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Abstract

This thesis considers the problem of analogy identification in the context of fore-

casting. We develop and test a range of segmentation approaches, with the aim of

improving the accuracy of forecasting methods that employ analogies.

The first manuscript of the thesis outlines our core methodological framework. This

framework describes a forecasting process that integrates a multicriteria segmentation

approach using a weighted-sum method for the identification of analogies during the

segmentation stage. This combines the information from past realizations of a set of

time series with information about the factors that govern the patterns observed, at the

level of the distance function. Using simulated and real-world data, we illustrate that

a concurrent consideration of multiple criteria at the segmentation stage can help to

achieve better clustering results, which feed forward to improved forecasting accuracy.

This paper contributes to the first methodological framework for the forecasting of anal-

ogous time series. Mulcriterion segmentation approaches demonstrate a significant

improvement in the forecasting performance compared to single-criterion segmentation

methods.

The second manuscript focuses on discussing the model selection problem related

to the use of multicriteria clustering approaches. Although multicriteria approaches to

clustering are advantageous to the final increase of forecasting accuracy, the use of

these approaches introduces the challenge of an additional model selection during the
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segmentation stage. This is because even for the same number of clusters, multicri-

teria clustering approaches may return sets of clustering solutions that reflect different

trade-offs between the conflicting criteria. Therefore, this thesis also includes work ad-

dressing the model selection problem for multicriteria clustering in a forecasting context.

We demonstrate that the quality of clustering solutions is best assessed in the problem-

specific (forecasting) context. Computationally, this is the most expensive approach,

and we, therefore, describe a compromise, which uses a standard internal validation

technique (the Silhouette Width measure) for the determination of clusters, but per-

forms weight selection based on the best average (historical) forecasting performance

of the forecasting algorithm.

Further, the third manuscript addresses instability issues stemming from the clus-

tering procedures by integrating bagging techniques into the forecasting process. Seg-

mentations of analogies have been reported to give rise to further increase in the final

forecasting accuracy, but the application of clustering techniques in the segmentation

stage may result in instabilities related to the model selection step. By combining the

forecasts derived from multiple models, the aggregated forecast is expected to lower

down the uncertainty of the results via the aggregation scheme. We, therefore, employ

the bootstrap aggregation techniques to further improve the forecasting process, and

this results in a further boost to the forecasting accuracy.

In the final manuscript, we consider the use of multicriteria approaches in time

series clustering, where multiple criteria (i.e., distance metrics and/or normalization

techniques) are available, but where these relate to time series data alone. Different

distance metrics / standardization techniques may emphasize different notions of sim-

ilarity. In applications where we are not sure which notion of similarity is accurate or

where several notions of similarity are relevant, we might benefit from combining mul-

tiple distance metrics / standardization techniques, to capture complementary notions
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of similarity. Our findings suggest a continued advantage of multicriteria clustering ap-

proaches in this context.

Keywords: Analogies; Bootstrap aggregating; Time series forecasting; Model Selec-

tion; Multicriteria clustering
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Chapter 1

Introduction

1.1 Research context

Time series forecasting is inherently a challenging research topic that has gleaned

intense interest from both academics and practitioners. A variety of time series fore-

casting models have been proposed in the forecasting literature and further developed

to tackle particular challenges of forecasting.

Statistical forecasts are dedicated for the development of models based on histor-

ical observations. The models are then utilized to extrapolate the time series into the

future. These models are the most popular ones applied in the domain of time series

forecasting, as they are usually simple to implement and inexpensive to operate. De

Gooijer and Hyndman (2006) provided a comprehensive survey regarding time series

forecasting methods by summarizing 380 journal papers available in the forecasting lit-

erature and classified these methods according to the models and various problems

that they address. In general, the families of exponential smoothing and ARIMA are the

most well-known tools for the addressing of the time series forecasting problems. Uni-

variate time series models including the simple exponential smoothing and Box Jenkins
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ARIMA are the basic forms proposed in previous work, and these can be further de-

veloped into multivariate versions. Univariate time series model regards lag values of

itself as independent variables. Multivariate time series model extends the univariate

case to incorporate two or more independent variables. It does not limit itself to its

past information but it also contains the past of other variables. These models have

been applied to circumstances where several related time series are observed simul-

taneously over time. Multivariate time series approaches model relationships among

time series variables. These relationships are often investigated by considering the

correlation structures among the component series. Other models such as combining

forecasts has been proposed to address particular forecasting challenges.

The use of statistical forecasts is advantageous in scenarios where no satisfactory

extraneous information is available, or the information can only be obtained at pro-

hibitively high costs. These methods, however, can provide unsatisfactory forecasts for

real-world problems, as they might impose severe restrictions on the form of the even-

tual forecast function. In fact, no single statistical forecasting mechanism can be guar-

anteed to reliably model the true mechanism of the way data are generated (Clemen,

1989).

On account of this, a bulk of research has been dedicated to developing related

techniques or integrating new concepts for tackling the limitations of statistical forecast-

ing methods. Most related methods developed for time series forecasting comprising

the use of judgmental forecasts, combining forecasts, bootstrap aggregation, , machine

learning techniques, and analogies.

A common practice used to tackle the limitations of the statistical forecast takes into

account expert opinions for adjusting the final forecast by integrating information extrin-

sic to the time series data; judgmental forecasts. For example, this approach can be

used in exceptional circumstances where a known event cannot be modeled by a phys-

ical model using the historical observations. Methodologically, statistical forecasting
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methods offer little opportunities to incorporate such contextual information mathemati-

cally without a post-hoc procedure.

Combining forecasts derived from various statistical models is advantageous be-

cause no single statistical prediction method can demonstrate optimal performance. In

addition to this, the use of combined forecasts helps to overcome the limitations of the

statistical methods where the statistical forecast cannot model the true mechanism of

the way the data are generated. Combining forecasts methods may not necessarily

improve the final forecasting accuracy but has been reported to give rise to a significant

decrease in the risk of employing a wrong statistical forecasting method.

Another promising method known as the bootstrap aggregation technique can be

utilized. This method perturbs the time series data; a forecast is then made for each

bootstrapped sample, combining these individual forecasts provides an aggregated

forecast. Use of this method might assist in the reduction of instabilities stemming

from the data, and this might give rise to additional accuracy in point forecasts.

Over recent years, machine learning techniques have become a competitive option

for forecasting applications. Numerous applications can be found in time series fore-

casting literature that employ machine learning techniques to make forecasts. Among

these techniques, support vector machines, neural network, random forests techniques

have gained intense research interest. These methods are promising due to their ca-

pability to model non-linearity that might not be modelled by a conventional statistical

model e.g., ARIMA, but the improvements achieved in accuracy might compromise the

clarity of the modelling process or increase the corresponding computational time.

Another way of improving the statistical forecasts is the pooling of information avail-

able from analogies, and this has received surprisingly little attention in previous work.

Different from the methods that make use of expert judgment, the pooling of information

can be integrated into the forecasting process using existing statistical forecasting meth-

ods such as the Cross-Sectional State Kalman Filter algorithm. The use of analogies
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is particularly useful when investigating problems where there is little prior knowledge

available with regards to the target time series. This may be the case shortly after

the launch of new products or where records are missing (Goodwin, Dyussekeneva,

and Meeran, 2013). Under circumstances where little historical information is available,

many statistical models become inapplicable. This might also affect the applicability of

other approaches, such as those that combine forecasts from a set of different statis-

tical modeling techniques. In such a setting, pooling information from a set of related

time series data can provide a powerful mechanism to reduce the influence of outliers in

individual time series or to complement the information for individual short time series.

As stressed by Stimson (1985), the homogeneity of analogies is important for pool-

ing methods. Further evidence has been provided by Duncan, Gorr, and Szczypula

(2001), that the use of a set of heterogeneous time series results in a poorer forecast-

ing precision compared to grouped analogous time series. Subjective ways of deriving

analogies based on expert opinions can be non-efficacious as the forecaster is required

to recall similar cases (e.g., the most similar promotion campaigns) from memory and

judge their similarity to the target case. This can be prone to error. Moreover, limitations

in human information processing capacity may mean that the forecaster relies on a sin-

gle recalled case, limiting the robustness of their judgment. Considering the limitations

of subjective methods, there is a strong motivation to develop objective methods that

can draw information from analogies without relying on human inputs.

Nevertheless, there remains a lack of empirical evidence that supports the princi-

pled selection and judgment of similarity between analogies (Lee et al., 2007). This is

also true regarding the assessment of the impact on the forecasting accuracy of meth-

ods which make use of such analogies.

The identification of suitable analogous time series / analogies is the first step in the

application of forecasting methods that make use of analogies (Stimson, 1985). There

is a shortage of previous work that has observed this and attempted to develop objective

39



approaches for the selection of analogies, and to contrast the performance of different

techniques. This is despite the fact that the accurate discernment and identification of

similarities between time series (Lee et al., 2007) is critical to the successful use of

forecasting approaches that employ analogies (Armstrong, 2001).

1.2 Research aims

• Given this gap in the literature, the primary aim of this thesis is to propose a solu-

tion for supporting the principled selection of analogies to achieve better forecast-

ing results. We provide empirical evidence to verify the significance of analogies

and to judge the impact of the segmentation performance on the forecasting stage

in a setting where analogies are employed.

• We further aim to design objective methods that can be easily adapted and gen-

eralized to real case scenarios where masses of data must be analyzed.

1.3 Structure of the thesis

The remainder of this thesis is structured as follows.

To begin, Chapter 2 presents a comprehensive review of related concepts and sur-

veys the literature concerning the common practices for improving the forecasting per-

formance of conventional forecasting methods. We further highlight the significant role

that analogies can play in time series forecasting. This comprises the use of analogies

in both subjective and objective forecasting methods. On account of the crucial role that

analogies occupy in the boosting of forecasting accuracy, we introduce the multicriteria

segmentation approach in the next section. This is to support the principled selection

of analogies. We provide a review regarding the basics of clustering such as the choice

of distance metrics and model selection problems in this context. The following part of
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the literature review covers the topic of bootstrap aggregating, which involves the re-

sampling of data with replacement that helps to achieve additional gains in time series

forecasting. Next, we discuss some of the limitations of previous work, and outline op-

portunities to address these. Specifically, this section begins with a discussion related

to the problem of analogy identification, where multiple information sources are recom-

mended for achieving better clustering results and therefore the improved forecasting

accuracy of statistical models where analogies are fitted. Considering the additional

challenges arising from the multicriteria segmentation stage, a discussion regarding

model selection during clustering is provided. Although the use of analogies creates

more opportunities for the improvement of the forecasting performance, it also raises

additional issues of instabilities during the segmentation stage. Thus, bagging methods

are proposed to tackle the instability issue with the aim of obtaining a further increase

in the forecasting performance. Finally, the concept of multicriteria approaches is intro-

duced in the context of time series clustering where the similarity between time series

is hard to judge, as mixed patterns are commonly present in time series data. The last

part of Chapter 2 offers a justification of chosen research methodology for the present

thesis.

Segmentation problems are inherently multicriteria problems (Liu et al., 2010). Fit-

tingly, Chapter 3 investigates the issues about the identification of analogies using

multiple information sources. Time series information can be regarded as response

variables that describe the performance of analogies. Causal factors underlying the

time series, on the other hand, are explanatory variables that help to interpret the time-

based patterns observed. The independent use of either information source could be

sub-optimal regarding clustering performance. Therefore, a concurrent consideration

of the two information sources is meaningful for the segmentation approach to yield

more meaningful groupings. We propose the use of a post-hoc method (i.e., multicri-

teria clustering approach) in the segmentation stage to combine multiple information
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sources using a weighting scheme. Using this strategy, we demonstrate the positive re-

lation between the segmentation and the forecasting stages which identifies and utilizes

analogies, respectively.

As discussed, the use of multicriteria clustering approaches can open up oppor-

tunities for the generation of more robust clustering solutions that can mean better

forecasting results. However, the use of these techniques can present additional chal-

lenges to the model selection in the context of multicriteria clustering —weight selec-

tion that previously was not involved in the single-criterion clustering procedures. To

further address the problem of model selection, we propose various objective meth-

ods in Chapter 4. Some of these have been adapted from popular internal validation

techniques that have been described in the clustering literature, while others have been

taken from the optimization literature. For example, the Silhouette Width metric was

taken from the clustering literature, while the angle-based measure was taken from the

multi-objective optimization literature. Following the applications of these techniques to

a given circumstance, our results suggest that clustering solutions are best assessed in

the problem-specific context, i.e., forecasting. Hence, the model selection step should

also take this factor into account. Finally, we go on to develop new methods that sup-

port the objective weight selection with consideration of forecasting performance, i.e., a

single best partitioning out of candidate clustering solutions for multicriteria clustering

problems.

In Chapter 5, we consider the issue of instability that stems from the clustering pro-

cedure. This encompasses both the single-criterion as well as multicriteria clustering

approaches. We propose two bagging procedures for improving the performance of the

forecasting process that exploits information from analogies. These procedures func-

tion to perturb data in the clustering and forecasting stages sequentially to generate

bootstrapped samples which help to derive a better aggregated forecast. We show that
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the integration of independent and identically distributed (IID) bootstrap in the cluster-

ing procedure can result in significant gains in the forecasting accuracy. Specifically,

instead of directly bootstrapping the time series data and we focus on bootstrapping

labels associated with these times series by converting this problem to a typical IID

bootstrap problem.

In Chapter 6, we concentrate on exploring the potential of multiple criteria to time

series clustering in a forecasting context. To define a cluster, the notion of similarity

between time series is complex and dependent on the use of criteria. Different distance

metrics / standardization techniques have been developed in previous works, but a sin-

gle measure typically emphasizes on tackling a particular aspect of the problem. For

example, one distance metric developing upon the linear correlation between pairs of

time series may neglect the non-linear patterns present in the data. Additionally, some

distance metrics may be sensitive to scale differences. Hence, different standardiza-

tion techniques may yield quite different clustering results. In applications, there is no

universally accepted notion of similarity between pairs of time series. The notion varies

with the criteria considered as they emphasize on different aspects of the clustering.

Specifically, we experiment with the use of multiple distance metrics / standardization

techniques during the clustering procedure. We show that multicriteria approaches may

be helpful in delivering better clustering and forecasting results when low correlated

measures are used.

Finally Chapter 7 summarizes our motivation of employing advanced segmentation

approaches for the forecasting methods in the presence of analogies as presented in

this thesis. We additionally discuss further ideas for work that could be conducted to

expand the science described herein.
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1.4 Contributions of the thesis

The main contributions of the thesis are summarized as follows:

• This thesis aims to develop objective computational methods that are suitable for

the identification of analogies in the context of forecasting. We have contributed to

the development of automated processes. This includes the development of dif-

ferent forecasting procedures that utilize multicriteria segmentation approaches,

model selection as well as bagging techniques for improved forecasting.

• We propose a two-stage forecasting process that performs a forecasting task by

pooling information from analogies. Specifically, the segmentation stage con-

cerns the use of multicriteria clustering techniques that identify analogies using

multiple information sources. The information drawn from analogies is then fed

into the subsequent forecasting stage in the overall prediction process to improve

the final forecasting accuracy. The details of the prediction processes developed

are given in Chapter 3.

• Peer-reviewed studies are available in the literature that supports the positive im-

pact that clustering quality of analogies can have on the forecasting stage. How-

ever, to the best of our knowledge, this has never been systematically studied.

Using extensive experiments, we provide new insight into the relationship be-

tween the accuracy of segmentation stage and the performance of a forecasting

algorithm that makes use of analogies (see Chapter 3).

• We provide empirical evidence to support the argument that the clustering qual-

ity is best evaluated in the context of an application. Therefore, our proposed

model selection techniques take into account the forecasting performance at the

weight selection step for the selection of a single best partitioning out of a set of

candidate solutions (see Chapter 4).
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• For forecasting methods that pool information from analogies, the use of segmen-

tation approaches, either single- or multicriteria, inevitably face the challenge of

instabilities that stem from the model selection step. To address the challenge of

instabilities, we, therefore, integrate the IID bootstrap concept into the forecasting

of analogous time series. By perturbing the data in the clustering stage, the use

of bootstrap aggregating techniques in this context provides better forecasting

results with respect to accuracy and robustness (see Chapter 5).

• We additionally extend the concept of multicriteria segmentation using multiple

distance metrics or normalization techniques in the context of time series clus-

tering. We aim to demonstrate the effectiveness of multicriteria approaches with

regards to the added strength of defining the similarity between pairs of time

series. This is especially in circumstances where there are no definitive recom-

mendations for the definition of similarity or where almost all of the definitions

are relevant. The results show that multicriteria approaches to time series clus-

tering can provide better clustering results when combining low correlated dis-

similarity matrices and then translate to improved forecasting performance (see

Chapter 6).

1.5 Publications resulting from the thesis

The work described in this thesis has and is expected to yield several publications.

All journal and conference contributions that have been submitted / published to date

are listed below:

Refereed conference proceeding
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Lu, E., Handl, J. (2015, June). multicriteria Segmentation of Demand Markets to In-

crease Forecasting Accuracy of Analogous Time Series: A First Investigation. In Inter-

national Work-Conference on the Interplay Between Natural and Artificial Computation

(pp. 379-388). Springer International Publishing.

Refereed journal papers

Lu, E., Handl, J., D.-L. Xu., (2017). Determining analogies based on the integra-

tion of multiple information sources. International Journal of Forecasting, Accepted for

publication, 2018.

Conference abstract

Handl, J., Lu E (2017, August). Cluster validation in multicriteria data clustering.

Conference of the International Federation of Classification Societies.
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Chapter 2

Literature review

2.1 Improving the performance of statistical time series

forecasting models

Time series forecasting is a significant research topic in the domain of forecasting.

Previous work has divided methods of forecasting into two main categories - subjec-

tive and objective methods. Subjective methods encompass those which rely on expert

judgment, while objective methods focus on the development of statistical forecasting

methods which describe historical observations using mathematical models. The mod-

els derived from objective methods can be further employed to extrapolate the time

series to allow for future predictions. In contrast to the subjective methods, statistical

forecasts (objective methods) show advantages in terms of their applicability and scal-

ability. Therefore, these models have received widespread use in practical applications

across areas of economic, energy, finance, marketing, public budgeting and tourism.

Statistical time series forecasting methods have been developed for the addressing

of particular challenges associated with data predictions. For example, one of the most

popular types of univariate forecasting methods is the exponential smoothing method.
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Simple exponential smoothing has been proposed to deal with time series, where there

are only a small number of observations as a result of structural change in the time

series. Analytically, the exponential smoothing method (Brown, 2004) assigns more

weights on recent observations, and this discounts the importance of the past obser-

vations. The procedure executed is sensible but lacks statistical foundations. Another

family of forecasting methods falls into ARIMA models. Box Jenkins popularized ARIMA

process (Box et al., 2015) by developing a procedure that includes the identification, se-

lection and determination of the model forms using linear stochastic equations. These

methods are popular due to its flexibility in terms of its statistical attributes. Specifically,

exponential smoothing can be transformed as a special case of the ARIMA process.

However, the main limitation of this procedure is the prior restriction of the linear form

posed on the data generation process. The form specified, prior to the application of the

model, is unable to capture non-linear patterns presented in the data. Consequently,

this might lead to unsatisfactory forecasting performance in complex real-applications.

To model non-linear patterns associated with the time series data, models such as

neural-networks and random forests, that are well studied in machine learning area,

have been introduced in the forecasting field. For instance, Faruk (2010) proposed a

hybrid method, that is comprised of ARIMA and neural-network methods, to model both

linear and non-linear patterns in water quality time series. This is because neither of

them in isolation can adequately model the patterns of the time series. In the area of

short-term load forecasting, random forests have been employed (Dudek, 2015; Cheng,

Chan, and Qiu, 2012), and these methods have shown better accuracy than conven-

tional time series forecasting methods such as simple exponential smoothing methods.

In general, conventional time series forecasting methods are useful and relatively

easy to apply and interpret. Nevertheless, almost all statistical forecasting models as-

sume a prior mathematical form of the data generation process. In fact, no single model

can recover the true mechanism of the data generation process (Harvey, 1990), and all
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of them attempt to approximate the data generation process. On account of this, there

is a bulk of literature research that investigates various means of combining additional

knowledge to support the forecasting analysis in either subjective or objective way. We

divide these approaches into four major categories: the integration of expert judgment,

the use of combining forecasts, the application of bootstrap aggregating techniques or

the inclusion of analogies’ information. Additional class of methods that we are going

to discuss in this section is the machine learning technique.

The most common way of integrating additional information is to adjust the statisti-

cal forecasts based on expert judgment in a post-hoc manner. One would expect that

the adjustment of the model with the assistance of domain knowledge, may be benefi-

cial to bring information to the forecast that a statistical model could not. Blattberg and

Hoch (1990) claimed that both judgment based on expert opinion as well as objective

statistical methods have valuable and complementary contributions to the forecasting

process. Specifically, statistical methods are adept at filtering regular time series pat-

terns from noisy data, while judgmental forecasts tend to efficiently detect false pat-

terns in noise and to overreact to random movements in series (O’Connor, Remus, and

Griggs, 1993). Furthermore, when it is known that special events will occur in the future,

expert judgment can be used to anticipate their effects. In these instances, statistical

estimation are often limited in their effectiveness due to the scarcity or diverse nature of

the data (Sanders and Ritzman, 2001). Lawrence et al. (2006) commented that judg-

mental forecasts can help motivate the respective forecasters to apply their expertise

in applications and therefore generate a sense of ownership. Nevertheless, the appli-

cation of expert judgment, without contextual information, can worsen the accuracy of

the final forecasting due to anchoring bias and adjustment heuristic. The effectiveness

of adjustment may also depend on the initial accuracy of the base statistical model;

this is dependent on the series characteristics. Larrick and Soll (2006) showed that

under certain conditions it is better not to combine the forecasts of experts. Besides
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this, the involvement of judgmental forecasts require the inputs of human experts and

consequently incur the associated risk of bias. This can lead to problems with regards

to reproducibility as well as the speed of throughput.

Alternatively, the effect of combining statistical forecasts methods is well studied

(Bates and Granger, 1969). This allows for the summation forecasts derived from

forecasts. There is a great deal of evidence to suggest that combining two or more

independent statistical forecasts can lead to significant improvements in the final fore-

casting accuracy (Clemen, 1989). The combining forecasts is a valid alternative to

the adjustment of statistical forecasts by expert judgment. Despite this, there is only a

few systematic studies that compare these two common approaches. Lim (1993) com-

pared these two methods and found that expert judgment with adjustment tended to

be less accurate than combining forecasts methods. This was specifically when con-

textual information is not included in the expert judgment forecasting procedure. Other

studies have also suggested that human experts tend to avoid combining estimates

across sources, due to human limitations especially where used forecast models make

different assumptions. This can increase errors since the act of averaging studies has

the effect of reducing errors (Soll, 1999). As a result combining forecasts method is

often regarded as a more successful alternative to the implementation of an individual

forecasting method. In some situations, the analyst may have more than one possi-

ble forecasting method. This is because, on their own, no single statistical forecasting

method can precisely model the true mechanism through which observations are gen-

erated. The analyst may therefore often selects to combine forecasts in some way,e.g.,

average, median to reduce the risk of implementing a unsuitable statistical model. For

more in detailed descriptions of combining forecasting methods, comprehensive re-

views are given by Clemen (1989) and Granger and Newbold (1974). There also is

also various works that questions whether one should always combine forecasts. For

example, Hibon and Evgeniou (2005) presented empirical findings which showed that
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the combining forecast approach has the advantage in that it is less risky in practice to

combine forecasts than to select an individual forecasting method.

Bagging or bootstrap aggregation methods (Efron, 1992) act as the most compet-

itive form of solving predictive tasks. Bagging is a simple form of ensemble methods

that consists of a large set of models for estimating the distribution of an estimator or

test statistic. The predictive performance is expected to be boosted via the aggregation

of component models. As the key step of bagging, bootstrapped samples are obtained

by re-sampling from the the original data with replacement. From the bootstrap sam-

pling, a Monte Carlo approximation of the bootstrap estimate is obtained. Numerous

methods have been developed in order to determine the most effective means of imple-

menting the bootstrap procedure depending on whether the data are a random sample

from a distribution or a time series. The problem becomes more complex when the data

are time series because bootstrap sampling must be carried out in a way that suitably

captures the dependent structure of the data generation process. This is not difficult

if one has a finite-dimensional parametric model, which reduces the data generation

process to independent random sampling. In this case and under suitable regularity

conditions, the bootstrap has properties that are essentially the same as they are when

the data is a random sample from a distribution (see Bose, 1988; Bose, 1990). Such

approaches are inconsistent if the model used for resampling is misspecified. However,

these model-based approaches are straightforward: the dependent structure is mod-

eled explicitly and the resampled data is drawn from the fitted model. This has been

pursued in numerous examples and cases, e.g., Bose (1988) and Freedman (1984)

for autoregressive models, Kreiss and Franke (1992) for ARMA models and Rajarshi

(1990) for Markov models. However, the problem becomes more problematic when time

series data are bootstrapped which no longer follows the IID assumption. In contrast

to resampling a single observation at a time, Kunsch (1989) and Liu and Singh (1992)

independently formulated a substantially new resampling scheme, termed the moving
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block bootstrap (MBB). This is applicable to dependent data without any parametric

model assumptions. Generally, the MBB resamples blocks of (consecutive) observa-

tions at a time. The method developed is reported to be suitable for stationary time

series, where the dependent data structure can be preserved. The bootstrap technique

can be promising, but its highly time consuming in terms of computation. The key suc-

cess of the bootstrap aggregating method requires the presence of instabilities in the

statistical model in order to obtain additional accuracy gains (Efron, 1992).

Another method that has received insufficient attention is to draw information from

analogies. The concept of analogies is commonly employed in judgmental forecasting,

i.e., forecasting by analogy. Hence, it can be regarded as a combination of judgmental

and statistical forecasting techniques. The integration of additional information drawn

from analogies aims to boost the derived forecasting accuracy through the reduction of

bias of the forecasters (Hyndman and Athanasopoulos, 2014). There are a few models

to our knowledge that are capable of objectively integrating information from analo-

gies. For example, the Bass model that is often used to forecast sales of unreleased

products, which have yet to be launched, through the use of information available from

similar products (Goodwin, Dyussekeneva, and Meeran, 2013). Nikolopoulos et al.

(2007) referred this approach as “nearest neighbour analysis” for the forecasting of TV

audience ratings. In addition, Bayesian pooling approaches, e.g., the Cross-Sectional

Multi-State Kalman Filter (C-MSKF: Duncan, Gorr, and Szczypula, 1993; Duncan, Gorr,

and Szczypula, 2001) offers a possibility to integrate information from analogies directly

into the modeling process. In essence, these models are more complicated than uni-

variate time series forecasting methods. Moreover, they might extend the univariate

time series forecasting methods such as exponential smoothing or Multi-State Kalman

filter to incorporate analogies’ information. However experience derived from the the

common application of analogies, indicates that in challenging forecasting settings the

use of analogies might become particularly useful and overcome the limitations of the
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previous methods. Such challenging setting include for example, the absence of data

for a target series prior to the launch of a product, or where time series are short and

volatile.

The use of machine learning algorithms in predictive modelling has gained increas-

ing attention in the context of time series forecasting. Numerous applications can be

found in the forecasting literature related to the application of support vector machines,

artificial neural networks techniques. Increasing attention has paid to random forests,

which are an ensemble learning method previously proposed for both classification and

regression problems (Breiman, 2001). A review and simple interpretation of random

forests can be found in Biau and Scornet (2016), Friedman, Hastie, and Tibshirani

(2001), and Verikas, Gelzinis, and Bacauskiene (2011). In principle, random forests

are a combination of a set of binary decision trees (Breiman et al., 1984), each of which

is constructed using a bootstrap sample coming from the learning sample and a sub-

set of features randomly selected at each node. Furthermore, trees in the forest are

grown to maximum size and the there is no pruning step employed. Random forests

has gained popularity over the recent decades due to its advantages in ease of employ-

ment, requirement of a few parameters (such as the number of trees (Oshiro, Perez,

and Baranauskas, 2012) and the number of input variables at each split node (Verikas,

Gelzinis, and Bacauskiene, 2011)). However, elements that also might impact on the

forecasting performance comprise the number of possible directions for splitting at each

node of each tree (Kuhn and Johnson, 2013) and the number of examples in each

cell (Tyralis and Papacharalampous, 2017). Additionally, this method shows flexibility in

accommodating the prediction tasks with small sample size, high-dimensional feature

spaces, and complex data structures (Scornet, Biau, and Vert, 2015; Biau and Scornet,

2016). The inclusion of unimportant predictor variables does no seriously impact the

predictive performance of random forests, as implied in Kuhn and Johnson (2013). Nev-

ertheless, using random forests for time series forecasting is not identical to the simple
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regression case. The role of the predictor variables is taken by previous variables, i.e.,

the selected lagged variables, inevitably results in reducing the length of the training set.

Using fewer predictor variables instead may reduce the information gained by the avail-

able knowledge of the temporal dependence. The application of random forests in time

series forecasting field has been reported in short-term load forecasting (Dudek, 2015;

Cheng, Chan, and Qiu, 2012), stock market prices (Khaidem, Saha, and Dey, 2016),

stock index movement (Kumar and Thenmozhi, 2006), water level forecasting (Yang,

Cheng, and Chan, 2017). To implement random forests in the time series forecasting

applications (without resorting to exogenous variables), different bagging procedures

have been explored. For example, Tyralis and Papacharalampous (2017) proposed to

use past observations as lagged variables for estimating the next time points. Precisely,

Let g be the function obtained from the training of random forests, which will be used

for forecasting xn+1, given x1, . . . ,xn. If we use k lagged variables then the forecasted

xn+1 is given by the following equation for t= n+ 1:

xt = g(xt−1, . . . ,xt−k), t= k+ 1, . . . ,n+ 1 (2.1)

The function g is not in closed form, but can be obtained by training the random

forest algorithm using a training set of size n− k. In each sample of the fitting set

the dependent variable is xt, for t = k+ 1, . . . ,n+ 1, while the predictor variables are

xt−, . . . ,xt−k. When the number of predictor variables k increases, the size of the

training set n− k decreases. Dudek (2015) applied random forest to model patterns

of the time series seasonal cycles which simplifies the forecasting problem especially

when a time series exhibits nonstationality, heteroscedasitcity, trend and multiple sea-

sonal cycles. To model the nonstationary time series that involve with trend and multiple

seasonal cycles often require complex models with many parameters to tune. Random

forests used as a forecasting tool are relatively straightforward and easy to apply. They
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combine regression trees with only few parameters to estimate.

2.2 Multicriteria segmentation approaches

Segmentation has been extensively studied in areas across image processing, eco-

nomics, finance, operational research, pattern recognition, and public budgeting. The

use of segmentation aims to identify meaningful groupings that are homogeneous with

respect to specific criteria considered (Bab-Hadiashar and Suter, 2012). In addition,

Wedel and Kamakura (2012) declared that segmentation is a grouping task, where a

large variety of methods are available and have been used. Broadly, segmentation can

be categorized into a-prior and post-hoc (Wind, 1978). A segmentation approach is

classified as a-prior when the type and number of segments are decided before data

collection, while it is called post-hoc approach when the type and number of segments

are decided based on the results of data analysis. Statistical methods have been com-

monly applied to perform post-hoc segmentation. Wedel and Kamakura (2012) cate-

gorized such methods and techniques into four categories: cluster analysis, mixture,

mixture regression and mixture scaling methods. Among these, clustering methods are

the most popular tools used for post-hoc segmentation (Wedel and Kamakura, 2012).

More specifically, single-criterion, multicriteria clustering techniques have been studied

in the clustering literature. Interestingly, segmentation is often modeled as a single-

criterion clustering problem in the traditional marketing literature as well as in practice.

Ideally however, multicriteria clustering problems should be modeled homogeneously

with respect to explanatory as well as response variables (Liu et al., 2010; Myers, 1996;

Smith, 1956). Systematic studies should therefore be conducted to investigate whether

homogeneously modelling would contribute to improved clustering results and therefore

forecasting accuracy.
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2.2.1 Methodological framework for multicriteria segmentation meth-

ods

To accommodate for multiple criteria during the segmentation process, a range of

methodological frameworks have been proposed in the clustering literature. These in-

clude the multistage segmentation, the transformation approach and direct multicriteria

clustering approaches.

Krieger and Green (1996) proposed a multistage segmentation approach that al-

lowed the consideration of one criterion at a time. Within this approach various criteria

are combined in a sequential manner. The approach employed the K -means cluster-

ing method to partition observations into segments that are optimized for identifiability,

allowing for more accurate inferences to be derived. In the second stage, a heuristic

approach is employed to enhance the responsiveness of segments. Here a detection

threshold is employed to increase the models sensitivity to increases in within-segment

heterogeneity. However, Brusco, Cradit, and Stahl (2002) commented that the multi-

stage segmentation approach developed by Krieger and Green (1996) is inherently a

sub-optimal strategy as information is not optimally shared between stages.

On account of the limitation of the multistage segmentation approach, direct mul-

ticriteria segmentation has been identified as a competing alternative. These types

of segmentation approaches group observations into sub-groups using multiple crite-

ria concurrently during the segmentation stage. An exact approach to bicriterion data

clustering was first proposed by Delattre and Hansen (1980). The approach was spe-

cific to a particular pair of clustering criteria. Ferligoj and Batagelj (1992) described

an approach to account for clustering criteria defined in view of different information

sources. In addition, multi-objective evolutionary algorithms have been developed. This

allows for more flexible identification of full sets of Pareto optimal solutions for differ-

ent choices of objectives (Handl and Knowles, 2007). Direct multicriteria clustering
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techniques show strengths in discovering more robust data structure, and have the po-

tential to ultimately recover the full set of Pareto-optimal clustering solutions. However,

the identification step may be time-consuming and further raises additional challenges

related to the model selection. These added challenges arise because for the same

number of clusters, there might exist sets of Pareto-optimal clustering solutions.

The transformation technique may be regarded as the most straightforward method

of multicriteria segmentation. In the transformation technique, multiple criteria can be

combined using a weighting scheme (Brusco, Cradit, and Stahl, 2002; Brusco, Cradit,

and Tashchian, 2003). In essence, multiple criteria will be ultimately transformed into

a single criterion. The combination can be processed at distance function or objective

level. This technique is easy to apply and straightforward to understand but limits itself

in terms of discovering all Pareto-optimal clustering solutions. This is because the use

of weight intervals may have an important impact on the final set of solutions identi-

fied. Another evident limitation of the transformation approach, is that difficulties are

often met when defining objective utility or select weights, which is necessary for their

combination.

In summary, the choice of methodological framework implemented for the multi-

criteria segmentation approach is dependent on the final purpose of the specific ap-

plications. For example, a transformation method may be preferred to facilitate the

interpretation and facile implementation where full sets of clustering solutions are not

required.

2.2.2 Basics to clustering techniques

The needs of segmentation raise a further requirement on the investigation of suit-

able techniques around the implementation of clustering techniques. Hence, we follow

on from this to review popular clustering algorithms and discuss the basics with respect
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to this topic. Han, Pei, and Kamber (2011) defined that clustering is to partition a col-

lection of data objects into groups, where objects in a cluster are similar to one another,

yet dissimilar to objects in other clusters. The set of clusters resulting from a cluster

analysis can be noted as a clustering.

To construct a clustering process some decisions are required to be made regard-

ing the choice relating to the selection of a suitable clustering algorithm, an appropriate

distance function used for measuring the dissimilarity between objects and the deter-

mination of an optimal number of clusters. In the following sections, we aim to describe

some of the basics in this regard.

2.2.2.1 Clustering algorithms

Clustering algorithms can easily be employed to operate on static data through the

use of appropriate distance metrics that are dependent on the type of data as well

as the selection of the optimal number of clusters if required. Data are denoted as

static if the feature values do not vary significantly with time. An operational definition

of the clustering procedure can be described as: given a set of N unlabeled data

objects, a clustering method creates K = {1,2, . . . ,N} clusters of the data objects,

where each cluster represents a group of objects. Therefore, the similarities between

objects pertaining to the same cluster are high, while the similarities between objects in

different clusters are low (see Fig. 2.1).

According to Liao (2005), five classes of clustering algorithms can be distinguished.

These include partitioning approaches, hierarchical approaches, density based ap-

proaches, grid-based approaches, and model-based approaches.

Partitioning methods such as K -means or K -medoids are popular in practice. The

partition is crisp if each object falls into only one cluster, or fuzzy if one object is allowed

to be grouped into more than one cluster to a different degree. For example, K -means
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a) Before clustering b) After PAM clustering
Figure 2.1: Illustration of the clustering process. The Partition-
ing Around Medoids (PAM) clustering approach clusters the objects
into three distinctive groupings.

algorithm generates clusters that are represented by the mean value of the objects

in a cluster. In terms of the K -medoids algorithm, each cluster is represented by the

most centrally located object. These heuristic algorithms work well for finding spherical-

shaped clusters and small to medium data sets. To find clusters with non-spherical or

other complex shapes, specially designed algorithms such as density-based methods.

K -means are reported as one of the most efficient algorithms but are known to be sensi-

tive to outliers or noise. One variation of K -means is the K -medoid which minimizes the

absolute distance between the objects and the selected centroids. A popular medoids-

based algorithm is the Partitioning Around Medoids clustering algorithm (PAM: Kaufman

and Rousseeuw, 2009). This offers additional flexibility allowing it to be used to operate

on the dissimilarity matrix obtained by pair-wise comparison between objects. Using

the dissimilarity matrix, PAM clustering can easily work on mix type of features.

The hierarchical clustering methods can be described as a nested sequence of

partitions. Both agglomerative and divisive hierarchical clustering methods are widely

used in practice. They work by merging two groups based on the optimization of link-

age criteria at each stage of the algorithm. A popular linkage criterion is the sum of

within-group sum of squares. Agglomerative methods start by placing an object in its
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own cluster. Then clusters are merged into increasingly larger clusters, until all objects

are assigned in a single cluster or termination conditions such as the desired number of

clusters are satisfied. Divisive methods work in an opposite manner. Basic hierarchical

clustering methods (that do not incorporate heuristic methods or improvements) have

the limitation of revoking an action. Ultimately this means these clustering algorithms

can not adjust the partitioning once a merge or split decision has been executed. An-

other evident drawback of hierarchical clustering methods concerns the time-complexity

property of the techniques. These methods directly work on the dissimilarity metric

which requires the computation of pairwise comparisons across all pairs of objects. At

least, the complexity of these methods is O(N2). A common practice of alleviating

the issue of time-complexity is to regard the computation of the dissimilarity matrix as

an independent step. Furthermore, there is a trend to integrate this method with other

clustering techniques to improve the final clustering accuracy. A notable property of

this method is that the hierarchical clustering algorithm does not require a predefined

number of clusters. This is because it can return solutions for all possible numbers of

clusters simultaneously. Further, the technique determines a dendrogram that can be

cut at different specific heights to obtain the desired number of clusters.

Density-based methods are popular for the identification of clusters in a large mul-

tidimensional space. The general idea behind density-based methods is to identify

distinctive groups, where the object space is contiguous and is associated with high ob-

ject density. These methods are capable of discovering arbitrary shapes and handling

noise. The idea is intrinsically different from the idea of generating a cluster explic-

itly. The method is advantageous as it does not require pre-defined parameters for a

clustering algorithm. The selection of the number of clusters might be difficult but has

a significant impact on clustering results. There may not exist any global parameters

that could describe the internal data structure accurately. The determination of param-

eters may be dependent on the context of the specific application. OPTICS (Ankerst
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Figure 2.2: Illustration of dendrogram generated by the agglomerative hierarchical
clustering algorithm using the average linkage criterion. Three clusters are high-
lighted in the red rectangles.

et al., 1999) is a well-established density-based clustering method. It computes an

augmented cluster ordering for automatic and interactive cluster analysis. The ordering

contains equivalent information comprised in density-based clustering. The information

is obtained from a variety of parameter settings and in turn overcomes the difficulty of

selecting parameter values.

In addition, grid-based methods have been proposed to efficiently handle large-data

mining tasks. Grid-based methods quantitize the object space into a finite number of

cells that form a grid structure without posing an assumption of the underlying distribu-

tion of the object. A well known method that falls into the grid-based approach is the

statistical information grid-based (STING) algorithm (Wang, Yang, and Muntz, 1997).

This method was proposed to be capable of dealing with large amounts of spatial data.

Normally, the resulting computational complexity is at least linearly proportional to the

number of objects to answer each spatial query. The general idea of this algorithm is

to capture statistical information associated with spatial cells so that the whole classes

of queries and clustering problems can be answered without recourse to the individual

objects. In contrast, traditional methods might have to recourse all individual objects at
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least once.

Fraley and Raftery (2002) provided a detailed survey with respect to the model-

based clustering methods. This series of clustering algorithms poses an assumption

on the model for each of the clusters and attempts to best fit the data according to

the hypothesized model. In general, there are two types of clustering methods fall into

this category comprising statistical methods and neural network approaches, respec-

tively. A well-known example of statistical approach is the AutoClass (Cheeseman et

al., 1993), which estimates the number of clusters using Bayesian statistical analysis.

In terms of the neural network approaches, popular clustering methods include the self-

organizing maps (Kohonen, 1990). The self-organizing map technique can effectively

create spatially organized internal representations of various features of input signals

and their abstractions.

2.2.2.2 Choices of distance metrics to time series data

The data clustering particularly of static data has a much longer history compared

to the clustering of non-static data, where observations are interdependent. Almost all

the clustering algorithms when first proposed were motivated by applying to static data.

Time series data are of recent interest because of its wide applicability in various areas

ranging from biology, business, economic, finance, and health care. Given a set of un-

labeled time series, it is often desirable to group time series into distinctive partitions.

In terms of traditional data clustering, the determination of distance metrics has been

extensively researched and is mainly dependent on the purpose of the application and

type of the data. Relatively, the selection of distance metrics becomes more complex

when it comes to non-static data, where observations are presented in an interdepen-

dent form.
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In fact, most of clustering algorithms proposed have attempted to modify the exist-

ing clustering algorithms designed for static data. A time series that describes an object

can be regarded as a feature/variable which comprises values that change with time.

As a result, time series data can be handled or converted into the static form, so that

existing clustering algorithms can be directly applied to. Three types of clustering algo-

rithms are commonly applied to cluster time series data, including partitioning methods,

hierarchical methods and model-based methods, either in a direct or modified manner.

Precisely, the proposed clustering algorithms for handling time series data are working

by the dissimilarity matrix level where distances between pairs of time series are com-

puted. Hence, by using an existing or modified clustering algorithm, plenty of work has

been dedicated to investigate different ways of measuring (dis)similarities between time

series data where the features values vary with time. Thus, we further review important

distance metrics suitable for dealing with time series data which supports clustering of

time series. Liao (2005) categorized time series clustering approaches into three ma-

jor streams depending upon whether they work directly on the raw data, indirectly with

features that are extracted from the raw data, or with physical models that can used to

describe the underlying time series patterns.

Raw-data-based approaches calculate the distance between pairs of time series by

taking into account the time-based patterns of the series, either in the time or frequency

domain. The two time series being compared are normally sampled at the same inter-

val, but their length might or might not be the same. Clustering directly on raw data is

straightforward. For example, correlation-based approaches are widely used to mea-

sure dissimilarities between time series. Yet, Granger and Newbold (1974) commented

that clustering based on the correlation between time series alone can be problematic

for short time series, as temporary correlations between time series may be spurious.

Additionally, these types of methods are commonly limited to the computation complex-

ity, particularly for high-dimensional data, where the observations are collected with fast
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sampling rates. Furthermore, high noise in the time series can present another issue

to the clustering problem.

On account of this, an alternative method is to use the feature-based clustering

techniques. We would generally expect this method to return more robust clustering

results than raw-data-based methods by extracting features directly from the raw data.

Although feature extraction methods are typically generic, the extracted features are

essentially application dependent. Hence, the concept that one size fits all does not

apply here. Since one set of features may performs well on one data set but may

perform poorly on another. For example, Wang, Smith, and Hyndman (2006) clustered

time series based on their structural characteristics on high dimensional data. This

particular method does not cluster time series based on global features extracted from

the time series. It can be further fit into arbitrary clustering algorithms. Essentially, the

time series is represented using extracted features that can be regarded as a typical

clustering problem based on static data.

The last popular group of methods concern the model-based approaches. The

general idea behind these methods is the consideration of each time series through

statistical models or by a mixture of underlying probability distributions. Time series

are considered similar if the models characterizing individual time series are alike. In

a similar manner, time series are regarded as similar, if the remaining residuals after

fitting the model are similar. In general, model-based methods can be considered as

a form of approximation of the data generation process that underlies the time series

data. The approximation has a potential limitation in that they may be inadequate for

accommodating other possible patterns underling the data. Kalpakis, Gada, and Put-

tagunta (2001) is an example of a model based approach which fits time series using

Box Jenkins ARIMA models. The strengths of the method resides in its potential to dif-

ferentiate overlaying time series by fitting the time series with ARIMA models, however

it becomes insufficient for the modeling of short time series, where the estimation of
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model parameters becomes difficult when only a small number of observations present.

2.2.2.3 Cluster validation techniques

Cluster validation indexes can be sketched for two general purposes including (i) the

evaluation of clustering solutions, (ii) the selection of the appropriate number of clusters.

More specific, internal validation techniques are commonly employed to measure the

quality of clustering solutions based on the intrinsic data structure. These techniques

can also be applied to support the model selection step in the clustering procedure with-

out involving external information. It is common to use external validation techniques

for the evaluation of clustering solutions by comparing to the ground truth comprised in

a synthetic data.

To measure the goodness of clustering solutions synthetic data sets, benchmark

data sets, or real data sets have been widely applied to compare the performance of

clustering solutions (Von Luxburg, 2010). based on the comparisons of the results. In

circumstances where external information is not available, clustering quality scores can

be computed to reflect the quality of a solution. These quality scores are designed

based on two general types: external and internal validation measures. Cluster valida-

tion techniques for crisp clustering are reviewed below.

External measures that assess the clustering results based on the knowledge of the

correct class labels are given in benchmark data or simulated data. These measures

are useful in enabling an objective comparison of the clustering algorithms to cluster

data, where true cluster structure is given. External measures can be further sub-

divided into unary and binary measures.

Unary measures are methods that take a single partitioning as the input, and then

compare the assignment of the objects to a given set of class labels that are often

regarded as the “ground truths” or “gold standards”. Conventionally, the gold standard
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will be complete and unique, in the sense that exactly one class label is provided for

every data item, and that the label is clearly defined. By comparing the clustering

solution to the ground truth, one can assess the degree of consensus between the

two clustering solutions. A clustering solution can then be assessed in terms of purity

and completeness of a partitioning. Here, purity denotes the fraction of objects in this

predominant class that is grouped in the specific cluster. Clearly, both of these aspects

provide a limited amount of information, and trivial solutions for both of them might

be generated. A partitioning consists of singleton clusters can be highly scored under

purity measure, while a one-cluster solution can be maximally scored under the criterion

of completeness. In order to obtain an objective assessment of partition, accordance

with the gold standard, it is therefore necessary to take into account the purity and

completeness criteria. Measures such as the F-measure have been developed to take

both factors into account. These metrics consider both purity and completeness of a

partitioning and usually are more preferred in relation to simple techniques.

Alternatively, binary measures refer to measures that judge the agreement between

two partitionings. These methods operate on contingency table of the pairwise assign-

ment of object items. The ultimate aim of these methods is to assess the consensus

between a partitioning and the ground truth. Most of these techniques are symmetric

and therefore, well suited for the use of a binary measure for the evaluation the similarity

between different clustering results. Perhaps, the most well-known methods is the Rand

Index (Rand, 1971), which judges the similarity between two partitions as a function of

positive and negative agreements in pair-wise partitioning assignments. The Adjusted

Rand Index (Hubert and Arabie, 1985) is a correct-for-chance version of the Rand In-

dex, which has the limitation where the expected value of the Rand index between two

random partitions is not a constant. Another related index is the Jaccard coefficient (Ni-

wattanakul et al., 2013), which employs a stricter definition of correspondence, where

only positive agreements are rewarded.
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In scenarios where class labels are not available or not satisfactorily defined, an

evaluation may be appropriately undertaken using internal validation techniques. These

techniques do not make use of extrinsic knowledge i.e., class labels, but measure the

clustering accuracy based on internal data structure alone. It means that these internal

measures aim to measure how well a given clustering solution performs relative to the

natural cluster structure discovered. Principally, most internal validation techniques can

be used to assist the model selection step in addressing clustering problems. Gener-

ally, internal measures are proposed to assess the quality of clustering solutions from

different perspectives which comprise the compactness, separation, connectivity and

instability of the clustering quality.

Compactness of clustering solutions focuses on assessing the within-cluster ho-

mogeneity, where the intra-cluster variance is often measured to indicate the clustering

quality. Alternative measures have been developed for the measurement of intra-cluster

homogeneity. Examples of these methods include the sum-of-errors measure, the aver-

age or maximum pair-wise intra-cluster distances, as well as the use of graph-based ap-

proaches (Bezdek and Pal, 1998). Separation is used to quantify the distance between

individual clusters. For instance, an overall rating of a partitioning can be defined as the

average weighed inter-cluster distance, where distance between individual clusters can

be computed as the distance between the cluster centroids, or as the minimum distance

between data items belonging to different clusters. Alternatively, cluster separation in a

partitioning may be assessed by the minimum separation observed between individual

clusters in the partitioning. The connectivity of the clustering quality describes how well

a given clustering solution agrees with the concept that to what degree a clustering solu-

tion observes local densities and groups data items together with their nearest neighbor

in the data space. Instability-based techniques that assess the stability of a partitioning

that categorized as a special class of internal validation measures. Instability measures

behave different from traditional internal validation techniques as they require access
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to the clustering algorithm in order to assess the clustering quality. Measures of this

type repeatedly re-sample from or perturb the original data set, and then re-cluster the

resulting data. The consistency of the corresponding results provides an estimate of

the significance of the clusters obtained from the original data set.

The literature provides a range of enhanced approaches that combine measures

of the above measures. Combinations of compactness and separation are particularly

common in practice, since these two measures function in opposing manners. This is

because while intra-cluster homogeneity improves, the heterogeneity between clusters

tends to deteriorate with an increasing numbers of clusters. Several techniques have

therefore been proposed to assess both intra-cluster homogeneity and inter-cluster sep-

aration. These techniques compute the final quality score using a linear or non-linear

combination of the two measures. An example of a linear combination is the SD-validity

Index (Halkidi, Vazirgiannis, and Batistakis, 2000). Some well-known examples of non-

linear combinations are the Dun Index (Dunn, 1974), Dunn-like Index (e.g., Pal and

Biswas, 1997), and the Silhouette Width (Rousseeuw, 1987).

2.2.3 Model selection in data clustering

Model selection in data clustering is still an open question, although a number of

works have been produced regarding this topic. In principle, Liu et al. (2010) summa-

rized that model selection can encompass the selection and standardization of clus-

tering features, the determination of number of clusters, and the choice of clustering

algorithms as well as the parameters concerning the non-determination of cluster algo-

rithm. Generally, the major challenge in model selection problems can be reduced to

the determination of the suitable number of clusters (Tibshirani, Walther, and Hastie,

2001), which is expected to have a major impact on the performance of clustering algo-

rithms, where the number of clusters is required to be known. Note that in grid-based
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and density-based clustering approaches, there is no requirement for the determination

of the number of clusters, but requires the pre-specification of density related param-

eters. This is because these techniques grow clusters based on density rather than

the grouping of objects. In essence, the difficulty of model selection is associated with

the challenge of defining the clustering. There does not exist any universally accepted

definitions of clustering and one may be preferred than another in a certain problem

context (Parsons, Haque, and Liu, 2004).

2.2.3.1 The existing validation techniques

A bulk of work has dedicated to developing automatic models for estimating the

number of clusters in single-criterion clustering problems. Among these, most existing

approaches devote to minimizing distance-based dissimilarity measures within clusters

through the use of internal cluster validation techniques as discussed in Section 2.2.2.3.

Other works such as Wang (2010) proposed an innovate technique to estimate the

number of clusters. They attempted to select the number of clusters by minimizing

the algorithm’s instability via cross-validation techniques. Von Luxburg (2010) provided

a comprehensive review on existing methods that utilize the cluster instability for the

determination of number of clusters. In addition to these techniques, statistical ap-

proaches such as the Gap statistics has been proposed to deal with the challenge of

model selection. However, to the best of our knowledge, there are no definitive recom-

mendations regarding which model selection techniques would work best in practice.

Consequently, traditional clustering methods (e.g., K -means) tend to utilize a subjective

assessment to assist the selection of the appropriate number of clusters. The reader is

refereed to a comprehensive review (Milligan and Cooper, 1985) concerning this topic

for more information.

In general within the literature, the Elbow method, the Silhouette Width measure
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and the Gap statistics have received intensively applicability with success. Generi-

cally, internal cluster validation techniques can often be used to address the problem

of K-determination. These techniques can be used to score the quality of clustering

solutions, and the obtained quality scores are then used to determine the number of

clusters. Normally, a higher quality score indicates a better clustering solution. The

Elbow method and the Silhouette Width measure are developed on the internal cluster

validation technique. These approaches tend to characterize the global characteristics

of cluttering solutions.

Specifically, Elbow methods (Sugar, 1999; Sugar, Lenert, and Olshen, 1999) esti-

mate the number of clusters by critically examining a graph of the percentage variance

explained as a function of the number of clusters. The critical point where no further

gains are achieved corresponds to the required number of clusters or partitionings for

the optimal performance of the clustering procedure. This method is straightforward to

apply, but practically it can be hard to determine the critical point where the variance

plateaus.

The Silhouette Width measure (Rousseeuw, 1987) takes into account the separa-

tion and cohesion of the clustering solutions based on internal data structure alone.

These methods are widely applied in single-criterion clustering problems. Specifically,

they assume that data set contains N items and they can be partitioned into k ∈ [2,N ]

clusters by employing a clustering algorithm. The Silhouette values can be computed

for each cluster. The clustering solution returns the largest mean Silhouette value and

the associated optimal cluster number K. The Silhouette Width technique takes value

in the range [-1,1]. A higher value is indicative of a better clustering solution. Similar to

the Elbow method, the Silhouette Width technique assesses the global characteristics

of the entire partitioning.

Another statistical approach widely employed for the determination of K is known

as the Gap statistic (Tibshirani, Walther, and Hastie, 2001). This approach normalizes
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the graph of log(Wk), where Wk is the pooled within-cluster sum of squares around the

cluster means. Specifically, it compares the log(Wk) with the expected value derived

from an appropriate null reference distribution of the data. (Gordon (1996) discussed

the significance of the choice of an appropriate null model). The estimate of the optimal

number of clusters is then the value of K, for which log(Wk) falls the farthest below the

reference curve.

Handl and Knowles (2007) integrated the Gap statistics into the MOCK model for

the identification of the single most promising solution from a particular set of trade-off

solutions. This technique is based on an analysis of the location of solutions in objec-

tive space relative to a background of unstructured data. When applied to the multi-

objective clustering technique MOCK, this approach has been shown to outperform

more traditional techniques of model selection such as the Silhouette Width measure

(Rousseeuw, 1987).

2.2.3.2 Adjustment of techniques from multi-objective optimization domain

Not limited to the clustering literature, there have been some methodologies and

concepts developed in the domain of multi-objective optimization to address the selec-

tion of a single best solution.

Similar to multicriteria clustering problems, multi-objective optimization problems

aim to optimize multiple criteria at the same time. These criteria are often conflicting,

therefore it may not possible to find a single solution which is optimal with respect to all

criteria. Instead, there exists a number of “Pareto-optimal” clustering solutions. These

are characterized by the fact that an improvement in any one criteria can only be ob-

tained at the expense of degradation of another. Without access to external information,

none of the Pareto-optimal solutions can be identified as inferior compared to other so-

lutions, this is because a single solution will not be universally better, i.e., it may be only
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good with respect to specific criteria but not all. The idea of ”knees” have been investi-

gated to reflect the user preferences which are of relevance to the decision maker. The

most interesting solutions, or knees, of the Pareto-optimal front are those where a small

improvement in one objective would lead to a large deterioration in another.

Knee points are well-recognized by multi-objective optimization researchers (Bechikh,

Ben Said, and Ghédira, 2010; Branke et al., 2004; Deb and Sundar, 2006; Mattson,

Mullur, and Messac, 2004; Schütze, Laumanns, and Coello, 2008; Rachmawati and

Srinivasan, 2009). Owing to their advantages compared to other Pareto-optimal solu-

tions, some evolutionary optimization methodologies have been designed to find knee

point(s) (Bechikh, Ben Said, and Ghédira, 2010; Branke et al., 2004; Deb and Sun-

dar, 2006; Rachmawati and Srinivasan, 2006a; Rachmawati and Srinivasan, 2006b;

Rachmawati and Srinivasan, 2009; Schütze, Laumanns, and Coello, 2008). In some

problems, instead of a single knee point, there may exist a sets of closely-packed trade-

off solutions that altogether qualify as a knee region. Branke et al. (2004) proposed an

enhanced angle-based approach that can identify a single best knee point through by

looking at the different combinations of four nearest-point angels and the biggest angle

is chosen as the final solution. Assuming a two-objective optimization problem, they

claimed that a further movement in one direction might result in a significant degrada-

tion in another (see Fig. 2.3).

Figure 2.3: Illustration of a single knee point on the Pareto frontier based on two objectives
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2.2.3.3 Evaluating the clustering performance in the domain of applications

Quality scores based on internal cluster validation techniques are useful at the level

of algorithms. Here, they can be used as an objective function in the circumstance of

optimization problems. A valid research question here concerns how different scores

can be efficiently optimized. However, across different algorithms these scores provide

only little information about the effectiveness of clustering solutions. This is because

the preference of an accuracy measure over the other can vary dependent on the use

of clustering algorithm.

Furthermore in situations where multiple information sources/feature spaces are

used for clustering, quality scores will not valid without the consideration of Pareto-

optimal clustering candidates. These reflect the different trade-offs between information

sources. Overall, a unique, global, objective score for all clustering problems does not

exist.

In exploratory data analysis, clustering can be used to discover aspects of the data

which are either completely new, suspected to exist or which are hoped not to exist. For

example, one can use clustering to define certain sub-categories of diseases in bio-

medical science, or as a means for quality control to detect undesirable groupings that

could suggest experimental artifacts in the data. It is unreasonable to expect a gen-

eral evaluation procedure for clustering algorithms which is application-independent.

In reality, a cluster is a subjective entity, the significance and interpretation of which

requires domain knowledge. Indeed, there does not exist a universally accepted defini-

tion of clustering (Parsons, Haque, and Liu, 2004) and the structure identified from the

data may vary with the final application purpose. Guyon, Von Luxburg, and Williamson

(2009) argued that the success of clustering is best evaluated in the domain of the over-

all success of a particular application . This implies that a good clustering solution for

forecasting should take into account forecasting performance rather than relying purely
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on the clustering quality without considering the particular application. Although previ-

ous works have proposed this idea, there is a lack of objective findings that support this

argument. This suggests that the selection of the appropriate number of clusters based

on the internal data structure could be insufficient for suitably enhancing the accuracy

and precision of the final clustering results. Further work is needed to examine this.

2.3 Bootstrapping techniques in time series forecast-

ing

Statistical problems are often plagued by three main sources of instabilities (Chat-

field, 2000; Bergmeir, Hyndman, and Benı́tez, 2016). One of the main sources of

instability is related to the choice of statistical models that describe the underlying data

structure. Another source of instabilities stems from the model parameters, assuming

the model structure is known. Furthermore, instabilities can arise from the data even

when the choice of the statistical model and parameters involved are determined. More

specifically, the instabilities associated with the data might encompass the unexplained

random variation presented in the data observations. The random variation comprises

errors related to measurement and/or recording.

The bootstrap aggregation (bagging) technique (Breiman, 1996) has been com-

monly applied to address the instability issues presented by modelling procedures.

Through the reduction of instabilities, bagging techniques aim to additionally increase

the accuracy of a predictive model.

Generically, a Bagging procedure can be formulated as follows. LetX = (x1, ...,xn)

be a random sample from a distribution characterized by a parameter θ. The inference

about θ will be based on a statistic T . The basic bootstrap approach consists of gener-

ating bootstrapped samples with a size of m. The size is typically equal to the original
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sample size although it is not compulsory. Based on (x1, ...xn), a bootstrapped sample

(xb1, ...,x
b
n) is formed each time. The procedure for the generation of data is repeated

B times, where B is the number of bootstrap samples constructed. For each bootstrap

sample, we compute the statistic T . We call this T b. The distribution of T b is known as

the bootstrap distribution of T . We use this bootstrap distribution to make inferences

about T . We use this bootstrap distribution to make inferences about θ. Under some

circumstances, the bootstrap distribution enables us to make more accurate inferences

than the asymptotic distribution of T . The bootstrap method described here is the basic

procedure that is valid for IID observations.

By applying the model to different bootstrapped samples, multiple versions of a sta-

tistical forecasting model can be constructed. Then, an aggregated forecast is made

using a suitable combination schemes such as the mean, median, trimmed mean or

weighted mean. In principle, Bagging can yield substantial gains in forecasting accu-

racy if the perturbation of the learning results in significant changes in the constructed

forecasting model (Breiman, 1996). The bootstrap method has often been reported

to provide better approximations of distributions statistics than those of a first-order

asymptotic theory (Härdle, Horowitz, and Kreiss, 2003). Numerous research studies

have been conducted concerning the development of suitable bootstrapping techniques

to deal with either independent (IID bootstrap) or dependent structure (time series).

Here, we revisit previous works that have been utilized to bootstrap time series.

2.3.1 IID bootstrap for time series forecasting models

Aggarwal, Garg, and Gupta (2014) introduced the concept of non-parametric re-

sampling that allows forecasters to carry out statistical inferences in a wide range of
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problems without imposing much structural assumptions on the underlying data gener-

ation process. We denote this scheme as the IID bootstrap, which re-samples indepen-

dent and random variables with replacement.

For more details, Davison and Hinkley (1997), Efron and Tibshirani (1994), Shao

and Tu (2012) provided discussions regarding the general bootstrap procedures. Nu-

merous works have been conducted concerning the development of bootstrapping meth-

ods. The application of these methods is predominantly dependent on whether the

data is a random sample from a distribution or is time series data with a dependent

data structure. In general, Bootstrap techniques show better approximations than the

first-order asymptotic theory.

If the data are a random sample, then the bootstrap can be implemented by sam-

pling the data randomly with replacement or by sampling a parametric model of the

distribution of the data. The distribution of a statistic is estimated by its empirical dis-

tribution under sampling from the data or parametric model. For example, Kushary

(2000) provided a detailed discussion of bootstrap methods and their properties, and

its applicability to data that have been randomly sampled from a distribution.

IID bootstrap methods described above are applicable either under the hypothesis

of independence or under specific model assumptions for dependent data. The main

idea in the latter case is to use the approximate independence of the residuals, and then

apply the resampling scheme of IID bootstrap method to get the right approximation.

This is not difficult if one has a finite-dimensional parametric model (e.g., a finite-

order ARMA model) that reduces the data generation process to independent random

sampling. In this case and under suitable conditions, the bootstrap has the same prop-

erties to a random sample from a distribution (see Bose, 1988; Bose, 1990). Such

approaches are inconsistent if the model used for resampling is misspecified. However,

these model-based approaches are straightforward because the dependent structure is

modeled explicitly and the slightly different version of the original sample is drawn from
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the fitted model. This has been pursued in numerous cases, e.g., (Bose, 1988) and

(Freedman, 1984) for autoregressive models, (Kreiss and Franke, 1992; Fenga, 2017)

for Autoregressive Moving Average (ARMA) models and (Rajarshi, 1990) for Markov

models.

2.3.2 Bootstrapping time series data

Bootstrap and other resampling methods for dependent data still constitute an active

field of research in statistics, even though monographs already exists that are especially

devoted to bootstrapping for dependent data (Lahiri, 2003; Politis, Romano, and Wolf,

1999). General overviews of the variations of bootstrap methods have been published

in the last decade (Berkowitz and Kilian, 2000; Bühlmann, 2002; Härdle, Horowitz,

and Kreiss, 2003). Related review papers can be found in the area of econometrics. In

particular Politis and Romano (1996) work mainly focus on the use of bootstrap methods

for econometric models. Ruiz and Pascual (2002) and Paparoditis and Politis (2009)

also investigates the problem of bootstrapping financial time series models.

Analytically, the situation is more complicated when the data set is a time series, this

is because bootstrap sampling must be carried out in a way that suitably captures the

time-dependent structure of the data generation process. Therefore, existing methods

have been proposed to directly bootstrap time series data rather than reducing the data

to independent random variables.

In situations where model-based approaches are not applicable, the standard boot-

strap resampling method designed for independent and identically distributed errors is

not applicable due to the violation of IID assumption. Correlated errors are not ex-

changeable, and lagged dependent variables create extra problems in pseudo data

generation. Unit root and cointegration regression models create further complications

in bootstrap data generation. Finally, to achieve an improvement over the asymptotic
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results, one needs to work with asymptotically pivotal statistics. This is usually not

completed.

Bootstrapping time series data can be viewed as the simulation of a statistic or sta-

tistical procedure from an estimated distribution T̂n of observed data (x1, ...,xn). In time

series data, the construction of T̂n is more complicated due to the dependence struc-

ture presented and is far less “natural” than the seminal work proposed by Aggarwal,

Garg, and Gupta (2014). Generally, previous methodologies fall into two classes: the

time domain and frequency domain bootstrapping.

In contrast to the resampling of a single observation at a time, Kunsch (1989) and

Liu and Singh (1992) independently formulated a substantially new resampling scheme,

known as the moving block bootstrap (MBB). MBB is applicable to dependent data

without any parametric model assumptions.

For dependent data, the most common approach to bootstrap time series is to re-

sample “blocks” of sequential observations instead of resampling independent data ob-

servations. This preserves the dependence structure of the underlying process within

the resampled blocks and is able to reproduce the effect of dependence at short lags.

A relatively different approach to the problem was suggested by Zeger and Hurvich

(1987). In their seminal work, Zeger and Hurvich (1987) considered the discrete Fourier

transform (DFT of the data and rather than resampling the data values directly, they

applied the IID bootstrap method of Efron (1992) to the DFT values. The transforma-

tion based bootstrap (TBB) described here is a generalization of Zeger and Hurvich

(1987) idea. As a result, the time-dependent structure of the original observations is

preserved within each block. Furthermore, the common length of the blocks increases

with the sample size. As a result, when the data is generated by a weakly depen-

dent process, the MBB reproduces the underlying dependence structure of the process

asymptotically. Essentially the same principle was put forward by Hall (1985) in the
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context of bootstrapping spatial data and by Carlstein (1986) for estimating the vari-

ance of a statistic based on time series data. Limited work have been conducted to

investigate the bootstrapping of non-stationary time series, where serial dependence

and non-stationarity are present.

Cordeiro and Neves (2009) attempted to bootstrap time series by employing the

sieve bootstrap technique that performs bagging with exponential smoothing models

(ETS). They use ETS to decompose the data, then fit an AR model to the residuals,

and generate new residuals from this AR process. Finally, they fit the ETS model that

was used for the decomposition to all of the bootstrapped series. Overall, the results are

not promising, although they achieved some success for quarterly and monthly data. A

more promising method was proposed by Bergmeir, Hyndman, and Benı́tez (2016).

They applied the Box-Cox transformation to decompose M-3 competition data into sea-

sonal, trend, remainder components. The remaining component was bootstrapped us-

ing MBB technique. Finally, the trend and seasonal components were added back to

the series. They applied the exponential smoothing model to each bootstrapped sample

using the bias-corrected AIC to select the model. The bagged ETS shows consistent

superiority in performance over basic ETS models. Particularly, in M-3 monthly data,

the bagged exponential smoothing method performs the best among the contestant

methods.
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2.4 Research challenges and tasks in this thesis

2.4.1 Improving the analogy identification using multiple informa-

tion sources

Considering the application of analogies in either subjective or objective methods,

there might be a strong need to develop suitable analytical approaches for the identi-

fication of analogies. On account of this, some modeling approaches have been pro-

posed to complete the task of analogy identification. It is evident that the identification

of analogies typically involves the use of segmentation approaches to partition a col-

lection of time series into a set of homogeneous groupings using clustering techniques

(e.g., Duncan, Gorr, and Szczypula, 1993; Duncan, Gorr, and Szczypula, 2001).

In the context of forecasting, some techniques have been explored for the segmen-

tation of time series data into meaningful groups. Particularly, data-driven methods

i.e., clustering techniques have been explored to partition a collection of time series

based on their similarities. These include the clustering of time series based on corre-

lational co-movement, model-based approaches (Frühwirth-Schnatter and Kaufmann,

2008) and sets of causal variables associated with each time series (Duncan, Gorr, and

Szczypula, 2001). The use of these techniques indicate that an independent consid-

eration of information derived from either time series data or causal factors underlying

the time series has been explored in the forecasting literature. However, it also im-

plies that this might be inadequate for differentiating the analogous time series. This

is particularly true when the information sources concern either time-based patterns or

causal factors are noisy. It is evident that the characterization of analogies using either

of the above approaches will often provide a partial or approximate picture at best. Ul-

timately this means that multiple information sources need to be considered during the

segmentation stage to achieve a more meaningful partitioning of analogies.
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Additionally, our understanding regarding the modelling of segmentation is in line

with the work of Leitner and Leopold-Wildburger (2011) and Webby and O’Connor

(1996). The authors claimed that time series data often comprises past realizations

of the actual observations, as well as contextual information which includes factors that

govern the behaviour of these time series. Both information data sources are crucial

for a clear understanding of the causal relationship between factors and time-based

patterns. In addition to this, various authors of clustering literature articles (such as Liu

et al., 2010; Myers, 1996; Smith, 1956) argued that the segmentation problem is in-

herently a multicriteria problem. This is because clusters are typically preferred to be

homogeneous with respect to a collection of explanatory as well as response variables.

Consequently, the same idea can be applied to the forecasting analysis, where both

past realizations of a given time series (response variables) and the associated causal

factors (explanatory variables) should be considered for the identification of analogies.

At a theoretical level, multicriteria clustering techniques have been claimed to demon-

strate a more robust recovery of the underlying data structure, as well as a more vigor-

ous discovery of the data patterns that cannot be modelled by single-criterion clustering

approaches (Handl and Knowles, 2007). This is because multicriteria clustering tech-

niques are able to provide an objective assessment of the clustering quality from various

(often conflicting) objective criteria, but the single-criterion clustering approaches offer

little opportunities for this at the methodological level.

Considering the interpretability and superiority of the multicriteria clustering mod-

elling approaches, such approaches may be more efficient at improving the identifica-

tion of analogies for the segmentation of analogies. The use of multicriteria clustering

approaches ensure that the analogies identified are homogeneous in terms of the un-

derlying time-based patterns and causal factors that govern the patterns observed.

To the best of our knowledge, little work exists that has systematically explored and

investigated the effectiveness of multicriteria clustering approaches in the context of
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forecasting, where analogies are required to be identified. Therefore, our first research

task focuses on the development of suitable multicriteria clustering approaches, which

are capable of integrating multiple information sources during in the clustering proce-

dure. Using numerous experiments, we aim to (i) propose a methodological framework

(forecasting process) which comprises procedures to allow the segmentation of analo-

gies and the forecasting stage which pools information from the segmented analogies.

The development of the segmentation stage should in particular, be able to accom-

modate for multiple incommensurable information sources; (ii) provide new insights re-

garding the relationship between the segmentation of analogies and the forecasting

stage. Utilizing a statistical forecasting model in the forecasting stage, our framework

could assess the impact of segmentation of analogies on the forecasting accuracy in

an objective manner. This has not been covered in the previous literature; (iii) evalu-

ate the relative performance of multicriteria segmentation approaches to the traditional

single-criterion segmentation approaches.

2.4.2 Automatic model selection in the context of multicriteria clus-

tering

Internal cluster validation metrics have been commonly employed to data cluster-

ing in order to address the challenge of model selection. This is particularly when

one criterion is considered during the clustering procedure. However, limited work has

been reported to investigate the effectiveness of these established measures for the

exploration of new possibilities when multiple criteria (e.g., information data sources or

feature spaces, distance metrics, standardization techniques) are involved during the

clustering procedure. A related literature study currently exists and is provided in Handl

and Knowles (2013). Their work clusters objects using the multi-objective evolutionary

algorithm and selects the single best partitioning out of sets of Pareto-optimal solutions
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using the Gap statistics. Matake et al. (2007) also provided some insights regarding the

model selection process relevant to multicriteria market segmentation. However, they

selected various regions of Pareto-optimal sets, which contain favorable trade-offs so-

lutions based on subjective assessments. Subsequently, they identified one represen-

tative solution from the Pareto-optimal clustering solution. In other words, the authors

tackled the problem of model selection through their subjective assessment opposed to

automated procedures.

In the context of multi-objective optimization problems, a bulk of research has been

conducted regarding the accurate determination of the knee point. However, the major-

ity of the conducted studies make use of domain knowledge for determining the knee

point. Promising objective methods include the angle-based measure (Branke et al.,

2004). Instead of using only two nearest neighbours, they proposed an enhanced ver-

sion of the angle-based method, by considering the four nearest neighbours as part of

their determination of the largest angle. Individual points returning the largest angle

were regarded as the knee point. This method has advantages in terms of its ap-

plicability and scalability. The idea behind this technique is that the most interesting

solutions out of the Pareto-optimal candidates are those where a small improvement

in one objective would result in a large deterioration in at least one other objective.

Given the potential of this method, however, little work has been reported that specif-

ically explored the possibility of applying or adapting this method from multi-objective

optimization literature to the domain of multicriteria clustering problems.

Intrinsically, all approaches that we have discussed focus on the assessment of

solution quality in terms of the procedure itself. As pointed by Guyon, Von Luxburg,

and Williamson (2009), clustering might be a part of the whole chain of analysis in

applications. Based on the same data, the structure discovered can differ as per the

final application purpose. It can be misleading to derive a general evaluation procedure

for clustering algorithms which is indeed application independent. Often, the evaluation
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of clustering solutions might require contextual information or domain knowledge. In line

with Guyon, Von Luxburg, and Williamson (2009), the evaluation of clustering results is

best assessed by taking into account a problem-specific context. Referring back to the

model selection step, it might be a sub-optimal solution if we determine the single best

clustering solution without the use of the forecasting results during the procedure.

Taking these factors into account, our second research challenge attempts to de-

velop a set of automatic model selection techniques that serves to complement the

multicriteria clustering procedure in the context of forecasting applications. We also

attempt to compare the performance of the clustering-focused and forecasting-focused

approaches that we have proposed to deal with the model selection problem.

2.4.3 Addressing the clustering instability using bootstrap aggre-

gation techniques

For statistical models, different sources of instabilities might be involved in the mod-

eling process. These include the instabilities originating from the input data, model

parameters and the determination of model structure. Without using analogies, tradi-

tional statistical forecasting models may primarily inherit the instabilities from the above

sources.

In contrast, for the forecasting process that makes use of analogies, additional insta-

bilities might occur from the segmentation step where clustering procedure is applied

to group analogies. Specifically, for clustering approaches, the determination of the

number of clusters or the random initialization of the clustering algorithms might lead to

clustering instability. For example, assuming the correct number of clusters is K, the

incorrect determination of K might result in instabilities of the clustering results. K+ 1

clusters might lead to wrong split of the true clusters, while K − 1 might yield wrong

merge of the true clusters. This highlights that the estimation of the number of clusters
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is important for a clustering procedure, and an incorrect determination of K itself might

deteriorate the clustering stability. In addition to this, multicriteria clustering approaches

might expose to extra instabilities when determining the final partitions. This is be-

cause for the same K, multicriteria clustering approaches often return more than one

clustering result. Furthermore, the random initialization required in a non-parametric

clustering algorithm (e.g., K-means, PAM) can also result in instabilities. Taking the

K-means as an example, this algorithm may produce different clustering solutions after

each individual run, due to the algorithms use of random initialization.

In general, the clustering procedure can be unstable due to the model selection

step, which comprises the selection of clustering variables, the determination of K, the

specification of model parameter. Regarding the clustering stability, more details that

are out of the scope of this review are provided by Von Luxburg (2010).

To address the instability issue, resampling methods have been widely applied

in various fields. Our third manuscript demonstrates that non-parametric resampling

methods such as the bootstrap aggregation technique can address this issue. As ana-

lyzed in Section 2.3, bootstrapping time series data is essentially challenging when both

non-stationary and time-dependent structure are present in the data. Unfortunately,

non-stationary time series are commonly present in practical forecasting applications.

In spite of this, few successful applications have been reported from the forecasting lit-

erature that shows promising results regarding the bootstrapping of non-stationary time

series (limited work is referred to Bergmeir, Hyndman, and Benı́tez, 2016).

In light of this, the third manuscript of our thesis focuses on the exploration of the

potential of IID bootstrap as applied to forecasting models that make use of analogies.

Instead of bootstrapping time series directly, this problem could be reduced to a typical

problem of IID bootstrap by the resampling of a set of labels that are associated with

the time series data. This set of labels are regarded as random variables that follow the

identical and independent distribution (IID).
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In a more mathematically detailed perspective, a bootstrapped sample is constructed

by resampling a set of labels of size n, without perturbing the internal structure the time

series data. The method proposed is straightforward and easy to apply. Specifically,

we bootstrap on a set of labels X = (X1,X2, . . . ,Xn), where labels Xi is associated

with a specific time series i. The observed realizations for each Xi = (x1,x2, . . . ,xn).

The bootstrapped samples can be represented as Xb = (Xb
1,X

b
2, . . . ,X

b
n) and real re-

alizations are unchanged for Xb
i = (x1,x2, . . . ,xn). To bootstrap non-stationary time

series (only one promising paper Bergmeir, Hyndman, and Benı́tez, 2016), we expect

that this innovative generation process could yield different groups of analogies that can

be further utilized in the forecasting stage. By averaging point forecasts for each series

across multiple bootstrapped samples, our ultimate goal is to generate aggregated point

forecasts, that could be more reliable and accurate than individual forecasts.

2.4.4 Improving the performance of time series clustering using

multicriteria approaches

Time series clustering is particularly useful and interesting. This is because the ap-

plication of time series clustering can be easily applied in areas ranging from biology to

finance and economics and even signal processing areas. The clustering of time series

data is challenging, as there are no universally accepted notions of similarity among

pairs of time series. The optimal definition of similarity may vary with the application

context.

As reviewed in Section 2.2.2.2, conventionally, a single distance measure and stan-

dardization technique is employed during the clustering procedure for the grouping of

a collection of time series. Each different distance metric / standardization technique

may attempt to capture the notion of similarity, between pairs of time series, by empha-

sizing different aspects. However, it is common to observe that there are mixed types
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of patterns such as linearity and non-linearity simultaneously present in the time series

data (Zhang, 2003). A distance measure may be able to capture the linear pattern

underlying the data, yet fail to model the non-linearity of the data.

In fact, a single distance metric may perform well in approximating part of the whole

picture of similarity. That is to say, the independent consideration of any one isolated

distance metric may prove insufficient since various types of patterns can simultane-

ously present in the data. For example, the ARIMA model might be adequate for mod-

elling linear patterns present in the US dollar exchange rate time series, yet fail to

capture the non-linearity in these time series (Zhang, 2003). Similarly, Stoddard (1979)

contended that any type of standardization can remove the between-cluster variation.

The variation might be crucial for uncovering the underlying data structure. However,

almost all existing clustering approaches employ a uniform normalization scheme over

all data items on a set of variables. On account of this, it may be more appropriate

to seek a suitable approach that combines the strengths of different metrics and auto-

matically adjusts the importance of the considered criteria so as to satisfy the different

application needs.

According to Handl and Knowles (2007) who employed multicriteria approaches to

data clustering, where multiple clustering criteria are utilized to facilitate a more robust

recovery of the data structure. Similarly, since there is neither a universally accepted

notion of similarity, nor is there formal guideline of its use in different circumstances, we

may benefit from combining multiple distance metrics / standardization techniques, to

capture complementary information available from different metrics.

The last research task contained in this thesis is concerned with the development

of advanced clustering approaches for addressing time series clustering problems. The
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criteria we consider here includes different distance metrics / standardization tech-

niques. To help the automatic procedure of model selection, we measure the clus-

tering quality based on the overall performance of the forecasting process, which em-

ploys analogous time series. This is because the success of a clustering solution is

best assessed in context of the application where the solution is employed(Guyon, Von

Luxburg, and Williamson, 2009). We aim to investigate the efficiency of multicriteria

approaches to time series clustering.

2.5 Justification of chosen research methodology

2.5.1 Research philosophy

The term epistemology (what is known to be true) as opposed to doxology (what is

believed to be true) encompasses the various philosophies of research approach. The

purpose of science is the process of transforming things believed into things known:

doxa to episteme. A research philosophy is a belief about the way where data about

a phenomenon should be collected, analyzed and used. It works on the source, na-

ture and development of knowledge (Cooper, Schindler, and Sun, 2006). Two major

research philosophies have been identified in the Western tradition of science, namely

positivist and interpretivist (Galliers, 1991). A positivists paradigm assumes a quantita-

tive methodology while interpretivist assumes a qualitative methodology such as survey,

questionnaires, interviews. In more details, positivists believe that reality is stable and

can be observed and described from an objective viewpoint (Levin and Gaeth, 1988) /

without interfering with the phenomena being studied. They contend that phenomena

should be isolated and that observations should be repeatable. This often involves ma-

nipulation of reality with variations in only a single independent variable so as to identify

regularities in,m and to form relationships between some of the constituent elements

89



of the social world. Predictions can be made on the basis of the previously observed

and explained realities and their inter-relationship. On the other hand, interpretivists

contend that only through the subjective interpretation of and intervention in reality can

that reality be fully understood. The study of phenomena in their natural environment is

key to the interpretivists philosophy, together with the acknowledgement that scientist

cannot avoid affecting those phenomena they study They admit that there may be many

interpretations of reality, but maintain that these interpations are in themselves a part of

the scientific knowledge they are pursuing. Interpretivism has a tradition that is no less

glorious than that of positivism, nor is it shorter. In stead, we believe that both research

methodologies are valuable if managed carefully. Our over-riding concern is that the

research we undertake should be both relevant to our research challenges, as set out

in Section 2.4, and rigorous in its operationalization. Overall, we believe that positivist

philosophy is required for this purpose.

Positivist researchers remain detached from the participants of the research by cre-

ating a distance, which is important in remaining emotionally neutral to make clear dis-

tinctions between reason and feeling (Carson et al., 2001). They also maintain a clear

distinction between science and personal experience and fact and value judgment. It

is also important in positivist research to seek objectivity and use consistently rational

and logical approaches to research (Carson et al., 2001). Statistical and mathematical

techniques are central to positivist research, which adheres to specifically structured

research techniques to uncover single and objective reality (Carson et al., 2001). The

goal of positivist researchers is to make time and context free generalizations. They be-

lieve this is possible because human actions can be explained as a result of real causes

that temporarily precedes their behaviour and the researcher and his research subjects

are independent and do not influence each other (Hudson and Ozanne, 1988). Accord-

ingly, positivist researchers also attempt to remain detached from the participants of

the research by creating distance between themselves and the participants. Especially,
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this is an important step in remaining emotionally neutral to make clear distinctions

between reason and feeling as well as between science and personal experience. Pos-

itivists also claim it is important to clearly distinguish between fact and value judgment.

As positivist researchers they seek objectivity and use consistently rational and logical

approaches to research (Carson et al., 2001; Hudson and Ozanne, 1988). However,

positivism is associated with the following set of disadvantages: Positivism relies on ex-

perience as a valid source of knowledge. However, a wide range of basic and important

concepts such as cause, time and spaces are not based on experience. Secondly, pos-

itivism assumes that all types of processes can be perceived as a certain variation of

actions of individuals or relationship between individuals. Thirdly, adoption of positivism

in business studies and other studies can be criticized for reliance on status quo. In

other words, research findings in positivism studies are only descriptive, thus they lack

insight into in-depth issues.

2.5.2 Research approach

Under positivism, research approaches fall into three major categories: the deduc-

tive research approach, inductive research approach and abductive research approach.

The relevance of hypotheses to the study is the main distinction between deductive and

inductive approaches. Deductive approaches test the validity of hypotheses, whereas

inductive approaches aim to contribute to the emergence of new theories and general-

izations. Abductive research begins with surprising facts or puzzles, and the research

process is devoted to their interpretation.

The strategy adopted in this thesis aims to investigate the research challenges that

were set out in Section 2.4. To improve the quality of analogies, segmentation ap-

proaches can be implemented. Segmentation methods can be broadly classified into a-

prior and post-hoc (Wind, 1978) methods. A-prior methods refer to approaches with
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the type and numbers of clusters are decided before data collection, whereas post-

hoc methods refer to approaches where the type and number of clusters are derived

from data analysis. Post-hoc segmentation analysis generally involves the implemen-

tation of cluster analysis, mixture, mixture regression and mixture scaling techniques.

Among these, clustering techniques are the most popular tools used for post-hoc seg-

mentation (Wedel and Kamakura, 2012). Due to the reproductivity and scalability of

clustering, such methods are the main concern for the proceeding of post-hoc segmen-

tation analysis. Throughout the thesis, we mainly focus on addressing the segmentation

of analogies using multicriteria clustering techniques. We aim to provide a systematic

investigation to related to different clustering techniques (either single-criterion or mul-

ticriteria) for the improved segmentation of analogies in the context of forecasting.

More specifically, as discussed in Section 2.4, multicriteria clustering approaches

are proposed here for the purpose of combining multiple criteria using a weighted-sum

method. Given this, inductive research approach is carried out throughout the thesis.

Following the literature, machine learning studies inductive as they might be carried out

by algorithms. Hence, it might be more appropriate for conducting labs-based experi-

ments via computational tool. The idea behind experiments is to investigate the impact

and sensitivity of particular factors that might impact on forecasting accuracy of meth-

ods that exploit information from grouped analogies, which are homogeneous to group

members.
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[21] P. Bühlmann. “Bootstraps for time series”. In: Statistical Science (2002), pp. 52–

72.

94



[22] E. Carlstein. “The use of subseries values for estimating the variance of a

general statistic from a stationary sequence”. In: The Annals of Statistics 14.3

(1986), pp. 1171–1179.

[23] D. Carson et al. Qualitative marketing research. Sage, 2001.

[24] C. Chatfield. Time-series forecasting. CRC Press, 2000.

[25] P. Cheeseman et al. “Autoclass: A Bayesian classification system”. In: Readings

in knowledge acquisition and learning. Morgan Kaufmann Publishers Inc. 1993,

pp. 431–441.

[26] Y.-Y. Cheng, P. P. Chan, and Z.-W. Qiu. “Random forest based ensemble system

for short term load forecasting”. In: Machine Learning and Cybernetics (ICMLC),

2012 International Conference on. Vol. 1. IEEE. 2012, pp. 52–56.

[27] R. T. Clemen. “Combining forecasts: A review and annotated bibliography”. In:

International Journal of Forecasting 5.4 (1989), pp. 559–583.

[28] D. R. Cooper, P. S. Schindler, and J. Sun. Business research methods. Vol. 9.

McGraw-Hill Irwin New York, 2006.

[29] C. Cordeiro and M. M. Neves. “Forecasting time series with Boot. EXPOS pro-

cedure”. In: Revstat 7.2 (2009), pp. 135–149.

[30] A. C. Davison and D. V. Hinkley. Bootstrap methods and their application. Vol. 1.

Cambridge university press, 1997.

[31] K. Deb and J Sundar. “Reference point based multi-objective optimization us-

ing evolutionary algorithms”. In: Proceedings of the 8th annual conference on

Genetic and evolutionary computation. ACM. 2006, pp. 635–642.

[32] M. Delattre and P. Hansen. “Bicriterion cluster analysis”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 4 (1980), pp. 277–291.

95



[33] G. Dudek. “Short-term load forecasting using random forests”. In: Intelligent

Systems’ 2014. Springer, 2015, pp. 821–828.

[34] G. Duncan, W. Gorr, and J. Szczypula. “Bayesian forecasting for seemingly un-

related time series: Application to local government revenue forecasting”. In:

Management Science 39.3 (1993), pp. 275–293.

[35] G. T. Duncan, W. L. Gorr, and J. Szczypula. “Forecasting analogous time se-

ries”. In: Principles of forecasting. Springer, 2001, pp. 195–213.

[36] J. C. Dunn. “Well-separated clusters and optimal fuzzy partitions”. In: Journal of

cybernetics 4.1 (1974), pp. 95–104.

[37] B. Efron. “Bootstrap methods: another look at the jackknife”. In: Breakthroughs

in statistics. Springer, 1992, pp. 569–593.

[38] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.
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[45] S. Frühwirth-Schnatter and S. Kaufmann. “Model-based clustering of multiple

time series”. In: Journal of Business & Economic Statistics 26.1 (2008), pp. 78–

89.

[46] R. D. Galliers. “Strategic information systems planning: myths, reality and guide-

lines for successful implementation”. In: European Journal of Information Sys-

tems 1.1 (1991), pp. 55–64.

[47] P. Goodwin, K. Dyussekeneva, and S. Meeran. “The use of analogies in fore-

casting the annual sales of new electronics products”. In: IMA Journal of Man-

agement Mathematics 24.4 (2013), pp. 407–422.

[48] A. D. Gordon. “Null models in cluster validation”. In: From data to knowledge.

Springer, 1996, pp. 32–44.

[49] C. W. J. Granger and P. Newbold. “Spurious regressions in econometrics”. In:

Journal of econometrics 2.2 (1974), pp. 111–120.

[50] I. Guyon, U. Von Luxburg, and R. C. Williamson. “Clustering: Science or art”. In:

NIPS 2009 Workshop on Clustering Theory. 2009, pp. 1–11.

[51] M. Halkidi, M. Vazirgiannis, and Y. Batistakis. “Quality scheme assessment in

the clustering process”. In: Principles of Data Mining and Knowledge Discovery

(2000), pp. 265–276.

[52] P. Hall. “Resampling a coverage pattern”. In: Stochastic processes and their

applications 20.2 (1985), pp. 231–246.

[53] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,

2011.

97



[54] J. Handl and J. Knowles. “An evolutionary approach to multiobjective clustering”.

In: IEEE transactions on Evolutionary Computation 11.1 (2007), pp. 56–76.

[55] J. Handl and J. Knowles. “Evidence accumulation in multiobjective data cluster-

ing”. In: International Conference on Evolutionary Multi-Criterion Optimization.

Springer. 2013, pp. 543–557.
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Chapter 3

Determining analogies based on the

integration of multiple information

sources (paper 1)

3.1 Abstract

Forecasting approaches that exploit analogies require the grouping of analogous

time series as the first modeling step, but there has been limited research regarding

the suitability of different segmentation approaches. We argue that an appropriate ana-

lytical segmentation stage should integrate and trade off different available information

sources. In particular, it should consider the actual time series patterns in addition to

variables that characterize the drivers behind the patterns observed. The simultaneous

consideration of both information sources, without prior assumptions regarding their

relative importance, leads to a multicriteria formulation of the segmentation stage.Here,

we demonstrate the impact of such an adjustment to segmentation on the final forecast-

ing accuracy of the Cross-Sectional Multi-State Kalman Filter. In particular, we study

the relative merit of single and multicriteria segmentation stages for a simulated data
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set with varying noise levels. We find that a multicriteria approach consistently achieves

a more reliable recovery of the original clusters, and this feeds forward to improved fore-

casting accuracy across short forecasting horizons.Using a US data set on income tax

liability, we verify that this result generalizes to a real-world setting.

Keywords: Analogy; Bayesian pooling; Kalman Filter; Model selection; Multicriteria

clustering

3.2 Introduction

Forecasting approaches such as the Cross-Sectional Multi-State Kalman Filter algo-

rithm (C-MSKF: Duncan, Gorr, and Szczypula, 1993) exploit information from analogies

or analogous time series so as to increase the accuracy of point forecasts for a target

time series. The identification of suitable analogies is crucial to these approaches, but,

despite this, surprisingly little research has been conducted to investigate appropriate

analytical modeling approaches for judging similarities between time series (Lee et al.,

2007) and supporting the principled selection of analogies (Armstrong, 2001).

The identification of analogous time series typically involves the use of segmentation

approaches to partition a set of time series into a set of homogeneous clusters (e.g.,

Duncan, Gorr, and Szczypula, 2001). Segmentation approaches have wide applica-

tion in areas such as economics, finance, operational research, and public budgeting.

Segmentation is typically used to identify meaningful sub-groups (e.g., customers, busi-

nesses and countries) and can be useful in terms of identifying, understanding and tar-

geting these groups. The sub-groups identified during segmentation may feed forward

into further analysis, including the development of cluster-specific forecasting strate-

gies. Segmentation is often modeled as a single-criterion problem in the traditional

marketing literature and in practice, but it is inherently a multicriteria problem as clus-

ters are typically desired to be homogeneous with respect to a set of explanatory as
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well as response variables (Liu et al., 2010; Myers, 1996; Smith, 1956). Similarly, in the

context of forecasting, we may view the segmentation as one involving multiple informa-

tion sources, as both past realizations of a given time series (response variables) and

the associated causal factors (explanatory variables), which describe the underlying

causal relationships for the co-movement of the analogous time series (Duncan, Gorr,

and Szczypula, 2001), need to be considered. For example, a set of products may be

considered a group due to the same sphere of influence, similar consumer preferences,

promotion levels, or local trends. Ignoring one of these sources of information during

the segmentation stage may lead to clusters that are insufficiently differentiated in terms

of either time series patterns, or causal factors and thus lead to sub-optimal results in

further analysis. To obtain meaningful groups of analogies for forecasting, we need to

ensure the identification of clusters that are interpretable at a domain level (represented

by similarities in the values of a set of shared causal factors) but simultaneously show

similarities in their time-based patterns.

Here, we experiment with a simple prediction process that outlines this idea and

contrasts the performance of single-criterion and multicriteria segmentation approaches

in the context of forecasting analogous time series, for which both time-based patterns

and potential causal factors are known. We illustrate that the segmentation approach

using both information sources is preferable in the sense that it can generate, and usu-

ally identify, segmentations that boost the performance of pooling in terms of forecasting

accuracy.

The remainder of the paper is structured as follows: Section 3.3 surveys related

work, including pooling approaches and popular segmentation approaches in the liter-

ature. Section 3.4 proposes our three-stage prediction process. Section 3.5 presents

experiments that investigate the impact of different segmentation approaches on the

performance of pooling approaches. In particular, using simulated data, we investigate
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the sensitivity of the approaches to changes in the relative reliability of the two informa-

tion sources. Section 3.6 summarizes results on a data set describing personal income

tax liability data. Finally, Section 3.7 concludes.

3.3 Previous research

Analogies have been widely employed in the forecasting field in order to improve

the forecasting accuracy (Armstrong, 2006; Green and Armstrong, 2007; Piecyk and

McKinnon, 2010). According to Duncan, Gorr, and Szczypula, 2001, analogies can

be defined as time series that exhibit similarity in time-based patterns due to shared

underlying causal factors. They typically co-vary and are thus positively correlated over

time.

Most commonly, analogies have been utilized in the context of judgmental ap-

proaches (i.e., forecasting by analogy and related work, refer to Nikolopoulos et al.,

2015; Savio and Nikolopoulos, 2013). These methods use analogies for the purpose

of adjusting statistical forecasts (Webby and O’Connor, 1996) since this may reduce

biases due to optimism or wishful thinking (Armstrong, 2001; Petropoulos et al., 2014).

There has also been work on the development of statistical methods that can exploit in-

formation available from analogies. A well-established model is the Bass model (Bass,

1969; Nikolopoulos et al., 2016), and this has been used to forecast sales of products

which have yet to be launched, through the use of information available from similar

products (Goodwin, Dyussekeneva, and Meeran, 2013). An alternative way of exploiting

analogies is to use Bayesian pooling approaches, such as the Cross-Sectional Multi-

State Kalman Filter (C-MSKF: Duncan, Gorr, and Szczypula, 1993; Duncan, Gorr, and

Szczypula, 2001), which requires a relatively small number of parameters. This method

borrows strength from groups of analogous time series to increase the accuracy of point

forecasts.
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Time series forecasting with respect to the demand of products or services often

needs to be robust in situations that are characterized by structural change (i.e. changes

to the trend of the time series), e.g., due to external influences such as the action

of a competitor. To deal with such situations, methods such as Exponential Smooth-

ing (Brown, 2004) and the Multi-State Kalman Filter (MSKF: Harrison and Stevens,

1971) have been developed, which revise model parameter estimates over time. Such

methods must compromise between two different needs, namely the responsiveness

to change and the accuracy of forecasts. By utilizing additional information from analo-

gies, the C-MSKF method combines the capability of the MSKF to yield accurate fore-

casts with a quick responsiveness to change. This approach has proven effective in

a number of challenging applications, such as forecasting of churn in telecommuni-

cation networks (Greis and Gilstein, 1991), infant mortality rates (Duncan, Gorr, and

Szczypula, 1995) and tax revenue (Duncan, Gorr, and Szczypula, 1993). The C-MSKF

can draw strength from the availability of multiple data points for the same time period,

across different analogous series, which lends it robustness with respect to outliers. In

general, C-MSKF has been said to show competitiveness over conventional time series

forecasting methods, such as the Damped Exponential Smoothing (Damped) meth-

ods, Exponential Smoothing (ETS), MSKF, the Naı̈ve Drift method (Drift), Random Walk

(RW) or the Theta model in situations that satisfy the following three conditions (Dun-

can, Gorr, and Szczypula, 1994; Duncan, Gorr, and Szczypula, 2001): (i) the number of

points that are suitable for extrapolation is small (either due to size or due to a structural

change); (ii) analogies are present across several time series; and (iii) at least three

observations are available after a structural change due to the impact of an external

influence. Finally, a key assumption behind C-MSKF is that time series that are classed

as analogous (i.e., that exhibit co-movement during the investigation’s estimation pe-

riod) do not frequently diverge in the forecasting periods. This requirement underlines

the importance of accurately determining analogies as the first step of the analysis.
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The homogeneity of the underlying set of analogous time series is fundamental for

the effectiveness of pooling approaches (Stimson, 1985). Previous research (Duncan,

Gorr, and Szczypula, 2001) has demonstrated that pooling across a homogeneous set

of time series gives superior forecasting accuracy to pooling across a heterogeneous

set. In this context, three general approaches have typically been considered to identify

analogies. These are correlational co-movement, i.e. the grouping of time series based

on the correlation between the time series patterns observed; the grouping of time

series using model-based approaches (Frühwirth-Schnatter and Kaufmann, 2008); and

the grouping of time series based on a set of causal variables associated with each

time series (Duncan, Gorr, and Szczypula, 2001). These different approaches reflect

the fact that time series data often comprise past realizations of the actual time series,

as well as additional knowledge regarding the factors that govern the behaviour of these

time series and are crucial to a clear understanding of causal relationships (Leitner and

Leopold-Wildburger, 2011; Webby and O’Connor, 1996).

Clustering based on time series patterns has been extensively investigated in the

field of pattern recognition, but existing approaches differ widely in the way features

of the time series are extracted (Liao, 2005). The most straightforward possibility is

the use of the raw data points, calculating e.g., correlation. However, previous work

such as Granger and Newbold, 1974 observed that clustering based on the correlation

between time series alone can be problematic for short time series, as temporary corre-

lations between time series may be spurious. More advanced approaches use feature

transformations to extract higher level features. For example, model-based clustering

approaches, which assume the existence of an underlying physical process, can be

powerful in differentiating overlaying time series by modeling time series using Box-

Jenkins ARIMA models (see e.g., Kalpakis, Gada, and Puttagunta, 2001). However,

estimating the parameters of the physical process requires the availability of a sufficient

number of historical data points, and model-based approaches are therefore unsuitable
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for the clustering of very short time series. In general, the performance of different ap-

proaches is highly dependent on the setting and purpose of the application considered.

When assessing analogies in terms of a set of static (explanatory) variables asso-

ciated with each time series, the feature representation is usually more straightforward,

although suitable distance measures are dependent on the data type. Yet, clustering

based on underlying causal factors alone may be affected by the inclusion of irrelevant

factors or the omission of relevant ones.

It is evident that characterization of analogies using either of the above approaches

will often provide a partial, approximate picture at best. Considering the nature of fore-

casting problems, we expect that clusters that share similarity in terms of their patterns

are valuable, as they open up opportunities to improve forecasting accuracy by exploit-

ing information from sets of similar time series. On the other hand, clusters that are

recognizably similar in terms of the values of hypothesized causal factors are useful, as

they may increase the robustness of the analysis and allow for an immediate interpre-

tation of the patterns found. The integration of these two information sources should

be valuable, as useful information can potentially be strengthened and noise specific to

each individual information source can potentially cancel out.

Furthermore, at an analytical level, there is existing evidence that segmentation

approaches that consider multiple aspects of clustering quality may yield more robust

discovery of data structure, or uncover more complex structures than single-criterion

clustering techniques (Handl and Knowles, 2007). There are some approaches that

have specifically investigated the combination of different (complementary) information

sources. Vriens, Wedel, and Wilms, 1996 developed a method to consider one crite-

rion at a time in a multi-stage manner. It was capable of producing clusters with a richer

interpretation, but they remained sub-optimal as information found in one stage was

shared with other stages in a sequential manner (Brusco, Cradit, and Stahl, 2002). For

some applications, one option may be the representation of both information sources in
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a single feature space, but this can be difficult because decisions on relative weighting

of information sources need to be made beforehand. Furthermore, this approach is not

possible if the distance functions suitable for the two information sources are different,

as is the case in our problem. An exact approach to bicriterion data clustering was

first proposed in Delattre and Hansen, 1980, which was specific to a particular pair of

clustering criteria. Ferligoj and Batagelj, 1992 described an approach to account for

clustering criteria defined with respect to different information sources. More recently,

multi-objective evolutionary algorithms were proposed as a more flexible approach that

can identify (or at least try to approximate) the full set of Pareto optimal solutions for

different choices of objectives (Handl and Knowles, 2007). A simpler way of combining

information sources is to combine multiple criteria using a weighted-sum approach (Br-

usco, Cradit, and Stahl, 2002; Brusco, Cradit, and Tashchian, 2003), which may be

done at the level of the objective or the distance function. Although this methodology is

not capable of identifying all Pareto optimal solutions, it has advantages in terms of its

simplicity, ease of implementation and time-complexity.

3.4 Multicriteria clustering for the forecasting of analo-

gous time series

In this section, we detail the elements of our proposed methodological framework,

which consists of three components. The first component corresponds to the seg-

mentation stage and is concerned with generating optimal clusters using a multicriteria

(weighted-sum) clustering approach. It clusters time series with a concurrent consider-

ation of time series and causal factor data, and generates a set of candidate partitions

that trade off the quality of fit to both information sources. The second component

employs a forecasting technique – here represented by the C-MSKF algorithm – that
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is capable of making use of pooled time series data. C-MSKF pools time series data

from the identified clusters to inform the forecasting of individual time series. The third

component provides suitable model selection. Our segmentation component produces

a set of candidate partitions, and further processing is required to identify a single most

promising grouping of analogies. We use a combination of internal cluster validation

and forecasting accuracy on historical hold-out data, to achieve this. In the following,

we describe the relevant methodology in full detail.

3.4.1 Distance measures for individual information sources

The selection of the most suitable distance measures for clustering generally de-

pends on the data types (e.g., continuous variables, categorical variables, etc) and

the particular application considered (Liao, 2005). Our approach permits the separate

selection of two distance functions that quantify the difference between time series in

terms of (i) the series of data points describing a primary variable of interest; (ii) an

additional vector representing levels of (one or multiple) causal factors associated with

each time series.

Concerning (i), we use dTSij to denote the distance between the series of data points

making up the time series i and j. Each time series is represented as a vector describ-

ing the values of a single variable of interest over time. We adopt a standard correlation-

based approach, in which the distance value dTSij between pairs of time series i and j

is calculated based on the correlation between these vectors. Specifically, the Pearson

correlation coefficient is defined as:

δTS(i, j) = 1−
T (∑

t
xitxjt)− (∑

t
xit)(

∑
t
xjt)√

(T (∑
t
x2
it)− (∑

t
xit)2)(T (∑

t
x2
jt)− (∑

t
xjt)2)

(3.1)
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Here t is the index of time t= 1,2, ...,T ; T is the number of time steps used for measur-

ing correlation; and xit and xjt represent the values of time series i and j at time t; The

dissimilarity matrix derived from the time series information is defined as DTS = (dTSij ),

and each element dTSij is calculated as dTSij = δTS(i, j).

Regarding (ii), we use the notation δCF (i, j) to refer to the distance function be-

tween the vectors of causal factor levels associated with time series i and j. In a

situation where the levels of all causal factors can be described on a ratio scale, the

squared Euclidean distance can be used to measure distance between the vector of

values associated with each time series. In this case, δCF (i, j) is defined as:

δCF (i, j) =
∑
m

(aim−ajm)2 (3.2)

Here aim and ajm represent the values of causal variable m associated with time se-

ries i and j, respectively, for m = 1,2, ...,M , and M represents the number of causal

factors. To eliminate scale differences, all variables are standardized using z-scores.

The dissimilarity matrix derived from causal variables is defined as DCF = (dCFij ), and

each element dCFij is calculated as dCFij = δCF (i, j).

Alternatively, where all causal factors are of a categorical nature, the Euclidean

distance may be replaced by the Hamming distance. The Hamming distance calculates

the number of places in which the values of two vectors differ, leading to the following

definition of δCF (i, j):

δCF (i, j) = #{m : aim 6= ajm,m= 1, ...,M} (3.3)

3.4.2 Combination of distance measures

To combine the two information sources, we deploy a weighted-sum method on the

standardized dissimilarity matrices. To achieve standardization (0-1 transformation), we
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update each element of the dissimilarity matrices as follows:

dCFij ←
dCFij −min(DCF)

max(DCF)−min(DCF)
(3.4)

dTSij ←
dTSij −min(DTS)

max(DTS)−min(DTS)
(3.5)

Subsequently, a new dissimilarity matrix can be defined as a weighted combina-

tion of these standardized dissimiliarity matrices.” Specifically, for a given choice of the

weight ω, each element in DMC
ω is obtained as follows:

dMC
ijω = (1−ω)×dCFij +ω×dTSij (3.6)

Separate dissimilarity matrices are obtained for values of ω=0 to 1 in steps of 0.10.

While this weighted-sum approach is limited in terms of its ability to reach all opti-

mal trade-off solutions, it creates flexibility in terms of the choice of clustering methodol-

ogy, as any clustering approach that works on a dissimilarity matrix can be employed.1

Here, we proceed by applying a standard clustering technique, namely PAM cluster-

ing (Kaufman and Rousseeuw, 2009). An advantage of this approach is its availability

in all standard software packages. Furthermore, this technique has a tendency to pro-

duce partitions consisting of equally-sized clusters, which we consider advantageous

in our application context. As this method can converge to local optima, we repeat the

clustering step 30 times and return the clustering solution which minimizes the sum of

within-cluster dissimilarities.

1Clustering methods that are not applicable here are those that operate directly in the feature space,
e.g., by using a centroid-based representation.
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3.4.3 Model selection

3.4.3.1 Selection of the number of clusters

We typically have no prior knowledge regarding the number of analogous sets

present in a given time series data set. Our approach therefore includes a model selec-

tion component that uses an automatic approach to the determination of the number of

clusters, based on the Silhouette Width.

The Silhouette Width is an established internal method of cluster validation that

assesses the quality of a partitioning based on its structure alone. In particular, it takes

into account elements of cluster cohesion and cluster separation.

More specifically, given a candidate clustering solution, the Silhouette value (Rousseeuw,

1987) for an individual data item i is defined as:

Sil(i) = bi− ci
max(ci, bi)

(3.7)

where ci denotes the average distance between i and all data items in the same clus-

ter, and bi denotes the average distance between i and all data items in the closest

other cluster, which is defined as the one generating the minimum bi. The Silhouette

Width (Rousseeuw, 1987) of the entire partition is then calculated as the mean Silhou-

ette value of all data elements. The resulting index can take values in the range [-1,1],

with a higher value reflecting a better partitioning.

In the context of our experiments, we apply the Silhouette Width as follows: As-

sume a data set contains N items and, it can be partitioned into k ∈ [3,9] clusters

by employing a clustering algorithm. The Silhouette values will be calculated for the

partitions resulting from all choices of k. The clustering solution with the largest mean

Silhouette value, and the associated optimal cluster number k∗, will be fed forward to

the forecasting stage.
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3.4.3.2 Weight selection

The use of a multicriteria clustering approach introduces an additional challenge for

model selection, as several different partitions may be obtained for the same number of

clusters. Specifically, in our analysis, we allow the weight ω to take 11 different values.

Given the choice of the number of clusters k∗ (determined using the Silhouette Width),

we may still face a choice of up to 11 different partitions that reflect different trade-offs

between the quality of fit with respect to the different information sources.

As discussed in Guyon, Von Luxburg, and Williamson, 2009, the success of clus-

tering is best assessed in the context of the overall success of a particular application.

In our scenario, the optimal ω∗ for the distance function dMC
ij should produce partitions

that yield the best forecasting accuracy of a given forecasting algorithm for relevant lead

time periods. We propose a simple methodology that aligns model selection with this

overarching aim: specifically, we apply C-MSKF to each set of analogies, and assess its

forecasting accuracy for the last in-sample time step. The partition producing the best

average forecasting accuracy for this time step is selected for the prediction of future

data points.

In this context, the measure employed to determine forecasting accuracy is the

Mean Square Error (MSE), which is given as:

MSE = mean(e2
t ) (3.8)

Here t indicates the forecasting time period, et =Xt−Ft, Xt is the observation of the

time series X at time t, and Ft is the respective forecast.
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3.4.4 Forecasting

In the forecasting stage, we employ the C-MSKF algorithm as our prediction method.

In brief, C-MSKF is a Bayesian pooling approach, which combines parameter estimates

from a univariate time series forecasting method (Dynamic Linear Model) with the pa-

rameter estimates derived from pooled data. The C-MSKF algorithm is an extension

of the MSKF with the Conditionally Independent Hierarchical Model (CIHM: Kass and

Steffey, 1989) using the DGS shrinkage formula (DGS’s shrinkage: Duncan, Gorr, and

Szczypula, 1993).

A full description of the C-MSKF algorithm is available in the literature (Duncan,

Gorr, and Szczypula, 1993) and a summary is included in the Appendix. The aim of

this paper is to demonstrate the advantage obtained by considering multiple sources

of information during the clustering stage. Specifically, we aim to demonstrate that the

resulting, more accurate, partitions lead to improvements in a pooling approach. Here,

C-MSKF was chosen as a representative example, but experiments with other types

of pooling approaches would be useful, and the general principles of our approach are

expected to generalize to other forecasting methods that exploit analogies.

In a forecasting context, the forecasting origin T denotes the most recent data point

used during model construction, while the forecasting horizon denotes the number of

time steps into the future that predictions are made. In our experiments, C-MSKF is

used to make forecasts for a range of prediction horizons. Specifically, for a given

forecasting origin T , the h-step ahead forecast (for h ≥ 2) is obtained by iteratively

updating C-MSKF using the forecasts obtained for the (T + 1), . . . ,(T +h− 1)th time

steps, and predicting the succeeding time point.
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3.4.5 Implementation

Our methods were implemented using a combination of R and Java. A full imple-

mentation is available through our repository at https://github.com/EmiaoLu/Analgoies

3.5 Empirical evaluation

3.5.1 Simulated data

For the initial testing of our methodology, simulated data sets are used. The advan-

tages of simulated data lie in the full control over the properties of the data; in our case,

it allows investigation into the algorithms’ sensitivity to time series length and noise.

A relevant real-world application, and results for this application setting, are presented

later in this manuscript, in Section 3.6. For the simulated data, we generate data rep-

resenting two information sources, i.e., time series data as well as information about

static variables (playing the role of causal factors) associated with each time series. We

use a fairly simple setup at this point.

For the time series data, we aim to generate a set of time series that are correlated

across an initial time interval but later display differing trend changes, due to an external

influence that is shared across sub-sets of analogous series. In particular, we use a

linear, logarithmic and piece-wise linear function, respectively, to describe these trend

changes as a function of time t. Conceptually, the linear model can be interpreted as a

time series that exhibits a stable increasing trend, while the logarithmic model reflects

a decreasing rate of growth. Finally, the piece-wise linear function reflects a pattern

change from a positive slope to a negative slope. The specific models used for these

three generating functions fg(t), g = 1,2,3, are defined as follows:

f1(t) = 0.8t+ 2.8, if 1≤ t≤ q (3.9)
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f2(t) = 4ln(t) + 2, if 1≤ t≤ q (3.10)

f3(t) =


0.7t+ 2.8, if 1≤ t≤ p

−0.9t+ 25, ifp+ 1≤ t≤ q
(3.11)

where parameter q defines the number of time points, and p defines the time of the

trend change for the piece-wise linear function.

To obtain a set of analogous time series from a given generating function, we added

normally-distributed noise to the trend at each time point.2 Specifically, the noisy time

series pattern Xit for time series i at time t, associated with generating function g, is

obtained as follows:

Xit =


fg(0) +N(fg(t+ 1)−fg(t),σ2

TS), if t= 1

Xi(t−1) +N(fg(t+ 1)−fg(t),σ2
TS), if 1< t≤ q−1

(3.12)

where g represents the choice of generating function. The notation N(µTS ,σ2
TS) de-

scribes a random variate drawn from a normal distribution with mean µTS and variance

σ2
TS ; here σ2

TS is static, but µTS changes over time and, for each time step t, is defined

by the slope of the generating function fg(t+ 1)−fg(t).

Using Equation (3.12), each generating function is used to obtain a set of I analo-

gous time series of length q− 1, exhibiting additive noise. An example of the resulting

time series data is shown in Figure 3.1, and it is evident that differentiation between

these series is challenging for earlier time intervals. Following Duncan, Gorr, and

Szczypula (1993), all time series are standardized individually using the z-score to im-

prove the CIHM cross-sectional adjustment and remove any scale differences between

clusters.

2This approach ensures the validity of a key assumption behind the C-MSKF algorithm which, due
to its base in Kalman Filters, assumes normally-distributed noise.
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Figure 3.1: Illustration of raw time series data generated from a linear, logarithmic, and
piecewise linear function.
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To obtain the second information source, we assume the presence of a single causal

factor that governs the differences in behaviour between the time series.3 In our sim-

ulated data, the ground truth (i.e., the nature of the generating model for each time

series) is known; this information could therefore be used to derive suitable (informative

but noisy) data for the causal factor. Specifically, the value of the causal factor for time

series i is drawn from the normal distribution N(µCF ,σ2
CF ), where µCF ∈ {1,2,3}

corresponds to the index g of the generating function fg(t), associated with time series

i (i.e., it takes value in 1, . . . ,3).

It is evident that the use of two information sources is superfluous in the absence of

noise in the individual information sources, and can only become beneficial in the pres-

ence of uncorrelated noise. To assess the impact of varying reliability of the different

information sources, we adjust the levels of σCF and σTS relative to each other (see

Table 3.1). Specifically, σCF is fixed at 0.35 while σTS is increased from 0.35 to 1.15 in

steps of 0.2.

All other parameters are kept constant in the experiments, and are summarized in

3While a single factor is used in our experiments, the methodology generalizes to a feature space of
arbitrary dimension (which may be categorical), as long as a suitable distance measure can be defined.
The core property modelled here is simply the availability of two different, incommensurable and noisy
feature spaces.
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Table 3.1: Standard deviation used to generate simulated time series and causal factor
data.

Scenarios σCF σT S

1 0.35 0.35
2 0.35 0.55
3 0.35 0.75
4 0.35 0.95
5 0.35 1.15

Table 3.2. The forecasting origin T is fixed at 17 throughout our analysis. This choice

allows for the observation of more than 3 data points after the trend change of the time

series, thus meeting one of the key assumptions behind the C-MSKF algorithm (see

Section 3.2). The parameter l (Length selection) reflects the fact that we systematically

drop the earliest historical points one at a time, while keeping the forecasting origin

fixed, to consider the effect of shorter time series.

Table 3.2: Constant parameters for the generation of simulated data

Parameter name Value
Forecasting horizon h=1, 2,. . . ,6
Forecasting origin T=17
Length selection l=12, 13,...,17
No. of time series in a group I=10
Total No. of time points q=24
Turning point p=14

Overall, the above setup is used to obtain a set of 30 replicates (i.e., 30 sets of 30

time series each), to support statistically sound analysis of the results.

3.5.2 Contestant techniques

Our primary aim here is to analyze and compare the forecasting accuracy of predic-

tion processes that employ analogies. We therefore define approaches based on the
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single-criterion clustering of causal factors (CF clustering), the single-criterion cluster-

ing of time series data (TS clustering) and the multicriteria clustering of both information

sources (MC clustering). The multicriteria approach is described in detail in Section 3.4.

The single-criterion approaches follow the same methodology, but differ in the choice of

dissimilarity matrix (defined in Equation (4) and (5), rather than Equation (6)). Further-

more, they do not require the additional weight selection step outlined in Section 3.4.3.2,

as a single partition is obtained for each choice of K.

In addition, we also benchmark our method against the basic MSKF algorithm

(which makes no use of analogies), as well as a number of standard univariate forecast-

ing approaches. Specifically, we employ Damped Exponential Smoothing (Damped),

Drift, Exponential Smoothing (ETS), Random Walk (RW), and the Theta model. Brief

details of these contestant techniques are provided in the Appendix. For the ETS

method, we employed the automated implementation in the forecast R package.

3.5.3 Performance evaluation

In analyzing our results, we consider both the accuracy of the segmentation stage

and the forecasting stage.

Forecasting error is evaluated using the Mean Squared Error, previously defined in

Equation (3.8). Additionally, we also employ the Symmetric Mean Absolute Percentage

Error, sMAPE (Bergmeir, Hyndman, and Benı́tez, 2016). This is slightly different from

the version described in Makridakis and Hibon, 2000, which makes no use of absolute

values in the denominator. This modified version can correctly account for situations

in which observations and forecasts have equal magnitude but opposite signs, and is

given as:

sMAPE = mean(200 |et|
|Xt|+ |Ft|

) (3.13)
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where all relevant variables have been defined previously (see Equation (3.8)). We

assess forecasting error by calculating the average MSE and sMAPE across different

prediction horizons, replicates, time series, and time series lengths. In order to provide

further insight, some of our results are broken up by key aspects that are found to

influence forecasting accuracy, specifically the noise scenario, the number of clusters,

and the prediction horizon.

The accuracy with which analogies are identified is expected to have an impact on

final forecasting accuracy. To evaluate the correctness of clustering solutions, we use

the Adjusted Rand Index (ARI: Hubert and Arabie, 1985), an established cluster valida-

tion index that evaluates the agreement between two different groupings. Specifically,

the ARI is employed to measure the consistency between each clustering solution and

the ground truth, as defined by the generating models for the time series.

Using a representation based on the L×K contingency table defined by two parti-

tions (of the same data) with L and K clusters, respectively, the Adjusted Rand Index

between the two partitions is given as

ARI =

∑
l,m

(Nlm
2 )− [∑

l
(Nl.
2 ) ·∑

k
(N.m
2 )]/(N2 )

1
2 [∑

l
(Nl.
2 ) +∑

m
(N.m
2 )]− [∑

l
(Nl.
2 ) ·∑

m
(N.m
2 )]/(N2 )

(3.14)

where N is the size of the data set, Nlm denotes the entry in row l and column m of

the contingency table (i.e., the number of data items that have been assigned to both

cluster l and cluster m), and Nl. and N.m represent row and column totals for row l and

column m of the table, respectively.

The ARI has been constructed so that the expected value of two random partitions

is 0, with the generalized hypergeometric distribution as the model of randomness. The

ARI takes a maximum value of 1 and an expected minimum value of 0, with higher

values indicating a closer match between the partitions considered. Values reported in

our analysis are averages across different replicates.
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Figure 3.2: Comparison of clustering accuracy between CF, TS, MC methods (without
weight selection) across different numbers of clusters. Data are generated using σCF =
0.35 and σTS = 0.35. The expected results are reported here by taking the mean over
30 sets of simulated data, and 6 time series lengths for each set.

a)

Figure 3.3: Comparison of forecasting accuracy after the implementation of CF, TS,
MC clustering methods (without weight selection) as the number of clusters sincreases
from 2 to 12 in steps of 2. The data are generated using σCF = 0.35 and σTS = 0.35.
The expected results are obtained by taking the mean over 30 sets of simulated data, 6
forecasting horizons, 30 series and 6 time series lengths (to facilitate comparison, the
y-axis is presented on a log-scale).

a) b)

3.5.4 Results

3.5.4.1 Preliminary experiments

Our initial focus is to understand whether better segmentation leads to improved

forecasting. For this purpose, we eliminate the complicating aspect of automatic model

selection (see Section 3.4.3), as this selection stage is likely to introduce additional

errors.

Specifically, we analyze performance of the model associated with the best final
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MSE for a given number of clusters. We consider a range of different choices of K (in

steps of 2)4. For each number of clusters, we report averages across a range of setups,

namely variations in time series length and forecasting horizon.

With respect to the clustering performance, measured by average ARI, our findings

(see Figure 3.2) show that, as may be expected, clustering performance decreases

for all three approaches, as the number of clusters increases significantly beyond the

ground truth. Yet, for the range of cluster sizes considered here, the MC clustering

shows a superior clustering performance to the single-criterion clustering approaches

(CF and TS clustering approaches) for the range from 3 to 8 clusters. This indicates

that this method continues to benefit from the use of two complementary information

sources, even in a scenario where the correct number of clusters is overestimated.

Comparing the forecasting results for C-MSKF based on the CF, MC and TS parti-

tions (see Figure 3.3), we observe that MC’s improved segmentation does translate into

improved forecasting accuracy, for both evaluation measures.

These results are promising, as they highlight that our approach has the ability to

generate better quality partitions and forecasts, in principle. Furthermore, the consistent

performance advantage across a range of cluster numbers demonstrates that perfor-

mance is not overly reliant on prior knowledge (or exact estimation) of the number of

clusters.

3.5.4.2 Performance comparison across different noise levels

Generally, the selection of best forecasting results, as done in the previous exper-

iment, is not feasible. In a practical scenario, use of the two model selection steps

outlined in Section 3.4.3 will typically be fundamental, both in order to reduce computa-

tional cost and to identify a single forecasting model in the absence of access to future

4Given the small scale of the data sets considered here, a maximum cluster size of 12 is employed,
as further increases would encourage the identification of singleton clusters. For such clusters, C-MSKF
will operate equivalently to MSKF, as no analogous series are available.
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forecasting accuracy.

Evidently, both model selection steps in our approach can be expected to cause

a drop in final forecasting accuracy, as additional room for error is introduced. How-

ever, the previous experiment indicates that performance is fairly robust with respect to

the number of clusters, hence automated weight selection is likely to present a more

problematic issue.

To explore the impact of automated weight selection in more detail, this section

contrast the results obtained after the first model selection step (MC, which continues to

select the weight for a given K by considering the best possible forecasting accuracy),

with a fully automatic approach, MCSilHist, that implements both of the model selection

steps outlined in Section 3.4. To provide context to these results, we compare to the

performance of CF and TS, MSKF and a range of established forecasting approaches.

Key results are presented and discussed in the following, but additional analysis (mean

and standard error of the difference for each pair of forecasting methods) is included in

the Appendix.

Table 3.3 demonstrates that MC clustering generally continues to produce the best

results (as established by MSE and sMAPE), after accounting for automatic K-selection

alone. The performance of the fully automated approach MCSilHist is more mixed: for

four out of five noise scenarios (specifically those scenarios where noise levels are not

excessive), this method outperforms the single-criterion approaches (CF and TS). On

the other hand, for the higher noise levels (S3, S4 and S5), MCSilHist is alternatively

outperformed by Damped, Drift or MSKF, pointing to limitations of our current weight

selection step in dealing robustly with the increasingly noisy nature of the time series

data.

Breaking up the results by prediction horizon (see Table 3.4), we can confirm the

consistent advantage of C-MSKF when employing partitions that have been generated
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based on multicriteria clustering (MC and MCSilHist), as compared to TS or CF clus-

tering. Only for the highest noise level is MCSilHist method outperformed by the single-

criterion CF approach, as the segments used in that approach remain unaffected by the

noise on the TS data.

In summary, our results on simulated data confirm the hypothesis that the integra-

tion of two information sources, at the segmentation stage, can improve the forecasting

accuracy of approaches that exploit analogies. This result holds even after the integra-

tion of automatic model selection. Importantly, this result relies on two key assumptions,

including reasonable noise levels for both information sources and the absence of cor-

relation of the noise across sources. If noise is either absent or damagingly high for

one of the information sources, MC can only be expected to reach the performance

achieved for the better of the single-criterion techniques.

Figure 3.4: Standardized time series of personal income tax in 208 counties in Mary-
land, New York, Ohio and Oregon State from 1994 to 2007.
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3.6 Forecasting real data: personal income liability tax

Revenue forecasting for local governments is an important topic in the field of public

budgeting research. It is regularly performed each fiscal year for the purpose of budget
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preparation and future planning of expenditure. In this section, we describe experiments

conducted on annual personal income tax liability, covering the time period 1994 to

2007. The data was collected from the US Department of Taxation for multiple states.

This type of forecasting task meets the conditions for the applicability of the C-MSKF

algorithm, as summarized in Section 3.3.

In total, tax liability data for four states (namely Maryland, New York, Ohio and

Oregon) is used, comprising a total of 208 counties. Note that two time series corre-

sponding to Baltimore city and Somerset County (Maryland State) are excluded from

the analysis as they show uncharacteristic income tax patterns, compared to all other

time series. The set of time series (after standardization) is presented in Figure 3.4

and shows that counties pertaining to different states exhibit different sensitivity to the

recession of the early 2000s (2001-2003) in the US. We can observe a small pattern

change (a general slight slope change) for counties in Maryland and Ohio, while Oregon

and New York show much bigger slope changes around this point in time.

3.6.1 Problem formulation

For the purpose of our analysis, the whole time period (1994-2007) is divided into

two parts. The first 11 time points (1994-2004) of the time series are regarded as

historical observations, while the hold-out forecasting period is defined to span 2005 to

2007. This choice is made to allow for more than 3 observations after the trend change

caused by the economic recession. Thus, as the main conditions for use of C-MSKF

are met, it is expected that C-MSKF may outperform conventional univariate time series

forecasting methods in this scenario.

In the US, income tax is positively correlated with GDP and local economy, but

also influenced by state-level policy. The particular patterns of income tax liability are

therefore expected to differ in terms of different federal states, i.e., state membership
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can be thought to represent a key driver behind differences in tax liability patterns. As

the state of origin can be expected to be a noisy predictor of trend alone, we expect time

series forecasting to benefit from the integration of all available data. In other words,

the fiscal variable (federal states) and the historical time series points are considered

as two separate information sources, which we aim to integrate using our multicriteria

clustering approach.

To define the set of causal factors, the state name is recorded as a categorical

variable associated with the time series of income tax liability, for each county. All other

aspects of the methodology follow the description previously provided in Section 3.4

and Section 3.5.

3.6.2 Results

Table 3.5 shows forecasting accuracy of different methods across the three relevant

prediction horizons. Additional analysis (mean and standard error of the difference for

each pair of forecasting methods) is provided in Table 3.11 in the Appendix.

In line with previous work (Duncan, Gorr, and Szczypula, 1993), the MSKF method

performs better than C-MSKF methods for the shortest forecasting horizon (1-step

ahead), but its performance decreases as the prediction horizon increases. Consid-

ering all 1-step forecasts, MSKF achieves the best performance among all of the candi-

dates, as measured by both average MSE and sMAPE. For the 2-step and 3-step ahead

forecasts, our MC-based C-MSKF method outperforms all other approaches, both with

and without automated model selection. In particular, the C-MSKF method using multi-

criteria clustering partitions outperforms the forecasting results obtained for the CF and

TS partitions across all forecasting horizons considered, suggesting that the segments

obtained are beneficial for forecasting.
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3.7 Conclusions

This paper considers the selection of analogies, using clustering, in the context of

time series forecasting. Specifically, we illustrate the sensitivity of a specific pooling

approach, C-MSKF, to the segmentation stage and outline a methodology that enables

the simultaneous consideration of multiple complementary information sources. Our

experiments illustrate that this approach has the potential to feed through to distinct

improvements in forecasting accuracy. The specific contributions of this manuscript are

as follows: (i) We propose the concept of multicriteria segmentation in the context of

forecasting analogous time series; (ii) We describe an automated approach to model

selection in this setting; (iii) We illustrate the potential of our approach in improving fore-

casting accuracy for short time series; (iv) We provide new insights into the relationship

between the accuracy of the segmentation stage and the performance of a forecasting

algorithm that makes use of analogies. The use of pooling approaches has been pre-

viously shown to be appropriate in applications involving short time series or significant

trend changes, and this is where we see the main applicability of our approach.

Our experiments using simulated data consider variations in relative noise levels of

the available information sources, and the resulting impact on the performance of fore-

casting. As expected, both single-criterion forecasting approaches show an increased

sensitivity to such variation, as compared to our multicriteria approach, which is flexible

in catering for changes in the reliability of the sources.

In the concrete real-world application considered here, causal factor information

(i.e., federal states) happens to carry a more reliable signal than time series information,

as evident from the performance of the CF and TS methods. In general, the relative

importance of the two sources is expected to vary by application domain, time series

length and the amount of domain knowledge applied in defining appropriate causal

factors. Exploring the impact of these factors in the context of other application areas
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presents an exciting area for future research.

In considering and varying the noise of different information sources, we have at-

tempted to highlight one of the key factors likely to affect the viability of our approach.

However, further benchmarking of our approach on other (simulated or real) data will

be useful to further understand its strengths and limitations. In this context, it may be

interesting to introduce varying levels of correlation into the noise models, to investigate

the sensitivity of the approach to this aspect.

Our experiments do highlight a remaining sensitivity of our model selection ap-

proach to increasing noise levels in the time series data. This is likely to be caused by

the fact that weight selection is currently achieved through the consideration of histor-

ical time series data and is thus directly affected by noise in this particular information

source. In future work, we will be investigating alternative approaches to automating

model selection.

Appendix. Paired comparison of approaches

To confirm the statistical significance of performance differences on the simulated

data, we break up the forecasting results by differences in the forecasting horizon (h-

step forecast with h = 1, . . . ,6) and time series lengths l = 12, . . . ,17. Every two fore-

casting methods are paired and the mean and standard error of the difference across

the replicates are presented in Table 3.6, 3.7,..., 3.10. In conclusion, the MC method

generally performs the best from scenario 1 to scenario 5, as measured by average

MSE and sMAPE, except for scenario 1 where MSKF outperforms MC method as mea-

sured by average sMAPE. Additionally, as σTS increases from 0.35 to 1.15, the perfor-

mance gap between MC’s forecasting accura and that of TS increases, and the same

conclusion also applies to MCSilHist and TS. Comparing the difference between CF

and MC-based forecasting methods, including MC and MCSilHist, the gap closes and
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eventually (for the highest noise setting) CF starts to outperform the MCSilHist cluster-

ing method, although it continues to perform worse than the MC method. This reflects

the fact that the noise levels of time series information sources has a negative impact

on MC’s model selection step which relies on the noisy time series data. From a the-

oretical perspective, the MC approach with optimal model selection should always be

able to meet or outperform the better performer amongst the CF and TS approaches.

Table 3.11 considers the significance of performance differences for the income

tax liability data. For these data, weight selection in the MCSilHist performs well in

picking up the final partitioning based on historical forecasting accuracy at time t =

11. Aggregating results for different horizons, we can identify that MC and MCSilHist

perform best among the contestant forecasting methods.
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Table 3.4: In-depth comparison of the impact of different segmentation methods on C-
MSKF’s forecasting accuracy on the simulated data, broken up by noise level (scenario)
and forecasting horizon ranging from 1 to 6. Shown are averages across 30 replicates
and 6 different time series lengths. The best performance obtained for each setting is
highlighted in bold face, with the second best performance highlighted in italic bold face.

Scenarios Methods h=1 h=2 h=3 h=4 h=5 h=6

Average
MSE

S1 CF 0.27 0.36 0.45 0.55 0.66 0.78
MC 0.08 0.11 0.14 0.17 0.20 0.24
MCSilHist 0.09 0.11 0.14 0.17 0.21 0.25
TS 0.09 0.12 0.15 0.19 0.22 0.27

S2 CF 0.45 0.57 0.71 0.89 1.08 1.27
MC 0.23 0.31 0.40 0.52 0.63 0.75
MCSilHist 0.25 0.35 0.47 0.64 0.81 1.00
TS 0.29 0.40 0.54 0.74 0.95 1.18

S3 CF 0.61 0.80 1.02 1.26 1.54 1.85
MC 0.37 0.52 0.70 0.87 1.06 1.27
MCSilHist 0.40 0.58 0.82 1.08 1.38 1.72
TS 0.51 0.73 1.02 1.36 1.73 2.15

S4 CF 0.83 1.06 1.35 1.68 2.05 2.44
MC 0.51 0.73 1.00 1.28 1.57 1.88
MCSilHist 0.59 0.85 1.20 1.61 2.05 2.53
TS 0.71 1.04 1.45 1.95 2.50 3.11

S5 CF 0.94 1.18 1.44 1.77 2.15 2.56
MC 0.66 0.91 1.17 1.48 1.82 2.17
MCSilHist 0.75 1.08 1.46 1.91 2.44 3.01
TS 0.92 1.38 1.86 2.43 3.08 3.81

Average
sMAPE
(%)

S1 CF 36.67 35.19 34.18 33.64 33.37 33.24
MC 23.23 21.68 20.65 20.06 19.68 19.49
MCSilHist 23.58 22.03 21.02 20.47 20.17 20.06
TS 24.19 22.66 21.69 21.16 20.87 20.77

S2 CF 48.32 47.20 46.35 46.07 45.90 45.82
MC 35.22 34.55 34.12 33.96 33.83 33.67
MCSilHist 38.35 37.62 37.30 37.39 37.59 37.75
TS 39.56 38.92 38.72 38.87 39.15 39.34

S3 CF 62.68 62.82 62.84 62.65 62.76 63.01
MC 49.46 50.32 50.15 49.66 49.57 49.44
MCSilHist 54.53 55.03 55.02 54.94 55.07 55.24
TS 57.24 58.43 58.88 59.04 59.33 59.60

S4 CF 69.10 68.68 69.02 68.70 68.59 68.43
MC 52.62 54.17 55.45 55.86 56.14 56.32
MCSilHist 58.38 59.56 60.95 61.60 62.23 62.70
TS 59.55 60.99 62.37 63.30 64.22 64.97

S5 CF 73.40 72.11 71.03 70.50 70.57 70.75
MC 60.10 61.17 61.23 61.38 61.59 61.68
MCSilHist 65.58 66.91 67.54 68.06 68.57 68.88
TS 68.80 71.37 72.74 73.64 74.55 75.39
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Table 3.5: Summary of forecasting results for the personal income tax liability data, bro-
ken up by forecasting horizon ranging from 1 to 3. For the MCSilHist method, the op-
timal weight is selected based on optimal (historical) forecasting accuracy, specifically
the best MSE achieved for the time step t = 11 (Year 2007). The best performance
obtained for each setting is highlighted in bold face, with the second best performance
highlighted in italic bold face.

Methods Average MSE Average sMAPE (%)
1-year 2-year 3-year 1-year 2-year 3-year

CF 0.45 0.82 0.89 27.13 30.78 30.59
Damped 0.69 1.08 1.58 36.45 37.75 41.77
Drift 0.48 0.82 1.22 30.23 32.41 36.30
ETS 0.74 1.29 2.04 40.55 44.10 50.98
MC 0.41 0.76 0.87 25.46 29.81 30.16
MCSilHist 0.41 0.76 0.87 25.46 29.81 30.16
MSKF 0.38 0.89 1.15 24.80 31.09 32.47
RW 0.63 1.13 1.87 34.10 37.88 45.51
Theta 0.74 1.18 1.77 36.69 38.18 42.85
TS 0.51 0.88 1.05 29.66 33.41 34.04
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Chapter 4

Model selection in multicriteria

clustering problems (paper 2)

4.1 Abstract

Multicriterion approaches partition objects into distinctive clusters by optimizing mul-

tiple criteria during the clustering procedure. The combination of various criteria poten-

tially supports the discovery of complex data structure that may not be identified through

single-criterion approaches. However, the use of multiple criteria raises additional is-

sues related to model selection: even for a given number of clusters, multicriterion

clustering approaches will potentially return a set of Pareto-optimal clustering solutions.

These solutions reflect trade-offs between conflicting criteria and are said to be incom-

parable as an improvement in one criterion can only be obtained at the expense of

another. Here, we develop various techniques to automatically determine a single par-

tition from a set of Pareto optimal solutions, and test our approaches in the context of

a forecasting problem that involves analogies. In particular, we propose a combina-

tion approach that employs the Silhouette Width technique for efficiently estimating the
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number of clusters, and determines the final partition based on the best historical fore-

casting results. Empirical analysis suggests the strong performance of this method and

confirms that the performance of a clustering solution is best assessed in a problem-

specific context, in our case forecasting of analogous time series.

Keywords: Analogy; Bayesian pooling; Kalman filter; Model selection; Multicriteria

clustering

4.2 Introduction

Multicriteria approaches to data clustering have received attention across a range of

different areas, including bioinformatics (Handl and Kell, 2006), biomedical science (Saha

and Bandyopadhyay, 2011), and market segmentation (Liu et al., 2010). These ap-

proaches have been developed to create clusters of objects by optimizing more than

one criterion during the clustering procedure. These approaches are promising as they

yield clustering solutions that trade off among multiple often conflicting criteria. Typi-

cally, individual criteria emphasize different aspects of the definition of clustering such

as connectivity or compactness of clusters. Methodologically, a multicriteria clustering

approach is capable of facilitating more robust discovery of data structure where this

cannot be accommodated by a single clustering criterion.

The use of multicriteria approaches to data clustering is advantageous as they might

facilitate a better recovery of the underlying data structure. However, they introduce ad-

ditional challenges related to the model selection step during the clustering procedure.

Model selection is a fundamental challenge in the field of data clustering. This is a

generic term that encompasses the identification of a suitable number of clusters, the

choice of model parameters, and the initialization of the clustering algorithm if required.

In single-criterion clustering problems, the major issue associated with the model selec-

tion is to determine the appropriate number of clusters. In particular, dissimilarity-based
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clustering algorithms such as partitioning methods and hierarchical clustering methods

all require the selection of the number groups in a single-criterion or multicriteria cluster-

ing context. The model selection problem is further complicated by the use of multiple

criteria during the clustering procedure, as for the same number of clusters the cluster-

ing algorithm might return a set of Pareto-optimal clustering solutions. These solutions

reflect trade-offs among various often conflicting criteria. Thus, the clustering Pareto

front contains all the partitions where one criterion can not improved at the expense of

another.

To our knowledge, a plenty of automatic methods have been developed in the clus-

tering literature to tackle the challenge of model selection, such as the Elbow method,

the Gap statistics and the Silhouette Width measure. However, little work has been

reported to investigate the effectiveness of these established measures in the context

of multicriteria clustering. A primary concern associated with the existing approaches

is that model selection is often carried out independent of problem-specific context.

Guyon, Von Luxburg, and Williamson, 2009 argued that the effectiveness of clustering

solutions is best evaluated by taking into account the overall performance of the appli-

cation. The idea behind this is in line with Parsons, Haque, and Liu, 2004, who declared

that there is no universal definition of clustering, but one might be more suitable than

another for a particular application. On account of this, it might be more meaningful and

promising to determine the final partitions by taking into account the application’s per-

formance. In summary, there exists limited work that provides systematic investigation

regarding the applicability of the existing model selection techniques in the context of

multicriteria clustering problems. More importantly, further work should be completed to

develop model selection methods that assess the performance of clustering solutions

with consideration of the final performance of the application.

In light of this, we consider the application of multicriteria clustering approaches in
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a forecasting context. Specifically, multicriteria clustering approaches have been pro-

posed to tackle the challenge of identifying analogies using multiple useful information

sources, i.e., time-based patterns as well as the causal factors that govern these pat-

terns. The concurrent consideration of multiple criteria during the clustering of analo-

gies has been reported to deliver more promising forecasting results. With the problem-

specific context, we aim to propose and analyze the effectiveness of various model se-

lection methods, which can take into account the application’s performance during the

process.

In summary, we divide our model selection techniques into two broad groups: appli-

cation independent as well as application dependent methods. Application independent

methods select the best performing clustering solution based on the highest quality

score, which is measured by the Silhouette Width measure. The model selection step

does not make use of the forecasting algorithm’s accuracy. In contrast, application de-

pendent techniques measure the quality of clustering solutions based on the overall

performance of the forecasting model. This explicitly takes into account the accuracy of

the forecasting method when determining the final partitions.

The rest of the paper is organized as follows. Section 4.3 revisits the literature con-

cerning the topic of model selection. Section 4.4 describes the main components of

the overall prediction process where multicriteria clustering approaches are employed.

Section 4.5 presents details regarding the model selection approaches investigated in

this paper. Section 4.6 discusses main findings derived from the experiments. Sec-

tion 4.7 concludes.

4.3 Previous research

The proliferation of clustering methods has been witnessed across various dis-

ciplines including finance, marketing, operational research and pattern recognition.
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Generically, the use of clustering approaches aims to help discover meaningful groups

that reveal the underlying structure of the data. The identified clusters of data objects

may further be employed to carry out a cluster-specific analysis.

Over the recent years, the development of multicriteria approaches to data clus-

tering has been reported to create new opportunities for overcoming the limitation of

traditional single-criterion clustering methods. These methods are useful for identifying

complex data structure with the consideration of multiple conflicting criteria. multicrite-

ria clustering approaches have been demonstrated to be powerful tools, which facilitate

the recovery of more robust data structures and create more natural groupings than

single-criterion clustering approaches (Handl and Knowles, 2004).

However, the application of multicriteria clustering approaches also cause additional

issues related to model selection. Model selection is inherently a fundamental and

complex problem in the clustering domain. It can comprise the tasks of variable stan-

dardization (Milligan and Cooper, 1988), variable selection (Steinley and Brusco, 2008),

choices of the number of clusters (Dimitriadou, Dolničar, and Weingessel, 2002). Nev-

ertheless, the major challenge related to model selection is the determination of the

appropriate number of clusters. As multiple criteria are optimized during the clustering

stage, for the same number of clusters, the clustering algorithm often returns a set of

Pareto-optimal solutions that correspond to trade-offs between often conflicting crite-

ria (Handl and Knowles, 2004). In fact, the quality of these Pareto-optimal solutions is

not directly comparable, as an improvement in one criterion is obtained at the expense

of at least one of the others. Practically, decision-makers are often required to select

only one best solution out of the set of Pareto-optimal clustering solutions for targeting

a cluster-specific problem. This is usually done by integrating domain knowledge from

the decision makers’ (e.g., Liu et al., 2010). Consequently, this can lead to problems

with regards to reproducibility and applicability of the model selection process.

In the clustering literature, some techniques have been developed to assist in the
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estimation of the number of clusters in traditional (single-criterion) clustering problems

in an objective manner. Most commonly, the existing techniques devote to minimiz-

ing distance-based dissimilarity measures within groups based on the internal cluster

validation techniques such as the Elbow methods (Sugar, 1999; Sugar, Lenert, and Ol-

shen, 1999) and the Silhouette Width measure (Rousseeuw, 1987). The Elbow method

determines the number of clusters by critically examining a graph of the percentage

variance explained as a function of the number of clusters. This method is easy to ap-

ply, but the performance can be unsatisfactory as the number of clusters becomes hard

to decide when the variance plateaus due to the weak clusterability of the data. The

Silhouette Width measure combines the notion of separation and cohesion of the clus-

tering solutions based on the internal data structure. This measure has been widely

used to score the quality of a clustering solution. A higher value indicates a better

clustering result. Similar to the Elbow method, the Silhouette Width technique also

assesses the global characteristics of the entire partitioning. Another well-established

method is the Gap statistic. This method standardizes the graph of log(Wk), where

Wk is the pooled within-cluster sum of squares around the cluster means. Specifically,

it makes a comparison between the log(Wk) and the expected value derived from an

suitable null reference distribution of the data. The value of k is chosen as the num-

ber of clusters corresponding to the point, where log(Wk) falls the farthest below the

reference curve. Later, Handl and Knowles, 2007 combined the Gap statistics with the

MOCK model to identify the most interesting clustering solution, namely “knee point”,

from a set of Pareto-optimal solutions. In essence, this technique analyzes the location

of solutions in objective space relative to a background of unstructured data.

Considering the “knee” concept (Bechikh, Ben Said, and Ghédira, 2010; Branke

et al., 2004; Das, 1999; Deb and Sundar, 2006; Mattson, Mullur, and Messac, 2004;

Rachmawati and Srinivasan, 2006), there have been some techniques proposed in the

multi-objective optimization literature. These optimization models are constructed by
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Figure 4.1: Illustration of the Pareto frontier
where Pareto-optimal solutions are highlighted in
red colour

optimizing multiple objectives at the same time. Often, multiple Pareto-optimal solu-

tions are produced during the optimization process, and these solutions reflect user

preferences concerning various criteria. The most interesting solutions of the Pareto-

optimal frontier (see Fig. 4.1) are those where a small improvement in one objective

might cause an evident degradation in another. Related to this topic, some evolutionary

optimization methodologies have been developed to find knee point(s) (Branke et al.,

2004; Deb and Sundar, 2006; Rachmawati and Srinivasan, 2006; Schütze, Laumanns,

and Coello, 2008).

To identify the knee point, Branke et al., 2004 proposed the enhanced angle-based

measure (a data-driven approach) in the context of multi-objective optimization prob-

lems. Their intensified version computes four angles between the individual xi and

its four nearest neighbors (xi−1,xi) and (xi, xi+1). These five individuals have to be

pairwise linearly independent. If no neighbor to the left or right is available, a vertical

or horizontal line is applied to calculate the angle, respectively. The largest of these

four angles then assigned to the individual. Individuals with a larger angle-measure are

preferred. The demonstration of the four angles is presented in Fig. 4.2. Potentially, the

angle-based measure could also be suitable to address the model selection challenge
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presented in multicriteria clustering problems.

In essence, all the existing methods discussed are application-dependent. These

techniques do not take into account the overall performance of the application. In

fact, there is no universally accepted definition of clustering. Some definitions may

be preferred than the others for certain problems (Parsons, Haque, and Liu, 2004). The

groupings discovered become more meaningful when the clustering is appropriately de-

fined from the perspective of the overall application. Again, supported by Guyon, Von

Luxburg, and Williamson, 2009, the authors declared that the effectiveness of clustering

is best assessed by taking into account the overall performance of the application.

a) b)

c) d)
Figure 4.2: Illustration of the intensified angle-
based measure. The standard version just cal-
culates a, the intensified version takes 4 neigh-
bors into account and assigns the maximum angle
among a,b,c,d to the individual investigated.

4.4 Forecasting analogous time series using multiple

criteria

In this article, we analyze the performance of different model selection methods

that address the problem of multicriteria approaches to data clustering. As discussed
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previously, the application’s performance is the key to the evaluation of different cluster-

ing solutions. Here, we demonstrate our problems in forecasting circumstances where

analogies are utilized during the forecasting stage. As discussed in (Lu and Handl,

2015), analogies are intrinsically better modeled using multiple information criteria. A

suitable way of doing this is to base our analysis on the methods with the performance

can be objectively evaluated. To satisfy the needs of the application, we locate our

study in a forecasting context where clustering methods are widely employed to identify

analogies. The concept of analogies has been widely applied in time series forecast-

ing for improving the forecasting accuracy (Armstrong, 2006; Green and Armstrong,

2007; Piecyk and McKinnon, 2010). According to (Duncan, Gorr, and Szczypula,

2001), analogies are commonly used for judgmental approaches (such as forecasting

by analogy) Hyndman and Athanasopoulos, 2014 to adjust statistical forecasts (Webby

and O’Connor, 1996). The consideration of analogies may reduce biases caused by

optimistic or wishful thoughts (Armstrong, 2001; Petropoulos et al., 2014). Moreover,

statistical methods have also been proposed to exploit information available from analo-

gies. The Bass model Bass, 1969 is a well-established method which forecasts sales of

products which have yet to be launched, through the use of analogous products (Good-

win, Dyussekeneva, and Meeran, 2013). Also, Bayesian pooling approaches, e.g., the

Cross-sectional Multi-state Kalman Filter (Duncan, Gorr, and Szczypula, 1993; Dun-

can, Gorr, and Szczypula, 2001) have been developed to integrate the information from

analogies directly into the stage of forecasting to improve the responsiveness of the

algorithm after a structural change caused by external influence while increasing the

accuracy of the point forecasts. As shown in previous work, this approach is promis-

ing as it requires a relatively small number of parameters and has been reported to

show strengths in challenging scenarios such as forecasting of churn in telecommuni-

cation networks (Greis and Gilstein, 1991), infant mortality rates (Duncan, Gorr, and

Szczypula, 2001) and tax revenue (Duncan, Gorr, and Szczypula, 1993).
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This paper aims to analyze the model selection problem lies in multicriteria cluster-

ing in the context of forecasting. Hence, we base our analysis on the prediction method

that exploits information from analogies. Typically, multicriteria clustering approaches

can be employed to identify such analogies, and it becomes suitable for analyzing the

model selection challenges in this context. Generally, the whole analytical process

examined comprises three main elements: (i) the clustering of analogies using a mul-

ticriteria approach with a weighted-sum method; (ii) the implementation of a suitable

forecasting algorithm that pools information from the previously identified analogies; (iii)

a further step of selecting a most preferred partitioning out of sets of clustering candi-

dates.

4.4.1 Combination of multiple information sources

According to (Lu and Handl, 2015), the optimal identification of analogies should

consider the concurrent use of various information sources: the past realizations of time

series as well as the factors that are associated with the patterns observed. Multicriteria

approaches to the clustering of analogies have shown a promise for recovering

The improved homogeneity of analogies is reported to feed forward into improved

forecasting accuracy. Specifically, we implement the idea of combining these two infor-

mation sources using multicriteria clustering approaches with a weighted-sum method

at the distance function level.

For the clustering of causal variables, the squared Euclidean distance is used to

measure the distance between the sets of values associated with each pair of time

series. Specifically, we denote this distance measure as δCF (i, j), i and j are two dif-

ferent time series, and the equation for calculating the distance is presented as follows:

δCF (i, j) =
∑
m

(aim−ajm)2 (4.1)
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where dCFij = δCF (i, j); aim and ajm represent the value of causal variable m as-

sociated with time series i and j; m = 1,2, ...,M , where M represents the number

of causal factors, respectively; the dissimilarity matrix DCF = (dCFij ); To eliminate any

scale differences, the z-score method is deployed to standardize the causal variable.

Additionally, the similarity between time series is measured based on raw observa-

tions, namely the Pearson correlation coefficients. Each object is described as a vector

that the values varies over time, and the distance dTSij between pairs of time series i

and j is calculated based on the correlation between these vectors. The formulae of

Pearson correlation coefficients are given as:

δTS(ij) = 1−
T (∑

t
xitxjt)− (∑

t
xit)(

∑
t
xjt)√

(T (∑
t
x2
it)− (∑

t
xit)2)(T (∑

t
x2
jt)− (∑

t
xjt)2)

(4.2)

where dCFij = δTS(ij); dTSij are elements of the dissimilarity matrix DTS; t is the index

of time (t = 1,2, ...,T ), and T is the number of time steps; xit and xjt describe the

values of time series i and j over time, respectively.

For the multicriteria clustering approach, we integrate the two information sources

at the distance function level using a weighted-sum method on the standardized dis-

tance values. The standardization technique (transforming data into the range [0,1])

implemented for updating each element of the dissimilarity matrices is presented as

follows:

dCFij ←
dCFij −min(DCF)

max(DCF)−min(DCF)
(4.3)

dTSij ←
dTSij −min(DTS)

max(DTS)−min(DTS)
(4.4)

Ultimately, the distance function of dMC
ijω through a weighted-sum method is then

given as:
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dMC
ijω = (1−ω)×dCFij +ω×dTSij (4.5)

where the relative weight ω ranges from 0 to 1 in steps of 0.10; A new dissimilarity

matrix is formed based on the integration of two information sources at the distance

function level DMC
ω = (dMC

ijω ).

4.4.2 Clustering algorithm

Here, we employ the Partition Around Medoids (PAM) clustering algorithm (Kauf-

man and Rousseeuw, 2009) to partition the time series into distinctive groupings. PAM

clustering is a standard clustering approach based on medoids. More important, this

algorithm has been reported to be suitable for the clustering of analogies in the forecast-

ing context, as PAM clustering tends to produce partitions consisting of equally-sized

clusters (see (Lu and Handl, 2015)). This property is considered advantageous in the

application of forecasting. To minimize the negative impacts of converging to local op-

tima, we repeat the clustering procedure 30 times and select the clustering result with

the minimum sum of within-cluster dissimilarities.

4.4.3 Determination of the number of clusters

For dissimilarity matrix-based clustering methods, a major challenge related to model

selection is the determination of partitions. One main step involved in either single-

criterion or multi-criterion clustering procedures is to determine the number of clusters.

Here, we employ a popular internal validation technique to facilitate an automatic de-

termination of the number of clusters, namely the Silhouette Width measure (Kaufman

and Rousseeuw, 2009). This Silhouette Width has been widely applied in the cluster-

ing field to score clustering solutions based on the internal data structure. This metric
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evaluates the quality of a clustering solution by considering both the cluster cohesion

and separation. The Silhouette Width takes value in the range [-1,1], with a larger value

representing a better solution. The formulae are presented as follows:

Sil(i) = bi− ci
max(ci, bi)

(4.6)

where ci is the average distance between item i and all data items in the same partition;

bi describes the average distance between i and all data items in the closest another

cluster. This is defined as the clustering solution, which returns the minimum bi. The

Silhouette value of the entire partition is then calculated as the mean Silhouette value

of all data items.

This measure is adequate to assist in the estimation of the number of clusters.

However, it still leaves a question unresolved where a multicriteria clustering approach

can return a set of Pareto-optimal clustering solutions for the same number of clusters.

These Pareto-optimal solutions are essential incomparable as an improvement in one

criterion may degrade the performance of another. On account of this, a range of tech-

niques are proposed in Section 4.5.2 to complement the determination of the partitions.

4.4.4 Forecasting algorithm

To demonstrate the model selection problem in the context of forecasting, we pro-

ceed our analysis by employing a well-established forecasting algorithm: the Cross-

Sectional State Kalman Filter algorithm (C-MSKF: Duncan, Gorr, and Szczypula, 1993;

Duncan, Gorr, and Szczypula, 2001). The employment of a forecasting algorithms aims

to provide objective assessment for model selection methods using the same multicri-

teria clustering procedure.

This algorithm is designed to exploit information from analogies that can be ob-

jectively identified using multicriteria clustering approaches. Analogies are commonly
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present in the context of forecasting. For instance, a set of products may fall into a group

due to the same sphere of influence, similar consumer preferences, or local trends.

These time series are typically co-vary and are thus positively correlated over time.

By integrating information available from analogies, the C-MSKF method is a Bayesian

pooling method that has been proposed to forecast short and volatile time series. The

C-MSKF method has shown to be a powerful tool in tackling challenging forecasting

scenarios, such as churn on a telecommunications network (Greis and Gilstein, 1991),

infant mortality rates (Duncan, Gorr, and Szczypula, 2012) and tax revenue (Duncan,

Gorr, and Szczypula, 1993). Analytically, The C-MSKF algorithm is an extension of the

Multi-State Kalman Filter (MSKF: Harrison and Stevens, 1971) with the Conditionally

Independent Hierarchical Model (CIHM: Kass and Steffey, 1989) using the DGS shrink-

age formula (DGS’s shrinkage: Duncan, Gorr, and Szczypula, 1993). The use of addi-

tional information extrinsic to the time series data improves the responsiveness to the

changes caused by an external influence (Duncan, Gorr, and Szczypula, 1994; Dun-

can, Gorr, and Szczypula, 2001), e.g., such as the action of a competitor. The C-MSKF

can draw strength from the availability of multiple data points for the same time period,

across different analogous series, which lends it robustness to outliers. For reference,

a full interpretation of the C-MSKF algorithm is available in the literature (Duncan, Gorr,

and Szczypula, 1993) and full syntax implemented in Fortran language for the algorithm

refers to Duncan, Gorr, and Szczypula, 2012.
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4.5 Empirical evaluation

4.5.1 Simulated data

To demonstrate our ideas, we model two information sources (criteria) using simu-

lated data: specifically, the time series patterns as well as the causal factors character-

ize the patterns observed.

The the first information is derived from time-based patterns. we use a couple of

mathematical functions to describe the patterns of time series. Specifically, a linear,

logarithmic and piece-wise linear function are applied to describe the trend changes

as a function of time t. Ultimately, we aim to generate a set of time series that are

correlated at an initial time point but later present different trend changes. We assume

that the trend changes are caused by an external influence and shared across sub-

sets of analogous time series. Principally, the linear function describes a time series

that presents a stable increasing trend. The logarithmic model shows a time series

with decreasing increasing rate in the trend. In essence, both functions do not capture

sudden pattern changes. The piece-wise linear function can be interpreted as a time

series showing a slope change from positive to negative due to an external influence

occurring at time p. Specifically, fg(t) denotes the function used for simulating a time

series and g = 1, . . . ,3 indicates the choice made for using a linear, logarithmic and

piece-wise linear function, respectively. The equations are given as follow:

f1(t) = 0.8t+ 2.8, if 1≤ t≤ q (4.7)

f2(t) = 4ln(t) + 2, if 1≤ t≤ q (4.8)

f3(t) =


0.7t+ 2.8, if 1≤ t≤ p

−0.9t+ 25, if p+ 1≤ t≤ q
(4.9)
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where q refers to the number of time points for a time series; p refers to the time of the

trend change for the piece-wise linear function.

Based on the above functions, a group of analogous series are generated by adding

normally-distributed noise at each time step. The normal distribution is considered in

order to meet the assumption of Kalman Filters. Specifically, the noisy time series

pattern Xit for time series i at time t, associated with generating model g, is obtained

as follows:

Xit =


fg(0) +N(fg(t+ 1)−fg(t),σ2

TS), if t= 1

Xi(t−1) +N(fg(t+ 1)−fg(t),σ2
TS), if 1< t≤ q−1

(4.10)

where g is the choice of generating function. The notation N(µTS ,σ2
TS) describes a

random variate drawn from a normal distribution with mean µTS and variance σ2
TS .

here σ2
TS is constant, but µTS changes over time and, for each time step t, is defined

by the slope of the generating function fg(t+ 1)−fg(t).

Using Equation (4.10), each generating function is used to obtain a set of I analo-

gous time series of length q− 1, exhibiting additive noise. An example of the resulting

time series data is shown in Fig.4.3, and it is evident that differentiation between these

series is challenging for earlier time intervals.

Finally, all time series are standardized using the z-score method to improve the

CIHM cross-sectional adjustment and remove any scale differences between clusters.

To obtain the second information source, we assume the presence of a single causal

factor that governs the differences in behavior between the time series. In our simulated

data, the ground truth (i.e., the nature of the generating model for each time series) is

known; this information could, therefore, be used to derive suitable (informative but

noisy) data for the causal factor. Specifically, the values of the causal factor for time
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Figure 4.3: Illustration of simulated time series (raw data) gener-
ated from a linear, logarithmic, and piecewise linear function

series i is drawn from normal distributions N(µCF ,σ2
CF ), where µCF corresponds to

the index g of the generating function fg(t), associated with time series i (i.e., it takes

value in 1, . . . ,3).

It is evident that the use of two information sources is superfluous in the absence of

noise in the individual information sources, and can only become beneficial in the pres-

ence of uncorrelated noise. To assess the impact of varying reliability of the different

information sources, we adjusted the levels of σCF and σTS relative to each other (see

Table 4.1). Specifically, σCF is fixed to 0.35 while σTS is increased from 0.35 to 1.15 in

steps of 0.2.

Table 4.1: Standard deviation used to
generate simulated causal variables and
time series data

Scenarios σCF σT S

1 0.35 0.35
2 0.35 0.55
3 0.35 0.75
4 0.35 0.95
5 0.35 1.15

All other parameters are kept constant in the experiments, and are summarized
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below.Specifically, we fix the forecasting origin at t = T throughout our analysis. The

parameter T is chosen to allow for more than three observations after the trend change

of the time series, thus meeting one of the key assumptions behind the C-MSKF al-

gorithm. The parameter Length selection reflects the fact that we systematically drop

the earliest historical points one at a time, while keeping the forecasting origin fixed, to

consider the effect of shorter time series. Overall, the above setup is used to obtain a

set of 30 replicates (i.e., 30 sets of causal factor and time series datasets).

Table 4.2: Constant parameters for the generation of simulated data

Parameter name Value
Forecasting horizon h=1, 2,. . . ,6
Forecasting origin T=17
Length selection l=12, 13,...,17
No. of time series in a group I=10
Total No. of time points q=24
Time of change p=14

4.5.2 Compared model selection methods

In this section, we focus on detailing the model selection methods proposed in this

article to pick up a single best clustering solution in the context of multicriteria cluster-

ing problems. We sub-divide the model selection methods into two categories: (i) The

selection of the best partitioning based on internal data structure of the data, and this

is assessed using internal validation index, the Silhouette Width (Sil); (ii) The selection

of the best partitioning takes into account of the application context (forecasting accu-

racy). In the following, we present details of different approaches compared in the ex-

periments. For contrasting purpose, we benchmark multicriteria clustering approaches

on single-criterion clustering approaches and multicriteria clustering approaches with

prior knowledge of model selection.
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4.5.2.1 Benchmarks

In general, four models are used as benchmarks here. Specifically the single-

criterion clustering of causal factor (CF), the single-criterion clustering of time series

data (TS), and the multicriteria clustering on both information sources using a weighted-

sum method (MC). For these three methods, the Silhouette Width measure is employed

to determine the number of clusters. In addition to this, MC clustering additionally se-

lects the weight interval using the smallest forecasting errors on the lead time period

(t = T + 1, . . . ,H). This assumes a aprior regarding the weight selection. Further-

more, we consider a situation, where both the optimal number of clusters (K = 3) and

the weight interval (using the best performance on lead time period t = T + 1, . . . ,H)

are known, namely MCThreeMin method.

4.5.2.2 Application-independent model selection approaches

• Angle-based approaches, denoted by MCAngles

To score different clustering results, the Silhouette Width measure is employed by

considering the specified K and weight interval ω. In a two-dimensional space, clus-

tering solutions within the range considered are demonstrated in Fig. 4.4. This figure

shows the Silhouette scores on clustering solutions, generated by multicriteria cluster-

ing approaches, that are projected to a single dissimilarity matrix derived from the CF

(x-axis) and TS (y-axis) clustering, respectively. Specifically, the Silhouette Width mea-

sure determines a suitable number of clusters from a range of k = 2, . . . ,6 and ω takes

value from 0 to 1 with an increment of 0.1. For example, partition 1 refers to a clustering

solution that takes K = 2 and the ω = 0. Clustering solutions plotted on the Pareto front

are highlighted in black color. These partitionings are considered as Pareto-optimal so-

lutions, as they show different trade-offs between the CF and TS information criteria.

Further to select a single most promising solution out of the Pareto-optimal solutions.
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The angle-based measure is applied to the pre-selected clustering candidates in the

second step. Details regarding the angle-based method can be found in Section 4.3.

Figure 4.4: Illustration of Pareto-optimal clustering solutions on efficient
frontier. k = 2, . . . ,6 and ω takes value from 0 to 1 in steps of 0.1, and the
clustering solutions are sequentially numbered from 1 to 55, correspond-
ingly, for the purpose of illustration.

Here, similar to MCParetoHist and MCParetoTest methods (will be discussed later),

MCAngles incorporates the concept of Pareto-optimality in the modelling process. As

studied in optimization literature, one way to find good solutions is to find the Pareto

optimal front (Baumgartner, Magele, and Renhart, 2004). By definition, Pareto-optimal

solutions refer to those that cannot be improved in one objective at the expense of

others. For stochastic clustering approaches, different choices of model parameters

and random initialization might result in differing nondominated clustering solutions on

Pareto-front. The resulting clustering solutions are considered Pareto-optimal in one

run might become inferior in another run, and thus lead to different forecasting results.

In contrast, clustering procedures (e.g., Hierarchical clustering) that are determinis-

tic may give rise to the same forecasting results in different run. Nevertheless, as

stressed in Section 4.4.2, we implement PAM clustering in our experiments for the sake
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of equal-sized clustering, which is found to be more beneficial to the final forecasting

performance.

• Variates of quality scores, denoted by MCMaxMax, MCMaxMin, MCMaxSum

For this class of methods, we develop variations on the calculation of the quality

scores using the Silhouette Width measure. Specifically, each clustering solution takes

the number of clusters k = 2, . . . ,N with ω from 0 to 1 in steps of 0.1. Partitionings

using the two parameters are scored by Silhouette Width measure taking into account

of the CF and TS information sources independently. To be specifical, the quality scores

are computed on the dissimilarity matrices DCF and DTS, respectively. Specifically, for

each clustering solution, the maximum value measured on DCF and DTS is chosen first

and proceed by taking the maximum Silhouette value across clustering solutions for

MCMaxMax. MCMaxMin takes the minimum quality score, Silhouette values, for each

solution while MCMaxSum takes the sum of quality scores for each solution.

• Clustering solutiones with the largest average Silhouette values, denoted by

MCSilSil

MCSilSil describes a sequential procedure that determines the number of clusters

using the largest mean Silhouette value in the first step and subsequently picks up a

single best partitioning for the same number of groups with the largest mean Silhouette

values across weight intervals, ω from 0 to 1 in steps of 0.1.

4.5.2.3 Application-dependent model selection approaches

For the second category of model selection methods, we choose the best weight in-

terval using the best historical average forecasting performance. The questions raised

by this strategy involves the choices of the number of data points used for weight se-

lection; further question regarding whether the data points used in the weight selection
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should be included in the clustering. Therefore, two generic type of methods are pro-

posed to answer the above questions.

To measure the forecasting results, the Mean Square Error (MSE) measure is ap-

plied throughout the paper to calculate the forecasting errors. The MSE is calculated

as follows:

MSE =mean(e2
t ) (4.11)

where t is the time step, et = Xt−Ft, Xt is the observation of the time series X at

time t, and Ft is the respective forecast.

• Clustering solutions with the best average historical forecasting performance,

denoted by MCSilHist, MCSilTest

MCSilHist determines the number of clusters K based on the largest mean Silhouette

value in the first step. For the same number of clusters, a single best partitioning (ω∗)

producing the best average historical forecasting results is chosen for the prediction of

future data points in the weight selection step. More specifically, the forecasting origin

t = T is used to support model selection in this part of the analysis, and observations

on time steps t≤ T are used during the clustering step.

• Clustering solutions with the best historical forecasting results, denoted by

MCSilTest

MCSilTest approach again uses the Silhouette Width measure to determine the num-

ber of clusters in the first step. Subsequently, the average historical forecasting per-

formance at time step t = T is used for weight selection. Different from MCSilHist,

observations on t < T period are used for clustering. The data points used for weight

selection are excluded during the clustering stage.
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• Selecting the partitions based on the best average historical forecasting per-

formance out of sets of Pareto-optimal solutions, MCParetoHist, MCParetoTest

The idea of MCParetoHist methods is to choose the best partitioning out of a set of

Pareto-optimal clustering solutions based on average historical forecasting results. The

Silhouette Width measures are employed by considering the specified K and weight

interval ω. Specifically, the Silhouette Width measure determines a suitable number of

clusters from a range of k considered and ω takes value from 0 to 1 with an increment

of 0.1. Pareto-optimal clustering solutions are obtained in the first step, and the same

procedure is applied to get the best performing clustering solution that produces the

best average historical forecasting results. The second step is the same as described

in MCSilHist.

4.5.3 Performance evaluation

To measure the bias of various forecasting models, Mean Error (ME) is used to

measure the forecasting results.

ME =mean(Xt−Ft) (4.12)

where all variables retain the same meaning as Equation 4.11.

To measure the forecasting accuracy, two well-known accuracy measures are ap-

plied, including the Mean Absolute Scaled Error (MASE: Hyndman, 2006) and the Sym-

metric Mean Absolute Percentage Error (sMAPE: Bergmeir, Hyndman, and Benı́tez,

2016), respectively.

MASE =mean(
∣∣∣∣∣ et

1
T−1

T∑
i=2
|Xi−Xi−1|

∣∣∣∣∣) (4.13)
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sMAPE =mean(200 |et|
|Xt|+ |Ft|

) (4.14)

where T refers to the forecasting origin and the rest variables retain the same meaning

as Equation 4.11.

For the purpose of assessing the performance of clustering results, we use external

criterion: the Adjusted Rand Index (ARI: Hubert and Arabie, 1985) to measure the

agreement between the produced clustering results and respective “ground truth”, as

defined by the generating function for each time series. The ARI takes the largest

value of 1 and an expected smallest value of 0, with larger values representing a better

consistency between the ground truth and the clusters generated.

Based on the L×K contingency table, the ARI defines two clusters (of the same

data) with L and K clusters respectively. The Adjusted Rand Index between the two

clusters is computed as follows:

ARI =

∑
l,m

(Nlm
2 )− [∑

l
(Nl.
2 ) ·∑

k
(N.m
2 )]/(N2 )

1
2 [∑

l
(Nl.
2 ) +∑

m
(N.m
2 )]− [∑

l
(Nl.
2 ) ·∑

m
(N.m
2 )]/(N2 )

(4.15)

where N is the size of the data set, Nlm denotes the entry in row l and column k of

the contingency table (i.e., the number of data items that have been assigned to both

cluster l and cluster m), and Nl. and N.m represent row and column totals for row l and

column m of the table, respectively.
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4.6 Results

4.6.1 Demonstration of the evaluation of the clustering performance

in the context of application

In Fig. 4.6, we present figures derived from the experiments that illustrates the clus-

tering quality measured by agreement between clusters and “ground truth” using the

average ARI. Some clustering solutions (e.g., Partitions 1, 23) show significant drops

in clustering quality, although are identified as Pareto-optimal clustering solutions in

Fig. 4.5. Considering the data structure alone, solutions generated from CF cluster-

ing might be highly scored by the Silhouette Width measure. However, CF information

might contribute much less than TS information source with respect to the final fore-

casting results when implementing MC clustering. This figure indicates that a highly

scored or Pareto-optimal clustering solutions do not necessarily give rise to satisfac-

tory forecasting results since the statistical measure used can be insufficient and less

informative in a forecasting context. Furthermore, we also present the illustrating of

a model selection based on the clustering quality alone. Fig.4.7 illustrates the perfor-

mance of clustering solutions that maximize the average Silhouette Width values at the

stage of the selection of the number of clusters and weight selection, basically MCSilSil.

Comparing Fig.4.7 to Fig. 4.5, clustering solution 45 and 46 are identified as the best

performing solutions in Fig.4.7, but translates to poorer forecasting results than those

of partitionings 6-11.

In summary, Fig. 4.5, Fig. 4.6 and Fig. 4.7 illustrate the idea that the performance

of clustering solutions are associated with the performance of an application. However,

it should be best assessed in the context of the application.
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Figure 4.5: Partitionings integrate the information, using a weighted-sum
method, derived from causal factors and time series patterns. Each parti-
tioning is scored based on the Silhouette values projected on the dissimi-
larity matrix of an individual information source.

4.6.2 Assessing the historical forecasting performance of C-MSKF

for model selection

Explicitly, there are two questions to be addressed for picking the weight using his-

torical forecasting results: (i) How many data points should be used for model selection;

(ii) Should the time steps used in the model selection step be included in the clustering

procedure? Here, we address these two questions by varying e number of data points

and change the strategy of utilizing these data points in the clustering procedure.

In summary, four model selection methods are compared and these are MCParetoHist,

MCParetoTest, MCSilHist and MCSilTest approaches. Tables 4.3, 4.4, 4.5, 4.6 contrast

forecasting accuracy of C-MSKF on model selection approaches that make use of his-

torical forecasting accuracy in the model selection step. The forecasting accuracy is

calculated by taking the average, minimum, maximum, median value across 30 sets of

replicates, 6 time series lengths, and 6 forecasting horizons. Here, we compare two
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Figure 4.6: Partitionings are compared to the “ground truth” based on the
average ARI. These partitionings are further scored based on the forecast-
ing results measured by MSE.

Figure 4.7: Partitionings are determined using the largest mean Silhouette
values for estimating the number of clusters as well as the largest mean
Silhouette values for the subsequent weight selection.
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strategies for determining the number of data points in the clustering step. This aims

to answer the second question proposed in this section. Considering the MCSilHist

and MCParetoHist approach, we systematically add a historical observation one at a

time into the model selection as e (the number of successive time steps) increases

from 1 (t = T ) to 3 (t = T − 2,T − 1,T ). Here, observations at time t ≤ T are con-

sistently used during the clustering regardless of the change in e. While for MCSilTest

and MCParetoTest, we vary e, the number of data points, used for model selection and

where e varies from 1 to 3 (t= T ) to 3 (t= T −2,T −1,T ). Correspondingly, the data

points used for model selection vary from t < T , t < T −1 to t < T −2,correspondingly.

As shown in Tables 4.3, 4.4, 4.5, 4.6, ME measure shows limited capability in differ-

entiating the C-MSKF’s accuracy across model selection methods compared. Based on

average ME and median ME, we can see that negative results are reported in scenarios

1 and 3, while positive results are reported in scenarios 2, 4 and 5. In brief, a slightly

higher proportion of the forecasting results shows positive bias in average or median

value of the accuracy measures considered. For minimum ME and maximum ME, fore-

casts are found to be strongly negatively biased and positively biased from scenario

1 to 5. Overall, MCSilHist methods show the consistenly best forecasting accuracy

across different scenarios 1-5 and this is demonstrated in Tables 4.3, 4.4 and 4.6. In

Table 4.5, Max ME shows unclear tendency to the best performing models whilst Max

MSE presents a consistent better forecasting accuracy on the MCParetoHist method.

However, Max MASE and sMAPE present the first and second best performing results

on methods of MCSilHist.

Regarding the clustering accuracy, the MCParetoHist methods demonstrate the best

clustering accuracy in Tables 4.3, 4.4, 4.6. Table 4.5 presents ARI value of 1 across

majority of scenarios and methods (50 out of 60). This implies that maximum ARI is not

able to differentiate clustering performance among the methods discussed here.
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In summary, based on ME methods, there is no clear conclusion can be drawn re-

garding the tendency of over- or under-forecast performance of MCSilHist, MCSilTest,

MCPartoHist and MCParetoTest methods across all scenarios. Min ME intends to yield

negative bias, as the minimum forecasts across 30 replicates, 6 time series lengths,

6 forecasting horizons are consistently smaller than the actual observations. On the

contrary, max ME presents consistently positive bias across all scenarios 1 to 5. In

terms of the forecasting accuracy, the MCSilHist method helps to produce the best

forecasting accuracy on C-MSKF’s results. The overall satisfactory performance of this

method indicates that the Silhouette Width measure performs effectively for the deter-

mination of the number of clusters. It also implies that the weight selection (clustering)

is best assessed in the forecasting context. Our results confirm the conclusion of Von

Luxburg (2010) that clustering is best evaluated in the overall application context. In

consideration of clustering performance, the MCParetoHist method shows the best per-

formance over the contestant model selection methods here, and this is followed by

MCParetoTest approach. Generally speaking, model selection methods using the idea

of Pareto-optimality generate better clustering results. This might be because that infe-

rior clustering solutions were excluded in the weight selection step of the model selec-

tion. Pareto-optimal clustering solutions show significantly better clustering results that

might have positive impacts on the following forecasting stage.

4.6.3 Performance comparison of model selection methods across

different noise levels

In this section, we focus on contrasting the C-MSKF’s accuracy based on different

clustering strategies. Note that forecasting accuracy measured at time point T = 17

is used for model selection, and observations in the period T ≤ 17 are included in the

clustering procedure.
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As shown in Tables 4.7, 4.8, 4.9, and 4.10, the ME measure is inadequate to dif-

ferentiate the forecasting performance among the contestant approaches. In each sce-

nario, almost all the compared approaches show the same forecasting results. How-

ever, considering the ME measure’s interpretability in bias performance of forecasting

methods, all compared models measured by minimum ME (see Table 4.8) report neg-

ative bias from scenario 1 to 5. The bias is positive for maximum ME for all contestant

methods in these five scenarios. Average ME and median ME yield positive bias to-

wards these contestant methods in scenarios 2, 4 and 5, while give rise to negative

bias towards in scenarios 1 and 3.

Considering the forecasting accuracy of the contestant models, it can be observed

that MASE, MSE and sMAPE measures (see Tables 4.7, 4.8, 4.9, and 4.10) in general

rank the MC method as the best clustering approach that can assist in achieving the

best forecasting accuracy of C-MSKF methods. Generally, the MCThreeMin approach

can be ranked as the second best performing model using the MASE, MSE and sMAPE

metrics. However, this method makes use of prior knowledge and hindsight: the prior

knowledge regarding the employment of underlying mathematical models, and the hind-

sight related to the weight selection, i.e., the weight interval gives rise to the smallest

forecasting errors is selected.

Finally, we can conclude that MCParetoHist methods produce the best clustering re-

sults in scenarios where the clustering accuracy of the contestant methods is assessed

using the average, minimum, median values of ARI. As demonstrated in Table 4.9, MC-

based methods report maximum ARI of 1 from scenario 1 to 5. CF and TS methods

show relatively low clustering accuracy in most cases. This indicates that ,considering

the maximum clustering quality, the single-criterion clustering approaches show inferior

performance to the multicriteria clustering approach.

In summary, MCParetoHist methods are promising for the identification of good clus-

tering quality of analogies using the concept of Pareto-optimality. However, the single
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clustering solution picked in the model selection step does not lead to the best fore-

casting results of C-MSKF methods. In stead, MC methods generally perform the best

across scenarios and accuracy measures. Realistically, MCSilHist methods using ob-

jective model selection techniques perform promising with respect to forecasting accu-

racy of C-MSKF methods.

Furthermore, we break up the forecasting results by forecasting horizons from 1 to 6

using four different accuracy measures, each of these is summarized using four means

of calculation, including the average, maximum, minimum, and median across 30 repli-

cates, 6 time series lengths, and 6 forecasting horizons. Details refer to the following

Tables presented in this section. Here, we contrast the performance of model selection

methods that suitable for a real-world setting where there is no a prior or hindsight con-

cerning the number of clusters or the best weight interval. We further benchmark these

methods on forecasting performance of the MC clustering method. In summary, MC

method consistently performs the best across six forecasting horizons and five noise

levels as shown by MASE, MSE and sMAPE metrics (including the average, minimum,

maximum values across 30 replicates, 6 time series lengths and 6 forecasting horizons).

Generally, MCSilHist is the second best performing model in terms of forecasting accu-

racy of the C-MSKF method. This is particularly evident in shorter forecasting horizons

when higher noise levels presented in scenario four and five on MSE measure. Since

the MC method performs consistently the best across forecasting horizons based on

(average, minimum, maximum, and median) MASE, MSE and sMAPE measures, this

indicates that MCSilHist is sensitive to the increased noise in the time series data.

By comparing the performance of application-based methods, MCParetoHist methods

show inferior forecasting performance to MCSilHist methods across the six forecasting

horizons and the three accuracy measures.

Regarding the ME method, as shown in Tables 4.12, 4.16, 4.20, and 4.24, demon-

strate almost the same performance across the compared methods at each forecasting
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horizon. In line with the experiments in the last section, ME measure does not high-

light any MC-based methods that consistently outperform the rest with respect to the

C-MSKF’s forecasting accuracy. In terms of the bias performance, scenarios 1 and 3

give rise to negative bias while scenarios 2, 4 and 5 produce positive bias. It might be

concluded that the bias of these MC-based methods are data-dependent as in each

scenario different data sets are used, and all methods considered here show consis-

tency towards the forecasting bias as they yield the same sign of the forecasting errors.

4.7 Conclusions

This paper investigates the challenge of model selection for a multicriteria clustering

approach in the context of forecasting. We have proposed and adapted different tech-

niques to support the automatic selection of a single best partitioning in multicriteria

clustering problems.

In summary, MCSilHist is shown to be a promising method for the selection of a

single best partitioning in the forecasting context. For the weight selection, it appears

to be preferable to use a small number of data points during the model selection, and

to include these data points during the clustering stage of the process. The fact that

MC clustering methods consistently perform better than MCSilHist across forecasting

horizons and noise levels (see Table ??). This highlights the remaining limitations of the

weight selection scheme. In particular, we observe a marked decrease in performance

when the noise of the time series data increases. Our results also illustrate that the best

clustering quality of partitionings does not necessarily give rise to the best forecasting

results (see Table ??). These findings provide additional empirical evidence to support

the view that the quality of a clustering solution should be best assessed in the context

of an application, as discussed in Guyon, Von Luxburg, and Williamson, 2009.

In this article, we propose and compare a range of model selection methods adapted
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from the existing techniques in the clustering literature or borrowing ideas from the

multi-objective optimization domain. Most of these are application independent, and

can be seen as generic contributions to the development of automatic model selection

approaches for multicriteria clustering.

A key limitation of our current work is the evaluation on simulated data alone, and

further work needs to consider real-world applications for ratifying our ideas. Also,

future work could explore model selection techniques that are computationally more

expensive. E.g., one potential model selection method would construct models for all

possible numbers of clusters, and then pick a preferred partitioning (across weight levels

and numbers of clusters) based on the best average historical prediction performance

alone. This approach is likely to deliver accurate predictions, but is computationally

extremely expensive, and was therefore not considered in our current work.
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Table 4.11: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy based on average MASE on the simulated data, broken up by noise levels and
forecasting horizons, from 1 to 6. Shown are average across 30 replicates and 6 different time
series length. The best performance obtained for each setting is highlighted in bold faces, with
the second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.69 0.79 0.87 0.96 1.04 1.13
MCAngles 0.86 0.97 1.07 1.17 1.27 1.37
MCMaxMax 0.8 0.92 1.01 1.12 1.22 1.32
MCMaxMin 0.78 0.88 0.97 1.06 1.15 1.24
MCMaxSum 0.75 0.85 0.93 1.02 1.11 1.2
MCP aretoHist 0.87 0.98 1.08 1.18 1.29 1.39
MCSilHist 0.71 0.81 0.90 0.99 1.08 1.18
MCSilSil 0.8 0.91 1.01 1.11 1.21 1.31

S2

MC 1.05 1.20 1.35 1.50 1.65 1.78
MCAngles 1.3 1.46 1.61 1.77 1.92 2.08
MCMaxMax 1.27 1.43 1.58 1.76 1.92 2.09
MCMaxMin 1.15 1.29 1.45 1.6 1.76 1.91
MCMaxSum 1.25 1.4 1.54 1.7 1.85 1.99
MCP aretoHist 1.36 1.51 1.66 1.81 1.96 2.11
MCSilHist 1.10 1.25 1.41 1.58 1.74 1.90
MCSilSil 1.28 1.44 1.6 1.77 1.94 2.1

S3

MC 1.27 1.47 1.66 1.84 2.02 2.19
MCAngles 1.5 1.69 1.87 2.04 2.21 2.38
MCMaxMax 1.55 1.78 1.99 2.19 2.4 2.61
MCMaxMin 1.37 1.57 1.77 1.96 2.14 2.33
MCMaxSum 1.47 1.67 1.86 2.03 2.2 2.38
MCP aretoHist 1.57 1.76 1.94 2.10 2.27 2.44
MCSilHist 1.30 1.52 1.73 1.93 2.13 2.34
MCSilSil 1.55 1.77 1.98 2.18 2.4 2.61

S4

MC 1.35 1.56 1.78 1.98 2.16 2.35
MCAngles 1.6 1.78 1.98 2.18 2.38 2.57
MCMaxMax 1.64 1.84 2.06 2.26 2.47 2.67
MCMaxMin 1.5 1.69 1.9 2.11 2.32 2.53
MCMaxSum 1.62 1.81 2 2.18 2.38 2.57
MCP aretoHist 1.68 1.85 2.04 2.22 2.42 2.61
MCSilHist 1.38 1.59 1.82 2.04 2.26 2.49
MCSilSil 1.63 1.84 2.06 2.25 2.46 2.66

S5

MC 1.45 1.67 1.86 2.06 2.27 2.46
MCAngles 1.65 1.85 2.03 2.21 2.4 2.6
MCMaxMax 1.72 1.9 2.08 2.26 2.47 2.68
MCMaxMin 1.57 1.79 1.99 2.2 2.41 2.63
MCMaxSum 1.66 1.85 2.02 2.2 2.39 2.59
MCP aretoHist 1.68 1.86 2.03 2.21 2.40 2.59
MCSilHist 1.49 1.73 1.95 2.17 2.40 2.62
MCSilSil 1.71 1.89 2.06 2.25 2.46 2.67
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Table 4.12: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy average ME on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6. Shown are average across 30 replicates and 6 different time series length. The
best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0 -0.01 -0.01 -0.01 -0.02 -0.02
MCAngles 0 0 -0.01 -0.01 -0.02 -0.02
MCMaxMax 0 0 -0.01 -0.01 -0.02 -0.02
MCMaxMin 0 0 -0.01 -0.01 -0.02 -0.02
MCMaxSum 0 0 -0.01 -0.01 -0.02 -0.02
MCP aretoHist 0 0 -0.01 -0.01 -0.02 -0.02
MCSilHist 0 0 -0.01 -0.01 -0.02 -0.02
MCSilSil 0 0 -0.01 -0.01 -0.02 -0.02

S2

MC 0.01 0.01 0.02 0.03 0.03 0.04
MCAngles 0.01 0.01 0.02 0.03 0.04 0.04
MCMaxMax 0.01 0.01 0.02 0.03 0.04 0.04
MCMaxMin 0.01 0.01 0.02 0.03 0.04 0.04
MCMaxSum 0.01 0.01 0.02 0.03 0.04 0.04
MCP aretoHist 0.01 0.01 0.02 0.03 0.04 0.05
MCSilHist 0.01 0.01 0.02 0.03 0.04 0.04
MCSilSil 0.01 0.01 0.02 0.03 0.04 0.04

S3

MC -0.02 -0.02 -0.03 -0.03 -0.04 -0.05
MCAngles -0.02 -0.02 -0.02 -0.02 -0.03 -0.03
MCMaxMax -0.02 -0.02 -0.02 -0.02 -0.03 -0.03
MCMaxMin -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
MCMaxSum -0.02 -0.02 -0.02 -0.02 -0.03 -0.04
MCP aretoHist -0.02 -0.02 -0.02 -0.02 -0.03 -0.03
MCSilHist -0.02 -0.02 -0.02 -0.02 -0.03 -0.04
MCSilSil -0.02 -0.02 -0.02 -0.02 -0.03 -0.03

S4

MC 0.03 0.05 0.07 0.08 0.09 0.1
MCAngles 0.04 0.05 0.07 0.09 0.1 0.11
MCMaxMax 0.04 0.05 0.07 0.09 0.1 0.11
MCMaxMin 0.04 0.05 0.07 0.09 0.1 0.11
MCMaxSum 0.04 0.05 0.07 0.09 0.1 0.11
MCP aretoHist 0.04 0.05 0.07 0.09 0.1 0.11
MCSilHist 0.04 0.05 0.08 0.09 0.1 0.11
MCSilSil 0.04 0.05 0.07 0.09 0.1 0.11

S5

MC 0.01 0.02 0.03 0.04 0.04 0.05
MCAngles 0.01 0.03 0.04 0.05 0.05 0.06
MCMaxMax 0.01 0.03 0.04 0.05 0.05 0.06
MCMaxMin 0.01 0.03 0.04 0.05 0.05 0.06
MCMaxSum 0.01 0.03 0.04 0.05 0.05 0.06
MCP aretoHist 0.01 0.03 0.04 0.05 0.05 0.06
MCSilHist 0.01 0.03 0.04 0.05 0.05 0.06
MCSilSil 0.01 0.03 0.04 0.05 0.05 0.06
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Table 4.13: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy average MSE on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6.Shown are average across 30 replicates and 6 different time series length. The
best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.08 0.11 0.14 0.17 0.20 0.24
MCAngles 0.18 0.23 0.28 0.35 0.42 0.49
MCMaxMax 0.13 0.17 0.21 0.25 0.3 0.36
MCMaxMin 0.12 0.15 0.18 0.22 0.26 0.31
MCMaxSum 0.11 0.14 0.17 0.21 0.25 0.3
MCP aretoHist 0.17 0.22 0.27 0.33 0.40 0.47
MCSilHist 0.09 0.11 0.14 0.17 0.21 0.25
MCSilSil 0.12 0.16 0.2 0.24 0.29 0.35

S2

MC 0.23 0.31 0.40 0.52 0.63 0.75
MCAngles 0.4 0.51 0.64 0.8 0.96 1.14
MCMaxMax 0.37 0.49 0.63 0.82 1.02 1.23
MCMaxMin 0.29 0.38 0.5 0.65 0.81 0.98
MCMaxSum 0.36 0.47 0.59 0.75 0.91 1.08
MCP aretoHist 0.44 0.55 0.68 0.84 1.00 1.17
MCSilHist 0.26 0.35 0.47 0.64 0.82 1.01
MCSilSil 0.37 0.5 0.64 0.84 1.04 1.25

S3

MC 0.37 0.52 0.70 0.87 1.06 1.27
MCAngles 0.61 0.78 0.97 1.17 1.4 1.66
MCMaxMax 0.63 0.83 1.07 1.31 1.6 1.92
MCMaxMin 0.48 0.66 0.88 1.12 1.38 1.67
MCMaxSum 0.58 0.75 0.95 1.16 1.4 1.66
MCP aretoHist 0.68 0.86 1.06 1.25 1.48 1.73
MCSilHist 0.41 0.59 0.83 1.11 1.41 1.76
MCSilSil 0.62 0.82 1.05 1.3 1.59 1.92

S4

MC 0.51 0.73 1.00 1.28 1.57 1.88
MCAngles 0.79 1.02 1.33 1.67 2.04 2.45
MCMaxMax 0.81 1.05 1.36 1.7 2.1 2.51
MCMaxMin 0.71 0.96 1.28 1.64 2.05 2.49
MCMaxSum 0.8 1.03 1.31 1.62 1.98 2.38
MCP aretoHist 0.88 1.10 1.37 1.68 2.03 2.41
MCSilHist 0.59 0.85 1.20 1.61 2.05 2.53
MCSilSil 0.81 1.05 1.36 1.71 2.1 2.52

S5

MC 0.66 0.91 1.17 1.48 1.82 2.17
MCAngles 0.94 1.22 1.51 1.86 2.26 2.69
MCMaxMax 0.97 1.21 1.47 1.8 2.18 2.58
MCMaxMin 0.89 1.19 1.51 1.91 2.37 2.86
MCMaxSum 0.96 1.21 1.46 1.77 2.13 2.52
MCP aretoHist 0.97 1.21 1.45 1.75 2.09 2.45
MCSilHist 0.76 1.11 1.48 1.93 2.46 3.04
MCSilSil 0.95 1.19 1.45 1.78 2.16 2.56
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Table 4.14: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy average sMAPE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6.Shown are average across 30 replicates and 6 different time series length.
The best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 23.68 22.05 20.92 20.26 19.87 19.69
MCAngles 29.04 27.33 26.16 25.48 25.06 24.82
MCMaxMax 26.56 25.1 24.11 23.59 23.3 23.2
MCMaxMin 26.11 24.29 23.09 22.39 21.96 21.72
MCMaxSum 24.75 23.12 21.99 21.35 20.99 20.83
MCP aretoHist 28.67 26.85 25.63 24.89 24.46 24.21
MCSilHist 23.67 22.11 21.1 20.54 20.22 20.11
MCSilSil 26.34 24.87 23.86 23.33 23.03 22.92

S2

MC 37.93 36.67 35.74 35.26 34.97 34.77
MCAngles 45.02 43.9 43.02 42.67 42.42 42.27
MCMaxMax 43.79 42.78 41.99 41.76 41.68 41.63
MCMaxMin 38.34 37.46 37.08 37.02 37.03 36.95
MCMaxSum 42.15 41.07 40.24 39.9 39.71 39.54
MCP aretoHist 45.76 44.32 43.23 42.68 42.29 41.98
MCSilHist 38.58 37.98 37.74 37.87 38.09 38.25
MCSilSil 44.33 43.45 42.73 42.51 42.4 42.31

S3

MC 56.21 55.11 53.96 52.9 52.48 52.24
MCAngles 61.67 60.55 59.25 58.18 57.58 57.19
MCMaxMax 62.9 63.02 62.91 62.51 62.37 62.44
MCMaxMin 57.04 57.5 57.43 57.19 57.01 56.9
MCMaxSum 60.77 60.26 59.43 58.51 58.03 57.71
MCP aretoHist 64.26 62.65 61.02 59.5 58.74 58.22
MCSilHist 54.54 55.19 55.16 55.05 55.13 55.26
MCSilSil 62.92 63.1 63.13 62.89 62.97 63.18

S4

MC 62.56 62.07 61.98 61.45 61.28 61.2
MCAngles 65.55 64.78 64.8 64.6 64.65 64.66
MCMaxMax 68.06 67.94 68.41 68.17 68.16 68.09
MCMaxMin 63.95 63.88 64.13 64.1 64.42 64.63
MCMaxSum 67.14 66.13 65.77 65.33 65.41 65.36
MCP aretoHist 68.79 67.85 67.34 66.82 66.7 66.54
MCSilHist 58.55 59.66 60.99 61.59 62.18 62.62
MCSilSil 68.23 68 68.48 68.2 68.17 68.05

S5

MC 67.81 67.3 66.1 65.66 65.64 65.79
MCAngles 71.8 71.52 71.01 70.34 70.12 70.05
MCMaxMax 73.55 72.63 71.69 71.11 71.12 71.26
MCMaxMin 70.74 71.72 71.88 72.03 72.13 72.33
MCMaxSum 72.21 71.84 71.28 70.66 70.52 70.53
MCP aretoHist 72.81 71.96 71.2 70.44 70.13 70
MCSilHist 65.96 67.52 68.06 68.5 68.92 69.25
MCSilSil 73.65 72.46 71.48 71.03 71.1 71.32
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Table 4.15: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy minimum MASE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6.Shown are minimum values across 30 replicates and 6 different time se-
ries length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.49 0.6 0.61 0.65 0.68 0.73
MCAngles 0.58 0.67 0.71 0.78 0.82 0.86
MCMaxMax 0.51 0.6 0.62 0.66 0.69 0.74
MCMaxMin 0.51 0.64 0.65 0.7 0.73 0.78
MCMaxSum 0.51 0.6 0.62 0.66 0.69 0.74
MCP aretoHist 0.58 0.66 0.73 0.81 0.84 0.87
MCSilHist 0.51 0.61 0.61 0.65 0.68 0.73
MCSilSil 0.51 0.6 0.62 0.66 0.69 0.74

S2

MC 0.76 0.87 0.89 1.01 1.1 1.19
MCAngles 0.78 0.87 0.89 1.01 1.1 1.19
MCMaxMax 0.76 0.95 1.04 1.16 1.24 1.3
MCMaxMin 0.78 0.87 0.89 1.01 1.1 1.19
MCMaxSum 0.85 0.95 1.01 1.11 1.18 1.27
MCP aretoHist 0.85 1.07 1.14 1.23 1.27 1.3
MCSilHist 0.78 0.88 1.02 1.12 1.17 1.19
MCSilSil 0.76 0.95 1.04 1.16 1.24 1.3

S3

MC 0.76 1.03 1.22 1.35 1.48 1.62
MCAngles 1.01 1.12 1.21 1.33 1.49 1.67
MCMaxMax 0.95 1.17 1.4 1.53 1.63 1.72
MCMaxMin 0.89 1.12 1.33 1.46 1.56 1.66
MCMaxSum 0.89 1.12 1.27 1.42 1.61 1.76
MCP aretoHist 1.14 1.3 1.45 1.58 1.69 1.79
MCSilHist 0.79 1.14 1.23 1.34 1.51 1.66
MCSilSil 0.95 1.17 1.4 1.53 1.67 1.78

S4

MC 0.8 1.03 1.1 1.14 1.27 1.46
MCAngles 1.01 1.19 1.24 1.32 1.4 1.52
MCMaxMax 1.2 1.3 1.45 1.61 1.73 1.86
MCMaxMin 1 1.17 1.23 1.29 1.37 1.5
MCMaxSum 1.07 1.25 1.37 1.45 1.55 1.66
MCP aretoHist 1.08 1.2 1.37 1.45 1.55 1.66
MCSilHist 0.92 1.05 1.14 1.2 1.34 1.52
MCSilSil 1.2 1.3 1.45 1.61 1.73 1.86

S5

MC 1.05 1.12 1.28 1.5 1.71 1.81
MCAngles 1.14 1.3 1.45 1.6 1.71 1.82
MCMaxMax 1.33 1.38 1.5 1.67 1.81 1.92
MCMaxMin 1.05 1.24 1.33 1.5 1.66 1.78
MCMaxSum 1.36 1.38 1.5 1.67 1.76 1.85
MCP aretoHist 1.36 1.38 1.5 1.67 1.76 1.85
MCSilHist 0.99 1.02 1.15 1.35 1.55 1.74
MCSilSil 1.28 1.38 1.48 1.67 1.81 1.92
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Table 4.16: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy minimum ME on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6. Shown are minimum values across 30 replicates and 6 different time series length.
The best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
MCAngles -0.09 -0.14 -0.17 -0.2 -0.24 -0.27
MCMaxMax -0.09 -0.14 -0.17 -0.21 -0.24 -0.27
MCMaxMin -0.09 -0.14 -0.17 -0.21 -0.24 -0.27
MCMaxSum -0.09 -0.14 -0.17 -0.2 -0.24 -0.27
MCP aretoHist -0.09 -0.14 -0.17 -0.21 -0.24 -0.27
MCSilHist -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
MCSilSil -0.09 -0.14 -0.17 -0.21 -0.24 -0.27

S2

MC -0.15 -0.28 -0.35 -0.45 -0.52 -0.58
MCAngles -0.15 -0.28 -0.35 -0.45 -0.52 -0.57
MCMaxMax -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
MCMaxMin -0.15 -0.28 -0.35 -0.45 -0.52 -0.57
MCMaxSum -0.15 -0.28 -0.35 -0.45 -0.52 -0.57
MCP aretoHist -0.14 -0.28 -0.34 -0.45 -0.52 -0.57
MCSilHist -0.14 -0.28 -0.34 -0.45 -0.52 -0.57
MCSilSil -0.14 -0.28 -0.35 -0.45 -0.52 -0.58

S3

MC -0.23 -0.34 -0.37 -0.43 -0.48 -0.56
MCAngles -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
MCMaxMax -0.23 -0.33 -0.37 -0.43 -0.48 -0.56
MCMaxMin -0.23 -0.33 -0.36 -0.43 -0.47 -0.55
MCMaxSum -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
MCP aretoHist -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
MCSilHist -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
MCSilSil -0.23 -0.33 -0.37 -0.43 -0.48 -0.56

S4

MC -0.23 -0.26 -0.39 -0.53 -0.65 -0.78
MCAngles -0.22 -0.25 -0.37 -0.5 -0.62 -0.73
MCMaxMax -0.22 -0.25 -0.37 -0.5 -0.62 -0.74
MCMaxMin -0.22 -0.25 -0.37 -0.5 -0.63 -0.74
MCMaxSum -0.22 -0.25 -0.37 -0.5 -0.62 -0.73
MCP aretoHist -0.23 -0.26 -0.37 -0.5 -0.62 -0.74
MCSilHist -0.22 -0.25 -0.37 -0.5 -0.62 -0.74
MCSilSil -0.22 -0.25 -0.37 -0.5 -0.62 -0.74

S5

MC -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
MCAngles -0.16 -0.24 -0.25 -0.28 -0.34 -0.41
MCMaxMax -0.16 -0.25 -0.26 -0.3 -0.36 -0.43
MCMaxMin -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
MCMaxSum -0.16 -0.24 -0.25 -0.28 -0.34 -0.41
MCP aretoHist -0.16 -0.25 -0.26 -0.29 -0.36 -0.43
MCSilHist -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
MCSilSil -0.16 -0.25 -0.26 -0.3 -0.36 -0.43
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Table 4.17: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy minimum MSE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are minimum values across 30 replicates and 6 different time se-
ries length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.03 0.03 0.04 0.04 0.04 0.05
MCAngles 0.03 0.05 0.05 0.06 0.07 0.08
MCMaxMax 0.03 0.04 0.04 0.04 0.04 0.05
MCMaxMin 0.04 0.05 0.05 0.05 0.06 0.06
MCMaxSum 0.03 0.04 0.04 0.04 0.04 0.05
MCP aretoHist 0.05 0.05 0.06 0.07 0.08 0.09
MCSilHist 0.03 0.03 0.04 0.04 0.04 0.05
MCSilSil 0.03 0.04 0.04 0.04 0.04 0.05

S2

MC 0.06 0.09 0.1 0.13 0.15 0.15
MCAngles 0.06 0.09 0.1 0.13 0.15 0.15
MCMaxMax 0.08 0.12 0.15 0.17 0.19 0.21
MCMaxMin 0.06 0.09 0.1 0.13 0.15 0.15
MCMaxSum 0.1 0.12 0.12 0.14 0.16 0.18
MCP aretoHist 0.1 0.13 0.16 0.17 0.19 0.21
MCSilHist 0.07 0.1 0.12 0.14 0.15 0.15
MCSilSil 0.08 0.12 0.15 0.17 0.19 0.21

S3

MC 0.11 0.16 0.21 0.26 0.32 0.38
MCAngles 0.16 0.23 0.3 0.36 0.41 0.46
MCMaxMax 0.15 0.24 0.32 0.37 0.43 0.47
MCMaxMin 0.14 0.19 0.26 0.3 0.35 0.39
MCMaxSum 0.17 0.24 0.32 0.38 0.44 0.48
MCP aretoHist 0.17 0.25 0.33 0.39 0.45 0.49
MCSilHist 0.11 0.16 0.21 0.26 0.32 0.38
MCSilSil 0.15 0.24 0.31 0.36 0.43 0.5

S4

MC 0.14 0.17 0.18 0.23 0.27 0.34
MCAngles 0.18 0.19 0.2 0.24 0.27 0.32
MCMaxMax 0.29 0.34 0.46 0.52 0.61 0.69
MCMaxMin 0.16 0.17 0.18 0.23 0.27 0.34
MCMaxSum 0.19 0.28 0.37 0.42 0.54 0.65
MCP aretoHist 0.2 0.29 0.43 0.49 0.57 0.65
MCSilHist 0.14 0.17 0.18 0.23 0.3 0.37
MCSilSil 0.29 0.34 0.46 0.52 0.61 0.69

S5

MC 0.26 0.29 0.41 0.44 0.47 0.54
MCAngles 0.33 0.37 0.42 0.44 0.47 0.54
MCMaxMax 0.3 0.35 0.43 0.48 0.53 0.59
MCMaxMin 0.34 0.42 0.5 0.58 0.74 0.86
MCMaxSum 0.33 0.37 0.42 0.44 0.47 0.54
MCP aretoHist 0.33 0.37 0.42 0.44 0.47 0.54
MCSilHist 0.26 0.29 0.41 0.45 0.48 0.54
MCSilSil 0.3 0.35 0.43 0.48 0.53 0.59
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Table 4.18: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy minimum sMAPE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are minimum values across 30 replicates and 6 different time series
length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 10.3 11.37 1.54 11.62 11.77 12.53
MCAngles 14.88 16.2 16.03 15.35 14.55 14.16
MCMaxMax 10.3 11.37 11.54 11.62 11.77 12.53
MCMaxMin 14.39 14.97 15.22 15.71 14.99 14.63
MCMaxSum 10.3 11.37 11.54 11.62 11.77 12.53
MCP aretoHist 14.55 14.97 15.22 15.19 14.52 14.17
MCSilHist 10.3 11.37 11.54 11.62 11.77 12.53
MCSilSil 10.3 11.37 11.54 11.62 11.77 12.53

S2

MC 18.56 19.42 20.72 21.67 22.76 23.26
MCAngles 22.07 23.73 24.97 25.65 25.16 24.92
MCMaxMax 21.91 22.63 24.18 25.64 26.35 26.77
MCMaxMin 19.1 19.42 20.72 21.67 22.76 23.26
MCMaxSum 22.07 22.63 24.18 25.64 26.41 26.17
MCP aretoHist 22.07 24.93 25.01 25.97 26.56 26.17
MCSilHist 21.86 22.63 24.18 24.7 24.48 24.16
MCSilSil 21.91 22.63 24.18 25.64 26.35 26.77

S3

MC 26.79 30.1 33.64 35.18 35.68 37.11
MCAngles 29.38 32.21 35.59 36.17 36.16 36.47
MCMaxMax 27.11 30.78 34.68 35.77 36.37 37.75
MCMaxMin 28 31.47 35.11 36.01 36.57 37.58
MCMaxSum 26.25 30.78 34.68 35.77 36.37 37.75
MCP aretoHist 38.21 40.7 41.82 41.91 41.91 41.78
MCSilHist 26.79 30.1 33.64 35.18 35.68 37.11
MCSilSil 27.11 30.78 34.68 35.77 36.37 37.75

S4

MC 38.95 37.66 38.54 40.23 39.37 40.32
MCAngles 39.08 36.71 37.33 37.95 39.21 40.32
MCMaxMax 37.87 40.4 42.99 44.92 45.17 45.88
MCMaxMin 38.92 38.21 39.36 40.62 41.54 42.42
MCMaxSum 35.36 39.1 40.7 42.54 43.82 44.64
MCP aretoHist 48.19 49.73 50.86 48.3 47.87 47.05
MCSilHist 34.88 35.52 36.39 37.83 39.21 40.92
MCSilSil 37.87 40.4 42.99 44.92 45.17 45.88

S5

MC 47.93 46.01 44.38 44.64 44.48 43.67
MCAngles 47.72 46.01 44.93 45.23 44.45 43.62
MCMaxMax 43.07 43.88 44.14 45 44.95 44.38
MCMaxMin 41.27 40.7 42.34 45.23 44.45 43.62
MCMaxSum 41.27 40.7 42.34 45.32 45.41 44.81
MCP aretoHist 49.48 46.5 44.2 45.32 45.41 44.81
MCSilHist 42.32 41.43 40.56 41.75 43.28 43.67
MCSilSil 51.56 46.05 44.14 45 44.95 44.38
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Table 4.19: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy maximum MASE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are maximum values across 30 replicates and 6 different time
series length. The best performance obtained for each setting is highlighted in bold faces, with
the second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 1.02 1.15 1.24 1.39 1.52 1.64
MCAngles 1.38 1.61 1.8 2.02 2.23 2.4
MCMaxMax 1.65 1.88 2.1 2.27 2.46 2.69
MCMaxMin 1.12 1.29 1.43 1.61 1.78 1.93
MCMaxSum 1.14 1.23 1.36 1.53 1.69 1.82
MCP aretoHist 1.35 1.56 1.73 1.94 2.11 2.26
MCSilHist 1.07 1.25 1.37 1.53 1.69 1.81
MCSilSil 1.65 1.88 2.1 2.27 2.46 2.69

S2

MC 1.4 1.66 1.9 2.13 2.31 2.47
MCAngles 2.3 2.43 2.71 2.98 3.27 3.54
MCMaxMax 1.94 2.15 2.26 2.5 2.74 2.96
MCMaxMin 1.74 1.86 2.09 2.37 2.65 2.91
MCMaxSum 2.31 2.44 2.72 2.99 3.28 3.56
MCP aretoHist 2.31 2.44 2.72 2.99 3.28 3.56
MCSilHist 1.6 1.71 1.91 2.19 2.42 2.66
MCSilSil 1.94 2.15 2.26 2.5 2.74 2.96

S3

MC 1.92 2.16 2.38 2.59 2.85 3.08
MCAngles 2.18 2.39 2.62 2.84 3.07 3.37
MCMaxMax 2.2 2.44 2.69 2.94 3.24 3.56
MCMaxMin 1.88 2.11 2.37 2.62 2.87 3.14
MCMaxSum 2.04 2.27 2.47 2.68 2.98 3.28
MCP aretoHist 2.18 2.39 2.62 2.84 3.07 3.31
MCSilHist 1.91 2.23 2.4 2.71 3 3.29
MCSilSil 2.2 2.44 2.69 2.94 3.24 3.56

S4

MC 1.84 2.08 2.36 2.68 2.91 3.2
MCAngles 2.16 2.41 2.74 3.08 3.42 3.7
MCMaxMax 2.22 2.44 2.67 3.01 3.37 3.67
MCMaxMin 2.06 2.41 2.74 3.08 3.42 3.7
MCMaxSum 2.16 2.41 2.74 3.08 3.42 3.7
MCP aretoHist 2.3 2.53 2.74 3.12 3.5 3.9
MCSilHist 1.91 2.28 2.64 2.94 3.14 3.35
MCSilSil 2.22 2.44 2.67 3.01 3.37 3.67

S5

MC 1.86 2.06 2.29 2.59 2.87 3.13
MCAngles 2.3 2.59 2.9 3.2 3.42 3.59
MCMaxMax 2.14 2.41 2.63 2.92 3.23 3.52
MCMaxMin 2.09 2.26 2.54 2.75 3.09 3.44
MCMaxSum 2.24 2.39 2.61 2.92 3.23 3.46
MCP aretoHist 2.24 2.39 2.61 2.92 3.23 3.46
MCSilHist 1.93 2.42 2.65 3.11 3.49 3.87
MCSilSil 2.2 2.48 2.68 2.96 3.23 3.52
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Table 4.20: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy maximum ME on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6. Shown are maximum values across 30 replicates and 6 different time series length.
The best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.11 0.14 0.17 0.21 0.23 0.26
MCAngles 0.11 0.14 0.17 0.21 0.24 0.27
MCMaxMax 0.11 0.14 0.17 0.21 0.24 0.27
MCMaxMin 0.11 0.14 0.17 0.21 0.23 0.26
MCMaxSum 0.11 0.14 0.17 0.21 0.23 0.26
MCP aretoHist 0.11 0.14 0.17 0.21 0.24 0.27
MCSilHist 0.11 0.14 0.17 0.21 0.24 0.27
MCSilSil 0.11 0.14 0.17 0.21 0.24 0.27

S2

MC 0.14 0.24 0.28 0.34 0.38 0.47
MCAngles 0.14 0.24 0.28 0.34 0.38 0.48
MCMaxMax 0.14 0.24 0.28 0.34 0.38 0.48
MCMaxMin 0.14 0.24 0.28 0.34 0.38 0.48
MCMaxSum 0.14 0.24 0.28 0.34 0.38 0.48
MCP aretoHist 0.14 0.24 0.28 0.34 0.38 0.47
MCSilHist 0.14 0.24 0.28 0.34 0.38 0.48
MCSilSil 0.14 0.24 0.28 0.34 0.38 0.48

S3

MC 0.18 0.26 0.27 0.3 0.34 0.39
MCAngles 0.19 0.27 0.29 0.33 0.37 0.42
MCMaxMax 0.19 0.27 0.29 0.33 0.37 0.43
MCMaxMin 0.19 0.27 0.28 0.32 0.36 0.41
MCMaxSum 0.2 0.27 0.29 0.33 0.37 0.42
MCP aretoHist 0.19 0.27 0.29 0.33 0.37 0.43
MCSilHist 0.19 0.27 0.29 0.33 0.37 0.42
MCSilSil 0.19 0.27 0.29 0.33 0.37 0.43

S4

MC 0.49 0.58 0.72 0.76 0.74 0.74
MCAngles 0.49 0.59 0.73 0.77 0.76 0.76
MCMaxMax 0.49 0.59 0.72 0.77 0.76 0.75
MCMaxMin 0.49 0.59 0.72 0.77 0.75 0.75
MCMaxSum 0.49 0.59 0.73 0.77 0.76 0.76
MCP aretoHist 0.49 0.59 0.73 0.77 0.76 0.76
MCSilHist 0.49 0.59 0.72 0.77 0.75 0.75
MCSilSil 0.49 0.59 0.72 0.77 0.76 0.75

S5

MC 0.27 0.36 0.39 0.38 0.54 0.68
MCAngles 0.28 0.38 0.41 0.4 0.54 0.68
MCMaxMax 0.27 0.36 0.39 0.38 0.54 0.69
MCMaxMin 0.27 0.37 0.41 0.4 0.54 0.68
MCMaxSum 0.27 0.36 0.39 0.38 0.54 0.69
MCP aretoHist 0.27 0.37 0.4 0.38 0.54 0.69
MCSilHist 0.27 0.37 0.4 0.4 0.54 0.68
MCSilSil 0.27 0.36 0.39 0.38 0.54 0.69
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Table 4.21: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy maximum MSE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are maximum values across 30 replicates and 6 different time se-
ries length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.19 0.24 0.34 0.41 0.48 0.6
MCAngles 0.63 0.79 0.99 1.25 1.57 1.88
MCMaxMax 0.72 0.95 1.26 1.55 1.91 2.27
MCMaxMin 0.26 0.36 0.48 0.64 0.87 1.08
MCMaxSum 0.49 0.62 0.77 0.98 1.36 1.7
MCP aretoHist 0.53 0.67 0.84 0.99 1.36 1.7
MCSilHist 0.2 0.25 0.35 0.41 0.48 0.63
MCSilSil 0.72 0.95 1.26 1.55 1.91 2.27

S2

MC 0.57 0.96 1.47 1.97 2.26 2.58
MCAngles 1.99 2.11 2.35 3.12 3.72 4.05
MCMaxMax 1.25 1.58 2.48 4.61 6.76 7.94
MCMaxMin 0.85 1.5 2.12 3.12 3.72 4.05
MCMaxSum 1.03 1.5 2.12 3.12 3.73 4.26
MCP aretoHist 1.62 1.7 2.76 3.92 4.7 5.19
MCSilHist 0.74 1.01 2.76 3.92 4.7 5.19
MCSilSil 1.25 1.58 2.48 4.61 6.76 7.94

S3

MC 1.15 1.66 2.03 2.63 3.14 3.47
MCAngles 1.66 2.05 2.37 2.74 3.44 3.96
MCMaxMax 1.51 1.87 2.28 2.75 3.37 4.26
MCMaxMin 1.23 1.76 3.36 5.14 6.83 9.13
MCMaxSum 1.37 1.64 2.06 2.6 3.13 3.92
MCP aretoHist 1.66 1.79 2.5 3.2 3.94 4.39
MCSilHist 1.25 1.9 3.46 5.5 7.52 10.28
MCSilSil 1.53 1.87 2.28 2.66 3.34 3.92

S4

MC 1.27 1.99 3.28 4.46 4.99 5.68
MCAngles 1.98 2.97 3.92 5.3 6.18 7.06
MCMaxMax 1.83 2.52 3.36 4.47 5.61 6.35
MCMaxMin 1.98 2.97 4.51 6.11 6.88 7.9
MCMaxSum 1.98 2.97 3.92 5.03 6.17 6.82
MCP aretoHist 1.57 2.36 3.31 4.48 5 5.68
MCSilHist 1.69 2.48 4.34 5.98 6.82 7.86
MCSilSil 1.83 2.52 3.36 4.47 5.61 6.35

S5

MC 1.4 2.37 3.2 4.09 4.86 6.19
MCAngles 2.05 2.79 3.29 4.47 6.81 9.56
MCMaxMax 2.25 3.05 3.3 4.37 5.72 7.31
MCMaxMin 2.54 3.08 4.22 5.77 8.4 11.6
MCMaxSum 2.64 3.05 3.64 4.49 5.57 6.64
MCP aretoHist 2.25 3.19 3.54 4.49 5.63 7.23
MCSilHist 1.76 3.18 4.77 6.45 7.9 10.96
MCSilSil 2.25 3.05 3.3 4.37 5.72 7.31
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Table 4.22: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy maximum sMAPE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are maximum values across 30 replicates and 6 different time
series length. The best performance obtained for each setting is highlighted in bold faces, with
the second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 43.24 36.69 32.03 29.68 29.57 29.22
MCAngles 64.44 57.88 53.94 52.14 51.02 49.91
MCMaxMax 54.49 55.55 56.3 56.64 57.53 58.82
MCMaxMin 73.85 59.61 51.44 47.1 44.38 42.55
MCMaxSum 47.42 39.95 35.88 33.35 31.62 32.65
MCP aretoHist 64.44 56.42 51.55 49.25 47.68 46.41
MCSilHist 43.24 36.69 32.03 29.68 29.57 29.22
MCSilSil 54.49 55.55 56.3 56.64 29.57 58.82

S2

MC 65.65 62.13 60.21 58.87 58.15 56.94
MCAngles 90.4 88.37 82.3 77.82 77.97 80.09
MCMaxMax 89.67 87.39 81.52 79.52 79.99 81.22
MCMaxMin 61.79 62.13 59.45 61.54 63.73 65.34
MCMaxSum 90.4 74.17 73.51 74.49 75.54 75.82
MCP aretoHist 78.94 76.96 75.86 74.58 74.06 74.16
MCSilHist 67.76 63.64 65.01 67.05 68.1 69.3
MCSilSil 87.13 87.39 81.52 79.52 79.99 81.22

S3

MC 108.4 99.74 94.79 91.53 89.82 89.12
MCAngles 100.96 99.65 95.42 92.74 90.33 90.2
MCMaxMax 106.29 99.15 93.57 89.24 88.43 88.64
MCMaxMin 100.42 98.52 97.98 96.04 94.72 94.97
MCMaxSum 108.4 99.74 94.86 93.06 94.08 94.97
MCP aretoHist 108.4 99.74 94.86 91.53 89.82 89.12
MCSilHist 86.44 97.56 97.22 94.86 91.8 90.58
MCSilSil 101.05 93.15 91.16 90.01 89.84 90.78

S4

MC 89.62 90.34 88.66 88.07 88.38 88.4
MCAngles 105.11 101.7 103.42 104.67 105.06 104.31
MCMaxMax 99.27 101.7 103.42 104.64 105.02 104.71
MCMaxMin 107.37 100.25 97.76 98.05 97.69 96.35
MCMaxSum 105.23 104.09 103.42 104.67 105.18 104.91
MCP aretoHist 119.87 123.31 116.52 115.96 115.51 114.93
MCSilHist 96.57 94.91 95.84 98.42 99.24 99.61
MCSilSil 107.3 102.49 103.42 104.64 105.02 104.71

S5

MC 107.95 101.2 99.72 97.34 95.57 94.6
MCAngles 113.87 113.59 110.69 107.16 104.01 102.85
MCMaxMax 103.28 101.2 99.65 96.74 96.82 97.46
MCMaxMin 120.09 113.59 110.69 108.87 111.15 114.06
MCMaxSum 113.87 108.28 107.66 102.85 100.38 99.24
MCP aretoHist 114.8 105.64 105.69 101.57 99.86 97.4
MCSilHist 120.09 118.14 116.66 117.02 119.23 118.05
MCSilSil 103.28 101.2 99.65 96.74 96.82 97.46
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Table 4.23: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy median MASE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are median values across 30 replicates and 6 different time se-
ries length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.68 0.79 0.87 0.95 1.04 1.11
MCAngles 0.82 0.92 1.03 1.15 1.26 1.35
MCMaxMax 0.77 0.88 0.96 1.06 1.17 1.28
MCMaxMin 0.77 0.87 0.96 1.04 1.13 1.23
MCMaxSum 0.74 0.84 0.92 1.01 1.09 1.19
MCP aretoHist 0.83 0.94 1.04 1.14 1.25 1.35
MCSilHist 0.71 0.81 0.9 0.99 1.07 1.17
MCSilSil 0.76 0.87 0.96 1.05 1.15 1.25

S2

MC 1.06 1.18 1.33 1.49 1.65 1.8
MCAngles 1.24 1.42 1.58 1.76 1.9 2.03
MCMaxMax 1.23 1.37 1.54 1.72 1.88 2.03
MCMaxMin 1.14 1.27 1.43 1.58 1.74 1.9
MCMaxSum 1.2 1.34 1.5 1.65 1.8 1.94
MCP aretoHist 1.33 1.49 1.63 1.77 1.91 2.06
MCSilHist 1.08 1.24 1.4 1.57 1.73 1.89
MCSilSil 1.26 1.4 1.55 1.72 1.89 2.04

S3

MC 1.27 1.45 1.63 1.81 1.97 2.12
MCAngles 1.48 1.67 1.83 1.96 2.13 2.35
MCMaxMax 1.57 1.74 1.95 2.12 2.33 2.53
MCMaxMin 1.37 1.55 1.78 1.97 2.14 2.33
MCMaxSum 1.45 1.64 1.83 1.98 2.15 2.39
MCP aretoHist 1.57 1.7 1.86 2.01 2.19 2.39
MCSilHist 1.28 1.49 1.68 1.88 2.12 2.34
MCSilSil 1.56 1.76 1.97 2.16 2.34 2.55

S4

MC 1.33 1.59 1.8 1.98 2.17 2.36
MCAngles 1.59 1.76 1.98 2.17 2.37 2.55
MCMaxMax 1.65 1.82 2.02 2.22 2.42 2.6
MCMaxMin 1.47 1.67 1.89 2.09 2.3 2.48
MCMaxSum 1.6 1.77 1.98 2.14 2.34 2.51
MCP aretoHist 1.68 1.85 2.02 2.21 2.41 2.55
MCSilHist 1.38 1.59 1.83 2.05 2.26 2.45
MCSilSil 1.63 1.81 2.01 2.21 2.39 2.58

S5

MC 1.47 1.67 1.86 2.07 2.29 2.48
MCAngles 1.64 1.84 2.03 2.22 2.4 2.59
MCMaxMax 1.72 1.92 2.11 2.28 2.49 2.73
MCMaxMin 1.54 1.79 1.97 2.2 2.44 2.65
MCMaxSum 1.66 1.86 2.06 2.22 2.42 2.6
MCP aretoHist 1.68 1.88 2.07 2.23 2.43 2.61
MCSilHist 1.5 1.74 1.95 2.16 2.42 2.67
MCSilSil 1.74 1.92 2.1 2.27 2.47 2.69
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Table 4.24: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy median ME on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6. Shown are median values across 30 replicates and 6 different time series length.
The best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0 -0.01 -0.01 -0.01 -0.01 -0.01
MCAngles 0 -0.01 -0.01 -0.01 -0.01 -0.01
MCMaxMax 0 0 -0.01 -0.01 -0.01 -0.01
MCMaxMin 0 -0.01 -0.01 -0.01 -0.01 -0.01
MCMaxSum 0 0 -0.01 -0.01 -0.01 -0.01
MCP aretoHist 0 -0.01 -0.01 -0.01 -0.01 -0.01
MCSilHist 0 0 -0.01 -0.01 -0.01 -0.01
MCSilSil 0 0 -0.01 -0.01 -0.01 -0.01

S2

MC 0.01 0.01 0.03 0.03 0.04 0.04
MCAngles 0.01 0.01 0.03 0.03 0.04 0.05
MCMaxMax 0.01 0.01 0.03 0.03 0.04 0.04
MCMaxMin 0.01 0.02 0.03 0.03 0.04 0.05
MCMaxSum 0.01 0.02 0.03 0.03 0.04 0.05
MCP aretoHist 0.01 0.01 0.03 0.03 0.04 0.05
MCSilHist 0.01 0.01 0.03 0.03 0.04 0.04
MCSilSil 0.01 0.01 0.03 0.03 0.04 0.04

S3

MC -0.03 -0.02 -0.03 -0.05 -0.05 -0.06
MCAngles -0.03 -0.01 -0.03 -0.04 -0.05 -0.05
MCMaxMax -0.03 -0.01 -0.03 -0.04 -0.05 -0.05
MCMaxMin -0.02 -0.02 -0.03 -0.04 -0.05 -0.05
MCMaxSum -0.02 -0.01 -0.03 -0.04 -0.05 -0.05
MCP aretoHist -0.03 -0.01 -0.03 -0.04 -0.05 -0.05
MCSilHist -0.02 -0.01 -0.03 -0.04 -0.05 -0.06
MCSilSil -0.03 -0.01 -0.03 -0.04 -0.05 -0.05

S4

MC 0.02 0.05 0.07 0.09 0.11 0.11
MCAngles 0.02 0.05 0.08 0.1 0.12 0.12
MCMaxMax 0.02 0.05 0.08 0.1 0.11 0.12
MCMaxMin 0.02 0.06 0.08 0.1 0.11 0.12
MCMaxSum 0.02 0.05 0.08 0.09 0.11 0.12
MCP aretoHist 0.02 0.05 0.08 0.09 0.11 0.12
MCSilHist 0.03 0.06 0.09 0.1 0.12 0.12
MCSilSil 0.02 0.05 0.08 0.1 0.11 0.12

S5

MC -0.01 0.03 0.03 0.04 0.05 0.06
MCAngles -0.01 0.03 0.03 0.06 0.07 0.07
MCMaxMax -0.01 0.03 0.03 0.06 0.07 0.07
MCMaxMin -0.01 0.03 0.03 0.06 0.06 0.06
MCMaxSum 0 0.03 0.03 0.06 0.06 0.06
MCP aretoHist -0.01 0.03 0.03 0.06 0.06 0.07
MCSilHist 0 0.03 0.04 0.05 0.06 0.06
MCSilSil -0.01 0.03 0.03 0.06 0.07 0.07
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Table 4.25: In-depth comparison of different model selection methods on C-MSKF’s forecasting
accuracy median MSE on the simulated data, broken up by noise levels and forecasting horizons,
from 1 to 6. Shown are median values across 30 replicates and 6 different time series length.
The best performance obtained for each setting is highlighted in bold faces, with the second best
performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 0.08 0.1 0.13 0.16 0.19 0.22
MCAngles 0.14 0.18 0.21 0.26 0.31 0.37
MCMaxMax 0.09 0.12 0.15 0.2 0.23 0.28
MCMaxMin 0.11 0.14 0.17 0.21 0.24 0.29
MCMaxSum 0.09 0.12 0.14 0.17 0.2 0.25
MCP aretoHist 0.14 0.18 0.23 0.28 0.33 0.39
MCSilHist 0.08 0.11 0.13 0.16 0.19 0.24
MCSilSil 0.09 0.12 0.15 0.19 0.23 0.28

S2

MC 0.21 0.27 0.35 0.46 0.55 0.65
MCAngles 0.35 0.43 0.53 0.66 0.79 0.93
MCMaxMax 0.32 0.43 0.55 0.69 0.85 1.03
MCMaxMin 0.26 0.34 0.44 0.56 0.69 0.84
MCMaxSum 0.32 0.42 0.48 0.59 0.76 0.92
MCP aretoHist 0.39 0.5 0.58 0.72 0.85 0.99
MCSilHist 0.24 0.32 0.42 0.57 0.7 0.88
MCSilSil 0.32 0.43 0.55 0.7 0.86 1.03

S3

MC 0.34 0.49 0.63 0.75 0.95 1.15
MCAngles 0.56 0.71 0.87 1.05 1.25 1.51
MCMaxMax 0.6 0.76 0.98 1.21 1.45 1.81
MCMaxMin 0.44 0.58 0.76 0.94 1.18 1.41
MCMaxSum 0.53 0.7 0.87 1.05 1.27 1.51
MCP aretoHist 0.64 0.8 0.96 1.11 1.32 1.54
MCSilHist 0.38 0.53 0.71 0.9 1.13 1.43
MCSilSil 0.59 0.76 0.96 1.21 1.46 1.78

S4

MC 0.48 0.7 0.93 1.2 1.47 1.75
MCAngles 0.75 0.95 1.23 1.49 1.82 2.19
MCMaxMax 0.78 0.98 1.28 1.58 1.94 2.32
MCMaxMin 0.71 0.92 1.18 1.48 1.84 2.24
MCMaxSum 0.79 0.98 1.25 1.51 1.86 2.23
MCP aretoHist 0.85 1.08 1.31 1.64 1.98 2.35
MCSilHist 0.56 0.79 1.07 1.47 1.88 2.25
MCSilSil 0.77 0.98 1.28 1.59 1.94 2.31

S5

MC 0.64 0.88 1.12 1.38 1.69 2.01
MCAngles 0.87 1.14 1.37 1.65 1.98 2.35
MCMaxMax 0.91 1.16 1.4 1.63 1.95 2.29
MCMaxMin 0.81 1.09 1.35 1.71 2.09 2.53
MCMaxSum 0.88 1.12 1.31 1.55 1.86 2.18
MCP aretoHist 0.9 1.11 1.31 1.55 1.83 2.11
MCSilHist 0.72 1.01 1.35 1.73 2.22 2.77
MCSilSil 0.91 1.15 1.35 1.62 1.96 2.3
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Table 4.26: In-depth comparison of different model selection methods on C-MSKF’s forecast-
ing accuracy median sMAPE on the simulated data, broken up by noise levels and forecasting
horizons, from 1 to 6. Shown are median values across 30 replicates and 6 different time se-
ries length. The best performance obtained for each setting is highlighted in bold faces, with the
second best performance highlighted in italic bold face.

Scenarios Methods 1-period 2-period 3-period 4-period 5-period 6-period

S1

MC 22.72 21.79 20.91 19.99 19.92 19.66
MCAngles 27.06 26.17 24.64 24.02 23.45 23.11
MCMaxMax 25.07 23.99 22.92 22.31 22.13 22.13
MCMaxMin 24.21 23.17 22.17 21.68 21.02 20.85
MCMaxSum 24.12 22.88 21.83 21.45 20.99 20.7
MCP aretoHist 27.24 26.18 25.26 24.6 24.27 24.22
MCSilHist 22.55 21.6 21.12 20.7 20.45 20.27
MCSilSil 24.66 23.74 22.86 22.26 21.95 21.95

S2

MC 36.95 35.22 34.03 33.72 33.62 33.05
MCAngles 43.48 42.88 40.91 40.15 39.56 39.24
MCMaxMax 41.52 39.89 39.3 38.97 39.06 39.13
MCMaxMin 37.43 37.51 36.14 35.62 34.6 34.59
MCMaxSum 41.32 40.91 39.87 39.04 37.84 37.7
MCP aretoHist 43.58 42.7 40.72 39.37 38.58 38.43
MCSilHist 37.84 35.76 35.92 36.18 36.15 36.35
MCSilSil 42.82 41.29 39.97 40.07 39.89 40.17

S3

MC 55.35 53.77 53.14 52.19 51.75 51
MCAngles 60.86 59.06 58.31 56.83 55.24 54.34
MCMaxMax 63 63.28 63.5 62.57 62.07 61.54
MCMaxMin 55.23 55.58 54.83 54 53.42 53.18
MCMaxSum 58.42 57.46 56.82 55.81 54.69 54
MCP aretoHist 61.01 59.27 58.26 56.38 55.16 54.36
MCSilHist 52.64 53.22 53 53.28 53.15 52.79
MCSilSil 63.87 64.04 63.5 62.75 62.71 62.23

S4

MC 61.53 61.05 61.24 59.77 60.67 60.23
MCAngles 63.28 62.2 61.89 61.32 61.38 61.56
MCMaxMax 67.77 65.94 67.17 66.72 66.18 65.2
MCMaxMin 61.34 61.47 61.97 61.88 62.17 62.36
MCMaxSum 66.27 64.33 64.18 63.77 63.99 63.55
MCP aretoHist 66.8 66.01 64.7 64.11 64.04 63.6
MCSilHist 56.43 57.84 59.64 60.72 61.61 62.22
MCSilSil 67.08 65.71 67.1 66.49 65.87 65.17

S5

MC 65.63 65.46 64.37 63.96 64.74 64.93
MCAngles 69.04 69.08 68.91 68.16 67.71 67.46
MCMaxMax 73.57 71.84 70.05 69.63 69.78 70.38
MCMaxMin 68.06 70.17 70.96 71.24 70.86 71.17
MCMaxSum 70.42 69.45 68.8 67.74 67.6 67.98
MCP aretoHist 70.62 69.45 68.7 67.77 67.51 67.39
MCSilHist 62.89 64.68 65.22 64.56 66.33 67.23
MCSilSil 72.55 71.39 69.78 69.35 69.76 70.32
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Chapter 5

Bagging approaches to the

forecasting of analogies (paper 3)

5.1 Abstract

Analogies have been well recognized in the area of time series forecasting. They

have been widely applied to help improve the performance of forecasting processes

in situations where analogies are present and can be identified. Within the previous

literature, clustering approaches have shown promise in supporting the identification

of meaningful groupings of analogies and thus lead to improved forecasting results.

Nevertheless, the grouping of analogies during the segmentation stage introduces ad-

ditional instabilities associated with the clustering procedure. In part, these instabilities

stem from the model selection step of the clustering process. For example, clustering

techniques such as non-parametric clustering or hierarchical clustering approaches all

require the identification of an appropriate number of clusters, and inaccuracies in the

estimation of the number of clusters will cause the incorrect splitting or merging of true

clusters. Additionally, the random initialization step required by certain clustering algo-

rithms potentially introduces further noise. On account of this, we integrate the notion
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of bootstrap aggregation into the forecasting process for handling the issue of instabili-

ties. By perturbing input data at the segmentation stage, we demonstrate that bootstrap

aggregation techniques can give rise to significant gains in the forecasting accuracy of

the prediction process.

Keywords: Bayesian pooling; Bootstrap aggregating; Clustering; Kalman filter;

5.2 Introduction

The importance of analogies has been well recognized in the field of time series

forecasting (e.g., Glantz, 1991; Murawski, 1993; Goodwin, Dyussekeneva, and Meeran,

2013). Judgmental forecasting approaches utilize analogies to adjust the final forecasts

which are subject to forecasters’ over-optimistic views or wishful thinking (Hyndman and

Athanasopoulos, 2014). Statistical forecasting models make use of analogies to boost

the accuracy of point forecasts. For example, the Bass model (Bass, 1969; Nikolopou-

los et al., 2016) was employed to forecast sales of products shortly after the launch

of new products by integrating information available from similar products (Goodwin,

Dyussekeneva, and Meeran, 2013).

Analogies play a crucial role for the forecasting approaches that employ such analo-

gies. However, the use of heterogeneous time series tends to yield poorer forecasting

results than those of homogeneous analogies (Duncan, Gorr, and Szczypula, 2001).

The homogeneity of analogies is important for the effectiveness of forecasting pro-

cesses where analogies are needed (Stimson, 1985). This indicates that the appropri-

ate identification of analogies can be essential to the success of forecasting processes,

where analogies are required.

In general, within the literature, clustering techniques have been proposed to tackle

the analogy identification challenge. This could potentially comprise the application of
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single-criterion and multi-criteria approaches (see Chapter 3). As demonstrated in pre-

vious work (Duncan, Gorr, and Szczypula, 1993; Duncan, Gorr, and Szczypula, 2001),

a proper grouping of analogies might help to obtain additional gains in the final accu-

racy of forecasts that cannot be achieved by traditional statistical forecasting models.

This is because conventional statistical models are methodologically limited to take into

account additional information that is not present within the time series patterns.

Principally, almost all statistical models are plagued by different sources of insta-

bilities that can stem from the input data, the model parameters and/or the inaccurate

assumption of model structures. Unfortunately, the clustering of analogies during the

segmentation stage of the overall prediction process might introduce additional insta-

bilities. These additional instabilities mainly stem from the model selection step during

the clustering procedure. For instance, the incorrect determination of a number of clus-

ters can lead to either wrong split or merge of partitions; the random initialization of a

clustering algorithm might yield different clustering results each time.

The bootstrap aggregation (bagging) technique proposed by Breiman (1996) has

been commonly applied to address the instability issues presented by statistical mod-

els. Through the reduction of instabilities, bagging techniques aim to additionally in-

crease the accuracy of the forecasting process. The main advantage of this technique

is to lower down the variability with the final statistical forecast through the application of

the combination scheme such as the mean, median, trimmed mean or weighted mean.

By combining the forecasts derived from multiple models, the aggregated forecast is ex-

pected to increase the accuracy of the results via the instability reduction. In principle,

Bagging can obtain an improvement in the performance of forecasting if the pertur-

bation of the learning sets leads to significant changes in the constructed statistical

models (Breiman, 1996).

In light of this, we experiment with integrating the bootstrap aggregation technique
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into the forecasting process that makes use of analogies. Instead of directly boot-

strapping time series data, which is challenging for non-stationary time series, we

reduce the problem to a typical problem of IID bootstrap by resampling a set of la-

bels associated the time series data, and the model is constructed on each boot-

strapped sample. Specifically, we regard this set of labels as random variables that

follow identical and independent distribution (IID). We assume a time series data set

with size of n and X = {X1,X2, . . . ,Xn}, whereXi is a time series with measurements

Xi = (xi1,xi2, . . . ,xin). A bootstrapped sample Xb = {Xb
1,X

b
2, . . . ,X

b
n} of size n is

generated by resampling the set of labels associated with the time series without per-

turbing the internal structure of the time series. Thus, Xb
i = (xi1,xi2, . . . ,xin), where

measures of Xb
i remain the same as Xi. We apply a simple mean method to obtain

aggregated forecasts derived from different bootstrapped samples.

Here, bootstrapped samples are obtained at different stages of the prediction pro-

cess that employs analogies: (i) The first class of methods resample from the original

order with replacement during the stage of segmentation. Subsequently, a suitable

model selection method is applied to the generated bootstrapped samples, where the

forecasting algorithm is then used to forecast the resultant clusters of analogous time

series; (ii) The second class of methods bootstraps directly on analogies, which were

identified at the segmentation stage, and further combines point forecasts across boot-

strapped samples. Based on objective forecasting methods, i.e., the Cross-Sectional

State Kalman Filter algorithm, our findings demonstrate that by perturbing the data at

different stages of the process, bagging methods are capable of boosting the forecast-

ing accuracy of forecasting methods make use of analogies.

The rest of the paper is organized as follows: Section 5.3 surveys previous work

related to the concept of bagging and multicriteria clustering. Section 5.4 presents the

details of the prediction process that makes use of analogies. Section 5.5 describes the

overall bagging procedures. Section 5.6 provides details regarding the design of the
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experiments based on simulated data. Section 5.7 analyzes results of the experiments,

and Section 5.8 concludes the paper.

5.3 Previous work

Analogies have been widely employed in the forecasting field for boosting the fore-

casting accuracy (Easingwood, 1989; Armstrong, 2006; Green and Armstrong, 2007;

Piecyk and McKinnon, 2010). Most commonly, analogies have been utilized in judg-

mental forecasting, where forecasting by analogy approaches make use of analogies

to adjust the point forecasts derived from statistical forecasts (Hyndman and Athana-

sopoulos, 2014; Webby and O’Connor, 1996). The idea behind this is to reduce bi-

ases caused by forecasters’ over-optimistic view or wishful thinking (Armstrong, 2001;

Petropoulos et al., 2014).

According to Duncan, Gorr, and Szczypula (2001), analogies can be defined as time

series that show similarity in terms of time-based patterns that are correlated over time.

Recent work of Lu and Handl (2015) further refined the definition of analogies as a set

of time series show similarity in term of time-based patterns and hypothesized factors

that govern the behavior of the observed patterns. Within the forecasting literature, a

few research studies have been conducted to help identify analogies in an objective

manner.

Specifically, clustering techniques have been applied during the segmentation stage

of the overall prediction process where analogies are involved. These clustering ap-

proaches have focused on partitioning a set of time series into distinctive groups where

each group contains homogeneous time series. Time series is homogeneous if the

time-based patterns are similar and/or the causal factors that drive these patterns are

similar (Duncan, Gorr, and Szczypula, 2001; Lu and Handl, 2015). Previous work
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shows that segmentation approaches to the group of analogies can provide better clus-

tering results and then translate to improved forecasting results. However, a major

issue associated with segmentation approaches lies in the model selection step of the

clustering procedures, where clustering results can be unstable and vary from time to

time.

In more details, forecasting processes utilize analogies are inevitably facing the

challenge of additional instabilities primarily stemming from the model selection pro-

cess. Specifically, theses processes are involved with determining the final partitions

of the analogies. Illustrated by (Guyon, Von Luxburg, and Williamson, 2009), clustering

methods that require the determination of the number of clusters might exhibit insta-

bilities as the incorrect choose of the number of clusters can lead to either wrong split

or merge of the “true” clusters. In addition, the random initialization of clustering algo-

rithms (if needed) can also return unstable clustering results at each run. Similar to all

statistical forecasts, there might be different sources of instabilities stemming from the

input data, model parameters and/or model structures. However, the identification of

analogies which was proved to be crucial for the success of such forecasting process

might arise additional issues of instabilities.

To handle the instabilities, bagging methods have been extensively studied in the

forecasting field with the aim of boosting the final accuracy (e.g., Breiman, 1996). Bag-

ging methods are declared to be able to yield substantial gains in the model perfor-

mance if the perturbation of learning sets can lead to different model results (Breiman,

1996). The bootstrap of time series data is not difficult if one has a finite-dimensional

parametric model (e.g., a finite-order ARMA model) that reduces the data generation

process to independent random sampling. In this case and under suitable conditions,

the bootstrap has the same properties to a random sample from a distribution (see

Bose, 1988; Bose, 1990). Such approaches are inconsistent if the model used for

resampling is mis-specified.
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In terms of direct time series bootstrap, the most common approach to bootstrap

time series is to resample “blocks” of sequential observations instead of resampling

independent data observations. This preserves the dependence structure of the under-

lying process within the resampled blocks and can reproduce the effect of dependence

at short lags. A typical example is the local moving block method (MBB) (Kunsch,

1989). These methods have shown particular successes for stationary time series.

The bootstrap of non-stationary time series is more challenging as the notion of ”block”

cannot be directly applied because the resampling of blocks can interrupt the depen-

dent structure. One recent work related to this topic is referred to Bergmeir, Hyndman,

and Benı́tez (2016), who firstly transformed the non-stationary time series using a Box-

Cox transformation by decomposing the time series into trend, seasonal and remainder

components. Later, MBB methods were applied to generate bootstrapped residuals.

The final bootstrapped samples were constructed by transforming components back

to time series. This method demonstrates better forecasting results of the exponential

smoothing method limited in the monthly series of M-3 competition data. One earlier

research study is provided in Cordeiro and Neves (2009), who employed a sieve boot-

strap to perform bagging with ETS models. Unfortunately, the overall results are not

promising. In fact, the bagged forecasts are often not as good as the original forecasts

applied to the original time series.

5.4 The forecasting process makes use of analogies

This section details main components that are utilized in the prediction process

where analogies are required. Ultimately, we aim to integrate the bootstrap aggregation

concept into the overall prediction process discussed here to obtain a further gain in

forecasting accuracy. The gain is expected by constructing an aggregated forecast that

reduces the bias and variability resulted from the clustering procedure.
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In general, there are three steps involved in the prediction process: (i) The seg-

mentation of analogies partitions a set of time series into clusters based on criteria

considered. The clustering process can make use of either single criterion or multiple

criteria. The choice is dependent on the final application purpose and the availability

of information data sources. (ii) The second step of the prediction process employs a

pooling approach, namely the Cross-Sectional State Kalman Filter (C-MSKF method).

This algorithm is capable of utilizing information available from analogies. We use the

C-MSKF method to demonstrate the performance of various bagging procedures devel-

oped in this article. (iii) The notion of bagging based on IID bootstrap is integrated into

the overall prediction process that comprises Step (i) and Step (ii). The overall bagging

procedures are described later in this section.

5.4.1 Segmentation of analogies

In the context of forecasting, analogies have been widely employed to help the

improvement of forecasting results derived from the statistical forecasts. To identify

analogies, both single-criterion and multicriteria segmentation approaches have been

investigated. These approaches make use of information from past realizations of time

series and/or the causal factors that drive the patterns observed. The motivation of

using these information sources is referred to our previous work Lu and Handl (2015).

Here, we focus more on the development of methodologies that could generate better

forecasting results via the instability reduction.

Specifically, three clustering approaches are considered during the segmentation

step for the grouping of analogies: single-criterion clustering of time series data (TS

clustering), single-criterion clustering of causal factors (CF clustering) and multicriteria

clustering approaches that make use of both information sources (MC).
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5.4.1.1 The choice of distance metric

CF clustering. The first information source is derived from causal factors that cause

the time-based patterns underlying the analogies. We apply a squared Euclidean dis-

tance metric to measure the hypothesized causal factor by assuming a single numeric

value is associated with each analogous time series. Specifically, δCF (i, j) denotes

time series i and j. The equation applied to calculate the distance between the two-

time series is given as:

δCF (i, j) =
∑
m

(aim−ajm)2 (5.1)

where δCF (i, j) = dCFij and dCFij are elements of the dissimilarity matrix DCF; aim

and ajm represent the values of causal variable m associated with time series i and

j, respectively. Further, the z-score method is used to eliminate the scale differences

among time series.

TS clustering. In terms of time series information, we measure the dissimilarity

between time series based on Pearson correlation coefficients. Assume time series i

and j, the distance between them is represented as dTSij and calculated as follows:

δTS(i, j) = 1−
T (∑

t
xitxjt)− (∑

t
xit)(

∑
t
xjt)√

(T (∑
t
x2
it)− (∑

t
xit)2)(T (∑

t
x2
jt)− (∑

t
xjt)2)

(5.2)

where a dissimilarity matrix based on time series information defines as DTS = (dTSij );

dTSij = δTS(i, j); t is the index of time t= 1,2, ...,T ; T is the number of time steps used

for measuring correlation; xit and xjt describe the values of time series i and j over

time, respectively.

MC clustering. With respect to MC clustering, the dissimilarity matrices derived

from causal factors and time series patterns are combined at the distance function level

through a weighting scheme. To reduce scale differences, we update each element of

the dissimilarity matrices dCFij and dTSij using the Min-max method (see Equations (5.3)
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and (5.4)):

dTSij ←
dTSij −min(DTS)

max(DTS)−min(DTS)
(5.3)

dCFij ←
dCFij −min(DCF)

max(DCF)−min(DCF)
(5.4)

To combine the two information sources, the distance matrix DMC
ω = (dMC

ijω ) is ob-

tained through a weighted-sum method, where the relative weight ω varied from 0 to 1

with increments of 0.10;

dMC
ijω = (1−ω)×dCFij +ω×dTSij (5.5)

Further, we employ a standard clustering technique, namely PAM clustering (Kauf-

man and Rousseeuw, 1990), to the clustering procedure. The main rationale of us-

ing this technique is due to its capability of combining incommensurable variables that

can be easily realized using dissimilarity matrices1. In our context, equally-sized par-

titionings are considered advantageous for the forecasting analysis. PAM clustering

approaches tend to yield such clusters. To reduce chances of generating local optima,

we repeat the clustering procedure 30 times. Among these, the clustering solution with

the minimal sum of within-cluster dissimilarities is chosen for the further analysis.

5.4.1.2 Model selection

• Selection of the number of clusters

For an automatic determination of the number of clusters, the Silhouette Width mea-

sure (Rousseeuw, 1987) is applied. The Silhouette Width measure has been widely

employed to determine the number of clusters using the internal data structure alone.

1Clustering methods operate on dissimilarity matrix are applicable
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This measure focuses on the compromise between the cluster cohesion and separa-

tion. Assume a data set with n objects, these objects can be grouped into k clusters,

k = 1,2, . . . ,n, through a suitable clustering approach. The Silhouette values will be

calculated for each clustering solution. The clustering solution returns the largest mean

Silhouette value is selected. The Silhouette value Sil takes values from [-1,1], and a

larger value means a better clustering result. The calculation is presented as follows:

Sil(i) = bi− ci
max(ci, bi)

(5.6)

where ci represents the average distance between object i and all data objects in the

same partition; bi denotes the average distance between i and all data objects in the

closest other partition; The closest partition is defined as the one with the minimum bi.

The Silhouette Width of the entire partition is then calculated as the mean Silhouette

Width of all data objects.

• Selection of weight for multicriteria approaches

In addition, MC clustering requires a further step in model selection, as for the same

number of k, the clustering approach might return multiple solutions. Each weight inter-

val might correspond to an individual clustering solution. In consistent with Chapter 3

and 4, the best partitioning is determined by calculating the historical average perfor-

mance of the forecasting algorithm implemented in the prediction process. The main

rationale behind this is the success of the clustering is best reflected by the overall

success of the application (forecasting) (Guyon, Von Luxburg, and Williamson, 2009).

Specifically, the prediction origin t = T is used to support this part of the analysis.

Historical data points (t≤ T ) are used during the clustering procedure. To measure the

historical average forecasting performance, the choice of historical period and whether

the data points should be included during the clustering procedure might have impacts
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on the forecasting accuracy. We employ the best method reported by the previous work,

and more details are systematically analyzed in Chapter 4.

The accuracy measure used for the weight selection is the Mean Square Error

(MSE) and given as:

MSE =mean(e2
t ) (5.7)

where t is the time index; et = Xt−Ft, Xt is the actual observation of the time series

X at time t; Ft is the respective forecast made at time t.

5.4.2 The C-MSKF forecasting algorithm

Here, we employ the C-MSKF algorithm during the forecasting stage. This approach

is able to pool information from analogies and has shown promising results in dealing

short and volatile time series. C-MSKF methods have demonstrated some successes

in applications, e.g., forecasting of churn in telecommunication networks (Greis and

Gilstein, 1991), infant mortality rates (Duncan, Gorr, and Szczypula, 2012) and tax

revenue (Duncan, Gorr, and Szczypula, 1993). In principle, the C-MSKF method was

as a representative example, but the applicability of other pooling approaches in this

framework is expected. Particularly, the idea of bagging lies in the perturbation of the

labels of the time series data without interrupting the mechanisms of the forecasting

algorithm.

In general, C-MSKF methods combine of the capability of the Multi-State Kalman

Filter (MSKF: Harrison and Stevens, 1971) with the Conditionally Independent Hierar-

chical Model (CIHM: Kass and Steffey, 1989) using DGS’s shrinkage formula (DGS’s

shrinkage: Duncan, Gorr, and Szczypula, 1993). The more detailed description regard-

ing the C-MSKF algorithm is available in the literature (Duncan, Gorr, and Szczypula,

1993) and the Appendix. To handle the structural change presented in the time series

patterns, C-MSKF methods were claimed to show better results when allowing at least
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three observations after the change caused by the impact of an external influence. Fur-

thermore, a key assumption of the C-MSKF is that time series that are regarded as

analogous during the investigation period do not frequently diverge in the forecasting

period (Duncan, Gorr, and Szczypula, 1994; Duncan, Gorr, and Szczypula, 2001).

5.5 The overall bagging procedures

Based on the prediction process described in the previous sections, we further detail

the procedure of bagging to the forecasting of analogies. Generally, the prediction

process comprises three major components: (i) The clustering of analogies using a

suitable clustering approach which can be a single-criterion or multicriteria clustering

approach; (ii) the employment of the C-MSKF algorithm, which utilizes information from

analogies that have been identified in Step (i); (iii) Bootstrapped samples are generated

at different stages of such prediction process. At the aggregation step, point forecasts

derived from different bootstrapped samples are combined using the mean method. In

most cases, simple combination methods often work reasonably well relative to more

complex combinations (Clemen, 1989).

Firstly, a word about notations: generically assume that L= (l1, l2, . . . , ln) refers to

a set (vector) of labels associated with each time series, respectively in a data set or a

cluster. L collects a set of random variables that follow IID distribution. The time series

data is denoted as XTS = (xTSit ), where i refers to ith time series and t = 1,2, . . . ,T

and T denotes the total number of time steps. Additionally, the causal factor data

XCF = (xCFim ), where m= 1,2, . . . ,M and M denotes the number of causal variables,

share the same set of labels with the time series data XTS . The bagging procedures

proposed are dedicated to randomly draw the labels with a replacement rather than

perturbing the internal structure or values of the time series and causal factor data.
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5.5.1 BagClust

This procedure is a generic framework that deals with single-criterion of causal fac-

tor, time series data and multicriteria approach to segmentation of analogies. Specifi-

cally, we perturb the set of time series labels (the learning set) that associated with a

collection of time series during the clustering process. By doing this, each bootstrap

sample might give rise to different clustering results, which will be further utilized to

benefit the forecasting stage.

(1) Construct B data samples based on the bootstrapped samples of the labels L.

Specifically, we resample the set of labels L= (l1, l2, . . . , ln) with replacement. A

bootstrapped sample of labels refers to Lb = (lb1, lb2, . . . , lbn). A new data sample

of causal factors and time series is XCFb and XTSb , respectively. The procedure

is performed B times. This procedure can be applied to both single-criterion and

multicriteria clustering approaches.

(2) Apply the clustering procedure P to the bootstrapped samples Xb. The new data

sample used dependent on the criterion used during the clustering procedure P .

(3) Determine the final partitions. Determine the number of clusters based on the

largest mean Silhouette Width measure. For MC clustering, we further proceed

the model selection step by applying the C-MSKF algorithm to the each parti-

tion determined in Step (2). The partitioning returns the best average (historical)

forecasting results of C-MSKF is chosen as the final solution for MC clustering

(details refer to Section 5.4.1.2). This approach is denoted as MCSilHist.

(4) Apply the C-MSKF algorithm to the final partitioning identified in Step (3).

(5) Obtain the aggregated point forecast by averaging across the bootstrapped sam-

ples Xb.
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5.5.2 BagFcst

The BagFcst-based framework operates at the forecasting stage of the overall pre-

diction process. Particularly, clusters of analogies produced from the segmentation

stage are labeled systematically. The bootstrapping procedure is applied at the cluster

level. Instead of resampling the learning sets, BagFcst randomly draws labels within an

individual cluster with replacement and generates a number of I time series that equals

to the original cluster.

(1) Apply the clustering procedure P to the original learning set X = (xit). Based on

the criteria (CF, MC and TS clustering) considered, XCF and/or XTS are used.

(2) Determine the final partitions. Determine the number of clusters based on the

largest mean Silhouette Width measure. For MC clustering, we further proceed

by applying the C-MSKF algorithm to the each partition determined in Step (2).

The partitioning returns the best average (historical) forecasting results of C-

MSKF is regarded as the final solution for MC clustering (details refer to 5.4.1.2).

The multicriteria approach takes in account the automated model selection step

is denoted as MCSilHist.

(3) Construct B bootstrapped samples Xb based on the resampled labels of Lb =

(lb1, lb2, . . . , lbI), where I is the number of time series in a cluster, and it can vary

from cluster to cluster. The set of labels are regarded as random variables follow-

ing IID distribution within each cluster.

(4) Apply the C-MSKF algorithm to each bootstrapped sample independently.

(5) Obtain the aggregated point forecast by averaging point forecasts for individual

time series across the bootstrapped samples.
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5.6 Empirical validation

5.6.1 Simulated data

To enable comparison between different segmentation approaches, we generated

simulated data corresponding to (i) the information derived from the time series data

and (ii) the information obtained from the causal factors that are associated with each

time series.

In terms of the time series data, we aim to generate a collection of time series that

are correlated across an initial time interval but later display different trend changes, due

to an external influence. Particularly, we use linear, logarithmic and piecewise linear

functions to characterize these trend change as a function of time t. Conceptually, the

linear model describes a time series that shows stable increasing trend. The logarithmic

model describes a decreasing growth rate in the slope of the trend. An evident structural

change has been introduced into the time-based pattern of a series by the piece-wise

linear model. It reflects a trend change from a positive to a negative slope. The specific

models used for these three generating functions fg(t), g = 1,2, . . . ,3, are defined as

follows:

f1(t) = 0.8t+ 2.8, if 1≤ t≤ q, (5.8)

f2(t) = 4ln(t) + 2, if 1≤ t≤ q, (5.9)

f3(t) =


0.7t+ 2.8, if 1≤ t≤ p

−0.9t+ 25, if p+ 1≤ t≤ q
(5.10)

where p defines the time point where a change occurs in the pattern based on the

piece-wise linear model; q denotes the number of time steps of the time series.

To further generate a set of analogous time series from a given model provided in
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Equations (5.8), (5.9) and (5.10), we added normally-distributed noise to the trend at

each time step. Specifically, the noisy time series pattern Xit for time series i at time t,

associated with the choice of generating function g, is obtained by:

xit =


f ig(1) +N(f ig(t+ 1)−f ig(t),σ2

TS), if t= 1

xi(t−1) +N(f ig(t+ 1)−f ig(t),σ2
TS), if 1< t≤ q

(5.11)

where g denotes the choice of generating model; the notation N(µTS ,σ2
TS) describes

a random variate drawn from a normal distribution with mean µTS and variance σ2
TS ;

Here σ2
TS is static, but µTS varies over time and, for each time step t, is defined by the

slope of the generating function fg(t+ 1)−fg(t).

Based on Equation (5.11), each model is utilized to generate a set of analogous

time series with size I and length of q− 1 2. Noise is introduced to each set through

the addition of additive noise, as described in Equation.(5.11). One of the resulting time

series data sets is shown in Fig. 5.1.
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Figure 5.1: Illustration of the simulated time
series produced from a linear, logarithmic,
and piecewise linear functions

2Due to the differencing step in Equation.(5.11)
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In addition, the z-score method is applied to normalize the time series in order to

eliminate the magnitude differences and therefore improve the performance of CIHM

cross-sectional adjustment.

With respect to the generation of causal factors, we assume a single causal variable

that governs the pattern behavior of the time series. In principle, the methodology

described above generalities to a feature space of arbitrary dimensions, as long as a

suitable distance measure dCFij can be defined. The core property modeled here is

simply the availability of two different, incommensurable and noisy feature spaces.

In our simulated data, the ground truth (i.e., the nature of the generating model for

each time series) is known; this information could be therefore employed to derive suit-

able but noisy causal factor information. Specifically, the values of the causal factor for

time series i is drawn from normal distributionsN(µCF ,σ2
CF ), where µCF corresponds

to the index g of the generating function fg(t), associated with time series i (i.e., it takes

value in 1, . . . ,3).

As reported by previous work (see Chapter 3), the increase of noise levels pre-

sented in the time series might have negative impacts on C-MSKF’s performance.

Generally, as the noise level increases, the weight selection for multicriteria cluster-

ing approaches becomes more challenging and less reliable. To further understand the

noise impact on bagging procedures, we adjust the levels of σCF and σTS relative to

each other. In specific, the σCF = 0.35 and σTS increases from 0.35 to 0.75 in steps of

0.2, respectively. Across noise levels (scenarios), the parameters used to generate the

data are constant and shown in Table 5.1.

Here, all parameters are constant in the experiments, and the forecasting origin is

fixed to t= T throughout our analysis. The parameter T is used to allow for more than

three observations after the slope change. This makes sure that we satisfy the key

assumption of the C-MSKF approach (refers to Section 5.4.2). The parameter Length

selection reflects that we systematically drop the earliest historical points one at a time,
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Table 5.1: Constant parameters used to generate simulate data
sets across noise levels, from scenarios 1 to 3

Parameter Values
Forecasting horizon h= 1,2, . . . ,6
Forecasting origin T = 17
Length selection l = 12,13, . . . ,17
No. of bootstrapped samples B = 50
No. of replicates R = 30
No. of time series in a group I = 10
Total No. of data points q = 24
Time of trend change p= 14

while fixing the forecasting origin at t= T , to take into account the effect of shorter time

series.

We generate R = 30 replicates (including CF and TS data sets) using the same

set of the noise level. Further, for each set of replicate, B = 50 bootstrapped samples

are generated. A larger number does not give evident improvements regarding the

forecasting results so that we keep B = 50.

5.6.2 Contestant forecasting techniques

Our main focus in this article is to analyze and compare the effectiveness of bag-

ging approaches in the context of forecasting analogous time series. We aim to investi-

gate accuracy performance of the forecasting forecasting process, which makes use of

analogies, after the integration of bagging procedures.

At the segmentation stage of the forecasting process, we allow the comparison be-

tween a single-criterion approach of causal factors (CF), a single-criterion approach of

time series (TS), and a multicriteria clustering approach (MC) to accommodate for both

CF and TS information data sources. Thus, BagClustCF , BagClustMC , BagClustTS ,

BagFcstCF , BagFcstMC and BagFcstTS are compared in the experiments.

In addition, we compare our bagged C-MSKF methods to the unbagged C-MSKF
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methods including CF, TS, MC, MCSilHist, TS methods as well as the baseline model

MSKF. Furthermore, popular univariate forecasting methods are included: Damped

Exponential Smoothing (Damped), Drift, Exponential Smoothing (ETS), Random Walk

(RW), and the Theta method. Here ETS method refers to the automated process pro-

vided in the forecast R package. Details regarding all the methods considered here are

given in the Appendix.

5.6.3 Performance evaluation

In addition to the MSE measure given in Equation (5.6). We also measure the

forecasting accuracy of a method using the Symmetric Mean Absolute Percentage Error

measure (sMAPE: Bergmeir, Hyndman, and Benı́tez, 2016).

sMAPE =mean(200 |et|
|Xt|+ |Ft|

) (5.12)

where t refers to the time steps; et = Xt−Ft and Xt is the observation at t; Ft repre-

sents the respective forecast made at time t.

We assess the accuracy of the point forecasts by computing the average MSE and

sMAPE across different forecasting horizons, replicates, bootstrapped samples, time

series, and time series lengths. In order to provide further insight, some of our results

are broken up by key aspects that are observed to influence the forecasting accuracy.

These encompass the three noise scenarios and six forecasting horizons.

5.7 Results

Table 5.2 shows that BagClustMC consistently performs the best among the contes-

tant methods from scenarios 1 to 3. BagClustTS is ranked as the second-best perform-

ing method in 4 out of 6 scenarios. We do a pair-wise comparison; we can conclude
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that bagged C-MSKF methods outperform all the unbagged C-MSKF methods in all

scenarios. For example, BagClustCF and BagFcstCF both significantly improve the CF

method from scenario 1 to 3 based on average MSE and sMAPE. This indicates that

by perturbing time data at either the clustering or forecasting stage, the aggregated

point forecasts obtained by averaging the 50 bootstrapped samples has successfully

demonstrated the improved forecasting results.

Comparing the MC with MCSilHist method, both approaches employ the Silhou-

ette Width measure to determine the number of cluster. MC then applies the prior

knowledge to determine the optimal weight interval, while MCSilHist selects the weight

interval based on the best historical average forecasting results of the C-MSKF method.

(Particularly, t = 17 is used to assess the forecasting performance, and t ≤ T are in-

cluded during the clustering procedure). From scenarios 1 to 3, MC shows equivalent

performance to MCSilHist in scenario 1, but consistently outperform the latter in sce-

nario 2 and 3. This has been agreed by both MSE and sMAPE measure. This highlights

the limitation of the model selection method implemented in MCSilHist approaches; the

weight selection is limited in dealing robustly with the increasingly noisy nature of the

time series data. The results here were in line with the previous conclusion provided in

Chapter 3.

Finally, BagClustMC and BagFcstMC both outperform the MCSilHist in S1, S2 and

S3. The IID bootstrap developed based on the MCMC method demonstrates the poten-

tial of overcoming the model selection difficulty associated with the robustness related

to noisy nature of the time series data. In summary, IID bootstrap employed during the

clustering step of the overall prediction process shows better forecasting results than

its application in the forecasting stage.

In addition, we break up the average forecasting results by six forecasting horizons

to investigate the performance of the compared techniques. As reported by previous

work (see Chapter 3), weight select in multicriteria clustering approaches is dependent
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Table 5.2: Results of forecasting methods across noise levels from scenario 1
to 3. The results are averaged across 30 replicates, 50 bootstrapped samples,
6 time series lengths and 6 prediction horizons

Average MSE Average sMAPE
Methods S1 S2 S3 S1 S2 S3
CF 0.51 0.83 1.18 34.38 46.61 62.79
TS 0.17 0.68 1.25 21.89 39.09 58.75
MC 0.16 0.47 0.80 20.80 34.23 49.77
MCSilHist 0.16 0.59 1.00 21.22 37.67 54.97
BagClustCF 0.29 0.57 0.84 28.31 40.40 53.61
BagClustTS 0.12 0.49 0.84 18.35 32.79 48.28
BagClustMC 0.10 0.42 0.68 16.50 31.05 44.90
BagFcstCF 0.42 0.72 1.04 31.48 43.68 58.98
BagFcstTS 0.16 0.64 1.18 21.13 38.10 57.50
BagFcstMC 0.14 0.46 0.76 20.28 34.70 51.56
Damped 0.20 0.64 0.98 21.75 38.09 52.43
Drift 0.88 1.07 1.24 56.77 59.73 64.34
ETS 0.44 0.96 1.16 29.28 51.03 61.58
MSKF 0.17 0.72 1.14 19.60 39.26 50.62
RW 0.80 1.04 1.20 57.73 61.15 65.22
Theta 0.83 1.06 1.26 56.79 60.53 65.20

on the noise level in the time series data, and MC was generally demonstrated as better

performing method, although it cannot be directly employed in a real application setting

due the assumption of prior knowledge on the best weight selection.

In summary, BagClustMC presents the best performance in all situations (across

noise levels and forecasting horizons) measured by average MSE and sMAPE. By as-

suming the existence of prior knowledge for the weight selection, MC outperforms all

the benchmark models including MCSilHist. Comparing MC to BagClustMC , the latter

forecasting method outperforms MC in all noise levels across forecasting horizons, from

1 to 6. Based on MSE, BagFcstMC consistently outperform MC methods across noise

levels and forecasting horizons form 1 to 6. However, this conclusion is not confirmed

on sMAPE, and we see opposite results.,
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5.8 Conclusions

In this article, we have introduced the notion of bagging, based on IID bootstrap,

to a forecasting process that makes use of analogies. The idea of the IID bootstrap is

straightforward and easy to implement in the forecasting process. This method shows

significant improvements to the final forecasting results through the reduction of cluster-

ing instability. By bootstrapping time series labels at the segmentation stage, BagClust-

based methods consistently improve upon BagFcst-based approaches.

The main contributions of this manuscript are as follows: (i) We analyze the perfor-

mance of bagging approaches in the context of forecasting analogous time series. To

the best of our knowledge, little work has been reported to investigate the effectiveness

of bagging in circumstances where analogies are extensively employed. The IID boot-

strap procedures proposed can be easily transferred to different forecasting approaches

where analogies are applicable. (ii) Our bagged C-MSKF methods show superior per-

formance over the original C-MSKF methods. Furthermore, these methods improve the

robustness of the forecasting process based on MCSilHist. This was demonstrated by

the comparison of forecasting accuracy between BagClustMC and MCSilHist.

Specifically, the bagging procedures have found to be powerful in lowering down the

process instability through the aggregation of numerous point forecasts. Surprisingly,

the BagClustMC method outperforms the MC method across 6 forecasting horizons

and 3 noise levels (see Tables 5.3, 5.4,5.5 and 5.6). This indicates that the employment

of IID bootstrap at the segmentation stage helps address the shortcoming of our model

selection method, where the weight is determined based on best historical forecasting

accuracy of C-MSKF. The process was reported to be unstable and sensitive to the

increase of noise associated with time series, particularly for longer forecasting horizons

(see Chapter 4).
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Another option of reducing the clustering instability is to construct a consistent par-

tition through the ensemble method. Ensemble clustering might be able to produce

better clustering results, but the procedure does not consider forecasting accuracy per-

formance when determining the final partitions. According to Guyon, Von Luxburg, and

Williamson (2009), the goodness of a clustering solution is best measured by taking

into account the overall aim of an application. Hence, we retain our problem-specific

approach to model selection, which works on the historical forecasting results of C-

MSKF algorithms.

In future work, more research could be conducted concerning the determination of

parameters used for the bagging procedures. This includes decisions related to the

number of bootstrapped samples, and the sample size of bootstrapped samples. To

further evaluate the model performance, it will be desirable to apply our bagged C-

MSKF methods to real-world applications.
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Table 5.3: In-depth contrast of the forecasting errors on MSE where C-MSKF al-
gorithm is used as the baseline model for pooling methods, broken up by noise
level and forecasting horizon ranging from 1 to 6. Shown are averages across 30
replicates and 6 different time series lengths. The best performing methods are
highlighted in bold face, with the second best performance highlighted in italic bold
face.

Scenarios Methods h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

BagClustCF 0.15 0.2 0.25 0.31 0.38 0.45
BagClustMC 0.04 0.06 0.08 0.11 0.14 0.18
BagClustT S 0.06 0.08 0.1 0.13 0.16 0.2
BagFcstCF 0.22 0.29 0.37 0.45 0.54 0.64
BagFcstMC 0.08 0.1 0.13 0.15 0.18 0.22
BagFcstT S 0.08 0.11 0.14 0.17 0.21 0.25
CF 0.27 0.36 0.45 0.55 0.66 0.78
Damped 0.04 0.08 0.13 0.20 0.30 0.44
Drift 0.14 0.33 0.60 0.95 1.38 1.89
ETS 0.08 0.17 0.30 0.46 0.68 0.96
MC 0.09 0.11 0.14 0.17 0.20 0.24
MCSilHist 0.09 0.11 0.14 0.17 0.21 0.25
MSKF 0.04 0.08 0.12 0.19 0.26 0.34
RW 0.13 0.30 0.55 0.86 1.24 1.69
Theta 0.14 0.32 0.57 0.90 1.30 1.78
TS 0.09 0.12 0.15 0.19 0.22 0.27

S2

BagClustCF 0.28 0.37 0.47 0.62 0.76 0.93
BagClustMC 0.14 0.22 0.32 0.47 0.61 0.78
BagClustT S 0.17 0.26 0.37 0.54 0.71 0.89
BagFcstCF 0.38 0.49 0.61 0.78 0.94 1.12
BagFcstMC 0.25 0.32 0.4 0.5 0.6 0.71
BagFcstT S 0.26 0.37 0.51 0.7 0.9 1.12
CF 0.45 0.57 0.71 0.89 1.08 1.27
Damped 0.15 0.26 0.42 0.68 0.99 1.36
Drift 0.23 0.46 0.76 1.17 1.64 2.17
ETS 0.21 0.39 0.65 1.01 1.48 2.04
MC 0.23 0.31 0.40 0.52 0.63 0.75
MCSilHist 0.25 0.35 0.47 0.64 0.81 1
MSKF 0.17 0.32 0.51 0.79 1.08 1.43
RW 0.22 0.45 0.74 1.14 1.59 2.10
Theta 0.23 0.45 0.75 1.16 1.62 2.14
TS 0.29 0.40 0.54 0.74 0.95 1.18
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Table 5.4: In-depth contrast of the forecasting errors on MSE where C-MSKF al-
gorithm is used as the baseline model for pooling methods, broken up by noise
level and forecasting horizon ranging from 1 to 6. Shown are averages across 30
replicates and 6 different time series lengths. The best performing methods are
highlighted in bold face, with the second best performance highlighted in italic bold
face.

Scenarios Methods h= 1 h= 2 h= 3 h= 4 h= 5 h= 6
6-period

S3

BagClustCF 0.4 0.55 0.72 0.9 1.12 1.36
BagClustMC 0.23 0.35 0.53 0.73 0.97 1.24
BagClustT S 0.29 0.44 0.65 0.91 1.2 1.54
BagFcstCF 0.51 0.69 0.89 1.11 1.38 1.68
BagFcstMC 0.4 0.52 0.66 0.81 0.99 1.19
BagFcstT S 0.48 0.68 0.96 1.28 1.63 2.03
CF 0.61 0.80 1.02 1.26 1.54 1.85
Damped 0.29 0.47 0.74 1.07 1.44 1.86
Drift 0.29 0.56 0.92 1.36 1.87 2.46
ETS 0.29 0.54 0.87 1.26 1.72 2.25
MC 0.37 0.52 0.70 0.87 1.06 1.27
MCSilHist 0.4 0.58 0.82 1.08 1.38 1.72
MSKF 0.26 0.49 0.81 1.23 1.72 2.32
RW 0.28 0.55 0.90 1.32 1.80 2.36
Theta 0.31 0.59 0.95 1.38 1.87 2.44
TS 0.51 0.73 1.02 1.36 1.73 2.15
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Table 5.5: In-depth contrast of the forecasting errors on sMAPE where C-MSKF algorithm
is used as the baseline model for pooling methods, broken up by noise level and forecasting
horizon ranging from 1 to 6. Shown are averages across 30 replicates and 6 different time
series lengths. The best performing methods are highlighted in bold face, with the second
best performance highlighted in italic bold face.

Scenarios Methods h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

BagClustCF 30.14 28.95 28.11 27.7 27.51 27.47
BagClustMC 17.47 16.62 16.21 16.14 16.2 16.36
BagClustT S 19.88 18.76 18.12 17.84 17.72 17.77
BagFcstCF 33.61 32.24 31.28 30.78 30.54 30.45
BagFcstMC 22.76 21.18 20.11 19.5 19.15 19
BagFcstT S 23.32 21.84 20.92 20.43 20.18 20.1
CF 36.67 35.19 34.18 33.64 33.37 33.24
Damped 18.73 19.57 20.83 22.28 23.77 25.30
Drift 45.29 51.90 56.37 59.78 62.50 64.78
ETS 24.33 26.48 28.55 30.44 32.14 33.72
MC 23.23 21.68 20.65 20.06 19.68 19.49
MCSilHist 23.58 22.03 21.02 20.47 20.17 20.06
MSKF 17.27 17.93 19.03 20.15 21.14 22.06
RW 42.57 50.29 56.39 61.50 65.88 69.73
Theta 44.87 51.62 56.28 59.92 62.81 65.24
TS 24.19 22.66 21.69 21.16 20.87 20.77

S2

BagClustCF 41.52 40.7 40.14 40.02 39.97 40.06
BagClustMC 29.66 30.22 30.66 31.34 31.92 32.47
BagClustT S 31.34 31.85 32.34 33.09 33.77 34.33
BagFcstCF 45.19 44.07 43.29 43.16 43.13 43.21
BagFcstMC 36.56 35.43 34.52 34.12 33.87 33.72
BagFcstT S 38.26 37.84 37.74 37.95 38.28 38.5
CF 48.32 47.20 46.35 46.07 45.90 45.82
Damped 32.90 35.53 37.42 39.30 40.96 42.42
Drift 48.02 54.58 59.23 62.89 65.71 67.94
ETS 40.94 46.40 50.29 53.57 56.31 58.68
MC 35.22 34.55 34.12 33.96 33.83 33.67
MCSilHist 38.35 37.62 37.3 37.39 37.59 37.75
MSKF 33.17 36.45 38.64 40.81 42.49 44.00
RW 45.51 53.62 59.78 65.08 69.56 73.36
Theta 47.85 54.84 59.81 63.94 67.10 69.64
TS 39.56 38.92 38.72 38.87 39.15 39.34
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Table 5.6: In-depth contrast of the forecasting errors on sMAPE where C-MSKF algo-
rithm is used as the baseline model for pooling methods, broken up by noise level and
forecasting horizon ranging from 1 to 6.Shown are averages across 30 replicates and 6
different time series lengths. The best performing methods are highlighted in bold face,
with the second best performance highlighted in italic bold face.

Scenarios Methods h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S3

BagClustCF 53.15 53.27 53.65 53.64 53.87 54.09
BagClustMC 41.22 43.51 45.03 45.76 46.61 47.25
BagClustT S 44.69 47.24 48.36 49.07 49.83 50.5
BagFcstCF 58.31 58.57 59.05 59.05 59.29 59.63
BagFcstMC 53.38 52.39 51.58 50.79 50.62 50.59
BagFcstT S 55.8 57.08 57.65 57.84 58.16 58.45
CF 62.68 62.82 62.84 62.65 62.76 63.01
Damped 44.17 48.56 52.20 54.70 56.67 58.26
Drift 50.49 58.40 64.01 68.10 71.27 73.75
ETS 48.21 55.29 60.89 65.16 68.60 71.36
MC 49.46 50.32 50.15 49.66 49.57 49.44
MCSilHist 54.53 55.03 55.02 54.94 55.07 55.24
MSKF 42.31 47.22 50.43 52.64 54.69 56.42
RW 48.81 57.14 64.08 69.44 74.03 77.80
Theta 50.76 58.87 64.73 69.08 72.53 75.22
TS 57.24 58.43 58.88 59.04 59.33 59.60
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Chapter 6

Improving time series clustering using

multiple criteria (paper 4)

6.1 Abstract

Time series clustering is of significant interest in research areas ranging from bioin-

formatics, economics, finance, and forecasting to signal processing. The clustering of

time series data is challenging due to the difficulty of defining similarity between pairs of

time series. In fact, there are no universally accepted definitions of similarity between

time series, and the best notion of similarity might vary with the application context.

Traditionally, a single distance metric and standardization technique is employed during

the clustering procedure to partition a set of time series into distinctive groupings. How-

ever, different distance metrics / standardization techniques may emphasize different

notions of similarity, e.g., one distance measure may capture the linear pattern underly-

ing the data, yet fail to model the non-linearity present in the time series. In applications

where we are not sure which notion of similarity is accurate or where several notions

of similarity are relevant, we might benefit from combining multiple distance metrics /

standardization techniques, to capture complementary notions of similarity. Here, we
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describe a multicriteria clustering approach that optimizes a partition with respect to

pairs of different distance metrics / standardization techniques. Using simulated data,

we demonstrate that such a multicriteria clustering approach consistently outperforms

single-criterion approaches in situations where the selected distance measures / stan-

dardization measures show a low correlation with each other.

Keywords: Analogy; Bayesian pooling; Distance metrics; Kalman filter; Standardiza-

tion techniques

6.2 Introduction

Time series clustering has gleaned extensive interest across demand forecasting,

health care, pattern recognition, public budgeting, signal processing. A time series can

be regarded as a feature that comprises values varied with time. The similarity between

pairs of time series is always considered as a whole due to its numerical and continuous

nature.

Traditionally, time series clustering problems are modeled as single-criterion prob-

lems that partitions a set of time series into homogeneous groupings, which share

similarity with regards to time-based patterns. Model selection, as the main step in

clustering procedures, often encompasses the choices related to the determination of

a proper distance metric, the choice of a suitable normalization technique.

These distance metrics can generally be classified into three classes. Straightfor-

wardly, raw-data-based methods have been investigated to directly work with raw data,

but these methods are often computational expensive due to the high dimensionality

of time series data. Additionally, feature-based methods have been developed to over-

come this limitation. These methods approximate the time series patterns by extracting

key features that optimally describe the underlying patterns. Time series are considered

similar if the features used are similar. The third class of methods refers to model-based

243



approaches, where time series are fitted by statistical models or by a mix of underlying

probability distributions. Time series are regarded as similar if the models that char-

acterize individual series are similar, or the remaining residuals after fitting the model

are similar. In fact, the isolated consideration of any one isolated distance metric may

be inadequate since various types of patterns can present the data at the same time.

For example, the ARIMA model might be sufficient for modeling linear patterns present

in the US dollar exchange rate time series, yet fail to capture the non-linearity in these

series (Zhang, 2003).

Furthermore, Stoddard (1979) argued that any type of standardization can remove

the between-cluster variation. The variation might be crucial for identifying the under-

lying data structure. However, almost all clustering procedures used a uniform normal-

ization scheme across all data items on the variable. However, time series data sets

can contain a mixture of patterns for either an individual time series or entire data sets.

We argue that a uniform application of standardization technique can be inadequate

and lead to a hidden data structure. Indeed, there has been no universal agreement

on the choice of distance metrics or standardization schemes that could always per-

form the best across different applications. Different distance metrics / standardization

techniques may of different focus related to the notion of similarity among pairs of time

series. For instance, one distance measure may capture the linear pattern underlying

the data, yet fail to model the non-linearity present in the time series.

In applications where we are not sure which notion of similarity is accurate or where

several notions of similarity are relevant, we might benefit from combining multiple dis-

tance metrics / standardization techniques, to capture complementary notions of simi-

larity. On account of this, it may be more promising to use multiple criteria during the

clustering procedure in order to accommodate for various views regarding the similar-

ity. Here, we introduce the notion of multicriteria approaches to time series clustering.

These approaches have been explored in the previous literature studies (e.g., Handl
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and Knowles, 2007) to trade off various often conflicting criteria during the clustering

process. Multicriteria clustering approaches have demonstrated the potential of facil-

itating a more robust discovery of the data structure than single-criterion clustering

approaches.

In this paper, we explore the potential of multicriteria approaches to aid in the fore-

cast of analogous time series, where analogous series are identified using clustering

approaches. In particular, we are concerned with circumstances where only time series

data are available, and this eliminates the possibility of using multiple features spaces

as criteria. This is often true as extraneous information associated time series data may

not be available or can only be obtained with prohibitively high cost. To our knowledge,

little work has been conducted that investigates the possibilities of improving the time

series clustering by employing multiple criteria. Based on simulate data, we explore the

further potential of multicriteria approaches in the problem-specific context, i.e., time

series forecasting.

The remainder of the paper is structured as follows: Section 6.3 mainly surveys

previous work concerning time series clustering. Section 6.4 details the main compo-

nents of the prediction process that utilizes clustering approaches for the identification

of analogies. Section 6.5 presents details involved in the experiments in order to eval-

uate the performance of multicriteria approaches. Section 6.6 analyzes the results.

Section 6.7 discusses limitations of the present manuscript and future work.

6.3 Previous research

Over the recent decades, the amount of research conducted regarding the cluster-

ing of time series data has increased significantly. This is true across various disci-

plines, including data mining (Last, Kandel, and Bunke, 2004), energy time series (Al-

varez et al., 2011),empirical finance (Franses and Van Dijk, 2000), multimedia (Alon
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et al., 2003), and marketing areas. Most commonly, clustering algorithms developed

for time series data have been previously proposed to handle the static data, which are

random variables. In essence, the current clustering algorithms or specific dissimilarity

metrics proposed in the clustering or data mining literature mainly attempt to transform

the time series data into static forms so that the time series data can be easily han-

dled (Liao, 2005).

Time series can be regarded as a feature changed with time. The difficulty related

to time series clustering primarily originates from internal properties of the data. Time

series data show time-dependent structure, which is continuous as well as a mixture

of patterns. It might simultaneously encompass the patterns of linearity, non-linearity,

seasonality, structure changes. To partition a set of time series into homogeneous clus-

ters, numerous approaches have been investigated in the literature, where some sur-

veys with respect to time series clustering are provided in Esling and Agon (2012), Fu

(2011), Keogh and Kasetty (2003), Liao (2005),and Rani and Sikka (2012). In sum-

mary, the majority of the previous work strives to recover the structure underlying the

time series data from different perspectives, which are reflected by the development of

various techniques, including distance functions and standardization schemes.

To satisfy different needs of applications, many distance metrics have been devel-

oped to measure the (dis)similarity between time series. Liao (2005) segmented these

techniques into three main categories: raw-data-based, feature-based and model-based

approaches. Raw-data-based approaches directly work with the raw data in a way all

measurements are considered to obtain the similarity between series. Typical examples

include the applications of correlation-based approaches (Ernst, Nau, and Bar-Joseph,

2005). These methods are straightforward to apply and easy to interpret but can be

sensitive to outliers and require much effort in computation. To overcome the limita-

tion particularly lies in the time-complexity of the existing methods, feature-based and
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model-based approaches have been developed. These methods approximate time se-

ries patterns by using key features of the time series or assuming a statistical model

that characterizes the individual series, respectively. However, the features obtained

might be application dependent while an individual model identified can be inadequate

to allow the mixture of the time series patterns, e.g., linearity and non-linearity. Also,

distance metrics are sensitive to the differences in scales of the variables (Milligan and

Cooper, 1985).

Additionally, the uniform application of one standardization technique across all

items on differing variables is often observed in practice. Standardization is used to

equalize the magnitude and the variability of the input variables. Stoddard (1979) de-

clared that any standardization could remove the between-cluster variability, which is

important for the discovery of the underlying data structure. Due to the possible mixing

of variables that exhibit a wide range of cluster structures, Steinley (2004) argued that

the routine standardization of all variables during the clustering procedure may be un-

wise. The routine normalization of the data may lead to poor clustering performance.

In addition to this, practically different distance metrics can be sensitive to the scale

differences or means of standardization of the time series data.

Commonly observed in previous work, differing standardization and distance met-

rics have been proposed to assist in the recovery of the data structure. Nevertheless,

these work typical model time series clustering as a single-criterion problem where a

distance metric and standardization metric are used. However, the performance of

these measures are often application or even data-dependent. This is because var-

ious distance metrics / standardization techniques may focus on different aspects of

the notion of similarity. No metric can capture all information underlying the notion of

similarity. As a result, some metrics may be preferred than the others from in different

applications. For example, the ARIMA model might be adequate for modeling linear

patterns present in the water quality time series, yet fail to capture the non-linearity in
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these series (Faruk, 2010). Again, supported by Guyon, Von Luxburg, and Williamson

(2009), the goodness of clustering solutions is best judged by the overall success of the

application. This means the judge of similarity among time series can be inadequate

without taking into account the aim of the application.

On account of this, the independent consideration of any one isolated distance met-

ric / normalization measure may prove insufficient since various types of patterns can

simultaneously present in the data. Thus, a combination different measures might com-

plement the information that these measures neglect when defining the notion of simi-

larity. In circumstances where we are not sure which notion of similarity for time series is

accurate or where all notions of similarity are relevant, we might benefit from combining

multiple often conflicting criteria to capture various aspects of the notion.

One way of doing this is to integrate additional information data sources that extrin-

sic to the time series data during the clustering procedure. The combination of data

features or information sources is importance to facilitate a better recover of the un-

derlying data structure (Brusco and Cradit, 2001; Dash and Liu, 2000; Lu and Handl,

2015). This implies that the same set of objects should be clustered with the con-

sideration of the relative importance of features or information sources, and different

representations of the cluster might reveal of a specific part of the overall clustering

definition. Additionally, Handl and Knowles (2007) considered multiple clustering cri-

teria concerning the quality of a clustering solution and their results demonstrated the

potential of multicriteria approaches with regards to more natural and robust groupings.

Additionally, Law, Topchy, and Jain (2004) developed a two-step clustering approach,

where each clustering algorithm, in parallel, generates a clustering solution and then

external criteria based on the stability of the clustering results was used to determine

the final partitions.
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6.4 Multicriteria approaches to time series clustering in

the context of forecasting

Here, we demonstrate our ideas of multicriteria approaches to time series cluster-

ing in the context of forecasting. A highly related work could be referred to Chapter 3,

where multiple information sources were used for boosting the performance of analogy

identification. A potential challenge associate with the previous work lies in the fact that

it requires the presence of information, which is extrinsic to the time series information.

In many scenarios, the causal factors that describe the time-based patterns observed

are simply absent or that can only be obtained at prohibitively high cost. Alternatively,

we could further explore the potential of multicriteria approaches to time series cluster-

ing, where analogies are identified using time series information alone.

To ratify our concepts, we attempt to identify analogous time series using multi-

ple criteria during the clustering stage in order to cater for broader application needs.

Specifically, all major elements used for constructing the prediction process are detailed

as follows. Particularly, we focus on the choice of criteria for the clustering of analogous

time series.

6.4.1 The choice of criteria

6.4.1.1 Standardization techniques

For clustering of the time series data, an early step is to standardize all time se-

ries to a proper format for eliminating magnitude differences. By applying the distance

metric, large values might dominate the final clustering solution and further leads to an

unsatisfactory recovery of the data structure.

Regarding standardization, we apply two standard techniques the z-score and range

or Mon-max methods. The z-score measure has been extensively studied and has
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been proposed by numerous authors, for example Dubes and Jain (1980), Lorr (1983),

and Lance and Williams (1966). Specifically, the standardized variable has been trans-

formed to have zero mean and unity variance. This method may not perform properly

if there are substantial differences among the within-cluster standard deviations. The

Min-max method is another option we consider to apply for standardizing time series.

This method was reported to give the best recovery of the clusters based on extensive

Monte Carlo simulation (Milligan and Cooper, 1988).

Assuming a data set X = {xij , . . . ,xNJ}, andN represents the number of samples

in the data set; Each sample is a vector of values that describe the feature varies over

time. The transformation of the ith time series on the t observation is given as:

The formula of z-score method is given as:

Z(1) = xit
max(xi)−min(xi)

(6.1)

The formula of Min-max method is given as:

Z(2) = xit−mean(xj)
σ(xi)

(6.2)

6.4.1.2 Distance measures

Subsequently, distance metrics are applied on the standardized time series to mea-

sure the distance between pairs of time series, and two simple distance metrics are

considered here. A time series can be described as a vector that comprises a fea-

ture varying with time. The distance value dij between pairs of time series i and j is

computed on the point-to-point distance using square Euclidean distance or the corre-

lation (Pearson correlations’ coefficients) between these vectors. Euclidean distance

is perhaps the most popular distance metric, as it maintains the original scales of the
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variables (Gnanadesikan, Kettenring, and Tsao, 1995). Give no missing values ex-

ist, Euclidean distance has no influence on the subsequent cluster recovery process.

Correlation methods have been widely applied to measure the similarity between time

series (e.g., Frühwirth-Schnatter and Kaufmann, 2008).

The square Euclidean distance between time series i and j are presented as fol-

lows:

δ(i, j)(1) =
∑
t

(ait−ajt)2 (6.3)

where the dissimilarity matrix derived from the time series data is defined as D(1) =

(d(1)
ij ), and each element d(1)

ij is calculated as d(1)
ij = δ(i, j)(1); ait and ajt represent

the values at time t associated with time series i and j, respectively; t is the time index.

This method is simple and commonly used to measure the distance between series,

but it becomes time-consuming for data with larger dimension.

A common way of measure similarity between variables is to use the Pearson cor-

relation’s coefficient, and the equation is given as:

δ(i, j)(2) = 1−
T (∑

t
xitxjt)− (∑

t
xit)(

∑
t
xjt)√

(T (∑
t
x2
it)− (∑

t
xit)2)(T (∑

t
x2
jt)− (∑

t
xjt)2)

(6.4)

where the dissimilarity matrix derived from time series information is defined as D(2) =

(d(2)
ij ), and each element d(2)

ij is calculated as d(2)
ij = δ(i, j)(2); t is the index of time

t= 1,2, ...,T ; T is the number of time steps used for measuring correlation; xit and xjt

define the values of time series i and j over time, respectively.
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6.4.1.3 The combination of various criteria

To combine multiple criteria, we apply the weighted-sum method at the distance

function, which allows trade-off between various complementary criteria. The weighted-

sum method is easy to apply and interpret. Then, dissimilarity matrix-based clustering

algorithms can be used to handle the time series data (see Liao, 2005).

Principally, different distance metrics / standardization techniques may emphasize

different aspects of the notion of similarity among pairs of time series. The combination

of different metrics may be able to provide complementary information regarding the

notion of similarity.

Specifically, we formulate a combined dissimilarity matrix using multiple criteria de-

rived from the mix of distance metric / standardization technique. For initial testing of

our ideas, the following combinations are considered in this article. We focus on com-

paring the scenarios, in which the one clustering procedure shares a at least common

distance metric / standardization technique with another.

dMC
ijω =



(1−ω)×d(1)
ij +ω×d(2)

ij , given Z
(1)

(1−ω)×d(1)
ij +ω×d(2)

ij , given Z
(2)

(1−ω)×d(1)
ij +ω×d(1)

ij , given Z
(1) and Z(2), respectively

(1−ω)×d(2)
ij +ω×d(2)

ij , given Z
(1) and Z(2), respectively

(6.5)

Where ω varies from 0 to 1 with increments of 0.1; DMC
w = (dijw) and dMC

ijw
1 denotes

the element of the combined dissimilarity matrix using weight ω.

1Note that two dissimilarity matrices, derived from different clustering methods, are combined without
transformation into the same range as been done in Chapters 3, 5 and 4. This is because the use
of same range on the same data source is found to eliminate the differences between the clustering
methods.
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6.4.2 Clustering algorithm

Further, we apply a standard clustering algorithm for the clustering analysis, namely

the Partitioning Around Medoids (PAM) clustering algorithm (Kaufman and Rousseeuw,

2009). This method tends to yield clustering solutions with equal size that are consid-

ered advantageous in this forecasting application. Moreover, PAM clustering operates

on the dissimilarity matrix that offers flexibility for tackling time series data. The PAM

clustering is repeated 30 times, where the partition with the smallest sum of within-

cluster dissimilarities is selected for further analysis.

6.4.3 Model selection

To determine the clusters, we proceed by applying one of the most popular metrics

(the Silhouette Width Kaufman and Rousseeuw, 2009) for determining the appropri-

ate number of clusters. For the same number of clusters, multicriteria clustering ap-

proaches often return multiple clustering solutions that reflect trade-offs among various

criteria. For the following weight selection step, we select the most suitable weight inter-

val based on the average best historical forecasting results of the forecasting algorithm

applied. More specifically, time point t = T is used to support this part of analysis.

t≤ T are used during the clustering step. This model selection method is the best per-

forming method reported in the previous work (see Chapter 4) that takes into account

the overall performance of an application.

The Silhouette Width measure is a comprehensive measure that evaluates the qual-

ity of clustering by considering both the cluster cohesion and separation given the data

structure alone. It has a minimum value of -1 and a maximum value of 1. A larger value

indicates a better clustering solution. The Silhouette value for an individual data object

i is given as:
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Sil(i) = ci− bi
max(ci, bi)

(6.6)

where ci indicates the average distance between i and all objects in the same group;

bi indicates the average distance between i and all objects in the closest another group

that is referred to the cluster returning the minimum bi. The Silhouette Width of the

entire partitioning is then computed as the mean Silhouette Width of all data objects.

After the determination of the number of clusters, the best weight is selected based

on the best average historical forecasting results at t = T .The Mean Square Error

(MSE) measure is used to support the weight selection step:

MSE =mean(e2
t ) (6.7)

where t refers to time step; et =Xt−Ft, Xt is the observation of the time series X at

time t; Ft is the respective point forecast.

6.4.4 Forecasting algorithm

During the forecasting stage, we experiment with the Cross-Sectional Multistate

Kalman Filter algorithm (C-MSKF: Duncan, Gorr, and Szczypula, 1993; Duncan, Gorr,

and Szczypula, 2001) to extrapolate the time series into the future. According to to Stim-

son (1985), the homogeneity of grouping is essential for the effectiveness of pooling

methods. Here, we propose multicriteria approaches to the clustering of time series

data and illustrate our ideas using the C-MSKF forecasting method. However, our clus-

tering approaches would be expected to generalize to different pooling methods that

make use of analogous time series.

The C-MSKF method is a Bayesian pooling method developed from conventional

time series forecasting methods, i.e., the Multi-State Kalman Filter algorithm (Harrison
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and Stevens, 1971). The application of C-MSKF is considered suitable in this appli-

cation because of its capability of drawing information from analogies. In brief, the

C-MSKF method combines the strengths of the Conditionally Independent Hierarchical

Model (CIHM: Kass and Steffey, 1989) and MSKF algorithms, which utlizes the Kalman

Filter (Harvey and Forecasting, 1989). The Kalman filter is advantageous in quickly

reaching a reliable prediction and thus lends efficiency to the C-MSKF methods. De-

tails of C-MSKF and MSKF algorithm are referred to the Appendix. In addition, the use

of MSKF can be principally replaced by the Single Exponential Smoothing method, and

a counterpart approach was proposed in (Duncan, Gorr, and Szczypula, 1994).

In this article, C-MSKF is used to make forecasts for a set of prediction horizons.

Specifically, for a given forecasting origin T , the h-step ahead forecast (for h ≥ 2) is

made by iteratively updating C-MSKF using the forecasts obtained for the T +1, . . . ,h−

1th time steps, and predicting the succeeding time point.

6.5 Experimental design

6.5.1 Simulated data

We use simulated data to demonstrate our ideas concerning multicriteria approaches

to address time series clustering problems in the context of forecasting. We generate

a set of time series, which are correlated across an initial time step and further sub-

ject to different slope changes governed by an external influence. Particularly, a linear,

logarithmic and piece-wise linear model is employed to produce the time series data.

The models utilized are given in Equations (6.8), (6.9) and (6.10). The time series gen-

erated by the linear model shows a stable increasing trend as a function of time. The

logarithmic model indicates a decreasing rate of growth in the time series. The time

series generated by the piece-wise linear function can be interpreted as a series with
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pattern change in the slop, from the positive to negative value after the external influ-

ence occurring at the p time point. The specific models used for these three generating

functions fg(t), g = 1, . . . ,3, are given as follows:

f1(t) = 0.8t+ 2.8, if 1≤ t≤ q, (6.8)

f2(t) = 4ln(t) + 2, if 1≤ t≤ q, (6.9)

f3(t) =


0.7t+ 2.8, if 1≤ t≤ p

−0.9t+ 25, if p+ 1≤ t≤ q
(6.10)

where p refers to the time of slope change for Equation (6.10); q is the number of time

points.

To generate a group of analogous time series from a given model, we perturb each

time point with normally-distributed noise. The noisy time series pattern Xit for time

series i at time t, associated with generating model g, is presented as follows:

xit =


f ig(1) +N(f ig(t+ 1)−f ig(t),σ2), if t= 1

xi(t−1) +N(f ig(t+ 1)−f ig(t),σ2), if 1< t≤ q
(6.11)

where for each g = 1,2 or 3 generates a set of time series of size I ; xit denotes the

value of series i observed at time t considering diversity (adding normally-distributed

noise); X = (xit) forms a data set with size 3I ; f ig(t) is the value generated by function

g for i time series at time t; N(µTS ,σ2
TS) describes a random variate drawn from a

normal distribution with mean µTS and variance σ2
TS .

256



Each model is assumed to be the true physical process underlying a group of I

“known” analogous time series, where each time series has time steps of q. Noise

was introduced to each group through the addition of additive noise, as described in

Equation (6.5.1). The illustration of simulated time series data generated is shown in

Fig. 6.1.
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Figure 6.1: Illustration of simulated time series
generated from a linear, logarithmic, and piece-
wise linear function

To provide insights about the impact of noise in the time series data on C-MSKF’s

precision, various noise levels are considered by varying the standard deviation during

the data generation process. Specifically, σ varies from 0.35 to 1.15 in steps of 0.2.

Under each noise level, we keep all other parameters constant and the details are

provided in Table 6.1.

Table 6.1: Constant parameters for the generation of time series data across sce-
narios.

Parameter Values
Prediction horizon h=1, 2,. . . ,6
Prediction origin T=17
Length selection l=12, 13,...,17
No. of time series in a group I=10
Time of trend change p=14
Total No. of time steps q=24

Throughout the experiments, we keep the prediction origin at t= T . The parameter
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T is used to allow more than three observations after the time of slope change at time p

(see Equation 6.10). This ensures that the generating time series satisfies the working

condition of C-MSKF’s algorithm (Duncan, Gorr, and Szczypula, 1994). The parameter

Length selection indicates that we systematically drop the earliest historical points one

at a time, while fixing the forecasting origin T in order to consider the effect of shorter

time series. Based on the previous settings, we generate 30 data sets for each noise

level so as to support our statistical analysis.

6.5.2 Compared methods

The main focus of the article is to investigate the potential of multicriteria approaches

to time series clustering. Hence, we contrast different combinations of distance / stan-

dardization schemes considered in this article, and these combinations are referred to

Equation 6.5. In addition, we benchmark multicriteria clustering approaches on single-

criterion methods that make use of a distance metric and standardization measure.

6.5.3 Performance assessment

In analyzing our results, we measure the performance of the models by taking into

account both the clustering and forecasting accuracy.

The accuracy with which analogies are identified is expected to have an influence

on the accuracy of the forecasting algorithm. To evaluate the quality of clustering solu-

tions, the Adjusted Rand Index (ARI: Hubert and Arabie, 1985) is employed throughout

the experiments. The ARI measure is a popular cluster validation metric. This metric

measures the agreement between two partitionings: resultant clustering solution and

the ground truth, which was derived from the data generating models, i.e., three math-

ematical models are used during the data generation process.
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Using a representation based on the L×K contingency table defined by two clus-

ters (of the same data) with L and K clusters, respectively, the Adjusted Rand Index

between the two clusters is given as follows:

ARI =

∑
l,m

(Nlm
2 )− [∑

l
(Nl.
2 ) ·∑

k
(N.m
2 )]/(N2 )

1
2 [∑

l
(Nl.
2 ) +∑

m
(N.m
2 )]− [∑

l
(Nl.
2 ) ·∑

m
(N.m
2 )]/(N2 )

(6.12)

whereN is the total number of data items,Nlm represents the entry in row l and column

m of the contingency table (i.e., the number of data items that have been assigned to

both cluster l and cluster m), and Nl. and N.m represent row and column totals for row

l and column m of the table, respectively.

To measure the bias of various forecasting models, Mean Error (ME) is used to

measure the forecasting results.

ME =mean(Xt−Ft) (6.13)

where all variables retain the same meaning as Equation 4.11.

To measure the forecasting accuracy, two well-known accuracy measures are ap-

plied, including the Mean Absolute Scaled Error (MASE: Hyndman, 2006) and the Sym-

metric Mean Absolute Percentage Error (sMAPE: Bergmeir, Hyndman, and Benı́tez,

2016), respectively.

MASE =mean(
∣∣∣∣∣ et

1
T−1

T∑
i=2
|Xi−Xi−1|

∣∣∣∣∣) (6.14)

sMAPE =mean(200 |et|
|Xt|+ |Ft|

) (6.15)

where T refers to the forecasting origin and the rest variables retain the same meaning

as Equation 4.11.
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To provide in-depth insights regarding the forecasting performance, we assess the

forecasting results using the average, maximum, minimum and median values of the

accuracy measures presented above. Specifically, the forecasting results are calculated

by taking the average / maximum / median / minimum across 6 forecasting horizons,

30 replicates, 30 time series. Further, some of our results are analyzed by breaking

up in terms of key factors that are found to impact the forecasting accuracy of C-MSKF

methods, particularly the noise level and the forecasting horizon.

6.6 Results

6.6.1 Forecasting accuracy comparison across different noise lev-

els

Tables 6.2, 6.4, 6.3, and 6.5 present comparisons on the C-MSKF’s forecasting ac-

curacy after the implementation of different clustering approaches for the identification

of analogous time series. The ME measure employed here primarily aims to evaluate

the bias of the forecasting approaches. Generally speaking, this measure yields almost

the same forecasting errors across clustering methods at a specific noise level. Conse-

quently, it can be meaningless to judge the forecasting performance of the contestant

approaches based on the results derived from the ME measure. In terms of the model

bias, Tables 6.2 and 6.5 produce negative bias in scenarios 1 and 3, whereas positive

bias in scenarios 2, 4 and 5.

By observing forecasting results shown by MASE, MSE and sMAPE measures (see

Tables 6.2, 6.4, 6.3, and 6.5), it is evident that the Eucl MnMx Zsc method consistently

shows the highest forecasting accuracy from scenario 1 to 5. This means that the

multicriteria clustering approach outperforms the contestant methods by clustering time

series data using the Euclidean distance, with the consideration of two criteria, i.e.,
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the min-max method and the z-score method for the normalization of time series data.

In addition, there is no agreement on the second best performing method among the

compared methods.

Considering the quality of time series clustering alone, the Eucl MnMx Zsc (multicri-

teria clustering approaches using multiple standardization techniques) returns the best

clustering results in all scenarios considered. The rest competitive clustering methods

perform as the second best across all scenarios. This indicates the robustness of the

Eucl MnMx Zsc method concerning the recovery of a high-quality clustering solution.

Additionally, as the time series becomes noisier, from scenario 1 to 5, the clustering

quality generally decreases, and this applies to all methods compared here. Corre-

spondingly, the good performance of the Eucl MnMx Zsc method on clustering results

translates to satisfactory forecasting accuracy of C-MSKF methods in the forecasting

stage from scenario 1 to 5.

To summarize, multicriteria clustering approaches Eucl Pear MnMx and Eucl MnMx Zsc

demonstrate better clustering results in general (see Tables 6.2, 6.4, 6.5, and 6.3),

and the improvement on clustering performance further translates to better forecast-

ing precision of C-MSKF methods such as the Eucl MnMx Zsc method. However, the

Eucl Pear Zsc and Pear MnMx Zsc approaches show almost no improvements over

single-criterion clustering methods by using the time series data alone.

As the criteria are combined at the distance function level, we further investigate the

correlation between pairs of dissimilarity matrices derived from the clustering methods

in order to give more information regarding the effectiveness of different combinations.

In general, the correlation for each pair of methods increases as the noise levels in-

creases. Particularly in scenario 1, Eucl MnMx is uncorrelated to Pear MnMx, Eucl Zsc

and Pear Zsc. Table 6.6 shows that the correlation between Pear MinMax and Pear Zsc

methods gives the largest values among different combinations across scenario 1 to 5.
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This implies that multicriteria clustering methods Pear MinMax Zsc utilizes the high-

est correlated standardization techniques when considering the Pearson correlation’s

coefficients for measuring the similarity between time series. Among these values,

Eucl MinMax and Eucl Zsc give the least correlation values across noise levels. This

might imply that Eucl MinMax Zsc, which provides the highest forecasting accuracy, is

positively influenced by the concurrent consideration of least correlated standardization

techniques on the final prediction results.

6.6.2 Performance comparison across noise levels, broken up by

forecasting horizons

To gain more insights regarding the performance, we further break up our results

by 6 forecasting horizons to investigate the changes on this. Tables presented below

are concerned with the break-up forecasting results across 30 data sets, 6 time series

lengths, broken up by 6 prediction horizons across 5 noise levels. Following the previous

section, we measure the forecasting accuracy of the models using the MASE, ME, MSE

and sMAPE metrics. Regarding the ME measure, clustering approaches show the

same forecasting accuracy of the C-MSKF method at a particular forecasting horizon.

This agrees with the previous conclusions drawn in Section 6.6.1. Again, average ME

and median ME show negative bias in scenarios 1 and 3. On the contrast, positive

bias can be found in scenarios 2, 4 and 5. This indicates that the contestant methods

employed in this experiment result in over-forecast bias in 90 out of 150 cases (5 noise

levels and 6 forecasting horizons) for each accuracy measure.

In terms of the forecasting accuracy, across noise levels, the Eucl MnMx Zsc is

almost the best performing method among the contestant methods across 5 scenarios

and 6 forecasting horizons. This has been confirmed by MASE, MSE and sMAPE

measures (based on the average, maximum, median, and minimum values across 30

262



replicates, 6 time series lengths).

6.7 Conclusion

Building upon our previous work, this paper further explores the potential of inte-

grating multiple criteria in the context of time series clustering. Our results are ex-

pected to have particular relevance in the context of forecasting of short and volatile

time series. We provide empirical evidence to support the implementation of multicri-

teria approaches for time series clustering, which defines criteria at a variety of lev-

els. Here, we consider scenarios where only two criteria are considered: distance

metrics / standardization techniques. Primarily, the effectiveness of different cluster-

ing approaches is contrasted based on the C-MSKF’s forecasting accuracy. Overall,

the Eucl Pear MnMx, Eucl Pear Zsc, Eucl MnMx Zsc methods generally perform bet-

ter than single-criterion clustering approaches: Eucl MnMx, Pear MnMx, Eucl Zsc, and

Pear Zsc, across different 5 noise levels, as measured by MASE, MSE and sMAPE.

However, the Pear MnMx Zsc approach shows no improvement on C-MSKF’s accuracy

after the application of single-criterion clustering methods. Particularly, the Eucl MnMx Zsc

method consistently shows the best clustering and forecasting accuracy across noise

levels.

According to an analysis of the correlation between criteria, the least correlated

criteria tend to give better clustering and forecasting results in multicriteria clustering

approaches. This might be because the additional value added through the integra-

tion of complementary criteria. As discussed before, there is no universally accepted

definition of similarities among time series. By capturing capturing different notions

of similarity, the use of multiple criteria during the clustering of analogous time series

might give rise to better clustering results and thus the improved forecasting accuracy.

Regarding our current experiments, we refrained from experimenting with different

263



model selection methods, but instead base our analysis on the most promising model

selection methods developed in Chapter 4, in which the Silhouette Width measure for

the determination of the number of clusters, and the best average historical forecasting

performance to determine the best weight interval. Particularly, T = 17 was used for

the weight selection, and the data points on t≤ T period were included in the clustering

step. From our findings, we show that multicriteria clustering approaches are capable

of improving the clustering quality compared to the single-criterion clustering of time

series data. However, one possible limitation underlying the present work is the that

forecasting results may be affected by implementing different model selection models.

In our future work, it would be meaningful to further validate our multicriteria ap-

proaches in different real-world applications. It is likely that the advantage of multicri-

teria clustering approaches will decrease in situations where the noise is highly corre-

lated, or where the reliability of individual criteria is poor. An increase in the noise level

of the time series data may also introduce challenges: As pointed out in Chapter 4, the

weight selection method used in the model selection step might cause the noticeable

decrease in the clustering accuracy in such settings. Currently, we refrain from exper-

imenting with multiple distance metrics and various standardization techniques at the

same time to avoid complicating the problem. However, it might be useful to investigate

further possible combinations of techniques. For example, our current work used two

raw-data-based methods to define the notion of similarity among time series, but more

advanced distance metrics such as the model-based technique could be employed.

Such specialized distance metric might be more powerful at capturing specific charac-

teristics of the time series data, and thus a combination of various types of distance

metrics is a valuable avenue for future research.
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Table 6.6: The correlation of dissimilarity matrices derived from single-criterion
clustering methods across noise levels, from scenario 1 to 5. The expected values
are averaged across 30 replicates and 6 time series lengths.

Scenarios Eucl MnMx Pear MnMx Eucl Zsc

S1

Pear MnMx -0.05
Eucl Zsc -0.04 0.16
Pear Zsc -0.05 0.19 0.16

S2

Pear MnMx 0.11
Eucl Zsc 0.09 0.27
Pear Zsc 0.11 0.32 0.27

S3

Pear MnMx 0.18
Eucl Zsc 0.16 0.4
Pear Zsc 0.18 0.47 0.4

S4

Pear MnMx 0.17
Eucl Zsc 0.16 0.38
Pear Zsc 0.17 0.44 0.38

S5

Pear MnMx 0.21
Eucl Zsc 0.19 0.4
Pear Zsc 0.21 0.46 0.4
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Table 6.7: Summary of forecasting accuracy on C-MSKF by average MASE using different
clustering methods based on time series data. Results are obtained by taking the average
across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the best
weight is determined based on t = 17 and t ≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 1.19 1.35 1.49 1.64 1.78 1.93
Pear MnMx 0.74 0.85 0.94 1.04 1.13 1.23
Eucl Zsc 0.74 0.84 0.93 1.03 1.12 1.22
Pear Zsc 0.74 0.85 0.94 1.04 1.13 1.23
Eucl Pear MnMx 0.7 0.8 0.89 0.98 1.07 1.17
Pear Pear Zsc 0.73 0.84 0.93 1.02 1.12 1.22
Eucl MnMx Zsc 0.69 0.79 0.88 0.97 1.06 1.16
Pear MnMx Zsc 0.74 0.85 0.94 1.04 1.13 1.23

S2

Eucl MnMx 2.5 2.83 3.15 3.49 3.81 4.13
Pear MnMx 1.16 1.33 1.5 1.68 1.86 2.03
Eucl Zsc 1.13 1.3 1.47 1.65 1.83 2
Pear Zsc 1.16 1.33 1.5 1.68 1.86 2.03
Eucl Pear MnMx 1.12 1.27 1.43 1.6 1.77 1.94
Pear Pear Zsc 1.12 1.28 1.45 1.63 1.81 1.99
Eucl MnMx Zsc 1.06 1.23 1.39 1.56 1.73 1.89
Pear MnMx Zsc 1.16 1.33 1.5 1.68 1.86 2.03

S3

Eucl MnMx 2.53 2.89 3.23 3.56 3.89 4.22
Pear MnMx 1.47 1.71 1.94 2.17 2.39 2.61
Eucl Zsc 1.41 1.64 1.87 2.08 2.3 2.51
Pear Zsc 1.47 1.71 1.94 2.17 2.39 2.61
Eucl Pear MnMx 1.39 1.63 1.86 2.08 2.3 2.52
Pear Pear Zsc 1.39 1.62 1.84 2.05 2.27 2.48
Eucl MnMx Zsc 1.33 1.55 1.77 1.98 2.19 2.4
Pear MnMx Zsc 1.47 1.71 1.94 2.17 2.39 2.61

S4

Eucl MnMx 2.47 2.78 3.1 3.41 3.72 4.02
Pear MnMx 1.52 1.76 2.01 2.24 2.48 2.72
Eucl Zsc 1.47 1.7 1.95 2.18 2.42 2.65
Pear Zsc 1.52 1.76 2.01 2.24 2.48 2.72
Eucl Pear MnMx 1.48 1.72 1.97 2.21 2.45 2.7
Pear Pear Zsc 1.46 1.69 1.94 2.18 2.41 2.65
Eucl MnMx Zsc 1.42 1.65 1.9 2.14 2.38 2.61
Pear MnMx Zsc 1.52 1.76 2.01 2.24 2.48 2.72

S5

Eucl MnMx 2.44 2.75 3.06 3.37 3.67 3.97
Pear MnMx 1.64 1.93 2.17 2.42 2.67 2.92
Eucl Zsc 1.59 1.87 2.12 2.37 2.62 2.87
Pear Zsc 1.64 1.93 2.17 2.42 2.67 2.92
Eucl Pear MnMx 1.6 1.89 2.15 2.4 2.66 2.91
Pear Pear Zsc 1.59 1.87 2.12 2.37 2.62 2.87
Eucl MnMx Zsc 1.54 1.83 2.08 2.34 2.6 2.85
Pear MnMx Zsc 1.64 1.93 2.17 2.42 2.67 2.92
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Table 6.8: Summary of forecasting accuracy on C-MSKF by average ME using different
clustering methods based on time series data. Results are obtained by taking the average
across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the best
weight is determined based on t = 17 and t ≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0 0 -0.01 -0.01 -0.02 -0.02
Pear MnMx 0 0 -0.01 -0.01 -0.02 -0.02
Eucl Zsc 0 0 -0.01 -0.01 -0.02 -0.02
Pear Zsc 0 0 -0.01 -0.01 -0.02 -0.02
Eucl Pear MnMx 0 0 -0.01 -0.01 -0.02 -0.02
Pear Pear Zsc 0 0 -0.01 -0.01 -0.02 -0.02
Eucl MnMx Zsc 0 0 -0.01 -0.01 -0.02 -0.02
Pear MnMx Zsc 0 0 -0.01 -0.01 -0.02 -0.02

S2

Eucl MnMx 0.01 0.01 0.02 0.03 0.04 0.04
Pear MnMx 0.01 0.01 0.02 0.03 0.04 0.04
Eucl Zsc 0.01 0.01 0.02 0.03 0.04 0.04
Pear Zsc 0.01 0.01 0.02 0.03 0.04 0.04
Eucl Pear MnMx 0.01 0.01 0.02 0.03 0.04 0.04
Pear Pear Zsc 0.01 0.01 0.02 0.03 0.04 0.04
Eucl MnMx Zsc 0.01 0.01 0.02 0.03 0.04 0.04
Pear MnMx Zsc 0.01 0.01 0.02 0.03 0.04 0.04

S3

Eucl MnMx -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Pear MnMx -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Eucl Zsc -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Pear Zsc -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Eucl Pear MnMx -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Pear Pear Zsc -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Eucl MnMx Zsc -0.02 -0.02 -0.02 -0.03 -0.03 -0.04
Pear MnMx Zsc -0.02 -0.02 -0.02 -0.03 -0.03 -0.04

S4

Eucl MnMx 0.04 0.05 0.07 0.08 0.1 0.11
Pear MnMx 0.04 0.06 0.08 0.09 0.1 0.11
Eucl Zsc 0.04 0.05 0.08 0.09 0.1 0.11
Pear Zsc 0.04 0.06 0.08 0.09 0.1 0.11
Eucl Pear MnMx 0.04 0.06 0.08 0.09 0.1 0.11
Pear Pear Zsc 0.04 0.06 0.08 0.09 0.1 0.11
Eucl MnMx Zsc 0.04 0.06 0.08 0.09 0.1 0.11
Pear MnMx Zsc 0.04 0.06 0.08 0.09 0.1 0.11

S5

Eucl MnMx 0.01 0.03 0.04 0.05 0.05 0.06
Pear MnMx 0.01 0.03 0.04 0.05 0.05 0.06
Eucl Zsc 0.01 0.03 0.04 0.04 0.05 0.06
Pear Zsc 0.01 0.03 0.04 0.05 0.05 0.06
Eucl Pear MnMx 0.01 0.03 0.04 0.05 0.05 0.06
Pear Pear Zsc 0.01 0.03 0.04 0.05 0.05 0.06
Eucl MnMx Zsc 0.01 0.03 0.04 0.05 0.05 0.06
Pear MnMx Zsc 0.01 0.03 0.04 0.05 0.05 0.06
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Table 6.9: Summary of forecasting accuracy on C-MSKF by average MSE using different
clustering methods based on time series data. Results are obtained by taking the average
across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the best
weight is determined based on t = 17 and t ≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0.39 0.51 0.63 0.77 0.93 1.11
Pear MnMx 0.09 0.12 0.15 0.19 0.22 0.27
Eucl Zsc 0.09 0.12 0.15 0.19 0.23 0.27
Pear Zsc 0.09 0.12 0.15 0.19 0.22 0.27
Eucl Pear MnMx 0.08 0.11 0.14 0.17 0.21 0.25
Pear Pear Zsc 0.09 0.12 0.15 0.18 0.22 0.27
Eucl MnMx Zsc 0.09 0.11 0.14 0.17 0.21 0.25
Pear MnMx Zsc 0.09 0.12 0.15 0.19 0.22 0.27

S2

Eucl MnMx 1.24 1.61 2.02 2.53 3.06 3.64
Pear MnMx 0.29 0.4 0.54 0.74 0.95 1.18
Eucl Zsc 0.27 0.38 0.52 0.72 0.92 1.14
Pear Zsc 0.29 0.4 0.54 0.74 0.95 1.18
Eucl Pear MnMx 0.27 0.38 0.51 0.7 0.9 1.12
Pear Pear Zsc 0.27 0.38 0.51 0.71 0.91 1.13
Eucl MnMx Zsc 0.24 0.35 0.47 0.65 0.84 1.04
Pear MnMx Zsc 0.29 0.4 0.54 0.74 0.95 1.18

S3

Eucl MnMx 1.44 1.9 2.43 3.01 3.64 4.37
Pear MnMx 0.51 0.73 1.02 1.36 1.73 2.15
Eucl Zsc 0.49 0.71 0.99 1.31 1.67 2.08
Pear Zsc 0.51 0.73 1.02 1.36 1.73 2.15
Eucl Pear MnMx 0.46 0.67 0.94 1.26 1.61 2.02
Pear Pear Zsc 0.47 0.67 0.95 1.26 1.62 2.02
Eucl MnMx Zsc 0.43 0.62 0.87 1.15 1.47 1.83
Pear MnMx Zsc 0.51 0.73 1.02 1.36 1.73 2.15

S4

Eucl MnMx 1.62 2.1 2.69 3.34 4.05 4.84
Pear MnMx 0.71 1.04 1.46 1.96 2.51 3.12
Eucl Zsc 0.69 1.02 1.42 1.92 2.46 3.06
Pear Zsc 0.71 1.04 1.46 1.96 2.51 3.12
Eucl Pear MnMx 0.67 0.99 1.39 1.87 2.4 2.99
Pear Pear Zsc 0.67 0.99 1.39 1.89 2.43 3.02
Eucl MnMx Zsc 0.62 0.91 1.3 1.77 2.27 2.83
Pear MnMx Zsc 0.71 1.04 1.46 1.96 2.51 3.12

S5

Eucl MnMx 1.82 2.39 3.02 3.75 4.56 5.45
Pear MnMx 0.92 1.38 1.86 2.43 3.08 3.81
Eucl Zsc 0.87 1.3 1.75 2.29 2.92 3.62
Pear Zsc 0.92 1.38 1.86 2.43 3.08 3.81
Eucl Pear MnMx 0.87 1.32 1.81 2.39 3.04 3.76
Pear Pear Zsc 0.86 1.29 1.75 2.3 2.93 3.63
Eucl MnMx Zsc 0.81 1.23 1.69 2.23 2.85 3.54
Pear MnMx Zsc 0.92 1.38 1.86 2.43 3.08 3.81
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Table 6.10: Summary of forecasting accuracy on C-MSKF by average sMAPE using dif-
ferent clustering methods based on time series data. Results are obtained by taking the
average across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely,
the best weight is determined based on t= 17 and t≤ T are used for clustering stage. The
best performing method is highlighted in bold face and the second best method is highlighted
in italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 40.94 39.13 38.11 37.53 37.2 37
Pear MnMx 24.19 22.66 21.69 21.16 20.87 20.77
Eucl Zsc 24.21 22.7 21.7 21.18 20.86 20.74
Pear Zsc 24.19 22.66 21.69 21.16 20.87 20.77
Eucl Pear MnMx 23.4 21.82 20.87 20.4 20.15 20.07
Pear Pear Zsc 24.05 22.52 21.54 21.02 20.72 20.62
Eucl MnMx Zsc 23.38 21.81 20.85 20.37 20.1 20
Pear MnMx Zsc 24.19 22.66 21.69 21.16 20.87 20.77

S2

Eucl MnMx 95.83 96.68 97.42 98.21 98.83 99.35
Pear MnMx 39.56 38.92 38.72 38.87 39.15 39.34
Eucl Zsc 39.39 39.11 39.05 39.29 39.61 39.87
Pear Zsc 39.56 38.92 38.72 38.87 39.15 39.34
Eucl Pear MnMx 38.84 38.21 38.02 38.17 38.41 38.64
Pear Pear Zsc 38.95 38.56 38.54 38.82 39.2 39.49
Eucl MnMx Zsc 37.59 37.22 37.15 37.43 37.79 38.11
Pear MnMx Zsc 39.56 38.92 38.72 38.87 39.15 39.34

S3

Eucl MnMx 100.22 105.01 108.59 111.11 112.99 114.56
Pear MnMx 57.24 58.43 58.88 59.04 59.33 59.6
Eucl Zsc 57.48 58.1 58.26 58.21 58.35 58.52
Pear Zsc 57.24 58.43 58.88 59.04 59.33 59.6
Eucl Pear MnMx 55.49 56.99 57.68 57.96 58.38 58.72
Pear Pear Zsc 56.83 57.49 57.51 57.43 57.53 57.69
Eucl MnMx Zsc 55.18 55.9 55.93 55.85 56.04 56.26
Pear MnMx Zsc 57.24 58.43 58.88 59.04 59.33 59.6

S4

Eucl MnMx 102.49 106.93 109.83 111.87 113.36 114.66
Pear MnMx 59.59 61.03 62.4 63.33 64.25 65
Eucl Zsc 60.54 61.96 63.06 63.77 64.55 65.16
Pear Zsc 59.59 61.03 62.4 63.33 64.25 65
Eucl Pear MnMx 60.33 61.99 63.41 64.29 65.12 65.9
Pear Pear Zsc 59.92 61.31 62.49 63.25 64.05 64.69
Eucl MnMx Zsc 58.76 60.64 62.12 63.2 64.11 64.87
Pear MnMx Zsc 59.59 61.03 62.4 63.33 64.25 65

S5

Eucl MnMx 108.34 112.32 115.47 118.02 120.06 121.81
Pear MnMx 68.8 71.37 72.74 73.64 74.55 75.39
Eucl Zsc 68.54 71.2 72.68 73.76 74.72 75.52
Pear Zsc 68.8 71.37 72.74 73.64 74.55 75.39
Eucl Pear MnMx 67.95 70.65 72.32 73.38 74.37 75.27
Pear Pear Zsc 68.2 70.94 72.49 73.52 74.45 75.27
Eucl MnMx Zsc 66.73 69.61 71.45 72.72 73.85 74.71
Pear MnMx Zsc 68.8 71.37 72.74 73.64 74.55 75.39
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Table 6.11: Summary of model performance on C-MSKF by minimum MASE using different
clustering methods based on time series data. Results are obtained by taking the minimum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0.45 0.57 0.61 0.67 0.72 0.78
Pear MnMx 0.51 0.6 0.62 0.66 0.69 0.74
Eucl Zsc 0.51 0.6 0.62 0.66 0.69 0.74
Pear Zsc 0.51 0.6 0.62 0.66 0.69 0.74
Eucl Pear MnMx 0.41 0.54 0.61 0.67 0.72 0.77
Pear Pear Zsc 0.51 0.6 0.62 0.66 0.69 0.74
Eucl MnMx Zsc 0.45 0.57 0.61 0.67 0.72 0.78
Pear MnMx Zsc 0.51 0.6 0.62 0.66 0.69 0.74

S2

Eucl MnMx 0.92 1.11 1.27 1.41 1.47 1.52
Pear MnMx 0.78 0.93 1.13 1.28 1.43 1.54
Eucl Zsc 0.78 0.93 1.11 1.14 1.19 1.25
Pear Zsc 0.78 0.93 1.13 1.28 1.43 1.54
Eucl Pear MnMx 0.75 0.77 0.9 1.05 1.19 1.22
Pear Pear Zsc 0.78 0.93 1.02 1.14 1.19 1.25
Eucl MnMx Zsc 0.71 0.73 0.86 1.03 1.19 1.22
Pear MnMx Zsc 0.78 0.93 1.13 1.28 1.43 1.54

S3

Eucl MnMx 1.24 1.45 1.71 1.9 2.08 2.28
Pear MnMx 0.81 1.05 1.18 1.31 1.51 1.71
Eucl Zsc 0.81 1.05 1.16 1.31 1.51 1.66
Pear Zsc 0.81 1.05 1.18 1.31 1.51 1.71
Eucl Pear MnMx 0.81 0.94 1.15 1.31 1.48 1.58
Pear Pear Zsc 0.81 1.05 1.18 1.31 1.51 1.66
Eucl MnMx Zsc 0.81 0.98 1.16 1.31 1.51 1.66
Pear MnMx Zsc 0.81 1.05 1.18 1.31 1.51 1.71

S4

Eucl MnMx 1.07 1.27 1.51 1.69 1.86 2.08
Pear MnMx 0.95 1.05 1.14 1.2 1.34 1.52
Eucl Zsc 0.95 1.05 1.14 1.2 1.34 1.52
Pear Zsc 0.95 1.05 1.14 1.2 1.34 1.52
Eucl Pear MnMx 0.95 1.05 1.14 1.2 1.34 1.52
Pear Pear Zsc 0.95 1.05 1.14 1.2 1.34 1.52
Eucl MnMx Zsc 0.94 1.12 1.24 1.33 1.41 1.55
Pear MnMx Zsc 0.95 1.05 1.14 1.2 1.34 1.52

S5

Eucl MnMx 1.34 1.36 1.57 1.77 1.97 2.18
Pear MnMx 1.12 1.24 1.42 1.56 1.67 1.77
Eucl Zsc 1.11 1.21 1.34 1.54 1.75 1.86
Pear Zsc 1.12 1.24 1.42 1.56 1.67 1.77
Eucl Pear MnMx 1.12 1.24 1.42 1.56 1.67 1.77
Pear Pear Zsc 1.11 1.21 1.34 1.54 1.67 1.77
Eucl MnMx Zsc 1.06 1.21 1.34 1.54 1.7 1.86
Pear MnMx Zsc 1.12 1.24 1.42 1.56 1.67 1.77
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Table 6.12: Summary of model performance on C-MSKF by minimum ME using different
clustering methods based on time series data. Results are obtained by taking the minimum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx -0.1 -0.14 -0.18 -0.21 -0.24 -0.27
Pear MnMx -0.09 -0.14 -0.17 -0.21 -0.24 -0.27
Eucl Zsc -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
Pear Zsc -0.09 -0.14 -0.17 -0.21 -0.24 -0.27
Eucl Pear MnMx -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
Pear Pear Zsc -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
Eucl MnMx Zsc -0.09 -0.14 -0.18 -0.21 -0.24 -0.27
Pear MnMx Zsc -0.09 -0.14 -0.17 -0.21 -0.24 -0.27

S2

Eucl MnMx -0.15 -0.28 -0.35 -0.45 -0.52 -0.58
Pear MnMx -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
Eucl Zsc -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
Pear Zsc -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
Eucl Pear MnMx -0.14 -0.28 -0.34 -0.45 -0.52 -0.57
Pear Pear Zsc -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
Eucl MnMx Zsc -0.14 -0.28 -0.35 -0.45 -0.52 -0.58
Pear MnMx Zsc -0.14 -0.28 -0.35 -0.45 -0.52 -0.58

S3

Eucl MnMx -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
Pear MnMx -0.23 -0.33 -0.37 -0.43 -0.48 -0.56
Eucl Zsc -0.23 -0.33 -0.37 -0.43 -0.48 -0.56
Pear Zsc -0.23 -0.33 -0.37 -0.43 -0.48 -0.56
Eucl Pear MnMx -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
Pear Pear Zsc -0.23 -0.33 -0.37 -0.43 -0.48 -0.56
Eucl MnMx Zsc -0.23 -0.33 -0.36 -0.42 -0.47 -0.54
Pear MnMx Zsc -0.23 -0.33 -0.37 -0.43 -0.48 -0.56

S4

Eucl MnMx -0.23 -0.26 -0.39 -0.52 -0.65 -0.78
Pear MnMx -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Eucl Zsc -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Pear Zsc -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Eucl Pear MnMx -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Pear Pear Zsc -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Eucl MnMx Zsc -0.22 -0.26 -0.39 -0.52 -0.65 -0.77
Pear MnMx Zsc -0.22 -0.26 -0.39 -0.52 -0.65 -0.77

S5

Eucl MnMx -0.16 -0.25 -0.26 -0.29 -0.36 -0.43
Pear MnMx -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
Eucl Zsc -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
Pear Zsc -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
Eucl Pear MnMx -0.16 -0.25 -0.26 -0.3 -0.36 -0.43
Pear Pear Zsc -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
Eucl MnMx Zsc -0.16 -0.25 -0.26 -0.3 -0.36 -0.43
Pear MnMx Zsc -0.16 -0.25 -0.26 -0.3 -0.36 -0.44
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Table 6.13: Summary of model performance on C-MSKF by minimum MSE using different
clustering methods based on time series data. Results are obtained by taking the minimum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0.03 0.04 0.04 0.04 0.05 0.05
Pear MnMx 0.03 0.04 0.04 0.04 0.04 0.05
Eucl Zsc 0.03 0.04 0.04 0.04 0.04 0.05
Pear Zsc 0.03 0.04 0.04 0.04 0.04 0.05
Eucl Pear MnMx 0.02 0.04 0.04 0.04 0.05 0.05
Pear Pear Zsc 0.03 0.04 0.04 0.04 0.04 0.05
Eucl MnMx Zsc 0.03 0.04 0.04 0.04 0.05 0.05
Pear MnMx Zsc 0.03 0.04 0.04 0.04 0.04 0.05

S2

Eucl MnMx 0.12 0.19 0.25 0.32 0.41 0.47
Pear MnMx 0.08 0.12 0.17 0.22 0.26 0.29
Eucl Zsc 0.09 0.12 0.12 0.14 0.16 0.18
Pear Zsc 0.08 0.12 0.17 0.22 0.26 0.29
Eucl Pear MnMx 0.07 0.09 0.12 0.14 0.16 0.18
Pear Pear Zsc 0.07 0.12 0.12 0.14 0.16 0.18
Eucl MnMx Zsc 0.06 0.09 0.11 0.14 0.16 0.18
Pear MnMx Zsc 0.08 0.12 0.17 0.22 0.26 0.29

S3

Eucl MnMx 0.34 0.46 0.59 0.69 0.83 0.98
Pear MnMx 0.15 0.22 0.34 0.39 0.49 0.58
Eucl Zsc 0.13 0.16 0.21 0.26 0.32 0.38
Pear Zsc 0.15 0.22 0.34 0.39 0.49 0.58
Eucl Pear MnMx 0.14 0.13 0.2 0.3 0.4 0.51
Pear Pear Zsc 0.13 0.16 0.21 0.26 0.32 0.38
Eucl MnMx Zsc 0.13 0.14 0.21 0.26 0.32 0.38
Pear MnMx Zsc 0.15 0.22 0.34 0.39 0.49 0.58

S4

Eucl MnMx 0.26 0.33 0.45 0.53 0.66 0.86
Pear MnMx 0.14 0.19 0.24 0.31 0.45 0.58
Eucl Zsc 0.14 0.19 0.24 0.31 0.45 0.58
Pear Zsc 0.14 0.19 0.24 0.31 0.45 0.58
Eucl Pear MnMx 0.14 0.19 0.24 0.31 0.45 0.58
Pear Pear Zsc 0.14 0.19 0.24 0.31 0.45 0.58
Eucl MnMx Zsc 0.19 0.28 0.36 0.43 0.48 0.55
Pear MnMx Zsc 0.14 0.19 0.24 0.31 0.45 0.58

S5

Eucl MnMx 0.37 0.48 0.63 0.74 0.84 1.04
Pear MnMx 0.29 0.49 0.67 0.83 1 1.17
Eucl Zsc 0.25 0.46 0.57 0.76 0.89 1.04
Pear Zsc 0.29 0.49 0.67 0.83 1 1.17
Eucl Pear MnMx 0.26 0.34 0.45 0.5 0.55 0.67
Pear Pear Zsc 0.25 0.49 0.67 0.83 0.98 1.12
Eucl MnMx Zsc 0.22 0.29 0.39 0.42 0.47 0.57
Pear MnMx Zsc 0.29 0.49 0.67 0.83 1 1.17
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Table 6.14: Summary of model performance on C-MSKF by minimum sMAPE using dif-
ferent clustering methods based on time series data. Results are obtained by taking the
minimum value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Pre-
cisely, the best weight is determined based on t = 17 and t ≤ T are used for clustering
stage. The best performing method is highlighted in bold face and the second best method
is highlighted in italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 11.86 12.96 13.21 13.35 13.41 13.44
Pear MnMx 10.3 11.37 11.54 11.62 11.77 12.53
Eucl Zsc 10.3 11.37 11.54 11.62 11.77 12.53
Pear Zsc 10.3 11.37 11.54 11.62 11.77 12.53
Eucl Pear MnMx 10.3 11.37 11.54 11.62 11.77 12.53
Pear Pear Zsc 10.3 11.37 11.54 11.62 11.77 12.53
Eucl MnMx Zsc 10.3 11.37 11.54 11.62 11.77 12.53
Pear MnMx Zsc 10.3 11.37 11.54 11.62 11.77 12.53

S2

Eucl MnMx 30.68 30.89 31.15 32.29 32.81 32.7
Pear MnMx 21.86 22.63 24.18 25.64 26.35 26.77
Eucl Zsc 21.86 22.63 24.18 25.64 26.35 26.77
Pear Zsc 21.86 22.63 24.18 25.64 26.35 26.77
Eucl Pear MnMx 19.72 21.7 20.73 20.52 21.34 21.82
Pear Pear Zsc 21.86 22.63 24.18 25.64 26.35 26.77
Eucl MnMx Zsc 18.28 21.11 20.25 20.2 21.18 21.77
Pear MnMx Zsc 21.86 22.63 24.18 25.64 26.35 26.77

S3

Eucl MnMx 46.59 47.64 50.7 53.18 53.96 53.73
Pear MnMx 27.11 30.78 34.68 35.77 36.37 37.75
Eucl Zsc 27.11 30.78 34.68 35.77 36.37 37.75
Pear Zsc 27.11 30.78 34.68 35.77 36.37 37.75
Eucl Pear MnMx 27.11 30.78 34.68 35.77 35.98 36.05
Pear Pear Zsc 27.11 30.78 34.68 35.77 36.37 37.75
Eucl MnMx Zsc 27.11 29.87 31.43 32.88 32.74 33.6
Pear MnMx Zsc 27.11 30.78 34.68 35.77 36.37 37.75

S4

Eucl MnMx 43.72 48.55 52.35 52.4 51.89 53.03
Pear MnMx 34.88 39.94 40.68 38.6 39.66 40.92
Eucl Zsc 34.81 36.77 36.6 37.84 39.66 40.92
Pear Zsc 34.88 39.94 40.68 38.6 39.66 40.92
Eucl Pear MnMx 36.09 38.55 38.85 38.6 39.66 40.92
Pear Pear Zsc 34.88 39.94 40.72 38.6 39.66 40.92
Eucl MnMx Zsc 36.09 38.47 38.78 39.84 39.84 39.74
Pear MnMx Zsc 34.88 39.94 40.68 38.6 39.66 40.92

S5

Eucl MnMx 45.6 43 43.37 44.81 46.11 47.23
Pear MnMx 45.81 45.67 44.26 44.86 44.74 44.07
Eucl Zsc 42.12 43.44 41.52 42.73 44.06 44.04
Pear Zsc 45.81 45.67 44.26 44.86 44.74 44.07
Eucl Pear MnMx 45.81 46.03 44.01 44.64 44.98 44.07
Pear Pear Zsc 43.55 43.44 41.52 42.73 44.06 44.04
Eucl MnMx Zsc 39.86 43.44 41.52 42.73 44.06 44.18
Pear MnMx Zsc 45.81 45.67 44.26 44.86 44.74 44.07
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Table 6.15: Summary of model performance on C-MSKF by maximum MASE using different
clustering methods based on time series data. Results are obtained by taking the maximum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 3.33 3.85 4.35 4.77 5.22 5.72
Pear MnMx 1.12 1.25 1.37 1.53 1.69 1.81
Eucl Zsc 1.12 1.19 1.3 1.46 1.61 1.72
Pear Zsc 1.12 1.25 1.37 1.53 1.69 1.81
Eucl Pear MnMx 1.01 1.14 1.26 1.41 1.54 1.69
Pear Pear Zsc 1.12 1.25 1.37 1.53 1.69 1.81
Eucl MnMx Zsc 1 1.12 1.26 1.41 1.54 1.69
Pear MnMx Zsc 1.12 1.25 1.37 1.53 1.69 1.81

S2

Eucl MnMx 3.79 4.21 4.65 5.13 5.6 6.11
Pear MnMx 2 2.11 2.34 2.55 2.71 2.9
Eucl Zsc 1.44 1.7 1.96 2.27 2.5 2.72
Pear Zsc 2 2.11 2.34 2.55 2.71 2.9
Eucl Pear MnMx 2 2.11 2.34 2.55 2.71 2.9
Pear Pear Zsc 1.44 1.7 1.96 2.27 2.5 2.72
Eucl MnMx Zsc 1.4 1.61 1.89 2.2 2.44 2.66
Pear MnMx Zsc 2 2.11 2.34 2.55 2.71 2.9

S3

Eucl MnMx 3.56 4.02 4.36 4.77 5.2 5.76
Pear MnMx 2.24 2.67 3.14 3.56 3.97 4.38
Eucl Zsc 2.14 2.41 2.67 2.92 3.22 3.53
Pear Zsc 2.24 2.67 3.14 3.56 3.97 4.38
Eucl Pear MnMx 2.09 2.52 3.01 3.44 3.85 4.24
Pear Pear Zsc 2.14 2.41 2.67 2.92 3.22 3.53
Eucl MnMx Zsc 1.95 2.13 2.47 2.8 3.15 3.51
Pear MnMx Zsc 2.24 2.67 3.14 3.56 3.97 4.38

S4

Eucl MnMx 3.29 3.77 4.31 4.76 5.12 5.48
Pear MnMx 2.49 2.81 3.25 3.58 3.87 4.22
Eucl Zsc 2.09 2.36 2.73 2.94 3.21 3.5
Pear Zsc 2.49 2.81 3.25 3.58 3.87 4.22
Eucl Pear MnMx 2.36 2.65 3.07 3.4 3.68 4.02
Pear Pear Zsc 2.07 2.43 2.73 2.99 3.27 3.57
Eucl MnMx Zsc 2.24 2.51 2.69 3.01 3.29 3.54
Pear MnMx Zsc 2.49 2.81 3.25 3.58 3.87 4.22

S5

Eucl MnMx 3.28 3.86 4.25 4.62 4.96 5.29
Pear MnMx 2.62 3.09 3.49 3.87 4.26 4.7
Eucl Zsc 2.62 3.09 3.49 3.87 4.26 4.7
Pear Zsc 2.62 3.09 3.49 3.87 4.26 4.7
Eucl Pear MnMx 2.5 2.92 3.27 3.57 3.9 4.22
Pear Pear Zsc 2.62 3.09 3.49 3.87 4.26 4.7
Eucl MnMx Zsc 2.47 2.9 3.29 3.64 3.99 4.4
Pear MnMx Zsc 2.62 3.09 3.49 3.87 4.26 4.7
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Table 6.16: Summary of model performance on C-MSKF by maximum ME using different
clustering methods based on time series data. Results are obtained by taking the maximum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0.11 0.14 0.17 0.21 0.23 0.26
Pear MnMx 0.11 0.14 0.17 0.21 0.24 0.27
Eucl Zsc 0.11 0.14 0.17 0.21 0.24 0.27
Pear Zsc 0.11 0.14 0.17 0.21 0.24 0.27
Eucl Pear MnMx 0.11 0.14 0.17 0.21 0.24 0.27
Pear Pear Zsc 0.11 0.14 0.17 0.21 0.24 0.27
Eucl MnMx Zsc 0.11 0.14 0.17 0.21 0.24 0.27
Pear MnMx Zsc 0.11 0.14 0.17 0.21 0.24 0.27

S2

Eucl MnMx 0.14 0.24 0.28 0.34 0.37 0.47
Pear MnMx 0.14 0.24 0.28 0.34 0.38 0.48
Eucl Zsc 0.14 0.24 0.28 0.34 0.38 0.48
Pear Zsc 0.14 0.24 0.28 0.34 0.38 0.48
Eucl Pear MnMx 0.14 0.24 0.28 0.34 0.38 0.48
Pear Pear Zsc 0.14 0.24 0.28 0.34 0.38 0.48
Eucl MnMx Zsc 0.14 0.24 0.28 0.34 0.38 0.48
Pear MnMx Zsc 0.14 0.24 0.28 0.34 0.38 0.48

S3

Eucl MnMx 0.2 0.28 0.31 0.35 0.39 0.45
Pear MnMx 0.2 0.27 0.29 0.33 0.37 0.42
Eucl Zsc 0.2 0.27 0.29 0.33 0.37 0.42
Pear Zsc 0.2 0.27 0.29 0.33 0.37 0.42
Eucl Pear MnMx 0.2 0.27 0.29 0.33 0.37 0.42
Pear Pear Zsc 0.2 0.27 0.29 0.33 0.37 0.42
Eucl MnMx Zsc 0.19 0.27 0.29 0.33 0.36 0.41
Pear MnMx Zsc 0.2 0.27 0.29 0.33 0.37 0.42

S4

Eucl MnMx 0.49 0.59 0.72 0.77 0.75 0.74
Pear MnMx 0.49 0.59 0.72 0.77 0.76 0.75
Eucl Zsc 0.49 0.59 0.72 0.77 0.76 0.75
Pear Zsc 0.49 0.59 0.72 0.77 0.76 0.75
Eucl Pear MnMx 0.49 0.59 0.72 0.77 0.76 0.75
Pear Pear Zsc 0.49 0.59 0.72 0.77 0.76 0.75
Eucl MnMx Zsc 0.49 0.59 0.72 0.77 0.76 0.75
Pear MnMx Zsc 0.49 0.59 0.72 0.77 0.76 0.75

S5

Eucl MnMx 0.27 0.37 0.39 0.38 0.55 0.7
Pear MnMx 0.28 0.38 0.41 0.4 0.57 0.73
Eucl Zsc 0.28 0.38 0.42 0.41 0.57 0.73
Pear Zsc 0.28 0.38 0.41 0.4 0.57 0.73
Eucl Pear MnMx 0.27 0.37 0.39 0.4 0.52 0.67
Pear Pear Zsc 0.28 0.38 0.42 0.41 0.57 0.73
Eucl MnMx Zsc 0.27 0.37 0.39 0.39 0.53 0.67
Pear MnMx Zsc 0.28 0.38 0.41 0.4 0.57 0.73
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Table 6.17: Summary of model performance on C-MSKF by maximum MSE using different
clustering methods based on time series data. Results are obtained by taking the maximum
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 1.65 2.25 2.89 3.66 4.54 5.46
Pear MnMx 0.23 0.36 0.47 0.54 0.65 0.78
Eucl Zsc 0.23 0.31 0.4 0.53 0.65 0.78
Pear Zsc 0.23 0.36 0.47 0.54 0.65 0.78
Eucl Pear MnMx 0.23 0.33 0.43 0.53 0.65 0.78
Pear Pear Zsc 0.23 0.31 0.4 0.53 0.65 0.78
Eucl MnMx Zsc 0.23 0.33 0.43 0.53 0.65 0.78
Pear MnMx Zsc 0.23 0.36 0.47 0.54 0.65 0.78

S2

Eucl MnMx 2.85 4.24 6.04 9.23 12.5 14.76
Pear MnMx 0.89 1.55 2.48 4.61 6.76 7.94
Eucl Zsc 0.89 1.55 2.48 4.61 6.76 7.94
Pear Zsc 0.89 1.55 2.48 4.61 6.76 7.94
Eucl Pear MnMx 1 1.55 2.48 4.61 6.76 7.94
Pear Pear Zsc 0.89 1.55 2.48 4.61 6.76 7.94
Eucl MnMx Zsc 0.78 1.55 2.48 4.61 6.76 7.94
Pear MnMx Zsc 0.89 1.55 2.48 4.61 6.76 7.94

S3

Eucl MnMx 3.28 4.29 6.12 8.19 10.55 13.66
Pear MnMx 1.64 2.63 4.93 7.49 9.99 13.23
Eucl Zsc 1.3 2.19 4.24 6.53 8.94 12.25
Pear Zsc 1.64 2.63 4.93 7.49 9.99 13.23
Eucl Pear MnMx 1.64 2.63 4.93 7.49 9.99 13.23
Pear Pear Zsc 1.3 2.19 4.24 6.53 8.94 12.25
Eucl MnMx Zsc 1.17 1.7 3.38 5.25 7.01 9.32
Pear MnMx Zsc 1.64 2.63 4.93 7.49 9.99 13.23

S4

Eucl MnMx 3.41 4.45 5.96 7.66 8.77 10.34
Pear MnMx 2.1 3.07 4.03 5.19 6.27 7.14
Eucl Zsc 1.97 2.87 3.88 5.43 6.56 7.63
Pear Zsc 2.1 3.07 4.03 5.19 6.27 7.14
Eucl Pear MnMx 1.97 2.87 3.88 5.19 5.98 7.14
Pear Pear Zsc 1.97 2.87 3.88 5.19 5.98 7.14
Eucl MnMx Zsc 1.4 2.25 3.88 5.19 5.98 7.02
Pear MnMx Zsc 2.1 3.07 4.03 5.19 6.27 7.14

S5

Eucl MnMx 3.83 5.1 7 9.15 10.97 12.61
Pear MnMx 2.64 3.18 4.77 7.35 11.13 15.76
Eucl Zsc 2.53 3.1 4.7 7.35 11.13 15.76
Pear Zsc 2.64 3.18 4.77 7.35 11.13 15.76
Eucl Pear MnMx 2.11 3.18 4.77 6.45 9.04 12.2
Pear Pear Zsc 2.53 3.1 4.7 7.35 11.13 15.76
Eucl MnMx Zsc 1.92 3.05 4.3 6.05 8.94 12.71
Pear MnMx Zsc 2.64 3.18 4.77 7.35 11.13 15.76
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Table 6.18: Summary of model performance on C-MSKF by maximum sMAPE using dif-
ferent clustering methods based on time series data. Results are obtained by taking the
maximum value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Pre-
cisely, the best weight is determined based on t = 17 and t ≤ T are used for clustering
stage. The best performing method is highlighted in bold face and the second best method
is highlighted in italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 122.8 125.7 125.29 124.72 127.27 130.32
Pear MnMx 43.24 36.69 32.03 29.68 29.57 29.22
Eucl Zsc 43.24 36.69 32.03 29.96 29.58 30.09
Pear Zsc 43.24 36.69 32.03 29.68 29.57 29.22
Eucl Pear MnMx 43.46 35.9 30.97 28.6 27.68 27.98
Pear Pear Zsc 43.24 36.69 32.03 29.68 29.57 29.22
Eucl MnMx Zsc 43.46 35.9 30.97 29 29.44 29.9
Pear MnMx Zsc 43.24 36.69 32.03 29.68 29.57 29.22

S2

Eucl MnMx 145.09 147.67 152.03 154.63 157.51 159.88
Pear MnMx 67.76 63.24 62.88 63.82 63.69 63.19
Eucl Zsc 67.95 68.04 67.69 66.75 65.88 64.79
Pear Zsc 67.76 63.24 62.88 63.82 63.69 63.19
Eucl Pear MnMx 67.76 63.24 62.88 63.82 63.69 63.19
Pear Pear Zsc 67.95 68.04 67.69 66.75 65.88 64.79
Eucl MnMx Zsc 67.76 59.48 60.79 61.12 62.99 64.69
Pear MnMx Zsc 67.76 63.24 62.88 63.82 63.69 63.19

S3

Eucl MnMx 138.21 141.58 145.52 147.74 149.92 153.65
Pear MnMx 95.49 89.46 85.99 88.2 89.14 93.75
Eucl Zsc 95.49 88.78 89.7 90.15 89.73 88.67
Pear Zsc 95.49 89.46 85.99 88.2 89.14 93.75
Eucl Pear MnMx 95.27 89.46 90.14 94.92 99.06 102.1
Pear Pear Zsc 95.49 88.78 89.7 90.15 89.73 88.67
Eucl MnMx Zsc 83.59 85.15 89.7 90.15 89.73 88.8
Pear MnMx Zsc 95.49 89.46 85.99 88.2 89.14 93.75

S4

Eucl MnMx 167.89 166.79 166.99 165.83 167.6 168.82
Pear MnMx 101.25 97.25 94.25 98.88 102.57 106.96
Eucl Zsc 108.05 101.2 94.43 95.44 98.77 102.96
Pear Zsc 101.25 97.25 94.25 98.88 102.57 106.96
Eucl Pear MnMx 98.6 106.64 109.48 108.5 110.82 113.44
Pear Pear Zsc 96.57 94.91 94.25 98.88 102.57 106.96
Eucl MnMx Zsc 97.67 102.04 100.28 100.13 101.06 105.83
Pear MnMx Zsc 101.25 97.25 94.25 98.88 102.57 106.96

S5

Eucl MnMx 167.19 173.34 171.09 168.96 170.45 171.8
Pear MnMx 119.09 118.14 116.66 116.57 117.6 122.79
Eucl Zsc 119.09 118.14 116.66 119.16 125.86 131.21
Pear Zsc 119.09 118.14 116.66 116.57 117.6 122.79
Eucl Pear MnMx 128.11 131.76 131.72 133.08 131.4 133.05
Pear Pear Zsc 119.09 118.14 116.66 119.16 125.86 131.21
Eucl MnMx Zsc 119.09 118.14 116.66 117.74 125.84 131.38
Pear MnMx Zsc 119.09 118.14 116.66 116.57 117.6 122.79
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Table 6.19: Summary of model performance on C-MSKF by median MASE using different
clustering methods based on time series data. Results are obtained by taking the median
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 1.01 1.16 1.28 1.4 1.52 1.64
Pear MnMx 0.74 0.84 0.94 1.03 1.13 1.22
Eucl Zsc 0.73 0.84 0.93 1.02 1.12 1.21
Pear Zsc 0.74 0.84 0.94 1.03 1.13 1.22
Eucl Pear MnMx 0.7 0.8 0.89 0.97 1.06 1.15
Pear Pear Zsc 0.73 0.83 0.92 1.02 1.11 1.21
Eucl MnMx Zsc 0.7 0.8 0.89 0.97 1.06 1.15
Pear MnMx Zsc 0.74 0.84 0.94 1.03 1.13 1.22

S2

Eucl MnMx 2.67 3.03 3.31 3.67 3.99 4.29
Pear MnMx 1.14 1.28 1.43 1.62 1.8 1.98
Eucl Zsc 1.13 1.28 1.43 1.62 1.8 1.98
Pear Zsc 1.14 1.28 1.43 1.62 1.8 1.98
Eucl Pear MnMx 1.1 1.25 1.42 1.59 1.77 1.94
Pear Pear Zsc 1.12 1.26 1.42 1.6 1.79 1.96
Eucl MnMx Zsc 1.07 1.21 1.39 1.57 1.73 1.9
Pear MnMx Zsc 1.14 1.28 1.43 1.62 1.8 1.98

S3

Eucl MnMx 2.56 2.94 3.31 3.67 3.97 4.28
Pear MnMx 1.42 1.66 1.86 2.11 2.34 2.56
Eucl Zsc 1.41 1.63 1.83 2.05 2.27 2.51
Pear Zsc 1.42 1.66 1.86 2.11 2.34 2.56
Eucl Pear MnMx 1.37 1.58 1.8 2.04 2.26 2.48
Pear Pear Zsc 1.39 1.59 1.82 2.04 2.26 2.49
Eucl MnMx Zsc 1.34 1.54 1.76 2 2.21 2.42
Pear MnMx Zsc 1.42 1.66 1.86 2.11 2.34 2.56

S4

Eucl MnMx 2.54 2.84 3.16 3.49 3.82 4.12
Pear MnMx 1.49 1.71 1.95 2.2 2.41 2.64
Eucl Zsc 1.47 1.69 1.95 2.16 2.37 2.59
Pear Zsc 1.49 1.71 1.95 2.2 2.41 2.64
Eucl Pear MnMx 1.47 1.68 1.95 2.2 2.38 2.64
Pear Pear Zsc 1.46 1.68 1.92 2.13 2.35 2.58
Eucl MnMx Zsc 1.42 1.63 1.87 2.1 2.33 2.54
Pear MnMx Zsc 1.49 1.71 1.95 2.2 2.41 2.64

S5

Eucl MnMx 2.48 2.79 3.07 3.37 3.67 3.98
Pear MnMx 1.64 1.95 2.21 2.42 2.67 2.91
Eucl Zsc 1.57 1.86 2.11 2.37 2.6 2.82
Pear Zsc 1.64 1.95 2.21 2.42 2.67 2.91
Eucl Pear MnMx 1.59 1.88 2.12 2.38 2.64 2.88
Pear Pear Zsc 1.58 1.87 2.11 2.37 2.61 2.86
Eucl MnMx Zsc 1.53 1.81 2.07 2.31 2.56 2.81
Pear MnMx Zsc 1.64 1.95 2.21 2.42 2.67 2.91
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Table 6.20: Summary of model performance on C-MSKF by median ME using different
clustering methods based on time series data. Results are obtained by taking the median
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0 -0.01 -0.01 -0.01 -0.01 -0.01
Pear MnMx 0 0 -0.01 -0.01 -0.01 -0.01
Eucl Zsc 0 0 -0.01 -0.01 -0.01 -0.01
Pear Zsc 0 0 -0.01 -0.01 -0.01 -0.01
Eucl Pear MnMx 0 0 -0.01 -0.01 -0.01 -0.01
Pear Pear Zsc 0 0 -0.01 -0.01 -0.01 -0.01
Eucl MnMx Zsc 0 0 -0.01 -0.01 -0.01 -0.01
Pear MnMx Zsc 0 0 -0.01 -0.01 -0.01 -0.01

S2

Eucl MnMx 0.01 0.01 0.03 0.03 0.04 0.04
Pear MnMx 0.01 0.01 0.03 0.03 0.04 0.04
Eucl Zsc 0.01 0.01 0.03 0.03 0.04 0.04
Pear Zsc 0.01 0.01 0.03 0.03 0.04 0.04
Eucl Pear MnMx 0.01 0.01 0.03 0.03 0.04 0.04
Pear Pear Zsc 0.01 0.01 0.03 0.03 0.04 0.04
Eucl MnMx Zsc 0.01 0.01 0.03 0.03 0.04 0.04
Pear MnMx Zsc 0.01 0.01 0.03 0.03 0.04 0.04

S3

Eucl MnMx -0.02 -0.01 -0.03 -0.04 -0.05 -0.06
Pear MnMx -0.02 -0.02 -0.03 -0.04 -0.05 -0.06
Eucl Zsc -0.02 -0.01 -0.03 -0.04 -0.05 -0.06
Pear Zsc -0.02 -0.02 -0.03 -0.04 -0.05 -0.06
Eucl Pear MnMx -0.02 -0.02 -0.03 -0.04 -0.05 -0.05
Pear Pear Zsc -0.02 -0.01 -0.03 -0.04 -0.05 -0.06
Eucl MnMx Zsc -0.02 -0.01 -0.03 -0.04 -0.05 -0.06
Pear MnMx Zsc -0.02 -0.02 -0.03 -0.04 -0.05 -0.06

S4

Eucl MnMx 0.02 0.05 0.08 0.09 0.11 0.12
Pear MnMx 0.03 0.06 0.09 0.1 0.11 0.12
Eucl Zsc 0.03 0.06 0.08 0.09 0.11 0.12
Pear Zsc 0.03 0.06 0.09 0.1 0.11 0.12
Eucl Pear MnMx 0.03 0.06 0.08 0.1 0.11 0.12
Pear Pear Zsc 0.03 0.06 0.09 0.1 0.11 0.11
Eucl MnMx Zsc 0.03 0.06 0.08 0.1 0.12 0.13
Pear MnMx Zsc 0.03 0.06 0.09 0.1 0.11 0.12

S5

Eucl MnMx -0.01 0.03 0.03 0.05 0.06 0.06
Pear MnMx 0 0.03 0.03 0.06 0.06 0.06
Eucl Zsc 0 0.03 0.04 0.06 0.06 0.06
Pear Zsc 0 0.03 0.03 0.06 0.06 0.06
Eucl Pear MnMx -0.01 0.03 0.03 0.06 0.07 0.06
Pear Pear Zsc 0 0.03 0.03 0.06 0.06 0.06
Eucl MnMx Zsc 0 0.03 0.04 0.06 0.06 0.06
Pear MnMx Zsc 0 0.03 0.03 0.06 0.06 0.06
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Table 6.21: Summary of model performance on C-MSKF by median MSE using different
clustering methods based on time series data. Results are obtained by taking the median
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 0.26 0.33 0.41 0.5 0.59 0.7
Pear MnMx 0.09 0.11 0.14 0.17 0.2 0.25
Eucl Zsc 0.09 0.11 0.14 0.17 0.2 0.25
Pear Zsc 0.09 0.11 0.14 0.17 0.2 0.25
Eucl Pear MnMx 0.08 0.11 0.13 0.16 0.18 0.22
Pear Pear Zsc 0.08 0.11 0.14 0.17 0.2 0.24
Eucl MnMx Zsc 0.08 0.11 0.13 0.16 0.19 0.23
Pear MnMx Zsc 0.09 0.11 0.14 0.17 0.2 0.25

S2

Eucl MnMx 1.17 1.54 1.94 2.38 2.83 3.23
Pear MnMx 0.26 0.34 0.46 0.61 0.8 0.97
Eucl Zsc 0.24 0.33 0.43 0.58 0.74 0.92
Pear Zsc 0.26 0.34 0.46 0.61 0.8 0.97
Eucl Pear MnMx 0.24 0.32 0.43 0.59 0.75 0.92
Pear Pear Zsc 0.24 0.32 0.42 0.58 0.74 0.91
Eucl MnMx Zsc 0.22 0.29 0.38 0.52 0.65 0.82
Pear MnMx Zsc 0.26 0.34 0.46 0.61 0.8 0.97

S3

Eucl MnMx 1.41 1.93 2.48 3 3.63 4.3
Pear MnMx 0.48 0.65 0.9 1.16 1.46 1.79
Eucl Zsc 0.44 0.63 0.82 1.11 1.4 1.71
Pear Zsc 0.48 0.65 0.9 1.16 1.46 1.79
Eucl Pear MnMx 0.41 0.6 0.8 1.05 1.34 1.64
Pear Pear Zsc 0.42 0.6 0.79 1.07 1.36 1.66
Eucl MnMx Zsc 0.4 0.56 0.75 0.97 1.22 1.52
Pear MnMx Zsc 0.48 0.65 0.9 1.16 1.46 1.79

S4

Eucl MnMx 1.56 1.96 2.51 3.08 3.76 4.49
Pear MnMx 0.68 0.98 1.35 1.76 2.23 2.75
Eucl Zsc 0.66 0.93 1.31 1.74 2.18 2.66
Pear Zsc 0.68 0.98 1.35 1.76 2.23 2.75
Eucl Pear MnMx 0.65 0.95 1.3 1.75 2.21 2.79
Pear Pear Zsc 0.65 0.91 1.27 1.74 2.22 2.73
Eucl MnMx Zsc 0.59 0.83 1.16 1.63 2.15 2.63
Pear MnMx Zsc 0.68 0.98 1.35 1.76 2.23 2.75

S5

Eucl MnMx 1.77 2.27 2.74 3.41 4.14 4.93
Pear MnMx 0.83 1.24 1.7 2.19 2.83 3.29
Eucl Zsc 0.78 1.16 1.56 2.03 2.58 3.18
Pear Zsc 0.83 1.24 1.7 2.19 2.83 3.29
Eucl Pear MnMx 0.82 1.23 1.69 2.18 2.75 3.27
Pear Pear Zsc 0.76 1.17 1.61 2.16 2.63 3.23
Eucl MnMx Zsc 0.73 1.13 1.57 2.04 2.57 3.16
Pear MnMx Zsc 0.83 1.24 1.7 2.19 2.83 3.29
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Table 6.22: Summary of model performance on C-MSKF by median sMAPE using different
clustering methods based on time series data. Results are obtained by taking the median
value across 30 replicates, 6 time series lengths and 6 forecasting horizons. Precisely, the
best weight is determined based on t= 17 and t≤ T are used for clustering stage. The best
performing method is highlighted in bold face and the second best method is highlighted in
italic bold face.

Scenarios Combinations h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

S1

Eucl MnMx 35.74 33.77 32.87 31.5 30.98 30.38
Pear MnMx 23.39 22.72 21.83 21.66 21.35 21.13
Eucl Zsc 23.62 22.83 21.79 21.57 20.99 20.92
Pear Zsc 23.39 22.72 21.83 21.66 21.35 21.13
Eucl Pear MnMx 22.16 21.03 20.68 20.44 20.26 20.02
Pear Pear Zsc 22.88 22.6 21.71 21.52 21 21
Eucl MnMx Zsc 21.87 20.98 20.7 20.44 20.23 19.99
Pear MnMx Zsc 23.39 22.72 21.83 21.66 21.35 21.13

S2

Eucl MnMx 103.78 104.94 104.88 105.99 106.04 104.83
Pear MnMx 38.14 37.09 37.82 38.01 38.45 38.69
Eucl Zsc 37.84 37.6 38.02 38.49 38.65 39.18
Pear Zsc 38.14 37.09 37.82 38.01 38.45 38.69
Eucl Pear MnMx 37.45 36.36 36.52 37 37.29 37.55
Pear Pear Zsc 37.25 36.95 37.14 37.88 38.16 38.14
Eucl MnMx Zsc 36.15 35.73 35.82 35.76 36.18 36.73
Pear MnMx Zsc 38.14 37.09 37.82 38.01 38.45 38.69

S3

Eucl MnMx 102.66 106.27 110.77 113.99 115.89 117.3
Pear MnMx 56.32 57.2 59.14 58.45 57.9 59.28
Eucl Zsc 56.17 57.38 59.36 59.34 59.63 59.98
Pear Zsc 56.32 57.2 59.14 58.45 57.9 59.28
Eucl Pear MnMx 54.25 55.82 57.83 57.19 57.42 57.61
Pear Pear Zsc 55.3 56.85 58.19 58.21 57.38 57.46
Eucl MnMx Zsc 54.28 54.99 56.15 55.62 55.59 55.65
Pear MnMx Zsc 56.32 57.2 59.14 58.45 57.9 59.28

S4

Eucl MnMx 103.37 107.37 110.14 112.66 114.48 116.35
Pear MnMx 58.52 60.4 62.31 63.54 64.5 65.07
Eucl Zsc 59.06 61 62.49 63.8 64.81 64.92
Pear Zsc 58.52 60.4 62.31 63.54 64.5 65.07
Eucl Pear MnMx 59.04 60.87 62.58 63.79 64.27 64.86
Pear Pear Zsc 58.27 60.31 61.82 63.33 64 64.36
Eucl MnMx Zsc 56.57 60.03 61.62 62.79 63.39 64.14
Pear MnMx Zsc 58.52 60.4 62.31 63.54 64.5 65.07

S5

Eucl MnMx 111.33 113.98 116.42 119.85 121.13 123.17
Pear MnMx 66.37 69.97 72.3 71.94 73.03 73.87
Eucl Zsc 66.48 70.17 72.08 71.74 71.81 72.93
Pear Zsc 66.37 69.97 72.3 71.94 73.03 73.87
Eucl Pear MnMx 64.74 68.69 70.76 71.25 72.04 73.17
Pear Pear Zsc 65.07 69.89 72.08 71.79 72.25 73.17
Eucl MnMx Zsc 64.01 67.17 69.62 71 71.23 71.95
Pear MnMx Zsc 66.37 69.97 72.3 71.94 73.03 73.87
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Chapter 7

Conclusions and outlook

7.1 Journey

In this thesis, a number of research topics have been explored. The first research

topic that was interrogated was the seat inventory control problem. Specifically, we

were interested in modelling seat allocations in order to maximize the total revenue

of train operators subject to certain conditions, e.g., and the passenger demand on

origin-to-destination journeys. Seat inventory control problems are interesting but pose

a challenge regarding data collection as well as an intensive use of domain knowledge.

Without research collaboration, open data was not sufficient for further analysis due to

the nature of the problem, which requires the information associated with passenger

demand on particular origin-to-destination journeys. Unfortunately, this piece of infor-

mation is typically confidential. In addition to this, seat inventory control problems have

been intensively studied over the last decades. It also presents larger challenges in

defining the research gap. In light of this, we focused more on the aspects of data

accessibility / methodology innovation.

In considering common challenges in the transport sector, time series forecast-

ing (such as demand forecasting) was considered a competitive alternative to the seat
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inventory optimization problems. Additionally, taking into account my academic back-

ground in computer science, our work was further inspired by the idea of ensemble

approaches. These approaches are commonly used in the machine learning field to

boost the accuracy of an aggregated classifier / regressor via the aggregation of multi-

ple models. Thus, we had started our exploration related to the idea of drawing power

from multiple forecasts. Primarily, two approaches fall into this category, including com-

bining forecasts and forecasting methods make use of analogies e.g., the Bayesian

Pooling method. Combining forecasts have received a wide range of applications in the

forecasting field. This kind of method is regarded as post-hoc method, similar to en-

semble methods in the machine learning area. These approaches have been reported

to yield better forecasting results via the aggregation of multiple forecasting solutions.

In essence, these methods do not impact on the mechanism of a forecasting algorithm.

The main benefit of combining forecasts approaches is to reduce the risk of picking a

wrong statistical model. Another group of methods that might be more promising and

that have gained little attention are the Bayesian Pooling methods. Intrinsically, these

forecasting methods update the estimated parameters over time by combining the es-

timates from a univariate time series and parameters estimated derived from pooled

data. We expected that the forecasting accuracy of a statistical model might be signif-

icantly improved by correcting its parameters throughout the learning process, where

analogies provide useful information additional to the past observations of a univariate

time series. Given the potential of these methods, surprisingly limited work has been

conducted in the forecasting field to explore suitable modeling approaches for the iden-

tification of analogies. As discussed in the paper (Stimson, 1985),the identification of

suitable analogies is crucial for forecasting methods such as these that make use of

analogies. This is despite the development of improved techniques being critical for

the discernment of similarities between time series (Lee et al., 2007) and supporting

291



the principled selection of analogies (Armstrong, 2001). Furthermore, following the pa-

per (Duncan, Gorr, and Szczypula, 1993), open data available in the public budgeting

area can be applied to evaluate our ideas of analogy identification. As a result, we

finally decided on the topic related to the improvement of forecasting accuracy using

analogous time series.

7.2 Reflection

Although conventional forecasting methods typically make forecasts for a single se-

ries in isolation, almost all companies require methods that can simultaneously forecast

a set of analogous time series. e.g., the analysis of the sales of similar products fall into

the same geographic area (Duncan, Gorr, and Szczypula, 2001). The use of analogies

can be particularly useful when investigating problems for which there is little prior data

available regarding the target series. This is often the case shortly after the launch of

new products or where records are missing. The use of analogies can help to create

opportunities for borrowing strengths from homogeneous time series to derive more re-

liable forecasts of the target series. Due to the significant role that analogies can play in

forecasting contexts, therefore we have developed a methodological framework that en-

ables the principled selection of analogies using multicriteria segmentation approaches.

For either judgmental forecasting or statistical forecasts, we aim to guide the se-

lection of analogies with a consideration of multiple criteria. Our work develop data-

driven approaches for the analogy identification using multiple criteria. Specifically, we

explored the potential of using multiple information sources, distance metrics / stan-

dardization techniques as criteria for the segmentation stage. We demonstrated that by

integrating individual criterion that carries uncorrelated noise is able to produce better

results in the clustering of analogies, thus leads to an increased forecasting accuracy.

Moreover, we proposed multiple solutions for tackling the model selection problem in
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the multicriteria clustering context. Model selection in conventional clustering problems

is an open question that has received widespread applications in the literature. Typically,

statistical techniques such as the Silhouette Width, Gap statistics have been commonly

employed in practice. However, their effectiveness was well studied in single-criterion

clustering problems, but very limited applications can be found in scenarios where mul-

tiple Pareto-optimal clustering solutions may exist. As discussed in Chapter 4, a single

solution is often required for further analysis in a forecasting context. It proposes a chal-

lenge to develop a technique that can determine the single best clustering solution in an

objective manner. To our understanding, model selection plays an necessary role in the

forecasting applications. Our work systematically analyzed promising model selection

methods with or without consideration of an application context. It opens up opportuni-

ties for developing automated forecasting process using analogies that are identified by

the multicriteria segmentation approach.

7.3 Limitations

In our current work, the major limitation of the work lies in the diversity of data. We

used simulated data to conduct experiments in order to understand the sensitivity of

different elements related to the forecasting process that makes use of analogies. We

additionally used real data to evaluate the validity of these methods. In Chapter 3, we

applied our methodological framework to both simulated and real data sets (US. per-

sonal income tax liability). However, manuscripts 2, 3 and 4 focused on using simulated

data sets that were generated via the same set of equations as described in Chapter 3.

Consequently, the limited diversity of the data in these manuscripts might reduce the

reliability or weaken the generalizability of our proposed methods.

In terms of experimental settings, we varied the values of the following factors such

as the noise level of time series data, time series lengths, forecasting horizons. The
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main concern is to evaluate the sensitivity of different forecasting methods by varying

the values of different elements that might impact the accuracy of forecasting methods.

Different choices of forecasting origin may also cause the distinctions in forecasting

accuracy among methods. Thus, our findings show limitations in interpreting the im-

pact of forecasting origin on different segmentation approaches (CF, TS, MC) and thus

producing the forecasting results.

Here, the weighted-sum method can also been extended to accommodate more

than two criteria at a distance function level. Nevertheless, the difficulty underlying the

process might stem from the model selection step. For example, angle-based methods

have been applied to identify the best “knee” point in a two-feature space (see Chap-

ter ??). These methods might not be well extended to cater for more than three criteria.

Further steps will be involved by comparing the solutions across every 2-dimensional

spaces.

7.4 Generalizations

Overall, the methodological framework proposed in Chapter 3 is expected to gen-

eralize to real-world settings. The framework here is also expected to accommodate

other options of forecasting algorithms, which can exploit information from analogies, in

the forecasting stage. As the C-MSKF method is used for illustration purpose, we con-

sider the forecasting algorithm in the forecasting stage can be replaced by statistical

forecasting methods that draw information from analogies. For instance, the Cross-

sectional Exponential Smoothing method (Duncan, Gorr, and Szczypula, 1994) can

also be an alternative.

Among the proposed model selection approaches, the MCSilHist method proposed

in Chapter ?? and 3 showed the most promising results in both simulated and real data.

We would expect our concepts of model selection can be generalized to the multicriteria
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clustering problems, where multiple criteria are present, e.g., data information sources,

distance metrics / standardization techniques.

The last main focus of our work lies in the employment of bagging techniques. Our

findings show that bagging methods show strengths in producing more reliable forecast-

ing results via the aggregation of multiple forecasts. Our proposed bagging strategies

are expected to generalize to forecasting framework that exploit information from analo-

gies.

7.5 Implication

As discussed in Chapter 3, by varying the range of cluster numbers, the multicriteria

clustering approach shows consistently superior forecasting results to single-criterion

clustering approaches. This suggests that multicriteria clustering approach continues

to benefit from the use of complementary information sources, even in a scenario where

the correct number of clusters is overestimated.

By investigating the relationship before, we provided new insight into the relationship

between the accuracy of the segmentation stage and the performance of a forecasting

algorithm that makes use of analogies. Throughout the experiments, our results showed

that the improved clustering quality of analogies demonstrated a positive impact on

the forecasting accuracy performance. This suggests the forecasting framework might

benefit from improved quality of analogies.

Further, we conducted a systematic study that compares the performance of single-

criterion and multicriteria segmentation approaches related to forecasting. Our findings

imply that by integrating multiple criteria, with uncorrelated noise associated with in-

dividual criterion, the multicriteria segmentation approach shows superior capability in

boosting the homogeneity of analogies and lead further boost in the forecasting accu-

racy.
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To address model selection problem in the context of multicriterion segmentation

problems, our findings confirmed that the conclusion of Chapter 3 that model selec-

tion (clustering quality) is best evaluated in a problem-specific context. We believe the

insights here could be meaningful for later studies that focuses on addressing model

selection problem in clustering applications.

7.6 Further research

As discussed earlier, various sets of simulated data should be used to test the

property of the methods proposed in the thesis. Currently, the same set of equations

has been applied to generate simulated data across manuscripts 1,2, 3 and 4, although

the data produced can be slightly different. To increase the diversity of the data, we

consider expanding our methodologies in different application contexts not limited to

the personal income tax liability data such as crime data. This is because crime rate

might also be associated with the fluctuation in macro economy. This meets the basic

assumptions underlying the C-MSKF algorithms.

At the methodological level, all multicriteria clustering approaches proposed in this

thesis are limited to the combination of two criteria. Our future work could be extended

to account for more criteria where desirable, but this might raise issues concerning

time-complexity. This is because, as the number of criteria increases, the number of

possible trade-off clustering solutions may grow exponentially due to the larger number

of combinations between weights. Given this, further work should be done to tackle the

issue of time-complexity.

To understand the strengths and weakness of different forecasting methods, our

future work should take into account the influence of forecasting origin that might impact

on the performance of statistical forecasting methods. The determination of forecasting

origin would probably influence the number of historical observations after the structural
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change. Due to the differences in responsiveness of a forecasting method, the choice

of forecasting origin determines the latest observations that after the structural change.

As the recent history increases, C-MSKF methods might lose advantages in drawing

power from analogies as historical observations might well represent the history of the

model.

As suggested in Chapter 3, the use of two information sources is superfluous in

the absence of noise in the individual information sources, and can only be beneficial in

the presence of uncorrelated noise. Further work might take into account the correlated

noise in the experiments in order to understand the impact of correlation on the following

forecasting stage.
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Appendix A

Implemented forecasting methods

In the presentation of the following methods, Xt refers to the actual observation at

time t, Ft represents the respective forecast, and h refers to the forecasting horizon.

Random Walk. All lead time forecasts are equal to the value of the last actual

observation.

Ft+h =Xt (A.1)

Drift method. This is a variation of the Random Walk method. It additionally adjusts

the forecasts to increase or decrease over time, where the amount of change over time

(called the drift) is equal to the average change observed in the historical observations.

Ft+h =Xt+
h

t−1(Xt−X1) (A.2)

Exponential Smoothing. Exponential Smoothing gives more weight to the latest

observations, as they are more relevant for extrapolating to the future. Single Expo-

nential Smoothing assumes no trend or seasonal patterns and operates by averaging

(smoothing) the past values of a time series, using exponentially decreasing weights,

as observations get older.
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Ft+1 = αXt+ (1−α)Ft (A.3)

where α is the exponential smoothing parameter.

Holt Exponential Smoothing. Holt Exponential Smoothing expands Single Ex-

ponential Smoothing by adding one additional parameter for smoothing the short-term

trend (Holt, 2004). The equations are given as follows:

Lt = αXt+ (1−α)(Lt−1 +Tt−1)

Tt = β(Lt−Lt−1) + (1−β)Tt−1

Ft+h = Lt+hTt

(A.4)

where β is the smoothing parameter for the trend, Lt refers to the forecast of the level

for period t, and Tt is the forecast for the trend at time t.

Damped Exponential Smoothing introduces a dampening factor (φ) that is multi-

plied with the trend component of Holt’s method in order to provide more control regard-

ing the long-term extrapolation of the trend (Gardner, Everette, and McKenzie, 1985).

Forecasts for Damped method can be calculated as:

Lt = αXt+ (1−α)(Lt−1 +φTt−1)

Tt = β(Lt−Lt−1) + (1−β)φTt−1

Ft+h = Lt+
h∑
i=1

φhTts

(A.5)

Theta model. The Theta model (Assimakopoulos and Nikolopoulos, 2000; Thomakos

and Nikolopoulos, 2012) decomposes the time series into two periods that are de-

scribed as “Theta lines”. The first Theta-line represents the long-term trend of the data.
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The second Theta-line is extrapolated based on Single Exponential Smoothing that fo-

cuses on recent change. In the last step, a combined point forecast is achieved by

combining the respective point forecasts produced by the first and second Theta-line

using equal weights.

MSKF. The MSKF is a univariate time series forecasting method and appropriate

for short time series subject to no changes, transient effects, step changes and slope

changes. A detailed description of this method is provided in Harrison and Stevens

(1971).

The basic model is given as follows:

Xt = Tt+ εt, εt ∼N(0,Vε)

Tt = Tt−1 +St+γt, γt ∼N(0,Vγ)

St = St−1 +ρt, ρt ∼N(0,Vρ)

(A.6)

εt represents observational disturbance,

γt represents trend disturbance,

ρt represents slope disturbance,

whereXt is the observation at time t; Tt is the current trend value ofXt; St refers to the

current slope value of Xt; εt, γt, ρt are random disturbances of the process at time t

and assumed to be independently normally-distributed with a mean of 0 and variances

Vε, Vγ , and Vρ, respectively.

In summary, the MSKF method can be implemented through five steps. The no-

tation here is as follows: We work with the joint distribution of Tt and St, which jointly

follow a bivariate normal distribution:
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Tt
St

∼N

mt

bt

 ,Ct =

V11,t V12,t

V12,t V22,t


 (A.7)

where Ct is the covariance matrix of (Tt,St) at time t; Φt refers to the entire set of

moments that is used. Suffices and superscripts applied to Φ can be understood to be

associated with each parameter in this set, e.g.,

Φ(j)
t = (m(j)

t , b
(j)
t ,C

(j)
t )

Step 1. Suppose the posterior distribution (Tt−1,St−1|Xt−1) of observation Xt−1

is a mixed bi-variate normal distribution:

(Tt−1,St−1|Xt−1)∼
J∑
j=1

q
(j)
t−1N(Φ(j)

t−1)

where the parameters of the distribution arise from state j at time t− 1: q(j)
t−1 is the

posterior probability of being in state j at time t−1; the parameters Φ(j)
t−1 are known.

Step 2. The process is in one of four possible states (j ∈{no change,step change,slope change, transient}).

At time t, the prior of the occurrence of Xt is given as:

πj is the probability of state j

V
(j)
ε , V (j)

γ , V (j)
ρ are the variances of the random disturbances εt|j, γt|j and ρt|j

for state j at time t, respectively.

Step 3. From time t− 1 to t, the Kalman Filter algorithm of West and Harrison
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(1998) is employed to update each component of the distribution:

(Tt,St|Xt)∼
J∑
j=1

J∑
k=1

p
(j,k)
t N(Φ(j,k)

t−1 )

where p(j,k)
t is the posterior probability with respect to observation Xt that the process

was in state j in the period t−1 and is currently in state k.

The Kalman Filter recursive equations are employed to obtain the terms in the above

equation:

m
(j,k)
t =m

(j)
t−1 + b

(j)
t−1 +A

(j,k)
1,t e

(j)
t

b
(j,k)
t = b

(j)
t−1 +A

(j,k)
2,t e

(j)
t

V
(j,k)

11,t = r
(j,k)
11,t − (A(j,k)

1,t )2V
(k)
e t

V
(j,k)

12,t = r
(j,k)
12,t −A

(j,k)
1,t A

(j,k)
2,t V

(k)
e t

V
(j,k)

22,t = r
(j,k)
22,t − (A(j,k)

2,t )2V
(k)
e t

p
(j,k)
t = s(2πV (k)

e t)−1/2exp
{
− (Xt−m(j)

t−1− b
(j)
t−1)2/2V (k)

e tπjq
(j)
t−1

}

where each element of At acts similar to the “smoothing factor” in Exponential Smooth-

ing methods; πj refers to the probability of occurrence of state j; s is a probability

normalization factor
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e
(j)
t =Xt− (m(j)

t−1 + b
(j)
t−1)

A
(j,k)
1,t = r

(j,k)
11,t /V

(k)
e t

A
(j,k)
2,t = r

(j,k)
12,t /V

(k)
e t

V
(k)
e t= r

(j,k)
11,t +V

(k)
ε

r
(k)
11,t = V

(j)
11,t−1 + 2V (j)

12,t−1 +V
(j)

22,t−1 +V
(k)
γ +V

(k)
ρ

r
(k)
12,t = V

(j)
12,t−1 +V

(j)
22,t−1 +V

(k)
ρ

r
(k)
22,t = V

(j)
22,t−1 +V

(k)
ρ

Step 4. The J2-component distribution at the previous step is condensed into an

approximately equivalent distribution:

(Tt−1,St−1|Xt−1)∼
J∑
j=1

q
(k)
t N(Φ(j)

t )

where q(k)
t =∑

j
p

(j,k)
t and the parameters Φ(k)

t are given by:

m
(k)
t =∑

i
p

(j,k)
t m

(j,k)
t /q

(k)
t

b
(k)
t =∑

i
p

(j,k)
t b

(j,k)
t /q

(k)
t

V
(k)

11,t =∑
j
p

(j,k)
t (V (j,k)

11,t + (m(j,k)
t −m(k)

t )2)/q(k)
t
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V
(k)

12,t =∑
j
p

(j,k)
t (V (j,k)

12,t + (m(j,k)
t −m(k)

t )(b(j,k)
t − b(k)

t ))/q(k)
t

V
(k)

22,t =∑
j
p

(j,k)
t (V (j,k)

22,t + (b(j,k)
t − b(k)

t )2)/q(k)
t

Step 5. The posterior distribution at the end of Step 4 is now in the same form as

in Step 1. The updating procedure is repeated until all the historical observations are

processed.

C-MSKF. The C-MSKF algorithm combines the capabilities of the MSKF (Harrison

and Stevens, 1971) and the CIHM method (Kass and Steffey, 1989), which are both

are standard, well-developed Bayesian approaches. The CIHM can be considered as

a random effects method that pools information from analogous time series and boosts

prediction accuracy and responsiveness. Here, the C-MSKF algorithm is summarized in

six steps. Step one through five are repeated recursively for each series within a cluster.

This method introduces the additional symbol i to indicate individual time series within

a cluster, and additional steps are integrated to combine information available from

clusters with that from a target series using the CIHM method. The algorithm syntax

follows the definitions provided in previous work (Duncan, Gorr, and Szczypula, 1995).

The C-MSKF algorithm employed for each cluster is presented as follows:

The models for four possible states (j ∈ { no change, step change, slope change,

transient }) are defined as:

Xit = Tit+ εit, εit|j ∼N(0,V (j)
ε i)

Tit = Tit−1 +Sit+γit, γit|j ∼N(0,V (j)
γ i)

Sit = Sit−1 +ρit, ρit|j ∼N(0,V (j)
ρ i)
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Prior (Ti0,Si0|Xi0)∼
J∑
j=1

q
(j)
i0 N/((m

(j)
i0 , b

(j)
i0 ),C(j)

i0 )

where Xit is the observation for series i at time t; Tit is the current trend value Xit;

and Sit is current slope value Xit.

εit|j, γit|j, ρit|j are serially uncorrelated and mutually independent disturbance

terms for each state j.

Tit
Sit

∼N

mit

bit

 ,Ct =

V
(j)

11,it V
(j)

12,it

V
(j)

12,it V
(j)

22,it


 (A.8)

m
(j)
it, , b

(j)
it are the means of Tit and Sit in statej

C
(j)
it is the covariance matrix of (Tit,Sit) in state j for series i at time t, and

q
(j)
it is the posterior probability of series i being in state j at time t.

The complete C-MSKF algorithm is presented by the following steps:

Step 1. Conditionally on Xit−1 the joint distribution of (Tit−1,Sit−1) for series i at

time t−1 is a mixture of bivariate normal distributions defined for each of the J states:

(Tit−1,Sit−1|Xit−1)∼
J∑
j=1

q
(j)
it−1N((m(j)

it−1, b
(j)
it−1),C(j)

it−1).

Step 2. After the observation Xit, apply the Kalman Filter algorithm of West and

Harrison (1998) to each of the J current components J times (since each of the current
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components at time t− 1 can be in any state at time t). This operation creates J2 (16

components since J = 4) normally-distributed components:

(Tit,Sit|Xit)∼
J∑
k=1

J∑
j=1

p
(j,k)
it N((m(j,k)

it , b
(j,k)
it ),C(j,k)

it )

where p(j,k)
it is the posterior probability with respect to observation Xit that the process

was in state j in the period t−1 and is currently in state k.

The Kalman Filter recursive equations for the terms in the above formulae are:

m
(j,k)
it =m

(j)
it−1 + b

(j)
it−1 +A

(j,k)
1,it e

(j)
it

b
(j,k)
it = b

(j)
it−1 +A

(j,k)
2,it e

(j)
it

V
(j,k)

11,it = r
(j,k)
11,it− (A(j,k)

1,it )2V
(j,k)
e it

V
(j,k)

12,it = r
(j,k)
12,it−A

(j,k)
1,it A

(j,k)
2,it V

(j,k)
e it

V
(j,k)

22,it = r
(j,k)
22,it− (A(j,k)

2,it )2V
(j,k)
e it

p
(j,k)
it = s(2πV (j,k)

e it)−1/2exp
{
− (Xit−m(j)

it−1− b
(j)
it−1)2/2V (j,k)

e itπjq
(j)
it−1

}

where each element of Ait acts similar to “smoothing factor” in Exponential Smoothing

methods; πj is the probability of occurrence of state j (constant for each state j); s is a

probability normalization factor.

e
(j)
it =Xit− (m(j)

it−1 + b
(j)
it−1)
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A
(j,k)
1,it = r

(j,k)
11,it/V

(j,k)
e it

A
(j,k)
2,it = r

(j,k)
12,it/V

(j,k)
e it, and where

V
(j,k)
e it= r

(j,k)
11,it +V

(k)
ε i

r
(j,k)
11,it = V

(j)
11,it−1 + 2V (j)

12,it−1 +V
(j)

22,it−1 +V
(k)
γ i+V

(k)
ρ i,

r
(j,k)
12,it = V

(j)
12,it−1 +V

(j)
22,it−1 +V

(k)
ρ i

r
(j,k)
22,it = V

(j)
22,it−1 +V

(k)
ρ i

Step 3. To achieve the form required in Step 1, collapse J2 into a J component

normal distribution:

(Tit,Sit|Xit)∼
J∑
k=1

q
(k)
it N((m(k)

it , b
(k)
it ),C(k)

it )

Equations for collapsing densities are (see Bomhoff and Kool (1983)):

q
(k)
it =∑

j
p

(j,k)
it ,

m
(k)
it =∑

j
p

(j,k)
it m

(j,k)
it /q

(k)
it ,

b
(k)
it =∑

j
p

(j,k)
it b

(j,k)
it /q

(k)
it ,
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V
(k)

11,it =∑
j
p

(j,k)
it (V (j,k)

11,it + (m(j,k)
it −m(k)

it )2)/q(k)
it ,

V
(k)

12,it =∑
j
p

(j,k)
it (V (j,k)

12,it + (m(j,k)
it −m(k)

it )(b(j,k)
it − b(k)

it ))/q(k)
it ,

V
(k)

22,it =∑
j
p

(j,k)
it (V (j,k)

22,it + (b(j,k)
it − b(k)

it )2)/q(k)
it

Step 4. Repeat Steps 1 to 3 for each series given a cluster.

Step 5. Given the distribution for each analogous time series i, use the CIHM

method to adjust means and variances for every series. The adjusted means of trends

Tit are given by

E(m(j)
it |Tit,µ0, τ

2
0 ) = (µ0V

(j)
11,it+Titτ

2
0 )/(V (j)

11,it+ τ2
0 )

where µ0 and τ0 are the MLEs of the hyperparameters µ and τ2, they are the sample

mean and the sample variance of m(j)
1t ,m

(j)
2t , ...m

(j)
lt ,respectively. The adjusted vari-

ances of the trends Tit are given by

E(V (j)
11,it|Tit,ϑ0,ν0) = (ϑ0 + (Tit−m(j)

it )2)/(ν0−1)

where ϑ0 and ν0 are the MLEs of the hyperparameters ϑ and ν found by solving the

likelihood equations

ϑ= Iν/
{ I∑
i=1

1/V (j)
11,it

}

Γ
′
(v/2)/Γ(v/2) = (1/2)

{
logϑ− log2− (1/I)

I∑
i=1

logV (j)
11,it

}
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where I refers to number of series in a cluster.

Step 6. Repeat the five steps above until all the historical observations are pro-

cessed.

When Step 6 is completed, the final distributions prepared are utilized to forecast

each series i individually.
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