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Abstract 

Title: Probabilistic Analysis for Optimal Power System Operation using Flexible 

Smart Solutions 

Miss Alexandra Kapetanaki, The University of Manchester, 2016 

Today’s power systems are rapidly changing. The low carbon technologies (e.g. wind and 

solar generation, electric vehicles and heat pumps) are increasingly being connected to 

electrical grids allowing zero fuel cost and less polluting network operation; on the other 

hand, these same techonologies cause greater intermittency and lower levels of system 

reliability. Furthermore, uncertain events such as adverse weather conditions that can cause 

network component failures lead to greater stress on the power system, as well as tighter 

security margins and greater operating costs. At present, many power utilities are seeing 

power system management as a challenge. To this end, smart energy solutions are being 

tested and applied as these can help mitigate operational and planning issues, while 

integrating the highest possible level of low carbon technologies. 

This thesis investigates how smart energy methodologies can help improve power system 

operation. Demand response, dynamic thermal ratings of overhead lines and FACTS devices 

are all considered as smart energy solutions that require further investigation. The modelling 

of these concepts is investigated and state-of-the-art methods are incorporated into the system 

reliability analysis. Assessment of power system operation is implemented using both 

probabilistic and deterministic criteria. 

Several contributions are presented in this thesis related to the field of reliability analysis for 

optimal power system operation. The first contribution of this research is a probabilistic 

framework for optimal demand response scheduling, which determines optimum ranking lists 

for both load reduction and load recovery based on reliability and economic risk metrics. The 

model also quantifies improvements in network performance, as well as customer profits 

received from participating in the demand response program for day ahead scheduling. The 

second contribution is the deployment of real time thermal ratings of overhead lines, which 

is applied in chronological analyses within both deterministic and probabilistic frameworks. 

The simulation results show that network-operating costs are lower under a probabilistic 
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analysis than under a deterministic one. The third contribution is a probabilistic methodology 

to find the optimal deployment of wind energy sources, while minimizing wind curtailment 

to meet contractual obligations. The model gives the maximised hourly deployable wind 

capacities, minimised wind spillages, as well as reliability and operational cost indicators. 

The fourth contribution is a methodology for the optimal ranking of different FACTS devices 

based on their contribution to reducing both load and wind curtailments. Here, an additional 

investigation has been done, which determines the impact of FACTS and RTTRs on 

maximising the utilization of wind resources. Further contributions include improvements of 

simulation time for probabilistic analysis, implementation of a load-forecasting model for 

demand response loads, as well as the development of weather forecasting models for real 

time thermal ratings and wind generation output modelling. 
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 Introduction 

 

System operators, driven by increased demand and integration of low carbon technologies 

(wind, co-generation, electric vehicles), are currently investigating smart energy solutions to 

relieve network congestions and improve network resilience to future uncertainties. Such 

technologies include Real Time Thermal Ratings (RTTR), Demand Response (DR), Flexible 

Alternative Current Transmission Systems (FACTS) and Energy Storage (ES).  Having a 

great deal of flexibility by using these technologies can facilitate both power system operation 

and power system planning. Improving network performance and reducing operational costs 

are the two most significant effects of using smart solutions on power system operation. In 

addition, having the ability to alter decisions as uncertainty unfolds, for instance by 

implementing a DR scheme or RTTR or other flexible solutions, allows system operators to 

postpone or even avoid costly investments, while at the same time keeping the system reliable 

and secure no matter how uncertain the future turns out to be. The benefits of using 

probabilistic criteria to evaluate power system reliability instead of deterministic techniques 

are still under research in the literature especially when smart solutions are involved for 

power system operation. Consequently, the reliability that flexible actions provide in power 

system operation is investigated in this thesis using probabilistic criteria. This introductory 

chapter discusses the need for using flexibility in power systems and introduces the concepts 

and methods used throughout this thesis for quantifying the reliability of the system when 

flexibility concepts are applied. After reviewing the literature on the application of flexible 

solutions in power systems, research gaps are identified and the main objectives of this thesis 

are presented. 
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1.1.1 Probabilistic analysis 

The way electricity is generated and consumed is rapidly changing, requiring the transition 

towards a new low-carbon electricity system that is led by increasing innovation, efficiency 

and policy measures. Nonetheless, such a drastic change brings with it a large number of 

challenges and a very high level of uncertainty and risk. This makes operation as well as 

investment decisions in power systems very difficult. It is critical to take into account 

different types of uncertainties and respond by suitable system operation in order to resolve 

uncertainties. The uncertainties can include: i) electricity demand, which could rise due to 

the electrification of heating and transport; ii) greater competition in markets exposes 

customers and investors to more volatile prices, and as a result, makes energy markets 

increasingly uncertain, strategic decisions difficult and in particular investments in low-

carbon energy systems; iii) integration of distributed generation on the demand side (e.g., 

generation on demand customer premises combined with, say, electric heat pumps and 

electric vehicles) as well as on the supply side (e.g., wind, solar and cogeneration) will require 

projections of net electricity demand, and therefore level of required capacity is becoming 

even more uncertain; and iv) uncertainty in renewable generation poses a number of 

challenges in the operational planning given the lack of predictability. Therefore, developing 

a probabilistic framework and operational tool capable of incorporating uncertainty in the 

operation and planning of modern power networks is essential. In particular, failing to 

consider uncertainties in operational and investment decisions can result in irreversible 

energy network assets to become stranded (not being used efficiently), or overloading of 

these assets reduces their lifetime and replacement age.  

There are two general approaches for assessing system reliability: direct analytical methods 

and simulation methods [1]. Although, analytical techniques are accurate and provide 

relationships between inputs and results, they are based on simplified assumptions, which do 

not capture chronological aspects that might be significant for certain systems. Also, for more 

complex systems analytical techniques are computationally infeasible. On the other hand, 

simulation techniques (in particular Monte Carlo methods) based on random sampling can 

easily model complex systems as well as the frequency and duration features, which are 

useful to quantify as they give information on the entire system performance value thus 
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helping system operators estimate errors in data and make best decisions. Analytical 

techniques are helpful for calculating an approximated value of a system’s performance, 

while simulation techniques are able to provide an entire probability distribution for these 

values highlighting the fact that uncertainty can lead to a wide range of values, not just one. 

Using probability distributions gives a practical means to planners since they can assess 

whether differences in indices occur due to real changes in performance or due to statistical 

variations. For example, Probability Distribution Functions (PDFs) of duration/frequency of 

a load point interruption can provide significant information for adequacy system planning 

and can prove useful in estimating the errors resulting from inaccurate data. Some of the most 

commonly used indices are the Expected Energy Not Supplied (EENS) and Expected 

Customer Interruption Durations (EDI) for composite power systems, which will be 

explained in detail in Chapter 2.4. Similarly, to quantify the financial risk of deploying 

network corrective actions, PDFs of generating costs, load costs, wind curtailment costs can 

be determined using the Value at Risk (VaR) metric, which will be described in Chapter 

6.1.3. Probabilistic assessment methods in power systems are mainly applied to different 

hierarchal levels [1]. The first level (HL I) addresses the generation subsystem, the second 

level (HL II) analyses the generation and transmission systems, while the third level (HL III) 

deals with the system as a whole, including the distribution subsystem. This thesis focuses 

on the second level, HL II. 

1.1.2 Low Carbon Technologies 

Reduction of carbon emissions is a challenge today. As a result, many governments are 

introducing targets to decrease these emissions. For instance, by 2020 the EU has commited 

to have 20% of their energy demand generated by renewables [2] meaning that 30% of the 

electricity demand must be met by renewables in the UK [3]. Thus, the adoption of low 

carbon technologies (LCTs) by power system operators has been encouraged. These are 

related to distributed generation such as wind farms and photovoltaic systems (PVs), 

electrothermal technologies, such as electric heat-pumps (EHPs) and micro-combined heat 

and power units (µCHP), as well as transport electrification, such as electric vehicles (EV).  
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Figure 1-1: Renewable sources integration introduces need for greater flexibility[4] 

 

Future smart grids will feature high integration of LCTs, as illustrated in blue and orange 

(renewables and renewables spillage) in Figure 1-1, to enable efficient and economical grid 

operations. However as RES integration in the grid is increased, more flexible ways of 

managing the intermittency and sudden changes in renewables production are necessary. In 

the case where wind production is higher than the required load (e.g.: 00:00am to 05:00 in 

Figure 1-1) then some renewables production may need to be curtailed in order to reduce or 

avoid network congestions. For example, during hours of high wind generation (e.g.: from 

00:00 to 07:00 in Figure 1-1), thermal plants have to generate at minimum export load in 

order to minimise waste and spillage from RES production when demand is low. However, 

as RES production suddenly drops, (e.g.: from 08:00 to 14:00 in Figure 1-1 and 19:00 to 

21:00) thermal plants need to quickly ramp up to supply the higher load levels and high daily 

peaks. During the evening peak, low renewable levels may not be enough to supply the entire 

load, thermal plants hence need to produce at maximum export load; if this is not enough, 

then more expensive, highly flexible units (e.g.: peakers, gas reciprocating engines, OCGTs) 

are required to come online. As a result, greater flexibility in the energy system is crucial to 

allow the transition from a traditional fossil-fuel-based generation to one based on LCTs [5]. 

While for example renewable energy offers a cheaper and cleaner energy supply, it imposes 

great challenges for modern grids because most renewable resources are unpredictable in 

nature [6]. In particular, the predictability of renewable resources is still limited by current 
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forecast methodologies. Similarly, with the popularization of EV, the uncertainty of the time 

space distribution of EV charging will remarkably create more difficulties for power system 

control, which requires greater investigations in power system operation and planning [7]. 

For instance, it is critical to determine temporal and spatial distribution of EV charging load.  

Consequently, LCTs can pose several technical issues to power networks as outlined below: 

1. LCTs change the current flows and shape of the load cycle where they are connected. 

This can cause: 

1.1. Thermal ratings to be exceeded,  

1.2. System voltage to rise beyond the acceptable limits. 

2. Reverse power flows, i.e. power flows in the opposite direction to which the system has 

been designed. 

3. LTCs can contribute to fault levels, which can raise the fault level above the rating of 

network equipment. 

4. A number of power quality limits can be affected by LCTs:  

4.1. Contributions to harmonics, particularly if a significant number of invertor 

controllers is present, 

4.2. Voltage imbalance which affects power quality, 

4.3. Voltage fluctuation or flicker if the output of renewables changes rapidly. 

Despite adding greater flexibility to the networks, in the sense that power systems are 

operated with a number of real time controls, it remains indispensable for smart grid to stay 

secure and reliable. The increased controllability of renewables can only be utilized if suitable 

control architecture is established. Several novel control structures can support this idea such 

as Energy Storage (ES), Real time thermal ratings (RTTR), Demand Response etc., which 

will be described in the following sections. 

1.1.3 Smart Grid and Smart Solutions 

Smart grid is a term for a modern power system that integrates existing and new features in 

order to provide the following [8]: 
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- To ensure secure and sustainable electrical energy supplies and to combine the 

primary resources of traditional energy sources, flexible storage, and new and 

dispersed generation sources, 

- To increase the network and generation capacity and to develop technical solutions 

that can be deployed rapidly and cost effectively, enabling existing grids to accept 

power injections from distributed energy resources without exceeding operational 

limits, 

- To establish interfacing capabilities that allow new designs of grid equipment and 

new automation and control arrangements to be successfully interfaced with existing 

traditional grid equipment. 

In response to power system challenges such as increasing demand, infrastructure ageing and 

high integration of renewable sources, smart grid concept is deployed to accomondate 

existing and forthcoming changes in power systems. Smart grid has modernized the way 

electricity is generated, transported, distributed, and consumed by integrating smart 

transmission and distribution networks, smart control centres, smart substations, smart load 

scheduling and load balancing. This is achieved using several technologies such as sensing, 

communications and control for the real-time operation of the grid (ICTs, smart meters, 

phasor measurement units, data acquisition-SCADA), as well as smart technologies which 

optimize networks operation, e.g. modifications in distribution network topology using 

switching, control of power flows using real time thermal rating (RTTR) data, flexible AC 

transmission systems (FACTS) to control flows and voltages, demand side management and 

energy storage. 

The European Technology Platform formed the Smart Grids program in 2005 and the US 

Department of Energy a similar initiative in 2007 [9]. The joint vision of the program was to 

provide affordable, clean, efficient, reliable, secure and economic power supply through 

efficient energy management on power networks at all times [10][11][12]. The challenges to 

implement smart grids are summarised as follows: 

- Environmental challenges: Traditional electric power production, as the largest CO2 

emission source, must be changed to mitigate the climate change. In addition to that, 
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a shortage of fossil energy resources has been foreseen in the next few decades. 

Natural catastrophes, such as huricanes, earthquakes and tornados can destroy the 

smart grids easily. Finally, the available and suitable space for the future expansion 

of power networks has decreased considerably. 

- Market/customer needs: Future developed system operation technologies and power 

market policies need to be developed to sustain the transparency and liberty of the 

competitive market. Customer satisfaction with electricity consumption should be 

improved by providing high quality/price ratio electricity and customers’ freedom to 

interact with the grid.  

- Infrastructure challenges: The existing infrastructure for electricity transmission and 

distribution has rapidly aging components and insufficient investments for network 

improvements. With the pressure of the increasing load demands, the network 

congestion is becoming worse. The fast online analysis tools, wide area monitoring, 

measurement and control, and fast and accurate protections are needed to improve 

security and reliability of the networks with minimum investment required. 

Development and implementation of active smart grids is not trivial. It is something new and 

different from the ‘fit and forget’ approach currently applied so often. Additional investments 

for control and communication systems are required. Barriers are often financial, not 

technical. Adding more flexibility into the network and helping avoid high uplift payments 

and large irreversible capital investments will provide tremendous value for all parties 

concerned with an efficient, economic and secure network operation. Real time thermal 

ratings (RTTR) [13][14], demand-side management (DSM) and demand-side response 

(DSR) [15][16][17], storage devices [18] [19][20], FACTS [21][22], phase-shifters [22][23] 

and so on, are some of solutions that have been proposed to help provide such flexibility. 

These can help alleviate congestion, reduce renewables’ spillages and minimize demand 

disruption by either shifting flexible loads from periods of high-energy demand and 

congestion to off-peak ones, by controlling the flow of power over the network, or act as a 

post-fault corrective action, thus enhancing the ability of the system to accommodate 

intermittent renewables [24][25].  
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Demand Response (DR) is defined as changes in electric usage by end-use customers from 

their normal consumption patterns in response to changes in the price of electricity over time, 

or to incentive payments designed to induce lower electricity use at times of high whole-sale 

market prices or when the reliability is jeopardised [26]. DR activation can be manual, where 

the load adjustment is manually performed after receiving notification of an upcoming DR 

event. It can be semi-automated, where a local control system follows prepro- grammed DR 

strategies following a notification. Finally, DR can be activated remotely using an event 

initiation signal to control loads directly. This fully automated DR activation is assumed in 

this thesis. During times of network faults, DR can help mitigate the effect of the fault by 

redispatching loads in such a way that this reduces congestion and stress on network assets. 

Using DR as a post-fault corrective action can also help reduce the number of customer 

interruptions, reduce the lengths of interruptions and increase the number of customers being 

reconnected following a fault [17]. In the context of planning under uncertainty, these flexible 

solutions can provide tremendous value in helping defer large irreversible investments until 

at least some uncertainty is resolved and the need for large capacity reinforcements is fully 

established [27]. Furthermore, as more DR is deployed, a multitude of other services and 

benefits become available across the supply-chain, affecting system operators (SOs), 

transmission and distribution network operators, utilities, retailers and customers. Customers 

can benefit from reduced electricity prices as DR can help reduce average generation costs, 

while network operators can rely on DR to increase system reliability.  

To understand the effect of DR on supply and demand, we show in Figure 1-2 how demand 

and supply change for a system under normal condition and one under emergency condition. 

Let’s assume that the demand curve DN is 75 GW and the merit order curve (or supply curve) 

SN intersect DN at a capacity of 75 GW. At that point, the clearing price (equal to the marginal 

cost of the most expensive generation unit required to supply this demand) is around 90 

£/MWh. In the event of an emergency, when a failure occurs, for instance due to a line 

tripping or to a generator shutdown, then the loss of this component causes the supply curve 

SN to shift to the left, thus causing the electricity price to spike up as very high short run 

marinal cost plants are required to supply the load. In this case, the price reaches 230 £/MWh 

(red dot) where the demand DN and the new supply curve under emergency condition SE 

meet. At the same time, the load is shed (LS) by around 7 GW (this value is for illustrative 
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purposes only).  To reduce the amount of LS and bring the price back down to a more 

reasonable level, DR can be used to make the demand curve more elastic, represented by the 

new demand curve DDR. Once the amount of available DR is determined, a rescheduling of 

generators after inclusion of DR is done, giving a new supply curve SDR that allows some 

load to be reconnected as DR customers are disconnected and compensated. This leads to an 

increase of 3 GW of demand being reconnected and leads to a decrease in the price, from 230 

£/MWh to 110£/MWh (green square), as shown in Figure 1-2. This price decrease is due to 

plants with lower short run marginal cost being committed instead of high short run marginal 

cost peaking plants. 

In this thesis, particular focus will be put on the quantification of the profits incurred for 

customers by participating in a DR program as well as the improved network reliability when 

DR is applied. 

 

Figure 1-2: Merit order effect of RES integration and Demand Response [28] 

Real time thermal rating (RTTR) is an upcoming technique used to calculate the rating of 

electrical conductors based on local, real-time weather conditions, which usually leads to an 

increased rating as compared to traditional static thermal ratings. RTTR is another part of the 
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large suite of smart grid technologies, which can eliminate or reduce the need for new 

conductors, while giving network operators more information about the state of the system. 

RTTR at the operational stage can be used both for prefault conditions to supply load with 

cheaper generation or to avoid wind spillage from renewable sources and during post fault 

conditions to decrease involuntary load reduction and therefore increase network reliability 

[17]. Another benefit RTTR can provide is at the planning stage allowing additional load to 

be connected in order to avoid costly network reinforcements [13]. A probabilistic RTTR 

model is introduced in [14] to capture the uncertainties in the measurement of weather 

parameters, line rating modelling and also in the failures of network components (generators 

and circuits). This model thus not only provides a circuit rating value but also assesses how 

robust this value is to different uncertainties. As a result, system operators can take better 

operational decisions. In this thesis, quantification of operational network costs (generation 

cost, customer interruption costs, wind curtailment costs), as well as improved network 

reliability when RTTR is applied, is reported. 

Flexible AC transmission systems, FACTS, can be deployed as an alternative smart grid 

technology to flexibly reduce voltage limit and thermal capacity violations, contribute to 

fewer transmission power losses, improve stability and security and ultimately contribute to 

a more efficient operation of the transmission system [29]. From an operational point of view, 

FACTS operate by supplying or absorbing reactive power, increasing or reducing voltage 

and controlling the series impedance of transmission lines or phase angles [30]. This could 

then bring savings in operating costs without jeopardizing the level of system security. From 

the planning point of view, FACTS enable the utilization of existing facilities and therefore 

reduce the demand for new investments [31]. For instance, the transmission network 

company in England and Wales, National Grid, installed phase shifter transfomers 

specifically to enhance power transfers across system and accommodate new generation in 

the northern part of the network [32]. However, FACTS are quite expensive in some cases, 

since they include lots of electronic devices and power converters; consequently, several 

studies exist in the literature based not only on technical and cost considerations but also on 

return of investements [33]. The impact of FACTS on networks reliability has been 

extensively investigated in [34][35][36]. This thesis concetrates on the impact of certain 
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FACTS technologies on the maximum utilization of wind sources within probabilistic 

analysis.  

High interest in integrating energy storage into power systems operation and economy has 

been recently experienced. The major benefits of energy storage include electric energy shift 

in time, frequency and voltage regulation and transmission congestion relief. Renewable 

sources are non-dispatchable and their output is uncertain due to wind speed or solar 

irradiation, which means that a part of wind or solar power has to be curtailed [37]; 

transmission congestion or voltage problems are the main reasons of this. At the same time 

thermal generators cannot operate below their low output limits in order to satisfy load when 

it is on its minimum. As a result, energy storage system can shift the generation pattern and 

smooth the variation of wind power over a desired time horizon. It can also be used to mitigate 

possible price hikes or sags [38][39]. In [38] the required energy storage capacity, charging 

and discharging power ratings for different wind generation penetration levels are recognized 

. On the other hand, in [39] energy storage is deployed to determine the maximum wind 

energy utilization considering minimum wind spillage levels. Energy storage is also used in 

combination with demand side management at a household level [40]. This study aims to 

store energy during off-peak demand hours and release back this energy to the system during 

peak periods, so not only lower wholesale energy prices can be achieved from customers’ 

perspective, but also there is support to lower voltage distribution networks for reducing 

network investments. However, there is more room for research related to energy storage 

combined with demand response on a bigger network scale, as well as to consider this 

combination in reliability analysis. In this thesis, energy storage is mentioned as the future 

work being combined with the proposed DR and RTTR models in power networks rich in 

wind generation. 

1.1.4 Research Aims and Objectives 

From the points highlighted above, current flexible energy concepts and their impact 

on power systems is a new topic. Also, their so-far implementation using probabilistic 

analysis is neither clear, nor fully applicable when dealing with probabilistic phenomena. The 

aim of the project is to optimize the current modelling methods used for operation and 
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planning by including flexible smart solutions in a probabilistic framework. Because 

probabilistic analysis requires high computational time especially for highly complex 

systems, the first part of this work focuses on the development of a novel computational tool 

that leverage computational intelligence as applied to the evaluation of composite power 

system reliability. Such innovative methodologies and techniques can be applied to future 

power systems with large penetration of wind power and/or flexible corrective actions. The 

second part of this work is the application of flexible methodologies to solve energy systems 

operational problems with the improved network reliability and the minimum operational 

costs. The third and final part of this work aims at developing a methodology to maximize 

wind integration considering minimum wind curtailment in the presence of flexible 

corrective actions. This methodology is both easily implementable and flexible enough to 

solve large and complex real-world power network operational problems. Hence, the main 

goal of this thesis is developing innovative algorithms that are used to study modern and 

flexible electrical networks, which will contribute to environmentally sustainable and 

economically efficient electrical energy systems. 

To achieve these aims, the following objectives have been defined: 

 Development of novel probabilistic computation methods to leverage computational 

intelligence and processing power.  

To critically review existing Monte Carlo sampling reduction methods applied in reliability 

analysis of power systems, to assess the methodologies, assumptions, advantages and 

limitations of each model and select the most appropriate technique for the problem studied. 

Such innovative methodologies and techniques will be applied for probabilistic analysis of 

future power systems with large penetration of wind power and/or FACTS, real time thermal 

rating, demand side management and energy storage. The main goal of this work is to explore 

innovative algorithms in order to reduce the CPU time of simulation-based reliability 

assessment. 

 Deployment of load forecasting and wind forecasting methods 

To present a mathematical forecasting algorithm for short term load projection, which is used 

in conjuction with the demand response applications in power system operation. This is 
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exemplified by forecasting of different load types (industrial, commercial, residential, large 

users) to obtain more accurate results within simulations of power system operation. 

To present a stochastic forecasting algorithm for short term wind forecasting, which is used 

as an input for calculation of real time thermal ratings and wind turbine active power 

productions in the simulation of power system operation.  

 Deployment of Real Time Thermal Rating model to relieve network congestion 

The fast rate of integration of renewable energy sources, especially wind farms, into existing 

networks, while environmentally beneficial, tends to impact the operation of power systems 

both economically and technically. For this reason, it is an imperative to conduct studies and 

include novel concepts like RTTR in order to reduce reinforcements of electrical networks 

and calculate the costs and benefits in transmission planning schemes. 

 Deployment of Demand Response to reduce network congestion 

To present a probabilistic framework for DR to quantify network performance improvements 

and maximize customer profits. To give the answers to the problems such as: What is the 

maximum amount of DR in the transmission system for the different load types? How much 

the expected energy not supplied (EENS) index and expected duration of customer 

interruptions (EDI) are reduced, etc? 

 Deployment of FACTS to reduce network congestion and alleviate voltage issues 

Flexible AC transmission plants, such as phase shifter transformers, thyristor controlled 

series compensators and static var compensators can be used to divert power flows into the 

transmission corridors where enough capacity is available so that network overloads can be 

eliminated. By a coordinated control of FACTS devices the network can be utilized in a more 

efficient way and the flexibility of the network increases. Using power electronics 

technologies and fast electronic switching, FACTS are a promising option in the creation of 

flexible power networks. Reactive power as well as active power flow can be quickly changed 

following a contingency, so that post contingency constraint violations are swiftly eliminated. 

 To quantify the maximum wind deployment level using flexible control actions 
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To present a rigorous analysis for maximum wind utilization in the presence of flexible 

controls incorporated into a probabilistic framework. To quantify the financial benefits from 

deploying such flexible concepts for improving network reliability and operation cost. 

1.1.5 Main Contributions of the Thesis  

The work within this thesis contributes to a number of areas of power systems research, 

specifically related to the use of probabilistic – reliability analyses, which include smart 

energy system solutions. The main outcome of this research is the development of a novel 

probabilistic framework and tool used to optimize power system operation and improve 

network planning decisions subject to operational uncertainties. The design of this framework 

resulted in the ability to make network operation decisions considering multiple uncertainties 

and to quantify the reliability and financial improvement that each flexible action gives in 

order to postpone or avoid costly network reinforcements.  

References prefixed with the letter ‘A’ refer to publications, which have arisen from the work 

completed during this research. A full list of international journal and conference publications 

is included in the List of Publications at the beginning of the thesis. The contributions 

achieved in this thesis can be summarised as follows: 

 A review of Monte Carlo sampling reduction tecniques applied to power systems is 

presented. Proposed multi particle swarm optimization (MOPSO) heuristic technique to 

minimize Monte Carlo Simulation (MCS) is proposed [A5]. The proposed MOPSO 

filtering technique is developed subject to three objective functions: 1) Probability of a 

given state, 2) Total load curtailment in a given state, 3) Transmission system capacity 

considering weight factors, which distinguish the importance of the overhead lines. This 

helps to search faster the significant network operation system states and make MCS 

converge faster. 

 

 A new algorithm for short-term load-forecasting of DR under uncertainty is proposed, 

and the functionality required for developing such a module is described. The module 

provides high forecasting performance when dealing with nonlinear and multivariate 
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problems involving large datasets. This makes it particularly suitable for short-term load 

prediction for disaggregated sites with the aim of optimizing the DR process when the 

data relating to the operating regime or load characteristics of the individual devices and 

loads connected are unavailable [A1]. 

 

 Extensive reviews of “flexible” methods for optimizing network operation considering 

both deterministic and probabilistic approaches. A thorough review of the benefits of 

RTTR, DR and FACTS devices in power network’s operation is conducted. The 

operational conditions (intact network and N-1 operation) and the practicalities associated 

with each “flexible” device/method are examined [A1, A4, A6, A7, A8]. The extensive 

literature survey showed that using the above mentioned flexible concepts in stochastic 

post-contingency analyses did not consider both security and economic criteria. This is a 

major research gap, which is addressed in this thesis. 

 

 Investigation of the benefits that real time thermal ratings model provides in terms of 

system reliability and operating costs under probabilistic versus deterministic analysis 

[A4]. Probabilistic reliability assessments prove to be superior approaches than 

deterministic ones when thermal ratings based on OHL’s properties are accounted for. As 

a key recommendation arising from this work, there is a need to change the current 

operational framework based on deterministic analysis and move on towards a 

probabilistic approach, such as the one presented in this thesis. In fact, the modelling of 

uncertainty is the only way to explicitly quantify and acknowledge the value of flexible 

solutions such as RTTR, and thus accrue all the relevant economic benefits mentioned 

throughtout. 

 

  A probabilistic framework for optimal demand response scheduling in the day-ahead 

planning of transmission networks is proposed [A1]. The model incorporates load 

recovery plans by optimizing the customers’ position in the joint energy and reserve 

market. The methodology recognizes several types of uncertainties, and finds optimal 

demand response scheduling using the network security and customer economics criteria. 

The model has been extensively tested in the presence of both renewable sources and real 
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time thermal ratings. It is shown that improvements in reliability indicators are 

considerable, while customers’ revenues are significantly higher, particularly under 

emergency conditions. 

 

 A probabilistic framework for minimizing wind spillage and maximizing capacity of the 

deployed wind generation, whilst improving system reliability is proposed [A2, A3]. 

Wind spillages are classified in voluntary and involuntary and prioritized with 

probabilistic cost coefficients. The model shows that using multiple reliability indicators 

can be a good choice for operational decisions on optimal wind management, since this 

approach results in significant reduction of operating costs especially for high probability 

confidence intervals. 

 

 Methodologies for best placement of FACTS devices are proposed to further increase 

wind utilization using the probabilistic analysis [A2]. Installation of static var 

compensators (SVC) and thyristor-controlled series capacitors (TCSC) is proposed based 

on load and wind curtailments caused by violation of voltage and thermal constraints. 

The probabilistic simulation results are then compared with the state enumeration results. 

It was shown that the proposed methodologies improve economics of network operation 

as well as its reliability. 

1.1.6 Thesis Overview 

This thesis consists of nine chapters in total. The eight chapters that follow this introduction 

are outlined below: 

Chapter 2 – Power System Reliability Analysis 

This chapter provides information on different aspects of reliability in power systems (section 

2.1). The concept of deterministic approach versus probabilistic approach is described in 

section 2.2, whereas different types of probabilistic approaches are discussed in section 2.3.  

Afterwards, an insight into both non-sequential and sequential Monte Carlo simulations is 

described and the formulas for reliability indices are derived in section 2.4. Finally, 

conclusions are drawn about the most appropriate methods to be applied for the assessment 



Chapter 1 - Introduction 

Page | 38 

 

of considered power system. Finally, power system analysis is done using techniques 

presented: the algorithms for AC and DC Optimal Power Flow (OPF) make use of, 

respectively, non-linear and piecewise linear programing. 

Chapter 3 – Literature Review on Smart Solutions in Energy Systems 

This Chapter presents a review of current smart solutions applied in energy systems. The 

concept of each solution is first explained and the evolution of the solutions is given. Next, 

their application within both deterministic and probabilistic analyses is presented.  The gaps 

and inconsistencies in the literature review are discussed and points that need further 

investigation are summarised. 

Chapter 4 – Deployed Models of Low Carbon Technologies and Smart Solutions 

Chapter 4 presents the application of low carbon technologies in power systems in section 

4.1 as well as the modelling of smart flexible solutions (RTTR, FACTS, DR) in order to 

accomondate the high level of Low Carbio Technologies integration in power systems. 

Probabilistic methods are developed for each flexible solution with the aim to improve power 

system reliability and to either minimize operating costs or to maximize the profits of 

customers in a day ahead planning. The proposed algorithm is applicable for both system 

normal and emergency conditions.  

Chapter 5 – Components of the Developed Reliability Assessment Methodologies 

Section 5.2 presents a thorough review of current Monte Carlo sampling reduction methods 

in order to improve the computational efficiency of algorithms, especially those that are 

applied to problems of great complexity and high dimensionality. This section provides 

information for different reliability reduction methodologies. More specifically, it illustrates 

reliability assessment techniques such as sequential MC combined with Latin Hypercube 

Sampling (LHS) and non-sequential MC combined with Particle Swarm Optimization (PSO). 

Probabilistic modelling of power systems components is given in section 5.1. These are 

classified as component failure modelling, repairable failure modelling, network modelling 

in terms of reliability as well as load modelling. Load forecasting and wind modelling are 

then introduced for real time power system operation. Load sampling is implemented through 
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short-term load forecasting using neural networks technique, while wind sampling is 

implemented through ARMA stochastic model.  

 

Chapter 6 – Optimal Demand Response Scheduling with Real Time Thermal Ratings 

for Network Reliability 

Chapter 6 presents the network modelling objectives, description of case studies and results 

of application of real time thermal ratings within the probabilistic methodology for optimal 

demand response scheduling in the day-ahead planning of transmission networks. Section 6.2 

includes case studies design for RTTR and DR modelling, while section 6.3 shows the results 

on different IEEE test networks extended with wind farms at suitable locations.   

Chapter 7 – Optimization of Wind Energy Utilization through Corrective Scheduling 

and FACTS Deployment 

Chapter 7 presents the network modelling objectives, case studies description and results of 

a probabilistic framework for minimizing wind spillage and maximizing capacity of the 

deployed wind generation, whilst improving system reliability. Section 7.2 includes case 

study design for optimal wind deployment. The simulation results in section 7.3 make 

comparisons between MCS and the state enumeration results. It is shown that optimal wind 

deployment can have higher impact in terms of reliability and economics in emergency 

conditions, since the violation of power systems constraints is minimized. 

Chapter 8 – Conclusions and Future Work 

In this chapter the main conclusions of the research are summarised and suggestions are made 

for the future development and improvement of the presented methodologies. 
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 Power System Reliability 

Analysis 

Summary: 

This Chapter presents the application of Monte Carlo methods to power system adequacy 

assessment. The traditional deterministic techniques are first discussed and compared to 

Monte Carlo techniques. A secure network is a network that is able to respond to 

disturbances, whether these are pre-empted (certain) or not (uncertain). Deterministic 

methods can only provide a secure network operation when the system is exposed to credible 

and pre-empted risks of failures and outages. However, deterministic analysis cannot solve 

the network security problem if unexpected failures or outages occur. As a result, 

probabilistic analyses using simulation methods are developed to capture all possible 

stochastic uncertainties in power networks. State enumeration and Monte Carlo techniques 

are elaborated as the main simulation methods. Monte Carlo approach is usually selected for 

probabilistic network evaluations because it can handle more complex systems and provide 

system planners with a whole set of probability distribution functions of different quantities. 

Monte Carlo analysis includes sequential and non-sequential simulation approaches, the 

differences of which (concept and equations) are thoroughly described in this section. The 

last section of the chapter presents load flow techniques used within Monte Carlo simulation 

procedures; these are AC and DC Optimal Power Flow (OPF) models, which are used to 

evaluate the intact and contingent system states. 
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2.1 Power system reliability 

Power system reliability evaluation is based on probabilistic methods and a wide range of 

reliability indices can be determined. However, before applying any probability theory, it is 

necessary to acquire a complete understanding of the power system. Only after this 

understanding has been achieved, a model can be derived and an appropriate evaluation 

technique can be chosen. The following steps should be addressed: 

o Understand the way in which the components and system operate, 

o Identify the way in which they can fail, 

o Deduce the consequences of the failures, 

o Derive models to represent these characteristics. 

After having resolved the above steps an evaluation technique can be selected, and a 

probabilistic tool developed which enables the analyst to transform knowledge of the system 

into a prediction of its likely future behaviour. There are two main categories of evaluation 

techniques: deterministic and probabilistic. A comprehensive explanation of their 

applicability and their methodological steps are presented in the following sections. 

2.2 Deterministic versus Probabilistic Planning Including 

Reliability Assessment  

The most common deterministic criteria indicate that certain network outages will or will not 

result in a system failure. The deterministic criterion mainly used for planning of bulk electric 

power systems, is known as the N-1 criterion [41]. If this criterion is satisfied, the loss of any 

single network component will not result in load curtailment. Subsequently, the system 

operation in a particular state is considered ‘reliable’ if the occurrence of any selected 

credible single contingency (i.e most probable/plausible contigencies) does not violate the 

operational limits. On the other hand, the system is considered ‘unreliable’ if the occurrence 

of a credible contingency causes a violation of operating limits [42]. Unfortunately, the 

system can still be exposed to risks of failures and outages even though there are no credible 

network outages leading to violations of operating constraints. In other words, even if we 
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apply deterministic analysis and the system is considered reliable, in reality, there are many 

more risks that were not considered and can cause violation of operation constraints. As a 

result, deterministic techniques, which are sometimes referred to as engineering judgement, 

do not include an assessment of the actual system reliability as they do not incorporate the 

probabilistic or stochastic nature of system behaviour and component failures. Therefore, 

these approaches are not adequate, although they are easier to understand. In contrast, 

probabilictic methods can incorporate many significant factors that affect the reliability of 

the system. These techniques provide quantitative indices, which can be used to decide if the 

system performance is acceptable or if changes need to be made. Probabilistic techniques can 

be based on analytical/ state enumeration techniques or Monte Carlo Simulation techniques. 

The deterministic approach is presented first and it is followed by a description of the 

probabilistic techniques for reliability analysis. 

Undoutebly, reliability assessment of power networks provides invaluable information to the 

system managers, designers, planners and operators. Over the past few decades, many 

attempts have been made with the goal to develop techniques for reliability, economic and 

operational assessment of power system operation. One of these attempts is the deterministic 

approach, which was introduced and applied in real-life circumstances. Several deterministic 

criteria and techniques have been developed; for example, they give information about 

percentage reserves in generation capacity planning or N-1 contingency criteria (worse case 

scenarios) in transmission planning, etc. [1]. 

Nonetheless, performance of deterministic techniques has some limitations, such as: 

 They do not reflect the stochastic systems behaviour e.g. customer demands, intermittent 

generation, certain component failures, etc., 

 The analysis may not consider all relevant system states resulting in unreliable network, 

 They can lead to insufficient evaluation of system adequacy and reliability.  

These are the determining factors that led to the need to recognize not only the severity of 

the event but also how it affects the operation and performance of the system. The necessity 

to evaluate many other aspects of system risk required development of the probabilistic 

evaluation techniques for power systems; these are discussed in the next section. 
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2.3 Reliability Analysis of Power Systems 

Over the past forty years, many probabilistic evaluation techniques have been 

developed and there are many current studies that contribute to the integration of probabilistic 

techniques into the everyday power system analysis. Some of the techniques are reliability 

worth evaluation, probabilistic load flow, probabilistic fault analysis, probabilistic transient 

stability and probabilistic transmission line design [1]. The selection of a relevant technique 

and its validity completely depends on the particular problem and the models used to 

represent the examined system. The concept of power system reliability is first introduced 

and then the different techniques are discussed. 

Power System Reliability is the probability that a given power system will be able to be 

adequate under a given set of credible disturbances at any given moment while supplying its 

electrical demand over a given operational time interval. Therefore, the critical question is 

“How a power system can be reliable?” It is evident that the answer to this is a combination 

of solutions that consider the highly probabilistic way of power system operation subjected 

to external as well as internal factors. The external factors are the environmentally related 

failures, whilst internal factors consider generation, transmission, protection components 

related failures. Given the high number of failures that might occur and taking into 

consideration that a failure can be somewhat network and time specific, it is obvious that the 

probabilistic problem is of combinatorial nature.   

Reliability problems in the domain of power systems can be characterized by two aspects, 

namely adequacy and security. System adequacy assesses the sufficiency of the existing 

system facilities to potentially satisfy customer demand in any given instant [43]. System 

security assesses the ability of the power system to respond to disturbances arising in the 

system. The research undertaken in this thesis uses reliability adequacy assessment of power 

systems. The corresponding methods are given after a brief introduction of the system 

security assessment.  

Power system security can be categorised by the following three criteria, as illustrated in 

Figure 2-1: 
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 Overload security: circuits and transformers are operated within acceptable limits. A 

failure may result in overloads, which might cause potential system blackout following 

cascading failures. 

 Voltage security: A failure may cause voltage instability of the system and this might lead 

to potential system collapse. 

 Dynamic security: A requirement that generators have enough reserve in order to 

maintain system operation at 50 Hz. A failure can lead to loss of generation, which results 

in overloading in some areas of the system and eventually potential blackout. 

 

However, the majority of probabilistic techniques that have been reported so far deal with 

reliability adequacy assessment. In particular, they analyse and discuss appropriate 

reinforcements for satisfying the load demand and system operational constraints of the 

system.  

There are two general approaches for assessing system reliability: state enumeration 

techniques and simulation methods. State enumeration techniques make use of system 

models and evaluate the reliability indices from these models using analysis of the pre-

specified set of system states. The exact mathematical equations can become quite 

complicated and approximations may be required when modelling complex systems and 

complex operating procedures [1]. On the contrary, simulation techniques such as MCS 

 

Figure 2-1: Security Reliability Assessment 
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estimate the reliability indices by simulating the actual process and random behaviour of the 

system [2]. Therefore, simulation techniques provide greater flexibility in modelling and they 

can be performed easier with the use of computers. That is the main reason for increased 

number of studies using simulation techniques. The principal application of both techniques 

is summarised below: 

 Monte Carlo Simulations have been used in composite system adequacy evaluation and 

probabilistic voltage and transient stability assessments. 

 State enumeration techniques have been used in substation reliability evaluations.  

However, Monte Carlo techniques can also be applied to substation reliability evaluation and 

state enumeration methods can also be utilized in composite system evaluation. The latter is 

limited by modelling complexity of the power system operation. 

2.3.1 State Enumeration 

In the State Enumeration method, the system states are generated one by one according to a 

predetermined level of contingency [43][44][45], for instance a first order independent failure 

or second order independent failure, and so on. Since all the events in a power system are 

considered independent, the system state probability is calculated by multiplying the 

probabilities of the combination of elements, i.e. network components including generators 

and load levels. This is shown in equation (2-1):  

 𝑝𝑞 =∏ 𝑝𝑐 × 𝑝𝑙
𝑐∈𝐶

 (2-1) 

In equation (2-2), pq is the probability of the system state q, pc is the probability of component 

c state, C is the set of all components in the system and pl is the probability of the load level. 

The probability of the component state is represented by either its availability or 

unavailability according to the enumerated system state. For instance, if a system contains 

ten components and the enumerated state has one failed component, the system states 

probability will equal the unavailability of the failed component times the availability of nine 

other components times load level probability. Next, the system state is examined to find out 

whether it is a system success or a failure state. If the latter is the case, the consequence of 
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the failure state is obtained using failure effects analysis. The consequence can be any of the 

risk measures such as demand not supplied or energy not supplied. Then the contribution of 

this system state to reliability indices is computed using (2-2). 

 𝐶𝐼𝑞 = 𝑝𝑞 × 𝑅𝑞 (2-2) 

where CIq is the contribution of the failure state q to the reliability index, and Rq is the risk 

measure. The total reliability index (CI) is the summation of index contributions from all 

failure states (set S) as given by (2-3). 

 𝐶𝐼 =∑𝐶𝐼𝑞
𝑞∈𝑆

 
(2-3) 

The main strength of state enumeration method is its simplicity compared to simulation 

methods, but it is infeasible to deal with large systems due to long computation time. This is 

specifically true in cases where the level of contingency is higher than the first failure level 

or N-1. Another drawback of this method is that it can not handle the events that are 

chronologically time dependent [1]. 

2.3.2 Monte Carlo Techniques 

The traditional simulation technique is Monte Carlo Simulation (MCS) method. The MCS is 

a stochastic simulation methodology, which can be applied as sequential and non-sequential 

simulation procedure. Sequential MCS samples system states in time order over different 

periods while non-sequential MCS generates and samples system states in a random fashion. 

Sequential MCS requires greater computational power but handles sequentially correlated 

events. On the other hand, non-sequential MCS substantially improves computational 

efficiency. For this reason, non-sequential MCS is often preferred over sequential MCS in 

many applications. However, the physical phenomena modelled in this thesis required 

chronological modelling and subsequent application of the SMC procedure. 

2.3.2.1 Sequential Monte Carlo Simulation 

The Sequential Monte Carlo Simulation (SMCS) method is used to simulate power network 

operation when the chronological physical phenomena are of significant importance. In order 
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to capture the system states in chronological sequence two basic sampling techniques are 

used. These are the state duration and system state transition sampling. The most popular is 

the state duration technique and it is further discussed below [1]. 

A SMCS procedure is developed to simulate chronological phenomena such as wind 

generation, load curtailments and real time thermal ratings. Initially, the state duration 

sequence sampling technique samples the exponential probability density functions of the 

form 𝑒−𝜆𝑡 where λ is the failure rate. If the system is composed of ageing plants then Weibull 

distribution function can be used. The main steps of the state duration sampling technique 

are as follows: 

 All plants are assumed to be initially in the up state. 

 The time to failure (TTF) is calculated by sampling it from the cumulative distributuin 

function (1 − 𝑒−𝜆𝑡), that is, by equating it to the random number U with uniform 

distribution in the range [0,1]. This gives TTF as shown in equation (2-4) where λ is the 

failure rate of the plant: 

 
𝑇𝑇𝐹 = −

1

𝜆
ln(1 − 𝑈) (2-4) 

 Similarly, if a plant is a down state, its time to repair (TTR) is determined using (2-5): 

 𝑇𝑇𝑅 = −
1

𝜇
ln(1 − 𝑈) (2-5) 

where µ is the repair rate. 

 The above steps are repeated over the duration of the system’s mission time to create an 

array of systems states in a chronological manner. 

The main steps of the sequential Monte Carlo simulation procedure are illustratively shown 

in Figure 2-2. They are briefly described below: 
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Figure 2-2: Sequential Monte Carlo simulation flowchart 
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3. Apply power flow analysis to determine power flows and adequacy of the system. 
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6. Check the convergence of each index using the coefficient of variation (COV).  

7. Stop the simulation if COVs of all indices are less than a pre-specified value, 

typically ranging from 2% to 5%. Otherwise, set Y=Y+1 and go back to step No.2 

The main advantage of the SMCS is that it can be used to evaluate frequency and duration 

indices and it is mathematically simple to implement. The main disadvange is that it needs 

high computational time to converge especially when all chronological behaviours in a power 

system are modelled. Convergence criteria are described in section 2.3.2.3. 
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2.3.2.2 Non-sequential Monte Carlo Simulation 

In contrast to the SMCS the non-sequential Monte Carlo simulation (NSMCS) method does 

not consider the sequence of events and therefore the events are independent (i.e. not 

following a sequence). In particular, it assumes that a system state depends on the 

combination of all component states and therefore each component state can be determined 

by sampling the probability that the component appears to have in that state. The system state 

sampling technique in the NSMCS method considers each time point or system state 

independently of another and therefore cannot be used to record and evaluate frequency and 

duration indices. 

In general, a plant can reside in a number of discrete mutually exclusive states. In the case of 

a two-state representation, the probabilities of residing in the up and down states are the 

availability and unavailability, respectively. Random sampling in the NSMCS is achieved by 

generating a uniformly distributed random number U from the range (0, 1). This value is 

compared with the forced outage rate (FOR) of the component, as specified by (2-6): 

 
𝐹𝑂𝑅 =

𝜆

𝜆 + 𝜇
 (2-6) 

If U<FOR, then the unit is deemed to be in the down state; otherwise the unit is deemed to 

be available. A similar procedure can be applied if the considered unit has one derated state. 

For instance, assuming that the generating unit has three states (up, down and derated), the 

probabilities of being in the down and derated states are P_down and P_der respectively. 

Consequently a random number Ui in the range [0,1] can be used to determine the component 

state [1]: 

1. If Ui<P_down, then the generating unit is deemed to be in the down state, 

2. If P_down<Ui<P_down+P_der, then the generating unit is deemed to be in the derated 

state, 

3. If Ui>P_down+P_derated, then the unit is deemed to be in the up state. 

The implementation of the non-sequential technique is simple and is illustrated in Figure 2-3.  

Additionally, in non-sequential simulation load is represented by load levels, while in 
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sequential MC it is represented in a chronological order. In this thesis, for the non-sequential 

implementation the load curve is divided into 20 steps using clustering technique (see chapter 

5.1.4). The probability of each level was determined and the cumulative probability is 

calculated. For the selection of load level a random number in the interval [0, 1] is generated 

and compared with the cumulative probabilities of the load levels. 

 

Figure 2-3: Non-sequential Monte Carlo simulation flowchart 

The non-sequential MCS can be briefly described by the following steps: 

1. Set the ordinal number of the MC sample (Y).  
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3. Randomly sample the multistep load model based on the probabilities of each load level. 

4. Apply power flow analysis to determine power flows and adequacy of the system. 

5. If there is no violation of constraints, the simulation proceeds to the next load level step 

ls, otherwise this is counted as a loss of load state. 

6. If there are no more load level steps update the calculation of expected values indices and 

check the convergence of each index using the coefficient of variation (COV) and go to 

the next Monte Carlo simulation year Y. 

7. Stop the simulation if COV is less than a pre-specified value, typically ranging from 2% 

to 5%. Otherwise, set Y=Y+1 and go back to step 2. 

2.3.2.3 Convergence criteria 

Coefficient of Variation (COV) is widely used to measure convergence of indices estimated 

by means of Monte Carlo simulation [43]. It is defined in (2-7): 

 

𝐶𝑂𝑉 =
√𝑉𝑎𝑟(𝐸(𝐹(𝑥)))

𝐸(𝐹(𝑥))
 

 

(2-7) 

 

Var (E(F)) represents the variance of the estimated index and E(F) estimates the expected 

value of function F(x). Since Var(E(F))=Var(F)/Y where Y is the total number of iterations, 

equation  (2-7) can be rewritten as follows 

 

𝐶𝑂𝑉 =
√1
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Fi is the value of the test function at iteration i. Typically COV ranges from 2% to 5%. The 

COV of 3%, for instance, roughly means that the index being estimated carries the error of 

less than 3%. In other words COV can be interpreted as the upper bound of an index’s error. 

2.4 Indices for Adequacy Assessment 

 Reliability indices are the quantitative measures of systems performance from the 

perspective of system adequacy. These indices are expected statistical values that give a 

reasonable measure of future system performance. The composite system reliability indices 

can generally be classified into probability, frequency, duration and expectations indices. The 

probability indices measure how likely an event will occur. Frequency indices measure the 

expected rate of ocurrence of an event per unit of time. Duration indices measure the expected 

time that an event will last for. Expected indices are the averages of expected consequences 

of an event. Reliability indices are usually calculated for load points and the overall system. 

The following indices are the most commonly used in composite power system reliability 

analyses [43].  

 LOLP-Loss of Load Probability  

 𝐿𝑂𝐿𝑃 =∑𝑝𝑖
𝑖∈𝑆

 (2-9) 

where pi is the probability of system state i and S is the set of all system states associated 

with load curtailment. 

 ENLC-Expected Number of Load Curtailments (occ./yr) 

 𝐸𝑁𝐿𝐶 =∑𝐹𝑖
𝑖∈𝑆

 (2-10) 

where Fi is the system state frequency which can be calculated by (2-11). 

 𝐹𝑖 = 𝑝𝑖∑𝛿𝑘
𝑘∈𝑉

 
(2-11) 

where δk is the departure rate of the component corresponding to system state i and V is the 

set of all possible departure rates corresponding to state i .  
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 EDLC- Expected Duration of Load Curtailments (hr/yr) 

 𝐸𝐷𝐿𝐶 = 𝑃𝐿𝐶 × 8760 
(2-12) 

 EDNS-Expected Demand not Supplied (MW/year) 

 𝐸𝐷𝑁𝑆 =∑𝑃𝑐𝑖𝑝𝑖
𝑖∈𝑆

 
(2-13) 

where Pci is the load curtailment in system state i 

 EENS-Expected Energy not Supplied 

 
𝐸𝐸𝑁𝑆 =

∑ ∑ 𝑃𝑐(𝑡)𝑡∈𝑇𝑦∈𝑌
𝑌
⁄  (2-14) 

where Y is the total number of MCS years 

The basic reliability indices used in generating system adequacy assessment are Loss of Load 

Probability (LOLP), Expected Power Not Supplied (EPNS) and Expected Energy Not 

Supplied (EENS). The most commonly used reliability indices for the second level H2 are 

the EENS, LOLP and Expected Duration of Load Curtailment (EDLC), as shown in (2-14), 

(2-9), (2-12) respectively. Finally, for the third level H3, the most important indices are 

System Average Interruption Frequency Index (SAIFI), Customer Average Interruption 

Frequency Index (CAIFI) and System Average Interruption Duration Index (SAIDI) [1, 2]. 

2.5 Power System Analysis 

In power system reliability analysis, one of the main procedures is the identification of 

violated network constraints resulting in load shedding (failure state). In generation adequacy 

assessment or single area reliability assessment, this identification can be easily done through 

simple algebra; that is checking whether total generation capacity is less than load demand 

or not. On the contrary, composite system reliability evaluation requires an optimization tool 

called Optimal Power Flow (OPF) to perform this task. The OPF model can be based on AC 

power flow equations and it is called AC OPF algorithm. If it is based on DC power flow 

model it is called DC OPF algorithm; both algorithms are explained in the following sections. 

The main differences between the two algoriths are that AC OPF is able to give the 
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information about reactive power, voltages and power angles at buses. However, it takes 

longer time to solve, as AC OPF requires nonlinear programming methods. On the contrary, 

DC OPF is unable to evaluate voltages and reactive flows as it deals with active powers only. 

Despite this disadvantage, it is widely employed due to its computational speed and its ability 

to always converge. 

2.5.1 AC OPF Model 

The AC power flows in a transmission line which connects buses i-j are given by [46]. 

 
𝑃𝑖𝑗 = 𝑉𝑖

2𝑔𝑖𝑗 − 𝑉𝑖𝑉𝑗[𝑔𝑖𝑗 cos(휃𝑖 − 휃𝑗) + 𝑏𝑖𝑗 sin(휃𝑖 − 휃𝑗)] 

 
(2-15) 

 𝑄𝑖𝑗 = −𝑉𝑖
2𝑏𝑖𝑗 − 𝑉𝑖𝑉𝑗[𝑔𝑖𝑗 sin(휃𝑖 − 휃𝑗) − 𝑏𝑖𝑗 cos(휃𝑖 − 휃𝑗)] (2-16) 

where Pij and Qij are, respectively, the real and reactive power flows in line i,j, Vi and Vj are 

the voltages at buses i and j respectively, θi and θj are the voltage angles at buses i and j 

respectively, gij is the line conductance and bij the line susceptance. 

In the developed studies, AC OPF is applied using a composite objective function that 

consists of two terms: the first is minimization of the total load curtailment, whilst the second 

is minimization of the total generating cost. Its mathematical formulation is: 

 𝑚𝑖𝑛 {𝑧 =∑𝐶𝐺𝑗 ∙ 𝑃𝑔𝑗
𝑗

+∑𝑉𝑂𝐿𝐿𝑖 ∙ 𝑃𝑐𝑖
𝑖

} 
(2-17) 

 

Subject to 

 𝑃𝑔𝑖 − (𝑃𝑑𝑖 − 𝑃𝑐𝑖) −∑ 𝑃𝑖𝑗
𝑖𝑗

= 0 (2-18) 

 𝑄𝐺𝑖 − (𝑄𝐷𝑖 − 𝑡𝑔(𝜑𝑖) ∙ 𝑃𝑐𝑖) −∑ 𝑄𝑖𝑗 = 0
𝑖𝑗

 (2-19) 

 −𝐼𝑖𝑗
𝑚𝑎𝑥≤𝐼𝑖𝑗 ≤ 𝐼𝑖𝑗

𝑚𝑎𝑥  (2-20) 
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 𝑃𝑔𝑗
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑗 ≤ 𝑃𝑔𝑗

𝑚𝑎𝑥 (2-21) 

 𝑄𝑔𝑗
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑗 ≤ 𝑄𝑔𝑗

𝑚𝑎𝑥 (2-22) 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉
𝑚𝑎𝑥  (2-23) 

 0 ≤ 𝑃𝑐𝑖 ≤ 𝑃𝑑𝑖  (2-24) 

where Cgj is marginal cost of generation Pgj at node j, VOLLi is value of the lost load Pci at 

node i, 𝑃𝐷𝑖 , 𝑄𝐷𝑖 and 𝜑𝑖 are active load, reactive load and load angle at node i, 𝑃𝑖𝑗(∙), 𝑄𝑖𝑗(∙) 

are active and reactive powers in branch ij, 𝑄𝑔𝑖 is reactive power production of a generator 

at node I and Iij is current flow in branch ij. The lower and upper limit values are denoted by 

superscripts min and max, respectively. 

Equations (2-18) and (2-19) define active and reactive power balances at all nodes. A constant 

power factor is assumed for each nodal load, giving reactive power curtailment 𝑡𝑔(𝜑𝑖) ∙ 𝑃𝑐𝑖 

in (2-19). Active 𝑃𝑖𝑗(∙), reactive power flows 𝑄𝑖𝑗(∙) and current 𝐼𝑖𝑗(∙) in branch ij are 

functions of terminal voltage magnitudes and angles. 

Thermal constraints of all branches are expressed by inequalities (2-20), in which either STR 

or RTTR is used for OHL. Voltage constraints are given by (2-23), whilst limitations of 

dispatchable generation are modelled with (2-21) and (2-22). Limits on load curtailments are 

shown in (2-24). 

2.5.2 DC OPF Model 

AC power flow algorithms have high calculation precision but does not have fast speed. In 

system planning or power market analysis, the requirement of calculation precision is not 

very high, but the requirement of calculation speed is of most concern, especially for a large-

scale power system. The DC power flow is a simplification of AC power flow, which is also 

called MW-only method. DC power flow requires voltage maginitutes to be equal to 1pu, 



Chapter 2 - Power System Reliability Analysis 

Page | 56 

 

ignore the resistance of the branch (only branch reactance xij is considered) and the angle 

difference between the two ends of the branch is very small so that cosθij=1 and sinθij=θij. 

The general DC OPF used in the developed studies is described by the following equations: 

 𝑚𝑖𝑛 {𝑧 =∑𝐶𝑔𝑗 ∙ 𝑃𝑔𝑗
𝑗

+∑𝑉𝑂𝐿𝐿𝑖 ∙ 𝑃𝑐𝑖
𝑖

} (2-25) 

 Subject to:  

 𝑃𝐺𝑖 − 𝑃𝑑𝑖 − 𝐵𝑖휃 = 0 (2-26) 

 𝑃𝑓 = 𝐻휃 (2-27) 

 −𝑃𝑖𝑗
𝑚𝑎𝑥≤𝑃𝑓 ≤ 𝑃𝑖𝑗

𝑚𝑎𝑥 (2-28) 

 −𝑃𝑔
𝑚𝑖𝑛≤𝑃𝑓 ≤ 𝑃𝑔

𝑚𝑎𝑥 (2-29) 

Using DC OPF, constraints (2-26) represent nodal power balance equations, which also 

include potential contingencies within the system matrix B. Constraints (2-27) express the 

branch flows in terms of the nodal phase angles, while constraints (2-28) enforce the 

corresponding branch flow capacity limits. Finally, constraints (2-29) set the generation 

limits. 

2.6 Conclusions 

This chapter described the assessment techniques of power system reliability analysis. 

Reliability adequacy studies can evaluate better network operation states, since they can 

consider all the possible uncertainties (load, generation, transmission lines, weather, etc.) and 

thus can contribute to more objective decisions. Probabilistic studies are classified as state 

enumeration and simulation techniques. A comparison between the two techniques was given 

to show the capabilities of both techniques and the limitations of the state enumeration 

technique are highlighted. Simulation methods include sequential and non-sequential Monte 

Carlo simulations. A detailed algorithm of both types and how they are modeled was given. 
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There are two important differences between sequential and non sequential approaches. 

Failure effects are studied in a chronological time order in sequential simulation, whereas in 

non-sequential the availability or unavailability of a component is not related to the previous 

or next MC trial. The second difference is associated with the load model. In sequential MC 

approach the annual load curve is used with the hourly granularity, whilst a multi-step load 

curve is usually applied in the non-sequential procedure. The chapter also provided a list of 

the most commonly used indices in composite power system reliability assessment. 
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Solutions in Energy Systems 

 

 

3.1 Demand Response literature review 

In order to meet the security criteria, the system operators usually rely on the available 

transmission and generation capacities, as well as ancillary services provided by generators. 

In such a system, consumers behave in a passive way as: 1) There is no direct communication 

between the system operator and consumers; and 2) Consumers are not equipped with smart 

devices, which can change consumption promptly. 

In the future power system, however, consumers will play an important role in improving the 

security and reliability of the system. The idea is to provide smart home energy management 

systems to consumers, and on a broader scale, to create a smart grid so that consumers will 

become more alert to the energy price and power system status. In such a system, consumers 

are very likely to change their consumption pattern based on the signals, which they receive 

from system operators. Changes in end-user demand in response to the electricity market 

signals or network operators’ signals are defined as demand response programs. 

In [47] demand response programs are categorised into Incentive Based and Price Based 

programs (IBP & PBP) as shown in Figure 3-1. Under an incentive based program the 

customer might provide an ancillary service - usually in the form of load curtailment - at a 
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time when the network experiences a security problem. A contract between the system 

operator and the customers defines such services, which includes level of load curtailment, 

service payments and penalties for not responding at the required time. In the case of a long 

term contract, customers bid for load curtailment in the electricity market and as a result 

market operators have more flexibility for balancing the system or dealing with possible 

outages. 

In a price based demand response program, consumers receive a dynamic energy price rather 

than a flat tariff. Being updated on the energy price for any market balancing period, 

consumers are very likely to shift some loads to the times when the energy price is lower. 

One of the main objectives of the price-based demand response program is to have a rather 

flat daily load profile. In this way, some of the investments, which are made to maintain the 

reliability of supply during peak hours can be deffered or even cancelled. Therefore, as an 

alternative to transmission expansion, consumers can be encouraged to either change their 

consumption patterns or participate in other types of demand response. 

An incentive based demand response program is investigated in this thesis for a day ahead 

planning with the aim to improve network reliability and maximize financial incentives for 

the customers. The whole analysis is applied on the transmission level; demand response 

applications for different network scales, load types and network conditions are discussed 

next and developed in Chapter 4.2. 
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Figure 3-1: Demand Response Programs classified in different categories [47] 

 

The role of Transmission System Operator (TSO) is to maintain the transmission system and 

to make sure that the system is run within operational standards and limits by balancing 

demand and supply at all times. Electricity is traded from several years in advance up to 1 

month before physical delivery through forward contracts that are bi-lateral or over-the-

counter via a broker. From 1 month prior to delivery up to Gate Closure, electricity is traded 

on the Power Exchange (PEX), ran by APX, or over-the-counter through a broker, where 

participants can continusously trade their positions before giving their Final Physical 

Notification to National Grid. The day-ahead planning of generation in the GB is hence done 

on the PEX, one day prior to real-time delivery. Under the Balancing Settlement Code, 

participants are required to submit an Initial Physical Notification at 11am at the day-ahead 

stage and their Final Physical Notification at Gate Closure. After Gate Closure, National Grid 

is responsible for matching system supply and demand up to the point of delivery through 

the Balancing Mechanism (BM), which typically accounts for approximately 2% of any given 

day’s electricity volume [48]. In the wholesale market, Elexon in the UK is responsible for 

calculating the imbalance volume and imbalance price if actual volumes do not match the 

expected production or consumption, and make sure that any money paid for imbalances are 
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settled [49]. In order to further improve the security of the power system, in this thesis 

demand reduction strategies are applied during peak hours when network contingencies may 

occur. This resulted in savings sufficient to compensate the supply cost associated with load 

recovery at off-peak hours. Therefore, it is necessary to evaluate the impact of both load 

reduction and load recovery in a probabilistic framework.  

DR programs can be applied to various company sectors such as transmission, distribution 

and retail. Yet DR has been mainly studied for distribution systems (DS) [50], [51] and partly 

for the transmission systems [52], [53], whereas little research has been conducted in a retail 

sector [54][55]. The developed DR scheduling focuses on a day-ahead planning of a 

transmission network considering all customers across the whole power system.  

The integration of DSM in the TS operation and planning process has become a topic of 

interest over the last twenty years. At present, only industrial loads are controlled by TSO in 

system emergencies. However, if the smart metering is able to report the potential demand 

response of the domestic customer sector ahead of real-time operation, the TSO could provide 

various actions, such as central generation rescheduling, full deployment of non-

reschedulable generation, etc. [56]. As a result, knowing the demand response on a system 

level, TSO can minimize the cost of consumer’s electricity by optimizing their operating 

actions. In this regard, TSO can also affect the most economic load recovery for all loads, 

which participated in demand response. Examining both the impact of load reduction and 

load recovery is important for demand response scheduling; a literature review of demand 

response based on load-types, sizes as well as network contingency levels is discussed next. 

DR is dependent on load-types, since consumption (and recovery) patterns are different for 

each customer type. This involves shedding and recovering loads specific to the type of 

customer (i.e. residential, industrial, large users and commercials), or to specific appliances. 

Domestic and small commercial loads are studied in [55][57][58] but the research fails to 

assess how critical each customer type is at specific  network load point in terms of number 

and duration of interruptions. 

Load-size DR models put particular focus on the load recovery amount given that the amount 

of load recovery may not necessarily be equal to the amount of load reduction [59]. No study 
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has yet assessed the effect of the duration of planned or forced outages on the energy 

reduction or payback for different consumer types, except in [60]. However, research in [60] 

only refers to different industrial load recovery shapes following an outage, making the 

generalization for other load types questionable. Examining different sizes and shapes of both 

load reduction and recovery is thus essential for a complete and accurate network assessment. 

DR can also be applied following a network contingency [61][62]. While customers reduce 

their consumption in system emergencies, when high nodal prices are expected, the effect of 

load recovery is ignored [61][62]. DR savings for TSOs are accounted for in [9] using 

enumeration techniques, as opposed to Monte-Carlo Simulations, and thus fail to include the 

whole set of contingencies a network might incur [20]. Finally, instead of applying DR every 

time a contingency occurs, as in [61][62], which may lead to adverse effects for the TSO, DR 

should be applied only when the reliability is improved and when savings are higher than the 

expected cost of paybacks. 

In this thesis, essential features of the Demand Response scheduling are as follows: 

 Optimal nodal load reductions are calculated using the optimum power flow model, and 

are then dissagregated into voluntary and involuntary components. Voluntary component 

represents the amount of DR at a particular node, which has been agreed between the 

customer and the TSO on a contractual basis. 

 Different load recovery profiles for customer types are considered within ‘payback 

periods’ and they are initiated when the load customer’s revenue is highest. 

 The whole modelling is implemented from the load customer’s perspective to maximise 

their revenues. 

 The analysis is applied in a probabilistic framework and hence the network performance 

improvements are quantified. 

 Financial risk measures are used to determine the economical potential of applying 

Demand Response. 
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3.2 Thermal Ratings literature review 

The current planning and operational practice considers constant thermal rating under normal 

conditions for a transmission line assuming pessimistic weather conditions [63]. Based on 

steady state conductor temperature, CIGRE proposed a widely used method for thermal rating 

calculation [64]. Nonetheless, it has proven to be almost equivalent to the IEEE method [65]. 

For most practical transmission line design and operation applications, both methods can be 

considered equivalent and the difference in ampacity results are generally not significant, 

especially considering the precision of most environmental input parameters. For some less 

typical applications such as high wind speed and/or wind speed calculation when wind 

direction is parallel to the conductor axis, users of these standards should be aware of the 

variations in the calculated ratings (up to 8.5% in one particular situation examined). 

Thermal rating of transmission lines depends on the weather conditions and therefore it 

changes as these conditions change with time [66]. According to the method proposed in 

[67], a maximum allowable conductor temperature is selected and thus the corresponding 

permissible current can be derived. In this calculation, some assumptions about the weather 

conditions and the position of the sun are required. In most deterministic approaches, the 

worst case scenario is considered using ambient temperature Ta=40oC, wind speed 0.61-

1.53m/sec, solar radiation 890-1100W/m2, emissivity 0.1-0.5 and absorptivity 0.1-0.6 [67]. 

Besides, several deterministic methods assume wind direction perpendicular to the 

conductor. This assumption overestimates the thermal rating as it does not consider the case 

of conductor overheating when the wind is blowing parallel to the conductor axis. It is 

demonstrated in [68] that the conductor cooling due to  wind parallel with the conductor axis 

is approximately 40% of that when the wind is perpendicular to the axis. In addition, although 

the values of the relevant parameters are chosen in such a way to provide safety margins, 

there is still a small probability that the real temperatures exceed 40oC. Thus, it can be 

concluded that even conservative deterministic methods can lead to inappropriate thermal 

ratings and hence conductor overheating and aging.  

Some other factors should also be considered when thermal raings of OHLs are calculated 

based on OHL physical properties, e.g. conductor sag, loss of strength and fittings. In [69], 
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the impact of line overloading above thermal rating on the conductor chemical and physical 

properties is assessed and a composite risk model is derived based on this impact. In [70], the 

main factors which must be considered when setting the thermal ratings are conductor sag, 

conductor loss of strength due to annealing and limitations of the conductor fittings. It has 

been shown that the conductor fittings can be ignored if they are appropriately designed [71]. 

For that reason, the method proposed in [69] considers only conductors sag and loss of 

strength. In this model the conductor strength decreases up to the point when it becomes equal 

to the tension load. After this point, the conductor breaks which identifies the end of its life. 

Assuming that, initially, the conductor expected lifetime is tinit, this time decreases as the 

conductor operating temperature becomes higher than the thermal rating. The time reduction 

is caused by the conductor annealing, which increases the rate of conductor loss of strength. 

However, the method described in [69] does not consider the benefits of increasing the 

transmission line thermal rating. In other words, although the risk levels associated with such 

actions increase, the load curtailments decrease and therefore, there are many economic 

incentives for increasing the thermal capacity of lines. Consequently, a reliability analysis 

should be performed with higher thermal ratings in order to assess improvement in system 

reliability indices. 

Assuming that mechanical and physical characteristics of OHLs are within limits, weather 

data models are investigated to precisely calculate thermal ratings. In [72], historical weather 

condition measurements are used for a statistical analysis and thereby for the calculation of 

thermal ratings. For instance, when the measurements are obtained by the weather stations or 

monitoring devices the probability distribution function (PDF) of the ambient temperature 

and the wind speed can be defined for the particular geographical region. Since the 

parameters of the PDF are specified, the sampling result can be plugged into the IEEE thermal 

model and the maximum ampacity of the conductor can be calculated. The probabilistic 

methods also include some assumptions of other relevant parameters, such as solar 

irradiation, which are usually selected in a deterministic way. Acquiring data from PDFs can 

be applicable only to non-chronological studies. Besides, producing weather PDFs on a 

yearly basis is less accurate than considering smaller chronological intervals unless the data 

show the same pattern thoughout the entire year. 
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In [73], a probabilistic method for seasonal thermal rating calculation is proposed. According 

to this method, the sets of weather condition measurements should be divided into subsets 

depending on the season in the year. Each subset is analyzed separately and different thermal 

ratings are calculated for each period of time. As a result, the thermal ratings are closer to the 

actual ampacity of the lines and higher utilization of the network is achieved. However, these 

methods make use of static thermal ratings, which are set in advance and are not affected by 

the operating conditions of the lines. 

In [74], the advantages of dynamic thermal ratings over the static thermal ratings are 

discussed. These ratings are based on real time measurements and therefore they are close to 

actual ampacity of the lines. This can significantly increase the utilization of the network and 

enhance system reliability. Moreover, the changing ratings are continuously monitored and 

reported to the system operator providing warnings about potential network congestions. The 

biggest disadvantage of dynamic thermal ratings is the expensive monitoring devices, which 

are required to provide real time measurements. 

Conductor temperature measurements are used in [75] to calculate dynamic thermal ratings 

of OHLs. Conductor’s temperature measurements of an 115KVA transmission line 

demonstrated that 80% of the time in December the dynamic thermal rating is 15% higher 

than the fixed thermal rating. In [76], it is proposed to use a dynamic cable rating (DCR)  

system which has been deployed to alleviate the congestion in a cable connected to a power 

plant in the south of Texas. However, the proposed DCR system is also used to benefit system 

operator’s position in the energy market. In particular, the weather forecast is used to estimate 

the available ampacity and so the real time market price is analyzed in order to achieve the 

best bidding strategy in the market.  

RTTR applications have also contributed to increase wind energy utilization. In [77], 

probabilistic analysis for RTTR application is proposed to facilitate wind integration in 

Humber Estuary region. This study addresses the challenging task for National Grid to 

accommodate the imminent wind powers. This is the consequence of the lack of transmission 

capacity, which forces the wind generation to spill excess wind through throttling of the 

turbines. Probabilistic models of the wind power and dynamic thermal ratings are proposed 

to calculate system benefits. The models proposed, based on actual meteorological data of 
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the region and thus the seasonal correlations between wind power and thermal ratings of 

transmission are also calculated. MCS was used for the analysis taking into consideration the 

relevant probability distributions functions and the corresponding correlations. After having 

applied sensitivity analysis, the transmission lines on the top of priority for real-time thermal 

rating monitoring were tracked and the economic benefits from using RTTR were calculated. 

However, the whole analysis was conducted without taking into consideration how the 

conductor temperature affects the thermal ratings, as it was assumed to be fixed. Also, the 

analysis doesn’t consider the impact of RTTR on wind spillage values as well as on the loss 

of load in the Estuary region. Similarly, in [78], a statistical model is introduced for RTTR 

of OHL in a wind intensive area. More specifically, laboratory tests were conducted with 

maximum, medium and minimum wind speed measurements using the various thermal time 

constants of a particular conductor. The results of these tests were used as a guide for 

measurement rate of weather parameters. According to that, 5 minutes measurement step was 

chosen as the best time interval to include the transient behavior of the conductor temperature 

in the RTTR model. Monitoring system was placed in two 110kV single circuits and the 

measurements (weather conditions, output conductor temperature and load parameters) 

plugged into the model, which resulted in an estimated conductor temperature for the 

particular circuits with an average error of 0.5 degrees. It should be mentioned that the 

advantage of this model is that it predicts the conductor temperature without taking into 

account the physical parameters of the conductor. However, the accuracy of the model is 

valid for low load levels. New measurements should be carried out for high load (high 

conductor temperature) to validate the accuracy of the model, as well as to find the impact 

on the reliability of the local network examined.  

In [79], a probabilistic technique in conjunction with reliability analysis is proposed to 

calculate the thermal rating. More specifically, the hourly values of ambient temperature, 

wind speed and wind direction are measured for a 144hour period. Then the PDF of each 

ambient condition is identified, whereas the maximum allowable conductor temperature and 

the solar heat gain are selected deterministically. Using all these values and running 

sequential MCS, the probability distribution function of the conductor thermal rating can be 

derived for the next hour. Considering all the previous methods, a maximum allowable 

conductor temperature is assumed in such a way that the risk of thermal rating violations is 
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kept at minimum. None of these methods, however, considers the consequences of a thermal 

rating violation related to the conductor integrity. 

To summarise, it is proposed in this thesis to use real themal ratings of OHLs in a probabilistic 

framework in order to achieve the following goals: 

1) Calculations of the real conductor temperatures in a sequential analysis and capture the 

impact of this on real thermal ratings as well as on network reliability. 

2) Calculations of the real conductor resistances in a sequential analysis and capture the 

impact of this on real thermal ratings as well as on network reliability. 

3) Seasonal thermal ratings are produced using weather PDF functions obtained from 

weather measurement subsets depending of the season of the year. 

4) Increase network operation flexibility to undertake the most economical actions in a 

probabilistic analysis by connecting RTTR with cheaper generation units. 

5) Quantify the true potential of demand response when real time thermal ratings of OHLs’ 

are calculated. 

3.3 FACTS literature review 

In a flexible network, the deployment of FACT devices can be done for enhancing the 

reliability of the network and mitigating the post fault violation of network constraints. In 

this way the flexibility of the system to unforeseen uncertainties can be boosted. Since 

construction of FACTS devices is an alternative to network reinforcement, it is necessary to 

compare the cost of network expansion with the cost of deploying these flexible options.  

A number of FACTS characteristics are listed below [80]: 

 High-gain type controllers based on high-speed switching, 

 Improve steady state system performance, that increase transmission capacity and control 

transmission flows, as well as improve voltage profile across the system, 

 Improve system transient and dynamic stability by damping system oscillations, 

 Reduce financial costs and environmental impact associated with building new 

transmission lines, 
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 They are highly reliable devices and require minimal maintenance. 

Three different FACTS can be chosen to control the power flows and voltages in a network. 

The first device is the Thyristor-Controlled Series capacitor, TCSC [29][81], which directly 

alters the transmission line reactance. The second is known as the Thyristor-Controlled 

Voltage regulator, TCVR [82][83] and controls the magnitude of the voltage. The third is 

Thyristor-Controlled Phase Shifting Transformer, TCPST, which modifies the phase angle 

and active power flows [84]. 

Since changes in active power flow lead to a change in the reactive power demand in the 

entire network, whose variations may prove difficult to handle using the distant generators, 

a Static Var Compensator, SVC, is added to the three already selected componenets. SVC is 

mainly used to improve the voltage profile in the network. The influence of FACTS on the 

power transmitted on a line between two buses i and k, is presented in Figure 3-2. The active 

power flow Pik is influenced by phase angle difference δik and reactance xik, whilst reactive 

power flow is related to the difference in nodal voltages (Vi-Vk) and reactance xik. 

Consequently, Figure 3-2 shows the active power flow equation between two buses i and k 

and its variables that can be controlled by each FACTS devices.  

 

Figure 3-2: Impacts of FACTS devices on the variables involved in the active power flow equation 

There are many FACTS applications but UPFC are probably the most versatile FACT 

devices, because they can control and optimize the active and reactive power flows in the 

transmission systems. UPFC is comprised of the static synchronous compensator 

(STATCOM) and the static synchronous series compensator (SSSC). 
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A literature review of different models of FACTS as well as detailed FACTS physical 

modellings and their impact on the reliability assessment of a power system is given in the 

following paragraphs. 

UPFC is initially employed in [85] for reliability evaluation of composite power systems. In 

this study the reliability model of UPFC is represented by a two state Markov model and the 

effect of this is assessed on both IEEE RTS system and Roy Billington Test System (RBTS) 

system. It is shown that in the IEEE RTS system the FACT device has almost no effect on 

the system reliability, whereas it slightly improves the reliability of the RBTS system. This 

is because both systems are strong and reliable transmission systems. However, it is indicated 

that in the event of load growth the FACTS can significantly improve transmission reliability. 

In [34], UPFC is included in the reliability analysis of the power system. A simple two-bus 

network is utilized as a demonstrative system, and reliability indices are calculated. The 

UPFC device is modelled as a two state component in the system and its outage would not 

affect the connected transmission line. The results show that the reliability indices decreased 

considerably when the UPFC device was applied. This means that the application of UPFC 

considerably improved the reliability of the system.  

At the same time, the impact of UPFC on power system reliability is studied in [34] and it is 

shown that UPFC is not sufficient due to the simple two bus system studied as well as 

neglecting the optimal UPFC control mode and settings. In [86] the physical model of the 

UPFC device is developed. Thus, the optimal mode and settings can be easily selected and 

so the reliability of the system will be improved to a greater extent. The reliability indices are 

calculated including the expected unserved energy cost (EUEC) and the expected load 

curtailment (ELC). The proposed methodology is applied to a nine-bus system (Western 

System Coordinating Council-WSCC) and the results showed that UPFC control mode has a 

significant effect on post-contingency conditions. Also, the results of reliability analysis 

proved that the reliability of the power system significantly increased because of use of the 

UPFC. 

A comprehensive reliability model of a 16-state distributed static series compensators 

(DSSCs) is discussed in [87]. The best placement scenario of DSSC is determined based on 
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EENS and EIC reliability indices on the IEEE RTS 24 bus system. In particular, the 

deployment of DSSCs decreases EENS by 12.32% and EIC by 14.56%. Comparative studies 

showed that increased value of communication link failure rate and repair time make EENS 

index higher than without communication link failure.  

A comparative study utilizing three types of FACTS devises is done in [88] for reliability 

evaluation of power systems: SVC, STATCOM and thyristor controlled series compensator 

(TCSC). More particularly, a modified four state-model is used to model the SVC, a series 

reliability model is used for STATCOM, both a two state and three state models are used for 

TCSC. The central control unit of all FACTS is presented by a two state model. 

Consequently, sequential Monte Carlo simulation is applied for the reliability analysis and 

the results indicate when the reliability improvement outweighs the increase in investment 

and O&M costs. The study concludes with the comparison between traditional reinforcement 

and corrective control with FACTS; the FACT devices are undoubtedly preferable in terms 

of reliability and economic improvements. 

Beside the impact of FACTS on system reliability, the benefits of FACTS on power losses, 

operational cost and other features have been investigated. There are several approaches for 

optimal placement and sizing of FACTS reported in the literature. The multiobjective 

evolutionary algorithm has been applied to optimally locate the UPFC [89] and the thyristor-

controlled phase-shifting transformer (TCPST) in order to minimize real power losses [90]. 

Particle swarm optimization (PSO) technique is used to find the optimal location of TCSC, 

SVC and UPFC to improve system loadability [91]. Similarly, evolution strategies are used 

in [92] to optimally locate FACTS in order to determine maximum increase of system 

loadability while keeping the power network secure. The optimal placement of FACTS, 

whilst considering total fuel cost is investigated in [33]. The best location of UPFC to 

minimize the generation cost and the UPFC investment cost was found using steady state 

injection model of UPFC, continuation power flow technique and OPF technique [93]. 

Multiple UPFC optimum placement is developed in [94] investigating a centralized optimal 

control scheme using evolutionary programming algorithm to provide best voltage profile. 
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In summary, no research was done so far to investigate the impact of FACTS on the following 

aspects: 

 Determine best FACTS locations based on ranking lists of nodes and branches most 

appropriate for connection using load and wind curtailments as the objectives, 

 Optimum FACTS operation using probabilistic indices such as expected energy not 

supplied (EENS) and expected wind spillage index (ESP). 

 Quantify network reliability improvement when optimally located FACTS are involed in 

system’s operation. 

3.4 Corrective Scheduling for Renewable Energy Sources 

literature review 

Connection of wind energy sources has continuously grown over the last decade, giving 

saturated levels and deferral to new wind connections in some countries [95][96]. The size 

of wind capacity that can be accommodated is usually driven by network thermal and voltage 

constraints, fault ride-through and stability capabilities, required spinning reserve, etc. 

[37][97][98][99]. Once wind units are connected, system operator needs to consider both 

network security and contractual obligations with generators; the latter is usually expressed 

in terms of maximum allowable wind curtailment or ’spillage’ [37][100]. To this end, the 

operator can apply various controls to keep the wind spillage under the prescribed level and 

even increase the deployable wind generation. 

Different aspects of wind energy integration have been investigated in [97] - [101]. Hydro-

pumped storage is used in [97] to increase deployed wind power during frequency 

disturbances, whilst studies [100][24][25] use energy storage to consume surplus wind 

production. Research in [98] determines how increased wind integration affects the system 

indices, stochastic unit commitment with wind generation is introduced in [99], whilst 

advanced wind forecasting techniques are applied in [102]. Maximization of connected wind 

sources to meet deterministic security criteria is done in [103][104]; required wind spillages 

are determined for different wind connection levels, but they are not optimized. Besides, it 
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was not recognised that maximum wind capacities can be found from the contracted wind 

spillages using a probabilistic approach only. Reliability studies, which include probabilistic 

wind modelling, usually do not include wind spillages [105][106][101]. The applied 

approaches did not consider that load and wind curtailments should be jointly treated. 

Integration of even higher levels of wind generation can be achieved through network 

reinforcements [101][39][107]; although the approach in [39] considers wind curtailment 

cost term, it fails to recognise stochastic nature of network component and unit failures.  

The optimal power flow (OPF) analysis can be used to to minimize the levels of wind spillage 

and thus increase the connections of renewables of different type. The corrective actions used 

in an OPF can be scheduling of flexible generation units, application of dynamic thermal 

ratings of overheal lines or cables, application of energy storage, voltage or active and 

reactive power regulation using FACTS devices and demand response scheduling. A 

generation scheduling model is used in [108] to maximize wind and solar generation outputs. 

A Lagrangian relaxation method and particle swarm optimization methods are used to solve 

the problem of maximum wind integration. Similarly, an N-1 secure day-ahead dispatch of 

generation units is proposed in [109] to optimally deploy wind generation. However, it has 

to be pointed out that it is necessary not only to decrease the levels of wind curtailment, but 

also to reduce the frequency and duration of wind curtailments. For example, Figure 3-3 

shows wind spillage probability values for the whole of the UK [110]. It is shown that the 

highest probability of 0.7 has wind curtailment up to 100 MW, whereas probability less than 

0.12 is recorded for highest magnitudes from 200-1500MW. Although information is given 

about the magnitude of wind curtailments, there is no information about duration and 

frequency of wind spillages subject to different network outage durations. For this reason, it 

is essential to carry out a probabilistic - sequential analysis in order to identify the expected 

values of wind spillage magnitudes, durations and frequency whilst taking into account all 

possible network uncertainties.    
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Figure 3-3: Wind Power curtailments in the UK - National Grid [110] 

The following operational and control procedures can be used to allow for further wind 

deployment, while maintaining network operation within satisfactory voltage and thermal 

limits: 

1) Demand side management (DSM) and demand side response (DR): 

a) Apply DSM/DR at the receiving end of (an) overloaded line(s), or at nodes whose 

voltage is below a lower limit, 

b) Apply DSM/DR to the loads whose contribution to mitigating an overload or under-

voltage is highest, 

c) Apply optimum power flow (OPF) in the form of the minimum load curtailment 

(MLC) model, whose objective is minimisation of weighted load curtailments (i.e. 

DSM/DR loads with different priorities), subject to thermal and voltage limits being 

satisfied. 

2) Energy storage: 

a) Reduce asset overload, particularly during network contingencies (discharging), 

b) Providing voltage support by reactive current injection (discharging), 
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c) Absorb high levels of DG generation and resolve potential overvoltage problems 

(charging), 

d) Shift load to ensure network security, 

e) Phase balancing. 

3) Generation constraint management: 

a) Reduce generation at a node with excessive voltage or at the sending terminal node 

of an overloaded circuit/transformer, 

b) Reduce generation at all nodes which contribute most to the mitigatation of the 

considered thermal or voltage problem, 

c) Apply OPF model in which ‘production cost’ of variable DG is minimised. 

Negative weights are associated with the (linear) term of variable DG ‘production 

costs’, so that generation of variable DG is in fact maximised within pre-specified 

limits. If all variable DG are of equal importance (i.e. there is no priority order in 

generation constraint management), all weights can be set to -1. 

4) Dynamic network reconfiguration (refers to moving the Normal Open Points (NOP) 

across the network to satisfy preselected security or economic based criteria) using the 

following prioritised objectives, 

a) Optimise the economic criterion if all loads can be supplied, with no generation 

curtailment and all operating constraints satisfied. 

b) If the generation or load curtailment is required, use contracted variable DG or 

DSM/DR. Minimise variable DG curtailment or amount of DSM/DR if the (rest of) 

load can be supplied within operating constraints. 

c) Where operational constraints cannot be satisfied, minimise (squared) violation of 

network constraints (i.e. voltage and thermal limits) so that the load is supplied and 

DG is within specified limits; variable DG curtailment and DSM/DR load shedding 

can be taken into account. 

d) Where the ‘fixed’ load or DG cannot be delivered, maximise delivered load or DG 

production while meeting some of the operational constraints. 

5) Application of dynamic circuit and transformer ratings will consider, 
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a) Thermal overload elimination by increasing network capacity. 

b) Improve the security of the system by keeping the network within dynamic 

thermal limits. 

c) Facilitate increased connection of wind generation.  
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 Deployed Models of Low 

Carbon Technologies and Smart 

Solutions 

Summary: 

This chapter provides models of smart solutions used to mitigate operational and planning 

issues incurred by connection of low carbon technologies, as well as to improve performance 

of the power networks. Models of new low carbon technologies (LCTs), such as renewable 

sources (wind), are presented in this chapter. Then new “smart” solutions are developed and 

implemented when there are operational and planning issues (e.g. violation of operational 

limits, planning standards, etc). The considered “smart” solutions are demand side 

management (DSM), real time thermal ratings (RTTR), FACTS and corrective scheduling. 

Each smart technology methodology is developed in the context of the probabilistic approach 

used for reliability analysis. All assumptions and considerations used for the development of 

the reliability-based models are presented alongside appropriate justifications. 

4.1 Wind Energy Deployment 

4.1.1 Overview of the methodology 

The objectives of the proposed probabilistic approach for day-ahead planning of systems with 

large penetration of wind are threefold: a) Maximize deployed wind generation to meet 

contractual obligations; b) Increase overall system reliability; and c) Reduce system 

operation cost including costs of non-delivered load and curtailed wind generation. These 

objectives are achieved by following means: a) Reschedule dispatchable generation; b) 
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Curtail load and wind generation; c) Deploy SVC and TCSC devices; and d) Deploy RTTR 

on overhead lines (OHL). The developed models of the last two controls (FACTS 

(SVC&TCSC) and RTTR) are described in more detail in Chapter 7. 

The main building blocks of the optimum wind deployment are: 

1. Connection of wind generation using industry criteria. 

2. Prioritization of wind curtailments by allocating the ‘cost coefficients’ to wind 

curtailments in order to get the optimum wind energy deployment. 

These building blocks are described in the next section, whilst the corresponding simulation 

results are presented in Chapter 7. 

4.1.2 Connection of wind generation 

To speed-up connection process, utilities often provide developers with maximum 

permissible generation capacities that can be connected at system nodes. The calculation can 

be done using either formula-based approach [111], or more complex iterative load-flow 

method [112]. The non-firm connection denotes calculations based on the intact network, 

whilst firm connection implies single circuit outages [103][104]. 

The formula based approach, also applied by the French transmission system operator RTE 

[111], makes use of the following assumptions: a) First Kirchhoff’s Law is used; b) All lines 

originating from node i are fully loaded; and c) Most onerous operating regime is considered. 

The maximum connection capacity 𝑃𝑊𝐺𝑖
𝑚𝑎𝑥 of wind generation at node i is: 

 𝑃𝑊𝐺𝑖
𝑚𝑎𝑥 = (𝑃𝐷𝑖

𝑚𝑖𝑛 + 𝑝𝑓 ∙∑𝑆𝑙
𝑆𝑇𝑅 −

𝑙

𝑃𝐺𝑖
𝑢𝑝)/𝛽 (4-1) 

where 𝑃𝐷𝑖
𝑚𝑖𝑛 is the minimum load at node i, pf is the power factor, 𝑆𝑙

𝑆𝑇𝑅 is line l seasonal 

thermal rating, 𝑃𝐺𝑖
𝑢𝑝

 is envisaged existing generation at node i, and β ε [0, 1] is the ratio of the 

expected wind speed during summer minimum with respect to the maximum speed (typically 

0.8 in RTE [113]). Summation in (4-1) goes over all lines l connected to node i in case of 

non-firm connection, or over all lines l but the one with the highest capacity in case of firm 
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connection. The total wind generation that can be connected at all nodes in the network is 

then limited to [105]: 

 ∑𝑃𝑊𝐺𝑖
𝑚𝑎𝑥

𝑖

≤ 𝜐 ∙ 𝑃𝐷
𝑝𝑒𝑎𝑘/𝑤𝑓 (4-2) 

where υ is the percentage of peak demand that can be supplied by wind generation, 𝑃𝐷
𝑝𝑒𝑎𝑘

 is 

the system peak demand and wf ε [0, 1] is the wind factor indicating percentage of the total 

wind capacity utilized to supply the peak demand.  

The main idea of the load-flow based approach is to gradually increase ‘new’ generation at 

node i and run the AC power-flow until one of the thermal or voltage constraints is not 

reached. In case of wind generation, the maximum connection capacity is further divided by 

the factor β as in (4-1). In this way, both non-firm and firm connection capacities are found. 

4.1.3 Wind Curtailment Prioritization by Using Cost Coefficients  

All OPF calculations are initially done with wind spillage coefficients equal to unity. The 

results so obtained indicated that it would be advantageous to associate different ‘cost 

coefficients’ to wind curtailments. To this end, wind spillages are classified as ‘voluntary’ 

and ‘involuntary’. The first category relates to the quantity limited by the contracted average 

annual spillage (usually around 5%) and priced at contractual price σw     (σw=55.5 £/MWh is 

used [104]). Involuntary spillages are limited by the maximum allowed wind curtailment and 

are priced using the marginal prices at the considered nodes. The cost coefficients are defined 

as: 

 𝜉𝑖 = {
𝐵𝐸𝑆𝑃̿̿ ̿̿ ̿̿ ̿̿

𝑖
𝑟𝑒𝑙 ∙ 𝜎𝑤 , 𝑣𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒

𝐵𝐸𝑆𝑃̿̿ ̿̿ ̿̿ ̿̿
𝑖
𝑟𝑒𝑙∙ 𝜇𝑖

𝑝 𝑖𝑛𝑣𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦𝑠𝑝𝑖𝑙𝑙𝑎𝑔𝑒
 

(4-3) 

 

 

 𝐵𝐸𝑆𝑃𝑖
𝑟𝑒𝑙 = ∑∑(

𝑆𝑃𝑖
𝑦,𝑡

𝑃𝑊𝐺𝑖
𝑢𝑝 )

𝑇

𝑡=1

𝑌

𝑦=1

𝑌⁄  (4-4) 

where ξi is spillage cost at node i, 𝐵𝐸𝑆𝑃𝑖
𝑟𝑒𝑙 is expected relative spillage at node i in the first 

SMCS, σ is contracted price, 𝜇𝑖
𝑝
 is p-th percentile of base marginal price at node i, Y is total 
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number of simulated days, T=24h, and 𝑆𝑃𝑖
𝑦,𝑡

 is spillage at node i day y hour t from the OPF 

results. 𝐵𝐸𝑆𝑃̿̿ ̿̿ ̿̿ ̿̿
𝑖
𝑟𝑒𝑙 in (4-3) is normalized expected spillage at node i; normalization is done 

with ΣiBESPi
rel over all nodes. Note that 𝜇𝑖

𝑝
 are hourly marginal prices (or Lagrange 

multipliers) from the OPF model and the percentile values are obtained when the first 

simulation stage is completed (see section 7.1.1). 

The cost coefficients (4-3) are associated with the linear cost terms in the OPF objective 

function in the second simulation stage – Chapter 7.1.2. Another option is also examined to 

define spillage cost coefficients by 24 hourly periods; then equation (4-4) is replaced with: 

 

𝐵𝐸𝑆𝑃𝑖,𝑡
𝑟𝑒𝑙 = ∑(

𝑆𝑃𝑖
𝑦,𝑡

𝑃𝑊𝐺𝑖
𝑢𝑝 )

𝑌

𝑦=1

𝑌⁄  (4-5) 

Normalized spillages 𝐵𝐸𝑆𝑃̿̿ ̿̿ ̿̿ ̿̿
𝑖,𝑡
𝑟𝑒𝑙 are used in equations (4-3) where normalization is again done 

over all nodes ΣiBESPi,t
rel. 

4.1.4 Wind turbine modelling 

The available wind energy production in a forthcoming year is highly uncertain; it is highly 

dependent upon wind speed, wind direction, location, altitude and terrain. Because of this, 

aggregated daily profiles do not represent the conditions seen in the reality. For this reason 

the wind generation output is modelled on the network busbar level rather than using the 

uniform wind profile across the entire system. Besides, the developed model is considered 

for periods of high and low wind generation at times when local and system maximum and 

minimum loading levels occur.  

The power output of a wind turbine generator (WTG) is driven by the wind speed and the 

corresponding relationship is non-linear. It can be described using the operational parameters 

of the WTG, such as cut-in, rated and cut out wind speeds. The hourly power output is 

obtained from the simulated hourly wind speed using the relations. 

 

𝑃(𝑉𝑚) = {

0, 0 ≤ 𝑉𝑚 ≤ 𝑉𝑐𝑖

(𝐴 + 𝐵 × 𝑉𝑚 + 𝐶 × 𝑉𝑚
2) × 𝑃𝑟 , 𝑉𝑐𝑖 ≤ 𝑉𝑚 ≤ 𝑉𝑟

𝑃𝑟, 𝑉𝑟 ≤ 𝑉𝑚 ≤ 𝑉𝑐𝑜
0, 𝑉𝑚 >𝑉𝑐𝑜

} (4-5) 
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where Pr, Vci, Vr, and Vco are, respectively, rated power output, cut-in wind speed, rated wind 

speed and cut-out wind speed of the WTG, whilst Vm is simulated wind speed at hour t. The 

power output constants A, B and C are determined by Vci, Vr, and Vco, as shown in [33]. All 

WTG units used in this study are assumed to have cut-in, rated, and cut-out speeds of 14.4, 

36, and 80km/h, respectively.  

Three different WTG types whose nominal powers are different are used in simulations; 

Pr=10MW, Pr=6MW and Pr=2.5MW. Since weather stations are at different heights, it is 

necessary to convert the wind speed at the corresponding height of the WTG’s altitude. It is 

shown in [114] that the turbulence theory in the surface boundary layer has demonstrated that 

for a contant stream flow and neutral atmospheric conditions, the wind speed profile is 

logarithmic and the method to convert the wind speed to different heights involves the 

following quantities: the wind speed at different height, V; the wind speed at a standard site, 

Vc;  and C being the correction factor. The conversion is described by the following 

expressions [114]:  

 
𝑉𝑐 =

𝑉

𝐶
 (4-6) 

where C is defined as 𝐶 = 𝐴 × 𝑙𝑜𝑔
ℎ𝑚𝑒𝑠

𝑍𝑜
, where the parameters A and 𝑍𝑜 vary for various 

landscapes. 𝑍𝑜 represents the roughness length which corresponds to the height below which 

the wind speed is zero and A is a parameter which transpose the wind measurements to the 

standard site.  Table 4-1 gives the values of different landscape types aiming to adopt the 

landscape configuration effect on the required wind speed value [114]. 

Table 4-1: Roughness Length 𝒁𝒐 and parameter A for Various Categories of Ground. 

Landscapes Category Zo (m) A 

Large areas of water (ocean,  sea,  lake) 1 0.005 0.166 

Flat terrain with grass or very low vegetation, without tree nor 

construction 
2 0.02 0.182 

Flat expanses with possibly some insulated obstacles (trees in order 

dispersed) - Open area -Airport 
3 0.07 0.202 

Campaign with high cultures  (but, vine, small fruit trees), loose 

bocage, dispersed habitat 
4 0.25 0.229 

Slightly urbanized zones 5 0.3 0.232 

Dense bocage, orchards, kindling, residential suburb 6 0.4 0.240 

Urban or industrial zones, forests, etc. 7 1 0.266 

Centre of large cities 8 2.5 0.292 
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The hourly wind output profile per season (winter, spring and summer) is illustrated in Figure 

4-1 considering equations (4-5) and (4-6) as well as wind turbines failures in a chronological 

time span. The hourly weather data of 5 years from 1997 to 2001 were obtained from BADC 

Met office MIDAS stations for Aonach UK area [115] and converted to 100m wind turbine 

wind speed using (4-6). It is shown that wind power output in winter is more frequently at 

the maximum power output level compared to spring and summer. On the other hand, spring 

and summer power outputs are at the half of the nominal power during the majority of the 

hours. 

 

Figure 4-1: Wind Power outputs for Aonach UK area 

4.2 Demand Response 

4.2.1 Overview of the methodology 

The basic steps of the proposed DR model will be discussed in this section, while the results 

of the model will be presented and discussed in Chapter 6. 

Optimal probabilistic DR scheduling is determined using the sequential Monte Carlo 

probabilistic approach. The main features of the proposed DR modeling framework are: a) 

Load reduction scheduling driven by network security; b) Optimal scheduling of load 

recovery using both economic and security criteria, as shown in Figure 4-2. 
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Figure 4-2: Overview of DR scheduling 

The load reduction technique under probabilistic analysis is realised in a separate module. 

Optimal power flow analysis is first deployed to assess whether network reliability is 

improved when demand response is triggered. If this is the case, contracted customers are 

sent demand respond signals to alter their consumption; else, no signal is sent and no demand 

response is triggered. Improvement in network operation and reliability can be achieved in 

both pre-fault and post-fault cases. For pre-fault analysis expected operating costs (generation 

and customer interruption costs) can be used, whereas for post fault analysis the EENS 

reliability index is used. Load recovery under network emergency conditions is a more 

complex problem, as it requires inputs regarding the expected duration of the system’s 

violation, the most likely lowest marginal price under probabilistic analysis as well as load 

recovery profiles after different outage intervals and for different customer types. Once all 

these criteria are considered, OPF analysis is executed to ensure a secure system operation. 

The overall methodology is realized within two independent sequential Monte Carlo 

simulation (SMCS) procedures [17]. The first SMCS is the initialization module, which is 

used to calculate several components required by the second SMCS that determines optimal 

day-ahead operation of the power system. The main building blocks of the first SMCS 

procedure are: a) Calculation of reliability indices needed for ranking of load types for 

demand reduction; and b) Determination of nodal marginal prices and several economic 

indicators used for finding the optimal schedule of load recoveries. 
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The second SMCS consists of four modules: a) The demand reduction scale module; b) The 

load recovery scale module; c) The demand reduction and load recovery (DRLR) control 

module, and d) The outputs module. The first module contains ranking of different load types 

for demand reduction, calculation of required amounts of voluntary and involuntary DR, as 

well as the customer revenues. The load recovery scale module considers load recovery 

profiles and sizes, and determines a matrix with the most appropriate schedule hours for load 

recovery. The DRLR-control module contains logics for initiation of load reductions and load 

recoveries, whilst the outputs module includes optimal load reduction and recovery 

schedules, as well as reliability and financial indicators.  

The equations used in the model and the case studies are presented in the following sections. 

4.2.2 Methodology 

The proposed demand scheduling methodology is aimed at determining the optimal demand 

response plan for the next day, when the committed generation units, status of network 

switching devices and forecast loads are well defined. However, several uncertainties in the 

day-ahead operation are still present, so that the overall problem is formulated as a 

probabilistic model and solved with the SMCS. The proposed DR methodology is applied 

for post contingency states; however it is general enough to also consider pre-contigency 

events. The main building blocks are described below. 

4.2.2.1 Sequential Monte Carlo Simulation 

SMCS performs analysis of time intervals in chronological order whilst taking into account 

various uncertainties [43]. It can model the chronological phenomena, such as load reduction 

and recovery, real-time thermal ratings and wind generations. The following uncertainties 

are assumed for a day-ahead operation of the transmission networks: 

 Load varies in a window around the forecast hourly loads. The uncertainty window is 

defined by the Mean Absolute Percent Error (MAPE) of the short-term forecast by hourly 

intervals obtained using the neural network approach extensively described in Chapter 

5.3.3. 
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 Availability of all generation and network units was modelled with the aid of two-state 

Markovian model with exponentially distributed up and down times. 

 Hourly wind speed predictions and a window around the predicted values are applied 

within the random sampling. An alternative approach is to use wind speed probability 

distribution functions (PDFs) by hourly periods. 

 The amount of voluntary load reduction varies by customer and DR type. For example, 

DR from residential customers responding to price signals is highly uncertain, whilst DR 

from incentive-based contracted commercial customers has much less uncertainty – 

section 4.2.4. 

One SMCS period is equal to 24 hours and simulations are repeated until convergence is 

obtained. Any failure that goes over the planning horizon (i.e. 24:00) is considered in the 

‘next day’ simulation. The same simulation principles were applied in both SMCS 

procedures. 

4.2.2.2 Initialization module 

The initialization module is used to calculate several quantities required by the main 

simulation loop. Following the data input, the network model with real-time thermal ratings 

and load customer characteristics is built and fed into the first SMCS procedure, as shown in 

Figure 4-3.The outputs from this stage are some pricing and reliability indicators. 
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Figure 4-3: Initialization Demand Response module 

4.2.2.2.1 Input Data 

The input data include network, reliability, customer, and economic data. Beside the standard 

network data, forecast in-service generation units with technical characteristics and 

chronological hourly load point demands are input. Reliability data are failure rates and repair 

times of all components, whilst customer data encompass customer and DR types, contracted 

voluntary load reductions, normalized load recovery profiles and customer availability to 

respond to a DR call. Essential economic data are generation costs, values of lost load 

(VOLL) and marginal offer prices for voluntary load reduction. Average VOLL data by 

customer types were obtained from the latest UK national study [116]. 

 

4.2.2.2.2 Nodal Marginal Costs 

Dual variables µ are the nodal marginal costs of meeting the power balance at each system 

node for the considered operating regime. The nodal marginal costs have been extensively 

used for electricity energy and reserve pricing [117][58] . The nodal marginal prices vary 

over the system nodes and during the day due to load variation and congestion in the system 
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[118]. The greatest variation of marginal prices is experienced due to unexpected failures of 

lines and/or generator units [119]. Consequently, these prices should be carefully considered 

for the load recovery scheduling.  

In the proposed approach, a concept similar to the real time pricing scheme proposed in [120] 

is applied. The following quantities are calculated in each time step t: 

 The revenue of generator j: 

 𝐺𝑅𝑗(𝑡) = 𝑃𝑔𝑗(𝑡) ∙ 𝜇𝑗(𝑡) (4-7) 

where Pgj(t) is the active power output of generation unit j at hour t and μj(t) the marginal 

cost of the node at hour t, at which generation unit j is connected.  

 The cost of demand i delivery: 

 𝐿𝐶𝑖(𝑡) = 𝑃𝑑𝑖(𝑡) ∙ 𝜇𝑖(𝑡) (4-8) 

where Pdi(t) power supplied to load point i at hour t and μi(t) is the marginal cost of node i at 

hour t. 

 Revenue for voluntary load i reduction: 

 

𝑉𝐿𝑅𝑖(𝑡) =∑(𝜎𝑖
𝑠(𝑡) ∙ 𝑉𝐿𝑖

𝑠(𝑡))

𝑠4

𝑠=1

 (4-9) 

where σi is the marginal offer value for voluntary load reduction at load point i at hour t and 

𝑉𝐿𝑖
𝑠(𝑡) amount for voluntary load reduction of load type s, hour t 

 Revenue for involuntary load i reduction: 

 

𝐼𝑉𝐿𝑅𝑖(𝑡) =∑(𝑉𝑂𝐿𝐿𝑖
𝑠 ∙ 𝐼𝑉𝐿𝑖

𝑠(𝑡))

𝑠4

𝑠=1

 (4-10) 

where  𝐼𝑉𝐿𝑖
𝑠(𝑡) is amount of involuntary load reduction of load type s at load point i at hour 

t. Here VOLL is defined by load types in the initialization module, as presented in (4-10). 

However, in the second SMCS there is an option to use a look-up table where VOLLs are 

functions of interruption duration [121]. The interruption duration is estimated as: 
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 𝐷𝑖
𝑠 = {

𝑚𝑒𝑎𝑛(𝐷𝑖
𝑠𝐵𝐴𝑆𝐸),𝑖𝑓𝐷𝑖

𝑠 ≤ 𝑚𝑒𝑎𝑛(𝐷𝑖
𝑠𝐵𝐴𝑆𝐸)

𝐷𝑖
𝑠 ,𝑖𝑓𝐷𝑖

𝑠 > 𝑚𝑒𝑎𝑛(𝐷𝑖
𝑠𝐵𝐴𝑆𝐸)

 (4-11) 

where 𝐷𝑖
𝑠𝐵𝐴𝑆𝐸 denotes the interruption duration calculated in the initialization module. The 

estimated duration of interruption is equal to the mean base value unless the interruption 

already lasts for more than the base value; it then takes the actual duration value. 

4.2.3 Demand Response Scheduling Outline 

 

Figure 4-4: Optimal Demand Response computational framework 

The computational framework for optimal demand response scheduling is illustrated in 

Figure 4-4. The load reduction and recovery scale modules feed into the DRLR control 

module. Load reduction and load recovery ranking lists are produced by the demand response 

initialization module introduced in section 4.2.2.2. When a constraint violation occurs on the 

network then demand response is activated and so load reduction ranking list is used to 

calculate available sizes for voluntary load reduction (i,s)r at load point i and for load type s 

within the load reduction scale module. OPF analysis is run for the hour tRED and if expected 

energy not supplied EENSDR resulted from the load reduction is not improved as well as 

operational savings are not positive, then the next load reduction amount (i,s)r on the load 

reduction ranking list is evaluated. The customers for whom the criteria on EENS and savings 
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are satisfied, proceed to the load recovery evaluation at hour tREC. Load recovery ranking list 

gives load recovery amount (i,s)r at load point i and type s to proceed for load recovery 

evaluation. The customers who incur both improved EENSDR and maintain savings are 

selected for DR scheduling. To summarise, both load reduction and recovery are managed 

by the DRLR control module in which the OPF is used to detertmine optimal voluntary and 

involuntary load reductions, and the developed control scheme gives the optimal load 

recovery profiles. The outputs module finally gives optimal DR and LR schedules, as well as 

financial and reliability indicators. 

4.2.4 Load Reduction Scheduling module 

Load reduction scale module is required for each load point and load type when load shedding 

takes place at the considered hour tRED. The physics of demand response are presented first, 

which is followed by the ranking and sizing. 

Four load types, industrial, commercial, large user and residential, have been defined in our 

approach. Different characteristics have been associated with these four types, such as 

temporal load variations, total amounts available for voluntary and involuntary load 

reductions, relative load recovery profiles and economic data. Two categories of demand 

response have been recognised, namely direct and indirect load control [122]. In direct load 

control, the contracted customers (usually large and industrial) are directly disconnected 

during emergency conditions and they receive revenue for participating in the ‘reserve 

market’ [123]. The contracted amounts are certain and they are of deterministic nature. In 

indirect load control, incentive- and price-based demand responses can be distinguished. The 

former group refers to the customers contractually incentivised to curtail load during system 

emergencies [124][125]. This category can be considered semi-probabilistic; here sampling 

is used within a window around the contracted value. Finally, in price based demand response 

customers move their consumption from periods of higher to periods of lower prices. This 

demand response is a probabilistic quantity, which can vary from zero up to the estimated 

maximum amount. 
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Load ranking at each node i and for each load type s at the considered hour tRED is based on 

the financial implications of reducing the load. The ranking order is a product of the 

normalized value of the base expected duration interruption index (BEDIi) calculated in the 

initialization module, the normalized marginal offer price for voluntary load reduction �̂�𝑖
𝑠or 

customer interruption cost for involuntary load reduction, and the required load shedding 

𝑃𝑐𝑖
𝑠. This is shown in relations below: 

 �̂�𝑖
𝑠(𝑡𝑅𝐸𝐷) = {

𝐵𝐸𝐷�̂�𝑖 ∙ 𝑃𝑐𝑖
𝑠 ∙ �̂�𝑖

𝑠

𝐵𝐸𝐷�̂�𝑖 ∙ 𝑃𝑐𝑖
𝑠 ∙ 𝑉𝑂𝐿𝐿𝑖

𝑠 (4-12) 

 𝐵𝐸𝐷𝐼𝑖 =
∑ ∑ ∑ 휁𝑖

𝑠 ∙ 𝐷𝑖
𝑠𝐵𝐴𝑆𝐸𝑠4

𝑠=1
𝑇
𝑡=1

𝑌
𝑦=1

𝑌
⁄  (4-13) 

Relation (4-12) shows how independent ranking lists for voluntary and involuntary load 

reductions can be built. Ranking of all ‘voluntary customers’ is based on submitted marginal 

offer prices, which can be normalised with the average price of up-spinning reserve in the 

energy-reserve markets [126]. On the other hand, involuntary load reductions are ranked 

using VOLL. The VOLL is defined either by load types, or customer damage functions are 

used; it is normalised using the average VOLL in the entire GB [116]. The base expected 

interruption index BEDIi is found from the number of interruptions 휁𝑖
𝑠 having duration 

𝐷𝑖
𝑠𝐵𝐴𝑆𝐸  across the entire simulation period. 

The total required amount of load reduction 𝑃𝑐𝑖
𝑠 is determined from the OPF model and it 

consists of voluntary and involuntary components. When considering industrial and large 

customers under the direct load control, it was assumed that available voluntary load 

reduction is equal to the contracted voluntary reduction (𝐶𝑉𝐿𝑖
𝑠). Then the (part of) voluntary 

load reduction is: 

 [𝛬−]𝑖
𝑠(𝑡𝑅𝐸𝐷) = {

𝑃𝑐𝑖
𝑠(𝑡), 𝑖𝑓𝑃𝑐𝑖

𝑠(𝑡) < 𝐶𝑉𝐿𝑖
𝑠(𝑡)

𝐶𝑉𝐿𝑖
𝑠(𝑡),𝑖𝑓𝑃𝑐𝑖

𝑠(𝑡) > 𝐶𝑉𝐿𝑖
𝑠(𝑡)

 (4-14) 

Available voluntary load reductions from industrial and commercial incentivised customers 

and residential customers contain a probabilistic component that can be determined using 

random sampling. It is calculated using the availability factor 𝑓𝑅𝐸𝐷
𝑠 : 
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 𝑓𝑅𝐸𝐷
𝑠 = {

1 + (𝑟𝑠 − 1)𝑤𝑖𝑛, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙, 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙
𝑟𝑠, 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

 (4-15) 

where rs is a random number generated from the uniform distribution between {0,1} and win 

is the per unit window. In case of incentivised (industrial and commercial) customers, the 

available amount is based on average probability that the contracted amount is available. For 

these customers, the uncertainty is much smaller and it is defined by the size of window win. 

For example, if we assume that the average probability is 0.9, the range of variation is 

between 80% and 100%, so that win=20%. Residential customers respond to price signals 

and the uncertainty window is the entire available range. The available voluntary load 

reduction is then calculated by multiplying the availability factor (4-15) and the contracted 

value (𝐶𝑉𝐿𝑖
𝑠) in case of incentivised industrial and commercial customers, or estimated 

maximum load reduction of residential customers. 

After having obtained available voluntary load reductions for all types of customers s at node 

i, the total voluntary and involuntary load reductions are calculated using the ranking order 

and a relation similar to expression (4-14). The minimum amount of involuntary load 

reduction is always used to meet the network security constraints. 

4.2.5 Load Recovery Scheduling module 

This module determines the amounts of potential load recoveries in the period following load 

reduction in the time slot tRED. The actual load recovery is determined in the DRLR control 

module using the hourly nodal marginal prices. 

Load recovery profiles can be very different for the considered customer types, and moreover, 

for different customers within a single group; a good example is industry [60]. Here a general 

normalized load recovery profile of triangular shape is applied, which is modelled by two 

straignt lines in disrete form. The upward line models load pick-up after the customer 

reconnection, whilst the downward line brings it back from the ‘overshot point’ to the pre-

disconnection value. The discrete modelling is done using the upward/downward slope 

coefficients in consecutive time intervals. 

The amount of load recovery at time period tREC+t, [𝛬+]𝑖
𝑠(𝑡𝑅𝐸𝐶 + 𝑡), is computed by using the 

following expression: 
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 [𝛬+]𝑖
𝑠(𝑡𝑅𝐸𝐶 + 𝑡) = [𝛬

−]𝑖
𝑠(𝑡𝑅𝐸𝐷) ∙ 𝛾𝑖

𝑠(𝑡𝑅𝐸𝐶 + 𝑡) ∙ 𝑓𝑅𝐸𝐶
𝑠  (4-16) 

where [𝛬−]𝑖
𝑠(𝑡𝑅𝐸𝐷) is amount of load reduction of load type s at node i, 𝛾𝑖

𝑠(𝑡𝑅𝐸𝐶 + 𝑡) is 

upward or downward slope coefficient and 𝑓𝑅𝐸𝐶
𝑠  is the availability factor of type s load 

recovery. This factor was introduced because not all customers may come back when supplies 

are restored or signalled [59]. In the current approach, availability factors fREC are 

deterministic quantities defined by customer types and network nodes. It is also worth noting 

that the load recovery can be higher than the amount of the initial load reduction [60]; the 

slope factors can take values greater than unity. 

Modelling of load recovery profiles over a specified time period introduces additional 

complexities in the developed SMCS methodology. Each time a load recovery is initiated, 

the corresponding nodal load needs to be modified over a specified period in line with the 

load recovery profile. Besides, a record must be kept of all load recoveries at different time 

steps, because they cannot be considered for further load reduction. This is reflected in the 

next DRLR module. 

4.2.6 Demand Response Load Reduction (DRLR) Scheduling module 

The DRLR control module is used to control the initiation of load reductions and recoveries 

and to produce their optimal schedules within the forecast 24 hourly period. The control 

principles are listed below: 

 Loads whose recovery process is underway cannot be considered for load reduction. 

 Loads eligible for load reduction will not be disconnected if there is no improvement in 

the energy-not-served following the load reduction. 

 Only those loads, whose reduction including recovery generates revenue to the 

customers, will be actually disconnected and reconnected. 

 The best timing of load recovery is determined using the (forecast) nodal marginal prices 

over the recovery period. 

When the OPF analysis has generated non-zero load curtailments, then the loads which are 

not a part of previous load recoveries are ranked and the sizes of voluntary and involuntary 

reductions are determined. The first load reduction from the ranking list is applied and is 
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checked with the aid of the OPF whether the total energy-not-served has reduced. If this is 

the case, the nodal customer profits are computed based on the savings acquired due to the 

load reduction and the projected payback cost due to the load recovery. The optimum load 

recovery always takes place when the nodal marginal prices are ‘low’ over the recovery 

window. If the load customer projected profit is negative, the load reduction is not activated 

even if the reliability of the network might improve. Calculation of customer savings, costs 

and profits is presented below. 

4.2.6.1 Customer Savings 

The customer savings incurred during load reduction are the consequence of reduced load 

payments to the generators. These payments are valued at nodal marginal prices μi(t), as 

shown in equation (4-8), which are in turn dependent on the considered regime. The customer 

savings are therefore calculated from two OPF runs: the first without load reduction and the 

second with load reduction. The change in load payments, ΔLC, represents the customer 

savings at tRED:  

 𝛥𝐿𝐶𝑖
𝑠(𝑡𝑅𝐸𝐷) = 𝐿𝐶𝑖

𝑠𝑁𝑂−𝐷𝑅(𝑡𝑅𝐸𝐷) − 𝐿𝐶𝑖
𝑠𝐷𝑅(𝑡𝑅𝐸𝐷) (4-17) 

The total savings are then found for the entire interval when the load reduction is in place: 

 𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑖
𝑠(𝑡𝑅𝐸𝐷) = ∑ 𝛥𝐿𝐶𝑖

𝑠(𝑡)

𝑡𝑅𝐸𝐶

𝑡=𝑡𝑅𝐸𝐷

 (4-18) 

4.2.6.2 Payback costs 

If customer savings are positive then the algorithm proceeds to the load recovery stage to 

project the optimal load recovery schedule. The optimization is based on the following 

principles: 

 Load recovery is always scheduled after the corresponding load reduction and it can 

continue into the ‘following’ simulated day. There are periods within a day when the load 

recovery does not take place; for example between 12am and 5pm on weekdays for 

residential customers. 
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 Load recovery blocks due to involuntary load reduction are always committed before 

voluntary load recovery blocks. They are prioritized based on their VOLL; where the 

VOLL is the same; ranking is based on the size of load reduction, the largest loads being 

reconnected first. Similar criteria are applied to voluntary load reductions, where 

marginal offer prices are used instead of VOLL. 

 Optimal timing of load recovery is determined by finding the weighted average of (base) 

nodal marginal prices over the recovery window. The weights are equal to the slope 

coefficients 𝛾𝑖
𝑠(𝑡𝑅𝐸𝐶 + 𝑡) of the normalized recovery profile. The window with the 

smallest average nodal marginal price is selected for the load recovery. This approach is 

the best for load customers, because they will be exposed to the least additional payback 

cost. 

 After having determined the optimal starting hour of load recovery, it will only be 

materialized if there will be no new load curtailments within the recovery window. This 

is checked by running OPF over consecutive time periods within the recovery window; 

where curtailments occur, the next best recovery window is examined and so on. 

The payback costs due to the selected optimal load recovery schedule are again computed 

from two OPF runs in each time step within the recovery window. Since load recovery 

increases the amount of load, additional cost ΔLC is calculated as the difference between 

costs with and witout load recovery over the load recovery period tREC to tMAX: 

 𝛥𝐿𝐶𝑖
𝑠(𝑡𝑅𝐸𝐶) = 𝐿𝐶𝑖

𝑠𝐷𝑅(𝑡𝑅𝐸𝐶) − 𝐿𝐶𝑖
𝑠𝑁𝑂−𝐷𝑅(𝑡𝑅𝐸𝐶) (4-19) 

 𝐶𝑝𝑎𝑦𝑏𝑎𝑐𝑘𝑖
𝑠 = ∑ 𝛥𝐿𝐶𝑖

𝑠(𝑡)

𝑡𝑀𝐴𝑋

𝑡=𝑡𝑅𝐸𝐶

 (4-20) 

4.2.6.3 Customer Profits 

The total customer profit 𝜋𝑖
𝑠(𝑡𝑅𝐸𝐷) needs to account for savings due to reduced load, costs 

due to load recovery, as well as rewards for voluntary and involuntary load shedding. This is 

summarised in the equation below: 
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 𝜋𝑖
𝑠(𝑡𝑅𝐸𝐷) = 𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑖

𝑠 − 𝐶𝑝𝑎𝑦𝑏𝑎𝑐𝑘𝑖
𝑠 + ∑ 𝐼𝑉𝐿𝑅𝑖

𝑠(𝑡)

𝑡𝑅𝐸𝐶

𝑡=𝑡𝑅𝐸𝐷

+ ∑ 𝑉𝐿𝑅𝑖
𝑠(𝑡)

𝑡𝑅𝐸𝐶

𝑡=𝑡𝑅𝐸𝐷

 (4-21) 

where  𝑉𝐿𝑅𝑖
𝑠 revenue for voluntary load i and type s reduction and 𝐼𝑉𝐿𝑅𝑖

𝑠 revenue for 

involuntary load i and type s reduction.  

Only load customer with a positive profit 𝜋𝑖
𝑠(𝑡𝑅𝐸𝐷) evaluated at time tREC proceeds into the 

DR strategy. The analysis continues until the convergence criterion on expected energy not 

served is met. After having completed the SMCS procedure, the algorithm goes straight to 

the outputs module. The outputs module includes optimal load reduction and recoveries, 

generation outputs, nodal marginal prices, reliability indices and financial indicators. The 

detailed outputs and simulation results are presented in Chapter 6. 

4.3 Thermal Rating Modelling 

In the current operation practice, a conservative constant thermal rating is usually considered 

for a transmission line. The system operator usually has a constant thermal rating for a 

transmission line, taking into account the worst possible weather conditions. However, in 

practice the thermal rating of transmission lines varies when the weather conditions change 

[127]. The constant thermal rating is usually lower than the real time thermal rating of 

transmission lines. Therefore, the transmission operator operates the system with a high 

security margin, which means the transmission assets are not utilized in an efficient way.  

According to the deterministic approach included in IEEE standards [67], the maximum 

current that a line can carry can be derived by the steady state heat balance equation, which 

is in function of the joule heating, Pj; the solar heating Ps; the radiative cooling Pr ; and the 

convective colling Pc. Equation (4-23) presents this balance whilst the heat flows in a 

conductor are shown in Figure 4-5. 

 𝑃𝐽 + 𝑃𝑠 = 𝑃𝑅 + 𝑃𝐶  (4-22) 
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Joule heating, PJ, also known as ohmic heating is calculated using skin effect factor k, RDC 

resistance at 20oC (Ω/m), current flow in the conductor I, average temperature T of the 

conductor and the temperature coefficient per degree of resistance per degree Kelvin α, as 

shown in equation (4-23). The solar heating is a function of several parameters including 

solar absorptivity of conductor surface as, the global solar radiation S and the external 

diameter of the conductor D, as shown in equation (4-24).  

 

Figure 4-5: Heat flows [128] 

 𝑃𝐽 = 𝑘𝑅𝐷𝐶𝐼
2(1 + 𝑎(𝑇 − 20)) 

(4-23) 

 

 𝑃𝑠 = 𝑎𝑠𝑆𝐷 (4-24) 

The convection cooling Pc varies with the change in wind speed (Vm), wind direction factor 

(Kangle) and the difference between the conductor (Tc) and ambient air temperature (Ta), as 

described in (4-25). Additional variables are necessary for calculating convection cooling 

such as, the thermal conductivity Kf, the density of air ρf and the dynamic viscosity of air μf. 

Finally, radiative cooling Pr is the energy of the electromagnetic waves emitted to the ambient 

space; it is a function of the temperature difference between the conductor and air, and the 

emissivity of the conductor, ε as shown by equations (4-26) and (4-27).  

Replacing relations (4-23) to (4-27) into the balance equation (4-22), the maximum current 

that a line can carry is derived by the equation (4-28). 
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 𝑃𝑐 =

{
 
 

 
 (0.0119 (

𝐷𝜌𝑓𝑉𝑚

𝜇𝑓
)

0.6

)𝐾𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎), 𝐻𝑖𝑔ℎ𝑉𝑚

(1.01 + 0.0372 (
𝐷𝜌𝑓𝑉𝑚

𝜇𝑓
)

0.52

)𝐾𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎), 𝐿𝑜𝑤𝑉𝑚

 
(4-25) 

 

 𝑃𝑟 = 0.0178𝐷휀 [(
𝑇𝑐 + 273

100
)
4

− (
𝑇𝑎 + 273

100
)
4

] (4-26) 

 𝑃𝑟 = 0.0178𝐷휀 [(
𝑇𝑐 + 273

100
)
4

− (
𝑇𝑎 + 273

100
)
4

] (4-27) 

 𝑅(𝑇𝑐) =
𝑅(𝑇ℎ𝑖𝑔ℎ) − 𝑅(𝑇𝑙𝑜𝑤)

𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤
  

 𝐼 = √
𝑃𝑐(𝑇𝑐, 𝑇𝑎, 𝐾𝑎𝑛𝑔𝑙𝑒 , 𝑉𝑚 + 𝑃𝑟(𝑇𝑎, 𝑇𝑐) − 𝑃𝑠)

𝑅(𝑇𝑐)
 (4-28) 

4.3.1 Standard Thermal Ratings 

Many transmission companies usually use fixed thermal ratings for short term and long term 

planning studies. These fixed thermal ratings are calculated assuming extreme weather 

conditions and the maximum temperature, which a conductor can tolerate before annealing. 

This results in a greater conductor sag and smaller ground clearance. The lowest fixed thermal 

rating is calculated for the summer period, since the ambient temperature considerably affects 

the maximum capacity of the line. The rating is usually called static (or seasonal) thermal 

rating (STR) and it is based on the following data: the ambient temperature Ta equals to 40oC, 

the wind speed equals to 0.61m/sec and the Kangle=1 [67]. These values along with the 

conductor temperature are used to give the static (seasonal) thermal rating of a transmission 

line in summer. 

Transmission companies usually calculate the fixed thermal ratings for each season. In [129] 

three different ratings are considered: 1) for summer; 2) for spring and fall; and 3) for winter. 
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The assumed ambient temperatures, wind speeds and wind angle on the conductor for these 

seasons are shown in Table 4-2. 

Table 4-2: Seasonal weather conditions 

Conditions Winter Spring/Fall Summer 

Ambient Temperature (oC) 2 9 40 

Wind speed (m/sec) 0.61 0.61 0.61 

Angle onto the conductor perpendicular perpendicular perpendicular 

For both approaches, the conductor temperature needs to be set to one of the standard design 

values (i.e. 50oC, or 65oC, or 75oC) to get the OHL ampacity; an increased value can be used 

during system emergencies. This is specified in company policy. 

4.3.2 Steady State Conductor Temperature 

This section describes the importance of measuring and accounting for the real conductor 

temperature especially when real time thermal ratings need to be determined. Then the real 

time thermal ratings modelling will be introduced. 

In the event of a sudden electrical current change in a transmission line, an almost immediate 

temperature-change occurs on the conductor (low thermal constant), as shown in Figure 4-6. 

It must be noted that the exponential trend of the conductor temperature depends not only on 

the current change on the line but also on the weather conditions the OHL is exposed to. 

Besides, the effects of high temperature conductor operation can considerably affect the 

electrical clearances of the conductor, the importance of which is the safe distance of the 

conductor to protect personnel, vehicles and equipment against inadvertent contact, or 

hazardous proximity, to exposed conductors. Additionally, elevated temperature creep should 

also be included in the simulation when the conductor temperature exceeds approximately 

93oC-100oC for ACSR conductors [74]. This conductor temperature suggests that the 

emergency thermal rating will experience accelerated creep but not loss of strength.    
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Figure 4-6: Schematic non-linear relationship between conductor temperature and current 

As a result the conductor temperature has a significant impact on the capacity of the line, and 

therefore the hourly steady state conductor ampacity model is developed, which calculates 

conductor permissible temperatures using equation (4-28), as presented in the next section. 

Consequently, the corresponding thermal rating of overhead lines can be applied in a 

reliability assessment analysis.  

4.3.3 Real Time Thermal Ratings 

Real time thermal rating (RTTR) is a smart grid technology that allows the rating of electrical 

conductors to be increased (or decreased) based on local weather conditions. The developed 

RTTR model calculates the real transmission capacities that are available on a given network 

using an iterative algorithm that gives the real time thermal ratings over a yearly period in 

relation to the chronological load curve. Towards this, the steady state conductor 

temperatures need to be measured or computed for the studied OHLs, which will be done for 

the most frequently overloaded lines.  

Given the variability of the steady state conductor temperature versus time, it becomes 

necessary to determine: 1) conductor characteristics, 2) weather conditions and 3) load 

parameters, as the three inputs to be used for the calculation of the actual conductor ampacity 

and resistivity.  

The conductor characteristics are defined by the diameter, the calculated resistance at 25oC 

and 75oC, as well as its reactance. The weather data consists of wind speed, direction, and 

ambient temperature. Finally, the load parameters constitute the OHL loadings calculated 
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Tinitial
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using power flow analysis at given load levels. The steps of the methodology calculating the 

hourly thermal ratings are illustrated in Figure 4-7.  

1. Initially, the conductor data and hourly weather data are used to identify the hourly 

varying maximum thermal rating. 

2. The loadings (If) of the lines are calculated using load flow analysis. 

3. The data obtained in step 1 and 2 along with randomly distributed conductor temperature 

Tc are plugged into the iteration based technique to calculate the maximum permissible 

current (Im). It should be noted that Tc is randomly distributed only in the first iteration 

of real time thermal rating calculation. For the next iterations step 5 is used to estimate 

conductor temperature Tc. The calculated current Im is set as the new maximum 

transmission line ampacity. 

4. When Im equals to If then store the Tc for the specified operating condition and identify 

the conductor ampacity and resistivity by using method from [130]; otherwise go to the 

next step. 

5. Estimate the Tc taking into consideration percentage difference between If and Im and 

continue the iteration based loop. 

6. Stopping criteria: the process is continued until If=Im. 

  

Figure 4-7: Conductor Temperature-Ampacity Calculations 

After the conductor ampacity is determined the MVA rating of the line is calculated 

considering the line-to-line voltage VLL, as shown in the following equation: 

 𝑆3𝜑 = 𝐼 × √3𝑉𝐿𝐿 (4-29) 
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4.3.4 Network modelling considering OHL properties 

For the application of thermal rating models the OHL properties should be considered. All 

the models developed were tested on the IEEE-RTS 96 network. The IEEE-RTS 96 test 

system does not provide any OHL data required for the hourly thermal ratings calculations. 

A simple ACSR technology is assumed with conductor sizes that provide similar ratings to 

those in the IEEE-RTS 96 system with AAAC and ACSR conductors. Table 4-3 provides the 

information on the conductors used in the analysis. The Rac 25 oC and 75 oC  used as an input 

in equation (4-28) to determine the conductor resistance for certain conductor temperature 

Tc. Consequently the ampacity of the conductor and the MVA rating is computed as in (4-

29) and (4-30) respectively. Under system normal operation, conductor temperature, Tc, is 

set to 60oC for Dove & Hawk conductors and 75oC for Drake & Grosbeak types and so the 

corresponding MVA rating of each conductor is depicted in the 4th column on the table. A 

line is considered in emergency state when another transmission line connected at the same 

bus fails. The maximum conductor temperature in emergencies is set to 75oC and 95 oC for 

Dove & Hawk, and Drake & Grosbeak respectively, based on avoidance of the conductor 

annealing. 

Table 4-3: Conductor properties modelled in IEEE RTS network 

NAME Rac 

(Ω/Km) 

Configuration SNORM 

(MVA) 

SEM-LONG 

(MVA) 

Dove 

(138kV) 

0.1003 @ 25°C 

0.1270 @ 75°C 
Single bundle 

95 

[60°C] 

138 

[75°C] 

Drake 

(138kV) 

0.0728@25°C 

0.0868@25°C 
Single bundle 

200 

[75°C] 

320 

[95°C] 

Grosbeak 

(230kV) 

0.0902@25°C 

0.1220@75°C 
Twin bundle 

540 

[75°C] 

580 

[95°C] 

Hawk 

(230kV) 

0.1154 @ 25°C 

0.1225 @ 75°C 
Twin bundle 

308 

[60°C] 

365 

[75°C] 
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4.4 FACTS 

4.4.1 FACTS methodology 

Due to the increased number of SVC and TCSC installed by the industry, the impact of those 

on reliability of the network, maximization of deployed wind energy as well as minimization 

of network operating costs is investigated.  Their physical models are first analysed and then 

a best ranking methodology for connection in the power network is proposed. 

Thyristor controlled series compensator (TCSC) devices have been developed to control 

power flows, to increase the transfer limits or to improve system stability.  TCSC is well 

established technology, which is primarily used in the transmission systems to reduce transfer 

reactances.  They additionally contribute to transient and voltage stability proliferation.  

TCSC configuration considered in the studies is shown in Figure 4-8 (i). TCSC can be 

considered as an additional reactance –jXc on a line (i,j) with impedance ZLine. Therefore the 

new impedance of the line can be expressed as Zi,j=ZLine±jXc. The value of Xc is adjusted 

according to the TCSC control scheme and it can take any value betwee minimum value 

Xc,Min and maximum value Xc,Max. As shown in the figure, TCSC is connected between bus i 

and j and power is effectively injected at the sending and receiving ends of the line. The 

impedance of the line ZLine (fixed parameter) is in series with the TCSC, Xc (variable 

parameter), which can either be capacitive (Xc<0) or inductive (Xc>0). The injected powers 

at buses i, j can be expressed as Sic and Sjc. 

Static Var compensators (SVC) are devices that can quickly and reliably control line voltages. 

An SVC will typically regulate and control the voltage to the required set point under normal 

steady state and contingency conditions and thereby provide dynamic, fast reactive power 

response following system contingencies (e.g. network short circuits, line and generator 

disconnections, etc.). In addition, SVCs increase lines transfer capability, reduce losses, 

mitigate active power oscillations and prevent over/under voltages at loss of load incidents.  

SVC configuration considered in the studies, it is shown in Figure 4-8 (ii). SVC is a shunt 

connected static VAr generator/load, whose output is adjusted according to the required 
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capacitive or inductive current. The SVC is connected directly to the load bus, as a generator 

or absorber of controllable reactive power, as shown in Figure 4-8 (ii). SVC injects reactive 

power into the system QSVC>0 and absorbs reactive power from the system if QSVC<0 and 

thereby regulates the change of the voltage ΔVSVC between buses i,j. The corresponding 

injected powers at buses i, j can be expressed as Sis and Sjs. 

 

Figure 4-8: Block diagram of considered FACTS [29] 

 

The basic steps of the proposed optimal location of FACTS devices in the network will be 

discussed in this section, while the simulation results of the model will be presented in 

Chapter 7. 

Ranking lists for both SVC and TCSC placements are developed based on reliability analysis 

without the use of FACTS on the network. Once their best placement is determined, FACTS 

are applied to the network to improve the security and economic criteria, as shown in Figure 

4-9. Security criteria includes the improvement of expected energy not supplied (EENS), 

whilst economic criteria includes the reduction of network operational costs compared to the 

case of not using FACTS devises. If these criteria are not met, another FACTS device from 

the ranking list is installed. 
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Figure 4-9: Overview of FACTS framework  

SVCs are usually installed to solve network voltage problems. As such, for the ranking of the 

SVCs, sequential Monte Carlo simulation was used to calculate the voltages at the nodes, as 

well as the expected energy not supplied due to violation of voltage constraints at  nodes i 

𝐵𝐸𝐸𝑁𝑆𝑖
𝑣𝑜𝑙𝑡 and expected wind spillage due to voltage constraints 𝐵𝐸𝑆𝑃𝑖

𝑣𝑜𝑙𝑡. This is 

considered to be the base case where the system is operated with no flexible actions (FACTS, 

RTTR, etc).  

TCSCs are usually installed when capacity constraints are violated. As such, for the ranking 

of TCSCs, sequential Monte Carlo was used to calculate the most frequently overloaded 

OHLs, as well as the expected energy not supplied and expected wind spillage due to 

violation of thermal constraints𝐵𝐸𝐸𝑁𝑆𝑖
𝑡ℎ , 𝐵𝐸𝑆𝑃𝑖

𝑡ℎ, respectively.  The entire analysis and the 

equations used for the model are presented as follows. 
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4.4.1.1 Ranking of SVCs 

Ranking of SVCs is based on the following assumptions: a) SVCs are installed when 

violation of voltage constraints exists or when voltages are close to the limits; and b) SVCs 

are placed at nodes where the voltage problems are highest. 

Essential indicators used to build the ranking lists are expected curtailed loads BEENS and 

curtailed winds BESP. The nodal values are classified in the base SMCS as follows: 

 Voltage related BEENS and BESP are at those nodes where the relevant voltage 

constraint is binding. The corresponding daily nodal curtailments are BEENSi
volt and 

BESPi
volt. 

 Voltage histograms at nodes i are also relevant for SVC connection, because they can 

show nodes close to the limits that can be easily exceeded with varied conditions. If 

the histogram of base SMCS voltages at node i is γi={Vi
1,…,Vi

t,…,Vi
24Y}, the following 

quantities can be defined: 

 

∆𝛾𝑖
𝑉𝑚𝑖𝑛(휂) =

1

𝑌
∑ (𝛾𝑖 − 𝑉

𝑚𝑖𝑛)

𝑉𝑚𝑖𝑛+𝜂

𝑉𝑚𝑖𝑛

 

(4-30) 

 

∆𝛾𝑖
𝑉𝑚𝑎𝑥(휂) =

1

𝑌
∑ (𝑉𝑚𝑎𝑥 − 𝛾𝑖)

𝑉𝑚𝑎𝑥

𝑉𝑚𝑎𝑥−𝜂

 

(4-31) 

which represent total daily nodal voltage deviations from the lower (4-30) and upper limit 

(4-31) in a pre-specified per unit region η. These deviations are then included into the 

developed criterion for ranking of nodes for SVC connection: 

 𝜌𝑖 = (𝜏1𝐵𝐸𝐸𝑁𝑆𝑖
𝑣𝑜𝑙𝑡 + 𝜏2 ∙ 𝐵𝐸𝑆𝑃𝑖

𝑣𝑜𝑙𝑡) [1 + ∆𝛾𝑖
𝑉𝑚𝑖𝑛(휂) + ∆𝛾𝑖

𝑉𝑚𝑎𝑥(휂)] (4-32) 

where 𝜏1 and 𝜏2 are weights showing relative importance of load curtailment compared to wind 

spillage. In systems where reliability is preferred to wind spillages, ratio 𝜏1/𝜏2 can be set to 

the ratio of the value of lost load to the average spillage cost; where wind spillages play more 

important role, this ratio can be less or even 𝜏1 = 𝜏2 can be used.  Relation (4-32) shows that 

ranking of SVC considers both reliability and spillage whilst also looking into uncertain 

future expressed through interior voltage deviations (4-30) & (4-31). 
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4.4.1.2 Ranking of TCSCs 

Essential assumptions used for ranking of TCSCs are: a) TCSCs are installed when energy 

curtailments occur due to violation of capacity constraints; b) Numerical sensitivity analysis 

of OPF solutions is applied to define branches best candidates for TCSC installation; and c) 

The initial set of branches considered for TCSC placement is based on available thermal 

capacity margins of branches.  

The essential idea is to find a set of branches whose reduction in reactance gives the 

maximum reduction in load and wind curtailments. Since placement of a TCSC in branch ij 

will change branch reactance xij and create a non-linear model, numerical sensitivity analysis 

of the OPF solution has been applied. The main algorithmic steps are: 

1) Consider a SMCS1 OPF solution and find binding capacity constraints. If there are no such 

constraints, repeat step No. 1 for the next hourly period. 

2) Find the set of branches ij ε βbr which have sufficient capacity margin (typically, at least 

20-30%). These branches will be further examined for TCSC installation. For example, if 

branches 10,13, 20 and 26 have capacity margins of 20-30% then the set βbr would be 

βbr={10,13,20,26} for the considered hourly period. Note that the set βbr can be different 

in each hourly period; we are, however, looking for the total, accumulated impact of 

installing a TCSC within each branch with spare capacity. 

3) Do two OPF runs with relaxed voltage constraints; the first is done with original 

reactances, whilst the reactance of the considered branch ij ε βbr is modified by pre-

specified increment in the second run. The reduction in load and generation curtailments 

at node m is denoted by ∆𝐵𝐸𝐸𝑁𝑆𝑖𝑗,𝑚
𝑡ℎ  and ∆𝐵𝐸𝑆𝑃𝑖𝑗,𝑚

𝑡ℎ . 

4) Step No. 3 can also be done to include the highly loaded branches into TCSC ranking, 

which is analogous to voltage interior regions (4-30) and(4-31). In that case, both OPF 

runs are done with thermal ratings of highly loaded branches reduced by η pu. 

5) Find the total weighted daily reduction in load and wind curtailments due to change in 

reactance xij: 

 ∆𝐵𝐸𝑁𝑆&𝑆𝑃𝑖𝑗 = 𝜏1 ∙ ∑ ∆𝐵𝐸𝐸𝑁𝑆𝑖𝑗,𝑚
𝑡ℎ

𝑚∈𝛽𝐸𝑁𝑆

+ 𝜏2 ∙ ∑ ∆𝐵𝐸𝑆𝑃𝑖𝑗,𝑚
𝑡ℎ

𝑚∈𝛽𝐸𝑆𝑃

 
(4-33) 
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which is used to establish a TCSC ranking list in descending order. 

4.4.2 Optimal Placement of SVCs and TCSCs 

Expected daily load curtailments due to violation of voltage and thermal constraints, 

BEENSvolt and BEENSth, as well as expected daily spillages caused by voltage and thermal 

constraints, BESPvolt and BESPth, are then used to define the optimal placement for SVCs and 

TCSCs: 

1) Where linear combination of curtailed wind and load due to voltage problems cevolt =

(τ1 ∙ BEENS
volt + τ2 ∙ BESP

volt) is greater than the curtailed energy due to thermal problems 

ceth = (τ1 ∙ BEENS
th + τ2 ∙ BESP

th), a top-ranked SVC is installed and SMCS is run; 

otherwise, the highest ranked TCSC is placed and SMCS is run. 

2) The SMCS results give a new set of load and wind curtailments BEENSvolt, BEENSth, 

BESPvolt and BESPth. They are used to determine whether a SVC or TCSC is installed in the 

next step using the same logic as in step No. 1. 

3) The above procedure is repeated until: 

 either improvement in load and wind curtailments is considered insignificant, or, 

the FACTS investment budget is spent. 

4.5 Corrective Scheduling 

The corrective unit commitment problem deals with disruptions in power systems operation 

caused by an unforeseen unit outage with stochastic duration [131]. As a result, a corrective 

scheduling of committed generating units that provides an immediate response to such a 

disruption is needed to update the original schedule in time. The system operator can exercise 

corrective control actions consisting of generator output adjustments of both real and reactive 

power, adjustments of transformers tap settings, switching of capacitors or reactors and if 

necessary load shedding. In the contemporary power systems, corrective scheduling can be 

also defined as the minimum reserve strategies for systems with high wind integration [109]. 

Similarly energy storage can be used as part of the control measures in a corrective form to 

alleviate power system violations [132]. Line switching is used in [133] on congested 
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networks to reduce generator dispatch cost. Corrective control strategy is deployed in [134] 

using FACTS to prevent voltage collapse as well as to relive transmission congestion under 

both normal and emergency operation regime. Normally open points (NOP) are used in [135]  

as corrective actions to provide alternative paths for supplying the customers when a fault 

occurs in a medium voltage distribution network. Demand response scheduling is applied in 

[17], as a corrective action  in the event of an emergency condition in order to improve 

network reliability. Real time thermal ratings are implemented in [136] to quantify network 

reliability in terms of expected energy not supply (EENS), while minimizing generation 

costs. 

In summary, historically corrective scheduling is usually planned for the generators, 

transformers, transmission lines and loss of load. In the modern power systems, corrective 

scheduling can be also applied in the form of new technologies installed on power systems 

such as FACTS, DR, energy storage, etc.  

The developed studies use corrective scheduling to maintain the secure operation of the 

system, while looking for the most economical dispatch. The actions taken in the developed 

studies are the following: 

 Make adjustments of the flexible generation active and reactive outputs,  

 Increase the conductor design temperature of transmission lines when there is a fault 

in the vicinity of this line, 

  Use shunt or series compensation connected to system nodes or branches, 

 Apply involuntary load curtailment, if any of the above actions couldn’t maintain the 

system within operating limits. 

In addition to the above corrective actions, this thesis proposes flexible new technologies 

such as DR, FACTS and RTTR and wind curtailment control as corrective actions to keep 

the operation of the system secure in the event of unforeseen failures. Ranking lists for 

demand response customers are generated and included in the objective function to prioritize 

customers under emergency conditions to increase reliability of the system. For example, 

certain DR customers are selected to participate in load reduction and load recovery after 

reliability and finicial indicators are improved compared to not using DR scheduling. FACTS 
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devices are adjusted to improve voltage and thermal related load and/or generation 

curtailment with the goal to improve reliability and operational costs of the network under 

emergency conditions. Real time thermal ratings are included as maximum OHL ratings in 

the OPF analysis to facilitate energy transfer under high contingency events. Finally, 

corrective scheduling of wind curtailments is also implemented by prioritizing wind 

curtailments through cost coefficients associated with wind curtailments in the OPF analysis 

in order to maximize wind deployment and at the same time improve reliability and 

operational costs of the network.  Probabilistic wind curtailment cost coefficients are assigned 

to every wind generator in the objective function because spillage cost values significantly 

contribute to spillage minimization, which is most probable to occur in the event of an 

unexpected contingency event. Consequently, the final goal of all developed corrective 

actions is to allow optimal integration of LCTs to maintain secure and reliable operation of 

the network. 
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 Components of the 

Developed Reliability 

Assessment Methodologies 

Summary: 

A description of modelling of power system components in a probabilistic framework is 

given, such as, component failures, repairable failures, load demands and wind generation. 

This is followed by optimisation algorithms literature review, which accelerates 

computational time of Monte Carlo simulation. In recent years, many efforts have been made 

to improve the computational efficiency of algorithms, especially those that are applied to 

problems of greater complexity and high dimensionality. This chapter provides information 

on the major components of the reliability assessment methodologies used in this thesis. More 

specifically, it illustrates developed reliability assessment techniques such as non-sequential 

Monte Carlo simulation (NSMCS) combined with Particle Swarm Optimization (PSO); the 

approache is used to reduce the number of Monte Carlo iterations and speed up computation.  

5.1 Probabilistic modelling of power systems components  

Power system components modelling in the reliability analysis means the probabilistic 

representation of all events involved in the calculation of the reliability indices. There are 

three major input categories, which need to be considered in power system reliability 

assessment: component failure models, network models and load & weather models in 

conjuction with forecasting techniques.  
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5.1.1 Component failure modelling 

The failure of a power system component is a stochastic event, whose time of occurrence is 

a random variable. In other words, in reliability studies the random variable, which must be 

modelled, is the time of occurrence of failure [137]. Stochastic events are usually modelled 

by probabilistic distributions. There are several forms of functions for interpreting 

probabilistic behaviour of random variables. The easiest is to explain the cumulative 

probability function (cdf). Generally, a cdf of any random variable gives the probability of 

the random variable being equal to or less than a specific value [1]. For example, if d is a 

random variable, the cdf (D) gives the probability of d≤D. When projecting this concept to 

the time of occurrence of the failure, the cdf (T) defines the probability that a component will 

fail at time ≤T, which is simply the probability of failure. Therefore, in engineering reliability 

studies the cdf is known as the probability failure function, or simply failure function and it 

is commonly denoted by Q(t) [1]. The complementary function of the failure function is the 

reliability function R(t). Given that the total probability of any two complementary events 

equals one, R(t) can be calculated by (5-1). 

 𝑅(𝑡) = 1 − 𝑄(𝑡) (5-1) 

The value of Q(t) at t=0 equals zero, while Q(∞)=1. In a similar way, the reliability of a 

component R(t)=1 when t=0, whereas R(t)=0 when t=∞. The third form of probability 

distribution functions is the probability density function pdf, which is denoted as f(t) in 

reliability engineering. The f(t) is the first derivative of the cumulative distribution function 

as given by (5-2): 

 
𝑓(𝑡) =

𝑑𝑄(𝑡)

𝑑𝑡
 (5-2) 

The integral of pdf over a period of time gives the probability of the failure occurring during 

this period. Accordingly, the integral of pdf from zero to infinite equals one.  

The hazard rate function is an alternative function interpreting the probabilistic distribution 

in the reliability analysis. This function is also known as the failure rate function and is 

designated as λ(t). This function is introduced to define the instantaneous probability of 

failure at a specific point in time [138]. It gives probability that a component did not fail until 
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time t but did fail in time period t+ Δt [139]. Subsequently, the hazard rate function has units 

1/time. The relationship between λ(t) and other distribution functions is given by (5-3) [1] . 

 
𝜆(𝑡) =

𝑓(𝑡)

𝑅(𝑡)
 (5-3) 

The hazard rate function for the exponentially distribution can be calculated in the following 

way. The pdf of the exponential distribution is given by (5-4): 

 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 (5-4) 

where λ is the parameter of the exponential function. The reliability function of the 

exponential distribution function is given by (5-5): 

 𝑅(𝑡) = 𝑒−𝜆𝑡 (5-5) 

Then using (5-3) the hazard rate function of the exponential distribution is calculated as 

shown in (5-6): 

 𝜆(𝑡) =
𝜆𝑒−𝜆𝑡

𝑒−𝜆𝑡
= 𝜆 (5-6) 

The constant hazard rate function is very unique feature of the exponential distribution, and 

hence, exponential distribution is used to characterise failure events in the useful life stage of 

the component [140]. This feature is also the reason for referring to the parameter of the 

exponential distribution 𝜆 as failure rate.  

A failure of a power system component can be repairable, where a component transits from 

in service state to repair state and spends some time in it. Consequently, the random variable 

in repair state is time to repair (TTR). If the TTR is exponentially distributed, the above 

equations apply with failure rate 𝜆 being replaced by repair rate µ. 

5.1.2 Repairable Failure 

The concept behind the repairable failure is that the component can be repaired to the same 

condition as before the failure. For power system components, the repair duration takes 

considerable time, and hence the repair process is also defined as a stochastic process. Based 

on this, the component outage can be modelled by two states: up and down states. The 
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transition rates between these two states are the failure rate and the repair rate. This is called 

Markov process and it is illustrated in Figure 5-1.  

 

Figure 5-1: Availability and unavailability limits based on Markov theory 

In typical power system reliability studies, the failure and repair rates are assumed constant, 

which means the failure and repair processes have an exponential distribution [140]. With 

this assumption, the two state model meets the requirements of Markov process, which is 

characterised by the possibility of transitions between all states, lack of memory, and 

stationary transition rates between the states [1]. The first requirement is an inherent feature 

of the two state model, since the component transits between the states. The second and last 

requirements are satisfied by the exponential distribution assumption. It was shown that the 

exponential distribution has a constant hazard rate (or failure rate) function. In order to 

demonstrate that it is memory-less, one may assume that a component has operated for a 

period of time T and the probability of failure in the next period of time t has to be evaluated. 

The main consideration here is that the component cannot fail in T+t if it has failed in the 

previous time T. This is a conditional probability problem because what needs to be assessed 

is the probability of failure during t given that it has survived up to T. The conditional 

probability rule is given by (5-7) [1]: 
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 𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (5-7) 

In the context of the the stated problem 𝑃(𝐴 ∩ 𝐵) is the probability of surviving up to T and 

failing during t. This probability can be estimated by integrating the pdf of exponential 

distribution from T to T+t, as illustrated in (5-8). 

 
𝑃(𝐴 ∩ 𝐵) = ∫ 𝑓(𝑡)

𝑇+𝑡

𝑇

𝑑𝑡 = ∫ 𝜆𝑒−𝜆𝑡
𝑇+𝑡

𝑇

𝑑𝑡 = 𝑒−𝜆𝑇 − 𝑒−𝜆(𝑇+𝑡) 
(5-8) 

P (B), which is the probability of survival up to T, is actually one minus the probability of 

failure during the previous period T given in (5-9): 

 𝑃(𝐵) = 1 − ∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

 (5-9) 

Given that the integration of the pdf from zero to infinity equals one, P(B) can then be 

expressed as: 

 𝑃(𝐵) = ∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)
𝑇

0

𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑇

= ∫ 𝜆𝑒−𝜆𝑡
∞

𝑇

= 𝑒−𝜆𝛵
∞

0

 (5-10) 

Substitution of the so calculated probabilities in (5-7) gives ((5-11), which is the probability 

of failure during t given that the component has survived up to T. 

 𝑃(𝐴|𝐵) = 1 − 𝑒−𝜆𝑡 (5-11) 

From (5-11), it is obvious that the conditional probability calculated for the exponential 

distribution does not depend on the previous period T, but it only depends on the future study 

time t. Therefore, the exponential distribution is memory-less. 

Markov process theory states that the probability of being found in any state (up or down) 

reaches a limiting value that is independent of the initial conditions (up or down). The 

probability of being found in the up state is called availability. Likewise, the probability of 

being found in the down state is known as the unavailability. The availability and 

unavailability are essential measures of component performance in system reliability. 

Refering to the Markov process, for the repairable failure, the availability and unavailability 
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of a component are constant in the long run. Figure 5-1 shows an illustrative example of the 

limiting values of availability and unavailability. The up state is denoted in the figure as 1 

and the down state as 0. As shown, the availability and the unavailability reach the same 

limiting values regardless of the initial state of component. 

The unavailability (U) and availability (A) are calculated by (5-12) and (5-13) respectively, 

which are the Markov limiting state probabilities [140]:  

 
𝑈 =

𝜆

𝜆 + 𝜇
 (5-12) 

 𝐴 = 1 − 𝑈 =
𝜇

𝜆 + 𝜇
 (5-13) 

where λ and μ are the failure and repair rate, respectively. 

5.1.3 Network modelling in terms of reliability 

The network modelling in power system reliability is classified into two categories. The first 

one is associated with load flow analysis, which determines whether the system state is a 

system success event or a system failure event. System success event is the one in which no 

system constraint is violated (no thermal, voltage violations or load shedding). On the other 

hand, system failure event is the one when voltage or thermal limits are exceeded and load 

curtailment is applied. The second category is associated with both unplanned and planned 

outages (maintenance). Planned outages can be treated in two ways. Firstly, the planned 

outage is modelled as a two state model, where the transition rates between the two states are 

estimated using the Markov process [141]. By doing this, planned outages are considered as 

random events. The second model is to have the predetermined schedule of planned outages 

for the period of study [44]. This model is more realistic because it ensures that maintenance-

planning criteria set by the utility are fulfilled. For instance, utilities commonly do not allow 

for more than one component in a substation or generation plant to be out of service for 

maintaince. This condition is not granted when considering the planned outages as random 

events. 
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5.1.4 Load model 

The simplest approach in load modelling is to consider a single load level that remains 

constant over a yearly period. The peak load is usually employed for this model in order to 

account for the worse case scenario. The reliability indices calculated using this model are 

known as annualised indices. The major advantage of this model is that it reduces the 

computation time of the reliability assessment; however, it does not reflect the variation in 

the load demand throughout the year. 

 
Figure 5-2: Load duration curve and its multi step model 

For some system reliability applications, it is essential to consider the load variation during 

the study period. Accordingly, the annual curve has to be modelled and incorporated in these 

reliability analyses. There are two approaches for modelling an annual load curve [43]. The 

first approach is to consider the chronological annual load curve and to perform reliability 

assessment at each hourly period. The annual reliability indices are calculated using an equal 

probability 1/8760 for each hourly load. This approach is the most accurate, but it requires 

excessive computation time and effort. The second approach is to represent the annual load 

variation by the load duration curve and then convert this duration curve into a multi-step 

load model [43]. An illustrative model example is given in Figure 5-2. Clustering technique 
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is the most common method for obtaining multi-step load models. The basic steps of these 

techniques are described below: 

1) Determine the number of steps. 

2) Set an initial value of the load level for individual steps 

3) Calculate the distance between hourly load points and all load levels. Then cluster the 

hourly points in that level. 

4) Repeat steps 2 and 3 with an acceptable level of accuracy. 

The calculated load levels and the number of hourly load points define the multi-step 

levels with the associated durations. The accuracy of the reliability results is proportional 

to the number of steps and thereby, proportional to the computational time. The selection 

of the number of steps is a trade-off between the required level of accuracy and the 

computational time of the evaluations. Different power networks have different 

sensitivities to the load levels, and therefore to the required number of steps in the load 

model. 

In order to incorporate this multi-step model into system reliability assessmet, one can 

either enumerate the levels one by one or randomly sample them within the simulation 

iterations. For the former, the reliability indices are assessed at each level, and then the 

annual indices are calculated using the indices obtained for the individual levels and their 

associated probabilities. The latter approach is only applicable for reliability assessment 

techniques based on simulations. In this method, the probabilities of load levels are sorted 

from smallest to largest, and then accumulated. In each iteration of the reliability 

assessment, a random number between 0 and 1 is generated and compared to the 

accumulated probabilities to sample the load levels. 

5.2 Sampling Reduction Techniques 

In structural reliability analysis, where the probability of failure is generally relatively small, 

the direct Monte Carlo (MC) simulation procedure becomes inefficient. In this case, many 

simulations are required to estimate a reliability index and limit the uncertainty in the 

estimate. In MC simulation procedure dealing with a large number of random variables, a 
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large number of sampling sets is required. Thus, there are limitations to obtaining satisfactory 

occuracy for large-scale problems, because it requires large computational time and effort.  

By reducing the variance of the probability density function of a random variable that results 

from a Monte Carlo simulation can decrease the standard deviation of the estimated quantity. 

Besides, decreasing the variance has a similar effect on the accuracy of a Monte Carlo 

simulation as increasing the number of samples, or equivalently, number of iterations. The 

application of variance reduction techniques is an important concept in Monte Carlo 

simulation [142]. The most commonly used variance reduction techniques in power systems 

reliability evaluation are control variates, importance sampling, stratified sampling, antithetic 

variates, and dagger sampling [1]. Even though variance reduction techniques successfully 

reduce the number of samples, they can alter the probability distribution of estimated 

quantities [143]. 

Alternatives to the traditional sampling reduction techniques are pseudo-chronological MCS 

[144][145], cross entropy quasi sequential [146][147], quasi cross entropy [148] and latin 

hypercube sampling [149], which are all combined with the conventional Monte Carlo 

simulation to accelerate its convergence. In addition, the population intelligence search 

method has been recently applied to the probabilistic reliability analysis of power systems 

[150]. The synergistic combination of the listed methods with the MCS has resulted in 

improved methods of sampling within the MCS methodologies. The latest developments are 

mainly focused on the use of optimization heuristic techniques, such as genetic algorithm 

(GA) [151] and particle swarm optimization (PSO) [152], but there are also some works 

including artificial immune system (AIS) [150] and ant colony optimization (ACO) [153]. In 

this thesis, Monte Carlo simulation is used to model the uncertainty in the availability of 

transmission lines and generation units, which form the total number of states of the system. 

For a system of realistic size, the number of states will be extremely large; however, most of 

those states play a small role in reliability evaluation. As a result the heuristic approaches 

mentioned above give enough precision through visiting sufficient states of high probability 

and this approach has been shown to be effective [154]. In particular, the goal of these 

techniques is to remove as many non loss-of-load states as possible (also called state space 

pruning) in order to generate a new state space where the density of failure states is quite 
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high. This newly formed state space will encourage algorithms such as MCS to converge 

more quickly. Concequently, particle swarm optimization is used in combination with MCS 

to improve its computation time by identifying and reducing the number of systems states of 

interest. 

To summarize, the full algorithm contains the following steps [155], which will be described 

in more detail in section 5.2.1.4: 

 Prune the original state space using MOPSO 

 Run MCS for the pruned state space until LOLP converges  

 Convert MCS LOLP from the pruned state space back to LOLP for the original state 

space  

The following sections will focus on particle swarm optimization combined with non-

sequential Monte Carlo simulation. These approaches were developed to speed-up 

computations. 

5.2.1 Binary Particle Swarm Optimization  

The particle swarm optimization (PSO) is a population based optimization technique firstly 

proposed by Kennedy and Eberhart [156]. Few years later an alternative PSO, the binary PSO 

(BPSO), was investigated by Kennedy and Eberhart, which restricts the component values 

and the solution to the range (0,1). An introduction to the particle swarm optimization will 

be presented first and then BPSO equations will be given.  

Some of the attractive features of the PSO include the ease of implementation and the fact 

that no gradient information is required. It can be used to solve a wide array of different 

optimization problems. In addition, PSO, similarly to the algorithms belonging to the 

evolutionary algorithm family, is a stochastic algorithm that can be used on functions where 

the gradient is either unavailable or computationally expensive to obtain. The PSO approach 

originates from sociological phenomena, since the original algorithm was based on the 

sociological behavior associated with bird flocking and school of fish [157]. The algorithm 

considers a population of particles, where each particle represents a potential solution to an 

optimization problem. If the size of the swarm, namely generations, is for example G, each 
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particle i can be represented as an object with several characteristics. As such originally these 

characteristics were assigned by Kennedy and Eberhart the following symbols: 

xi: the personal position of particle i; 

vi: the personal velocity of particle i; 

yi: the personal best position of particle i. 

The personal best position associated with particle i 𝒚𝒊
′ is based on the best position that the 

particle has visited (a previous value of xi), yielding the highest fitness value for that particle. 

For a maximization task, a position yielding a larger function value is regarded as having a 

higher fitness. The symbol f will be used to denote the objective function that is being 

maximized. The update equation for the current best position is presented in (5-14): 

 
𝒚𝒊
′ = {

𝒚𝒊𝑖𝑓𝑓(𝒙𝒊) ≤ 𝑓(𝒚𝒊)

𝒙𝒊𝑖𝑓𝑓(𝒙𝒊) > 𝑓(𝒚𝒊)
 (5-14) 

Each particle is characterized by the best global value, gbest, which denotes the best position 

discovered by any of the particles so far. The definition of gbest is given by (5-15). 

 𝑔𝑏𝑒𝑠𝑡 = max(𝑓(𝒚𝟎, 𝒚𝟏, … , 𝒚𝑮) (5-15) 

where G is the size (number) of the particles generations. 

 

The algorithm was later developed to a two-vector velocity 𝒗𝒊,𝒋 to help solve more complex 

problems [158]. For application in this work, the additional vector j represents the jth  system 

element (e.g a generation unit or a transmission line), whereas i represents the ith particle. 

This is specific to the problem at hand, as one could assess failures in generation units only, 

in transmission lines only, or as is the case in this thesis failures in both generation units and 

transmission lines. This algorithm makes use of two independent random sequences, r1 

~U(0,1) and r2 ~U(0,1). These sequences are used to reflect the stochastic nature of the 

algorithm as shown in (5-16). 

 𝒗𝒊,𝒋
′ = 𝒗𝒊,𝒋 + 𝑐1𝑟1,𝑗[𝒚𝒊,𝒋 − 𝒙𝒊,𝒋] + 𝑐2𝑟2,𝑗[𝑔𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋] (5-16) 
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The values of r1, r2 are scaled by constants c1, c2≤2. These constants are called acceleration 

coefficients and they influence the maximum size of the step that a particle can take in a 

single iteration. The velocity update step is specified separately for each dimension j=1....n, 

so that vi,j denotes the jth dimension of the velocity vector associated with the ith particle. 

From the definition of the velocity update equation (5-16) it is clear that c2 regulates the 

maximum step size in the direction of the current best position of that particle. The value of 

vi,j is clamped to the range [-vmax,vmax] to reduce the likelihood that the particle might leave 

the search space. If the search space is defined by the bounds [-xmax, xmax], then the value of 

vmax is typically set so that vmax=k*xmax, where 0.1≤k≤1. 

The position of each particle is updated using the new velocity vector for that particle so that: 

 𝒙𝒊,𝒋
′ = 𝒙𝒊,𝒋 + 𝒗𝒊,𝒋 (5-17) 

 

A binary version of the PSO was introduced by Kennedy and Eberhart in [159]. This 

alternative of PSO restricts the values of components xi and yi to the binary values (0, 1). 

There is no such restriction on the value of the velocity, vi,j, of a particle, though. When using 

the velocity to update the positions, however, the velocity is bounded to the range [0, 1] and 

treated as a probability. This can be accomplished by using the sigmoid function, defined as,  

 
𝑠𝑖𝑔(𝑥) =

1

1 + 𝑒𝑥𝑝(−𝑥)
 (5-18) 

Note that this velocity update equation does not differ from the one used in the original PSO. 

The position update equation for the BPSO is expressed by relations (5-19): 

 
𝒙𝒊,𝒋 = {

0,𝑖𝑓𝑟3,𝑗 ≥ 𝑠𝑖𝑔(𝒗𝒊,𝒋)

1,𝑖𝑓𝑟3,𝑗 < 𝑠𝑖𝑔(𝒗𝒊,𝒋)
 (5-19) 

where r3,j(t)~U(0,1) is a uniform random variate. It is clear from the equation that the value 

of xi,j will remain 0 if sig(vi,j)=0. This will happen when vi,j is approximately less than -10. 

Likewise, the sigmoid function will saturate when vi,j>10. To prevent this it is recommended 

to clamp the value of vi,j to the range ±4 [160], resulting in a state-change probability that 

sig(4)=0.018. The original paper describing the binary PSO recommended a slightly larger 

vmax/vmin threshold of ±6, resulting in a probability of approximately 0.0025. 
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In other words, equation (5-16) implies the sociocognitive concepts of particle swarm 

optimization, which are included in the function vij, which means that the disposition of each 

individual towards success is adjusted according to its own experience as well as of the 

community. 

Note that the velocity update equation corresponds to the original velocity update equation 

without the inertia weight or constriction coefficients [159]. This is because the paper 

describing the binary PSO [159] was published before these modifications were introduced. 

A later paper used the binary PSO in a comparison with a Genetic Algorithms on a multi-

modal test function generator [161]. That binary PSO made use of constriction coefficient, 

showing that the techniques usually applied to the continuous PSO are applicable to the 

binary PSO as well. 

5.2.1.1 Rate of Convergence Improvements 

Several techniques have been proposed for improving the rate of convergence of the PSO. 

These proposals usually involve changes to the PSO update equations, without changing the 

structure of the algorithm. This usually results in better local optimization performance, 

sometimes with a corresponding decrease in performance (i.e. worse performance) on 

functions with multiple local minima. 

 Inertia weight 

Some of the earliest modifications to the original PSO were aimed at further improving the 

rate of convergence of the algorithm. One of the most widely used improvements is the 

introduction of the inertia weight by Shi and Eberhart [162]. The inertia weight is a scaling 

factor associated with the velocity during the previous time step, resulting in a new velocity 

during the previous time step; the new velocity update equation is used: 

 𝒗𝒊,𝒋 = 𝑤𝒗𝒊,𝒋 + 𝑐1𝑟1,𝑗[𝒚𝒊,𝒋 − 𝒙𝒊,𝒋] + 𝑐2𝑟2,𝑗[𝑔𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋] (5-20) 

where gbest is the global best value and it is given in (5-15). 

The original PSO velocity update equation can be obtained by setting w=1. Shi and Eberhart 

investigated the effect of w values in the range [0, 1.4], as well as varying w over time [162]. 
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Their results indicate that choosing wϵ [0.8, 1.2] results in faster convergence, but that larger 

w values (>1.2) result in more failures to converge.  

The inertia weight governs how much of the previous velocities should be retained from the 

previous time step. To briefly illustrate the effect of w, set c1, c2=0. Now, a w value greater 

than 1.0 will cause the particle to accelerate up to the maximum velocity vmax (or –vmax), 

where it will remain, assuming the initial velocity was non-zero. A w value less than 1.0 will 

cause the particle to slowly decelerate until its velocity reaches zero.  

Another set of experiments was performed to investigate the interaction between vmax and the 

inertia weight [163]. For the single function studied in this experiment, it was found that an 

inertia weight of 0.8 produced good results, even when vmax=xmax the best performance, 

however, it was again obtained by using an inertia weight that decreased from 0.9 to 0.4 

during the first 1500 iterations. Consequently, the inertia weighting factor w is often specified 

as a real value in the interval [0.0, 1.0] and can be proportionally decreased with the iteration 

progress, using, for example, relation (5-21). 

 
𝑤 = 𝑤𝑚𝑎𝑥 −

𝑡

𝑡𝑚𝑎𝑥
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (5-21) 

where wmax and wmin are the maximum and minimum weighting values; t and tmax are the 

current and maximum counts of iterations, respectively. 

 Constriction Factor 

Recently, work by Clerk [164] indicated that a constriction factor may help to ensure 

convergence. The constriction factor model describes, amongst other things, a way of 

choosing the values of w, c1, c2 so that convergence is ensured. By choosing these values 

correctly, the need for clamping the values of vi,j to the range [-vmax,vmax] is required.  

A modified velocity update equation, corresponding to one of several constriction models 

[164] is presented in (5-22). 

 𝒗𝒊,𝒋 = 𝑋 ∙ {𝒗𝒊,𝒋 + 𝑐1𝑟1,𝑗[𝒚𝒊,𝒋 − 𝒙𝒊,𝒋] + 𝑐2𝑟2,𝑗[𝑔𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋]} (5-22) 

where: 
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𝑋 =

2

|2 − 𝜑 − √𝜑2 − 4𝜑|
 (5-23) 

and φ=c1+c2 , φ>4. If c1=c2=2.05 substituting φ=c1+c2=4.1 into equation (5-23) yields 

x=0.7298, which in turn gives equation (5-22) in the form of: 

 𝒗𝒊,𝒋 = 0.7298 ∗ (𝒗𝒊,𝒋 + 2.05 ∗ 𝑟1,𝑗(𝒚𝒊,𝒋 − 𝒙𝒊,𝒋) 

+2.05 ∗ 𝑟2,𝑗(𝑔𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋)) 
(5-24) 

Since 2.05*0.7298=1.4962, this is equivalent to using the values c1=c2=1.4962 and w=0.7298 

in the modified PSO velocity update equation (5-24). 

5.2.1.2 Application of PSO to Power Systems 

The PSO has been applied to a vast number of problems. This section will briefly mention 

some of the applications that can be found in literature. Different types of PSO have been 

presented and categorized as shown below [164]: 

 Reactive power and voltage control, 

 Economic dispatch, 

 Power system reliability and security, 

 Generation expansion problem, 

 State estimation, 

 Load flow and optimal power flow, 

 Power system identification and control, 

 Controller tuning, 

 System identification and intelligent control, 

 Electric machinery, 

 Capacitor placement, 

 PMU placement, 

 Generator maintenance scheduling, 

 Short-term load forecasting, 

 Generator contributions to transmission system, 

5.2.1.3 Illustration of the proposed model on reliability analysis 

The main goal of the proposed algorithm is to reduce the state space by removing the states 

that do not result in loss of load and so contribute less to the computation of the reliability 

indices. Consequently, computational time is saved from avoiding searching unecessary 
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states. These states are characterized by “success state” if there is load curtailment on the 

network, while the states are considered “failure states” if no curtailment is needed. 

Therefore, the movement of the particle is accomplished in a 3-dimensional space by 

searching for the optimal solution along three coordinates. The first coordinate – objective 

function is based on the maximization of the probability of the system state as in [154], so 

the variable of the problem is the probability of the system state for each particle i, based on 

the probability of each network component state, and is given in equations (5-26), (5-27). Given 

a probability of failure for each network component, the total probability of each system state 

represents the product of the probabilities of every network component in a given system 

state. The first objective therefore searches for system states with probability close to 1 

(maximum probability) and discards those states that do not lead to any loss of load (i.e.: no 

load curtailment) from the state space. As such, the states without loss of load occur with 

higher density compared to states with loss of load. The second objective function uses the 

minimization of load curtailment as in [154] to further encourage the particle’s movement to 

a non-loss of load state, equation (5-28). The third objective function makes use of the 

maximization of the rating of the transmission lines to speed up the search for non-loss of 

load states. Indeed, under certain sets of combinations of failures, lines can be overloaded; in 

some cases this does not cause any loss of load, in other cases this causes loss of load. The 

third objective hence targets the former case, where lines are overloaded, in other words 

where line ratings are maximised, but do not cause any loss of load. The state space is hence 

reduced and thus speeds up the particle search. This third objective function further acts as a 

conflicting force to the two previous objectives. Because the first and second objective 

functions are complementary, it is possible for the particle to collapse towards one corner of 

the search space [154]. To avoid this, the opposing criterion from the third objective is used 

to control the particle dynamics and ensure that the particle visits all the states of interest. 

The formula of this objective is given in equation (5-33). The variable on this function is the 

ratings of the transmission lines, which depends of the systems components availability and 

unavailability. The first and the second objective functions used in this work is similar as in 

[155][154][159], whereas the third objective function is a novel extension of the algorithm 

and a contribution in this thesis. As such the algorithm is multi objective and so it is called 
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Multi Objective Particle Swarm Optimization (MOPSO). This function is explained in 

(5-25): 

 𝒗𝒊,𝒋 = 𝒗𝒊,𝒋 + 𝐹1𝑟1,𝑗(𝑡)[𝑃𝑃𝑟𝑏𝑒𝑠𝑡𝑖,1 − 𝒙𝒊,𝒋] + 𝑉1𝑟2,𝑗(𝐺𝑝𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋) +

𝐹2𝑟3,𝑗[𝑃𝐿𝐶𝑏𝑒𝑠𝑡𝑖,2 − 𝒙𝒊,𝒋]+𝑉2𝑟4,𝑗[𝐺𝑙𝑐𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋] + 𝐹3𝑟5,𝑗[𝑃𝑇𝑅𝑏𝑒𝑠𝑡𝑖,3 −

𝒙𝒊,𝒋] + 𝑉3𝑟6,𝑗[𝐺𝑡𝑟𝑏𝑒𝑠𝑡 − 𝒙𝒊,𝒋] 

(5-25) 

 max𝑃𝑃𝑟𝑏𝑒𝑠𝑡𝑖,1 = max{𝑃𝑃𝑟𝑏𝑒𝑠𝑡1,1, 𝑃𝑃𝑟𝑏𝑒𝑠𝑡2,1, … , 𝑃𝑃𝑟𝑏𝑒𝑠𝑡𝑃,1} (5-26) 

 

𝑃𝑃𝑟𝑏𝑒𝑠𝑡𝑖,1 =∏𝑝𝑗

𝑇𝐶

𝑗=1

 (5-27) 

 
𝑚𝑖𝑛𝑃𝐿𝐶𝑏𝑒𝑠𝑡𝑖,2 = 𝑚𝑖𝑛 {

𝐿𝐶

𝑇𝐿𝑜𝑎𝑑
} (5-28) 

where the quantities denote: 

PPrbesti,1 : Addresses the highest system state probability; 

Gpbest : Denotes the best position with the highest system state probability 

discovered by any of the particles so far; 

PLCbesti,2 : Addresses the minimum load curtailment; 

Glcbest : Denotes the best position with the lowest load curtailment discovered 

by any of the particles so far; 

PTRbesti,3 : Addresses the loading of the transmission line; 

Gtrbest : Denotes the best position with the highest rating discovered by any of 

the particles so far; 

F, V : Acceleration factors for each objective function respectively; 

r : Independent uniformly distributed variables in the interval [0,1]; 

P: Number of particles; 

TC: Total number of nentork components (generators and transmission 

lines); 

pj: Probability of generator/transmission line j to be available or 

unavailable;  

LC: Load Curtailment for particle i; 

TLoad: Total Load in the network for particle i; 
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The Multi Objective Particle Swarm Optimization (MOPSO) algorithm is developed using 

power flow analysis to distinguish between a success or a failure system state. In order to 

keep track of the states visited by the particles, a dynamic array has been used. Whenever a 

state is encountered, its binary encoding scheme is computed. If the number is already 

present, then it means that this state has already been encountered before. Otherwise, this 

state is being encountered for the first time, and therefore the binary code is stored in the 

array. The steps of the proposed methodology for improved MCS are illustrated in Figure 

5-3. They are explained below. 
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Figure 5-3: MOPSO flowchart 

Initialization: PSO is initialized with a group of random particles P and then searches for 

optima by updating generations G. Generations G are comprised by a number of particles P. 

Both values are randomly selected until a combination of them results in a desired target, 

which in our case is to minimize computational time. In every iteration, each particle is 

updated by following two "best" values (the personal best and the global best value). The 

number of particles P and generations G are set for the simulation. The components of the 
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system (generators and lines) represent one dimension through a binary encoding scheme; 1 

represents the up and 0 the down status of the dimensions of each particle. Dimension j equals 

to a binary encoding scheme representing the availability or not of the total number of 

generation units and transmission lines. For each dimension j of a particle i the initial 

positions and velocities are defined by the forced outage rate (FOR) of the jth dimension, as 

follows. 

 
𝑋𝑖,𝑗 = {

0𝑟 ≤ 𝐹𝑂𝑅𝑖,𝑗
1𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-29) 

 
𝒗𝒊,𝒋 = {

𝐹𝑂𝑅𝑖,𝑗 𝑋𝑖,𝑗 = 0

1 − 𝐹𝑂𝑅𝑖,𝑗𝑋𝑖,𝑗 = 1
 (5-30) 

 where  Xi,j is the value of the position of the jth dimension of the  ith particle and            

             vi,j is the value of the velocity vector. 

Since all the particles obtain a position vector at position xi,j and velocity vector vi,j, they track 

a personal best solution and position that relates to the multi-function.  

Filtering meaningless cases: The network status is considered as meaningless (i.e. it is not 

studied) in the following cases: a) The probability of the system state is lower than a very 

small number δ (e.g.: δ=10-7); b) A particle is the same as a particle of the same or previous 

generation; c) All components are in the up state.  

Loss of load computation: The objective of using DC OPF here is to minimize the total load 

curtailments during peak demand. The state is considered to be a success state if there is 

curtailment, while the states are considered failure states if no curtailment is needed. The 

objective function is derived from the equations presented in section 2.5 and uses a piecewise 

linear approach for the minimization of loss of load and generation costs.  

Weight index calculation: The novelty of this thesis is the use of a new index WI to weight 

the loading of the lines. Distinguishing more frequently highly loaded lines from less 

frequently highly loaded lines within deterministic analysis, we can find which lines 

contribute more or less to a non-loss load state when there is a failure in the system. 

Consequently, we can use the weights on the lines to direct the particle to states with no load 
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curtailment, which is the target of the proposed algorithm (state space pruning using PSO). 

As such, transmission lines with the highest loading contribute less to the non loss load state 

space and therefore a smaller personal best number is calculated for these lines; on the other 

hand, lines which are loaded less satisfy the load connected at their terminals and a higher 

personal best number is calculated for these lines so the particle will be directed to the non-

loss load space. As a preparation, the deterministic (N-1) approach is first used for the 

calculation of the weight index as this is method is fast and provides an approximate 

indication of the index for the set of system states where transmission lines are overloaded 

but do not cause any loss of load. A sensitivity analysis is then performed, by varying the 

ratings of each line and considering N-1 transmission lines outages, the number of 

occurrences when a line is loaded above a given rating is recorded for the peak load. The 

analysis was implemented considering N-1 outages of the lines so as to give an indication of 

which lines are more frequently overloaded. Therefore for all system states the total 

probability must equal 1. The system is operated under the occurrence of a credible outage 

without causing voltage problems and load shedding. Probability of each state (Pi) is 

calculated by using the normalised value of (5-33), assuming that all outages are independent; 

normalization is done with ΣPTRbesti,3 so that sum of all normalized probabilities is equal 

unity. The line overloadings are classified from 10% to 100% of the actual ratings into bins 

of 10%. This classification is applied because several actual transmission line ratings/flows 

are very low compared to their actual capacity margin.  Therefore, the mean value of 

frequency of OHLs’ overloadings (𝑇𝐿𝑠,𝑙) is determined for the various rating limits, as shown 

in (5-32) with y,l being the number of overloadings of transmission line l of scenario S . The 

average loading value for each OHL is given by WIl in (5-31) aiming to show the importance 

of each line in the network: 

 
𝑊𝐼𝑙 =

∑ 𝑇𝐿𝑠,𝑙
𝑆
𝑠=1

𝑆
 (5-31) 

 
𝑇𝐿𝑠,𝑙 =

∑ χ𝑦,𝑙
𝑌
𝑦=1

𝑌
 (5-32) 

 

𝑃𝑇𝑅𝑏𝑒𝑠𝑡𝑖,3 =
∑ 1

𝑊𝐼𝑙
⁄ ∙ 𝐿𝑓𝑙𝑜𝑤𝑙

𝐿
𝑙=1

𝐿𝑓𝑙𝑜𝑤_𝑠𝑦𝑠𝑡𝑒𝑚
 (5-33) 
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WIl : Weight index of transmission line l considering deterministic 

scenarios S; 

S :  Number of deterministic scenarios; 

TLs,l :  Mean value of thermal loading of line l at scenario s; 

Y :  Total iterations of deterministic scenario S; 

y,l :  Number of overloadings of transmission line l of scenario s; 

PTRbesti,j:  Personal best considering thermal ratings; 

Lflowl :  Load flow of transmission line l; 

Lflow_system:  Total Load flow of the entire network; 

L:  Total number of transmission lines 

Assessing the dominant cases: If the particle is a success state then the algorithm includes the 

following steps: a) Store the binary sequence of the particle as pruned state; b) Store the 

probability calculated as in equation (5-27); c) Store if there is load curtailment in the system 

state; and d) Store the power flows of the transmission lines. Otherwise, set a low importance 

value to the personal best values and go to the next particle. 

Population evaluation-formulation: Determine the personal best values by using the inputs 

of the network status. Update the velocities and positions for each dimension j of particle i 

using (5-25) and check the following constraints:  

 𝒗𝒊,𝒋
𝒌+𝟏 > 𝑉𝑚𝑎𝑥  then 𝒗𝒊,𝒋

𝒌+𝟏 = 𝑉𝑚𝑎𝑥 (5-34) 

 𝒗𝒊,𝒋
𝒌+𝟏 < 𝑉𝑚𝑖𝑛 then 𝒗𝒊,𝒋

𝒌+𝟏 = 𝑉𝑚𝑖𝑛 (5-35) 

Vmax and Vmin are considered as thresholds for the velocity-probability of failure and make 

use different values for the lines and for the generators in order to make the algorithm more 

realistic. 

Stopping Criteria: The simulation process is continued until the number of the particle 

generations is reached (k=G). 
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5.2.1.4 BPSO within Monte Carlo Simulation 

As discussed above in Section 5.2, the MOPSO algorithm is combined with Monte Carlo 

simulation to discard a large amount of success states and make the MCS converge quicker 

as proven in [155]. However, the advantage of including a third objective function introduced 

in this work is twofold: 1) this reduces computational speed by targeting the system states 

where overloaded lines do not cause loss of load, and 2) this opposing criterion from the third 

objective is used to control the particle dynamics and ensure that the particle does not collapse 

towards a corner of the search space. The MC algorithm used for this purpose is shown in 

Figure 5-4 and it can be divided into the following steps: 

 

Figure 5-4: Pruned MCS flowchart 

1) Set the number of samples Y 
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2) Use state sampling technique to determine the system state. For the sampling 

technique the random numbers are taken exponentially from the range (0, 1). 

3) If the state has been pruned determine from the database whether it is a success or 

failure state. If it is a success state discard this event. If not, add the state into the 

calculation of LOLP. 

4) If the state hasn’t been pruned, run OPF and classify it as a success or failure state. 

5) If it is a failure state then add the state into the calculation of LOLP using the 

following equations, as in [150][155]: 

 𝐿𝑂𝐿𝑃𝑀𝑂𝑃𝑆𝑂−𝑀𝐶𝑆 = 𝐿𝑂𝐿𝑃𝑀𝐶𝑆 ∗ (1 −∑𝑃𝑖) 
(5-36) 

where Pi is the probability of occurrence of a pruned state generated by the MOPSO. 

In (5-36) we have used: 

 𝐿𝑂𝐿𝑃𝑀𝐶𝑆 =
1

𝐾
∑𝐷𝑖

𝐾

𝑖=1

 (5-37) 

 𝐷𝑖 = {
1𝑙𝑜𝑠𝑠𝑜𝑓𝑙𝑜𝑎𝑑𝑠𝑡𝑎𝑡𝑒
0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-38) 

where Di is given in (5-38), K is the total number of states sampled so far in each 

iteration and LOLPMCS is the loss of load probability (LOLP) calculated via MCS and 

it is converted back to a LOLP relevant to the original state. 

6) If the stopping criterion is fulfilled (COV≤0.04), then stop simulations [43]. 

5.2.1.5 MOPSO algorithm with Thermal Ratings 

Thermal ratings are included in the MOPSO algorithm to realistically identify faster the 

pruned states using standard and real time thermal ratings. The MOPSO algorithm is tested 

incorporating static, seasonal and real-time thermal ratings using probability distribution 

functions to sample thermal rating values. Real-time thermal ratings are modelled for winter 
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peak load and under a 30-year weather data corresponding to peak winter days. To create the 

probability distribution functions, chronological data such as wind speed, ambient 

temperature and wind direction were plugged in (4-28) to determine ampacities for each 

conductor type. Because MOPSO is implemented for non-sequential MCS, which means for 

a specific load level (in this case for the peak load), the PDFs are produced using 30 years of 

historical weather data for the peak load hour. For static thermal rating the peak hour during 

summer period is used, whilst for seasonal thermal ratings three periods are considered 1) 

peak summer hour, 2) peak spring/fall hour, and 3) peak winter hour. Then the median value 

of each PDF is used as the fixed value for each type of standard thermal ratings.  

In the case of real thermal ratings, historical weather data during the peak hour (winter period) 

are plugged in (4-28) to calculate the PDF of real thermal ratings. While the median value of 

the PDFs are used for standard thermal ratings, in this case a random number is generated 

using the best PDF matching with the calculated real thermal ratings, which have mean value 

µ and standard deviation σ.   

For either thermal rating approach, the PDFs generate the maximum thermal rating at each 

sample of system state. Subsequently, the load flow parameters of the lines are calculated 

after using DC (OPF) formulation, as described in Chapter 4.3.3 for the network considering 

the operating conditions (i.e. failures if any) and the initial maximum thermal rating. The 

thermal ratings are set in the MOPSO algorithm as it is shown in the flowchart of Figure 5-3 

through the “assessing the dominant cases” step. The rest of the MOPSO procedure continues 

as described in the previous section. 

5.2.2 Case studies 

5.2.2.1 Validation of MOPSO algorithm 

The MOPSO method was implemented using acceleration factors: F1=0.01, V1=0.1; F2=0.1, 

V2=0.1; F3=0.1, V3=0.1 and velocity limit Vmax=4 and Vmin=-4. The size of the swarm also 

plays a determining role in the convergence of the NMCS. Due to this, each simulation run 

has been done for a combination of particles and generations, which range from 5 to 30 

particles and from 50 to 300 generations. After the various combinations of particles and 
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generations were completed, the data were sorted in ascending order in respect to the number 

of success states pruned. The probability threshold of system states is δ=10-7, stopping 

criterion for MOPSO is the number of generations G and the stopping criterion for NSMCS 

is 4%. NMCS is used as a baseline to calculate the LOLP and computational time of the 

original method. Both the effects of transmission lines and generators’ failures are considered 

in the reliability modelling. 

Three performance indicators were computed: LOLP, CPU time and number of iterations. 

Table 5-1 presents comparisons of system indices between NSMCS (baseline) and the 

proposed MOPSO. It is shown that the number of NSMCS iterations are reduced by 70%, 

when MOPSO algorithm is used. Similarly the CPU time is reduced by 73%, which shows 

that MOPSO technique is very efficient and accelerates significantly NSMCS simulation 

burden. As far as the accuracy of the indices is concerned, the MOPSO technique is very 

robust and achieves less than 0.1% error of the expected values of indices calculated. 

Table 5-1: Comparison of system indices using NSMCS and MOPSO 

RELIABILITY INDICES NSMCS MOPSO 

LOLP 0.06261 0.06359 

iterations 85534 24625 

CPU(h) 3.23 0.86 

Figure 5-5 details the comparative results between single, bi, and multi objective functions 

for pruning the states. In particular, it indicates that the LOLP derived from the optimization 

algorithm shows high accuracy in the range of 0.004 in respect to the baseline LOLP. In 

addition, the proposed MOPSO displays slightly smaller LOLP fluctuation around the 

baseline throughout the total number of trials, which demonstrates that the novel method 

improves network performance indices. 
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Figure 5-5: MOPSO algorithm: LOLP reliability index 

Figure 5-6 shows the total computational time required for MOPSO to complete the 

simulations. It is clear that the proposed MOPSO is faster than the single and bi-objective 

function. In particular, MOPSO needs 1.35 hr when the single objective function is used for 

pruning, while the proposed method (three objectives) decreases the MOPSO convergence 

time to about 0.85 hr, as it is shown in Figure 5-5. This is because the MOPSO prunes larger 

number of success states for the same combination of particles and particle generations as it 

combines the three objectives, while still superior to a single objective on its own. The spikes 

that occur in all three optimization algorithms mean that although the number of success 

states pruned is large, the number of MCS iterations is bigger because there is a possibility 

of MCS to randomly sample a success system state that wasn’t captured by the optimization 

techniques (this is known as collision). Furthermore, it can be inferred from the graph that 

the computational time of MOPSO with a single and bi-objective function is almost the same 

between 20 and 40 trials. This is mainly because the bi-objective function identifies success 

states, which are not sampled so often by MCS, as well as because there are collisions 

between PSO method and MCS. In summary, the proposed MOPSO has a CPU time of 0.86 

hours for trial 1, as given both in Table 5-1 and Figure 5-6 representing a 74% improvement 

in CPU time compared to the MCS algorithm alone (3.23 hours). 
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Figure 5-6: MOPSO Computational Time 

 

Figure 5-7 demonstrates that the MOPSO method prunes more success states than both the 

probability based method and the probability-curtailment method. All methods prune up to 

14500 success states for the first 40 simulations and then the pruning increase in an 

exponential manner. 

It can be seen that the algorithm using one objective function prunes more success states than 

the method with two objective functions. This is evident, since the algorithm with two 

objective functions is mainly affected by the curtailment objective function, which plays 

dominant role in the selection of the success states. However, PSO using three objectives 

shows better results, see Figure 5-7, because the occurrence of success states pruned by three 

objectives are more frequently compared to one objective function. 
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Figure 5-7: Success States Pruned 

The Weight Index (WIcrude) used to validate the proposed MOPSO uses the capacity data of 

the transmission lines given by the IEEE RTS. The loading of each transmission line is 

computed after deterministic analysis implementation using the peak load of IEEE RTS for 

the WIcrude and 2.5 times the peak load of the network for the WIstr (static thermal rating) and 

WIRTTR (real time thermal rating). It is illustrated in Figure 5-8 that for the 138 kV voltage 

IEEE RTS network line 11 is the most frequently overloaded, whereas for the 230kV network 

lines 23 and 28 show very high loading probability. Therefore, it can be implied that the 

indexes of the most critical lines boost the intelligent movement of particles to search and 

track more success system states. This is due to the ability of particle to discover the states 

that the lines are overloaded subject to generator and line failures in order to satisfy the total 

demand and eventually result in a non-loss of load state. 

S
u
cc

es
s 

S
ta

te
s 

p
ru

n
ed

Trials

0 10 20 30 40 50 60 70 80

×10
4

0

1

2

3

4

5



Chapter 5 - Components of the Developed Reliability Assessment Methodologies 

Page | 138 

 

 

Figure 5-8: Weight indices used by the proposed MOPSO for the different thermal rating scenarios 

5.2.2.2 MOPSO algorithm using Thermal Ratings results 

The additional scenario with increased load to 2.5pu of its peak load is also used to consider 

the thermal ratings of the OHLs.  

The probability distribution functions (PDFs) of Seasonal Thermal Rating (SeTR) for 

Aonach UK area are shown in Figure 5-9. The thermal ratings of winter, spring/fall, and 

summer are shown for both Drake (138kV voltage level) and Grosbeak (230kV voltage level) 

conductor. This graph indicates the probability density for different thermal rating levels. As 

a result, system operators can not only use the median rating value for operating the OHLs, 

but they can also estimate the range of minimum and high thermal ratings under the event of 

probabilistic failures. It can be seen that the Drake conductor has smaller rating values than 

Grosbeak and that the risk of Grosbeak conductor’s ratings taking high values is larger than 

Drakes conductors. This is because Grosbeak conductors are utilized more as well as because 

of their electricity OHL’s properties. Consequently any failure at the north part of the 

network, which is comprised of higher rating Grosbeak conductors, results in a need for even 

higher ratings.  
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Figure 5-9: Probability distribution functions of SeTR of Aonach UK area for two different conductors

 

Figure 5-10shows the PDF functions of both Drake and Grosbeak conductors when real 

thermal ratings are applied on the network. Among all standard distributions, the best 

distribution function matching with calculated hourly thermal ratings is the log-logistic. As 

such, log-logistic distribution function can be used to estimate the real thermal rating of a 

certain conductor and specific load level. In this way system operators can conduct studies 

offline using real time thermal ratings and thereby quantify network performance when 

thermal ratings of OHLs are critical to power system operation. 
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Figure 5-10: Probability distribution functions of RTTR of Aonach area for two different conductors 

It is also shown in the figure that the real thermal rating of Grosbeak conductor covers wider 

range than Drake conductor. In particular, Grosbeak thermal rating ranges from 500 MVA to 

3500 MVA whereas Drake conductor rating ranges from few MVA to almost 1000MVA. As 

a result, Grosbeak conductor is utilised more than the Drake especially under probabilistic 

analysis. Therefore, by applying real thermal ratings under probabilistic analysis one can 

identify the whole range of the MVA values a conductor can take as well as estimate the 

thermal rating of a particular hour and load so system operators can consider it and optimize 

system operation.  

Table 5-2 presents the reliability indices and CPU times for the various thermal-rating 

scenarios. It is demonstrated that RTTR facilitates MOPSO algorithm. This is more likely 

because the more detailed parameters of OHLs enhance the efficiency of the algorithm as 

well as the various thermal ratings values enable the proposed algorithm to escape from local 

minima and maxima. In particular, MOPSORTTR is 73.5% faster than NSMCSRTTR, whereas 

MOPSOSTR is 67.2% faster than NSMCSSTR. At the same time MOPSO calculates accurately 

the LOLP and EENS indices. In addition, the RTTR model resulted in 46.54% lower EENS 

than the STR model. This is mainly due to the increased capacity of transmission lines 

provided from the RTTR model. 
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Table 5-2: Comparison of system indices considering OHLs Thermal Ratings 

 LOLP 
EENS 

(MWhr/y) 
iterations 

CPU 

(hr) 

NSMCSSTR 0.3898 28.25 14146 0.55 

NSMCSSeTR 0.3574 21.01 32983 0.98 

NSMCSRTTR 0.3429 15.1 59402 1.62 

MOPSOSTR 0.3885 28.13 3879 0.18 

MOPSOSeTR 0.3591 20.87 7916 0.27 

MOPSORTTR 0.3418 15.1 10710 0.43 

5.3 Input data estimation 

Before an optimal demand response plan can be scheduled for the next day, the load must be 

forecasted one day-ahead. In addition, the unit commitment schedule and the status of 

network switching devices must also be known [17]. The load is forecasted in this work using 

an artificial neural network as presented below in section 5.3.1. This load forecast will then 

be used as an input to the unit commitment scheduling in chapter 6. This unit commitment 

schedule is determined using Matlab Matpower, while the status of network switching 

devices are determined through Monte Carlo simulation, as explained previously in chapter 

2. 

Further inputs to the model include wind predictions, which are required for wind generation 

modelling and real-time thermal rating modelling. For wind estimation, values are simulated 

to create a full distribution of results that has the same statistical properties as the observed 

data. Instead of taking observed data only, which is limited to one data point per hour, a large 

number of data points are generated through simulation as this allows taking stochasticity 

into account and thus allows a probabilistic quantification of risk. Although not done here, 

further work using this simulation framework could be done by modifying some properties 

of the wind distribution, such as mean and standard deviation, in order to test different 

scenarios and sensitivities on network costs and risks. 
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5.3.1 Load forecasting 

A load-forecasting model has therefore been developed using a neural network algorithm and 

applied to demand response scheduling. The proposed demand scheduling methodology is 

aimed at determining the, when the committed generation units, status of network switching 

devices and forecast loads are well defined.  The forecasting model uses an artificial neural 

network (ANN) algorithm that provides high forecasting performance when dealing with 

nonlinear and multivariate problems involving large datasets, as is the problem of short term 

load prediction. This algorithm was tested against a linear regression and proved to 

outperform the latter in all cases. The performance of the algorithm is quantitatively assessed 

using mean absolute percent error (MAPE) and mean absolute error (MAE). Further analysis 

gives comparison plots of actual and forecast loads, histograms of errors, and R-values 

outputted from the linear regression that determines the accuracy of the results. 

An overview of the linear regression model used within the analysis is given first and the 

building blocks of neural networks are described next. Results and a comparison between the 

two models are presented in the case study section. 

5.3.2 Linear Regression 

Linear regression is the most common method to give information between a dependent 

variable and one or more explanatory variables, because it is simple to implement and the 

relationship between an input matrix of explanatory variables x and an output vector y is easy 

to understand [165]. In linear regression, the model specification is that the dependent 

variable at point z, yz, is a linear combination of the explanatory variables at z, xz. For 

example, in simple linear regression for modelling data points z=1,…,n there is one 

independent variable, xz, and two parameters, β0 and β1, as shown in (5-39). 

 𝑦𝑧 = 𝛽0 + 𝛽1𝑥𝑧 + 휀𝑧 (5-39) 

In multiple linear regressions, one models the relationship between two or more explanatory 

variables and a dependent variable by fitting a linear regression to the observed data. The 

form of the multiple linear regression functions for two explanatory variables is: 
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 𝑦𝑧 = 𝛽0 + 𝛽1𝑥𝑧 + 𝛽2𝑤𝑧 + 휀𝑧 (5-40) 

This represents a linear regression expression in variables xz and wz, and it is linear in 

parameters 𝛽0, 𝛽1and 𝛽2. In both cases, 휀𝑧 is an error term and the subscript z indicates a 

certain observation point. Considering a sample of observation points within the whole 

population, the unknown parameters of simple regression (5-39) can be estimated. If they are 

replaces in (5-40), one gets: 

 �̂�𝑧 = �̂�0+ �̂�1𝑥𝑧 (5-41) 

where �̂�0 and �̂�1 are estimated unkonen parameters, whilst residual, 𝑒𝑧 = 𝑦𝑧 − �̂�𝑧, is the 

difference between the value of the dependent variable predicted by the model, �̂�𝑧, and the 

true value of the dependent variable, yz.  

However, when weather variables are included, linear regression algorithms assume a linear 

relationship between weather parameters and load. Yet, this relationship is neither linear nor 

stationary [1], [7]. For instance, it is shown in [166] that the correlation between temperatures 

and load considering a day of the week, hour of the day and the previous 20th minute load is 

non-linear. A more efficient method is the artificial neural network (ANN) approach, which 

models non-linear relationships between variables and can more accurately model the 

relationship between load and weather variables. Artificial neural network method for load 

forecasting is described in the following section. 

5.3.3 Artificial Neural Network (ANN) Approach  

Artificial neural networks (ANN) use previous load data to predict future load patterns, like 

time series, but they are also coupled with regression techniques that do not require linear 

assumption. They can perform complex nonlinear mappings between input variables xz and 

output variables yz. Inspired by biological nervous systems, they create connections between 

elements, known as neurons or nodes [167], to perform a task or function by adjusting the 

values of the connections, weights wz, between elements so that a particular input leads to a 

specific target output. The multi-layer perceptron (MLP) is the most common ANN in many 

forecasting applications [168]. It is composed of several layers j of nodes n, where input and 
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output layers are separated by processing stages known as hidden layers [169]. As shown in 

Figure 5-11, the inputs first pass through the hidden layers, where non-linear functions are 

used. These allow the network to learn nonlinear relationships between input and output 

vectors. The values then pass through a linear output layer for function fitting. Non-linear 

functions, like log-sigmoid and tan-sigmoid functions, are usually used for pattern 

recognition problems [170], while linear output neurons are used for fitting problems [171]. 

These functions are the most common but others can also be used. 

 

Figure 5-11: Feed Forward neural network [172] 

The output of each neuron, yg, is a function of the input signals, representing the sum of the 

weighted inputs, combined with a bias term  and mathematically presented in (5-42): 

 𝑦𝑔 = 𝑓(∑𝑤𝑔𝑝𝑥𝑝 −

𝑛

𝑝=1

𝜐) (5-42) 

The adjustment of the weights is done based on training samples taken from different 

operating points of the electricity load forecast. Each node receives information from a 

number of input nodes, contained in the input layer, processes it locally, first linearly and 

then through a nonlinear activation or transfer function f, to produce a transferred output 

signal to other nodes until it reaches the final output layer. The activation function used here 

is a logistic sigmoid function (5-43), but can be different as in [173]: 

 𝑓 =
1

1 + 𝑒−𝑥
 (5-43) 

The output of each neuron is used as input for the transfer function at each node. Starting 

from a random initial point, the learning algorithm determines the weights so that the error 
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for mapping the inputs of the training samples to their outputs is minimized with the 

expectation that a low error will be obtained for an unseen test sample. The choice of learning 

algorithm is a tradeoff between objective, speed and memory. Some training algorithms are 

better suited for function approximation, others for pattern recognition [174]. The Levenberg-

Marquardt (LM) training algorithm was chosen as it is often the fastest and most efficient 

training function for small size problems, while achieves lower mean square errors compared 

to other training functions. It also performs best on function approximation, as is the problem 

of nonlinear regression. Nonetheless, for larger size networks with a very large number of 

weights, the LM algorithm can require a lot of memory, unlike other algorithms. The BFGS 

Quasi-Newton for instance perfoms similarly to the LM algorithm and requires less memory, 

but this comes at the expense of computation time. Quantifying the accuracy of the model is 

essential and is assessed using the mean absolute error (MAE) and mean absolute percent 

error (MAPE). The mean absolute error is the absolute value of the residuals,𝑟𝑧, averaged 

over the total number of observations, n. The errors are first calculated as: 

 𝑟𝑧 = 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑜𝑎𝑑𝑧 −𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑧 (5-44) 

The MAE and MAPE are then calculated as follows: 

 
𝑀𝐴𝐸 =

∑ |𝑟𝑧|
𝑛
𝑧=1

𝑛
 (5-45) 

 𝑀𝐴𝑃𝐸 =
∑ |𝑟𝑧 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑜𝑎𝑑𝑧⁄ | × 100𝑛
𝑧=1

𝑛
 (5-46) 

5.3.4 Case Study Analysis 

The following section describes the results of both neural network algorithm and linear 

regression for four sites in the U.K., which include loads for residential load sector. Each site 

is modeled first using a linear regression before being modeled with the developed ANN 

algorithm. Starting from Matlab’s neural network toolbox and using a generic function fitting 

algorithm, the ANN for site1 was run with 10 hidden layers, while ANNs for sites 2 to 4 were 

run with 2 hidden layers as these settings proved to give most accurate results. Several tests 
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are made to show the effects of previous load data, weather data and the number of hidden 

layers on the accuracy of the forecasts. Two types of data were used; inputs variables that are 

site dependent and input variables that are site independent. The site independent variables 

are comprised of date (the date of historical load data allows the consideration of patterns in 

a given season), time (the time for each historical data point, in particular, the hour of the day 

allows considering patterns in night and day consumption), day of the week (the day of the 

week is set from Monday to Sunday while a flag indicates a workday, a weekend or a 

holiday). A list of U.K. bank holidays is also input so that these days are not considered, as 

they are outliers. Office Heating, Ventilation and Air-Conditioning (HVAC) loads, for 

example, would commonly be switched on during workdays and off during weekends, which 

the algorithm needs to consider. The site dependent variables include past load data and 

temperature. 

A predictor matrix containing the date, the hour of the day, the day of the week, the binary 

element of whether it is a weekday or a weekend and several lagged vectors of the load data 

based on its correlation with previous minute’s load (e.g. previous 10th minute load, previous 

20th minute load and previous 20 minutes’ average load) is first created for each site. This 

predictor matrix is used as input data for training the ANN algorithm, at the data selection 

stage in the neural network toolbox. The target data, defining the desired network output, is 

the load data for each site. At the next step, 70% of the data is selected for training, 15% of 

the data is selected for validation and 15% is used for testing. Finally, at the “network 

architecture” stage, the number of hidden neurons is chosen. These are selected based on 

which number of neurons gives the most accurate results. The model is finally trained using 

the Levenberg-Marquardt backpropagation algorithm. 

Two case studies are performed considering lags of 24 to 168 hours: the first case does not 

consider weather data while the second one incorporates weather data.  
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5.3.4.1 Case study 1 

In this case study, it is considered the 1st, 10th and 20th minute lags, as these show high serial 

autocorrelation in the prediction matrix, but the weather data are omitted for now. The 

prediction matrix is given in Table 5-4. 

Table 5-3: Prediction Matrix 

Number Input Description Unit 

1 Days Date (06-November-2000) - 

2 Hours Hour of the Day (0-23:00) - 

3 Day of week Weekday (Monday to Sunday) - 

4 Previous minute load Previous load 10 minutes apart MWh 

5 
Previous load 10 min 

apart 
Previous load 20 minutes apart MWh 

6 
Previous 20 minutes 

average load 

Previous 20 minutes’ average 

load 
MWh 

 

Table 5-4: Summary of linear Regression and Artificial Neural network results (ANN) without weather data 

Indices Linear Regression ANN 

MAE 0.12MW 0.10MW 

MAPE 437.42% 168.51% 

Training time(mm:ss) n/a 05:31 

Number of iterations n/a 171 

Memory Reduction n/a 1 

 

It is shown in Table 5-4 that the linear regression has a MAPE of 437.42% and a MAE of 

0.12 MW, while an ANN, significantly improves the forecast, with MAPE of 168.51% and 

MAE of 0.10 MW. This demonstrates that ANN considerably outperforms linear regression 

technique.  

The forecasting accuracy can be observed visually in Figure 5-12 for linear regression and 

Figure 5-13 for ANN.  Results are very good and the neural network seems to perform a lot 

better than using linear regression. Using the correlated lags definitely improves results and 

provides quite high forecasting accuracy. The next case study tests if the accuracy can be 

improved by including the weather data. 
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These results prove to be very accurate. The errors are consistently very small, with most 

errors contained around -6.81 and 8.15 MW (Figure 5-14). Both MAPE and MAE are 

extremely low, while the R-values of the regression plots are all contained close to 1. In 

particular, it is 0.99382 for linear regression and 0.99462 for ANN, as shown in Figure 5-15. 

 

Figure 5-12: Linear Regression Forecasts  

 

Figure 5-13: Neural Network Forecasts 
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Figure 5-14: Error Histogram for Neural Network 

 

Figure 5-15: Site3 – Regression plots with R-values for the linear regression (left) and the artificial neural 

network (right) 
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5.3.4.2 Case study 2 (with weather data) 

Considering weather data the prediction matrix becomes, as shown in Table 5-5. 

Table 5-5: Prediction Matrix 

Number Input Description Unit 

1 Temp Ambient temperature oC 

3 Days Date (06-November-2000) - 

4 Hours Hour of the Day (0-23:00) - 

5 Day of week Weekday (Monday to Sunday) - 

6 Previous minute load Previous load 10 minutes apart MWh 

5 
Previous load 10 min 

apart 
Previous load 20 minutes apart MWh 

6 
Previous 20 minutes 

average load 

Previous 20 minutes’ load 

average 
MWh 

Table 5-6: Summary of linear Regression and Artificial Neural network results (ANN) with weather data 

Indices Linear Regression ANN 

MAE 0.12MW 0.11MW 

MAPE 453.37% 121.11% 

Training time(mm:ss) n/a 03:46 

Number of iterations n/a 112 

Memory Reduction n/a 1 

Table 5-6 shows that the inclusion of the weather data does improve slightly the MAPE, 

which can be seen from Figure 5-16 and Figure 5-17 presented below for the linear regression 

and the neural network forecasts, respectively. In particular, the MAPE is reduced by 4% and 

29% for the linear regression and the ANN, respectively. On the contrary, the MAE value 

remains the same for the linear regression, whereas it decreases by 0.0.11MW for the ANN. 

As a result, weather data show a great effect on the ANN compared to the linear regression 

because the ANN can handle linear and non-linear relationships between parameters. Also, 

the errors are mostly all around zero, with the majority of errors contained between -5 and 5 

MW, as shown in Figure 5-17. Finally, the R-values considerably increase and take values 

between 0.99621 and 0.99724 meaning the correlation coefficients are even closer to 1.  
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Figure 5-16: Linear Regression Forecasts  

 
Figure 5-17: Neural Network Forecasts  

5.3.5 Wind speed model 

Several wind speed models have been used in the power system reliability assessment, such 

as Weibull distribution model, multi-state wind speed model and auto regressive moving 

average (ARMA) model [175][176][177]. However, the ARMA model has proved to be the 

most commonly used. Historical hourly wind speed data collected from the wind farm site 

can be used to calculate the mean wind speed mt and its standard deviation 𝜎t. The normalised 

time series y(t) is then calculated from the expression [178]: 
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 𝑉𝑚𝑡 = 𝑚𝑡 + 𝜎𝑡𝑦𝑡 (5-47) 

where Vmt is the wind speed at time t. 

The ARMA time series is shown in (5-48) where y(t) denotes the output value at time t, na is 

the number of of autoregressive terms, nc is the number of error terms, y(t-1)..y(t-na) 

represent the previous outputs on which the current output depends and e(t-1)…e(t-nc) are 

the white noise error terms. 

 𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎) = 
(5-48) 

 𝑐1𝑒(𝑡 − 1) + ⋯+ 𝑐𝑛𝑐𝑒(𝑡 − 𝑛𝑐) + 𝑒(𝑡) 

In a more compact way the above equation is described as follows: 

 𝐴(𝑛)𝑦(𝑡) = 𝐶(𝑚)𝑒(𝑡)  (5-49) 

A(n) is a function showing the autoregressive order number ‘n’ and C(m) is a function 

showing the moving average order number ‘m’. Model (5-49) is usually refered to as 

ARMA(n,m) stochastic process. 

The partial autocorrelation function (pacf) is applied in order to consider whether y(t) and 

y(t-k), k=1,2,.., are directly correlated. The partial autocorrelation function measures the 

correlation between an observation k periods ago and the current observation, after 

controlling for observations at intermediate lags (i.e all lags<k). This means that the 

correlation between y(t) and y(t-k) is sought, after removing the effects of y(t-k+1), y(t-

k+2),…, y(t-1). For example, the pacf for lag 3 would measure the correlation between y(t) 

and y(t-3) after removing the effects of y(t-1) and y(t-2). At lag 1, the autocorrelation and 

partial autocorrelation coefficients are equal, since there is no intermediate lag effect to 

eliminate. Partial autocorrelation plays an important role, since one could determine the 

appropriate order n in an AR(n) model.  

In order to evaluate the accuracy of the ARMA model, the Akaike information criterion (AIC) 

is used [179]. It provides a measure of model quality by simulating the situation where the 

model is tested on a different data set. After computing several different models, the AIC can 

be used for comparison purposes. According to Akaike’s approach, the most accurate model 

has the smallest AIC.  Akaike information criterion is defined by (5-50): 
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 𝐴𝐼𝐶 = 𝑉(
1 +

𝑑
𝑁𝑒

1 −
𝑑
𝑁𝑒

) (5-50) 

where V is the loss function, d is the number of estimated parameters and Ne is the 

number of values in the estimation data set.  

Consequently, the main steps for ARMA modelling used to forecast wind speed are the 

following: 

a) Normalize historic wind speeds at hour t using the mean and standard deviation at the 

same hour t.  

b) Estimate parameters of the ARMA(n,m) stochastic process fitted to the normalized 

historic wind speeds, where n is order of AR terms and m is order of the MA terms. 

ARMA (4,3) model was the best fit in many cases [175]. 

c) Analyze the partial autocorrelation function to determine the best ARMA model. 

d) Evaluate the ARMA model goodness using AIC (low AIC values show higher 

accuracy). Determine the ARMA model orders n and m. 

e) Transform back the forecast normalized wind speeds to get absolute values in the 

considered hourly period t. 

The forecast wind speeds were then used to calculate either thermal rating of OHLs, or 

generations of wind turbines. 

5.3.5.1 Case study analysis 

The ARMA model is applied to one-year hourly data from the Aonach area in the UK. The 

process is split into two components: the first is the deterministic component for the expected 

wind speed in each individual hour of the day which is modelled as the sum of sine functions 

representing the daily peaks and troughs observed in the data. The deterministic component 

takes into account the relationship between electricity prices, temperatures, hour of the day, 

day of the week and holidays. Therefore a matrix of these predictors for every observation is 

generated.  
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The second component is a stochastic component with a random noise process that 

characterizes the ARMA model. A seasonal autoregressive term with order 4 and a moving 

average of order 3, an ARMA(4,3), was found to be the best fit for wind estimation. The 

parameters of the model are estimated by fitting this function. Figure 5-18 (i) shows a 

sequence of one-hour ahead forecasts for the estimated wind speed data compared to the 

actual data and their residuals in time series (from 1 to 100 hours). It is illustrated that the 

estimated hourly peak wind speeds follow the actual data. The residuals are differences 

between the actual wind speeds and the simulated wind speeds and they are shown in Figure 

5-18 (ii). While the initial residuals fluctuate around -2 and 2 m/s for hours between 1 and 

around 50, the highest residual value of almost 3 m/s is obtained in the 90th estimated hour. 

 

Figure 5-18: Hourly wind speed estimation (i) and residuals (ii) 

The serial correlation is analyzed in Figure 5-19 (i) to define the serial correlation of wind 

speed data at hour t=1 with hour t=2. The wind speed values examined have been converted 

to 100m height wind speed.  When there is a significant correlation between the data then the 

residuals are outside the blue line in the Figure, whereas there is insignificant correlation of 

the data when the residuals are inside the blue lines. For instance, it is inferred from Figure 

5-19 (i) that wind speeds at hours t=1 and t=12 show significant correlation in the data. 

10

15

20

W
in

d
 s

p
ee

d
 m

/s
)

 

 
Actual data

ARMA

1 100
-4

-2

0

2

Time (hours)

re
si

d
u

a
ls

i)

ii)

20 40 60 80



Chapter 5 - Components of the Developed Reliability Assessment Methodologies 

Page | 155 

 

Similarly, the partial autocorrelation is depicted in Figure 5-19 (ii), where the correlation of 

between wind speeds at hour t=12 and t=1 is illustrated after removing the effects of wind 

speed at t=2,3,..,11. As a result, lag12 measures the correlation between wind speed at t=1 

and t=12. Overall, it is shown that few lags take values higher than -0.5, whereas the majority 

are not significant as indicated by the blue lines. After removing the autocorrelation using a 

lag matrix of hours 1 and 12, the residuals are no longer correlated and they can be modelled 

as independent variables with an appropriate distribution.  

 

Figure 5-19: Sample autocorrelation (i) and sample partial autocorrelation (ii) 

The appropriate distribution is determined by aggregating the two components and plotting 

the cumulative distribution function of the wind data, which is then compared to several 

probability distributions. After first comparing to a normal distribution, then to t-location 

scale distribution, finally a Pareto Tail distribution seems to provide the best fit, since the 

wind data presents fat tails and skeweness at each end of the distribution as shown in both 

Figure 5-20 and Figure 5-21. The t-location scale is modelled from the student’s t-

distribution, which has a bell-shaped probability density function just like a normal 

distribution but asymmetric and with heavier tails (where it is more likely that values are 

further from the mean).  
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Figure 5-20: Comparison of T-Location Scale and Pareto Tail cumulative distribution function of wind speed 

data. 

 

 

Figure 5-21: Histogram of actual wind speed data 

From the model described above, 3,000 stochastic paths for the wind speed data can now 

be simulated. The reason for simulating these paths is that historic data is only available 

for a few years and does not provide enough observations to reach a statistically sound 

conclusion regarding the data set. Instead, simulated paths provide a large number of 

observations that are mathematically and statistically consistent with the actual data. It 

also allows to take into account stochasticity in wind and can be modified (by changing 

its mean and volatility for instance) to test different scenarios (e.g. higher/lower wind 

days, higher/lower intermittency), something that cannot be done using historic data. 
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An example of 20 simulated paths is presented in Figure 5-22. The hourly wind speed 

prediction, calculated as the average hourly values of the simulated paths (thick black 

line), is very close to the hourly values of the actual data. Yet, each path produces a new 

random time series that takes into account the random nature of wind speed and its 

temporal variations across time. The predicted wind speed values follow the same pattern 

as the actual data, thus highlighting the high accuracy of the model. These simulated paths 

will then be used as inputs to the probabilistic model for calculating the reliability indices.  

 

 

Figure 5-22: Data & Model prediction 

5.4 Conclusions 

Two sampling reduction techniques were introcuded in this chapter, namely the Latin 

Hypercude Sampling (LHS) and Multi Objective Particle Swarm Optimization 

(MOPSO). The newly developed method based on multi-objective PSO for reliability 

assessment is proposed using three objective functions. The method has shown significant 

advantage regarding both the performance indices and the reduction of the simulation 

time of the NSMCS. Furtheremore, thermal ratings (static, seasonal and real time thermal 

rating) of transmission lines using OHL’s properties are used to assess the effectiveness 

of the proposed model. It is highlighted that the computational effort required by the 
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the Monte Carlo Simulation (baseline). Then the power systems components probabilistic 

modelling is described including component failure modelling, load and weather 

forecasting modelling as well as network modelling. Finally, two optimal power flow 

models are presented and they are used for assessment of power system adequacy.  
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 Optimal Demand Response 

Scheduling with Real Thermal 

Rating for Network Reliability 

Summary: 

This chapter presents the modelling objectives, case studies description and results of the 

probabilistic framework for optimal demand response scheduling in the day-ahead planning 

of transmission networks with real time thermal ratings, as described in Chapter 4.2. Optimal 

load reduction plans are determined from network security requirements, physical 

characteristics of various customer types and by recognising two types of reductions, 

voluntary and involuntary. Ranking of both load reduction categories is based on their values 

and expected outage durations, whilst sizing takes into account the inherent probabilistic 

components. The optimal schedule of load recovery is then found by optimizing the 

customers’ position in the joint energy and reserve market, whilst considering several 

operational and demand response constraints. The developed methodology is incorporated in 

the sequential Monte Carlo simulation procedure and tested on several IEEE networks. Here, 

the overhead lines are modelled with the aid of either seasonal or real-time thermal ratings. 

Wind generating units are also connected to the network in order to model wind uncertainty. 

The results are determined for two case studies. The first case study presents the benefits of 

RTTR alone in a stressed modified IEEE network. The second case study results show that 

the proposed demand response scheduling improves both reliability and economic indices, 

particularly when emergency energy prices drive the load recovery. 
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6.1 Simulation modelling framework 

The overall methodology is realized within two independent sequential Monte Carlo 

simulation (SMCS) procedures. The first SMCS is the initialization module, which is used to 

calculate several components required by the second SMCS that determines optimal day-

ahead operation of the power system. Also, from the first SMCS module the most frequently 

overloaded OHL’s are determined, which are then used to select the most critical OHL’s for 

real time thermal ratings used in the second SMCS.  The main building blocks of the first 

SMCS procedure are: a) Calculation of reliability indices needed for ranking of load types 

for demand reduction; b) Calculation of most critical OHLs for real-time thermal ratings; and 

c) Determination of nodal marginal prices and several economic indicators used for finding 

the optimal schedule of load recoveries. 

The second MCS includes application of DR methodology described in chapter 4.2 and 

RTTR model described in chapter 4.3 within the developed optimal power flow (OPF) model, 

which is presented in sequel. 

6.1.1 First Sequential Monte Carlo Simulation 

The input data include network, reliability, customer, economic data, overhead line (OHL) 

data and weather data, as shown in Figure 6-1. Beside the standard network data, forecast in-

service generation units with technical characteristics and chronological hourly load point 

demands are input. Reliability data are failure rates and repair times of all components, whilst 

customer data encompass customer and DR types, contracted voluntary load reductions, 

normalized load recovery profiles and customer availability to respond to a DR call. Essential 

economic data are generation costs; values of lost load (VOLL) and marginal offer prices for 

voluntary load reduction.  

Weather data include ambient temperatures, wind speeds and directions required for the 

calculation of RTTRs of OHLs, as well as either forecast hourly wind speeds or hourly wind 

speed PDFs used to calculate wind generations over the next 24 hours. OHL data include 

conductor design properties and environmental parameters required for the RTTRs. It should 
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be mentioned that before an optimal demand response plan can be scheduled for the next day, 

the wind speed should be forecasted one day-ahead for determining not only wind generation 

outputs, but also real-time thermal ratings, as they are highly dependent on wind speeds. In 

addition, load forecasting, the unit commitment schedule and the status of network switching 

devices must also be known for the next 24 hours.  

 

Figure 6-1: Computations within initialization module 

The input data are fed into the thermal ratings and network modelling modules, whose outputs 

are generation nodal prices, base expected customers interruptions duration index (BEDI) 

and base expected thermal overloading index for overhead lines (BETOI). These are then 

used by the second SMCS procedures. 

6.1.2 Second Sequential Monte Carlo Simulation 

The initialization module is used for three puposes; the first is to determine the most 

frequently overloaded OHLs based on the index (BETOI), which is then used to choose most 

appropriate OHLs candidates for real time thermal rating implementation. The second 

purpose is to determine the base expected duration interruption (BEDI) index of loads needed 
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for ranking of loads within the demand reduction scale module. The third is to compute the 

probabilistic energy nodal prices used within the DRLR-control module to find the optimal 

load recovery strategy. The probabilistic nodal prices at different confidence intervals ψ are 

used to make decision about the most appropriate load recovery times. 

Each hour within the simulation period is characterized by available generating units, 

transformers and circuits, as well as nodal loads and operational constraints. Availability of 

all generation and network units was modelled with the aid of two-state Markovian model 

with exponentially distributed up and down times [1], as introduced in section 5.1. An 

optimum power flow (OPF) model based on the DC load flow is solved to find the levels of 

voluntary and involuntary load reductions and revenues to generator and demand customers. 

The formulation of the OPF model is a modification of the market-clearing model proposed 

in [126]; the main difference is that there is no preventive control and corrective scheduling 

is applied to the already sampled contingent case. The mathematical equations of the model 

are: 

 𝑀𝑖𝑛 {∑𝐶𝑔𝑗 ∙ 𝑃𝑔𝑗 +∑ ∑ 𝑉𝑂𝐿𝐿𝑖
𝑠 ∙ 𝐼𝑉𝐿𝑖

𝑠 +∑∑𝜎𝑖
𝑠 ∙ 𝑉𝐿𝑖

𝑠

𝑠𝜖𝑆𝑖𝜖𝐼
𝑠𝜖𝑆𝑖𝜖𝐼

𝑗∈𝐽

} (6-1) 

 𝑃𝑔 − 𝑃𝑑 − 𝐵휃 = 0(𝜇) (6-2) 

 𝑃𝑓 = 𝛨휃 (6-3) 

 −𝑃𝑓
𝑚𝑎𝑥 ≤ 𝑃𝑓 ≤ 𝑃𝑓

𝑚𝑎𝑥 (6-4) 

 −𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔 ≤ 𝑃𝑔

𝑚𝑎𝑥 (6-5) 

 0 ≤ 𝑉𝐿𝑖
𝑠 ≤ 𝑉𝐿𝑖

𝑠,𝑚𝑎𝑥
 (6-6) 

 0 ≤ 𝐼𝑉𝐿𝑖
𝑠 ≤ 𝐼𝑉𝐿𝑖

𝑠,𝑚𝑎𝑥 − 𝑉𝐿𝑖
𝑠,𝑚𝑎𝑥

 (6-7) 

 𝑃𝑑
𝑚𝑎𝑥 −∑ 𝐼𝑉𝐿𝑠 −∑ 𝑉𝐿𝑠 ≤ 𝑃𝑑 ≤ 𝑃𝑑

𝑚𝑎𝑥

𝑠𝑠
 (6-8) 
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The objective function to be minimized (6-1) is the sum of the offered cost functions Cgj for 

all generating power plants with active power outputs Pgj where 𝑗 ∈ 𝐽 plus the sum of the 

cost of involuntary load reductions 𝐼𝑉𝐿𝑖
𝑠for all load nodes 𝑖𝜖𝐼 and types 𝑠𝜖𝑆 plus the sum of 

offered costs 𝜎𝑖
𝑠 for voluntary load reductions 𝑉𝐿𝑖

𝑠 for all load nodes and types. The 

involuntary load reduction is valued at VOLL that is dependent on the general load type; 

dependency on the connection node is taken into account because there may exist special 

loads whose curtailment must be avoided. Voluntary load reduction is priced at the rates 

offered by consumers to provide this service. They are closely linked to the offers made by 

generators for the ‘up-spinning reserve’ in the joint energy and reserve market [126]. It is 

again envisaged that the rates can vary with customer type and connection location. Finally, 

note that the time index t is omitted for simplicity. 

Using the DC load flow model, constraints (6-2) represent the nodal power balance equations 

for the considered state, which include potential contingencies within the system matrix B 

with phase angles of nodal voltages θ. Note that these equations contain both voluntary and 

involuntary load reductions which are ‘equivalent’ to nodal generations. Pd represents the 

active power supplied to load; they are problem unknowns. A Lagrange multiplier (or dual 

variable) µi is associated with each of the equations. Constraints (6-3) express the branch 

flows Pf in terms of the nodal phase angles, while constraints (6-4) enforce the corresponding 

branch flow capacity limits. Here, modelling of OHL ratings can be done using the RTTR 

model, in which case limit Pf
max is a function of the time step t. 

Constraints (6-5) set the generation limits 𝑃𝑔
𝑚𝑖𝑛 and 𝑃𝑔

𝑚𝑎𝑥 for the considered state, while 

considering available units and requirements for the down- and up-spinning reserve in the 

analysed time step [126]. Reserve requirements depend on the system peak load and 

contingency state considering N-1 condition. Reserve requirements include spinning  reserve 

generation. The spinning reserve is based on the sum of the largest generation unit and a 

proportion of the load; in our case the largest generation unit is 400 MW (nuclear generation 

unit) and a proportion of the load (equal to 5%). The IEEE RTS 96 network [180] has a total 

installed capacity of 3405 MW in 32 generating units and a peak load of 2850 MW, therefore 

having a spinning reserve requirement of 555 MW. This generation reserve capacity scales 
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up to peak load per unit level.  For the non-controllable units, such as wind turbines, upper 

and lower limits are the same. 

Constraints (6-6), (6-7) and (6-8) set the limits on the demand; they are expressed as 

inequality constraints on the voluntary and involuntary load reductions and the total delivered 

load. The upper limit of the voluntary load reduction 𝑉𝐿𝑖
𝑠,𝑚𝑎𝑥

 can contain a probabilistic 

component for some DR types, which is dependent on the considered time step. As a 

consequence, the upper limit of the involuntary load reduction is the difference between the 

absolute limit 𝐼𝑉𝐿𝑖
𝑠,𝑚𝑎𝑥

 and the voluntary load reduction limit 𝑉𝐿𝑖
𝑠,𝑚𝑎𝑥

. Finally, the delivered 

demand Pd is equal to the forecast load in the considered time interval Pd
max if there is no load 

reduction. The lower limit is specified in terms of the forecast load, voluntary and involuntary 

load reductions, which are a part of the optimal solution.  

Solving the optimization model (6-3) to (6-8) gives the optimal values of the unknown 

variables, as well as dual variables associated with the constraints of this problem [181]. The 

signifance of the dual variables was dicussed in Chapter 4.2.2. 

6.1.3 Outputs 

The outputs module generates several results related to the load reductions, nodal prices, 

generation outputs, reliability and financial indicators. These are briefly discussed below. 

 Optimal Load Reductions and Recoveries 

PDFs of voluntary and involuntary load reductions by load types and/or nodes are calculated 

for each hour in the 24-hourly period. These can be directly converted into energy not served 

PDFs. The corresponding mean and percentile values show the ‘likely’ distributions in the 

next 24-hourly period. PDFs of daily totals are also computed. Besides, conditional PDFs of 

the load recovery initiation times given the load reduction at certain hour are also produced.  

 Generation Outputs 

PDFs of generator hourly productions and costs, as well as total daily costs are computed. 
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 Nodal Marginal Prices 

PDFs of nodal marginal prices are produced for each hour in the considered 24-hourly 

period. Their expectations can be used as an indicator of what the prices for rewarding 

generation and charging load customers would be in the next day. 

 Reliability Indices 

Reliability indices relating to energy not served as well as frequency of customer 

interruptions and duration of interruptions are computed. For example, expected energy not 

supplied (EENS), expected frequency of custommers interruptions (EFI) and expected 

duration of interruptions (EDI) are calculated as: 

 

𝐸𝐸𝑁𝑆 = ∑∑∑∑𝑃𝑐𝑖
𝑠

𝑠4

𝑠=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑌

𝑦=1

𝑌⁄  
(6-9) 

 

𝐸𝐹𝐼 = ∑∑∑∑휁𝑖
𝑠

𝑠4

𝑠=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑌

𝑦=1

𝑌⁄  
(6-10) 

 

𝐸𝐷𝐼 = ∑∑∑∑휁𝑖
𝑠 ∙ 𝐷𝑖

𝑠

𝑠4

𝑠=1

𝑁

𝑖=1

𝑇

𝑡=1

𝑌

𝑦=1

𝑌⁄  
(6-11) 

where s4 is the number of customer types,  𝑃𝑐𝑖
𝑠 is the total load shedding of load type s at 

load point i at hour t,  휁𝑖
𝑠 is the number of customers interruptions having durations 𝐷𝑖

𝑠 and Y 

is the number of Monte Carlo simulation days. 

 Financial Indicators 

PDFs of load customer payments (LC), voluntary (VLR) and involuntary load reduction 

rewards (IVLR) are computed by hours and for the considered day. The latter curves are then 

used to quantify the financial risk of implementing the proposed demand response 
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scheduling. The concept of value-at-risk (VaR) [30] was applied to measure the potentially 

‘low’ revenues or ‘excessive’ payments. 

Assuming network reward (NR) denotes any category of revenues, the corresponding 

cumulative distribution function (CDFNR) is used to calculate the network reward NRX that 

exceeds the network reward at the confidence level 𝜓, NRψ, with probability 1 – ψ. The value 

at risk is [182]: 

 𝑉𝑎𝑅𝜓
𝑁𝑅(𝑁𝑅𝑥) = 𝑖𝑛𝑓{𝑁𝑅𝜓𝜖ℛ: 𝐶𝐷𝐹𝑁𝑅𝑥(𝑁𝑅𝜓) ≥ 𝜓} (6-12) 

Similarly, the CDF of any network cost (NC) can be used to determine value-at-risk at 

confidence level 𝜓. In this case, network cost NCX that does not exceed the network cost with 

probability 1 – 𝜓, NC1-ψ, is calculated as: 

 𝑉𝑎𝑅1−𝜓
𝑁𝐶 (𝑁𝐶𝑥) = 𝑠𝑢𝑝{𝑁𝐶1−𝜓𝜖ℛ: 𝐶𝐷𝐹𝑁𝐶𝑥(𝑁𝐶1−𝜓) ≤ 1 − 𝜓} (6-13) 

6.2 Case study analysis 

The IEEE-RTS 96 is composed of 38 lines circuits, 32 generating units and 17 load delivery 

points [183]. It is studied by using the algorithms developed in Matlab that make use of a 

modified version of Matpower and MIPS solver for the power flow calculations [184]. 

Essential study cases are developed for the six scenarios related to network performance 

improvement when different thermal rating models are deployed. This is followed by the 

description of eight scenarios for optimal demand response scheduling related to the 

availability for load reduction, impact of nodal marginal prices, load recovery profile – 

availability, and impacts of RTTR, DR and wind generation. 

6.2.1 Case studies 1 (RTTR) 

OHL thermal ratings are modelled as static thermal ratings (STR), seasonal thermal ratings, 

(SeTR) or real time thermal ratings (RTTR). The analysis is performed for the whole year 
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using both deterministic and probabilistic thechniques. The sequential modelling of the 

seasons is set to 1 to 1416 hours and 8017 to 8760 hours for winter, 3625 to 5832 hours for 

summer, as well as to 1417 to 3624 hours and 5832 to 8016 hours for spring and fall. 

Conductor temperature Tc of OHLs is set to 75oC for normal operation (no failures on the 

network), whereas 95oC is used when there is a failure on the generation units or transmission 

lines connected to the considered transmission line. 

Six scenarios are described in Table 6-1, where “0” and”1” shows binary number to indicate 

if a variable and or/method is implemented on the simulation. The first factor, n, indicates 

whether a deterministic (n=0) or SMCS analysis (n=1) is done. Scenario S1 models STR 

considering fixed values for conductor temperature (Tc=0), resistance (r=0) and weather data 

(wd=0). Scenario S2 models the SeTR with the only diferrence being that weather data are 

different for each season (winter, summer, fall, see Table 4-2), as opposed to STR, which 

considers only summer data. Scenario S3 models real time thermal ratings where conductor 

temperature (Tc=1) and resistance (r=1) are calculated from the hourly weather and loading 

conditions. Scenario S4 models real time thermal ratings considering fixed values for 

conductor resistance and temperature in order to assess the impact of conductor temperature 

and resistance on RTTR performance. Finally, Scenario S5 is similar to S1 and S6 is similar 

to S4 with the only difference being consideration of the deterministic framework. 

Table 6-1: Modelling Scenarios of RTTR methodology 

 S1 S2 S3 S4 S5 S6 

n 1 1 1 1 0 0 

Tc 0 0 1 1 0 1 

r 0 0 1 1 0 1 

wd 0 1 0 1 0 1 

The AC OPF is used to minimize the load curtailment and the generation cost. AC OPF is 

used as opposed to DC OPF given that the conductor’s resistance is a variable that needs to 

be included in the simulation. The original IEEE-RTS 96 was modified: all scenarios assume 

an increase in load by 1.3pu compared to the original load, as well as increase of 1.3pu in 

generation capacity. A single Drake conductor configuration for the 138 kV part and twin 

Grosbeak configuration for the 230 kV part is assumed (the relevant OHL properties are given 

in Table 4-3). 
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6.2.2 Case studies 2 (DR) 

OHL thermal ratings are modelled as STR or RTTR, as shown by parameter p in Table 6-2 

below. Three seasons (winter, summer and fall), denoted as λs=1, 2, 3, are studied. The first 

day of the 50th week of the year is used for winter peak (hours: 8425-8449); the 2nd day of 

the 22nd week of the year is used for summer (hours: 3721-3744), whilst the 2nd day of the 

32nd week is used for fall (hours: 5401-5424). Availability factor 𝑓𝑅𝐷
𝑠  is a random number, 

whilst availability factor for load recovery 𝑓𝑅𝐸𝐶
𝑠  varies in the specified range. Load recovery is 

based on either hourly emergency energy prices (i.e. ϑREC=1) or load profiles (i.e. ϑREC=0). 

The presence of wind generators is denoted by wg=1. 

 

Table 6-2: Modelling scenarios of DR methodology 

 S1 S2 S3 S4 S5 S6 S7 S8 

p STR STR STR STR RTTR RTTR STR STR 

λs 1,2,3 1 1,2,3 1 1 1 1 1 

𝑓𝑅𝐷
𝑠  0 1 1 1 0 1 0 1 

𝑓𝑅𝐸𝐶
𝑠  0 1 1 0-1.2 0 1 0 1 

ϑREC  - 0 1 1 - 1 - 1 

wg 0 0 0 0 0 0 1 1 

Eight scenarios are described in Table 6-2. Scenario S1 is the base case, where the system is 

evaluated in all seasons without DR scheduling and with STR for OHLs. Scenario S2 models 

load recovery by using the hourly load curve at each load point (ϑREC=0). Scenario S3 models 

all seasons and load recovery on the basis of expected marginal prices at each load point 

(ϑREC=1). Scenario S4 models time-varying load recovery profiles. Sensitivity studies are done 

here in order to assess the impact of different recovery sizes and profiles on DR performance. 

Factor 𝑓𝑅𝐸𝐶
𝑠  is set from 0 to 1.2pu increasing in 0.2pu increments; the 1.2pu is taken as a high-

risk scenario. Scenario S5 incorporates the RTTR of OHLs without DR operation, while 

Scenario S6 includes the DR scheduling. Finally, Scenario S7 incorporates wind farms without 

DR, while in Scenario S8 the benefits of demand response are evaluated by incorporating wind 

generation (wg=1) for pricing. Therefore in AC OPF case, marginal costs are equal to 

Lagrange multipliers and therefore will give revenue that is completely different from the 

total cost due to non linearity of the problem 
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DC OPF is used for optimal demand response scheduling. DC OPF is used as opposed to AC 

OPF due to the proposed DR method uses marginal costs for pricing. Therefore in the AC 

OPF case, revenues will be completely different from the total cost when marginal costs are 

equal to Langrange multipliers due to non-linearity of the problem. As a result, DC OPF is 

used, as in linear programming marginal costs are equal with dual variables and thereby costs 

are completely recovered. The original IEEE-RTS 96 was modified: all scenarios assume an 

increase in load by 1.3pu compared to the original load, as well as increase of 0.55pu and 

0.6pu transmission capacity for the 138kV and 230kV levels, respectively, and 1pu in 

generation capacity. Next, the WTGs are connected at seven sites and it was assumed that they 

operate at power factor mode with power factor equal to 35% [185]. Wind farms are designed 

to deliver 20% of the peak load [186], equivalent to 684MW on the studied power network. 

Geographically, 70% of the wind farms’ maximum capacity is installed in the northern part of 

the network at buses 15, 17, 19, 20, 22, while in the southern part of the network, the remaining 

30% of the wind capacity is installed at buses 1, 2, 7, 8 (Figure 6-2). The total wind farm 

capacity is 2394 MW obtained from a total number of 240 WTG, each representing a nominal 

capacity of 10MW. There is significant transmission utilization in this modified system as the 

bulk of the generating capacity is located mainly in the northern areas and considerable power 

is transferred from the north to the south aiming to represent the existing topology of the UK 

network.  
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Figure 6-2: Modified IEEE RTS network 

6.3 Simulation Results 

6.3.1 Results for Case study 1 

When the different thermal rating models are considered for the reliability performance 

assessment, then the most secure and economic scenario is the application of the RTTR. This 

can be observed in Figure 6-3 where the EENS reliability index for the three thermal rating 

scenarios is shown. The RTTR model using actual conductor temperature (S4) resulted in 

24.79% lower EENS than the STR model (S1). This is mainly due to the increased capacity 

of transmission lines provided from the RTTR model and the change in resistance that is 

considered in the OPF model. From Figure 6-3 it can also be derived that the SeTR (S2) 

improves the network performance by 17%. However even when the more conservative 
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scenario (S3) is used the improvement in network performance is substantial to the tune of 

14.68% indicating that RTTR can contribute in all seasons. 

 

Figure 6-3: EENS considering STR, SeTR and RTTR 

To quantify the impact of different thermal rating approaches in the studied scenarios, the 

average capacity of the lines is illustrated in Figure 6-4. As shown in Table 6-1, S1 models 

static thermal rating (STR), S2 models seasonal thermal rating (SeTR) and S4 models real 

time thermal ratings (RTTR). It can be inferred that the ratings of L11, L23 and L28 are 

higher when using RTTR strategy with the capacity of L23 showing the most notable 

increase, from 474 MVA (STR) to almost 560 MVA. It can also be observed that other lines 

(e.g. L3, L18, L22, L31, L32, L33 and L38) demonstrate equal or lower capacities when the 

RTTR strategy is utilised. The reason for this is that the increase in the power flows of other 

lines (due to increased ampacity from the RTTR) resulted in reduction of the power flow 

through those lines and in some cases due to weather conditions incurring lower thermal 

ratings. 
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Figure 6-4: Transfer capacity of OHLs under probabilistic approach 

Figure 6-5 depicts the average values of the thermal ratings for scenario S6 under 

deterministic analysis. It displays several features about the transfer capacity of transmission 

lines; these are the median of rating value, the upper quartile (representing the amount of 

population which is higher than the median population-75th percentile), the lower quartile 

(representing the amount of population which is lower than the mean population-25th 

percentile), as well as the line which extends from each box and represents the largest or the 

smallest point within 1.5 interquartile range from the previous quartile. These characteristics 

can provide system operators with vital inputs suggesting network reinforcement under 

conservative-deterministic operation regime. The most critical lines are utilized less 

compared to the probabilistic case, by a factor of 3.6%, which occurs due to the power 

margins set to the network by the deterministic approach. The upper and lower quartiles of 

OHL nos. 6, 23, 24, 27 and 28 show high variance, which indicates that they are occasionally 

overloaded and hence system operators’ should take actions to further utilize them. In 

summary, the results of thermal rating analysis show that RTTR capacities are associated 

with higher levels of utilization. 
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Figure 6-5: MVA rating for RTTR model under deterministic scenario (S6) 

Figure 6-6 compares the operational costs of STR (S5) under deterministic operation and the 

proposed RTTR under probabilistic simulation (S4). The operational costs are higher in the 

deterministic approach. In particular, operational costs of generation units 8-9, 21-23, 30- 32 

have been considerably reduced due to RTTR (S4) model, while a slight difference is seen in 

operational costs of 1-7 and 10-20 generators. Consequently, the deterministic dispatch under 

STR model is inefficient with respect to total hourly costs and increased by a factor of 2.1%. 

This is mainly because RTTR under the probabilistic analysis allows the cheapest generators 

to generate more energy considering the higher thermal loading capability of the OHL. 
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Figure 6-6: Hourly operational cost for deterministic and probabilistic studies 

6.3.2 Results for Case study 2 
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The developed ANN model is used for load forecasting. Certain input parameters are varied 
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the other hand, industrial loads are more uncertain during the day and they are a function of 

manufacting loads. The same is true for commercial loads (offices). 

 

Figure 6-7: MAPE values for forecast residential loads  

 

Figure 6-8: MAPE values for forecast industrial loads  
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Figure 6-9: MAPE values for forecast commercial loads  

6.3.2.2 Customer Availability for Load Reductions 

In this section, the impact of the availability of customers responding to a DR call is 

examined. Uncertainty in load availability for each customer type is given by (4-15). In 

particular, domestic customers’ load reduction takes values from the entire possible range, 

while for industrial and commercial loads it is within the assumed window, win=0.8-1pu. 

Scenario 3 (S3) is used to evaluate the impact of customers responding to a DR on the EENS, 

mean and VaR values of voluntary (VLR) and involuntary load reductions (IVLR) – 

equations (4-9) and (4-10). For VLRs, Figure 6-10 generated over the entire MCS period 

shows that the probability for residential loads to give ‘small’ response (up to 25 MWh) is 

much higher than to produce ‘large’ response (up to 50MWh). 

However, industrial, commercial and large users are more likely to give ‘larger’ respones as 

they have bigger contracted amounts compared to residential users, and the uncertainty in 

response (if any) is much lower (Fig. 6-10). For low load reductions, industrial loads have 

higher probability to respond than commercial and large users, while large users have the 

highest probability for larger amounts of load reductions; they are followed by commercial 

and industrial users. 
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Figure 6-10: Probability to respond to a DR signal for different customer types based on the voluntary load 

reduction amount at 17h00 

The PDFs for voluntary (VL) and involuntary load reductions (IVL) for different hours in a 

day are illustrated in Figure 6-11 and compared with the PDFs of IVL without DR (IVLNO 

DR). The results show that the probability of having IVL is reduced when doing higher 

amounts of DR (IVLDR) (right side of x-axis), while the probability is much higher for low 

amounts of IVLDR . This clearly shows the effectiveness of voluntary DR on the EENS. In 

particular, the mean value of IVLDR  at 17h00 is around 60% less than the mean value of 

IVLNO DR. A similar conclusion applies to all hours; for example, the mean value of IVLDR at 

21h00 and 22h00 is, respectively, 61% and 60% lower when applying the voluntary DR. 

Applying voluntary load reduction (VL) helps eliminate the need for involuntary one (IVLNO 

DR), particularly when larger VL amounts are used. This is further highlighted when 

converting VL and IVL into the EENS index (see Table 6-4 in Section 6.3.2.3). 

Table 6-3 shows the mean (VaR50%) and the 90% confidence VaR (VaR90%) for the costs of 

supplying load demand (LC), as well as for customer VLR and IVLR revenues, for the most 

critical load points (B6, B8 and B14) under scenarios S1 and S3. Both the 𝑉𝑎𝑅50%
𝐿𝐶  and 

𝑉𝑎𝑅90%
𝐿𝐶   are much lower under scenario S3 for all load points, since under DR, demand is 

recovered under cheaper nodal marginal prices. 
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In addition, 𝑉𝑎𝑅90%
𝑉𝐿𝑅  is much larger than 𝑉𝑎𝑅50%

𝑉𝐿𝑅  since marginal nodal prices are significantly 

higher under severe emergency conditions. Furthermore, the 𝑉𝑎𝑅50%
𝐼𝑉𝐿𝑅 is much lower under 

S3 than under S1, where the decrease is by 60% for B6, 44% for B8 and 47% for B14. This 

also shows that voluntary DR significantly decreases the need for IVL (an average VOLL 

value was assumed for all customer types). 

 

 

Figure 6-11: Probability of voluntary and involuntary load reductions under DR for different hours in a day 
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6.3.2.3 Impact of Nodal Prices on Reliability Analysis 

Most DR studies would recover reduced-curtailed load during load troughs and/or system 

normal operation if only network adequacy was looked at. However, in this thesis an 

approach is used to investigate impact of hourly nodal prices on load recovery and customers’ 

wellbeing. Figure 6-12 shows an example of the nodal marginal price and the demand 

variation over 24 hours for the most frequently interrupted bus in the network (B6) under 

both intact and emergency conditions.  

When no failures occur, load can be recovered almost at any time since intact prices do not 

change significantly with respect to load variation. However, nodal prices under emergency 

conditions may vary considerably. For instance, a significant difference in magnitude 

between intact and emergency nodal prices is shown at 15h00. The proposed analysis has 

proven that the magnitude of the emergency nodal price can be almost 5 times higher than 

the intact one. Thus, scheduling of ‘optimal’ load recoveries based on marginal nodal prices 

has proven effective in providing system security and customer benefits. Furthermore, 

comparative studies were conducted to quantify the improvements from implementing load 

recovery under nodal marginal prices rather than under load profile only. 

 

 

Figure 6-12: Hourly marginal prices and demand curve under emergency for bus 6 
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The hourly nodal price at bus B6 for different confidence levels is given in Figure 6-13. In 

the event of an outage linked to bus B6, TSOs may be provided with the illustrated confidence 

level dependent prices to decide which load recovery hour would be the most appropriate to 

restore load. For example, the TSO can know that if a violation occurs at 11h00, the load can 

be recovered between 13h00 and 16h00, since there is an 80% probability that the price will 

be between zero and 90£/MWh and a 90% probability that the price will be between zero and 

420£/MWh. In this thesis, a conservative confidence level of ψ=95% was selected. This gives 

flexibility to TSOs to apply operational decisions so they can guarantee making a profit for 

the demand customers for almost all nodal prices in the feasible range, since the load recovery 

will ideally be costed at (lower) intact prices. 

 

Figure 6-13: Emergency marginal price at node B6 for different confidence intervals 
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Figure 6-14: Offer prices for Voluntary Load Reduction 

The results presented in Table 6-4 give a comparison of reliability indices for scenarios S1, 

S2 and S3 during winter, summer and fall. For example, the DR strategy under scenario S3 

improves the reliability of the network in terms of EENS by 66% in winter (𝜆𝑠 = 1) compared 

with scenario S1, allowing for almost a 5% decrease in EENS compared to scenario S2. The 

S3 strategy also substantially improves reliability indices for summer (𝜆𝑠 = 2) and fall (𝜆𝑠 =

3), which demonstrates the effectiveness of the algorithm throughout the entire year. 

Table 6-4: Reliability Indices for Scenarios 1, 2 and 3 
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S3 196 42.8 4.8 23.3 8.5 0.35 0.0383 0.01532 0.00229 
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B6, with and without DR. In particular, it is shown that there is a high variation in nodal costs 

at 11h00, resulting from outages of lines 12 and 13 that connect bus B6 with cheaper 

generators. Consequently, 𝑉𝑎𝑅90%
𝐿𝐶  is 55.64k£ under the base case, whereas it is only 52.81k£ 

under S3, which shows that DR can help reduce nodal costs by 5% (2.83k£). Clearly, both 

reliability and financial indices can be improved using nodal energy prices (S3) rather than 

the load profile only (S2) for optimal decision on load recovery. 

 

 

Figure 6-15: Distribution of demand costs for load at bus B6 
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sizes are lower than 100%, network reliability is improved compared to 𝑓𝑅𝐸𝐶
𝑠 =1pu. This is 

due to the higher probability of implementing voluntary DR since less load recoveries are 

required. There is also a substantial decrease in reliability indices EDI and EFI. 

Table 6-5: Reliability Indices for Scenario S4 

fs
REC (pu) 1.2 1 0.8 0.6 0.4 0.2 

EENS(MWh/day) 205.8 196 192.34 191.13 191.08 188.12 

EDI(h/day) 0.2334 0.2331 0.2330 0.229 0.227 0.227 

EFI(int/day) 0.0386 0.0383 0.0383 0.038 0.038 0.0378 

Differences in the mean (VaR50%) and VaR90% values for demand costs (LC) and customer 

profits (π) between scenarios S4 and S3 are shown in Table 6-6 for different load recovery 

sizes 𝑓𝑅𝐸𝐶
𝑠 . This table gives the cost and revenue differences following various load payback 

sizes compared to applying DR with a load payback of 100% for a winter day-ahead 

operation. For instance, when S4 is modeled with 𝑓𝑅𝐸𝐶
𝑠 =1.2pu, the 𝑉𝑎𝑅50%

𝐿𝐶  is 912£ higher 

than under scenario S3. This is because as load recovery gets larger, the operating conditions 

become more difficult and the marginal prices increase, implying higher costs for demand. 

For low load recovery sizes, however, very high profits can be incurred (over 2,100£) as the 

demand cost VaR shows the largest decrease. 

Table 6-6: Difference in mean and VaR for LC and profits (£/kWh) for S4 vs. S3 

 

S4-S3 Values 

(difference in costs) 

    

fREC=1.2 +912 +1932 +0.05 +0.2 

fREC=0.8 -89 +775 +5.3 +8.1 

fREC=0.6 -101 -198 +6.3 +9.5 

fREC=0.4 -257 -2102 +8.8 +9.5 

fREC=0.2 -463 -2124 +10.2 +12.8 
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6.3.2.5 Impact of RTTR and DR on Network Reliability and Customer Costs & 

Revenues 

In scenario S5 only RTTR is used, whilst scenario S6 combines DR with RTTR. Table 6-7 

shows that the more reliable and cheapest scenario is S6.  

The use of RTTR and DR under S6 results in, respectively, 61% and 6.6% reduction in EENS 

compared with DR alone (S3) and with S5. Indices EFI and EDI are also improved. When 

RTTR is considered alone (S5), the greater utilization of the three most critical lines improves 

network performance by 18% compared to S1. Besides, the load cost index for S3 𝑉𝑎𝑅50%
𝐿𝐶  

is slightly higher than 𝑉𝑎𝑅50%
𝐿𝐶  for S5. This is because RTTR on OHLs allows extraction of 

greater generation from cheaper units.  

In terms of VLR and IVLR, both average values are lower under S6. It is noted that DR 

provides the greatest benefits since all indices are drastically improved with DR, whilst 

benefits are only slightly higher under RTTR. 

Table 6-7: IEEE RTS network evaluation with RTTR and DR 

                         Scenarios S3(DR) S5(RTTR) S6(DR&RTTR) 

Reliability 

indices 

EENS(MWh/day) 196 475 183 

EFI (int/day) 0.0383 0.0381 0.0379 

EDI*10-2(h/day) 23.31 23.34 23.18 

Financial indices 

(k£) 

VaR95%
CG   135.9 134.9 131.3 

MeanCG 142.7 136.1 134.8 

πmean
CIC  1.6 - 1.2 

π95%
CIC  2352 - 2196 

 

6.3.2.6 Impact of Wind Farms and DR on Network Reliability and Customers Costs 

and Revenues 

In scenario S7, only wind farms are connected, whilst scenario S8 uses DR in conjunction 

with wind farms. Table 6-8 shows that the more reliable and less expensive scenario is S8; 
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the wind farms contribute to improving network reliability by 4% in EENS compared to S3 

alone. Besides, a considerable reduction in EDI is achieved, whilst the frequency of 

interruptions, EFI, remains the same as under S3. If compared with S1, wind farms alone 

(S7) improve network performance by 14% due to wind farms’ integration on the network. 

Also, 𝑉𝑎𝑅50%
𝐿𝐶  for S3 is slightly higher than 𝑉𝑎𝑅50%

𝐿𝐶  for S7 as wind farms are considered to 

have near-zero marginal costs. When wind farms are used in conjunction with DR (S8), this 

has the best effect on network performance and customer costs & revenues. This is because 

DR implementation helps when wind output is low and network components fail. Next, when 

wind output is high, spillage can occur as there is not enough capacity on the network to 

transfer the total amount of wind, thus leading to congestion when using STR for OHL 

operation.  In this case, RTTR can be used to further reduce EENS and improve power system 

reliability. 

Table 6-8: IEEE RTS Network evaluation of wind farms and DR 

                         Scenarios S3(DR) S7(wind) S8(wind&DR) 

Reliability 

indices 

EENS(MWh/day) 196 496 189 

EFI (int/day) 0.0383 0.0388 0.0383 

EDI*10-2(h/day) 23.31 23.8 23.19 

Financial indices 

(k£) 

VaR95%
CG  135.9 135.3 129.3 

MeanCG 142.7 141.9 136.8 

πmean
CIC  1.6 - 1.05 

π95%
CIC  2352 - 2268 

6.4 Conclusions 

A probabilistic methodology for optimal scheduling of load reductions and recoveries in a 

day-ahead planning of transmission networks is proposed in the thesis. The methodology 

recognizes several types of uncertainties, and finds optimal demand response scheduling 

using the network security and customer economics criteria. Impacts of wind generation and 

real-time thermal ratings of overhead lines are also studied. 
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The developed case studies have demonstrated that the value of optimal demand scheduling 

combined with real-time thermal ratings can be significant when using nodal marginal prices 

compared to using the hourly loads to determine the optimal load recovery periods. In 

particular, both reliability and financial metrics can be improved by a factor of around 66% 

for expected energy not served and around 5% for value at risk for costs of demand. 

Improvements in other reliability indicators and expected generation costs were also 

observed. Nonetheless, the selection of the reliability indicator to base the operational 

decisions on demand scheduling can be of highest importance; having multiple indices can 

therefore help system operators to make more informed decisions on ‘best’ demand response 

practice.  
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 Optimization of Wind 

Energy Utilization through 

Corrective Scheduling and 

FACTS Deployment 

Summary: 

This chapter presents the modelling concepts and objectives, description of case studies and 

results of a probabilistic framework for minimizing wind spillage and maximizing capacity 

of the deployed wind generation, whilst improving system reliability, as described in Chapter 

4.1. Capacities of the wind units connected to the network are initially determined by using 

the industry-based criteria. A probabilistic approach is applied for the day-ahead planning to 

determine maximum deployable wind sources so that the prescribed wind spillage level is 

not exceeded. This is done in an iterative way using the optimum power flow, in which wind 

spillages are weighted with the probabilistic ‘cost coefficients’. Further improvement of wind 

energy utilization is achieved by installing FACTS devices and making use of real-time 

thermal ratings (RTTR). Two ranking lists are proposed to find the best placement of static 

VAr systems (SVSs) and thyristor controlled series compensators (TCSCs). The developed 

methodology is incorporated into two sequential Monte Carlo simulation procedures. The 

probabilistic simulation results are then compared with the state enumeration results. It was 

shown that the proposed methodology improves economics of network operation as well as 

its reliability. 
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7.1 Simulation modelling framework 

The objectives of the proposed probabilistic approach for day-ahead planning of systems with 

large penetration of wind are threefold: a) Maximize deployed wind generation to meet 

contractual obligations; b) Increase overall system reliability; and c) Reduce system 

operation cost including costs of non-delivered load and curtailed wind generation. These 

objectives are achieved by following corrective actions: a) Reschedule dispatchable 

generation; b) Curtail load and wind generation; c) Deploy SVC and TCSC devices; and d) 

Deploy RTTR on overhead lines (OHL). 

The probabilistic framework consists of two simulation stages, as shown Figure 7-1. The 

first, SMCS1, is preparatory and it delivers outputs, which are required by the second stage 

SMCS2. The main building blocks of the first stage are: 

• Connection of wind generation using industry criteria (method is described in Chapter 

4.1.2). 

• Probabilistic analysis of the 24-hour period with the base SMCS1 with unity costs 

associated with wind spillages. 

• Calculation of base expected energy not supplied (BEENS), base expected spillage 

(BESP), wind spillage ‘cost coefficients’ (method is described in Chapter 4.1.3), voltage 

histograms for ranking of SVCs, as well as BEENS and BESP increments for TCSC ranking. 

• Procedure for optimal FACTs placement (method is described in Chapter 4.4.2). 

The second simulation stage is then used to find the optimal utilization of wind sources whilst 

applying different controls. Two different methodological approaches are developed: a) The 

SMCS2 procedure; and b) The state enumeration based on (N-1) outages. The essential 

building blocks are the same in both methodologies – Figure 7-1. In this stage, several 

independent corrective action scenarios are executed: 
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• ‘Scheduling scenario’: generation rescheduling and curtailment of wind and load is 

considered to maximize wind utilization. RTTR may be included. 

• ‘Scheduling and FACTS scenario’: rescheduling of generation and load with 

placement of SVC and/or TCSC is done; RTTR may also be included. 

• ‘Increased deployed wind scenario’: this can be either ‘scheduling’ or ‘scheduling & 

FACTs scenario’ whereby wind capacities are increased until contractual limits are met. 

 

Figure 7-1: Optimal deployed wind generation computational framework 
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7.1.1 First Simulation Stage 

Computation of maximum wind generation connection is initially done considering static 

thermal ratings for OHLs. The amount of wind generation connected at each node is based 

on a mathematical formula used by the industry – equation (4-1). After nodal wind 

generations are defined, AC OPF analysis is run to calculate minimized spillage values under 

state enumeration framework. Probabilistic analysis is run using SMCS1, to determine the 

stochastic behaviour of nodal wind spillages. The probabilistic cost coefficients of wind 

spillages are then incorporated in the objective function of the OPF model to prioritize wind 

spillages and contributed to the improved system operation under under emergency 

conditions. 

The first simulation stage, also includes ranking lists of SVCs and TCSCs, as well as 

finding locations for optimal placement of these devices. The ranking lists are formulated 

using expected energy not supplied (BEENS) and expected wind spillage (BESP) produced 

by the SMCS1. BEENS and BESP are categorised as voltage related (BEENSvolt and BESPvolt), 

and thermal realted (BEENSth and BESPth) and they are used for ranking of, respectively, 

SVCs and TCSCs, and finding their most appropriate locations. As such, a ranking list of 

nodes in a desceding order is calculated for SVC placement and a ranking list of circuits in 

desceding order is calculated for TCSC placement. These two lists are finally used in the 

optimal FACTs placement block, which gives the optimal SVC and TCSC installations based 

on the reductions of load and wind energy curtailments. 

All procedures accomplished in the first stage use a number of different data for network 

modelling. The most important are: 

Network topology and impedance, reliability, wind data, overhead line (OHL) data, 

FACTS data and weather data. Beside the standard network data, forecast in-service 

generation units with technical characteristics and chronological hourly load point demands 

are input. Reliability data are failure rates and repair times of all components (conventional 

generation units, wind turbines and transmission lines), whilst wind data encompass wind 

generators nominal power rates and wind speed cut-in, cut-off and cut-rated data. OHL data 
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include conductor design properties and environmental parameters required for the RTTRs. 

FACTs data include operating ranges for SVCs and TCSCs as well as failure and repair rates 

of FACTs. Finally weather data includes ambient temperature, wind speeds and wind 

directions. 

7.1.2 Second Simulation Stage 

The models specific to the second simulation stage are presented below. Other models, such 

as prioritization of SVCs and TCSCs and their optimal placement, are already given in 

chapter 4. 

7.1.2.1 AC Optimal Power Flow (OPF) analysis 

The OPF model is adapted to include load and wind curtailments and FACTS devices. It is 

based on the AC power flow model and its mathematical formulation is given by equations 

(7-1) to (7-13): 

 𝑚𝑖𝑛 {𝑧 =∑𝐶𝑔𝑗 ∙ 𝑃𝑔𝑗
𝑗

+∑𝑉𝑂𝐿𝐿𝑖 ∙ 𝑃𝑐𝑖 +∑𝜉𝑗 ∙ 𝑉𝑆𝑃𝑗 +∑𝜉𝑗 ∙ 𝐼𝑉𝑆𝑃𝑗
𝑗𝑗𝑖

} (7-1) 

 (𝑃𝑔𝑖 − 𝑉𝑆𝑃𝑖 − 𝐼𝑉𝑆𝑃𝑖) − (𝑃𝐷𝑖 − 𝑃𝑐𝑖) −∑𝑃𝑖𝑗(∙) = 0

𝑖𝑗

 (7-2) 

 𝑄𝐺𝑖 + 𝑄𝑆𝑉𝐶𝑖 − (𝑄𝐷𝑖 − 𝑡𝑔(𝜑𝑖) ∙ 𝑃𝑐𝑖) −∑𝑄𝑖𝑗(∙) = 0

𝑖𝑗

 (7-3) 

 𝐼𝑖𝑗(∙) ≤ 𝐼𝑖𝑗
𝑆𝑇𝑅/𝑅𝑇𝑇𝑅

 (7-4) 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 (7-5) 
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 𝑃𝑔𝑗
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑗 ≤ 𝑃𝑔𝑗

𝑚𝑎𝑥 (7-6) 

 𝑄𝑔𝑗
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑗 ≤ 𝑄𝑔𝑗

𝑚𝑎𝑥 (7-7) 

 𝑃𝑊𝐺𝑗
𝑢𝑝 ≤ 𝑃𝑊𝐺𝑗 ≤ 𝑃𝑊𝐺𝑗

𝑢𝑝
 (7-8) 

 0 ≤ 𝑉𝑆𝑃𝑗 ≤ 𝑉𝑆𝑃𝑗
𝑚𝑎𝑥 (7-9) 

 0 ≤ 𝐼𝑉𝑆𝑃𝑗 ≤ 𝐼𝑉𝑆𝑃𝑗
𝑚𝑎𝑥 − 𝑉𝑆𝑃𝑗

𝑚𝑎𝑥 (7-10) 

 0 ≤ 𝑃𝑐𝑖 ≤ 𝑃𝐷𝑖 (7-11) 

 𝑄𝑆𝑉𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑆𝑉𝐶𝑖 ≤ 𝑄𝑆𝑉𝐶𝑖

𝑚𝑎𝑥 (7-12) 

 𝑋𝑇𝐶𝑆𝐶𝑖𝑗
𝑚𝑖𝑛 ≤ 𝑋𝑇𝐶𝑆𝐶𝑖𝑗 ≤ 𝑋𝑇𝐶𝑆𝐶𝑖𝑗

𝑚𝑎𝑥  (7-13) 

where 𝐶𝑔𝑗 is marginal cost of generation 𝑃𝑔𝑗 at node j, 𝑉𝑂𝐿𝐿𝑖 is value of the lost load [116] 

(load curtailment) 𝑃𝑐𝑖 at node i, 𝜉𝑗 is cost of either voluntary 𝑉𝑆𝑃𝑗 or involuntary spillage 

𝐼𝑉𝑆𝑃𝑗 at node j (see relation (4-3)), 𝑄𝑔𝑖 and 𝑄𝑆𝑉𝐶𝑖 are reactive power productions of a 

generator and an SVC at node i, 𝑃𝐷𝑖 , 𝑄𝐷𝑖 and 𝜑𝑖 are active load, reactive load and load angle 

at node i, 𝑃𝑖𝑗(∙), 𝑄𝑖𝑗(∙) and 𝐼𝑖𝑗(∙) are active power, reactive power and current flows in branch 

ij, Iij
STR/RTTR

 is either STR or RTTR rating of branch ij, 𝑉𝑖 is voltage magnitude at node i, 

𝑃𝑊𝐺𝑗 is active wind generation at node j set at the selected value 𝑃𝑊𝐺𝑗
𝑢𝑝

, and 𝑋𝑇𝐶𝑆𝐶𝑖𝑗 is 

reactance of TCSC in branch ij. The lower and upper limit values are denoted by superscripts 

min and max, respectively. 

The objective of the optimization model (7-1)–(7-13) is minimization of the hourly 

operational costs, which consist of four terms: generation cost, cost of curtailed loads and 

costs of voluntary and involuntary wind spillages. Equations (7-2) and (7-3) model active 
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and reactive power balances at all nodes; it is assumed that wind generators operate at unity 

power factor, so there is no curtailment of reactive wind generations in (7-3). A constant 

power factor is assumed for each nodal load, giving reactive power curtailment 𝑡𝑔(𝜑𝑖) ∙ 𝑃𝑐𝑖 

in (7-3). Active 𝑃𝑖𝑗(∙) and reactive power flows 𝑄𝑖𝑗(∙) in branches ij are functions of terminal 

voltage magnitudes and angles [187] which are problem unknowns. 

Thermal constraints of all branches are expressed by inequalities (7-4), in which either STR 

or RTTR is used for OHL. Branch currents 𝐼𝑖𝑗(∙) are again functions of terminal voltage 

magnitudes and angles [188]. Voltage constraints at all nodes are given by (7-5), whilst 

limitations of dispatchable generation are modelled with inequalities (7-6) and (7-7). 

Inequalities (7-8) specify the level of wind generation, which is obtained either from the 

forecasting model, or within the iterative process of spillage level adjustment. Limits on 

voluntary and involuntary wind spillages are defined by (7-9) and (7-10); note that the total 

spillage 𝐼𝑉𝑆𝑃𝑗
𝑚𝑎𝑥 must be less than wind production 𝑃𝑊𝐺𝑗

𝑢𝑝
. Limits on load curtailments are 

shown in (7-11), whilst constraints on SVC and TCSC devices are defined by (7-12) and 

(7-13), respectively. The former shows that SVCs are modelled as reactive power sources; 

however, inequalities (7-13) are implicitly modelled by adjusting branch reactances. 

7.1.2.2 Maximization of Wind Deployment 

 In several analyzed scenaria, particularly when FACTS and/or RTTR are deployed, wind 

spillage levels can be below the contractual values. In such cases, it is possible to increase 

capacities of installed wind units.  

The SMCS results are delivered on an hourly basis and for the whole day. The expected 

hourly spillages are compared against the contractual spillage and deployed wind generations 

are uniformly increased in hours with spillages smaller than contractual obligations. A 

heuristic relation between the wind generation increase and spillage increase is used to decide 

how much to increment deployed wind generation in each step. The procedure is iteratively 

repeated and maximum deployable wind generations are calculated on an hourly basis. 
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This procedure can be extended to increase and/or decrease deployable hourly wind 

generation in such a way that the expected daily spillage does not exceed contracted 

threshold. 

7.1.2.3 Outputs from the simulation stage 

The calculated nodal and system reliability indices are expected energy not served (EENS), 

expected frequency of load interruptions (EFI) and expected duration of load interruptions 

(EDI). The indices related to wind spillage are expected relative (percentage) value of 

spillage (ESP), expected frequency of spillage (ESPF) and expected duration of spillage 

(ESPD). The expressions used within the SMCS are given in [17]; relations related to state 

enumeration are presented in [43]. 

The calculated hourly operational cost OC(t) contains four terms, as shown by expression 

(7-1): a) Cost of generations CG(t) valued at marginal prices; b) Cost of load curtailments 

CLC(t) valued at VOLL; c) Cost of voluntary wind spillage CVSP(t) valued at contracted price; 

and d) Cost of involuntary wind spillage CIVSP(t) valued at µp. When studying two alternative 

solutions (e.g. with and without FACTS devices), change in daily operational costs is: 

 ∆𝑂𝐶𝑂𝑆𝑇 =∑[∆𝐶𝐺(𝑡) +

24

𝑡=1

∆𝐶𝐿𝐶(𝑡) + ∆𝐶𝑉𝑆𝑃(𝑡) + ∆𝐶𝐼𝑉𝑆𝑃(𝑡)] (7-14) 

The PDFs of operational costs, as well as costs of voluntary and involuntary spillages and 

load curtailments are calculated for each hour in the studied 24-hour period. These curves 

can be used to quantify the financial risk of implementing a particular strategy. The concept 

of value-at-risk (VaR) [189] was applied to measure potentially ‘excessive’ costs. Assuming 

network cost (NC) denotes any category of costs, the corresponding CDF can be used to 

determine the value-at-risk at confidence level ψ [189]: 

 𝑉𝑎𝑅1−𝜓
𝑁𝐶 (𝑁𝐶𝑋) = 𝑠𝑢𝑝{𝑁𝐶1−𝜓 ∈ 𝑅: 𝐶𝐷𝐹𝑁𝐶𝑋(𝑁𝐶1−𝜓) ≤ 1 − 𝜓} (7-15) 
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where NCX is the network cost that is not exceeded with probability 1 – ψ. 

7.2 Analysis of case studies 

Combinations of several factors are done to define the study cases – first column of Table 

7-1. All scenarios use both state enumeration and SMCS analysis. The deployed wind sources 

can be maximized to meet contractual obligations (ϑSPL =+1), or no modification of wind 

capacities is done (ϑSPL=0). The second factor shows whether the prioritized cost of wind 

spillages is included (𝜉 ≠ 0) or not (𝜉 = 0) in the OPF. The installation of an SVC is denoted 

by f1=1, whilst f2=1 means a TCSC is present. The last factor, p, shows whether OHL STR 

is used (p=0) or RTTR is calculated (p=1). All studies are repeated for winter peak demand 

(first day of week 50) and summer minimum demand (7th day of 38th week). 

 Nine developed scenarios are shown in Table I. Scenario S1 is the base case, where 

unity spillage costs are used in the OPF. No corrective actions are modelled before FACTs 

optimal placement and STR is applied for OHL. In this scenario the ranking lists of FACTs 

are initially defined (f1=0 and f2=0) and then used for the optimum FACTs placement (f1=1 

and f2=1). Scenario S2 doesn’t adjust deployed wind capacities (ϑSPL =+0) and applies wind 

spillage costs in the OPF, as a corrective control action to find reduced wind spillage values. 

Scenario S3 maximizes deployable wind (ϑSPL =+1) using wind spillage costs in order to 

meet contractual obligations on wind spillage. Scenario S4 is similar to S2 but incorporates 

RTTR of OHL as a corrective action, whilst scenario S5 maximizes deployed wind (ϑSPL=+1) 

and applies RTTR. Scenario S6 incorporates SVC or TCSC to find minimum wind spillages, 

whereas scenario S7 deploys SVC or TCSC device to maximize deployed wind (ϑSPL=+1). 

Scenarios S8 and S9 are similar to S6 and S7, the only difference being the modelling of SVC 

and TCSC as well as RTTR. 
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Table 7-1: Modelling scenarios for optimal wind deployemnt 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

ϑSPL 0 0 +1 0 +1 0 +1 0 +1 

𝜉 0 ≠0 ≠0 ≠0 ≠0 ≠0 ≠0 ≠0 ≠0 

𝑓1 0,1 0 0 0 0 1 1 1 1 

𝑓2 0,1 0 0 0 0 1 1 1 1 

p 0 0 0 1 1 0 0 1 1 

The original test network IEEE-RTS 96 [183] was modified in the following way: all 

scenarios assume an increase in load by 1.31pu compared to the original load, an increase of 

0.55pu and 0.6pu transmission capacity for the 138kV and 230kV levels, respectively. Next, 

wind farms are connected at nine sites in an attempt to emulate 7 UK areas as shown in Figure 

7-2. It was assumed that they operate at PQ mode with wind factor wf equal to 16.6% [185] 

and that they deliver 20% of the peak load [186], which is equivalent to 745MW on the 

studied network. Geographically 80% of the wind farms’ maximum capacity is installed in 

the northern part of the network (buses 13, 14, 15, 18 & 19), while 20% of the wind capacity 

is installed in the southern part (buses 1, 2, 7 & 8). The total wind farm capacity is 4470MW 

delivered from 447 wind turbines. 

To calculate power outputs of wind turbines (WTGs), it was assumed that cut-in, rated, and 

cut-out speeds are 14.4, 36, and 80km/h, respectively [190]. The failure rates and average 

repair times of WTG are two failures/year and 44 hours [105]. As the original network does 

not provide data for RTTR calculation, a simple ACSR technology was assumed with 

conductor sizes that give ratings similar to those in the IEEE-RTS 96 system [17]. Conductor 

temperature is set to 60oC for system normal operation and to 75oC for system emergencies 

[17]. Average values of 5-year hourly weather data are obtained from the BADC MIDAS 

metheorogical stations in 7 UK areas listed in Figure 7-2 [115]. Finally, SVCs operated in 

the range -100MVar to 100MVar, whilst reactances of TCSCs were in the range 𝑋𝑇𝐶𝑆𝐶𝑖𝑗
𝑚𝑖𝑛 =
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0.7𝑋𝑖𝑗 to 𝑋𝑇𝐶𝑆𝐶𝑖𝑗
𝑚𝑎𝑥 = 1.2𝑋𝑖𝑗. The initial weights 1 and 2 were set to 0.5; they were later 

changed in sensitivity studies. 

 

Figure 7-2: Modified test network 

7.3 Simulation Results 

7.3.1 SVC and TCSC Ranking Lists 

Scenario S1 (Table 7-1, first column) is used to produce FACTs ranking lists after the SMCS1 

and then to define optimal locations for SVCs and TCSCs, as explained in chapter 4.4.1. 

Table 7-2 shows SVC ranking list, the base expected spillages BESPvolt and the base expected 

energy not supplied BEENSvolt due to voltage constraints, as well as the voltage deviations 
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of =1%. The presented ranking was obtained for 1=2=0.5 and it remains unchanged until 

1=0.7 and 2=0.3. The SVC ranking list is based on criterion (4-32) and it shows that the 

best locations are buses b18, b7, b19, b14, b8 and b1 if 1=2. This is because voltage spillages 

BESPvolt are very high at these buses, whilst BEENSvolt is high only at b7 and b8. Had we 

chosen 1>>2, nodes b7 and b8 would be on the top of the list. The lowest feasible-internal 

voltages are at b13 and b15, whilst b18 has highest feasible voltages; this may indicate 

problems at these nodes in future.  

The ranking list of branches for TCSC placement is shown in Table 7-3. The thermal 

reductions BEENSth indicate that lines (7,8), (8,9) & (2,6) are the best locations, whilst 

lines (15,24), (8,9) and (15,16) give highest thermal spillage reductions BESPth. The 

maximum spillage reduction of 13.16 MW is on line (15,16) where the initial BESPth was 

58MW. 

Table 7-2: SVC Ranking List 

Wind 

buses 
𝜌𝑖 𝐵𝐸𝑆𝑃𝑖

𝑣𝑜𝑙𝑡(MW) 𝐵𝐸𝐸𝑁𝑆𝑖
𝑣𝑜𝑙𝑡(MW) ∆𝛾𝑖

𝑉𝑚𝑖𝑛 ∆𝛾𝑖
𝑉𝑚𝑎𝑥 

b18 14.1288 27.82 0.02 0.008 0.007 

b7 12.0456 5.50 18.40 0.008 0 

b19 11.4408 22.66 0.04 0.008 0 

b14 11.2687 22.37 0.1 0.002 0.001 

b8 10.9218 9.52 12.28 0.001 0.001 

b1 10.8990 21.73 0.003 0.002 0.001 

b13 3.7004 7.07 0.2 0.018 0 

b2 2.8721 5.73 0 0.001 0.0015 

b15 2.0694 3.87 0.16 0.017 0.01 

Table 7-3: TCSC Ranking List 

Line ∆𝐵𝐸𝑁𝑆&𝑆𝑃𝑖𝑗   ∆𝐵𝐸𝑆𝑃𝑖𝑗
𝑡ℎ(MW) ∆𝐵𝐸𝐸𝑁𝑆𝑖𝑗

𝑡ℎ(MW) 

(15,24) 8.11 16.2 0.02 

(7,8) 7.64 10.9 4.38 

(8,9) 7.6 12.12 3.14 

(15,16) 7.5 13.16 0.01 
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(2,6) 5.073 7.42 2.72 

(13,23) 3.9 7.87 0.028 

(8,10) 3.32 4.6 2.04 

(14,16) 2.61 5.12 0.1 

 

Table 7-4: Optimal FACTS Placement 

 𝑐𝑒𝑣𝑜𝑙𝑡  
 

 
𝑐𝑒𝑡ℎ  𝑐𝑒𝑣𝑜𝑙𝑡  

 

 
𝑐𝑒𝑡ℎ 

baseSMC 88.74 < 104.13 b14 80.80 > 76.71 

(15,24) 96.12 > 95.02 b8 76.01 < 76.93 

b18 94.97 > 94.42 (15,16) 75.75 > 74.31 

b7 89.05 < 93.82 (2,6) 74.08 > 70.28 

(7,8) 88.58 > 86.01 b1 74.01 IS 70.12 

b19 85.11 < 86.29 b13 74.99 IS 71.01 

(8,9) 86.94 > 76.87 (13,23) 74.06 IS 70.03 

Optimal placement strategy of SVCs and TCSCs is illustrated in Table 7-4. It is based on the 

comparison of wind and load curtailments due to voltage cevolt and thermal constraints ceth. 

Where ceth > cevolt the first TCSC from the ranking list is placed in line (i,j); otherwise, the 

first SVC is connected to bus “b”. Every time an SVC or TCSC is installed, the difference in 

EENS and ESP is checked against the threshold value and if considered insignificant (‘IS’), 

the next device is studied. Here, TCSC on line (15,24) reduces ceth but increases cevolt 

compared to the base SMCS1; however, the total curtailed energy cevolt plus ceth is always 

reduced. The last three cases in Table 7-4 show no desired improvement in curtailed energy. 

Consequently, nodes b18, b7, b19, b14 and b8 should be considered for SVC installation, 

whilst lines (15,24), (7,8), (8,9), (15,16) and (2,6) for TCSC placement. The available budget 

will determine the actual FACTS installations. 

7.3.2  Prioritisation of wind spillages 

Scenario S1 with unit spillage costs in the OPF is used to evaluate base wind spillages BESP 

and marginal prices µ, required for the calculation of wind spillage cost coefficients 
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(equations (4-3), (4-4)) that are used in the OPF for scenario S2. Figure 7-3 compares S1 and 

S2 and shows how the mean percentage value of wind spillage at each wind generation node 

decreases for both days and both study methods when cost coefficients are applied in S2. The 

largest decrease (33%) in spillage occurs at bus 8 in winter, whilst in summer, wind spillage 

decreases by 20% at bus 13. The SMCS reduces wind spillage in the total system by 10.8% 

in winter and 13.11% in summer, whilst these figures are respectively, 24% and 22% for the 

state enumeration analysis. Although wind spillage prioritization can substantially reduce 

optimal spillage levels under the probabilistic SMCS analysis that considers all combinations 

of outages, the state enumeration approach gives less wind curtailment because only N-1 

outages are taken into account. 

 

 

Figure 7-3: Wind spillages under scenario S1 and S2 

7.3.3 Impact of Controls and Maximized Deployed Wind Capacity  

The initially installed wind capacity of 4470MW, found from (4-1) and (4-2), are first used 

to calculate optimized wind spillages. The box plots of optimized wind spillages for the 

SMCS analysis of scenaria S1, S4, S6(f1), S6(f2) & S8 with initially connected wind sources 

are shown in Figure 7-4. Spillages are higher in all cases in winter due to increased network 

stress. Scenario S8 with a combination of SVC&TCSC&RTTR gives the best minimized 
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spillages; the reduction is 31.65% in winter and 33.44% in summer. The second best spillage 

is for S6(f2) giving reduction of 22.8% (winter), and reduction of 22.3% for S6(f1) (summer). 

A normal distribution was found to best-fit the wind spillage PDF in winter, whilst a log-

normal distribution best fit summer spillage PDF. 

The maximum integrated wind power that meets contractual obligations are calculated using 

the SMCS and state-enumeration for the following cases (Figure 7-5): a) S3 with non-zero 

spillage costs; b) S5 with RTTR; c) S7 with SVC (f1=1); d) S7 with TCSC (f2=1); and e) S9 

with SVC&TCSC&RTTR. In all cases, it was possible to deploy more wind in the winter and 

summer day, where deployed wind in winter was always higher than in summer mainly 

because winter STR is higher than summer STR and winter wind speeds are higher than in 

summer. 

 

  Figure 7-4: SMCS wind spillages for scenaria S1, S4, S6(f1), S6(f2) & S8 
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Figure 7-5: Maximum deployed wind capacity under scenaria S1, S3, S5, S7 & S9 

Finally, comparison of results from Figure 7-4 and Figure 7-5 shows that although installation 

of TCSCs can give slightly higher wind integration than with SVCs (Figure 7-5), probabilistic 

wind spillages in the system with SVCs can be lower than with TCSCs (Figure 7-4). This 

means that both problems need to be studied separately, and it is likely that the preferred 

solution will be the one, which maximizes wind deployment.    

Table 7-5 summarises reliability indices for SMCS studies. It is shown that S8 is the most 

reliable scenario, both in terms of load and spillage indices; reduction in EENS is 24% in 

winter and 79% in summer when compared to S1. The spillage indicators are significantly 

lower; for example, ESPD has dropped from 5.93 to 3.13h/d. S2 with non-zero spillage costs 

gives significantly reduced ESP and ESPF, whilst EENS is slightly lower. The use of RTTR 

in S4 results in substantial reduction in EENS, which is consequence of greater utilization of 

the three most critical lines (16,14), (16,17) and (7,8); the wind spillage indicators are also 

reduced. Installation of FACTS contributes to improved network reliability by 9.38% in 

EENS for SVC (S6-f1) and 14.2% for TCSC (S6-f2) compared to S1. SVCs and TCSCs also 

improve expected spillages indices; in different seasons the former or the latter contribute 

more to the reduction of wind spillages. 
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Table 7-5: Load and Spillage Reliability Indices 

 S1 S2 S4 S6(SVC) S6(TCSC) S8 

EENS 

(MWh/d) 

Wint 86.4 84.7 75.1 78.3 74.1 65.9 

Sum 6.42 4.16 3.72 3.81 3.75 1.34 

EDI 

(*10-2h/d) 

Wint 2.67 2.65 2.41 2.65 2.63 2.12 

Sum 0.47 0.54 0.51 0.53 0.52 0.50 

EFI 

(*10-2int/d) 

Wint 2.39 2.37 1.98 2.03 2.01 2.01 

Sum 0.19 0.12 0.09 0.12 0.11 0.10 

ESP 

(%/d) 

Wint 15.8 14.1 13.1 12.5 12.2 10.8 

Sum 12.2 10.6 8.53 9.5 9.8 8.12 

ESPF 

(int/d) 

Wint 1.9 1.51 0.73 1.19 1.24 1.07 

Sum 1.24 1.02 0.08 1.12 1.15 0.09 

ESPD 

(h/d) 

Wint 5.93 5.84 3.69 5.15 4.76 3.15 

Sum 5.66 4.76 3.58 3.86 4.51 3.12 

7.3.4 Impact of FACTS and RTTR on Operation Costs 

Operation costs for different scenaria and cost savings between the scenaria and base case S1 

are quantified in terms of VaR metrics at different confidence levels ψ. Figure 7-6 shows 

VaR metrics for scenario S4 with RTTR, S6 with SVC, S6 with TCSC and S8 with 

SVC&TCSC&RTTR. Black area indicates savings between S6(SVC) and base case S1, dark 

grey between S6(TCSC) and S6(SVC), less dark grey between S4(RTTR) and S6(TCSC), 

and light grey area between S8(SVC&TCSC&RTTR) and S4(RTTR). Scenario S8 

(SVC&TCSC&RTTR) shows the highest savings compared to the base case S1 by 45% 

considering VaR95%
NC . It is apparent that applied interventions give greater savings for higher 

confidence intervals. However, when ψ=60% the savings are almost negligible, showing that 

averaged conditions give little information about wind systems. 
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Figure 7-6: Operating cost for S4 (RTTR), S6 (SVC), S6 (TCSC) and S8 (SVC & TCSC & RTTR) 

7.3.5 Computational CPU times 

All simulations are done on a PC with i7-3820 processor & 32GB RAM; optimization model 

(7-1)-(7-13) is solved using MIPS Matpower solver under Matlab. The CPU times are 

presented in Table 7-6 for scenario S1 and all scenaria related to maximized deployed wind. 

Times required to solve optimal location of FACTs devices are high due to iterative nature 

of the algorithm – section 4.4.1. 

Table 7-6: Computational CPU Times for Main Scenaria 

 

S1 S3 S5 S7 S7 S9 

Base 

case 

FACTs 

Opt. 
≠0 RTTR SVC TCSC 

SVC&TCSC 

&RTTR 

CPU(s) 3689 7273 3812 5129 3720 5248 6664 

7.4 Conclusions 

A probabilistic methodology for maximizing deployed wind sources whilst minimizing 

curtailed wind to meet contracted obligations is proposed in this paper. Impacts of wind 

spillage prioritization, deployment of FACTS devices and real-time thermal ratings on 

optimal wind utilization, system reliability and operation costs are investigated in the day-

ahead planning. 
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Case studies have shown that wind spillage prioritization using spillage costs in the OPF can 

substantially reduce optimal spillage levels, up to 10.08% in winter- and 13.11% in summer-

day. It was also shown that implementation of SVC&TCSC&RTTR allows for higher 

integration of wind sources, up to 23%. However, ranking of the applied controls based on 

optimal utilization of wind sources can be different when applying the SMCS and state 

enumeration studies.  Improvements in EENS and other reliability indices were also 

observed. It can be concluded that application of multiple reliability indicators can be a good 

choice for operational decisions on optimal wind management. 
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8.1 Conclusions and Discussions 

The thesis has made three important contributions: i) a critical review of smart solutions for 

reliability improvements in energy systems is presented and research gaps are identified; ii) 

a probabilistic framework for quantifying the reliability and profitability of flexible smart 

solutions, such as demand response, real time thermal ratings and FACTS is developed, iii) 

a novel probabilistic model that maximizes capacity of the deployed wind generation whilst 

decreasing wind curtailment levels is proposed. In completing this research, a probabilistic 

methodology and a tool have been developed to assisst system operators in decision making 

when operating modern and highly uncertain transmission systems.  

Each contribution is now discussed in more detail: 

1. A critical review of smart solutions for reliability improvements 

This thesis presented a critical assessment of current reliability based methodologies for 

systems with smart energy solutions, with the objective to identify the gaps or inconsistencies 

in the so-far developed approaches. This investigation is used to propose comprehensive 

probabilistic methodologies that will quantify both reliability and economic risks. For 

instance, it is shown that demand response strategies currently under investigation are usually 

considered at the distribution level, but their potential in transmission networks is often 
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overlooked. In addition, physical characteristics of customers participating in the demand 

response are often neglected, and the research related to the impact of demand response on 

network reliability is very limited. Even if a probabilistic approach is used to assess the 

demand response contributions, often only single contingencies of network components are 

analysed. Similarly, real time thermal ratings of overhead lines are usually studied to find 

benefits compared to standard thermal ratings, to provide additional wind integration in the 

transmission system, and to determine conductor sag, conductor loss of strength due to 

annealing and limitations of the conductor fittings. Yet, the benefits of real time thermal 

ratings in terms of reliability increase and reduction of operating costs under probabilistic 

analysis versus deterministic analysis are not investigated in the aforementioned studies. 

Another smart technology that can substantially contribute to optimal power system 

operation is FACTS devices. Although, several approaches for optimal placement and sizing 

of FACTS have been developed, with the objective to minimize real power losses, to improve 

system loadability, to improve system voltage profile and additionally to minimize the total 

fuel cost, there is no investigation quantifying the impact of FACTS on the optimal utilization 

of wind energy sources within a probabilistic framework. So far, different aspects of 

deploying wind energy sources are implemented; for example, energy storage, stochastic unit 

commitment and deterministic security criteria are used to maximize or increase integration 

of wind energy. Besides, studies that include probabilistic wind-modelling usually do not 

include wind spillages, which can create high operating costs if these are not carefully 

considered in the power flow and economic analyses. 

2. Quantify demand response benefits in network reliability and economic analyses 

As a consequence of the gaps highlighted in point 1, this thesis first proposes a probabilistic 

approach for optimal demand response scheduling in the day-ahead planning of transmission 

networks. Uncertainties related to forecast load, network component availability, available 

amount of demand response and wind speeds are incorporated into a sequential Monte Carlo 

simulation framework. Synchronous and wind generating units, as well as four types of load 

customers (large, industrial, commercial and residential) are modelled. Optimal nodal load 

reductions are calculated using the optimum power flow model, and are then dissagregated 

into voluntary (i.e. demand response) and involuntary components. Recognizing that 
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directly-controlled loads can certainly be shed and indirectly-controlled loads contain a 

probabilistic component that can affect the shedding, then optimal amounts of voluntary and 

involuntary nodal load reductions are determined using these principles. Different load 

recovery profiles for customer types are considered within ‘payback periods’ and they are 

initiated when the load customer’s profit is highest.  

In addition, the whole modelling is implemented from the load customer’s perspective to 

maximise their revenues, whilst the load recoveries are controlled by the transmission system 

operator (TSO); they may represent either physical paybacks from specific appliances or 

controlled paybacks whereby the TSO schedules its customer loads so as to have the desired 

shape.  

3. Quantify the benefits of real time thermal ratings uisng a probabilistic 

methodology 

Real time thermal ratings are used in probabilistic analysis to reduce power systems 

congestions. The developed model considers the real conductor temperature, resistance and 

ampacity on a sequential hourly basis, so the true impact of real thermal ratings is captured 

in the sequential network analysis. It is shown that when real time thermal rating is used in 

the probabilistic analysis, operating costs are significantly reduced compared to operating 

costs based on standard thermal ratings. This is because additional capacity margins are 

available and the system operator can resolve a post fault contigency in a cheaper way. 

4. Quantify the maximum wind deployment using flexible smart solutions 

A probabilistic methodology for maximizing the deployed wind sources whilst minimizing 

curtailed wind to meet contracted obligations is proposed in this thesis. Impacts of wind 

spillage prioritization, deployment of FACTS devices and real-time thermal ratings on 

optimal wind utilization, system reliability and operation costs are investigated for the day-

ahead planning. Wind spillages are classified as ‘voluntary’ and ‘involuntary’. The first 

category relates to the quantity limited by the contracted average annual spillage, whereas 

involuntary spillages are limited by the maximum allowed wind curtailment. The main 

objective is to determine maximum deployable wind generations by hourly intervals so that 
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the expected minimized wind curtailment satisfies contractual constraints. This is realized 

within the developed sequential Monte Carlo simulation (SMCS) procedure, in which 

corrective rescheduling is done with the aid of the AC optimum power flow (OPF) whose 

composite objective function contains both load and wind curtailments. Results of the 

developed SMCS procedure give the maximised hourly deployable wind capacities, 

minimised wind spillages, as well as reliability and operation cost indicators. Additional 

investigations are then done to find impact of FACTS and RTTR on the maximum utilisation 

of wind sources. It was also shown that implementation of RTTR and FACTS allows for 

additional integration of wind sources. It was concluded that application of multiple 

reliability indicators can be a good choice to base operational decisions on optimal wind 

management. 

5. Determine ranking lists and optimal placement of FACTS devices based on their 

contribution towards load and wind curtailment reduction 

A ranking list of nodes most appropriate for the SVCs connection is developed using the load 

and wind curtailments due to violation of voltage limits. Branches best candidates to install 

TCSCs are ranked based on their contribution towards reduction of load and wind 

curtailments caused by violation of thermal constraints. In particular, optimum FACTS 

placement is applied after checking probabilistic indices such as expected energy not supplied 

(EENS) and expected wind spillage (ESP). Only when there is an improvement in the EENS 

and ESP, FACTS devices are installed to enable additional integration of wind sources. More 

specifically, an SVC is installed when EENS and ESP caused by violation of voltage 

constraints prevail, whilst a TCSC is placed when thermal-capacity constraints caused the 

majority of EENS and ESP. It is shown that FACT devices can considerably improve 

reliability indices and that they can allow for significant reduction in total operation costs. 

Considering FACTS operation in a probabilistic framework leads to an added value, which 

may be otherwise overlooked under a deterministic analysis.  
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8.2 Future work 

The work presented within this thesis has fulfilled all research aims, which were initially 

defined. Nevertheless, there are a number of areas where this work could be extended to 

further develop the ideas and methods, which have been established. They are briefly 

presented below. 

1. Reduction of the computational time of the sequential Monte Carlo simulation. 

According to the information provided in Chapter 5.2, the reduction of the simulation time, 

when using MCS is a big challenge. The development of new algorithms, which modify the 

crude - original MC method will play a great role in the acceleration of the simulation process. 

Firstly, the multi-objective PSO can be further extended to be used in the sequential analysis 

(apply the same approach for hourly loads or for a multi-level load model), and secondly 

include more objectives to solve problems that contain multiple goals or fitness functions. In 

that case the intelligent search of the particles will become more time efficient and this will 

enable the particles to visit less non-loss load states and also to minimize multiple visits to 

already visited states. Besides, studies can be made on improving the performance of 

classification stages of the MCS. These techniques may be combined in order to develop a 

hybrid algorithm that outperforms the current state of the art approaches. Such hybrids could 

produce very good results. An area that is still under investigation is application of Intelligent 

State Space Pruning methods in large and complex systems. Such applications may include 

larger and more reliable test systems, models of real life power systems, and various models 

that incorporate some aspects of the smart grid such as FACTS, renewable generation, and 

communication units.  

2. To investigate the thermal capacity of a specific section of an OHL by using 

Spatial Correlation Prediction Model (SCPM). 

As the thermal rating of a line is considerably affected by the wind speed, it is worthwhile to 

develop a model that uses the correlated relationships between wind speeds at neighbouring 

locations in order to predict wind speed at target locations. Hence, correlation analysis can 

help to determine which section of a transmission line has the lowest thermal capacity, which 
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is relevant to the system operators to make decisions. The basic model, Augmented Kriging 

Model (AKM), can be further analysed and extended to a multivariate Kringing model that 

will include wind direction and temperature profiles of various areas to predict spatially 

distributed and correlated variables at unmeasured locations. 

3. Quantify demand response for investment planning decisions 

The probabilistic demand response model proposed in this thesis calculates the revenues of 

demand response customers for different confidence intervals. The work was illustrated 

taking a particular winter, summer and spring week in a year; however, further analysis is 

required to assess the potential of demand response over longer periods (for instance over a 

month or over the whole year). Having determined the benefits of demand response 

scheduling for the entire year, the system operators then can take investment decisions about 

appropriate equipments to be installed at customers’ premises and/or DNO control center, for 

example smart meters, ICTs, SCADA, etc. The model proposed in this thesis has been applied 

only for post contingency system states. However, the described process and methodology 

can also be applied for system normal operation (i.e. pre-contingency states), where voluntary 

load reductions (i.e. demand response) will be used if they are cheaper than committing some 

expensive generation units. The quantitave results of such studies might result in higher or 

lower revenues for either customers or system operators. Therefore, it would be interesting 

to incorporate demand response to precontigency states in order to quantify the maximum 

possible revenues by deploying optimal demand response scheduling.  

In addition, it would be appropriate to extend the demand response model with the load 

recovery profiles that are dependent on different network outage durations. In this way, 

modelling of realistic load recovery sizes and shapes will contribute to a complete and 

accurate network assessment.  

4. Incorporation of energy storage model in conjunction with the demand response 

model 

The proposed demand response model was included in the analysis with the renewable energy 

sources, such as wind generation, because it can have a significant impact on smart grid 
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operation. The illustrated work doesn’t consider the event that the customer can cogenerate 

all of its energy requirements and as a result the network failure will have no effect on its 

consumption. However, in the case where a customer is still reliant on the grid connection, 

the network failure will interrupt its consumption which can be aggrevated by the highly 

intermittent generation from renewables (e.g. when the sun is not shinning or when the wind 

is not blowing). This can be further mitigated if a customer had energy storage. This would 

also affect the energy prices in a joint energy and reserve market. As a result, the 

contemporary price profile should be incorporated for valuing load reduction as well as load 

recovery. Hence, it is likely that the quantitative results of studies will change when storage 

is involved in the network operation.  

5. Maximize wind connection capacities in the presence of energy storage 

A probabilistic methodology for maximizing the deployed wind sources was illustrated 

on two cases. The first is analysis of the peak week in winter in order to find the impact 

of wind generation when the sytem is very stressed; the second is analysis of the minimum 

demand week in summer in order to find the levels of wind curtailment when the load is 

low while the wind generation is high. This model can be extended to a yearly planning 

to find the optimal connection of wind capacities. This study would result in both 

maximum wind generation connections as well as in maximum revenues for system 

operators, which will be based on a probabilistic approach. Then, the same analysis could 

be performed by incorporating optimal management of energy storage within wind 

systems. Energy storage can contribute to alleviate wind fluctuations especially when 

wind curtailment is required to alleviate asset overloads or voltage violations. 

Consequently, this would allow reduction in wind spillage and give room to integrate 

more wind generation on the system.  

6. Maximize wind connection capacities incorporating smart energy solutions  

In this thesis, maximum wind deployment has been quantified in the presence of FACTS 

devices and RTTRs of OHLs. There is still no research that finds maximum wind 

connections when demand response is employed before load (and wind) curtailment. For 

instance, it would be interesting to determine maximum wind energy connection – 
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utilization when load recovery is higher than the load reduction, as well as when load 

reduction is partly met by wind generation and the rest from demand response strategies. 

After quantifing maximum wind utilization due to demand response, energy storage could 

be also added beside RTTR and FACTS devices. In this way, network performance would 

be determined considering the majority of smart energy solutions under both probabilistic 

and deterministic approaches. 
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