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ABSTRACT 

 

In spite of considerable amount of research on flat plate structures, understanding the 

brittle and catastrophic punching shear failure is still somewhat incomplete. The thesis 

focuses on the punching shear behaviour of interior flat slab-column connections under 

gravity loading. A Comprehensive literature review has shown that although there are 

several different mechanical models available to calculate punching shear capacity,  

they are not only complex and difficult to apply in engineering practice but also are not 

precise. Code provisions such as ACI 318-08 (2008), Eurocode 2-2004, CEB-FIP 

Model Code 1990 and BS 8118-1997 are all based on empirical equations which were 

developed using limited experiments from the literature. Therefore, the precision of  

punching shear capacity prediction using the code equations are questionable. Previous 

researches assessed the accuracy of the code provisions only by comparing with their 

limited set of experiments. In this thesis, the author has constructed a large database 

using 549 punching shear experiments from the literature and concluded that to assess 

the code provisions in a much more rigorous manner, it is essential to evaluate the effect 

of the key parameters that affect the punching shear capacity of flat slab-column 

connections using this database. This study has shown that BS 8110 (1997) predicts 

punching shear capacity with high accuracy while ACI 318-08 (2008) underestimates 

the punching shear capacity for slabs with low flexural reinforcement. Lenton Steel 

Fortress (LSF) type of shear reinforcement has a better anchorage behaviour compared 

to stirrups. However, experiments with this type of shear reinforcement are very limited. 

In order to gain an insight of the behaviour of slab-column connections under gravity 

loading, two series of experiments were conducted in this study: 72 pullout tests using 

LSF strips and 3 real scale slab-column connections. LSF strips have been shown to 

have enhanced anchorage behaviour and the use of LSF type shear reinforcement has 

resulted in an increase of 67% punching shear capacity and 152% in deformation 

capacity. In addition to the experiments, numerical modelling was carried out to further 

investigate the behaviour of flat slab-column connections. It is also concluded that 

Finite Element analyses using ABAQUS is capable of predicting the behaviour of such 

connections with sufficient accuracy. Using the validated numerical  models, a 

parametric study was carried out to investigate the effect of parameters such as column 

dimensions, slab depths, top and bottom reinforcement ratios and shear reinforcement 

area on the punching shear capacity of the flat slab-column connections. A development 

of a simplified shear model was achieved by Bayesian Neural Network (NN) using the 

parameters previously determined from the comprehensive databases and numerical 

analyses. The simplified shear model that was developed by the author predicts 

punching shear capacity with high accuracy.  
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NOTATION 

Latin letters 

a  = the side length of the slab 

Av  = the area of the shear reinforcement within a distance s 

Asw  = the area of one perimeter of shear reinforcement 

Asw  = the area of one perimeter of shear reinforcement around the column 

b  = the perimeter of the loading area 

bo  = the shear perimeter 

bp  = the critical perimeter located 1.5d away from the column face 

β  = the diameter of the circular column  

c  = the side length of the square column 

ca  = the displacement correction 

d  = the effective depth of the slab 

davg  = the average effective depth of the slab 

dD  = the dowel forces  

Du  = the displacement at ultimate load 

Dy  = the displacement at yielding 

ED  = the error function  

Es  = the elastic modulus of the steel 

Ew  = the degree of regularisation 

f  = the linear or nonlinear activation function 

f
1  

= the activation function at the hidden nodes 

f
2  

= the activation function at the output nodes 

fave  = the average pullout stress 

fbo  = the compressive strength under biaxial loading of concrete  

fc  = cylinder concrete strength 

f’c  = the concrete compressive strength  
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f’c1  = the concrete compressive strength of cubes after pull out tests 

f’c,cube, 100 = the compressive strength of cubes (100/100/100 mm) 

f’c,cube, 150 = the compressive strength of cubes (150/150/150 mm) 

f’c,cyl,100,300 = the compressive strength of cylinders ( mm100 , h=300 mm) 

f’c,cyl,150,300 = the compressive strength of cylinder ( mm150 , h=300 mm)  

fck  = the characteristic concrete compressive cylinder strength 

fco  = the uniaxial compressive strength of concrete  

fct  = the splitting tensile strength  

fctm  = the mean tensile strength 

fcu  = the characteristic concrete cube strength 

Fcr  = the inclined bearing force 

Fct = forces in the concrete (vertical component of the concrete tensile 

forces)  

Fdow  = the dowel contribution of the flexural reinforcement 

fmax  =  the maximum pullout stress 

Fmax  = the maximum pullout load  

Fpun  = the punching load of a slab 

Fsr  = the radial net force 

Fst  = forces in the steel  

Fsw  = the vertical component of the force in the studs, stirrups or bent up bars 

ft  = the steel yield strength (axial tensile stress in the reinforcing bar) 

fu  = the ultimate load 

fy  = the yield strength of flexural reinforcement 

fyv  = the characteristic strength of  shear reinforcement 

fywd  = the design yield of shear reinforcement 

fywd,ef  = the effective design strength of shear reinforcement 

G  = the adequate plastic potential function  



 22 

Gf  = the material parameter describing the amount of energy required to 

open a unit area of a crack  

h  = the slab depth 

h1  = the hooks length in longer direction of the pullout specimen 

h2  = the hooks length in shorter direction of the pullout specimen 

H  = the hessian matrix 

I1  = the first stress invariant  

Ia  = the internal force 

Ib  = the new internal force  

J2  = the second invariant of the stress deviator 

Ka  = the new structure stiffness 

l1  = the span between supports 

ls  = the dimension of the slab specimen 

L  = the characteristic element length 

m  = the total number of parameters in the network 

nc  = the stress concentration factor 

p  = the equivalent pressure  

p   = the hydrostatic pressure stress 

P  = the external load 

Pu  = the ultimate load 

q  = the equivalent deviatoric pressure  

q   = the Mises equivalent effective stress 

ro  = the diameter of the column 

r1  = corresponds to 1/10 of the effective depth  

r2  = the radius extends up to the flexural reinforcing bars 

R  = the function described by the ANN (Chapter 7) 

R   = the bending radius 
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Ra  = the unbalance force vector 

Rb  = the residual 

s = the spacing of the shear reinforcement in a direction parallel to 

longitudinal reinforcement  

sr  = the radial spacing of perimeters of shear reinforcement 

t  = the nominal thickness 

t’  = the actual thickness 

u  = the control perimeter for circular and rectangular loaded areas 

ua  = the current structure 

u0 = the opening of crack at which the concrete tensile strength becomes 

zero 

u1  = the control perimeter at a distance of 2d from the column face 

U  = the energy absorption capacity 

Va  = the resistance provided by the aggregate interlock 

VACI  = the calculated punching shear strength according to the ACI 318-08 

VBS8110 = the calculated punching shear strength according to the BS 8110 

(1997) 

Vc = the vertical component of the concrete resistance provided in the 

compression zone 

Vcal  = the calculated punching shear capacity of the slab 

VCEB FIP = the calculated punching shear strength according to the CEB FIP 

Model 1990 (1991) 

Vd  = the resistance provided by the dowel action 

VEC2  = the calculated punching shear strength according to the EC2 (2004) 

Vflex  = the flexural capacity based on the yield line analysis 

Vf  = the flexural strength of the slab 

Vmax  = the maximum shear capacity of the slab 

Vn  = the nominal shear strength 

Vpred  = the predicted punching shear strength  
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VRd,c  = the nominal punching shear design strength 

VRd,cs = the design value of the punching shear resistance of the slab with 

punching shear reinforcement 

Vs  = the shear reinforcement provided by the shear reinforcement 

Vtest  = the measured punching shear strength of the slab 

Vu  = the punching shear capacity 

Vε  = the punching load at critical tangential concrete strain 

Vσ  = the punching shear load 

vc   = the maximum design shear stress 

vu   = the shear stress  

w  = the “flat” length or the tail length 

x = the height of the compression zone at flexure in the tangential direction 

at punching failure 

x  = the input for a two-layer network  

xi  = the original value of the dataset 

(xi)n  = the normalised value of the dataset 

xmean  = the mean of the parameter under normalization  

X  = the depth of the compression zone 

y  = the depth of the radial compression zone 

y  = the output for a two-layer network 

yi  = the original value of the dataset 

(y)max  = the maximum values of the parameters under normalisation 

(y)min  = the minimum values of the parameters under normalisation 

(yi)n  = the normalised value of the dataset 

z  = moment arm 

 

Greek Letters 

α  = the angle between the shear reinforcement and the plane of the slab 
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αχpu  = the height of the equivalent rectangular stress block 

β  = the aspect ratio 

βc  = the ratio of longer to shorter dimensions of the loaded area 

ε = the eccentricity that defines the rate at which the plastic potential 

function approached the asymptote 

ε  = the strain tensor 

εu  = the ultimate tensile strain 

p   = the plastic incremental deformation  

pl


  = the effective plastic strain 

pl

c


  = the effective compression plastic strain 

εcpu  = the tangential concrete strain 

σ  = the hydrostatic compressive stress 

σc  = the concrete compressive stress  

σi  = the standard deviation  

max   = the algebraically maximum eigenvalue  

)( p

cc   = the effective compressive cohesion stress 

σs  = the uniaxial stress of concrete in compression 

)( p

tt   = the effective tension cohesion stress 

σ1  = the slip inside the concrete cube 

σ2  = the overall slip along the bar 

θ  = the inclined crack angle 

η = analytical relation represents the influence of radius of column on 

punching crack initiation 

μ  = the regularisation coefficient  

μMP  = the optimal regularisation coefficient  

ξ  = the size effect 

φs  = the diameter of the corresponding bars crossing the punching crack 
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   = the positive scalar hardening parameter 

Ψ  = the dilation angle  

ρ  = the average reinforcement ratio 

ρBot  = the average bottom reinforcement ratio 

ρTop  = the average top reinforcement ratio 

ρx  = the reinforcement ratio in x direction  

ρy  = the reinforcement ratio in y direction  

ωc  = the crack opening 

ωMP  = the optimum weight parameters  
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        Chapter 1                                                                     

                                                       INTRODUCTION 
 

 

 

1.1 Introduction  

One of the most common concrete floor systems is the flat slab. A flat slab structural 

system consists of a slab of uniform thickness supported directly on columns without 

any beams, an example of this is shown in Figure 1.1. Flat slab structural systems, in the 

absence of downstand beams allow lower building heights and greater ease of service 

routing that provides greater architectural flexibility compared with other concrete floor 

systems. This also provides constructional benefits with easier formwork, resulting in 

reduced construction time. 

 

Figure 1.1: Typical flat plate structure, Tabriz-Iran. 

 

These architectural and constructional benefits can come at some cost structurally that 

relates to the absence of structural hierarchy. Flat plates are prone to punching failure, 

which is a failure within the slab, at, or near to, its interface with the columns. This 
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failure mode is caused by the high shear loads at these locations and is excarebated by 

any inunbalance in the moment between slabs and columns. 

Punching shear failure is a sudden, brittle failure of the slab-column connection that is 

catastrophic. Following failure, the column is pushed through the slab and a 

considerable portion of slab is also being pushed during this event. A section through a 

slab-column connection is shown in Figure 1.2. The failure sequence tends to be: - 

firstly flexural cracks are observed at the top surface of the slab, as the cracking moment 

per unit width is reached around the loading area.  

Compression zoneSlab

Column

Diagnol shear cracks Flexural cracks

 

Figure 1.2: Punching Shear Failure Mechanism. 

 

At 60-70% of the ultimate load, an inclined shear crack begins to develop. This inclined 

shear crack makes an angle of 20 to 35°
 

with the tension face of the slab. The 3-

dimensional geometry of this inclined crack is a truncated cone for circular columns and 

a similarly truncated pyramid for rectangular columns. Once the inclined crack has 

developed, shear force is carried by friction in the compression zone and aggregate 

interlock along the surface of the inclined crack. At this stage, the connection is still 

stable meaning that the connection can be loaded and unloaded without changing its 

load carrying capacity.  

As further load is applied, the longitudinal reinforcement starts to yield. This starts at 

the face of the connection and then propagates towards the span as the load is increased. 
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This propagation of yielding is dependent on the reinforcement ratio. As the width of 

the inclined crack increases aggregate interlock becomes less effective in carrying load 

resulting in more load being carried by dowel action. 

At collapse load the inclined crack penetrates into the compression zone, at which point 

brittle failure occurs without warning (CEB-FIP 2001). 

 

1.2 Problem Statement 

Punching shear failure is all too frequently a factor in flat slab failures. This is 

undoubtedly due to its brittle nature giving little warning of incipient failure. That these 

failures occur, also suggests that not only do we have little warning of overstress, but 

that we are not able to accurately predict failure loads. 

The code provision for punching shear capacity was developed empirically, based on 

nonlinear regression analysis from limited databases. This has resulted in poor 

assessment of the code provisions. Therefore, there is a need to construct a bigger 

database that would assess the code equations in a more realistic manner.  

Improving the ductility of this failure mode is possible with the use of reinforcement. 

This has clear safety benefits in terms of giving better advance warning of impending 

failure and to allow locallised failures not to propagate disproportionately. A relatively 

new reinforcement technique the Lenton Steel Fortress (LSF) shear reinforcement 

provides better anchorage compared to stirrups and thus is perceived to produce good 

ductility. LSF also increases the effective depth of the flexural reinforcement, and is 

light and easy to place. However, there is limited resreach on LSF and thus a detailed 

research in this field was vital to improve our understanding.  

There is limited published work on the numerical modelling of such systems and 

therefore, implementing a numerical approach to simulate the performance of flat slab-

column connections is essential. A detailed parametric study has been performed to gain 

a better understanding of the parameters that significantly affects the punching shear 

capacity both numerically and experimentally.  

Limited work using an Artificial Neural Network (ANN) has shown to promise, and to 

predict punching shear capacity with a higher accuracy than other analytical methods. 
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Hence it is recommended that this approach should be employed and developed further 

for the accurate prediction of the punching shear capacity.   

 

1.3 Objectives of the thesis: 

 To gain an in-depth understanding of the underlying mechanisms and the 

fundamental reasons for punching shear failure in flat slabs-column connections, 

by way of a detailed literature review. 

 Previous researchers conducted experiments to predict the behavior of flat slab-

column connections. However, the comparison of these experiments with the 

code equations only provide limited conclusions as they were modelled, loaded 

and tested differently for differing purposes. Therefore, a detailed database 

needed to be constructed utilising existing experiments that have been reported 

in studies on punching shear. This would allow a more accurate comparison of 

the code equations with the test data.  

 Research on the use of Lenton Steel Fortress (LSF) shear reinforcement is 

limited. The major problem with the punching shear experiments with LSF shear 

reinforcement is that the slabs were designed with low flexural capacity and this 

resulted in a slight increase in flexural rather than shear capacity of the slabs. 

This has resulted in a growing need to carry out more experiments, using LSF 

shear reinforcement, on flat slab-column connections and therefore three real 

scale experiments with higher flexural reinforcement were designed and tested.  

 Besides the experiments, numerical models using Finite Element Analysis 

(FEA) can be an effective tool in order to further enhance the understanding of 

the punching shear behaviour of flat slab-column connections.  

 An investigation of the major parameters that affect the prediction of the shear 

strength of interior slab-column connections with and without shear 

reinforcement is to be performed by carrying out a detailed numerical parametric 

study. 

 Despite years of intensive research, the accuracy and rationality of punching 

shear equations could not be improved adequately to the point where an 

internationally accepted model that predicts the punching shear capacity of flat 
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slab-column connection could be developed. Although not sufficiently accurate, 

the available models in the literature such as Shehata (1990), Kinnunen and 

Nylander (1961), Theodorakopoulas and Swamy (2002) and Broms (1990) are 

too complex to implement in design codes without further simplifications. 

Therefore, an alternative approach was sought, and the development of a simple 

shear model using Artificial Neural Network (ANN) that predicts punching 

shear capacity with improved accuracy is crucial.  

 

1.4 Layout of the Thesis: 

This thesis consists of 8 chapters. Chapter 1 is an introduction, providing definitions, 

scope of investigations, its objectives and its layout. 

Chapter 2 comprises of a comprehensive focused literature review. It then goes on to 

review estabilished and more recent shear reinforcement types such as stirrups and bent-

up bars, shear studs and thin plate stirrups. The slab-column connections subjected to 

gravity loading are discussed in detail and the available mechanical models of slab-

column connections are reported and discussed. Standards such as ACI 318-08 (2008), 

Eurocode 2-2004, CEB-FIP model code 1990 and BS 8118-1997 are studied in detail 

and the precision of these standards in calculating the punching shear capacity of slab-

column connections is discussed. Finite element analysis (FEA) of the behaviour of flat 

slab-column connections is reviewed and different element types are discussed. 

Chapter 3 presents the database, constructed by the author, based on 549 experiments 

from the literature on punching shear. The distribution of the parameters on the database 

of punching shear is also studied, and the database has been used to evaluate the 

existing punching shear design code provisions. A parametric study using the 

aforementioned database is carried out. 

Chapter 4 presents the results of two series of experiments- pullout and punching shear 

experiments using Lenton Steel Fortress (LSF) stirrups. This looks at Material 

characteristics, specimen classification and instrumentation, test set-up and 

configuration. Experimental results such as load deformation, energy absorption 

capacity, test observations, strain measurements in the shear reinforcement are also 

discussed. 
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Chapter 5 focuses on the numerical modelling of flat slab-column connections and 

begins with a review of the constitutive material models available for finite element 

analyses of concrete along with a description of the uniaxial and biaxial behaviour of 

concrete in order to assess how this is implemented in models based on concrete 

damage plasticity theory. The nonlinear Newton-Raphson technique is discussed along 

with the resultant issues of numerical instability and their solutions. Slab modelling 

techniques and element types are then reported and discussed. Sensitivity analysis to 

find appropriate model parameters is carried out and described. Finally, the experiments 

on slab-column connections reported in Chapter 4 and experiments carried out by Li 

(1997) are analysed using Finite Element modelling. The numerical results are 

compared with the experimental results and observations on the load deformation, 

stress-strain behaviour and crack pattern are reported. 

Chapter 6 presents series of parametric studies conducted on the validated models 

which were previously discussed in Chapter 5. This allows an assessment on the 

sensitivity of certain parameters such as column dimensions, slab depths, top and 

bottom reinforcement ratios, shear reinforcement areas, etc. to be carried out with the 

intention of gaining an understanding of how slab-column connections behave under 

gravity load.  

Chapter 7 describes the development of the Bayesian Neural Network model to predict 

the punching shear. This chapter begins with an introduction to the Artificial Neural 

Network and the Integration of a Bayesian Framework. The experimental database 

reported in Chapter 3 is employed in order to develop a Bayesian Neural Network (NN) 

model that predicts punching shear capacity of flat slab-column connections.  

Chapter 8 sets out the conclusions of the thesis and provides suggestions for areas of 

future research. 
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                                        Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction 

The problem of punching shear of reinforced concrete slabs subjected to concentrated 

loads and lateral forces has received attention over several decades (fib Bulletin No. 12, 

2001). Failure of flat-plate structures initiated by punching failure, including those of 

the Sampoong Department Store occurred in 1995 or Bullocks department in 1994 

indicated that two way shear strength of slab-column connections and the mechanics of 

punching shear failure have not been well understood (see Figure 2.1).  

 

  

Sampoong departmental collapse, South Korea 

(after Gardner et al., 2002). 

 

Punching shear failures in Bullock's 

Department- 1994 Northridge earthquake (after 

Mitchell et al., 1995). 

Figure 2.1: Punching shear failures 

 

The purpose of this chapter is to briefly summarize the major contributions of earlier 

researchers to the understanding of the problem of punching failure. Therefore punching 

shear problems and solutions are reviewed first. The mechanical models available to 

predict the punching shear strength of the slab-column connections under gravity 

loading are discussed. Code Provisions such as ACI 318-08 (2008), EC 2 (2004), CEB-
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FIP Model Code 1990 (1991) and BS 8110 (1997) are reported in detail and are used to 

assess the precision in calculating the punching shear strength of the slab-column 

connections. Finite Element Modelling is utilised later in this document to aid the 

understanding of the behaviour of slab-column connections and thus element types, 

constitutive material models and example of FE analysis of the slabs are reported in 

detail. 

 

2.2 Problems and solutions to Punching Shear 

2.2.1 Punching shear failure 

Punching shear failure is a local brittle failure of the slab-column connection. Following 

failure, the column together with a portion of the slab is pushed through the slab. 

Flexural cracks are observed as soon as the cracking moment per unit width is reached 

around the loading area. An inclined shear crack develops at about 60% to 70% of the 

ultimate load (Menetrey, 1996). The inclined crack is in the form of a truncated cone or 

pyramid for circular and rectangular columns respectively.  

 

2.2.2 Solutions to the punching problems 

Punching shear failure is brittle and catastrophic. Preventing such a brittle failure can be 

achieved in several ways: 

1. Increasing the area of concrete resisting shear stresses. This can be achieved by 

increasing the slab thickness around the columns by providing a drop panel or an 

inverted cone (capital) as shown in Figure 2.2.  

2. Using high strength concrete. Using higher compressive strength concrete leads to 

higher tensile strength, which is of great import in shear resistance.  

3. Increasing shear strength by placing shear reinforcement around the column. 
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Column Column CapitalDrop panel

Slab

Column

Slab

(a) (b)  

Figure 2.2: Type of shear reinforcement (a) Drop panels (b) Column Capital. 

 

The above methods can effectively increase the punching shear strength. Megally 

(1998) conducted experiments on slabs strengthened with shear capitals, drop panels 

and shear studs. The author concluded that all methods increased the punching shear 

strength of the slabs, but only properly anchored shear reinforcement created ductile 

connections. The use of higher compressive strength concrete in slabs increased the 

punching shear strength but not the ductility of the connections (Marzouk and Hussein 

(1991)). The importance of the ductility of the slab-column connections is evident when 

deformations beyond the yielding of flexural reinforcement are needed. If the 

connection continues to deform beyond the steel yielding (e.g. in an earthquake), the 

concrete in the connection continues to crack, which results in reduction in shear 

strength. Ultimately this can result in the punching failure at large inelastic 

deformations. The use of shear reinforcement in slab-column connections can increase 

strength and ductility by changing the mode of failure from punching to flexure and is 

the preferred solution in seismic regions. 

 

2.2.2.1 Shear reinforcement 

The aim of all types of shear reinforcement is to increase shear capacity and add 

ductility to the post-peak load behaviour of slab-column connections (Polak et al., 

2005). Strength and ductility as well as ability and ease of placing the shear 

reinforcement in the crowded slab-column zone and economic consideration play 
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critical roles in choosing the reinforcement type (Polak et al., 2005).  Shear 

reinforcements can be classified into the following categories: 

1. reinforcing bars formed into stirrups and bent bars 

2. headed reinforcement, Shear studs 

3. thin plate stirrups called Lenton Steel Fortress (LSF) reinforcement 

4. e.g. Structural Steel Sections called Shearheads, UFO (cone shaped steel device) 

 

Stirrups and Bent-up Bars 

The use of stirrups in the form of bent-up bars, single or multiple leg or closed stirrups 

is permitted in the design standards as shown in Figure 2.3; however, conventional 

stirrups have several practical problems. The use of stirrups as shear reinforcement was 

investigated in the past by Hawkins (1974), Chana and Desai (1992), Beutel and Hegger 

(2002), Oliveira et al., (2000) and Broms (2000). Bent-up shear reinforcement was first 

investigated by Graf in 1938 (Cited in Xin Li 1997 PhD thesis). Bent-up reinforcements 

are not favoured in earthquake regions since they show very little increase in ductility 

(Megali, 1998). The use of bent-up reinforcement complicates both fabrication and 

construction and is not commonly used in practice.   

Closed hoop stirrup Single leg stirrup

Bent-bar

 

Figure 2.3: Stirrups and Bent-up shear reinforcement. 
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The failure mode of a stirrup is controlled by concrete crushing under the bend therefore 

stirrup bars typically develop about 70% of yield strength at failure. It has also been 

reported that significant slip occurs at the corners of the stirrups which causes the 

vertical legs of the shear reinforcement to be less effective. Moreover, the corners of the 

stirrups can significantly reduce the effective height of the shear reinforcement leg.  

 

Shear studs 

Stud shear reinforcement was first tested in Calgary by Mokhtar et al., (1985). They 

proposed the use of preassembled units of shear stud rails (SSR) as shear reinforcement. 

Shear Stud Rail (SSR) reinforcement is shown in Figure 2.4. SSR relies on mechanical 

anchorage of the heads at both ends of the stem, or a mechanical weld at one end and a 

head at the other end. The stem is normally welded to a steel strip. The steel strip keeps 

the SSR in place during casting. The development of the full yield strength of the 

reinforcement bar was found to be achieved when the head of the stirrup is about ten 

times the stem cross-sectional area. The use of Stud shear reinforcement has been 

investigated by many researchers; Megally and Ghali (1994), Megally and Ghali (2000), 

Gomez and Regan (1999), Regan (2000), Robertson et al., (2002), Kang and Wallace 

(2005).    

  

Figure 2.4: Shear Stud Rail (SSR) reinforcement. 

 

Though the stud shear reinforcement is the preferred option of structural engineers, the 

high cost of stud shear reinforcement and potential interference problems with slab 

reinforcement necessitates the evaluation of potentially more cost-effective and less 
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intrusive reinforcement solutions. One such solution will be represented by thin plate 

stirrups in the following. 

 

Thin Plate Stirrups 

A new thin plate stirrup called Shear Band reinforcement was conceived at the 

University of Sheffield for the first time (Li, 1997). This reinforcement is now in the 

market and called Lenton Steel Fortress (LSF). It is made up of a thin steel strip of high 

strength and high ductility as shown in Figure 2.5. There are several advantages of 

using LSF shear reinforcement such as increase in the effective depth of flexural 

reinforcement due to small thickness of LSF; easy handling due to the light weight of 

reinforcement (only man-handling); easy placement on top of the flexural reinforcement 

and good anchorage. 

 

Figure 2.5: Thin plate stirrups (Lenton Steel Fortress). 

 

Li (1997) assessed the effectiveness of the shear band reinforcement and conducted 

eight experiments on interior slab-column connections. One experiment was carried out 

without shear reinforcement as a control specimen and the other 7 specimens were 

prepared using LSF shear reinforcement. The result of this study indicated strongly that 

the brittle punching failure could be prevented by using LSF shear reinforcement and 

the ductility of the connection could also be increased. Soon after, Ioannou (2001) 

conducted another 5 experiments on slabs with different pattern of holes in the slab, to 

assess the effectiveness of LSF shear reinforcement. These experiments confirmed the 

increase in both punching shear capacity and deformation. 

Shearhead reinforcement (Figure 2.6 (a)) was one of the first proposed types of shear 

reinforcement for concrete plates. Though the use of shearhead reinforcement increases 
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both strength and ductility of the connection, there are difficulties in placing the 

shearhead amoung the flexural reinforcement especially for thin slabs. Alander (2000) 

proposed new reinforcing system called UFO punching preventer. This consists of a 

cone-shaped steel device that is placed in the slab around the column, crossing the shear 

crack as shown in Figure 2.6.  

(a) (b) 

Figure 2.6: Types of shear reinforcement, a) Shearhead (I section) reinforcement.          

b) The UFO punching preventer (Alander, 2000). 

 

2.3 Slab-Column Connections subjected to gravity loading only  

A large amount of experimental and analytical research has been carried out since the 

1950s to understand the punching shear resistance of slab-column connections. Two 

main state-of-the-art documents, “Punching Shear in Reinforced Concrete” (Shear 

Reinforcement for Slabs; ACI-ASCE-421 1999) and “Punching of Structural Concrete 

Slabs” (CEB-FIP 2001) have been published on shear in concrete slabs in the last three 

decades. Repetition of the discussions in these documents is not the intention of this 

section; important points in these reports are highlighted, however, as they relate to this 

study.  

 

2.3.1 Mechanical Models 

A number of different types of models for punching are described below. They are 

presented in chronological order and are key models that either influenced code 

provisions or address new aspects of behavior of flat plates.  
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2.3.1.1 Moe (1961)  

Moe (1961) carried out 41 experiments that were subjected to pure shear loading on 

interior slab-column connections.  The experimental results led Moe to propose an 

expression that could predict the load carrying capacity of slab-column connections as 

given in Equation 2.1: 
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where flexV  is the flexural capacity based on yield line analysis, b  is the perimeter of the 

loading area, c  is the side length of the square column, d  is the effective depth of the 

slab and '

cf  is the concrete compressive strength.  

It should be noted that Equation 2.1 involves interaction between the flexural and shear 

strength of the slab. The main conclusions from Moe’s work were: 

1. Punching shear failure is related to tensile failure of concrete and 
'

cf  was used to 

predict the punching shear capacity for the first time. 

2. Shear strength of concrete slabs acting in two-way action is higher than that of one-

way members. 

3. The interaction between flexural and shear strength of two-way slabs can be 

incorporated in the shear strength expressions. 

Later, in 1962, Equation 2.1 was further simplified for design purposes by ACI 

Committee 326. This was achieved by setting the ratio of shear to flexural capacity 

equal to one in order to ensure flexural distress prior to the shear failure. The following 

expression (given in Equation 2.2) was then obtained (cited in the CEB FIP Bulletin 12, 

2001): 
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It is worth noting that Equation 2.2 becomes negative in the case of large values of dc /

. In order to overcome this problem, Equation 2.2 was then modified by ACI Committee 



 41 

326 by using the lower bound of test results from Moe and others. This led to Equation 

2.3:  
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They also proposed a critical section located 2/d  away from the column face at which 

to check for shear for design purposes.  

 

2.3.1.2 Kinnunen and Nylander (1960) 

Based on 61 tests on circular slabs supported on circular columns, Kinnunen and 

Nylander (1960) proposed the first mechanical model to estimate the punching shear 

capacity of slabs in the vicinity of columns (cited by CEB-FIP Model 1990 (1991)). The 

main variables in the tests were the type and amount of reinforcement and the column 

diameter. The most important observations from these tests were that the slab portion 

outside the shear crack acted as a rigid body rotating around the root of the shear crack 

as shown in Figure 2.7.  

 

Figure 2.7: Mechanical model of Kinnunen and Nylander (adopted from fib bulletin No. 

12, 2001). 
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The model assumed that each segmental slab is supported on the conical shell between 

the column and the root of the shear crack. In this model, failure is assumed to occur 

when the tangential compressive deformation in the concrete on the bottom surface of 

the slab under the root of the shear crack reached a critical value. This critical value was 

found to be a function of the ratio of column size to the slab depth and was determined 

from the test data. The load carrying capacity was computed using an iterative 

procedure by assuming an initial value of compression zone, y, and considering 

equations of equilibrium in the radial and tangential directions as well as failure criteria. 

The disadvantage of the model is its complexity, since the depth of compression zone is 

calculated by iteration. The failure criterion, based simply on strain, is controversial, 

other researchers (Shehata and Regan, 1989; Broms, 1990) proposed modifications 

which are described below. 

 

2.3.1.3 Broms (1990)   

The failure criterion in the model proposed by Kinnunen and Nylander (1961) was 

modified by Broms (1990). The modification involved the use of a tangential strain 

limit, taken as the strain inducing microcracking in the compression zone, and a limiting 

stress in a conical shell under biaxial compressive stress, as shown in Figure 2.8. 

 

Figure 2.8: Broms model: (a) High tangential compression strain failure mechanism (b) 

High radial compression stress failure mechanism (adapted from Broms, 1990). 
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Equation 2.4 was derived by Broms (1990) on the basis of experimental tests performed 

on cylinders 150mm300mm loaded in uniaxial compression. This expresses tangential 

concrete strain as a function of concrete strength and depth of compression zone:    
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Where 150 is the diameter of the cylinder specimens (mm), pu  is the height of the 

equivalent rectangular stress block (mm), '

cf  is the concrete compressive strength 

(MPa).  

The punching load corresponding to the limiting tangential strain, Vε, was computed 

based on linear elastic bending moments of a circular slab loaded around the periphery 

and on the bilinear section properties of concrete and steel. In order to account for 

possible yielding of the reinforcement, calculations were carried out as a function of 

reinforcement ratio. 

When the compression stress in a conical shell (of a constant thickness and inclination 

of 15 ) reached the critical value of '

c1.1 f  at the root of the inclined crack, punching 

failure was assumed to occur in the radial direction (Figure 2.8 b). Equation 2.5 defines 

the punching shear load, Vσ, which is calculated from the equilibrium of forces in the 

vertical direction incorporating a size effect factor 3/1)5.0150( y : 
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where B  is the diameter of the circular column and y is the depth of the radial 

compression zone.  

The governing punching load is taken as the smallest of the capacities Vε and Vσ. Based 

on the model proposed by Broms (1990), it was assumed that punching failure occurred 

at the root of the inclined crack in a compression-shear failure mode. Broms recognized 

the importance of size effect and showed that the size effect is a function of concrete 

compressive strength. This was further extended for rectangular slab-column 

connections by using an equivalent circular column approach. 
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2.3.1.4 Modified model by Shehata 

Shehata and Regan (1989) proposed a mechanical model on punching capacity of slab-

column connections. This model was based on the observations from experiments 

carried out on slab-column connections conducted by the authors as well as numerical 

analysis. Based on the observed crack pattern of test specimens, Shehata and Regan 

(1989) divided the slab into rigid radial segments that rotate around a centre of rotation 

(CR) located at the column face and at the level of the neutral axis. This is shown in 

Figure 2.9. This model was too complex to be adopted by current codes and therefore, 

Shehata (1990) proposed a simpler model. Only the simplified model Shehata (1990) is 

described in this section as this can be easily used in practice. Figure 2.9 shows a radial 

segment of the slab of the sectorial angle φΔ  bounded by two radial crack planes and an 

inclined crack surface.  
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Figure 2.9: Model Used for Punching Analysis: (a) Stress Concentration Region; (b) 

Forces Acting on Segment; (c) Forces Acting on Segment in Radial Plane (after 

Shehata, 1990). 

The forces involved in the analysis of each radial segment of the slabs are:  

 The external load ( )πφP 2/Δ , at a distance prr  ; 

 Resultant tangential forces in the steel ).( st F due to slab deformation;  

 Resultant tangential forces in the concrete ).( ct F due to slab deformation; 

 The inclined bearing force )( CRdF  in the concrete at the face of column; 

 Dowel forces, ,dD on the steel cutting across the inclined crack. The dowel forces 

are ignored since yielding of reinforcement is assumed; 

 Radial forces in the steel crossing the inclined crack, .srdF  

Shehata (1990) classified three critical states at which the frontal part of the radial 

segment fails to sustain the force at the column face: 

1. If the angle α of the compressive force reaches 20°, the associated principle tensile 

stresses would exceed the concrete tensile strain and cause splitting of the concrete. 

2. If the average radial strain on the compressed face reaches a value of 0.0035 in the 

plastic length starting from the column face. 

3. If the tangential strain of the compressed face reaches 0.0035 at a distance x from 

the column face, there is a tangential crushing of the concrete. 

In order to define the ultimate capacity of the connection, four equilibrium conditions in 

a radial plane are considered. 
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Consequently, the punching capacity of the connection can be calculated from Equation 

2.6: 

                        
10tan2 cc0 fxnrP          [kN]                              (2.6) 

Experiments carried out by Shehata and Regan (1989) (cited in Shehata, 1990) 

considered the size effect on punching shear. Shehata proposed the size effect as 
3 500

d

where d is in mm. Therefore, the estimated punching load may be calculated as shown 

in Equation 2.7: 
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Where 0r  is the diameter of column in mm, cn  is stress concentration factor that 

expresses the concrete strength under a multiaxial state of stress that can be calculated 

by Equation 2.8. 

25.1≥
2

4.1
0

c 









r

d
n                                                                                      (2.8) 

where fc is the cylinder strength of concrete (MPa), x is the height of compression zone 

at flexure in the tangential direction when punching failure occurs. 

 

2.3.1.5  Menetrey (1996) 

Menetrey (1996) proposed an analytical model to compute the punching shear strength 

of reinforced concrete slab-column connections. The model was derived from 

experimental results and from numerical simulations using finite element analysis 

(FEA). The punching capacity was calculated by integrating the tensile resistance of 

concrete and reinforcements in the vertical direction along the punching crack (Figure 

2.10). 

The punching load of a slab is calculated using Equation 2.9: 

wsdowctpun FFFF                  [N]                                          (2.9) 
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Where ctF is the vertical component of the concrete tensile force (N), dowF is the dowel 

contribution of the flexural reinforcement (N), swF is the vertical component of the force 

in the studs, stirrups or bent up bars which are well anchored (N). 

 

 

 

Figure 2.10: Representation of the punching shear capacity of a general reinforced slab 

(after Menetrey, 2002). 

 

Based on nonlinear finite element simulations, Menetrey derived Equation 2.10 to 

compute ctF which is a function of the reinforcement ratio ( ρ ), concrete tensile strength 

( ctf ), size effect ( η and μ ) and radii of punching crack ( 1r and 2r ) (Equation 2.10): 

   3/2

ct21ct fsrrF                         [kN]                                         (2.10) 

Menetrey then computed the shear force which can be transferred by flexural 

reinforcing bars crossing the punching crack by adopting the approach proposed by the 

CEB-FIP model code 1990 (1991). The dowel force, ,dowF is then calculated by 

Equation 2.11 for the summation of all bars crossing the crack.
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sdow ∑ ffF                  [kN]                            (2.11) 
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where s  is the diameter of the corresponding bars crossing the punching crack, tf  is 

the steel yield strength, cf  is the concrete compressive strength.  

A parabolic interaction is assumed between the axial force and the dowel force in the 

reinforce bar. This parabolic interaction is expressed with the term (
2-1 ζ ) where 

t

s

f


   and tf  is the axial tensile stress in the reinforcing bar. 

The contribution of shear reinforcement was computed by taking the vertical component 

of the yield force in the stirrups.  

 

2.3.1.6  Theodorakopoulos and Swamy (2002) 

In 2002, a simple engineering model was proposed by Theodorakopoulos and Swamy to 

predict the punching shear capacity of slab-column connections without shear 

reinforcement. This was done by analysing the equilibrium conditions of the free-body 

diagram model. This model considered the free-body diagram around the slab-column 

connection area at the stage when an inclined crack had formed and its propagation was 

prevented by the compression zone. The punching shear failure surface considered by 

Theodorakopoulos and Swamy, (2002) is shown in Figure 2.11. According to this study, 

the failure is assumed to take place when splitting failure occurs along lines AA’ and 

BB’ in the compression zone.  
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Figure 2.11: Punching shear model (Theodorakopouos and Swamy 2002). 
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 The total shear resistance of a slab-column connection without shear reinforcement was 

computed as follows (Equation 2.12):  

dacu VVVV                     [kN]                                                  (2.12)                                                                              

where uV  is the punching shear capacity, cV  is vertical component of the concrete 

resistance provided in the compression zone, aV  and dV are the resistances provided by 

the aggregate interlock and dowel action respectively.  

The aggregate interlock force is activated only after the formation of the inclined crack. 

However, because of the large separation of the crack faces ( 0a V ) the model neglects 

this effect.  

Where dowel action was expected to occur, Theodorakopouos and Swamy (2002) 

assumed that the dowel action was proportional to the length of the crack location. The 

British Standard’s control perimeter ( d5.1 from column face) was used to combine the 

terms cV  and dV  and this is given in Equation 2.13: 

ctpc cot fXbV                                [N]                   (2.13) 

where pb  is the critical perimeter located d5.1 away from the column face, X is the 

depth of the compression zone, θ  is the assumed inclined crack angle ( 30 ), and ctf  is 

the splitting tensile strength taken as 0.27fc
’2/3

 (MPa). 

 

2.3.1.7 Discussions of mechanical models 

There is no accepted theoretical model for the treatment of punching shear strength of 

slabs with and without shear reinforcement. However, theoretical models are 

determined considering: the equilibrium; assumed constitutive laws, material strength 

and failure criteria; and compatibility.  

Normally, equilibrium and the relation to the loads and sections are considered to be in 

the linear elastic region of the material behaviour only but the theoretical models 

considered these criteria to punching shear failure problem.  

Most models contain empirical aspects or parameters such as assuming the geometry of 

failure surface or using simplified constitutive material laws or simplified failure 



 50 

criteria.  However, it should be accepted that mechanical models need further efford for 

the analysis and for the definition of the different parameters which are involved. 

Although Kinnunen and Nylander model is the first mechanical model which 

determines the shear capacity of slab in the vicinity of column and visualized the flow 

of force, due to its complication in calculation and simple failure criterion it is not used 

in practice. Nevertheless Kinnunen and Nylander model was modified by others (e.g. 

Shehata and Regan, 1989; Broms, 1990). 

 

2.3.2 Codes of Practice 

The approaches adopted to calculate the punching shear capacity of slab-column 

connections by three of the most widely used standards are discussed in the following. 

 

2.3.2.1 ACI 318-08 (2008) 

The ACI code requires that the factored shear force, uV , at a critical section, should be 

greater than the nominal shear strength, 
nV . The nominal shear strength is the sum of 

shear strength provided by the concrete, cV , and the shear strength provided by the shear 

reinforcement, sV . The equation for slabs without shear reinforcement is shown in 

Equation 2.14: 

cu ≤ VV                                                                                                         (2.14) 

where .85.0Φ= The nominal shear strength provided by the concrete for a slab without 

shear reinforcement, cV , is given by the smallest of the values obtained from Equations 

2.15, 2.16 and 2.17: 
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Where Vc is the punching shear strength, fc
’ 
is the specified concrete cylinder strength 

(MPa), αs is 40 for interior columns, βc is the ratio of longer to shorter dimension of the 

loaded area, bo is the shear perimeter and is equal to )( dcπ +  for interior circular 

columns, and is equal to Ʃc+4d for interior rectangular columns. (Figure 2.12). 

 

 

Figure 2.12: Critical shear section for slabs without shear reinforcement (ACI 318-08, 

1997; Eurocode 2, 2004; CEB-FIP Model Code, 1990; BS 8110, 1997). 

 

The use of shear reinforcement in the form of bars or wires or single- or multiple leg 

stirrups is permitted for slabs with an effective depth, d, greater than or equal to 152.4 

mm (6 inch). The punching shear capacity of slabs reinforced in shear with stirrups is 

calculated in accordance to Equation 2.18: 

nu .≤ VV                       [N]                                        

(2.18)  

            dbfVVV ocscn '
2

1
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[N]                      (2.19)  

where ,85.0Φ =  is the strength reduction factor for shear. 
cV  in Equation 2.19 shall not 

be taken greater than dbf oc '
6

1
 and the contribution provided by shear reinforcement is 

calculated by: 
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where vA
 
is the area of the shear reinforcement within a distance s  in mm

2
, s  is the 

spacing of the shear reinforcement in a direction parallel to longitudinal reinforcement 

in mm and d is the effective depth in mm. 

The use of Stud rail shear reinforcement was introduced in ACI 318 in 2008. Equation 

2.18 is also used to calculate the punching shear capacity of slabs reinforced with stud 

rails. However, the nominal shear strength, nV , is limited to dbf o

'

c67.0 and cV  should 

not be taken greater than dbf ..25.0 o

'

c . 

 

2.3.2.2 Eurocode 2-2004 & CEB-FIP Model code 1990: 

The Eurocode 2-2004 provisions are similar to those of CEB-FIP Model Code 1990 

with a control perimeter d2  from the loaded area and this perimeter should be 

constructed so as to minimise its length (see Figure 2.12). The nominal punching shear 

design strength, ,cRd,V of an interior slab-column connection can be calculated as 

dufV  1

3/1

ckcRd, )100(18.0         [N]                 (2.21) 

where, ckf is the characteristic concrete cylinder strength (MPa);  is the flexural 

reinforcement ratio, yx   ;    is the size effect,  = )/2001( d+ , d  in mm. 

Eurocode 2-2004 limits the size effect to 2 and reinforcement ratio, , to 0.02. Where 

shear reinforcement is required the nominal punching shear design strength should be 

calculated in accordance with Equation (2.22): 
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where swA  is the area of one perimeter of shear reinforcement around the column 

(mm
2
), rs   is the radial spacing of perimeters of shear reinforcement (mm), efywd,f  is the 

effective design strength of the punching shear reinforcement, and is given in Equation 

2.23: 

ywdefywd, ≤25.0250 fdf          [MPa]                         (2.23) 
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where d  is the mean of the effective depths in the orthogonal directions (mm) and α  is 

the angle between the shear reinforcement and the plane of the slab. 

 

2.3.2.3 BS 8110-1997 

The British Standard, BS 8110-1997, uses a rectangular control perimeter d5.1 from the 

loaded area for both circular and rectangular loaded areas (Figure 2.12). 

413/1

cu

31

c )/400()25/()100(79.0 dfv                                         (2.24) 

where cuf
 
is characteristic concrete cube strength (fcu≤40 MPa), )3(4 dcu +=  is control 

perimeter for circular and rectangular loaded areas in mm, the size effect 

1≥)/400( 25.0d , 03.02/)( yx    and flexural reinforcement ratio is calculated 

for the width equal to dc 3+ . 

The maximum design shear stress, c , should not exceed cu8.0 f or 5N/mm
2
. Shear 

reinforcement is required when V is greater than cV  but c2V . Shear reinforcement is 

required according to Equations 2.25 and 2.26: 
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where yvf is the characteristic strength of the shear reinforcement, svA is the area of the 

shear reinforcement in mm
2
 and α  is the angle between the shear reinforcement and the 

plane of the slab. 

The shear reinforcement should be distributed evenly around the zone on at least two 

perimeters within d5.1 from the column. Shear reinforcement can only be used when 

the thickness of the slab is equal to 200 mm or more. 

 

2.3.2.4 Discussion of Codes: 

In ACI 318-08 (2008), Eurocode 2 (2004), CEB-FIP model code 1990 and BS 8110 

(1997), punching shear capacity calculations are based on a critical perimeter, which is 
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located between 0.5 and 2d from the face of the column. BS 8110, Eurocode2-2004 and 

CEB-FIP Model code consider the effect of flexural reinforcement and size effect on the 

punching capacity of the connection. However, the effect of flexural reinforcement and 

size effect are slightly different in BS 8110 and Eurocode 2-2004. Figure 2.13 compares 

the shape of different size effect expressions from three codes.  In order to compare the 

size effect parameter in codes, the author has normalised the size effect factor to a value 

of 1 when the average effective depth is 200 mm. The size effect factor in BS 8110 does 

not decrease beyond an average effective depth of 400 mm. ACI considers only the 

concrete strength.   

 

Figure 2.13: Size effect factors normalized to the average effective depth of 200 mm. 

 

The amount of shear reinforcement varies widely between codes.  The stress in shear 

reinforcement is limited only in Eurocode 2.  BS 8110 (1997) and Eurocode 2 (2004) 

specify that shear reinforcement should be distributed evenly around at least two 

perimeters, while the ACI adopts cross line shear reinforcement. ACI 318-08 requires 

that the stress on the critical section at d/2 from the outermost shear reinforcement be 

less than the one way shear resistance of concrete ( dbf oc '17.0 ). This gives a higher 

shear reinforced zone compared to other codes.   

To demonstrate the difference in design of shear reinforcement according to different 

building standards, an interior slab-column connection was designed by the author 

according to ACI 318-08, BS 8110 (1997), EC2 (2004) and CEB-FIP MC90 (1991) 

building codes by utilizing stud rail shear reinforcement. The connection is transferring 
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V only with no moment as shown in Figure 2.14 (a). Design data are: dead load is 8.5 

kPa; live load is 4.5 kPa; flat plate span length in the two orthogonal directions is 7300 

mm; square column dimension is 400 mm; slab thickness is 230 mm; effective depth, d 

is 194 mm; flexural reinforcement ratio is 0.8 %; concrete cylinder strength is 30 MPa; 

yield strength of flexural reinforcement is 400 MPa and yield strength of stud rail shear 

reinforcement is 330 MPa. Figures 2.14 (b) to 2.14 (e) show the arrangement of stud rail 

shear reinforcement for the design connection required by the above mentioned codes.  
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Figure 2.14: Design example. 

As expected, the extension of shear reinforced zone is relatively small when the design 

is in accordance with CEB-FIP Model Code, Eurocode 2-2004 and BS 8110-1997.   

 

2.3.3 Finite Element Analysis 

Finite element simulations are increasingly becoming an important tool for the analysis 

and behaviour prediction of reinforced concrete structures. However, the work on 

numerical modelling punching shear in RC slab-column connections is limited. This 

section will deal with element types and constitutive material models. 

 

2.3.3.1 Element Types 
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Studies utilising axisymmetric elements: Menetrey (1994), 3D continuum elements 

(bricks): Marzouk and Jiang (1996); Staller (2000); Beutel et al., (2000); Bhatt and Lim 

(2000) and shell elements: Marzouk and Chen (1993); Li (1997); Polak (1998a) and 

Ioannou (2001) are reported in the literature. 

 

Axisymmetric Elements 

Axisymmetric elements can only be used to simulate circular slabs with rotationally 

symmetric boundary conditions. However, slabs with orthogonal reinforcement which 

are generally used in practice can not be modelled easily using 2D axisymmetric 

elements. 

 

Shell Elements 

Due to the relatively small number of degrees of freedom per node of shell elements, the 

majority of researchers (e.g. Marzouk and Chen (1993), Li (1997), Polak (1998) and 

Ioannou (2001)) simulate flat slabs using layered shell elements. Shell elements are 

composed of a series of through-thickness layers, each assumed to be in the state of 

plane stress (Cervera et al., 1987). Since shear stresses are accounted elastically in shell 

elements and cracks are only calculated from plane stresses, simple shell elements, 

arranged in one plane, are not able to model shear failures. For this reason, Polak (1998) 

developed a shell element which is based on layered, degenerate shell elements 

incorporating a formulation for transverse shear. Marzouk and Chen (1994), Li (1997), 

Ioannou (2001) and Tian (2007) used shell elements from ABAQUS (ABAQUS User's 

Manual 2008), a general purpose FE software.  Marzouk and Chen (1993) simulated 

high-strength flat slabs and their model did not show the ability to predict punching 

shear failure. Li (1997) reported convergence problems in his simulations of slabs with 

orthogonal reinforcement. Ioannou (2001) simulated slabs with and without holes and 

confirmed that the FE analysis with ABAQUS gives fairly accurate load-deflection 

curves and stiffness in both the pre and post cracking stages up to 75% of the ultimate 

load of solid slab (PSSG, Li (1997)). From the work available in the literature and the 

nature of the shell elements, it can be concluded that shell elements can be used to 

predict the overall deformational behaviour of flat slabs, but can not predict the 

punching shear failure.  
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Solid Elements  

The inadequacies of shell elements reveal the importance of the use of 3-D solid 

elements (brick elements) for the simulation of punching shear in solid slabs. However, 

Polak (1998) argues that brick elements are not suitable for simulating structures as a 

whole since they introduce too many degrees of freedom and use too much computer 

space and time. There is limited work on simulating RC slabs with 3-D elements as 

reported in the state-of-the-art publication by CEB-FIP on "International Workshop on 

Punching Shear Capacity of RC Slabs" (Staller (2000), Beutel et al., (2000), Ožbolt et 

al., (2000)). The key to the successful use of solid elements for flat slabs is the existence 

of an appropriate constitutive material model that can deal well with shear. 

 

2.3.3.2 Constitutive material models 

To achieve an accurate prediction of the response of reinforced concrete structures, a 

reasonable material model is of importance that adequately reproduces the physical 

characteristics of the concrete response and produces reasonably good results (Marzouk 

and Chen, 1993). Although many constitutive material models have been developed 

over the last three decades (Cervenka et al., 2008), the analyses of reinforced concrete 

flat slabs has not improved much due to the lack of appropriate description of the 

concrete material properties (Gonzalez-Vidosa et al., 1987). The existing material 

models are classified in two categories: (1) micro models and (2) Macro models, such as 

plasticity, plasticity damage, continuum damage mechanics and microplane model 

(Ožbolt et al., 2000). In micro models the structure of the material is modelled at the 

micro level and the interaction between the micro components is described by means of 

relatively simple laws.  

The fundamental disadvantages of the micro models is the enormous numerical effort 

required for analysis and being not readily available in FE programs such as ABAQUS. 

Plasticity and Plasticity damage models are available constitutive laws for concrete in 

the more advanced FE softwares (e.g. ABAQUS). A disadvantage of the plasticity-

based approach compared to plasticity damage approach is that the stiffness degradation 

due to progressive damage is not modelled (ABAQUS Manual, 2008). However, the 

degradation of the elastic stiffness does not seem to cause major errors in simulating of 

slabs under monotonic loading (fib bulletin no. 12, 2001). 
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Damage zones (crack) can be modelled using the smeared crack approach or the 

discrete crack approach. In the discrete crack approach, the cracks are represented by 

fixed geometrical patterns. However, this method proved cumbersome and often 

required redefinition of mesh during the analysis (fib bulletin no. 12, 2001). In the 

smeared crack approach, the cracks are smeared over a continuum concrete element and 

are generated in a non-predefined direction, without the need of mesh redefinition. 

However, due to the strain softening nature of concrete, the results of smeared analysis 

may depend significantly of the mesh size (fib bulletin no.12, 2001).  

In the case of highly non-linear systems which are sensitive to convergence problems, 

numerical solving algorithms should be used to establish a proper material model 

(ABAQUS User’s Manual, 2008). 

To summarize, it was shown that to have an accurate simulation in FE analysis, there is 

demand on properly (a) choosing the appropriate element to simulate the structure, (b) 

appropriate encoding of the material properties of the structure in the material model 

and (c) constructing a rigorous numerical algorithm for the iterative solution of the non-

linear problem. In the following, a review on finite element applications on slabs 

without and with shear reinforcement is given.  

 

2.3.3.3 Examples of FE analysis of slabs 

Ožbolt, Vocke and Eligehausen (2000) 

Ožbolt et al., (2000) used one experiment from Beutel et al., 2000 to make comparison 

with their FE analysis. They used non-linear finite element program, MASA, which was 

developed by Ozbolt, (1998) (cited by Ožbolt et al., 2000). The program was based on 

the microplane material model and a smeared crack approach. The microplane model 

describes the material behaviour on planes of various orientations within the material, in 

terms of uniaxial stress-strain relations in both the normal and shear directions (Ožbolt 

et al., 2000). To assure mesh independency of the results the constitutive law was 

related to the element size.  

The slab was modelled with 8-noded solid elements and the steel reinforcement with 

discrete 2-noded bar elements connected to the concrete elements at the nodes. The steel 

was represented by uniaxial ideally elasto-plastic stress-strain relationship. The authors 

claimed that they obtained a numerical representation of the punching cone as shown in 
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Figure 2.15 (a) with a contour plot of the maximal principal strains. However, with 

regards to the load deformation of the slab along the length, shown in Figure 2.15(b), it 

can be concluded that the model is not representative of the kinematic status of shear 

deformations when the punching shear is happening. Figure 2.15 (b) indicates that the 

FE and experimental vertical displacement do not compare well.  

 
 

Figure 2.15: Numerical representation of punching surface (Ožbolt et al., 

2000). 

Figure 2.16 compares the load deflection curves from both analytical and experimental 

results which also confirm that the kinematics of failure were not simulated accurately. 

However, the authors concluded a good overall agreement between FE and test values 

for the load-deflection curve, with identical elastic stiffness and good approximation of 

the peak load as shown in Figure 2.16. The authors also reported that in the cracking 

stage, the FE response shows a higher stiffness. They also reported convergence 

problem in the post-peak load stage. 

 

Figure 2.16: Numerical versus experimental load-deflection curves (Ožbolt et al., 

2000). 
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Beutel,  Schmidt & Landaure (2000) 

Beutel et al., (2000) carried out numerical simulation of slab-column connections with 

shear reinforcement in order to define the optimum distance of the first row of shear 

reinforcement from the column face. The authors used two sets of experimental results 

from Beutel et al., (2000), one with a shear reinforcement ratio %8.0  (Slab P2-II) 

in which the failure occurs within the shear reinforcement, and one with a shear 

reinforcement ratio, %75.1  (Slab P6-I) where the failure took place at the column 

face.  

The load-deflection curves from FE and experiments for both slabs are shown in Figure 

2.18. In Figure 2.17 (a), the FE curve identifies with the test curve up to the service load 

and then it becomes stiffer reaching a peak load equal to 90% of the experimental 

failure load. The difference in peak loads in this slab was attributed to not including the 

dowel action in the FE simulation. The load-deflection curves for the slab with the 

greater ρ are shown in Figure 2.17 (b). The greater difference in peak load is similarly 

attributed to neglecting dowel action. 

 

Figure 2.17: Simulation of a punching failure (a) Slab P2-II (b) Slab P6-I (Beutel et al., 

2000). 

 

2.3.3.4 Discussion of finite element analysis 

Of the studies presented on the numerical modelling of slabs by different researchers, 

there has not been any model that performs completely satisfactorily. Since the 

punching shear mechanism of RC flat slabs is still not theoretically well understood, it 

is not suprising that there has been little success in numerically modelling of RC slabs. 

Furthermore, it is usually difficult to determine the values of material parameters used 
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in FE analyses prior to undertaking the finite element analysis.  Therefore, FE analysis 

is capable of depicting the behaviour observed in any given experiment but is less 

successful in predicting the results of an experiment. On the other hand, FE analysis of 

RC slabs can help the understanding of the mechanism of punching shear failure as well 

as effects of different parameters such as concrete strength, reinforcement ratio, slab 

depth, and shear reinforcement on enhancing the shear strength.  
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Chapter 3 

PUNCHING SHEAR DATABASE AND 

EVALUATION OF PUNCHING SHEAR 

DESIGN CODE PROVISIONS  

 

3.1 Introduction 

In this chapter, the author has constructed the biggest database using 549 punching 

shear experiments from literature. A detailed description of the database of punching 

shear tests without shear reinforcement is given. The distribution of data in the 

punching shear test database is briefly explained. The database is used to evaluate the 

predictions of existing shear design provisions. This is achieved by comparing the 

punching shear test results in the database with the failure punching shear strength 

predicted by the ACI 318-08, British standard (BS 8110: 1997), the CEB-FIP Model 

Code (MC 1991) and the Eurocode (EC 2-2004). The database is then used to assess the 

effect of parameters, such as top and bottom reinforcement ratios, column dimension, 

slab depth, concrete compressive strength and span to depth ratio, on the prediction of 

punching shear strength of slab-column connections.  

 

3.2 Database on punching tests 

 The first report associated with punching shear strength was published by Talbot 

(1913) at the University of Illinois. Since then, a large number of experimental 

investigations in the field of the punching shear problem with different aims have been 

published all over the world. Gardner (1996) established a data bank of 142 tests 

published on punching shear of slabs. Later in 2001, the fib Bulletin 12 (2001) 

published 250 tests collected on slabs without shear reinforcement. The latest data bank 

was published by Hamada et al., (2008).  The data bank comprised of 300 tests on slabs 

without shear reinforcement including the data from fib Bulletin 12, (2001) and more 

than 130 experiments which were carried out by Japanese researchers published in the 

Japanese language.  However, Hamada et al., (2008) did not provide the full details in 
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his database. The author constructed a database that comprised of 549 experiments on 

slab-column connections.  

To study experimentally, the load deformation behaviour of complete flat slab systems 

requires considerable expenditure. Therefore, most of experimental investigations 

reduce the complete slab system to an approximate system. The entire test specimens in 

the database are based on tests carried out on isolated slab-column connections. 

 

3.2.1 Explanation to the database on slabs without shear reinforcement 

The geometric properties of the RC slabs in the experimental database are shown in 

Figure 3.1. The material properties obtained for the slabs include concrete compressive 

strength )( '

cf  and yield strength of the flexural reinforcement )( yf .  
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Figure 3.1: Geometric properties of slabs in experimental database. 

 

To determine the concrete compressive strength, different control specimens are used in 

experiments from different parts of the world. To make comparison between different 

experiments and code equations, it is important to normalize strength values. 

Conversion factors used in this database are taken from fib Bulletin 12 (2001) and are 

summarised in Table 3.1. 
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Table 3.1: Conversion factors of concrete compressive strength of different control 

specimens 

Specimen type and size, 

mm 
Relation 

Specimen type and size, 

mm 

Cylinder 300150Φ H×  
'

300100,cyl,c,

'

300150,cyl,c, 05.1 ff   Cylinder 300100Φ H×  

Cube 150150×  
'

100cyl,c,

'

150cube,c, 90.0 ff   Cube 100100×  

Cylinder 300150Φ H×  
'

150cube,c,

'

300150,cyl,c, 8.0 ff   Cube 150150  

 

The distribution of the properties of slabs without shear reinforcement is shown in 

Figure 3.2. Details including geometry, material strength, boundary conditions and 

failure loads of all slab specimens in the database are given in Appendix A.  

It can be observed from Figure 3.2 that the distribution of slab depth is poor since there 

are few tests for thicker slabs. Only less than 4% of the experiments belong to slab 

depths more than 250 mm. The same applies to concrete strength. Only 17% of the 

experiments belong to higher concrete strengths ( 51'

c f MPa). 24% of the 

experiments belong to the slabs with flexural reinforcement higher that 1.5% ratio. The 

bias of shear parameters suggests the need for further experimental investigations 

especially for thicker slabs ( 250h mm), higher concrete strength ( 51'

c f MPa) and 

slabs with higher flexural reinforcement ratios. Poor distribution of shear parameters of 

the experimental database can make the predictions obtained from empirical equations 

poor, especially if certain categories of slab specimens are either deficient or 

unavailable, for developing the empirical equation.  

Experimental tests of RC slabs are becoming more challenging with the increase in 

costs and laboratory constraints of such RC slabs. On the other hand, in order to further 

understand the behaviour of such members, until more test data are available, 

sophisticated statistical approaches (e.g. ANN) along with analytical approaches such as 

Finite Element Analysis can serve as useful tool. 
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Figure 3.2: Distribution of the data of punching tests without shear reinforcement in 

database. 

 

A total of 680 slab-column connections without shear reinforcement were collected 

initially by the author however, another 131 experiments which do not fulfil the 

following three criteria were disregarded for further evaluation. 

 Membrane action: A lot of tests have demonstrated that the membrane action 

influences the punching shear capacity and ductility of slabs. Therefore 

experiments on these types of slabs are excluded. It has to be noted that the 

membrane action is not considered in this thesis.  
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 Bond failure: Tests that failed due to bond are excluded from database. Due to 

insufficient data provided on the detailing of flexural reinforcement, provisions 

of strain gauges and boundary condition of tests specimens, bond failures at end 

supports could only be established by reading the reports. For example, bond 

failure of 12 experiments of Gardner (1990) are reported.  

 Influence of the shear slenderness: Tests with slenderness less than 2.5 are 

excluded from the database. The database contains tests with shear slenderness (

)/ da between 1.40 and 24. The shear slenderness is the ratio of da / where a is 

the radial distance from the column face to the bearing points and d is the 

effective depth. It is known that the shear resisting capacity is influenced by the 

shear slenderness and the codes of practice account for slenderness in beams.  

Tests carried out on slabs with different slenderness ratios by Lovorovich and 

McLean (1990) are shown in Figure 3.3. It can be seen that there is a sharp 

increase in strength of the connection when the slab to depth ratio decreases 

below 2.5.  

 

Figure 3.3: Punching shear strength versus span to depth ratios. 

 

3.3 Procedure for evaluating code equations 

The strength reduction factors and material strength factors are set to be equal to 1 when 

the code equations were used to predict the failure load in experiments in the database. 

The mean, Standard Deviation (SD) and Coefficient of Variation (COV) of the ratio 

calctest VV is used to examine the accuracy of the code provisions. Besides, the proposed 

classification system by Collins (2001) is used to examine the distribution of calctest VV  
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(see Table 3.2). Classification system for distribution of calctest VV (adopted from 

Collins, 2001) are summarised in Table 3.2. 

Table 3.2: Classification system for distribution of calctest VV (adopted from Collins, 

2001) 

calctest VV  Classification 

< 0.5 Extremely dangerous 

0.5 – 0.65 Dangerous 

0.65-0.85 Low safety 

0.85-1.30 Approximately safe 

1.30-2.00 Conservative 

>2.00 Extremely Conservative 

 

 

The performance (i.e. calctest VV ) of the code provisions are assessed in two stages. First, 

the comparison is carried out for all the slabs in the database which consists of 549 slabs 

without shear reinforcement. Second, the comparison was carried out on different 

subsets created from the database. This was necessary to reduce the influence of the bias 

of shear parameters observed in the database. It also allowed the deficiencies of each 

code equation to be characterised. In addition, the distribution of the performance of 

each code provision is also examined.    

 

3.4 Evaluation of the performance of code provisions 

Table 3.3 summarises the experimental punching load and the calculated punching load 

( calctest VV ) in terms of mean value, standard deviation (SD) and the coefficient of 

variation (COV) for comparison using Code equations of ACI 318-08, EC 2-2004, 

CEB-FIP 90 and BS 8110. 
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Table 3.3: Summary of the experimental punching load and the calculated punching 

load ( calctest VV ) 

Code ACI 318-08 EC 2-2004 CEB- FIP 1990 BS 8110, 1997 

RC slabs without shear reinforcement 

Mean 

SD 

COV 

1.35 

0.49 

0.36 

1.34 

0.43 

0.32 

1.33 

0.44 

0.33 

1.18 

0.34 

0.28 

 

The following observations can be made from and examination of the data in Table 3.3. 

 The ACI 318-08 shear design provision gave the poorest prediction for members 

without shear reinforcement with a mean and COV of 1.35 and 0.36 respectively. 

This is due to the fact that ACI 318-08 is dependent only on concrete strength and 

ignores the influence of other shear parameters such as reinforcement ratio and 

effective depth. Better predictions obtained from BS 8110- 1997, EC 2-2004 and 

CEB FIP MC (1991) take the influence of flexural reinforcement ratio and the 

effective depth into account along with the concrete strength. 

 It was observed that the BS 8110 has the lowest mean for the ratio of calctest VV .  A 

detail investigation on the distribution of calctest VV reveals that most of the RC slabs 

had calctest VV  bigger than 1.00 (see Figure 3.7). This is due to the fact that BS 8110 

limits the concrete compressive strength to 40 MPa. 

 

3.4.1 ACI 318-08 

The predictions obtained from ACI 318-08 are shown in Figure 3.4 and 3.5. As it is 

discussed earlier in the chapter, members without shear reinforcement exhibit large 

scatters and this is also shown in Figure 3.4.  
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Figure 3.4: Comparison of ACI 318-08 procedures with empirical tests for slabs without 

shear reinforcement. 

 

Figure 3.5: Distribution of strength ratio for ACI 318-08 for slabs without shear 

reinforcement. 

 

Studies on the distribution of strength ratios Vtest/Vpred show that large scatter is also 

evident for members without shear reinforcement. Over 50% of the predictions obtained 

from the ACI 318-08 design procedure had strength ratios Vtest/Vpred between 1.31 to 

2.00 for members without shear reinforcement. These are considered to be conservative 

according to Collins classification criteria (see Table 3.2). However, ACI 318-08 can 

make extremely dangerous predictions for members without shear reinforcement (i.e. 

Vtest/Vpred < 0.5 - see Figure 3.5). Nearly 20% of the predictions of ACI 318-08 

procedure had strength ratio Vtest/Vpred less than one for members without shear 

reinforcement.  
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3.4.2 BS8110-1997 

The predictions obtained from the BS 8110 and the empirical test results are shown in 

Figure 3.6 for comparison. The distribution of the strength ratios is shown in Figure 3.7. 

Over 55 % of the predictions obtained from BS8110 design procedure for slabs without 

shear reinforcement are categorized in approximately safety according to Collins 

classification criteria. Less than 35 % of the predictions had strength ratios Vtest/Vpred in 

the range of 1.31 to 2.00 which are categorized as conservative according to Collins 

classification criteria.  

 

Figure 3.6: Comparison of BS 8110 procedures with empirical tests for slabs without 

shear reinforcement. 

 

 

Figure 3.7: Distribution of strength ratio for BS 8110 for slabs without shear 

reinforcement. 
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3.4.3 EC 2-2004 

Figure 3.8 and 3.9 show the predictions obtained from EC2-2004. It has been pointed 

out earlier in this chapter that there is a very large scatter for members without shear 

reinforcement as shown in Figure 3.8. Above 45% of the predictions from EC 2 provide 

strength ratios Vtest/Vpred in the range of 1.30 to 2.0 which is categorized as conservative 

according to Collins criteria. 40% of the predictions from EC 2 provide strength ratios 

Vtest/Vpred in the range of 0.85 to 1.30 which is categorized as appropriate safety 

according to Collins criteria. EC 2-2004 can produce extremely conservative predictions 

since Vtest/Vpred >2.0. 

 

Figure 3.8: Comparison of EC2-2004 procedures with empirical tests for slabs without 

shear reinforcement. 

 
 

Figure 3.9: Distribution of strength ratio for EC2-2004 for slabs without shear 

reinforcement. 
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3.4.4 FIP CEB Model Code 

The comparison of CEB FIP model code procedures with empirical tests and the 

distribution of strength ratio for CEB FIP model code for slabs without shear 

reinforcement are shown in Figure 3.10 and Figure 3.11 respectively.  

The difference in the predictions obtained using CEB FIP model code and EC 2-2004 is 

overall not very significant. ACI 318-08, however, produces less conservative 

predictions and reduced scatter for members without shear reinforcement (see Figures 

3.4 and 3.5). The predictions by CEB FIP model code and EC 2-2004 can be extremely 

dangerous as well as exceptionally conservative. 

 

 

Figure 3.10: Comparison of CEB FIP model code procedures with empirical tests for 

slabs without shear reinforcement. 

 

Figure 3.11: Distribution of strength ratio for CEB FIP model code for slabs without 

shear reinforcement. 

 

0

400

800

1200

1600

2000

2400

2800

0 400 800 1200 1600 2000 2400 2800
VCEB FIP  (kN)

V
te

st
 (

k
N

)



 73 

3.4.5 Concluding remarks 

A database constructed using published punching shear test results was used in the 

assessment of the code provisions for the predictions of the punching shear capacity. 

The majority of previous research has focused on testing slabs that are less than 200 mm 

deep, members that have rectangular column-sections, members that are simply 

supported, and members that are moderately reinforced in flexure. However, in practice, 

slabs designed to the codes are usually large, non-rectangular, continuous and lightly 

reinforced. 

 A comparison of the predictions from the code provisions does not sufficiently 

correlate with the experimental test results for the majority of the members, which are 

not well represented in the experimental database. This is to be expected as these code 

provisions rely on empirical expressions that were calibrated on test data that did not 

contain a significant number of slabs with low flexural reinforcement ratios. Using the 

variations in the means and the values of the COVs, the punching shear design 

provisions of BS 8110-1997 provide the most accurate and consistent predictions of 

capacity. A significant drawback however of the BS 8110 approach is that the equation 

limits the use of concrete compressive strength up to 40 MPa. 

 

3.5 Parameters affecting the punching shear strength of connection  

It has to be emphasised that the large number of interrelated variables present in the 

reported experiments makes the isolation of individual parameters very challenging. It 

is particularly very difficult to eliminate the effect of other parameters when the 

influence of one specific variable is of concern. In fact, the influence of major variables 

such as column dimension, concrete strength, slabs thickness and flexural reinforcement 

ratio are still not accurately understood. 

For instance, when the reinforcement ratio is kept constant whilst the slab thickness is 

increased, flexural capacity is decreased considerably.  Factors such as test set-up, 

quality control and test equipment influence the test results and are very difficult to 

account for. Test set-up can result in rotational and lateral restraints of varying degrees 

at their supports. It is crucial to focus on particular test results that have the same 

experimental configuration and the same test equipment to avoid uncontrollable 

variables. 



 74 

3.5.1 Effect of bottom reinforcement on the punching shear strength  

Existing mechanical models and design standards generally ignore the shear force 

carried by bottom reinforcement in compression. Based on experimental tests conducted 

by Elstner and Hognestad (1956), it was concluded that “the ultimate shearing capacity 

is not dependent upon the compressive reinforcement”. This conclusion was derived 

based on the experimental tests with tensile reinforcement ratios larger than 2% that 

failed in shear. However this statement cannot be applied to lightly reinforced slabs. 

Experimental results of eight specimens reported in Manterola (1966) (cited by CEB 

FIP Bulletin No. 12), Binici and Bayrak (2003), Yamada et al., (1992) and Tomaszevicz 

(1993) (cited by CEB FIP Bulletin No. 12) are summarised in Table 3.4 together with 

the geometrical and material properties for evaluation.   

 

Table 3.4: Contribution of compression flexural reinforcement on punching shear 

strength 

 

 

Slab 

thickness 

(mm) 

d 

(mm) 

c 

(mm) 

'

cf  

(MPa) 

ρTop 

(%) 

ρfy 

(MPa) 

ρBot 

(%) 

Dim. 

of 

slab 

(mm) 

uV  

(kN) 

'

cy

u

ff

V



 

P2-S1 125 107 250 33.8 1.04 3.16 0 3250 257 24.87 

P2-S2 125 107 250 33.1 1.04 3.37 0.52 3250 283 26.80 

Control 

1 
152 114 304 28.3 1.76 7.89 0 2133 404 27.04 

Control 

2 
152 114 304 28.3 1.76 7.89 0.12 2133 510 34.13 

T1 200 160 300 21.58 1.23 9.97 0.62 2000 441 30.07 

K1 200 156 300 26 1.53 8.7 1.53 2000 658 43.75 

ND95-

2-1 
240 200 150 88 1.7 8.5 0 2600 1100 40.21 

ND95-

2-1D 
240 200 150 86.5 1.7 8.5 0.9 2600 1300 47.94 
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The specimens P2-S1 and P2-S2, by Manterola (1966) show that the strength of the 

connection is increased up to 11% when the compressive mat of slab reinforcement is 

provided. However, the bottom reinforcement provided in Slab Control 2 in Binici et 

al., (2003) is placed only within the column width and showed 26% increase in 

punching strength of the connection when compared to Slab Control 1 where bottom 

compression reinforcement is not used at all. The percentage of flexural reinforcement 

and concrete compressive strength was slightly different in Slab T1 when compared to 

Slab K1 (Yamada et al., 1992). To eliminate the effect of material strength on specimen 

capacity, the test results were evaluated using the ratio of uV to
'
cy ff . From the 

normalised strength of the connection shown in the last column of Table 3.4, it is 

concluded that the increase in the compressive reinforcement resulted in an increase in 

the strength of the connection by 44%. The normalised strength for specimens, ND95-2-

1 and ND95-2-1D from Tomaszevicz, also resulted in an increase in the strength of the 

connection by 20%.  

 

3.5.2 Effects of Span to depth ratio on the punching shear strength  

Lovorovich and McLean (1990) investigated the punching shear strength of reinforced 

slab-column connections with varying span to depth ratios. They conducted five 

experiments on slab-column connections where flexural reinforcement, concrete 

compressive strength and column dimension were kept the same but spans width varied 

each time. The experimental results showed a dramatic increase in strength of the 

connection when the span to depth ratio decrease below 4. 

It can also be concluded from the Figure 3.12 that the punching shear strength was 

significantly increased as the span to depth ratio decreased below 4. Figure 3.12 also 

indicates that the code equations (ACI 318-05, Eurocode 2 (2004) and BS 8110 (1997)) 

underestimate the strength of the connections as the span to depth ratio decrease below 

4. Lovorovich and McLean (1990) concluded that the strength increase could be due to 

the development of arch mechanism in slabs and in-plane compressive forces resulting 

from friction at the support. 
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Figure 3.12: Normalised punching shear strength versus span to depth ratio. 

 

3.5.3 Size effect on the punching shear strength  

Although the effect of the slab thickness on the punching shear resistance had been 

recognised as early as 1938 by Graf (cited by Birkle and Dilger, 2008), it is difficult to 

carry out experiments only on the size effect. Most experimental studies in the 

literature, not only varied in slab thickness but also in concrete compressive strength, 

flexural reinforcement and column size. Keeping the reinforcement ratio constant while 

increasing the slab thickness, leads to a decrease in the reinforcement ratio. Thus using 

low reinforcement ratio leads to a lower flexural capacity in the connection. Slabs with 

lower flexural capacity have more flexural cracks which lead in reducing the punching 

shear capacity. Experiments with small slab size also affect the punching shear capacity 

by means of yielding the flexural reinforcement or bond failure in flexural 

reinforcement (Mitchell et al., 2005).   

Richart (1948) carried out experiments on punching behaviour of column footings and 

concluded that shear stress at failure is decreased as the effective depth is increased in 

the testing foots. Guandalini et al., (2009) conducted experiments of low reinforcement 

ratio slabs with different thicknesses of specimens. The overall slab thicknesses, h, used 

in the experiments were 125 mm, 250 mm and 500 mm. To eliminate the effect of low 

span to depth ratio (discussed in 3.5.2) longer spans were used with higher thicknesses 

of the slabs. Li (2000) reported 6 experiments on slab-column connections with 

different slab thicknesses. The overall thickness, h, of the slabs varied from 135 mm to 
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550 mm. Since the spans length of the slabs were kept constant in Li’s experiments 

(lower span to depth ratio for thick slabs), only limited conclusions can be made for size 

effect. Figure 3.13 shows the variation of normalised shear stress versus slab effective 

depth for experiments conducted by Li (2000), Birkle and Dilger, (2008) and 

Guandalini et al. (2009). The results re-plotted in Figure 3.13 indicate that increase in 

the slab thickness has resulted in a decrease in shear stress of the connection. 

 

Figure 3.13: Normalised punching shear stress ( dbV ou / ) versus slab thickness by Li 

(2000), Birkle and Dilger, (2008) and Guandalini et al., (2009). 

 

 

Figure 3.14: Size effect factors normalised to an average effective depth of 200 mm. 
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Apart from ACI 318-08, all other codes such as Eurocode 2 (2004), BS 8110 (1997), 

CSA A23.3-04 and CEB FIP model code (1990) take the size effect into account when 

calculating the punching shear capacity of the connections (as discussed in Chapter 2). 

Figure 3.14 compares the different size effect expressions using the Code Equations in 

Eurocode 2 (2004), BS 8110 (1997), CSA A23.3-04 and CEB FIP model code (1990). 

The size effect factors were normalized to an average effective depth of 200 mm to give 

a value of 1 when the effective depth is 200 mm. BS 8110 (1997) has a size effect factor 

that does not decrease beyond an average effective depth of 400 mm. The CSA A23.3-

04 gives an expression for slabs with effective depth factor greater than 300 mm. 

Eurocode 2 (2004) has a size effect factor that does not decrease beyond an effective 

slab depth of 200 mm; however, only CEB-FIP Model code 1990 expression for size 

effect factor increases when the effective depth is less than 200 mm.  

 

3.5.4 Effect of column size and shape on the punching shear strength  

There are two different sets of experiments on the effects of column dimension on 

strength of connections: Slabs with square columns (aspect ratio, β=1) and slabs with 

rectangular columns ( 1 ). Aspect ratio, β, is the ratio of the larger to the smaller 

column dimension. Marzouk and Hussein (1991): specimens HS14 and HS 15l; Corley 

and Hawkins (1968) cited by CEB FIP Bulletin No.12: specimens AN1 and AN2, 

Manterola (1966) cited by CEB FIP Bulletin No.12: specimens P1-S4, P2-S4 and P3-S4 

and Lander et al., (1977) cited by CEB FIP Bulletin No.12: specimens DA6, DA&, 

DA10 and DA11 are reviewed here to examine the effect of square columns dimension 

on the punching capacity of the connection while all other parameters were kept 

constant. Figure 3.15 shows the variation of measured punching capacity versus square 

column dimensions. The results presented in Figure 3.15 demonstrate that the punching 

shear resistance of slabs are influenced by the size of the supports.  
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Figure 3.15: Punching shear strength versus square column dimension. 

 

The first series of experiments on slab-column connections with rectangular columns 

was reported by Corley and Hawkins in 1968 (cited by CEB FIP Bulletin No. 12). 

These experiments were the base to introduce the aspect ratio to the ACI punching shear 

equation (Eq. 2.15). However ACI 318-08 indicates that when the aspect ratio is over 2, 

shear stress predictions by ACI is unconservative. “The actual shear stress on the critical 

section at punching shear failure varies from a maximum of about '
c33.0 f  around the 
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c166.0 f  or less along the long sides 

between the two end sections” (ACI 318-08). 

Experimental data in Hawkins et al., (1971), Mahmood (1978) and Oliviera et al., 

(2004) are re-plotted in Figure 3.16 in order to examine the effects of column aspect 

ratio on the shear stress ( uv ) of the connections. Three specimens from Hawkins et al., 
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increase in the aspect ratio of columns resulted in a decrease in the shear stress of the 

connection and this is also shown in Figure 3.16.  

 

Figure 3.16: Punching shear strength versus aspect ratio. 

 

Although the effect of column size and shape were ignored in most of the code 

equations (BS 8110, 1997; Eurocode 2, 2004; CEB FIP Model code 1990, 1991) the 

influence of column size is somehow accounted by comparing the shear stress along the 

critical sections. For instance, the critical section is located at a distance of 0.5davg, 

1.5davg and 2.0davg from the column face for ACI 318-08, BS 8110 (1997) and Eurocode 

2 (2004) respectively.  

 

3.5.5 Effect of flexural reinforcement on punching shear strength 

The effect of flexural reinforcement ratio on the assessment of the punching shear 

resistance of slab-column connections was recognised since 1950. However, based on 

the available experimental data in the literature, it is difficult to assess the influence of 

flexural reinforcement only while the influence of other parameters had to be ignored.  

On the other hand, experiments from Marzouk and Hussein (1991), Alexander and 

Simmonds (1992), Elstner and Hognestad (1956) and Guandalini et al., (2009) studied 

the effects of flexural reinforcement ratio on the shear capacity more precisely and are 

chosen to be re-viewed in this section. In these experiments, apart from the slab flexural 

reinforcement ratio, all other parameters were kept the same. These results are 

summarised in Figure 3.17.  
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Figure 3.17: Measured shear strength versus y. f . 
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compressive strength was 26 MPa, three experiments from Elstner and Hognestad 
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Guandalini et al., (2009). 

The measured shear strength versus tensile reinforcement index ( y. f ) shown in Figure 

3.17 indicates that the tensile reinforce index increases with an increase in the shear 
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concentration of flexural reinforcement increases the load to yield the flexural 

reinforcement and consequently results in maximum crack width to decrease for the 

given load.  

ACI 318-08 requires that a band width of hc 3  (a slab width extending a distance of 

1.5 times the slab thickness on either side of column) could be designed to resist the 

negative moment. However Regan (1986) suggested extending the effective width 3 

times the slab thickness from the face of the column. FEMA 356 also suggested that the 

effective width should be considered as 5 times the slab thickness from the column face. 

 

3.5.6 Effect of concrete strength on punching shear strength 

The shear stresses reported in the experiments on punching shear strengths in the 

literature and the ACI code for different concrete compressive strengths are compared in 

Figure 3.18. The results shown in Figure 3.18 are slightly spread out. This is mainly 

because of the other parameters that affect the shear capacity. Slabs that failed in flexure 

also contributed in the scatter.   

 

Figure 3.18: Influence of concrete strength on shear strength. 
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specimens re-examined here, 5 of the specimens had 0.58% flexural reinforcement 

while other four specimens had 1.28%. Experiments from Regan (1986) were also 

chosen to investigate the concrete strength on shear capacity. Three specimens with a 

thickness of 80 mm and a flexural reinforcement of 0.98% are reviewed. Six other slabs 

with a thickness of 120 mm were chosen where they split into 2 groups (Group 1 with a 

flexural reinforcement of 0.83% and Group 2 with a flexural reinforcement of 1.52%). 

These experiments are used to calculate the shear stress at failure, based on the ACI 

318-08 critical shear periphery and re-plotted in Figure 3.19. Figure 3.19 re-plots the 

values of shear stresses versus the concrete stresses values of the experiments and 

compares this with ACI 318-08. The results illustrate the calculated shear stress values 

of experiments together with the shear stress values obtained from the ACI 318-08 

based on the concrete strength for four different power of  n'

cf , when n=1/4, n=1/3, 

n=1/2 and n=2/3. It is clear from Figure 3.19 that the overall trend is reasonably 

represented by n=1/4.   

 

Figure 3.19: Influence of the concrete strength on shear stress 
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3.5.7 Concluding remarks  

Parameters that affect the punching shear strength of the connection are reviewed here. 

These parameters included bottom reinforcement, span to depth ratio, slab thickness, 

column size and shape, flexural reinforcement and concrete compressive strength. The 

main conclusions are summarised here. 

 Although the code equations (ACI 318-08, Eurocode 2 (2004) and BS 8110 

(1997)) underestimate the punching shear strength of the connections, the 

experimental results showed a dramatic increase in the strength of the 

connection when the slab to depth ratio decreases below 4.  

 The shear stress at punching failure decreases with increasing effective depth 

and with increasing rectangularity of the column. (The size effect and the 

geometric feature, also expressed as the aspect ratio, are significant aspects in 

punching shear resistance and should be included in code design expressions).  

 The shear stress at punching failure is increased with an increasing compressive 

strength of concrete. The author suggests that in order to develop a new design 

expression for punching shear experimental research should also be conducted 

on high-strength concretes. 

 The punching shear resistance showed a significant decrease with decreasing 

reinforcement ratio. It was concluded that the punching load is not influenced by 

the yield strength if punching failure occurred prior to reaching yield. Small 

increase of punching shear strength can be observed with a concentration of 

flexural reinforcement in the vicinity of the column.  

 The influence of the reinforcement ratio on the punching shear capacity of flat 

slabs is not considered in ACI 318-08 while EC2 (2004), BS 8110 (1997) and 

CEB FIP model code (1990) takes the influence of the flexural reinforcement 

ratio into account.  
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Chapter 4 

PUNCHING SHEAR STRENGTHENING 

OF CONCENTRICALLY LOADED RC 

FLAT SLABS 
 

 

4.1 Introduction 

Experiments on slabs with Lenton steel fortress (LSF) shear reinforcement are limited 

to the tests carried out by Li (1997). An increase in punching shear capacity could 

normally be achieved by the use of shear reinforcement. However, experiments carried 

out by Li (1997) were designed with low flexural reinforcement ratios and therefore the 

additional shear reinforcement used in those experiments was only sufficient to increase 

the flexural capacity (Stein et al., 2007). Li (1997) also used both a higher strength of 

steel strip (fy=1100 N/mm
2
) and bent strips in some of his experiments to increase the 

vertical stiffness of the LSF shear reinforcement however, the requirement for bending 

made the production of such strips more expensive.  

Two series of experiments are described in this chapter: Pullout tests and Punching 

shear tests. In the first series, pullout tests were carried out on unbent strips in order to 

investigate the maximum strength that could be developed in the LSF strip and its 

anchorage behaviour. In the second series, three real scale punching shear test were 

conducted on slabs. Slab 1 is left without shear reinforcement as a control specimen, 

while Slabs 2 and 3 were strengthened with LSF type of shear reinforcement. 

In the following sections, the general experimental considerations for both pullout tests 

and RC flat slabs are given first. The configuration of the specimens and the loading 

procedures are also provided and the test results are reported and discussed in detail. 

 

4.2 First series: Pullout tests 

A series of 42 pullout tests were carried out on a range of unbent LSF strip anchorages 

embedded in concrete. Tests were conducted to examine the anchorage characteristics 
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of the unbent LSF strips with and without holes. Both L shape and U shape LSF strips 

with and without holes were tested and these are shown in Figure 4.1. Different hook 

lengths (50, 100, and 380 mm), “flat” lengths (50, 76 mm) and bending radiuses (4.8 

and 8.0 mm) were examined. 1.6 mm thick strips were supplied by Erico Inc. Pullout 

tests were carried out in the Heavy Structures Laboratory of the Department of Civil and 

Structural Engineering in the University of Sheffield by the author.  

 

Figure 4.1: Lenton Steel Fortress (LSF) strips for pullout tests. 

 

4.2.1 Material Characteristics 

4.2.1.1 Concrete  

The concrete used for the pullout specimens was prepared in the structural and material 

laboratory. Due to limited capacity of the laboratory mixers, two batches of concrete 

were prepared. Ordinary Portland cement was used and the maximum aggregate size 

was 10 mm. The compressive strength of the concrete was examined by testing four 

cubes for each batch (100x100 mm) according to BS 1881-116 (1983a). The mean 

compressive strength values obtained were 56.0 and 54.0 MPa for Batch 1 and 2, 

respectively. 

 

4.2.1.2 Lenton Steel Fortress (LSF) strips 

The Lenton Steel Fortress (LSF) is a form of shear reinforcement intended to increase 

the punching resistance of reinforced concrete flat slabs. They were manufactured from 
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a 25 mm wide flat steel strip. ERICO Inc. provided the strips and the mill certificate is 

given in Appendix B. The yield strength and the tensile strength of the strip are 538 

MPa and 580 MPa respectively while the elongation is 18% (Manufacturer’s data).  

Two different strips were used in the pullout tests; strips with holes and strips without 

holes. The strips with holes are perforated with 5 mm circular holes at 25 mm spacing 

along the centre line. A perforation process was carried out during manufacturing.  

 

4.2.2 Specimen classification and instrumentation 

The main variables examined were hook length, h2, ’flat’ length, w, and bending radius, 

R, are summarised in Table 4.1. Three types of pullout specimens (Type P1, P2 and P3) 

were prepared to examine the possibility of pullout and these are shown in Figure 4.2. 

      Table 4.1: Summary of the Specimens  

 

Specimen 

Type 

Length 

(Unit: mm) Bending 

radius, R 

 

No. of strip 

specimens 

 

 

Remarks 

 

 

 

1h  

 

w 

 

2h  

P1 380 50 50 3t 3 With holes 

P1 380 50 50 3t 3 Without holes 

P1 380 50 50 5t 3 With holes 

P1 380 50 50 5t 3 Without holes 

P1 380 50 100 3t 3 Without holes 

P1 380 50 100 5t 3 Without holes 

P2 380 76 50 5t 3 Without holes 

P2 380 76 100 5t 3 Without holes 

P3 380 50 380 3t 9 Without holes 

P3 380 50 380 5t 9 Without holes 
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Figure 4.2: Pullout specimens 

(Variables: R=internal bending radius, h2=hooks length in vertical direction). 

 

4.2.2.1 Mould manufacturing 

Polystyrene 150 mm cubes were used in the laboratory to cast the concrete. The mould 

was made of 25 mm thick Polystyrene. The inside of the mould was coated with a thin 

layer of mould-releasing agent to make de-moulding of the concrete blocks easier. The 

strips were held rigidly on the bottom surface of the cubes by spacers and plastic ties 

and were positioned vertically in the moulds.  

 

4.2.2.2 Casting and curing  

The concrete was cast vertically in three successive layers of approximately equal 

thickness. Each layer was vibrated using a poker vibrator to minimise voids and achieve 

a more uniform and homogenous distribution of concrete. Extra care was taken during 

casting and vibrating so as not to disturb the verticality of the strips. Adequate 

compaction and levelling were applied on the top surface to eliminate voids and 

minimise geometric irregularities. Control specimens were cast using the same batch of 

concrete for subsequent evaluation of concrete strength. After casting, all specimens 

were covered with wet hessian and polythene sheets, cured for one week and 

subsequently stored under standard laboratory conditions. Figure 4.3 shows the pullout 

specimens after casting. 
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Figure 4.3: Pullout specimens after casting. 

 

4.2.2.3 Test set-up  

The pullout test was performed in a universal testing machine and is shown in Figure 

4.4.  

 

Figure 4.4: The loading frame and test set-up for the pullout test. 

 

This servo-controlled machine is capable of delivering 1 MN force, in tension or 

compression. The machine rig consists of a heavy static base with a moveable cross-
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head supported on four steel posts of 100 mm diameter. The height of the cross head 

can be adjusted by using secondary hydraulic rams, allowing the cross head to slide up 

or down the supporting posts. The main 150 mm-diameter hydraulic actuator is 

mounted in the centre of the cross-head and connected to the top plate of the steel 

housing frame which provides the reaction to the pullout load imposed to the specimen.  

The housing frame comprises of two steel plates that are 38 mm thick. These plates are 

connected via 24 mm diameter bolts at each corner and this is shown in Figure 4.5. In 

order to strengthen the connections of the top and bottom plates 20 mm diameter two 

other bolts were used. The housing frame was designed to rotate independently, 

allowing the portion of the strip projecting from the concrete cube to be inserted in the 

jaw in a vertical position. A 2 mm thick rubber plate was used to secure contact between 

the bottom face of the concrete cube and the steel bearing-plate. This was essential to 

reduce stress concentrations due to small irregularities on the surface of the concrete 

cube and minimise possible bending effects on the bar during testing.  

 

Figure 4.5: Testing arrangement for pullout test. 

 

For L shaped strips, in the middle of the bottom bearing plate, a main 50 mm-circular 

hole allowed the strip to run through a slot which connects the central hole to the plate 

boundary as shown in Figure 4.6. For U shaped strips a 70 mm hole allowed the strips 

to run through a slot, as shown in Figure 4.7. 
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Figure 4.6: Details of pullout housing frame for specimens type P1, and P2 
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Figure 4.7: Details of pullout housing frame for specimens type P3. 

 

4.2.3 Test results and discussion 

The stress versus displacement results are shown in Table 4.2 and the full details are 

provided in Appendix B. 
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Table 4.2: Summary of test results 

Notation: Specimen P3-w-380-5t#3 stands for [test type (Fig. B.1) strip type (with or without holes)]-[hook length (h2)]-[bent 
radius]-[ # sample no.] 

 

h1= Length of the strip 

w= Tail length 

h2= Hook length  

R= Internal bending radius (mm) 

 t= Nominal thickness (mm) 

t’= Actual thickness (mm) 

f’c = concrete compressive strength (MPa) 

f’c1=Concrete compressive strength of cubes after 

pull out tests (MPa) 

Fmax= Maximum pullout load (kN) 

fmax= Maximum pullout stress (MPa) 

 fave= Average pullout stress (MPa) 

σ1= Slip inside the concrete cube (mm) 

σ2= Overall slip along the bar (mm) 

PO= Pullout failure 

BC= Bar break at outside the concrete 

BR= Bar rupture at the bend zone 

BR→PO =First, failure occurs as rapture on the 

weaker leg of the strip then pullout.  

Ductility =μ=Du/Dy 

Du= Displacement at ultimate load 

Dy= Displacement at yielding 

Specimen I.D. t t’ h1 W h2 R f’c
 f’c1 Fmax fmax fave σ1 σ2 

 
μ 

 

Failure 

Mode 

P1-h-50-3t#1 

P1-h-50-3t#2 

P1-h-50-3t#3 

1.6 

1.6 

1.6 

1.57 

1.58 

1.6 

381 

381 

381 

50 

50 

50 

50 

50 

50 

4.8 

4.8 

4.8 

56 

56 

56 

46 

41 

46 

18.6 

18.6 

18.6 

574 

574 

574 

 

574 

0 

0 

0 

4.1 

4.0 

4.3 

1.9 

1.9 

1.7 

BC 

BC 

BC 

P1-w-50-3t#1 

P1-w-50-3t#2 

P1-w-50-3t#3 

1.6 

1.6 

1.6 

1.57 

1.58 

1.57 

381 

381 

381 

50 

50 

50 

50 

50 

50 

4.8 

4.8 

4.8 

56 

56 

56 

47 

39 

46 

23.6 

23.3 

23.4 

581 

575 

576 

577 

NA 

NA 

NA 

37 

29 

17 

9.1 

8 

3.5 

BC 

BC 

BC 

P1-h-50-5t#1 

P1-h-50-5t#2 

P1-h-50-5t#3 

1.6 

1.6 

1.6 

1.6 

1.58 

1.54 

381 

381 

381 

50 

50 

50 

50 

50 

50 

8.0 

8.0 

8.0 

56 

56 

56 

45 

42 

38 

18.7 

18.7 

18.6 

575 

576 

574 

 

575 

0 

0 

0 

4.8 

4.8 

5.2 

2.2 

1.8 

1.6 

BC 

BC 

BC 

P1-w-50-5t#1 

P1-w-50-5t#2 

P1-w-50-5t#3 

1.6 

1.6 

1.6 

1.6 

1.6 

1.58 

381 

381 

381 

50 

50 

50 

50 

50 

50 

8.0 

8.0 

8.0 

56 

56 

56 

39 

48 

35 

23.2 

23.2 

23.2 

571 

570 

571 

 

571 

4.5 

4 

NA 

23 

29 

29 

9 

7.7 

7 

BC 

BC 

BC 

P1-w-100-3t#1 

P1-w-100-3t#2 

P1-w-100-3t#3 

1.6 

1.6 

1.6 

1.6 

1.6 

1.59 

381 

381 

381 

50 

50 

50 

100 

100 

100 

4.8 

4.8 

4.8 

56 

56 

56 

39 

45 

40 

23.0 

23.2 

22.7 

565 

572 

559 

 

565 

7 
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5 

29 

22 

31 

8 

6 

6.7 

BC 

BC 

BC 
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For L shaped strips, bar rupture occurred outside the concrete in all cases except for 

specimen P2-w-50-5t#2, for which rupture occurred on the bent zone and then the strip 

pulled out from the concrete cube.  

The ductility of the strips was determined using the ratio of ultimate to yield 

displacement.  The strips with holes showed a limited ductility (1.6 – 2.2) while the 

strips without holes showed much higher ductility (3 – 9). 

By considering the elongation of the strips, it is clear that the strips with holes anchored 

the strip better and that little plastic elongation took place inside the concrete, whilst the 

strips without holes elongated considerably within the concrete but appeared to be 

perfectly anchored at the first bent.  

The U shaped strips were tested to examine the possibility of concrete pullout in 

between two strips in tension. This did not happen and failure occurred by the strip 

fracture. 

Finally, it can be concluded that the strips with holes show limited ductility though they 

anchor well in the concrete limiting slip displacements. The strips without holes anchor 

well at the first bent and fail after considerable ductility. The down side is that they 

show higher slip displacements than the strips with holes. 

 

4.3 Second series: Slab-column connection tests 

In the beginning of this section it is essential to provide a brief description of the 

experiments carried out by Li (1997) as these experiments are used for comparison 

purposes. Experiments by Li (1997) are also used in the numerical modelling and are 

reported in Chapters 5 and 6 in this thesis. Li (1997) referred experimental test series as 

PSS in his thesis and the same reference is used in this thesis for simplicity.  

Li (1997) carried out seven tests on slab-column connections. The control specimen was 

left without shear reinforcement and referred in this thesis as PSSA. The effectiveness 

of the different arrangements of the Shearband in slab-column connections was assessed 

by Li (1997). The shear reinforcement in PSSB, PSSC and PSSE are along the main 

axes while shear reinforcement in PSSD distributed around the column.  In PSSF and 

PSSG the shear reinforcement is distributed uniformly over the slab. In these 

experiments the placement angles (vertical or inclined) and the anchorage properties of 
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the LSF type of shear reinforcement (punched with holes or solid) were investigated. 

Schematic drawings of slabs (PSSA, PSSB, PSSC, PSSD, PSSE, PSSF and PSSG) are 

shown in Figure 4.8 and their details are provided in Table 4.3. 

 

 Figure 4.8: Test series PSS (Li, 1997). a; PSSA, b; PSSB, c; PSSC, d; PSSD, e; PSSE, 

f; PSSF, g; PSSG. 

 

 

 

 

 

PSSA PSSB

PSSD

PSSC

PSSE PSSF

PSSG

a) b) c)

d)

g)

f)e)
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     Table 4.3: Details of series PSS (Li, 1997) 

  PSSA PSSB PSSC PSSD 
PSS

E 
PSSF PSSG 

 
f’c (cube) (MPa) 

32.3 39 41.2 42.2 43.4 43.4 38 

 
h (mm) 

175 175 175 175 175 175 175 

 
d (mm) 

139 139 139 139 139 139 139 

   (%) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

T
o

p
 

R
ei

n
fo

rc
em

en
t Bar diameter 

(mm) 

16 16 16 16 16 16 16 

fy (MPa) 
500 500 500 500 500 500 500 

Spacing of the 

bars (mm) 

200 200 200 200 200 200 200 

B
o

tt
o

m
  

R
ei

n
fo

rc
em

en
t  Bar diameter 

(mm) 

12 12 12 12 12 12 12 

fy (MPa) 
480 480 480 480 480 480 480 

Spacing of the 

bars (mm) 

200 200 200 200 200 200 200 

S
h

ea
r 

R
ei

n
fo

rc
em

en
t 

fy (MPa) 
- 1100 1100 1100 1100 1100 1100 

Cross Section 

(mm
2
) 

- 20.32 20.32 20.32 20.32 20.32 20.32 

No of legs 
- 80 88 94 80 100 184 

 Failure Load 

(kN) 

454 560 560 560 573 598 590 

 

The experiments in this section were commissioned by Erico Inc. for accreditation 

purposes. These tests were carried out by Taylor Woodrow Technology in their centre at 

Leighton Buzzard. Three tests on interior slab-column connections were conducted: one 

specimen without shear reinforcement and two specimens strengthened with LSF shear 

reinforcement. 

 

4.3.1 Test configuration 

A total of three full scale interior slab-column connections were tested. Design of the 

experiments was aided by studies conducted on prototype specimens designed to satisfy 

typical requirements for construction of slabs in low-rise buildings used in UK. These 

specimens can be regarded as part of a prototype structure of which the flat concrete 
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slab spans 6-6.5 m between columns. The slab thickness was 200 mm. A depth of 200 

mm for current slab was chosen since it is the minimum required depth for the use of 

shear reinforcement to increase the punching shear capacity in BS 8110 (1997). The 

tested slabs represent interior slab-column connections with plan dimensions of 

27502750 mm and loads were applied at lines of 1220 mm from the column centre 

corresponding to the lines of contraflexure.  

column
Slab

Load cellHydraulic ram

 3
2

0
2

0
0

 
 Figure 4.9: Test rig general arrangement. 

 

 

 

Figure 4.10: (a) A picture of test rig; (b) the schematic plot of the test configuration. 

Loading positions 
Slab 

(a) 

(b) 
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The test rig arrangements are shown in Figures 4.9. A photograph that was taken prior 

to the experiment of the rig and the schematic plot of the test configuration are shown in 

Figures 4.10 (a) and (b) respectively. A 320 mm square column section was used in the 

experiments which is appropriate for slabs with 6-6.5 m spans in low rise buildings. 
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Figure 4.11: Plan view of test specimens. 

 

The slab was supported through a column stub on the floor. Equal point loads were 

applied downwards symmetrically at eight points on a circle of diameter 2750 mm 

which were distributed to the 16 load points shown in Figure 4.11 by spreader beams. 

Eight hydraulic jacks were connected to a single pump and the force from each jack was 

centred by a spherical bearing and monitored continuously by a load cell placed 

between the bearing and the spreader. The jacks were mounted on a steel framework 

tied to the laboratory floor by high tensile bars. Restrained forces produced by the 
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lateral movement between the jack and the slab are negligible considering the height of 

the jacks and the horizontal flexibility of the steel frame and its supports.  

On interior slab-column connections of flat slabs, three types of boundary conditions 

were considered for the experimental study regarding the support and loading positions. 

The first boundary condition assumed that the slab was supported along its edges and 

was loaded through a column or a plate at the centre (Elstner and Hognestad, 1956). The 

second boundary condition was arranged according to Kinnunen and Nylander (1960), 

where the slab was supported through a column or plate at the centre and loaded at the 

perimeter. Kuang and Morley (1992), also suggested that the slab can be supported 

along its edges with some or full lateral restraint and loaded through a column or plate 

in the centre which is intended to model the membrane action in RC flat slabs and 

therefore were not addressed in this thesis.  

According to Kinnunen and Nylander (1960), the load is applied to the column through 

a single hydraulic jack.  The column load is then transferred to a strong floor by means 

of a number of tie rods which are fitted along the circumference of the test slab. Tie rods 

act as a rocker support and are normally provided with a spherical ball bearing at each 

end. In Elstner and Hognestad (1956), the test specimens are simply supported along 

their edges and the column load is applied downwards, also by a single hydraulic jack 

through a reaction frame.  This may allow redistribution of moment after yielding of 

flexural reinforcement due to the uniform deflections being imposed at the boundary. 

This is the major disadvantage of this arrangement. The deflections at each loading 

point are expected to be different since the reinforced concrete slabs are not isotropic 

and the stiffness of the actual structure varies in different directions with the same 

column load. The same problem is valid for test specimens supported along the four 

edges. 

Normally full redistribution of moment occurs for interior columns in buildings, 

however, Clyde and Carmichael (1974) stated that the conventional punching shear tests 

do not allow full redistribution of moment. This results in the flexural collapse load 

from the test to be less than that of the prototype. 

The test configuration adopted in this thesis consists of a slab which is supported 

through a column stub on a beam reacting against two reaction ring frames. Figure 4.11 

shows the positioning of the equal point loads that are applied downwards at eight 
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locations on a circle of diameter 2750 mm symmetrically. Eight hydraulic jacks of 100 

kN capacity are used in this configuration.  Each jack had a spherical ball bearing. This 

allowed jacks to be connected to the same pump in order to receive the same pressure 

and apply the same load to the specimen. Bending effects as a result of the lateral 

expansion of the slab or the inclination of the slab during testing are minimised by tying 

the jacks just above the load point. A Teflon sheet between the loading plate and each 

spherical ball bearing of the jacks is used. Therefore no horizontal confinement to the 

specimen is provided at the loading points since the spherical ball bearing could move 

freely in the horizontal direction. 

The deformation on the specimens both in the horizontal and vertical directions are not 

imposed in the test-rig used.  Although the load at each loading point is kept the same, 

each loading point could have different deflection. Compared to the all other 

deformation control arrangements carried out by previous researchers, the author 

strongly recommends that the applied loading in practice is more precisely simulated 

with this type of loading. 

 

4.3.2 Materials   

4.3.2.1 Concrete 

The concrete used was a normal weight concrete with a target cube strength of 35 

N/mm
2
. This value is close to the maximum compressive strength which BS 8110 

allows to be taken into account in calculation of shear resistance. The concrete was 

obtained from a local ready-mix supplier and was made with limestone aggregate with a 

20 mm maximum size and water cement ratio of 0.54. All the slabs were cast together. 

Poker-vibrators were used to compact the concrete. The development of concrete 

strength was monitored by tests of 100 mm cubes. After casting, the slabs were cured 

with plenty of water and covered with polythene sheeting for one week. The cubes were 

cured under water and were tested in accordance with BS 12390 Part 3: 2002 on the 

same day as the slabs.  Slab 1 was tested on day 26 while Slab 2 and 3 were tested 28 

and 32 days from the casting date respectively. The test results for these 100 mm cubes 

are summarised in Table 4.4. 
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The equivalent 150 mm cube strengths have been obtained as (fib Bulletin 12, 2001) 

fcu,150=0.9fcu,100. Yield strength of 550 MPa for flexural reinforcement was used in these 

experiments. 

Table 4.4: Concrete strength of slabs 

 

 

 

4.3.2.2 Mechanical properties of unbent LSF shear reinforcement 

The characteristics of the unbent LSF strips are given in Table 4.5.  

Table 4.5: Mechanical properties of LSF reinforcement strip 

 

 
 

 

 

 

 

 

 

Note: Stresses yf and uf  for perforated strip are calculated for the gross (imperforated) sections. 

 

The application of 0.8 times the gross area and the yield stress in structural calculations 

is supported by the experiments summarised in Table 4.5 where the ratio of the 

perforated to imperforated strengths of the stirps at yield and ultimate load is 

approximately 0.8.  

The criteria for properties of reinforcement from EC 2-2004, Annex C (2004) was used 

to evaluate the LSF reinforcement (Table 4.6). The imperforated strip material 

categorised as type C reinforcement in terms of elongation. The type of the 

reinforcement for perforated strips varied considerably with the strip thickness. For 

instance, the strip with a thickness of 1.2 mm categorised to type C, while the strips 

with thicknesses of 1.6 mm and 2.0 mm were classified to type B and A respectively. In 

Slab Slab 1 Slab 2 Slab 3 

Cube strength (N/mm
2
) 38.5 38.6 38.6 

Nominal 

section 

(mm×mm) 

Imperforated Perforated 

1

y

2

y

f

f
 

1

u

2

u

f

f
 

Actual 

section 

(mm×

mm) 

1

yf  

(N/mm2) 

1

uf  

(N/mm2) 

Elongation 

(%) 

Actual 

section 

(mm×

mm) 

2

yf  

(N/mm2) 

2

uf  

(N/mm2) 

Elongation 

(%) 

25×2.0 
25.09×

2.01 
589 648 11.0 

25.06×

2.01 
476 511 4.0 0.81 0.79 

25×1.6 
25.06×

1.62 
548 606 12.5 

25.0× 

1.62 
442 470 5.5 0.81 0.78 

25×1.2 
25.04×

1.21 
574 620 18.0 

25.0× 

1.21 
492 512 11.0 0.89 0.89 
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terms of the ratio fu / fy, of the imperforated strip, all three thicknesses corresponded to 

class B while for perforated strips with the same thicknesses are categorised to class A.  

 

 Table 4.6: Classification of perforated LSF strips according to EC 2-2004, Annex C 

 

 

 

 

 

4.3.3 Flexural design of slab tests  

Yield line analysis was used to compute the approximate flexural capacity. For 

determining the flexural capacity, assumptions regarding the possible yield line failures 

need to be made. Failure is likely to occur by four diagonal yield lines or by a simple 

yield line at the face of the slab. For the four diagonal yield line mechanism, by using 

virtual work (Stein et al., 2007), the force that produces flexural failure is 

]kN[
8

1

s
f

cl

ml
V


  .                                       (4.1) 

For the simple yield line at the face of column, the force that produces flexural failure is                  

 ]kN[

)
2

()(

8

1
1

s
f

c
l

cl

ml
V



                                       (4.2) 

where m is the bending moment per unit slab width at yielding of the top flexural 

reinforcement, ls is dimension of the slab specimen (2750 mm), l1 is the span between 

the supports (loading points, 2440 mm) and c  is the column dimension (320 mm). 

Since the simple yield line gives less capacity, it is conservative to accept the yield 

moment for the first test series. 

The layout and the reinforcement details (bottom flexural reinforcement, top flexural 

reinforcement and section) for Slab 1, 2 and 3 are shown in Figures 4.12, 4.13 and 4.14 

respectively.  



Nominal section (mm×mm) 25×2.0 25×1.6 25×1.2 

Classification by  fu / fy A A A 

Classification by εu (%) A B C 
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Figure 4.12: Layout and reinforcement details for Slab 1. 
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Figure 4.13: Layout and reinforcement details for Slab 2. 
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Figure 4.14: Layout and reinforcement details for Slab 3. 

 

4.3.4 Strains in Shear Reinforcement        

Electrical resistance strain gauges were used to measure the strain in the shear 

reinforcement in the vertical legs.  Pairs of strain gauges were positioned in the mid 

height on opposite faces of a number of legs at sections away from perforations. To 

avoid difficulties during placing the gauges in perforated sections and effects of 

variations of strain across the width near perforations, the gauges were positioned away 

from the perforations.  Figure 4.15 shows the position of strain gauges in the shear 

reinforcement for Slabs 2 and 3 respectively. In each pair, gauges were on opposite 

faces of the leg, so the average of two measurements should give the mean axial strain 

Detail 1

B

B

C

C

D

D

A A

3
0
O

1
2
 @

1
2
0
 (

U
)

6
O

2
0
 @

9
0
 (

T
2
)

2
4
O

1
6
 @

9
0
 (

U
)

3
0
O

1
2
 @

1
2
0
 (

U
) 2750 mm

S
ee

 d
et

ai
l 

1

Top layer

A A

B

B

C

C

D

D

Bottom layer

 

2
0
0
 m

m
 

320*320 STUB COLUMN

Ø 16 @ 90mm

Ø 16 @ 180mm

U Bars Ø 12U Bars Ø 12

Section B-B

355360

2
0
0
 m

m
 

320*320 STUB COLUMN

Ø 16 @ 90mm

Ø 16 @ 180mm

U Bars Ø 12U Bars Ø 12

Section C-C

355360

2
0
0
 m

m
 

320*320 STUB COLUMN

Ø 16 @ 90mm

Ø 16 @ 180mm

U Bars Ø 12U Bars Ø 12

Section D-D

355360

2
0
0
 m

m
 

320*320 STUB COLUMN

Ø 20 @ 115mm

Ø 16 @ 200mm

U Bars Ø 12U Bars Ø 12
355360

Section A-A



 105 

which is free from any effects of bending.  The measured strain, 1.25Esε, is used in the 

estimation of the mean stress at perforated sections where Es is the elastic modulus of 

the steel, and is assumed to be 200 kN/mm
2
 and   is the average measured strain. 

              

1
1
/1

2

1
5
/1

6

2
1
/2

2

2
3
/2

4

1
3
/1

4

1
9
/2

0

1
7
/1

8

9
/1

0

7
/8

5
/63
/4

1
/2

9
/1

0

1
1
/1

21
3
/1

4 1
5
/1

6

3
/4

1
/2

7
/8

5
/6 1
7
/1

8

1
9
/2

0

Slab 2 Slab 3  

Figure 4.15: Position of strain gauges in the shear reinforcement layers for Slab 2 and 

Slab 3. 

 

4.3.5 Testing  

Load was applied gradually and continuously however, Slab 1 was unloaded and 

reloaded at a load of 500 kN and Slabs 2 and 3 were unloaded and reloaded at 600 kN. 

The total durations of the experiments were about 45 minutes for Slab 1 and 65 and 95 

minutes for Slabs 2 and 3 respectively.  

 

4.3.6 Test results 

Test results of slabs loaded concentrically are summarised in this section. Load 

deformation characteristics, strain gauge measurements on shear reinforcement, and 

crack patterns are discussed here.  
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4.3.6.1 Load deformation 

The average displacement was calculated by subtracting the average displacements of 

linear potentiometers 1, 2, 3, 4, 5, 6, 7, and 8 from displacement linear potentiometer 11 

(as previously shown in Figure 4.11). Applied load versus average deflection plots for 

the test specimens are given in Figure 4.16 to Figure 4.18. The solid blue lines, shown 

in Figures 4.16, 4.17 and 4.18 are the results of linear elastic analysis using gross 

section properties and measured material properties of the tested slabs which could also 

be classified as initial tangents. Linear elastic analysis was performed using ABAQUS 

(2008). 

 

Figure 4.16: Load deformation behaviour of control specimen, Slab 1. 

 

 

Figure 4.17: Load deformation behaviour of Slab 2. 
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Figure 4.18: Load deformation behaviour of Slab 3. 

 

As shown in Figures 4.16, 4.17 and 4.18 until first cracking, the slopes of the measured 

responses were in a good agreement with the elastic response. Due to difficulties in 

visually determining first cracking in the tested specimens, the point where the load-

deflection response deviated from the initial elastic response gives an indication of the 

point of first cracking. 

 

 

Figure 4.19: Comparison of load displacement behaviour of all tested slabs.  
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Load displacement behaviour of tested specimens shown in Figure 4.19 demonstrates 

that the use of shear reinforcement has negligible effect on initial stiffness and cracked 

stiffness. Slab 3 showed slightly higher crack stiffness compared to Slabs 1 and 2. This 

agrees with research results reported by Polak (1998b). They showed that for a given 

reinforcing ratio, the diameter of the reinforcing bars as well as spacing significantly 

affects the stiffness of the reinforced concrete member. Slabs with lower diameter of 

bars showed higher crack stiffness in their experiments. Table 4.7 summarizes the 

results of load-displacement measurements for all specimens. 

 

Table 4.7: Properties of the tested slabs  
 

 

Slab 

no. 

 

 

fcu 

(MPa) 

 

 

  

(%) 

LSF shear 

reinforcement 

 

 

Self weight 

(kN) 

 

 

Pu 

(kN) 

 

 

Vtest 
* 

(kN) 

 

 

Ultimate 

deflection (mm) 

First 

layer 

Second 

layer 

Slab 1 34.7 1.61 
No shear 

reinforcement 
37 627 664 12.36 

Slab 2 34.7 1.61 16 24 37 932 969 21.6 

Slab 3 34.7 1.57 20 28 37 1075 1112 31.3 

* Vtest=Ultimate applied load to slab (Pu) + self-weight of the slab 

 

4.3.6.2 Energy absorption capacity 

The energy absorption capacity, U, of slab column connection referred to the area under 

the load-deflection curve of the slab (Figures 4.20 to 4.22) can be calculated by: 






u

0

PdU           (4.3) 

where P is the load applied and Δ is the displacement of the slab under loading. Table 

4.8 shows the calculated values for energy absorption capacity parameters for the tested 

slab herein. The energy absorption capacities of Slab 2 and Slab 3 were 245 and 495 

percents higher than the energy absorption capacity of control specimen (Slab 1). This 

was expected since Slab 2 and Slab 3 demonstrated more ductile behaviour compared to 
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control slab. Slab 3 had 202% higher energy absorptions compared to Slab 2 due to the 

higher amount of shear reinforcement. 

Table 4.8: Calculated values for energy absorption capacity parameters for all slabs 

tested. 

Test Energy absorption capacity (kN.mm) 

Slab 1 4853.3 

Slab 2 11833 

Slab 3 23902 

 

4.3.6.3 Test Observations 

Radial cracks formed in the middle of the slabs were observed to extend gradually 

toward the edges of slab. This was followed by the developments of circumferential 

cracks prior to punching shear failure. Typical development of cracking on the top face 

of the slab is shown in Figure 4.20. 

 

Figure 4.20: Typical development of cracking on the top face of the slab. 

 

 4.3.6.4 Strain Measurements in Shear Reinforcement        

The details of measured load/strain relationships of testes slabs are given in Appendix 

C. Figures 4.21, 4.22 and 4.23 show the load/average strain relationship for typical legs 

of the shear reinforcement.   
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The gauges were deliberately positioned away from perforations as it was difficult to 

place them at perforated sections. By positioning the gauges away from the 

perforations, the effects of variations of strain across the width near perforations became 

negligible. The mean stresses at perforated sections can be estimated from the measured 

strains as 1.25Esε where Es is the elastic modulus of the steel, assumed as 200 kN/mm
2
, 

and ε is the average measured strain.  

The applied load versus strain measurements with the their positions in the Slab 3 are  

shown in Figure 4.23 while for Slab 2, only the measured load-average strain are given 

on specific incremental load.  In some cases both gauges in a pair failed to function due 

to damage during casting. The lines are drawn from readings at chosen load stages in 

200 kN increments for Slabs 2 and 3. Prior to the onset of failure, they are continued up 

to the last stages at which stable readings were obtained. In Appendix C, the complete 

load/strain relationships for all gauges of each experiment are given. 

The inner two layers of shear reinforcement developed strains distinctly higher than 

those in the outer layers in both the slabs examined here. Table 4.9 summarises the 

results for the inner layers at the last load increment for which strains are plotted.  

Table 4.9: Strains of inner layers of shear reinforcement 

Slab no. Load (kN) V/Vu Microstrain Stress (MPa) 

Layer 1 Layer 2 Layer 1 Layer 2 

Slab 2 900 

 

 

 

0.97 1462 

(3589) 

991 

1217 

1303 

1495 

366 

- 

248 

304 

326 

375 

Slab3 1000 0.93 805 

1322 

1553 

730 

1040 

1122 

201 

330 

388 

183 

260 

280 

Note 1) Strains given in parenthesis are values from single gauges and not means from 

pairs of measurements. Due to the unknown influence of bending in these cases, no 

stress values are given. 

2) Stresses are values calculated as 1.25Esε (see text), i.e. for the net widths of the 

perforated sections.  
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From the five other cases listed above, the mean stress at 93% to 97% of ultimate load was 

297 N/mm2, with the means in the separate cases varying from 241 to 313 N/mm2. The 

actual stresses at the most stressed levels of the legs would have been somewhat higher, due 

to bond between the locations of the gauges and those of maximum stresses. The bond was 

probably not very high as the strips are of smooth steel, thus the stresses above are probably 

consistent with EC2's unfactored limit stress of 334 N/mm2
 for slabs of the depth in 

question.  

 

Figure 4.21: Load – average strain behaviour of shear reinforcement of Slab 3. 

 

 

Figure 4.22: Strain gauge measurements of Slab 2. 
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Figure 4.23: Strain gauge measurements of Slab 3. 

 

Figures 4.22 and 4.23 show the applied load versus strain measurements of the LSF 

shear reinforcement from column face. In all two slabs the inner two layers of shear 

reinforcement developed strains distinctly higher than those in the outer layers and the 

Table 4.9 summarises the results for the inner layers at the last loads for which strains 

are plotted. 

 

4.4 Comparisons with Code Predictions 

In flat slab-column connections, the prediction of ultimate capacity is defined as the 

minimum of the flexural and the punching shear capacity of the slab.  The flexural 

strength of the slab was determined using BS8110 based on the yield line method. 
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reported here. The calculated unfactored flexural capacity of Slabs 1 and 2 are 1350 kN 

while for Slab 3 is 1200 kN. 

The partial safety factors or strength reduction factors are set equal to 1.0 for calculation 

of the shear capacity of the slabs according to BS8110, ACI 318-08 and EC2. The 

actual concrete compressive strength was taken from the control specimens and was 

used in the calculation of the punching shear capacity in the code equation. The 

prediction of the codes are summarised in Tables 4.10, 4.12 and 4.13. The yield strength 

of the steel strip was taken as 500 N/mm
2 

as reported by the manufacturer. 

 

4.4.1 ACI Prediction 

It is worth mentioning that the shear reinforcement distribution did not meet the ACI 

code requirement totally, as for Slab 2 and 3, the shear reinforcement was spaced more 

than 0.5d and the first layer of the shear reinforcement was more than 0.5d away from 

column face for Slab 2. For Slab 3 the distance between the column face and the first 

line of LSF shear reinforcement was 60 mm which is in accordance with the ACI 318-

08 design method. Considering the small thickness of LSF shear reinforcement, the 

contribution of LSF to the punching shear capacity was limited only for the first 

perimeter according to ACI 318-08 design method. 

Failure loads and failure modes of experimental results using Code equations in ACI 

318-08 are summarized in Table 4.10 for comparison. ACI 318-08 underestimates the 

punching shear capacity of slabs with shear reinforcement as it is clearly summarized in 

Table 4.10. The reason for this underestimation is the concrete contribution which was 

taken as 50% in the calculation of punching shear capacity where as full contribution of 

shear reinforcement legs within the perimeter was taken into consideration.  

In the slabs tested with LSF shear reinforcement, the shear reinforcement contribution is 

less than half the concrete contribution.  Hence, the total shear capacity of Slab 2, with 

the presence of LSF reinforcement, is calculated to be less than of shear capacity of a 

similar slab without LSF type of shear reinforcement, as shown in columns 2 and 4 of 

Table 4.10.  The outcome of this approach obviously leads to very conservative results.  
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Table 4.10: Comparison of actual and predicted strength and modes of failures of tested 

slabs using ACI 318-08 

 

Slab 

Shear reinf. 

region within 

Outside Vcalc
(5)

 Vtest 

calc

test

V

V
 Mode of failure 

 
Vn

(1) 

(kN) 

Vmax
(2)                           

(kN) 

Vn
(3) 

(kN) 

Vc
(4) 

(kN) 

 

(kN) 

 

(kN) 

 

(kN) 

predicted actual 

Slab 1 - - 534.5 - 534.5 664 1.24 punching punching 

Slab 2 459 810.0 534.5 1058 459 969 2.11 within 
flexural + 

punching. 

Slab 3 674 830.0 548.0 1235 674 1112 1.65 within 
flexural + 

punching. 

(1) Vn = Vc + Vs, Vc = dbf oc167.0 , b c do  4( )  

(2) dbfV ocmax 5.0   

(3) ,cn VV   ,33.0 occ dbfV   )(4o dcb   (considering similar slab without shear 

reinforcement) 

(4) ,33.0 occ dbfV   ( considering perimeter chamfered d/2 from the outermost shear 

reinforcement) 

(5) 










)4(

c

)2(

max

)1(

n

calc

V

V

V

V  , while )3(

nV  

 

 

4.4.2 BS 8110 and EC 2 Predictions 

BS 8110 (1997) and EC2 (2004) require the provision of at least two layers of shear 

reinforcement within the control perimeter from the loaded area. The BS and EC design 

methods limit the spacing of the shear reinforcement not to exceed 0.75d. Slabs 2 and 3 

were detailed in accordance with the BS 8110 (1997) design method. Tables 4.11 and 

4.12 compare the predictions by BS 8110 and EC2 with the experimental results 

respectively. 
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Although the punching shear strength of the slab without shear reinforcement (Slab 1) is 

equal to the resistance predicted by BS, the ultimate resistance of the slabs with LSF 

shear reinforcements (Slab 2 and Slab 3) are lower than the predictions by BS.  Due to 

the limited experiments on slabs with LSF shear reinforcement, it can be concluded that 

the BS 8110 method for slabs with stirrups cannot be applied directly to the slabs with 

LSF unless necessary modifications are made.  

As shown in Table 4.12, the predictions by the EC 2 design method are not exactly the 

same as the experiments. This variation can be due to the detailing of the experiments in 

accordance with BS design method. Also, it should be noticed that EC 2 does not 

consider the grid type arrangement of shear reinforcement in the code and therefore 

more tests on grid type arrangement will be useful in order to adopt this arrangement in 

the code. 

 

Table 4.11: Comparison of actual and predicted strength and modes of failures of tested 

slabs using BS8110 (1997) 

 

SLAB 

Within shear 

reinf. region 

Without or 

outside shear 

reinf. region 

 

)4(

maxV  
)5(

testV  )6(

calcV  
calc

test

V

V

 

Mode of failure 

 

)1(

kV  

(kN) 

Vmax

( )2

 

(kN) 

)3(

ckV
 

(kN) 
(kN) (kN) (kN)  pred. actual 

Slab 1 - - 665 1205 664 665 1.00 Punching 

Slab 2 1087 1330 1263 1205 969 1087 0.89 within Flexural + 

Punching 

Slab 3 1240 1352 1361 1229 1112 1240 0.90 within Flexural + 

Punching. 

 

(1) Vk = Asv fyv + vck Ud, vck = 0.79 (100As/bdfcu)
1/3

 (400/deff)
1/4

, U=4c + 12d 

considering that shear reinforcement within first perimeter 1.5d from column face. 

(2) Vmax = 2Vc considering a similar slab without shear reinforcement at critical section 

1.5d from column face. 

(3) Vck = vckUd, using square perimeter 1.5d from the last layer or using U=4c+12d for 

Slab 1 
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“Contd” 

(4) Maximum shear capacity at column face, shear stress less than 71.48.0 cu f

N/mm
2
 or 5 N/mm

2 

(5) Vtest = ultimate load applied to slab + self weight of slab 

(6) Vcalc is the lesser of )1(

kV , 
)2(

maxV , 
)3(

ckV , 
)4(

ckV , Vflex, Vflex is the flexural capacity based 

on yield line method by using BS8110 

 

 

Table 4.12: Comparison of actual and predicted strength and modes of failures of tested 

slabs using EC2 (2004) 

 

Slab 

Within shear 

rein. region 

Without 

shear 

rein. 

 

)4(

calcV  
)5(

testV  
calc

test

V

V
 Mode of failure 

 

)1(

csRd,V

(kN) 

Vmax

( )2

 

(kN) 

)3(

cRd,V
 

(kN) 
(kN) (kN)  pred. Actual 

Slab 1 - - 713 713 664 0.93 punching 

Slab 2 824 1546 1366 824 969 1.18 within flexural + 

punching 

Slab3 1185 1546 1780 1185 1112 0.94 within flexural + 

punching 

 

(1) Vk = Asv fyv + vRd,c  Ud, vRd,c, where vRd,c  
3/1)100(18.0 ckf   , U=4(c + d), 

considering that shear reinforcement within first perimeter 2.0d from column face 

(2) Maximum shear stress at the column face vmax = 0.5v.fcd, where v=0.6[1-fck/250]  

(3) Vck = vRd1Ud, using square perimeter 1.5d from the last layer or using U= 4(c+d) 

for Slab 1 

(4) Vcalc is the lesser of )1(

csRd,V , Vmax

( )2 , )3(

cRd,V  

(5) Vtest = ultimate load applied to slab + self weight of slab  
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4.5 Discussions and Conclusions  

The samples of LSF shear reinforcement tested under unbent conditions demonstrated 

that the imperforated strip were equivalent to Class C reinforcement; however, the 

effects of perforation were to reduce the thicker sizes to a thickness of 1.6 mm for Class 

B and 2.0 mm for Class A. For the strip with 1.2 mm thickness, the LSF was 

categorized to type C.  It is worth noting that above statement is based on very limited 

tests. 

Observations from the test slabs demonstrated that the rupture of the LSF leg occurred 

at perforated section closed to bend therefore, perforations at the bend region of LSF 

strips during manufacturing process is not recommended.    

Out of all the slabs tested, the LSF type of shear reinforcement was found to be very 

effective against punching shear. Increases of strength at internal columns reached about 

46% and 67% for slabs 2 and 3 respectively as compared with slab 1 which was left 

with no shear reinforcement (control specimen). Also increases of 74 % and 152 % in 

ultimate displacements were achieved for Slab 2 and Slab 3 compared to the control 

slab (Slab 1) respectively. Slabs with LSF shear reinforcement showed higher energy 

absorption capacities compared to the control specimen. The effective depth and ratio of 

flexural reinforcement between these slabs were very small and were negligible. 

It is observed that the ultimate strength of the internal slab without shear reinforcement 

(Slab 1) is equal to the resistance predicted by BS8110's expression for characteristic 

punching strength. However, the experimental strengths of the two slabs with LSF shear 

reinforcement are below the calculated values. Therefore, the BS8110 design method 

for slabs with stirrups as shear reinforcement needs necessary modifications in order to 

be directly applicable to the slabs with LSF reinforcement. Since the test slabs were 

detailed in accordance with BS8110, the analysis might therefore not be in a good 

agreement with EC2 and ACI 318-08. It was also shown that the predictions of 

punching shear capacity of Slabs 2 and 3 by ACI were very conservative since detailing 

of the LSF shear reinforcement was not in accordance to the ACI design method.  

EC 2-2004 suggests the usage of lower stresses for shear reinforcement in thin slabs 

which is in good agreement with the measurement of strains of LSF strips in the tested 

slabs. Although the predictions of punching shear capacities obtained by EC2 were 
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satisfactory, EC2 does not consider the grid-type arrangement for shear reinforcement 

and therefore further experiments is essential to adopt this arrangement in the code.  

 Both types of laps for the LSF shear reinforcement used in the tests appeared to behave 

satisfactorily.  
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Chapter 5 

NUMERICAL MODELING 

 

 

5.1 Introduction 

This chapter is a study on the numerical modelling on punching shear behaviour of slab 

column connections. The finite element analysis was carried out using ABAQUS, a 

general purpose FE package. This chapter provides further insights into the 

experimental results in Chapter 4 to evaluate the capability of the corresponding 

theoretical predictions and to support the parametric studies in Chapter 6. The material 

properties and nonlinear solutions were implemented in the FE model and are therefore 

discussed here in detail for completeness and are not the major focus of the thesis. A 

sensitivity study based on an FE model of Slab 1 (Chapter 4) is reported, which 

examines the model’s dependence on the variation of user defined parameters. 

Following a detailed understanding of the advantages and the limitations of the package, 

experiments in Chapter 3 and experiments carried out by Li (1997) were re-analyzed. 

Finally, conclusions were drawn regarding the applicability and limitations of the 

current model in the analysis of perforated LSF strips.  

 

5.2 Material properties  

5.2.1 “Concrete smeared cracking” vs. “Concrete damage plasticity” 

In this section different constitutive material models for concrete are discussed. 

ABAQUS offers three material models for modelling the nonlinear behaviour of 

concrete. These are namely: concrete smeared cracking, brittle cracking and concrete 

damage plasticity. Brittle cracking can only be used in dynamic analysis in 

ABAQUS/Explicit therefore is not addressed in this thesis. Concrete smeared cracking 

and concrete damage plasticity, were evaluated to verify their capabilities in modelling 

the slabs tested herein. For this purpose, Slab 1 was used to perform the evaluation. The 

disadvantages of smeared cracking model are also briefly explained. The concrete 

damage plasticity model is described in detail in Appendix D which was implemented 

in the finite element program used in this thesis. Further details on constitutive material 
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models for concrete can be found in Karihaloo (2003), Chen (1982), Kupfer et al., 

(1969), Malm (2006) and Malm (2009). 

As briefly discussed in Appendix D, Concrete smeared cracking uses the associated 

flow rule which overestimates the volumetric plastic strain due to simplification of the 

compressive behaviour. The model uses a fixed angle crack model to detect the cracks 

results in shear stress locking problem. This can lead to convergence problems and 

causes the analysis to stop in early loading due to numerical instability.  

 

Figure 5.1: Comparison of load-deflection behaviour of Slab 1 based on smeared 

cracking and damage plasticity models. 

 

Figure 5.1 shows that the concrete damage plasticity model is able to predict the 

behaviour of Slab 1 up to failure while smeared cracking model stops in early stage of 

loading due to numerical stability problems.  

 

5.2.2 Concrete Damage Plasticity 

Plasticity theory is a mathematical representation of the mechanical behaviour of solids. 

It can be used for translation of physical reality for ductile materials such as metals or a 

model that approximates the behaviour under certain circumstances for brittle materials 

such as concrete. In problems where the tension, with the crack development, plays a 

significant role, such as shear failure in reinforced concrete structures, the usual 

procedure is to apply plasticity theory in the compression zone and treat the zones in 

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

L
o
a
d

 (
k

N
)

Deflection (mm)

Test- slab 1

Plasticity damage concrete

Concrete smeared cracking

stopped due to 

numerical stability



 121 

which at least one principal stress is tensile by one of several versions of fracture 

mechanics (Lubliner et al., 1989).  

Kupfer et al., (1969) carried out tests on biaxial loading of concrete specimens 

(200×200×50 mm). They found that the various critical surfaces in stress space are 

usually similar. Concrete can show a significant volume change when subjected to 

severe inelastic loading. Figure 5.2 (a) shows that the increase in volume can be more 

than twice as large for the hydrostatic compressive stress state σ1/σ2= -1/-1. The points 

marked in stress-volumetric strain diagram (Figure 5.2 (a)) represent the limit of 

elasticity, the point of inflection in the volumetric strain, the ‘bendover’ point 

corresponding to the onset of instability or localisation of deformation and the ultimate 

load. The critical stress surfaces related to these material states are shown in Figure 5.2 

(b) (Kupfer et al., 1969). The same results were not found for concrete under triaxial 

compression tests specially for the case of hydrostatic pressure; under these condition it 

was found that the hardening goes on indefinitely (Lubliner et al., 1989). This means 

that while the yield surface is closed, the failure surface is open in the direction of 

hydrostatic pressure.  

 

(a)                                                                     (b) 

Figure 5.2: (a) Volumetric strain of concrete under biaxial compression, (b) typical 

loading curves of concrete subjected to biaxial stresses. (Adopted from Kupfer et al., 

1969). 

 

Since the critical surfaces are similar in the biaxial behaviour of concrete, a yield 

function is used in plasticity based models. The size of yield function is based on the 
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material properties defined for the uniaxial behaviour of concrete. The yield surface is 

defined as the material no longer acts elastic and the failure surface is based on the 

ultimate strengths. This means that in the biaxial tensile meridian of the yield surface is 

equal to the failure surface. In compression, the material is usually assumed to be 

initially elastic up to 30-60 % of the compressive strength (Chen, 1982). There are 

several failure (or yield) criteria developed for concrete materials (reported by Lubliner 

et al., 1989) such as Drucker-Prager and Mohr-Coulomb criteria. For steel usually the 

Von Mises failure criteria is used (further details can be obtained in ABAQUS user’s 

manual, 2008). According to Lubliner et al., (1989), these criteria do not represent 

experimental results for concrete precisely unless they are suitably modified. For 

instance, one modification is to use a combination of the Mohr-Coulomb and Drucker-

Prager yield functions, where the Drucker-Prager is used for biaxial compression and 

the Mohr-Coulomb is used otherwise. In Figure 5.3, the Drucker-Prager and concrete 

failure surfaces in three dimension are shown schematically.   

 

 

The biaxial yield function used in concrete damage plasticity was developed by 

Lubliner et al., (1989) which also includes the modifications that was proposed by Lee 

and Fenves (1998) (cited in ABAQUS Manual). It is vital to understand the constitutive 

parameters which describe the material properties in finite element modelling to obtain 

 

Figure 5.3: Drucker-prager failure surface and concrete triaxial failure space. 
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authentic results. Therefore, brief descriptions of “failure criteria of concrete”, “flow 

rule” and “dilatancy in the concrete damages plasticity model” are given in Appendix D.  

A parametric study for dilation angle is carried out in order to determine the optimised 

value to be implemented in the numerical analysis. Dilation angle measures the 

inclination of the plastic potential which reaches for high confining pressure. Low 

values of the dilation angle produce brittle behaviour while higher values produce more 

ductile behaviour. A parametric study on dilation angle for Slab 1 is presented in Figure 

5.4. Figure 5.4 shows that the difference in the behaviour of the slab is fairly small 

when the dilation angle is between 20º to 40º. It is noticed that the difference is 

insignificant when the dilation angle is between 30º to 40º. In this thesis a dilation angle 

of 31º was used. Malm (2009) also made the same conclusion on dilation angle for the 

analysis of a reinforced concrete beam subjected to four-point bending test. He used a 

dilation angle of 35º and 38º in his analysis. Jankowiak and Lodygowski (2005) 

presented a work on identification of dilation angle for the use in ABAQUS. They 

determined a dilation angle of 38º based on minimisation of the error of the biaxial 

failure envelope of Kupfer et al., (1969) and the yield surface in ABAQUS.   

 

Figure 5.4: Parametric study on the effect of dilation angle on the response for Slab 1. 
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5.2.3 Compressive Behaviour 

In this study the uniaxial tensile and compressive responses of the concrete are used 

along with the concept of a damage plasticity model. The uniaxial compressive concrete 

model from Eurocode 2 (EC-2, 2004) was adopted in this thesis (Figure 5.5). The stress-

strain relationship is expressed as follows 






)2(1

2

cmc





K

K
f

  

           (5.1) 

where η=εc/εc1, εc=0.0007fcm
0.31

<0.0028, K=22[fcm/10]
0.3 

and εcu1=0.0035 for 

fcm<58MPa.  

 

Figure 5.5: Stress-strain compression curve for concrete 

 

In this thesis, the concrete stress strain curve was adjusted to continue beyond the 

crushing point to avoid stopping the analysis.  

 

5.2.4 Tensile Behaviour 

Under uniaxial tension the stress strain response follows a linear elastic relationship 

until the value of the failure stress, ft, is reached and this is shown in Figure 5.6. The 

failure stress corresponds to the start of micro-cracking in the concrete material. A 

softening stress-strain response is used beyond the failure stress to represent the 

formation of macro cracks, which induces strain localization in the concrete structure. 

ABAQUS provides two approaches to describe the softening behaviour of cracked 
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concrete. The first method is based on strength criteria whereas the other approach 

adopts fracture energy cracking criteria. The approach based on the stress-strain 

relationship will introduce mesh sensitivity into the results if significant regions of the 

model do not contain reinforcement, (ABAQUS user’s manual, 2008). It means that the 

analysis will not converge to a unique solution.  

 

 

Figure 5.6: Crack opening with fracture energy (adopted from Malm 2006). 

 

The fracture energy criterion which was developed by Hillerborg et al., (1976) 

overcomes the mesh sensitivity issues for the former approach. The crack behaviour of 

concrete was described based on the fracture energy. The fracture energy, Gf, is a 

material parameter that describes the amount of energy required to open a unit area of a 

crack. The area under stress-displacement curve (Figure 5.6) corresponds to the fracture 

energy.  

Three different stress-displacement curves can be used to model tension softening. They 

are linear, bilinear and exponential which are based on analytical expressions derived 

from curve-fitting of experimental test data. The simplest way to introduce crack is to 

use linear approximation. The crack opening corresponding to a stress free crack with 

linear tension stiffening can be calculated as shown in the Equation 5.2.                           
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Linear and bilinear tension softening models are used extensively in modelling plain 

concrete however, Malm (2006) reported that according to Karihaloo (2003) the 

exponential tension softening model is by far the best and most accurate model. Figure 

5.7 illustrates the bilinear and exponential tension softening models.  

 

(a)                                                           (b) 

Figure 5.7: (a) Bilinear and (b) exponential tension softening model. 

 

The following equations were used to developed exponential tension softening model: 
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where, ω is the crack opening displacement and ωc is the crack opening displacement at 

which stress can no longer be transferred (ωc=5.14 Gf /ft for normal weight concrete). c1 

is a material constant and is 3.0 for normal weight concrete. c2 is a material constant and 

is 6.93 for normal weight concrete. 

The fracture energy of concrete, Gf, is calculated from Equation 5.5 suggested by MC90 

(1991) is used to estimate Gf in this chapter.  
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 where 
8

0053.0
0024.0

95.0

max
f0

d
G  , dmax 

is the maximum aggregate size, fcm is the 

mean concrete compressive strength, and fcm0=10MPa. 

 

5.3 Nonlinear solution 

In this section, the solutions for numerical instability are discussed. The Newton-

Raphson technique, given in Appendix E, is implemented for the FE analysis in 

ABAQUS.  

 

5.3.1 Numerical Instability 

Concrete material models which develop strain softening and stiffness degradation, 

often experience severe convergence problems. To avoid some of these convergence 

difficulties, viscoplastic regularisation of the constitutive equation could be used.  

Another way of reducing convergence difficulties is the use of artificial damping in 

combination with concrete damaged plasticity model. This may introduce large artificial 

damping forces on elements undergoing severe damage since ABAQUS calculates the 

damping stress based on the undamaged elastic stiffness (ABAQUS, User’s Manual 

2008). Another technique is to change the convergence criteria and allow a larger 

number of iterations before convergence is checked. The other option also suggested by 

Malm and Holmgren, (2008) is the possibility of converting a static problem to a quasi-

static problem to use an explicit solution. Malm (2006) also suggested reducing the 

tolerances to 10% of default value and increasing the number of iterations between to 

two and four times of default value, before the rate of convergence is checked.  

Analysis presented in this thesis, are performed with an implicit solution scheme. Also 

the simulations performed in ABAQUS had a trend to interrupt due to convergence 

difficulties. The most effective method to continue beyond this in the analysis suggested 

by the author was to increase the number of iterations. This will lead in small time 

increments when reaching a point with convergence difficulties and thereby increasing 

the time. This would be done by addition of Volume-proportional damping to the model 

to stabilize the unstable static problem in ABAQUS/Standard (ABAQUS user’s manual, 

2008). To obtain an optimum value for the damping factor requires performing post-
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analysis comparison of the energy dissipated by viscous damping (ALLSD) to the total 

strain energy (ALLIE) (ABAQUS user’s manual, 2008).  

 

5.4 Slab modelling techniques 

Reinforced concrete slabs can be modelled by layered or discrete modelling techniques. 

In a layered approach the concrete section is divided into a set of layers by employing 

layered shell elements, whereas the reinforcement is smeared into a layer between 

concrete layers. However, shell elements in ABAQUS cannot model a punching shear 

failure since this type of elements treat the shear based on computing the elastic shear 

and superimposing them onto the flexural deformations (ABAQUS Theory manual). 

The total transverse deformation is essentially flexural deformation which incorporates 

the transverse shear deformation. This leads to the total deformations reasonably 

approaching the actual deformation, indicating predictions of the load displacement 

curves of the experiments. Although shell elements are able to predict the structural 

responses reasonably well, it is not possible to model the shear cracking. Therefore, a do 

you mean plate as in a particular FE element or do you mean plate as in slab? plate 

discretised with shell element cannot fail in shear. This allowed the total deformations 

to approach the actual deformation accurately, representing the predictions of the load 

displacement curves of the experiments. 

In the discrete approach which was adopted in this thesis, concrete is modelled by three 

dimensional solid elements while the reinforcement is modelled by beam, truss or shell 

elements (beam elements are used to model the flexural reinforcement and shell 

elements are used to model the LSF reinforcement strips).  The concrete and 

reinforcement can be connected by two mehods. In the first method, a bond element is 

inserted at the interface to connect the corresponding degrees of freedom for both 

concrete and reinforcement nodes, while the interaction response can be modelled. In 

the second method a perfect bond is assumed between concrete and reinforcement by 

embedding the reinforcement to the concrete. The later method was adopted in this 

study since it is computationally more efficient when used with a damaged plasticity 

model. 
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5.5 Solid element 

Wide ranges of three-dimensional (3D) continuum elements are offered by ABAQUS. 

For instance, the ABAQUS/Standard solid element library includes first-order (linear) 

interpolation elements and second-order (quadratic) interpolation elements in one, two, 

or three dimensions. They can be used in almost any linear/nonlinear stress-

displacement analysis and to model nearly any shape. They are more accurate, provided 

they are not distorted, particularly for hexahedral elements. 

 

5.6 Investigation of model parameters 

After identifying the material models and analysis techniques as well as choosing an 

appropriate meshing element, the various modelling parameters were investigated next. 

For this purpose, a sensitivity study which investigates the effect of user-defined 

parameters values on the FE structural response was performed. Mesh sensitivity was 

carried out to define the appropriate mesh size. Then, the effect of tension stiffening was 

investigated in order to accurately predict the behaviour of test slabs. 

 

5.6.1 Description of the model 

Depending on the geometry of the slabs, symmetric in one axis or symmetric in two 

axes (bisymmetric or mono-symmetric), either one-quarter or one-half of the slabs was 

modelled. The loads were applied through the periphery of the slabs.  

 

Figure 5.8: (a) Load applied through the steel loading plates to the slab, and (b) Load 

applied as pressure to the surface of the slab. 
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As shown in Figure 5.8, the load can be applied by two methods in the FE analysis: (a) 

the load can be applied on steel plates which are tied to the slab top surface, and (b) the 

load can be applied directly on the surface of the slab as a pressure force on the surface. 

It was found that the behaviour of slab is nearly the same for both methods however 

introducing the plates can cause significant numerical convergence problems in some 

slabs. Therefore method (b) in which the load is applied directly to the surface of the 

slab was adopted in this study. 

 

5.6.2 Mesh Sensitivity 

Since punching shear failure is characterized by crack localisation in certain areas, the 

mesh density is a key factor. Therefore, a mesh sensitivity analysis was carried out in 

this study. Also the sensitivity to the mesh size is linked to the tension stiffening option. 

Hence, the sensitivity of the FE model to mesh size should be seen in view of the 

tension stiffening values used. As discussed in section 5.2.4, tension stiffening in 

ABAQUS can be introduced by the strain approach and the displacement approach 

(fracture energy approach). In strain approach, for the same tension stiffening, the 

response for the denser mesh becomes softer.  

For this purpose, Slab 1 with different mesh sizes was considered here. The nominal 

mesh sizes were 160 mm, 100 mm, 70 mm, 50 mm and 25 mm. For every case, the 

aspect ratio was kept to one as far as possible. As shown in Figure 5.9, the mesh is 

assumed to be converged when an increase in mesh density had negligible effect on the 

results obtained. For mesh sensitivity, a linear displacement-type, tension stiffening 

curve based on fracture energy which defines the ultimate displacement value u0 at the 

crack when the tensile strength drops to zero. A typical displacement value of u0=0.15 

mm yielded different responses for the meshes examined here.  

Based on the results shown in Figure 5.9, the convergence study implies that the 50 mm 

mesh size converges to both 25 mm and 75 mm mesh sizes. A mesh size of 160 mm 

appears to have unstable behaviour after first cracking. Therefore, a mesh size of 50 mm 

was adopted for the rest of the analysis. 
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Figure 5.9: Mesh sensitivity for Slab 1. 

 

5.6.3 Tensile Strain Sensitivity 

Tension stiffening can be used to describe the stiffness reduction behaviour of concrete 

after cracking. It accounts for the contribution of concrete in handling the tensile stress 

in the post-cracking stage. For reinforced concrete members, the bond interaction 

contributes to the stiffening in the post-cracking behaviour. It is well established that the 

tension stiffening effect of reinforced concrete is dependent on the percentage of steel, 

diameter of steel reinforcement, distribution of reinforcement and bond stresses. For 

over-reinforced structural elements, the ultimate load capacity prediction is not affected 

by the tension stiffening since the ultimate capacity could be reached prior to yielding of 

the reinforcement. 

The same value of the strain-type tension stiffening is expected to yield softer responses 

for denser meshes and stiffer responses for coarser meshes. This could be roughly 

explained by the definition of the cracking strain as Lu /0 . If   is the tensile strain 

at which concrete loses its tensile strength and uo is the opening of crack at which the 

concrete tensile strength becomes zero, then   equals uo/L, where L is the characteristic 

element size. Since the crack opening uo is independent of the element size, it is seen 

that for an increase in the element’s characteristic length L, the strain-type tension 

stiffening value   is decreased.  
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Figure 5.10: Load-deflection curve based on two tension stiffening approaches (strain 

type and displacement type). 

 

The selection of appropriate values for the tension stiffening parameter depends on the 

modelling experience of the user. For example, for a linear descending stress strain 

CEB-FIP (cited in Barzegar and Schnobrich, 1990) suggested the use of 20 to 80 times 

of the cracking strain, where the higher values corresponds to high reinforcement ratios. 

However, in this study the value of tensile strain when the tensile stress vanishes was 

calibrated. The calibration was based on the agreement of the FE results and the 

available experimental results.  

 

5.6.4 Effect of concrete tensile strength 

For the tests carried out in this thesis, the tensile strength was not measured 

experimentally however, the empirical equation for the calculation of tensile strength of 

concrete beams and slabs suggested by EC2 (2004) was adopted. As shown in Figure 

5.11, the tensile strength of the slab has a significant effect on the first crack load. It is 

observed that the use of lower tensile strength leads to underestimation of the applied 

load at a given displacement in the model. This is true because the lower tensile 

strength, results in earlier microcracking which leads to lower stiffness behaviour of the 

slab up to failure.  
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Figure 5.11: Load-deflection curve of Slab 1 for different values of concrete tensile 

strength. 

In this study, a reduced concrete tensile strength ( ctmct 5.0 ff  ) was adopted for the 

analysis of slabs. This can be accepted based on the fact that the rupture modulus of 

slabs mostly depends on the reinforcement ratio since it affects the drying shrinkages of 

the surrounding concrete. Therefore, low reinforced slabs could easily allow 

development of shrinkage cracks between the reinforcing bars. Subsequently, such slabs 

may experience lower cracking loads compared to beam members. The Canadian 

standard (CSA, A 23.3-04) also suggests using 50% of the mean tensile splitting 

strength to account for the shrinkage effects in the slabs.  

 

5.6.5 Element Type 

Solid brick elements were used to model the slabs. ABAQUS /Standard library includes 

first-order (linear) interpolation elements and second-order (quadratic) elements. Figure 

5.12 compares the predictions from FE analysis using first-order (e.g. C3D8, C3D8R) 

and second-order (e.g. C3D20R) elements while typical values were used for other 

parameters. The element adopted for the analysis was element C3D8, as other element 

types had convergence problems and were stopped in early loading stage. 
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Figure 5.12: Load deformation behaviour of Slab 1 with different element types. 

 

5.7 Failure Type 

Three main types of failure are: 

 Steel yielding spreads over a wide area of the slab (flexural failure) 

 Steel yielding followed by concrete crushing (flexural punching failure); 

 Concrete compressive crushing (pure punching shear failure) 

If flexural reinforcement yields well before failure and yielding spreads over a wide 

area of the slab at failure, the slab fails in a pure flexural mode. In this scenario the yield 

line pattern is fully developed.  

The next failure mode is somewhere between the pure flexural failure and pure 

punching failure. The flexural strength may be reached with yielding of the tensile steel 

reinforcement locally around the column followed by crushing of the concrete in the 

compression zone. In this case the yield line pattern is not fully developed. 

0

100

200

300

400

500

600

700

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

L
o
a
d

 (
k

N
) 

Deflection (mm) 

Experiment

C3D8

C3D8R

C3D20R



 135 

Higher flexural reinforcement ratios provide higher flexural capacities in slabs. 

Therefore, the typical failure mode is the crushing of the concrete rather than yielding in 

flexural reinforcement. This type of failure is obviously brittle. 

 

5.8 Discussion on Numerical Results 

The punching behaviour of the test slabs reported in Chapter 4 and experiments carried 

out by Li (1997) are discussed in this section. The behaviour depicted by FE analysis 

was investigated and compared to the experimental results. The comparison between the 

experiments and predicted values was based on the following aspects of structural 

behaviour: 

 The load deflection behaviour; 

 Strains in LSF shear reinforcement and internal steel reinforcement; 

 Distribution of concrete strains; 

 Crack pattern; 

 The mode of failure. 

The discussion on punching shear behaviour of slab-column connections concludes with 

a summary of factors that affect behaviour such connections. Also the adequacy of 

numerical analysis technique used here is discussed. 

 

5.8.1 Slabs without shear reinforcement 

In this section Slab 1 reported in Chapter 4 and Slab PSSA from Li (1997) were 

investigated using  numerical simulations. Slab 1 was designed to have a high flexural 

capacity while Slab PSSA was designed for a low reinforcement ratio. Due to double 

symmetry both in geometry and loading of Slab 1 and Slab PSSA, only a quarter of the 

tested slabs were modelled. Based on the mesh sensitivity analysis carried out in the 

previous section, a mesh size of 40 mm was used for modelling Slab 1 while a mesh 

size of 25 mm was used for Slab PSSA. In order to get the best fit of results with 

experminet with experiments, the level of tension stiffening was calibrated. 
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5.8.1.1 Load deformation behaviour 

Figure 5.13 (a, b) shows the comparison of load deformation of Slab 1 and Slab PSSA 

with the ABAQUS models.  

 

Figure 5.13: Comparison between experimental and model predictions of slabs without 

shear reinforcement: (a) Slab 1, (b) Slab PSSA. 

 

It can be seen from the Figure 5.13 that both models are in good agreement with the 

experiments. ABAQUS models for both the slabs showed stiffer behaviour when the 

slabs start to have flexural cracks compared to the test results. Flexural cracks start to 

happen at loads over 200 kN. This is expected since in the FE model, a full bond 

between the flexural reinforcement and concrete was assumed by embedding the 

flexural reinforcement to the concrete. 

 

5.8.1.2 Internal steel reinforcement 

No strain gauges in the flexural reinforcements of Slab 1 were used in the experiments 

however strain gauges on the flexural reinforcement were installed for Slab PSSA as 

reported by Li (1997).  

 

Slab1 

Based on the yield-line analysis carried out in Chapter 4, it was shown that flexural 

reinforcement in Slab 1 yields when the load approaches 1100 kN. Figure 5.14 shows 

the load-stress relationship for the flexural reinforcement in Slab 1 which is in good 

agreement with yield line analysis as well. Figure 5.14 shows that the maximum stress 
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in the flexural reinforcement which is 320 MPa. As shown in Figure 5.15 only very 

limited areas of the top reinforcement which are close to the column faces have stresses 

higher than 200 MPa while for compression reinforcement only one reinforcement bar 

inside the column reaches 200 MPa as shown in Figure 5.15. 

 

Figure 5.14: Load-Stress behaviour of flexural reinforcement at the column face of the 

Slab 1. 

 

 

Figure 5.15: Stresses on the tensile and compression reinforcement of Slab 1 under 

loading. 
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Slab PSSA 

It has been highlighted earlier in this chapter that FE analysis smears the effect of cracks 

and, in itself, does not differentiate between cracked and uncracked sections. The 

possible prediction of the experimental deflection is obtained by the level of tension 

stiffening in FE analysis. Therefore, prediction of the average rebar strain between 

cracks is likely to be obtained by FE analysis. This strain is usually less than that of an 

individual rebar and this is shown in Figure 5.16. 

 

 

Figure 5.16: Comparison between strain gauge measurements of flexural reinforcement 

in Slab PSSA with ABAQUS predictions. 

 

It is clear from Figure 5.16 that the predictions of reinforcement strains using FE model 

reasonably well. However, the rebar strain predicted by the model is less than the actual 

reinforcement strain in Gauges S3 and S4. On the other hand, up to a load of about 400 

kN, the strain predicted by the model compares very well with the measured strain in 

strain gauge S3 and S4. It has to be noted that predicted strain is underestimated in the 

model beyond this load. The amount of tension stiffening added to the concrete model 
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could be the possible explanation for such discrepancies. As it is well recognised, the 

punching behaviour is characterised by localization of strains near to the loading area, 

contrary to the flexural behaviour in which cracking is nearly distributed all over the 

member. Hence, the model may overestimate the strains in some regions while 

underestimating them in other regions. It is shown here that Slab 1 failed in pure 

punching failure mode while Slab PSSA failed by flexural and punching shear mode.  

 

5.8.1.3 Strain in Concrete  

Unlike the smeared crack concrete model, the concrete damaged plasticity model does 

not have the notion of crack developing at the material integration point. However, it is 

possible to introduce the concept of an effective crack direction with the purpose of 

obtaining a graphical visualization of the crack pattern in the concrete structure. 

Different criteria can be adopted within the framework of scalar-damage plasticity for 

the definition of the direction of cracking. Following the model presented in Lubliner et 

al., 1989, it is assumed that the crack initiates at points where the tensile equivalent 

plastic strain (ABAQUS parameter PEEQT) is greater than zero and the maximum 

principal plastic strain is positive. The direction of the vector normal to the crack plane 

is assumed to be parallel to the direction of the maximum principal plastic tensile strain. 

Using this approach, the coloured area shown in Figure 5.17 indicates places where the 

concrete tensile equivalent plastic strain value was greater than zero. Figure 5.17 shows 

the direction of cracks parallel to the maximum principal plastic compressive strain (red 

arrows). 
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Figure 5.17: Crack pattern of Slab 1 at failure load. 

 

Figure 5.18 shows the failure cone which was developed at failure load from FE 

analysis for Slab 1 and Slab PSSA. 
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Figure 5.18: Crack pattern in the post-peak regime- simulation in terms of maximum 

principle strains. 

 

5.8.2 Slabs with Shear reinforcement 

Due to symmetry both in geometry and loading of Slab 2, only half of the slabs tested 

were modelled while a quarter of Slab 3 was modelled due to double symmetry of the 

Slab 3 in geometry and loading. Mesh sizes of 35 mm and 45 mm were used for Slab 2 

and Slab 3 respectively. Flexural reinforcement was modelled using 2D beam elements 

while LSF shear reinforcement was modelled using shell element as shown in Figure 

5.19.  
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Figure 5.19: Typical view of Slab 3 modelled in ABAQUS. 

 

Figure 5.20 (a, b) show the comparison of load deformation of Slab 2 and Slab 3 with 

the ABAQUS model. It can be seen from the Figure 5.20 that the load deflection 

predictions of both models are in a very good agreement with the experiments. 

 

Figure 5.20: Comparison between experimental and model prediction of slabs with 

shear reinforcement: (a) Slab 2, (b) Slab 3. 



 143 

Unless low tension stiffening is used in the FE model, which is adopting a smeared 

cracking approach with full bond assumption, the additional deflection due to the slip 

between concrete and steel reinforcement cannot be predicted. However, the ultimate 

load and corresponding deflection are underestimated by such low tension stiffening. 

Figure 5.20 (b) shows that the model slightly underestimates the load capacity of 

connection when the deflection of slab is between 23 to 27 mm. 

 

Internal steel reinforcement 

No strain gauges were installed in flexural reinforcement of Slabs 2 and 3. Therefore, 

the stress-strain behaviour of the steel bars is investigated only numerically here. Both 

Slabs 2 and 3 showed yielding of the steel reinforcement in a very small area of the bars 

close to the column. Comparison of the stress-strain behaviour of steel bars of Slab 1 

with Slab 2 and 3 confirms the failure type of the Slab 2 and 3 to be flexural and 

punching. 

 

LSF reinforcements 

As discussed in Chapter 4, strain gauges for LSF shear reinforcement were installed for 

both Slabs 2 and 3. In this section, the predicted stress-strains from the numerical 

models are compared with the experimental results. The details of the position of the 

strain gauges for Slab 2 and 3 are given in Figure 4.15 in Chapter 4.  

 

5.8.2.1 Slab 2 and Slab 3 

Slab 2 

Figures 5.21, 5.22 and 5.23 show the FE predictions of the stress-strain curves of LSF 

shear reinforcement in perimeter 1, 2 and 4 respectively compared to measured stress- 

strain curves. These figures show a good agreement with experiments up to the failure 

load. 
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Figure 5.21: Comparison between strain gauge measurements of Slab 2 with ABAQUS 

model for shear reinforcement in first perimeter. 

 

  

  

Figure 5.22: Comparison between strain gauge measurements of Slab 2 with ABAQUS 

model for shear reinforcement in the second perimeter. 

 

0

200

400

600

800

1000

-100 500 1100 1700 2300 2900 3500

L
o

a
d

 (
k

N
) 

Microstrain 

Test- Straingauge 9

ABAQUS

0

200

400

600

800

1000

0 500 1000 1500 2000

L
o

a
d

 [
k

N
] 

Microstrain 

Test- Straingauge 17, 18

ABAQUS

0

200

400

600

800

1000

0 500 1000 1500

L
o

a
d

 [
k

N
] 

Microstrain 

Test- straingauge 1, 2

ABAQUS

0

200

400

600

800

1000

-20 480 980 1480

L
o

a
d

 (
k

N
) 

Microstrain 

Test- straingauge 5, 6

ABAQUS

0

200

400

600

800

1000

0 250 500 750 1000

L
o

a
d

 (
k

N
) 

Microstrain 

Test- straingauge 11, 12

ABAQUS

0

200

400

600

800

1000

0 200 400 600 800 1000 1200

L
o

a
d

 (
k

N
) 

Microstrain 

Test- straingauge 19, 20

ABAQUS



 145 

 

Figure 5.23: Comparison between strain gauge measurements of Slab 2 with 

ABAQUS model for shear reinforcement in the fourth perimeter. 

 

Readings from strain gauges of 5-6 and 19-20 showed a stiffer behaviour in the elastic 

region at the beginning. The stress-strain curves (such as 11- 12, 7 and 17-18) predicted 

by FE model  showed lower stiffness compared to the experiments. A probable 

explanation for this behaviour is that the strain gauges were installed in the middle of 

the vertical direction of the LSF reinforcement between two holes. Therefore, the exact 

place of strain gauges could be somewhere very close to the middle of the LSF strips.  

 

Slab 3 

Figures 5.24 to 5.29 present the comparisons of the stress-strain curves predicted by FE 

models with the experiment results. As shown in these figures, the FE model shows a 

perfect agreement with the experimental results. Predictions from strain gauges 15-16 

are slightly different, this could be due to the fact the LSF strip become stressed while 

casting the concrete to the slab mould. 
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Figure 5.24: Comparison between strain gauge measurements of Slab 3 with ABAQUS 

model for shear reinforcement in first layer. 

 

 

 
 

Figure 5.25: Comparison between strain gauge measurements of Slab 3 with ABAQUS 

model for shear reinforcement in second layer. 
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Figure 5.26: Comparison between strain gauge measurements of Slab 3 with ABAQUS 

model for shear reinforcement in third layer. 

 

 

Figure 5.27: Comparison between strain gauge measurements of Slab 3 with 

ABAQUS model for shear reinforcement in fourth layer. 

 

 

Figure 5.28: Comparison between strain gauge measurements of Slab 3 with 

ABAQUS model for shear reinforcement in fifth layer. 
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Figure 5.29: Comparison between strain gauge measurements of Slab 3 with 

ABAQUS model for shear reinforcement in sixth layer. 

 

Crack opening displacement 

The serviceability of structural members is significantly influenced by large deflections 

and excessive cracking. It is recognized that the crack width of the concrete is 

controlled by the usage of shear reinforcement. However experimental work reported in 

Chapter 4 did not include the measurements for concrete cracks. The effectiveness of 

the shear reinforcement was confirmed by the load versus crack mouth opening 

displacement (CMOD) obtained at the strain localization area within a distance of 1.5d 

from the column face which was recorded from the FE models. In this particular case, 

the CMOD can be assumed equal to the tensile equivalent plastic strain, ε
pl

t, at the 

tension face of the slab multiplied by the characteristic length of the FE mesh.  

The use of LSF shear reinforcement resulted in a significant decrease of crack opening 

displacement and this is clearly demonstrated in Figure 5.30. For instance, for Slab 3, at 

a load level of 500 kN, the percentage reduction in the CMOD is about 15% of the 

reference Slab (Slab1), the percentage reduction in the CMOD is about 45% of the 

reference slab (Slab 1) for Slab 3. Therefore, it is clear that Slabs 2 and 3 which are 

strengthened by LSF shear reinforcement demonstrated enhanced serviceability 

behaviour. 
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Figure 5.30: Load-CMOD obtained at distance 1.5d from the column face along the 

centreline of the slab. 

 

5.8.2.2 Experiments from Li (1997) 

Slabs PSSB, PSSE and Slab PSSF 

The shear reinforcement in Slabs PSSB and PSSE were arranged according to ACI 

shear arrangements while for the Slab PSSF it was made according to BS 8110-1997 

arrangement. Figure 5.31 compares the load deflection behaviour of slabs predicted by 

FE model with the experiments. 

 
 

 

Figure 5.31: Comparison between experimental and model prediction, (a) Slab PSSB, 

(b) Slab PSSE (c) Slab PSSF. 
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The stress-strain behaviour of the flexural and shear reinforcement of the modelled slabs 

showed very good agreement with the experimental results. 

 

5.9 Conclusions 

In this chapter, nonlinear finite element analyses were carried out to simulate the 

deflection behaviour of slab column connection. Experiments from Chapter 3 as well as 

experiments by Li (1997) consisting of slabs without and with LSF shear reinforcement 

were used in the simulations. The simulations also showed good agreement with the 

yield line analysis for both the series of the experiments.   

The nonlinear finite element analysis with ABAQUS can simulate slab-column 

connections behaviour in terms of load-deflection behaviour and stiffness in both the 

pre- and the post-cracking stages. However, for such analysis, a proper evaluation of 

tension stiffening is vital. For slabs with low reinforcement ratio such as reported in Li 

(1997), the ultimate load is attained while the flexural reinforcements are yielding 

therefore, an accurate estimation of the tension stiffening is essential. For this type of 

structure, an underestimation of tension stiffness leads to underestimating the post 

cracking stiffness. For lightly reinforced slabs (such as slabs reported in Li, 1997), the 

shape of tension stiffening curve is also important. For lightly reinforced slabs, it is 

noteworthy that a lower energy will be required to open a crack of unit width  in the 

early stage of loading, while more energy might be required later to increase the crack 

area due to bond between concrete and reinforcement. It was found that the tensile 

strength has a significant effect on the first crack load.  
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Chapter 6 

PARAMETRIC STUDY: EFFECT OF 

DIFFERENT DESIGN PARAMETERS 

 

 

6.1 Introduction 

Codes or standards (e.g. ACI 318-08) often use semi-empirical methods to calculate 

punching shear capacity of flat slabs, as was discussed in Chapter 3. A  series of 

parametric studies were conducted using the validated numerical models presented in 

Chapter 5 of this thesis to investigate the sensitivity of certain parameters and to gain a 

better understanding of how flat slabs behave in punching. The major aim of the 

parametric study was to investigate the influence of key parameters such as thickness of 

slab, tensile reinforcemnent, compression reinforcement, concrete compressive strength, 

shear reinforcement on the performance of slab-column connections under gravity 

loads. 

 

6.2 Effect of column size on punching shear capacity 

Four numerical models of slab-column connections are analysed in this section: - Slab 

1, adopted from Chapter 5 which has a column size of 320 mm, along with 3 other 

models, choosen with column sizes of 200, 260 and 380 mm. In all cases the other 

parameters such as slab depth, concrete compressive strength, tensile and compression 

reinforcement ratios were deliberately selected to be identical to Slab 1.  

Figure 6.1 compares the load deformation behaviour of slabs with different column 

sizes. Figure 6.1 shows that the variation in column dimension size has no significant 

influence on the elastic behaviour of such connections. Following the occurrence of first 

crack, it is clearly shown that the increase in the column dimension has resulted in an 

increase in stiffness of the connection. For instance increasing the column dimension 

from 260 mm to 320 mm has results in a nearly 8% increase of punching shear capacity. 
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Figure 6.1: Effect of column dimension on the load-deflection behaviour of slabs failed 

in punching shear.  

 

It is also observed from the analyses that the increase in column dimension has resulted 

in a decrease in maximum strain in the tension part of the concrete. For instance, the 

maximum tensile strain at the tensile surface of the slab is 0.0093 and 0.0087 for slabs 

with column dimensions 320 mm and 380 mm respectively. Table 6.1 summarises the 

prediction of the FE model on maximum plastic principle strains at the tensile surface of 

the slabs.  

Table 6.1 Maximum plastic strain at tensile surface of concrete 

Specimen Maximum Plastic strain 

Slab with column size of 200 mm 0.0104 

Slab with column size of 260 mm 0.00977 

Slab with column size of 320 mm 0.00928 

Slab with column size of 380 mm 0.00878 

 

Observations from the FE analyses also revealed typical truncated conical failure 

surfaces which tended to be a steeper for slabs with smaller column dimensions. 
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6.3 Effect of compressive reinforcement on punching shear capacity 

As discussed earlier in Chapter 3, mechanical models and codes or standards do not 

consider the contribution of compression reinforcement in transferring shear loads on 

slabs. For this reason, two series of parametric studies were performed for slabs with 

low and high flexural capacities. The previously validated models in Chapter 5 were 

used to perform the parametric study in this section. Slab 1 was selected to be a 

representative typical example of high flexural capacity slab and Slab PSSA was then 

selected to be a typical representative of low flexural capacity slab. From each 

representative specimen, two other models were developed with all other parameters 

identical to their validated control experimental results so that compression 

reinforcement ratio was the only variable.   

  

Figure 6.2: Effect of bottom reinforcement on load deflection behaviour of slabs: (a) 

slabs with higher flexural reinforcement ratio, (b) slabs with lower flexural 

reinforcement ratio. 

 

Figure 6.2 shows the load deflection behaviour of FE models of slab-column 

connections with varying compression reinforcement ratios. Figure 6.2 (a) and (b) show 

different bottom reinforcement for Slab 1 and PSSA respectively. It is clearly 

demonstrated in Figure 6.2 (a) that the effect of compression reinforcement on load 

deflection behaviour is insignificant while there is a considerable increase in punching 

shear capacity with an increase in compression reinforcement in Figure 6.2 (b). These 

results mean that the punching shear capacity of a slab is influenced by the compression 

reinforcement for slabs only with low flexural capacity. In addition, slabs with low 
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flexural capacity demonstrated similar load deformation behaviour until the concrete is 

cracked. However, slabs with low reinforcement ratio, although they behave in a similar 

manner until the first crack has formed, the increase in compression reinforcement ratio 

results in a stiffer behaviour of these connections.  

As the results clearly demonstrated, the effect of compression reinforcement ratio plays 

a significant role on the load deflection behaviour of low flexural capacity slabs. It is 

also known that in practice, such connections are generally designed to have low 

flexural capacity in order to have a more ductile behaviour in seismic scenarios. 

Therefore, the significance of the effect of compression reinforcement in design of such 

connections has to be emphasised. 

 

6.4 Effect of tension reinforcement ratio on punching shear capacity 

The validated numerical model of Slab 1 presented in Chapter 5, was used to assess the 

effect of flexural reinforcement ratio on punching shear behaviour of slabs. In addition 

to Slab 1, three other slabs, particularly developed for these analyses, with different 

percentages of reinforcement ratios of 1.61, 1.0, 1.97 and 2.6% respectively were 

analyzed. The variation in tensile reinforcement ratio was achieved by keeping the 

spacing the same as in Slab 1, and varying the bar diameter.  

 

Figure 6.3: Effect of flexural reinforcement. 
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Figure 6.3 shows the load deflection predictions of the FE analyses for different  

reinforcement ratios of the slabs. All the slabs have demonstrated similar elastic 

behaviour until the occurrence of the cracks in the concrete, and beyond this point, the 

increased in percentage of reinforcement ratio has resulted in an increase in both the 

punching load and stiffness of the connection. Figure 6.3 also demonstrates that 

decreasing the flexural reinforcement caused an increase in ductility of the connection. 

The observations from FE analysis shows that for slabs with low flexural reinforcement 

ratio, the tensile cracks  spread into a very large area; whereas, with high flexural 

reinforcement ratios, the tensile cracks were grouped into a smaller area within the slab 

immediately around the column periphery. It was also observed that the increase in the 

reinforcement ratio resulted in a decrease in the maximum stress within the tensile 

reinforcement.  

 

6.5 Size effect 

The size effect was also studied with the FE model of Slab 1. It has to be emphasised 

that the size effect (slab depth) cannot be considered as an independent variable as the 

change in slab depth would significantly alter other parameters of the slabs. For 

instance, when the flexural reinforcement ratio is kept constant, the increase in the slab 

depth would result in a decrease in flexural capacity of the connection and this can 

further cause excessive cracks in the tension part and change the failure mode from 

punching to flexure. In order to asses the size effect on punching shear capacity of slab-

column connections in a more realistic manner, it is necessary to keep the span to depth 

ratio, column dimension to depth ratio and reinforcement ratio constant and identical to 

Slab 1 for comparison purpose. Table 6.2 summarises the geometry of the models 

developed such as slab’s depth, effective depth, column size, reinforcement ratio and 

span of the slabs as well as predicted values of shear stresses of the slabs modelled. The 

shear stress was calculated at a distance of  d/2 from the column face.  

Table 6.2: Poperties of developed models of slab-column connection 
Specimen 

name 
Slab 

depth, h 

(mm) 

Effective 

depth, d 

(mm) 

Column 

size, c 

(mm) 

Reinforcement 

ratio, ρ (%) 
Span 

(mm) 
vu 

(MPa) 

1 160 120 250 1.54 2140 2.02 
2 (Slab 1) 200 160 320 1.54 2750 2.04 

3 240 200 360 1.54 3360 1.88 
4 280 240 420 1.54 3970 1.79 
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It was observed from the FE analyses that all the slabs demonstrated typical truncated 

conical failure surfaces. Increase in the depth of the slab has resulted in an increase in 

angle of the truncated conical failure surface.  

 

Figure 6.4: Load deflection behaviour of Slab1 with different depths. 

 

Figure 6.4 presents the predicted load deflection behaviour of slabs with varying slab 

depth. Increase in the slab depth caused a significant increase in both elastic and plastic 

stiffness of the connection.  

 

Figure 6.5: Punching shear stress vs. slab depth based from numerical modelling. 
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The increase in the slab depth resulted in a rapid decrease in the shear stress resistance, 

vu, at the critical section d/2 from the column as  shown in Figure 6.5. Experiments 

carried out by Birckle and Dilger (2008) and Guandalini et al., (2009) also showed 

similar trends. The influence of maximum aggregate size on the punching shear 

capacity is outside the scope of this thesis, however, it must be noted that the aggregate 

size is expected to have a limited effect on punching shear capacity (Birckle and Dilger, 

2008). 

 

6.6 Effect of shear reinforcement on punching shear capacity 

Assessment of the effectiveness of shear reinforcement in punching shear experiment 

can be extremely tricky. This is mainly because of the difficulty in positioning the strain 

gauges at locations either very close or at the intersection of cracks however, obtaining 

measurements at these critical points is essential for the assessment of the effectiveness 

of the shear reinforcement. In addition to this, it is also very expensive to perform an 

experiment for each particular parameter to be investigated to assess the effectiveness of 

shear reinforcement.  Therefore, two series of parametric studies were performed to 

assess the possible influences of the cross sectional area and the length of LSF shear 

reinforcement on punching shear capacity. The validated FE model of Slab 3was used 

to perform the parametric study in this section. 

 

6.6.1 Effect of the cross sectional area of the LSF shear reinforcement on punching 

shear capacity 

The influence of the cross sectional area of the LSF shear reinforcement on punching 

shear behaviour was investigated using the parameters of Slab 3 and two other cases 

with different shear reinforcement thickness. In those two cases, slab depth, column 

size, reinforcement ratio, span length and concrete compressive strength were kept 

constant and identical to Slab 3, while the thickness of the LSF strip was the varying 

parameter. Thicknesses of 1.2, 1.6 and 2 mm were used.  

Figure 6.6 compares the predicted load deformation behaviour of slabs with varying 

thicknesses of LSF shear reinforcement. As it is demonstrated in Figure 6.6, the elastic 

behaviour of the slab-column connection is not influenced by the change in cross 

sectional area of LSF shear reinforcement. Furthermore, after the cracking of concrete, 
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the decrease in the cross sectional area of the LSF shear reinforcement causes, although 

negligible, a decrease in the stiffness of the connection.  

 

Figure 6.6: Load deflection behaviour of test specimens with varying cross sectional 

area of LSF shear reinforcement.  

 

After carrying out a detailed analysis of the equivalent plastic strain at the tensile 

surface of the concrete, it was observed that the decrease in the cross sectional area of 

the LSF shear reinforcement resulted in a decrease in maximum equivalent plastic 

strain. As yielding in flexural reinforcement of Slab 3 was evident in Chapter 5, the FE 

results showed that even though the cross sectional area of the LSF shear reinforcement 

has decreased, the mode of failure was still observed to be a combination of flexure and 

punching. 

Figure 6.7 shows the distribution of Von Misses stresses of LSF shear reinforcement 

under loading. It is clearly demonstrated in Figure 6.7 that for the slab with 2 mm thick 

LSF reinforcement, the yielding took place at the first perimeter from column face, 

while for the slab with 1.6 mm thick LSF reinforcement, the yielding occurred both 

within the first and second perimeters; and for the slab with 1.2 mm thick LSF 

reinforcement, yielding occurred at the first, second and third perimeters. 
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(a) 

 

(b) 

 

(c)  

Figure 6.7: Stress distribution following yield stress at 480 MPa for slabs, (a); LSF 

thickness of 1.2 mm, (b); LSF thickness of 1.6 mm, (c); LSF thickness of 2 mm. 

 

6.6.2 Effect of the number of layers of the LSF shear reinforcement on punching 

shear capacity 

It is significant to study the effect of varying the number of layers of the LSF 

reinforcement on punching shear behaviour. Hence, three experiments with varying 

numbers of layers were analysed.  

(a)  (b)  

(c)  

Figure 6.8: Schematic drawing of the shear reinforcement for analysed slabs; (a) slab 

with 2 layers of LSF, (b) slabs with 4 layers of LSF, (c) slab with 6 layers of LSF. 
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Slab 3 and two other cases with  LSF layer numbers of 6, 4 and 2 were investigated in 

this section and the results are  shown in Figure 6.8. The two virtual cases had all the  

parameters identical to Slab 3 except the number of layers of LSF. 

 

Figure 6.9: Load deflection behaviour of test specimens with different number of layers 

of LSF shear reinforcement. 

 

Figure 6.9 shows the load deflection behaviour of the test specimens with different 

number of layers of LSF shear reinforcement. It is clearly seen from the Figure 6.9 that 

the decrease in the number of layers of LSF shear reinforcement has no significant 

effect on the load deflection behaviour of the connection. However, the use of two 

layers of LSF shear reinforcement caused the slab to fail outside the shear reinforcement 

area. It is also observed that the increase in the number of perimeters restricted the 

equivalent plastic strain at concrete tensile surface. 

 

6.7 Conclusion  

A series of parametric studies was carried out using the experiments reported in Chapter 

5 as controls of the numerical models. These showed that the amount of compression 

reinforcement can play a significant role in changing the punching shear capacity. The 

influence of compression reinforcement ratio should be taken into account and 

necessary modifications should be performed to increase the accuracy of the Code 

Provisions.  
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A parametric study to investigate the varying column sizes was performed. The results 

showed that increase in the column size resulted in an increase in the punching shear 

capacity of the connection.  

It can also be concluded that an increase of slab depth may result in a decrease in stress, 

and an increase in flexural reinforcement ratio increases the stiffness of the slab in both 

elastic and plastic regions of load-deflection behaviour. 

One of the most important parameters that significantly affects the punching shear 

capacity was shear reinforcement. It can be concluded that the use of shear 

reinforcement can significantly enhance the capacity and ductility of such connections. 

Therefore, it is suggested that the future versions of the design codes should make 

appropriate recommendations on this aspect.   
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Chapter 7 

DEVELOPMENT OF BAYESIAN 

NEURAL NETWORK 

 

 

 

7.1 Introduction 

Prediction of  the punching shear capacity of slab-column connections was carried out 

by developing a Bayesian Neural Network (NN) model described in this chapter. First 

of all, a brief description of Artificial Neural Networks is given and back propagation 

Neural Networks are then discussed. Previous work on back propagation Neural 

Networks is then summarised. The experimental database reported in Chapter 3 was 

used to develop a Bayesian Neural Network model to predict the punching shear 

capacity of slab-column connections.  

 

7.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) allows the structural and/or functional aspects of 

biological neural networks to be simulated. They are composed of neurons that have 

large number of simple processing units, known as nodes or units. These neurons are 

connected to each other to form a network (Anderson, 1995; Gesoglu et al., 2010; 

Iruansi et al., 2011). A simplified model of an artificial neuron is shown in Figure 7.1. It 

is shown that the input signals have synaptic weights w  associated with them which are 

multiplied with the signals travelling along each connection. 
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Figure 7.1: Simplified model of artificial neuron (Kose, 2007).  

 

It is reported in literature that complex functions such as function approximation, 

regression analysis, pattern recognition, vision and speech identification can be dealt 

with the Artificial Neural Network. The back propagation Neural Network, often used 

for regression analysis, is briefly discussed in the next section. 

 

7.3 Back Propagation Neural Networks 

The back-propagation Neural Network (NN) is a class of Neural Network that is often 

used for practical applications (Bishop, 1995; Iruansi et al., 2011). The back 

propagation is a combination of a number of series of layers. The first and last layers are 

the input and output layers respectively. Hidden layers are located between the input 

and output layers. As shown in Figure 7.1, each layer is made up of neurons and they 

are also known as processing units. These layers are responsible for receiving inputs 

and processing inputs in order to provide a corresponding output. The significant 

variables which affect the network outputs are represented by the input layers. The 

output layer also contains neurons representing the network outputs. Thus, the punching 

shear parameters can be represented by the neurons in the input layer and punching 

shear strength can be represented by the neurons in the output layer and this is shown in 

Figure 7.2. 

A complexity of a given model determines the number and size of the hidden layers and 

is usually unknown (Kingston et al., 2005). Normally, the network is constructed with 

the smallest number of hidden neurons to imitate the optimal complexity (Bishop, 1995; 

Kingston et al., 2005; Iruansi et al., 2011). 
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Figure 7.2: Architecture of a typical NN model for predicting the punching shear 

strength of slabs.  

 

Optimal complexity of a network is very difficult to determine as there are no 

systematic methods yet reported on determining the optimal network architecture 

(Iruansi et al., 2011; Kingston et al., 2005; Mansour et al., 2004). Therefore, according 

to Bishop, (1995), Mansour et al., 2004, and Iruansi et al., 2011, a trial and error 

approach should be implemented to select the number of hidden layer neurons. To find 

the best performance of the network, the number of hidden nodes is systematically 

increased and decreased with the coefficient of determination (r
2
) and the root mean 

squared error (RMSE) being used to assess this best performance.  

To find an appropriate relationship between the set of input variables (x) and the system 

response (y), Equation 7.1 which characterises the relationship between the input 

parameters can be given as 

y = R(x;w)            (7.1) 
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where R() is the function described by the ANN and w is a vector of connection and bias 

weights (Kingston et al., 2005). The relationship between input x, and output y, for a 

two-layer network can be described as  

hj = f 1 wjk

(1)xk +å bj

(1) ; yi = f 2 wij

(2)hj +å bi

(2)
                    (7.2) 

where f is a linear or nonlinear activation function allocated to each neuron in the 

network. In Equation 7.2 the layer of the neurons is represented by the superscripts. In 

fact, activation functions at the hidden nodes and output node are represented by f
1
 and 

f
2
 respectively.  

The activation function for the output neurons is linear and each of the hidden neurons 

is assumed to have a nonlinear activation function. The computational flexibility of 

Neural Networks can be achieved by a nonlinear activation function at the hidden 

neurons (Mansour et al., 2004). The log-sigmoid and tan-sigmoid type of nonlinear 

activation functions are often used in engineering applications. The log-sigmoid and 

tan-sigmoid provide ranges of output between 0 and 1 and between −1 and 1 

respectively. The tan-sigmoid activation function was adopted in this study. 

The training process is carried out following the determination of the architecture of the 

network. Training of the neural network is an iterative adjustment of the network 

parameters such as biases and connection weights. This iteration is carried out until the 

difference between the expected output and the network output is minimised and this is 

schematically shown in Figure 7.3 (Goh et al., 2005; Iruansi et al., 2011). It is crucial to 

minimise the error function, ED(w) by using the back-propagation algorithm, which is 

usually the sum of squares error between the experimental and the network output y(xi, 

w), and is expressed as: 

  



N

1i

2

i

2

iiD
2

1
),(

2

1
)( etxyE          (7.3) 

Weight adjustment during the training process is performed using an optimisation 

algorithm such as the popular gradient-descent method. (see Bishop, 1995).  
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Figure 7.3: Basic methodology used in Neural Network training. 

 

The efficiency of the trained Neural Network model is assessed on a set of data (testing 

data) that the network has not seen during training (Kingston et al., 2005). 

It has been emphasised earlier on in this chapter that the determination of the optimal 

network architecture is a very difficult task when developing a neural network model 

using conventional back propagation (Iruansi et al., 2011; Chang and Yang, 2006).  

It is computationally time-consuming when an excessive number of hidden layer 

neurons are used in a model. This can also result in a “memorised dataset”, which is not 

able to capture the general trend in the dataset. This is shown in Figure 7.4, and is 

known as over-fitting. This problem can cause the generalisation ability of the network 

to be significantly damaged. On the other hand, the same problem can arise from an 

overly simple network, where the model cannot capture the trend in the dataset and also 

yields poor results.  

As previously noted, a trial and error approach is used in determining the optimal 

numbers of hidden neurons as there is no existing approach to estimate the optimal 

number of hidden neurons. In order to reduce the tendency of over-fitting, early 

stopping and regularisation techniques are implemented in the Neural Network model 

(Iruansi et al., 2011). 

 

Figure 7.4: Example of an over-fitted network versus well-trained network. 
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The dataset is divided into two independent sets such as training and testing datasets.  

Increase in the error in the testing data results in a distraction of the network. This is not 

only tedious but also computationally expensive. For the case of a limited database, 

dividing the dataset in two independent sets with similar data trends can become 

impractical which is the case of the available experimental data on slab-column 

connections. 

By means of adding a weight decay term, EW, (regulariser) the objective function can be 

modified. This is also known as regularisation technique. The resulting new objective 

function becomes: 

)()()( WD  EES            (7.4) 

where the parameter μ is a regularization coefficient that controls the degree of 

regularisation and the regulariser, EW is the sum squares of network weights and is 

given as: 

 


m

2i

2

iw )2/1()( E           (7.5) 

where m is the total number of parameters in the network. The regulariser aims to 

penalize the more complex weight functions in favour of simpler functions (Bishop, 

1995). 

Optimum value of the regularisation coefficient is very difficult to determine and the 

over fitting may result if a very large coefficient is assigned. On the other hand, the 

network may not fit the training data sufficiently if a very small coefficient is assigned. 

This coefficient is also selected using a trial and error approach.  

It can be concluded that, the selection of the optimum number of hidden neuron and 

learning parameters (i.e. regulariser) can be crucial to the performance of an ANN. 

Integration of the Bayesian framework into the back-propagation algorithm was 

proposed by MacKay (1992) in order to enhance the generalization capabilities of the 

conventional back propagation neural network. The method is based on the Bayesian 

statistical approach. It is worth mentioning that to select the optimum network 

architecture and learning parameters, Bayesian framework provides a systematic 

approach. The parameter uncertainty is taken into account in the Bayesian framework 

and therefore the over-fitting is resolved (Bishop, 1995) and as a result the network 

generalisation capabilities are enhanced. The confidence level can be determined by an 
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error bar following the prediction generated by the network. The relative importance of 

different input variables can be determined by the use of Automatic Relevance 

Determination (ARD).  

Conventional back propagation with early stopping technique had commonly been used 

to predict the punching shear strength of slab-column connections (Shah and Ribakov, 

2011, Elshafey et al., 2011). It is unfortunate that the Bayesian approach has not been 

exploited to date to predict punching shear capacity. A full description of the Bayesian 

Neural Network can be found in Bishop (1995); MacKay (1992). The technical 

development of the Bayesian Neural Network is not the topic under discussion in this 

thesis and is not covered in detail. Instead this thesis focuses on the applicability of such 

networks in predicting the punching shear capacity of the slab-column connections.    

 

7.4 Experimental Database 

The experimental database reported in Chapter 3 was adopted here to develop a 

Bayesian Neural network. The distributions of the test specimen parameters are shown 

in Figure 7.5. It can be observed that the database is not uniformly distributed across the 

range of shear parameters as discussed in Chapter 3. Owing to the distribution of the 

available data, a Bayesian regularised NN was proposed instead of adopting the early 

stopping technique. Bayesian learning technique allows the use of the whole dataset to 

be trained in the network and therefore this technique not only eliminates the need for a 

testing dataset, but also guarantees optimal generalisation quality (MacKay, 1992).  
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Figure 7.5: Distribution of the data of punching tests without shear reinforcement in the 

database.  

 

7.5 Neural Network Architecture 

The neural network architecture proposed in this study comprises of an input layer, one 

hidden layer and an output layer. The number of neurons in the input layer was 

determined from the parameters that affect the punching shear capacity of reinforced 

concrete slabs which was six (6) for slab-column connections without shear 

reinforcement. The number of neurons in the output layer was one (1) which represents 

the punching shear strength of the slab-column connections with parameters in the input 

layer neurons. The optimal number of neurons in the hidden layer was obtained by 

comparing the log of the evidence of a range of NN models. 
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In the proposed neural networks, tan-sigmoid and linear transform functions were 

employed in the hidden and output layers, respectively as shown in Figure 7.6. 

 

Figure 7.6: Flowchart for training Bayesian neural network. 

 

7.5.1 Normalisation 

It is essential to normalise the input variables in order to allow the network weights to 

have similar values in case of input variables being equally important when developing 

a Neural Network. Iruansi et al., 2011 reported normalised input and output variables to 

improve the performance of Neural Networks. Normalisation is vital to prevent network 

training from distractions in a local optimum, and without normalisation prediction of 

the best values is impossible. The comparison of the relative importance of the input to 

the Automatic Relevance Determination (ARD) process can be achieved by the 

normalisation of the input variables within the Bayesian framework. For this reason, 

Equation 7.6 was used to normalise the input data in order to have a zero mean and a 

unit variance. Equation 7.6 is 

i
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ni )(



xx
x


                                             (7.6) 

where (xi)n and xi are the normalized and original values of data set, and xmin and σi  are 

the mean and standard deviation of the parameter under normalization, respectively. 

Using the following equation, the output variables were normalised. 
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yy
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y                     (7.7) 

where (yi)n and yi are the normalized and original values of data set, while (y)min is the 

minimum values of parameters and (y)max is the maximum values of the parameter 

under normalization. Equation 7.8 was used to re-scale the values of the output to their 

original magnitudes. Equation 7.8 is 
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7.6 Implementation of Bayesian  

A learning algorithm, to capture appropriately the weight of the structure, is used in the 

training of the Neural Network (Iruansi et al., 2011). 

MATLAB toolbox called NETLAB was used in the training phase of the neural 

network (Nabney, 2002). The Bayesian framework into the back-propagation algorithm 

was implemented using an iterative procedure. Optimal values of α and β, and the 

optimum weight parameter ωMP was found by the following iterative procedure in a 

neural network model: 

1. α and β, the initial values for the hyperparameters, were set to 0.01 and 50, 

respectively. 

2- The weights in the network were randomly initialised and were drawn from the prior 

distribution defined by α. 

3. Then the network was trained. In order to minimise the regularised error function 

S(ω), weight optimisation was performed using the scale conjugate gradient algorithm 

shown in Equation 7.9. The total number of training cycles was set to 5000. The 

tolerance of the weight was set to 10
-7

. 

S (w) = α ED + β Ew                       (7.9) 

where ED is given in Equation 7.3 and EW is given in Equation 7.5 while β and α are 

termed hyper-parameters (regularisation parameter). 

4. The hyper-parameters β and α were captured using gaussian approximation given in 

Equation 7.10 and 7.11 respectively after every 500 training cycles.   

MP

W
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2E


                                             (7.10) 
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
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                                            (7.11) 

with )();( MPD
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DMPW
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W  EEEE  ; the quantity 1MP

MP )(2  Htrm   is the 

number of well determined parameters and m is the total number of parameters in the 
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network. The hessian matrix was also computed during this procedure using Equation 

7.12 as given below: 

W

2

D

22 )( EESH                                                                                 (7.12) 

5- Until the hyper-parameters and weights had converged, steps 2, 3 and 4 were 

repeated.   

The number of hidden neurons is varied between 1 to 30, the above mentioned steps 

from 1 to 5 are repeated. The evidence of each network was computed using Equation 

7.12 to select the optimum network. By different random initial conditions, each 

network was trained 20 times separately. This was necessary to ensure that the optimal 

network parameters were obtained for different network architecture.   

 

7.7 Results and Discussions 

7.7.1 Optimal network model 

A plot of log evidence and R-Squared versus different hidden layer neurons for slab-

column connections without shear reinforcement is shown in Figure 7.7. The optimal 

structure, shown in Figure 7.7, consisted of a number of hidden layer neurons, 

corresponding to a neural network that has eight hidden neurons (i.e. maximum of the 

log evidence) for slabs without shear reinforcement. Therefore, the optimum network 

architecture was constructed by five input neurons, eight hidden neurons and one output 

neuron (5: 8: 1). 

Figure 7.7 clearly demonstrates that an increased number of hidden layer neurons 

results in an increase in R-Squared which is opposite to the log of evidence. The 

increase in R-Squared is expected as the increase in the network complexity would 

result in an increase in its ability to map to nonlinear functions. The R-Squared values 

obtained for the optimal network with eight hidden neurons is 0.9906 where for the 

network with 30 hidden neurons is 0.99748. Therefore, it is obvious that there is no 

significant difference between R-Squared obtained for the optimal network and the 

network with  a very high number of neurons.  
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Figure 7.7: Plot of Log evidence and R-Squared vs. number of hidden layer neurons. 

 

To check the convergence of the NN model, fifty iterations have been performed for the 

selected NN architecture (5:8:1) for the slabs without shear reinforcement. It is worth 

noting that 500 training cycles correspond to one single iteration. It was observed that 

25 iterations were sufficient for the convergence to be achieved.   

 

7.7.2 Connection weight and biases 

For slabs without shear reinforcement, the selected NN architecture (5:8:1) has five 

input neurons (slab effective depth (d), column dimension (c), flexural reinforcement 

ratio )( Top , concrete compressive strength )( '

cf  and compression reinforcement ratio 

)( Bot ); eight hidden layer neurons; and one output neuron representing the ultimate 

punching shear strength (Vtest). Table 7.1 and 7.2 summarise the matrices of connection 

weights and biases for the developed NN model respectively. 
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Table 7.1: Connection weights for 5:8:1 ANN model 

Slabs without shear reinforcement 

 (1)

jkw  (2)

ijw  

Hidden 

neuron  

j=1 

Input 1 

d 

k=1 

Input 2 

c 

k=2 

Input 3 

Top  

k=3 

Input 1 

'

cf  

k=4 

Input 1 

Bot  

k=5 

Output 

layer 

i=1 

1 0.723 -0.820 0.2503 0.296 -0.571 -1.038 

2 -0.077 -1.052 0.494 0.636 -0.287 -1.987 

3 -0.175 0.428 0.0007 -0.365 0.763 0.667 

4 0.217 0.2438 0.126 0.518 -0.134 1.4718 

5 0.269 0.8707 -0.454 -0.459 0.134 -2.136 

6 0.703 0.2821 0.0496 -0.784 -0.035 -0.978 

7 0.818 0.2276 0.392 -0.237 1.177 -0.3420 

8 -1.978 -0.224 -1.363 0.302 0.718 0.287 

 

Table 7.2: Connection biases for 5:8:1 ANN model 

Slabs without shear reinforcement 

 (1)

jb  (2)

ib  

Hidden 

neuron  j=1 

Hidden layer          

j 

Output layer    

i=1 

1 2.843 0.168 

2 1.816 - 

3 0.406 - 

4 1.443 - 

5 -1.752 - 

6 1.826 - 

7 -0.868 - 

8 -1.262 - 
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In order to determine the explicit formulation which relates the input variables x and the 

output variable y, the connection weights and biases are used as shown in the following 

equations: 

   (1)

jk

)1(

jkj bxwa  and )tanh( jj ay                                          (7.13) 

   (2)

ij

(2)

iji bywy                                                                      (7.14) 

where the input variables are normalized using Equation 7.6 and then used in Equation 

7.13.  

 

7.7.3 Relative Relevance of Input variables 

The relevance of the input variables can be determined by the implementation of the 

Automatic Relevance Determination (ARD) within the Bayesian inference learning. 

Figure 7.8 shows the inverse of the values of the hyper-parameters (i.e. relevance) of 

each input variable used in the developed neural network. For slabs without shear 

reinforcement, it was observed that slab depth (d), concrete compressive strength (
'

cf ) 

and slab flexural reinforcement ratio )(  are the variables that influence the output most 

significantly. This is comparable with the results of various experimental and theoretical 

studies (e.g. Guandalini et al., 2009, Bazanat and Cao, 1987).  

 

 

Figure 7.8: Relevance of input variables to punching shear strength. 
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7.7.4 Validation of ANN 

Comparison of the experimental test data, Vtest, and the predictions by the selected NN 

model is shown in Figure 7.9. As it is clearly seen in Figure 7.9, there is a very good 

agreement between the experimental test data and the predictions by the selected NN. 

For instance, the sum squared error (SSE) and R-Squared of the network’s prediction 

are 315.5 and 0.9933, respectively and the mean and COV of the strength ratios are 

1:0038 and 0:15, respectively. It should be emphasized that the selected NN model 

predicts the punching shear strength of slab-column connections very well and shows 

only very little scatter.   

 

 

Figure 7.9: A plot of shear strength vs. ANN predictions. 

 

The strength ratios Vtest/Vpred for the 5:8:1 neural network were compared with EC-2 

(2004) and ACI 318-08 in Figures 7.10 and 7-11 respectively. Parameters used in 

comparison were the effective depth, concrete strength, longitudinal tensile 

reinforcement ratio and compression reinforcement ratio. As it is clearly shown in 

Figures 7.10 and 7-11, ANN predictions (left columns) demonstrated much less scatter 

in each parameter examined compared to EC 2-2004 and ACI 318-08 (right columns). 

 



 177 

 

Figure 7.10: Strength ratios, Vtest/Vpred and Vtest/VACI vs. shear parameters for slabs 

without shear reinforcement.  

 

Figure 7.11: Strength ratios, Vtest/Vpred and Vtest/VEC vs. shear parameters for slabs 

without shear reinforcement. 
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7.7.5 Simulation of Shear Strength of Slabs without Shear reinforcement 

An independent dataset of slabs that is not included in the training was used to assess 

the ability of  ANN to simulate the punching shear strength of slabs. Experiments 

carried out by Ghannoum (1998), Schaefers (1978) (cited in FIB bulletin 12) and 

Guandalini et al., (2009), which were not included in the initial training set, were used 

in the newly developed NN model to simulate the punching shear strength of the slabs.  

Experiments by Schaefers (1978) (cited in FIB bulletin 12) was designed to investigate 

the influence of the slab depth on ultimate strength of slabs. Column dimensions and 

concrete strength were kept constant in the experiment and were 210 mm and 31 MPa 

respectively. Tensile reinforcement of the two slabs used in the tests was 0.8% and 

0.6%. The NN predictions for these two slabs are shown in Figure 7.12 and are 

compared with predictions by ACI 318-08 and EC 2-2004. Although the ACI 

predictions were found to be conservative, it was concluded that ANN predictions were 

able to capture the experimental results better.  

 

Figure 7.12: NN prediction for slabs tested by Schaefers, 1978 (cited in FIB bulletin 

12). 

 

Ghannoum’s (1998) experiments were designed to investigate the influence of concrete 

strength on the ultimate strength of slabs.  Tensile and compression reinforcement ratio, 

slab depth, and column dimensions were kept constant for all the slabs and were 1.11%, 

0.36%, 110 mm, 225 mm respectively. Figure 7.13 shows the ANN predictions as well 

as the prediction by ACI 318-08 and EC 2-2004. It is clear that the ANN predicts the 
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punching shear capacity of the slabs more accurately compared to ACI and EC 

recommendations. Predictions by EC are found to be more conservative for these test 

series.  

 
Figure 7.13: NN prediction for slabs tested by Ghannoum (1998). 

 

Guandalini et al., (2009) developed experiments to assess the effects of flexural 

reinforcement on the ultimate strength of slabs. Four experiments from those were used 

in the simulation of the developed ANN model. The flexural reinforcement varied 

between 0.25% and 1.50%. Slab depth, column dimensions and compression 

reinforcement ratio were kept constant and were 250 mm, 260 mm, 0.2% respectively. 

Figure 7.14 shows the predictions by the ANN model, ACI 318-08, and EC 2-2004. As 

it is expected, the predictions by the ANN model captured the experimental data more 

adequately once again. ACI 318-08 predictions were unconservative for low reinforced 

slabs and conservative for slabs with high amount of reinforcement ratio.    

 

Figure 7.14: NN prediction for slabs tested by Guandalini et al., (2009). 
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7.8 Validation of Code Provisions and Numerical Models: 

 

In order to investigate the performance of the design methods, numerical methods and 

Artificial Neural Network model, the influence of tensile reinforcement and 

compression reinforcement ratios, depth of the slab and amount of shear reinforcement 

on punching shear capacity were analyzed. The used formulations of the code 

provisions have been presented in Chapter 2. Also the results of the numerical analysis 

from Chapters 4, 5, 6, and 7 are used in this section. Non-dimensional punching shear 

strength ( ) was used in all the comparisons, where Vu is the ultimate 

punching shear strength,  is the compressive strength of concrete,  is the critical 

surface at half the effective depth (d) away from the perimeter of the loaded area. 

 

7.8.1 Slab Thickness 

 

Figure 7.15 compares the predictions of code equations with respect to the effective 

depth of the slabs for the experiments from Li (2000), and Muttoni et al., 2009. The 

variation of the effective depth for Li's experiments was between 100 mm and 500 mm, 

whereas this variation for Muttoni's experiments was between 100 mm and 450 mm. 

The reinforcement ratios for Li experiment varied between 0.75% and 1.00% whereas 

for Muttoni's experiment the variation was between 0.25% and 0.35%. The ANN 

predictions for Li and Muttoni’s experiments are not used here since these dataset were 

used in the training of the ANN model.  

 

ACI does not account for the influence of the effective depth on the normalized 

punching strength. Therefore, the calculation leads to a horizontal line for slabs without 

shear reinforcement as shown in Figure 7.15. Strength is generally well predicted for 

EC2-2004 and BS 8110-1997 while the slab effective depth is limited to 400 mm.  It 

was shown in Chapter 3 that there are limited experiments in literature on slabs with 

higher depth and this bias affected the code equations which were developed 

empirically. BS 8110 formulation includes a size effect term while the punching shear 

strength is calculated. The size effect term cannot be taken less than one which means 

that the shear resistance can be reduced for slabs with effective depth up to 400mm and 

for effective depth higher than 400 mm the shear stress will remain constant.   
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Figure 7.15: Comparison of non-dimensional shear strength versus effective depth: a) 

experiments by Li (2000), (b) Experiments by Muttoni et al., 2009,  

 

Slab 1 from chapter 4 which was validated numerically in Chapter 5 and three new 

numerical cases developed in Chapter 6 were used here to assess the size effect on the 

normalized punching shear. Parameters such as reinforcement ratio, span to depth ratio 

(c/d), column size to depth ratio (c/d), and concrete compressive strength were identical 

for all the experiments and only slab depth varied between 160 mm and 280 mm for 

these experiments. The normalized predicted punching strength from the numerical 

analysis and their normalized predictions using the code equations as a function of the 

effective depth is shown on Figure 7.16. ACI does not account for the effect of the 

effective depth and a horizontal line for slabs is shown in Figure 7.16. EC 2 on the other 

hand accounts for the size effect in the punching shear strength formulation. The size 

effect term in EC-2 is limited to 2 and it means that the shear strength of the slab can be 

reduced if the slab effective depth is greater than 200 mm.  EC 2 slightly overestimated 

the shear strength of the slabs. BS 8110 overestimated the strength for slab with 

effective depth of 125 mm while for other slabs BS 8110 showed good agreement with 

numerical results.  
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Figure 7.16: Comparison of non-dimensional shear strength versus effective depth. 

 

Figure 7.17 shows the normalized predicted punching strength of the experiments from 

Schaefers (1978) as well as the predicted values from ANN and their normalized 

predictions using the code equations as a function of the effective depth. Schaefers's 

experiments were not used in the training process of ANN and these experiments were 

used for validation of the ANN shear model. The prediction of the punching shear 

strength from ANN model is very close to the experiments, therefore the normalized 

punching strength from ANN is in  excellent agreement with the experimental values. 

All the code equations provided conservative predictions for those experiments. 

 

 

Figure 7.17: Comparison of non-dimensional shear strength (experiments by Schaefers 

(1978)) versus effective depth. 

 

7.8.2 Reinforcement Ratio 

Figure 7.18 compares experiments from Marzouk et al., 2000, Alexander and 

Simmonds (1992), Guandalini et al., 2009, and Elstner and Hogneted (1956) and the 
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code predictions with respect to their tensile reinforcement ratio. The variation of the 

tensile reinforcement ratio for Elstner and Hogneted experiments varied between 1.20% 

and 3.65% while for the other experiments the variation was between 0.5% and 1.25%. 

Other parameters such as slab effective depth, span to depth ratio (c/d), column size to 

effective depth ratio (c/d), and concrete compressive strength were identical for all the 

experiments and only concrete compressive strength slightly differed in Marzouk et al., 

2000 and Guandalini et al., 2009.   ACI does not account for the influence of the tensile 

reinforcement ratio on the normalized punching strength. Therefore, the calculation 

leads to a horizontal line for the slabs without shear reinforcement as shown in Figure 

7.18. Strength is generally well predicted for EC2-2004 and BS 8110-1997 when the 

tensile reinforcement ratios are less than 2.00%. EC 2 and BS formulations account for 

the effect of reinforcement ratio while the strength of slabs are calculated. BS do not 

recommend  increase of shear strength of slabs beyond  3.0% of reinforcement ratio 

while  the similar limit for EC2 is 2.0%.. It can be seen from Figure 7.18 (d), that the 

code equations provide an uneconomical design when high tensile reinforcement ratios 

are used in the slabs.  

 

 

 

 

 

Figure 7.18: Comparison of non-dimensional shear strength versus tensile 

reinforcement ratio: a) experiments by Marzouk et al., 1991. (b) Experiments by 

Alexander and Simmonds (1992), (c) Experiments by Guandalini et al., 2008, and (d) 

experiments by Elstner and Hognested (1956). 
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Slab 1 from chapter 4 which was validated numerically in Chapter 5 and three new 

numerical cases developed  in Chapter 6 were used to assess the effect of reinforcement 

ratio on the normalized punching shear strength. Parameters such as slab effective 

depth, span to depth ratio (c/d), column size to depth ratio (c/d), and concrete 

compressive strength were identical for all the experiments and only reinforcement ratio 

varied between 1.00% and 2.60% for these experiments. The normalized predicted 

punching strength from the numerical analysis in Chapter 6 and their normalized 

predictions using the code equations as a function of the effective depth are shown in 

Figure 7.19. ACI does not account for the effect of the tensile reinforcement ratio and a 

horizontal line for slabs are shown in Figure 7.19. BS 8110 and EC 2-2004 provide 

good approximations of these cases. 

 

 

Figure 7.19: Comparison of non-dimensional shear strength (from the numerical results 

in chapter 6) versus effective depth. 
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Guandalini et al., 2009 as well as the predicted values from ANN model and their 
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reinforcement ratio. Experiments by Guandalini et al., 2009 were used to validate the 

ANN shear model in this Chapter. The prediction of the punching shear strength from 

ANN model is very close to the experiments, therefore the normalized punching 

strength from ANN is in a very good agreement when compared with the experiments. 

All the code equations provided conservative predictions for Muttoni's experiments. 

ACI predictions provided a horizontal line and overestimated the shear strength of the 

slabs with low flexural capacity. This is due to the fact that ACI empirical formula was 

developed based on the experiments which all failed in shear. 
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Figure 7.20: Comparison of non-dimensional shear strength (experiments by Guandalini 

et al., 2009) versus effective depth. 

 

7.8.3 Compression Reinforcement Ratio: 

 

Figure 7.21 shows the normalized predicted punching strength as a function of the 

compression reinforcement ratio. It was shown in Chapter 6 that the punching strength 

of the slabs are influenced by the compression reinforcement for slabs with low flexural 

capacity. Therefore, experiments from Manterola (1996) as low flexural capacity and 

experiments from Birinici and Bayrak (2003) as approximately high flexural capacity 

slabs were chosen here for comparison. It was shown in Chapter 3 that none of the code 

equations account for the effect of the compression reinforcement and therefore a 

horizontal line for slabs are shown in Figure 7.21. ACI 318-08 slightly overestimates 

the punching strength of experiments with low flexural capacity while the BS 8110 and 

EC 2 provides safe predictions of the punching strength for low and moderate tensile 

reinforced slabs. 

 

 

 

Figure 7.21: Comparison of non-dimensional shear strength versus compression 

reinforcement ratio: (a) experiments by Manterola (1996). (b) Experiments by Birinici 

and Bayrak (2003). 
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The numerically validated model, slab PSSA (Li (1997)), and two numerical cases 

developed in Chapter 6 with different slab compression reinforcement were used here to 

assess the effect of compression reinforcement here. Figure 7.22 shows the normalized 

predicted punching strength from the numerical analysis in Chapter 6 and their 

normalized predictions using the code equations as a function of the compressive 

reinforcement ratio. It can be seen that none of the codes adequately consider the effect 

of the compression reinforcement on the punching shear strength.  

 

 

Figure 7.22: Comparison of non-dimensional shear strength (from the numerical model 

developed in chapter 6) versus compression reinforcement ratio 
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the code equations predicted failure within the shear-reinforced zones. ACI considers 

only 50% of concrete contribution for the punching shear capacity of the slabs. 

Therefore, ACI underestimated the punching strength capacity of the slabs as clearly 

shown in Figure 7.23. Slab 2 and Slab 3 were detailed according to BS 8110 

requirements. Also the BS method was developed for slabs with stirrup shear 

reinforcement. BS 8110 provided a safe prediction of the shear strength of the slabs. 
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reinforcement in the code and the shear reinforcements were not detailed according to 

EC 2, it can be seen that the EC 2  slightly overestimated the shear strength for  Slab 3.  

 

 

Figure 7.23: Comparison of non-dimensional shear strength (experiments by the author) 

versus effective depth. 

 

7.9 Conclusion 

In order to predict the punching shear strength of slab-column connections without 

shear reinforcement, a Bayesian Neural Network with five input neurons, eight hidden 

neurons and one output neuron was developed for the first time. The use of 

conventional back propagation neural network was abandoned in this study as the 

distribution of available test data was not sufficiently good to deal with the model 

complexity and therefore, a Bayesian approach was implemented preventing the overall 

dataset being separated into the training and test set, with the whole dataset being used 

in the training.   

Analytical results demonstrated clearly that there is a very good agreement between the 

punching shear strength obtained from the experiments and the corresponding values 

predicted by the ANN model. Comparison of the Vtest/Vpred for neural network and EC 2-

2004 and ACI 318-08 showed that the ANN model was able to predict the punching 

shear strength with higher accuracy and much less scatter. 
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        Chapter 8                                                                     

                                                                CONCLUSIONS  

 

 

8.1 Conclusions 

8.1.1 Review of the punching shear failure  

A comprehensive literature review was carried out to gain an insight into the underlying 

mechanisms and the fundamental causes of punching shear failure in flat slab column 

connections. Shear reinforcement types including stirrups and bent-up bars, shear studs 

and thin plate stirrups were reviewed along with the Lenton Steel Fortress (LSF) type of 

shear reinforcement, which due to its enhanced anchorage behaviour was adopted to be 

used in the experimental work and the numerical analysis of this thesis. 

Available mechanical models on slab-column connections have been reviewed in detail 

and it was concluded that they are too complex to be used by engineers without 

simplification that could quite possibly compromise their overall accuracy as a result. 

Punching shear provisions in codes such as ACI 318-08 (2008), Eurocode 2-2004, 

CEB-FIP model code 1990 and BS 8118-1997 have been reviewed and the conclusion 

was that ACI 318-08 (2008) only considers the contribution of concrete for punching 

shear while BS 8118-1997, Eurocode 2-2004 and CEB-FIP model code 1990 also 

consider size effect and reinforcement based on empirically developed equations. 

Numerical models of punching behaviour of slab-column connections were reviewed. 

Different element types and material models were briefly discussed. It is concluded that 

the numerical models are able to predict the load deformation behaviour of slab-column 

connections and therefore it was adopted in this thesis to gain a further insight into the 

punching shear experiments.  

 

8.1.2 Evaluation of punching shear design Code provisions  

Previously the assessments of the Code equations were restricted with experiments 

reported by researchers. In order to examine the accuracy of the Code equations, the 
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author has constructed the biggest database on punching shear tests to evaluate the 

predictions of the Code Provisions such as ACI 318-08 (2008), Eurocode 2-2004, CEB-

FIP model code 1990 and BS 8118-1997. It is shown that majority of the punching 

shear experiments were limited to slab depth less than 200 mm, members that have 

rectangular column-sections, members that are simply supported, and members that are 

moderately reinforced in flexure. It was also concluded that the punching shear design 

provisions of BS 8110-1997 provides the most accurate and consistent predictions of 

capacity using the variations in the Means and the values of the Coefficients of 

Variations (COVs). 

 

8.1.3Pullout and Punching shear experiments 

8.1.3.1 Pullout experiments  

Previously, Lenton Steel Fortress (LSF) shear reinforcement was tensioned at middle 

sections of the strip to have a higher resistance. However, this process made the 

production of the this type of LSF reinforcement expensive and therefore, the author 

eliminated the use of such bent strip and developed a series of pullout experiments in 

order to assess the effectiveness of un-bent strips of LSF type of shear reinforcement.  

It was concluded that the LSF strip both with and without holes showed very good 

anchorage behaviour. Another significant conclusion was that, the strips without holes 

demonstrated high ductile behaviour compared to the strips with holes. The strips with 

holes demonstrated a better anchorage behaviour and little plastic deformation inside 

the concrete compared to the strips without holes. Therefore, the modified LSF type of 

shear reinforcement was implemented to be used in punching shear experiment.   

 

8.1.3.2 Punching shear experiments  

Three real scale slab-column connections with and without LSF type of shear 

reinforcement were designed and tested to gain an in-depth understanding of the 

punching shear behaviour of such connections. Slab 1 was left with no shear 

reinforcement as control specimen and Slabs 2 and 3 were reinforced with LSF shear 

reinforcement. Experiments showed that Slab 1 failed in brittle punching shear while 

the mode of failure changed in Slab 2 and 3 where they failed in combination of flexure 
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and punching. The use of LSF shear reinforcement enhanced the punching shear 

capacity by 46% and 67% in Slab 2 and 3 respectively compared to the control 

specimen. The use of LSF shear reinforcement resulted in 75% and 153% increase of 

the ultimate displacement at failure compared to the control specimen.  

 

8.1.4 Numerical modelling 

Due to the limitations of the experimental configurations, it is vital to perform a 

numerical study to have a better insight into the behaviour of flat slab-column 

connections. For this purpose, the author adopted the ABAQUS FE package in this 

thesis. Available material models in ABAQUS were assessed and a plasticity concrete 

damage model was adopted and used in the numerical modelling. A sensitivity study 

was carried out both on mesh size and user defined parameters of concrete in order to 

define the appropriate model that predicts the punching shear behaviour. Punching shear 

experiments reported in Chapter 4 and four punching shear experiments carried out by 

Li (1997); PSSA, PSSB, PSSE and PSSF were modelled using ABAQUS. It can be 

concluded that there is a good agreement between the predictions of the FE analysis and 

experiments in terms of load deformation, stress-strain behaviour of flexural and shear 

reinforcements. Crack mouth opening displacement (CMOD) values showed an 

enhanced punching shear behaviour of slabs with LSF shear reinforcement as this was 

limiting the crack width significantly.  

 

8.1.5 Parametric study 

Using the validated models reported in Chapter 4, a parametric study was carried out on 

parameters that affect the punching shear behaviour of slab column connections. The 

effects of most important parameters such as compression reinforcement, column 

dimensions, slab to depth ratio and reinforcement ratio, on the capacity of punching 

shear capacity were studied. It is concluded that compression reinforcement has no 

significant effect on the punching shear capacity of slabs with high flexural 

reinforcement whereas slabs with low flexural reinforcement showed that the increase 

in compression reinforcement resulted in an enhanced behaviour of such connections. 

Increase in the column dimension also resulted in an increase in punching shear 

capacity. In order to assess the size effect precisely, all parameters such as span to depth 
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ratio, reinforcement ratio, column to depth ratio were kept constant; slab depth was left 

to be the only variable. For this reason, 4 series of experiments on slab-column 

connections with depth of 160, 200, 260 and 320 mm were modelled and analysed. 

Increase in the depth of the slabs resulted in a decrease in the nominal strength of the 

slab. It was also concluded that an increase in the flexural reinforcement ratio results in 

an enhanced load deflection behaviour in both elastic and plastic regions. The use of 

shear reinforcement on slab-column connections significantly increases the punching 

shear capacity. However, the influence of shear reinforcement on such connections has 

not received much attention in the Codes.  

   

8.1.6 Bayesian Neural Network 

The Bayesian Neural Network, a very recent approach to deal with complex models, 

was adopted here to predict the punching shear capacity of slab-column connections. 

The accuracy in prediction of punching shear capacity was significantly increased by 

implementing the Bayesian Neural Network. 

 

8.2 Suggested future work 

 In this thesis, real scale slab-column connections with and without LSF type of 

shear reinforcement were designed and tested to investigate the punching shear 

behaviour of such connections. However, it is essential to perform experiments 

on slab-column connections under intially gravity and then seismic loading in 

order to gain a deep understanding of punching shear behaviour in seismic 

scenarios.  

 It is also suggested that further real scale experiments on slab-column 

connections need to be carried out using unbent LSF shear reinforcement 

without holes. Pullout and punching shear experiments need to be carried out to 

assess the performance of such shear reinforcement on punching shear capacity.  

 The database for punching shear experiments that has been developed in this 

thesis needs to be updated with any future experiments on the topic. This will 

make it possible to formulate more precise and simplified models of punching 

shear capacity.   
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Appendix A 

 
Database on slab-column connections without shear reinforcement: 

 

Source Specimen 
h 

(mm) 

d 

(mm) 
c (mm) 

Rho 

(%) 

fy 

(Mpa) 

f'c 

(Mpa) 
Cylinder 

Rho 

bottom 
(%)  

L (mm) 
Contraflexural 

point 

Vtest 

(kN) 

 Li (2000) 

P100 135 100 200 0.98 488 39.4 0.22 925 925 330 

P150 190 150 200 0.9 465 39.4 0.11 1190 1190 583 

P200 240 200 200 0.83 465 39.4 0.14 1450 1450 904 

P300 345 300 200 0.76 468 39.4 0.1 1975 1975 1381 

P400 450 400 300 0.76 433 39.4 0.08 1975 1975 2224 

P500 550 500 300 0.76 433 39.4 0.1 1975 1975 2681 

Ramadan K-E (1996): 

cited in Swamy and 
Ali (1982) 

1 125 98 150 0.58 550 88.2 0 1700 1372 224 

2 125 98 150 0.58 550 56.2 0 1700 1372 212 

3 125 98 150 0.58 550 26.9 0 1700 1372 169 

4 125 98 150 0.58 550 58.7 0 1700 1372 233 

6 125 98 150 0.58 550 101.8 0 1700 1372 233 

12 125 98 150 1.28 550 60.4 0 1700 1372 319 

13 125 98 150 1.28 550 43.4 0 1700 1372 297 

14 125 98 150 1.28 550 60.8 0 1700 1372 341 

16 125 98 150 1.28 550 98.4 0 1700 1372 362 

21 125 98 150 1.28 650 41.9 0 1700 1372 286 

22 125 98 150 1.28 650 84.2 0 1700 1372 405 

23 125 100 150 0.87 650 56.4 0 1700 1372 341 

25 125 100 150 1.27 650 32.9 0 1700 1372 244 

26 125 100 150 1.27 650 37.6 0 1700 1372 294 

27 125 102 150 1.03 650 33.7 0 1700 1372 227 

Marzouk and Hussein 

(1991) 

HS1 120 95 150 0.39 490 67.0 0.42 1700 1500 178 

HS2 120 95 150 0.68 490 70.0 0.42 1700 1500 249 

HS3 120 95 150 1.17 490 69.0 0.42 1700 1500 356 

HS4 120 90 150 0.88 490 66.0 0 1700 1500 418 

HS5 150 125 150 0.52 490 68.0 0 1700 1500 365 

HS6 150 120 150 0.54 490 70.0 0 1700 1500 489 

HS7 120 95 150 0.97 490 74.0 0 1700 1500 356 

HS8 150 120 150 0.95 490 69.0 0 1700 1500 436 

HS9 150 120 150 1.47 490 74.0 0 1700 1500 543 

HS10 150 120 150 2.08 490 80.0 0 1700 1500 645 

HS11 90 70 150 0.73 490 70.0 0 1700 1500 196 

HS12 90 70 150 1.19 490 75.0 0 1700 1500 258 

HS13 90 70 150 1.58 490 68.0 0 1700 1500 267 

HS14 120 95 220 1.17 490 72.0 0 1700 1500 498 

HS15 120 95 300 1.17 490 71.0 0 1700 1500 560 

NS1 120 95 150 1.17 490 42.0 0 1700 1500 320 

NS2 150 120 150 0.54 490 30.0 0 1700 1500 396 

Tolf 1998: cited in 

FIB bulletin 12 

S2.1 240 200 250 0.8 657 24.2 0 2540 2378 603 

S2.2 240 199 250 0.8 670 22.9 0 2540 2378 600 

S2.3 240 200 250 0.45 668 25.4 0 2540 2378 489 

S2.4 240 197 250 0.45 664 24.2 0 2540 2378 444 

S1.1 120 100 125 0.8 706 28.6 0 1270 1189 216 

S1.2 120 99 125 0.8 701 22.9 0 1270 1189 194 

S1.3 120 98 125 0.4 720 26.6 0 1270 1189 145 

S1.4 120 99 125 0.4 712 25.1 0 1270 1189 148 

Stein et al, 2007 V1 150 118 250 0.45 438 29.7 0.54 1900 1800 329 
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V2 150 118 250 0.98 438 26.2 0.54 1900 1800 438 

V3 150 118 250 0.62 438 25.7 0.54 1900 1800 365 

Guandalini et al., 2009 

PG-1 250 210 260 1.5 573 27.6 0.2 3000 3000 1023 

PG-2B 250 210 260 0.25 552 40.5 0.2 3000 3000 440 

PG-4 250 210 260 0.25 541 32.2 0.2 3000 3000 408 

PG-5 250 210 260 0.33 555 29.3 0.2 3000 3000 550 

PG-10 250 210 260 0.33 577 28.5 0.2 3000 3000 540 

PG-11 250 210 260 0.75 570 31.5 0.2 3000 3000 763 

PG-3 500 456 520 0.33 520 32.4 0.2 6000 5700 2153 

PG-6 125 96 130 1.5 526 34.7 0 1500 1500 238 

PG-7 125 100 130 0.75 550 34.7 0 1500 1500 241 

PG-8 125 117 130 0.28 525 34.7 0 1500 1500 140 

PG-9 125 117 130 0.22 525 34.7 0 1500 1500 115 

Papanikolaou et al., 

2005  

P51 100 80 150 0.54 550 33.1 0 750 750 210 

P52 100 80 150 0.54 550 34.5 0 750 750 219 

P53 100 80 150 0.54 550 31.1 0 750 750 216 

P101 100 80 150 1.08 550 33.9 0 750 750 256 

P102 100 80 150 1.08 550 31.7 0 750 750 244 

P103 100 80 150 1.08 550 32.5 0 750 750 248 

p10-5 100 80 150 0.54 550 29.1 0 750 750 164 

p10-10 100 80 150 1.08 550 32.5 0 750 750 225 

p15-5 150 130 150 0.54 550 32.1 0 750 750 310.4 

p15-10 150 130 150 1.08 550 30.6 0 750 750 355.2 

p20-5 200 180 150 0.54 550 30.3 0 750 750 459.1 

p20-10 200 180 150 1.08 550 32.1 0 750 750 501.1 

p25-5 250 230 150 0.54 550 32.5 0 750 750 578.5 

p25-10 250 230 150 1.08 550 29.4 0 750 750 635.7 

Ozden et al., 2006  

NR1E0F0 120 100 200 0.73 507 21.6 0.37 1500 1200 188 

NR2E0F0 120 100 200 1.09 507 20.0 0.52 1500 1200 202 

HR1E0F0 120 100 200 1.5 471 74.0 0.72 1500 1200 331 

HR1E0F0r 120 100 200 1.5 471 75.0 0.72 1500 1200 371 

HR2E0F0 120 100 200 2.25 471 63.7 1.13 1500 1200 405 

HR2E0F0r 120 100 200 2.25 471 74.7 1.13 1500 1200 489 

NR1E0F1 120 100 200 0.73 507 19.6 0.37 1500 1200 266 

NR2E0F1 120 100 200 1.09 507 19.3 0.52 1500 1200 245 

HR1E0F1 120 100 200 1.5 471 81.3 0.72 1500 1200 576 

HR2E0F1 120 100 200 2.25 471 79.3 1.13 1500 1200 691 

Birkle and Dilger 

(2008)  

1 160 124 250 1.54 488 36.2 0.4 1000 1000 483 

7 230 190 300 1.3 531 35.0 0.26 1500 1500 825 

10 300 260 350 1.1 524 31.4 0.19 1900 1900 1046 

Regan (2004) 

1 160 128 50 0.93 520 38.0 0.19 2000 1830 200 

2 160 128 75 0.93 520 43.2 0.19 2000 1830 260 

3 160 128 100 0.93 520 46.6 0.19 2000 1830 335 

4 160 128 170 0.93 520 41.7 0.19 2000 1830 380 
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5 160 128 25 0.93 520 43.8 0.19 2000 1830 190 

6 160 128 50 0.93 520 30.2 0.19 2000 1830 190 

7 160 124 50 1.71 500 37.4 0.19 2000 1830 220 

Regan 1986  

I/1  100 77 200 1.2 500 25.8 0 2000 1830 194 

I/2 100 77 200 1.2 500 23.4 0 2000 1830 176 

I/3 100 77 200 0.92 500 27.4 0 2000 1830 194 

I/4 100 77 200 0.92 500 32.3 0 2000 1830 194 

I/5 100 79 200 0.75 480 28.2 0 2000 1830 165 

I/6 100 79 200 0.75 480 21.9 0 2000 1830 165 

I/7 100 79 200 0.8 480 30.4 0 2000 1830 186 

II/1  250 200 250 0.98 530 34.9 0 - 2745 825 

II/2  160 128 160 0.98 485 33.3 0 - 1800 390 

II/3  160 128 160 0.98 485 34.3 0 - 1800 365 

II/4  80 64 80 0.98 480 33.3 0 - 900 117 

II/5  80 64 80 0.98 480 34.3 0 - 900 105 

II/6) 80 64 80 0.98 480 36.2 0 - 900 105 

III/1 120 95 150 0.83 494 23.2 0 1500 1370 197 

III/2 120 95 150 0.83 494 9.5 0 1500 1370 123 

III/3 120 95 150 0.83 494 37.8 0 1500 1370 214 

III/4 120 93 150 1.52 464 11.9 0 1500 1370 154 

III/5 120 93 150 1.52 464 26.8 0 1500 1370 214 

III/6 120 93 150 1.52 464 42.8 0 1500 1370 248 

V/1 150 118 54 0.78 628 34.3 0 1600 1500 170 

V/2 150 118 170 0.78 628 32.2 0 1600 1500 280 

V/3 150 118 110 0.78 628 32.4 0 1600 1500 265 

V/4 150 118 102 0.78 628 36.2 0 1600 1500 285 

V/5 150 118 150 0.78 628 32.9 0 1600 1500 285 

Lovrovich and 

McLean (1990)  

F1 100 83 100 1.71 531 40.0 1.71 500 200 480 

F2 100 83 100 1.71 531 40.0 1.71 700 400 204 

F3 100 83 100 1.71 531 40.0 1.71 900 600 149 

F4 100 83 100 1.71 531 40.0 1.71 1100 800 129 

F5 100 83 100 1.71 531 40.0 1.71 1500 1200 139 

Marti et al., 1977: 
cited in FIB bulletin 

12     

P2 180 143 300 1.49 558 34.6 0.46 2750 2600 628 

  Pralong et al., 1979: 
cited in FIB bulletin 

12 

P5 191 171 300 1.15 515 26.2 0.29 2750 2600 626 

Schaefers 1978: cited 
in FIB bulletin 12 

0 143 113 210 0.82 420 22.2 0 1960 1680 280 

3 200 170 210 0.54 450 21.3 0 1960 1680 460 

Lander et al., (1977) : 
cited in FIB bulletin 

12 

DA6 110 80 100 1.8 550 30.0 1.8 1260 1056 183 

DA7 110 80 200 1.8 550 33.5 1.8 1260 1056 288 

DA10 110 80 240 1.8 550 32.0 1.8 1260 1056 281 

DA11 110 80 320 1.8 550 30.4 1.8 1260 1056 324 

Lander et al., 1973 : 

cited in FIB bulletin 

12 

P1 280 240 500 1.31 544 27.9 0 2900 2650 1662 

M1 127 127 226 1.18 541 31.8 0 1400 1200 362 

Corley and Hawkins 
(1968): cited in FIB 

bulletin 12 

AN-1 146 111 254 1.51 404 44.4 0 2135 1820 334 

AN-2 146 111 203 1.01 444 44.4 0 2135 1820 266 

Base (1966) -  
Bernaert and Puech 

(1966): all  cited in 

FIB bulletin 12 

A1/M1 140 114 203 1.1 255 16.3 0 1370 1370 322 

A1/M2 140 117 203 1.5 282 15.5 0 1370 1370 346 

A1/M3 140 121 203 1.9 282 14.2 0 1370 1370 307 

A1/M4 140 124 203 1 432 14.0 0 1370 1370 259 

A1/M5 140 117 203 1.2 432 21.0 0 1370 1370 346 
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A2/M1 140 124 203 1 255 35.4 0 1370 1370 409 

A2/M2 140 117 203 1.5 282 32.8 0 1370 1370 419 

A2/M3 140 121 203 1.9 282 32.8 0 1370 1370 430 

A2/T1 140 124 203 1 432 32.5 0 1370 1370 419 

A2/T2 140 124 203 1.7 432 39.3 0 1370 1370 439 

A3/M1 140 124 203 1 255 41.4 0 1370 1370 247 

A3/M2 140 102 203 1.7 282 18.8 0 1370 1370 336 

A3/M3 140 117 203 1.9 282 19.3 0 1370 1370 298 

A3/T1 140 121 203 1 432 27.3 0 1370 1370 328 

A3/T2 140 119 203 1.2 432 20.6 0 1370 1370 298 

A4/M1 140 114 203 1.1 255 16.0 0 1370 1370 259 

A4/M2 140 119 203 1.5 282 38.3 0 1370 1370 341 

A4/M3 140 117 203 1.9 322 29.2 0 1370 1370 541 

A4/T1 140 114 203 1.1 432 32.2 0 1370 1370 384 

A4/T2 140 117 203 1.2 432 32.8 0 1370 1370 402 

Manterola (1966): 

cited in FIB bulletin 
12 

P1-S1 125 107 100 1.04 304 25.6 0 3250 3000 216 

P2-S1 125 107 250 1.04 304 33.8 0 3250 3000 257 

P3-S1 125 107 450 1.04 304 29.7 0 3250 3000 301 

P1-S2 125 107 100 1.04 324 24.2 0.52 3250 3000 196 

P2-S2 125 107 250 1.04 324 33.1 0.52 3250 3000 283 

P3-S2 125 107 450 1.04 324 31.9 0.52 3250 3000 397 

P1-S3 125 107 100 1.04 324 39.7 1.04 3250 3000 184 

P2-S3 125 107 100 1.41 324 35.8 1.04 3250 3000 211 

P3-S3 125 107 100 0.52 324 39.2 1.04 3250 3000 165 

P1-S4 125 107 100 0.46 451 26.4 0 3250 3000 175 

P2-S4 125 107 250 0.46 451 31.3 0 3250 3000 246 

P3-S4 125 107 450 0.46 451 34.2 0 3250 3000 294 

Moe (1961)  

S1-60 152 114 254 1.05 399 23.3 0 1830 1780 389 

S2-60* 152 114 254 1.5 399 22.1 0 1830 1780 356 

S3-60* 152 114 254 2 399 22.6 0 1830 1780 364 

S4-60* 152 114 254 2.6 399 23.8 0 1830 1780 334 

S1-70 152 114 254 1.05 483 24.5 0 1830 1780 393 

S2-70* 152 114 254 2 483 25.4 0 1830 1780 378 

S3-70* 152 114 254 2.6 483 35.2 0 1830 1780 374 

S4-70A* 152 114 254 2.6 483 20.5 0 1830 1780 312 

s5-60 152 114 254 1.05 399 22.2 0 1830 1780 343 

S5-70 152 114 254 1.05 483 23.0 0 1830 1780 378 

R1 152 114 254 1.43 328 26.6 0 1830 1780 312 

R2 152 114 254 1.43 328 27.6 0 1830 1780 394 

H1 152 114 254 1.056 328 26.1 0 1830 1780 372 

M1A 152 114 254 1.51 481 20.8 0 1830 1780 433 

Elstner and Hognested 
(1956)   

I A-1a 152 118 254 1.15 332 11.3 0.56 1830 1780 303 

I A-1b 152 118 254 1.15 332 20.2 0.56 1830 1780 365 

I A-1c 152 118 254 1.15 332 23.2 0.56 1830 1780 356 

I A-1d 152 118 254 1.15 332 29.4 0.56 1830 1780 351 

I A-1e 152 118 254 1.15 332 16.2 0.56 1830 1780 356 

I A-2a 152 114 254 2.47 321 10.9 1.15 1830 1780 334 

I A-2b 152 114 254 2.47 321 15.6 1.15 1830 1780 400 

I A-2c 152 114 254 2.47 321 29.9 1.15 1830 1780 467 

I A-7b 152 114 254 2.47 321 22.3 1.15 1830 1780 512 

I A-3a 152 114 254 3.7 321 10.2 1.15 1830 1780 356 

I A-3b 152 114 254 3.7 321 18.1 1.15 1830 1780 445 

I A-3c 152 114 254 3.7 321 21.2 1.15 1830 1780 534 

I A-3d 152 114 254 3.7 321 27.6 1.15 1830 1780 547 

II A-4 152 118 356 1.15 332 20.9 0.56 1830 1780 400 
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II A-5 152 114 356 2.47 321 22.2 1.15 1830 1780 534 

II A-6 152 114 356 3.7 321 20.0 1.15 1830 1780 498 

V A-9* 152 114 254 2.48 321 23.9 1.15 1830 1780 445 

V A-10* 152 114 356 2.49 321 23.8 1.15 1830 1780 489 

VII-A-13 152 121 356 0.57 294 21.0 0.28 1830 1780 236 

VIII B-1 152 114 254 0.49 324 11.4 0 1830 1780 178 

VIII B-2 152 114 254 0.49 321 38.1 0 1830 1780 200 

VIII B-4 152 114 254 0.86 303 38.2 0 1830 1780 334 

VIII B-9 152 114 254 2.04 341 35.1 0 1830 1780 505 

VIII B-11 152 114 254 2.91 409 10.8 0 1830 1780 329 

VIII B-14 152 114 254 2.91 325 40.4 0 1830 1780 578 

kinnunen and 
Nylander (1960)  

5 150 117 150 0.8 441 26.8 0 1840 1710 255 

6 150 118 150 0.79 454 26.2 0 1840 1710 275 

24 150 128 300 1.01 455 26.4 0 1840 1710 430 

25 150 124 300 1.04 451 25.1 0 1840 1710 408 

32 150 123 300 0.49 448 26.3 0 1840 1710 258 

33 150 125 300 0.48 462 26.4 0 1840 1710 258 

IA15a-5 149 117 150 0.8 441 27.9 0 1840 1710 255 

IA15a-6 151 118 150 0.8 454 25.8 0 1840 1710 275 

IA15c-11 153 121 150 1.8 436 31.4 0 1840 1710 334 

IA15c-12 154 122 150 1.7 439 28.8 0 1840 1710 332 

IA30c-30 151 120 300 2.1 436 29.5 0 1840 1710 491 

IA30c-31 151 119 300 2.1 448 29.5 0 1840 1710 540 

IA30a-24 158 128 300 1 456 25.9 0 1840 1710 430 

IA30a-25 154 124 300 1.1 451 24.6 0 1840 1710 408 

IA30d-32 155 123 300 0.5 448 25.8 0 1840 1710 258 

IA30D-33 154 125 300 0.5 462 26.2 0 1840 1710 258 

IA30e-34 150 120 300 1 461 26.9  1840 1710 332 

IA30e-35 153 122 300 1 459 24.6   1840 1710 332 

Marzouk et al., 1996  

N.H.Z.S.1.0 150 119 250 1.06 460 32.2 0.35 1900 1870 475.5 

N.N.Z.S.1.0 150 119 250 1.06 460 37.2 0.35 1900 1870 474 

Marzouk et al., 1998  H.H.Z.S.1.0 150 119 250 1.06 460 67.2 0.35 1900 1900 511.52 

Marzouk and Jiang 
(1997)  

HS17 150 120 250 1.093 490 67.0 0.3 1950 1950 511.1 

Broms (2000)  9 180 150 250 0.44 500 26.9 0.21 2600 2000 408 
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9a 180 150 250 0.44 500 21.0 0.21 2600 2000 360 

Alexander and 
Simmonds (1992) 

P11S150 155 133 200 0.5 438 33.2 0.28 2750 2750 257 

P38S150 155 133 200 0.63 438 35.6 0.35 2750 2750 264 

P19S150 155 133 200 0.54 438 26.0 0.3 2750 2750 258 

P19RE 155 133 200 0.54 438 35.3 0.3 2750 2750 304 

P19S75 155 133 200 0.67 438 26.0 0.3 2750 2750 258 

P19S50 155 133 200 0.82 438 26.0 0.3 2750 2750 319 

Binici and Bayrak 

(2003) 

Control 1 152 114 304 1.76 448 28.3 0 2133 2133 494 

Control 2 152 114 304 1.76 448 28.3 0.12 2133 2133 510 

Ospina et al.  (Sep. 
2003) 

SR-1 155 120 250 0.86 430 36.8 0 2150 1794 365.1 

Chen and Li (2000) 

SR1-C1 100 75.2 150 0.56 482 16.9 0 1000 840 103.9 

SR1-C2 100 75.2 150 0.56 482 34.4 0 1000 840 123.88 

SR2-C1 100 75.2 150 1.23 482 16.9 0 1000 840 146.1 

SR2-C2 100 75.2 150 1.23 482 34.4 0 1000 840 225.7 

 McHarg et al., 2000   
NU 150 110 225 1.11 434 30.0 0.36 2300 2108 306 

NB* 150 110 225 2.15 434 30.0 0.36 2300 2108 349 

Swamy & Ali (1982)  

S-1 125 100 150 0.52 462 38.9 0.2 1800 1690 197.7 

S-7* 125 100 150 0.72 462 38.9 0.31 1800 1690 221.7 

S-19 125 100 150 0.35 462 38.9 0.2 1800 1690 130.7 

Theodorakopolus & 
Swamy (2003) 

FS1 125 100 150 0.53 460 35.4 0.2 1800 1690 174 

FS8 125 100 100 0.53 460 36.6 0.2 1800 1690 150 

FS10 125 100 200 0.53 460 36.4 0.2 1800 1690 137 

FS19 125 100 150 0.35 460 34.5 0.2 1800 1690 191 

Osman et al. 2000 ACI NSNW0.5p 150 120 250 0.5 450 37.8 0 1900 1830 310.22 

Harajli et al., 2006 

A1 55 37 100 1 487 31.9 0 670 670 45.9 

A2 55 37 100 1 488 31.5 0 670 670 56.4 

B1 75 55 100 1.5 488 35.5 0 670 670 73.5 

B2 75 55 100 1.5 488 29.1 0 670 670 113.8 

SA1 55 37 100 1 597 26.1 0 670 670 52.9 

SA2 55 37 100 1 597 25.4 0 670 670 72.1 

SB1 75 55 100 1.5 488 28.1 0 670 670 83 

SB2 75 55 100 1.5 488 31.5 0 670 670 109.7 

Mokhtar et al., 1985 AB1 150 108 250 1.56 516 36.0 0.38 1900 1800 408 

Yamada et al., 1992 
T1 200 160 300 1.23 811 21.6 0.62 2000 1581 441 

K1 200 156 300 1.53 568 26.0 1.53 2000 1581 658 

Hallgren: cited in FIB 

bulletin 12 

HSC0 240 200 250 0.8 643 89.2 0 2540 2400 965 

HSC1 240 200 250 0.8 627 86.7 0 2540 2400 1021 

HSC2 240 194 250 0.8 620 81.4 0 2540 2400 889 

HSC4 240 200 250 1.2 596 87.0 0 2540 2400 1041 

HSC6 240 201 250 0.6 633 103.4 0 2540 2400 960 

N/HSC8 240 198 250 0.8 631 90.2 0 2540 2400 944 

HSC9 240 202 250 0.3 634 79.9 0 2540 2400 565 

Tomaszevicz (1993): 

cited in FIB bulletin 
12 

ND65-1-1 320 275 200 1.5 500 64.1 0 3000 2500 2050 

ND65-2-1 240 200 150 1.7 500 70.0 0 2600 2200 1200 
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ND95-1-1 320 275 200 1.5 500 83.5 0 3000 2500 2250 

ND95-1-3 320 275 200 2.5 500 89.7 0 3000 2500 2400 

ND95-2-1 240 200 150 1.7 500 88.0 0 2600 2200 1100 

ND95-21D 240 200 150 1.7 500 86.5 0.9 2600 2200 1300 

ND95-2-3 240 200 150 2.6 500 89.3 0 2600 2200 1450 

ND95-2-3D 240 200 150 2.6 500 80.1 0.9 2600 2200 1250 

ND95-2-

3D+ 
240 200 150 2.6 500 97.8 0.9 2600 2200 1450 

ND95-3-1 120 88 100 1.8 500 84.9 0 1500 1100 330 

ND111-1-1 320 275 200 1.5 500 111.7 0 3000 2500 2450 

ND115-2-1 240 200 150 1.7 500 118.7 0 2600 2500 1400 

ND115-2-3 240 200 150 2.6 500 107.8 0 2600 2200 1550 

Mowrer and 
Vanderbilt (1967) 

JN-1-1.7 76.2 50.8 152 1.7 352 12.4 0 914.4 914.4 113 

JN-0-2.2 76.2 50.8 152 2.2 352 15.2 0 914.4 914.4 122.78 

Olivera et al., 2000 

1-B 130 93 120 1.5 695 60.9 0 1800 1650 270 

2-B 130 97 120 1.4 695 62.9 0 1800 1650 335 

1-A 130 109 120 1.2 631 28.7 0 1800 1650 316 

2-A 130 108 120 1.2 631 28.7 0 1800 1650 255 

 Ghannoum (1998) 

S1-U 150 110 225 1.11 445 37.2 0.36 2300 2108 301 

S1-B 150 110 225 2.15 445 37.2 0.36 2300 2108 317 

S2-U 150 110 225 1.11 445 57.1 0.36 2300 2108 363 

S2-B 150 110 225 2.15 445 27.1 0.36 2300 2108 447 

S3-U 150 110 225 1.11 445 67.1 0.36 2300 2108 443 

S3-B 150 110 225 2.15 445 67.1 0.36 2300 2108 485 

Corely and Hawkins 

(1968) 

AN-1 146 111 254 1.54 403 18.7 0 2100 1820 334.1 

BN-1 146 111 203 1.03 445 20.4 0 2100 1820 265.56 

Rankins and Long  

(1987) a & b 

1 51 40.5 100 0.423 530 30.7 0 700 640 36.42 

2 51 40.5 100 0.558 530 30.7 0 700 640 49.08 

3 51 40.5 100 0.691 530 30.7 0 700 640 56.55 

4 51 40.5 100 0.821 530 34.8 0 700 640 56.18 

5 51 40.5 100 0.883 530 34.8 0 700 640 57.27 

6 51 40.5 100 1.026 530 34.8 0 700 640 65.58 

7 51 40.5 100 1.163 530 29.7 0 700 640 70.94 

8 51 40.5 100 1.292 530 29.7 0 700 640 71.09 

9 51 40.5 100 1.454 530 29.7 0 700 640 78.6 

10 51 40.5 100 0.517 530 29.9 0 700 640 43.59 

11 51 40.5 100 0.802 530 29.9 0 700 640 55 

12 51 40.5 100 1.107 530 29.9 0 700 640 67.06 

13 51 40.5 100 0.601 530 34.0 0 700 640 49.39 

14 51 40.5 100 0.691 530 34.0 0 700 640 52.45 

15 51 40.5 100 1.994 530 34.0 0 700 640 84.84 

1A 57 46.5 100 0.442 530 28.8 0 700 640 45.19 

2A 57 46.5 100 0.691 530 28.8 0 700 640 66.24 

3A 57 46.5 100 1.293 530 28.8 0 700 640 89.72 

4A 57 46.5 100 1.992 530 30.9 0 700 640 97.43 
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1B 45.5 35 100 0.423 530 37.7 0 700 640 28.85 

2B 45.5 35 100 0.69 530 37.7 0 700 640 37.63 

3B 45.5 35 100 1.292 530 37.7 0 700 640 56.67 

4B 45.5 35 100 1.994 530 30.9 0 700 640 72.52 

1C 64 53.5 100 0.423 530 27.8 0 700 640 62.74 

2C 64 53.5 100 0.69 530 32.4 0 700 640 87.86 

3C 64 53.5 100 1.288 530 32.4 0 700 640 124.14 

4C 64 53.5 100 1.993 530 27.8 0 700 640 125.94 

Sissakis and Sheikh 

(2007) 

Control 1 150 120 200 1.49 428 42.6 0 1500 1350 575 

Control 2 150 120 200 1.49 428 36.1 0 1500 1350 439 

Control 3 150 120 200 2.23 480 34.5 0 1500 1350 476 

Control 4 150 120 200 2.23 480 26.6 0 1500 1350 479 

 Beutel and Hegger 
(2002) 

P1 230 190 400 0.806 580 21.9 0.24 2750 2400 615 

Hawkins et al., 1974 

S2075-1 165 121 254 0.79 330.6 32.4 0 2130 2030 290 

S2075-2 165 122 254 0.78 330.6 29.0 0 2130 2030 272.66 

S2150-1 165 124 254 1.54 330.6 29.6 0 2130 2030 462.6 

S2150-2 165 122 254 1.56 330.6 30.2 0 2130 2030 440.35 

S4075-1 165 127 508 0.75 330.6 26.6 0 2130 2030 342.5 

S4075-2 165 124 508 0.77 330.6 32.2 0 2130 2030 329.15 

S4150-1 165 126 508 1.52 330.6 35.4 0 2130 2030 579.13 

S4150-2 165 126 508 1.52 335.9 35.7 0 2130 2030 580.46 

Li (1997) PSS-A 175 143 200 0.703 500 25.8 0.39 2000 1700 454 

Bazant and Cao (1987) 

I-C 101.6 96.2 102 3.76 309 52.9 0 508 406.4 13.84 

II-C 101.6 96.2 102 3.12 309 47.9 0 508 406.4 15.56 

III-C 101.6 96.2 102 2.46 309 52.1 0 508 406.4 11.51 

Graf (1938): cited in 

FIB bulletin 12 

1362 302 271 300 1.04 270 13.9   1700 1500 1157 

1375 504 474 300 0.576 270 15.5   1700 1500 1647 

Keefe (1954): cited in 
FIB bulletin 12 

P-I 127 113 153 2.09 288 27.0 - 1090 940 315 

P-II 127 113 153 2.09 288 26.1 - 1090 940 370 

Franz (1963): cited in 

FIB bulletin 12 
1 140 129 210 1.074 457 21.4  1960 1680 343 

Narasiham(1971): 

cited in FIB bulletin 

12 

L7 178 143 305 1.11 398 33.0 1.11 2280 2000 588 

L9 178 143 305 1.11 398 30.4 1.11 2280 200 687 

Marti et al., 1977 : 

cited in FIB bulletin 

12 

P2 180 152 300 1.4 558 35.4 0.43 2750 2600 627 
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Muller et al., 1984: 
cited in FIB bulletin 

12 

P4 180 162 300 1.219 515 30.8 0.3 2750 1300 366 

Broms 1990 (CEB) 1 180 150 250 0.928 681 23.4 - 2600 2000 435 

Chana and Desai 

(1992)  

1 240 200 300 0.785 500 32.2 0 3000 2400 805 

FPS1 250 210 400 0.848 500 19.3 0.85 4500 2400 1225 

Lee Morley (1999): 

cited in FIB bulletin 

12 

2F22 200 160 290 1.96 500 74.2 0 2000 1500 1100 

3f22 250 230 400 1.49 500 70.2 0 2750 2250 1640 

Esfahani et al., 2009 

R0.8-C25-
F0 

100 73 150 0.84 490 23.0 0 1000 920 138 

R1.6-C25-
F0 

100 69 150 1.59 490 23.0 0 1000 920 210 

Michel et al., 2007 R0 100 70.5 100 0.902 500 27.2 0.55 1280 1200 121.5 

Regan & Samadian 
(2001) 

1 200 160 200 1.26 670 29.0 0.21 3000 2743 560 

1A 200 160 200 1.26 670 32.9 0.21 3000 2743 587 

Kim et al., 2009 B3-SL1 150 114 250 1.44 454 33.0 0.52 2360 2260 376 

Scordelis et al., 1958 
S-1 152.4 108 330 2.5 331 19.4 0 1828 1320 467 

S-2 152.4 108 330 2.5 331 28.0 0 1828 1320 485 

Yitzhaki (1966) 

II-5 102 82.3 221 0.526 471 22.8   1164 1164 151.69 

II-8 102 82.3 333 0.578 456 24.9  1164 1164 218.41 

IIS20-1 102 78.2 201 0.66 402 14.5  1706 1706 127.67 

II-1 102 82.3 221 1.21 457 14.0  1164 1164 181.05 

II-4a 102 82.3 221 0.893 558 23.8  1164 1164 244.65 

II-4b 102 82.3 201 0.893 466 13.0  1164 1164 161.47 

II-4c 102 82.3 201 0.893 510 18.5  1164 1164 215.3 

IIR20-2 102 109 201 0.93 500 19.8  1164 1164 306.5 

IIR30-1 102 80.3 300 2.02 402 23.4  1706 1706 238.86 

II-2 102 82.3 221 1.255 373 13.0  1706 1706 151.68 

II-3 102 82.3 200 1.255 490 18.0  1706 1706 244.65 

II-6 102 82.3 221 1.327 456 28.8  1706 1706 240.21 

II-9 102 79.3 201 0.85 550 12.3  1164 1164 156.58 

III-3 102 82.3 221 1.21 558 24.0  1164 1164 200.61 

7 102 82.3 119 0.736 456 13.2  1164 1164 117.45 

II-10 102 82.3 119 1.04 385 15.5   1706 1706 97.86 

  

8 101.6 76.2 102 2.05 450 24.2 0 1220 1117.6 129 

9 101.6 76.2 102 2.05 450 22.6 0 788 685.8 135.67 

10 101.6 76.2 102 2.05 450 24.7 0 482.6 381 129 

12 152.4 113 203 2.14 450 24.8 0 990.6 685.8 356.6 

13 152.4 122 203 0.66 450 24.8 0 990.6 685.8 271.35 

15 101.6 80.8 152 1.47 450 25.0 0 787.4 533.4 160.14 

16 101.6 85.8 152 0.45 450 23.2 0 787.4 533.4 107.38 

19 152.4 123 203 0.47 450 22.1 0 787.4 685.8 271.34 

21 152.4 122 203 0.66 450 16.1 0 990.6 685.8 230 

22 101.6 72.7 152 5.01 450 13.2 0 787.4 533.4 154.35 

23 101.6 80.8 152 1.47 450 14.6 0 787.4 533.4 107.65 

24 101.6 85.8 152 0.45 450 14.1 0 787.4 533.4 68.95 

25 152.4 122 203 0.66 450 52.1 0 990.6 685.8 306.5 

27 101.6 80.8 152 1.47 450 52.1 0 787.4 533.4 242.87 
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28 101.6 85.8 152 0.45 450 52.1 0 787.4 533.4 147.68 

29 50.8 38.1 203 2.04 450 52.1 0 610 381 73.84 

30 50.8 38.1 203 2.04 450 52.1 0 610 381 70.28 

Kruger et al., 2000 P0A 150 121 300 1 400 35.0 0 3000 2750 423 

Alander (2000) 

L1 197 172 200 0.464 500 26.2  1770 1570 503 

L2 201 176 200 0.454 500 26.2 0 1770 1570 537 

L3 198 173 200 0.462 500 26.2 0 1770 1570 530 

L4 197 170 400 0.675 500 26.2 0 1970 1770 686 

L5 199 172 400 0.667 500 26.2 0 1970 1770 696 

L6 202 175 400 0.656 500 26.2 0 1970 1770 799 

L8 205 174 900 1.17 500 19.3 0 2470 2270 1111 

L9 203 172 900 1.18 500 19.3 0 2470 2270 1107 

L10 204 173 900 1.17 500 19.3 0 2470 2270 1079 

L7 204 177 200 0.65 500 19.3 0 1970 1770 478 

 Israel (1959) 

II/1 100 80 200 1.34 455.8 15.4 0 1160 1160 181.04 

II/2 100 80 200 1.32 372.3 14.3 0 1700 1700 151.68 

II/3 100 80 200*400 1.32 489.6 16.0 0 1700 1700 244.65 

II/4 100 80 200 0.98 489.6 25.1 0 1160 1160 244.65 

Ozawa et al., 2000 

LA1 85 65 100 1.05 382 39.0 0 1000 1000 120 

LA21 85 65 100 1.95 382 39.0 0 1000 1000 160 

LA22 85 65 100 1.95 382 29.1 0 1000 1000 140 

LB1 100 80 100 1.49 382 29.1 0 1000 1000 180 

Matthys and Taerwe 

(2000) 

R2 120 88 150 1.29 500 35.1 0 1000 900 294 

R3 120 86 150 1.79 500 35.1 0 1000 900 313 

Sakinis and Vainiunas 

(2009) 

1 140 112 200 0.449 400 35.5 0.47 2135 2000 331.8 

2 140 110 200 0.719 400 31.4 0.47 2135 2000 372.7 

3 140 108 200 1 400 37.3 0.47 2135 2000 402.9 

4 140 106 200 1.5 400 27.2 0.47 2135 2000 401.8 

5 140 104 200 1.9 400 2.7 0.47 2135 2000 436 

Mitchel et al., 2007 R0 100 70.5 100 0.9 550 34.0 0.54 1200 1000 121.6 

Bazant and Cao 1987 

ACI 

I-A 25.4 20 25.4 4.01 309 52.9 0 127 101.6 0.0668 

I-B 50.8 45.4 50.8 3.89 309 52.9 0 245 196 0.963 

I-C 101.6 96.2 102 3.76 309 52.9 0 508 406.4 13.84 

II-A 25.4 20 25.4 3.39 309 47.9 0 127 101.6 0.071 

II-B 50.8 45.4 50.8 3.23 309 47.9 0 245 196 0.989 

II-C 101.6 96.2 102 3.12 309 47.9 0 508 406.4 15.56 

III-A 25.4 20 25.4 2.76 309 52.1 0 127 101.6 0.0513 

III-B 50.8 45.4 50.8 2.55 309 52.1 0 245 196 0.762 

III-C 101.6 96.2 102 2.46 309 52.1 0 508 406.4 11.51 

Yang et al., 2010 

MU1 150 109 225 1.18 690 35.3 0.36 2300 2150 382 

MU2 150 112 225 0.64 690 35.3 0.36 2300 2150 296 

MU3 150 112 225 1.36 690 35.3 0.36 2300 2150 282 

Ruiz and Muttoni 

(2010) 
PV1 250 210 260 1.5 709 34.0 0.2 3000 2846 974 

Subedi and  Baglin 

(2003) 
C 138 102 320 1.97 460 57.6 0.48 1300 1150 395 

Oliveira et al., 2000 

1 130 93 120 1.5 695 56.9 0.22 1800 1650 270 

2 130 97 120 1.4 695 58.8 0.22 1800 1650 335 
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 Vaz et al., 2009 
L1 130 83 150 1.56 555 39.0 0.23 1800 1650 203 

AL1 130 92 150 1.56 555 38.7 0.23 1800 1650 286 

Lips and Muttoni 
(2010) 

PL1 250 193 130 1.63 583 36.2 0 3000 3000 682 

PL3 250 197 520 1.59 583 36.5 0 3000 3000 1324 

PL4 320 267 340 1.58 550 30.5 0 3000 3000 1625 

PL5 400 354 440 1.5 580 31.9 0 3000 3000 2491 

  

PT21  250 214 260 1.18 552 67.5 0 3000 3000 959 

PT22 250 214 260 0.82 552 67.0 0 3000 3000 989 

PT23  250 220 260 0.55 560 66.0 0 3000 3000 591 

PT31 250 210 260 1.48 540 66.3 0 3000 3000 1433 

PT32 250 214 260 1.05 550 40.0 0 3000 3000 1157 

PT33  250 220 260 0.5 555 40.2 0 3000 3000 602 

 Kunz et al., 2008 V1 250 210 260 1.5 709 33.8 0 3000 3000 974 

Pisanty (2005) 

140/1 140 112 200 1.305 400 26.4 0 1700 1700 390 

140/2 140 112 200 1.305 400 22.8 0 1700 1700 355 

160/1 160 133 200 0.955 400 25.0 0 1700 1700 376 

160/2 160 133 200 0.955 400 19.0 0 1700 1700 445 

180/1 180 151 250 1.175 400 23.3 0 1700 1700 581 

180/2 180 151 250 1.175 400 25.5 0 1700 1700 606 

200/1 200 171 300 1.04 400 24.1 0 1700 1700 835 

200/2 200 171 300 1.04 400 21.8 0 1700 1700 822 

Ebead and Marzouk 

(2005)  

Ref-0.35% 150 109 250 0.35 435 30.0   1900 1830 248 

Ref-0.5% 150 109 250 0.5  34.0  1900 1830 308 

Ref'-0.5% 150 109 250 0.5  35.0  1900 1830 321 

Ref-1.0% 150 109 250 1 435 36.0  1900 1830 413 

Teng et al., 2004 

OC1 150 110 200 1.81 452 36.0 0.87 2200 1900 423 

OC13 150 110 200*600 1.71 452 35.8 0.87 2200 1900 568 

OC13-1.6 150 110 200*600 1.67 452 43.1 0.87 2200 1900 508 

OC13-0.63 150 110 200*600 1.65 452 39.7 0.87 2200 1900 455 

OC15 150 110 200*1000 1.76 452 40.2 0.87 2200 1900 649 

Rizk and Marzouk 
(2011) 

NS1 150 105 250 0.48 400 44.7 0.22 1900 1830 218.9 

HS1 150 105 250 0.48 400 78.9 0.22 1900 1830 248 

NS2 200 153 250 0.54 400 50.2 0.22 1900 1830 490.9 

HS2 200 153 250 0.54 400 81.2 0.22 1900 1830 532.5 

NS3 250 183 250 0.35 400 35.0 0.22 1900 1830 437.7 

HS3 250 183 250 0.35 400 70.0 0.22 1900 1830 573.7 

NS4 300 218 250 0.73 400 40.0 0.22 1900 1830 882.4 

HS4 300 218 250 0.73 400 64.7 0.22 1900 1830 1022.9 

HS5 300 220 250 0.43 400 75.0 0.22 1900 1830 885.5 

HS6 350 268 400 0.5 400 76.0 0.22 2650 2580 1721.8 

Elshafey et al., 2011 

NSC1 200 158 250 2.17 400 35.0 0 1900 1830 678 

HSC1 200 138 250 2.48 400 68.5 0 1900 1830 788 

HSC2 200 128 250 2.68 400 70.0 0 1900 1830 801 

HSC3 200 158 250 1.67 400 66.7 0 1900 1830 802 

HSC4 200 158 250 1.13 400 61.2 0 1900 1830 811 

HSC5 150 113 250 1.88 400 70.0 0 1900 1830 480 

NSC2 200 163 250 0.52 400 33.0 0 1900 1830 479 

NSC3 150 105 250 0.4 400 34.0 0 1900 1830 228 
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Sundquist and 

Kinnunen: cited 
Elshafey et al., 2011  

C1 120 100 250 0.8 718 24.0       270 

C2 120 100 250 0.8 718 24.4    250 

D1 145 125 150 0.64 718 27.2    265 

Smadi and Yasin 

(2008) 

N1 150 116 250 1.06 468 28.5 0.52 1500 1470 416 

H1 150 116 250 1.06 468 58.1 0.52 1500 1470 468 

Faria et al., 2011 

Df1 100 69 200 1.91 540 24.8 0.2 2300 2000 190.7 

DF4 120 88 200 1.2 540 19.8 0.16 2300 2000 199 

Cho et al., 2010 Control 150 125 220 0.78 440 28.4 0.3 2500 2470 297 

Abgossou et al., 2008 R0 100 66 100 0.98 500 34.0 0.57 1280 1200 121.2 

Hughes and Xiao 
(1995) 

S1 80 60 132 0.8 450 36.8 0.22 860 800 122 

S4 65 46 132 1 450 41.6 0.29 860 800 89 

S16 50 35 132 1.5 450 39.2 0.35 860 800 66 

S21 65 46 132 1 450 36.0 0.29 860 800 116 

Ramos et al., 2011 

AR2 100 80 200 1.67 523 39.1 0.73 2300 2000 258 

BD2 125 101 100 1.28 530 39.2 1.28 1500 1300 268 

BD8 125 101 100 1.28 530 35.3 1.28 1500 1300 250 

Forssel and Holmberg: 

cited in Oliveira et al., 

2004 

L1a 130 107 120 1.09 750 45.6   1680*2280 1500*2100 240 

L1b 130 108 120 1.08 750 47.2  1680*2280 1500*2100 322.4 

L1c 130 107 120 1.09 750 47.2  1680*2280 1500*2100 318 

L2a 130 109 120*240 1.07 750 46.4  1680*2280 1500*2100 246 

L2b 130 106 120*240 1.1 750 46.4  1680*2280 1500*2100 361 

L2c 130 107 120*240 1.09 750 45.6  1680*2280 1500*2100 330.8 

L3a 130 108 120*360 1.08 750 44.8  1680*2280 1500*2100 240.6 

L3b 130 107 120*360 1.09 750 48.0  1680*2280 1500*2100 400 

L3c 130 106 120*360 1.1 750 43.2  1680*2280 1500*2100 357.6 

L4a 130 108 120*480 1.08 750 44.8  1680*2280 1500*2100 250.8 

L4b 130 106 120*480 1.1 750 43.2  1680*2280 1500*2100 395 

L4c 130 108 120*480 1.09 750 44.8  1680*2280 1500*2100 404 

L5a 130 108 120*600 1.08 750 45.6  1680*2280 1500*2100 287.4 

L5b 130 108 120*600 1.08 750 53.6  1680*2280 1500*2100 426.4 

L5c 130 109 120*600 1.07 750 50.4  1680*2280 1500*2100 446.4 

Rizk et al., 2011 

HSS1 350 255 400 0.5 460 76.0 0.21 2650 2505 1722 

HSS3 350 245 400 1.42 460 65.0 0.22 2650 2505 2090 

NSS1 400 295 400 1.58 460 40.0 0.18 2650 2505 2234 

HSS4 400 295 400 1.58 460 60.0 0.18 2650 2505 2513 
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Vaz et al., 2009 
L1 130 83 150 1.38 555 39.0 0.21 1800 1650 203 

L1-A 130 92 150 1.38 555 38.7 0.21 1800 1650 286 

Guidotti et al., 2011 

PG11 250 208 260 0.771 538 31.5   3000 2760 763 

PG19 250 206 260 0.781 510 46.2  3000 2760 860 

PG20 250 201 260 1.563 551 51.7  3000 2760 1094 

Kamaraldinm (1990) 

SA2 80 64 150 0.55 640 34.0 0.55 2000 2000 141 

SB1 80 62 150 1 530 27.0 1 2000 2000 133 

Sistonen and 
Huovinen (2011) 

L1 200 160 202 0.46 621 32.7 0 2300 2300 503 

L2 200 160 202 0.45 621 32.7 0 2300 2300 537 

L3 200 160 201 0.45 621 32.7 0 2300 2300 530 

L4 200 160 402 0.67 612 32.7 0 2300 2300 686 

L5 200 160 399 0.66 612 32.7 0 2300 2300 696 

L6 200 160 406 0.65 612 32.7 0 2300 2300 799 

L7 200 160 201 0.64 586 24.1 0 2300 2300 478 

L8 200 160 899 1.16 576 24.1 0 2300 2300 1111 

L9 200 160 897 1.17 576 24.1 0 2300 2300 1107 

L10 200 160 901 1.16 576 24.1 0 2300 2300 1079 

Nguyen-Minh et al., 
2011 

A0 125 105 200 0.66 492 21.7 0 900 825 284 

B0 125 105 200 0.66 492 21.7 0 1200 1125 301 

C0 125 150 200 0.66 492 21.7 0 1500 1425 264 

Cheng and Parra-

Montesinos (2010) 

S1 152 127 152 0.83 471 47.7 0 1500 1424 433 

S21 152 127 152 0.56 471 47.7 0 1500 1424 379 

Alam et al., 2009 

Slab 3 80 62 120 1 421 36.0 0 1305 1200 171.96 

Slab 14 60 42 120 0.5 421 36.0 0 1305 1200 84.73 

Slab 15 60 42 120 1 421 36.0 0 1305 1200 91.76 

Erdogan et al., 2007 CS 150 114 250 1.226 448 32.0 0.6 2300 2000 500 
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Appendix B 

Mill certificate for LSF pull-out test specimens 
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Pullout tests on L shape strips with holes (P1-h-50-3t) 
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Pullout tests on L shape strips without holes (P1-w-50-3t) 

Displacement (mm)
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Pullout tests on L shape strips with holes (P1-h-50-5t) 
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Pullout tests on L shape strips without holes (P1-w-50-5t)  
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Pullout tests on L shape strips without holes (P1-w-100-3t) 
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Pullout tests on L shape strips without holes (P1-w-100-5t) 
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Pullout tests on L shape strips without holes (P2-w-50-5t) 
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Pullout tests on L shape strips without holes (P2-w-100-5t) 
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Pullout tests on U shape strips with holes (P3-w-50-3t) 
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Displaceent (mm)
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Pullout tests on U shape strips without holes (P3-w-380-5t) 
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Displaceent (mm)

0 5 10 15 20 25 30 35 40 45

S
tr

es
s 

(M
P

a)

0

50

100

150

200

250

300

350

400

450

500

550

600

P3-w-380-5t#9 

Displacement (mm)

0 5 10 15 20 25 30 35 40 45

S
tr

es
s 

(M
P

a)

0

50

100

150

200

250

300

350

400

450

500

550

600

P3-w-380-5t#1 

P3-w-380-5t#2 

P3-w-380-5t#3 

P3-w-380-5t#4 

P3-w-380-5t#5 

P3-w-380-5t#6 

P3-w-380-5t#7 

P3-w-380-5t#7 

P3-w-380-5t#8 

 

 

 

 

 

 

 

 

 

 

 

 

 



 232 

Appendix C 

Slab 2 

 

Measurements of Strain gauges in the first Perimeter 
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Measurements of Strain gauges in the Second Perimeter 
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Measurements of Strain gauges in the third Perimeter 

 

 

 

 

Measurement of Strain gauge in the fourth Perimeter 
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Slab 3 

 

Measurements of strain gauges in the first perimeter 
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Measurements of strain gauges in the second perimeter 
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Measurements of strain gauges in the third perimeter 

 

 

 

 

 

Measurements of strain gauges in the fourth perimeter 
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Measurements of strain gauges in the fifth perimeter 

 

 

 
 

 

 

Measurements of strain gauges in the sixth perimeter 
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Appendix D 

 

“Concrete smeared cracking” vs. “Concrete damage plasticity” 

In smeared cracking model, the adopted yield function consists of independent surfaces; 

an isotropic-hardening yield surface activates when the stress is dominantly 

compressive and an independent “crack detection surface” that determines if a point 

fails by cracking. Both surfaces use linear relationship between the equivalent pressure, 

p, and the Mises equivalent deviatoric stress, q, which means associated flow rule 

assumption is used (ABAQUS material manual). Associated flow assumption 

overestimates the volumetric plastic strain due to simplification of the compressive 

behaviour. This assumption leads to inaccurate prediction due to the omission of the 3
rd

 

stress invariant dependence. Also the model uses a fixed angle crack model to detect the 

cracks, which results in shear stress locking problem.  

This problem leads an the increase of shear stress on the crack plane due to restricting 

subsequent cracking to be orthogonal to the first crack since stress components 

associated with an open crack are not included in the definition of the failure surface 

used for detecting the additional cracks (ABAQUS material manual, 2008). Mesh 

refinement was suggested to overcome the shear stress interlocking in ABAQUS. 

Although, the mesh refinement method could alleviate shear stress locking problem in 

the finite element model as the number of elements employed is so large that cracking 

in any orientation can be captured, but its disadvantage is obviously the large increase in 

the required computational effort. Also, the smeared cracking model does not consider 

the damage in the elastic stiffness occurred by inelastic strain due to cyclic /unloading 

response. The aforementioned simplifications lead convergence problems and make the 

analysis stop in early loading due to numerical instability.  

 

Concrete Damage Plasticity 

Plasticity theory is a mathematical representation of the mechanical behaviour of solids. 

It can be used for translation of physical reality for ductile materials such as metals or a 

model that approximates the behaviour under certain circumstances for brittle materials 

such as concrete. In problems where the tension, with the crack development, plays a 
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significant role, such as shear failure in reinforced concrete structures, the usual 

procedure is to apply plasticity theory in the compression zone and treat the zones in 

which at least one principal stress is tensile by one of several versions of fracture 

mechanics (Lubliner et al., 1989).  

Kupfer et al., (1969) carried out tests on biaxial loading of concrete specimens 

(200*200*50 mm). They found out that usually the various critical surfaces in stress 

space are similar. Concrete can show a significant volume change when subjected to 

severe inelastic loading. Figure 1 (a) shows that the increase in volume can be more 

than twice as large for the hydrostatic compressive stress state σ1/σ2= -1/-1. The points 

marked in stress-volumetric strain diagram (Figure 1 (a)) represents the limit of 

elasticity, the point of inflection in the volumetric strain, the bendover point 

corresponding to the onset of instability or localisation of deformation and the ultimate 

load. The critical stress surfaces related to these material states are shown in Figure 1 

(b) (Kupfer et al., 1969). The same results was not found for concrete under triaxial 

compression test specially for the case of hydrostatic pressure; under these condition it 

was found that the hardening goes on indefinitely (Lubliner et al., 1989). This means 

that while the yield surface is closed, the failure surface is open in the direction of 

hydrostatic pressure.  

 

(a)                                                                     (b) 

Figure 1: (a) Volumetric strain of concrete under biaxial compression, (b) typical 

loading curves of concrete subjected to biaxial stresses. (Adopted from Kupfer et al., 

1969) 
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Since the critical surfaces are similar in the biaxial behaviour of concrete, a yield 

function is used in plasticity based models. The size of yield function is based on the 

material properties defined for the uniaxial behaviour of concrete. The yield surface is 

defined as the material no longer acts elastic and the failure surface is based on the 

ultimate strengths. This means that in the biaxial tensile meridian the yield surface is 

equal to the failure surface. In compression, the material is usually assumed to be 

initially elastic up to 30-60 % of the compressive strength (Chen, 1982). There are 

several failure (or yield) criteria developed for concrete materials (reported by Lubliner 

et al., 1989) such as Drucker-prager and Mohr-Coulomb criteria. For steel usually the 

Von Mises failure criteria is used (further details can be obtained in ABAQUS user’s 

manual, 2008). According to Lubliner et al., (1989), these criteria do not represent 

experimental results for concrete precisely otherwise they are suitably modified. For 

instance, one modification is to use a combination of the Mohr-Coulomb and Drucker-

Prager yield functions, where the Drucker-Prager is used for biaxial compression and 

the Mohr-Coulomb is used otherwise. In Figure 2, the Drucker-Prager and concrete 

failure surfaces in three dimensions are shown schematically. 
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Figure 2: Drucker-prager failure surface and concrete triaxial failure space  

 

The biaxial yield function used in concrete damage plasticity was developed by 

Lubliner et al., (1989) which also includes the modifications that was proposed by Lee 

and Fenves (1998) (cited in ABAQUS Manual). It is vital to understand the constitutive 

parameters which describe the material properties in finite element modelling to obtain 

authentic results. Therefore, a brief description of this is given in the next section. 

 

Failure criteria of concrete 

The connection between the yield surface and the stress-strain relationship is 

determined with a flow rule. Lubliner et al., (1989) proposed a non-associative flow 

rule which requires a loading surface definition. The proposed yield function given in 

Equation 1 is based on the loading function. Also the shape of loading surface in 

deviatoric plane is defined by parameter γ.  According to Equation 1, cracking is 

assumed to occur when the triaxial stress reaches the failure surface. 

    0)(3
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1 pl

ccmaxmax
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
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where α, β and γ are dimensionless coefficients. α is explained as
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2 ff

ff




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where 5.00  ,  fbo is the compressive strength under biaxial loading of concrete 

and fco is the uniaxial compressive strength of concrete. β is described as 

)1()1(
)(

)(
)~(

p

tt

p

ccpl  





  

                                                                            (3)
   

where )( p

cc  is the effective compressive cohesion stress and )( p

tt 
 
is the effective 

tensile cohesion stress. γ should be defined based on the full triaxial tests on concrete, 

however, Lubliner et al., (1989)  prescribed this parameter as 

12

)1(3

c

c






K

K


   

                                                                                        (4) 

max is the algebraically maximum eigenvalue of  . Also the Macauley bracket . is 

described by )(
2
1 xxx  .  

cK
 
is explained as 

CM2

TM2

c
)(

)(

J

J
K   at a given state of p . J2 is the second invariant of 

stress deviator for TM and CM subscribes. TM and CM respectively represents the 

“tensile meridian” ( 321   ) and the “compressive meridian” ( 321   ) in the 

yield surface. Lubliner et al., (1989) suggested typical values for cK
 
in the range of 0.64 

to 0.8. ABAQUS assumes a default value of 3/2c K
 
which leads to γ=3.  Figures 3 

and 4 show the typical yield surfaces in deviatoric plane and plane stress conditions 

respectively.  

p  is the hydrostatic pressure stress, which is a function of the first stress invariant I1 , 

defined as 

 3)(
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                     (5) 

q is the Mises equivalent effective stress, defined as 

22
3 3: JSSq 

  
                                                                                                    (6)
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where J2 is the second deviatoric stress invariant for biaxial loading and defines as 

2211

2

22

2

112  J
                                                                                                  (7)

      

 

Figure 3: Yield surface in deviatoric plane with different values of Kc (from ABAQUS 

user’s manual: Materials, 2008)  

 

 

 

Figure 4: Biaxial yield surface in the constitutive model concrete damaged plasticity 

(adopted from ABAQUS manual, 2008) 
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Flow rule 

The shape of yield surface at any given loading condition can be defined by the 

hardening rule. Also, the connection between the stress-strain relationship and yield 

surface is defined by the flow rule. 

Concrete can demonstrate a significant volume change when subjected to severe 

inelastic states. This change in volume, known as dilation, attributable to plastic 

distortion, can be reproduced well by using an adequate plastic potential function G 

(Lubliner et al., 1989). The flow rule is expressed in Equation 8 as 








Gp 
   

                                                                                                    (8) 

where p is the plastic incremental deformation,  is a positive scalar hardening 

parameter which can change during the loading. The gradient of the potential surface 



G
defines the direction of the plastic strain increment vector p , and the hardening 

parameter  determines its length (Galvez et al., 2002).  

In associated flow, the plastic potential function has the same shape as the yield surface. 

This is the simplest case, since the plastic flow is in association with the yield criterion. 

However; in non-associated flow, two separate functions are used for the plastic flow 

rule and the yield surface. In this case the plastic flow develops along the normal to the 

plastic flow potential and not to the yield surface (Galvez et al., 2002). Figure 5 

illustrates the Drucker-Prager hyperbolic plastic function used in the material model 

concrete damage plasticity in the finite element program ABAQUS (Ver. 6.10).  

The parameters in Figure 5 are given here. p is the hydrostatic pressure stress, which is 

a function of the first stress invariant I1, defined as  3)(
3

332211
1  




I
p , 

q is the Mises equivalent effective stress, defined as 22
3 3: JSSq  where J2 is 

the second deviatoric stress invariant for biaxial loading and defines as  

2211

2

22

2

112  J  and   is the dilation angle which is measured in qp   at high 

confining pressure.  
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Figure 5: The Drucker-Prager hyperbolic plastic potential function in the meridional 

plane (adopted from ABAQUS user’s Manual, 2008) 

 

Dilatancy in the “concrete damage plasticity model” 

The section presents the parametric studies for dilation angle in shear type cracking 

problems as well as the description of measurements and observations regarding to 

dilatancy.  

As illustrated in Figure 5, the Drucker-Prager hyperbolic plastic potential function used 

for concrete damaged plasticity in ABAQUS is defined by Equation 9: 

   tan.tan.. 22

0t pqfG                                                                             (9) 

where ε is the eccentricity that defines the rate at which the plastic potential function 

approaches the asymptote (the flow potential tends to a straight line as the eccentricity 

tends to zero), ψ is the dilation angle measured in the qp  plane at high confining 

pressure. 
 

The flow in Drucker-Prager function is non-associated, which means that the yield 

function and the plastic potential are coincide. The dilation angle (ψ) and the 

eccentricity (ε) which determines the shape of the flow potential surface are used as 

material parameters in ABAQUS.  

The eccentricity parameter could be calculated according to the equation by Jirasek and 

Bazant (2002); cited in Grassl and Jirasek (2006). 

However, ABAQUS suggested a default value of 0.1 for eccentricity, which means that 

the material has almost the same dilation angle over a wide range of confining pressure 
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stress values (ABAQUS user’s manual, 2008). Assuming higher value of the 

eccentricity provides more curvature to the flow potential, indicating that the dilation 

angle increases more rapidly as the confining pressure (ABAQUS  user’s manual, 

2008). To avoid convergence problems in the analysis, ABAQUS suggested not to use 

values less than 0.1 (default value) for eccentricity parameter. 

 

Viscoplastic regularization 

Advanced material models which develop strain softening and stiffness degradation, 

could have severe convergence difficulties. Viscoplastic regularization of the 

constitutive equations can be used to overcome some of these convergence difficulties. 

This can be done by regularization of plasticity damage model using viscoplasticty 

which permits stresses to be outside the yield surface. To improve the rate of 

convergence of the model in softening regions, ABAQUS suggests using the 

visocplastic regularization with a small value for the viscosity parameter (small 

compared to the characteristic time increment).  
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Appendix E 

 

Newton-Raphson technique 

Due to material nonlinearity, reinforced concrete structures exhibits nonlinear 

responses. In nonlinear analysis the external load is divided into small parts 

(increments) and equilibrium is checked for every increment. The nonlinear problems 

are solved as repeated linear problems. In this study for the FE analysis a nonlinear 

solving procedure, Newton-Raphson’s method is adopted. This method follows 

equilibrium iterations until an acceptable convergence is achieved.  The convergence 

criterion is to minimize the unbalanced force and displacement at the nodes in each load 

increment. Newton-Raphson approach assesses the unbalanced force vector (Ra) which 

is the difference between the external force (P) and the internal force (Ia): 

aa IPR                             (1) 

The program checks for convergence and compares with the tolerance value, which is a 

default value of 0.5% of the average force in the structure, averaged over time. If the 

convergence criterion is not fulfilled, the unbalanced load vector will be re-evaluated 

until convergence is obtained.  

 

Figure 1: Newton-Raphson solution 

 

After convergence in the unbalanced load obtained and prior to applying the next load 

increment, ABAQUS also performs a convergence check on the displacement 

correction, ca, which should be smaller than the fraction of 1%  of the total incremental 
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displacement assumed as a default value  (Δua=ua-u0). Provided that ca is greater than 

the displacement tolerance limit, ABAQUS carries out another iteration based on 

current structure configuration, ua, and the new structure stiffness, Ka.  Subsequently, by 

considering the new stiffness and the residual, Ra, a new displacement correction, cb, is 

computed determining the new point b which is closer to the equilibrium point as shown 

in Figure 1. Based on the new internal force, Ib, which is related to configuration ub, a 

new residue (Rb) is calculated according to Equation 2 as 

bb IPR  .
 

             (2) 

Then new convergence checks are performed for both cb and Rb. If required, ABAQUS 

performs more iteration until convergence criteria are satisfied.   

 


