 

linear increase of load [205], represented by the following equation: 

𝑃𝐵(𝑡) = 𝛼 ∙ ∆(𝑡 − 1) + 𝛽 ∙ ∆(𝑡 − 2) + 𝛾 ∙ ∆(𝑡 − 3)               (4.1) 

where 𝑃𝐵(𝑡) is the payback load at time step 𝑡, ∆ is the amount of shifted load (in 

MW, for example), and 𝛼, 𝛽 and 𝛾 are the payback coefficients for load shifted from 

the three preceding time steps (three hours). This linear model is adopted for modelling 

the payback of controllable Z loads in this methodology. The approach assumes that all 

the loads disconnected at one time step get gradually re-connected in the following 

three time steps, i.e., 𝛼 + 𝛽 + 𝛾 = 1. It is also assumed that the approximately equal 

shares of the disconnected load are re-connected within the 3 hours after the DSM 

action, as suggested in [206]. Thus, 34% of the disconnected Z loads will be 

reconnected in the first hour, the following 34% in the second hour and the last 32% in 

the third hour after load disconnection.  

In the case of IM loads, it is assumed that the users/aggregators are given the freedom 

to choose when to reconnect the loads, as long as it is during the valley periods (mostly 

night time). During the valley period, the load is lower than the one requested by the 

network operator. Therefore, all the disconnected IMs are reconnected randomly 
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(following a uniform distribution), within the given periods of time and within 24 

hours. A drawback of this generic approach is that IM loads also involve motors 

modelled as QTIM1 loads, i.e., cooling devices. These devices may not be deferrable 

for many hours. For example, it has been reported in [207] that food can only stay safe 

if the fridge has been turned off for up to 4 hours. Different reconnection schemes and 

their effects can be addressed in the future or in more specific case studies considering 

actual implementation of DSM in real networks. In this particular case study though, 

QTIM1 loads do not represent a significant share in total load, which is why their load 

payback is not modelled separately.   

These two payback models account for the end-users’ commodity - they consider the 

usage of IMs as less comfort-constrained, i.e., the end-users are more tolerant to 

postponing the operation of wet appliances than the operation of the heating devices. 

Similar availability of these load types was reported in [54]. It is important to note that 

appropriate communication and control infrastructure are assumed to exist in the 

distribution network, allowing for scheduling of the disconnection and reconnection of 

the load, as described in this section.  

4.3 Methodology 

The aim of DR, i.e., load modulation adopted in this methodology as a balancing 

service provided by the DNO to the TSO [101], is to flatten the daily loading curve of 

the distribution network by shifting some or all of the controllable loads from valley 

periods. Load flattening reduces the need for generator ramping, and the number of 

system balancing actions [54]. Any other predefined shape of the daily loading curve 

could have been equally adopted to illustrate the approach, for example, reducing the 

system peak load. As already mentioned in the introductory chapter, balancing services 

in National Grid are provided by aggregators in a form of reserves, by increasing, 

decreasing or shifting demand [109]. 

DSM in this methodology is planned day ahead, with three objectives, met in three 

consecutive steps: 1) ensuring that the distribution network load follows a predefined 

load profile, taking into account load flexibility and load payback; 2) preservation of 

demand composition; 3) preservation/improvement of the load margin. 
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The first objective is met by applying optimal power flow (OPF) with participation of 

flexible load buses acting as distributed generators with negative output. The algorithm 

takes into account that different buses have different flexibility (controllability) during 

the day, and so the load shift at any bus and time step is limited by the available 

(predicted) load flexibility. The output of this optimisation step informs the operator 

how much of the flexible load should be shifted at each load bus and when, to ensure 

that the set load profile is followed as closely as possible. 

The second objective is to keep the demand composition after DSM as close as possible 

to the one before DSM using linear programming. As previously mentioned, demand 

composition, given as the contribution of individual load components (e.g., induction 

motors, resistive loads, etc.), plays an important part in the dynamic response of 

demand following a disturbance in the network that could ultimately lead to voltage 

and/or angular instability [86]. Maintaining same/similar demand composition after a 

DSM action reduces the possibility of unexpected load behaviour in case of a 

disturbance. The output of this optimisation step therefore informs the operator what 

portion of a particular type of flexible load should be shifted at each bus and when.  

Finally, at the third step, the load margin at each time step (of the 24-hour planning 

horizon) is checked and compared with the one before DSM. If at any time step of the 

planning horizon the load margin after DSM appears to be lower than a pre-specified 

tolerance range around the load margin before the DSM, the load dispatch (shift) is 

corrected at the corresponding time step. In this methodology, for illustration purposes, 

the pre-specified tolerance range is chosen to be 5%, i.e., the new load margin should 

not be lower than 95% of the initial load margin. Other tolerance values can be used 

equally, depending on the criteria chosen by the network operator. Similar approach for 

the load margin tolerance level was reported in [76], where the critical network load 

was 5% lower than the network loading corresponding to the tip of the PV curve 

(maximum network loading). Furthermore, in contingency analysis transmission 

system operators define a minimum loading margin to ensure that the current operating 

point has a minimum distance to the collapse point [208]. For each contingency, the 

system has to ensure a minimum loading margin. If a contingency leads to load margin 

lower than this one, then it is considered critical and requires corrective actions. 

Otherwise, if a contingency is characterised by maximum loading level lower than the 

current operating condition, that contingency is unfeasible. 
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The correction of the voltage stability index (VSI), i.e., the load margin, is applied by 

optimising load values of the controllable load components (Z and IM loads) using 

Particle Swarm Optimisation (PSO). The PSO method was chosen due to its proven 

applicability in economic dispatch [209] and OPF including voltage stability indicators 

[210], as well as higher computational speed over genetic algorithms [211], another 

heuristic optimisation method used in similar problems. 

Figure 4.6 illustrates the main steps of the proposed methodology. Once the loads are 

dispatched at every load bus of the network using OPF calculations (Level 1), load 

margin is assessed (Level 2) by running the PV curve simulations. If voltage stability 

index (VSI) is lower than the threshold, the PSO is used to re-schedule the flexible 

loads within their flexibility boundaries (lower and upper bound, lb and ub, 

respectively) to allow for higher load margin (Level 3). The steps are further detailed in 

the following sections.  

 

Figure 4.6 Flowchart of the methodology  

4.3.1 Optimal power flow 

By flattening the load curve and minimising the load flow through the GSP, the 

distribution network acts as a balancing service provider. The dispatch of flexible 

demand to meet, in an aggregated way, the desired loading curve, can be represented as 

an optimisation problem. The problem is solved as a typical OPF, given by expression 

(4.2), where the cost of generation and load shift is minimised. In this case, the highest 

generation cost is assigned to the GSP, while the flexible loads (acting as DGs with 
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negative output) have the lowest cost in order to ensure that load follows generation. 

The generation cost of the DG only formally participates in cost minimisation, as the 

output of the DG is fixed and serves only to model the target loading curve that 

aggregated flexible loads should adjust to. The cost function of the DG, as well as the 

cost function of the slack bus (which is in OPF equivalent to a generator), are given in 

Table A3 in the Appendix A. It should be noted that the generation cost itself is 

irrelevant, as long as the supply from the GSP is costly enough to allow for demand 

flexibility to be prioritised over the GSP, i.e., the upstream network supply when 

solving the OPF. Generation cost function is quadratic for the GSP, to minimise the 

flow through the slack bus. 

𝑚𝑖𝑛(∑ 𝐶𝑗𝑃𝐺,𝑗
𝑁𝐺
𝑗=1 + ∑ 𝐶𝑗𝑃𝐷𝑖𝑠𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,𝑗

𝑁𝐷
𝑗=1 )                           (4.2) 

 Subject to: 

𝑃𝐺,𝑖 − 𝑃𝐷,𝑖 = 𝑉𝑖 ∑ 𝑉𝑘[𝐺𝑖𝑘 cos 𝜃𝑖𝑘 + 𝐵𝑖𝑘 sin 𝜃𝑖𝑘]
𝑁
𝑘=1                       (4.3) 

𝑄𝐺,𝑖 − 𝑄𝐷,𝑖 = 𝑉𝑖 ∑ 𝑉𝑘[𝐺𝑖𝑘 sin 𝜃𝑖𝑘 − 𝐵𝑖𝑘 cos 𝜃𝑖𝑘]
𝑁
𝑘=1                       (4.4) 

𝑉𝑖
𝑀𝐼𝑁 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑀𝐴𝑋                                            (4.5) 

𝑃𝐷𝑖,𝑡 = 𝑃𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑖,𝑡 − 𝑃𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,𝑖,𝑡 + 𝑃𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,𝑖,𝑡                   (4.6) 

0 ≤ 𝑃𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,𝑖,𝑡 ≤ ∆𝑖,𝑡                                      (4.7) 

(4.3) and (4.4) are power flow equality constraints; (4.5) refers to bus voltage limits; 

(4.6) takes into account that the load value at each bus and each time step depends on 

the size of shifted (disconnected) load (calculated by OPF), and the size of payback (re-

connected) load at that time step; (4.7) presents the flexibility limits of the load, where 

∆ is the amount of flexible load. 

OPF is run in Matpower [212], which allows modelling of flexible loads as generators 

with negative output. The software uses constant power model only. In order to validate 

usage of two types of software, namely Matpower and DIgSILENT/PowerFactory in 

the analyses described in this chapter, comparison of power flow results obtained with 

them is given in the Appendix A. For comparison purposes, load flow in 

DIgSILENT/PowerFactory was run using the constant power load model. 
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4.3.2 Preservation of demand composition 

In this step, demand composition, i.e., the shares of the four load components of the 

composite load model (ZIP+IM) at every bus, is kept as close as possible to the one 

before DSM. This will ensure that the demand at GSP will also have similar 

composition before and after DSM, at the given season and time of the day, hence 

similar dynamic response following network disturbance. This is achieved by 

maximising the sum of shares of shifted (disconnected) IM loads (PIM𝐷𝑖𝑠.) and Z loads 

(PZ𝐷𝑖𝑠.), as shown by (4.8), while at the same time constraining these shares to ensure 

that demand composition is preserved. The constraints are given by (4.9) which 

preserves the ratio of controllable loads, defined by ∆𝑍 and ∆𝐼𝑀, before (left hand side 

of the equation) and after DSM (right hand side), and by (4.10) which keeps the 

disconnected loads within corresponding flexibility limits. 𝑃𝐼𝑀𝐶𝑜𝑛. and 𝑃𝑍𝐶𝑜𝑛. in (4.9) 

are payback (reconnected) IM and Z load, respectively, at the corresponding load bus 

and time step. (4.11) limits the sum of the disconnected shares by the total disconnected 

load calculated at the first optimisation level, i.e., the maximum disconnected load 

cannot exceed the value determined by OPF.  

𝑚𝑎𝑥(PZ𝐷𝑖𝑠. + P
IM
𝐷𝑖𝑠.)                                       (4.8) 

Subject to: 

∆𝐼𝑀

∆𝑍
=

∆𝐼𝑀−𝑃𝐼𝑀𝐷𝑖𝑠.+𝑃
𝐼𝑀

𝐶𝑜𝑛.

∆𝑍−𝑃𝑍𝐷𝑖𝑠.+𝑃
𝑍
𝐶𝑜𝑛.

                                       (4.9) 

0 ≤ 𝑃𝑍𝐷𝑖𝑠. ≤ ∆𝑍 ;  0 ≤ 𝑃𝐼𝑀𝐷𝑖𝑠. ≤ ∆𝐼𝑀                            (4.10) 

PZ𝐷𝑖𝑠. + P
IM
𝐷𝑖𝑠. ≤ 𝑃𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑                             (4.11) 

This optimisation step is performed in Matlab. If the OPF tool could incorporate the 

composite load model, levels 1 and 2 of the optimisation could be merged and solved 

together in Matpower, although this process would not be trivial from the modelling 

perspective. Therefore, due to the practical limitations of the software in use, two-level 

optimisation is used to solve OPF and optimal load composition problem. 
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4.3.3 Particle swarm optimisation 

PSO belongs to the group of heuristic optimisation methods, along with genetic 

algorithms and evolutionary algorithms [213]. These methods start from a random 

choice in the search space and, based on the evaluation of the objective function at 

every iteration, gradually move the position of the result vector to the optimal one. In 

the PSO method, a swarm (population) of candidate solutions (particles) is generated in 

the first iteration, and the positions of particles are updated in the following iterations 

based on the values of the objective function. The basic PSO algorithm consists of three 

steps: generating positions and velocities of the particles, velocity update, and position 

update [211]. The initial positions and velocities are allocated randomly, from the 

search space, and the velocities are updated in the following iteration based on the 

values of the fitness function of the particles within a swarm. The velocity update 

(Vi
t+1) uses information about the particle with the best global value in the current 

swarm (the so called local best – 𝑃𝑖𝑏𝑒𝑠𝑡
𝑡 ), and the best position of any particle over time 

(the so called global best solution – 𝐺𝑏𝑒𝑠𝑡
𝑡 ). Finally, the particle position is updated 

based on the velocity update. The position of the i-th component of the particle vector X 

(𝑋𝑖
𝑡+1) is updated based on the previous time step 𝑡, and following (4.12) and (4.13): 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1                                            (4.12) 

𝑉𝑖
𝑡+1 = 𝑐1𝑉𝑖

𝑡 + 𝑐2𝑟𝑎𝑛𝑑(0,1)(𝑃𝑖𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) + 𝑐3𝑟𝑎𝑛𝑑(0,1)(𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡)       (4.13) 

where 𝑐1, 𝑐2 and 𝑐3 are acceleration constants, defining the linear attraction towards the 

direction of the particle. Coefficient 𝑐1 defines the tendency of the particle to continue 

in the same direction, while 𝑐2 and 𝑐3 define attraction towards the local best (found by 

the given particle at any iteration) and global best solution (found by any particle at any 

iteration), respectively [214]. The first coefficient should not be too large or too small, 

to prevent slow or premature convergence, respectively. The extensive studies reported 

in [215] showed that the optimal value for 𝑐1 is 0.7 or 0.8, while the value for 𝑐2 and 𝑐3 

is between 1.5 and 1.7. 

4.3.4 Load margin – based PSO algorithm  

The PSO algorithm is used to reschedule the controllable load shift every time the load 

margin after DSM is estimated to be lower than 95% of the load margin before DSM. 

As already mentioned in Section 1.5.2.4.1, load margin reflects the distance of the 

current operating point of the system to the maximum loading point, and is commonly 
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determined from the active load–voltage characteristic (the PV curve), as shown in 

Figure 1.4. Keeping the load margin as large as possible ensures that the system is able 

to withstand increase in demand or disturbances without endangering its voltage 

stability. In order to ensure that the load margin is maintained, the aim of the PSO 

algorithm is to minimise the objective function (4.14) subject to (4.10), where 𝑉𝑆𝐼𝑟𝑒𝑓 is 

the load margin prior to the DSM action, and 𝑉𝑆𝐼 is the load margin after rescheduling 

the demand shift of IM and controllable Z loads.  

𝑚𝑖𝑛 (
𝑉𝑆𝐼𝑟𝑒𝑓

𝑉𝑆𝐼
)                                                       (4.14) 

The PSO algorithm is applied in Matlab, with the swarm size (number of particles) set 

to 100. Matlab default values for acceleration constants of 0.1 ≤ 𝑐1 ≤ 1.1, and 

𝑐2 = 𝑐3 = 1.5 are used. Even though [215] recommended a fixed value of 0.7 or 0.8 for 

𝑐1, the PSO algorithm in Matlab uses adaptive value from the given range (0.1 ≤ 𝑐1 ≤

1.1) during the iterations. Additional simulations were run to compare these two 

approaches, and the results showed that fixed value (0.7 was used in this case) in some 

cases reduces the simulation time (around 15 minutes instead of around 22 minutes 

when using adaptive 𝑐1), however it results in notably higher cost function (lower 

values of the load margin) in some time steps. In other cases, fixed value of 𝑐1 results 

in slightly lower cost function (higher values of the load margin) than with adaptive 

value, but increases simulation time from 19 to 23 minutes. Therefore, the adaptive 

value of 𝑐1 was used eventually. The cost function of the applied PSO algorithm 

converged to a fixed value on average after 13 iterations, hence this number was chosen 

as the maximum number of iterations in order to reduce the computational time. This 

number was obtained by observing the convergence process (an example is shown in 

Figure 4.7). The simulations were run with a larger number of iterations and the cost 

function value was recorded at every iteration. Once this value stabilised over a number 

of iterations, the required number of iterations was fixed. It takes up to around 22 

minutes for the overall algorithm to run (for 24 hour planning horizon, i.e., 48 time 

steps), including the PSO simulations with 13 iterations, on a PC with the 64-bit 

operating system and 3.40 GHz processor. There is certainly a scope for reducing the 

computational time, however, this is not affecting the implementation of the proposed 
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methodology, hence it was not deemed necessary to be considered as a part of this 

stage of the research.  

The stopping criterion of the iterative process is determined by either the maximum 

number of iterations (13 in this case) being reached, or when the cost function reaches a 

limit value equal to 1 (i.e., the new load margin is equal to the one before DSM). 

Therefore, the aim of the optimisation is not necessarily to maximise the load margin, 

but to keep it unchanged after the DSM action. The man reason for this is reduction of 

computational time. It should be noted that the minimum cost function of the PSO 

algorithm is not obtained when all resources of one or both controllable load types are 

disconnected, but rather when a certain combination of the two, determined by the 

algorithm, is reached. 

 

Figure 4.7 Cost function evolution over 20 iterations  

Further illustration of the methodology is given in Figure 4.8 to clarify the steps of the 

PSO algorithm, and distinguish between parts of the methodology realised using 

different pieces of software (Matlab, Matpower or DIgSILENT/PowerFactory). As 

already mentioned, OPF is run in Matpower, resulting in real and reactive load values 

at each load bus (𝑃𝑙𝑜𝑎𝑑 and 𝑄𝑙𝑜𝑎𝑑). Optimisation of demand composition is then 

performed in Matlab, resulting in optimal demand values of controllable load groups, 

namely IM loads and controllable Z loads (PIM and PZ in Figure 4.8). In the next step, 

PV curve simulations are run in DIgSILENT/PowerFactory, using the composite load 

model with PIM and PZ values. If the obtained load margin is lower than the threshold, 

PSO algorithm is applied, starting with initialisation of 𝑁 = 100 particles in the 

swarm. Each particle is a vector containing relevant demand values of IM and 

controllable Z loads at all the load buses in the network (32 of them), assigned 

randomly by the algorithm, respecting the load flexibility limits at each load bus, as 

given by (4.10). The cost function of the PSO algorithm (given by (4.14)) is calculated 

based on the outputs of the PV simulations performed in DIgSILENT/PowerFactory for 
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every particle in the swarm. The iterative process updates the swarm following (4.12-

4.13) until the stopping criterion is met. Finally, based on the new optimal values of 

PIM and PZ, load values are updated (together with the load payback in the upcoming 

time steps following the resulting load shift in the current time step) and the overall 

process moves to the next time step of the planning horizon. 

 

Figure 4.8 Flowchart of the methodology with detailed steps of the PSO algorithm 

As the overall algorithm relies on network simulations run on two types of software, 

namely DIgSILENT/PowerFactory and Matpower, validation of the IEEE 33-bus 

distribution network model (the original model already exists in Matpower) in 

DIgSILENT/PowerFactory was performed by running a power flow on the network 

model with loads modelled as constant power. The results were identical to the results 

of power flow in Matpower, which validated the network model (see Table A4 and 

Figure A1 in Appendix A). This proved the validity of transferring results from one 

software environment to the other. 
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4.4 Case studies 

The test network used in this study is a slightly modified IEEE 33-bus distribution 

network shown in Figure 4.9. The network has one GSP, modelled as a slack bus, and 

one DG (network parameters are given in Appendix A). It represents a distribution 

network in two possible operating scenarios: 

1) Distribution network (DN) providing ancillary services to the transmission 

network by reducing the need for balancing operations (by keeping the load 

at GSP as flat as possible, or as requested by the TSO);  

2) Close to self-sufficient DN, relying on power generated by its distributed 

generation, and adjusting its flexible load to locally generated power. 

These two scenarios will be analysed in the case studies to follow. The DG has a 

constant output, and the loads are dispatched in order to follow the available generation 

and minimise the flow through the slack bus. The two aforementioned network 

operating scenarios can be presented using this DG: i) if the network operates as a 

distribution network providing ancillary services to the TSO, the DG simulates the 

arbitrary load profile set/requested by the TSO; ii) if the DN operates as a self-

sufficient network, it minimises its dependency on the rest of the upstream network by 

controlling flexible loads to follow the available generation from the DG. In both 

scenarios, only load flexibility is harnessed, and no changes in DG output are made. 

 

Figure 4.9 Modified IEEE 33-bus network 

The network model is slightly modified compared to the original one: the added line 

2-34 has the same impedance as line 1-2, while line 34-19 has the same impedance as 

line 19-20. All the load buses (32 of them) in the network are considered as 

controllable, however each load bus has different load composition and hence different 

controllability during the day. Each flexible load bus in the network model represents a 
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secondary substation supplying 50 residential end-users. The default load values for the 

network buses (real and reactive power in the IEEE model, as given in Appendix A) are 

taken as the maximum daily values. The assigned (normalised) daily load curves and 

demand composition are generated using the CREST load model, as detailed in Section 

3.5.1. The generated load curves for individual users were aggregated to 50 end-users 

at each load bus. For simplification, power factor (PF) is taken to be the same for all 

IMs and equal to 0.8 (which was the average value of the PF for the observed Pecan 

street dataset [24] described in Section 3.5.2). Since the uncontrollable loads do not get 

shifted, the only PF change in the total load will come from shifting IMs and 

controllable Z loads (which are considered to have unity PF). As the typical 

consumption of residential IMs ranges between several hundreds and several thousands 

of Watts [216], it is adopted, for simplicity reasons, that each IM connected to the load 

bus in DIgSILENT/PowerFactory has the load of 1 kW. This is required as the change 

in consumption of the IMs in DIgSILENT/PowerFactory is modelled by changing the 

number of motors (each having a constant load of 1 kW) connected in parallel at a load 

bus. Higher granularity than this one was deemed unnecessary.  

It should be noted that DSM results in the following subsections are presented over a 

time period of 24 hours or 36 hours (ending at noon of the following day instead of 

midnight of the initial day) in order to illustrate clearly the effect of the load payback 

(which often happens during the low load period of the day following a day with load 

shift) on the outcome of the DSM program.  

4.4.1 Operating scenario 1: Demand profiling based on external request (i.e., 

distribution network providing balancing service) 

The proposed DSM methodology is demonstrated on a set of seven case studies, listed 

in Table 4.2. In each case the effectiveness of load shaping is evaluated with peak to 

average ratio (PAR) [54] – the closer this ratio is to 1, the more successful load shaping 

(flattening) is. In addition, distribution network losses were observed before and after 

the DSM action, to evaluate the extent to which load shaping contributes to their 

reduction, as losses represent a significant share in the overall operational costs of a 

DNO, affecting greenhouse gasses emission and generator capacity requirements [98]. 

In the case study A, a subcase with preserved composition (case A.1) was compared to 
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the cases when composition is not preserved, but either IM (case A.2) or Z (case A.3) 

loads are prioritised (disconnected first) to meet the desired load shift. If all the 

resources of one flexible load type are used up in cases A.2 and A.3, and they still do 

not meet the demand reduction requirement, the appropriate amount of the other load 

type is then disconnected. In some time steps this may lead to disconnection of all the 

flexible loads (both prioritised and the other). 

Table 4.2 Case studies 

Case study Subcases 

A. Base case (3 MW peak load) 

A.1 Preserved composition 

A.2 Prioritisation of IM loads 

A.3 Prioritisation of Z loads 

B. Case with limited acceptability B.1 Preserved composition 

C. Overloaded system C.1 Preserved composition 

D. Critically loaded system D.1 Preserved composition 

E. Neglected DSM constraints E.1 Constant power model 

Case B observes a scenario where different load buses show different shares of 

customers which accept to participate in the DR program. Therefore, it is assumed that 

different buses have, randomly, 20%, 50% or 80% acceptability level, which reduces 

the DSM potential. Case studies C and D illustrate operating scenarios of overloaded 

and critically loaded systems, respectively. Based on the approach reported in [217], 

the power transformer is overloaded if the loading is between 1.25 and 1.5 times higher 

than its rated loading (kVA). Therefore, it was assumed that the network loading is 1.5 

times higher than the rating of the transformer at GSP (the transformer is not 

represented in the network model in Figure 4.9). It can be assumed that the transformer 

rating is calculated as follows: 

𝑅 = 𝑃𝑚𝑎𝑥 + 𝑎 ∙ 𝑆                                          (4.15) 

where 𝑃𝑚𝑎𝑥 is the peak network loading, 𝑆 is the standard deviation (adopted to be 

25%), and 𝑎 = 1.28 is a coefficient corresponding to the 90% confidence level, 

adopted from the Gaussian probability table [217]. The peak network loading, given in 

this methodology as the nominal load of the test network, is 3.715 MW. Therefore, the 

transformer rating is 3.715 + 1.28 ∗ 0.25 ∗ 3.715 ≈ 7.43 𝑘𝑉𝐴. The base case load 

(case study A.1) is thus multiplied by factor equal to 1.5 ∙ (1 + 1.28 ∙ 0.25) ≈ 2. 

Critically loaded system (case D) is simulated by multiplying the base case load by 

factor 4.  



Multi-objective Demand Side Management at Distribution Network Level | 189 

 

 

 

Finally, case study E illustrates how different the DSM outcome is when the load is 

modelled as constant power (one of the most frequently used load models [48]), and 

limitations such as load payback and load margin are neglected. 

4.4.1.1 A.1 Base case with preserved composition  

Figure 4.10 illustrates the network loading curve over the 24-hour planning horizon (48 

time steps) before and after the DSM. It can be seen that the resulting loading curve 

(solid black line) is in some time steps changed due to the activation of the PSO 

algorithm, triggered when there was a need to improve the load margin (Figure 4.11). 

As seen in Figure 4.11, the PSO algorithm successfully improves the load margin at the 

corresponding time steps, marked with circles, keeping it above the 95% limit. Even 

though the original load flexibility limit (equal to the sum of controllable loads, 

reflecting how “far down” load reduction can go), shown with violet dashed line in 

Figure 4.10, allowed for larger load decrease, load payback (green dashed line) 

prevented the resulting loading curve after DSM from flattening, i.e., from larger peak 

reduction. Finally, demand composition before and after DSM is shown in Figure 4.12. 

It can be seen that it is preserved to a large extent except during low load (valley) 

period, where the share of IM load increased due to scheduled load payback.  

 

Figure 4.10 Network loading for case A.1 

 

Figure 4.11 Load margin for case A.1 
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Figure 4.12 Demand composition before DSM (top) and after (bottom) for case A.1 

4.4.1.2 Comparison of Case A.1 with A.2 and A.3 

Figure 4.13 demonstrates how different approaches in the choice of disconnected load 

components can change the resulting loading curve. In these two cases the peak 

reduction is higher compared to case A.1 (which can also be seen from the peak to 

average ratio (PAR) reported in Table 4.3), however DSM action deteriorates the load 

margin in more time steps, which requires corrective actions (PSO algorithm), as 

shown in Figure 4.14, where some of these steps are marked with circles.  

Table 4.3 Effectiveness of DSM in cases A.1-A.3 

Subcase 

Peak to average 

ratio (PAR) 

before/after DSM 

Average daily losses/ Daily 

percentage losses before DSM 

Average daily losses/ Daily 

percentage losses after DSM 

A.1 1.66/ 1.51 

0.046 MW/ 2.4% 

0.043 MW/ 2.3% 

A.2 1.66/ 1.44 0.039 MW/ 2.2% 

A.3 1.66/ 1.40 0.040 MW/ 2.2% 

Before DSM, maximum daily losses were 110 kW, while in the case of preserved 

composition they were 94 kW (reduced by 14%), and in case of prioritized IM or Z 

loads the maximum losses were 74 kW (reduced by 33%). Average daily losses and the 

percentage losses for the three compared subcases are given in Table 4.3. Average daily 

losses (𝑃𝑙𝑜𝑠𝑠
𝑎𝑣𝑔

) and percentage losses (𝑃𝑙𝑜𝑠𝑠
𝑝𝑒𝑟

) are calculated using (4.16-4.17), where 𝑛 is 

the number of time steps, 𝑃𝐺,𝑖 and 𝑃𝐿,𝑖 are network generation and network load at time 

step 𝑖, respectively, and 𝑃𝐺𝑆𝑃,𝑖 is the power injected through the GSP. It should be 

noted that losses are calculated as the power at each time step (referring to a 30-minute 

period) instead of the energy. 

𝑃𝑙𝑜𝑠𝑠
𝑎𝑣𝑔

=
1

𝑛
∑ (𝑃𝐺,𝑖 + 𝑃𝐺𝑆𝑃,𝑖 − 𝑃𝐿,𝑖)
𝑛
𝑖=1                             (4.16) 



Multi-objective Demand Side Management at Distribution Network Level | 191 

 

 

 

𝑃𝑙𝑜𝑠𝑠
𝑝𝑒𝑟 = 100 ∙

∑ (𝑃𝐺,𝑖+𝑃𝐺𝑆𝑃,𝑖−𝑃𝐿,𝑖)
𝑛
𝑖=1

∑ (𝑃𝐺,𝑖+𝑃𝐺𝑆𝑃,𝑖)
𝑛
𝑖=1

                              (4.17) 

Figure 4.15 illustrates the shares of controllable loads within the total daily load 

(in p.u.) before and after DSM for cases A.1-A.3. Due to the limited flexibility of Z and 

IM loads, load payback and load changes after PSO, the initial composition is not 

maintained in all the time steps of case A.1. Cases A.2 and A.3 result in different shares 

of IM loads during the day, while the shares of Z loads are very similar to case A.1 – 

mainly due to the similar amount of total shifted Z loads and the corresponding Z load 

payback in all three cases. As described in Section 4.2.2, the Z load payback happens in 

the three hours following a load disconnection, which may result in large shares of Z 

loads during the day in spite of the load disconnection during peak load times. For 

illustration purposes, Figure 4.16 shows demand composition before and after DSM for 

case A.2.  

 

Figure 4.13 Network loading for cases A.1-A.3 

 

Figure 4.14 Load margin for cases A.1-A.3 
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Figure 4.15 Shares of controllable demand for cases A.1-A.3 

 

Figure 4.16 Demand composition before and after DSM for case A.2 

4.4.1.3 B.1 Case with limited acceptability 

Due to the limited acceptability of DSM by the end users, and consequently reduced 

load controllability, the loading curve after DSM could not be as flattened as in the 

previous three cases (Figure 4.17). Due to the reduced controllability, flexibility limit 

(violet line in the figure) is higher than in previous cases (Figure 4.10). As seen in 

Figure 4.18, both peak reduction and valley filling were limited due to limited 

acceptability of the end-users. Since the load was less modified, the load margin was 

not deteriorated at any time step (Figure 4.19). The effect of DSM on the peak to 

average ratio and network losses is shown in Table 4.4. 
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Figure 4.17 Network loading for case B.1 

 

Figure 4.18 Network loading before and after DSM for cases A.1 and B.1 

 

Figure 4.19 Load margin for case B1 

Table 4.4 Effectiveness of DSM in case B.1 

Subcase 

Peak to average 

ratio (PAR) 

before/after DSM 

Average daily losses/ Daily 

percentage losses before DSM 

Average daily losses/ Daily 

percentage losses after DSM 

B.1 1.66/ 1.60 0.046 MW/ 2.4% 0.046 MW/ 2.4% 

4.4.1.4 C.1 and D.1 Overloaded system and critically loaded system  

The DSM effectiveness in these two cases is shown in Table 4.5. It can be seen that the 

load shaping was not as successfully performed as before, due to the increased load 

payback, especially after the PSO algorithm, when larger amounts of load were reduced 

to preserve the load margin (Figure 4.20 and Figure 4.22).  
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Due to the increased loading in these two cases, the load margin is violated in more 

time steps following a DSM action, especially in the second half of the day (see Figure 

4.21 and Figure 4.23), which is why PSO algorithm is run more often. It can also be 

seen that the minimum load margin before DSM is around 12 MW in overloaded case 

(Figure 4.21), and 5 MW in critically loaded system (Figure 4.23). In the base case 

minimum load margin is around 16 MW (Figure 4.11), i.e., 30% higher than in the 

overloaded case, and more than 3 times higher than in the critically loaded case. 

Table 4.5 Effectiveness of DSM in cases C.1 and D.1 

Subcase 

Peak to average 

ratio (PAR) 

before/after DSM 

Average daily losses/ Daily 

percentage losses before DSM 

Average daily losses/ Daily 

percentage losses after DSM 

C.1 1.66/ 1.59 0.186 MW/ 5.0% 0.159 MW/ 4.5% 

D.1 1.66/ 1.65 0.790 MW/ 10.4% 0.626 MW/ 9.4% 

Although the network losses after the DSM were still high in cases C.1 and D.1 (as 

seen in Table 4.5), the DSM program reduced the network losses significantly. Apart 

from the values given in Table 4.5, cumulative daily losses (given as energy in MWh) 

were analysed: these losses were reduced from 4.56 MWh to 3.9 MWh (14 % 

reduction) in the overloaded system. In the case of critically loaded system, the 

reduction of cumulative daily losses after DSM was even more pronounced - from 

19.34 MWh to 15.35 MWh (21% reduction). 

 

Figure 4.20 Network loading for case C.1 

 

Figure 4.21 Load margin for case C.1 
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Figure 4.22 Network loading for case D.1 

 

Figure 4.23 Load margin for case D.1 

4.4.1.5 E.1 Neglected DSM constraints  

Figure 4.24 presents the resulting load curve if DSM is performed with constant power 

load model instead of the composite load model (constant power model is commonly 

used in voltage stability analysis), and with neglected load payback and load margin. 

Since there is no load payback, the loading curve is not increased during valley periods. 

During peak (afternoon) hours all the load flexibility is harnessed, as seen in 

overlapped loading curve (thick black line) after DSM and flexibility limit curve 

(dashed violet line). Even though the peak load is successfully reduced, the load margin 

after DSM is deteriorated in some time steps, as seen in Figure 4.25, marked with 

circles. It should be noted that in a network larger than this one, the effect of neglecting 

intrinsic limitations of demand shift will be even more significant.  

Finally, Figure 4.26 illustrates the resulting loading curve in cases A.1 and E.1, 

showing more successful curve flattening in case E.1. Figure 4.27 shows how 

“optimistic” the load reduction is when the aforementioned constraints are neglected 

compared to the base case (A.1), which is accounting for these constraints (namely 

composite load model, load payback and load margin). In both cases the changes are 
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calculated using the same base load before DSM. During the peak load period (between 

2 pm and midnight), the load reduction in most steps of case A.1 ranges between 5 and 

15%, while in case E.1 the reduction is almost constantly above 30%. This shows that 

the expectations in load reduction may be two times higher when realistic constraints 

are not taken into account. Similarly, during the valley period (between midnight and 8 

am), where case E.1 neglects the load payback (thus there is no change in demand), the 

load increase in case A.1 due to load payback reaches almost 60%. Even though this 

happens during the valley period in the given example, the demand increase is 

significant and shows the importance of load payback modelling in DSM studies. The 

effectiveness of DSM with respect to PAR and network losses is given in Table 4.6. 

 

Figure 4.24 Network loading in case E.1 

 

Figure 4.25 Load margin in case E.1 

 

Figure 4.26 Network loading in cases A.1 and E.1 
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Figure 4.27 Load change after DSM in cases A.1 and E.1 

Table 4.6 Effectiveness of DSM in case E.1 

Subcase 

Peak to average 

ratio (PAR) 

before/after DSM 

Average daily losses/ Daily 

percentage losses before DSM 

Average daily losses/ Daily 

percentage losses after DSM 

E.1 1.66/ 1.33 0.053 MW/ 2.8% 0.041 MW/ 2.5% 

4.4.1.6 Discussion 

Figure 4.28 illustrates the absolute change in load margin before and after DSM for 

cases A.1, C.1 and D.1, where the positive values imply improvement and negative 

ones deterioration of the load margin. The load margin improvement (increase) is seen 

in most time steps, especially for overloaded and critically loaded system. Relative 

change in load margin, shown in Figure 4.29, reveals that with higher loading of the 

network (case D.1 in particular), the contribution of the DSM to load margin 

improvement is higher. While the relative improvement in cases A.1 and C.1 is up to 

20% (compared to the load margin before DSM program), DSM in case D.1 results in 

improvement of up to 70% (during peak load hours).  

 

Figure 4.28 Difference in load margin (after DSM+PSO) 
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Figure 4.29 Relative difference in load margin 

The results have shown that realistic constraints imposed by limited load flexibility 

(including limited willingness of the end-users to participate in DSM), load payback, 

and preservation of demand composition and loadability of the network affect the 

extent to which load curve can be modulated. As seen in Table 4.7 summarising all 

aforementioned cases, the smallest PAR, i.e., the most successful flattening of loading 

curve is possible only when these constraints and the composite load model are 

neglected (case E.1).  

Reduction of network losses in the studies with base case load is also highest in case 

E.1, while among cases A.1-A.3 they are only slightly reduced on a daily basis. When 

the system is overloaded, as illustrated by cases C.1 and D.1, load shaping is limited 

due to larger load payback following demand shift, though reduction of losses is more 

notable in these case studies. This is confirmed by the results presented in Table 4.8, 

where relative improvement of PAR and network losses for the system with base load 

(case A.1) and overloaded system (cases C.1 and D.1) are shown. As already 

mentioned, PAR improvement is higher with base case load, while the network losses 

reduction is more significant in overloaded systems, reaching around 21% reduction of 

average daily losses in case D.1. 

Table 4.7 Effectiveness of DSM in all cases 

Subcase 

Peak to average 

ratio (PAR) 

before/after DSM 

Average daily losses/ Daily 

percentage losses before DSM 

Average daily losses/ Daily 

percentage losses after DSM 

A.1 1.66/ 1.51 

0.046 MW/ 2.4% 

0.043 MW/ 2.3% 

A.2 1.66/ 1.44 0.039 MW/ 2.2% 

A.3 1.66/ 1.40 0.040 MW/ 2.2% 

B.1 1.66/ 1.60 0.046 MW/ 2.4% 

C.1 1.66/ 1.59 0.186 MW/ 5.0% 0.159 MW/ 4.5% 

D.1 1.66/ 1.65 0.790 MW/ 10.4% 0.626 MW/ 9.4% 

E.1 1.66/ 1.33 0.053 MW/ 2.8% 0.041 MW/ 2.5% 
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Table 4.8 Relative improvement of peak to average ratio and network losses in cases A.1, C.1 and D.1 

Subcase 
Reduction of peak to 

average ratio (%) 

Reduction of average 

daily losses (%) 

Reduction of daily 

percentage losses (%) 

A.1 9.0 6.5 4.2 

C.1 4.2 14.5 10.0 

D.1 0.6 20.8 9.6 

4.4.2 Operating scenario 2: Load follow generation for isolated distribution 

network or microgrid 

This scenario aims at illustrating possible DSM effects when different types of 

distribution load (namely controllable Z and IM loads) are scheduled with the objective 

to follow available local renewable generation. In this case demand composition is not 

preserved in order to observe the influence of shifting either Z or IM loads. The same 

distribution network model as in scenario 1 is used, with the only difference that the 

equivalent DG represents a solar power plant. The DG output in this case is the output 

of a solar plant reported in [218]. It is assumed that accurate information about 

available renewable generation is known day-ahead, as well as the load forecast and its 

composition. This allows load scheduling over a 24-hour planning horizon. The 

scheduling is obtained by running an OPF in Matpower [212], as defined in Section 

4.3.1, with the main objective to follow the available renewable generation curve. 

Two case studies are examined in this scenario. The first one observes base case 

loading of the network with peak daily loading of about 3 MW. In the second case 

study the load is scaled by factor 2 in order to illustrate overloaded operating conditions 

when the distribution system has a high penetration of electric vehicles (EVs), for 

example. It was reported in [14] that the penetration of EVs may double the distribution 

load, primarily at peak load hours. Load is therefore scaled only during the peak hours 

(between 3 pm and 12 am) in this case.  

In the first case study three DSM approaches are taken (Table 4.9): i) IM loads are 

prioritised when shifting demand; ii) Controllable Z demand is prioritised; iii) 

Controllable Z demand is prioritised, but the payback load is scheduled in the same 

way as for IM loads (i.e., by scheduling load reconnection during the valley periods, as 

described in Section 4.2.2). The second case study only observes the DSM program 

with prioritisation of Z loads, to illustrate how future loading conditions may affect 
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network performance. The main parameters analysed in the studies are the total 

network loading, loadability margin, network losses, and the slack bus flow before and 

after the DSM program. Although the methodology observes 24 hour planning horizon, 

some results are shown over a 36-hour period in order to demonstrate longer-term 

effects. 

Table 4.9 Case studies 

Case Study Subcase 

Base case load 

(i) Prioritise IM in DSM 

(ii) Prioritise Z in DSM 

(iii) Prioritise Z in DSM with different payback load policy 

Overloaded system Prioritise Z in DSM 

4.4.2.1 Case 1: Base case load 

i) and ii) Prioritization of Z or IM loads 

Figure 4.30 represents network loading before and after DSM, as well as the DG 

output. The results obtained from the two approaches are almost the same. As seen 

from the figure, the loading curve follows the available generation, but its ability to do 

so is constrained by both, limited controllability and the payback load. An interesting 

observation is that during the initial load shifting period, i.e., between midnight and 

4am of the first day, the load margin is lower than it was before DSM (Figure 4.31), 

while between 5am and 10am of the first day, when the load is reconnected, the load 

margin is increased. In other times of load shift and during the same period of the 

following day the load margin is typically slightly improved (increased). This 

“anomaly” during the initial 2-3 hours (observable in other plots as well) can be 

explained by the fact that there was no “history of DSM actions” at the outset of 

simulations, i.e., no payback load during the first several hours.  

 

Figure 4.30 Network loading for case 1 (i) and (ii) 
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Figure 4.31 Load margin for case 1 (i) and (ii) 

Losses (shown in Figure 4.32) are decreased across the whole DSM period, except 

between 5 and 10 am when a portion of load is being reconnected and the total load 

increased. Finally, the dependence of the distribution network on the upstream network 

is mainly reduced (reduced power import), particularly during load curtailment hours, 

as seen in Figure 4.33.  

 

Figure 4.32 Network losses for case 1 (i) and (ii) 

 

Figure 4.33 Slack bus flow for case 1 (i) and (ii) 

Finally, Figure 4.34 illustrates the change in demand composition (shares of different 

load components in per unit of the total load in each time step) due to DSM. Clear 
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reduction of controllable IM load component can be seen during the peak load hours, 

while controllable Z load does not change much due to the load payback. 

 

Figure 4.34 Demand composition before DSM (top) and after (bottom) 

iii) Prioritization of Z loads with rescheduled payback  

As seen in the base case (Figure 4.30-Figure 4.33), the results with both DSM 

approaches are fairly similar. The reason for this is the payback scheduling program for 

the Z loads, as described in Section 4.2.2. Figure 4.35 illustrates how the Z load 

payback follows the shift (disconnection) of Z loads in the base (original) case. It can 

be seen that the payback load only “shifts” the disconnected load, which means that the 

overall Z demand is not visibly changed, only slightly shifted in time. On the other 

hand, if the payback is rescheduled in the same way as the IM load (the process is 

described in Section 4.2.2), the Z load decrease is more prominent and better 

distributed during the day. This approach effectively fills the valleys of the loading 

curve and enables more load curtailment during the hours when it is required (e.g., 

between 8pm and 4am of the following day), as seen in Figure 4.36. The variation in 

load margin, however, is more pronounced in this case compared to base load, in 

particular during the reduced loading period (Figure 4.37), as the reduction in Z loads, 

which are beneficial for loadability, is not followed by load payback. Finally, both the 

reduction of losses during the period between 4pm and 12am (Figure 4.38), and the 

slack bus flow (i.e., dependence on the upstream network shown in Figure 4.39) are 

reduced with more success than using the original payback scheduling program for the 

Z loads. 
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Figure 4.35 Shifted Z load and load payback 

 

Figure 4.36 Network loading for case 1 (iii) 

 

Figure 4.37 Load margin for case 1 (iii) 

 

Figure 4.38 Network losses for case 1 (iii) 
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Figure 4.39 Slack bus flow for case 1 (iii) 

4.4.2.2 Case 2: Overloaded system  

In the case study with overloaded system, i.e., demand scaled by 2 during peak hours, 

the available DG cannot cover the substantial load increase during the peak hours, as 

seen in Figure 4.40, hence the balance needs to be provided by the external system. The 

load margin (see Figure 4.41) is notably improved (except during 8 am-12 pm, when 

the load was increased due to the payback load) in this case following the DSM, and in 

particular during the peak load hours when the improvement is significantly higher than 

in the case of base load (Figure 4.31). This improvement was expected as the originally 

more loaded distribution network, importing additional power from the external grid, is 

effectively de-loaded by the DSM action. The DSM in this case has also more 

prominent effect on the system losses (Figure 4.42) as they are reduced more in this 

than in the previous case following the DSM. As far as the import from the external 

grid is concerned, it can be seen (Figure 4.43) that the slack bus flow is also reduced 

more compared to the base case load, which further validates the effectiveness of the 

DSM program. 

 

Figure 4.40 Network loading for case 2 
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Figure 4.41 Load margin for case 2 

 

Figure 4.42 Network losses for case 2 

 

Figure 4.43 Slack bus flow for case 2 

4.4.2.3 Discussion 

The importance and the influence of the load reconnection on network performance 

following the DSM have been clearly illustrated in the previous section. Furthermore, 

depending on the type of load participating in DSM (in this case, ether induction 

motors or constant impedance loads), the load flows and voltage drops will change 

across the network, during both load disconnection and reconnection periods. This 

change in demand composition effectively, may be unexpected in some time steps of 

the planning horizon, which is why a detailed analysis of different DSM scenarios 
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should be performed prior to triggering a DSM action. Information about the 

composition of demand, i.e., the shares of different static and dynamic load 

components is essential for the accuracy of these analyses. As shown on the example of 

prioritized Z loads with rescheduled payback, even though the target demand is met 

more successfully, load margin is deteriorated compared to case with linear load 

payback. Therefore, any wide-scale DSM action should be made only after analysing 

possible effects that the change in load magnitude and consequently load composition 

at different load buses can cause in the network.  

The analysis compared cases with base case load, and those with larger load, 

illustrating future scenarios with high penetration of large residential loads (e.g., 

electric vehicles and heat pumps). The effects illustrated in this section are based on the 

study performed using a relatively small distribution network. The consequences and 

the effectiveness of DSM programs that could arise at a larger, transmission network 

level (including more distribution networks or large loads connected at the transmission 

level) could be even more important and should be carefully studied in the future for 

the overall power system and its stability. 

4.5 Summary 

This chapter presented a comprehensive methodology for optimal scheduling of 

distribution network loads in support of transmission network operation. The main 

objective of the proposed DSM program is the load profile shaping, as a balancing 

service to be offered to TSO while maintaining the load composition and one or more 

network performance indicators (the distribution network loadability in this case) to 

values they had prior to the DSM action, or within a pre-specified region around the 

original values. The influence of load modelling, limited demand flexibility (including 

customers’ willingness to participate in the DSM program) and load payback was taken 

into account, illustrating the importance of considering realistic assumptions when 

estimating the success of a DSM program. In order to preserve the loadability of the 

network (in the case study illustrated in this chapter, or more generally, any other 

network performance indicator) after the DSM action, a trade-off between the opposing 

objectives must be struck and the load profile of the distribution network has to be 

“tailored” considering both the requirements of the network operator, and preservation 

of the chosen network performance indicators. The PSO–based load scheduling 

methodology for meeting multiple objectives of the DNO – meeting the target loading 
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at the GSP, keeping/improving loadability of the distribution network, and maintaining 

the composition of demand at the GSP is the sixth original contribution of this thesis. 

Unlike previous work, the proposed methodology aims to schedule, optimally and 

simultaneously, two distinct controllable load types, namely constant impedance load 

(e.g., space and water heating) and induction motors (e.g., washing machines, 

refrigeration, HVAC), so that the load margin after the DSM program is at least 

maintained, if not improved. This is the seventh contribution of the thesis. 
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5 Conclusions and Further Work 

 

 

 

 

5.1 Major conclusions 

This thesis has presented the results of the research performed in two main areas: 

decomposition of aggregated demand for demand-side flexibility assessment, and 

optimised DSM. The main aim of the research was to develop a methodology for multi-

objective DSM in distribution network in support of transmission network operation, 

relying on the existence of a certain number of SMs with sub-metering technologies 

and application of data analytics methods, namely ANN.  

The summary of chapters and the main findings of the research within are given in the 

following sections. 

5.1.1 Chapter 1 Introduction 

This chapter introduced the main research areas presented in this thesis, with a critical 

overview of the past work in these areas. The need for enhanced demand observability 

was emphasised as one of the main enablers for reliable DR programs in the evolving 

smart grids. Different types of DR programs were observed, as well as different 

approaches for the assessment of demand-side flexibility. Finally, potential for 

transmission network-level services provided by wide-scale DR was analysed, from 

both research and practical, industrial perspectives. Following the overview of past 

work, main aims and objectives of the research were defined, together with the main 

contributions of the thesis.  
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5.1.2 Chapter 2 The Need for and Application of Data Analytics in Distribution 

System Studies 

This chapter provided an overview of the data mining methods commonly used in 

distribution network studies. Special attention was given to introducing possibilities of 

text mining in power system studies, as this area has been mostly unexplored. In 

addition, the chapter investigated present and future data requirements for enhanced 

operation and control of distribution networks, as well as the extent to which smart 

meters, whose proliferation is constantly growing, could meet these requirements. Both 

the benefits and challenges related to smart meter technologies were presented, 

following a detailed analysis of smart meter specifications and smart meter rollout in 

different countries in Europe. Finally, a case study illustrating application of simple 

data mining methods to a real distribution utility database was presented. The results 

showed that historical data can be used to model predictive tools that can be used as 

decision support in asset management. The main value of data mining in this example 

is that it enables prediction of failures and planning of asset maintenance/replacement 

based only on historical data and without additional cost for the utility.  

5.1.2.1 Main findings 

Data requirements and data analytics in power network studies 

With the proliferation of ICT technologies in distribution networks, the need for data 

analytics methods has been raised. The two main values of data analytics methods in 

power system analysis are extraction of useful knowledge from big data and forecasting 

based on historical observations. The overview and critical comparison of different 

data analytics methods, including text mining, for application in distribution system 

studies presents the first original contribution of this thesis. The identification of data 

needs in present and future distribution networks, and the extent to which smart 

metering can facilitate collection of these data, represents the second original 

contribution of this thesis. 
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Application of data mining to a distribution utility database 

As an example of forecasting based on historical observations using data mining, the 

case study given in the chapter showed that candidate assets for preventive or 

corrective maintenance can be identified based only on their physical characteristics 

and using regression models built on historical data, without investing in additional 

monitoring systems. Furthermore, as an example of prioritising data using data mining, 

regression tree, which was used in the analysis, showed that the number of faults at the 

substation level was not highly correlated with the total number of customers supplied 

by the substation. This infers that this type of data does not have to be collected for 

confident assessment of the expected number of faults at a substation based on feeder 

characteristics.  

5.1.3 Chapter 3 Advanced Demand Profiling 

In this chapter a methodology was developed for aggregated demand decomposition 

based on limited SM data with sub-metering technologies and the application of ANN. 

The resulting demand composition provides information about the estimated/forecast 

shares of different load categories and of controllable and non-controllable load within 

the total aggregated demand. In addition, realistic challenges related to smart meter 

data streams were accounted for, namely missing data and data arriving at different 

time steps. Following this, two data pre-processing methods were compared, linear 

interpolation and weight adjusted k-nearest neighbour method. Furthermore, as a 

solution to commonly missing reactive demand data, a probabilistic approach was 

developed for deriving reactive demand measurements based on active demand and 

probabilistic range of power factor values. Although the focus in this chapter was on 

day-ahead forecasting, the proposed methodology can be equally used for either real-

time (estimation) or forecasting applications. The methodology was first tested on 

realistic statistics-based dataset, and further validated on a dataset from a real pilot site. 

The ANN-based approach was also compared to a time-series method, i.e., ARIMA, 

showing better performance. 

5.1.3.1 Main findings 

Advanced demand decomposition  

With the suggested approach for demand decomposition, even with missing data and 

partial coverage of the end-users with SMs having sub-metering enabled, the 
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confidence of demand decomposition is high. Therefore, only a limited number of SMs 

with sub-metering in an area would suffice for a confident estimation/prediction of 

aggregated demand composition. As the methodology relies on aggregated and 

relatively small historical data (from the most recent week), the proposed approach 

does not require significant data storing and communication resources, which brings 

additional savings to the network operator. A comparative analysis also showed that 

additional types of training (input) data, such as weather and type of the day, do not 

improve the accuracy of the algorithm. The methodology for aggregated demand 

decomposition using limited number of smart meters with enabled sub-metering 

represents the third original contribution of the thesis.  

Probabilistic derivation of reactive load data 

As a solution to the lack of reactive load measurements at the end-users’ point (which 

is a common deficiency of some types of SMs), a method for obtaining probabilistic 

aggregated reactive load data was developed. Reactive load data is necessary for both 

appropriate modelling of demand and power factor at each load bus, and as an input to 

the ANN-based demand decomposition algorithm. The approach requires real power 

data, both total and decomposed to load category level, and derives reactive demand 

data probabilistically, based on probabilistic modelling of PF of individual load 

categories. This methodology represents the fourth original contribution of the thesis.  

Graphical user interface for advanced demand profiling 

A graphical user interface (GUI) was developed for representing aggregated demand 

forecast and demand decomposition, as a support tool for DSM planning. The GUI can 

be used in a control room by the network operator who will be able to forecast total 

demand and its flexibility during the planning horizon (in this case, 24 hours). 

Development of the graphical user interface represents the fifth original contribution of 

this thesis. 
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5.1.4 Chapter 4 Multi-objective Demand Side Management at Distribution 

Network Level 

A methodology for optimal scheduling of distribution network loads in support of 

transmission network operation was developed in this chapter. The aim of the 

suggested DSM program is to meet the predefined loading curve, maintaining at the 

same time demand composition and distribution network loadability, i.e., the load 

margin, as the chosen network performance indicator. The importance of realistic 

assumptions related to demand, namely the appropriate load model, limited demand 

flexibility, modelling of the load payback and end-users willingness to participate in 

DSM, is illustrated by analysing the effect these factors may have on the resulting 

loading curve after DSM. A particle swarm optimisation based algorithm for demand 

scheduling was developed in order to meet multiple objectives of the network operator 

– meeting the target loading at the GSP, keeping/improving loadability of the 

distribution network, and maintaining the composition of demand at the GSP to 

preserve the loadability of the network after the DSM action. 

5.1.4.1 Main findings 

Multi-objective DSM 

The optimised DSM program proposed in this thesis has as the main objective load 

profile modulation, as a balancing service offered by the DSO to the TSO, while at the 

same time maintaining the load composition at GSP and one or more network 

performance indicators (the distribution network loadability in this case) to values they 

had prior to the DSM action. Realistic aspects of demand, namely static and dynamic 

components of the load, limited demand flexibility (including customers’ willingness to 

participate in the DSM program) and load payback, were taken into account. Results of 

the analyses shown in several case studies have proven that meeting the predefined 

target load curve is limited by the aforementioned constraints, including intrinsic nature 

of demand and its flexibility on one hand, and the preservation of network performance 

on the other. Therefore, the DSM program has to be “tailored” considering both the 

requirements of the network operator, and preservation of the chosen network 

performance indicators. The development of the proposed multi-objective DSM 

program relying on particle swarm optimisation is the sixth original contribution of 

this thesis.  
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Optimal scheduling of load types 

Instead of scheduling constant power load, as in most cases in previous work on DSM, 

the proposed DSM methodology schedules in an optimal way two controllable load 

types, namely constant impedance loads and induction motor loads. These two load 

types show different static and dynamic behaviour, which may influence both steady 

state and dynamic performance of the power network. Therefore, the optimal 

scheduling is performed to maintain or improve static voltage stability indicator 

(network loadability) and prevent undesirable dynamic response of demand in case of a 

disturbance. The optimal scheduling of more than one controllable load as a part of the 

overall DSM program represents the seventh original contribution of the thesis. 

5.2 Further work 

Some of the research problems identified during the course of this research could not 

be addressed and presented in this thesis, mainly due to the limited time. These 

research areas, detailed below, will be considered in future work. 

5.2.1 The use of smart meter data 

Apart from the analysis of benefits for distribution network operators coming from SM 

data, further research should investigate other possible applications of SM data mining, 

especially when combined with other types of data, such as weather, sociodemographic 

data, transport, etc. Weather data and advanced data mining methods can complement 

SM data in individual household load forecasting. Furthermore, correlation between 

SM data and sociodemographic data can provide more significant insight into end-

users’ behaviour, which can be highly beneficial for designing different DR programs 

tailored based on the knowledge about this behaviour. Historical data about the demand 

consumption provided by SMs and data about social events in the area can be used to 

predict high demand in certain areas of the distribution network, for example. 

Similarly, smart metering of EV charging can be used to foresee possible traffic 

congestion problems.  

In addition, there is still an untapped potential for application of text mining for 

improved understanding of end-users behaviour and daily load profiling. For example, 
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text mining of on-line reports or information from social media can give an insight into 

changes in customer preferences with respect to types of load, usage of EVs, 

installation of home energy storage systems, etc., which can be valuable for 

understanding the changes in daily load profiles recorded by SMs.  

5.2.2 Demand decomposition 

Methodology for demand decomposition should include other load types, such as EVs 

and heat pumps, as the share of these loads is constantly growing in distribution 

network. Furthermore, the ANN training process should be extended to allow for 

inclusion of historical data with DR events. It is important to distinguish between 

intrinsic changes in demand due to natural behaviour of the end-users, and the changes 

resulting from DR programs. Finally, the impact of distributed generation on results of 

demand decomposition should also be accounted for, as it effectively changes the 

loading curve, if it is partly supplied by distributed generation. 

The application of other types of data mining, for example deep learning neural 

networks or recurrent ANN, for demand decomposition should be investigated. The 

aim is to improve generalisation of the demand decomposition tool, and enable more 

confident results in cases when the training and testing data are not necessarily from the 

same consumption area.  

5.2.3 Modelling of DSM 

Modelling the distribution network as an unbalanced system should be considered in 

multi-objective DSM, primarily due to their intrinsic unbalance and the fact that larger 

loads, such as EVs and heat pumps, may introduce larger unbalances. In addition, the 

optimisation problem should include control of storage and EV charging.  

Furthermore, multi-period optimisation should be investigated instead of sequential 

optimisation presented in this thesis, as it introduces time as one of the variables, and 

allows for optimal scheduling of demand taking into account both previous and future 

time steps of the planning horizon. This approach could enable more efficient and 

controlled shaping of the load payback, preventing overloading due to reconnection of 

shifted demand. 

Load payback was modelled in a simplified way in this thesis, mainly to illustrate 

possible network operation and DSM issues arising from demand shifting of different 
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load components. More realistic modelling should be performed in the future, as well 

as smarter, i.e., more optimal ways of scheduling (controlling) load reconnection. 

Special attention should be given to thermostatically controlled loads, whose operation 

is highly affected by temperature.  

Further work should also consider better modelling of customers’ willingness to 

participate in DR, both in terms of number and geographical location, as well as the 

impact of this on the effectiveness of a DSM program.   

The proposed multi-objective DSM approach should be further extended and validated 

on a system comprising transmission network and one or more connected large 

distribution networks or large industrial users. This would enable a more realistic 

assessment of the contribution of DSM to the transmission system operation.  

Finally, to fully appreciate the potential of DSM, other network performance indicators 

(individually, or as a combination of a few), apart from loadability, at transmission or 

distribution level, should be incorporated into the optimised load scheduling 

methodology. These may include network losses or different aspects of system 

stability. With more performance indicators included in DSM, more benefits could be 

derived for the network, as well as for the individual customers participating in DSM 

program. Considering that the computational complexity of the task would rapidly 

increase with more network buses and more parameters and performance indicators to 

consider, other dedicated and potentially more efficient optimisation approaches for 

load scheduling should be investigated. 
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Appendix A: IEEE 33-bus network model 

data 

Table A 1 Bus data 

Bus number Bus type Real power (MW) 
Reactive power 

(Mvar) 

Voltage 

 (kV) 

1 PV 0 0 12.66 

2 PQ 0.1 0.06 12.66 

3 PQ 0.09 0.04 12.66 

4 PQ 0.12 0.08 12.66 

5 PQ 0.06 0.03 12.66 

6 PQ 0.06 0.02 12.66 

7 PQ 0.2 0.1 12.66 

8 PQ 0.2 0.1 12.66 

9 PQ 0.06 0.02 12.66 

10 PQ 0.06 0.02 12.66 

11 PQ 0.045 0.03 12.66 

12 PQ 0.06 0.035 12.66 

13 PQ 0.06 0.035 12.66 

14 PQ 0.12 0.08 12.66 

15 PQ 0.06 0.01 12.66 

16 PQ 0.06 0.02 12.66 

17 PQ 0.06 0.02 12.66 

18 PQ 0.09 0.04 12.66 

19 PQ 0.09 0.04 12.66 

20 PQ 0.09 0.04 12.66 

21 PQ 0.09 0.04 12.66 

22 PQ 0.09 0.04 12.66 

23 PQ 0.09 0.05 12.66 

24 PQ 0.42 0.2 12.66 

25 PQ 0.42 0.2 12.66 

26 PQ 0.06 0.025 12.66 

27 PQ 0.06 0.025 12.66 

28 PQ 0.06 0.02 12.66 

29 PQ 0.12 0.07 12.66 

30 PQ 0.2 0.1 12.66 

31 PQ 0.15 0.07 12.66 

32 PQ 0.21 0.1 12.66 

33 PQ 0.06 0.04 12.66 

34 SLACK 0 0 12.66 
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Table A 2 Branch data 

From bus To bus Resistance (Ω) Reactance (Ω) 

1 2 0.057525912 0.029324 

2 3 0.307595167 0.156668 

3 4 0.228356656 0.1163 

4 5 0.237777928 0.121104 

5 6 0.510994811 0.441115 

6 7 0.116798814 0.386085 

7 8 0.44386045 0.146685 

8 9 0.642643047 0.461705 

9 10 0.651378001 0.461705 

10 11 0.122663712 0.040555 

11 12 0.233597628 0.077242 

12 13 0.915922324 0.720634 

13 14 0.337917936 0.444796 

14 15 0.368739846 0.328185 

15 16 0.465635443 0.340039 

16 17 0.804239697 1.073775 

17 18 0.456713311 0.358133 

19 20 0.938508419 0.845668 

20 21 0.255497406 0.298486 

21 22 0.442300637 0.584805 

3 23 0.28151509 0.192356 

23 24 0.560284909 0.442425 

24 25 0.559037059 0.437434 

6 26 0.126656834 0.064514 

26 27 0.177319567 0.090282 

27 28 0.660736881 0.582559 

28 29 0.501760717 0.437122 

29 30 0.316642084 0.161285 

30 31 0.607952801 0.60084 

31 32 0.193728802 0.225799 

32 33 0.212758523 0.330805 

2 34 0.057525912 0.029324 

34 19 0.938508419 0.845668 

Table A 3 Generator data 

Bus 

number 

Real power 

(MW) 

Reactive power 

(Mvar) 

Real power 

limits 

MIN/MAX 

(MW) 

Reactive 

power 

limits 

MIN/MAX 

(Mvar) 

Cost function 

1 1.851 0 1.851/1.851 -5/5 𝐶𝑔 = 10 ∙ 𝑃𝑔 

34 0 0 -5/5 -5/5 
𝐶𝑔
= 1000 ∙ 𝑃𝑔

2 
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Table A 4 and Figure A 1 show results of the power flow run on IEEE 33 bus network 

in Matpower and DIgSILENT/PowerFactory. Table A 4 represents the general results 

(generation outputs and losses), while Figure A 1 illustrates the difference between bus 

voltages. Matching results prove the validity of using these two types of software in 

simulations run for the analyses described in Chapter 4.  

Table A 4 General power flow results 

 
Matpower 

(MW/Mvar) 

DIgSILENT/PowerFactory 

(MW/Mvar) 

Generation 1.85/0.69 1.85/0.69 

Grid infeed 

from slack 

bus 

2.02/1.22 2.02/1.23 

Total losses 0.16/0.12 0.16/0.11 

 

Figure A 1 Comparison of power flow results with respect to bus voltages 
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