
COMPUTING MATRIX FUNCTIONS IN
ARBITRARY PRECISION ARITHMETIC

A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2019

Massimiliano Fasi
School of Mathematics

CONTENTS

list of figures 4

list of tables 6

abstract 7

declaration 8

copyright statement 9

acknowledgements 10

publications 11

1 introduction 12

Bibliography 16

2 background material 21

2.1 Linear algebra 21

2.2 Floating point arithmetic 34

Bibliography 43

3 optimality of the paterson–stockmeyer method 47

3.1 Introduction 47

3.2 Evaluation of matrix polynomials 53

3.3 Rational matrix functions of order rk{ks 59

3.4 Diagonal Padé approximants to the matrix exponential 63

3.5 Conclusion 69

Bibliography 69

4 solution of primary matrix equations 73

4.1 Introduction 73

4.2 Background and notation 75

4.3 Classification of the solutions 79

4.4 A substitution algorithm 88

4.5 Numerical experiments 100

4.6 Conclusions 105

Bibliography 106

5 mutliprecision algorithms for the matrix exponential 108

5.1 Introduction 109

5.2 Padé approximation of matrix exponential 113

5.3 A multiprecision algorithm 120

5.4 Numerical experiments 132

5.5 Conclusions 139

Bibliography 140

2

contents 3

6 multiprecision algorithms for the matrix logarithm 145

6.1 Introduction 146

6.2 Support for multiple precision arithmetic 150

6.3 Approximation of hypergeometric functions 151

6.4 Schur–Padé algorithm 154

6.5 Transformation-free algorithm 160

6.6 Numerical experiments 162

6.7 Conclusions 170

Bibliography 171

7 weighted geometric mean times a vector 176

7.1 Introduction 176

7.2 Notation and preliminaries 179

7.3 Quadrature methods 181

7.4 Krylov subspace methods 192

7.5 Computing pA#tBq´1v 199

7.6 Numerical tests 200

7.7 Conclusions 211

Bibliography 213

8 conclusions 218

Bibliography 219

Word count: 66 973

L I ST OF F IGURES

Figure 3.1 Number of matrix multiplications required to evaluate a poly-
nomial of degree k, for k between 1 and 50, by means of the
scheme (3.3) with s “

X
?

k
\

and s “
P
?

k
T

. The dotted and
dashed lines mark the values of k that are integer multiples
of

X
?

k
\

and
P
?

k
T

, respectively; the circles mark the number
of matrix multiplications required to evaluate polynomials of
optimal degree (in the sense of Definition 3.1) for the Paterson–
Stockmeyer method. 54

Figure 3.2 Number of matrix multiplications required to evaluate a ratio-
nal function of order rk{ks, for k between 1 and 50, by means
of the scheme (3.15), for s “

X
?

2k
\

and s “
P
?

2k
T

. The dotted
and dashed lines mark the values of k that are integer mul-
tiples of

X
?

2k
\

and
P
?

2k
T

, respectively; the circles mark the
number of matrix multiplications required to evaluate ratio-
nal matrix functions of optimal order (in the sense of Defini-
tion 3.1) for the evaluation scheme (3.15). 59

Figure 3.3 Number of matrix multiplications required to evaluate rk{ks
Padé approximant to the matrix exponential, for k between 1

and 50, by means of the scheme (3.20), for s “
X
a

k´ 1{2
\

and
s “

P
a

k´ 1{2
T

. The dotted and dashed lines mark the values
of k for which k´1

2 is an integer multiple of
X
a

k´ 1{2
\

and
P
a

k´ 1{2
T

, respectively; the circles mark the number of ma-
trix multiplications required to evaluate the diagonal Padé ap-
proximants to the matrix exponential of optimal order (in the
sense of Definition 3.1) for the evaluation scheme (3.20). 64

Figure 4.1 Relative forward error of methods for the solution of rational
matrix equations. 102

Figure 4.2 Forward error of the Schur algorithm. 104

Figure 5.1 Forward error of algorithms for the matrix exponential in dou-
ble precision. 134

Figure 5.2 Forward error of algorithms for the matrix exponential in ar-
bitrary precision. 136

Figure 6.1 Comparison of old and new bounds on the forward error of
diagonal Padé approximants to the matrix logarithm. 154

Figure 6.2 Forward error and computational cost of algorithms for the
matrix logarithm in double precision. 165

Figure 6.3 Forward error to unit roundoff ratio. 167

Figure 6.4 Forward error of algorithms for the matrix logarithm in arbi-
trary precision. 168

Figure 7.1 Parameters of convergence of Gaussian quadrature formulae
for the inverse matrix square root. 204

Figure 7.2 Convergence profiles for quadrature and Krylov methods for
the geometric mean. 205

4

list of figures 5

Figure 7.3 Clusters in the adjacency matrices of the Wikipedia RfA signed
network. 209

Figure 7.4 Execution time of algorithms for solving pA#tBqx “ v. 211

L I ST OF TABLES

Table 4.1 Solutions to the equation rpXq “ A in Test 4.2. 104

Table 5.1 Timings of algorithms for the matrix exponential in quadruple
precision. 138

Table 6.1 Execution time of algorithms for the matrix logarithm in high
precision. 169

Table 7.1 Summary of algorithms for the matrix geometrix mean used
in the experiments. 202

Table 7.2 Summary of matrices used in the experiments. 207

Table 7.3 Execution time of methods for the weighted geometric mean. 207

6

ABSTRACT

Functions of matrices arise in numerous applications, and their accurate and efficient
evaluation is an important topic in numerical linear algebra. In this thesis, we explore
methods to compute them reliably in arbitrary precision arithmetic: on the one hand,
we develop some theoretical tools that are necessary to reduce the impact of the
working precision on the algorithmic design stage; on the other, we present new
numerical algorithms for the evaluation of primary matrix functions and the solution
of matrix equations in arbitrary precision environments.

Many state-of-the-art algorithms for functions of matrices rely on polynomial or
rational approximation, and reduce the computation of f pAq to the evaluation of a
polynomial or rational function at the matrix argument A. Most of the algorithms
developed in this thesis are no exception, thus we begin our investigation by revis-
iting the Paterson–Stockmeyer method, an algorithm that minimizes the number of
nonscalar multiplications required to evaluate a polynomial of a certain degree. We
introduce the notion of optimal degree for an evaluation scheme, and derive formu-
lae for the sequences of optimal degree for the schemes used in practice to evaluate
truncated Taylor and diagonal Padé approximants.

If the rational function r approximates f , then it is reasonable to expect that a so-
lution to the matrix equation rpXq “ A will approximate the functional inverse of f .
In general, infinitely many matrices can satisfy this kind of equation, and we pro-
pose a classification of the solutions that is of practical interest from a computational
standpoint. We develop a precision-oblivious numerical algorithm to compute all the
solutions that are of interest in practice, which behaves in a forward stable fashion.

After establishing these general techniques, we concentrate on the matrix exponen-
tial and its functional inverse, the matrix logarithm. We present a new scaling and
squaring approach for computing the matrix exponential in high precision, which
combines a new strategy to choose the algorithmic parameters with a bound on the
forward error of Padé approximants to the exponential. Then, we develop two algo-
rithms, based on the inverse scaling and squaring method, for evaluating the matrix
logarithm in arbitrary precision. The new algorithms rely on a new forward error
bound for Padé approximants, which for highly nonnormal matrices can be consid-
erably smaller than the classic bound of Kenney and Laub. Our experimental results
show that in double precision arithmetic the new approaches are comparable with
the state-of-the-art algorithm for computing the matrix logarithm, and experiments in
higher precision support the conclusion that the new algorithms behave in a forward
stable way, typically outperforming existing alternatives.

Finally, we consider a problem of the form f pAqb, and focus on methods for com-
puting the action of the weighted geometric mean of two large and sparse positive
definite matrices on a vector. We present two new approaches based on numerical
quadrature, and compare them with several methods based on the Krylov subspace
in terms of both accuracy and efficiency, and show which algorithms are better suited
for a black-box approach. In addition, we show how these methods can be employed
to solve a problem that arises in applications, namely the solution of linear systems
whose coefficient matrix is a weighted geometric mean.

7

DECLARAT ION

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other
institute of learning.

8

COPYR IGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has from
time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written permis-
sion of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=
24420), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.library.

manchester.ac.uk/about/regulations) and in The University’s Policy on Pre-
sentation of Theses.

9

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations
http://www.library.manchester.ac.uk/about/regulations

ACKNOWLEDGEMENTS

I am very grateful to Michele Benzi and Stefan Güttel for reading the preliminary
draft of this thesis and providing much useful feedback that improved the quality
and coherence of the presentation.

It is my pleasure to express my gratitude to my supervisor, Nicholas J. Higham,
for his guidance, his scientific contribution to my doctoral project, and his precious
feedback on my work. I really appreciated the freedom to pursue, without pres-
sure, any research topic I found interesting, and the leeway to collaborate with other
researchers in Manchester as well as at other institutions.

My deep appreciation goes also to Bruno Iannazzo, for the many pleasant and
productive hours spent working together during my many visits at the University
of Perugia, for his abundant advice, and for all the effort he put into making our
collaboration a success.

Part of this work was carried out while I was visiting other institutions. I thank
Elias Jarlebring, Giampaolo Mele, and Emil Ringh at the KTH Royal Institute of Tech-
nology, Vanni Noferini at the University of Essex, Francesco Tudisco at the University
of Strathclyde, and Andrii Dmytryshyn at the University of Örebro, for their great
hospitality and for many fruitful discussions.

Many postgraduate students provided insightful comments on my work. I am par-
ticularly grateful to Bahar Arslan, Mario Berljafa, Michael Connolly, Steven Elsworth,
Jiao Liu, Xiaobo Liu, Jacopo Marcheselli, Thomas McSweeney, Matteo Monti, Gian
Maria Negri Porzio, Craig Newsum, Filippo Pagani, Emanuele Penocchio, Paul Rus-
sel, Matteo Tamiozzo, and Mantė Žemaitytė.

Funding from the MathWorks, the University of Manchester, and the Royal Society
is also gratefully acknowledged.

10

PUBL ICAT IONS

‚ Chapter 3 is based on the journal article: Massimiliano Fasi. Optimality of the
Paterson–Stockmeyer method for evaluating matrix polynomials and rational
matrix functions. Linear Algebra Appl., 574:182–200, 2019.

‚ Chapter 4 is based on the journal article: Massimiliano Fasi and Bruno Iannazzo.
Computing primary solutions of equations involving primary matrix functions.
Linear Algebra Appl., 560:17–42, 2019.

‚ Chapter 5 is based on the preprint: Massimiliano Fasi and Nicholas J. Higham.
An arbitrary precision scaling and squaring algorithm for the matrix exponen-
tial. MIMS EPrint 2018.36, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, 2018. Submitted to SIAM J. Matrix Anal. Appl.

‚ Chapter 6 is based on the journal article: Massimiliano Fasi and Nicholas
J. Higham. Multiprecision algorithms for computing the matrix logarithm.
SIAM J. Matrix Anal. Appl., 39(1):472–491, 2018.

‚ Chapter 7 is based on the journal article: Massimiliano Fasi and Bruno Iannazzo.
Computing the weighted geometric mean of two large-scale matrices and its
inverse times a vector. SIAM J. Matrix Anal. Appl., 39(1):178–203, 2018.

11

https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1016/j.laa.2018.09.010
http://eprints.ma.man.ac.uk/2677
http://eprints.ma.man.ac.uk/2677
https://doi.org/10.1137/17m1129866
https://doi.org/10.1137/16m1073315
https://doi.org/10.1137/16m1073315

1 I NTRODUCT ION

Linear algebra is among the oldest branches of mathematics. The earliest examples of

simultaneous linear equations appear in two Babylonian tablets, VAT 8389 and 8391,1

which contain exercises dealing with the computation of the rent of a field divided

in two parts. The most comprehensive treatment regarding the solution of linear

systems known to antiquity is in the eighth of The Nine Chapters on the Mathematical

Arts, a collection of problems with solutions, where the coefficients of linear systems

are arranged in rectangular arrays of numbers [12] and a method similar to Gaussian

elimination is discussed [42].

In the western world, the theory of linear systems did not advance much until the

end of the 17th century [34, Chap. 5], and Gauss was the first to introduce, albeit

implicitly, matrices as a compact form for writing linear transformations [10, sect. V].

The term “matrix” was first used by Sylvester [43, p. 369], and a major contribution

to the genesis of matrix analysis was given by Cayley, the first to realise that matrices

are mathematical objects in their own right, and can be studied as single quantity

rather than a set of coefficients.

In his seminal paper [5], Cayley defines matrix addition, multiplication, and inver-

sion, introduces the zero and identity matrices, and records a number of observations.

In his exposition, Cayley deals with rather small matrices. For instance, he proves

what is now known as the Cayley–Hamilton theorem only for 2ˆ 2 matrices, deem-

ing it unnecessary “to undertake the labour of a formal proof of the theorem in the

general case of a matrix of any degree”, but assuring the reader that the result re-

mains valid in the 3ˆ 3 case. Similarly, when discussing integer powers of a matrix

he deduces a trigonometric formula for the nth power of a matrix of order 2, and after

observing that the formula extends to negative or fractional values of n, he remarks

1 The transcription from cuneiform and a translation in English are given by Høyrup [25, Chap. III].

12

introduction 13

that the case n “ 1{2 defines the square root of matrix. He will later return to matrix

functions, and devote a whole paper to the symbolic extraction of square roots of

3ˆ 3 matrices [6].

As for transcendental matrix functions, Laguerre is the first to discuss, en passant

in a paragraph of a long letter to Hermite [36], the exponential of a matrix. In fact,

the French mathematician confines himself to defining the exponential of a square

matrix via the series expansion of ez at 0 and mentioning that the scalar identity

ex`y “ exey does not generalise to matrices. In the following few years several authors

proposed general formulae for generalising scalar functions to matrices, and we refer

the interested reader to [23, sect. 1.10] for a detailed account.

Just over 10 years after Laguerre’s definition, Peano [38] shows how the matrix

exponential can be used to solve systems of homogeneous differential equations,

demonstrating that matrix functions can have applications to the solution of theo-

retical problems. Frazer, Duncan, and Collar [9] are among the first to recognize the

importance of matrix functions in practical applications, and in particular the central

role of the exponential in the solution of systems of differential equations arising

in engineering problems. A succint account of classical applications of matrix func-

tions can be found in [23, Chap. 2]. More recent applications include the analysis of

complex networks [7, Chap. 6–8] and quantum chemistry [1].

While matrix functions are as old as matrix algebra itself, multiple precision arith-

metic is a relatively young research area even in the much younger field of computer

arithmetic. While the first theoretical model of an electro-mechanical machine ca-

pable of implementing floating-point [39] predates the first world war, and Konrad

Zuse’s Z3 computer, the first modern implementation, was realised during the sec-

ond, software for computing in arbitrary precision was not available until the end of

the seventies, when Brent released the first version of the MP library [3], [4], a For-

tran package for multi-precision computation. The interest in such computing envi-

ronments has been growing steadily since, and has exploded in recent years, thanks

to the emergence of applications needing a range of precisions larger than that al-

14 introduction

lowed by the IEEE standard [30] and the considerable performance improvements in

software for arbitrary precision computation.

Even though the research literature focusing on the efficient implementation of

linear algebra subroutines for arbitrary precision arithmetic is growing quickly, the

computation of matrix functions in low and high precision arithmetic has not yet

attracted much attention. In this thesis, we satisfy the need for multiprecision algo-

rithms for computing matrix functions, and propose techniques that are well suited

for arbitrary precision environments. The main challenge we have to face is the fact

that the working precision at which the algorithm is going to be run is known only

at runtime and, as a consequence, should be treated as an input argument to the

algorithm rather than a characteristic of the computational environment itself.

In fact, several algorithms for evaluating matrix functions in double precision can

be adapted to arbitrary precision environments with little or no modifications. A

notable example of these precision oblivious algorithms are substitution methods for

the solution of matrix equations of the form Xp “ A, where A is a square complex

matrix and p is an integer greater than 1. These methods, such as the state-of-the-art

algorithms for the square root [2], [19] and the pth root [41], [13], [29], are “direct”,

in that they resemble forward and backward substitution for the solution of linear

systems, and the logic of the algorithm need not change as long as routines to perform

scalar sums, multiplications, divisions, and pth root extraction at the target precision

are available.

Other algorithms can be adapted to multiprecision environments with just minor

adjustments. A typical instance are iterative algorithms, which can be run in arbi-

trary precision by simply executing all elementary scalar operations in arbitrary pre-

cision and adjusting the internal tolerance that is used as stopping criterion. Iterative

methods have been the object of an intense study for almost forty years, and new de-

velopments are still under way. Examples include Newton’s method, which has been

studied for the computation of the polar decomposition [17, sect. 3.2-3.4], [32], the

sign function [31], [32], [40], the square root [18], [21] [26], the pth root [15], [16], [27],

and the Lambert W function [8], and Halley’s method, which has been developed

introduction 15

for the polar decomposition [37], the sector function [35], the pth root [15], and the

Lambert W function [8]. These two methods belong to more general families of

Padé iterations, that have been discussed in the literature for the polar decomposi-

tion [20], [33], the sector function [11], the sign function [14], [31], [33], and the pth

root [11], [28].

Many state-of-the-art algorithms, however, follow a different approach, and their

design relies heavily on the knowledge of the working precision at which the al-

gorithm will be run. These algorithms reduce the computation of a function of a

matrix to the evaluation of a polynomial or rational approximant—typically a Padé

approximant—at a matrix argument. The order of the approximant is determined by

using a set of constants that specify how small the 1-norm of powers of the matrix

must be in order for the approximant to deliver full accuracy at a given precision.

These precision-dependent constants are computed offline by combining an upper

bound on the backward error of the approximants with a mix of symbolic and high

precision computation. This technique was originally proposed by Higham [22], [24]

for the computation of the matrix exponential in double precision, and provides very

efficient algorithms for several matrix functions, at the price of a computationally

expensive algorithm design stage.

In fact, the analysis of Al-Mohy and Higham can be repeated for any fixed preci-

sion, but the precision-dependent computation is too expensive to make it a viable

strategy for arbitrary precision algorithms. For computing the exponential of a ma-

trix, on-the-fly estimation of the backward error has been proposed as a technique

to bound the truncation error of Taylor approximants at runtime, but this approach

does not appear to generalize easily to other Padé approximants, and does not readily

extend to other matrix functions.

In this thesis, we seek a more systematic exploration of the subject. Our contri-

bution is twofold. On the one hand, we revisit general techniques for evaluating

polynomials and rational functions of matrices and for solving polynomial and ra-

tional matrix equations, and give a precision-independent view of state-of-the-art

techniques. On the other hand, we develop numerical algorithms for solving specific

16 BIBLIOGRAPHY

problems pertaining to matrix functions, such as the evaluation of the exponential

and logarithm of a matrix and the computation of the action of the weighted geomet-

ric mean of two Hermitian positive definite matrices on a vector.

Chapter 2 summarizes the main definitions and properties that are needed in the

reminder of the thesis but are not given in the introductory sections of the following

chapters. In order to reduce repetitions, for material that is introduced later on only

a reference to the relevant section is provided. Since the thesis is in journal format, a

few background topics are discussed in more than one place: in this case we provide

a reference to the most complete review available.

Chapters 3, 4, 5, 6, and 7 are presented in a format suitable for publication and are

based on the preprints and journal papers listed on page 11. For coauthored papers,

we believe that the two authors contributed equally to the final manuscript and that

it is not necessary to further discriminate their contribution.

bibliography

[1] M. Benzi, P. Boito, and N. Razouk, Decay properties of spectral projectors with

applications to electronic structure, SIAM Rev., 55 (2013), p. 3–64.

[2] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix,

Linear Algebra Appl., 52/53 (1983), pp. 127–140.

[3] R. P. Brent, Algorithm 524: MP, a Fortran multiple-precision arithmetic package [A1],

ACM Trans. Math. Software, 4 (1978), p. 71–81.

[4] , A Fortran multiple-precision arithmetic package, ACM Trans. Math. Software,

4 (1978), p. 57–70.

[5] A. Cayley, A memoir on the theory of matrices, Philos. Trans. Roy. Soc. London, 148

(1858), p. 17–37.

[6] , On the extraction of the square root of a matrix of the third order, Proc. Roy. Soc.

Edinburgh, 7 (1872), p. 675–682.

http://dx.doi.org/10.1137/100814019
http://dx.doi.org/10.1137/100814019
http://dx.doi.org/10.1016/0024-3795(83)80010-X
http://dx.doi.org/10.1145/355769.355776
http://dx.doi.org/10.1145/355769.355775
http://dx.doi.org/10.1098/rstl.1858.0002
http://dx.doi.org/10.1017/s0370164600042887

BIBLIOGRAPHY 17

[7] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford

University Press, New York, 2011.

[8] M. Fasi, N. J. Higham, and B. Iannazzo, An algorithm for the matrix Lambert W

function, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 669–685.

[9] R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some

Applications to Dynamics and Differential Equations, Cambridge University Press,

1938. 1963 printing.

[10] C. F. Gauss, Disquisitiones Arithmeticae, Gerhard Fleischer, 1801.

[11] O. Gomilko, D. B. Karp, M. Lin, and K. Ziȩtak, Regions of convergence of a Padé

family of iterations for the matrix sector function and the matrix pth root, J. Comput.

Appl. Math, 236 (2012), p. 4410–4420.

[12] J. F. Grcar, How ordinary elimination became Gaussian elimination, Hist. Math., 38

(2011), p. 163–218.

[13] F. Greco and B. Iannazzo, A binary powering Schur algorithm for computing pri-

mary matrix roots, Numer. Algorithms, 55 (2010), pp. 59–78.

[14] F. Greco, B. Iannazzo, and F. Poloni, The Paddé iterations for the matrix sign func-

tion and their reciprocals are optimal, Linear Algebra Appl., 436 (2012), p. 472–477.

[15] C.-H. Guo, On Newton’s method and Halley’s method for the principal pth root of a

matrix, Linear Algebra Appl., 432 (2010), p. 1905–1922.

[16] C.-H. Guo and N. J. Higham, A Schur–Newton method for the matrix pth root and

its inverse, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 788–804.

[17] N. J. Higham, Computing the polar decomposition—with applications, SIAM J. Sci.

Statist. Comput., 7 (1986), pp. 1160–1174.

[18] , Newton’s method for the matrix square root, Math. Comp., 46 (1986), pp. 537–

549.

http://dx.doi.org/10.1137/140997610
http://dx.doi.org/10.1137/140997610
https://library.si.edu/digital-library/book/disquisitionesa00gaus
http://dx.doi.org/10.1016/j.cam.2012.04.007
http://dx.doi.org/10.1016/j.cam.2012.04.007
http://dx.doi.org/10.1016/j.hm.2010.06.003
http://dx.doi.org/10.1007/s11075-009-9357-1
http://dx.doi.org/10.1007/s11075-009-9357-1
http://dx.doi.org/10.1016/j.laa.2011.04.016
http://dx.doi.org/10.1016/j.laa.2011.04.016
http://dx.doi.org/10.1016/j.laa.2009.02.030
http://dx.doi.org/10.1016/j.laa.2009.02.030
http://dx.doi.org/10.1137/050643374
http://dx.doi.org/10.1137/050643374
http://dx.doi.org/10.1137/0907079
http://dx.doi.org/10.1090/S0025-5718-1986-0829624-5

18 BIBLIOGRAPHY

[19] , Computing real square roots of a real matrix, Linear Algebra Appl., 88/89

(1987), pp. 405–430.

[20] , The matrix sign decomposition and its relation to the polar decomposition, Linear

Algebra Appl., 212/213 (1994), pp. 3–20.

[21] , Stable iterations for the matrix square root, Numer. Algorithms, 15 (1997),

pp. 227–242.

[22] , The scaling and squaring method for the matrix exponential revisited, SIAM J.

Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[23] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[24] , The scaling and squaring method for the matrix exponential revisited, SIAM Rev.,

51 (2009), pp. 747–764.

[25] J. Høyrup, Lengths, widths, surfaces: a portrait of Old Babylonian algebra and its kin,

Springer-Verlag, New York, 1st ed., 2002.

[26] B. Iannazzo, A note on computing the matrix square root, Calcolo, 40 (2003),

p. 273–283.

[27] , On the Newton method for the matrix pth root, SIAM J. Matrix Anal. Appl., 28

(2006), p. 503–523.

[28] , A family of rational iterations and its application to the computation of the matrix

pth root, SIAM J. Matrix Anal. Appl., 30 (2009), p. 1445–1462.

[29] B. Iannazzo and C. Manasse, A Schur logarithmic algorithm for fractional powers

of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 794–813.

[30] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,

Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in

SIGPLAN Notices, 22(2):9–25, 1987.

http://dx.doi.org/10.1016/0024-3795(87)90118-2
http://dx.doi.org/10.1016/0024-3795(94)90393-X
http://dx.doi.org/10.1023/A:1019150005407
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1007/s10092-003-0079-9
http://dx.doi.org/10.1137/050624790
http://dx.doi.org/10.1137/070694351
http://dx.doi.org/10.1137/070694351
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1109/IEEESTD.1985.82928

BIBLIOGRAPHY 19

[31] C. Kenney and A. J. Laub, Rational iterative methods for the matrix sign function,

SIAM J. Matrix Anal. Appl., 12 (1991), p. 273–291.

[32] , On scaling Newton’s method for polar decomposition and the matrix sign function,

SIAM J. Matrix Anal. Appl., 13 (1992), p. 688–706.

[33] A. Kiełbasiński, P. Zieliński, and K. Ziȩtak, On iterative algorithms for the polar

decomposition of a matrix and the matrix sign function, Appl. Math. Comput., 270

(2015), p. 483–495.

[34] I. Kleiner, A History of Abstract Algebra, Birkhäuser, Boston, MA, USA, 2007.

[35] C. Koc and B. Bakkaloglu, Halley’s method for the matrix sector function, IEEE

Trans. Automat. Control, 40 (1995), p. 944–949.

[36] E. N. Laguerre, Le calcul des systèmes linéaires, extrait d’une lettre adressé à M. Her-

mite, in Oeuvres de Laguerre, C. Hermite, H. Poincaré, and E. Rouché, eds.,

vol. 1, Gauthier–Villars, Paris, 1898, pp. 221–267. The article is dated 1867 and is

“Extrait du Journal de l’École Polytechnique, LXIIe Cahier”.

[37] Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley’s iteration for computing

the matrix polar decomposition, SIAM J. Matrix Anal. Appl., 31 (2010), p. 2700–2720.

[38] G. Peano, Intégration par séries des équations différentielles linéaires, Math. Annalen,

32 (1888), p. 450–456.

[39] B. Randell, From analytical engine to electronic digital computer: The contributions

of Ludgate, Torres, and Bush, IEEE Ann. Hist. Comput., 4 (1982), p. 327–341.

[40] J. D. Roberts, Linear model reduction and solution of the algebraic Riccatiq equation

by use of the sign function, Internat. J. Control, 32 (1980), p. 677–687.

[41] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal.

Appl., 24 (2003), pp. 971–989.

[42] P. D. Straffin, Liu Hui and the first golden age of Chinese mathematics, Math. Mag.,

71 (1998), p. 163.

http://dx.doi.org/10.1137/0612020
http://dx.doi.org/10.1137/0613044
http://dx.doi.org/10.1016/j.amc.2015.08.004
http://dx.doi.org/10.1016/j.amc.2015.08.004
http://dx.doi.org/10.1007/978-0-8176-4685-1
http://dx.doi.org/10.1109/9.384237
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://dx.doi.org/10.1137/090774999
http://dx.doi.org/10.1137/090774999
http://dx.doi.org/10.1007/bf01443609
http://dx.doi.org/10.1109/mahc.1982.10042
http://dx.doi.org/10.1109/mahc.1982.10042
http://dx.doi.org/10.1080/00207178008922881
http://dx.doi.org/10.1080/00207178008922881
http://dx.doi.org/10.1137/S0895479801392697
http://dx.doi.org/10.2307/2691200

20 BIBLIOGRAPHY

[43] J. J. Sylvester, XLVII. Additions to the articles in the September number of this journal,

“On a new class of theorems,” and on Pascal’s theorem, London, Edinburgh Dublin

Philos. Mag. J. Sci., 37 (1850), p. 363–370.

http://dx.doi.org/10.1080/14786445008646629
http://dx.doi.org/10.1080/14786445008646629

2 BACKGROUND MATER IAL

This chapter serves three main purposes. First, we establish the notation and termi-

nology that will be adopted in the following chapters, and succinctly discuss some

fundamental concepts. Secondly, we collect here, for ease of reference, most of the

theoretical results that will be necessary later on. We do not claim that our review

is complete, on the contrary, we stress that it should be used only as a reference,

thus we provide pointers to the relevant literature for the interested reader. In the

last section, we review briefly software packages and libraries that provide multiple

precision capabilities, paying specific attention to the availability of linear algebra

kernels and algorithms for the computation of matrix functions.

2.1 linear algebra

Sets and functions. The empty set is denoted by H, the integers by Z, the set

of natural numbers by N “ tn P Z : n ě 0u, the set of positive integers by N0, and

the set of consecutive integers between n1 and n2 by Jn1, n2K :“ tn P N : n1 ď n ď n2u.

The fields of real and complex numbers are denoted by R and C, respectively, and

the orthogonal projections of a complex number z onto the real and imaginary axis

are denoted by Repzq and Impzq, respectively.

The notation f : D Ñ C expresses the fact that the function f maps elements of the

domain D to elements of the codomain C. We denote by Crzs the set of polynomials

of the complex variable z with complex coefficients, and by C`rzs Ă Crzs the complex

polynomials of degree at most `. Let p P Ckrzs and q P Cmrzs be polynomials with

nonzero leading coefficients. If p and q are coprime, that is, have no roots in common,

we say that the quotient r :“ p{q is a rational function of type rk{ms.

21

22 background material

In order to map reals to integers, we use the floor function txu “ max tn P Z : n ď xu

and the ceiling function rxs “ min tn P Z : n ě xu, defined for any x P R. With δij we

denote the Kroenecker delta, defined, for i, j P N, by

δij “

$

’

’

&

’

’

%

1, i “ j,

0, i ‰ j.

Vector spaces and subspaces. Let F be a field [1, (2.3) Def.]. A set V equipped

with the two operations ` : V ˆV Ñ V and ¨ : FˆV Ñ V is a vector space over F if

V is closed with respect to these two operations, that is if u` v P V and α ¨ v P V for

all u, v P V and α P F, and the following properties are verified:

1. u` v “ v` u for all u, v P V;

2. pu` vq `w “ u` pv`wq for all u, v, w P V;

3. there exists 0 P V such that 0` v “ v` 0 “ v;

4. there exists rv P V such that v` rv “ rv` v “ 0 for all v P V;

5. α ¨ pu` vq “ α ¨ u` α ¨ v for all u, v P V and α P F;

6. pα` βq ¨ v “ α ¨ v` β ¨ u for all v P V and α, β P F;

7. c ¨ pβ ¨ vq “ pαβq ¨ v for all v P V and α, β P F;

8. 1 ¨ v “ v for all v P V, where 1 P F is the identity element of ¨.

The set W Ă V is a subspace of V if it is a vector space with respect to the operations

` and ¨. It can be shown that a subspace is nonempty, as it always contains the zero

vector.

Matrices and vectors. Let F be a field. The vector space of mˆ n matrices over

F, that is, the set of m-by-n arrays of scalars from F, is denoted by Fmˆn. Matrices

in F1ˆn and Fmˆ1 are called row and column vectors, respectively. In the former case,

we often omit the second dimension and write Fm to denote Fmˆ1, to remark that Fm

can be identified with the m-dimensional vector space over F.

2.1 linear algebra 23

We use capital Latin or Greek letters to denote matrices, and refer to their elements

by the corresponding lowercase letter followed by one or more subscript indices that

indicate the position of that element relatively to a row/column grid. If we want to

refer to an element of an expression that produces a matrix, we enclose the expression

in parenthesis and use the subscript notation.

Let V “ tv1, v2, . . . , vru be a set of m-dimensional vectors. The vector y P Fm is a

linear combination of the elements in V if it can be expressed in the form

y “
r
ÿ

i“1

αivi,

for some α1, α2, . . . , αr P F. The vector space of all such linear combinations is called

the span of V, which we denote by span V, and V is called a set of generators for

span V. If a vector v P V belongs to span Vztvu, then the vectors in V are linearly

dependent, otherwise V is linearly independent. Note that a set of vectors containing

the 0 vector is always linearly dependent. The dimension of the vector space span V

is the number of linearly independent vectors in V.

The sum of two matrices A, B P Fmˆn is defined entry-wise, that is, C :“ A` B

is the m-by-n matrix with elements cij “ aij ` bij. Two matrices A P Fmˆn and

B P Fm1ˆn1 are called conformable if n “ m1, and the product of two conformable

matrices A P Fmˆn and B P Fnˆp is the matrix C :“ AB P Fmˆp with elements

cij “

n
ÿ

k“1

aikbkj.

This definition of the matrix product may seem rather arbitrary at first glance,

but comes naturally when looking at matrices as linear transformations. In fact,

by viewing the matrix A P Fmˆn as the linear transformation from Fn to Fm that

maps x P Fn to the vector Ax P Fm, one can interpret the sum of two matrices

as the sum of the corresponding linear transformations, and their product as their

composition. We will not examine this equivalence further here, and will confine

ourselves to a practical definition of range and null space of A P Fmˆn. The range of

A P Fmˆn is range A “ tAx : x P Fnu, and its null space is null A “ tx P Fn : Ax “ 0u.

24 background material

A detailed discussion of matrices as linear operators can be found, for example, in [32,

sect. 2.6], [3, Chap. 3], and [14, Chap. 2]. Alternative but equivalent definitions of the

matrix multiplication above are discussed by Trefethen and Bau [35, Lect. 1] and

Golub and Van Loan [15, sect. 1.1]. The rank of A, denoted by rank A, is the number

of linearly independent rows (or, equivalently, columns) of A, and it is easy to see

that range A has dimension rank A. A matrix A P Fmˆn is full-rank if it has the largest

possible rank for matrices of that size, that is, if rank A “ mintm, nu.

In the following chapters, we focus on real and complex matrices, that is, we as-

sume that our field F is either R or C, and are mostly concerned with square matrices,

for which m “ n. The additive identity element of the vector space Cnˆn is the zero

matrix, whose entries are all zero, and its multiplicative identity element is the iden-

tity matrix In P Cnˆn, whose elements are defined by iij “ δij. In both cases, we omit

the order n whenever it is clear from the context. Note that in general two square

matrices do not commute. The inverse of a matrix A P Cnˆn, denoted by A´1, is a

matrix such that AA´1 “ A´1A “ In. The matrix A need not have an inverse, but

if it does then the inverse is unique. A matrix is called nonsingular if it has a matrix

inverse, singular otherwise. Several conditions are equivalent to being nonsingular;

for example, a matrix A is nonsingular if and only if null A “ t0u, that is, if the only

solution to the linear equation Ax “ 0 is x “ 0.

Let A P Cmˆn. We denote by AT the transpose of A, that is, the n-by-m matrix

whose element in position pi, jq is the element in position pj, iq of A, and by A˚ “ AT

its conjugate transpose, where A denotes the matrix whose elements are the complex

conjugate of the corresponding elements of A. It is easy to show that for two con-

formable complex matrices A and B, one has that AB “ A B, but pABqT “ BT AT and

pABq˚ “ B˚A˚.

Structured matrices. It is sometimes convenient to block together the elements of

a matrix in order to work at the block level. A matrix whose elements are partitioned

according to a block pattern is called a block matrix, and we typically assume that

2.1 linear algebra 25

rows and columns follow the same partitioning, which guarantees that the blocks

along the diagonal are square.

A matrix A P Fmˆn is diagonal if aij “ 0 when i ‰ j. As a diagonal matrix is fully

determined by the elements along its diagonal, we denote the diagonal matrix with

elements a1, . . . , an by diagpa1, . . . , anq. If aij “ 0 when i ą j or i ă j, the matrix A

is upper-triangular or lower-triangular, respectively. Triangular matrices with aii “ 1

for i “ 1, . . . , mintm, nu are called unit triangular. A matrix is upper-Hessenberg

(lower-Hessenberg) if aij “ 0 for i ą j ` 1 (i ă j ´ 1). Block diagonal and block

triangular matrices can be defined analogously, by replacing elements with blocks

in the definitions above. A block triangular matrix A P Fnˆn is quasi-triangular if its

diagonal blocks have size at most 2.

Transposition and conjugate transposition define several important classes of ma-

trices. We say that a matrix A P Cnˆn is symmetric, skew-symmetric, Hermitian, skew-

Hermitian, or normal, if A “ AT, A “ ´AT, A “ A˚, A “ ´A˚, or A˚ “ A˚A,

respectively. Note that symmetric and Hermitian matrices are normal.

Trace and Determinant. We use two functions to map complex square matrices

to complex scalars, the trace and the determinant. The trace of a matrix A P Cnˆn,

denoted by tr A is the sum of its diagonal elements, that is,

tr A “
n
ÿ

i“1

aii.

It is immediate to see that tr AT “ tr A and tr A˚ “ tr A. Moreover, for two matrices

A P Cmˆn and B P Cnˆm, one has that

trpABq “ trpBAq “
n
ÿ

i“1

m
ÿ

j“1

aijbji.

Finally, we stress that the trace is a linear operator, that is, if n “ m then

trpαA` βBq “ α tr A` β tr B,

26 background material

for any α, β P C.

The determinant of a matrix A P Cnˆn can be defined in several ways. Here we opt

for the recursive definition by means of the Laplace expansion, which can be found

for example in [14, sect. 4.2]. We refer the reader to [3, sect. 10.B] for the combinatoric

definition via permutations, to [32, sect. 4.2] for a functional characterization, and

to [35, Ex. 21.1(c)] for a more practical definition. The equivalence of these four

definitions is given, for example, by Strang [32, sect. 4.3]. Let A P Cnˆn, and let Aij

denote the pn ´ 1q-by-pn ´ 1q matrix obtained by removing the ith row and the jth

column from A. For any i, j P t1, 2, . . . , nu, the determinant of A is defined by

det A “
n
ÿ

k“1

p´1qi`k det Aik “

n
ÿ

k“1

p´1qj`k det Akj,

where the scalar p´1qi`j det Aij is called the cofactor of the element in position pi, jq

of A. It is easy to see that det I “ 1, det AT “ det A, and det A˚ “ det A. Moreover,

it can be shown that det αA “ αn det A for all α P C, that a matrix A P Cnˆn is

singular if and only if det A “ 0, and that the determinant is multiplicative, that is,

for any A, B P Cnˆn one has that detpABq “ pdet Aqpdet Bq, which readily gives that

det A´1 “ pdet Aq´1,

Eigenvalues and eigenvectors. Let A P Cnˆn. If λ P C and x P Cnzt0u verify the

equation Ax “ λx, then λ is an eigenvalue of A, x is the corresponding eigenvector,

and the pair pλ, xq is an eigenpair of A. The set of eigenvalues of A, denoted by σpAq,

is called the spectrum of A, and the magnitude of the largest eigenvalue, denoted

by ρpAq “ t|λ| : λ P σpAqu is its spectral radius. By rewriting the equation above as

pA ´ λIqx “ 0, one can see that λ is an eigenvalue of A if and only if the matrix

A´ λI is singular or, equivalently, detpA´ λIq “ 0. In other words, the eigenvalues

of A are the roots of the characteristic polynomial χApzq “ detpA´ zIq P Cnrzs.

The Cayley–Hamilton theorem [20, Thm. 2.4.3.2] states that every complex square

matrix satisfies its own characteristic polynomial, that is, χApAq “ 0, but it need

not be the polynomial of lowest degree with this property. The monic polynomial of

least degree to be satisfied by a matrix A is called the minimal polynomial of A, and we

2.1 linear algebra 27

denote it by φA. It can be shown that χA and φA have the same roots (not necessarily

with the same multiplicities), and that λ P C is an eigenvalue of A if and only if it

is a root of φA. The multiplicity of an eigenvalue λ as a root of the characteristic

polynomial is its algebraic multiplicity. The geometric multiplicity of an eigenvalue λ

is the number of linearly independent eigenvectors associated with λ, that is, the

dimension of the subspace nullpA´ λIq, usually called the eigenspace of λ.

Two matrices A, B P Cnˆn are similar if there exists a nonsingular matrix P P Cnˆn

such that A “ PBP´1. In other words the linear operators A and B are the same up to

a change of basis, and it can be shown that similar matrices have the same spectrum.

A matrix A is diagonalizable if it is similar to a diagonal matrix D. In this case the,

decomposition A “ PDP´1 is called the eigendecomposition of A, and the diagonal

elements of D are the eigenvalues of A.

Much more can be said about the eigenvalues of a matrix, and we refer the in-

terested reader to [20, Chap. 1] for a detailed summary, and to [32, Chap. 5] for

an elementary but rigorous discussion of eigenvalues, eigenvectors, and similarity

transformations.

Vector and matrix norms. A function } ¨ } : Cmˆn Ñ R is a norm on the vector

space Cmˆn if for any A, B P Cmˆn and α P C, it satisfies:

1. }A} ě 0, with }A} “ 0 if and only if A “ 0 (nonnegativity);

2. }αA} “ |α|}A} (homogeneity);

3. }A` B} ď }A} ` }B} (triangular inequality).

We refer to a vector norm if the argument of the norm is a vector, and to a matrix

norm if the argument is a matrix. Norms are uniformly continuous functions, and

they are all equivalent up to a constant, in the sense that for any two norms } ¨ }1 and

} ¨ }2 on the same vector space there exist two positive real constants α ď β such that

α}A}1 ď }A}2 ď β}A}1.

28 background material

For the case n “ 1, the class of p-norms is the most relevant. These norms are

defined, for p P N0, by

}x}p “
`

m
ÿ

i“1

|xi|
p˘1{p, x P Cm,

and by passing to the limit in the definition above, one obtains

}x}8 “ max
1ďiďm

|xi|, x P Cm.

Matrix norms can be defined in several ways. The operator norm (often called sub-

ordinate or induced matrix norm) on Cmˆn corresponding to the vector norm } ¨ } is

defined by

}A} “ max
xPCnzt0u

}Ax}
}x}

“ max
xPCn,}x}“1

}Ax}.

By definition one has that }In} “ 1, and it can be shown that

}A}1 “ max
1ďjďn

m
ÿ

i“1

|aij|,

}A}2 “ ρpA˚Aq1{2,

}A}8 “ max
1ďiďn

n
ÿ

j“1

|aij|.

An example of matrix norm that is not induced by a vector norm is the Frobenius

norm, defined for A P Cmˆn by

}A}F “ }vec A}2 “

˜

m
ÿ

i“1

n
ÿ

j“1

|aij|
2

¸1{2

.

It is easy to check that }A}F “ trpA˚Aq1{2 and that }In} “
?

n, which shows that the

Frobenius norm is not an operator norm. The norms } ¨ }, } ¨ }1, and } ¨ }2 are called

consistent if }AB} ď }A}1}B}2 for all A P Cmˆn and B P Cnˆp. A norm } ¨ } on Cmˆn is

unitarily invariant if }UAV} “ }A} for all unitary U P Cmˆm and V P Cnˆn. It is easy

2.1 linear algebra 29

to check that subordinate matrix norms, as well as the Frobenius norm, are consistent

and unitarily invariant.

Norms can be used to characterize the spectral radius of square matrices, as it is

easy to prove that, for any consistent norm } ¨ } on Cnˆn and A P Cnˆn, one has that

ρpAq ď }A} and that limkÑ8
k
a

}Ak} “ ρpAq. The normwise condition number of matrix

inversion with respect to a norm } ¨ } on Cnˆn is defined as κpAq “ }A}}A´1}. We

denote by κFpAq the condition number with respect to the Frobenius norm, and by

κppAq that with respect to the operator norm induced by the vector p-norm.

2.1.1 Matrix factorizations and decompositions

In this section we discuss several ways in which a matrix can be written as the product

of two or three matrices with specific properties. We briefly recall the main theoretical

results and, when of practical interest, some aspects related to their computation.

For an in-depth discussion of the Jordan canonical form, we refer the reader to [20,

Chap. 3]. An algorithmic perspective on these topics is given by Golub and Van

Loan [15], whereas the accuracy and stability of each of the algorithms we describe

here is discussed by Higham [18].

Jordan canonical form. Any matrix A P Cnˆn with ν linearly independent eigen-

vectors is similar to a block diagonal matrix, J “ M´1AM “ diagpJ1, J2, . . . , Jνq where

M P Cnˆn is nonsingular and each diagonal Jordan block is an upper triangular matrix

of the form

Ji :“

»

—

—

—

—

—

—

—

–

λi 1

λi
. . .
. . . 1

λi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cmiˆmi .

The matrix J is called the Jordan canonical form of A, and is unique up to the ordering

of the blocks. The only eigenpair of the Jordan block Ji is pλi, e1q; the algebraic and

30 background material

geometric multiplicity of λi as an eigenvalue of Ji are mi and 1, respectively. An

eigenvalue is semisimple if it appears only in Jordan blocks of size one, otherwise it

is defective. A semisimple eigenvalue appearing in only one block is called simple. A

matrix is defective if it has at least one defective eigenvalue or, equivalently, if the

algebraic multiplicity of at least one of its eigenvalues exceeds its geometric multi-

plicity. If all eigenvalues are semisimple, then the Jordan canononical form of A is

diagonal, and the matrix A is diagonalizable. Finally, A is derogatory if an eigenvalue

appears in more than one Jordan blocks or, equivalently, if its minimal polynomial

φA has degree strictly lower than its characteristic polynomial χA.

LU and Cholesky factorizations. We now discuss three ways of rewriting nonsin-

gular matrices as the product of triangular and diagonal matrices. Since triangular

systems are extremely easy to solve, these factorization are typically used in the solu-

tion of systems of linear equations.

For any nonsingular matrix A P Cnˆn, there exist a permutation matrix P P Cnˆn,

a unit lower triangular matrix L P Cnˆn, and an upper triangular matrix U P Cnˆn

such that PA “ LU. The matrices L and U are unique for a given P, but several

strategies to choose the matrix P exist, and depending on the properties of A, the

choice of P can influence the existence as well as the numerical stability of the LU

decomposition.

For example, if all the principal leading minors of A are nonsingular, then the

LU decomposition is guaranteed to exist with P “ In, but this choice may perform

poorly from a numerical point of view. The stability can be improved by relying on a

pivoting strategy, that permutes the row of the matrix A while computing the factors

L and U, and aims to reduce the growth of the backward error. A thorough analysis

of the Gaussian elimination algorithm, which is typically used to compute the LU

decomposition, is provided in [18, Chap. 9], along with an error analysis of complete,

rook, and partial pivoting, the latter being the pivoting strategy most commonly used

in practice. A discussion of the algorithmic and implementation aspects of Gaussian

elimination can be found in [15, Chap. 3].

2.1 linear algebra 31

If the matrix A P Cnˆn is symmetric positive definite, then there exists a unique

lower triangular matrix L P Cnˆn with positive diagonal entries such that A “ LL˚.

How to compute the Cholesky factor efficiently is discussed in [15, sect. 4.2], and the

stability of the process is analyzed in detail in [18, Chap. 10].

QR factorization. If A P Cmˆn, there exist a unitary matrix Q P Cmˆm and an

upper triangular matrix R P Cmˆn such that A “ QR. This factorization is called the

QR factorization of A, and if A has full column rank and m ă n, by partitioning

Q “

„

Q1 Q2



, Q1 P Cmˆn, Q2 P Cmˆpm´nq,

R “

»

—

–

R1

0

fi

ffi

fl

, R1 P Cnˆn, 0 P Cpm´nqˆn,

we obtain the thin QR factorization A “ Q1R1.

This matrix factorization can be computed in many ways. The QR factorization

via Householder reflections, Givens rotations, and via the Gram–Schmit procedure

is discussed in details in [15, sect. 5.2]. In order to check whether the matrix A is

(numerically) rank deficient, a pivoted version of these algorithms can be used to

compute the rank-revealing QR factorization, that consists of a permutation matrix P P

Cnˆn, a unitary matrix Q P Cmˆm, and an upper triangular matrix R P Cmˆn such that

AP “ QR. It can be shown that the columns of A and those of R span the same space,

thus the rank of A is the number of nonzero rows of R. The numerical behaviour of

the algorithms to compute the QR factorization is discussed in [18, Chap. 19].

Schur decomposition. Any matrix A P Cnˆn has a Schur decomposition A “ UTU˚

where U P Cnˆn is unitary and T P Cnˆn is upper triangular. Since U is unitary, the

matrix T is similar to A, thus the eigenvalues of A are the elements along the diagonal

of T. It can be shown that T is diagonal if and only if A is normal. A real matrix

A P Rnˆn has also a real Schur decomposition QTQT where Q P Rnˆn is orthogonal

and T is upper quasi-triangular. Since Q is a similarity transformation, the matrices

A and T have the same eigenvalues, and in particular any diagonal block of size 1

32 background material

is a real eigenvalue of A, and the eigenvalues of a 2ˆ 2 block of T coincide with a

complex conjugate pair of eigenvalues of A.

The Schur decomposition can be computed by means of the QR iteration, several

variants of which are discussed in [15, Chap. 7], which covers most practical issues

pertaining the efficient implementation of the algorithm, such as the use of the Hes-

senberg form of the matrix, implicit shifting, and deflation. More recently, a new

interpretation of this algorithm as a core-chasing algorithm has been proposed [2,

Chap. 3]. Note that in the latter reference the algorithm is called “Francis’s algo-

rithm”, following the advice of Watkins [38]. The same author has at least two more

classical references on this algorithm [36], [37].

SVD decomposition. If A P Cmˆn, there exists two unitary matrices U P Cmˆm

and V P Cnˆn and a diagonal matrix S P Rmˆn, whose diagonal elements are non-

negative and in nonincreasing order, such that A “ USV˚. This is called the SVD

decomposition of the matrix A. By partitioning, for m ą n,

U “

„

U1 U2



, U1 P Cmˆn, U2 P Cmˆpm´nq,

S “

»

—

–

S1

0

fi

ffi

fl

, S1 P Cnˆn, 0 P Cpm´nqˆn,

V “ V1,

and for n ă m,

U “ U1,

S “
„

S1 0



, S1 P Cmˆm, 0 P Cmˆpn´mq,

V “

„

V1 V2



, V1 P Cmˆn, V2 P Cpn´mqˆn,

we obtain the thin SVD decomposition A “ U1S1V1. The columns of U and V are called

the left and right singular vectors of A, respectively, and the diagonal elements of S

are its singular values. It is easy to show that the left and singular vectors are the

2.1 linear algebra 33

eigenvectors of the Hermitian positive semidefinite matrices AA˚ and A˚A, respec-

tively, and that the singular values are the positive square roots of the eigenvalues of

AA˚ (or A˚A, since σpA˚Aq “ σpAA˚q). Note that the largest singular value of A is

its 2-norm.

The SVD decomposition provides much useful information about the linear trans-

formation underlying the matrix A. For example, rank A “ rank S, and since S is

diagonal the rank of A is the number of its nonzero singular values. Moreover, if

r “ rank A, then the first r columns of U are a basis for the range of A, and the last

n ´ r columns of V are a basis for its null space. If the matrix A is not full rank,

the thin SVD decomposition can be further reduced by dropping the left and right

singular vectors corresponding to zero singular values.

This decomposition has countless numerical applications. It is the algorithm of

choice for computing the numerical rank and 2-norm of a matrix, and provides the

most accurate method for finding an orthonormal basis for the range and null space

of a matrix. In applications, the SVD decomposition is the theoretical foundation for

algorithms for computing the best low-rank approximations in the 2-norm and the

Frobenius norm, and a subroutine in the algorithms for the solutions of archetypal

numerical linear algebra problems such as least squares fitting and regularization.

Theoretical aspects of the SVD decomposition are covered in [20, sect. 2.6] and an

extended list of properties can be found in [15, sect. 2.4]. Numerical algorithms for

computing the SVD decomposition are discussed in [15, sect. 8.6].

2.1.2 Functions of matrices

Chapter 3 deals with one of the simplest examples of functions of matrices, namely

polynomials of matrices. They are defined in section 3.1, where several algorithms

for their efficient and accurate evaluation is presented. A more general definition

of matrix function via the Jordan canonical form is provided in section 4.2, and the

important concept of primary matrix function is defined in section 4.3.1, where primary

solutions to matrix equations are also discussed. We show that these two concepts

34 background material

are equivalent for functions defined as solutions to matrix equations, as it is the case,

for example, for the pth root, the logarithm, and the Lambert W function of a matrix,

implicitly defined by the equations Xp “ A, eX “ A, and XeX “ A, respectively.

Those few pages provide all the background that is needed to read this thesis,

but do not cover at all many important aspects regarding functions of matrices. As

further reading and to complement the information available there, we refer the in-

terested reader to the monograph by Higham [19] and to the long paper by Evard

and Uhlig [12].

2.2 floating point arithmetic

In this section we recall the floating point number system underlying the IEEE stan-

dard 754-1985 [21] and its revision 754-2008 [22]. The main references for the material

covered here are [18, Chap. 2] and [28].

2.2.1 Floating point numbers

A family of floating point numbers Fxb, p, emin, emaxy is a finite subset of the real line

that is fully characterized by four parameters:

‚ the radix b P Nzt0, 1u;

‚ the precision p P N;

‚ the extreme exponents emin, emax P Z such that emin ă emax.

A real number x :“ ps, m, eq belongs to the floating family Fxb, p, emin, emaxy if it can

be written as

x “ p´1qs ¨m ¨ be´p`1, (2.1)

where

2.2 floating point arithmetic 35

‚ the sign s is 0 for x ě 0 or 1 for x ă 0;

‚ the significand m is a natural number not greater than bp ´ 1;

‚ the exponent e is an integer such that emin ď e ď emax.

The function

f : t0, 1u ˆ J0, bp ´ 1Kˆ Jemin, emaxK Ñ Fxb, p, emin, emaxy (2.2)

defined by (2.1) is not injective for a number ps, m, pq such that m ă bp´1 and e ą emin,

in which case f ps, m, eq “ f ps, m ¨ b, e´ 1q. The set of all possible representations for

x P Fxb, p, emin, emaxy that are admissible in Fxb, p, emin, emaxy is denoted by

ζpxq :“

ps, m, eq P t0, 1u ˆ J0, bp ´ 1Kˆ Jemin, emaxK : x “ f ps, m, eq
(

,

and is called the cohort of x. In order to ensure a unique representation for all num-

bers x P Fxb, p, emin, emaxyzt0u, it is customary to normalize the system by assuming

that if x ą bemin´p`1 then bp´1 ď m ď bp ´ 1. In other words, a system is normalized

if for all x P Fxb, p, emin, emaxyzt0u the triple with largest significand and smallest

exponent is chosen as representative of the equivalence class ζpxq.

In such systems, the number ps, m, eq P Fxb, p, emin, emaxyzt0u is normal if m ą bp´1,

and subnormal otherwise. The exponent of subnormal numbers is always emin, and in

a normalized system any number x “ ps, m, eq ‰ 0 can be written in a unique way as

p´1qs ¨
ˆ

d0 `
d1

b
` ¨ ¨ ¨ `

dp´1

bp´1

˙

¨ be,

for some d0, d1, . . . , dp´1 P J0, b ´ 1K. Let rm :“ m ¨ b1´p be the normal significand of

x “ ps, m, eq. If x is normal then d0 “ b´ 1 and 1 ď rm ă b, whereas if x is subnormal

then d0 ă b ´ 1 and rm ă 1. Finally, we pinpoint that 0 is the only number that

does not have a unique representation in a normalized floating point system. In

view of this peculiarity, it cannot be considered either normal or subnormal, and it

belong to a special class, together with two other special floating point data: infinity

and NaN (Not a Number). Infinities are needed to express values whose magnitude

36 background material

exceeds that of the largest positive and negative numbers that can be represented

in Fxb, p, emin, emaxy, that are ˘pb´ b1´pqbemax , whereas NaNs represent the result of

invalid operations, such as taking the square root of a negative number, dividing 0 by

0, or multiplying an infinity by 0, and were introduced to ensure that the semantic of

all floating point operations is well specified and the resulting floating point number

system is closed.

In order to work with floating point numbers, it is necessary to have functions

that can map the real numbers to a floating point family and vice versa. Since

Fxb, p, emin, emaxy Ă R, if Fxb, p, emin, emaxy is normalized, then composing f in (2.2)

with the identity function of R restricted to the domain Fxb, p, emin, emaxy gives an

injective function that maps Fxb, p, emin, emaxy to R.

On the other hand, mapping real numbers to a certain family of floating point

numbers proves harder, as in this case the function maps the infinite real line to

a finite set. A function that performs this mapping is called a rounding, and the

function fl : R Ñ Fxb, p, emin, emaxy is a rounding to nearest if flpxq is an element in

Fxb, p, emin, emaxy nearest to x P R in absolute value. A rounding to nearest is com-

pletely specified by this property and a rule to break ties; as tens of such rules exist,

we refer the interested reader to [18, Chap. 2, Notes and References] for a general dis-

cussion, and to [28, sect. 2.2] and [22, sect. 4.3] for details about the rounding mode

available in IEEE floating point arithmetic.

It can be shown [18, Thm. 2.2] that if x P r´pb ´ b1´pqbemax , pb ´ b1´pqbemaxs then

flpxq “ xp1` δq for some δ P R such that |δ| ă u, where

u :“
1
2

b1´p

is the unit roundoff of the floating point family Fxb, p, emin, emaxy. An important

consequence of this result is that u represents an accuracy threshold for the accu-

racy of floating point computations, thus it is customary to assume that for any

x, y P Fxb, p, emin, emaxy and ˝ “ `,´,ˆ,˜, one has that

flpx ˝ yq “ px ˝ yqp1` δq, |δ| ď u. (2.3)

2.2 floating point arithmetic 37

This assumption is referred to as the standard model for floating point arithmetic by

Higham [18, Eq. (2.4)].

2.2.2 Fixed precision and arbitrary precision arithmetic

The four parameters b, p, emin, and emax specify only what numbers can be repre-

sented by a given normalized floating point number system, but in order to be of

practical use, these four values need to be complemented by a floating point num-

ber format that specifies how these numbers can be stored as finite strings of digits.

Most floating point formats of practical interest are binary, that is, work in radix 2

and represent floating point numbers by means of strings of binary digits, or bits.

By far the most common floating point number formats are the IEEE single and

double precision binary floating point arithmetic specified by the ANSI/IEEE stan-

dard 754-1985 [21]. We note that the 2008 revision of the standard 754-2008 includes

some radix-10 formats, but we do not consider them here as they currently are of

limited practical interest. These two standards specify how to store efficiently in a

portable way the numbers in the floating point families Fx2, 24,´126, 127y (binary32,

previously known as single), Fx2, 53,´1022, 1023y (binary64, previously known as dou-

ble), and Fx2, 113,´16382, 16383y (binary128, previously known as double extended1).

These formats are not flexible, in that the user is not allowed to adjust the exponent

range or the precision at which the computation is performed. This lack of flexibility,

however, is counterbalanced by the performance offered by highly optimized hard-

ware implementations of the logic circuits that operate on these numbers, and the

possibility of writing efficient algorithms that are fine-tuned for a specific precision.

In many cases, on the other hand, one is willing to trade off some computational

efficiency for the ability to compute with any number of digits. Floating point num-

ber formats that satisfy this need are said to be arbitrary precision, multiprecision, or

multiple precision, and they typically allow the user not only to perform arbitrarily

accurate computations, but also to recur to different levels of precision for different

1 The term quadruple is often used, since binary128 numbers can be stored using exactly four times as
many bits as single precision ones.

38 background material

portions of a same algorithm. The latter capability can be exploited to increase the

performance of fixed precision as well as multiprecision code, by running in low pre-

cision subroutines dealing with quantities for which only an estimate is needed, and

resorting to higher precision only in those key points where catastrophic cancella-

tion might strike the computation. Arbitrary precision is usually not implemented

in hardware, but made available through software libraries, which leads to lower

efficiency if compared with fixed precision floating point frameworks.

The first software package to provide multiple precision capabilities was Brent’s

MP package [10], [11], a 618 line Fortran 66 library of arbitrary precision subroutines

for performing a broad variety of computations with floating point numbers. In 1993

Bailey presented a more complete multiprecision system [4], which combined MP-

FUN, a package of multiprecision Fortran 77 subroutines, and TRANSMP, a program

capable of translating source code equipped with special directives into Fortran 77

programs relying on MPFUN. A couple of years later Bailey released a Fortran 90

version of the package [5], and more recently a thread-safe version has been devel-

oped [6]. A C++ rewriting of MPFUN, called ARPREC [7], is also available.

A wide range of software supporting multiprecision floating point arithmetic is

available, and a large number of programming languages supports arbitrary preci-

sion, either natively or via dedicates libraries. One of the most complete and well-

maintained software packages for working with arbitrary precision arithmetic is the

GNU MPFR library for multiple-precision floating point computation with correct

rounding [13], based on GMP, the GNU Multiple Precision Arithmetic Library [16].

This library is written in C, but interfaces for most major programming languages

are provided,2 and many programming languages for scientific computing rely on it

in order to provide multiprecision capabilities.

The programming language Julia [8] supports multiprecision floating point num-

bers by means of the built-in data type BigFloat, a wrapper to GNU MPFR, and the

third-party data type ArbFloat, that relies on the C library Arb [23], also based on

GNU MPFR. These data types allow for multiprecision computations with scalars,

and provide a few basic linear algebra kernels. The ArbFloat package, in particular,

2 A complete list can be found at https://www.mpfr.org/#interfaces.

https://www.mpfr.org/#interfaces

2.2 floating point arithmetic 39

has functions for computing the matrix square root and exponential in multipreci-

sion. The programming language Phyton does not natively support multiprecision,

but arbitrary precision data types are provided by the mpmath [24] and SymPy [27],

[34] libraries, both of which depend on GNU MPFR in order to work with arbitrary

precision floating point numbers. The mpmath library provides functions for evalu-

ating in arbitrary precision a wide range of matrix functions, including real powers,

exponential, logarithm, sine, and cosine. Finally, the Boost.Multiprecision library [9]

for C++ relies on GNU MPFR to provide arbitrary precision floating point numbers

in C++, but does not offer any linear algebra subroutines.

Most computer algebra systems support arbitrary precision computation. The open

source systems Sage [31] and PARI/GP [30] support arbitrary precision floating point

arithmetic, but do not implement any algorithms for the evaluation of matrix func-

tions. The proprietary systems Maple [25] and Mathematica [26] offer functions that

can evaluate in arbitrary precision real matrix powers, the matrix logarithm, the ma-

trix exponential, and a function that computes f pAq given a scalar function f and a

square matrix A. The algorithms underlying the functions described above are not

publicly available, to our knowledge, and in some cases they may involve symbolic

arithmetic.

In the following chapters, we use the programming language MATLAB for all our

numerical experiments. MATLAB does not support arbitrary precision floating point

arithmetic natively, but the arbitrary precision floating point data types mp and vpa

are provided by the Multiprecision Computing Toolbox [29] and the Symbolic Math

Toolbox [33], respectively. Both toolboxes implement algorithms for the matrix square

root, the exponential, the logarithm, and general matrix functions, and the Multipreci-

sion Computing Toolbox also includes functions for computing the hyperbolic and

trigonometric sine and cosine of a matrix in arbitrary precision.

The specifications of the floating point format underlying these two data types are

not publicly available, but a direct experimentation can provide a few hints. For

both toolboxes, the user can specify the required accuracy in terms of decimal dig-

its, and the commands digits(d) and mp.Digits(d) set the working precision of mp

40 background material

and vpa numbers, respectively, to d decimal digits. The experiments below are run

in MATLAB 2018b, using version 4.5.3.12859 of the Advanpix Multiprecision Com-

puting Toolbox and version 8.2 of the Symbolic Math Toolbox. First, in order to

determine the radix-2 machine epsilon 2´p`1 of the two floating point formats, we

use the function

function machine_epsilon = findeps(x)

machine_epsilon = x;

while x + (machine_epsilon/2) > x

machine_epsilon = machine_epsilon / 2;

end

end

which for IEEE single and double precision gives

>> findeps(single(1))

ans =

single

1.1920929e-07

>> findeps(double(1))

ans =

2.220446049250313e-16

As expected, these two numbers are the single and double precision roundings of

2´23 and 2´52, respectively. By setting the precision of the two toolboxes to d “ 34,

which should roughly be equivalent to IEEE quadruple precision, we obtain:

>> digits(34); findeps(vpa(1))

ans =

2.869859254937225361251798186577748e-42

>> mp.Digits(34); findeps(mp(1))

ans =

1.925929944387235853055977942584927e-34

2.2 floating point arithmetic 41

where the former, corresponding to 2´112 is indeed the machine epsilon of IEEE

quadruple precision.

This simple experiment, along with more extensive testing not reported here, seems

to suggest that for a given d, the machine epsilon is 2rlog2p10´dqs for the Multiprecision

Computing Toolbox and 2rlog2p10´pd`8qqs`1 for the Symbolic Math Toolbox. Our inter-

pretation is that the latter performs the computation at much higher precision, with-

out truncating the result, and then prints the number rounded to the first d significant

decimal digits. This behaviour makes it hard to compare the results computed by the

two toolboxes in a fair way.

An additional difficulty is given by the fact that it is not possible to compare mp and

vpa numbers directly, since the former are cast into double before being converted

into the latter, and trying to cast a vpa number into an mp object raises an error, as the

following listing demonstrates.

>> d = 34; mp.Digits(d); digits(d - 8);

>> x = mp(’5647653643/64736284736’)

x =

0.08724092934946151680248318907789599

>> vpa(x)

ans =

0.087240929349461510122765162

>> vpa(x) - vpa(double(x))

ans =

0.0

>> mp(vpa(’5647653643/64736284736’))

Error using mp (line 1256)

Unsupported argument type

In view of these two complications, we chose to work with only one of the two tool-

boxes, the Multiprecision Computing Toolbox, not only because of its more consistent

behaviour, but also because of its much faster execution time.

42 background material

2.2.3 Error analysis

Errors striking numerical computations can have different sources. The input data

may be inexact: noise can corrupt the measurement of physical quantities, rounding

errors may arise when exact information is converted to finite precision so to be

stored in a computer, and degradation can occur as a results of earlier computation.

These issues are the realm of uncertainty quantification, but we will not explore them

further in this thesis.

One of the main concerns of numerical analysis, on the other hand, are quantization

errors, caused by the discretization of continuous quantities, and truncation errors,

which arise when an infinite sum is truncated and replaced by a finite approxima-

tion that trades off accuracy for computational efficiency. For instance, if a function

in a neighbourhood of a point is approximated by means of the first few terms of

its Taylor expansion, the terms that are left out represent an archetypal example of

truncation error. We consider the problem of bounding the truncation error of Padé

approximations in Chapters 5 and 6.

Finally, the accumulation of rounding errors in the standard floating point model

(2.3) is an inevitable consequence of the use of finite precision arithmetic, and is the

subject of investigation of error analysis. The effect of rounding errors in linear algebra

computations is considered in detail by Higham [17].

There are two ways of interpreting truncation and rounding errors. The aim of

forward error analysis is to measure how far the solution returned by an algorithm is

from the exact value the algorithm was meant to compute. Even if in practice the

exact solution is typically not known, the forward error can be estimated by means

of a reference solution computed in higher precision. Backward error analysis takes a

different approach: the computed solution is seen as the exact solution to a perturba-

tion of the original problem. As many such perturbations may exist, in general, one is

usually interested in finding the smallest with respect to some metric. Depending on

the problem at hand, backward errors can be hard to estimate experimentally, but are

BIBLIOGRAPHY 43

an invaluable tool in understanding the stability of numerical algorithms, and have

practical applications in the design of many algorithms for functions of matrices.

bibliography

[1] M. Artin, Algebra, Prentice-Hall, Upper Saddle River, NJ, USA, 1991.

[2] J. L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D. S. Watkins, Core-

Chasing Algorithms for the Eigenvalue Problem, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2018.

[3] S. J. Axler, Linear Algebra Done Right, Undergraduate Texts in Mathematics,

Springer-Verlag, New York, 1997.

[4] D. H. Bailey, Algorithm 719; multiprecision translation and execution of Fortran pro-

grams, ACM Trans. Math. Software, 19 (1993), p. 288–319.

[5] , A Fortran 90-based multiprecision system, ACM Trans. Math. Software, 21

(1995), p. 379–387.

[6] D. H. Bailey, A thread-safe arbitrary precision computation package (full documenta-

tion), 2018.

[7] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, ARPREC: An arbitrary precision

computation package, tech. report, Lawrence Berkeley National Laboratory, 2002.

[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach

to numerical computing, SIAM Rev., 59 (2017), pp. 65–98.

[9] BOOST C++ libraries. http://www.boost.org.

[10] R. P. Brent, Algorithm 524: MP, a Fortran multiple-precision arithmetic package [A1],

ACM Trans. Math. Software, 4 (1978), p. 71–81.

[11] , A Fortran multiple-precision arithmetic package, ACM Trans. Math. Software,

4 (1978), p. 57–70.

http://dx.doi.org/10.1137/1.9781611975345
http://dx.doi.org/10.1137/1.9781611975345
http://linear.axler.net/
http://dx.doi.org/10.1145/155743.155767
http://dx.doi.org/10.1145/155743.155767
http://dx.doi.org/10.1145/212066.212075
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
http://dx.doi.org/10.2172/817634
http://dx.doi.org/10.2172/817634
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://www.boost.org
http://dx.doi.org/10.1145/355769.355776
http://dx.doi.org/10.1145/355769.355775

44 BIBLIOGRAPHY

[12] J.-C. Evard and F. Uhlig, On the matrix equation f pXq “ A, Linear Algebra Appl.,

162-164 (1992), pp. 447–519.

[13] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR:

A multiple-precision binary floating-point library with correct rounding, ACM Trans.

Math. Software, 33 (2007), pp. 13:1–13:15.

[14] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, Featured Titles for

Linear Algebra (Advanced) Series, Pearson Education, 4th ed., 2003.

[15] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univer-

sity Press, Baltimore, MD, USA, 4th ed., 2013.

[16] T. Granlund and G. D. Team, GNU MP 6.0 Multiple Precision Arithmetic Library,

Samurai Media Limited, United Kingdom, 2015.

[17] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 1996.

[18] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

[19] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[20] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

1985.

[21] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,

Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in

SIGPLAN Notices, 22(2):9–25, 1987.

[22] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std

754-1985), Institute of Electrical and Electronics Engineers, New York, 2008.

[23] F. Johansson, Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic,

IEEE Trans. Comput., 66 (2017), p. 1281–1292.

http://dx.doi.org/10.1016/0024-3795(92)90390-V
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/tc.2017.2690633

BIBLIOGRAPHY 45

[24] F. Johansson et al., Mpmath: A Python library for arbitrary-precision floating-point

arithmetic. http://mpmath.org.

[25] Maple. Waterloo Maple Inc., Waterloo, Ontario, Canada. http://www.maplesoft.

com.

[26] Mathematica. Wolfram Research, Inc., Champaign, IL, USA. http://www.wolfram.

com.

[27] A. Meurer, C. P. Smith, M. Paprocki, O. ˘Certik, S. B. Kirpichev, M. Rock-

lin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E.

Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pe-

dregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Ku-

lal, R. Cimrman, and A. Scopatz, SymPy: Symbolic computing in Python, PeerJ

Computer Science, 3 (2017), p. e103.

[28] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point

Arithmetic, Birkhäuser, Boston, MA, USA, 2010.

[29] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[30] PARI/GP. http://pari.math.u-bordeaux.fr.

[31] The Sage Developers, Sage Mathematics Software. http://www.sagemath.org.

[32] G. Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich, San

Diego, CA, 3rd ed., 2013.

[33] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/.

[34] SymPy Development Team, Sympy: Python library for symbolic mathematics. http:

//www.sympy.org.

[35] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1997.

http://mpmath.org
http://www.maplesoft.com
http://www.maplesoft.com
http://www.wolfram.com
http://www.wolfram.com
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1007/978-0-8176-4705-6
http://dx.doi.org/10.1007/978-0-8176-4705-6
http://www.advanpix.com
http://pari.math.u-bordeaux.fr
http://www.sagemath.org
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
http://www.sympy.org
http://www.sympy.org

46 BIBLIOGRAPHY

[36] D. S. Watkins, Understanding the QR algorithm, SIAM Rev., 24 (1982), p. 427–440.

[37] D. S. Watkins, The QR algorithm revisited, SIAM Rev., 50 (2008), p. 133–145.

[38] D. S. Watkins, Francis’s algorithm, Amer. Math. Monthly, 118 (2011), p. 387.

http://dx.doi.org/10.1137/1024100
http://dx.doi.org/10.1137/060659454
http://dx.doi.org/10.4169/amer.math.monthly.118.05.387

3 OPT IMAL ITY OF THE

PATERSON–STOCKMEYER METHOD FOR

EVALUAT ING POLYNOM IALS AND

RAT IONAL FUNCT IONS OF MATR ICES

Abstract. Many state-of-the-art algorithms reduce the computation of transcen-

dental matrix functions to the evaluation of polynomial or rational approximants at

a matrix argument. This task can be accomplished efficiently by resorting to the

Paterson–Stockmeyer method, an evaluation scheme originally developed for matrix

polynomials that extends quite naturally to rational functions. An important feature

of this technique is that the number of matrix multiplications required to evaluate

an approximant of order n grows slower than n itself, with the result that different

approximants yield the same asymptotic computational cost. We analyze the number

of matrix multiplications required by the Paterson–Stockmeyer method and by two

widely used generalizations, one for evaluating diagonal Padé approximants of gen-

eral functions and one specifically tailored to those of the exponential. In all the three

cases, we identify the approximants of maximum order for any given computational

cost.

Keywords: Paterson–Stockmeyer method, polynomial evaluation, polynomial of a

matrix, matrix rational function, matrix function.

2010 MSC: 15A16, 13M10, 65F60.

3.1 introduction

Several numerical methods for evaluating matrix functions, including the state-of-

the-art algorithms for computing the exponential [1], [13], [14, Chap. 10], the loga-

47

48 optimality of the paterson–stockmeyer method

rithm [2], [7], trigonometric [3] and hyperbolic functions, and their inverses [5], rely

on rational approximation. The special case of polynomial approximants is of particu-

lar interest, as it usually yields simpler formulae and often leads to elementary proofs

of theoretical results. In the literature, algorithms based on polynomial approxima-

tion have been proposed for computing the matrix exponential [6], [8], [9], [20], [21],

the matrix logarithm [10], and trigonometric matrix functions [4], [19].

In order to compute f pAq, where A P Cnˆn and f is a primary matrix functions

in the sense of [14, Def. 1.2], these algorithms typically perform three main steps.

First, a series of transformations is applied to A, in order to obtain a matrix B for

which a suitable polynomial or rational approximant to f is guaranteed to deliver a

prescribed level of accuracy. This approximant is then evaluated at the matrix B, and

an approximation of f pAq is obtained by exploiting properties of f in order to reverse

the transformations initially applied to A.

Let us consider the polynomial

ppAq “
k
ÿ

i“0

ci Ai, (3.1)

where k P N and c0, c1, . . . , ck P C. As a polynomial is nothing but a linear combi-

nation of powers of its argument, one can evaluate ppAq by explicitly computing the

first k powers of A, scaling them by the corresponding coefficients of p, and summing

them up. If all the powers A2, A3, . . . , Ak are computed, this algorithm requires k´ 1

matrix multiplications, k matrix scalings, k matrix sums, and one diagonal update of

the form A Ð A` αI, for α P C, which can be performed efficiently without explic-

itly forming the diagonal matrix αI. This technique requires at least 2n2 additional

elements of storage, as it is necessary to keep track of the intermediate powers of A

and of the accumulated partial sum.

A second evaluation scheme for (3.1) is the matrix version of Horner’s method.

This is the algorithm of choice for scalar polynomials, as it reduces the number of

3.1 introduction 49

multiplications to be performed without affecting that of scalar additions. In order

to employ this scheme, we define the recursion

Pk´1 “ ck A` ck´1 I,

Pi “ Pi`1A` ci I, i “ k´ 2, k´ 3, . . . , 0,
(3.2)

and evaluate ppAq “ P0 by computing Pi for i from k´ 1 down to 0. For dense polyno-

mials, this method requires k´ 1 matrix multiplications, but only one matrix scaling

and k diagonal updates, and can be implemented in a memory efficient way that

requires only a half of the additional storage needed by the algorithm that evaluates

ppAq by explicitly computing the powers of A.

In order to reduce the number of matrix multiplications needed to form ppAq,

Paterson and Stockmeyer [17] proposed a less straightforward approach, which for

k ě 4 yields an operation count lower than that of the two techniques discussed thus

far. By collecting powers of A in a suitable fashion, for s P N0 :“ Nz t0u we obtain

ppAq “
ν
ÿ

i“0

pAsqiBrpsi pAq, ν “

Z

k
s

^

, (3.3)

where

Brpsi pAq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s´1
ÿ

j“0

csi`j Aj, i “ 0, 1, . . . , ν´ 1,

|k|s
ÿ

j“0

csi`j Aj, i “ ν,

Here |a|b denotes, for two integers a and b, the reminder on integer division of a by

b. In other words, if |a|b “ δ P N, then a “ γb` δ for some γ P N. If δ “ 0, that is, if

a is an integer multiple of b, we write b � a.

The scheme (3.3) requires k´ ν` 1 matrix scalings and additions, and ν` 1 diago-

nal updates; computing A2, A3, . . . , As requires s´ 1 matrix multiplications, and, at

the price of storing these s´ 1 additional matrices, no extra multiplication is needed

50 optimality of the paterson–stockmeyer method

to compute Brpsi pAq, for i “ 0, . . . , ν. By evaluating (3.3) à la Horner, we obtain the

recursion

rPν´1 “

$

’

&

’

%

ck As ` Brpsν´1pAq, s � k,

AsBrpsν pAq ` Brpsν´1pAq, s ffl k,
(3.4)

rPi “ AsPi`1 ` Brpsi pAq, i “ ν´ 2, ν´ 3, . . . , 0,

and computing ppAq “ rP0 requires ν´ 1 additional matrix multiplications if k is a

multiple of s, and ν if it is not. Therefore, evaluating (3.1) by means of (3.3) requires

Cp
s pkq :“ s´ 1`

Z

k
s

^

´ rs � ks (3.5)

matrix multiplications, where r ¨ s denotes the Iverson bracket, defined, for a proposi-

tion P , by

rPs “

$

’

&

’

%

1, if P is true,

0, if P is false.

Taking the derivative of (3.5) with respect to s shows that the continuous relaxation

of Cp
s pkq is minimized by taking

s‹ :“
?

k. (3.6)

As s must be an integer, we can choose either s “ t
?

ku or s “
P
?

k
T

. These two

choices, together with the evaluation scheme (3.3), give two variants of the Paterson–

Stockmeyer method. (Note that this evaluation scheme is not defined for k “ 0.)

Hargreaves [12, Thm. 1.7.4] proved that, in fact, these two algorithms have the same

cost for any k P N. In the next section, we provide a new proof of this result, in

which we establish the notation and present techniques we will rely on later on.

It is important to pinpoint that this approach trades off memory for computational

efficiency, since s` 1 additional matrices need to be stored, for a space complexity of

O
`
?

kn2
˘

. Van Loan [22] showed that, by computing ppAq one column at a time, it

3.1 introduction 51

is possible to reduce the storage requirement of the algorithm to 3n2 additional ele-

ments, at the price of pα log2 s´ 1qn3 additional flops, where α is a small constant that

depends only on s. How to implement the original Paterson–Stockmeyer algorithm

and this variant in a memory and communication efficient way has been recently

discussed by Hoffman, Schwartz, and Toledo [15].

We note that the Paterson–Stockmeyer method is not the fastest known algorithm

for evaluating polynomials of matrices: Paterson and Stockmeyer [17] discuss a tech-

nique that requires fewer matrix multiplications than the algorithm above, and an

alternative approach for reducing the number of matrix multiplications to evalu-

ate polynomials of matrices has recently been proposed by Sastre [18]. These al-

gorithms evaluate several appropriately chosen polynomials of lower degree, whose

coefficients are obtained from those of the original polynomial by means of various

techniques. This preprocessing stage may introduce numerical instabilities, thus the

new coefficients must be carefully chosen on a case-by-case basis, as done for exam-

ple in [20] for the truncated Taylor approximants to the exponential of order 8, 15, 24,

and 30.

Polynomials of the form (3.1) often arise when computing matrix functions by

relying on Padé approximation. A rational function rkm “ pkm{qkm, for k, m P N,

is the rk{ms Padé approximant to f at 0 if pkm and qkm are polynomials of degree

k and m, respectively, qkmp0q “ 1, and the first k `m terms in the series expansion

of f pxq ´ rkmpxq at 0 are zero. In particular, we focus on truncated Taylor series, for

which m “ 0, and diagonal Padé approximants, for which m “ k, since these are

the two families of Padé approximants most commonly encountered in the literature.

Subdiagonal Padé approximants are also considered [11], [16], but the partial fraction

form is usually preferred for their evaluation.

The scheme (3.3) readily generalizes to the evaluation of rational matrix functions:

after computing the first s powers of A, for some s P N0, one can evaluate numerator

and denominator separately, by means of (3.3), and then solve a multiple right-hand

side linear system. An approximately optimal value for s can be determined by

minimizing the continuous relaxation of the corresponding cost function.

52 optimality of the paterson–stockmeyer method

Since the cost of matrix multiplications is asymptotically higher than that of ma-

trix scalings and matrix sums, we follow the customary practice of measuring the

efficiency of algorithms for evaluating polynomials of matrices by counting the num-

bers of matrix multiplications that need to be performed [14, Chap. 4]. The goal of

this work is twofold. On the one hand, we study the optimality of the Paterson–

Stockmeyer method amongst all methods of the form (3.3); on the other, we give

several results that can aid in developing numerical algorithms for the computation

of matrix functions. Now we summarize our contribution while outlining the struc-

ture of the following sections.

It has been observed [14, p. 74] that the Paterson–Stockmeyer method minimizes

the number of matrix multiplications required to evaluate polynomials of degree

between 2 and 16 by means of the scheme (3.3). In section 3.2.1 we show that this is

in fact the case for polynomials of any degree.

When matrix functions are approximated by means of polynomials, it is customary

not to consider all possible approximants, but only those that maximize the approx-

imation degree for a given number of matrix multiplications. For example, since

Cp
s p11q ě 5 and Cp

s p12q ě 5 for any s P N0, there is little point in considering an

approximant of degree 11 when that of degree 12 is likely to deliver a more accu-

rate approximation at the same cost. The following definition allows us to make this

notion precise and extend it to the case of rational approximants.

Definition 3.1 (Optimal orders of an evaluation scheme). Let Cpkq, for k P N, be the

number of matrix multiplications required by a scheme S to evaluate an approximant

of order k. Then k1 P N is an optimal order (or degree, if the approximant is a

polynomial) for S if there exists ζ P N such that

k1 “ maxtk P N : Cpkq “ ζu.

When designing algorithms for fixed precision arithmetic, one typically knows

the order of the highest approximant that may be needed to achieve the required

accuracy, kmax say, and only the optimal orders smaller than kmax are needed. These

can be found by inspecting the values of Cpkq for k ď kmax, as was done in [14,

3.2 evaluation of matrix polynomials 53

Table 4.1] and [6, Table 1] for polynomial approximants and in [14, Table 10.3] for

the diagonal Padé approximants to the exponential. In arbitrary precision floating-

point environments, however, depending on the working precision and the desired

accuracy, an approximant of arbitrarily high order may be needed, and alternative

techniques to efficiently find all optimal degrees become necessary.

In section 3.2.2, we derive a formula for the sequences of optimal degrees for the

Paterson–Stockmeyer method for polynomial evaluation. In section 3.3, we obtain

closed formulae for the optimal orders of the Paterson–Stockmeyer-like scheme for

evaluating rational functions whose numerator and denominator have same degree,

and in section 3.4 we consider the special case of the diagonal Padé approximants to

the exponential.

Finally, in section 3.5 we summarize our findings and outline possible directions

for future work.

3.2 evaluation of matrix polynomials

Figure 3.1 shows the value of the cost function (3.5) for the two canonical variants of

the Paterson–Stockmeyer method, which differ only in the direction
?

k is rounded

in order to obtain the parameter s in (3.3). It is well known that both choices yield

the same computational cost for the evaluation of a polynomial of any degree, and in

section 3.2.1 we show that this is the minimum value for Cp
s pkq among all choices of

s P N`. The values marked with a red circle are discussed in section 3.2.2.

3.2.1 Optimality of the Paterson–Stockmeyer method

Most of the results that follow stem from a couple of simple observations. If s “
X
?

k
\

,

then by definition of the floor operator, we have that

s ď
k
s
ă
ps` 1q2

s
“ s` 2`

1
s

, (3.7)

54 optimality of the paterson–stockmeyer method

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

k

C
p s
pk
q

s “
X
?

k
\ X

?
k
\

� k

s “
P
?

k
T P

?
k
T

� k

s “
X
?

k
\

, k “ ap
i in (3.14)

Figure 3.1: Number of matrix multiplications required to evaluate a polynomial of degree
k, for k between 1 and 50, by means of the scheme (3.3) with s “

X
?

k
\

and
s “

P
?

k
T

. The dotted and dashed lines mark the values of k that are integer
multiples of

X
?

k
\

and
P
?

k
T

, respectively; the circles mark the number of matrix
multiplications required to evaluate polynomials of optimal degree (in the sense
of Definition 3.1) for the Paterson–Stockmeyer method.

where the first inequality holds strictly if
?

k is not an integer. It follows that
X k

s

\

“

s` t, where t can only be 0, 1, or 2, and in fact it is convenient to split (3.7) into the

three subcases

s` t ď
k
s
ă s` t` 1, t “ 0, 1, 2. (3.8)

Combining (3.7) and (3.8) for t “ 2 with the fact that k is an integer, reveals that
X k

s

\

“ s` 2 only if s � k, that is, only if k “ sps` 2q.

Theorem 3.1 (Hargreaves, [12, Thm. 1.7.4]). Let A P Cnˆn and let p be a polynomial of

degree k P N0. The two methods obtained by setting s in (3.3) to s f “
X
?

k
\

and sc “
P
?

k
T

require the same number of matrix multiplications to evaluate ppAq.

Proof. We need to prove that Cp
s f pkq “ Cp

scpkq for any k P N0. If k is a perfect square,

then s f “ sc and the result follows immediately. Otherwise, one has that s :“ s f “

sc ´ 1, and thus that

∆pkq :“ Cp
s f pkq ´ Cp

scpkq “
Z

k
s

^

´ rs � ks ´ 1´
Z

k
s` 1

^

` rs` 1 � ks. (3.9)

3.2 evaluation of matrix polynomials 55

If s � k and k ‰ s2, then (3.7) implies that ν “
Y

k
s

]

“ k
s is either s` 1 or s` 2. If

ν “ s` 1, then k “ sps` 1q and s` 1 � k, and substituting into (3.9) gives ∆pkq “ 0. If

ν “ s` 2, then

k
s` 1

“
sps` 2q

s` 1
“ s` 1´

1
s` 1

,

hence
X k

s`1

\

“ s and s ` 1 ffl k, and once again substituting into (3.9) shows that

∆pkq “ 0. When s` 1 � k, multiplying (3.7) by s
s`1 gives

s´ 1`
1

s` 1
ă

k
s` 1

ă s` 1,

which leads once again to the case k “ sps` 1q.

Finally, if s ffl k and s ` 1 ffl k, then
X k

s

\

“ s ` t, where t is either 0 or 1, and

multiplying (3.8) by s
s`1 gives

s` t´ 1´
t´ 1
s` 1

ď
k

s` 1
ă s` t´

t
s` 1

,

which implies that

Z

k
s` 1

^

“ s` t´ 1 “
Z

k
s

^

´ 1. (3.10)

Substituting (3.10) into (3.9) concludes the proof.

In view of the result in Theorem 3.1, we can drop the subscript and adopt the nota-

tion Cppkq to indicate the number of matrix multiplications required by the Paterson–

Stockmeyer method.

Next, we show that the Paterson–Stockmeyer method is the cheapest algorithm one

can obtain from the evaluation scheme (3.3). Note that this result is not an obvious

consequence of the optimality of s‹ in (3.6), since the continuous relaxation of (3.5)

does not take into account the discontinuities induced by the floor operator in
Y

k
s

]

and the non-continuous term rs � ks.

56 optimality of the paterson–stockmeyer method

Proposition 3.2. Let A P Cnˆn and let p be a polynomial of degree k P N0. The Paterson–

Stockmeyer method minimizes the number of matrix multiplications required to evaluate ppAq

by means of the evaluation scheme (3.3).

Proof. Let s “
X
?

k
\

. In view of Theorem 3.1, it suffices to show that Cp
s``pkq ď Cp

s pkq,

for all ` P Z such that ` ą ´s. The proof is by exhaustion since, by (3.7), ν can take

only the three values s, s` 1, and s` 2. For t “ 0, 1, or 2, we have that

Cp
s pkq “ 2s` t´ 1´ rs � ks, (3.11)

and since

k
s` `

ě
sps` tq

s` `
“ s´ `` t` η`

t , η`
t :“

`p`´ tq
s` `

, (3.12)

we can conclude that

Cp
s``pkq “ s` `´ 1`

Z

k
s` `

^

´ rs` ` � ks ě 2s` t´ 1`
Y

η`
t

]

´ rs` ` � ks.

For t “ 0, η`
0 is nonnegative, and Cp

s``pkq can be strictly smaller than Cp
s pkq only

if s ` ` � k and
X

η`
0
\

“ 0 but s ffl k. By taking the floor of (3.12), we see that the

first condition is satisfied only if k “ ps ` `qps ´ `q “ s2 ´ `2 for some `. However,

k cannot be smaller than s2, thus the only admissible value for ` is 0, in which case

Cp
s pkq “ Cp

s``pkq.

For t “ 1, η`
1 is nonnegative, and Cp

s``pkq ă Cp
s pkq only if k “ ps` `qps´ `` 1q and

s ffl k. Since k must be larger than sps` 1q, the only two admissible values for ` are 0

and 1, but in both cases we have that k “ sps` 1q, and thus that s � k.

Finally, for t “ 2 and k “ sps` 2q, observe that Cp
s``pkq ě Cp

s pkq unless
X

η`
2
\

“ ´1

and s` ` � k. The former condition is satisfied if and only if ` “ 1, but in this case

s` 1 ffl sps` 2q, since

sps` 2q
s` 1

“ s`
s

s` 1

cannot be integer for s ą 0.

3.2 evaluation of matrix polynomials 57

3.2.2 Optimal degrees for the Paterson–Stockmeyer method

We can characterize the degrees that are optimal for the Paterson–Stockmeyer method

in the sense of Definition 3.1. In order to accomplish this task, we need to show that

the cost function (3.5) is non-decreasing in k. Once again, this result is not obvious

because of the terms
Y

k
s

]

and rs � ks in (3.5).

Lemma 3.3. The number of matrix multiplications required by the Paterson–Stockmeyer

method to evaluate a matrix polynomial is non-decreasing in the degree of the polynomial.

Proof. We want to show that, for k P N0,

Cppkq ď Cppk` 1q. (3.13)

As floor and ceiling yield the same operation count, we can restrict ourselves to

considering only s “
X
?

k
\

and s1 “
X?

k` 1
\

. If s “ s1, then we only need to prove

that
X k

s

\

ď
X k`1

s

\

. By adding 1
s to all the terms in (3.8), we get that that, if

X k
s

\

“ s` t,

then

s` t`
1
s
ď

k` 1
s

ă s` t` 1`
1
s

,

and thus that
X k`1

s

\

is either s` t or s` t` 1, and cannot be smaller than
X k

s

\

. Other-

wise, we must have that s1 “ s` 1.

If s � k, then k “ sps` tq, for t “ 0, 1, or 2, and observing that

k` 1
s` 1

“
s2 ` st` 1

s` 1
“ s` t´ 1`

2´ t
s` 1

,

we can conclude that
X k`1

s`1

\

“ s ` t ´ 2. Therefore, if t “ 0 or 1, then s ` 1 ffl k ` 1

and the inequality (3.13) holds strictly, whereas if t “ 2, then k` 1 “ ps` 1q2 and the

equality is satisfied.

If s` 1 � k` 1 and s ffl k, then
X?

k` 1
\

“ s` 1 and
X
?

k
\

“ s, which implies that

ps` 1q2 ď k` 1 and k` 1 ă ps` 1q2` 1, respectively. By dividing both inequalities by

58 optimality of the paterson–stockmeyer method

s` 1, we get that k`1
s`1 “ s` 1, which readily implies that k “ ps` 1q2 ´ 1 “ sps` 2q.

Substituting these values into (3.13) shows that equality holds in this case.

Finally, when s ffl k and s ` 1 ffl k ` 1, by multiplying all the terms in (3.8) by s,

incrementing them by one, and dividing them by s` 1, one gets

s` t´ 1`
s

s` 1
ď

k` 1
s` 1

ă s` t`
1´ t
s` 1

,

which implies that
X k`1

s`1

\

can be either s` t´ 1 or s` t. Substituting into (3.13) shows

that the former satisfies the equality and the latter the strict inequality.

Recall that an integer a is a quarter-square, a perfect square, or an oblong number,

if there exists b P N such that a “ tb2{4u, a “ b2, or a “ bpb` 1q, respectively.

Proposition 3.4. The degree of a polynomial is optimal for the Paterson–Stockmeyer algo-

rithm if and only if it is a positive quarter-square.

Proof. By Lemma 3.3, a degree k P N0 is optimal if and only if Cppkq ă Cppk ` 1q.

Since positive quarter-squares are either positive perfect squares or positive oblong

numbers, we need to prove only that Cppkq ă Cppk` 1q if and only if k “ s2 or k “

sps` 1q for some s P N0. We have that
X
?

k
\

“
X?

k` 1
\

“ s, and it is straightforward

to verify that Cpps2q “ 2s´ 2 ă 2s´ 1 “ Cpps2 ` 1q and Cppsps` 1qq “ 2s´ 1 ă 2s “

Cppsps` 1q ` 1q, and thus that s2 and sps` 1q are optimal degrees for all s P N0.

Conversely, let k P N0 be an optimal degree for the Paterson–Stockmeyer method,

and let s “ t
?

ku. Note that if k is not an integer multiple of s, then a polynomial

with s´ pk mod sq more terms can be evaluated with the same number of matrix

multiplications. Therefore, if k is optimal, then s � k and, as a consequence of (3.7),

k must be of the form sps` tq, where t “ 0, 1, or 2. We already known that if t “ 0

or t “ 1, then k is optimal, and we need to show only that k1 :“ sps` 2q is not. Since

k1 ` 1 “ ps` 1q2, we have that
?

k1 ` 1 � k1 ` 1, and thus that Cppk1q “ 2s “ Cppk1 ` 1q,

which shows that k1 is not optimal.

3.3 rational matrix functions of order rk{ks 59

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

k

C
r sp

kq

s “
X
?

2k
\ X

?
2k
\

� k

s “
P
?

2k
T P

?
2k
T

� k

s “ sr
k in (3.17), k “ ar

i in (3.19)

Figure 3.2: Number of matrix multiplications required to evaluate a rational function of order
rk{ks, for k between 1 and 50, by means of the scheme (3.15), for s “

X
?

2k
\

and
s “

P
?

2k
T

. The dotted and dashed lines mark the values of k that are integer
multiples of

X
?

2k
\

and
P
?

2k
T

, respectively; the circles mark the number of matrix
multiplications required to evaluate rational matrix functions of optimal order (in
the sense of Definition 3.1) for the evaluation scheme (3.15).

Therefore, the sequence of optimal degrees for the Paterson–Stockmeyer method is

pap
i qiPN, where

ap
i “

Z

pi` 2q2

4

^

. (3.14)

By observing that Cppap
i q “ i, we can conclude that the polynomial of highest degree

that can be evaluated with i matrix multiplications is that of degree ap
i .

3.3 rational matrix functions of order rk{ks

A rational function is the quotient of two polynomials and, in the matrix case, it

can be interpreted as the solution to a multiple right-hand side linear system whose

coefficients and constant term are polynomials of the same matrix. Therefore, the

value of a rational function at a matrix argument can be computed by relying on a

suitable modification of the scheme (3.3) capable of minimizing the number of ma-

60 optimality of the paterson–stockmeyer method

trix multiplications required to evaluate at once two polynomials at the same matrix

argument.

Since in algorithms for computing matrix functions the evaluation of diagonal ap-

proximants is typically needed, in this section we focus on the evaluation of ratio-

nal matrix functions of order rk{ks. Let us consider the task of evaluating rpAq “

qpAq´1 ppAq, where both p and q are polynomials of degree k P N0. We can rewrite

numerator and denominator of this rational function as polynomials in As, which

gives

ppAq “
ν
ÿ

i“0

Brpsi pAqpAsqi, qpAq “
ν
ÿ

i“0

Brqsi pAqpA
sqi, ν “

Z

k
s

^

. (3.15)

If this scheme is used and A2, A3, . . . , As are computed only once, then evaluating

rpAq requires the solution of one multiple right-hand side linear system and

Cr
spkq :“ s´ 1` 2

Z

k
s

^

´ 2rs � ks (3.16)

matrix multiplications. The continuous relaxation of (3.16) is minimized by taking

s “
?

2k, but, as Figure 3.2 shows, depending on k, either taking the floor or the

ceiling of this quantity may yield the lowest flop count. Therefore, for k P N0, we

define

sr
k :“ arg min

"

Cr
t
?

2ku
pkq, Cr

r
?

2ks
pkq

*

. (3.17)

Figure 3.2 seems to suggests that if either rounding of
?

2k divides k, then setting

s to it in (3.15) will give Cr
sr

k
pkq. In the following we prove that, when that happens, sr

k

in fact minimizes the cost function Cr
spkq among all possible choices of s.

Lemma 3.5. Let A P Cnˆn and let p and q be polynomials of degree k P N0. If t
?

2ku � k or

r
?

2ks � k, then setting s in (3.15) to t
?

2ku or r
?

2ks, respectively, minimizes the number of

matrix multiplications required to evaluate both ppAq and qpAq by the scheme (3.15).

3.3 rational matrix functions of order rk{ks 61

Proof. Let s “ t
?

2ku. By definition of the floor operator, s2 ď 2k ă ps` 1q2, and thus

s
2
ď

k
s
ă

s
2
` 1`

1
2s

.

Since s � k, we have that k
s “

s`t
2 , where t “ 0 or 2 if s is even and t “ 1 if s is odd,

and thus that Cr
spkq “ 2s` t´ 3. In order to determine the number of multiplications

required when setting s ‰ s in (3.15), note that for ` P N such that ` ą ´s, we have

k
s` `

“
sps` tq
2ps` `q

“
1
2

´

s´ `` t` η`
t

¯

, η`
t :“

`2 ´ t`
s` `

. (3.18)

If s` ` � k, then η`
t ě ´

1
s`` ą ´1, thus

Y

k
s``

]

ě s´``t
2 and Cr

s``pkq ě 2s` t´ 3 “ Cr
spkq.

On the other hand, if s` ` ffl k, then
Y

k
s``

]

ě s´`´t´1
2 , and Cr

s``pkq ě 2s` t´ 2 ą Cr
spkq.

The proof for s “ r
?

2ks is rather similar. From ps´ 1q2 ă 2k ď s2 we have that

s
2
´ 1`

1
2s
ă

k
s
ď

s
2

,

and since s � k, that k
s “

s´t
2 , for t “ 0 or t “ 1. For ` ą ´s, one has that

k
s`` “

1
2ps´ `´ t` η`

´tq, and we can argue as above that if s` ` � k then Cr
s``pkq ě

2s´ t´ 3 “ Cr
spkq, while if s` ` ffl k, then Cr

s``pkq ě 2s´ t´ 2 ą Cr
spkq.

In order to characterize the optimal degrees for the scheme (3.15), we need to define

the cost function Crpkq “ min1ďsďktCr
spkqu, which represents the number of matrix

multiplications needed to evaluate a diagonal rational function by means of (3.15)

over all reasonable choices of s. In analogy with quarter-squares, we say that a P N

is an eight-square if there exists b P N such that a “ tb2{8u.

Proposition 3.6. The degree of numerator and denominator of a rational function is optimal

for the evaluation scheme (3.15) if and only if it is a positive eight-square.

Proof. Let r “ p{q, where p and q are polynomials of degree k P N0. Note that

when s ffl k, then adding s´ pk mod sq more terms to p and q does not increase the

number of matrix multiplications required by the scheme (3.15), thus we only need

to consider cases where k is an integer multiple of s.

62 optimality of the paterson–stockmeyer method

Let us begin by showing that if k is a positive eight-square then it is optimal. Note

that k “ xp2x ` tq, for some x P N0, if k ” t pmod 4q and t “ 0, 1, or 2, and that

k “ p2x ` 1qpx ` 1q for some x P N, if k ” 3 pmod 4q. We consider the four cases

separately. In the following, we always assume that ` P Z is such that ` ą ´s and

that j P N.

If k “ 2x2, then s “
?

2k “ 2x, and since s � k, by Lemma 3.5 the minimum number

of matrix multiplications required to evaluate rpAq is Cr
spkq “ 2s´ 3. Since

k` j
s` `

“
1
2

´

s´ `` η`
j

¯

, η`
j :“

`2 ` 2j
s` `

,

and η`
j ą 0, we have that s` ` � k` j only if η`

j ě 1, which implies that Cr
s``pk` jq ě

2s´ 2 ą Cr
spkq.

If k “ xp2x` 1q, then k is an integer multiple of s “ r
?

2ks “ 2x` 1, thus Cr
spkq “

2s´ 4 and

k` j
s` `

“
1
2

´

s´ `´ 1` η`
j

¯

, η`
j :“

`2 ` `` 2j
s` `

,

Being strictly positive, η`
j must be at least 1 for s` ` to divide k ` j, which implies

that Cr
s``pk` jq ě 2s´ 3 ą Cr

spkq.

If k “ 2xpx` 1q, then s “ t
?

2ku “ 2x, and Cr
spkq “ 2s´ 1. On the other hand,

k` j
s` `

“
1
2

´

s´ `` 2` η`
j

¯

, η`
j :“

`2 ´ 2`` 2j
s` `

,

where as before η`
j ą 0. In order for s` ` to divide k` j, we have that η`

j must be at

least 1, which in turn gives that Cr
s``pk` jq “ 2s ą Cr

spkq.

Finally, if k “ p2x` 1qpx` 1q, then s “ r
?

2ks “ 2x` 1 and Cr
spkq “ 2s´ 2 Moreover

k` j
s` `

“
1
2

´

s´ `` 1` η`
j

¯

, η`
j :“

`2 ´ `` 2j
s` `

,

where η`
j ą 0. As before, since s` ` � k` j only if η`

j ě 1, we have that Cr
s``pk` jq “

2s´ 1 ą Cr
spkq.

3.4 diagonal padé approximants to the matrix exponential 63

We have established that all eight-squares are optimal degrees for the evaluation

scheme (3.15). In order to prove that all optimal degrees are eight-squares, it suffices

to note that for all n P N there exists an eight-square k such that Crpkq “ n. By

Definition 3.1, optimal orders must be unique, therefore all optimal degrees must be

eight-squares.

In view of this result, the sequence of optimal orders for the scheme (3.15) with

s “ sr
k in (3.17) is par

i qiPN, where

ar
i “

Z

pi` 3q2

8

^

. (3.19)

Moreover, since Crpar
i q “ i, the rational function of highest order that can be evaluated

with i matrix multiplications is that of order rar
i {a

r
i s.

3.4 diagonal padé approximants to the matrix

exponential

Let r “ p{q be the rk{ks diagonal Padé approximant to the exponential. The eval-

uation of these rational matrix functions deserves special attention, as the identity

qpxq “ pp´xq allows for a much faster evaluation of r at a matrix argument. Let

µe
k “ tk{2u and µo

k “ tpk´ 1q{2u. By separating the µe
k ` 1 powers of A of even degree

from the µo
k ` 1 powers of odd degree, we can write

ppAq “
k
ÿ

i“0

ci Ai “

µe
k

ÿ

i“0

c2i A2i ` A
µo

k
ÿ

i“0

c2i`1A2i “: Ue
`

A2˘` AUo
`

A2˘ ,

qpAq “ pp´Aq “ Ue
`

A2˘´ AUo
`

A2˘ ,

which shows that once Ue
`

A2
˘

and AUo
`

A2
˘

are available, evaluating ppAq and qpAq

requires no additional matrix multiplication.

64 optimality of the paterson–stockmeyer method

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

k

C
e sp

kq

s “
X
a

k´ 1{2
\ X

a

k´ 1{2
\

� k´1
2

s “
P
a

k´ 1{2
T P

a

k´ 1{2
T

� k´1
2

s “ se
k in (3.22), k “ ae

i in (3.25)

Figure 3.3: Number of matrix multiplications required to evaluate rk{ks Padé approximant
to the matrix exponential, for k between 1 and 50, by means of the scheme (3.20),
for s “

X
a

k´ 1{2
\

and s “
P
a

k´ 1{2
T

. The dotted and dashed lines mark the
values of k for which k´1

2 is an integer multiple of
X
a

k´ 1{2
\

and
P
a

k´ 1{2
T

,
respectively; the circles mark the number of matrix multiplications required to
evaluate the diagonal Padé approximants to the matrix exponential of optimal
order (in the sense of Definition 3.1) for the evaluation scheme (3.20).

As Ue
`

A2
˘

and Uo
`

A2
˘

are polynomials in A2, they can be evaluated by means of

the scheme

Ue
`

A2˘ “

νe
ÿ

i“0

BrUes

i

`

A2˘ `A2s˘i
, Uo

`

A2˘ “

νo
ÿ

i“0

BrUos

i

`

A2˘ `A2s˘i
, (3.20)

where νe “
X

µe
k{s

\

and νo “
X

µo
k{s

\

, and the powers of A2 are computed only once.

Computing A2, A4, . . . , A2s requires s matrix multiplications, evaluating the polyno-

mials Ue
`

A2
˘

and Uo
`

A2
˘

require
Y

µe
k

s

]

´ rs � µe
ks and

Y

µo
k

s

]

´ rs � µo
ks, respectively,

and one additional matrix multiplication is needed to compute AUo
`

A2
˘

. Therefore

evaluating rpAq requires one matrix inversion and

Ce
spkq :“ s` 1`

Z

µe
k

s

^

`

Z

µo
k

s

^

´ rs � µe
ks ´ rs � µo

ks (3.21)

matrix multiplications. The continuous relaxation of (3.21) is approximately mini-

mized by taking s “
b

k´ 1
2 but, as Figure 3.3 shows, the two roundings do not

typically yield the same computational cost.

3.4 diagonal padé approximants to the matrix exponential 65

Therefore, as in (3.17) we define

se
k :“ arg min

"

Ce
Y?

k´ 1
2

]pkq, Ce
Q?

k´ 1
2

Upkq
*

. (3.22)

Lemma 3.7. Let A P Cnˆn, let k P N0 be odd, let p and q be the numerator and denominator

of the rk{ks Padé approximant to the exponential, respectively, and let s f “
X
a

k´ 1{2
\

and

sc “
P
a

k´ 1{2
T

. If s f �
k´1

2 or sc �
k´1

2 , then setting s to s f or sc, respectively, minimizes

the number of matrix multiplications required to evaluate both qpAq and ppAq by means of

the scheme (3.20).

Proof. If k is odd, then µe
k “ µo

k “
k´1

2 . For s f , we have

k´ 1
2s f

“
s f ` t

2
, (3.23)

where t “ 0 or 2, if s f is even, and t “ 1, if s f is odd, and it is easy to see that

Ce
s f
pkq “ 2s f ` t´ 1. From (3.23), we have that k´ 1 “ s f ps f ` tq, thus for ` ą ´s f

Ce
s f``

pkq ě

$

’

&

’

%

s f ` `` 2
Y

θ`t

]

´ 1, s f ` ` �
k´ 1

2
,

s f ` `` 2
Y

θ`t

]

` 1, s f ` ` ffl
k´ 1

2
,

where

θ`t :“
s f ´ `` t` η`

t

2
, η`

t :“
`2 ´ t`
s f ` `

.

If s f ` ` � k´1
2 , then Ce

s f``
pkq ě Ce

s f
pkq if and only if

X

θ`t
\

ě
s f´``t

2 . Note that, for

α, β P R`, we have that tαu ă β if and only if α ă rβs, and since s f ` t is even, s f ´ `` t

has the same parity as `. Therefore, we only need to show that there exists no ` ą ´s f

such that

θ`t ă

R

s f ´ `` t
2

V

“

$

’

’

&

’

’

%

s f ´ `` t
2

, ` is even,

s f ´ `` t` 1
2

, ` is odd.

66 optimality of the paterson–stockmeyer method

These two conditions are equivalent to η`
t being strictly smaller than 0 and 1, respec-

tively. However, since s f ` ` � k´1
2 , the quantity η`

t must be an integer and have the

same parity as `, and we need to ensure only that there are no values of ` such that

η`
t ď ´2 or η`

t ď ´1. It is easy to check that for t between 0 and 2, η`
t ď ´2 is

equivalent to `2 ` p2´ tq ` 2s f ď 0, which has no even solutions, whereas η`
t ď ´1 is

equivalent to `2 ` p1´ tq ` s f ď 0, which has no odd solutions.

If s f ` ` ffl k´1
2 , then by the same argument we conclude that we need to prove that

there exists no ` ą ´s f such that

θ`t ă

R

s f ´ `` t´ 2
2

V

“

$

’

’

&

’

’

%

s f ´ `` t´ 2
2

, ` is even,

s f ´ `` t´ 1
2

, ` is odd.

These two conditions lead to the inequalities η`
t ă ´2 and η`

t ă ´1, which have no

solution for t between 0 and 2, as discussed above.

The proof for sc is similar. In this case, we have that sc �
k´1

2 if and only if

k´ 1
2sc

“
sc ´ 1

2
,

and thus that Ce
sc
pkq “ 2sc ´ 2. It is easy to show that, for ` ą ´sc,

Ce
sc``

pkq ě

$

’

&

’

%

sc ` `` 2
Y

θ`
]

´ 1, sc ` ` �
k´ 1

2
,

sc ` `` 2
Y

θ`
]

` 1, sc ` ` ffl
k´ 1

2
,

where

θ` :“
sc ´ `´ 1` η`

2
, η` :“

`2 ` `

sc ` `
.

Therefore, if sc ` ` � k´1
2 , we only have to prove that there exists no ` ą ´sc such that

θ` ă

R

sc ´ `´ 1
2

V

“

$

’

&

’

%

sc ´ `´ 1
2

, ` is even,

sc ´ `

2
, ` is odd,

3.4 diagonal padé approximants to the matrix exponential 67

or, in other words, that η` ă 0 if ` is even, and η` ă ´1 if ` is odd. Both conditions

are trivially satisfied, since η` ě 0 for |`| ě 1. Finally, if sc ` ` ffl k´1
2 , we obtain the

conditions η` ă ´1 if ` is even and η` ă ´2 if ` is odd, both of which clearly satisfy

since η` is nonnegative.

We are now ready to characterize the optimality of the Paterson–Stockmeyer meth-

od for the diagonal Padé approximants to the matrix exponential.

Proposition 3.8. A degree k P N0 is optimal for the evaluation scheme (3.20) if and only if

k “ 2 or

k “ 2
Qy

4

U

ˆ

y´ 2
Z

y´ 1
4

^˙

` 1, (3.24)

for some y P N.

Proof. First, note that for k to be optimal, both µe
k and µo

k must be integer multiples

of s, since otherwise, we could add more terms at no cost until both conditions are

satisfied. Therefore, if at least one of µe
k or µo

k is greater than 1, then k must be odd: if

it were not, then s P N0 could not divide both µo
k and µe

k “ µo
k ` 1.

It is easy to show that k “ 2 is an optimal degree for the evaluation scheme (3.20).

We have that s “ 1, µo
k “ 0, and µe

k “ 1, which gives Ce
1p2q “ 1, and

2` j
2p1` `q

“
1
2

´

1´ `` η`
j

¯

, η`
j :“

2`2 ` j` 1
1` `

.

Since η`
j is strictly positive, if 1` ` ffl 2`j

2 , then Ce
1``p2` jq ě 2 ą Ce

1p2q, whereas if

1` ` � 2`j
2 , then η`

j must be an integer larger than 2, which again gives Ce
1``p2` jq ě

2 ą Ce
1p2q.

It is convenient to split the expression for k into four cases that allow us to get rid

of the floor and ceiling operators in (3.24). To that end, we note that if k ” rt pmod 4q,

then k “ 2xp2x` tq ` 1, for some x P N and t “ rt´ 2.

68 optimality of the paterson–stockmeyer method

The three cases |t| ď 1 can be addressed together. We have that s “ 2x ` t or,

equivalently, that x “ s´t
2 , and since k´1

2s “ x, we can conclude that Ce
spkq “ 4x` t´ 1.

Now let ` P Z be such that ` ą ´s and let j P N0. We have that

k` j´ 1
2ps` `q

“
1
2

ˆ

sps´ tq ` j
s` `

˙

“
1
2

´

s´ `´ t` η`
t,j

¯

, η`
t,j :“

`2 ´ t`` j
s` `

.

Note that η`
t,j ą 0. If s ` ` ffl k`j´1

2 , then Ce
s``pk ` jq ě 4x ` t ` 1 ą Ce

spkq. On the

other hand, if s` ` � k`j´1
2 , then η`

t,j must be a positive integer in order for k`j´1
2ps``q to

be integer, which gives that Ce
s``pk` jq “ 4x` t ą Ce

spkq.

Finally we consider the case t “ 2. From s “ 2x, we get that x “ s{2 and k´ 1 “

sps` 2q, which gives Ce
spkq “ 4x` 1. We have that

k` j´ 1
2ps` `q

“
1
2

ˆ

sps` 2q ` j
s` `

˙

“
1
2
ps´ `` 2` η`

j q, η`
j :“

`2 ´ 2`` j
s` `

.

It is easy to see that η`
j is nonnegative, and in particular that η`

j “ 0 only if j “ 1 and

` “ 1. Thus, if s` ` ffl k`j´1
2 , then Ce

s``pk` jq ě 4x` 3 ą Ce
spkq. When s` ` � k`j´1

2 ,

on the other hand, since s` ` ffl k
2 and η`

j is positive, in particular η`
j must be larger

than 1. Therefore, we have that Ce
s``pk` jq ě 4x` 2 ą Ce

spkq.

The converse follows from the same argument as that used in the proof of the

analogous result in Proposition 3.6.

In view of Proposition 3.8, the sequence of optimal degrees for the evaluation

scheme (3.20) is pae
i qiPN, where

ae
0 “ 1,

ae
1 “ 2,

ae
i “ 2

R

i´ 1
4

Vˆ

i´ 3
Z

i´ 1
4

^˙

` 1, i ą 2.

(3.25)

Moreover, we have that Cepae
i q “ i and that the diagonal Padé approximant to the ma-

trix exponential of highest order that can be evaluated with i matrix multiplications

is that of degree rae
i {a

e
i s.

3.5 conclusion 69

3.5 conclusion

The scheme (3.3), which gives rise to the Paterson–Stockmeyer method, and the re-

lated evaluation schemes (3.15) and (3.20), are customary tools for evaluating trun-

cated Taylor series and diagonal Padé approximants. They all feature a parameter, s,

which is usually chosen by approximately solving an optimization problem over the

integers. For the evaluation of polynomials of matrices, we showed that the Paterson–

Stockmeyer choices s “
X
?

k
\

and s “
P
?

k
T

always minimize the number of matrix

multiplications required to evaluate a polynomial of degree k. For the evaluation of

diagonal approximants, we gave sufficient conditions for the parameter s to minimize

the computational cost of the corresponding evaluation schemes. Tests not reported

here suggest that, for all k P N0, the choices s “ sr
k in (3.17) and s “ se

k in (3.22) mini-

mize the number of matrix multiplications required by the schemes (3.15) and (3.20),

respectively, and we believe that exploring this question further might lead to results

similar to that in Proposition 3.2 for the Paterson–Stockmeyer method.

When relying on polynomial or rational approximation to evaluate matrix func-

tions, one is usually interested only in approximants whose order is maximal for a

given computational cost. By exploiting the results discussed above, we showed that

the sequences of optimal orders (in the sense of Definition 3.1) for the three evalu-

ation schemes (3.3), (3.15), and (3.20), are (3.14), (3.19), and (3.25), respectively. We

wonder whether similar results can be derived for rational functions of any order, and

more generally, for schemes that require the evaluation of three or more polynomials

of any degree. This will be the subject of future work.

acknowledgements

The author thanks Stefan Güttel, Nicholas J. Higham, Bruno Iannazzo, Froilán Dopi-

co, and the two anonymous referees for reading early drafts of the manuscript and

providing comments that greatly improved the presentation of this work.

70 BIBLIOGRAPHY

bibliography

[1] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the

matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[2] , Improved inverse scaling and squaring algorithms for the matrix logarithm,

SIAM J. Sci. Comput., 34 (2012), pp. C153–C169.

[3] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, New algorithms for computing

the matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37

(2015), pp. A456–A487.

[4] P. Alonso, J. Ibáñez, J. Sastre, J. Peinado, and E. Defez, Efficient and accurate

algorithms for computing matrix trigonometric functions, J. Comput. Appl. Math, 309

(2017), pp. 325–332.

[5] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hy-

perbolic functions: Theory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016),

pp. 1453–1477.

[6] M. Caliari and F. Zivcovich, On-the-fly backward error estimate for matrix ex-

ponential approximation by Taylor algorithm, J. Comput. Appl. Math, 346 (2019),

pp. 532–548.

[7] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the

logarithm of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001),

pp. 1112–1125.

[8] E. Defez, J. Ibáñez, J. Sastre, J. Peinado, and P. Alonso, A new efficient and

accurate spline algorithm for the matrix exponential computation, J. Comput. Appl.

Math, 337 (2018), pp. 354–365.

[9] M. Fasi and N. J. Higham, An arbitrary precision scaling and squaring algorithm for

the matrix exponential, MIMS EPrint 2018.36, Manchester Institute for Mathemat-

ical Sciences, The University of Manchester, UK, 2018.

http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1016/j.cam.2016.05.015
http://dx.doi.org/10.1016/j.cam.2016.05.015
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1016/j.cam.2017.11.029
http://dx.doi.org/10.1016/j.cam.2017.11.029
http://eprints.ma.man.ac.uk/2677
http://eprints.ma.man.ac.uk/2677

BIBLIOGRAPHY 71

[10] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix loga-

rithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491.

[11] S. Güttel and Y. Nakatsukasa, Scaled and squared subdiagonal Padé approximation

for the matrix exponential, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 145–170.

[12] G. Hargreaves, Topics in Matrix Computations: Stability and Efficiency of Algo-

rithms, PhD thesis, University of Manchester, Manchester, England, 2005.

[13] N. J. Higham, The scaling and squaring method for the matrix exponential revisited,

SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[14] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[15] N. Hoffman, O. Schwartz, and S. Toledo, Efficient evaluation of matrix polyno-

mials, Parallel Proc. Appl. Math., (2018), pp. 24–35.

[16] D. Kressner and R. Luce, Fast computation of the matrix exponential for a Toeplitz

matrix, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 23–47.

[17] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications

necessary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.

[18] J. Sastre, Efficient evaluation of matrix polynomials, Linear Algebra Appl., 539

(2018), pp. 229–250.

[19] J. Sastre, J. Ibáñez, P. Alonso, J. Peinado, and E. Defez, Two algorithms for

computing the matrix cosine function, J. Comput. Appl. Math, 312 (2017), pp. 66–

77.

[20] J. Sastre, J. Ibáñez, and E. Defez, Boosting the computation of the matrix exponen-

tial, Appl. Math. Comput., 340 (2019), pp. 206–220.

[21] J. Sastre, J. Ibáñez, E. Defez, and P. Ruiz, New scaling-squaring Taylor algo-

rithms for computing the matrix exponential, SIAM J. Matrix Anal. Appl., 37 (2015),

pp. A439–A455.

http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/15m1027553
http://dx.doi.org/10.1137/15m1027553
http://eprints.maths.manchester.ac.uk/581/1/hargreaves05.pdf
http://eprints.maths.manchester.ac.uk/581/1/hargreaves05.pdf
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1007/978-3-319-78024-5_3
http://dx.doi.org/10.1007/978-3-319-78024-5_3
http://dx.doi.org/10.1137/16m1083633
http://dx.doi.org/10.1137/16m1083633
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1016/j.laa.2017.11.010
http://dx.doi.org/10.1016/j.amc.2017.05.019
http://dx.doi.org/10.1016/j.amc.2017.05.019
http://dx.doi.org/10.1016/j.amc.2018.08.017
http://dx.doi.org/10.1016/j.amc.2018.08.017
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1137/090763202

72 BIBLIOGRAPHY

[22] C. Van Loan, A note on the evaluation of matrix polynomials, IEEE Trans. Automat.

Control, 24 (1979), pp. 320–321.

http://dx.doi.org/10.1109/tac.1979.1102005

4 COMPUT ING PR IMARY SOLUT IONS OF

EQUAT IONS INVOLV ING PR IMARY MATR IX

FUNCT IONS

Abstract. The matrix equation f pXq “ A, where f is an analytic function and

A is a square matrix, is considered. Some results on the classification of solutions

are provided. When f is rational, a numerical algorithm is proposed to compute all

solutions that can be written as a polynomial of A. For real data, the algorithm yields

the real solutions using only real arithmetic. Numerical experiments show that the

algorithm performs in a stable fashion when run in finite precision arithmetic.

Keywords: Schur normal form, block triangular matrices, substitution algorithm,

matrix equation, matrix function.

2010 MSC: 15A16, 15A24, 65F60.

4.1 introduction

We consider the matrix equation

f pXq “ A, (4.1)

where A, X P CNˆN and f is a complex function applied to a matrix (in the sense

of primary matrix functions, see section 4.2). Remarkable examples of (4.1) are the

matrix equations Xk “ A, eX “ A, and XeX “ A, which define the matrix kth

root [22], [16], the matrix logarithm [1], and the matrix Lambert W function [8], re-

spectively. Existence and finiteness of real and complex solutions to (4.1) are dis-

73

74 solution of primary matrix equations

cussed, along with other properties of this matrix equation, in the excellent treatise

by Evard and Uhlig [7].

In order to better understand the computational properties of the matrices that

satisfy (4.1), it is useful to distinguish the solutions that can be written as a polyno-

mial of A, or primary solutions, from those that cannot, called nonprimary. A useful

characterization of primary solutions in terms of their eigenvalues is provided in [7].

After discussing some further properties of primary solutions, we focus our atten-

tion on isolated solutions, that is, solutions that are unique in a neighbourhood. We

show that nonprimary solutions are not isolated, characterize isolated solutions in

terms of their eigenvalues, and show that they are in fact primary solutions with

some additional properties.

Turning to numerical computation, we restrict our attention to the equation

rpXq “ A, (4.2)

where r “ p{q, and p and q are polynomials. The algorithm we propose is designed

in the spirit of and generalizes the method developed by Björck and Hammarling [3]

for the square root of a matrix, tailored for the real case by Higham [13] and extended

to the kth root by Smith [22].

First, we consider the case of block upper triangular A and develop an algorithm

that, using a sequence of substitutions, computes a primary solution to (4.2) given

its diagonal blocks. Next we discuss how the Schur decomposition, which reduces

any matrix to block upper triangular form with a similarity transformation, can be

exploited to extend our approach to general matrices, and show that the algorithm, if

no breakdown occurs, computes a primary solution, if it exists, given its eigenvalues.

Finally, we show that the algorithm is applicable with no breakdown if and only if

there exists a unique solution with given diagonal blocks (which correspond to a

given set of eigenvalues), which, moreover, is proved to be equivalent to requiring

that the solution is isolated.

Being restricted to isolated solutions is not a severe limitation, since solutions that

are not isolated are typically of little or no computational interest. Indeed a solu-

4.2 background and notation 75

tion rX that is not isolated is either nonprimary or ill-posed, in the sense that there

exists a neighborhood U
rX of rX and a matrix E, such that the perturbed equation

rpXq “ A` tE has no solution in U
rX for any sufficiently small t ą 0. For instance,

when computing the square root of a matrix A with the algorithm of Björck and

Hammarling, one requires that, if A is singular, then the eigenvalue zero is simple [3],

which is a necessary and sufficient condition for a primary solution to X2 “ A to be

isolated. Primary square roots can exist when the zero eigenvalue has multiplicity

larger than one, but in this case they are not isolated, and there exist arbitrarily small

perturbations of A having no square root.

In the next section, we provide some background material, and in the following

we give some theoretical results regarding the solutions of matrix equations of the

type (4.1). In section 4.4, we consider (4.2) and present our algorithm for block upper

triangular matrices, discussing both the complex and the real Schur form. Section 4.5

is devoted to numerical experiments that illustrate the numerical behavior of our

algorithm, and in section 4.6 we draw some conclusions and discuss lines of future

research.

4.2 background and notation

Polynomials and rational functions. By convention, a summation is equal to

zero if the starting index exceeds the ending one. We denote by Crzs the poly-

nomials of the complex variable z with complex coefficients, and by Ckrzs Ă Crzs

the complex polynomials of degree at most k. Let ppzq :“
řm

k“0 ckzk P Cmrzs and

qpzq :“
řn

k“0 dkzk P Cnrzs be coprime polynomials with nonzero leading coefficients.

The quotient rpzq :“ ppzqqpzq´1 is a rational function of type rm, ns. In the following

sections, when using p, q, or r, we will always refer to the functions defined above,

and in particular, c0, . . . , cm will denote the coefficients of p and d0, . . . , dn those of q.

76 solution of primary matrix equations

In order to evaluate a polynomial p at a point x0, we make use of Horner’s evalu-

ation scheme [10, Alg. 9.2.1], that is, we define the polynomials prjspzq “
řm´j

i“0 ci`jzi,

for j “ 0, . . . , m, and evaluate pr0spz0q “ ppz0q by means of the recursion

prmspz0q “ cm,

prjspz0q “ z0 prj`1spz0q ` cj, for j “ 0, . . . , m´ 1.

Let f : Ω Ñ C, where Ω Ă C, and let x, y P Ω. We denote by f rx, ys the divided

difference operator, defined by

f rx, ys “

$

’

’

’

&

’

’

’

%

f 1pxq, x “ y,

f pxq ´ f pyq
x´ y

, x ‰ y,

which implicitly requires f to be differentiable at x, when x “ y. The divided differ-

ences over k` 1 numbers, ordered so that equal numbers are contiguous, are

f rx0, . . . , xks “

$

’

’

’

&

’

’

’

%

f pkqpx0q

k!
, x0 “ x1 “ ¨ ¨ ¨ “ xk,

f rx1, . . . , xks ´ f rx0, . . . , xk´1s

xk ´ x0
, otherwise.

This definition can be extended to any set of k ` 1 numbers by assuming that the

divided differences are symmetric functions of their arguments. For the construc-

tion above to make sense, the function has to be differentiable t times at any point

repeated t` 1 times.

Primary matrix functions. Let A P CNˆN and let Z P CNˆN be such that Z´1AZ “

J “ diagpJpλ1, τ1q, . . . , Jpλν, τνqq is the Jordan canonical form of A, with

Jpλ, mq :“

»

—

—

—

—

—

—

—

–

λ 1

λ
. . .
. . . 1

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Cmˆm,

4.2 background and notation 77

where missing entries should be understood as zeros. In order to simplify the nota-

tion, we will often omit the diagonal element and the size of the Jordan block and

write Ji for Jpλi, miq. The index of the eigenvalue λ, denoted by ιpλq, is the size of

the largest Jordan block where λ appears. An eigenvalue with index one is said to be

semisimple, otherwise it is said to be defective; a semisimple eigenvalue appearing in

only one block is said to be simple.

Let the complex function f and its derivatives up to the order ιpλkq ´ 1 be defined

at λk for k “ 1, 2, . . . , ν. Then we can define the primary matrix function

f pAq :“ Z f pJqZ´1 “ Z diagp f pJ1q, f pJ2q, . . . , f pJνqqZ´1, (4.3)

where

f pJkq “

»

—

—

—

—

—

—

—

–

f pλkq f 1pλkq . . . f pmk´1qpλkq

pmk´1q!

f pλkq
. . .

...
. . . f 1pλkq

f pλkq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This definition does not depend on the matrix Z, and it can be shown that if f is a

primary matrix function then f pM´1AMq “ M´1 f pAqM for any M invertible and A

such that f pAq is well-defined. We will refer to this fundamental property as commu-

tativity with similarities, and it will be used throughout the paper. A consequence is

that if A “ diagpA1, . . . , Aνq is block diagonal, then f pAq “ diagp f pA1q, . . . , f pAνqq.

Moreover, it is easy to show that f pAq as defined in (4.3) coincides with a polyno-

mial that interpolates f in the Hermite sense on the spectrum of A [14, Rem. 1.10].

Therefore, if T P CNˆN is block upper triangular, then f pTq has the same block struc-

ture as T, and if T11, . . . , Tνν are the diagonal blocks of T, then the diagonal blocks of

78 solution of primary matrix equations

f pTq are f pT11q, . . . , f pTννq. An explicit formula for the function of an upper triangular

matrix is [10, Thm. 9.1.4]

p f pTqqii “ f ptiiq, 1 ď i ď N,

p f pTqqij “
ÿ

i1“iăi2ă¨¨¨ăi`“j

ti1i2 ti2i3 ¨ ¨ ¨ ti`´1i` f rti1i1 , . . . , ti`i`s, 1 ď i ă j ď N,
(4.4)

where the sum is over all increasing sequences of integers starting with i and ending

with j.

Let J be a nontrivial Jordan block in which the eigenvalue λ appears. The Jordan

canonical form of f pJq consists of:

1. only one Jordan block associated with f pλq, if f 1pλq ‰ 0;

2. two or more Jordan blocks associated with f pλq, if f 1pλq “ 0.

In the latter case, we say that the function f splits the Jordan block J. A complete

description of the Jordan canonical form of f pAq in terms of that of A is given in [15,

sect. 6.2.25].

The Fréchet derivative of a matrix function f : Ω Ñ CNˆN at a point A P Ω Ă

CNˆN is the linear operator D f pAq : CNˆN Ñ CNˆN that satisfies

f pA` Eq “ f pAq `D f pAqrEs ` op}E}q,

for any E P CNˆN with sufficiently small norm.

A measure of the sensitivity of matrix functions, with respect to perturbation of the

argument A, is given by the relative condition number, which, for any subordinate

norm } ¨ }, is defined as [14, eq. (3.2)]

κ f pAq “ lim
εÑ0

sup
}E}ďε}A}

} f pA` Eq ´ f pAq}
ε} f pAq}

. (4.5)

We conclude this section with a lemma and a corollary that will be useful later on.

4.3 classification of the solutions 79

Lemma 4.1. Let A P CNˆN be upper bidiagonal, let ei, for i “ 1, . . . , N, be the standard

basis of CN , and let f pAq and f ra11, aNNs be well-defined. Then for any δ P C we have that

f pA` δe1eT
Nq “ f pAq ` δ f ra11, aNNse1eT

N . (4.6)

Proof. Let T :“ A ` δe1eT
N and F “ f pTq. If we partition T “:

”

T1 v
0 tNN

ı

, with

T1 P CpN´1qˆpN´1q, from the properties of primary matrix functions, we have that

F “

”

f pT1q rv
0 f ptNNq

ı

and thus that pFqij “ p f pAqqij, for j ă N. Using the partition

T “

”

t11 w
0 T2

ı

, with T2 P CpN´1qˆpN´1q, we get that pFqij “ p f pAqqij for i ă N. By

using (4.4), for the top right element of the matrix we have

pFq1N “
ÿ

i1“1ăi2ă¨¨¨ăi`“N

ti1i2 ti2i3 ¨ ¨ ¨ ti`´1i` f rti1i1 , ti2i2 , . . . , ti`i`s.

Since tij “ 0 for i ă j ´ 1 and pi, jq ‰ p1, Nq, the sum can be restricted to the two

sequences i1 “ 1, i2 “ 2, . . . , iN “ N and i1 “ 1, i2 “ N, giving

pFq1N “ t12 . . . tN´1,N f rt11, . . . , tNNs ` t1N f rt11, tNNs “ p f pAqq1N ` δ f ra11, aNNs,

which concludes the proof of the identity (4.6).

Corollary 4.2. We have the following relations, with δ P C:

paq if A “ λI and f is differentiable at λ, then f pA` δe1eT
Nq “ f pAq ` δ f 1pλqe1eT

N ;

pbq if A “ Jpλ, Nq, and f is differentiable at λ, then f pA` δe1eT
Nq “ f pAq ` δ f 1pλqe1eT

N ;

pcq if A “ diagpJpλ, kq, Jpµ, N ´ kqq, with λ ‰ µ and 1 ď k ă N, and f is well-defined

at A, then f pA` δe1eT
Nq “ f pAq ` δ f rλ, µse1eT

N .

4.3 classification of the solutions

The matrix equation f pXq “ A, with f analytic, may have zero, finitely many, or

infinitely many solutions. All these scenarios are possible, and here we are concerned

80 solution of primary matrix equations

with a classification of the solutions in terms of properties that are relevant from a

computational viewpoint. In section 4.3.1 we relate the notion of primary solution

to that of primary matrix function, in section 4.3.2, we consider isolated solutions

and characterize them in several ways, and we conclude by briefly discussing critical

solutions in section 4.3.3.

4.3.1 Primary solutions

The matrices that satisfy (4.1) may define a function of the matrix A, but in general

solutions to (4.1) need not be primary functions of A, in the sense of section 4.2. The

matrix
“

0 1
0 0

‰

, for instance, satisfies the 2 ˆ 2 matrix equation X2 “ 0, but is not a

primary function of the zero matrix. Solutions to a matrix equation can be divided

into two classes, those that are primary functions of A and those that are not. In this

section, we give some clarifications on this topic.

Let A P CNˆN , let f : Ω Ñ C be a function analytic on the open set Ω Ď C and

let X P CNˆN be a solution to f pXq “ A such that f is defined on the spectrum

of X. A solution is primary if it can be written as a polynomial of A, and nonprimary

otherwise.

A necessary and sufficient condition for a solution to be primary is provided by

the following result, where an eigenvalue ξ of the solution X is said to be critical if

f 1pξq “ 0.

Theorem 4.3 (Evard and Uhlig [7, Thm. 6.1]). A solution X P CNˆN to the equation

f pXq “ A is primary if and only if the following two conditions are true:

1. for any two distinct eigenvalues ξ1 and ξ2 of X, we have f pξ1q ‰ f pξ2q;

2. all critical eigenvalues of X (if any) are semisimple.

The definition of primary solution as a polynomial of A is related to the concept

of primary function of a matrix. Informally, we could say that any primary solution

is obtained as “an inverse of f applied to the matrix A”. We now make this notion

precise.

4.3 classification of the solutions 81

Let λ1, . . . , λs be the distinct eigenvalues of A, ordered so that the first t are

semisimple and the remaining are not. We say that a solution X is primary in the sense

of functions if X “ pf´1pAq where pf´1 : tλ1, . . . , λtuYU Ñ C is analytic on an open set

U Ě tλt`1, . . . , λsu and is such that p f ˝ pf´1qpzq “ idpzq for any z P tλ1, . . . , λtu Y U .

Requiring that pf´1 is analytic on the eigenvalues that correspond to nontrivial

Jordan blocks of A guarantees that pf´1 is defined on the spectrum of A and thus that

pf´1pAq is well-defined in the sense of (4.3). These two definitions are in fact the same,

as the following proposition shows.

Proposition 4.4 (Equivalence of definitions of primary solution). Let f be a complex

function analytic on Ω Ă C and let A P CNˆN . A solution X P CNˆN to f pXq “ A with

eigenvalues in Ω can be written as a polynomial of A if and only if it is primary in the sense

of functions, i.e., if and only if X “ f´1pAq, where f´1 is an inverse of f defined on the

spectrum of A and analytic at the defective eigenvalues of A.

Proof. Assume that X “ f´1pAq for some inverse of f . Since f´1pAq is a primary

function of A, there exists a polynomial p P Crzs such that X “ f´1pAq “ ppAq,

which implies that X is a primary solution to f pXq “ A.

Conversely, suppose that X “ ppAq for some p P Crzs. From f pXq “ f pppAqq “ A,

it follows that f pppλqq “ λ for any eigenvalue λ of A. By taking pf´1pλq “ ppλq for

any λ, it is enough to show that if λ is not semisimple, then pf´1pλq can be extended

analytically in a neighborhood of λ to an inverse of f , and that X “ pf´1pAq.

Let J be a nontrivial Jordan block of A in which the eigenvalue λ appears. From

f pppAqq “ A it follows that f pppJqq “ J, which entails that p f ˝ pq1pλq ‰ 0, as f ˝ p

would otherwise split the Jordan block. The latter inequality implies, in turn, that

f 1pppλqq ‰ 0 and thus that f is invertible in a neighborhood of ppλq “ pf´1pλq with

analytic inverse [9, sect. 4.6]. Thus, we can extend pf´1 in an open neighborhood of λ

to a function such that f ˝ pf´1 “ id.

In order to prove that X “ pf´1pAq, it suffices to show that ppf´1qpkqpλq “ ppkqpλq

for k “ 1, . . . , `´ 1, where ` is the size of rJ, the largest Jordan block in which λ

appears. First observe that f ppprJqq “ rJ implies that p f ˝ pqpkqpλq “ idpkqpλq and thus

that p f ˝ pqpkqpλq “ p f ˝ pf´1qpkqpλq, for k “ 1, . . . , `´ 1, since p f ˝ pf´1qpkqpλq “ idpkqpλq.

82 solution of primary matrix equations

Next, we show by induction that for any k ą 0 and any function g such that f ˝ g

is analytic in a neighborhood of λ, one has that

p f ˝ gqpkqpλq “ f 1pgpλqqgpkqpλq ` hkpg; λq,

where hk is a polynomial in f 2pgpλqq, . . . , f pkqpgpλqq, gpλq, g1pλq, . . . , gpk´1qpλq. Choos-

ing h1pg; λq “ 0 verifies the equality for k “ 1, whereas for the inductive step we

have

p f ˝ gqpk`1qpλq “ f 1pgpλqqgpk`1qpλq ` f 2pgpλqqg1pλqgpkqpλq ` h1kpg; λq

“: f 1pgpλqqgpk`1qpλq ` hk`1pg; λq,

where hk`1pg; λq is a polynomial in f 2pgpλqq, . . . , f pk`1qpgpλqq, gpλq, . . . , gpkqpλq.

Finally, we can prove that ppf´1qpkqpλq “ ppkqpλq for k “ 0, . . . , `´ 1. For k “ 0, this

holds by definition of pf´1, while for k ă `´ 1, from p f ˝ pqpk`1qpλq “ p f ˝ pf´1qpk`1qpλq

we have that f 1pppλqqppk`1qpλq ` hk`1pp; λq “ f 1ppf´1pλqqppf´1qpk`1qpλq ` hk`1p
pf´1; λq.

By the inductive hypothesis we have that hk`1pg; λq “ hk`1p
pf´1; λq, and by recalling

that f 1ppf´1pλqq “ f 1pppλqq ‰ 0, we can conclude that ppk`1qpλq “ ppf´1qpk`1qpλq.

Another property of nonprimary solutions is that they are not isolated, as we show

in the next section.

4.3.2 Isolated solutions

A solution X to f pXq “ A is isolated (in the topology induced by any matrix norm

on CNˆN) if there exists a neighborhood U of X where the matrix equation has a

unique solution. We will characterize isolated solution in several ways, and will start

by showing that nonprimary solutions are not isolated.

Theorem 4.5. Let A P CNˆN , and let X P CNˆN be a nonprimary solution to the matrix

equation f pXq “ A where f is a complex function analytic at the spectrum of X. Then X

4.3 classification of the solutions 83

is not isolated. Moreover, the set of solutions is unbounded and there are infinitely many

solutions having the same spectrum as X.

Proof. In view of Theorem 4.3, if X is nonprimary, then necessarily either one of

its critical eigenvalues, ξ say, is defective, or f takes the same value at two distinct

eigenvalues ξi ‰ ξ j.

If ξ is defective, then there exists an invertible matrix M such that M´1XM“

”

J1 0
0 J2

ı

,

where J2 “ Jpξ, kq is a Jordan block of size k ą 1 associated with ξ. Using the notation

of Corollary 4.2, we define the parametrized matrix

Xpδq :“ M

»

—

–

J1 0

0 J2 ` δe1eT
k

fi

ffi

fl

M´1,

with δ P C. Noticing that

f pXpδqq “ M

»

—

–

f pJ1q 0

0 f pJ2 ` δe1eT
k q

fi

ffi

fl

M´1 “ M

»

—

–

f pJ1q 0

0 f pJ2q

fi

ffi

fl

M´1 “ f pXq,

where the second equality follows from Corollary 4.2pbq with f 1pξq “ 0, shows that

Xpδq is a solution to f pXq “ A for any δ, and since limδÑ0 Xpδq “ X, we conclude

that X is not isolated.

If the matrix has two distinct eigenvalues ξi ‰ ξ j such that f pξiq “ f pξ jq, the proof

is similar, and it suffices to consider the block J2 “

”

Jpξ1,k1q 0
0 Jpξ2,k2q

ı

, with k1, k2 ě 1,

and use Corollary 4.2pcq with f rξi, ξ js “ 0.

In both cases, for any δ P C the matrix Xpδq has the same spectrum as X by

construction, and the set tXpδq : δ P Cu is infinite and unbounded.

The converse of the Theorem 4.5 is not true. Indeed, the set of isolated solutions

may be a strict subset of primary solutions. The next results provides several inter-

esting characterizations of the isolated solutions of f pXq “ A. As we will see, the

algorithm we introduce in section 4.4 to solve (4.2), can compute a solution if and

only if it is isolated.

84 solution of primary matrix equations

Theorem 4.6. Let f : Ω Ñ C be an analytic non-constant function on the domain Ω Ă C.

Let A P CNˆN , and let X P CNˆN be a solution to f pXq “ A, with eigenvalues ξ1, . . . , ξN

in Ω. The following are equivalent:

paq X is isolated;

pbq X is primary with simple or no critical eigenvalues, that is,

1. for any two distinct eigenvalues ξi and ξ j of X, we have f pξiq ‰ f pξ jq;

2. all critical eigenvalues of X (if any) are simple;

pcq X is the unique solution with eigenvalues ξ1, . . . , ξN ;

pdq f rξi, ξ js ‰ 0 for i, j “ 1, . . . , N, with i ‰ j.

Proof. paq ñ pbq. By Theorem 4.5, if X is isolated, then it is primary, and we need to

prove only that all its critical eigenvalues are simple (we know that they are semisim-

ple by Theorem 4.3). By contradiction, assume that ξ is a semisimple critical eigen-

value of X with multiplicty at least 2. Then there exists an invertible matrix M such

that M´1XM “

”

J1 0
0 J2

ı

, where J2 “ ξ I, where I has size ` ą 1. With the notation of

Corollary 4.2, the matrix

Xpδq “ M

»

—

–

J1 0

0 J2 ` δe1eT
`

fi

ffi

fl

M´1

is a solution to f pXq “ A for any δ P C, since

f pXpδqq “ M

»

—

–

f pJ1q 0

0 f pJ2 ` δe1eT
` q

fi

ffi

fl

M´1 “ M

»

—

–

f pJ1q 0

0 f pJ2q

fi

ffi

fl

M´1 “ f pXq

where the second equality follows from Corollary 4.2paq with f 1pξq “ 0. Since

limδÑ0 Xpδq “ X, X is not isolated.

pbq ñ pcq. The eigenvalues of A are the image under f of the eigenvalues of

any solution, in particular, they are f pξ1q, . . . , f pξNq. Assume that X is primary with

simple critical eigenvalues, and let Y be a solution with the same eigenvalues as

X. This implies that Y has simple critical eigenvalues, and that f pξiq ‰ f pξ jq for

4.3 classification of the solutions 85

any pair of distinct eigenvalues ξi ‰ ξ j. Therefore, by Theorem 4.3, Y must be

primary; moreover, the images of these critical eigenvalues are simple eigenvalues

of A as well. In particular, the defective eigenvalues of A (if any) are image of

noncritical eigenvalues of X. By Proposition 4.4, Y “ pf´1pAq and X “ f´1pAq, where

both pf´1 and f´1 are inverses of f and are analytic at the images of noncritical

eigenvalues of X (and Y), and thus are analytic at the defective eigenvalues of A.

Since pf´1pλq “ f´1pλq for any eigenvalue λ of A, and the two functions are analytic

and coincide in a neighborhood of λ if the eigenvalue is defective (the inverse of an

analytic function is unique), we have that Y “ pf´1pAq “ f´1pAq “ X.

pcq ñ paq. Without loss of generality, assume that if ξi ‰ ξk then f pξiq ‰ f pξkq, since

otherwise the solution X would be nonprimary and, by Theorem 4.5, there would be

solutions other than X, but with the same spectrum as X.

Since the eigenvalues of A are f pξ1q, . . . , f pξNq, any solution to f pXq “ A has

eigenvalues ζ1, . . . , ζN such that f pζ1q “ f pξ1q, . . . , f pζNq “ f pξNq. Let tτpiqj ujPJi be

the (possibly empty) set of solutions to f pxq “ f pξiq other than ξi. If Ji is empty for

each i, then the eigenvalues of any solution must be ξ1, . . . , ξN and X is the unique

solution, hence it is isolated.

Let us now assume that some of the Ji are nonempty. If Ji is nonempty, then

τ
piq
j ‰ ξk for each j and k: this is true by definition when ξi “ ξk, and when ξi ‰ ξk,

by the assumption above, since f pτpiqj q “ f pξiq ‰ f pξkq. Moreover, since the zeros of a

non-constant analytic function cannot have accumulation points in the domain of ana-

lyticity [4, sect. 143], ξk cannot be an accumulation point of the set tτpiqj ujPJi and hence

ε i,k :“ infjPJi |τ
piq
j ´ ξk| must be positive for each k. Set ε :“ mini :Ji‰Hmink“1,...,N ε i,k,

and note that ε ą 0.

A solution Y ‰ X, must have at least one eigenvalue of the type pτ :“ τ
piq
j for some

i and j. If that is the case, then mink“1,...,N |pτ ´ ξk| ě ε or, in other words, at least one

eigenvalue of Y has distance at least ε from any eigenvalue of X. On the other hand,

86 solution of primary matrix equations

since the eigenvalues are continuous functions of the entries of a matrix, there exists

a neighborhood U of X, such that for any Z P U , we have

max
ηPσpZq

min
k“1,...,N

|η ´ ξk| ă ε{2,

where σpZq is the spectrum of Z. Therefore Y does not belong to U , and X is isolated.

pbq ô pdq. A necessary and sufficient condition for f rξi, ξ js “ 0 for i ‰ j, is that

either ξi ‰ ξ j, with f pξiq “ f pξ jq or ξi “ ξ j and f 1pξiq “ 0. These two conditions are

equivalent to X being either nonprimary or primary with multiple critical eigenval-

ues.

We observe that, when a primary solution X of f pXq “ A is not isolated, the

corresponding solution X is ill-posed, that is, a small perturbation of A may produce

an equation that has no solutions near X.

By Theorem 4.6, a primary solution X that is not isolated has at least one semisim-

ple eigenvalue ξ with multiplicity k ą 1 and such that f 1pξq “ 0. Hence λ “ f pξq

is a semisimple eigenvalue of A, with the same multiplicity as ξ since X is primary.

There exists a nonsingular matrix M such that M´1AM “

”

J 0
0 λIk

ı

, where λ is not an

eigenvalue of J. For ε ą 0, the perturbed equation f pXq “ Apεq where

Apεq “ M diag

¨

˚

˚

˚

˚

˚

˚

˚

˝

J,

»

—

—

—

—

—

—

—

—

—

—

—

—

–

λ ε

.

λ ε

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

M´1,

has no solutions with eigenvalue ξ. Indeed, as primary matrix functions split Jordan

blocks in presence of critical eigenvalues, if there exists Xpεq such that f pXpεqq “ Apεq,

it must have an eigenvalue µ, such that f pµq “ λ and f 1pµq ‰ 0, which in turn implies

that µ ‰ ξ. Therefore, the solution Xpεq can be ruled out from a sufficiently small

neighborhood of X.

4.3 classification of the solutions 87

4.3.3 Critical solutions

Let f be an analytic complex function and let D f pMq : CNˆN Ñ CNˆN be the Fréchet

derivative of f at the matrix M P CNˆN . A solution X to the equation f pXq “ A

is said to be critical if D f pXq is singular, and noncritical otherwise. We may easily

characterize critical solutions.

Proposition 4.7. Let f be a complex function, let A P CNˆN , and let X P CNˆN be a

solution to the matrix equation f pXq “ A. If f is differentiable at X, then the derivative

D f pXq is nonsingular if and only if the following two conditions are fulfilled:

1. for any two distinct eigenvalues ξi and ξ j of X, we have f pξiq ‰ f pξ jq;

2. none of the eigenvalues of X is critical for f .

Moreover, these conditions are equivalent to requiring that f rξi, ξ js ‰ 0, for i, j “ 1, . . . , N,

where ξ1, . . . ξN are the eigenvalues of X.

Proof. Observe that the two conditions hold if and only if the divided differences

of any two eigenvalues of X is not zero. Since the the eigenvalues of D f pXq are the

divided differences of eigenvalues of X [14, Thm. 3.9], this is equivalent to requiring

that D f pXq is nonsingular.

A further property of nonprimary solutions is that of being critical.

Proposition 4.8. Let f be an analytic complex function, let A P CNˆN , and let X P CNˆN

be a nonprimary solution to the matrix equation f pXq “ A. Then D f pXq is singular.

Proof. In view of Theorem 4.3, if X in not primary, then X has either two distinct

eigenvalues ξi and ξ j such that f pξiq “ f pξ jq and thus f rξi, ξ js “ 0, or a defective

eigenvalue ξ such that f rξ, ξs “ f 1pξq “ 0. Since the eigenvalues of D f pXq are the

divided differences of two eigenvalues of X [14, Thm. 3.9], both cases yield a singular

derivative.

88 solution of primary matrix equations

4.4 a substitution algorithm

Given A P CNˆN , we want to find the primary solutions X P CNˆN to (4.2). To this

end, we first reduce this equation to

ppXq “ AqpXq, (4.7)

then consider a (block) triangular form of A, such as the Schur form, and devise an

algorithm to compute the entries of X. We begin by showing that (4.2) and (4.7) are

equivalent.

In the scalar case, if p and q are coprime, then a root of p cannot be a root of

q and vice versa, and thus the scalar equation ppxq
qpxq “ a has a solution if and only if

ppxq “ aqpxq does. The matrix version of this implication is also true, as the following

result shows.

Proposition 4.9. Let p P Cmrzs, q P Cnrzs be coprime. Then X P CNˆN is a solution to

ppXqqpXq´1 “ A if and only if it satisfies ppXq “ A qpXq.

Proof. If X is such that ppXqqpXq´1 “ A, then ppXq “ AqpXq. For the other impli-

cation, first note that if X is such that ppXq “ AqpXq and qpXq is nonsingular, then

ppXqqpXq´1 “ A, hence it is enough to show that qpXq is nonsingular.

For the sake of contradiction, assume that qpXq is singular. Then there exists a

nonzero vector b P CN , such that qpXqb “ 0, and thus ppXqb “ AqpXqb “ 0. Since

the set I “ ts P Crzs : spXqb “ 0u is an ideal in a principal ideal domain, it is

generated by a minimal polynomial spxq P Crzs, that is not constant since b ‰ 0 and

thus I ‰ Crzs. Hence, spxq|qpxq and spxq|ppxq, which leads to a contradiction since

ppxq and qpxq are coprime.

Let us consider a similarity transformation that reduces A to a block upper trian-

gular matrix U´1AU “: T “ rTijsi,j“1,...,ν P CNˆN , where Tij P Cτiˆτj , with
řν

i“1 τi “ N

and Tij “ 0 for i ą j.

We are mostly interested in the Schur decomposition, where U is unitary and T is

upper triangular, and, for A P RNˆN , in the the real Schur decomposition, where U

4.4 a substitution algorithm 89

is real orthogonal and T is upper quasi-triangular. Nevertheless, we prefer to work in

greater generality, as a different blocking strategy may allow for more efficient imple-

mentations of the algorithms (for instance, in order to exploit caching and parallelism

in modern computer architectures).

Since matrix polynomials commute with similarities, X is a solution to (4.2) if and

only if Y :“ U´1XU satisfies rpYq “ T, and in view of Proposition 4.9, in order to

solve (4.2) we can work with the simpler matrix equation ppYq “ TqpYq. By exploiting

Horner’s scheme for polynomial evaluation [10, Alg. 9.2.1], we can rewrite the latter

equation as Pr0s “ TQr0s, where Pr0s “ ppYq and Qr0s “ qpYq, are defined recursively

by

Prms “ cm I, Qrns “ dn I.

Prm´1s “ cm´1 I `YPrms, Qrn´1s “ dn´1 I `YQrns,
...

...

Pr1s “ c1 I `YPr2s, Qr1s “ d1 I `YQr2s,

Pr0s “ c0 I `YPr1s, Qr0s “ d0 I `YQr1s,

(4.8)

If we look for primary solutions only, we may assume that Y is block upper tri-

angular with the same block structure as T, which implies in turn that all Pruss and

Qrvss have the same block upper triangular structure. We adopt the following nota-

tion: for a matrix M with the same block structure as T, we denote by Mij the block

in position pi, jq of M.

We assume that the ν blocks along the diagonal of Y are known, for instance they

can be deduced by a direct formula when the size is 1 or 2. Note that in most cases the

diagonal blocks can be chosen in several ways, and that this choice determines what

solution the algorithm will compute among all those that are primary. We discuss

these points in details in the next section.

The blocks along the diagonal of the matrices Prus and Qrvs, for u “ 0, . . . , m´ 1

and v “ 0, . . . , n´ 1, can be uniquely determined by means of (4.8), and in order to

90 solution of primary matrix equations

compute the blocks in the upper triangular part of Y, Prus and Qrvs, note that for

1 ď i ă j ď ν, we have

Prusij “

j
ÿ

k“i

YikPru`1s
kj “YiiP

ru`1s
ij `YijP

ru`1s
jj `

j´1
ÿ

k“i`1

YikPru`1s
kj , u “ 0, . . . , m´ 1,

Qrvsij “

j
ÿ

k“i

YikQrv`1s
kj “ YiiQ

rv`1s
ij `YijQ

rv`1s
jj `

j´1
ÿ

k“i`1

YikQrv`1s
kj , v “ 0, . . . , n´ 1.

(4.9)

By substituting (4.9) for Pru`1s
ij and Qrv`1s

ij into those for Prusij and Qrvsij , respectively,

and recursively repeating this procedure, we get, as shown in the following proposi-

tion, an expression where Yij appears together with blocks of Y, Prus, and Qrvs lying

to the left of the block in position pi, jq or below it. This discussion translates imme-

diately into a two-step algorithm for computing Y: first compute the diagonal blocks

and then compute the off-diagonal blocks a superdiagonal at a time.

Proposition 4.10. Let p P Cmrzs and q P Cnrzs be coprime, let T P CNˆN be block upper

triangular, let Y P CNˆN be a solution to the matrix equation ppYq “ TqpYq with the same

block structure as T, and let Prus, Qrvs P CNˆN , for u “ 0, . . . , m and v “ 0, . . . , n, be as

in (4.8). Then Prus and Qrvs have the same block structure as T, and their off-diagonal blocks,

for 1 ď i ă j ď ν, are given by the formulae

Prusij “

m´u
ÿ

e“1

Ye´1
ii YijP

ru`es
jj `

m´u´1
ÿ

f“1

Y f´1
ii Cru` f s

ij , u “ 0, . . . , m´ 1,

Qrvsij “

n´v
ÿ

g“1

Yg´1
ii YijQ

rv`gs
jj `

n´v´1
ÿ

h“1

Yh´1
ii Drv`hs

ij , v “ 0, . . . , n´ 1,

(4.10)

where

Crusij “

j´1
ÿ

k“i`1

YikPruskj , Drvsij “

j´1
ÿ

k“i`1

YikQrvskj .

4.4 a substitution algorithm 91

Moreover, one has the following

m
ÿ

e“1

Ye´1
ii YijP

res
jj ´ Tii

n
ÿ

g“1

Yg´1
ii YijQ

rgs
jj

“

j
ÿ

k“i`1

TikQr0skj ´

m´1
ÿ

f“1

Y f´1
ii Cr f sij ` Tii

n´1
ÿ

h“1

Yh´1
ii Drhsij . (4.11)

Proof. The two claims in (4.10) can be proved by induction on an auxiliary variable

k. We limit ourselves to the recurrence for Prus, the proof for Qrvs being analogous.

For u “ m´ 1, equation (4.10) reduces to Prm´1s
ij “ cmYij, which follows directly from

the definition of Prm´1s in (4.8). For the inductive step, we have, for 1 ă k ď m,

Prm´ks
ij “ YiiP

rm´k`1s
ij `YijP

rm´k`1s
jj `

j´1
ÿ

k“i`1

YikPrm´k`1s
kj

“

k
ÿ

e“1

Ye´1
ii YijP

rm´k`es
jj `

k´1
ÿ

f“1

Y f´1
ii Crm´k` f s

ij .

In order to establish (4.11), note that one can rewrite Pr0s “ TQr0s as

Pr0sij ´ TiiQ
r0s
ij “

j
ÿ

k“i`1

TikQr0skj .

Substituting (4.10) for Pr0sij and Qr0sij and simplifying concludes the proof.

4.4.1 Complex Schur form

When T P CNˆN is upper triangular, the blocks along the diagonal of T are of size

1ˆ1 and ν “ N. Equation (4.11) involves just scalars and can be written as ψijyij “ ϕij,

where

ψij :“
m
ÿ

e“1

ye´1
ii presjj ´ tii

n
ÿ

g“1

yg´1
ii qrgsjj , (4.12)

92 solution of primary matrix equations

and

ϕij :“
j
ÿ

k“i`1

tikqr0skj ´

m´1
ÿ

f“1

y f´1
ii Cr f sij ` tii

n´1
ÿ

h“1

yh´1
ii Drhsij . (4.13)

If tii is a diagonal element of T, then for i “ 1, . . . , N, yii will be any of the at most

maxpm, nq distinct roots of the polynomial ppxq ´ tiiqpxq “ 0. In order to compute the

off-diagonal elements of Y, we can see the relation ψijyij “ ϕij as an equation

ψijx “ ϕij, (4.14)

whose unique solution is yij when ψij ‰ 0 and the values yhk with h´ k ă i´ j are

known quantities.

We give necessary and sufficient conditions for (4.14) to have unique solution, and

relate them to the characterization of isolated solutions given in section 4.3. We start

with a couple of technical lemmas, then we give the main theorem.

Lemma 4.11. Let ppxq “
řm

i“0 cixi, let a, b P C and let prkspxq “
řm´k

i“0 ck`ixi, for

k “ 0, . . . , m, be the sequence of stages of Horner’s rule applied to p. Then

χ :“
m
ÿ

k“1

ak´1 prkspbq “ pra, bs. (4.15)

Proof. By definition of pra, bs, we have to prove that if a “ b then χ “ p1paq, whereas

if a ‰ b χ “
ppaq´ppbq

a´b . In both cases we have

m
ÿ

k“1

ak´1 prkspbq “
m
ÿ

k“1

ak´1
ˆ m´k

ÿ

i“0

ck`ibi
˙

“

m
ÿ

`“1

c`

ˆ `´1
ÿ

k“0

akb`´k´1
˙

.

If a “ b, then we get

m
ÿ

k“1

ak´1 prkspbq “
m
ÿ

`“1

c``a`´1 “ p1paq,

4.4 a substitution algorithm 93

whereas, for a ‰ b we have

m
ÿ

k“1

ak´1 prkspbq “
m
ÿ

`“1

c`
a` ´ b`

a´ b
“

1
a´ b

ˆ m
ÿ

`“0

c`a` ´
m
ÿ

`“0

c`b`
˙

“
ppaq ´ ppbq

a´ b
,

which concludes the proof.

Lemma 4.12. Let ppxq “
řm

i“0 cixi and qpxq “
řn

j“0 djxj, let r “ p{q, and let a, b P C be

such that qpaq ‰ 0 and qpbq ‰ 0. Then

ψ :“
m
ÿ

i“1

ai´1 prispbq ´ rpaq
n
ÿ

j“1

aj´1qrjspbq ‰ 0

if and only if either a ‰ b and rpaq ‰ rpbq or a “ b and r1paq ‰ 0.

Proof. By Lemma 4.11, when a ‰ b we have that

ψ “
ppaq ´ ppbq ´ rpaqpqpaq ´ qpbqq

a´ b
, (4.16)

which is nonzero if and only if

ppaq ´ ppbq ´
ppaq
qpaq

pqpaq ´ qpbqq ‰ 0, (4.17)

or equivalently

rpaq ‰ rpbq.

On the other hand, if a “ b, then

ψ “ p1paq ´ rpaqq1paq “
p1paqqpaq ´ ppaqq1paq

qpaq
“ r1paqqpaq, (4.18)

which is nonzero if and only if r1paq ‰ 0.

Theorem 4.13. Let T P CNˆN be upper triangular, let p, q, Y, Prus, for u “ 0, . . . , m, and

Qrvs, for v “ 0, . . . , n, be as in Proposition 4.10, and let rpxq “ ppxqqpxq´1. Then equa-

tion (4.14) has a unique solution yij for all 1 ď i ă j ď N if and only if rryii, yjjsqpyjjq ‰ 0.

94 solution of primary matrix equations

Proof. It is enough to show that for ψij in (4.12), we have that ψij “ rryii, yjjsqpyjjq. If

yii “ yjj, then the proof is the same as in (4.18). When yii ‰ yjj, by using (4.16), we

get that

ψij “
´ppyjjq ` ppyiiqqpyjjq{qpyiiq

yii ´ yjj
“

rpyiiq ´ rpyjjq

yii ´ yjj
qpyjjq “ rryii, yjjsqpyjjq,

as required.

Corollary 4.14 (Applicability of the Schur algorithm for isolated solutions). Let r“ p{q

be a rational function, with p P Cmrzs and q P Cnrzs coprime, and let Y P CNˆN be a

solution to rpYq “ T, with T P CNˆN upper triangular. Let Prus for u “ 0, . . . , m, and Qrvs

for v “ 0, . . . , n, be as in (4.9). Then the following two conditions are equivalent:

paq Y is an isolated solution;

pbq the Schur algorithm is applicable and computes Y, if we choose yii as solution of the

equation ppxq ´ tiiqpxq “ 0, for i “ 1, . . . , N, that is, equation (4.14) has yij as unique

solution, for 1 ď i ă j ď N.

Proof. By Theorem 4.13, (4.14) has unique solution if and only if rryii, yjjsqpyjjq ‰ 0,

for 1 ď i ă j ď N. Proposition 4.9 ensures that qpyjjq ‰ 0, for j “ 1, . . . , N, since

qpYq is nonsingular (recall that the eigenvalues of qpYq are qpy11q, . . . , qpyNNq). Thus,

equation (4.14) has a unique solution if and only if rryii, yjjs ‰ 0 for 1 ď i ă j ď N,

which in turn, by the symmetry of divided differences, is equivalent Theorem 4.6pdq,

that is equivalent to requiring that Y is isolated.

These results show that if we focus on a primary solution with simple critical

eigenvalues, then we can compute the solution to the triangular equation rpYq “ T,

by first computing the diagonal elements of Y, taking care of choosing the same

branch for the same eigenvalue of T, and then computing the elements yij, for i ă j,

by means of (4.14), one superdiagonal at a time. This is the basis of Algorithm 4.1,

which we call the Schur algorithm.

4.4 a substitution algorithm 95

Algorithm 4.1: Schur algorithm for rational matrix equations.

Input : A P CNˆN , c P Cm`1 coefficients of p, d P Cn`1 coefficients of q.
Output : X P CNˆN such that ppXqq´1pXq « A.

1 Compute the complex Schur decomposition A :“ UTU˚.
2 for i “ 1 to N do
3 yii Ð a solution to ppxq ´ tiiqpxq “ 0
4 prm´1s

ii Ð cm´1 ` cmyii
5 for u “ m´ 2 down to 0 do
6 prusii Ð cu ` yii p

ru`1s
ii

7 qrn´1s
ii Ð dn´1 ` dnyii

8 for v “ n´ 2 down to 0 do
9 qrvsii Ð dv ` yiiq

rv`1s
ii

10 for ` “ 1 to N ´ 1 do
11 for i “ 1 to N ´ ` do
12 j Ð i` `
13 for f “ 1 to m´ 1 do
14 Cr f sij “

řj´1
k“i`1 yik pr f skj

15 for h “ 1 to n´ 1 do
16 Drhsij “

řj´1
k“i`1 yikqrhskj

17 rhs Ð
řj

k“i`1 tikqr0skj ´
řm´1

f“1 y f´1
ii Cr f sij ` tii

řn´1
h“1 yh´1

ii Drhsij

18 lhs Ð
řm

e“1 ye´1
ii presjj ´ tii

řn
g“1 yg´1

ii qrgsjj
19 yij Ð rhs{lhs
20 prm´1s

ij Ð cmyij

21 for u “ m´ 2 down to 1 do
22 prusij Ð yii p

ru`1s
ij ` yij p

ru`1s
jj ` Cru`1s

ij

23 qrn´1s
ij Ð dnyij

24 for v “ n´ 2 down to 0 do
25 qrvsij Ð yiiq

rv`1s
ij ` yijq

rv`1s
jj `Drv`1s

ij

26 X Ð UYU˚

96 solution of primary matrix equations

We now discuss the cost of the algorithm. Computing the Schur decomposition

of a square matrix of size N and recovering the result require 25N3 and 3N3 flops,

respectively. The for loop at line 2 requires O
`

pm`nqN
˘

flops, those on line 13 and 15

require pm´ 1qN3{3 and pn´ 1qN3{3, respectively, and evaluating the expression on

line 17 requires N3{3 flops. All the other operations within the loop on line 10 require

O
`

pm` nqN2
˘

. Therefore the asymptotic cost of the algorithm is
`

28` m`n´1
3

˘

N3.

Remark. Corollary 4.14 shows that our algorithm cannot compute primary solutions

with semisimple critical eigenvalues with multiplicity greater than one. We now

describe how the algorithm can be modified in order to compute these ill-posed

solutions.

Let Y be a primary solution to rpYq “ T and let ξ1, . . . , ξs, with s ą 0, be its critical,

and thus semisimple, eigenvalues with multiplicities ν1, . . . , νs, greater than one. We

have that λ` “ rpξ`q, for ` “ 1, . . . , s, is a semisimple eigenvalue of T with the same

multiplicity as ξ` (the multiplicity cannot be larger since Y is primary).

Using the procedure described in [2], it is possible to reorder the matrix T so that,

for ` “ 1, . . . , s, the occurrences of λ` are adjacent along the diagonal of T. By doing

so, we get a new matrix rT “ Q˚TQ, where Q is the unitary matrix that performs the

reordering. Since λ` is semisimple, the diagonal block of rT corresponding to λ` is

λ` I, and we get

rT “

»

—

—

—

—

—

—

—

–

rT11 ˚ ¨ ¨ ¨ ˚

λ1 I
. . .

...
. . . ˚

λs I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the asterisks represent possibly nonzero blocks and rT11 is a triangular block

collecting all the eigenvalues other than λ1, . . . , λs.

4.4 a substitution algorithm 97

Any solution rY to rprYq “ rT yields the solution Y “ QrYQ˚ of rpYq “ T, with the

same eigenvalues. Moreover, since rY is a primary function of rT, it has the structure

rY “

»

—

—

—

—

—

—

—

–

rY11 ˚ ¨ ¨ ¨ ˚

ξ1 I
. . .

...
. . . ˚

ξs I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where, ξi ‰ ξ j for i ‰ j, and rY11 collects all the eigenvalues not in the set tξ1, . . . , ξsu.

This implies that ryij “ 0 when ryii “ ryjj “ ξ` for some `, and thus we can determine

ryij, without solving (4.11), while (4.11) can be used for all other entries of the upper

triangular part of rY, for which the solution is unique. Therefore, in principle, any

primary solution could be computed using (a variation) of Algorithm 4.1, but in

practice, the problem is ill-posed and we focus our attention on solutions with simple

critical eigenvalues.

4.4.2 Real Schur form

When A P RNˆN and one is interested in real solutions to (4.2), in order to use

real arithmetic only, we consider the real Schur decomposition A :“ UTUT, where

U P RNˆN is orthogonal, and T P RNˆN is upper quasi-triangular and has ν ď N

diagonal blocks of size either 1ˆ 1 or 2ˆ 2. In the former case, the diagonal block Yii

can be computed as discussed in the previous section. Otherwise, we can rely on the

following result.

Proposition 4.15. Let M P R2ˆ2, and let V P R2ˆ2 be such that V´1MV “ diagpµ, µq, for

some µ “ a` ib, with b ‰ 0. Let f : tµ, µu Ñ C be a function such that f pµq “ f pµq, and

let f pµq “ c` id. Then

f pMq “
d
b

M`

´

c´
ad
b

¯

I. (4.19)

98 solution of primary matrix equations

Algorithm 4.2: Real Schur algorithm for rational matrix equations.

Input : A P CNˆN , c P Cm`1 coefficients of p, d P Cn`1 coefficients of q.
Output : X P CNˆN such that ppXqq´1pXq « A.

1 Compute the real Schur decomposition A :“ UTU˚.
2 for i “ 1 to ν do
3 Yii Ð a solution to ppXq ´ TiiqpXq “ 0
4 Prm´1s

ii Ð cm´1 Iτi ` cmYii
5 for u “ m´ 2 down to 0 do
6 Prusii Ð cu Iτi `YiiP

ru`1s
ii

7 Qrn´1s
ii Ð dn´1 Iτi ` dnYii

8 for v “ n´ 2 down to 0 do
9 Qrvsii Ð dv Iτi `YiiQ

rv`1s
ii

10 for ` “ 1 to N ´ 1 do
11 for i “ 1 to N ´ ` do
12 j Ð i` `
13 for f “ 1 to m´ 1 do
14 Cr f sij “

řj´1
k“i`1 YikPr f skj

15 for h “ 1 to n´ 1 do
16 Drhsij “

řj´1
k“i`1 YikQrhskj

17 sij Ð vec
`
řj

k“i`1 TikQr0skj ´
řm´1

f“1 Y f´1
ii Cr f sij ` Tii

řn´1
h“1 Yh´1

ii Drhsij

˘

18 Mij Ð
řm

e“1
`

Presjj

˘T
bYe´1

ii ´
řn

g“1
`

Qrgsjj

˘T
b
`

TiiY
g´1
ii

˘

19 vecpYijq Ð M´1
ij sij

20 Prm´1s
ij Ð cmYij

21 for u “ m´ 2 down to 1 do
22 Prusij Ð YiiP

ru`1s
ij `YijP

ru`1s
jj ` Cru`1s

ij

23 Qrn´1s
ij Ð dnYij

24 for v “ n´ 2 down to 0 do
25 Qrvsij Ð YiiQ

rv`1s
ij `YijQ

rv`1s
jj `Drv`1s

ij

26 X Ð UYUT

Proof. It is well known [14, Thm. 1.12] that f pMq coincides with the interpolating

polynomial of f at the eigenvalues of M, that is

ppxq “ f pµq
x´ µ

µ´ µ
` f pµq

x´ µ

µ´ µ
“

f pµq ´ f pµq
µ´ µ

x`
µ f pµq ´ µ f pµq

µ´ µ
. (4.20)

By replacing the definitions of µ and f pµq and simplifying, one obtains (4.19).

4.4 a substitution algorithm 99

In order to compute the off-diagonal blocks of Y, we need to solve for the block Yij

the matrix equation (4.11), which, by using the vec operator, can be rewritten as the

linear system

Mij vecpYijq “ vec

˜ j
ÿ

k“i`1

TikQr0skj ´

m´1
ÿ

f“1

Y f´1
ii Cr f sij ` Tii

n´1
ÿ

h“1

Yh´1
ii Drhsij

¸

,

where the coefficient matrix

Mij “

m
ÿ

e“1

´

Presjj

¯T
bYe´1

ii ´

n
ÿ

g“1

´

Qrgsjj

¯T
b
`

TiiY
g´1
ii

˘

(4.21)

can be of size 1, 2, or 4, depending on the size of the blocks Yii and Yjj. In the

following, we give necessary and sufficient conditions for M to be nonsingular.

Theorem 4.16. Let T P CNˆN be upper quasi-triangular, let p, q, Y, Prus, for u “ 0, . . . , m,

and Qrvs, for v “ 0, . . . , n, be as in Proposition 4.10, and let rpxq “ ppxqqpxq´1. Then

Mij in (4.21) is nonsingular for all 1 ď i ă j ď ν if and only if Y is a primary solution

to (4.2) with simple critical eigenvalues (if any).

Proof. Let pξi, uiq be an eigenpair of Yii and let pξ j, ujq be an eigenpair of Yjj. Then by

using the properties of the Kronecker product, we observe that

Mijpuj b uiq “

˜

m
ÿ

e“1

´

Presjj

¯T
bYe´1

ii ´

n
ÿ

g“1

´

Qrgsjj

¯T
b
`

TiiY
g´1
ii

˘

¸

puj b uiq

“

˜

m
ÿ

e“1

prespξ jq ξe´1
i ´ rpξiq

n
ÿ

g“1

qrgspξ jq ξ
g´1
i

¸

puj b uiq

“: ζpuj b uiq,

and conclude that pζ, uj b uiq is an eigenpair of Mij. Since the eigenpairs of Yii and

Yjj are chosen arbitrarily and everything is diagonalizable, all the eigenvalues of Mij

have this form, and we can conclude that the matrix Mij is nonsingular if and only if

ζ ‰ 0, which is guaranteed by Lemma 4.12, since Y is a primary solution to (4.2) with

simple or no critical eigenvalues.

100 solution of primary matrix equations

Conversely, let ξi, ξ j be eigenvalues of different diagonal blocks of Y, Yii and Yjj say,

then there exist pξi, uiq and pξ j, vjq eigenpairs of Yii and Yjj, respectively. Since Mij

is nonsingular, its eigenvalue
řm

e“1 prespξ jq ξe´1
i ´ rpξiq

řn
g“1 qrgspξ jq ξ

g´1
i is nonzero,

thus by Lemma 4.12 either ξi ‰ ξ j and rpξiq ‰ rpξ jq or ξi “ ξ j and r1pξiq ‰ 0. If ξi and

ξ j belong to the same block, then either the block is of size 1ˆ 1 or ξi is the complex

conjugate of ξ j, and again, ξi ‰ ξ j and rpξiq ‰ rpξ jq. Since ξi and ξ j were chosen

arbitrarily, the same relation is true for any chosen pair of eigenvalues, and Y is thus

a primary solution to (4.2).

4.5 numerical experiments

To the best of our knowledge, no other algorithm exists for the solution of the general

matrix equation rpXq “ A, thus we compare our approach with well-established tech-

niques for the computation of primary matrix functions. We consider the (approx-

imate) diagonalization method [5] and the Schur–Parlett algorithm [6, 20], applied

to the function r´1pzq, that is, the chosen inverse of rpzq in a neighborhood of the

eigenvalues of A.

If A is a normal, then its Schur form T “ U˚AU “ diagpλ1, . . . , λNq is diagonal,

and the solution to rpXq “ A is X “ U diag
`

r´1pλ1q, . . . , r´1pλNq
˘

U˚, and in this case

our algorithm coincides with the diagonalization. If A is nonnormal, then the diago-

nalization algorithm cannot be applied if A does not have a basis of eigenvectors. In

principle, this is not a severe restriction, since a small perturbation can make it diago-

nalizable, but the eigenvectors can still be severely ill-conditioned, and this may lead

to a significant loss of accuracy, as shown in Test 4.1.

On the other hand, the Schur–Parlett algorithm is a suitable choice for entire func-

tions, but none of the branches of r´1pzq is. This algorithm reduces the computation

of a primary matrix function to the evaluation of the same function on matrices

whose eigenvalues lie in a small ball, and the latter evaluation is performed by using

a truncation of the Taylor series expansion of f . This is a severe restriction, as the

4.5 numerical experiments 101

Taylor series of r´1pxq in a neighborhood of the eigenvalue λi of A need not converge

to r´1pλjq, where λj is another eigenvalue of A near λi. For instance, the Taylor series

expansion of the square root z1{2 at z0 “ ´10´ i, when evaluated at z “ ´10` i,

converges to ´p´10` iq1{2 rather than to p´10` iq1{2. Moreover, if r´1pλiq is a crit-

ical point of r, then there exists no differentiable inverse of r extending r´1pλq in a

neighborhood of λi. For these reasons, we cannot consider the Schur–Parlett method

in our experiments, and instead we focus our attention on the following algorithms.

‚ invrat: an implementation of Algorithm 4.1.

‚ diag: an implementation of the diagonalization approach to the evaluation of

matrix functions. In order to evaluate f pAq, this algorithm exploits the eigen-

decomposition A “: UDU´1, with U P CNˆN nonsingular and D P CNˆN

diagonal, and approximates f pAq as U f pDqU´1. This algorithm works for diag-

onalizable matrices only.

‚ approx_diag: the variant of diag discussed by Davies [5]. In order to improve

the stability of the diagonalization approach, this algorithm computes the eigen-

decomposition of a nearby matrix A ` εI “ rU rD rU´1 and then approximates

f pAq as rU f p rDqrU´1.

The experiments were performed using the 64-bit version of MATLAB 2017b on a

machine equipped with an Intel I5-5287U processor, running at 2.90GHz, and 8GiB of

RAM. The accuracy of the algorithms is measured by the relative error, in the spectral

norm, with respect to a reference solution computed by running invrat with about

512 digits of accuracy using the Advanpix Multiprecision Computing Toolbox [19].

We will denote the machine precision by u.

Test 4.1 (Forward stability). In this test, we investigate experimentally the forward

stability of invrat, diag, and approx_diag. We consider the matrix equation rpXq“A,

where

rpzq “
z3

120 `
z2

10 `
z
2 ` 1

´ z3

120 `
z2

10 ´
z
2 ` 1

102 solution of primary matrix equations

10´18

10´14

10´10

10´6

10´2

102

κr´1pAqu
invrat
diag
approx_diag

Figure 4.1: Relative forward errors of invrat, diag, and approx_diag on the test set.

is the r3{3s Padé approximant to the exponential at 0. For A, we consider a test set

including 63 real and complex nonnormal matrices, of size between 2ˆ 2 and 10ˆ 10,

from the MATLAB gallery function and from the literature of the matrix logarithm.

Figure 4.1 compares the relative forward error of the three algorithms with the

quantity κr´1pAqu, the 1-norm condition number of a branch of r´1 that extends a

real branch that contains 0 to the whole complex plane, estimated by means of the

funm_condest1 function from Higham’s Matrix Function Toolbox [12].

Out of the three algorithms we consider, diag appears to be the most unreliable,

as the relative forward error is of the order of 1 on more than 10% of the data set,

and often several orders of magnitude larger than κr´1pAqu. The forward error of

approx_diag is larger than κr´1pAqu on almost 30% of the data set, but is of the order

of 1 for four of the most ill-conditioned matrices only. Finally, the forward error

of invrat is approximately bounded by κr´1pAqu, which seems to indicate that the

algorithm behaves in a forward stable manner.

Test 4.2. Critical solutions to the scalar equation f pxq “ y are ill-conditioned, and

the effects of the ill-conditioning become obvious as the derivative of f approaches

zero. This is the case for matrices as well, thus the accuracy of our algorithm, as that

of any stable algorithm, will be affected by what solution is being computed. Since

4.5 numerical experiments 103

an isolated solution is uniquely determined by its eigenvalues, choosing a solution

of the scalar equation rpxq “ λi, for each distinct eigenvalue λi of A is enough to

fix what solution to rpXq “ A will be computed. This is equivalent to choosing an

inverse r´1 of r and computing X “ r´1pAq, as discussed in Proposition 4.4.

In order to illustrate the numerical behavior of the Schur recurrence algorithm

in computing different solutions of a matrix equation, we consider the equation

rpXq “ A, where rpzq “ ´z{pz2 ` 1q. This equation is equivalent to AX2 ` X` A “ 0,

which was considered for theoretical purposes in [17] and [18].

It is easy to show [17, Lem. 3] that the equation rpzq “ λ, with λ P C has two

distinct solutions if and only if λ R t0,˘1{2u, while

‚ if λ P p´8,´1{2s Y r1{2,`8q then the solutions have modulus 1;

‚ if λ P D :“ pCzRq Y p´1{2, 0q Y p0, 1{2q, then one solution lies inside the unit

disc, while the other lies outside.

We can identify two analytic branches for the inverse: r´1
1 : D Ñ tz P C : |z| ą 1u

and r´1
2 : D Y t0u Ñ tz P C : |z| ă 1u, with branch cuts p´8,´1{2s Y r1{2,`8q. The

points z “ ˘1 are critical points for rpzq, indeed rp˘1q “ ¯1{2.

We show how the accuracy of a solution rX to rpXq “ A degrades as the derivative

of the function r at rX approaches a singular matrix. This can occur in two cases:

when two eigenvalues of A are close to each other but the corresponding eigenvalues

of X are far apart (this may happen also when we choose the same branch for two

nearby eigenvalues, if there is a branch cut in the middle); or when an eigenvalue of

A is close to the image of a critical value of r and the corresponding eigenvalue of X

is close to a critical point of r. We will examine one example for each situation.

Let us first consider the matrix A “ M diagp1´ εi, 1` 2ε` εi, 1` 3ε` εiqM´1, where

ε “ 10´10, and M P R3ˆ3 is a matrix with entries drawn from a standard normal

distribution. As one can choose two branches of the inverse of r for each of the

eigenvalues of A, there exist eight isolated primary solutions X. For each of them,

we report in Table 4.1 the magnitude of the smallest eigenvalue of DrpXq and the

forward error of the solution rX computed by invrat. The solutions that select a

different branch of the inverse of r for the eigenvalues on the opposite sides of the

104 solution of primary matrix equations

Table 4.1: Solutions of the equation rpXq “ A in Test 4.2. The three columns contain the
spectrum of X, the magnitude of the smallest eigenvalue of DrpXq, and the relative
error of the solution computed by invrat.

eigenvalues of X κpDrpXqq }rX´ X}2{}X}2

tr´1
1 pλ1q, r´1

1 pλ2q, r´1
1 pλ3qu 1.34ˆ 10`10 1.86ˆ 10´06

tr´1
1 pλ1q, r´1

1 pλ2q, r´1
2 pλ3qu 3.00ˆ 10`10 3.57ˆ 10´06

tr´1
1 pλ1q, r´1

2 pλ2q, r´1
1 pλ3qu 3.00ˆ 10`10 3.60ˆ 10´06

tr´1
1 pλ1q, r´1

2 pλ2q, r´1
2 pλ3qu 1.00ˆ 10`00 1.96ˆ 10´16

tr´1
2 pλ1q, r´1

1 pλ2q, r´1
1 pλ3qu 1.00ˆ 10`00 3.32ˆ 10´16

tr´1
2 pλ1q, r´1

1 pλ2q, r´1
2 pλ3qu 3.00ˆ 10`10 1.84ˆ 10´06

tr´1
2 pλ1q, r´1

2 pλ2q, r´1
1 pλ3qu 3.00ˆ 10`10 4.04ˆ 10´06

tr´1
2 pλ1q, r´1

2 pλ2q, r´1
2 pλ3qu 1.34ˆ 10`10 4.91ˆ 10´07

10´15 10´13 10´11 10´9 10´7 10´5 10´3 10´110´17

10´13

10´9

10´5

δ

›

› rXδ ´ Xδ

›

›

2
›

›Xδ

›

›

2

Figure 4.2: Relative error of the Schur algorithm for computing the solution of the matrix
equation rpXδq “ Aδ in Test 4.2 with spectrum tr´1

1 pλ1q, r´1
1 pλ2q, r´1

1 pλ3qu.

branch cut lead to a better conditioned Fréchet derivative, and the solution computed

by invrat in this case has almost perfect accuracy.

To show that the accuracy of the solution computed by invrat are influenced by

the distance of the eigenvalues of A from the images of critical points, we investigate

the behavior of the algorithm when trying to compute solutions with almost critical

eigenvalues. We consider the matrix Aδ “ M diagp1{2´ δi, 1{2´ δ, 1` δiqM´1, where

M P R3ˆ3 is a random matrix as in the previous test. Note that the eigenvalues of A

tend to the image of the branch point of r as δ ą 0 tends to zero. Figure 4.2 shows

the relative error of the primary solution to rpXδq “ Aδ computed by invrat, as δ

4.6 conclusions 105

varies between 2ˆ 10´16 and 2ˆ 10´1. As expected, the accuracy of the solution is

adversely affected by the proximity of the eigenvalues of A to the image of a critical

point of r.

4.6 conclusions

After discussing some properties of the solutions to the matrix equation f pXq “ A,

with f analytic, we developed an algorithm for computing primary solutions to the

matrix equation rpXq “ A, where r is a rational function. Our approach relies on

a substitution algorithm based on Horner’s scheme for the evaluation of numerator

and denominator of r.

In previous work [11], [16] it has been shown that, for the kth root, the computa-

tional cost of the straightforward algorithm [22] can be reduced by considering sub-

stitution algorithms that exploit more efficient matrix powering schemes. However,

a fraction can be evaluated in several different ways, and some approaches require

fewer matrix multiplications than applying Horner’s method twice. One such exam-

ple is the Paterson–Stockmeyer method [21], which can require considerably fewer

matrix multiplications for polynomials of high degree.

In principle, any of these alternative schemes could produce a substitution algo-

rithm for the solution of the matrix equation rpXq “ A. The computational cost of

the substitution algorithm induced by a given evaluation scheme would be the same

as the cost of the evaluation scheme itself, since the number of intermediate matrices

to be computed depends on the number of matrix multiplications needed to evaluate

numerator and denominator. Therefore, starting with a cheaper evaluation scheme

for rational functions, it might be possible to develop cheaper algorithms for the so-

lution of matrix functions of the form rpXq “ A: this will be the subject of future

investigation.

106 BIBLIOGRAPHY

acknowledgements

The authors are grateful to Nicholas J. Higham and an anonymous referee for provid-

ing feedback on the manuscript and useful comments which improved the presenta-

tion of the paper.

bibliography

[1] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algo-

rithms for the matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C153–C169.

[2] Z. Bai and J. W. Demmel, On swapping diagonal blocks in real Schur form, Linear

Algebra Appl., 186 (1993), pp. 75–95.

[3] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix,

Linear Algebra Appl., 52/53 (1983), pp. 127–140.

[4] C. Carathèodory, Theory of Functions of a Complex Variable, vol. 1, Chelsea Pub-

lishing, New York, NY, USA, 2nd ed., 1958.

[5] E. B. Davies, Approximate diagonalization, SIAM J. Matrix Anal. Appl., 29 (2008),

pp. 1051–1064.

[6] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix

functions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[7] J.-C. Evard and F. Uhlig, On the matrix equation f pXq “ A, Linear Algebra Appl.,

162-164 (1992), pp. 447–519.

[8] M. Fasi, N. J. Higham, and B. Iannazzo, An algorithm for the matrix Lambert W

function, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 669–685.

[9] W. H. Fleming, Functions of Several Variables, Springer-Verlag, New York, NY,

USA, 2nd ed., 1977.

http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1016/0024-3795(93)90286-W
http://dx.doi.org/10.1016/0024-3795(83)80010-X
http://dx.doi.org/10.1137/060659909
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1016/0024-3795(92)90390-V
http://dx.doi.org/10.1137/140997610
http://dx.doi.org/10.1137/140997610

BIBLIOGRAPHY 107

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univer-

sity Press, Baltimore, MD, USA, 4th ed., 2013.

[11] F. Greco and B. Iannazzo, A binary powering Schur algorithm for computing pri-

mary matrix roots, Numer. Algorithms, 55 (2010), pp. 59–78.

[12] N. J. Higham, The Matrix Function Toolbox. http://www.maths.manchester.ac.

uk/~higham/mftoolbox.

[13] , Computing real square roots of a real matrix, Linear Algebra Appl., 88/89

(1987), pp. 405–430.

[14] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University

Press, Cambridge, UK, 1991.

[16] B. Iannazzo and C. Manasse, A Schur logarithmic algorithm for fractional powers

of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 794–813.

[17] B. Iannazzo and B. Meini, Palindromic matrix polynomials, matrix functions and

integral representations, Linear Algebra Appl., 434 (2011), pp. 174–184.

[18] , The palindromic cyclic reduction and related algorithms, Calcolo, 52 (2015),

pp. 25–43.

[19] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[20] B. N. Parlett, A recurrence among the elements of functions of triangular matrices,

Linear Algebra Appl., 14 (1976), pp. 117–121.

[21] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications

necessary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.

[22] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal.

Appl., 24 (2003), pp. 971–989.

http://dx.doi.org/10.1007/s11075-009-9357-1
http://dx.doi.org/10.1007/s11075-009-9357-1
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://dx.doi.org/10.1016/0024-3795(87)90118-2
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1017/CBO9780511840371
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1016/j.laa.2010.09.013
http://dx.doi.org/10.1016/j.laa.2010.09.013
http://dx.doi.org/10.1007/s10092-014-0106-z
http://www.advanpix.com
http://dx.doi.org/10.1016/0024-3795(76)90018-5
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/S0895479801392697

5 AN ARB ITRARY PREC I S ION SCAL ING AND

SQUAR ING ALGOR ITHM FOR THE MATR IX

EXPONENT IAL

Abstract. The most popular algorithms for computing the matrix exponential are

those based on the scaling and squaring technique. For optimal efficiency these are

usually tuned to a particular precision of floating-point arithmetic. We design a new

scaling and squaring algorithm that takes the unit roundoff of the arithmetic as input

and chooses the algorithmic parameters in order to keep the forward error in the un-

derlying Padé approximation below the unit roundoff. To do so, we derive an explicit

expression for all the coefficients in an error expansion for Padé approximants to the

exponential and use it to obtain a new bound for the truncation error. We also derive

a new technique for selecting the internal parameters used by the algorithm, which

at each step decides whether to scale or to increase the degree of the approximant.

The algorithm can employ diagonal Padé approximants or Taylor approximants and

can be used with a Schur decomposition or in transformation-free form. Our numer-

ical experiments show that the new algorithm performs in a forward stable way for

a wide range of precisions and that the most accurate of our implementations, the

Taylor-based transformation-free variant, is superior to existing alternatives.

Keywords: multiprecision arithmetic, matrix exponential, matrix function, scaling

and squaring method, Padé approximation, Taylor approximation, forward error

analysis, MATLAB, expm.

2010 MSC: 15A16, 65F60.

108

5.1 introduction 109

5.1 introduction

The exponential of a matrix has been the subject of much research in the 150 years or

so since Laguerre first defined it [31], thanks to its many applications and in particular

its central role in the solution of differential equations. Several equivalent definitions

of this matrix function exist [20, Table 10.1], of which perhaps the most well known

is the representation via its Taylor series expansion: the exponential of A P Cnˆn is

the matrix

eA “

8
ÿ

k“0

Ak

k!
. (5.1)

Since the analogous series expansion of ez, for z P C, has an infinite radius of con-

vergence, the power series (5.1) is convergent for any A P Cnˆn [20, Thm. 4.6], and

truncating it to the first few terms gives a crude algorithm for approximating eA. This

method is known to be unsatisfactory—so much so that Moler and Van Loan [36],

[37] take it as a lower bound on the performance of any algorithm for computing the

matrix exponential.

The most popular method for computing the exponential of a matrix is the scaling

and squaring algorithm paired with Padé approximation. This technique, originally

proposed by Lawson [32], and further developed and analyzed by various authors

over the past half-century, proves remarkably reliable in finite precision arithmetic,

but its numerical stability is not fully understood. The method owes its name to the

identity

eA “
`

e2´s A˘2s
, (5.2)

and relies on the approximation

eA « rkmp2´s Aq2
s
, (5.3)

110 mutliprecision algorithms for the matrix exponential

where rkmpzq is the rk{ms Padé approximant to ez at 0 and the nonnegative integers

k, m, and s are chosen so that rkmp2´s Aq achieves a prescribed accuracy while mini-

mizing the computational cost of the algorithm. In practice, diagonal approximants

rm :“ rmm are the most common choice, as symmetries in the coefficients of the nu-

merator and denominator enable an efficient evaluation of rmpAq.

In recent years there has been a sharp rise of interest in multiprecision computation,

and the number of programming languages that support arbitrary precision floating

point arithmetic, either natively or through dedicated libraries, is growing. In many

cases, a wide range of arbitrary precision linear algebra kernels is available. Numer-

ical routines for the evaluation of matrix functions are also sometimes provided, as

we now explain.

The computer algebra systems Maple [33] and Mathematica [34] offer functions

that can evaluate in arbitrary precision real matrix powers, the matrix logarithm, the

matrix exponential, and a function that computes f pAq given a scalar function f and

a square matrix A. The open source computer algebra system Sage [42], [47] supports

arbitrary precision floating point arithmetic, but does not implement any algorithms

for the evaluation of matrix functions.

Turning to software focused on floating point arithmetic, the mpmath library [28]

for Python provides functions for evaluating in arbitrary precision a wide range of

matrix functions, including real powers, exponential, logarithm, sine, and cosine.

MATLAB does not support arbitrary precision floating point arithmetic natively, but

arbitrary precision floating-point data types are provided by the Symbolic Math Tool-

box [44] and the Multiprecision Computing Toolbox [38]. Both toolboxes implement

algorithms for the matrix square root, the exponential, the logarithm, and general

matrix functions, and the Multiprecision Computing Toolbox also includes the hy-

perbolic and trigonometric sine and cosine of a matrix. Finally, the Julia language [6]

supports multiprecision floating-point numbers by means of the built-in data type

BigFloat, which provides only a few basic linear algebra kernels for arbitrary preci-

sion computation, and the ArbFloats package, a wrapper to the C library Arb [27] for

5.1 introduction 111

arbitrary-precision ball arithmetic, which is capable of computing the matrix square

root and exponential.

The algorithms underlying the functions described above are not publicly available,

to our knowledge. Nor are details of the implementations (albeit embodied in the

source code of the open source packages), which in some cases may involve symbolic

arithmetic.

The MATLAB function expm is a careful implementation of the algorithm of Al-

Mohy and Higham [2], which relies on diagonal Padé approximants and exploits

precomputed constants θm that specify how small the 1-norm of certain powers of a

matrix A must be in order for rmpAq to provide an accurate approximation to eA in

IEEE double precision arithmetic. These constants are obtained by combining a float-

ing point backward error analysis with a mix of symbolic and high precision com-

putations, and, at the price of a computationally expensive algorithm design stage,

provide a very efficient algorithm. For arbitrary precision computations, however, a

new approach is required, since this procedure, despite being in principle repeatable

for any given precision, is impractical to carry out when the accuracy at which the

function should be evaluated is known only at runtime and should hence be treated

as an input parameter to the algorithm.

The only published algorithm that we are aware of for computing the matrix ex-

ponential in arbitrary precision is that of Caliari and Zivcovich [7], which employs a

scaling and squaring algorithm based upon Taylor approximation. It includes a new

shifting technique less prone to overflow than the classic approach in [20, sect. 10.7.3]

and a novel way to compute at runtime a bound on the backward error of the trun-

cated Taylor series. The underlying backward error analysis relies on an explicit

series expansion for the backward error of truncated Taylor series approximants [43]

that does not readily extend to general Padé approximants, and the technique used

to bound the error relies on a conjecture on the decay rate of the terms of this series

expansion.

The goal of this work is to develop an algorithm for evaluating the exponential of a

matrix in arbitrary precision floating point arithmetic that can be used with diagonal

112 mutliprecision algorithms for the matrix exponential

Padé approximants or Taylor approximants and is fully rigorous. We wish to avoid

symbolic computation and we are particularly interested in precisions higher than

double. The algorithms we develop work in lower precision arithmetic as well, but

they can suffer from overflow or underflow when formats with limited range, such

as IEEE half precision, are used.

The techniques discussed here, together with those in [14], provide algorithms for

evaluating in arbitrary precision most matrix functions that appear in applications. In

particular, the inverse scaling and squaring algorithms for the matrix logarithm devel-

oped in [14] can be adapted in a straightforward way to the evaluation of fractional

powers of a matrix [23], [24], whereas the algorithms proposed here can be used to

compute trigonometric [1], [4], [17], [20, Chap. 12], [22], [25] and hyperbolic functions

[1], [8], [22], and their inverses [5], by relying on functional identities involving only

the matrix exponential.

The broad need for arbitrary precision matrix functions is clear from their inclu-

sion in the software mentioned above. The need to compute the matrix exponential to

high precision is needed, for example, in order to compute accurate solutions to the

burnup equations in nuclear engineering [41]. Our particular interest in the matrix

exponential stems not only from its many applications but also from algorithm de-

velopment. Estimating the forward error of algorithms for matrix functions requires

a reference solution computed in higher precision, and an arbitrary precision algo-

rithm for the matrix exponential can be used both for the exponential and for other

types of functions as mentioned above. Furthermore, such an algorithm allows us

to estimate the backward error of algorithms for evaluating matrix functions defined

implicitly by equations involving the exponential, such as the logarithm [3], [14], the

Lambert W function [15], and inverse trigonometric and hyperbolic functions [5].

We derive in section 5.2 a new bound on the forward error of Padé approximants to

the matrix exponential. We also make a conjecture that, if true, would lead to a more

cheaply computable error bound. In section 5.3 we develop a novel algorithm for

evaluating the exponential of a matrix in arbitrary precision. In section 5.4 we test ex-

perimentally several versions of this algorithm and compare their performance with

5.2 padé approximation of matrix exponential 113

that of existing algorithms. In section 5.5 we summarize our findings and discuss

future lines of research.

Finally, we introduce some notation. We denote by R` “ tx P R : x ě 0u the set

of nonnegative real numbers, by N the set of nonnegative integers, and by ‖¨‖ any

consistent matrix norm. The spectrum of A P Cnˆn is denoted by σpAq, its spectral

radius by ρpAq “ maxt|λ| : λ P σpAqu, and the unit roundoff of floating point arith-

metic by u. Given f : Cnˆn Ñ Cnˆn and A P Cnˆn, we measure the sensitivity of f pAq

by means of the relative condition number

κ f pAq “ lim
δÑ0

sup
}E}ďδ}A}

} f pA` Eq ´ f pAq}
δ} f pAq}

,

which is given explicitly by [20, Thm. 3.1]

κ f pAq “
}D f pAq}}A}
} f pAq}

, (5.4)

where D f : Cnˆn Ñ Cnˆn is the Fréchet derivative of f at A, which is the unique

linear operator that, for all E P Cnˆn, satisfies f pA` Eq “ f pAq `D f pAqrEs ` op}E}q.

5.2 padé approximation of matrix exponential

The state of the art scaling and squaring algorithm for the matrix exponential relies

on a bound on the relative backward error of Padé approximation in order to select

suitable algorithmic parameters [2]. This approach requires an expensive precision-

dependent design step that is unpractical to carry out when the precision at which

the computation will be performed is known only at runtime. For that reason, we

prefer to use a bound on the forward (truncation) error of the Padé approximants to

the exponential that is cheap to evaluate at runtime.

Let f be a complex function analytic at 0, and let k, m P N. The rational function

rkmpzq “ pkmpzq{qkmpzq is the rk{ms Padé approximant of f at 0 if pkmpzq and qkmpzq are

114 mutliprecision algorithms for the matrix exponential

polynomials of degree at most k and m, respectively, the denominator is normalized

so that qkmp0q “ 1, and f pzq ´ rkmpzq “ Opzk`m`1q.

The numerator and denominator of the rk{ms Padé approximant to the exponential

at 0 are [16, Thm. 5.9.1]

pkmpzq “
k
ÿ

j“0

ˆ

k
j

˙

pk`m´ jq!
pk`mq!

zj “:
k
ÿ

j“0

β
rk{ms
j zj,

qkmpzq “
m
ÿ

j“0

p´1qj
ˆ

m
j

˙

pk`m´ jq!
pk`mq!

zj “:
m
ÿ

j“0

δ
rk{ms
j zj.

(5.5)

In our algorithm, we will approximate eA by means of the rational matrix function

rkmpAq “ qkmpAq´1 pkmpAq, which we evaluate by first computing P “ pkmpAq and

Q “ qkmpAq and then solving a multiple right-hand side linear system in order to

obtain X :“ Q´1P. The computational efficiency of this method depends entirely on

the evaluation scheme chosen to compute P and Q. In the literature, the customary

choice is the Paterson–Stockmeyer method [40], which we now briefly recall.

Let us rewrite the polynomial ppXq “
řk

i“0 αiXi as

ppXq “
ν
ÿ

i“0

BipXqXνi, (5.6)

where ν ď k is a positive integer, ν “ tk{νu, and

BipXq “

$

’

’

&

’

’

%

ανi`ν´1Xν´1 ` ¨ ¨ ¨ ` ανi`1X` ανi I, i “ 0, . . . , ν´ 1,

αkXk´νν ` ¨ ¨ ¨ ` ανν`1X` ανν I, i “ ν.

If we use Horner’s method with (5.6), then the number of matrix multiplications

required to evaluate ppXq is

Cp
ν pkq “ ν` ν´ 1´ ηpν, kq, ηpx, yq “

$

’

’

&

’

’

%

1, if x divides y,

0, otherwise,

5.2 padé approximation of matrix exponential 115

which is approximately minimized by taking either ν “ t
?

ku or ν “ r
?

ks. Therefore

evaluating rkmpXq requires, in general,

Cr
νpkq “ νk ` νm `

Z

k
νk

^

`

Z

m
νm

^

´ 2´ ηpνk, kq ´ ηpνm, mq (5.7)

matrix multiplications, where ν` denotes
?
` rounded to the nearest integer. This

cost can be considerably reduced for diagonal Padé approximants (for which k “ m)

by exploiting the identity pmpXq “ qmp´Xq, where pm :“ pmm and qm :“ qmm. By

rewriting the numerator as

pmpAq “
m
ÿ

i“0

βi Ai “

tm{2u
ÿ

i“0

β2i A2i ` A
rm{2´1s
ÿ

i“0

β2i`1A2i “: Ue ` AV “: Ue `Uo,

where Uo and Ue are the sums of the monomials with even and odd powers, respec-

tively, we obtain that qmpAq “ Ue´Uo. By using ν stages of the Paterson–Stockmeyer

method on A2, computing Ue and Uo requires one matrix product to form A2 and

ν´ 1 matrix multiplications to compute the first ν powers of A2; evaluating Ue and

V require
X

tm{2u{ν
\

´ ηpν, tm{2uq and
X

tpm´ 1q{2u{ν
\

´ ηpν, tpm´ 1q{2uq matrix multi-

plications, respectively; and computing Uo requires one additional multiplication by

A. Therefore evaluating both pmpAq and qmpAq requires

Ce
νpmq “ ν` 1`

Z

tm{2u
ν

^

`

Z

tpm´ 1q{2u
ν

^

´ ηpν, tm{2uq ´ ηpν, tpm´ 1q{2uq

matrix multiplications, and it can be shown that Ce
νpmq is approximately minimized

by taking either ν “
X
a

m´ 1{2
\

or ν “
P
a

m´ 1{2
T

. For m between 1 and 21, we have

that min

Ct
?

mupmq, Cr
?

mspmq
(

“ πm, where the πm are tabulated in [20, Table 10.3].

In principle, when designing an algorithm based on Padé approximation, one

could use approximants of any order but, for any given cost, it is worth considering

only the approximant that will deliver the most accurate result. By definition, this

will be that of highest order, thus if evaluating the approximant of order m requires

Cpmq matrix multiplications, an algorithm will typically examine only approximants

of optimal order m1pζq “ maxtm : Cpmq “ ζ u, for some ζ P N. For truncated Taylor

116 mutliprecision algorithms for the matrix exponential

series and diagonal Padé approximants to the exponential, the sequences of optimal

orders are [13, eqs. (2.7) and (4.6)]

ap
i “

Z

pi` 2q2

4

^

, i P N, (5.8)

and

ae
0 “ 1, ae

1 “ 2,

ae
i “ 2

R

i´ 1
4

Vˆ

i´ 3
Z

i´ 1
4

^˙

` 1, i P Nz t0, 1u ,
(5.9)

respectively. Note that, for diagonal Padé approximants to the exponential, all opti-

mal orders but ae
1 are odd. For a thorough discussion of the effect of rounding errors

on the evaluation of matrix polynomials using the scheme (5.6) see [20, sect. 4.2].

5.2.1 Forward error

Now we present a new upper bound on the norm of the forward error of rkmpAq as

an approximation to eA which in section 5.3, will play a central role in the design of

a scaling and squaring algorithm for computing the matrix exponential in arbitrary

precision. The leading term of the truncation error of the rk{ms Padé approximant is

known [16, Thm. 5.9.1], since ez ´ rkmpzq “ c1
kmzk`m`1 `Opzk`m`2q, where

c1
km “ p´1qm

k!m!
pk`mq!pk`m` 1q!

. (5.10)

We begin by obtaining all the terms in the series expansion of qkmpzqez ´ pkmpzq.

Lemma 5.1. Let rkmpzq “ pkmpzq{qkmpzq be the rk{ms Padé approximant to ez at 0. Then

for all z P C,

qkmpzqez ´ pkmpzq “
8
ÿ

i“1

c`k,mzk`m`i, c`k,m “
p´1qmk!
pk`mq!

pm` i´ 1q!
pi´ 1q!pk`m` iq!

. (5.11)

Proof. By equating the coefficients of zk`m`i on the left- and right-hand side of the

first equation in (5.11), we obtain that c`k,m is the sum, for j from 0 to m, of the

5.2 padé approximation of matrix exponential 117

jth coefficient of qkmpzq multiplied by the pk ` m ` i ´ jqth coefficient of the series

expansion of ez:

c`k,m “

m
ÿ

j“0

δ
rk{ms
j

1
pk`m` i´ jq!

´ 0 “
1

pk`mq!

m
ÿ

j“0

p´1qj
ˆ

m
j

˙

pk`m´ jq!
pk`m` i´ jq!

.

We prove (5.11) by induction on m. For m “ 1 we have

c`k,m “
1

pk` 1q!

ˆˆ

1
0

˙

pk` 1q!
pk` 1` iq!

´

ˆ

1
1

˙

k!
pk` iq!

˙

“
k!

pk` 1q!pk` 1` iq!
pk` 1´ k´ 1´ iq “

p´1q1k!i!
pk` 1q!pk` iq!pi´ 1q!

.

By exploiting the identity
`a`1

b

˘

“
`a

b

˘

`
` a

b´1

˘

, for the inductive step we have

c`k,m`1 “
1

pk`m` 1q!

m`1
ÿ

j“0

p´1qj
ˆ

m` 1
j

˙

pk`m` 1´ jq!
pk`m` 1` i´ jq!

“
1

pk`m` 1q!

ˆ

pk`m` 1q!
pk`m` 1` iq!

`

m
ÿ

j“1

p´1qj
ˆ

m
j

˙

pk`m` 1´ jq!
pk`m` 1` i´ jq!

`

m
ÿ

j“1

p´1qj
ˆ

m
j´ 1

˙

pk`m` 1´ jq!
pk`m` 1` i´ jq!

` p´1qm`1 k!
pk` iq!

˙

“
1

pk`m` 1q!

m
ÿ

j“0

p´1qj
ˆ

m
j

˙ˆ

ppk` 1q `m´ jq!
ppk` 1q `m` i´ jq!

´
pk`m´ jq!
pk`m` i´ jq!

˙

“
1

pk`m` 1q!

ˆ

p´1qmpk` 1q!pm` i´ 1q!
pi´ 1q!pm` k` i` 1q!

´
p´1qmk!pm` i´ 1q!
pi´ 1q!pm` k` iq!

˙

“
p´1qmk!pm` i´ 1q!

pk`m` 1q!pi´ 1q!pm` k` i` 1q!
pk` 1´m´ k´ i´ 1q

“
p´1qm`1k!ppm` 1q ` i´ 1q!

pk` pm` 1qq!pi´ 1q!ppm` 1q ` k` iq!
,

which concludes the proof.

This result can be exploited to bound the truncation error of rkmpAq. We will use

the result in [2, Thm. 4.2(a)]: if f pxq “
ř8

i“` cixi and ci has the same sign for all i ě `,

then for any X such that

αdpXq :“ mint}Xd}1{d, }Xd`1}1{pd`1qu, dpd´ 1q ď `, (5.12)

118 mutliprecision algorithms for the matrix exponential

is less than the radius of convergence of the series, we have

} f pXq} ď
8
ÿ

i“`

|ci|αdpXqi “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“`

ciαdpXqi
ˇ

ˇ

ˇ

ˇ

ˇ

“ | f pαdpXqq| . (5.13)

An alternative definition of αdpXq has been recently proposed for the computation

of the wave-kernel matrix functions [39]. This more refined strategy requires the

computation of }Adi}1 for all di, dj such that gcdpdi, djq “ 1 and didj ´ di ´ dj ă k`m.

The cost of finding all such pairs is difficult to determine, but it must be at least

O
`

pk`mq logpk`mq
˘

operations, as there are at least O
`

pk`mq2
˘

pairs to test and

Euclid’s algorithm for finding the greatest common divisor of two integers a, b P N

such that a ă b requires 2 log2 a` 1 operations in the worst case. Moreover, even if all

the pairs to be tested were known, the cost of evaluating the bound would increase

with k and m, and as both can be potentially large when resorting to high precision,

we prefer to use the cheaper bound given by (5.12). However, all the results in this

section can be modified by replacing αdpXq with

αrk{mspXq :“ min
gcdpa,bq

ab´a´băk`m

max
!

}Xa}1{a, }Xb}1{b
)

.

For the truncation error of the rk{ms Padé approximant to the matrix exponential,

we would like to obtain a bound of the form

}eX ´ rkmpXq} ď |eαdpXq ´ rkmpαdpXqq|, (5.14)

which would be true if all the nonzero terms in the series expansion at 0 of ez´ rkmpzq

had the same sign. By Lemma 5.1, this would be true if qkmpzq´1 had a power series

expansion with all coefficients of the same sign. This applies to Taylor approximants

tk :“ rk0, since qkmpzq´1 “ 1, and by (5.13) we can derive the bound

‖eX ´ tkpXq‖ “
›

›

›

›

›

8
ÿ

i“k`1

1
i!

Xi

›

›

›

›

›

ď

›

›

›

›

›

8
ÿ

i“k`1

αdpXqi

i!

›

›

›

›

›

“

ˇ

ˇ

ˇ
eαdpXq ´ tkpαdpXqq

ˇ

ˇ

ˇ
.

5.2 padé approximation of matrix exponential 119

For all other even values of m that we have checked, this is not the case. For ex-

ample, the series expansion for the reciprocal of the denominator of the r2{2s Padé

approximant is

1
q22pzq

“ 1`
z
2
`

z2

6
`

z3

24
`

z4

144
´

z6

1728
`O

`

z7˘ .

However, for the algorithm we are designing we are interested only in bounding

the forward error of diagonal approximants of optimal degree, and from (5.9) we

know that most optimal degrees are, in fact, odd. Experimental evidence suggests

that, in this case, the coefficients of the series expansion are indeed one-signed.

Conjecture 5.2. Let k, m P N. If m is odd, then all the coefficients of the series expansion of

qkmpzq´1 at 0 are positive.

In order to prove this conjecture, we attempted to derive an explicit expression for

the coefficients of the Maclaurin expansion of qkmpzq´1. First, we tried to decompose

this function into the product of simpler terms whose Taylor expansion at 0 had one-

signed coefficients, but we were unable to find a suitable factorization of qkmpzq. Next,

by interpreting qkmpzq´1 as the composition of z´1 and qkmpzq, we considered using

the well-known Faà di Bruno’s formula [11], [12] to compute higher-order derivatives

of this function. By exploiting well-known results [29], we obtained several equivalent

expressions for the quantities we were examining, but none of them led us to a proof

of Conjecture 5.2.

It the latter were true, then we could use the bound (5.14) for all diagonal approx-

imants of degree ae
i in (5.9) for i P Nz t1u, but since we do not have a proof of the

conjecture we will bound the truncation error of rkm for any k and m. We will use the

next result, which combines Lemma 5.1 and (5.13).

Corollary 5.3 (bound on the truncation error of Padé approximants). Let us denote the

rk{ms Padé approximant to ez at 0 by rkm “ pkm{qkm. Then for X P Cnˆn and any positive

integer d such that dpd´ 1q ď k`m` 1,

›

›

›
eX ´ rkmpXq

›

›

›
ď

›

›

›
qkmpXq´1

›

›

›

ˇ

ˇ

ˇ
qkmpαdpXqqeαdpXq ´ pkmpαdpXqq

ˇ

ˇ

ˇ
(5.15)

120 mutliprecision algorithms for the matrix exponential

Proof. By (5.13), we have

›

›

›
eX ´ rkmpXq

›

›

›
“

›

›

›
qkmpXq´1`qkmpXqeX ´ pkmpXq

˘

›

›

›

ď

›

›

›
qkmpXq´1

›

›

›

›

›

›
qkmpXqeX ´ pkmpXq

›

›

›

ď

›

›

›
qkmpXq´1

›

›

›

ˇ

ˇ

ˇ
qkmpαdpXqqeαdpXq ´ pkmpαdpXqq

ˇ

ˇ

ˇ
,

where for the last inequality we used the fact that the coefficients of the series expan-

sion of qkmpzqez ´ pkmpzq all have the same sign, by Lemma 5.1.

Since the norm of q´1
kmpXq does not depend on αdpXq, the bound in (5.15) is nonde-

creasing in αdpXq and therefore is minimized by choosing for d the value

d‹ “ arg min
1ďdďdrk{ms

αdpXq, (5.16)

where

drk{ms “ maxtd P N : dpd´ 1q ď k`m` 1u “

[

1`
a

5` 4pk`m` 1q
2

_

. (5.17)

Depending on the size of k and m, this choice might require the estimation of αdpXq

for too many values of d, and thus be unpractical. On the other hand, it has been

observed [2] that the sequence pαdpXqqdPN is typically roughly decreasing, so it is rea-

sonable to use the considerably cheaper approximation αdrk{mspXq. In our algorithm,

we adopt an intermediate approach that has the same cost as the computation of

αdrk{mspXq, but improves on it by reusing previously computed quantities. We discuss

this in detail in section 5.3.

5.3 a multiprecision algorithm

In this section we develop a novel scaling and squaring method for computing the

matrix exponential in arbitrary precision floating point arithmetic. Our algorithm

differs from traditional scaling and squaring approaches, such as those of Al-Mohy

5.3 a multiprecision algorithm 121

and Higham [2] and Caliari and Zivcovich [7], in several respects. First, it relies on

a bound on the forward error rather than on the backward error of the Padé approx-

imants to the matrix exponential and avoids the use of any precomputed precision-

dependent constants by evaluating at runtime the bound (5.15) for some choice of d.

Moreover, unlike scaling and squaring algorithms for double precision based on di-

agonal Padé approximants [2], [19], [20, Alg. 10.20], [21], which use approximants of

order at most 13 and a nonzero scaling parameter only if the approximant of highest

degree is expected not to deliver either a truncation error smaller than u or an accu-

rate evaluation of r13pAq, our algorithm blends the two phases together and tries to

determine both parameters at the same time.

Our arbitrary precision scaling and squaring algorithm for the computation of eA

is given in Algorithm 5.1. Besides the matrix A P Cnˆn, the algorithm accepts several

additional input arguments.

‚ The arbitrary precision floating point parameter u P R` specifies the unit round-

off of the working precision of the algorithm.

‚ The Boolean parameter use_taylor specifies the kind of Padé approximants

the algorithm will use: truncated Taylor series if set to true, diagonal Padé

approximants otherwise.

‚ The parameter ubnd P R` specifies the unit roundoff of the precision used

to evaluate }qmip2
´s Aq´1}1 in (5.18) below. The value of ubnd is ignored if

use_taylor is set to true.

‚ The vector m P NN , sorted in ascending order, specifies what orders of Padé

approximants the algorithm can consider. The algorithm will select i between

1 and N, and then evaluate either the truncated Taylor series of order mi or the

rmi{mis Padé approximant, depending on the value of use_taylor.

‚ The nonegative integer smax specifies the maximum number of binary power-

ings the algorithm is allowed to compute during the squaring stage, or, equiva-

122 mutliprecision algorithms for the matrix exponential

Algorithm 5.1: Scaling and squaring algorithm for the matrix exponential.

Given A P Cnˆn, this algorithm computes an approximation to eA in float-
ing point arithmetic with unit roundoff u using a scaling and squaring
method based upon Padé approximants. The pseudocode of evalBoundDiag

and evalPadeDiag is given in Fragment 5.3, that of evalBoundTayl and
evalPadeTayl in Fragment 5.5, and that of recompDiags in Fragment 5.2.

1 A0 Ð I
2 if use_taylor then
3 evalBound Ð evalBoundTayl

4 evalPade Ð evalPadeTayl

5 A1 Ð A
6 else
7 evalBound Ð evalBoundDiag

8 evalPade Ð evalPadeDiag

9 A1 Ð A2

10 s Ð 0
11 i Ð 0
12 γ Ð r´8,´8, . . . s
13 αmin Ð8

14 δold Ð8

15 rδ, ψ, κAs Ð evalBoundpA, mi, sq
16 while δ ě uψ and s ă smax and i ď N do
17 if κA ě ζpuq or δold ă δ2 then
18 s Ð s` 1
19 else
20 i Ð i` 1

21 δold Ð δ
22 rδ, ψ, κAs Ð evalBoundpA, mi, sq

23 Y Ð evalPadepA, m, sq
24 if isQuasiUpperTriangularpAq then
25 Y Ð recompDiagsp2´s A, Yq

26 for t Ð 1 to s do
27 Y Ð Y2

28 if isQuasiUpperTriangularpAq then
29 Y Ð recompDiagsp2´s`t A, Yq

30 return X

5.3 a multiprecision algorithm 123

lently, the maximum number of times the matrix can be multiplied by 1
2 during

the initial scaling stage.

‚ The function parameter ζ : R` Ñ R` specifies a precision-dependent value

that is used to predict whether the evaluation of qmipAq will be accurate or not.

This parameter is not used when use_taylor is set to true.

We now discuss the outline of Algorithm 5.1. The variables A, γ, and αmin are

assumed to be available within the following code fragments (that is, their scope is

global). The Boolean variable use_taylor chooses between the auxiliary functions

in Fragments 5.3 and 5.5, tailored to the case of diagonal Padé approximants and

truncated Taylor series, respectively. Finally, we use the notation rx, x, . . . s, to denote

a vector whose elements are all initialized to x and whose length is unimportant. We

assume that very few of its entries will take a value different from the default, and

thus that such a vector can be stored in a memory-efficient way.

The algorithm starts by determining a suitable order and a scaling parameter s for

the scaling and squaring method. To this end, on line 10–11 it sets s and i to 0 and

then increments them, trying to find a choice for which the right-hand side of (5.15),

for X “ 2´s A, k “ mi, and m “ k or m “ 0, is smaller than uψp2´s Aq, where ψpXq

approximates
›

›eX
›

›

1. As long as this condition is not satisfied, two heuristics are used

to decide which parameter is more convenient to change. One approach is aimed at

keeping the evaluation of the Padé approximant as accurate as possible, by taking

into account the conditioning of qmi ; being specific to diagonal approximants this is

discussed in section 5.3.1. On the other hand, we noticed that when αdp2´s Aq " 1, the

bound (5.15) can sometimes decrease exceedingly slowly as m increases, leading to

the use of an approximant of degree much larger than needed, which in turn causes

loss of accuracy and unnecessary computation. We found that monitoring the rate

at which our bound on the truncation error of the approximant decreases provides

an effective strategy to prevent this from happening. In particular, we increment s

when the bound on the truncation error does not decrease at least quadratically, that

is, when δold ă δ2, where δold and δ are the values of the error bound at the previous

and current iteration of the while loop on line 16 of Algorithm 5.1, respectively.

124 mutliprecision algorithms for the matrix exponential

Fragment 5.2: Recomputation of the diagonals.

1 function recompDiagspA P Cnˆn, X P Cnˆnq

Ź Compute main diagonal and first upper-diagonal of X « eA from A.
2 for i “ 1 to n do
3 if i “ n´ 1 or i ď n´ 2 and ai`2,i`1 “ 0 then
4 if ai`1,i “ 0 then
5 Recompute xi,i, xi,i`1, xi`1,i`1 using [20, Eq. (10.42)].
6 else
7 Recompute xi,i, xi,i`1, xi`1,i, xi`1,i`1 using [2, Eq. (2.2)].

8 i Ð i` 1
9 else

10 xi,i Ð eai,i

As soon as a combination of scaling parameter and Padé approximant order is

found, the algorithm computes Y by evaluating the Padé approximant (diagonal or

Taylor) of order mi at 2´s A, and finally computes eA « Y2s
, by applying s steps of

binary powering to Y. If A is upper quasi-triangular, then in order to improve the

accuracy of the final result, the function recompDiags in Fragment 5.2 is used to

recompute the diagonal and first upperdiagonal of the intermediate matrices from

the elements of A, as recommended by Al-Mohy and Higham [2].

In the next two sections, we discuss how the functions evalBound and evalPade

can be implemented efficiently for diagonal Padé approximants and truncated Taylor

series.

5.3.1 Diagonal Padé approximants

When use_taylor is set to false, that is, when diagonal Padé approximants are being

considered, the condition that needs to be tested on lines 15 and 22 of Algorithm 5.1

is, for some d such that dpd´ 1q ă 2 mi ` 1,

›

›

›
qmip2

´s Aq´1
›

›

›

1

ˇ

ˇ

ˇ
qmipαdp2´s Aqqeαdp2´s Aq ´ pmipαdp2´s Aqq

ˇ

ˇ

ˇ
ă u ψp2´s Aq, (5.18)

5.3 a multiprecision algorithm 125

As discussed in section 5.2, the choice of αdpXq that would guarantee the best

bound is α
rmi{mis

d‹ pXq, for d‹ in (5.16), but this value can become impractical to compute,

even for Padé approximants of relatively low degree. Taking αdrmi{mispXq, where drmi{mis

is defined in (5.17), on the other hand, is appealing because this estimate requires

the evaluation of }Ad}
1{d
1 for at most two values of d independently of the value of mi,

and is often not far from the best choice, since the sequence
`

}Ad}1{d
˘

dPN
is typically

roughly decreasing [2].

However, it is sometimes possible to obtain a better bound at almost no extra cost,

by reusing quantities computed during previous steps of the algorithm. Observe

that, since }p2´s Aqd}1{d “ 2´s}Ad}1{d and thus αdp2´s Aq “ 2´sαdpAq, it is enough to

estimate the norm of powers of A and then scale their value as required. Moreover,

since the algorithm considers the approximants in nondecreasing order of cost, the

value of drmi{mis is nondecreasing in i. Therefore, in (5.18) we can replace αdp2´2Aq by

2´sαmin, where αmin is a variable that keeps track of the smallest value of αdrmi{mispXq

computed so far, and is updated only when a new value α
drmj{mjspXq ă αmin is found

for some j ą i.

Since only the order of magnitude of αmin is actually needed, we estimate }Ad}1

by running in precision ubnd the 1-norm estimation algorithm of Higham and Tis-

seur [26]. This method repeatedly computes the action of A on a tall and skinny ma-

trix without explicitly forming any powers of A, and thus requires only Opn2q flops.

In the pseudocode, the 1-norm estimation is performed by the function normest1,

whose only input is a function that computes the product AX given the matrix

X P Cnˆt. In order to keep the notation as succinct as possible, anonymous functions

are specified using a lambda notation, and λx. f pxq denotes a function that replaces

all the occurrences of x in the body of f with the value of its input argument.

By storing the values of }Ad}1 in the global array γ, the 1-norm of each power

of A is estimated at most once. Further computational savings can be achieved by

computing some carefully chosen powers of A within the algorithm and using them

to evaluate of the action of powers of A on a vector, as we will discuss later.

126 mutliprecision algorithms for the matrix exponential

As long as the bound (5.18) is not satisfied, the algorithm can decide to either in-

crement the scaling factor or increase the order of the Padé approximant, since either

choice will reduce the truncation error of the approximation. Both options, however,

may have an adverse effect on the numerical behavior of the algorithm, since taking

a Padé approximant of higher degree may significantly increase the conditioning of

the coefficient of the linear system to be solved, thus jeopardizing the accurate eval-

uation of the approximant, whereas increasing s will increase the number of matrix

multiplications that will occur during the squaring phase of the algorithm, which is

the most sensitive to rounding errors, as shown by [20, Thm. 10.21].

We solve this dilemma by means of a heuristic that prevents the 1-norm condi-

tion number of qkimip2
´s Aq from getting too large. In particular, if our estimate

κA “ normest1pλx.qmp2´s Aq´1xq normest1pλx.qmp2´s Aqxq is larger than a constant

ζpuq that depends on the unit roundoff u, we update the scaling parameter and leave

the order of the Padé approximant unchanged. Otherwise, we increment i and take

an approximant of higher order chosen according to the elements in m. In practice,

we set ζpuq :“ u´1{8. For IEEE double precision, this choice gives ζpuq “ 253{8 « 98.70,

which agrees (within a factor of 1.4) with the largest condition number allowed by

Al-Mohy and Higham [2, Table 3.1] for double precision.

Within our algorithm, we can exploit the evaluation scheme discussed in section 5.2

to reduce the computational cost of the evaluation not only of rmip2
´s Aq, but also of

the term }qmip2
´2Aq}1 appearing in the bound (5.18).

Since Algorithm 5.1 considers Padé approximants of increasing cost, for diagonal

Padé approximants we have that mi ă mj for i ă j. Hence, whenever in Algorithm 5.1

the bound (5.18) is evaluated for the approximant of order mi, we are guaranteed

that on line 23 rmjp2
´s Aq will be evaluated for some j ě i. Since numerator and

denominator of the approximant are evaluated by means of the Paterson–Stockmeyer

method, we know that at least the first ν “ r
?
mis powers of 2´s A will be needed, and

since scaling a matrix requires only Opn2q flops, it is worth it to compute immediately

the first ν powers of A, and subsequently use them to speed up the estimation of

}Ad}
1{d
1 , }q´1

mi
p2´s Aq}1, and }eA}1.

5.3 a multiprecision algorithm 127

Fragment 5.3: Auxiliary functions for diagonal Padé approximants rm.

1 function evalBoundDiagpA P Cnˆn, m P N, s P Nq

Ź Check (5.18) for rm and estimate κ1pqmpAqq.
2 αmin Ð optAlphaDiagpA, m, αminq

3 rUe, Uos Ð evalPadeDiagAuxpA, m, s, ubndq

4 Set working precision to ubnd.
5 rL, Us Ð lupUe ´Uoq

6 η Ð normest1pλx.pU´1pL´1xqq
7 Set working precision to u.
8 δ Ð η |qmp2´sαminqe2´sαmin ´ pmp2´sαminq|

9 ψ Ð normest1pλx.pU´1pL´1p2Uoxqq ` xqq
10 κA Ð η normest1pλx.pUe ´Uoqxq
11 return δ, ψ, κA

12 function evalPadeDiagpA P Cnˆn, m P N, s P Nq

Ź Evaluate rmp2´s Aq.
13 rUe, Uos Ð evalPadeDiagAuxpA, m, s, uq
14 rL, Us Ð lupUe ´Uoq

15 return U´1pL´1p2Uo ` Iqq

16 function evalPadeDiagAuxpA P Cnˆn, m P N, s P N, u P R`q

Ź Evaluate components of pmmpAq and qmmpAq.
17 Set working precision to u.

18 βe Ð
”

m!p2m´2iq!
p2mq!pm´2iq! p2iq!

ıtm{2u

i“0
βo Ð

”

m!p2m´2i´1q!
p2mq!pm´2i´1q! p2i`1q!

ırm{2´1s

i“0
19 return evalPolyPSp2s, βe,

P?
m
T

q, p2´s Aq evalPolyPSp2s, βo,
P?

m
T

q

20 function optAlphaDiagpA P Cnˆn, m P N, αmin P R`q

Ź Compute αmin.
21 d Ð

Y

1`
?

5`8m
2

]

22 if γd “ ´8 then
23 γd Ð normest1pλx.evalPowVecDiagpd, xqq1{d

24 if γd`1 “ ´8 then
25 γd`1 Ð normest1pλx.evalPowVecDiagpd` 1, xqq1{pd`1q

26 return mintmaxtγd, γd`1u, αminu

27 function evalPowVecDiagpd P N, X P Cnˆtq

Ź Compute AdX using elements in A.
28 `Ð lengthpAq
29 while d ą 1 and ` ą 1 do
30 for i Ð 1 to td{p2`qu do
31 X Ð A`X

32 d Ð d mod 2`
33 `Ð mint`´ 1, td{2u` 1u

34 if d “ 1 then
35 X Ð AX

36 return X

128 mutliprecision algorithms for the matrix exponential

Fragment 5.3 shows how the bound (5.18) can be evaluated efficiently for diagonal

Padé approximants. In order to estimate }q´1
m p2´s Aq}1, the algorithm computes the

matrices Ue and Uo using the Paterson–Stockmeyer method given in Fragment 5.4.

This implementation stores the powers of A2 in the global array A, which is updated

only when it does not already contain the first r
?

ms powers of A2. Since the number

of matrices stored in A changes with m, we introduce a function lengthpAq, that

returns the number of positive powers stored in A. In other words, if lengthpAq “ `,

then A contains `` 1 matrices from A0 “ I to A` “ A2`.

Note that although it makes sense, from a performance point of view, to compute

Ue and Uo in lower precision, the elements of A must be computed at precision u in

order to be reused to evaluate numerator and denominator of rmp2´s Aq. These lower

precision approximation of Ue and Uo can be used to compute a cheap approximation

ψpe2´s Aq to }e2´s A}1 needed in (5.18), since qmpXq´1 pmpXq “ 2pUe ´Uoq
´1Uo ` I can

be evaluated by means of only one multiple right-hand side system solve at precision

ubnd.

In addition, the elements of A can be used to reduce the computational cost of es-

timating the 1-norm of powers of A. In order to estimate }Ad}1, normest1 computes

repeatedly Y :“ AdX, where X P Cnˆt, with t ! n. If the matrix multiplications are

performed from right to left, evaluating Y requires 2dtn2 flops, but if some of the

powers of A are available, the factor d can be reduced to as little as log2 d. We il-

lustrate the strategy to perform this cost reduction in the function evalPowVecDiag,

which evaluates AdX using the powers of A2 stored in A. We use the two variables

rd and `, initialized to d and lengthpAq, respectively, to keep track of the state of the

computation. The function repeatedly multiplies X by A` “ A2` for t “ t rd{p2`qu

times, that is, until rd becomes smaller than 2`. At this point, the algorithm updates

rd and `, setting the former to the number of matrix multiplications left to perform,

rd´ t, and the latter to the largest integer smaller than the new value of rd. Since A

contains powers of A2 rather than A, an additional multiplication by A is necessary

for odd d.

5.3 a multiprecision algorithm 129

Fragment 5.4: Modified Paterson–Stockmeyer algorithm.

1 function evalPolyPSps P N, β P Ct, ν P Nq

Ź Evaluate
řt

`“0 β`p2´s Aq` using elements of A.
2 `Ð lengthpAq
3 ν Ð tt{νu
4 for i Ð `` 1 to ν do
5 Ai Ð Ai´1 A1

6 Y Ð
řm´νν

j“0 βνν`j2´sjAj

7 for i Ð ν´ 1 down to 0 do
8 Y Ð Y2´sνAs `

řs´1
j“0 βνi`j2´sjAj

9 return Y

This algorithm requires
`

minpCt
?
miu
pmiq, Cr

?
mis
pmiqq ` s

˘

n3 flops in precision u, for

evaluating rmipAq and performing the final squaring phase, and
`

2
?
mi `

2
3

˘

in3 flops

in precision ubnd for evaluating and factorizing qmip2
´s Aq, in order to check whether

the bound (5.18) is satisfied.

5.3.2 Taylor approximants

Truncated Taylor series are appealing Padé approximants to use in conjunction with

bound (5.15), as the property that qk0pxq “ 1 enables us to eliminate the computation

of qmip2
´s Aq, the most expensive term to evaluate in (5.18), and thus obtain substantial

computational savings. Even though for truncated Taylor series there is no need to

evaluate the approximant when evaluating the bound, the function evalBoundTayl

updates the array A, which in this case stores powers of A rather than A2. In fact,

these powers can be used to reduce the cost of estimating }Ad}1 as well as }eA}1. The

elements of A are estimated by means of normest1, and the action of the powers of A

on a vector is computed by means of the function evalPowVecTayl in Fragment 5.5,

which uses the elements in A analogously to evalPowVecDiag.

For ψ in the bound (5.18) one can use a lower bound on the 1-norm of eA. The

inequality }eA}1 ě e´}A}1 [20, Thm. 10.10] can be exploited at no extra cost, but

130 mutliprecision algorithms for the matrix exponential

Fragment 5.5: Auxiliary functions for truncated Taylor series tm.

1 function evalBoundTaylpA P Cnˆn, m P N, s P Nq

Ź Check (5.18) for tm.
2 for i Ð lengthpAq ` 1 to r

?
ms do

3 Ai Ð Ai´1 A1

4 αmin Ð optAlphaTaylpA, m, αminq

5 δ Ð |e2´sαmin ´ pmp2´sαminq|

6 ψ Ð estimateNormExppsq
7 return δ, ψ, 1

8 function evalPadeTaylpA P Cnˆn, m P N, s P Nq

Ź Evaluate tmp2´s Aq.
9 β Ð

“ 1
i!

‰m
i“0

10 return evalPolyPSps, β,
?

mq

11 function optAlphaTaylpA P Cnˆn, m P N, αmin P R`q

Ź Compute αmin.
12 d Ð

Y

1`
?

5`4m
2

]

13 if γd “ ´8 then
14 γd Ð normest1pλx.evalPowVecTaylpd, xqq1{d

15 if γd`1 “ ´8 then
16 γd`1 Ð normest1pλx.evalPowVecTaylpd` 1, xqq1{pd`1q

17 return mintmaxtγd, γd`1u, αminu

18 function evalPowVecTaylpd P N, X P Cnˆtq

Ź Compute AdX using elements in A.
19 `Ð lengthpAq
20 while d ą 0 do
21 for i Ð 1 to tp{`u do
22 X Ð A`X

23 d Ð d mod `
24 `Ð mint`´ 1, du

25 return X

26 function estimateNormExpps P Nq

Ź Estimate }eA}1 using elements in A.
27 Z Ð

řlengthpAq
i“0

Ai
2sii!

28 return normest1pλx.Zxq

5.3 a multiprecision algorithm 131

being typically not very sharp can potentially lead to unnecessary computation. Van

Loan [45] suggests the bound

›

›

›
eA

›

›

›

1
ě eλ˚ , λ˚ “ max

λPσpAq
Reλ,

which is typically tighter than the previous bound, and always so when λ˚ ą 0.

Estimating λ˚, however, requires either the eigendecomposition of A, or the solution

of a family of shifted linear systems [35], and both solutions might be unpractical

in that they require Opn3q flops for dense matrices. A practical estimate that can be

computed with only Opn2q extra cost is provided by the function estimateNormExp

in Fragment 5.5, which relies on the approximation

e2´s A «
ÿ̀

i“0

p2´s Aqi

i!
“

ÿ̀

i“0

2´siAi

i!
“: ξs

`, ` “ lengthpAq.

If only the elements of A already computed on line 2-3 of evalBoundTayl are used,

computing this estimate requires only 2`n2 flops. Additional savings can be gained

by noting that ξs
``1 can be obtained from ξs

` with only one matrix scaling and one

matrix sum, and the full cost of 2`n2 flops need not be paid as long as s does not

change.

Overall, this algorithm requires
`

2
?
mi ` s

˘

n3 floating-point operations.

5.3.3 Schur–Padé variants

If A is normal (A˚A “ AA˚) and a multiprecision implementation of the QR algo-

rithm is available, diagonalization in higher precision is another approach for com-

puting eA. More generally, a (real) Schur decomposition can be used: A “ QTQ˚,

where T, Q P Cnˆn are, respectively, upper triangular and unitary if A has com-

plex entries and upper quasi-triangular and orthogonal if A has real entries. Then

eA “ QeTQ˚. In our experiments, we consider a Schur–Padé approach that computes

the Schur decomposition of the input matrix and exploits Algorithm 5.1 to compute

the exponential of its triangular factor.

132 mutliprecision algorithms for the matrix exponential

Overall, this algorithm requires
´

28`
´

mintCt
?
miu
pmiq, Cr

?
mis
pmiqu ` s

¯

{3
¯

n3 and
`

28 ` p2
?
mi ` sq{3

˘

n3 flops for diagonal Padé approximants and truncated Taylor

series, respectively.

5.4 numerical experiments

We now test the algorithm derived in section 5.3 and compare it with two existing

codes for computing the matrix exponential in arbitrary precision floating point arith-

metic. We consider two test sets: H, which contains 35 Hermitian matrices, and N ,

which consists of 97 non-Hermitian matrices. These matrices, of size ranging between

2 and 1000, are taken from the literature of the matrix exponential, from a collection

of benchmark problems for the burnup equations [30], [46], and from the MATLAB

gallery function. The experiments were performed using the 64-bit (glxna64) ver-

sion of MATLAB 9.5 (R2018b Update 3) on a machine equipped with an Intel I5-3570

processor running at 3.40GHz and with 8GB of RAM. The code uses the Multipreci-

sion Computing Toolbox (version 4.4.7.12739) [38], which provides the class mp to

represent arbitrary precision floating-point numbers and overloads all the MATLAB

functions we need in our implementations. We note that this toolbox allows the user

to specify the number of decimal digits of working precision, but not the number of

bits in the fraction of its binary representation, thus, in this section, whenever we re-

fer to d (decimal) digits of precision, we mean that the working precision is set using

the command mp.Digits(d). The MATLAB code that runs the tests in this section is

available on GitHub.1

In our experiments, we compare the following codes.

‚ expm, the built-in function expm of MATLAB, which implements the algorithm

of Al-Mohy and Higham [2], and is intended for double precision only.

‚ exp_mct, the expm function provided by the Multiprecision Computing Toolbox.

1 https://github.com/mfasi/mpexpm.

https://github.com/mfasi/mpexpm

5.4 numerical experiments 133

‚ exp_otf, the algorithm by Caliari and Zivcovich [7], a shifted scaling and squar-

ing method based on truncated Taylor series. The matrix is shifted by trpAq{n,

and (5.2) is replaced by

eA “
`

ep2
s`2tq´1 A˘2s`2t

, s P N, t P NY t´8u.

The order of the approximant is chosen by estimating at runtime a bound on

the backward error of the approximant in exact arithmetic.

‚ exp_d, an implementation of Algorithm 5.1 with use_taylor “ false.

‚ exp_t, an implementation of Algorithm 5.1 with use_taylor “ true.

‚ exp_sp_d, an implementation of the Schur–Padé approach discussed in sec-

tion 5.3.3 using Algorithm 5.1, with use_taylor “ false, for the triangular

Schur factor.

‚ exp_sp_t, an implementation of the Schur–Padé approach discussed in sec-

tion 5.3.3 using Algorithm 5.1, with use_taylor “ true, for the triangular Schur

factor.

In our implementations of Algorithm 5.1, we set ubnd “ 2´53, ε “ u, smax “ 100, and

the entries of m to the elements of (5.8) smaller than 1000 and those of (5.9) smaller

than 400, for truncated Taylor series and diagonal Padé approximant, respectively.

We do not include the function expm provided by the Symbolic Math Toolbox in our

tests since, for precision higher than double, it appears to be extending the precision

internally, using a number of extra digits that increases with the working precision.

As a result, the forward error of the algorithm is typically several orders of magnitude

smaller than machine epsilon, when computing with 20 or more digits, but tends to

be larger than the unit roundoff u, for u « 10´20 or larger. We note that the accu-

racy drops for matrices that are nondiagonalizable, singular, or have ill-conditioned

eigenvectors. Moreover, the Symbolic Math Toolbox implementation is rather slow

on moderately large matrices (n Á 50, say), which makes this code unsuitable for

extended testing.

134 mutliprecision algorithms for the matrix exponential

10
-18

10
-13

10
-8

10
-3

N H
(a) Forward error in double precision.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

θN

5 10 15 20

θH

(b) Performance profile for the data in (a).

κexppAq exp_d exp_t exp_sp_d exp_sp_t

expm exp_otf

(c) Legend for the data in (a) and (b).

Figure 5.1: Left: forward error of expm and exp_sp_d, exp_sp_t, exp_d, and exp_t running
in IEEE double precision arithmetic on the matrices in N and H, ordered by
decreasing value of κexppAq. Right: performance profile for the matrices in N .

In our tests, we assess the accuracy of the solution rX computed running with d

digits of precision by means of the relative forward error }X´ rX}1{}X}1, where X

is a reference solution computed using exp_mct with 2d significant digits. Since the

magnitude of forward errors depends not only on the working precision but also

on the conditioning of the problem, in our plots we compare the forward error of

the algorithms with κexppAqu, where κexppAq is the 1-norm condition number [20,

Chap. 4] of the matrix exponential of A (see (5.4)). We estimate it in double precision

using the funm_condest1 function provided by the Matrix Function Toolbox [18] on

expm.

When plotting the forward error, we choose the limits of the y-axis in order to

show the area where most of the data points lie, and move the outliers to the closest

edge of the box containing the plot. In several cases, we present our experimental

results with the aid of performance profiles [10], and adopt the technique of Dingle

and Higham [9] to rescale values smaller than u.

5.4 numerical experiments 135

5.4.1 Comparison with expm in double precision

In this experiment, we compare the performance of exp_d, exp_t, exp_sp_d, and

exp_sp_t running in IEEE double precision, with that of expm and exp_otf. The pur-

pose of this experiment is to verify that the new algorithms are broadly competitive

with expm; since expm is optimized for double precision, we do not expect them to be

as efficient.

Figure 5.1a compares the forward error of the algorithms on the matrices in our test

sets, sorted by decreasing condition number. The performance profile in Figure 5.1b

presents the results on a by-algorithm rather than by-matrix basis: for a given method,

the height of the line at θD “ θ0 represents the fraction of matrices in D for which the

relative forward error is within a factor θ0 of the error of the algorithm that delivers

the most accurate result for that matrix.

For Hermitian matrices, the error plot clearly shows that while exp_otf, exp_t,

and exp_d all provide forward error well below κexppAqu, and the corresponding

performance profiles indicate that exp_otf is consistently the most accurate on that

test set. The performance of expm is the same as that of exp_sp_d because both

implementations reduce to the evaluation of the scalar exponential at the eigenvalues

of A when A is Hermitian.

For the matrices in N , the errors of expm, exp_otf, exp_d, and exp_t are approx-

imately bounded by κexppAqu, with the algorithms based on truncated Taylor series

being overall more accurate than those based on diagonal Padé approximants. The

algorithms based on the Schur decomposition of A tend to give somewhat larger

errors, with the result that the performance profile curves are the least favorable.

5.4.2 Behavior in higher precision

Now we investigate the accuracy of our algorithm in higher precision and compare

it with exp_mct, the built-in function of the Multiprecision Computing Toolbox, and

exp_otf. The left column of Figure 5.2 compares the quantity κexppAqu with the

136 mutliprecision algorithms for the matrix exponential

10
-66

10
-62

10
-58

10
-54

N H
(a) d = 64 (u “ 2´213).

5 10 15 20
0

0.2

0.4

0.6

0.8

1

θN

5 10 15 20

θH

(b) Performance profile for the data in (a).

10
-258

10
-253

10
-248

10
-243

N H
(c) d “ 256 (u “ 2´851).

5 10 15 20
0

0.2

0.4

0.6

0.8

1

θN

5 10 15 20

θH

(d) Performance profile for the data in (c).

10
-1026

10
-1022

10
-1018

10
-1014

N H
(e) d “ 1024 (u “ 2´3402).

5 10 15 20
0

0.2

0.4

0.6

0.8

1

θN

5 10 15 20

θH

(f) Performance profile for the data in (e).

κexppAq exp_d exp_t exp_sp_d exp_sp_t

exp_mct exp_otf

(g) Legend for the data in (a)–(f).

Figure 5.2: Left: forward error of the methods on the matrices in the test sets.
Right: Corresponding performance profiles for the matrices in N .

5.4 numerical experiments 137

forward errors of exp_mct, exp_otf, exp_sp_d, exp_d, exp_sp_t, and exp_t running

with about 64, 256, and 1024 decimal significant digits on the matrices in our test sets

sorted by decreasing condition number κexppAq. The right-hand column presents the

data for the matrices in N by means of performance profiles.

The results show that, as for double precision, transformation-free algorithms tend

to produce a more accurate approximation of eA than those based on the Schur de-

composition of A. The code exp_mct typically delivers the least accurate results, with

a forward error usually larger than κexppAqu.

On the Hermitian test matrices, exp_otf is typically the most accurate algorithm,

having a surprising ability to produce errors much less than κexppAqu. On the set of

non-Hermitian matrices, exp_otf and exp_t are the most accurate algorithms, with

exp_t having the superior performance profile. On this test set, the least accurate of

our versions of Algorithm 5.1 is exp_sp_t, closely followed by exp_sp_d; the forward

error of both, despite being typically smaller than that of exp_mct, is often slightly

larger than κexppAqu, especially for the better conditioned of our test matrices. Finally,

exp_d performs better than Schur-based variants, but is slightly less accurate than

exp_otf and exp_t on most of the matrices in this test set. We remark, however,

that its forward error is typically smaller than κexppAqu when that of the other two

Taylor-based algorithms is.

We note that the tests of exp_otf in [7] have precision target 10´25 or larger, which

is between double and quadruple precision. This experiment shows that exp_otf

maintains its good accuracy up to much higher precisions.

5.4.3 Code profiling

In Table 5.1, we compare the execution time of our MATLAB implementations of

exp_t and exp_d, running in quadruple precision (d“34 and unit roundoff u“2´113),

on the matrices

A = 1000 * triu(ones(n),1);

138 mutliprecision algorithms for the matrix exponential

Table 5.1: Execution time breakdown of exp_t and exp_d, run in quadruple precision on
three matrices of increasing size. The table reports, for each algorithm, the num-
ber of squarings (Msqr), the number of matrix multiplications needed to evaluate
the Padé approximant (Meval), the total execution time in seconds (Ttotq, and the
percentage of time spent evaluating the scalar bound (Tbnd), evaluating the Padé
approximant (Teval), and performing the final squaring step (Tsqr).

exp_t exp_d
n Msqr Meval Tbnd Teval Tsqr Ttot Msqr Meval Tbnd Teval Tsqr Ttot

A 10 5 13 20% 39% 41% 0.1 7 8 60% 12% 28% 0.2
20 6 13 13% 31% 56% 0.1 8 8 41% 14% 45% 0.2
50 7 15 7% 26% 67% 0.3 9 9 37% 17% 46% 0.6

100 8 15 4% 29% 67% 0.8 10 9 35% 23% 42% 1.6
200 9 15 4% 38% 58% 2.7 11 9 42% 29% 29% 6.4
500 10 16 3% 45% 51% 27.5 12 9 39% 33% 28% 59.2

1000 11 16 3% 45% 52% 197.1 12 10 33% 38% 29% 365.3

B 10 1 11 24% 61% 15% 0.0 1 9 69% 24% 8% 0.1
20 2 12 14% 58% 28% 0.1 2 9 54% 27% 18% 0.1
50 3 13 8% 44% 48% 0.2 3 10 45% 28% 27% 0.4

100 4 13 5% 34% 61% 0.4 5 9 41% 28% 31% 1.1
200 5 13 4% 33% 63% 1.3 6 9 46% 31% 24% 4.4
500 6 14 3% 30% 67% 11.2 6 10 39% 39% 22% 37.6

1000 7 14 2% 24% 74% 69.0 7 10 35% 39% 26% 238.7

C 10 2 11 35% 64% 1% 0.0 1 10 76% 24% 0% 0.1
20 2 12 23% 76% 1% 0.1 2 9 69% 30% 1% 0.1
50 3 12 16% 75% 9% 0.1 2 10 53% 45% 2% 0.3

100 3 13 8% 78% 14% 0.5 2 11 40% 56% 3% 1.4
200 3 14 6% 79% 15% 3.6 3 10 34% 58% 8% 6.5
500 4 13 5% 73% 21% 52.4 4 9 21% 63% 16% 69.5

1000 4 14 5% 74% 21% 434.0 5 9 16% 62% 22% 505.2

B = zeros(n); B(n+1:n+1:n^2) = 1:n-1; % Upper bidiagonal.

C = gallery(’lotkin’, n);

where n ranges between 10 and 1000. The first two matrices are strictly upper triangu-

lar, thus singular, but the 1-norm of A is much larger than that of B. The full matrix C

is nonsingular. For each matrix, we report the overall execution time in seconds of the

two implementations (Ttot), specifying how much time is spent evaluating the scalar

bound (Tbnd), evaluating the approximant on the input matrix (Teval), and performing

the final squaring stage (Tsqr).

For exp_d, the evaluation of the forward bound on the truncation error of the Padé

approximant is typically the most expensive operation for small matrices, and even

when the size of the matrix increases the cost of this operation remains nonnegligible,

as the estimation of the quantity
›

›pqkmpAqq´1
›

›

1, which appears in the bound (5.18),

has cubic dependence on the size of the input matrix. For exp_t, on the other hand,

5.5 conclusions 139

Tbnd depends only quadratically on n, and tends to become relatively small for matri-

ces of size larger than 100.

5.5 conclusions

State-of-the-art scaling and squaring algorithms for computing the matrix exponen-

tial typically rely on a backward error analysis in order to scale the matrix and then

select an appropriate Padé approximant to meet a given accuracy threshold. The re-

sult of this analysis is a small set of precision-dependent constants that are hard to

compute but can be easily stored for subsequent use. This approach is not viable in

multiprecision environments, where the working precision is known only at run time

and is an input argument of the algorithm rather than a property of the underlying

floating-point number system. For truncated Taylor series, it is possible to estimate

on-the-fly a bound on the backward error of the approximation [7], but this technique

relies on a conjecture and does not readily generalize to other Padé approximants.

We have developed a new algorithm (Algorithm 5.1) based on Padé approximation

for computing the matrix exponential in arbitrary precision. In particular, we derived

a new representation for the truncation error of a general rk{ms Padé approximant

and showed how it can be used to compute practical error bounds for truncated

Taylor series and diagonal Padé approximants. In the first case, the bound is cheap

to compute, requiring only Opn2q flops. For diagonal Padé approximants the new

bound requires Opn3q low-precision flops, but if Conjecture 5.2 turns out to be true

then this cost will reduce to Opn2q flops.

According to our experimental results, Algorithm 5.1 in transformation-free form

using truncated Taylor series is the best option for computing the matrix exponential

in precisions higher than double. In particular, the algorithm is the most accurate

on non-Hermitian matrices. For Hermitian matrices, it is natural to compute eA via

a spectral decomposition (as does the MATLAB function expm), but an interesting

finding is that on our Hermitian test matrices this approach (to which exp_sp_d and

140 BIBLIOGRAPHY

exp_sp_t effectively reduce) is less accurate than Algorithm 5.1 and the algorithm

of [7].

When developing the algorithm and testing it experimentally we focused on preci-

sions higher than double. We believe that a different approach is needed to address

the computation of the matrix exponential in low precision arithmetic, such as IEEE

half precision. Indeed, due to its very limited range this number format is prone to

underflow and overflow, which makes accuracy and robustness difficult to achieve.

How to handle these challenges will be the subject of future work.

acknowledgements

We thank the editor and the anonymous referees for their comments that helped us

improve the presentation of the paper.

bibliography

[1] A. H. Al-Mohy, A truncated Taylor series algorithm for computing the action of

trigonometric and hyperbolic matrix functions, SIAM J. Sci. Comput., 40 (2018),

pp. A1696–A1713.

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the

matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[3] , Improved inverse scaling and squaring algorithms for the matrix logarithm,

SIAM J. Sci. Comput., 34 (2012), pp. C153–C169.

[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, New algorithms for computing

the matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37

(2015), pp. A456–A487.

http://dx.doi.org/10.1137/17M1145227
http://dx.doi.org/10.1137/17M1145227
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/140973979

BIBLIOGRAPHY 141

[5] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hy-

perbolic functions: Theory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016),

pp. 1453–1477.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach

to numerical computing, SIAM Rev., 59 (2017), pp. 65–98.

[7] M. Caliari and F. Zivcovich, On-the-fly backward error estimate for matrix ex-

ponential approximation by Taylor algorithm, J. Comput. Appl. Math, 346 (2019),

pp. 532–548.

[8] E. Defez, J. Sastre, J. Ibáñez, and J. Peinado, Solving engineering models using

hyperbolic matrix functions, Appl. Math. Model., 40 (2016), pp. 2837–2844.

[9] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative

errors on performance profiles, ACM Trans. Math. Software, 39 (2013), pp. 24:1–

24:11.

[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance

profiles, Math. Programming, 91 (2002), pp. 201–213.

[11] F. Faà de Bruno, Note sur une nouvelle formule de calcul différentiel, Quarterly J.

Pure Appl. Math, 1 (1857), p. 12.

[12] F. Faà di Bruno, Sullo sviluppo delle funzioni, Ann. Sci. Mat. Fis., 6 (1855), pp. 479–

480.

[13] M. Fasi, Optimality of the Paterson–Stockmeyer method for evaluating matrix polyno-

mials and rational matrix functions, Linear Algebra Appl., 574 (2019), p. 182–200.

[14] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix loga-

rithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491.

[15] M. Fasi, N. J. Higham, and B. Iannazzo, An algorithm for the matrix Lambert W

function, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 669–685.

[16] W. Gautschi, Numerical Analysis, Birkhäuser, 2011.

http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/https://doi.org/10.1016/j.apm.2015.09.050
http://dx.doi.org/https://doi.org/10.1016/j.apm.2015.09.050
http://dx.doi.org/10.1145/2491491.2491494
http://dx.doi.org/10.1145/2491491.2491494
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
https://books.google.com/books?id=7BELAAAAYAAJ&pg=PA359
https://books.google.co.uk/books?id=ddE3AAAAMAAJ&pg=PA479
http://dx.doi.org/10.1016/j.laa.2019.04.001
http://dx.doi.org/10.1016/j.laa.2019.04.001
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/140997610
http://dx.doi.org/10.1137/140997610

142 BIBLIOGRAPHY

[17] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and

sine, Numer. Algorithms, 40 (2005), pp. 383–400.

[18] N. J. Higham, The Matrix Function Toolbox. http://www.maths.manchester.ac.

uk/~higham/mftoolbox.

[19] , The scaling and squaring method for the matrix exponential revisited, SIAM J.

Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[20] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[21] , The scaling and squaring method for the matrix exponential revisited, SIAM Rev.,

51 (2009), pp. 747–764.

[22] N. J. Higham and P. Kandolf, Computing the action of trigonometric and hyperbolic

matrix functions, SIAM J. Sci. Comput., 39 (2017), pp. A613–A627.

[23] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix,

SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078.

[24] , An improved Schur–Padé algorithm for fractional powers of a matrix and their

Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360.

[25] N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms,

34 (2003), pp. 13–26.

[26] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with

an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000),

pp. 1185–1201.

[27] F. Johansson, Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic,

IEEE Trans. Comput., 66 (2017), p. 1281–1292.

[28] F. Johansson et al., Mpmath: A Python library for arbitrary-precision floating-point

arithmetic. http://mpmath.org.

http://dx.doi.org/10.1007/s11075-005-8141-0
http://dx.doi.org/10.1007/s11075-005-8141-0
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/16M1084225
http://dx.doi.org/10.1137/16M1084225
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1023/A:1026152731904
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1109/tc.2017.2690633
http://mpmath.org

BIBLIOGRAPHY 143

[29] W. P. Johnson, The curious history of Faà di Bruno’s formula, Amer. Math. Monthly,

109 (2002), pp. 217–234.

[30] D. Lago and F. Rahnema, Development of a set of benchmark problems to verify nu-

merical methods for solving burnup equations, Ann. Nucl. Energy, 99 (2017), pp. 266–

271.

[31] E. N. Laguerre, Le calcul des systèmes linéaires, extrait d’une lettre adressé à M.

Hermite, in Oeuvres de Laguerre, C. Hermite, H. Poincaré, and E. Rouché, eds.,

vol. 1, Gauthier–Villars, Paris, 1898, pp. 221–267. The article is dated 1867 and is

“Extrait du Journal de l’École Polytechnique, LXIIe Cahier”.

[32] J. D. Lawson, Generalized Runge–Kutta processes for stable systems with large lips-

chitz constants, SIAM J. Numer. Anal., 4 (1967), pp. 372–380.

[33] Maple. Waterloo Maple Inc., Waterloo, Ontario, Canada. http://www.maplesoft.

com.

[34] Mathematica. Wolfram Research, Inc., Champaign, IL, USA. http://www.wolfram.

com.

[35] K. Meerbergen, A. Spence, and D. Roose, Shift-invert and Cayley transforms for

detection of rightmost eigenvalues of nonsymmetric matrices, BIT, 34 (1994), pp. 409–

423.

[36] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential

of a matrix, SIAM Rev., 20 (1978), pp. 801–836.

[37] , Nineteen dubious ways to compute the exponential of a matrix, twenty-five years

later, SIAM Rev., 45 (2003), pp. 3–49.

[38] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[39] P. Nadukandi and N. J. Higham, Computing the wave-kernel matrix functions,

SIAM J. Sci. Comput., 40 (2018), pp. A4060–A4082.

[40] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications

necessary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.

http://www.jstor.org/stable/2695352
http://dx.doi.org/10.1016/j.anucene.2016.09.004
http://dx.doi.org/10.1016/j.anucene.2016.09.004
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
http://dx.doi.org/10.1137/0704033
http://dx.doi.org/10.1137/0704033
http://www.maplesoft.com
http://www.maplesoft.com
http://www.wolfram.com
http://www.wolfram.com
http://dx.doi.org/10.1007/bf01935650
http://dx.doi.org/10.1007/bf01935650
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://www.advanpix.com
http://dx.doi.org/10.1137/18M1170352
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/0202007

144 BIBLIOGRAPHY

[41] M. Pusa, Rational approximations to the matrix exponential in burnup calculations,

Nuclear Science and Engineering, 169 (2011), p. 155–167.

[42] The Sage Developers, Sage Mathematics Software. http://www.sagemath.org.

[43] J. Sastre, J. Ibáñez, P. Ruiz, and E. Defez, Accurate and efficient matrix exponential

computation, Internat. J. Comput. Math., 91 (2013), p. 97–112.

[44] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/.

[45] C. F. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14

(1977), pp. 971–981.

[46] S. Zhao, Matrix exponential approximation for burnup equation, M.Sc. thesis, The

University of Manchester, 2017.

[47] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse,

F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N. M. Thiéry, E. Bray,

J. Cremona, M. Forets, A. Ghitza, and H. Thomas, Computational Mathematics

with SageMath, Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 2018.

http://dx.doi.org/10.13182/nse10-81
http://www.sagemath.org
http://dx.doi.org/10.1080/00207160.2013.791392
http://dx.doi.org/10.1080/00207160.2013.791392
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
http://dx.doi.org/10.1137/0714065
http://dx.doi.org/10.1137/1.9781611975468
http://dx.doi.org/10.1137/1.9781611975468

6 MULT IPREC I S ION ALGOR ITHMS FOR

COMPUT ING THE MATR IX LOGAR ITHM

Abstract. Two algorithms are developed for computing the matrix logarithm in float-

ing point arithmetic of any specified precision. The backward error-based approach

used in the state of the art inverse scaling and squaring algorithms does not con-

veniently extend to a multiprecision environment, so instead we choose algorithmic

parameters based on a forward error bound. We derive a new forward error bound

for Padé approximants that for highly nonnormal matrices can be much smaller than

the classical bound of Kenney and Laub. One of our algorithms exploits a Schur de-

composition while the other is transformation-free and uses only the computational

kernels of matrix multiplication and the solution of multiple right-hand side linear

systems. For double precision computations the algorithms are competitive with the

state of the art algorithm of Al-Mohy, Higham, and Relton implemented in logm in

MATLAB. They are intended for computing environments providing multiprecision

floating point arithmetic, such as Julia, MATLAB via the Symbolic Math Toolbox or

the Multiprecision Computing Toolbox, or Python with the mpmath or SymPy pack-

ages. We show experimentally that the algorithms behave in a forward stable manner

over a wide range of precisions, unlike existing alternatives.

Keywords: multiprecision arithmetic, matrix logarithm, principal logarithm, inverse

scaling and squaring method, Fréchet derivative, Padé approximation, Taylor approx-

imation, forward error analysis, MATLAB, logm.

2010 MSC: 15A60, 65F30, 65F60.

145

146 multiprecision algorithms for the matrix logarithm

6.1 introduction

Let A P Cnˆn be nonsingular with no nonpositive real eigenvalues. Any matrix

X P Cnˆn satisfying the matrix equation

X “ eA (6.1)

is a matrix logarithm of A. This equation has infinitely many solutions, but in ap-

plications one is typically interested in the principal matrix logarithm, denoted by

log A, which is the unique matrix X whose eigenvalues have imaginary part strictly

between ´π and π. This choice is the most natural in that it guarantees that if the

matrix is real then so is its logarithm and that if the matrix has positive real spectrum

then so does its logarithm.

More generally, the unique matrix satisfying (6.1) having spectrum in the complex

strip

Lk “ tz P C | pk´ 1qπ ă Im z ă pk` 1qπu, k P Z,

is called the kth branch of the matrix logarithm, and is denoted by logk A. The choice

k “ 0 yields the principal logarithm log A. From a computational viewpoint, being

able to approximate log A is enough to determine the value of logk A for any k P Z,

in view of the identity logk A “ log A` 2kπiI.

The aim of this work is to develop an algorithm for log A that is valid for floating

point arithmetic of any given precision. A new algorithm is needed because the state

of the art algorithm of Al-Mohy, Higham, and Relton [3], [4], which is implemented in

the MATLAB function logm, is designed specifically for IEEE double precision arith-

metic. Indeed most available software for the matrix logarithm has this limitation of

being precision-specific [32]. Applications of the new algorithm will be in both low

and high precision contexts. For example, both the matrix logarithm [36] and low

precision computations (perhaps 32-bit single precision, or 16-bit half precision) [15],

6.1 introduction 147

[26], have been recently used in machine learning, and a combination of the two is

potentially of interest.

The need for high precision arises in several contexts. For instance, in order to

estimate the forward error of a double precision algorithm for the matrix logarithm a

reference solution computed at quadruple or higher precision is usually needed. Esti-

mating the backward error of a double precision algorithm for the matrix exponential

also requires the ability to evaluate log A at high precision. Let X “ eA and let rX be

a solution computed by a double precision algorithm for the matrix exponential. If

the spectrum of A lies inside Lk, so that A “ logk X, then the backward error of rX is

naturally defined as the matrix ∆A such that

logk
rX “ A`∆A, (6.2)

because then rX “ eA`∆A, and the normwise relative backward error is

}∆A}
}A}

“ } log rX´ A}{}A}.

A multiprecision algorithm for the matrix logarithm is needed in a variety of

languages and libraries that attempt to provide multiprecision implementations of

a wide range of functions with both scalar and matrix arguments. The Julia lan-

guage [8] and Python’s SymPy [44], [49] and mpmath [39] libraries currently lack

such an algorithm, and we will show that the algorithms proposed here improve

upon those in version 7.1 of the Symbolic Toolbox for MATLAB [48] and version 4.3.2

of the Multiprecision Computing Toolbox [45].

The algorithm of Al-Mohy, Higham, and Relton used by logm is the culmination

of a line of inverse scaling and squaring algorithms that originates with Kenney and

Laub [40] for matrices and goes back to Briggs [11] in the 17th century in the scalar

case. In essence, the algorithm performs three steps. Initially, it takes square roots

of A, s of them, say, until the spectrum of A1{2s
´ I is within the unit disk, which is

the largest disk centered at the origin in which the principal branch of logp1` xq is

analytic and its Padé approximants are therefore well defined. Then it selects a Padé

148 multiprecision algorithms for the matrix logarithm

approximant rkmpxq :“ pkmpxq{qkmpxq to logp1` xq of suitable degree rk{ms, evaluates

the rational matrix function rkmpXq “ pkmpXq qkmpXq´1 at X “ A1{2s
´ I, and finally

reverts the square roots to form the approximation log A « 2srkmpA1{2s
´ Iq. The al-

gorithm is based on a backward error analysis and uses pre-computed constants that

specify how small a normwise measure of A1{2s
´ I must be in order for a given diag-

onal Padé approximant rmm to deliver a backward stable evaluation in IEEE double

precision arithmetic. These constants require a mix of symbolic and high precision

computation and it is not practical to compute them during the execution of the al-

gorithm for different precisions. Therefore in this work we turn to forward error

bounds, as were used in earlier work [14], [40].

Kenney and Laub [41] showed that for }X} ă 1 and any subordinate matrix norm,

} logpI ´ Xq ´ r´kmpXq} ď | logp1´ }X}q ´ r´kmp}X}q|, (6.3)

where r´kmpxq is the rk{ms approximant to logp1´ xq. In subsequent literature, the

equivalent bound

} logpI ` Xq ´ rkmpXq} ď | logp1´ }X}q ´ rkmp´}X}q| (6.4)

has been preferred [30], [31, sec. 11.4]. Both upper bounds can be evaluated at neg-

ligible cost, so they provide a way to choose the Padé degrees k and m. We will

derive and exploit a new version of the latter bound that it is phrased in terms of the

quantities

αppXq “ max
`

}Xp}1{p, }Xp`1}1{pp`1q˘, (6.5)

for suitable p, instead of }X}. Since αppXq is no larger than }X}, and can be much

smaller when X is highly nonnormal, the new bound leads to a more efficient algo-

rithm.

Since in higher precision our new algorithm may need a considerable number of

square roots, it can happen that logpI ` Xq has very small norm and thus that an

absolute error bound is not sufficient to guarantee that the algorithm will deliver a

6.1 introduction 149

result with small relative error. For this reason, unlike in some previous algorithms

we will use a relative error bound containing an inexpensive estimate of } logpI`Xq}.

It is well known [41, Thm. 6] that for X with nonnegative entries and k`m fixed

the diagonal Padé approximant (k “ m) minimizes the error } logpI ´ Xq ´ r´kmpXq}

and the cost in flops of evaluating rkmpXq is roughly constant. Therefore diagonal

approximants rm :“ rmm have been favoured. However, the special case of the Taylor

approximant tm :“ rm0 merits consideration here, as its evaluation requires only

matrix multiplications, which in practice are faster than multiple right-hand side

solves. Throughout the paper we write fm to denote either the Padé approximant rm

or the Taylor approximant tm.

In addition to the matrix logarithm itself, we are also interested in evaluating its

Fréchet derivative. Being able to evaluate the Fréchet derivative and its adjoint allows

us to estimate the condition number κlogpAq of the matrix logarithm, which in turn

gives an estimate of the accuracy of the computed logarithm.

We use the term “multiprecision arithmetic” to mean arithmetic supporting multi-

ple, and usually arbitrary, precisions. These precisions can be lower or higher than

the single and double precisions that are supported by the IEEE standard [37] and

usually available in hardware. We note that the 2008 revision of the IEEE standard

[38] also supports a quadruple precision floating point format and, for storage only,

a half precision format.

We begin the paper by summarizing in section 6.2 available multiprecision comput-

ing environments. In section 6.3 we derive a new forward bound for the error of Padé

approximation of a class of hypergeometric functions, which yields a bound sharper

than (6.3) and (6.4) for highly nonnormal matrices. In section 6.4 we describe a new

Schur–Padé algorithm for computing the matrix logarithm and its Fréchet derivative

at any given precision. Section 6.5 explores a Schur-free version of the algorithm.

Numerical examples are presented in section 6.6 and concluding remarks are given

in section 6.7.

Finally, we introduce some notation. The unit roundoff of the floating point arith-

metic is denoted by u. For A P Cnˆn, the spectral radius of a matrix is denoted by

150 multiprecision algorithms for the matrix logarithm

ρpAq “ maxt |λ| : λ is an eigenvalue of A u. We recall that the Frechét derivative of a

matrix function f : Cnˆn Ñ Cnˆn at A P Cnˆn is the linear map D f pAq : Cnˆn Ñ Cnˆn

that satisfies

f pA` Eq “ f pAq `D f pAqrEs ` op}E}q.

The relative condition number of the matrix function f at A is defined as

κ f pAq “ lim
εÑ0

sup
}E}ďε}A}

} f pA` Eq ´ f pAq}
ε} f pAq}

,

and is explicitly given by the formula [31, Thm. 3.1]

κ f pAq “
}D f pAq} }A}
} f pAq}

.

6.2 support for multiple precision arithmetic

A wide range of software supporting multiprecision floating point arithmetic is avail-

able. Multiprecision capabilities are a built-in feature of Maple [42] and Mathemat-

ica [43] as well as the open-source PARI/GP [46] and Sage [47] computer algebra

systems, and are available in MATLAB through the Symbolic Math Toolbox [48] and

the Multiprecision Computing Toolbox [45]. The programming language Julia [8]

supports multiprecision floating point numbers by means of the built-in data type

BigFloat, while for other languages third-party libraries are available: mpmath [39]

and SymPy [44], [49], for Python; the GNU MP Library [25] and the GNU MPFR

Library [21] for C; the BOOST libraries [10] for C++; and the ARPREC library [5] for

C++ and Fortran. The GNU MPFR Library is used in some of the software mentioned

above, and interfaces to it for several programming languages are available1.

1 See http://www.mpfr.org.

http://www.mpfr.org

6.3 approximation of hypergeometric functions 151

6.3 approximation of hypergeometric functions

We recall that the rational function rkm “ pkm{qkm is a rk{ms Padé approximant of f

if pkm and qkm are polynomials of degree at most k and m, respectively, qkmp0q “ 1,

and f pxq´ rkmpxq “ Opxk`m`1q. In order to obtain the required error bounds for Padé

approximants to the logarithm we consider more generally Padé approximants to the

hypergeometric function

2F1pa, 1, c, xq “
8
ÿ

i“0

paqi
pcqi

xi,

where paqi “ apa` 1q ¨ ¨ ¨ pa` i´ 1q is the Pochhammer symbol for the rising factorial,

a and c are real numbers and x is complex with |x| ă 1. Such Padé approximants

have been well studied [6, sec. 2.3].

By combining the analysis of Kenney and Laub [41] with a result of Al-Mohy and

Higham [2] we obtain the following stronger version of the error bound [41, Cor. 4].

Recall that αp is defined in (6.5).

Theorem 6.1. Let X P Cnˆn be such that ρpXq ă 1. Let rrkm be the rk{ms Padé approximant

to 2F1pa, 1, c, yq. If m ď k` 1 and 0 ă a ă c then

}2F1pa, 1, c, Xq ´rrkmpXq} ď |2F1pa, 1, c, αppXqq ´rrkmpαppXqq|, (6.6)

for any p satisfying ppp´ 1q ď k`m` 1.

Proof. Kenney and Laub [41, Thm. 5] show that if m ď k` 1, |y| ă 1, and 0 ă a ă c

then

2F1pa, 1, c, yq ´rrkmpyq “
qkmp1q
qkmpyq

8
ÿ

i“k`m`1

paqipi´ k´mqm
pcqipi` a´mqm

yi, (6.7)

152 multiprecision algorithms for the matrix logarithm

where qkm is the denominator of rrkm, a polynomial of degree m. By [41, Cor. 1] the

zeros of qkm are simple and lie on p1,8), and since qkmp0q “ 1 it follows that for

|y| ă 1,

q´1
kmpyq “

8
ÿ

j“0

djyj,

with di ą 0 for all i. Since a, c ą 0 and i ą k`m, the coefficients of the series in (6.7)

are positive and so (6.7) can be rewritten as

2F1pa, 1, c, yq ´rrkmpyq “
8
ÿ

i“k`m`1

ψiyi, (6.8)

where signpψiq “ signpqkmp1qq for all i. Therefore, applying [2, Thm. 4.2(a)] gives

}2F1pa, 1, c, Xq ´rrkmpXq} ď
8
ÿ

i“k`m`1

|ψi|αppXqi

“ |2F1pa, 1, c, αppXqq ´rrkmpαppXqq|,

for ppp´ 1q ď m` k` 1.

For the matrix logarithm, we have

logp1` xq
x

“ 2F1p1, 1, 2,´xq, (6.9)

and thus the rk{ms Padé approximant rkmpxq to logp1` xq and the rk{ms Padé approx-

imant rrkmpxq to 2F1p1, 1, 2, xq are related by

rkmpxq
x

“ rrk´1,mp´xq. (6.10)

The next result is an analog of [34, Thm. 2.2], which applies to the function p1´ xqt

for t P r´1, 1s rather than logp1` xq.

6.3 approximation of hypergeometric functions 153

Corollary 6.2. Let X P Cnˆn be such that ρpXq ă 1 and αppXq ă 1, and let rkm be the rk{ms

Padé approximant to logp1` xq. Then for m ď k, and p such that ppp´ 1q ď k`m` 1, we

have

} logpI ` Xq ´ rkmpXq} ď | logp1´ αppXqq ´ rkmp´αppXqq|. (6.11)

Proof. From (6.8), (6.9), and (6.10), with a “ 1, c “ 2, and x “ ´y we have

´y´1 plogp1´ yq ´ rkmp´yqq “ 2F1p1, 1, 2, yq ´rrk´1,mpyq “
8
ÿ

i“k`m

ψiyi,

that is,

logp1´ yq ´ rkmp´yq “ ´
8
ÿ

i“k`m

ψiyi`1.

We know from the proof of Theorem 6.1 that the ψi are one-signed, and so we deduce

that

} logpI ´ Xq ´ rkmp´Xq} ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“k`m

ψiαppXqi`1

ˇ

ˇ

ˇ

ˇ

ˇ

“ | logp1´ αppXqq ´ rkmp´αppXqq|.

Since αpp´Xq “ αppXq, we obtain the bound (6.11) on replacing X by ´X.

From the condition ppp´ 1q ď k`m` 1 of the corollary we see that (6.11) holds

for any p P Irk{ms, where

Irk{ms “
#

n P N : 1 ď n ď
p1`

a

5` 4pk`mqq
2

+

. (6.12)

Since the bound (6.11) is decreasing in αppXq, the smallest bound is obtained for

p‹ “ arg min

αppXq : p P Irk{ms
(

. (6.13)

In practice we will approximate p‹ rather than compute it exactly, as discussed in

section 6.4.

154 multiprecision algorithms for the matrix logarithm

5 10 15 20
10´98

10´73

10´48

10´23

102

m

| logp1´}X}1q´ tmp´}X}1q|

| logp1´αp‹ pXqq´ tmp´αp‹ pXqq|

} logpI`Xq´ tmpXq}1

(a) tm

5 10 15 20
10´98

10´73

10´48

10´23

102

m

| logp1´}X}1q´ rmp´}X}1q|

| logp1´αp‹ pXqq´ rmp´αp‹ pXqq|

} logpI`Xq´ rmpXq}1

(b) rm

Figure 6.1: Comparison of the bounds (6.4) and (6.11) for A in (6.14) and 1 ď m ď 20, with
p‹ given by (6.13).

We compare in Figure 6.1 the bounds (6.4) and (6.11) for the diagonal Padé ap-

proximant rm and the Taylor approximant tm, for m between 1 and 20, with the fairly

nonnormal matrix

A “

»

—

–

0.01 0.95

0 0.04

fi

ffi

fl

. (6.14)

We see that for both tm and rm the new bound can be many orders of magnitude

smaller than (6.4) and it is a much better estimate of the actual error.

6.4 schur–padé algorithm

In this section and the next we develop two new algorithms for computing the ma-

trix logarithm in arbitrary precision floating point arithmetic, one using the Schur

decomposition and one transformation-free. The algorithms build on the inverse

scaling and squaring algorithms in [3], [4], [14], [31, Algs 11.9, 11.10]. They combine

6.4 schur–padé algorithm 155

features from these algorithms in a novel way that yields algorithms that take the

unit roundoff as an input parameter and need no pre-computed constants.

We approximate the Fréchet derivative of the logarithm by the Fréchet derivative

of the logarithm’s Padé approximant. We will not give an error bound for this ap-

proximation because, as noted in [4], it is problematic to obtain error bounds for it

that are expressed in terms of the αppAq. However our main intended use of the

Fréchet derivative is for condition number estimation, which does not require accu-

rate derivatives, and the same approximation was found to perform well at double

precision in [4].

Our precision-independent algorithm for the matrix logarithm and its Fréchet

derivative is given in Algorithm 6.1. Instructions with an underlined line number

are to be executed only when the Fréchet derivative of the matrix logarithm is re-

quired.

The algorithm begins by computing the Schur decomposition A “ QTQ˚. In

lines 9–10 it repeatedly takes square roots of T until the spectrum of T ´ I is within

the unit disk centered at 0. Although the requirement ρpXq “ ρpT ´ Iq ă 1 in

Corollary 6.2 is now satisfied, there is no guarantee that the relative forward error

} log T´ fmmaxpT´ Iq}1{} log T}1, where mmax is the maximum degree of approximant

allowed and fm denotes rm or tm, is less than the unit roundoff u. This is especially

true for Taylor approximation, which could need hundreds of terms to achieve a

bound on the forward error smaller than u.

Hence in lines 11–12 the algorithm keeps taking square roots until

| logp1´ αppT´ Iqq ´ fmmaxp´αppT´ Iqq| ă uψpTq, (6.15)

where ψpTq is an estimate of the 1-norm of log T and p is chosen as described below.

Approximating log T by the first term of the Taylor series, ψpTq “ }T ´ I}1, provides

an estimate accurate enough for all matrices and levels of precision considered in our

numerical experiments.

156 multiprecision algorithms for the matrix logarithm

Algorithm 6.1: Schur–Padé matrix logarithm with Fréchet derivative.
Given A P Cnˆn with no eigenvalues on R´ this algorithm computes X “ log A,
and optionally the Fréchet derivative Y « DlogpAqrEs, in floating point arith-
metic with unit roundoff u using inverse scaling and squaring with Padé approx-
imation. smax is the maximum allowed number of square roots and mmax the
maximum allowed approximant degree. The logical parameter use_taylor de-
termines whether a diagonal Padé approximant or a Taylor approximant is to be
used. ψpXq provides an approximation to } log X}1.

1 Compute the complex Schur decomposition A “ QTQ˚

2 if use_taylor then
3 f “ t and ζpmq is defined as in (6.20).
4 else
5 f “ r, ζpmq Ð m´ 2

6 E Ð Q˚EQ
7 T0 Ð T
8 s Ð 0
9 while max1ďiďnp|

?
tii ´ 1|q ą 1 and s ă smax do

10 rT, E, ss Ð sqrtmpT, E, sq

11 while | logp1´rα f
mmaxpT´Iqq ´ fmmaxp´rα

f
mmaxpT´Iqq| ě uψpTq and s ă smax do

12 rT, E, ss Ð sqrtmpT, E, sq

13 rm Ð mintm ď mmax : | logp1´ rα
f
mpT´Iqq ´ fmp´rα

f
mpT´Iqq| ă uψpTqu

14 while
ˇ

ˇ log
`

1´rα f
ζp rmqpT´Iq{2

˘

´ fζp rmq
`

´rα
f
ζp rmqpT´Iq{2

˘ˇ

ˇăuψpTq and să smax do
15 rT, E, ss Ð sqrtmpT, E, sq
16 rm Ð mintm ď rm : | logp1´ rα

f
mpT´Iqq ´ fmp´rα

f
mpT´Iqq| ă uψpTqu

17 diagpT, 1q Ð diagpT1{2s

0 , 1q using [33, eq. (5.6)].
18 diagpTq Ð diagpT0q

1{2s
´ I using [1, Alg. 2].

19 X Ð 2s f
rmpTq

20 diagpTq Ð logpdiagpT0qq

21 Update the superdiagonal of T using [31, eq. (11.28)].
22 X Ð QXQ˚

23 Y Ð 2sQL fmpT, EqQ˚ using [4, eq. (2.3)].

24 function sqrtmpT P Cnˆn, E P Cnˆn, s P Nq

Ź Compute square root of T and update algorithmic parameters.
25 T Ð T1{2 using [9, Alg. 6.3].
26 E Ð X, where X is the solution of TX` XT “ E.
27 return T, E, s` 1

6.4 schur–padé algorithm 157

Note that αpp}X}1q can be estimated efficiently, without explicitly forming any pow-

ers of X using the block 1-norm estimation algorithm of Higham and Tisseur [35],

which requires only Opn2q flops. Since only an estimate of }Xp}1{p is computed there

is no need to use high precision for this sub-problem, so we carry out this computa-

tion in double precision (or single precision if the requested precision is lower than

double), in order to exploit the floating point hardware. When the matrix dimension

is small and the working precision is not too high the cost of estimating αppT´ Iq can

nevertheless be non-negligible. Rather than computing αp for the optimal value p‹ in

(6.13), we compute it only for the largest possible p. Some justification for this choice

comes from the fact that despite a sometimes considerably nonmonotonic behaviour,

the sequence tαppXqupPN is typically roughly decreasing [2]. We denote the α value

corresponding to the diagonal Padé approximant rm by

rαr
mpXq “ αppXq, p “

Y

p1`
?

5` 8mq{2
]

,

and that corresponding to the truncated Taylor series tm by

rαt
mpXq “ αppXq, p “

Y

p1`
?

5` 4mq{2
]

.

Thus (6.15) is used in the form

| logp1´ rα
f
mmaxpT´ Iqq ´ fmmaxp´rα

f
mmaxpT´ Iqq| ă uψpTq. (6.16)

We now discuss the cost of the algorithm, beginning with the case of diagonal

Padé approximants. Higham [30] considered several ways of evaluating the rational

function rmpXq. The partial fraction form

rmpAq “
m
ÿ

j“1

γ
pmq
j pI ` δ

pmq
j Aq´1A, (6.17)

where γ
pmq
j and δ

pmq
j are the weights and nodes, respectively, of the m-point Gauss–

Legendre quadrature rule on r0, 1s, was found to provide the best balance between

efficiency and numerical stability, and it also has the advantage of allowing parallel

158 multiprecision algorithms for the matrix logarithm

evaluation. For a triangular matrix of size n, the evaluation of (6.17) requires mn3{3

flops and the computation of each of the s matrix square roots costs n3{3 flops. Thus,

when diagonal approximants are used, the algorithm requires 25n3 flops for the com-

putation of the Schur decomposition, χrps, mq :“ ps`mq n3{3 for the inverse scaling

and squaring phase, and 3n3 flops to recover the solution.

Since χrps, mq “ χrps` 1, m´ 1q, an additional square root will save computational

effort only if the degree of the approximant decreases by at least 2, in which case the

overall reduction in cost is at least n3{3 flops. In view of the approximation [3]

αppA1{2s`1
´ Iq «

αppA1{2s
´ Iq

2
, (6.18)

an additional square root is taken only if

| logp1´ rα
f
ζp rmqpT´ Iq{2q ´ fζp rmqp´rα

f
ζp rmqpT´ Iq{2q| ă uψpTq, (6.19)

with f ” r and ζ p rmq “ rm ´ 2, where rm is the current degree of the approximant

(defined in line 13 of Algorithm 6.1).

Turning to Taylor series approximants, in order to evaluate the truncated Taylor

series the algorithm uses the Paterson–Stockmeyer method, which among the four

methods for polynomial evaluation considered in [31, Thm. 4.5] is the one that min-

imizes the number of matrix-matrix multiplications while satisfying a forward error

bound of the same form as for the other methods. The computational cost of comput-

ing s square roots and evaluating a Taylor approximant of degree m is approximately

χtps, mq “ ps` 2
?

mq n3{3 flops. Simple algebraic manipulations show that

χtps, mq “ χt

˜

s` 1,
ˆ

?
m´

1
2

˙2
¸

,

and thus an additional square root is taken only if (6.19) holds with f ” t and

ζ p rmq “

S

ˆ

?
rm´

1
2

˙2
W

´ 1, (6.20)

6.4 schur–padé algorithm 159

which guarantees that ζp rmq ă p
?
rm´ 1

2q
2. Since the cost function χt is monotonic in

both arguments, the reduction in the number of flops will be at least

χtps, rmq ´ χtps` 1, ζp rmqq “
2n3

3

˜

?
rm´

˜S

ˆ

?
rm´

1
2

˙2
W

´ 1

¸1{2

´
1
2

¸

, (6.21)

which depends only on rm. Unlike in the Padé case, we cannot put a useful lower

bound on the decrease in flops resulting from an extra square root.

For both types of approximant we can perform a binary search to find the smallest

m˚ P r1, rms such that

| logp1´ rα
f
m˚pT´ Iqq ´ fm˚p´rα

f
m˚pT´ Iqq| ă uψpTq, (6.22)

which requires the estimation of }Xp}
1{p
1 for no more than 2 log2 rm´ 1 values of p.

If the Frechét derivative is needed then each time a square root is taken the algo-

rithm solves an additional Sylvester equation, as detailed in [31, sec. 11.8]. Once the

optimal values for s and rm have been found, in order to increase the accuracy the

algorithm recomputes the first superdiagonal of T from T0, making use of the iden-

tity [33, eq. (5.6)], and then the main diagonal of T ´ I, by applying [1, Alg. 2] to the

diagonal of T0. The algorithm can be easily adapted to compute the adjoint of the

Frechét derivative of A in the direction E, by replacing the increment E by E˚ and

returning Y˚ [4].

Algorithm 6.1 can be extended to compute an estimate of the 1-norm condition

number of the matrix logarithm, using the same approach as in [4, Alg. 4.1]. Since

in this case the Frechét derivative of the matrix logarithm of A and its adjoint need

to be computed in several directions, but neither s nor rm depend on E, the algorithm

can be modified to store the matrix T after each square root is taken, and then use

it to solve several Sylvester cascades for different matrices E. If η is the number of

bits required to store a single entry of the matrix, then this modification increases

the memory requirement of the algorithm by about ηps ´ 1qn2{2 bits if the upper

triangular pattern is exploited.

160 multiprecision algorithms for the matrix logarithm

6.5 transformation-free algorithm

Multiprecision computing environments often provide just a few linear algebra ker-

nels. For example, version 7.1 of the Symbolic Math Toolbox [48] does not support

the Schur decomposition in its variable precision arithmetic (VPA). In this section we

therefore present a version of Algorithm 6.1 that does not require the computation of

the Schur decomposition and builds solely on level 3 BLAS operations and multiple

right-hand side system solves.

The algorithm, whose pseudocode is given in Algorithm 6.2, builds on the trans-

formation-free algorithms [3, Alg. 5.2], [14, Alg. 7.1], and again makes use of the

improved forward error bound (6.11).

The algorithm starts by taking enough square roots to guarantee that the Padé or

Taylor approximants will produce a relative forward error below the unit roundoff

threshold. Since in this case the matrix is not triangular, to compute square roots

the algorithm employs the scaled Denman–Beavers iteration (in product form) [31,

eq. (6.29)], whose computational cost depends on the number of iterations and is thus

not known a priori. However, it has been observed [31, sec. 11.5.2] that in practice

up to ten iterations are typically required for the first few square roots, but just four

or five are enough in the later stages. Since the cost of one iteration is 4n3 flops, it is

customary to consider that the computation of a square root requires 16n3 flops. On

the other hand, evaluating the diagonal Padé approximant in partial fraction form

requires 8mn3{3 if the matrix is not upper triangular. The cost of the algorithm is

χrps, mq flops, where

χrps, mq “
ˆ

8m
3
` 16s

˙

n3,

and it can be readily seen that χrps, mq “ χrps ` 1, m ´ 6q, and thus an additional

square root is taken if (6.19) holds for f ” r, T “ A, and ζp rmq “ rm ´ 7. Using

the Paterson–Stockmeyer scheme to evaluate the truncated Taylor expansion, we get

the asymptotic cost χtps, mq “ 4p
?

m ` 4sqn3. Since the cost function χt satisfies

6.5 transformation-free algorithm 161

Algorithm 6.2: Transformation-free matrix logarithm with Fréchet derivative.
Given A P Cnˆn with no eigenvalues on R´ this algorithm computes X “ log A,
in floating point arithmetic with unit roundoff u using inverse scaling and squar-
ing with Padé approximation. smax is the maximum allowed number of square
roots and mmax the maximum allowed approximant degree. The logical param-
eter use_taylor determines whether a diagonal Padé approximation or a Taylor
approximation is to be used. ψpXq provides an approximation to } log X}1.

1 if use_taylor then
2 f “ t and ζpmq is defined as in (6.23).
3 else
4 f “ r, ζpmq Ð m´ 7

5 s Ð 0
6 Z Ð A´I
7 P Ð I
8 while | logp1´rα f

mpA´Iqq´ fmp´rα
f
mpA´Iqq|ěuψpAq and să smax or }A}1ą1 do

9 rA, P, ss Ð sqrtmDBpA, P, sq

10 rm Ð mintm ď mmax : | logp1´ rα
f
mpA´Iqq ´ fmp´rα

f
mpA´Iqq| ă uψpAqu

11 while | logp1´ rα
f
ζp rmqpA´Iq{2q ´ fζp rmqp´rα

f
ζp rmqpA´Iq{2q| ă uψpAq and s ă smax

do
12 rA, P, ss Ð sqrtmDBpA, P, sq
13 rm Ð mintm ď rm : | logp1´ rα

f
mpA´Iqq ´ fmp´rα

f
mpA´Iqq| ă uψpAqu

14 if s ă 2 then
15 Y Ð A´I
16 else
17 Y Ð ZP´1

18 X Ð 2s f
rmpYq

19 return X

20 function sqrtmDBpA P Cnˆn, P P Cnˆn, s P Nq

Ź Compute square root of A and update algorithmic parameters.
21 A Ð A1{2 using the iteration in [31, eq. (6.29)].
22 if s ą 1 then
23 P Ð PpA` Iq
24 else
25 return

26 A, P, s

162 multiprecision algorithms for the matrix logarithm

χtps, mq “ χtps` 1,
`?

m´ 4
˘2
q, an additional square root will be worthwhile if (6.19)

holds for f ” t, T “ A, and

ζp rmq “
R

´?
rm´ 4

¯2
V

´ 1, (6.23)

which guarantees a reduction in the number of flops of at least

χtps, rmq ´ χtps` 1, ζp rmqq “ 4n3
ˆ

?
rm´

ˆR

´?
rm´ 4

¯2
V

´ 1
˙1{2

´ 4
˙

. (6.24)

To reduce the chances of numerical cancellation in the computation of A1{2s
´ I, the

matrix form of [1, Alg. 2] is used, as in [3].

Note that Algorithm 6.2 is not suitable for the computation of the Fréchet derivative

of the matrix logarithm, nor for the estimation of its condition number. Standard

methods for the solution of Sylvester equations [7], [23] start by computing the Schur

decomposition of one or both the coefficients of the matrix equation, and are thus not

suitable for a framework where a multiprecision implementation of the QR algorithm

is not available. The alternative of converting the Sylvester equation to an n2 ˆ n2

structured linear system Ax “ b and solving by Gaussian elimination has too high a

computational cost to be useful in this context.

6.6 numerical experiments

In this section we describe numerical tests with the new multiprecision algorithms for

the matrix logarithm. All the experiments were performed using the 64-bit version

of MATLAB 2017b on a machine equipped with an Intel I5-5287U processor running

at 2.90GHz. The collection of MATLAB scripts and functions that generate the test

matrices and produce the figures and tables in this section is available on GitHub,2

and the MATLAB functions implementing Algorithm 6.1 and Algorithm 6.2 can also

be retrieved on MATLAB Central.3 For the underlying computations the implemen-

2 https://github.com/mfasi/mplogm.
3 https://uk.mathworks.com/matlabcentral/fileexchange/63841.

https://github.com/mfasi/mplogm
https://uk.mathworks.com/matlabcentral/fileexchange/63841

6.6 numerical experiments 163

tations exploit the overloaded methods from the Multiprecision Computing Toolbox

(version 4.3.2.12168) [45] to run in different precisions. The precision is specified in

terms of the number of decimal digits.

We test the following algorithms.

‚ logm_mct: the (overloaded) logm function from the Multiprecision Comput-

ing Toolbox, which implements a blocked version of the Schur–Parlett algo-

rithm [16]. After computing the complex Schur decomposition, a blocking of

the matrix is computed according to [16], [31, sec. 9.3]. For each diagonal block

Tii of the triangular Schur factor the algorithm repeatedly takes the square root

until the spectrum of Tii ´ I lies within the unit ball centered at 1. Then it

chooses the degree of the (diagonal) Padé approximant as the smallest m so

that the bound in (6.3) is less than the unit roundoff. Since this strategy does

not optimize the balance between the number of square roots and the Padé

degree it tends to choose higher degrees than our algorithm. The off-diagonal

blocks are obtained via the block Schur–Parlett recurrence.

‚ logm_agm: an algorithm for the computation of the matrix logarithm based on

the arithmetic-geometric mean iteration. In particular, we use [12, Thm. 8.2],

which gives the approximation log A « logp4{εqI ´ pπ{2qAGMpεAq´1, where

ε “
?

u{}A}F and AGMpAq is the arithmetic-geometric mean iteration, which

we compute by means of the stable double recursion [12, eqs. (5.2), (5.3)] with

stopping criterion }Pk ´ I}F ď u}A}F. We do not implement the optimization

in [12, sec. 7], because it is precision dependent and aimed at speed rather than

accuracy.

‚ logm_pade: the version of Algorithm 6.1 employing diagonal Padé approxi-

mants and relative error bounds, i.e. ψpXq “ }X´ I}1.

‚ logm_pade_abs: the version of Algorithm 6.1 employing diagonal Padé approx-

imants and absolute error bounds, i.e. ψpXq “ 1.

‚ logm_tayl: the version of Algorithm 6.1 employing truncated Taylor approxi-

mants and relative error bounds, i.e. ψpXq “ }X´ I}1.

164 multiprecision algorithms for the matrix logarithm

‚ logm_tayl_abs: the version of Algorithm 6.1 employing truncated Taylor ap-

proximants and absolute error bounds, i.e. ψpXq “ 1.

‚ logm_tfree_pade: the transformation-free Algorithm 6.2 employing diagonal

Padé approximants and relative error bounds, i.e. ψpXq “ }X´ I}1.

‚ logm_tfree_tayl: the transformation-free Algorithm 6.2 employing truncated

Taylor approximants and relative error bounds, i.e. ψpXq “ }X´ I}1.

‚ logm: the built-in MATLAB function that implements the algorithms for real

and complex matrices from [3], [4] and is designed for double precision only.

In the implementations, mmax and smax are set to 200 and 100, for diagonal Padé

approximants, and to 400 and 100, for truncated Taylor series, respectively.

The Gauss–Legendre nodes and weights in (6.17) are computed by means of the

GaussLegendre method of the mp class provided by the Multiprecision Computing

Toolbox. This algorithm is based on Newton root-finding [22], which computes the

nodes and weights of the quadrature formula of order m in Opmq flops. This is more

efficient than the Golub–Welsh algorithm [24], which is based on the computation of

the eigensystem of a tridiagonal matrix and costs Opm2q flops. The Schur decompo-

sition is computed using the schur function of the mp class.

We note that version 7.1 of the Symbolic Math Toolbox provides an overloaded ver-

sion of the MATLAB function logm, but for several of our test matrices this function

either gives an error or fails to return an answer, so we exclude it from our tests.

We evaluate the forward errors }X ´ pX}1{}X}1, where pX is a computed solution

and X « log A is a reference solution computed with logm_pade at a precision of 8d

decimal significant digits, where d is the number of digits used for the computation

of pX.

To gauge the forward stability of the algorithms we plot the quantity κlogpAqu,

where κlogpAq is the 1-norm condition number of the matrix logarithm of A estimated

using funm_condest1 from the Matrix Function Toolbox [29], with the aid of the

Fréchet derivatives in Algorithm 6.1.

6.6 numerical experiments 165

0 5 10 15 20 25 30 35 40 45 50 55 60 65
10´18

10´14

10´10

10´6

10´2 κlogpAqu
logm

logm_pade

logm_tfree_pade

(a) Forward errors.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

logm

logm_pade

logm_tfree_pade

(b) Performance profile for data in (a).

0 20 40 60

0.9

1

1.1

(c) Computational cost.

Figure 6.2: Top: forward errors of logm_pade, logm_tfree_pade, and logm on the test set, all
running in IEEE double precision arithmetic. Bottom left: performance profile.
Bottom right: on the same test set, the number of square roots and multiple
right-hand side linear system solves for logm_pade divided by the corresponding
number for logm.

We use a test set of 64 matrices, of sizes ranging from 2ˆ 2 to 100ˆ 100, including

matrices from the literature of the matrix logarithm and from the MATLAB gallery

function.

6.6.1 Comparison with logm in double precision

Our first experiment compares logm_pade and logm_tfree_pade running in IEEE dou-

ble precision (u “ 2´53) with the built-in MATLAB function logm, in order to check

that the new algorithms perform well in double precision. Figure 6.2a shows the

forward errors sorted by decreasing condition number of the matrix logarithm. Fig-

166 multiprecision algorithms for the matrix logarithm

ure 6.2b reports the same data in the form of a performance profile [20], which we

compute with the MATLAB function perfprof described in [27, sec. 26.4]. Here, for

each method M the height of the line at θ on the x-axis represents the fraction of ma-

trices in the test set for which the relative forward error of M is at most θ times that

of the algorithm that delivers the most accurate result. In our performance profiles

we use the technique of Dingle and Higham [19] to rescale errors smaller than the

unit roundoff in order to avoid abnormally small errors skewing the profiles.

The results show that logm_pade and logm produce errors bounded approximately

by κlogpAqu, that is, they behave in a forward stable manner. The same is true of

logm_tfree_pade except for one matrix, and this algorithm is most often the most

accurate, while also being the least reliable, as shown by the performance profile.

Figure 6.2c shows that the computational cost of logm_pade can be lower or (more

often) higher than that of logm, but overall is comparable with the state of the art. We

note that logm_pade computes more square roots than logm on 23% of the matrices in

our data set. On these matrices, logm requires between 9% and 33% (with an average

of almost 22%) fewer square roots, but logm_pade typically compensates for this by

evaluating a Padé approximant of lower degree.

As a further experiment we sought to maximize the ratios between the forward

errors of logm and logm_pade, using the multidirectional search method of Dennis

and Torczon [17], implemented in the mdsmax function in the Matrix Computation

Toolbox [28]. Initializing that method with random 10ˆ 10 matrices with no positive

real eigenvalues we have not been able to find a matrix for which either ratio of

errors exceeds 1.4. This provides further evidence that the two algorithms deliver

similar accuracy.

6.6.2 Relative and absolute error

Now we show the importance of using a relative error bound as opposed to an ab-

solute bound, as was used in earlier algorithms intended for double precision [13],

[14], [18], [40]. Figure 6.3 reports how the relative forward error to unit roundoff

6.6 numerical experiments 167

22 27 212
10´1

107

1015

d

logm_pade_abs

logm_tayl_abs

logm_pade

logm_tayl

expm([4 2 0; 1 4 1; 1 1 4])

22 27 212
10´1

107

1015

d

logm_pade_abs

logm_tayl_abs

logm_pade

logm_tayl

expm(gallery(’dramadah’,10))

22 27 212
10´1

107

1015

d

logm_pade_abs

logm_tayl_abs

logm_pade

logm_tayl

expm(gallery(’toeppen’,10))

Figure 6.3: Forward error divided by unit roundoff u “ 2rlog2p10´dqs, where the number of
decimal significant digits d is shown on the x-axis, for three matrices in the test
set.

ratio varies, as the precision increases, for logm_pade, logm_pade_abs, logm_tayl and

logm_tayl_abs, on three of our test matrices.

The ratio for logm_pade and logm_tayl is influenced by the conditioning of the

problem, which is below 100 for these matrices, but tends to remain stable as the

working precision increase. The ratio for the algorithms based on an absolute er-

ror bounds, on the other hand, grows exponentially, and we can conclude that

logm_pade_abs and logm_tayl_abs are unstable.

6.6.3 Experiments at higher precisions

Now we compare the accuracy of Algorithm 6.1, Algorithm 6.2, and several com-

peting methods at four different precisions. Figure 6.4a plots, for the matrices in

our test set sorted by decreasing condition number, the relative forward errors of

logm_mct, logm_agm, logm_tayl, logm_tfree_tayl, logm_pade, and logm_tfree_pade

against κlogpAqu. If the forward error of an algorithm falls outside the range reported

in the graph, we put the corresponding marker on the nearest edge (top or bottom)

of the plot. The right-hand column of Figure 6.4 reports the same data in the form of

performance profiles.

For a working precision of 16 digits (the results for which are not shown here), the

six algorithms exhibit a similar behaviour. As illustrated in Figure 6.4c and 6.4e, as

the precision u becomes smaller logm_mct loses accuracy on almost 40 percent of the

168 multiprecision algorithms for the matrix logarithm

0 20 40 60
10

-66

10
-60

10
-54

10
-48

κlogpAqu

logm_mct

logm_agm

logm_tayl

logm_tfree_tayl

logm_pade

logm_tfree_pade

(a) u “ 2´213 („64 digits)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

logm_tayl

logm_pade

logm_tfree_tayl

logm_tfree_pade

logm_mct

logm_agm

(b) Performance profile for data in (a).

0 20 40 60
10

-258

10
-253

10
-248

10
-243

(c) u “ 2´851 („256 digits)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(d) Performance profile for data in (c).

0 20 40 60
10

-1026

10
-1020

10
-1014

10
-1008

(e) u “ 2´426 („1024 digits)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(f) Performance profile for data in (e).

Figure 6.4: Forward errors for 64, 256, and 1024 digit precisions.

6.6 numerical experiments 169

Table 6.1: Execution time breakdown of logm_tayl and logm_pade, run with u “ 2´1701 on
three matrices of increasing size. The table reports, for each algorithm, the number
of square roots (s), the degree of the Padé approximant (m), the total execution
time in seconds (Ttotq, and the percentage of time spent computing the Schur
decomposition (Tsch), taking the square roots (Tsqrt), evaluating the scalar bound
(Tbnd), and evaluating the Taylor and Padé approximants (Teval).

logm_tayl logm_pade
n s m Tsch Tsqrt Tbnd Teval Ttot s m Tsch Tsqrt Tbnd Teval Ttot

A 10 41 40 12% 46% 4% 37% 0.6 19 37 9% 42% 19% 30% 0.6
20 39 40 32% 35% 2% 32% 0.9 18 36 25% 26% 16% 33% 1.1
50 41 40 50% 32% 0% 18% 8.9 18 38 53% 17% 2% 29% 8.5

100 41 40 56% 32% 0% 12% 62.5 19 37 58% 16% 0% 25% 59.5
200 40 40 57% 33% 0% 10% 458.0 18 38 60% 16% 0% 24% 432.4
500 41 40 43% 45% 0% 12% 5113.7 19 37 47% 23% 0% 29% 4642.0

B 10 45 40 14% 47% 4% 35% 0.4 22 38 9% 47% 20% 24% 0.5
20 45 40 30% 37% 1% 31% 1.0 22 39 28% 33% 5% 34% 1.1
50 46 40 44% 39% 0% 17% 8.2 24 37 45% 23% 2% 30% 7.9

100 46 40 47% 40% 0% 13% 57.0 24 38 50% 22% 0% 27% 54.0
200 47 40 47% 41% 0% 11% 426.2 25 37 51% 24% 0% 25% 397.6
500 48 40 37% 51% 0% 12% 5283.2 24 40 41% 28% 0% 31% 4784.2

C 10 46 39 21% 42% 3% 35% 0.4 24 36 11% 39% 26% 23% 0.6
20 46 40 37% 34% 1% 27% 1.1 24 37 33% 29% 9% 29% 1.2
50 47 40 52% 34% 0% 14% 9.6 23 40 53% 19% 1% 27% 9.3

100 48 40 55% 34% 0% 10% 69.1 25 38 58% 19% 0% 22% 65.6
200 49 40 55% 36% 0% 9% 511.4 26 38 58% 20% 0% 21% 481.5
500 52 40 48% 43% 0% 9% 6797.7 28 38 52% 25% 0% 23% 6234.3

matrices, and the accuracy of the solution degrades quickly with respect to κlogpAqu.

The loss of accuracy of logm_agm is not as severe, but it affects the entire dataset and

is particularly noticeable for well-conditioned matrices.

The new algorithms show a forward stable behavior, since the forward error re-

mains less than or only slightly larger than κlogpAqu as the precision u becomes

smaller. On our test set, Algorithm 6.1 is more accurate than Algorithm 6.2, and the

performance of logm_tayl and logm_pade is almost identical while logm_tfree_tayl

is more accurate than logm_tfree_pade and often provides the most accurate result

on the best-conditioned of the test matrices.

6.6.4 Code profiling

Table 6.1 compares the execution times of our implementations of logm_tayl and

logm_pade, profiling the four main operations performed by the algorithms: Schur

170 multiprecision algorithms for the matrix logarithm

decomposition, square roots, evaluation of the bound to determine the degree of the

Padé approximant to be used (which includes computation of the norm estimates

used in forming the αp), and evaluation of the approximant itself. We consider the

matrices

A = expm(gallery(’chebvand’, n))

B = expm(gallery(’randsvd’, n))

C = expm(gallery(’chow’, n))

The unit roundoff is 2´1701, which roughly gives 512 decimal significant digits.

In both cases, evaluating the scalar bound (Tbnd) is relatively expensive for small

matrices, but its impact drops as the size of the matrices increases and it is typically

negligible for matrices of size larger than 100. We can see that logm_tayl needs

approximately twice as many square roots as logm_pade on these matrices, and that

while the evaluation time (Teval) is larger for logm_pade this algorithm is slightly faster

in most cases.

6.7 conclusions

The state of the art inverse scaling and squaring algorithms for the matrix logarithm

and the matrix exponential, implemented in the MATLAB functions logm and expm,

are tuned specifically for double or single precision arithmetic, via the use of pre-

computed constants obtained from backward error bounds. This approach does not

extend in any convenient way to a multiprecision computing environment. Here

we have shown that by using forward error bounds we can obtain algorithms for

the matrix logarithm that perform in a forward stable way across a wide range of

precisions. The Schur-based algorithms, based on Algorithm 6.1, are competitive

with logm when run in double precision and are superior to existing algorithms at

higher precisions. For computing environments lacking a variable precision Schur

decomposition we recommend the transformation-free Algorithm 6.2.

BIBLIOGRAPHY 171

The algorithms rely on three innovations. First, we have derived a new sharper

version of the forward error bound of Kenney and Laub [41] that can be much smaller

for nonnormal matrices. Second, we have implemented the bound in the form of

a relative error bound, as we found that the absolute error bounds used in some

previous algorithms yield poor results at high precision due to the need for X in the

approximations to logpI ` X) to have a small norm. Third, we have devised a new

strategy for choosing the degree of the approximants and the number of square roots.

We investigated both Padé approximants and Taylor approximants and found that

there is very little to choose between them in speed or accuracy.

acknowledgments

We thank the anonymous referees, whose comments helped us to improve the pre-

sentation of the paper.

bibliography

[1] A. H. Al-Mohy, A more accurate Briggs method for the logarithm, Numer. Algo-

rithms, 59 (2012), pp. 393–402.

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the

matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[3] , Improved inverse scaling and squaring algorithms for the matrix logarithm,

SIAM J. Sci. Comput., 34 (2012), pp. C153–C169.

[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing the Fréchet derivative

of the matrix logarithm and estimating the condition number, SIAM J. Sci. Comput.,

35 (2013), pp. C394–C410.

http://dx.doi.org/10.1007/s11075-011-9496-z
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/120885991
http://dx.doi.org/10.1137/120885991

172 BIBLIOGRAPHY

[5] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, ARPREC: An arbitrary precision

computation package, tech. report, Lawrence Berkeley National Laboratory, 2002.

[6] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, vol. 59 of Encyclo-

pedia of Mathematics and Its Applications, Cambridge University Press, Cam-

bridge, UK, 2nd ed., 1996.

[7] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the matrix equation

AX` XB “ C, Comm. ACM, 15 (1972), pp. 820–826.

[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach

to numerical computing, SIAM Rev., 59 (2017), pp. 65–98.

[9] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix,

Linear Algebra Appl., 52/53 (1983), pp. 127–140.

[10] BOOST C++ libraries. http://www.boost.org.

[11] H. Briggs, Arithmetica Logarithmica, William Jones, London, 1624.

[12] J. R. Cardoso and R. Ralha, Matrix arithmetic-geometric mean and the computation

of the logarithm, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 719–743.

[13] J. R. Cardoso and F. Silva Leite, Theoretical and numerical considerations about

Padé approximants for the matrix logarithm, Linear Algebra Appl., 330 (2001),

pp. 31–42.

[14] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the

logarithm of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001),

pp. 1112–1125.

[15] M. Courbariaux, Y. Bengio, and J.-P. David, Training deep neural networks with

low precision multiplications, 2015. ArXiv preprint 1412.7024v5.

[16] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix

functions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

http://dx.doi.org/10.2172/817634
http://dx.doi.org/10.2172/817634
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1016/0024-3795(83)80010-X
http://www.boost.org
http://www-history.mcs.st-andrews.ac.uk/Miscellaneous/Briggs/index.html
http://dx.doi.org/10.1137/140998226
http://dx.doi.org/10.1137/140998226
http://dx.doi.org/10.1016/S0024-3795(01)00251-8
http://dx.doi.org/10.1016/S0024-3795(01)00251-8
http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1137/S0895479899364015
https://arxiv.org/abs/1412.7024v5
https://arxiv.org/abs/1412.7024v5
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1137/S0895479802410815

BIBLIOGRAPHY 173

[17] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel machines, SIAM

J. Optim., 1 (1991), pp. 448–474.

[18] L. Dieci, B. Morini, A. Papini, and A. Pasquali, On real logarithms of nearby ma-

trices and structured matrix interpolation, Appl. Numer. Math., 29 (1999), pp. 145–

165.

[19] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative

errors on performance profiles, ACM Trans. Math. Software, 39 (2013), pp. 24:1–

24:11.

[20] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance

profiles, Math. Programming, 91 (2002), pp. 201–213.

[21] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR:

A multiple-precision binary floating-point library with correct rounding, ACM Trans.

Math. Software, 33 (2007), pp. 13:1–13:15.

[22] A. Glaser, X. Liu, and V. Rokhlin, A fast algorithm for the calculation of the roots

of special functions, SIAM J. Sci. Comput., 29 (2007), pp. 1420–1438.

[23] G. H. Golub, S. Nash, and C. F. Van Loan, A Hessenberg–Schur method for the

problem AX`XB “ C, IEEE Trans. Automat. Control, AC-24 (1979), pp. 909–913.

[24] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math.

Comp., 23 (1969), pp. 221–230.

[25] T. Granlund and the GMP development team, GNU MP: The GNU multiple

precision arithmetic library. http://gmplib.org/.

[26] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning

with limited numerical precision, in Proceedings of the 32nd International Confer-

ence on Machine Learning, vol. 37 of JMLR: Workshop and Conference Proceed-

ings, 2015, pp. 1737–1746.

[27] D. J. Higham and N. J. Higham, MATLAB Guide, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, third ed., 2017.

http://dx.doi.org/10.1137/0801027
http://dx.doi.org/10.1016/S0168-9274(98)00027-0
http://dx.doi.org/10.1016/S0168-9274(98)00027-0
http://dx.doi.org/10.1145/2491491.2491494
http://dx.doi.org/10.1145/2491491.2491494
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1137/06067016X
http://dx.doi.org/10.1137/06067016X
http://dx.doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/10.1090/S0025-5718-69-99647-1
http://gmplib.org/
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://dx.doi.org/10.1137/1.9781611974669

174 BIBLIOGRAPHY

[28] N. J. Higham, The Matrix Computation Toolbox. http://www.maths.manchester.

ac.uk/~higham/mctoolbox.

[29] , The Matrix Function Toolbox. http://www.maths.manchester.ac.uk/

~higham/mftoolbox.

[30] , Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal.

Appl., 22 (2001), pp. 1126–1135.

[31] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[32] N. J. Higham and E. Deadman, A catalogue of software for matrix functions. Version

2.0, MIMS EPrint 2016.3, Manchester Institute for Mathematical Sciences, The

University of Manchester, UK, Jan. 2016. Updated March 2016.

[33] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix,

SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078.

[34] , An improved Schur–Padé algorithm for fractional powers of a matrix and their

Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360.

[35] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with

an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000),

pp. 1185–1201.

[36] W. Hu, H. Zuo, O. Wu, Y. Chen, Z. Zhang, and D. Suter, Recognition of adult

images, videos, and web page bags, ACM Trans. Multimedia Comput. Commun.

Appl., 78 (2011), pp. 28:1–28:24.

[37] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,

Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in

SIGPLAN Notices, 22(2):9–25, 1987.

[38] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std

754-1985), Institute of Electrical and Electronics Engineers, New York, 2008.

http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://dx.doi.org/10.1137/S0895479800368688
http://dx.doi.org/10.1137/1.9780898717778
http://eprints.ma.man.ac.uk/2431
http://eprints.ma.man.ac.uk/2431
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1145/2037676.2037685
http://dx.doi.org/10.1145/2037676.2037685
http://dx.doi.org/10.1109/IEEESTD.1985.82928
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935

BIBLIOGRAPHY 175

[39] F. Johansson et al., Mpmath: A Python library for arbitrary-precision floating-point

arithmetic. http://mpmath.org.

[40] C. S. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J.

Matrix Anal. Appl., 10 (1989), pp. 191–209.

[41] , Padé error estimates for the logarithm of a matrix, Internat. J. Control, 50 (1989),

pp. 707–730.

[42] Maple. Waterloo Maple Inc., Waterloo, Ontario, Canada. http://www.maplesoft.

com.

[43] Mathematica. Wolfram Research, Inc., Champaign, IL, USA. http://www.wolfram.

com.

[44] A. Meurer, C. P. Smith, M. Paprocki, O. ˘Certik, S. B. Kirpichev, M. Rock-

lin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E.

Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pe-

dregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Ku-

lal, R. Cimrman, and A. Scopatz, SymPy: Symbolic computing in Python, PeerJ

Computer Science, 3 (2017), p. e103.

[45] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[46] PARI/GP. http://pari.math.u-bordeaux.fr.

[47] The Sage Developers, Sage Mathematics Software. http://www.sagemath.org.

[48] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/.

[49] SymPy Development Team, Sympy: Python library for symbolic mathematics. http:

//www.sympy.org.

http://mpmath.org
http://dx.doi.org/10.1137/0610014
http://dx.doi.org/10.1080/00207178908953392
http://www.maplesoft.com
http://www.maplesoft.com
http://www.wolfram.com
http://www.wolfram.com
http://dx.doi.org/10.7717/peerj-cs.103
http://www.advanpix.com
http://pari.math.u-bordeaux.fr
http://www.sagemath.org
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
http://www.sympy.org
http://www.sympy.org

7 COMPUT ING THE WE IGHTED GEOMETR IC

MEAN OF TWO LARGE - SCALE MATR ICES

AND ITS INVERSE T IMES A VECTOR

Abstract. We investigate different approaches for computing the action of the

weighted geometric mean of two large-scale positive definite matrices on a vector.

We derive and analyze several algorithms, based on numerical quadrature and on

the Krylov subspace, and compare them in terms of convergence speed and execu-

tion time. By exploiting an algebraic relation between the weighted geometric mean

and its inverse, we show how these methods can be used to efficiently solve large

linear systems whose coefficient matrix is a weighted geometric mean. According

to our experiments, some of the algorithms proposed in both families are suitable

choices for black-box implementations.

Keywords: matrix weighted geometric mean, Krylov subspace methods, Gaussian

quadrature, matrix functions.

2010 MSC: 15A16, 15A22, 65D32, 47A56.

7.1 introduction

The weighted geometric mean of parameter t of two positive numbers, say a and

b, is defined as a1´tbt for any t P r0, 1s. This definition covers as a special case the

standard geometric mean
?

ab, arising for t “ 1{2. The extension of this concept to

176

7.1 introduction 177

positive definite matrices is not trivial, but there is large agreement that the right

generalization, for A, B P Cnˆn (Hermitian) positive definite and t P r0, 1s, is

A#tB “ ApA´1Bqt “ ApB´1Aq´t, (7.1)

which turns out to be positive definite and is called the matrix weighted geometric mean

of A and B. The reasons behind this choice and the properties of the matrix weighted

geometric mean are discussed by Bhatia [11, Chap. 4] and Lawson and Lim [41]. Rele-

vant applications of the weighted geometric mean of two dense matrices of moderate

size, along with algorithms for its computations, can be found in the survey [35].

Here we are interested in the approximation of pA#tBqv and pA#tBq´1v, where

v P Cn and A, B are large and sparse. These problems arise in a preconditioning

techniques for some domain decomposition methods and in methods for the bihar-

monic equation [4], [5], [6], and in the clustering of signed complex networks [44].

The geometric mean of large-scale matrices appears also in image processing [22].

In particular, we want to avoid the explicit computation of the matrix function

A#tB, which may be unduly slow or even practically infeasible, for A and B large

enough. We explore two classes of methods to achieve this goal, namely numerical

quadrature of certain integral representations of the matrix function Z´t for t P p0, 1q,

and Krylov subspace methods for computing the product of a matrix function and a

vector.

It is well known that the geometric mean A#B :“ A#1{2B [2], [3], [12], [46] (the

weighted geometric mean with weight t “ 1{2) has several nice integral representa-

tions (see [37] and the references therein). In particular, the formula

A#B “
2
π

ż 1

´1

`

p1` zqB´1 ` p1´ zqA´1
˘´1

?
1´ z2

dz,

is well suited for Gaussian quadrature with respect to the weight function p1´ z2q´1{2,

and is considered in comparison with other algorithms for A#B by Iannazzo [35]. We

generalize this approach to the matrix weighted geometric mean.

178 weighted geometric mean times a vector

Quadrature formulae are particularly attractive in the large-scale case, since they

produce an approximation of the form

pA#tBq v «
N
ÿ

i“0

wi Apri A` siBq´1Bv, (7.2)

where the wi’s are the weights of the quadrature and the ri’s and the si’s are pa-

rameters obtained from the nodes of the quadrature. By exploiting the identity

pA#tBq´1 “ B´1pB#t AqA´1, a similar approximation for the inverse of the geomet-

ric mean, namely

pA#tBq´1v «
N
ÿ

i“0

wipriB` si Aq´1v, (7.3)

can be easily derived. The problem is thus reduced to the solution of linear systems

and the evaluation of matrix-vector products. Moreover, if ri and si are positive for

all i, then the matrix coefficients of these linear systems are positive definite, being

convex combinations of the positive definite matrices A and B, and we say that the

quadrature formula preserves the positivity structure of the problem.

We consider and analyze three quadrature formulae for A#tB. The first two are

obtained from integral representations of the inverse of real powers [14], [23], by

exploiting the fact that A#tB “ ApB´1Aq´t. The third is based on a clever confor-

mal mapping [30], which achieves fast convergence speed but does not preserve the

positivity structure of the problem for t ‰ 1{2.

Regarding Krylov subspace methods, we adapt to our problem standard tech-

niques for the approximation of f pZ´1Yqv, where Z and Y are large-scale matrices.

In this case, the usual way to proceed is to consider a projection of the matrix onto

a small Krylov subspace and thereby reduce the original problem to a small sized

one. Since pA#tBqv “ ApB´1Aq´tv, the computation of pA#tBqv reduces to that of

pB´1 Aq´tv, which is well suited to the aforementioned techniques. For instance,

when approximating pB´1Aq´tv by means of the Arnoldi method, we get the gen-

eralized Lanczos method [45, Chap. 15], which has been considered for pA#tBqv in

previous work [4], [5]. We revise the generalized Lanczos method and then investi-

7.2 notation and preliminaries 179

gate some more powerful Krylov subspace techniques such as the extended Krylov

subspace method [21] and the rational Krylov subspace methods [48], [49], [50], with

poles chosen according to the adaptive strategy by Güttel and Knizhnerman [29] or

the rational Krylov fitting by Berljafa and Güttel [8]. We show that these methods, in

most cases, outperform the generalized Lanczos algorithm. Prior to our work, ratio-

nal Krylov methods have been considered for the computation of pA#Bqv, where the

implementations are meant for and tested on sparse matrices of moderate size [15].

For the sake of generality, in describing the Krylov subspace techniques, we work

with the more general problem A f pA´1Bqv, where A is positive definite, B is Hermi-

tian and f is the matrix extension of a real positive function. Our implementations,

tailored for the function f pzq “ z´t, are well suited to the computation of pA#tBq´1v,

and could, in principle, be used for any choice of the function f .

The paper is organized as follows. In the next section we give some notation

and preliminary results. Quadrature methods for the weighted geometric mean are

discussed in section 7.3, while section 7.4 is devoted to Krylov subspace methods.

The application of these techniques to the solution of the linear system pA#tBqy “ v

is discussed in section 7.5, and an experimental comparison is provided in section 7.6.

In the final section, we draw the conclusions.

7.2 notation and preliminaries

Throughout the paper we denote by In the identity matrix of size n, omitting the

size when there is no ambiguity. The set R` will denote the positive real numbers,

while R “ RY t˘8u. We will denote by σpAq the spectrum of the square matrix

A. Throughout the paper, we consider the spectral norm }A} “ max}x}2“1 }Ax}2. For

x1, . . . , xn P C, we denote by diagpx1, . . . , xnq the nˆ n diagonal matrix with x1, . . . , xn

on the main diagonal. Let V Ă Cn be a subspace, and A P Cnˆn, by AV we denote

the subspace tAv : v P Vu.

180 weighted geometric mean times a vector

Let A P Cnˆn be diagonalizable with eigenvalues in Ω Ă C and let f : Ω Ñ C. If

M´1 AM “ diagpλ1, . . . , λnq, then f pAq :“ M diagp f pλ1q, . . . , f pλnqqM´1. Note that if

A is Hermitian, then f pAq is Hermitian as well. This definition can be extended to

nondiagonalizable matrices [33, Def. 1.2], and is independent of the choice of M.

We have the similarity invariance of matrix functions, that is, if f pAq is well defined,

then f pKAK´1q “ K f pAqK´1, for any invertible K. We now give a well-known prop-

erty regarding an expression commonly encountered when dealing with functions of

Hermitian matrices.

Lemma 7.1. Let f : U Ñ R`, with U subset of R. For any A P Cnˆn positive definite and

B P Cnˆn Hermitian, such that σpA´1Bq Ă U , the matrix A f pA´1Bq is Hermitian positive

definite.

Proof. Note that f pA´1Bq is well defined, since A´1B is diagonalizable with spec-

trum in U . Because of the similarity invariance of matrix functions, we have that

A f pA´1Bq “ A1{2 f pA´1{2BA´1{2qA1{2. The matrix A´1{2BA´1{2 is Hermitian, thus

T “ f pA´1{2BA´1{2q is Hermitian with positive eigenvalues and the same holds for

A f pA´1Bq, which is obtained from T through a congruence.

If A and B are positive definite, then σpA´1Bq Ă R`. Thus, the previous lemma,

applied to f pzq “ zt, with U “ R`, shows that A#tB “ ApA´1Bqt is positive defi-

nite. Using other properties of matrix functions one obtains the following equivalent

expressions:

A#tB “ ApA´1Bqt “ ApB´1Aq´t “ BpA´1Bqt´1 “ BpB´1Aq1´t,

“ pBA´1qt A “ pAB´1q´t A “ pBA´1qt´1B “ pAB´1q1´tB.
(7.4)

Another useful property of the weighted geometric mean is

pA#tBq´1 “ B´1pB#t AqA´1, (7.5)

which follows from an algebraic manipulation of the formulae in (7.4)

pA#tBq´1 “
`

pBA´1qt´1B
˘´1

“ B´1pBA´1q1´t AA´1 “ B´1pB#t AqA´1.

7.3 quadrature methods 181

7.3 quadrature methods

In this section, we exploit the formula A#tB “ ApB´1Aq´t to obtain three quadrature

formulae for A#tB from the corresponding quadrature formulae for the inverse real

power function z´t.

In the next subsection we describe and analyze two integral representations for

z´t and in sections 7.3.2 and 7.3.3 we discuss their application to the matrix weighted

geometric mean. Finally, in section 7.3.4 we adapt an algorithm based on a conformal

map transformation to the matrix weighted geometric mean.

7.3.1 Integral representations for z´t

Since A#tB “ ApB´1Aq´t, useful integral representations of the matrix weighted geo-

metric mean can be obtained from the representations of the fractional inverse power

function. The function Czr´8, 0s Q z Ñ z´t for t P p0, 1q is a Markov function [10, p.

116], which can be written as

z´t “
sinpπtq

π

ż 8

0

dx
xtpx` zq

, 0 ă t ă 1. (7.6)

To rewrite this integral in a more practical form, we exploit the Cayley transform

Cpxq “ 1´x
1`x , which sends the positive real numbers to the interval p´1, 1q.

The variable transformation s “ Cpxq gives

z´t “
2 sinpπtq

π

ż 1

´1
p1´ sq´tp1` sqt´1 ds

p1´ sq ` p1` sqz
. (7.7)

On the other hand, by applying the transformation s “ ´C
`

x1´t
˘

to the integral in

(7.6), we obtain

z´t “
2 sinpπp1´ tqq

πp1´ tq

ż 1

´1
p1´ sq

2t´1
1´t

ds

p1` sq
1

1´t ` p1´ sq
1

1´t z
, (7.8)

which has been considered in a similar form in order to compute the pth root [14].

182 weighted geometric mean times a vector

Both (7.7) and (7.8) are integrals of the form

ż 1

´1
p1´ sqαp1` sqβ f psqds,

with pα, βq “ p´t, t´ 1q and pα, βq “
` 2t´1

1´t , 0
˘

, respectively. These integrals, for α, β ą

´1, can be approximated by using Gaussian quadrature with respect to the weight

ωα,βpsq “ p1´ sqαp1` sqβ, s P r´1, 1s. (7.9)

These formulae are known as the Gauss–Jacobi quadrature formulae [47, Sec. 4.8].

A nice feature of the Gauss–Jacobi quadrature applied to the integral (7.7) is that

the function to be integrated with respect to the weighted measure, namely

f1,zpsq “
1

1´ s` p1` sqz
, (7.10)

is analytic on r´1, 1s, for any z P Czp´8, 0q, and thus the convergence of the quadra-

ture formulae is exponential.

In particular, given a function f analytic on the interval r´1, 1s, for the error of the

Gaussian quadrature with nodes si and weights wi for i “ 0, . . . , N ´ 1, we have the

estimate [25], [53]

|RNp f q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

´1
f pxqωpxqdx´

N´1
ÿ

i“0

wi f psiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4µ0
1

ρ2N

´ ρ2

ρ2 ´ 1

¯

max
xPΓ

| f pxq|, (7.11)

where µ0 “
ş1
´1 ωpxqdx and the curve Γ is an ellipse with foci ´1 and 1 and sum of

the semimajor and semiminor axes ρ, entirely enclosed (with its interior part) in the

domain of analyticity of f .

When f is analytic on r´1, 1s, we may assume that ρ ą 1. Hence, for any ellipse

contained in the region of analyticity corresponding to ρ, the convergence of the

quadrature formula is exponential with rate γ such that 1{ρ2 ă γ ă 1. On the other

hand, for the integral (7.8), the integrand is

f2,zpsq “
1

p1` sq
1

1´t ` p1´ sq
1

1´t z
, (7.12)

7.3 quadrature methods 183

which is analytic on r´1, 1s for any z P Czp´8, 0q only if t is of the form pp´ 1q{p,

with p P N. When 1{p1´ tq is not an integer, the integrand (7.12) has two branch

points at ´1 and 1, which makes the use of this second quadrature method less

attractive for our purposes. Nevertheless, in some cases the Gauss–Jacobi quadrature

applied to (7.8) converges faster than the same method applied to (7.7).

We analyze the convergence just for z P R`, because we want to apply the formu-

lae to diagonalizable matrices having positive real eigenvalues and, in this case, the

convergence of the quadrature formulae for the matrix follows from that of the same

formulae for its eigenvalues.

Convergence for the integrand f1,zpsq. Let us start by considering the quadrature

formula for f1,zpsq, which has only one pole at ζ “ 1{Cpzq. The function 1{Cpzq maps

the half line p0,8q to Rzr´1, 1s, thus we are guaranteed that the pole lies outside the

interval r´1, 1s for any z ą 0 and that the convergence result for analytic functions

applies.

If z P p0,8q, then it is easy to identify the smallest ellipse not contained in the

domain of analyticity of f1,zpsq as the one passing through ζ. The real semiaxis of

such an ellipse has length |ζ| and its imaginary semiaxis has length
a

ζ2 ´ 1, thus,

the sums of its semiaxes is

ρp1qpzq “ |ζ| `
b

ζ2 ´ 1 “
1

|Cpzq| `
d

1
Cpzq2 ´ 1

“
|1` z| ` 2

?
z

|1´ z|
“

1`
?

z
|1´

?
z|
“

1
|Cp
?

zq|
,

(7.13)

and hence a lower bound for the rate of convergence is |Cp
?

zq|2.

Convergence for the integrand f2,zpsq. The convergence analysis for f2,zpsq is

more problematic, since the function lacks analyticity at 1 and ´1 when 1{p1´ tq R N.

For t “ pp´ 1q{p, with p P N, the function f2,zpsq is rational and its poles are given

by the solutions of the equation

p1` ζqp ` p1´ ζqpz “ 0,

184 weighted geometric mean times a vector

which are the p distinct points

ζ` “ ´C
`

z1{pe
1
p iπp2``1q˘, ` “ 0, . . . , p´ 1. (7.14)

Since none of them lies on the interval r´1, 1s, the integrand is analytic there.

In order to get the rate of convergence of the quadrature formula, we consider the

sum of the semiaxes of the smallest ellipse not contained in the domain of analyticity

of f2,zpsq.

Proposition 7.2. For any positive integer p, the smallest ellipse not contained in the domain

of analyticity of f2,zpsq (defined in (7.12)), with t “ pp´ 1q{p, passes through ζ0 (defined in

(7.14)) and the sum of its semiaxes is

ρp2qpzq “
1` z1{p `

b

2z1{pp1´ cospπ{pqq
b

1` z2{p ` 2z1{p cospπ{pq
. (7.15)

Proof. We know that the poles of f2,spzq are ζ` “ ´Cpξ`q with ξ` “ z
1
p e

2``1
p iπ, for

` “ 0, . . . , p´ 1.

We want to find the smallest sum of the semiaxes of an ellipse not including the

points tζ`u in its interior part, and with foci 1 and ´1. If we denote by x the length

of the major semiaxis of such an ellipse, then the sum of the length of the semiaxes

is ρ “ x`
?

x2 ´ 1.

We know that the sum of the distances between a point of the ellipse and the foci is

twice the major semiaxis. To find the major semiaxis of the ellipse passing through ζ`

we can use the fact that

|ζ` ´ 1| ` |ζ` ` 1| “ 2x`,

which readily gives x` and thus ρ`.

Since ζ` “ ´Cpξ`q, we have

ζ` ` 1 “
2ξ`

ξ` ` 1
, ζ` ´ 1 “

´2
ξ` ` 1

, x` “
1
2
p|ζ` ` 1| ` |ζ` ´ 1|q “

|ξ`| ` 1
|ξ` ` 1|

,

7.3 quadrature methods 185

from which, by using |ξ`| “ z1{p and p|ξ| ` 1q2 ´ |ξ ` 1|2 “ 2|ξ| ´ 2 re ξ, we get

ρ` “ x` `
b

x2
` ´ 1 “

|ξ`| ` 1`
a

2|ξ`| ´ 2 re ξ`
|ξ` ` 1|

“
1` z1{p `

a

2z1{pp1´ cospϑ`qq
a

1` z2{p ` 2z1{p cospϑ`q
,

where ϑ` “
2``1

p π. Now observe that ρ` decreases as cospϑ`q grows, and thus that the

closer ϑ` is to a multiple of 2π, the smaller is the value of ρ`. Noting that ϑ0 is the

nearest such value concludes the proof.

Hence, for t “ pp´1q{p, we have a lower bound for the rate of convergence, namely
`

1{ρp2qpzq
˘2. For t ‰ pp ´ 1q{p, by lack of analyticity of the integrand, we cannot

use these asymptotic results to study the convergence of the quadrature formula

involving f2,zpsq. Nonetheless, it appears that the formula converges also for values

of t not of the type pp´ 1q{p.

Comparison. We can compare the bounds for the rates of convergence of the

two quadrature formulae, namely
`

1{ρp1qpzq
˘2, with ρp1qpzq defined as in (7.13); and

`

1{ρp2qpzq
˘2, with ρp2qpzq given by (7.15), just for t “ pp´ 1q{p. Since ρp1qp1{zq “ ρp1qpzq

and ρp2qp1{zq “ ρp2qpzq, we can restrict our attention to z ě 1.

In a neighborhood of 1, the quadrature formula using f1,zpsq works better since

1{ρp1qp1q “ 0, while 1{ρp2qp1q ą 0.

On the other hand, as z Ñ8, we have

1´
ˆ

1
ρp1qpzq

˙2

« 4z´
1
2 , 1´

ˆ

1
ρp2qpzq

˙2

« 2
b

2
`

1´ cospπ{pq
˘

z´
1

2p . (7.16)

and thus the second formula works better for large values of z.

Gauss–Jacobi quadrature and Padé approximation. Quadrature on Markov func-

tions is related to Padé approximation. In particular, applying the Gauss–Jacobi

quadrature to the integral in (7.7) yields the rN ´ 1{Ns Padé approximant to z´t

at 1. We give a short proof of this property (see also that given by Frommer, Güttel,

and Schweitzer [23]).

186 weighted geometric mean times a vector

Theorem 7.3. The N-node Gauss–Jacobi quadrature of (7.7) coincides with the rN ´ 1{Ns

Padé approximant to z´t at 1.

Proof. The Gaussian quadrature formula with N nodes, say JNpzq, is a rational func-

tion of z whose numerator and denominator have degree at most N ´ 1 and exactly

N, respectively.

We have that f pkq1,z psq “ p´1qkk!pz´ 1qk f k`1
1,z psq for k ě 0. From the latter and using

standard results on the remainder of Gaussian quadrature we have that there exists

ξ “ ξpzq P p´1, 1q such that

z´t ´JNpzq “
2 sin pπtq

π

f p2Nq
1,z pξq

p2Nq!
xPp´t,1´tq

N , Pp´t,1´tq
N y “ cn

pz´ 1q2N

pz´ 1qξ ` pz` 1q
,

where Ppα,βq
N is the Nth Jacobi polynomial, x¨, ¨y is the scalar product with respect to

the weight (7.9) and cn is a constant independent of z.

As z Ñ 1 we get that z´t ´ JNpzq “ Oppz´ 1q2Nq and thus JNpzq is the rN ´ 1, Ns

Padé approximant to z´t.

7.3.2 Integral representations of A#tB

The integral representations in section 7.3.1 for z´t readily yield analogous represen-

tations for the matrix weighted geometric mean (through A#tB “ ApB´1Aq´t).

From the formula (7.7) we obtain

A#tB “ c1A
ż 1

´1
p1´ sq´tp1` sqt´1`p1´ sqI ` p1` sqB´1A

˘´1ds (7.17)

“ c1A1{2
ż 1

´1
p1´ sq´tp1` sqt´1`p1´ sqI ` p1` sqA1{2B´1A1{2˘´1ds ¨ A1{2

“ c1A
ż 1

´1
p1´ sq´tp1` sqt´1`p1´ sqB` p1` sqA

˘´1Bds,

with c1 “
2 sinpπtq

π , and the corresponding quadrature formula on N ` 1 nodes gives

A#tB « Sp1qN`1 :“
2 sinpπtq

π

N
ÿ

i“0

wi App1´ siqB` p1` siqAq´1B, (7.18)

7.3 quadrature methods 187

where the wis are the weights of the Gauss–Jacobi quadrature formula with N ` 1

nodes and sis are the nodes, which belong to the interval r´1, 1s. Therefore, for

i “ 0, . . . , N, the matrix p1´ siqB` p1` siqA is positive definite.

On the other hand, from (7.8) we have

A#tB “ c2A
ż 1

´1
p1´ sq

2t´1
1´t

`

p1` sq
1

1´t I ` p1´ sq
1

1´t B´1A
˘´1ds (7.19)

“ c2A1{2
ż 1

´1
p1´ sq

2t´1
1´t

`

p1` sq
1

1´t I ` p1´ sq
1

1´t A1{2B´1A1{2˘´1ds ¨ A1{2

“ c2A
ż 1

´1
p1´ sq

2t´1
1´t

`

p1` sq
1

1´t B` p1´ sq
1

1´t A
˘´1Bds,

with c2 “
2 sinpπp1´tqq

πp1´tq , and the corresponding quadrature formula with N ` 1 nodes

gives

A#tB « Sp2qN`1 :“
2 sinpπp1´ tqq

πp1´ tq

N
ÿ

i“0

wi App1` siq
1

1´t B` p1´ siq
1

1´t Aq´1B. (7.20)

Even in this case the matrices to be inverted, for i “ 0, . . . , N, are positive definite.

7.3.3 Matrix convergence

In order to analyze the convergence of quadrature formulae for the matrix weighted

geometric mean, we consider the convergence of the quadrature formulae for (7.7)

and (7.8) when applied to a Hermitian positive definite matrix C. In this case, the

functions to be integrated are

f1,Cpsq “ pp1´ sq I ` p1` sqCq´1 and f2,Cpsq “ pp1` sq
1

1´t I ` p1´ sq
1

1´t Cq´1,

whose domain of analyticity is the intersection of the domain of analyticity of the

corresponding function applied to all the eigenvalues of C.

188 weighted geometric mean times a vector

If Q˚CQ “ diagpλ1, . . . , λnq, with Q unitary, and the function to be integrated is

analytic on r´1, 1s, then the error in the quadrature formulae with N nodes defined

in (7.11), in the spectral norm, is

}RNp fk,Cpsqq} “ }diag
`

RNp fk,λipsqq
˘

} “ max
i“1,...,n

t|RNp fk,λipsqq|u, k “ 1, 2,

and is ruled by the eigenvalue whose corresponding pole gives the smallest ellipse

with foci 1 and ´1, enclosed in the domain of analyticity.

Convergence for the integrand f1,Cpsq. Let the eigenvalues of C be ordered so that

0 ă λm “ λ1 ď λ2 ď . . . ď λn´1 ď λn “ λM. The infimum of the acceptable values for

ρ (the ellipse parameter) is now obtained by minimizing the function |ζ| `
a

ζ2 ´ 1

for ζ P σpCq, where σpCq denotes the spectrum of C, so that the bound on the rate of

convergence, in view of (7.13), is

τp1qpCq “ max
λPσpCq

1
`

ρp1qpλq
˘2 “ max

λPσpCq
|Cp
?

λq|2 “ maxt|Cp
a

λmq|
2, |Cp

a

λMq|
2u,

since the function |Cp
?

λq| is monotonically decreasing in p0, 1q and monotonically

increasing in p1,8q.

Since C is positive definite, its 2-norm condition number, denoted by κ :“ µ2pCq,

is λM{λm. If we further assume that λMλm “ 1, then κ “ λ2
M “ 1{λ2

m and since

|Cp
?

λmq| “ |Cp
?

λMq|, we have

τp1qpCq “ |Cp
a

λMq|
2 “ Cp 4

?
κq2.

Expanding τp1q as κ Ñ8, we get

τp1qpCq “
´ 4
?

κ´ 1
4
?

κ` 1

¯2
“

´

1´
2

4
?

κ` 1

¯2
« 1´

4
4
?

κ
« expp´4{ 4

?
κq. (7.21)

Note that the condition λMλm “ 1 is not restrictive, since any positive definite matrix

verifies it up to scaling, but can significantly accelerate the convergence of these

quadrature algorithms for matrices such that λMλm is far from 1.

7.3 quadrature methods 189

Convergence for the integrand f2,Cpsq and comparison. As before, for a positive

definite matrix C, a bound for the rate of convergence of the matrix quadrature for-

mula is given by the largest bound on the rate of convergence of the scalar formula

applied to the eigenvalues of C.

Since the scalar convergence is complicated by the branch points at 1 and ´1 and

by the presence of a possibly large number of poles in certain cases, also the matrix

convergence is hardly predictable.

Nevertheless, if λMλm “ 1, then for t “ 1{2 we can get an asymptotic estimate as

κ Ñ8, which is

τp2qpCq “ max
λPσpCq

1
`

ρp2qpλq
˘2 “

´

a?
κ` 1

4
?

κ` 1`
?

2 8
?

κ

¯2
« 1´

2
?

2
8
?

κ
. (7.22)

For t “ 1{2, it can be shown, moreover, that the Gauss–Jacobi quadrature of (7.8) is

better than that of (7.7) for

|z| P Rz

„

1
ξ

, ξ



, ξ “ 2`
?

5` 2
b

2`
?

5 « 8.35,

and this is confirmed by the results of Test 1 in section 7.6. Thus, for a positive definite

matrix and for t “ 1{2, unless the matrix is very well conditioned/preconditioned

(κ2pCq À 70), the method based on (7.19) is preferable.

Application to the weighted geometric mean. In the case of the weighted geo-

metric mean, in view of equations (7.17) and (7.19), the functions to be integrated are

f1,Cpsq and f2,Cpsq, with C “ A1{2B´1A1{2, so that the previous analysis for a positive

definite matrix C can be applied.

Let λM and λm be the largest and smallest eigenvalues of A1{2B´1A1{2 (or of the

pencil A ´ λB), respectively. A scaling of A and/or B would change the weighted

geometric mean in a simple, predictable way, since [41]

pαAq#tpβBq “ α1´tβtpA#tBq.

190 weighted geometric mean times a vector

Thus, we may assume that λMλm “ 1 and replace the pair pA, Bq with p pA, pBq, where

pA “ A{
?

λMλm and pB “ B.

The quadrature formulae Sp1qN of (7.18) converges at least linearly to pA#t pB, and we

get the following estimate

} pA#t pB´ Sp1qN } “ O
`

e´4N{ 4?κ
˘

; (7.23)

while we have that Sp2qN of (7.20), for t “ 1{2, converges at least linearly to pA#1{2
pB, and

we get the estimate

} pA#1{2
pB´ Sp2qN } “ O

`

e´2
?

2N{ 8?κ
˘

. (7.24)

7.3.4 An alternative quadrature formula

Another powerful quadrature formula for real matrix powers has been obtained

in [30] by applying a few variable substitutions on the Cauchy formula for z´t.

Without giving any further details, we report the results of interest from the origi-

nal paper [30], referring the reader to it for a complete explanation. Let the function

f : Cz p´8, 0s Ñ C be analytic and let us assume that p´8, 0q is a branch cut for f

and that 0 is the only singularity, if any. Under these assumptions, the approximation

of f pZq, where Z is a real square matrix with positive eigenvalues, using a quadrature

formula with N nodes is given by

´8KpkqZ 4
?

λmλM

πNk
Im

˜

N
ÿ

j“1

f
`

wptjq
2
˘

cnptjqdnptjq

wptjq
`

k´1 ´ snptjq
˘2

`

wptjq
2 I ´ Z

˘´1

¸

, (7.25)

where λm and λM are the minimum and maximum of the spectrum, respectively,

k “ ´Cp 4
a

λM{λmq, Kp`q is the complete elliptic integral associated with ` [30],

wptq “ 4
a

λmλM
k´1 ` snptq
k´1 ´ snptq

, tj “ ´Kpk2q `
i
2

Kp1´ k2q `
2j´ 1

N
Kpk2q,

7.3 quadrature methods 191

for 1 ď j ď N and cnp¨q, dnp¨q and snp¨q are Jacobi elliptic functions in standard

notation (see [1]). The theoretical aspects of these functions can be found in the book

by Driscoll and Trefethen [20].

This method can be easily adapted for computing A f pA´1Bqv, when A´1B is real

with positive eigenvalues, without forming explicitly A´1, providing

´8Kpk2q 4
?

λmλM

πNk
B Im

˜

N
ÿ

j“1

f
`

wptjq
2
˘

cnptjqdnptjq

wptjq
`

k´1 ´ snptjq
˘2

`

wptjq
2A´ B

˘´1A

¸

v, (7.26)

which does not require any matrix product or inversion if evaluated from right to

left.

Using the identity A#tB “ ApA´1Bqt, for the matrix geometric mean of real positive

definite matrices, one gets the approximation A#tB « Sp3qN with

Sp3qN :“
´8Kpk2q 4

?
λmλM

πNk
A Im

˜

N
ÿ

j“1

wptjq
2t´1 cnptjqdnptjq

`

k´1 ´ sn
`

tj
˘˘2

`

wptjq
2A´ B

˘´1

¸

B. (7.27)

which is of the form (7.2) with ri “ wptiq
2 and si “ ´1. Unfortunately, for t ‰ 1{2, the

matrices ri A` siB can be complex and not positive definite, for some values of i.

The quadrature formula Sp3qN of (7.27) converges linearly to A#tB, in particular the

following estimate can be deduced from [30, Thm. 3.1]

}A#tB´ Sp3qN } “ O
`

e´2π2 N{plogpκq`6q˘,

where κ “ λM{λm, with λm and λM the smallest and largest eigenvalues of A´1B,

respectively. A comparison with the analogous results for the two quadrature formu-

lae of section 7.3.2, namely (7.21) and (7.22), suggests that this formula can converge

much faster when λM{λm becomes very large and this is confirmed by the experi-

ments in section 7.6.

192 weighted geometric mean times a vector

7.4 krylov subspace methods

In this section we address the problem of approximating pA#tBqv “ ApA´1Bqtv, using

methods based on Krylov subspaces. The approach is similar to the one used in

the well-developed problem of approximating f pCqv, where C is a large and sparse

matrix (see, for instance, [24, sect. 3] or [32, Chap. 13]). However, the fact that

C “ A´1B, with A and B positive definite, requires certain additional subtleties, such

as the convenience of orthogonalizing with respect to a non-Euclidean scalar product.

We will refer to the resulting methods as generalized Krylov methods.

We will describe first the generalized Lanczos method in section 7.4.1, then the gen-

eralized Extended Krylov method in section 7.4.2 and finally the generalized rational

Krylov methods in section 7.4.3. Some convergence issues are addressed in section

7.4.4.

The algorithms are presented for the more general problem A f pA´1Bqv, where

f : U Ñ R`, with U an open subset of R, the matrix A is positive definite and B is

Hermitian, with σpA´1Bq Ă U .

7.4.1 Generalized Arnoldi and Lanczos methods

Let A, M P Cnˆn be positive definite and let B P Cnˆn be Hermitian. The generalized

Arnoldi method generates a sequence of M-orthonormal vectors tvku
n
k“1 and a se-

quence of upper Hessenberg matrices tHku
n
k“1 with Hk P Ckˆk, such that the columns

of Vk :“ rv1| . . . |vks P Cnˆk span an M-orthonormal basis of the Krylov subspace

KkpA´1B, vq “ spantv, pA´1Bqv, . . . , pA´1Bqk´1vu, (7.28)

where v1 “ v{}v}M and the elements of Hk, defined by hij “ v˚i MA´1Bvj, turn out

to be the coefficients of the Gram–Schmidt orthogonalization process [27, sect. 9.4.1],

with respect to the scalar product defined by M. The algorithm has a breakdown

when, for some j ď n, we have vj P spantv1, . . . , vj´1u.

7.4 krylov subspace methods 193

If no breakdown occurs, the matrices Vn and Hn produced by the algorithm satisfy

V˚n MVn “ In, BVn “ AVnHn and, for k ă n,

BVk “ AVk Hk ` hk`1,k Avk`1e˚k , (7.29)

where ek is the last column of Ik P Ckˆk.

It is well known [33, Chap. 13] that equation (7.29) can be readily exploited to

compute an approximation of f pA´1Bqv. If QVk “ VkU, where Q, U P Cnˆn and

V P Cnˆk, then, it can be proved that f pQqVk “ Vk f pUq. Thus, by imposing that

BVk « AVk Hk, we can write

f pA´1BqVk « Vk f pHkq,

and by observing that v “ v1}v}M “ Vke1}v}M, we obtain that

A f pA´1Bqv “ A f pA´1BqVke1}v}M « AVk f pHkqe1}v}M, (7.30)

a relation that is useful, in practice, only when the approximation is good for k much

smaller than n.

We discuss now the options for the matrix defining the inner product used in

the Arnoldi process. Following the recommendation of Parlett [45, Chap. 15], Arioli

and Loghin [5] develop an algorithm to approximate pA#tBq v using M “ A. It is

immediate to see that, in this case, Hk is tridiagonal, in being both upper Hessenberg

and Hermitian, since Hk “ V˚k BVk. Thus, the generalized Arnoldi process becomes a

generalized Lanczos algorithm, which is superior for two main reasons. On the one

hand, the computation of each vk requires a fixed number of arithmetic operations,

which considerably decreases the overall execution time of the algorithm, on the

other hand, the evaluation of f pHkq becomes easier and can be accurately performed

by diagonalization, since Hk is normal.

If B is positive definite, then the generalized method for pA, Bq admits a minor

variation: we can use the Arnoldi process to construct a basis of KkpA´1B, vq of (7.28)

194 weighted geometric mean times a vector

which is B-orthonormal. In this case, we get BVn “ AVnH with V˚n BVn “ In and the

matrices Hk “ V˚k BA´1BVk turn out to be tridiagonal.

In principle, any scalar product associated to a positive definite matrix M could be

used in the Arnoldi process to construct a basis of KkpA´1B, vq, and the sequence of

upper Hessenberg matrices Hk. However, if we want Hk to be tridiagonal, we must

restrict the choice for M as in the following.

Proposition 7.4. Let A, M P Cnˆn be positive definite and B P Cnˆn be Hermitian, and

assume that the Arnoldi process applied to A´1B with starting vector v and orthogonalization

with respect to the scalar product induced by M can be applied with no breakdown. Then for

k “ 1, . . . , n, the Hessenberg matrix Hk is Hermitian (and thus tridiagonal) if and only if

MA´1B “ BA´1M.

Proof. From Hk “ V˚k MA´1BVk, we get that Hk “ H˚
k for each k, if and only if

MA´1B “ BA´1M.

The previous result shows that, for the problem A f pA´1Bqv, the customary or-

thogonalization procedure, that corresponds to the choice M “ I, can cause loss of

structure since Hk is nonsymmetric if A and B do not commute.

7.4.2 Generalized Extended Krylov subspace method

The standard extended Krylov methods [21], [51] can be easily generalized to build

an M-orthonormal basis of the extended Krylov subspace

EkpA´1B, vq “ span

v, A´1Bv, B´1Av,
`

A´1B
˘2v, . . . ,

`

B´1A
˘

k
2´1v,

`

A´1B
˘

k
2 v
(

,

if k is even and

EkpA´1B, vq “ span

v, A´1Bv, B´1Av,
`

A´1B
˘2v, . . . ,

`

A´1B
˘

k´1
2 v,

`

B´1A
˘

k´1
2 v

(

,

if k is odd.

7.4 krylov subspace methods 195

As it is the case for the standard Arnoldi algorithm, the extended Krylov algo-

rithm generates a sequence of M-orthonormal vectors tvku
n
k“1 and a sequence of

Hessenberg matrices with an additional subdiagonal tHku
n
k“1 with Hk P Ckˆk. We

stress that, in this case, Hk does not contain the orthogonalization coefficients of

the Gram–Schmidt process applied to the set tv1, . . . , vku. The interplay between or-

thogonalization coefficients and Hk, for the extended Krylov subspace methods, are

discussed by Simoncini [51] and Jagels and Reichel [38], [39].

If we define Vk “ rv1| ¨ ¨ ¨ |vks as the M-orthonormal basis of EkpA´1B, vq, then the

matrices produced by the algorithm, if no breakdown occurs, verify BVn “ AVnHn

and V˚n MVn “ In, while for k even and k ă n

BVk “ AVk Hk ` A rvk`1|vk`2s
rHEk, (7.31)

where Hk P Ckˆk, rH “ rvk`1|vk`2s
˚ MA´1B rvk´1|vks P C2ˆ2, Ek P C2ˆk contains the

last two rows of the identity matrix Ik and Vk P Cnˆk is the M-orthonormal basis of

the extended Krylov subspace at step k.

As in the previous section, we can conclude that Hk “ V˚k MA´1BVk and thus

that Proposition 7.4 remains valid for the extended method. The choice M “ A, is

again the most natural. Moreover, for any k ď n the function A f pA´1Bqv can be

approximated by means of

A f pA´1Bqv « AVk f pHkqe1}v}M, (7.32)

where Vk and Hk are the matrices produced by the extended algorithm.

We wish to point out that the Arnoldi decomposition (7.31) is specific to the basis

computation approach that adds two vectors at each step [51]. Using the approach of

[38, 39], one would have to add to AVk Hk only one non-zero column rather than two.

196 weighted geometric mean times a vector

7.4.3 Generalized rational Krylov subspace methods

The rational Arnoldi algorithm [48], [50] can be adapted to our problem. Starting

with a vector v, a positive definite matrix M, and poles ξ1, . . . , ξk P CY t8u such that

ξi R σpA´1Bq Y t0u, we can construct a basis of the rational Krylov subspaces (we set

1{8 “ 0)

QkpA´1B, vq :“
k´1
ź

j“1

´

In ´
1
ξ j

A´1B
¯´1

span

v, A´1Bv, . . . , pA´1Bqk´1v
(

,

by considering v1 “ v{}v}M and then M-orthogonalizing the vector

wj “ pA´ B{ξ jq
´1Bvj,

with respect to v1, . . . , vj, obtaining

hij “ w˚j Mvi, Ăwj “ wj ´

j
ÿ

i“1

hijvj, hj`1,j “ }Ăwj}M, vj`1 “Ăwj{hj`1,j.

Notice that a breakdown can occur if rwj “ 0, that is, wj P spantv1, . . . , vju.

In this way, if no breakdown occurs, we get the rational Arnoldi decomposition

BVkpIk ` HkDkq `
hk`1,k

ξk
Bvk`1e˚k “ AVk Hk ` hk`1,k Avk`1e˚k , (7.33)

where Dk “ diagp1{ξ1, . . . , 1{ξkq, Hk is the matrix containing the entries hij and

Vk “ rv1| ¨ ¨ ¨ |vks is an M-orthogonal basis of QkpA´1B, vq. Note that we do not al-

low 0 to be a pole just for ease of exposition; it is possible to build a rational Arnoldi

decomposition with a pole at 0, by using a slightly different definition [8, sect. 3].

If the last pole is at infinity, then (7.33) simplifies to

BVkpIk ` HkDkq « AVk Hk

7.4 krylov subspace methods 197

and we get the approximation

A f pA´1Bqv « AVk f pHkpIk ` HkDkq
´1qe1}v}M. (7.34)

Notice that in this case HkpIk ` HkDkq
´1 “ V˚k MA´1BVk, which is Hermitian if M

commutes with A´1B. Thus, the argument of f is normal and the evaluation can be

done by diagonalization.

The Krylov subspaces described in section 7.4.1 and section 7.4.2 are in fact rational

Krylov subspaces where the poles are chosen to be 8 or 0 and 8, respectively. In

order to achieve a convergence rate faster than that of the previous two algorithms,

the choice of poles is crucial, but there is no general recipe. In section 7.6 we use two

black-box heuristics which are well-suited to the problem f pAqb.

7.4.4 Convergence of Krylov methods

Despite being rather impractical from a computational point of view, the identity

A f pA´1Bqv “ A1{2 f pA´1{2BA´1{2qA1{2v turns out to be very useful in the analysis of

the convergence of the Krylov methods, as we will see.

By exploiting the generalized Arnoldi method, we get an approximation of the

form (compare (7.30))

A f pA´1Bqv « AVk f pHkqe1}v}M “: fk, (7.35)

where Vk is an M-orthogonal basis of the Krylov subspace KkpA´1B, vq defined

in (7.28) and Hk “ V˚k MA´1BVk.

On the other hand, we can pick a positive definite matrix ĂM and apply the gener-

alized Lanczos method to compute a matrix Wk P Cnˆk, with ĂM-orthogonal columns

and span the Krylov subspace KkpA´1{2BA´1{2, A1{2vq, obtaining the approximation

A f pA´1Bqv “ A1{2 f pA´1{2BA´1{2qA1{2v « A1{2Wk f p rHkqe1}A1{2v}
ĂM “: gk, (7.36)

198 weighted geometric mean times a vector

with rHk “ W˚
k
ĂMA´1{2BA´1{2Wk.

We will prove that these two approximations are equal for a suitable choice of Wk

and ĂM.

Proposition 7.5. Let A, B, M P Cnˆn be positive definite and let v P Cn. If the columns of

Vk P Cnˆk span an M-orthogonal basis of KkpA´1B, vq, then those of Wk :“ A1{2Vk span an

ĂM-orthogonal basis of KkpA´1{2BA´1{2, A1{2vq, with ĂM “ A´1{2MA´1{2 and fk and gk,

defined in (7.35) and (7.36), respectively, are such that fk “ gk.

Proof. First, we observe that the columns of Wk are ĂM-orthogonal, since

W˚
k
ĂMWk “ V˚k A1{2

ĂMA1{2Vk “ V˚k MVk “ I.

and that it is a basis of KkpA´1{2BA´1{2, A1{2vq, since for ` “ 0, . . . , k ´ 1 we have

that A1{2pA´1Bq`v “ pA´1{2BA´1{2q`pA1{2vq. By direct inspection, we can see that

}A1{2v}2
ĂM
“ v˚A1{2

ĂMA1{2v “ v˚Mv “ }v}2M and

rHk “ W˚
k
ĂMA´1{2BA´1{2Wk “ V˚k A1{2

ĂMA1{2A´1BVk “ V˚k MA´1BVk “ Hk,

from which we obtain

gk “ A1{2Wk f p rHkqe1}A1{2v}
ĂM “ AVk f pHkqe1}v}M “ fk.

Observe that for M “ A, we have ĂM “ I, which gives yet another reason for

making this choice.

The previous equivalence is true also for rational Krylov subspaces (and in partic-

ular, for extended Krylov subspaces), because approximating pA#tBqv in the space

QkpA´1B, vq is equivalent to constructing a sequence of approximations to the same

quantity in QkpA´1{2BA´1{2, A1{2vq.

The equivalence of approximations allows one to estimate the convergence of

Krylov methods using the convergence results for functions of positive definite ma-

trices, which are simpler than those for general matrices.

7.5 computing pA#tBq´1v 199

For instance, if rfk is the approximation of pA#tBqv in the extended Krylov subspace

EkpA´1B, vq, using the error bound from [40], we obtain

}pA#tBqv´ rfk} “ Ope´2k{ 4?κq,

where κ is the condition number of A´1{2BA´1{2.

7.5 computing p A# t Bq´1 v

The methods for computing the product of the weighted geometric mean times a

vector, described in the previous sections, can be easily adapted for reducing the

linear system

pA#tBq´1v,

to the solution of a certain number of simpler linear systems.

Since pA#tBq´1 “ B´1pB#t AqA´1, the quadrature formulae of section 7.3 can still

be applied. From (7.18) we get the approximation

pA#tBq´1 «
2 sinpπtq

π

N
ÿ

i“0

wipp1´ siqB` p1` siqAq´1,

from (7.20) the approximation

pA#tBq´1 «
2 sinpπtq

π

N
ÿ

i“0

wipp1´ siq
1

1´t A` p1` siq
1

1´t Bq´1,

and from (7.27) the approximation

pA#tBq´1 «
´8Kpk2q 4

?
λmλM

πNk
Im

˜

N
ÿ

j“1

wptjq
2t´1 cnptjqdnptjq

`

k´1 ´ sn
`

tj
˘˘2

`

wptjq
2B´ A

˘´1

¸

,

when both A and B are real. The three quadrature formulae have exactly the same

convergence properties as the respective formulae for A#tB.

200 weighted geometric mean times a vector

Regarding the Krylov methods of section 7.4, we can exploit the identity

pA#tBq´1 “ pApA´1Bqtq´1 “ pA´1Bq´t A´1,

reducing the computation of pA#tBq´1v to that of pA´1Bq´tpA´1vq, which can be

performed by first computing w “ A´1v and then approximating pA´1Bq´tw with

any of the Krylov subspace methods described in section 7.4.

7.6 numerical tests

By means of numerical experiments, we illustrate the behavior of the methods pre-

sented in the paper for the computation of pA#tBqv and pA#tBq´1v, where A and B

are medium- to large-scale matrices.

The tests were performed using MATLAB R2017a (9.2) on a machine equipped

with an Intel i5-3570 Processor running at 3.40GHz and 8GB of dedicated RAM.

We compare the following methods:

1. The generalized Arnoldi algorithm [45, sect. 15.11] (Poly);

2. The extended Krylov subspace method [21] (Extended);

3. A rational Krylov subspace method, with poles chosen according to the adap-

tive strategy of Güttel and Knizhnermann [28] (RatAdapt);

4. A rational Krylov subspace method, where the choice of the poles is based

on the solution of the best rational approximation of an auxiliary problem [8]

(RatFit);

5. The quadrature formula (7.18) (Quad1);

6. The quadrature formula (7.20) (Quad2);

7. The quadrature formula (7.27) (Elliptic).

7.6 numerical tests 201

Krylov subspace methods. Our implementations of the Krylov subspace method

are based on the modified Gram–Schmidt procedure with reorthogonalization [26].

When approximating A f pA´1Bqv, we can decide to use either the projection of A´1B

onto the Krylov subspace or the matrix containing the orthonormalization coefficients

used in the Gram–Schmidt process. When the Krylov subspace is enlarged, the pro-

jection does not have to be computed from scratch, but can be updated cheaply by

exploiting an suitable recurrence. This choice still leads to a larger computational

cost, due to one or more additional matrix-vector products and/or linear system

solves per step, but guarantees that the projected matrix is symmetric positive defi-

nite. The matrix obtained by the orthogonalization procedure, on the other hand, is

numerically not Hermitian, and it is not Hermitian when rational Arnoldi is used as

described in section 7.4.3.

In our implementations of Poly and Extended, we trade off maintaining the struc-

ture of the problem for efficiency, and use the orthonormalization coefficients to build

the reduced matrix. In this case the fractional power of a nonnormal matrix can be

computed by spectral decomposition or by using algorithms for the real power of

dense matrices [36], [34] (all these algorithms require Op`3q ops for a matrix of size `).

We stress that, in our tests, this choice did not reduce the accuracy of the final result,

and only marginally affected the computational cost.

Rational Krylov methods, however, produce a pair of matrices from the orthonor-

malization coefficients, and it is not obvious how to combine them in order to obtain

an approximation of A f pA´1Bqv. For that reason we resort to the slightly more ex-

pensive projections in RatAdapt and RatFit.

For the rational Krylov methods, the poles are chosen according to either the

adaptive strategy by Güttel and Knizhnerman [28] or the function rkfit from the

rktoolbox [7], based on an algorithm by Berljafa and Güttel [8], [9]. In our imple-

mentation, we get the poles by running rkfit on a surrogate problem of size 800

whose setup requires a rough estimate of the extrema of the spectrum of A´1B.

202 weighted geometric mean times a vector

Table 7.1: Comparison of the methods used in the numerical experiments in terms of knowl-
edge of the spectrum of A´1B or B´1 A (spectrum), type of linear systems to be
solved (shifted systems, positive definite or not, or systems with the same left hand
side), and possibility to increase the number of nodes/enlarge the Krylov sub-
space (update) exploiting the previous computation without starting from scratch.

Method Spectrum Systems Update

Poly no same lhs yes
Extended no same lhs yes
RatAdapt no shifted pd yes
RatFit yes shifted pd yes

Quad1 yes shifted pd no
Quad2 yes shifted pd no

Elliptic pt “ 1{2q yes shifted pd no
Elliptic pt ‰ 1{2q yes shifted no

As a stopping criterion for the Krylov subspace methods, we use the estimate [40]

}u´ um}

}um}
«

δm`j

1´ δm`j
,

where } ¨ } is the spectral norm, u “ pA´1Bq´tv, um is the approximation at step m

and δm`j is the norm of the relative difference between the approximation at the step

m and m ` j, i.e. }um ´ um`j}{}um} where j is usually small and is set to 4 in our

experiments.

Quadrature methods. For quadrature methods related to the Gauss–Jacobi qua-

drature, namely (7.18) and (7.20), the nodes and the weights are generated using the

function jacpts of Chebfun [19], based on an algorithm by Hale and Townsend [31],

which requires OpNq operations to compute N nodes and weights of the quadrature.

The scaling technique described at the end of section 7.3.3 is used to accelerate the

convergence.

For Quad2 we use the quadrature formula (7.20) when t ą 1{2, and if t ď 1{2 we

exploit the identity A#tB “ B#1´t A to reduce it to the former case.

In view of the remark at the end of section 7.3.3, the convergence in the matrix case

is exactly predicted by the scalar convergence on the extreme eigenvalues. Thus, the

number of nodes needed by Quad1 and Quad2 to get the required approximation is

7.6 numerical tests 203

estimated by applying its scalar counterpart, with a variable number of nodes and

weights, to the extreme eigenvalues of the matrix B´1A. These scalar problems are

much easier and marginally affect the total computational cost of the algorithms,

when dealing with large matrices.

Regarding the method described in section 7.3.4, we adapt the implementation

given by Hale, Higham, and Trefethen [30], which uses the routines ellipkjc and

ellipkkp from Driscoll’s Schwarz–Christoffel Toolbox [17], [18]. In this case, the num-

ber of nodes is estimated by applying the same method to a 2 ˆ 2 matrix whose

eigenvalues are the extreme eigenvalues of A´1B. Since in all our tests we consider

only real matrices, the method of section 7.3.4, which is designed for real problems

only, can always be applied.

Linear systems and extreme eigenvalues. In both Krylov subspace methods and

quadrature methods, the problem is reduced to the solution of linear systems which

are solved by the MATLAB sparse linear solver, exploiting the band and the positive

definite structure. The linear systems to be solved by the method Elliptic are not

guaranteed to be positive definite for t ‰ 1{2 and this may considerably increase the

overall time required by the algorithm.

Finally, the extreme eigenvalues of A´1B (or B´1A), when needed, are approxi-

mated with two significant digits by calling the function eigs of MATLAB, with the

pair pB, Aq (or pA, Bq) as argument. In Table 7.1 we give a synoptic comparison of the

key features of the methods.

Test 1. In section 7.3, we considered two Gauss–Jacobi quadrature formulae for z´t,

one based on (7.7), implemented by Quad1 and one based on (7.8), implemented by

Quad2. We derived a bound on the rate of convergence of both formulae: |Cp
?

zq|2

with Cpxq “ 1´x
1`x for Quad1, and p1{ρp2qpzqq2 with ρp2q as in (7.15) for Quad2. The latter

is valid just for t “ 1{2.

We compare the experimental rate of convergence, which is the median of the error

reduction over a certain number of steps, with the predicted rate of convergence. The

results, for t “ 1{2, are drawn in Figure 7.1. As one can see, the first quadrature

204 weighted geometric mean times a vector

10´7 10´5 10´3 10´1 101 103 105 107
0

0.2

0.4

0.6

0.8

1

Quad1 predicted
Quad1 geometric
Quad2 predicted
Quad2 geometric

Figure 7.1: Comparison of the parameters of convergence (on the y-axis) of the two Gaussian
quadrature formulae for z´1{2 (on the semilogarithmic x-axis).

formula is more accurate for values of |z| close, in magnitude, to 1, while the second

gives better results for values of |z| far from 1.

If we consider a positive definite matrix A scaled so that λMλm “ 1 (where λM

and λm are the extreme eigenvalues of A), then the first formula seems to be more

convenient for well conditioned matrices, say with λM{λm À 70.

For t ‰ 1{2 the bound for Quad1 is still valid, as confirmed by numerical experi-

ments not reported here, while the bound for Quad2 is less predictive, and does not

give any information for t ‰ 1{2. Nevertheless, the asymptotic expansion (7.16) sug-

gests a better convergence for Quad2 for t “ pp ´ 1q{p and the quadrature formula

shows an acceptable convergence rate even for values of t such that the integrand is

not analytic, provided that t ě 1{2. By using the formula A#tB “ B#1´t A we can

achieve similar convergence properties also for t ă 1{2.

Test 2. Since the convergence of most of the methods depends on the conditioning

of the matrix A1{2B´1A1{2 (that is λM{λm, where λM and λm are the largest and the

smallest, respectively, eigenvalues of the matrix), we generate two matrices A and B

such that A´1B (and thus A1{2B´1A1{2) has prescribed eigenvalues.

We consider matrices of size 1000, so that a reference value for w “ pA#tBqv can be

computed by means of a reliable algorithm for the dense case, namely the Cholesky–

7.6 numerical tests 205

10 20 3010´12

10´6

100

(a) t “ 1{2, λM{λm “ 10

10 20 3010´12

10´6

100

(b) t “ 3{4, λM{λm “ 10

10 20 3010´12

10´6

100

(c) t “ 1{10, λM{λm “ 10

10 20 3010´12

10´6

100

(d) t “ 1{2, λM{λm “ 100

10 20 3010´12

10´6

100

(e) t “ 3{4, λM{λm “ 100

10 20 3010´12

10´6

100

(f) t “ 1{10, λM{λm “ 100

10 20 3010´12

10´6

100

(g) t “ 1{2, λM{λm “ 1000

10 20 3010´12

10´6

100

(h) t “ 3{4, λM{λm “ 1000

10 20 3010´12

10´6

100

(i) t “ 1{10, λM{λm “ 1000

Poly Extended RatAdapt RatFit
Quad1 Quad2 Elliptic

Figure 7.2: Convergence of the methods in Table 7.1 for computing pA#tBqv for t P

t1{2, 3{4, 1{10u and λM{λm P t10, 100, 1000u, where λM and λm are the extreme
eigenvalues of A1{2B´1 A1{2. We consider on the x-axis the number of nodes for
quadrature methods and the dimension of the subspace for Krylov methods; and
on the y-axis the relative error with respect to a reference solution.

Schur algorithm described in [35, sect. 3], which is implemented by the sharp func-

tion of the Matrix Means Toolbox [13].

For each method, the relative forward error of the computed value rw with respect

to the reference value, namely

ε “
} rw´w}
}w}

,

is measured in the spectral norm for a variable number of nodes of the quadrature

methods and for a variable size of the Krylov subspace.

206 weighted geometric mean times a vector

The results are drawn in Figure 7.2. The tests confirm the predicted dependence of

the convergence on the conditioning of A1{2B´1A1{2. The final accuracy of all meth-

ods is comparable, while we observe a different convergence behavior for t “ 1{2 and

for t ‰ 1{2, for the methods Quad2 and Elliptic.

For t “ 1{2, Elliptic generates the best rational relative minimax approximation

of the function z´1{2 on the interval rλm, λMs [30]. This is the reason why it converges

faster than the other methods, which produce different rational approximations to

z´1{2. We note that RatFit converges in a similar number of steps and that Quad2

converges much faster than Quad1 as λM{λm grows, as predicted in (7.23). Regarding

the Krylov subspace methods, we observe linear convergence which is very slow for

the Arnoldi method and it is quite fast when the adaptive strategy is used in the

rational Krylov method.

For t ‰ 1{2, Krylov methods and Quad1 have the same behavior they have for

t “ 1{2. The Elliptic method does not produce the best rational approximation

anymore, and although A and B are real, it may require the solution of complex

linear systems. However, despite in this case it need not be the fastest method, it

still shows a remarkably fast convergence. The behavior of Quad2 degrades fast as t

gets far from t “ 1{2, a partial explanation for this is given in section 7.3. The fastest

convergence for t ‰ 1{2 is usually achieved by RatFit.

Test 3. In order to illustrate the behavior of the methods when dealing with large-

scale matrices, we consider four pairs of conformable symmetric positive definite

matrices from the University of Florida Sparse Matrix Collection [16].

The four choices considered in our experiments are described in Table 7.2. In

the case of dataset 3, due to the extreme ill-conditioning of one of the two matri-

ces (whose 1-norm condition number is approximatively 3 ¨ 1019) and the large rate

λM{λm « 1018 (where λM{λm is the conditioning of the matrix A1{2B´1A1{2), we were

not able to get any result. Since this dataset is interesting being the only one with

non-banded matrices, we tamed the conditioning of the data, without affecting the

nonzero structure, by adding the matrix 10´3 I to both matrices.

7.6 numerical tests 207

Table 7.2: ID in the University of Florida Sparse Matrix Collection, size and sparsity pattern
of the matrices used in the experiments on large-scale matrices. In dataset 3, the
asterisk means that a small multiple of the identity has been added to the two
matrices.

Dataset λM{λm IDs in UFsmc Size Pattern

1 71.1 1312 & 1314 40 000

2 7.5 1275 & 1276 90 449

3 299.5 2257* & 2258* 102 158

4 1.2 942 & 946 504 855

Table 7.3: Comparison of the algorithms presented in the paper, when applied to large-scale
matrices, in terms of CPU time (in seconds) and number of linear systems to be
solved (between parentheses). We do not report any data for methods that require
more than 1000 system solves to achieve the required accuracy.

t Poly Extended RatAdapt RatFit Quad1 Quad2 Elliptic

1 0.50 1.6 (50) 1.0 (32) 1.6 (21) 1.7 (11) 2.1 (20) 2.1 (20) 1.6 (11)
0.75 1.3 (45) 1.0 (32) 1.6 (21) 1.7 (11) 2.1 (20) 3.0 (35) 3.8 (13)
0.10 1.6 (54) 1.0 (32) 1.4 (18) 1.6 (10) 2.0 (19) 6.1 (82) 3.8 (13)

2 0.50 7.7 (13) 6.8 (16) 10.0 (11) 18.8 (07) 21.1 (11) 26.0 (17) 18.6 (07)
0.75 7.2 (12) 6.8 (16) 10.0 (11) 18.8 (07) 20.3 (10) 40.6 (35) 70.5 (11)
0.10 7.2 (12) 6.8 (16) 8.1 (09) 18.8 (07) 20.2 (10) 80.6 (83) 65.2 (10)

3 0.50 – 17.8 (106) 15.0 (40) 10.0 (18) – 16.5 (44) 8.9 (19)
0.75 – 21.0 (118) 17.6 (46) 9.5 (17) – 14.0 (36) 20.3 (19)
0.10 – 10.2 (74) 8.9 (25) 10.4 (19) – 22.4 (63) 22.2 (21)

4 0.50 18.9 (07) 25.4 (12) 28.3 (07) 69.6 (03) 72.3 (04) 115.9 (16) 75.1 (04)
0.75 19.0 (07) 23.1 (12) 28.3 (07) 69.5 (03) 72.2 (04) 185.4 (35) 192.9 (06)
0.10 17.1 (06) 19.3 (10) 24.1 (06) 69.5 (03) 72.3 (04) 364.8 (83) 192.5 (06)

In order to test the methods in Table 7.1, we compare the CPU time required, for

t “ 1{2, t “ 3{4 and t “ 1{10, to fulfill the stopping criterion. We do not report the

CPU time if the corresponding algorithm does not achieve the accuracy threshold

after building a Krylov space of dimension 1000 or using 1000 quadrature nodes.

The results, given in Table 7.3, show that the convergence speed is dictated by the

ratio λM{λm, as predicted, while the CPU time is not necessarily related to the num-

ber of linear system solves (between parentheses). Indeed, some methods require

spectral information (see Table 7.1) and this task turns out to be costly, when the

methods for computing the extreme eigenvalues converge very slowly (datasets 1, 2,

and 4), while it does not influence dramatically the computational cost when it con-

verges quickly (dataset 3). In particular, in dataset 3, if we denote by λ1 ě . . . ě λn

208 weighted geometric mean times a vector

the eigenvalues of A´1B, where n is the size of A, then the parameters that deter-

mine the convergence of the power and inverse power methods, say γ1 “ λ2{λ1 and

γ2 “ λn{λn´1, are bounded by 0.981, so that the extreme eigenvalues are computed

very efficiently and the methods requiring the spectrum perform relatively well.

The Arnoldi and the extended Krylov subspace methods require no spectral infor-

mation and the solution of linear systems with the same left hand side. In our code,

we exploit this fact and begin by finding the Cholesky factorization of A and B and

use it to solve efficiently all subsequent linear systems. To cope with sparse non-

banded matrices and avoid excessive fill-in, we reorder the rows and columns of the

matrix by applying an approximate symmetric minimum degree permutation, which

we compute by means of the MATLAB symamd function. Notice that Poly gives good

results for the dataset 4, where λM{λm is exceptionally small; when λM{λm grows,

the fastest convergence of other Krylov methods makes them preferable. Extended

and RatAdapt are good options if nothing is known about the problem, but when

λM{λm is large (and an approximation of the spectrum can be reasonably computed)

as in dataset 3, they may be overtaken by RatFit or by the quadrature methods.

On the other hand, the methods based on quadrature do not seem to be com-

petitive for t ‰ 1{2. While Quad1 converges too slowly, and this results in a large

computational cost, the convergence of Quad2 is fast for t “ 1{2, but its performance

degrades rapidly as t approaches 0 or 1. Finally, the method based on the conformal

transformation (Elliptic) requires a very small number of linear system to be solved,

but these systems, for t ‰ 1{2, are not positive definite and this results in a generally

larger computational cost.

Finally, we wish to point out that in the dataset 4, the reason for the overhead of

RatFit, among Krylov methods is related to the cost of the approximation of the

spectrum of A´1B. The big difference between the overall cost of Quad1 and Quad2,

with respect to the number of linear system solves, depends on the fact that, in

our implementation, Quad1 spends most of the time trying to compute the extreme

eigenvalues of A´1B. On the contrary, in the dataset 3, the conditioning is high, thus

the convergence of the methods is slow, but the convergence of the power and inverse

7.6 numerical tests 209

(a) Clustering for t “ 0.35. (b) Clustering for t “ 1{2.

Figure 7.3: The two figures report positive (blue, top left) and negative (red, bottom left) ad-
jacency matrices of the Wikipedia RfA signed network. The rows and columns
are reordered according to a clustering of the eigenvectors corresponding to
the smallest 30 eigenvalues of W`#0.35 W´ (Figure 7.3a) and W`#1{2 W´ (Fig-
ure 7.3b). The right columns shows a detail of the last rows and columns of the
corresponding matrix on the left.

power methods is fast, and the extreme eigenvalues are computed very efficiently

and the fastest methods are among those requiring the spectrum (i.e., RatFit and

Elliptic).

It is worth stressing that our results are just indicative and do not represent exactly

what would happen if high performance implementations were used.

Test 4. The weighted geometric mean (with t “ 1{2) is considered by Mercado, Tud-

isco, and Hein [44] as a tool for clustering signed networks, that is, networks that

model both attractive and repulsive relationships by means of positive and negative

(weighted) edges, respectively. It is customary to assign to these networks two dis-

tinct adjacency matrices, A`, for positive edges, and A´, for negative ones.

The clustering process consists of several steps. After preprocessing the data by

discarding all the rows and columns that do not belong to the largest connected

component of the undirected graph of the network, the algorithm constructs W`, the

normalized signed Laplacian of A`, and W´, the normalized signless Laplacian [43]

of A´. The rows (and columns) of the matrix are divided into k communities by

210 weighted geometric mean times a vector

performing a k-means clustering of the eigenvectors of W`# W´ corresponding to

the k smallest (in magnitude) eigenvalues. In [44], the eigenpairs of W`# W´ are

computed by means of the inverse power method [52, Lect. 27], where each linear

system of the form pW`# W´q´1v is solved by constructing an Extended Krylov

subspace.

We test the methods discussed here on the Wikipedia Request for Adminship

signed network [54], which is available as part of the Stanford Large Network Dataset

Collection (SNAP) [42]. The matrices in this dataset have size 8297, and W` and W´

have density (number of nonzero entries divided by the total number of elements)

4.10ˆ 10´3 and 9.98ˆ 10´4, respectively. After the preprocessing stage, the size re-

duces to 6186 and the density to 1.20ˆ 10´3 and 4.30ˆ 10´3, which makes them large

and sparse enough to benefit from sparse matrix techniques.

First, we observe that with a similar computational effort, one can obtain a clus-

tering using a weighted geometric mean with t ‰ 1{2. Figure 7.3, compares the

reordering obtained using k “ 30 eigenvectors for t “ 0.35 and t “ 1{2. A quantita-

tive comparison of the two results is not possible, since there is no widely accepted

metric for measuring the quality of the clustering of a signed network. We point

out, however, that the reordering for t “ 0.35 shows a k-balanced behavior: after the

reordering, the nonzeros of A` tend to appear in blocks along the diagonal, whereas

those of A´ are localized in non-diagonal blocks.

Suitable clusterings are provided by using different values of t. An interesting open

problem could be to identify the value of t providing the clustering more adherent to

the model problem.

In Figure 7.4 we show how the parameter t influences the CPU time needed by

the methods to solve the linear system pW`#tW´q´1v. Most methods perform better

for values of t larger than 1/2, the execution time of Quad1 does not seem to depend

on t and that of Quad2 is symmetric with respect to 1/2. For this network, the best

methods, with a comparable CPU time, are Poly and Extended.

7.7 conclusions 211

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10´1

100

101

102

103

t

ti
m

e
(s

ec
on

ds
)

Poly Extended

RatAdapt RatFit

Quad1 Quad2

Elliptic

Figure 7.4: CPU time needed by the various methods for computing pA#tBq´1v with respect
to t.

7.7 conclusions

We consider several numerical algorithms for the approximation of pA#tBqv and

pA#tBq´1v for t P p0, 1q. These methods exploit rational approximation of the func-

tion z´t by either performing numerical quadrature or building a Krylov subspace.

In both cases the problem is reduced to the solution of a certain number of linear sys-

tems, and thus assessing the performance of any of the algorithms discussed through-

out the paper amounts to estimating the number and nature of linear systems to be

solved.

The number of linear systems depends on the degree of the quadrature formula, for

quadrature methods, and on the dimension of the constructed subspace, for Krylov

methods. Note that this number can be efficiently estimated a priori in the former case,

by applying the method to either a scalar or a 2ˆ 2 case, but cannot be predicted so

easily in the latter.

On the other hand, the performance is influenced by the kind of linear system to be

solved. For instance, when t ‰ 1{2 the method Elliptic is quasi-optimal with respect

to the convergence, being not far from the rational minimax approximation, but it

requires the solution of complex linear systems with non-positive definite coefficient,

which results in a sensible increase in terms of computational cost. Another example

is represented by the extended Krylov subspace method (Extended), which despite

212 weighted geometric mean times a vector

requiring more linear systems than the other two rational Krylov methods considered

in the paper (RatAdapt and RatFit), is faster when the subspace need to be large. The

reason behind this is that since Extended solves linear systems all having the same

coefficient matrices, it is usually worth computing a factorization, at the price of a

usually negligible overhead, in order to make the solution of the successive linear

systems faster. The larger the space is, the more this approach pays off.

According to the experimental results in section 7.6, the choice of the method

should be dictated by the spread of the eigenvalues of the matrix A´1B and the

structure of A and B. In extremely well-conditioned cases, we expect all the methods

to converge in very few iterations, and it is enough to build a polynomial Krylov

space to approximate the solution. For mildly ill-conditioned matrices, Extended gen-

erates a Krylov subspace which is not too large, and the overhead introduced by the

factorization is balanced by the reduction in execution time of the single iterations.

For severely ill-conditioned matrices a general recipe cannot be given, but, in this

case, the quadrature methods become competitive. In particular, when t “ 1{2 or

close to 0 and 1, Elliptic seems to be the best choice, whereas for intermediate

values of t Quad2 is very effective. The convergence of Quad1 is considerably slowed

down and this method is totally impractical in this case. Krylov methods loose their

supremacy because of the growth of the space, which implies a massive overhead due

to the Gram–Schmidt orthogonalization of the basis. In principle, this problem could

be alleviated by making use of suitable restarting techniques during the construction

of the Krylov space. This optimization is currently under investigation and will be

the subject of future work.

acknowledgements

The authors are grateful to Valeria Simoncini, who advised the first author during his

MSc thesis, and to Mario Berljafa, for fruitful discussions about the rational Arnoldi

methods. The authors wish to thank Nicholas J. Higham for providing useful com-

BIBLIOGRAPHY 213

ments which improved the presentation of the paper, and Daniel Loghin, Pedro Mer-

cado and Francesco Tudisco, who provided some details regarding the large-scale

matrices arising from applications.

bibliography

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables, Dover, New York, 10th ed., 1972.

[2] T. Ando, Concavity of certain maps on positive definite matrices and applications to

Hadamard products, Linear Algebra Appl., 26 (1979), pp. 203–241.

[3] T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra Appl., 385

(2004), pp. 305–334. Special Issue in honor of Peter Lancaster.

[4] M. Arioli, D. Kourounis, and D. Loghin, Discrete fractional Sobolev norms for

domain decomposition preconditioning, IMA J. Numer. Anal., 33 (2011), pp. 318–342.

[5] M. Arioli and D. Loghin, Discrete interpolation norms with applications, SIAM J.

Numer. Anal., 47 (2009), pp. 2924–2951.

[6] , Spectral analysis of the anisotropic Steklov–Poincaré matrix, Linear Algebra

Appl., 488 (2016), pp. 168–183.

[7] M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB, MIMS

EPrint 2014.56, Manchester Institute for Mathematical Sciences, The Univer-

sity of Manchester, UK, 2014. Available for download at http://guettel.com/

rktoolbox/.

[8] , Generalized rational Krylov decompositions with an application to rational ap-

proximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916.

[9] M. Berljafa and S. Güttel, The RKFIT algorithm for nonlinear rational approxima-

tion, SIAM J. Sci. Comput., 39 (2017), p. A2049–A2071.

http://dx.doi.org/10.1016/0024-3795(79)90179-4
http://dx.doi.org/10.1016/0024-3795(79)90179-4
http://dx.doi.org/10.1016/j.laa.2003.11.019
http://imajna.oxfordjournals.org/
http://imajna.oxfordjournals.org/
http://www.siam.org/journals/sinum/47-4/72936.html
http://eprints.ma.man.ac.uk/2600/
http://guettel.com/rktoolbox/
http://guettel.com/rktoolbox/
http://dx.doi.org/10.1137/140998081
http://dx.doi.org/10.1137/140998081
http://dx.doi.org/10.1137/15m1025426
http://dx.doi.org/10.1137/15m1025426

214 BIBLIOGRAPHY

[10] R. Bhatia, Matrix Analysis, vol. 169 of Graduate Texts in Mathematics, Springer-

Verlag, New York, 1997.

[11] , Positive Definite Matrices, Princeton Series in Applied Mathematics, Prince-

ton University Press, Princeton, NJ, USA, 2007.

[12] , The Riemannian Mean of Positive Matrices, Springer-Verlag, Berlin, 2013,

pp. 35–51.

[13] D. Bini and B. Iannazzo, The Matrix Means Toolbox. http://bezout.dm.unipi.

it/software/mmtoolbox/.

[14] J. R. Cardoso, Computation of the matrix p-th root and its Fréchet derivative by inte-

grals, Electron. Trans. Numer. Anal., 39 (2012), pp. 414–436.

[15] J. Castellini, Krylov iterative methods for the geometric mean of two matrices times a

vector, Numer. Algorithms, 74 (2017), pp. 561–571.

[16] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM

Trans. Math. Software, 38 (2011), pp. 1:1–1:25.

[17] T. A. Driscoll, Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping,

ACM Trans. Math. Software, 22 (1996), pp. 168–186.

[18] , Algorithm 843: Improvements to the Schwarz–Christoffel toolbox for MATLAB,

ACM Trans. Math. Software, 31 (2005), pp. 239–251.

[19] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publica-

tions, 2014.

[20] T. A. Driscoll and L. N. Trefethen, Schwarz–Christoffel Mapping, Cambridge

Monographs on Applied and Computational Mathematics, Cambridge Univer-

sity Press, Cambridge, UK, 2002.

[21] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of

the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998),

pp. 755–771.

http://dx.doi.org/10.1007/978-1-4612-0653-8
http://press.princeton.edu/titles/8445.html
http://dx.doi.org/10.1007/978-3-642-30232-9_2
http://bezout.dm.unipi.it/software/mmtoolbox/
http://bezout.dm.unipi.it/software/mmtoolbox/
http://etna.math.kent.edu
http://etna.math.kent.edu
http://dx.doi.org/10.1007/s11075-016-0161-4
http://dx.doi.org/10.1007/s11075-016-0161-4
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/229473.229475
http://doi.acm.org/10.1145/1067967.1067971
http://www.chebfun.org/docs/guide/
http://dx.doi.org/10.1137/S0895479895292400
http://dx.doi.org/10.1137/S0895479895292400

BIBLIOGRAPHY 215

[22] C. Estatico and F. Di Benedetto, Shift-invariant approximations of structured shift-

variant blurring matrices, Numer. Algorithms, 62 (2013), pp. 615–635.

[23] A. Frommer, S. Güttel, and M. Schweitzer, Efficient and stable Arnoldi restarts

for matrix functions based on quadrature, SIAM J. Matrix Anal. Appl., 35 (2014),

pp. 661–683.

[24] A. Frommer and V. Simoncini, Matrix functions, in Model order reduction: the-

ory, research aspects and applications, vol. 13 of Math. Ind., Springer, Berlin,

2008, pp. 275–303.

[25] W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in E. B. Christoffel

(Aachen/Monschau, 1979), Birkhäuser, Boston, MA, USA, 1981, pp. 72–147.

[26] L. Giraud and J. Langou, When modified Gram–Schmidt generates a well-condi-

tioned set of vectors, IMA J. Numer. Anal., 22 (2002), pp. 521–528.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univer-

sity Press, Baltimore, MD, USA, 4th ed., 2013.

[28] S. Güttel and L. Knizhnerman, Automated parameter selection for rational Arnoldi

approximation of Markov functions, Proc. Appl. Math. Mech., 11 (2011), pp. 15–18.

[29] , A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions, BIT,

53 (2013), pp. 595–616.

[30] N. Hale, N. J. Higham, and L. N. Trefethen, Computing Aα, logpAq, and related

matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505–

2523.

[31] N. Hale and A. Townsend, Fast and accurate computation of Gauss–Legendre

and Gauss–Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013),

pp. A652–A674.

[32] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

http://dx.doi.org/10.1007/s11075-012-9686-3
http://dx.doi.org/10.1007/s11075-012-9686-3
http://dx.doi.org/10.1137/13093491X
http://dx.doi.org/10.1137/13093491X
http://dx.doi.org/10.1007/978-3-540-78841-6_13
http://dx.doi.org/10.1007/978-3-540-78841-6_13
http://dx.doi.org/10.1007/978-3-540-78841-6_13
http://imajna.oxfordjournals.org/content/22/4/521.abstract
http://imajna.oxfordjournals.org/content/22/4/521.abstract
http://dx.doi.org/10.1002/pamm.201110005
http://dx.doi.org/10.1002/pamm.201110005
http://dx.doi.org/10.1007/s10543-013-0420-x
http://dx.doi.org/10.1137/070700607
http://dx.doi.org/10.1137/070700607
http://dx.doi.org/10.1137/120889873
http://dx.doi.org/10.1137/120889873
http://dx.doi.org/10.1137/1.9780898718027

216 BIBLIOGRAPHY

[33] , Functions of Matrices: Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[34] N. J. Higham and L. Lin, An improved Schur–Padé algorithm for fractional powers

of a matrix and their Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013),

pp. 1341–1360.

[35] B. Iannazzo, The geometric mean of two matrices from a computational viewpoint,

Numer. Linear Algebra Appl., 23 (2015), pp. 208–229.

[36] B. Iannazzo and C. Manasse, A Schur logarithmic algorithm for fractional powers

of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 794–813.

[37] B. Iannazzo and B. Meini, The palindromic cyclic reduction and related algorithms,

Calcolo, 52 (2015), pp. 25–43.

[38] C. Jagels and L. Reichel, The extended Krylov subspace method and orthogonal

Laurent polynomials, Linear Algebra Appl., 431 (2009), pp. 441–458.

[39] , Recursion Relations for the Extended Krylov Subspace Method, Linear Algebra

Appl., 431 (2009), pp. 441–458.

[40] L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov

subspace method for matrix function evaluations, Numer. Linear Algebra Appl., 17

(2010), pp. 615–638.

[41] J. Lawson and Y. Lim, Weighted means and Karcher equations of positive operators,

Proc. Natl. Acad. Sci. U.S.A., 110 (2013), pp. 15626–15632.

[42] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

[43] S. Liu, Multi-way dual Cheeger constants and spectral bounds of graphs, Advances in

Mathematics, 268 (2015), pp. 306–338.

[44] P. Mercado, F. Tudisco, and M. Hein, Clustering signed networks with the geomet-

ric mean of laplacians, in Advances in Neural Information Processing Systems 29,

http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1002/nla.2022
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1137/120877398
http://dx.doi.org/10.1007/s10092-014-0106-z
http://dx.doi.org/10.1016/j.laa.2009.03.006
http://dx.doi.org/10.1016/j.laa.2009.03.006
http://dx.doi.org/10.1016/j.laa.2009.03.006
http://dx.doi.org/10.1002/nla.652
http://dx.doi.org/10.1002/nla.652
http://dx.doi.org/10.1073/pnas.1313640110
http://snap.stanford.edu/data
http://www.sciencedirect.com/science/article/pii/S0001870814003351
http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf
http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf
http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf
http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf

BIBLIOGRAPHY 217

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds., Curran

Associates, Inc., 2016, pp. 4421–4429.

[45] B. N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, 1998. Unabridged, amended version

of book first published by Prentice–Hall in 1980.

[46] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the

purification map, Rep. Math. Phys., 8 (1975), pp. 159–170.

[47] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, Dover, New

York, 2nd ed., 1978.

[48] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Alge-

bra Appl., 58 (1984), pp. 391–405.

[49] , Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix

pairs, Linear Algebra Appl., 197–198 (1994), pp. 283–295.

[50] , Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix

pencils, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1535–1551.

[51] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equa-

tions, SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288.

[52] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1997.

[53] B. von Sydow, Error estimates for Gaussian quadrature formulae, Numer. Math., 29

(1977/78), pp. 59–64.

[54] R. West, H. Paskov, J. Leskovec, and C. Potts, Exploiting social network structure

for person-to-person sentiment analysis, Trans. Assoc. Comput. Linguist., 2 (2014),

pp. 297–310.

http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf
http://papers.nips.cc/paper/6164-clustering-signed-networks-with-the-geometric-mean-of-laplacians.pdf
http://dx.doi.org/10.1016/0034-4877(75)90061-0
http://dx.doi.org/10.1016/0034-4877(75)90061-0
http://www.sciencedirect.com/science/article/pii/0024379584902210
http://www.sciencedirect.com/science/article/pii/0024379594904928
http://www.sciencedirect.com/science/article/pii/0024379594904928
http://dx.doi.org/10.1137/S1064827595285597
http://dx.doi.org/10.1137/S1064827595285597
http://dx.doi.org/10.1137/06066120X
http://dx.doi.org/10.1137/06066120X
http://dx.doi.org/10.1007/BF01389313
https://transacl.org/ojs/index.php/tacl/article/view/396
https://transacl.org/ojs/index.php/tacl/article/view/396

8 CONCLUS IONS

In arbitrary precision arithmetic, not all functions of matrices are equal. In some

cases only little or no modification to fixed precision algorithms is needed to obtain

accurate and efficient precision-oblivious methods. For many functions, however,

state-of-the-art algorithms rely on a certain amount of precision-dependent computa-

tion that would be too expensive to perform in a multiprecision environment, where

the precision at which the computation is performed becomes known only at run-

time. Extending these algorithms to arbitrary precision environments poses several

nontrivial challenges that need to be addressed.

In this thesis we considered methods based on Padé approximation, which belong

to this second class. We showed how the scaling and squaring and inverse scaling and

squaring algorithms can be adapted to multiprecision in order to compute the matrix

exponential and the matrix logarithm, respectively. We achieved this by combining

new bounds on the forward error of Padé approximation that are cheap to compute

at runtime with new strategies for selecting the algorithmic parameters which, in

principle, can deal with approximants of arbitrarily large degree.

Our techniques generalize to other matrix functions. For instance, the state-of-the-

art algorithms for computing fractional matrix powers [5], [6] and inverse trigono-

metric and inverse hyperbolic matrix functions [2] rely on the inverse scaling and

squaring approach based on a bound on the forward error of the Padé approximation.

These algorithms can readily be adapted to multiprecision by using the techniques

we developed for the matrix logarithm [3]. Techniques similar to those used for the

computation of the matrix exponential in high precision can be used for evaluating

the matrix sine and cosine [1], [4], [7] in arbitrary precision arithmetic.

Many open problems still remain, however. When developing our algorithms, we

mostly focused on precision higher than double. In many cases, algorithms we ob-

218

BIBLIOGRAPHY 219

tained perform well in lower precision as well, but this is not the case, for instance, for

the scaling and squaring algorithm presented in Chapter 5. The algorithms discussed

there perform poorly in IEEE single and especially half precision arithmetic, as the

matrix exponential—and the exponential function itself—is prone to underflow and

overflow due to the limited range of these floating point number systems. We be-

lieve that scaling the matrix beforehand might help developing robust algorithms for

computing the exponential of a matrix in low precision, but finding a scaling strategy

that guarantees an accurate result remains an open problem.

Additional evidence of the fact that computing matrix functions in arbitrary preci-

sion arithmetic is not yet fully understood is given by Conjecture 5.2. This conjecture

would have important implications not only in the development of an efficient algo-

rithm for evaluating the matrix exponential in high precision by using diagonal Padé

approximants: proving the conjecture would allow us to develop new algorithms for

computing the matrix logarithm in multiprecision by applying the algorithms for the

solution of rational equations discussed in Chapter 4 to the matrix equation eX “ A.

This is an exciting question that will, in all likelihood, be the subject of future work.

bibliography

[1] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, New algorithms for computing the

matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37 (2015),

pp. A456–A487.

[2] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hy-

perbolic functions: Theory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016),

pp. 1453–1477.

[3] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix loga-

rithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491.

http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/17M1129866

220 BIBLIOGRAPHY

[4] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and

sine, Numer. Algorithms, 40 (2005), pp. 383–400.

[5] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix,

SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078.

[6] , An improved Schur–Padé algorithm for fractional powers of a matrix and their

Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360.

[7] N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms,

34 (2003), pp. 13–26.

http://dx.doi.org/10.1007/s11075-005-8141-0
http://dx.doi.org/10.1007/s11075-005-8141-0
http://dx.doi.org/10.1137/10081232X
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1137/130906118
http://dx.doi.org/10.1023/A:1026152731904

	Contents
	List of Figures
	 List of Figures
	List of Tables
	 List of Tables
	Abstract
	Declaration
	Copyright statement
	Acknowledgements
	Publications
	1 Introduction
	 Bibliography

	2 Background material
	2.1 Linear algebra
	2.2 Floating point arithmetic
	 Bibliography

	3 Optimality of the Paterson–Stockmeyer method
	3.1 Introduction
	3.2 Evaluation of matrix polynomials
	3.3 Rational matrix functions of order [k/k]
	3.4 Diagonal Padé approximants to the matrix exponential
	3.5 Conclusion
	 Bibliography

	4 Solution of primary matrix equations
	4.1 Introduction
	4.2 Background and notation
	4.3 Classification of the solutions
	4.4 A substitution algorithm
	4.5 Numerical experiments
	4.6 Conclusions
	 Bibliography

	5 Mutliprecision algorithms for the matrix exponential
	5.1 Introduction
	5.2 Padé approximation of matrix exponential
	5.3 A multiprecision algorithm
	5.4 Numerical experiments
	5.5 Conclusions
	 Bibliography

	6 Multiprecision algorithms for the matrix logarithm
	6.1 Introduction
	6.2 Support for multiple precision arithmetic
	6.3 Approximation of hypergeometric functions
	6.4 Schur–Padé algorithm
	6.5 Transformation-free algorithm
	6.6 Numerical experiments
	6.7 Conclusions
	 Bibliography

	7 Weighted geometric mean times a vector
	7.1 Introduction
	7.2 Notation and preliminaries
	7.3 Quadrature methods
	7.4 Krylov subspace methods
	7.5 Computing (A#tB)-1v
	7.6 Numerical tests
	7.7 Conclusions
	 Bibliography

	8 Conclusions
	 Bibliography

