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Notations

1. Mathematics

A(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na

Ai set of actions for agent i

A set of actions for an agent

bl bias vector of layer l for neural network

b̄1 tuning parameter of MFAC

b̄2 tuning parameter of MFAC

B(q) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnb−1q
−nb+1

C̃ cost function for neural network

C(q) = 1 + c1q
−1 + c2q

−2 + · · ·+ cnc−1q
−nc

D̄ number of parameters of complete probabilistic model

D number of parameters of predictor model

D(q) = (D1(q),D2(q)) where

D1(q) = d1,0 + d1,1q
−1 + d1,2q

−1 + · · ·+ d1,nv1q
−nv1 ,

D2(q) = d2,0 + d2,1q
−1 + d2,2q

−1 + · · ·+ d2,nv2q
−nv2

Ek(q) = ek,0 + ek,1q
−1 + ek,2q

−2 + · · ·+ ek,k−1q
−k+1

f̄ joint PDF model of specific output sequence

f0 true model between inputs and outputs

f̄0 true joint PDF model of specific output sequence

fe PDF of prediciton error

f′(t) filtered response due to past input, past output, and past & future measurable

disturbance sequences, i.e.,

H∆Ṽ(t) + f(t)

f(t) free response, i.e.,
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Gpk(q)∆u(t− 1) + Hpk(q)∆v(t) + (Mk(q)Fk(q) + Nk(q))y(t)

Fk(q) = fk,0 + fk,1q
−1 + fk,2q

−2 + · · ·+ fk,na−1q
−na

g(·, ·; θ) predictor model parameterised by θ

Gfk(q) = gfk,0 + gfk,1q
−1 + gfk,2q

−2 + · · ·+ gfk,k−1q
−k+1

Gpk(q) = gpk,0 + gpk,1q
−1 + gpk,2q

−2 + · · ·+ gpk,k+nb−3q
−k−nb+3

Gt discounted return

Gt:t+n n-step return

Gλ
t λ-step return

h̃l hidden layer size, i.e., number of neurons of lth layer

Hfk(q) = (Hfk,1(q),Hfk,2(q)) where

Hfk,1(q) = h1
fk,0 + h1

fk,1q
−1 + h1

fk,2q
−2 + · · ·+ h1

fk,k−1q
−k+1,

Hfk,2(q) = h2
fk,0 + h2

fk,1q
−1 + h2

fk,2q
−2 + · · ·+ h2

fk,k−1q
−k+1

Hpk(q) = (Hpk,1(q),Hpk,2(q)) where

Hpk,1 = h1
pk,0 + h1

pk,1q
−1 + h1

pk,2q
−2 + · · ·+ h1

pk,k+nd1−2q
−k−nd1+2,

Hpk,2 = h2
pk,0 + h2

pk,1q
−1 + h2

pk,2q
−2 + · · ·+ h2

pk,k+nd2−2q
−k−nd2+2

I·,· indecator function

Kd derivative gain of PID control

Ki integral gain of PID control

Kp proportional gain of PID control

L initial time index of manipulated input of MFAC

Mk(q) = mk,0 +mk,1q
−1 + dk,2q

−2 + · · ·+mk,k−1q
−k+1

N sample size

Nk(q) = nk,0 + nk,1q
−1 + nk,2q

−2 + · · ·+ nk,nc−1q
−nc+1

Nr terminal time of output prediciton of GPC

qπ action-value function of an agent

qπi,i action-value function of agent i

Q(s, a) estimated value of action-value for state-action pair (s, a)

R set of rewards for an agent

r a reward

r̄(t) setpoint of carbon capture level

Ȳr(t) stacked reference signal vector, i.e.,

(yr(t+ 1), yr(t+ 2), · · · , yr(t+Nr))
T
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S set of non-terminal states for an agent

S+ set of states including terminals for an agent

Si set of states for agent i

Ū(t) stacked input vector of future, i.e.,

(u(t), u(t+ 1), · · · , u(t+Nr − 1))T

Ũ(t) stacked input vector of past, i.e.,

(u(t), u(t− 1), · · · , u(t+ L− 1))T

ut input sequence till time t, {u(0),u(1), · · · ,u(t)}

vπ state-value function of an agent

V̄(t) stacked disturbance vector of future, i.e.,

(vT (t+ 1), vT (t+ 2), · · · , vT (t+Nr))
T

Ṽ(t) a variation of V̄(t), i.e.,

(v1(t+ 1), v1(t+ 2), · · · , v1(t+Nr), v2(t+ 1), v2(t+ 2), · · · , v2(t+Nr))
T

Wl weight matrix of layer l for neural network

x(t) input feature vector

Ȳ(t) stacked output prediciton vector, i.e.,

(ŷ(t+ 1|t), ŷ(t+ 2|t), · · · , ŷ(t+Nr|t))

yt output sequence till time t, {y(0), y(1), · · · , y(t)}

zt(s, a) eligibility trace for state-action pair (s, a)

zl(t) output sequence till time t, {y(0), y(1), · · · , y(t)}

αt(s, a) learning rate of temporal difference learning for state-action pair (s, a) at

time t

αt learning rate of temporal difference learning for any state-action pair at time t

∆ = 1− q−1

δ temporal difference error

δ(·) degree of polynomial

εt(s) probability of choosing action uniformly random for state s at time t

εt probability of choosing action uniformly random for any state at time t

ε prediction error

η tuning parameter of MFAC

γ discount rate of return

λ decay factor for λ return
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λ̃ tuning parameter of MFAC

µ tuning parameter of MFAC

Φ pseudo-partial derivative vector, i.e., (φ1, φ2, · · · , φL) ∈ R1×L

Φ̂ estimate of pseudo-partial derivative vector Φ, i.e., (φ̂1, φ̂2, · · · , φ̂L) ∈ R1×L

π policy

ρ tuning parameter of MFAC

σ standard deviation of prediciton error

σa(·) activation function of neural networks

θ parameter vector of predictor model

ϑ parameter vector of complete probabilistic model

‖ · ‖ 2-norm of a vector or matrix

2. Dynamics of carbon capture plant

u lean MEA flow rate (kg/s)

u input vector for model identification, i.e., (u, v1, v2)T

v disturbance vector, (v1, v2)T

v1 flue gas flow rate (kg/s)

v2 mass fraction of CO2 in the flue gas (unitless)

y carbon capture level (unitless)

ŷ one-step-ahead prediciton of carbon capture level (unitless)

3. Parameters of power plant with carbon capture

B cost of CO2 allowance bidding (e)

C annual expenditure (e)

E specific CO2 emission (kgCO2/GJ)

F fuel cost (e)

f fuel price (e/GJ)

Fcc fixed OM cost of carbon capture plant (e)

h CO2 allowances in one’s holding account (allowances)

h̄ the upper holding limit of CO2 allowances (allowances)

I set of all agents

K common knowledge set of a CO2 allowance auction

M auction mechanism

ṁB base mass flow rate of CO2 of a power plant without carbon capture (kg/s)
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m emitted CO2 (t)

N specific non-fuel OM cost (e/MWh)

Np non-fuel OM cost (e)

Ns number of learning steps for an agent

P specific power usage within power plant (MW/MW)

pr reserve price (e/GJ)

pa penalty of non-compliance of CO2 allowance surrendering (e/allowance)

pb bid price (e/allowance)

Pcc specific carbon capture plant load (MWh/tCO2)

Pg net power output (MW)

PgB nominal power capacity (MW)

Pgg gross power output (MW)

ps settlement price (e/allowance)

qb bid quantity (allowances)

qs winning bid quantity (allowances)

Qreb specific reboiler duty (MJ/kgCO2)

RE revenue of a power plant with carbon capture (e)

M concerned time horizon of power plant with carbon capture (fortnight)

Ta period of the CO2 allowance auction (days)

Vcc specific variable OM cost of carbon capture plant (e/tCO2)

va scheduled allowance volume for an auction

ṽa allowance volume distributed to an auction due to failures of historical auctions

Vcc variable OM cost of carbon capture plant (e)

y allocations of all agents

η power efficiency without carbon capture (unitless)

λE average electricity price (e/MWh)

ψ power penalty coefficient due to carbon capture
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Electricity and heat production contribute to about half of the CO2 emission worldwide
where fossil-fuel power plants are large emission sources. To reduce CO2 emitted by
these power plants, the mono-ethanol-amine-based post-combustion carbon capture
technology can be utilised. Nevertheless, the integration of this technology with a
fossil-fuel power plant causes non-trivial operation issues. In this thesis, some of these
operation issues are solved from both the low-level control and the high-level decision-
making perspectives. Proportional-integral control, generalised predictive control and
model-free adaptive control protocols are implemented for the control issue while Sarsa
and Sarsa(λ) learning algorithms are applied to the decision-making issue.

To demonstrate the performances of the control protocols, a neural-network-based
carbon capture plant model using mono-ethanol-amine solvent is identified first. The
model can pass the residual analysis and fit well with the data set generated by a
validated first-principle post-combustion carbon capture model using mono-ethanol-
amine solvent. On that basis, proportional-integral control, generalised predictive
control and model-free adaptive control are implemented to solve the carbon capture
level tracking issue. As demonstrated in the simulation results, generalised predictive
control is difficult to implement. Proportional-integral control can be applied easily
but with non-trivial tuning procedures. The model-free adaptive control is more robust
than the proportional-integral control and has a simpler parameter tuning procedure
than the other control protocols.

Apart from the control issue, the decision-making issue of the carbon capture level
is addressed with either the Sarsa or Sarsa(λ) learning algorithm. In this thesis, the
mono-ethanol-amine-based post-combustion carbon capture plants are also the partic-
ipants in CO2 allowance auctions. This necessitates a unified bidding and operation
policy considering the time-varying operating conditions of the associated power plant,
the electricity market conditions, and the CO2 allowance auctions. The objective is to
maximise the profits of any mono-ethanol-amine-based post-combustion carbon cap-
ture plant. Performances of the Sarsa and Sarsa(λ) learning algorithms are demon-
strated in the simulation results which conclude that Sarsa should be preferable if data
for learning can be cheaply generated and there exist no delayed penalties. Otherwise,
Saras(λ) should be favoured but with more computation burdens.
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Chapter 1

Introduction

1.1 Background

Carbon dioxide emission of power generation is a crucial factor contributing to global

warming. According to the UK Future Energy Scenarios [7], before 2030, novel tech-

nologies tend to be demonstrated and invested to achieve commercial deployment of

fossil-fuel power plants with carbon capture and storage (CCS). Pre-, post- and oxy-

fuel combustions [4, 8, 9] are some promising state-of-the-art technologies which can

be applied to carbon capture of carbon-intensive power plants. For the pre-combustion

technology, syngas, a mixture of hydrogen, carbon monoxide and carbon dioxide, is

generated from fossil fuels or biomass. Afterwards, the carbon monoxide is further con-

verted into carbon dioxide and separated from the syngas where only pure hydrogen

is retrieved for power generation. For the post-combustion technology, mono-ethanol-

amine (MEA) is used as the solvent for CO2 removal from the flue gas emitted by

a fossil-fuel power plant. Manzolini et al. [3] estimated the cost of CO2 avoided for

the amine-based post-combustion carbon capture (PCC) plants, which stated that

coal-fired and natural gas power plants with MEA-based carbon capture were more

cost-effective than power plants using renewable technologies. However, the regenera-

tion of the MEA solvent with lean CO2 loading is an energy-intensive process which

constrains the electricity production of power plants. This issue necessitates the flexi-

ble control of carbon capture level in order to dynamically reduce energy consumption.
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Last but not least, for the oxyfuel combustion technology, pure oxygen is used instead

of air for a power plant, which yields some flue gas with high-concentration of CO2.

Nevertheless, the extraction of O2 from the air will cause great energy penalty. Among

the preceding three carbon capture technologies, this thesis focuses on the MEA-based

post-combustion carbon capture. Some control and decision-making issues related to

such a process are investigated, analysed, and solved via some state-of-the-art mea-

sures.

To begin with, it is worthwhile noting that the MEA-based PCC [10] technology is

feasible for the large-scale CO2 absorption since it not only leads to less CO2 avoidance

cost than the renewable but also can be achieved with relatively simple retrofits of

conventional fossil-fuel power plants [11]. Nevertheless, one issue similar to the oxyfuel

combustion technology is the significant energy penalty, which is about 3.2−3.6 GJ/ton

[12, 13]. Due to such a penalty, if the MEA-based PCC plant is integrated with a

fossil-fuel power plant, some steam originally used for power generation is drawn off

for carbon capture, which temporarily reduces the maximum output of the power

plant. When there is some urgent power demand, it will be necessary to reduce the

carbon capture level (i.e., the percentage of CO2 which should be captured from the

flue gas of a fossil-fuel power plant) or even stop the carbon capture plant swiftly to

increase the power output. Therefore, a control protocol implemented on the carbon

capture plant must have fast responses when the power demand soars up.

Furthermore, most fossil-fuel power plants contribute to base supplies in a power

grid. Due to the consecutive large-scale penetrations of intermittent renewable power

sources, a fossil-fuel power plant usually supplies flexible power generation and some-

times serves as a swing generator to compensate load variations. These may cause

fluctuations of the emitted flue gas flow rate and the mass fraction of CO2 in the flue

gas which are external disturbances [14] of the MEA-based PCC process. These time-

varying disturbances shift the operating points of the nonlinear plant back and forth

and therefore deteriorate control performances. A control protocol for the process

must be robust when confronting these uncertainties. When some tight CO2 capture

level should be met, the plant controller should be appropriately designed to ensure

that the closed-loop system has robust responses.
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Finally, a power plant is a for-profit entity. A carbon capture plant integrated with

such a power plant, should operate with some specified profit-maximum objective as

well. For instance, the carbon capture plant should determine the carbon capture

level considering not only the operation of the carbon capture plant itself but also

the market signals such as the electricity and CO2 allowance prices [6, 15, 16, 17] in

some optimal manner. When the electricity price is high or the CO2 allowance price is

relatively low, to meet the emission target of the corresponding power plant, the carbon

capture plant should make proper decisions on whether to reduce the carbon emission

with its carbon capture plant or procure more allowances through any applicable cap

and trade program [18, 19]. In the thesis, the decision maker is only responsible for

the operation and bidding of a carbon capture plant. Although this decision maker

may coincide with the one of a power plant, in this thesis, we consider no electricity

supply bidding under the wholesale electricity market. The MEA-based PCC plant

only responds to some predefined power generation and electricity price profiles.

1.2 Motivations

The motivation of this research comes from two folds: The controller implemented

to the MEA-based PCC plant must have fast and robust responses; the set-point of

the carbon capture level should be optimally determined by the plant considering

time-varying market conditions, e.g., the volatile electricity and CO2 allowance prices.

For the flexible control issues of the carbon capture process, previous studies con-

centrated on the conventional proportional-integral (PI) control protocols [14, 20, 21,

22]. Nevertheless, for the carbon capture plant which is highly nonlinear, gain schedul-

ing of those controllers should be applied for different operating regions of the plant,

which is a non-trivial procedure. Recently, some model-based control protocols such

as internal model control [20, 23] and model predictive control [24, 25, 26, 27, 28]

are more favourable due to the requirements of fast and optimal responses, respec-

tively. Nonetheless, these protocols make it mandatory to have an offline model

through sensitivity or identification test for different operating regions, which is also

time-consuming. In this thesis, we consider the novel model-free protocol, termed as
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model-free adaptive control (MFAC) [29, 30, 31, 32]. This protocol is prevalent since

an online model is already included in the control protocol and it adapts to changes

of the environment recursively. As a result, the nonlinearity of the plant can be repre-

sented by updating the model parameters called the pseudo-partial derivative (PPD)

vector/matrix, which implies MFAC is a robust control protocol. Additionally, in the

following chapters, it is demonstrated that MFAC can achieve some fast responses

similar to PI control and model predictive control (MPC) as well.

For the optimal operation of MEA-based PCC plant, most previous studies focus

on the optimality of the plant itself without considering the market conditions. The

carbon capture level for the tracking problem above, thus, is tightly set as some con-

stant value, e.g., 90% [33]. There are three facts which make such a constant set-point

unrealisable. Firstly, the solvent-based post-combustion carbon capture is an energy-

intensive process. When the power demand is high, the associated fossil-fuel power

plant should operate at its full capacity, under which circumstance, no extra energy

can be used for carbon capture. Secondly, the previous literature usually assign a

cost-minimum task rather a profit-maximum one for an MEA-based PCC plant while

the commercial deployment of such a plant must ensure profitability under different

market conditions. Some critical factors related to the economic operation of a carbon

capture plant are the electricity and CO2 allowance markets [16, 17, 34, 35], which

highlights the significance of the market-oriented operation [36, 37, 38]. Thirdly, the

market information taken into account in previous works are a predefined electricity

price profile and a constant CO2 emission tax. However, the main tool to dealing

with the climate change in Europe should be the CO2 emission trading system where

most of the CO2 allowances should be allocated through auctions. In this thesis, re-

ferring to the EU Emissions Trading System, we consider the CO2 allowance auctions

where the participants are the carbon capture plants integrated with fossil-fuel power

plants. These plants can achieve their greenhouse gas emission target by bidding CO2

emission allowances via auctions, directly reducing CO2 with the integrated carbon

capture plants or both of them. Whatever the policy is chosen by a plant, the objec-

tive is to maximise the plant profit. Reinforcement-learning algorithms, such as Sarsa

and Sarsa(λ) [36, 37, 39] are applied to searching optimal policies.
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1.3 Contributions

In the literature, one big challenge for the solvent-based carbon capture processes is to

find a control protocol which can both perform well and be implemented easily. Model-

based control, e.g., internal model control and model predictive control [20, 24, 40] are

prevalent since they usually give better performances due to the inclusion of models.

However, it also implies non-trivial model identification technologies are required for

control implementation. On the other hand, one benefit of the PI control sometimes

ignored by researchers is that it can be implemented easily. The reason is that PI

control is model-free. No model identification is necessary for control implementation.

Nonetheless, classic PI control usually performs worse than model-based control. In

this thesis, we apply some other controller, i.e., MFAC which has the model-free char-

acteristic but performs better than PI control, so as to give some insights to solve this

challenging issue.

Another challenge is around the economic operation of the carbon capture plant

[3, 41]. Most previous literature only focus on the economic operation issues in terms

of the fixed carbon capture level, e.g., 90 %. However, the carbon capture level should

be determined dynamically on the ground of the electricity and CO2 allowance mar-

ket conditions. In this thesis, we formulate the carbon capture problem considering

emission trading system which is very crucial for the deployment of carbon capture

technology. Provided that such kinds of technologies are likely to be commercialised,

market price changes for CO2 allowances will be the incentives which may greatly

change the operation strategies of associated fossil-fuel power plants. Therefore, we

present some possible model-free learning methods such as Sarsa and Sarsa(λ) which

can be applied to find the operation strategies under the CO2 allowance auction mar-

ket.

Throughout this thesis, the model-free methodologies are applied to both the con-

trol and decision making of the MEA-based carbon capture plant integrated with a

fossil-fuel power plant, which is the main contribution. Henceforth, the operation

issues of the MEA-based PCC plant can be solved under the unified model-free frame-

work. The detailed contributions of the thesis are listed as follows.
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� A unified route map of the model identification, model order selection, and model

validation for the MEA-based PCC plant is given under the neural-network-

based model structures with data generated from a first-principle PCC plant

model using MEA solvent [42, 43].

� A novel model-free control protocol termed as MFAC is implemented on the

identified neural-network-based model.

� In comparison with some other conventional process control protocols, namely,

PI control and generalised predictive control (GPC), the robustness of MFAC is

demonstrated when confronting model uncertainties due to disturbances induced

by the associated fossil-fuel power plant.

� A model of the CO2 allowance auctions is constructed, through which, a prof-

itability problem considering both the determination of carbon capture levels

and the bidding of CO2 allowances is formulated for MEA-based PCC plants.

� Model-free learning algorithms such as Sarsa and Sarsa(λ) are applied to opti-

mally determining the operation and bidding policies of the MEA-based PCC

plants integrated with fossil-fuel power plants which are also the participants in

the preceding allowance auctions.

� The flexible operation of the MEA-based PCC plant is achieved with some

model-free methodologies from both the low-level tracking and the high-level

decision-making perspectives. The carbon capture levels are determined taking

into account the bidding issue of CO2 allowances in auctions.

1.4 Structure of the thesis

This thesis focuses on the control and decision-making issues of the MEA-based PCC

plant integrated with a fossil-fuel power plant considering some electricity market

conditions and CO2 allowance auctions. The modelling and operation methodologies

(for both control and decision making) of some literature are briefly introduced in

Chapter 2. Afterwards, the related model-based and model-free control issues for the
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carbon capture level tracking are investigated and extended in details in Chapter 3 and

Chapter 4. In Chapter 5, the determination of the carbon capture levels is further dis-

cussed considering the fossil-fuel power plant operation, electricity market conditions

and the CO2 allowance auctions. This decision-making problem is solved based on

some model-free algorithms termed as Sarsa and Sarsa(λ) learning algorithms. Con-

clusions are given in Chapter 6. Brief descriptions for each chapter are outlined as

follows.

Chapter 1. The incentives and obstacles for the integration of MEA-based PCC

plants to the conventional fossil-fuel power plants are discussed first. Afterwards, the

motivations of our research are put forward while the associated contributions are

listed. In the end, for a better understanding of the following chapters, the structure

of the thesis is presented.

Chapter 2. The modelling methodologies of the carbon capture processes are re-

viewed in this chapter under both the first-principle and system identification frame-

works. On that basis, the control and decision-making methodologies for the flexible

operation of carbon capture process in the literature are reviewed. From the perspec-

tive of control, the existing protocols such as PI and MPC are introduced whereas some

weaknesses of the previous control protocols, such as the complexity of tuning and the

robustness, are discussed. From the perspective of decision making, the drawbacks of

the previous operation policies are clarified. As an insight, the carbon capture level of

a carbon capture plant is usually tightly set as a constant, which is not realistic when

considering the time-varying market conditions of both electricity and CO2 allowances.

Chapter 3. Model identification and corresponding model-based control of a carbon

capture plant are demonstrated in this chapter. Neural networks are used as the

model structures, under which, the model parameters are identified with the back-

propagation algorithm. Subsequently, the model orders are selected in light of Akaike’s

information criterion (AIC) while the model validation is ensured through residual

analysis. With the identified model functioned as the controlled plant, the model-based

control, namely, GPC, is implemented on it. Performances of the GPC protocol are

demonstrated within the controlled plant when there exist external disturbances due
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to the time-varying operation of a fossil-fuel power plant. The concerned disturbances

are the flue gas flow rate and the mass fraction of CO2 in the flue gas.

Chapter 4. In this chapter, two model-free control protocols, PI control and MFAC

are introduced. The derivation and implementation of the single-input-single-output

(SISO) MFAC are explained in details. Thereafter, the extensions of MFAC to multi-

input-multi-output (MIMO) cases are presented. The MFAC protocol is then imple-

mented on the MEA-based PCC plant described by a neural-network-based model

structure as above. The tracking problem of the carbon capture level is considered.

For the comparison of the model-based and model-free control protocols, the simula-

tion results give not only the performances of the PI control and the MFAC in this

chapter but also the performances of the GPC discussed in the previous chapter.

Chapter 5. Some basics of dynamic programming and reinforcement learning are

introduced in this chapter. Afterwards, instead of some constant carbon capture level

in either Chapter 3 or Chapter 4, Sarsa or Sarsa(λ) learning algorithm is implemented

to give a time-varying carbon capture level of the MEA-based PCC plant. The carbon

capture levels are obtained based on time-varying operating conditions of the associ-

ated power plant, the electricity market, and the CO2 allowance auctions. On those

bases, power generations, electricity prices, allowance reserve prices, allowance vol-

umes, and bidding behaviours of other MEA-based PCC plants are considered for the

carbon capture level determination. The performances of Sarsa and Sarsa(λ) are com-

pared and evaluated within a simulated model of the CO2 allowance auctions where

participants are a set of PCC plants.

Chapter 6. This is the conclusion part of the entire thesis where the critical results

of this research are highlighted and possible future works are discussed.



Chapter 2

Literature review

2.1 Introduction

In this chapter, a literature review is given for previous studies on the dynamic control

and steady-state decision-making issues of the MEA-based PCC plant. In addition,

some basic knowledge on the modelling of the PCC process is introduced as well.

2.2 MEA-based post-combustion carbon capture

The first-principle modelling is an intriguing research field for the understanding of the

MEA-based PCC process, which absorbs CO2 in the flue gas emitted from a fossil-fuel

power plant. The flow diagram of the CO2 capture process is shown in Figure 2.1.

Initially, the flue gas of a power plant is fed from the bottom of the absorber while the

MEA solvent lean in CO2 is injected from the top. After reactive absorption between

the carbon dioxide and MEA in the column, the purified gas with less CO2 is vented

to the atmosphere while an MEA solvent rich in CO2 is transferred into the cross heat

exchanger. This rich MEA solvent is then preheated by the lean MEA solution also

fed to the exchanger from the bottom of the stripper column. The absorber column is

structured by corrugated packing sheets since they can expand the inner contact area

between the flue gas and MEA solvents.

32



CHAPTER 2. LITERATURE REVIEW 33

columns. Flue gas from the power plant is contacted counter-cur-
rently with lean MEA solution in the absorber. MEA chemically ab-
sorbs CO2 in the flue gas. This leaves a treated gas stream of lower
CO2 content. The solvent solution (now rich MEA) is regenerated in
the stripper column using steam derived from the power genera-
tion process. CO2 from the top of the column is compressed and
transported away while the lean (regenerated) MEA solution is re-
turned to the absorber column completing the cycle.

1.3. Novel contributions and outline of the paper

This study focuses on the dynamic model development of the
absorber of the chemical absorption plant. It offers what is thought
to be a unique comparison of the accuracy of two approaches to
modelling the absorption process – the equilibrium-based and
rate-based approaches. Also dynamic analyses of some distur-
bances to the absorber performance were carried out. Two distur-
bances were considered:

� Decreasing flue gas flow supplied to the absorber from the
upstream power plant, and
� Increasing the CO2 loading of the lean MEA solution from the
stripper of the capture facility.

A review of various approaches to modelling the chemical
absorption process is described in Section 2. Two approaches were
compared – the equilibrium and rate-based approaches. The model
development process was described in Section 3. These models
were validated with results from a pilot plant study [13] in Section
4. Two dynamic scenarios were simulated – reducing power plant
load and increasing CO2 loading of the lean solvent. The results are
presented in Section 5. Conclusions were drawn in Section 6 and
recommendations for future work were given in Section 7.

2. Developments in modelling chemical absorption of CO2

Post combustion capture with MEA is a reactive absorption pro-
cess. Two main phenomena are involved: mass transfer of CO2

from the bulk vapour to the liquid solvent and the chemical reac-
tion between CO2 and the solvent.

A number of studies have employed steady state models of the
chemical (or reactive) absorption process at different levels of
complexity. Kenig et al. describes the different levels of complexity
of these models as illustrated in Fig. 2 [14].

The equilibrium stage models assume theoretical stages in
which liquid and vapour phases attain equilibrium. These models
may assume the reactions are at equilibrium or may consider the
reaction kinetics. The rate-based approach is more appropriate in
modelling reactive absorption processes since phase equilibrium
is hardly attained in practice. At its lowest level of complexity,
the chemical reactions of the rate-based model are assumed to
be at equilibrium. A more rigorous approach involves the inclusion
of an enhancement factor to estimate actual absorption rates (with
chemical reactions) from known physical absorption rates. The
enhancement factor is calculated based on estimated reaction rates
and is best suited for processes involving single irreversible reac-
tions. This approach has been employed by a number of authors
in developing steady state absorber and stripper models [15–17].

Nomenclature

A cross sectional area (m2)
ct total molar concentration (mol/m3)
Fi component mass flow rate (kg/s)
FH enthalpy flow rate (J/s)
H heat flux (J/m2)
h specific enthalpy (J/kg)
L length of column section (m)
L=G liquid to gas
M mass holdup (kg/m3)
MW molecular weight (kg/mol)
N molar flux (mol/m2.s)
n number of components
Sp specific area (m2/m3)
U energy holdup (J/m3)
x mass fraction
xM

i molar fraction
y axial position
z0 film position

Greek Symbols
d film thickness (m)
l viscosity (Pa s)

x wetted area ratio
v diffusivity (m2/s)

Subscripts
abs absorption
H enthalpy
i component number
liq liquid
vap vapour

Superscripts
cond conduction
conv convection
I interface
L liquid
Lb liquid bulk
Lf liquid film
R reference
V vapour
Vb vapour bulk
Vf vapour film

Absorber

Flue Gas 
from power 
plant

Lean MEA 
solution

Rich MEA 
solution

Cross Heat 
Exchanger 

Stripper

CO2 to 
compression 

CondenserTreated Gas  

Reboiler

Steam from 
power plant

Fig. 1. Simplified process flow diagram of chemical absorption process for post
combustion capture from [9].

2456 A. Lawal et al. / Fuel 88 (2009) 2455–2462

Figure 2.1: Process flow diagram of post-combustion carbon capture [4]

The stripper column has the analogous structure as the absorber. The pre-heated

rich MEA is pumped to the upper-stage packing and then heated up when flowing down

through the stripper unit for the regeneration of the lean MEA solvent. The heat is

provided via a reboiler which is the primary energy consumption of the carbon capture

process. Due to the rising solvent temperature, a mixed stream of the carbon dioxide

and the water vapour will be extracted, which is further separated by a condensing

unit downstream the stripper column. In the end, a high-purity CO2 product stream

is pumped out to some storage site.

To build a first-principle model of the MEA-based PCC process above, the mass

transfer and chemical reactions in the absorber and stripper columns are the essential

factors determining the modelling accuracy and complexity [20, 44, 45]. The columns

are considered as cascaded small stages where the interaction occurs between the

liquid and gas phases. From the perspective of the mass transfer, such interaction

between the MEA solvent and the flue gas can be modelled with the two film theory
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whereby the mass transfer is restricted to the two laminar film regions near the interface

(Figure 2.2) [11]. In the previous literature, the equilibrium-based approach assumes

an infinitely-fast mass transfer rate whereas the rate-based approach employs some

feasible one, within those film regions.

Here, a proper modelling approach is based on the non-

reactive equilibrium stage model, extended by simulta-

neously using the chemical equilibrium relationship. An

alternative approach proposed by Davies and Jeffreys
[32] includes two separate steps. First, the concentra-

tions and flow rates of the leaving streams are calculated

with the simple non-reactive equilibrium stage model.

Afterwards, the leaving concentrations are adapted by

using an additional equilibrium reactor concept. How-

ever, the latter approach does not consider direct

interactions between the chemical and thermodynamic

equilibrium.
Such descriptions can be appropriate for instanta-

neous and very fast reactions. Contrary, if the chemical

reaction is slow, the reaction rate dominates the whole

process, and, therefore, a reaction kinetics expression

has to be integrated into the mass and energy balances.

This concept has been used in a number of studies, both

for RD (e.g. [78,79]) and RA (e.g. [80,81]) process

simulation.
In practice, RSP rarely operate close to thermody-

namic equilibrium. Therefore, some correlation para-

meters like tray efficiencies or HETS-values have been

introduced to adjust the equilibrium-based theoretical

description to the reality. For multicomponent mixtures,

however, this concept often fails, since diffusion inter-

actions of several components result into unusual

phenomena like osmotic or reverse diffusion and mass
transfer barrier [82,83]. These effects cause a strange

behaviour of the efficiency factors, which are different

for each component, vary along the column height and

show a strong dependency on the component concen-

tration [61,83,84].

The acceleration of mass transfer due to chemical

reactions in the interfacial region is often accounted for

via the so-called enhancement factors [19,77,85]. They
are either obtained by fitting experimental results or

derived theoretically on the grounds of simplified model

assumptions. It is not possible to derive the enhance-

ment factors properly from binary experiments, and

significant problems arise if reversible, parallel or

consecutive reactions take place.

3.3. Rate-based approach

A more physically consistent way to describe a

column stage is known as the rate-based approach

[61,86,87]. This approach implies that actual rates of

multicomponent mass and heat transfer and chemical

reactions are taken into account directly.

Mass transfer at the gas/vapour�/liquid interface can

be described using different theoretical concepts [8,61].

Most often the two-film model [88] or the penetration/
surface renewal model [19,89] are used, whereas the

model parameters are estimated via experimental corre-

lations. In this respect the two-film model is advanta-

geous since there is a broad spectrum of correlations

available in the literature, for all types of internals and

systems. For the penetration/surface renewal model,

such a choice is limited, and therefore, in this work the
two-film model is used.

In the two-film model (Fig. 3), it is assumed that all of

the resistance to mass transfer is concentrated in thin

films adjacent to the phase interface and that transfer

occurs within these films by steady-state molecular

diffusion alone. Outside the films, in the bulk fluid

phases, the level of mixing is so high that there is no

composition gradient at all. This means that in the film
region we have one-dimensional diffusion transport

normal to the interface.

Multicomponent diffusion in the films is described by

the Maxwell�/Stefan equations, which can be derived

from the kinetic theory of gases [90]. The Maxwell�/

Stefan equations connect diffusion fluxes of the compo-

nents with the gradients of their chemical potential.

With some modification these equations take a general-
ised form in which they can be used for the description

of real gases and liquids [61]:

di �
Xn

j�1

xiNLj � xjNLi

cLtÐij

; i�1; . . . ; n (1)

where di is the generalised driving force:

di �
xi

RT

dmi

dz
; i�1; . . . ; n (2)

Similar equations can be also written for the gas/

vapour phase.
Thus the gas/vapour�/liquid mass transfer is modelled

as a combination of the two-film model presentation

and Maxwell�/Stefan diffusion description. In this stage

model, the equilibrium state exists only at the interface.

The film thickness represents a model parameter,

which can be estimated using mass transfer coefficient

correlations. These correlations govern the mass trans-

port dependence on physical properties and process
hydrodynamics and are available from the literature

(see, e.g. [61,77,91]).

Fig. 3. Two-film model for a differential packing segment.

C. Noeres et al. / Chemical Engineering and Processing 42 (2003) 157�/178162

Figure 2.2: Two film theory[5]

A simple model will assume chemical reactions reaches equilibrium at each stage.

To increase the model accuracy, some reaction kinetics can be included as well. Under

the framework of the two-film-theory-based mass transfer, these chemical kinetics can

be assumed to exist in just the bulk phase or both the bulk phases and film regions.

These kinetic reactions [46] are represented as follows.

CO2 + OH− −→ HCO−3 (kinetic) (2.1)

HCO−3 −→ CO2 + OH− (kinetic) (2.2)

MEA + CO2 + H2O −→ MEACOO− + H3O+ (kinetic) (2.3)

MEACOO− + H3O+ −→ MEA + H2O + CO2 (kinetic). (2.4)

Apart from those kinetic reactions [47], some simple equilibrium-based reactions should
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Fig. 1. Model complexity.

(Seader, 1989) whereas additional e!ects like the electro-
lyte in#uence could be further taken into account. One of
the important advantages of kinetic models (at the top
right of the diagram) is that the process hydrodynamics
can be directly involved via correlations for the hold-up,
pressure drop, mass transfer coe$cients, etc. The latter
enables the column outputs to be related to geometrical
aspects and operating conditions, thus allowing the
scale-up design optimisation.

3. Steady-state modelling

Let us "rst consider the steady-state process perfor-
mance which is most often encountered in reactive ab-
sorption equipment.

3.1. Detailed model

To study the model optimisation issues, a very detailed
model has to be available. Such a rigorous description
can be used as a reference model for sensitivity studies
and be compared to more simple, reduced models, where-
as signi"cant and insigni"cant in#uences are recognised.

Considering two-phase stage operations like those in
the gas}liquid contactors, the balance equations for the
liquid and gas phases have to be taken into account. For
the liquid phase, this equation is as follows:

0"!

d

dz
(¸xlb)#(nlbai#Rlb/

-*2
)A

c
. (1)

The volumetric liquid holdup /
-*2

depends on the gas
and liquid #ows and is calculated from empirical packing
correlations (see, e.g., Mackowiak, 1991). The component

balance equation for the gas phase is similar:

0"
d

dz
(Gygb)!(ngbai!Rgb/

'!4
)A

c
. (2)

The bulk phase balances are supplemented by the sum-
mation equations for the liquid and gas bulk mole
fractions:

m
+
i/1

xlb
i
"1,

m
+
i/1

ygb
i
"1. (3)

For the determination of axial temperature pro"les
(non-isothermal process), di!erential energy balances are
formulated:
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d
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d
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m
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ngf
i
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i BaiAc

!qgb
V

. (5)

The "lm is considered as an additional balance region,
in which reaction and mass transfer occur simulta-
neously. Therefore, in addition to the bulk balances,
a "lm coordinate and di!erential component mass bal-
ances for the liquid and gas "lm regions are introduced:

+nlf!Rlf"0, +ngf!Rgf"0. (6)

Due to the chemical conversion in the "lms, the values
of the molar #uxes at the interface and at the boundaries
between the "lm and the bulk phases di!er. The system of
equations is completed by the conservation equations for
the mass and energy #uxes at the phase interface and the

344 E. Y. Kenig et al. / Chemical Engineering Science 56 (2001) 343}350

Figure 2.3: Model complexity [5]

be considered as well, i.e.,

H2O + MEAH+ ←→ MEA + H3O+ (equilibrium) (2.5)

2H2O←→ H3O+ + OH− (equilibrium) (2.6)

HCO−3 + H2O←→ CO2−
3 + H3O+ (equilibrium). (2.7)

On the ground of the above discussion, the simplest absorber or stripper model

is plotted in the bottom left of Figure 2.3 [5] where the stage is assumed to reach

equilibrium in terms of both mass transportation and chemical reactions. Moving

right forward gives a model considering chemical kinetics but still infinite-fast mass

transportation. Since both of the bottom models neglect the mass transfer process, this

set of modellings is usually called the equilibrium-based approach. On the contrary,

three models on the top allow for the mass transfer rate, which is therefore termed as

the rate-based approach. In addition, from the top left to the right, chemical kinetics

in neither the film regions nor the bulk phases, the bulk phases, or both the film

regions and the bulk phases, are considered with an increase of the model complexity.

Dynamic modelling methods of the PCC processes have been discussed in some

previous literature [44, 48, 49]. According to Lawal et al. [44, 48], a rate-based approach
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with equilibrium reaction is adopted for the modelling of an MEA-based PCC process

whose performances are validated with the Case 32/47 data of a pilot plant [42]. In

terms of the absorber temperature profile, it was illustrated that the rated-approach

performed better than the equilibrium one. Additionally, the author highlighted the

dominant influence of the liquid/gas ratio on the CO2 removal percentage. According

to Harun et al. [49], an overall description of the PCC process including a sump tank

is presented. Tanks are ubiquitously embedded in an industrial-scale process and are

essential when simulating a dynamic model. In this specific carbon capture process,

one tank can be used for the storage of lean MEA solvent to bypass carbon capture

temporarily while the other tank can be used for collection the rich MEA solvent when

the electricity demand or price is high [10, 33].

Nevertheless, such a rate-based approach may be too complicated when it is served

as the controlled plant for the model-based controllers such as MPC. A possible al-

ternative is to construct one section of the PCC plant model at a time [10, 50, 51] or

use some system-identification-based models [52, 53]. In this thesis, a validated model

identified with the neural-network-based model structure is served as the simplified

controlled plant of the preceding carbon capture process. This plant model can pass

residual analyses and fit well with the data set generated by a validated first-principle

dynamic model in gPROMS® [43].

2.3 Control issues of carbon capture processes

In some previous literature, PI control [14, 20, 21, 54, 55] is prevalent for the dynamic

operation of the MEA-based PCC process since it can be implemented easily without

any offline model. On the other hand, in terms of a customised performance index,

MPC [24, 50, 56, 40, 57, 58] can achieve some better performances but requires an

offline model for implementation. This underline model makes the design and tuning

procedures of MPC non-trivial. For instance, if there exist mismatches between the

model and the controlled plant, the performances of MPC will be degraded; if the

model is too complex, the computation burden will make it impossible for the con-

troller to respond the feedback signals in time. Most of the dynamic models for the
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MEA-based PCC process are constructed in terms of the rigorous rate-based approach

considering mass transfer rates [44]. Such a first-principle model is too complicated

for the model-based control [29, 59]. To date, due to the model complexity, it is widely

recognised that the first principle dynamic model with the rate-based approach and

chemical reactions cannot be used for online control and optimisation. Some trade-off

should be made so as to maintain the model accuracy but with less model complexity

[10]. Such requirements can be achieved with sensitivity or identification tests [20, 60]

but necessitate extra design and tuning efforts of controllers.

2.3.1 Model-free control

The previous model-free protocols applied to the MEA-based PCC process are PI

controllers. Ziaii et al.[61, 62] revealed that the ratio control of the rich MEA flow

rate by assuming a constant ratio between the rich solvent flow rate and the steam fed

to the reboiler, under which circumstances, the disturbance due to the fluctuations of

the steam flow rate to the reboiler could be compensated by the manipulations of the

rich MEA flow rate. Lin et al. [21] constructed plant-wide decentralised control loops

and pointed out the significance of the reboiler temperature control loop to reduce the

energy consumptions for solvent regeneration. Nevertheless, for simplicity, only some

equilibrium-based dynamic model was used to demonstrate their control performances.

Wang et al. specified some decentralised control protocol of an MEA-based PCC plant

for a coal-fired power plant [14, 63]. Their plant model was constructed with the

rate-based approach and reaction reaching equilibrium. These papers introduced a

detailed modelling of PCC process with decentralised control loops and then further

integrated the carbon capture plant model with some coal-fired power plant model. It

was highlighted that water make-up in the lean MEA solvent was critical to ensure a

better performance of the carbon capture plant. In addition, integration of the carbon

capture plant might change the transient dynamics of the associated fossil-fuel power

plant due to the steam draw-off for lean MEA solvent regeneration. Nittaya et. al.

[20] proposed three different PI control structures. The three structures are compared,

which showed structure B was more appreciated which tracked the set-points (e.g., the

carbon capture level) when facing the perturbations of the flue gas flow rate. They



CHAPTER 2. LITERATURE REVIEW 38

also concluded that another control structure A designed by the relative gain array

(RGA) analysis performed worse than structure B. One possible reason as pointed

out could be that only the static sensitivity analysis rather than any dynamics was

considered for the RGA-based loop selections.

As presented above, some literature have focused on the PI control protocols for

the flexible operation of the MEA-based PCC processes. These protocols can be easily

applied since no models are required for control implementation. However, to enhance

the closed-loop performances, pairing strategies together with parameter tuning for

each control loop should be decided carefully. Since a PCC plant usually behaves non-

linearly, gain scheduling should be given for different operating points of the controlled

carbon capture plant.

2.3.2 Model-based control

For the model-based control, the problem focuses on minimising some performance

index of the MEA-based carbon capture plant. Arce et al. [51] introduced a two-level

MPC architecture whose performance indexes were operational costs and the tracking

errors. For the high-level optimisation, costs of the CO2 emission and the solvent-

regeneration-based energy consumption were considered. For the low-level control,

tracking errors of the CO2 capture level and the reboiler liquid level were evaluated

and then addressed by manipulating the solvent inlet flow and the power supply to

the reboiler. Based on their control structure, a 10% reduction of energy cost for sol-

vent regeneration was observed. Sahraei et al. [24] applied an MPC protocol for the

carbon capture tracking issue. The robustness of the MPC is tested by adding step

changes or oscillations of the flue gas flow rate. In comparison with the PI control,

it was exhibited that MPC has a shorter settling time. Nonetheless, model lineari-

sation is required to apply the MPC protocol since the nonlinear MPC had a much

higher computation burden. Luu et al. [40] gave some systematic comparison of the

performances for the standard proportional-integral-derivative (PID) feedback control,

a cascade-PID control and MPC protocols. The MPC protocol was prevalent since
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it could achieve some best performance subject to operational, economic and envi-

ronmental constraints. Generally, these literature have focused on some performance

indexes involving both tracking-error- and energy-consumption-based penalties. Nev-

ertheless, some of them only considered these penalties with customised weightings

while some others included some practical constant coefficients such as the electric-

ity and CO2 prices. As an extension, Arce et al. considered the some time-varying

electricity price profile [51] for their MPC implementation.

As mentioned, some previous literature [16, 35, 40] have considered some CO2

pricing mechanism but are based on the carbon tax or a predefined CO2 price profile .

Note that from 2013, power generators in Europe should bid allowances without free

allocations through EU emission trading system (ETS). It implies some MPC protocol

should consider the CO2 allowance procurement from auctions.

2.4 Decision making issues of carbon capture pro-

cesses

In the view of the economic performances of MEA-based PCC processes [16, 35, 64, 65,

66], it is essential to determine the optimal carbon capture levels under the electricity

and CO2 allowance market conditions. According to Abu-Zahra et al. [64, 67], the

optimisation-based degrees of freedom for the standalone MEA-based PCC plant were

the lean MEA loading, MEA concentration and the stripper operating pressure whose

values are determined referring to no market conditions. The performance criteria were

the consumption of cooling water and thermal energy (used for the lean MEA solvent

regeneration). According to Mac Dowell et al. [35], the cost-effective lean loading for

specified capture levels at the lowest reboiler heat duties (i.e., the main energy penalty

for the system) was delivered, which was approximately 0.20 molCO2/molCO2 [65, 68,

69]. Furthermore, not only lean loading but the capture level of the MEA-based PCC

process should be manipulated to minimise total cost of carbon capture [17] taking into

account the changing CO2 prices in the market, which highlighted the market-oriented

design and operation.
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However, most of the relevant literature discussed the optimal operation of the

MEA-based PCC plant under a cost-minimum target. For the commercial deployment,

such a carbon capture process integrated with a fossil-fuel power plant, however, prefers

to maximise its profits which are influenced by revenues of electricity output, cost of

CO2 allowances, as well as operation & maintenance (OM) expenditures. A fossil-fuel

power plant should bid and then win adequate allowances from auctions to meet its

demand for carbon dioxide emission. When the carbon capture plant is integrated

with a fossil-fuel power plant, for a specified power load profile, decisions should be

made on whether to capture CO2 with the carbon capture plant or procure sufficient

allowances from the CO2 allowance auctions. Thus, the determination of the flexible

carbon capture level should be considered together with the bidding problem of CO2

allowances. Sarsa or Sarsa(λ) can be applied to search a unified optimal strategy which

maximises profits during an evaluation period of the power plant.

2.4.1 Economic issues of carbon capture processes

For the optimal operation of the carbon capture plant, some operation parameters

of the carbon capture plant should be optimised. Previous researches focus on the

optimal operation of the carbon capture process alone. For instance, Abu-Zahra et

al. [67, 64] gave the optimal operating conditions of the carbon capture plant in terms

of the lean solvent loading, the amine solvent concentration, as well as the stripper

operating pressure. Agbonghae et al. [65] gave some optimal lean CO2 loading and

liquid gas ratio for the MEA-based PCC plant integrated with either coal-fired or

natural gas power plant considering the capital and operation costs. Subsequently,

some economic issues such as the market conditions of electricity or CO2 price are

taken into consideration. According to Luo et al. [17], the levelised cost of electricity

was applied as the objective to obtain required carbon price for the capture level of

90% under different fuel or transportation & storage prices. According to Mac Dowell

et al. [35], the effect of the varying payback time for the optimal investment of a

fossil-fuel plant with CCS was discussed when considering the lifetime-based cost.

However, the CO2 price discussed in the literature above is more similar to the
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carbon tax [70]. Influences of the flexible market clearing prices in terms of CO2 al-

lowance auctions are seldom investigated. On the other hand, although there exist

researches on CO2 allowance auction mechanisms [18, 71] and bidding strategies [72],

they seldom mention the flexible operation of power plants with carbon capture sys-

tems. Besides, as in Subsection 2.3.2, power generators in principle should bid CO2

allowances from auctions in Europe. The relationship between PCC operation and

allowance bidding is important for the commercial deployment of the carbon capture

plants within fossil-fuel power plants.

2.4.2 Emission trading system

EU ETS [73] is the key tool trying to set up a CO2 allowance market to cope with

the climate change problem in Europe. It sets a unified emission cap in each year for

all the member states. In 2013, the unified emission cap is 2,084,301,856 allowances

where one allowance is the permit of one ton CO2 emission. Such a cap will account

for over 45% of the EU greenhouse gas emission. Thereafter, the cap will decrease

by 38,264,246 allowances/year (2013-2020) to meet the EU’s emission target by 2020,

i.e., 20% emissions reduction relative to 2005. For allowances scheduled in the cap,

around 57% will be auctioned in the CO2 allowance auctions while the rest will be

freely allocated. Some typical CO2 allowance settlement price is 15 e/allowance in

2018. From 2013, power generators should bid allowances through auctions. Adequate

allowances should be bought from EU ETS to cover the fossil-fuel power plant green-

house gas emission. Otherwise, non-compliance will cause an additional penalty of 100

e/allowance for each ton of excess CO2 emission.

2.5 Summary

In this chapter, the MEA-based PCC process modelling using either the first-principle

or system-identification-based methodologies are introduced. On that basis, some

preferred control protocols in literature e.g., PI and MPC are discussed. Decision-

making issue is reviewed thoroughly from both aspects. Based on previous literature,



CHAPTER 2. LITERATURE REVIEW 42

some insights are given as follows.

� The first-principle-based model using the rate-based approach and reaction kinet-

ics are too complex for the dynamic models with online control and optimisation.

� Model simplification is required for control-oriented modelling. Possible simpli-

fication methods include the construction of the equilibrium-based model rather

than the rate-based ones, using system-identification-based dynamic models, or

just focusing on the key part of the plant related to any specific control issue.

� Previous determination of the carbon capture level for the MEA-based PCC

plant is trivial. It is tightly set as some constant, such as 90%.

� Due to the requirements of economically efficient operation, the different carbon

capture levels should be evaluated in terms of different electricity and CO2 prices.

� Since the power generators should bid CO2 allowances without free allocations,

the carbon capture level determination should be considered together with the

CO2 allowance auctions, which implies a unified bidding and operation problem

should be formulated.



Chapter 3

Model-based control of MEA-based

post-combustion carbon capture

processes

3.1 Introduction

In this chapter, we first introduce some basics about how to build a proper mathe-

matical model in terms of the dynamics of the carbon capture process using system

identification methodology. Afterwards, an advanced model-based control protocol is

implemented for the selected model. Assessments are made in terms of the perfor-

mances of the model identification, model order selection and model-based control

algorithm. The first-principle dynamic model of the PCC process has been developed

in gPROMS® with the rate-based approach using the design and operation specifica-

tions due to the contributions of [43]. All the reactions in PCC are assumed to attain

equilibrium. Validation of this model was made using data of pilot plants [14, 42]. The

flow diagram (Fig. 3.1) shows the flue gas is initially fed into the bottom of the ab-

sorber while the lean MEA solution is injected from the top. After chemical reactions

between CO2 and the lean MEA countercurrently in the column, the purified gas with

less CO2 is vented to the atmosphere while a carbon-rich MEA solution is pumped into

43
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the downstream lean/rich cross heat exchanger and exchanges energy with the lean

solution from the stripper. The stripper has the analogous structure as the absorbers.

The pre-heated rich MEA from the exchanger outlet is pumped to the upper-stage and

heated up when flowing down through the column. The heat is provided via a reboiler

which separates CO2 from the rich MEA and reproduces the lean MEA to process the

consecutively discharged flue gas. Although a rigorous model can be built considering

chemical reactions, it is too complex for control design [59]. A feasible mathematical

model must be identified, compared and validated [51]. Neural networks are such a

powerful tool which can deal with the complexity issues. Nevertheless, in this thesis,

since we mainly focus on the control (Chapters 3 and 4) and subsequent decision mak-

ing (Chapters 5) issues, modelling should be general rather than accurate. Thus, we

consider neural networks with one hidden layer for simplicity and try to validate their

generality through the residual analysis in Subsection 3.2.5.

Figure 3.1: The process flow diagram of a PCC plant [6].



CHAPTER 3. MODEL-BASED CONTROL OF PCC PROCESSES 45

3.2 Model identification, order selection and vali-

dation

3.2.1 Preliminaries

The models considered in this chapter are complete probabilistic models [60] with

three inputs u ∈ R3 and one output y ∈ R. A complete probabilistic model means

a candidate model for the formulation of the carbon capture process should include

both a predictor model and a probability density function (PDF) of the associated

prediction errors. For simplicity, the predictor model here is supposed to achieve

one-step-ahead prediction such that the output y(t) can be predicted in terms of the

sequences of historical inputs ut−1 and outputs yt−1,

ŷ(t|yt−1,ut−1) , ŷ(t|t− 1) = g(yt−1,ut−1) (3.1)

where

ut , {u(0),u(1), · · · ,u(t)} (3.2)

yt , {y(0), y(1), · · · , y(t)}. (3.3)

Apart from the predictor model, the prediction error, is defined as

ε(t) ,y(t)− ŷ(t|t− 1)

=y(t)− g(yt−1,ut−1) (3.4)

which must be fully specified through a PDF as mentioned before. Furthermore, to

search over a complete probabilistic model set (or simply, a model set) smoothly, g(·, ·)

is parameterised by θ and expressed as g(·, ·; θ). Such a parameterised set of models

are termed as a model structure [60] for the one-step-ahead prediciton ŷ(t|t− 1). The

parameterised predictor model and prediction error, thus, can be rewritten as

ŷ(t|t− 1) = g(yt−1,ut−1; θ) (3.5)

ε(t) = y(t)− g(yt−1,ut−1; θ). (3.6)
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In this section, neural networks are assumed to be the aforementioned predictor mod-

els, i.e.,

g(yt−1,ut−1; θ) = al̄(t) = Wl̄al̄−1(t) + bl̄−1 (3.7)

subject to

al(t) , σa(zl(t)) (3.8)

zl(t) , Wlal−1(t) + bl (3.9)

a1(t) = x(t) (3.10)

where zl(t), al(t), bl ∈ Rh̃l , x(t) is the input feature vector of a neural network, h̃l

is the layer size, i.e., the number of neurons of layer l, and σa(·) is an element-wise

activation function for each entry of zl. Without losing generality, for zl = z ∈ R, the

scalar activation function is logistic, i.e.,

σa(z) =
1

1 + exp(−z)
. (3.11)

The superscript l ∈ {2, 3, · · · , l̄ − 1} indicates the layer index of a specified weight

matrix Wl or bias vector bl. Correspondingly, an entry wlij of Wl is the weight

on the branch between the jth neuron of layer l − 1 and the ith neuron of layer l

while an entry bli of bl is the scalar bias of the ith neuron of layer l. It should be

noted that when a layer has only one neuron, the weight matrix and bias vector may

be reduced to a vector and scalar, respectively. For instance, since y(t) is a scalar,

Wl̄ = (wl̄11, w
l̄
12, · · · , wl̄1h̃l̄−1

) ∈ R1×h̃l̄−1 and bl̄ = bl̄1 ∈ R of the output layer (i.e., l = l̄)

are a row vector and scalar, respectively. The objective function can be then defined

as

C̃(W2,W3, · · · ,Wl̄,b2,b3, · · · ,bl̄) =
1

2

N∑
t=1

|ε(t)|2. (3.12)

3.2.2 Problem formulation

For the PCC process which is complex and nonlinear, neural networks [52, 53] can be

selected as the predictor model for identification based on the offline data generated by

the first-principle carbon capture model. Note that the tracking problem of the carbon
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capture level is primarily considered in this chapter. For brevity, lean CO2 loading

and the reboiler temperature are assumed to be fixed around 0.28 mol/mol and 387 K,

respectively, for all cases in the later simulations of this chapter. On that basis, a

model related to dynamics of the carbon capture level is built with three inputs

u(t) , (u(t), v1(t), v2(t))T (3.13)

where u(t), v1(t), and v2(t) are the lean MEA flow rate (kg/s), the flue gas flow rate

(kg/s), and the mass fraction of CO2 in the flue gas, respectively, and one output,

namely, the carbon capture level (%), denoted by y(t).

The concerned candidate predictor models in this chapter are neural networks

with one hidden layer with varying sizes. Referring to Figure 3.2 and Eq. (3.7), these

predictor models can be represented by

ŷ(t|t− 1) = g(yt−1,ut−1; θ) =W3σa(W2x(t) + b2) + b3 (3.14)

The input feature vector x(t) ∈ Rh1 at time t is then defined as

x(t) ,(y(t− 1), y(t− 2), · · · , y(t− na),

v1(t− 1), v1(t− 2), · · · , v1(t− nd1),

v2(t− 1), v2(t− 2), · · · , v2(t− nd2),

u(t− 1), u(t− 2), · · · , u(t− nb))T (3.15)

with h̃1 = na + nb + nd1 + nd2. na, nb, nd1, and nd2 are model orders which must be

determined in terms of model performances. For a specific candidate model based on

neural networks, the parameter vector of a predictor model (Eq. (3.14)), θ, is defined

based on the weights {W2, W3} and biases {b2, b3}, i.e.,

θ , col(W2,W3,b2,b3) ∈ RD, (3.16)

where col(·) means the entries of parameters are stacked and columnised as a vector.

These model parameters should be identified using the input and output data from the

first-principle model. The total number of entries of the predictor model parameters

should equal to D = [(h̃1 + 2) · h̃2] + 1. To avoid over-fitting [74], for two candidate

models with similar model validation performances, the model with less complexity,

i.e., smaller D, is preferred.
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Apart from the prediciton model, the prediction errors {ε(t)} are supposed to

be white Gaussian noises, i.e., a sequence of independent and identically distributed

random variables with ε(t) ∼ Normal(0, σ2) expressed as

fe(ε(t)) =
1√
2πσ
· exp[−|ε(t)|

2

2σ2
]. (3.17)

The parameterised set of models described by Eq. (3.14) and Eq. (3.17) is termed as

a model structure. Note that under a specific model structure, the dimension of the

parameter vector D is fixed. Thus, the best model can be selected with maximum

likelihood estimate (MLE) [75], or the back-propagation algorithm for feed-forward

neural networks in this case. Note that for a real system, we may be unable to

represent the true model using an existing model structure or there just exists no

true model. Nevertheless, all models are wrong while some are useful if they can pass

validation tests. In this thesis, we assume that the prediction error should suffice

Gaussian distribution. Then, the validation is made in terms of two test statistics,

i.e., ζ1 and ζ2 introduced in Subsection 3.2.5. To ensure the assumption is valid,

the statistics must suffice specified probability distributions. Theses statistics can be

calculated based on the prediction errors, i.e., the residuals (Eq. (3.4)) of the predictor

model (Eq. (3.14)).

3.2.3 Model identification

For the above neural-network-based predictor model (Eq. (3.14)) and prediction er-

ror (Eq. (3.6)), a cost function can be constructed as

C̃(θ) = C̃(W2,W3,b2,b3) =
1

2

N∑
t=1

|ε(t)|2. (3.18)

which should be minimised with respect to (w.r.t.) weights and biases for model

identification. A gradient descent algorithm can be applied with

Wl ←Wl − η̃ ∂C̃
∂Wl

(3.19)

bl ← bl − η̃ ∂C̃
∂bl

(3.20)

where l ∈ {2, 3}. However, the computation burden of such an algorithm is significant

when the sample size N is large. Usually, a mini-batch sample size N ′ (much less than
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Figure 3.2: A multi-input-single-output neural network with one hidden layer.

N) should be specified to reduce time for the calculation of ∂C̃/∂Wl and ∂C̃/∂bl [76].

When N ′ = 1, the cost function can be reduced to

C̃(W2,W3,b2,b3) =
1

2
|ε(t)|2 =

1

2
|y(t)− a3(t)|2, ∀ t ∈ {1, · · · , N} (3.21)

which can be solved by the stochastic gradient descent algorithm identical to Eq. (3.19)

and Eq. (3.20). The stochastic gradient descent ∂C̃/∂Wl and ∂C̃/∂bl can be updated

through the classic algorithm as follows [77]:

δ̃ l̄ = (y − al̄)

∂C̃
∂bl+1 = δ̃l+1

∂C̃
∂Wl+1 = δ̃l+1 · (al)T

δ̃l = ((Wl+1)T · δ̃l+1)� ∂σa(zl)
∂zl

(3.22)

with l ∈ {1, 2, · · · , l̄− 1}. Note that since l should be assigned with l̄− 1, l̄− 2, · · · , 1

orderly and the gradients (∂C̃/∂Wl+1 and ∂C̃/∂bl) are computed in a back-propagated

manner, the recursive update procedure (Eq. (3.22)) is termed as the back-propagation
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algorithm. Subsequently, Eq. (3.19) and Eq. (3.20) can be used for the updates of Wl

and bl for ∀l. The back-propagation algorithm listed above is used for regression

problems [78]. To solve classification problems, a user may have

δ̃ l̄ = (y − al̄)� ∂σa(zl̄)

∂zl̄

instead of the first equation in Eq.(3.22). It is worthwhile noting that this back-

propagation algorithm is actually derived when the model structure is differentiable [60].

If there are several applicable model structures, for instance, when the dimension of

the parameter vector varies, such an algorithm can determine the best model of each

model structure but may not give direct assessment w.r.t. the decrements or incre-

ments of the parameter vector dimension D. Therefore, AIC is introduced as follows

to solve the model order selection issues considering the curse of dimensions.

3.2.4 Model order selection

From Eq. (3.4) and Eq. (3.17), it can be implied that the probability of observing y(t)

given (ut−1, yt−1) should be equivalent to

p(y(t)|yt−1,ut−1) = fe(y(t)− g(ut−1, yt−1; θ)). (3.23)

Thus,

p(y(t), y(t− 1)|yt−2,ut−2) =p(y(t)|y(t− 1), yt−2,ut−2)p(y(t− 1)|yt−2,ut−2)

=fe(y(t)− g(yt−1,ut−1; θ))fe(y(t− 1)− g(yt−2,ut−2; θ)).

(3.24)

By induction, one should have

p(yt|ut) =
t∏

k=1

fe(y(k)− g(yk−1,uk−1; θ))

=
t∏

k=1

1√
2πσ
· exp[− 1

2σ2
(y(k)− ŷ(k|k − 1))2]

,f̄(yt|ut, θ, σ) , f̄(yt|ut, ϑ) (3.25)

where ϑ , (θT , σ)T ∈ RD̄ with D̄ = D+1 is the dimension of the parameter vector of a

complete probabilistic model, for which, in addition to those parameters of a predictor
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model (Eq. (3.14)), the parameters of the prediction error model (Eq. (3.17)) should

be included as well. For the specific PDF of the prediction error, fe (Eq. (3.17)) above,

only σ is the extra parameter added to form the augmented parameter vector ϑ. More-

over, f̄(yt|ut, ϑ) is the joint PDF model which describes the probability of observing

the output sequence yt, given the deterministic input sequence ut.

A typical model selection tool, AIC [74], is on the ground of the Kullback-Leibler

(KL) distance with the joint PDF model (Eq. (3.25)), i.e.,

I(f̄0, f̄) =

∫
f̄0(yN |uN) log(

f̄0(yN |uN)

f̄(yN |uN , ϑ)
)dyN (3.26)

where N is the sample size and f̄0 is the true joint PDF of the observed output se-

quence. Ideally, the best parameterised model f̄(yN |uN , ϑ) should equal to f̄0(yN |uN).

As a result, I(f̄0, f̄) = 0 which is the minima of KL distance. However, in practice, it

is uncertain whether we include the true model in the candidate model sets. There-

fore, instead of seeking I(f̄0, f̄) = 0, one should find the model with the shortest KL

distance, which means

ϑ0 = arg min
ϑ

∫
f̄0(yN |uN) log(

f̄0(yN |uN)

f̄(yN |uN , ϑ)
)dyN (3.27)

where ϑ0 is the parameter vector which is the best under the specific model struc-

ture (Eq. (3.14) and (3.17)). MLE can be applied with large samples to find this best

parameter vector ϑ. Nonetheless, such a best model can be found only stochastically

under a large sample size, i.e., the estimate of ϑ0, denoted by ϑ̂, is a random variable

dependent of the observed samples, zN . Hence, a user should find the estimated model

parameters whose expectation is minimized, which is

ϑ̂ = arg min
ϑ̂

∫
f̄0(zN |uN)

∫
f̄0(yN |uN) log(

f̄0(yN |uN)

f̄(yN |uN , ϑ̂(zN))
)dyNdzN

= arg min
ϑ̂
{EzN [

∫
f̄0(yN |uN) log f̄0(yN |uN)dyN ]

− EzN [

∫
f̄0(yN |uN) log[f̄(yN |uN , ϑ̂(zN))]dyN ]}

= arg max
ϑ̂
{EzN [

∫
f̄0(yN |uN) log[f̄(yN |uN , ϑ̂(zN))]dyN ]}

= arg max
ϑ̂
{EzN [EyN [log[f̄(yN |uN , ϑ̂(zN))]]]} (3.28)

where EzN [
∫
f̄0(yN |uN) log f̄0(yN |uN)dyN ] is neglected since it is a constant. ExN (·)

stands for
∫
f̄0(xN |uN)(·)dxN with xN ∈ {yN , zN}. It can be derived in terms of [74]
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that

EzN [EyN [log[f̄(yN |uN , ϑ̂(zN))]]] ≈ EyN [log[f̄(yN |uN , ϑ̂(~y))]]− tr[J(ϑ0)I−1(ϑ0)]

(3.29)

where

J(ϑ) = ExN [[
∂ log[f̄(xN |uN , ϑ)]

∂ϑ
][
∂ log[f̄(xN |uN , ϑ)]

∂ϑ̂
]T ]

and

I(ϑ) = −ExN [
∂2 log[f̄(xN |uN , ϑ)]

∂ϑ2
] ∈ RD̄×D̄.

When AIC is applied, it is assumed J(ϑ) ≈ I(ϑ) [74], i.e., only good approximation

models will be compared in terms of the AIC where “good” means these models f̄

are quite near the true model f̄0 in terms of the KL distance. Thus, the following

approximation holds

EzN [EyN [log[f̄(yN |uN , ϑ̂(zN))]]] ≈ EyN [log[f̄(yN |uN , ϑ̂(yN))]]− tr[ID̄]

= EyN [log[f̄(yN |uN , ϑ̂(yN))]]− D̄ (3.30)

where ID̄ ∈ RD̄×D̄ is an identity matrix. AIC is then defined as

AIC , −2 log[f̄(yN |uN , ϑ̂(yN))] + 2D̄ (3.31)

which is an estimate of −2 ·EzN [EyN [log[f̄(yN |uN , ϑ̂(zN))]]]. Combining Eq. (3.25) and

Eq. (3.31) gives

AIC =− 2 log[
N∏
t=1

1√
2πσ
· exp[− 1

2σ2
(y(t)− ŷ(t|t− 1))2]] + 2D̄

=N log(2π) +N log(σ2) +
1

σ2

N∑
t=1

|ε(t)|2 + 2D̄ (3.32)

where the parameter σ2 is estimated by

σ̂2 =
1

N

N∑
t=1

|ε(t)|2. (3.33)

Thus, by omitting those constant terms in Eq. (3.32), we have

AIC = N log(σ̂2) + 2D̄ (3.34)

The most appropriate model should have the minimum AIC value. From Eq. (3.34), a

good model should have not only small prediction errors indicated by N log(σ̂2) but a
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small dimension D̄ for ϑ. Furthermore, if the model structure is some linear regression

prediction model with the corresponding prediction error sufficing Normal(0, σ2), the

small sample AIC, or specifically, Akaike’s information criterion with a correction for

finite sample sizes (AICc), can be used for model order selection. The benefit is that

when the sample size N is small, AICc gives additional correction term which penalises

performances of any model with a large dimension for ϑ. According to [74], AICc is

given as follows:

AICc = AIC +
2D̄(D̄ + 1)

N − D̄ − 1
(3.35)

where 2D̄(D̄+ 1)/(t− D̄− 1) is the correction term. Note that Eq. (3.31) is a general

form which can be used to select models for any assumed fe while Eq. (3.34) and

Eq. (3.35) can be explicitly derived only if the prediction error, ε(t), is normally

distributed. Unfortunately, there exists no unique correction term for AICc to deal

with any type of assumed model structures. However, Eq. (3.35) may be still used

when there is no other better correction method [74].

3.2.5 Model validation

The residual analysis [60] suggests a validated model has residuals ε(t) which are

serially independent and unrelated to past inputs. Two correlation-based intermediate

variables are defined as

R̂N
ε (τ) = (1/N)

N∑
t=1

ε(t)ε(t− τ) (3.36)

and

R̂N
εu(τ) = (1/N)

N∑
t=1

ε(t)u(t− τ). (3.37)

ζ1(τ) and ζ2(τ) are then defined as

ζ1(τ) = (N/σ̂4) · (R̂N
ε (τ))2 ∼ χ2(1) (3.38)

and

ζ2(τ) =
√
N/(σ̂2P (τ))R̂N

εu(τ) ∼ N (0, 1) (3.39)
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with P (τ) = (1/N)
∑N

t=1 u(t − τ)2. For a validated model, ζ1(τ) and ζ2(τ) should be

within the α-level confidence intervals determined by the chi-squared- and normally-

distributed random variables, respectively.

3.3 Generalised predictive control

3.3.1 Preliminaries

In this section, a popular MPC algorithm called GPC [79, 80] is introduced and applied

to a validated neural-network-based carbon capture plant model. One intriguing char-

acteristic of GPC is that it can be applied with only measured input-output data from

a plant. However, this control protocol is model-based, i.e., a prediciton model of the

controlled plant is necessary for the control implementation. Consider the prediciton

model

A(q)y(t) = B(q)u(t− 1) + D(q)v(t) +
C(q)e(t)

∆
(3.40)

where y ∈ Rn̄, u ∈ Rm̄, v ∈ Rp̄, and ∆ = 1− q−1 which is a transfer operator. Besides

∆, the transfer operator matrices of the prediction model are represented by

A(q) , I + A1q
−1 + A2q

−1 + · · ·+ Anaq
−na

B(q) , B0 +B1q
−1 +B2q

−1 + · · ·+Bnb−1q
−nb+1

C(q) , I + C1q
−1 + C2q

−1 + · · ·+ Cnc−1q
−nc

D(q) , D0 +D1q
−1 +D2q

−2 + · · ·+Dnd−1q
−nd+1

(3.41)

where Ai ∈ Rn̄×n̄, Bi ∈ Rn̄×m̄, Ci ∈ Rn̄×n̄ and Di ∈ Rn̄×p̄. With the weight matrices

Q ∈ RNrn̄×Nrn̄, R ∈ RNrm̄×Nrm̄, and the definitions of
Ū(t) , (u(t), u(t+ 1), · · · , u(t+Nr − 1))T

Ȳ(t) , (ŷ(t+ 1|t), ŷ(t+ 2|t), · · · , ŷ(t+Nr|t))T

Ȳr(t) , (yr(t+ 1), yr(t+ 2), · · · , yr(t+Nr))
T

(3.42)

where Nr is the terminal time index of the output prediction Ȳ(t), the objective of

the GPC protocol can be defined as

J = (Ȳr(t)− Ȳ(t))TQ(Ȳr(t)− Ȳ(t)) + ∆Ū
T

(t)R∆Ū(t). (3.43)
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It follows that the optimal GPC protocol can be formulated by solving the problem of

∆Ū
∗
(t) = arg min

∆Ū(t)
J. (3.44)

A necessary condition for the optimal control protocol (Eq. (3.44)) is

∂J

∂∆Ū(t)
= 0. (3.45)

For the application of GPC in the real system, a stable and feasible solution must also

consider the constraints of the inputs and states [25]. Nonetheless, the main purpose

of the thesis is to compare the performances of GPC with the MFAC in Chapter 4.

For simplicity, we only consider the unconstrained cases. Robust MPC may cause

conservative input manipulations which degrade the performances [81].

3.3.2 Control algorithm

Note that we actually consider a carbon capture process where the lean MEA flow rate

u ∈ R and carbon capture level y ∈ R are the manipulated input and controlled output,

respectively. In addition, there exist disturbances, denoted by v , (v1, v2)T ∈ R2,

coming from two channels, i.e., the flue gas flow rate v1 and the mass fraction of CO2

in the flue gas v2. Thus, the GPC protocol of the carbon capture process should be

formulated in terms of the single-input-single-output framework with two disturbance

channels. It infers that a prediciton model of the controlled plant should be specified

as Eq. (3.40) with the corresponding transfer operator matrices (Eq. (3.41)) reduced

to the scalar cases, i.e.,

A(q) , 1 + a1q
−1 + a2q

−1 + · · ·+ anaq
−na

B(q) , b0 + b1q
−1 + b2q

−1 + · · ·+ bnb−1q
−nb+1

C(q) , 1 + c1q
−1 + c2q

−1 + · · ·+ cnc−1q
−nc

D(q) ,

D1(q)

D2(q)


T

,

d1
0 + d1

1q
−1 + d1

2q
−1 + · · ·+ d1

nd1
q−nd1

d2
0 + d2

1q
−1 + d2

2q
−1 + · · ·+ d2

nd2
q−nd2


T

(3.46)

where Eq. (3.46) indicates the more general representation of D(q) in Eq. (3.46) should

have nd = max{nd1, nd2}+ 1. In addition, the preceding neural-network-based model
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structure implies d1
0 = d2

0 = 0 since there exist explicit one-sample delay between the

inputs and outputs for any model in the model set (Eq. (3.14)). With the weight

matrices Q ∈ RNr×Nr , R ∈ RNr×Nr , and the definitions of

Ū(t) , (u(t), u(t+ 1), · · · , u(t+Nr − 1))T

V̄(t) , (vT (t+ 1), vT (t+ 2), · · · , vT (t+Nr))
T

Ȳ(t) , (ŷ(t+ 1|t), ŷ(t+ 2|t), · · · , ŷ(t+Nr|t))T

Ȳr(t) , (yr(t+ 1), yr(t+ 2), · · · , yr(t+Nr))
T

(3.47)

the objective of the GPC protocol is exactly identical to Eq. (3.43). In the following

parts of this subsection, the GPC is formulated by solving the problem of Eq. (3.44).

k-step-ahead prediction

First, we introduce the k-step-ahead prediciton which is essential to obtain Ȳ(t). Note

that the prediciton model (Eq. (3.40)) can be rewritten as

y(t+ k) =
B(q)

A(q)
u(t+ k − 1) +

D(q)

A(q)
v(t+ k) +

C(q)

A(q)∆
e(t+ k). (3.48)

To achieve the k-step-ahead prediciton, the coloured noise term C(q)/(A(q)∆)e(t+k)

should be divided into two parts: One part is due to the noises of the past time, i.e.,

et−∞ = {e(−∞), · · · , e(t − 1), e(t)}, while the other part is due to the noises of the

future time, i.e., et+kt+1 = {e(t+ 1), e(t+ 2), ..., e(t+ k)}. Equivalently, we should obtain

C(q)

A(q)∆
= Ek(q) + q−kF̃k(q) (3.49)

where Ek(q) , ek,0 + ek,1q
−1 + ek,2q

−2 + · · ·+ ek,k−1q
−k+1

F̃k(q) , f̃k,0 + f̃k,1q
−1 + f̃k,2q

−2 + · · ·+ f̃k,∞q
−∞

(3.50)

to achieve such a division. Eq. (3.49) implies the well-known Diophantine equation

C(q) = Ek(q)A(q)∆ + q−kFk(q) (3.51)

where

Fk(q) ,F̃k(q)A(q)∆

=fk,0 + fk,1q
−1 + fk,2q

−2 + · · ·+ fk,naq
−na . (3.52)
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Denoting δ(·) as the degree of a transfer operator, it can be derived that δ(C(q)) = nc

and δ(Ek(q)A(q)∆) = na+k. With the assumption na+k ≥ nc, it infers δ(Fk(q)) = na

as in Eq. (3.52). Supposed that the transfer operators, Ek(q) and Fk(q), are known

already, multiplying Eq. (3.48) by Ek(q)A(q)∆ derives

Ek(q)A(q)∆y(t+ k) =Ek(q)B(q)∆u(t+ k − 1)

+ Ek(q)D(q)∆v(t) + Ek(q)C(q)e(t+ k). (3.53)

Combining Eq. (3.51) and Eq. (3.53) gives

C(q)y(t+ k)− Fk(q)y(t) =Ek(q)B(q)∆u(t+ k − 1)

+ Ek(q)D(q)∆v(t+ k) + Ek(q)C(q)e(t+ k) (3.54)

which indicates

y(t+ k)− Fk(q)

C(q)
y(t) =

Ek(q)B(q)

C(q)
∆u(t+ k − 1)

+
Ek(q)D(q)

C(q)
∆v(t+ k) + Ek(q)e(t+ k) (3.55)

where Ek(q)e(t+ k) only involves the noises after time t. Therefore,

C(q)ŷ(t+ k|t)− Fk(q)y(t) =Ek(q)B(q)∆u(t+ k − 1) + Ek(q)D(q)∆v(t+ k). (3.56)

Constructing another Diophantine equation

1 = Mk(q)C(q) + q−kNk(q) (3.57)

where Mk(q) , mk,0 +mk,1q
−1 +mk,2q

−2 + · · ·+mk,k−1q
−k+1

Nk(q) , nk,0 + nk,1q
−1 + nk,2q

−2 + · · ·+ nk,nc−1q
−nc+1

(3.58)

and multiplying Eq. (3.56) by Mk(q) derives

ŷ(t+ k|t) =Mk(q)Ek(q)B(q)∆u(t+ k − 1) + Mk(q)Ek(q)D(q)∆v(t+ k)

+ (Mk(q)Fk(q) + Nk(q))y(t) (3.59)

which is a k-step-ahead prediciton of y(t+ k).

Note that a GPC protocol will be applied to such a predictor model (Eq. (3.59)).

The input should be categorised into the future and past parts where the future inputs
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can be manipulated in terms of some control protocol to achieve a specified objective

while the past inputs contribute to some free response of the plant. Suppose that

Mk(q)Ek(q)B(q) =Gfk(q) + q−kGpk(q) (3.60)

Mk(q)Ek(q)D(q) =Hfk(q) + q−kHpk(q) (3.61)

subject to

Gfk(q) , gfk,0 + gfk,1q
−1 + gfk,2q

−2 + · · ·+ gfk,k−1q
−k+1

Gpk(q) , gpk,0 + gpk,1q
−1 + gpk,2q

−2 + · · ·+ gpk,k+nb−3q
−k−nb+3

Hfk(q) ,

H1
fk(q)

H2
fk(q)


T

,

h1
fk,0 + h1

fk,1q
−1 + h1

fk,2q
−2 + · · ·+ h1

fk,k−1q
−k+1

h2
fk,0 + h2

fk,1q
−1 + h2

fk,2q
−2 + · · ·+ h2

fk,k−1q
−k+1


T

Hpk(q) ,

H1
pk(q)

H2
pk(q)


T

,

h1
pk,0 + h1

pk,1q
−1 + h1

pk,2q
−2 + · · ·+ h1

pk,k+nd1−2q
−k−nd1+2

h2
pk,0 + h2

pk,1q
−1 + h2

pk,2q
−2 + · · ·+ h2

pk,k+nd2−2q
−k−nd2+2


T

(3.62)

where the element-wise degrees of Gpk(q) and Hpk(q) are

δ(Gpk(q)) = δ(Mk(q)Ek(q)B(q))− k = k + nb − 3

δ(Hpk(q)) = δ(Mk(q)Ek(q)D(q))− k

=

k + nd1 − 2

k + nd2 − 2


. (3.63)

Eq.(3.59) can be rewritten as

ŷ(t+ k|t) =Gfk(q)∆u(t+ k − 1) + Gpk(q)∆u(t− 1)

+ Hfk(q)∆v(t+ k) + Hpk(q)∆v(t) + (Mk(q)Fk(q) + Nk(q))y(t) (3.64)

which is a k-step-ahead predictor model. Note that the transfer operators such as

Gfk(q), Gpk(q), and etc., in this predictor model can be obtained when the aforemen-

tioned Diophantine equations, Eq. (3.51) and Eq. (3.57), are solved. The next part

will discuss a simple method to solving these equations recursively.
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Recursion of Diophantine equations

As mentioned above, to know the exact representation of a k-step-ahead predici-

ton (Eq. (3.64)), the transfer operators Ek(q), Fk(q), Mk(q) and Nk(q) for ∀k ∈

{1, 2, · · · , Nr} in Diophantine equations (Eqs. (3.51) and (3.57)) should be obtained.

For Eq. (3.51), when k = 1, it can be derived that

C(q) = E1(q)Ã(q) + q−1F1(q) (3.65)

which gives

E1(q) =c0 (3.66)

F1(q) =q(C(q)− c0Ã(q)). (3.67)

When k > 1, Eq. (3.51) indicates

C(q) = Ek−1(q)A(q)∆ + q−k+1Fk−1(q). (3.68)

Subtracting Eq. (3.51) for both sides of Eq. (3.68) gives

0 =(Ek(q)− Ek−1(q))A(q)∆ + q−k+1(q−1Fk(q)− Fk−1(q))

=q−k+1(ek,k−1A(q)∆ + q−1Fk(q)− Fk−1(q)). (3.69)

By denoting

Ã(q) = A(q)∆ = 1 + ã1q
−1 + ã2q

−2 + · · ·+ ãna+1q
−na−1 (3.70)

together with Eq. (3.69), it can be derived that

0 = ek,ν − ek−1,ν , ν ∈ {0, 1, · · · , k − 2}

0 = ek,ν − fk−1,0, ν ∈ {k − 1}

0 = ek,k−1ãl+1 + fk,l − fk−1,l+1, l ∈ {0, 1, · · · , na − 1}

0 = ek,k−1ãl+1 + fk,l, l ∈ {na}

(3.71)

i.e., 

ek,ν = ek−1,ν , ν ∈ {0, 1, · · · , k − 2}

ek,ν = fk−1,0, ν ∈ {k − 1}

fk,l = −ek,k−1ãl+1 + fk−1,l+1, l ∈ {0, 1, · · · , na − 1}

fk,l = −ek,k−1ãl+1, l ∈ {na}

. (3.72)
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Thus, a user can recursively obtain Ek(q) and Fk(q) with the above four equations for

k ∈ {2, · · · , Nr} with the initial conditions of E1(q) (Eq. (3.66)) and F1(q) (Eq. (3.67)).

A similar recursive method can be applied to the other Diophantine equation

(Eq. (3.57)) where the initial conditions can be expressed as

M1(q) =1/c0 (3.73)

N1(q) =q(1− c−1
0 C(q)). (3.74)

In addition, since

0 =(Mk(q)−Mk−1(q))C(q) + q−k+1(q−1Nk(q)−Nk−1(q))

=q−k+1(mk,k−1C(q) + q−1Nk(q)−Nk−1(q)) (3.75)

holds, it implies

mk,ν = mk−1,ν , ν ∈ {0, 1, · · · , k − 2}

mk,ν = nk−1,0/c0, ν ∈ {k − 1}

nk,l = −mk,k−1cl+1 + nk−1,l+1, l ∈ {0, 1, · · · , nc − 2}

nk,l = −mk,k−1cl+1, l ∈ {nc − 1}

. (3.76)

One can now recursively obtain Mk(q) and Nk(q) with the above four equations for k ∈

{2, · · · , Nr} with the initial conditions of M1(q) (Eq. (3.73)) and N1(q) (Eq. (3.74)).

Control protocol

The control protocol is then derived as follows. DenotingEk+1(q) = Ẽk+1(q) + ek+1,kq
−k

Mk+1(q) = M̃k+1(q) +mk+1,kq
−k

(3.77)

it can be inferred that Ẽk+1(q) = Ek(q)

M̃k+1(q) = Mk(q)

(3.78)
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from the first equations of both Diophantine recursion methods (Eqs. (3.72) and

(3.76)). Thus, defining

Gfk+1(q) =G̃fk+1(q) + q−kgfk+1,k (3.79)

Hfk+1(q) =H̃fk+1(q) + q−k

h1
fk+1,k

h2
fk+1,k

T

(3.80)

together with Eq. (3.60) and Eq. (3.61) givesG̃fk+1(q) = Gfk(q)

H̃fk+1(q) = Hfk(q)

. (3.81)

From Eq. (3.81), we have
gfk,k−1 = gfk+1,k−1 = · · · = gfNr,k−1 , gk−1

h1
fk,k−1 = h1

fk+1,k−1 = · · · = h1
fNr,k−1 , h1

k−1

h2
fk,k−1 = h2

fk+1,k−1 = · · · = h2
fNr,k−1 , h2

k−1

(3.82)

where k ∈ {1, 2, · · · , Nr}. Therefore, in terms of Eq. (3.64) and Eq. (3.82), the con-

cerned output prediction vector (ŷ(t+ 1|t), ŷ(t+ 2|t), · · · , ŷ(t+Nr|t))T can be repre-

sented as

Ȳ(t) ,



ŷ(t+ 1|t)

ŷ(t+ 2|t)

ŷ(t+ 3|t)
...

ŷ(t+Nr|t)


=



g0 0 0 · · · 0

g1 g0 0 · · · 0

g2 g1 g0 · · · 0
...

...
...

. . .
...

gNr−1 gNr−2 gNr−3 · · · g0





∆u(t)

∆u(t+ 1)

∆u(t+ 2)
...

∆u(t+Nr − 1)



+



h1
0 0 0 · · · 0 h2

0 0 0 · · · 0

h1
1 h1

0 0 · · · 0 h2
1 h2

0 0 · · · 0

h1
2 h1

1 h1
0 · · · 0 h2

2 h2
1 h2

0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

h1
Nr−1 h1

Nr−2 h1
Nr−3 · · · h1

0 h2
Nr−1 h2

Nr−2 h2
Nr−3 · · · h2

0


·
(

∆v1(t+ 1) ∆v1(t+ 2) · · · ∆v1(t+Nr)

∆v2(t+ 1) ∆v2(t+ 2) · · · ∆v2(t+Nr)
)T
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+



Gp1(q)∆u(t− 1) + Hp1(q)∆v(t) + (M1(q)F1(q) + N1(q))y(t)

Gp2(q)∆u(t− 1) + Hp2(q)∆v(t) + (M2(q)F2(q) + N2(q))y(t)

Gp3(q)∆u(t− 1) + Hp3(q)∆v(t) + (M3(q)F3(q) + N3(q))y(t)
...

GpNr(q)∆u(t− 1) + HpNr(q)∆v(t) + (MNr(q)FNr(q) + NNr(q))y(t)


. (3.83)

Denoting

G ,



g0 0 0 · · · 0

g1 g0 0 · · · 0

g2 g1 g0 · · · 0
...

...
...

. . .
...

gNr−1 gNr−2 gNr−3 · · · g0


(3.84)

H ,



h1
0 0 0 · · · 0 h2

0 0 0 · · · 0

h1
1 h1

0 0 · · · 0 h2
1 h2

0 0 · · · 0

h1
2 h1

1 h1
0 · · · 0 h2

2 h2
1 h2

0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

h1
Nr−1 h1

Nr−2 h1
Nr−3 · · · h1

0 h2
Nr−1 h2

Nr−2 h2
Nr−3 · · · h2

0


(3.85)

f(t) ,



Gp1(q)∆u(t− 1) + Hp1(q)∆v(t) + (M1(q)F1(q) + N1(q))y(t)

Gp2(q)∆u(t− 1) + Hp2(q)∆v(t) + (M2(q)F2(q) + N2(q))y(t)

Gp3(q)∆u(t− 1) + Hp3(q)∆v(t) + (M3(q)F3(q) + N3(q))y(t)
...

GpNr(q)∆u(t− 1) + HpNr(q)∆v(t) + (MNr(q)FNr(q) + NNr(q))y(t)


(3.86)

Ṽ(t) , (v1(t+ 1), v1(t+ 2), · · · , v1(t+Nr),

v2(t+ 1), v2(t+ 2), · · · , v2(t+Nr))
T (3.87)

Eq. (3.83) can be briefly written as

Ȳ(t) = G∆Ū(t) + H∆Ṽ(t) + f(t). (3.88)
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Note that Ṽ(t) can be formulated by V̄(t) through a permutation matrix, and the

second term to the right-hand side of Eq. (3.88), H∆Ṽ(t), is the response of future

disturbances which can be obtained if they are measurable. Define

f′(t) , H∆Ṽ(t) + f(t). (3.89)

Combining Eq. (3.88), Eq. (3.89), and the objective function (Eq. (3.43)) gives

J = (G∆Ū(t) + f′(t)− Ȳr(t))
TQ(G∆Ū(t) + f′(t)− Ȳr(t)) + ∆Ū

T
(t)R∆Ū(t)

(3.90)

where f′(t) is a filtered response [25]. Taking ∂J/∂Ū(t) = 0, the control policy is then

derived as

∆Ū
∗
(t) = (GTQG + R)−1GTQ(Ȳr(t)− f′(t)) (3.91)

where only the first element of the vector ∆Ū
∗
(t) is implemented for the controlled

plant. Note that for a model-based protocol, the underline model parameters from

sensitivity or identification tests are usually required. For this specific GPC algo-

rithm, the model parameters are coefficients of the transfer operators A(q), B(q) and

D(q) which can approximate the PCC plant in some standard mathematical form

(Eq. (3.40)). These model parameters are the indispensable priori knowledge for the

model-based control design. To implement the control protocol (Eq. (3.91)), both the

matrices G & H and the filter f′(t) should be determined by A(q), B(q) and D(q) as

above, which infers that GPC should be model-based.

3.3.3 Numerical example

In this subsection, three GPC controllers with different prediciton models are designed

and applied to a plant which can be described by

(1− 0.8q−1)y(t) = (0.4 + 0.6q−1)u(t− 1) + (0.7q−1 + 0.3q−2)v(t) +
1

∆
e(t). (3.92)

The tuning parameters Nr, Q and R of all the three controllers are set to be

identical, i.e., Nr = 3 and Q = R = I3×3. Nevertheless, some differences are given
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Figure 3.3: Numerical example: Disturbance of a plant with GPC.

as follows: The first controller has no disturbance model, i.e., D(q) = 0; the second

controller has a disturbance model, D(q) = 0.7q−1 + 0.3q−2 but is uncertain about

the future disturbance; the third controller has the disturbance model and knows the

future disturbance deviations. Some other transfer operators when applicable to these

controllers are exactly identical to the plant specification (Eq. (3.92)), which implies,

A(q) = 1− 0.8q−1, B(q) = 0.4 + 0.6q−1, and C(q) = 1. The assumed disturbance and

reference signal are shown in Figure 3.3 and Figure 3.5, respectively, while the manip-

ulated input and controlled output for the three controllers are displayed in Figure 3.4

and Figure 3.5, respectively. On the ground of the tacking performances (Figure 3.5),

the GPC protocol with both disturbance model and disturbance prediction is the best

among the three controllers.
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Figure 3.5: Numerical example: Output of a plant with GPC.
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3.4 Simulation results

In this section, the dynamic model of a carbon capture plant is first identified and

validated using neural networks. For the model identification issue, the inputs are

the lean MEA flow rate u(t) [14, 20], the flue gas flow rate (kg/s), v1(t), and the

mass fraction of CO2 in the flue gas, v2(t), while the output is the capture level

(unitless), y(t). Afterwards, some possible model-based control protocols focusing on

the tracking problem of the carbon capture level y(t) are applied on the identified

neural-network-based PCC plant model. For this control problem, lean MEA flow

rate is the only manipulated input where the other inputs (i.e., v1(t) and v2(t)) in

model identification are some disturbance channels. In light of the GPC protocol, the

controller performances are demonstrated and evaluated.

3.4.1 Model identification, order selection and validation

The data used for the plant model identification are generated by the first-principle

PCC model [43] with the sampling time Ts = 2.5 s. During preprocessing, dc-offsets

of both the input features x(t) and output y(t) are removed. The model structures are

neural networks parametrised by model parameter vector ϑ D̄ whose dimension reflects

unknown hidden layer size h̃2 and model orders na, nb, nd1 , & nd2 (Subsection 3.3.1).

To reduce the number of candidate models, nb = nd1 = nd2 with the hidden layer

size h̃2 = 1 is assumed for the initial model order selection. Only na and nb should

be determined to fix D̄. The training set contains 110 samples while the testing set

contains 50 samples. With the scikit-learn tool box [82], the model is identified under

the neural network framework. For both na and nb ranging from 1 to 10, the model

performances are quantised by AIC. Theoretically, the selected model orders should

have the minimum AIC value (Figure 3.6), i.e., na = 10 and nb = 5. The model

order pair selected by AICc or Bayesian information criterion (BIC) [74] is na = 5 and

nb = 5.

Correspondingly, the selected candidate models must pass the whiteness and inde-

pendence tests so as to validate their performances on approximating the first principle
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Figure 3.6: AIC values.

Table 3.1: Validated model orders and fit percentages.

(na, nb) h̃2min fit ( %)
(5, 5) / /
(7, 5) 3 97.77
(10, 1) 1 98.41
(10, 5) 1 98.42

Table 3.2: Selected model order pairs.

Model selection criteria na nb
AIC 10 5
AICc 5 5
BIC 5 5

PCC model [43]. Validation is then applied based on the residual analysis in Subsec-

tion 3.2.5. The tests are conducted not only for the models selected by AIC, AICc

or BIC, but the candidate models with orders around the neighbours of the criterion-

based ones, i.e., na and nb are searched within {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The hid-

den layer size h̃2 is enumerated from 1 to 10. For each specified h̃2 and na-nb pair, a



CHAPTER 3. MODEL-BASED CONTROL OF PCC PROCESSES 68

2 4 6 8 10
na

2

4

6

8

10
n b

pass
fail

Figure 3.7: A set of whiteness and independence tests.

validated model must meet two constraints: (a) It can achieve a good fit (over 90%

fit) with the observed data generated by the first-principle model; (b) the residual ε(t)

of the candidate model can pass whiteness and independence tests. If the whiteness

and independent tests can be passed for the residuals ε(t) of a candidate model (i.e., a

predictor model (Eq. (3.14) with specified orders na & nb, hidden layer size h̃2, and the

identified parameters θ), the white Gaussian noise assumption of the prediction error

(Eq. (3.17)) for that candidate model is valid. In this simulation, for a specific na-nb

pair, if there exists any h̃2 ∈ {1, 2, · · · , 10} such that the identified predictor model

can pass the whiteness and independence tests, this na-nb pair is recorded with “pass”

(Figure 3.7). Although the model order pair, na = 5 and nb = 5, is selected by AICc

or BIC, the corresponding candidate model fails the tests (Figure 3.7). Table 3.1 only

gives the smallest hidden layer sizes h̃2min with respect to some typical model order

pairs (determined by AIC, AICc, BIC, etc.) such that the candidate models can pass

the whiteness and independence tests. It is observed that if the model has passed the

tests, the fit percentage is generally over 90%. Instead of the above constraints for
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Figure 3.8: Historical inputs for model identification.

validated models, the number of model parameters D̄ is further considered to avoid

over-fitting. A candidate model with na = 10, nb = 1, and h̃2 = 1 is finally selected

since D̄ = (h̃1 + 2) · h̃2 + 2 = 17 is the smallest among all the validated models. Note

that all the predictor models in the model set (Eq. (3.14)) can only achieve one-step-

ahead prediciton. The reason is that the control protocols used afterwards are based

on one-step-ahead algorithms (Eqs. (3.91) and (4.33)). According to input and out-

put dynamics (Figure 3.8 and Figure 3.9), the fit percentage of the selected model is

98.41% for the one-step-ahead prediction. Furthermore, the selected model also has

reasonable performance on the multi-step-ahead prediction. The fit percentage for the

carbon capture level is 93.43%. This value is lower than 98.41% of the one-step-ahead

prediction but still well above 90%. The residual analysis (Figures 3.10 and 3.11) of

the model indicates ζ1(τ) and ζ2(τ) are within the 99% confidence intervals.
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Figure 3.9: Output dynamics.

3.4.2 Model-based control

Note that the controlled nonlinear PCC plant is the validated neural network model

selected in Subsection 3.4.1. The prediction model (Eq. (3.40)) is linearised based on

this nonlinear model using the first-order Taylor approximation so as to derive A(q−1),

B(q−1) and D(q−1). This linearisation includes two parts: First, the equilibrium point

of the neural-network model is iteratively derived. Secondly, a linear model is obtained

around this equilibrium point. We consider a general MIMO case. The equilibrium

point of the model is derived as follows. Define

y(t) , (y1(t), y2(t), · · · , yn̄(t))T ∈ Rn̄ (3.93)

u(t) , (u1(t), u2(t), · · · , um̄(t))T ∈ Rm̄. (3.94)
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Figure 3.10: A whiteness test with a 99 % confidence interval (green region).

The input feature can be then represented by

x(t) ,(y1(t− 1), · · · , y1(t− na[1, 1]), · · · , yn̄(t− 1), · · · , yn̄(t− na[1, n̄]),

u1(t− 1), · · · , u1(t− nb[1, 1]), · · · , um̄(t− 1), · · · , um̄(t− nb[1, m̄]),

y1(t− 1), · · · , y1(t− na[2, 1]), · · · , yn̄(t− 1), · · · , yn̄(t− na[2, n̄]),

u1(t− 1), · · · , u1(t− nb[2, 1]), · · · , um̄(t− 1), · · · , um̄(t− nb[2, m̄]),

· · · ,

y1(t− 1), · · · , y1(t− na[n̄, 1]), · · · , yn̄(t− 1), · · · , yn̄(t− na[n̄, n̄]),

u1(t− 1), · · · , u1(t− nb[n̄, 1]), · · · , um̄(t− 1), · · · , um̄(t− nb[n̄, m̄]))T

,(xT1 (t),xT2 (t), · · · ,xTn̄ (t))T (3.95)

xk(t) ,(y1(t− 1), · · · , y1(t− na[k, 1]), · · · , yn̄(t− 1), · · · , yn̄(t− na[k, n̄]),

u1(t− 1), · · · , u1(t− nb[k, 1]), · · · , um̄(t− 1), · · · , um̄(t− nb[k, m̄]))T

,(ȳTk (t), ūTk (t))T (3.96)
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Figure 3.11: An independence test with a 99 % confidence interval (green region).

with na and nb being n̄× n̄ and n̄× m̄ integer matrix, respectively. Compared with

Eq. (3.7), the predictor model w.r.t. each output can be written as

ŷk(t|t− 1) = gk(y
t−1,ut−1; θk) = g̃k(xk(t); θk) = g̃k(ȳk(t), ūk(t); θk)

i.e.,

y(t) = g̃(x(t); θ) = g̃(ȳ(t), ū(t); θ) (3.97)

for the MIMO representation. In the steady state, yk(t) = yssk and uj(t) = ussj for

∀t, j ∈ {1, · · · , n̄}, k ∈ {1, · · · , m̄} such that the above equation can be reformatted as

yss =g̃ss(xss; θss) =g̃ss(yss,uss; θss) (3.98)

where

uss , (uss1, · · · , ussm̄)T (3.99)

yss , (yss1, · · · , yssn̄)T (3.100)

xss , (yTss,u
T
ss)

T . (3.101)
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Given some specified steady-state input uss, the output yss in Eq. (3.98) can be itera-

tively estimated with Newton’s method, which means

g̃ss(y
n
ss,uss; θss)− ynss + (g̃′Tss (ynss,uss; θss)− I)(yn+1

ss − ynss) = 0

⇒ yn+1
ss = (g̃′Tss (ynss,uss; θss)− I)−1(g̃′Tss (ynss,uss; θss)y

n
ss − g̃ss(y

n
ss,uss; θss)) (3.102)

where ynss is the nth estimate of yss and

g̃′ss(y
n
ss,uss; θss) ,

∂g̃ss(yss,uss; θss)

∂yss

|yss=ynss . (3.103)

where g̃′ss(y
n
ss,uss; θss) is computed as follows. On the basis of the definition in Eq. (3.96),

further suppose

xk(t) = (yss1, · · · , yss1, · · · , yssn̄, · · · , yssn̄,

uss1, · · · , uss1, · · · , ussm̄, · · · , ussm̄)T , (ȳssk, ūssk)
T (3.104)

where ȳssk ∈ R
∑n̄
j=1 na[k,j] and ūssk ∈ R

∑m̄
j=1 nb[k,j]. Eqs. (3.97), (3.98) and (3.104) give

g̃ssk(yss,uss; θss) = g̃k(ȳk(t), ūssk; θk), which implies

∂g̃ssk(yss,uss; θss)

∂yss

=
∂ȳk(t)

∂yss

∂g̃k(ȳk(t), ūssk; θk)

∂ȳk(t)
(3.105)

where

∂g̃k(ȳk(t), ūssk; θk)

∂ȳk(t)
=
∂a2(t)

∂ȳk(t)
· · · ∂al̄−2(t)

∂al̄−3(t)

∂al̄−1(t)

∂al̄−2(t)

∂g̃k(ȳk(t), ūssk; θk)

∂al̄−1(t)
(3.106)

and

∂al(t)

∂al−1(t)
=
∂σa(Wlal−1(t) + bl)

∂al−1(t)
= (Wl)Tσ′a(Wlal−1(t) + bl). (3.107)

Given uss, with ynss as the nth estimate of the equilibrium point yss, we can construct

the associated ȳnssk as the nth estimate of ȳssk for ∀k. Thus, with yss = ynss and

ȳk(t) = ȳnssk, Eqs. (3.105), (3.106) and (3.107) give the value of ∂g̃ss(yss,uss;θss)
∂yss

|yss=ynss ,

i.e., g̃′ss(y
n
ss,uss; θss) in Eq. (3.103). A linear model is then derived from Eq. (3.97)

y(t) = g̃(ȳnss, ūss; θ) + (
∂g̃(ȳ(t), ū(t); θ)

∂(ȳT (t), ūT (t))T
)T

ȳ(t)

ū(t)

−
ȳnss(t)

ūss(t)

 (3.108)

which can be then used to derive the prediction model (Eq. (3.40)). These polynomi-

als may generate model uncertainties due to plant nonlinearities. For the same input
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dynamics (Fig. 3.8), there exist mismatches between the output responses of the pre-

diction model, the neural-network-based plant model and the observed data samples

from the first-principle model (Fig. 3.12). Based on the aforementioned prediciton

model, tuning parameters such as the time horizon (Nr), and the weight matrices

(Q and R) should be specified by a user to achieve the specified control objective

(Eq. (3.43)). Nr is the concerned time horizon. Q is the penalty of the tracking error

(i.e., r(t+ k)− y(t+ k)) within the time horizon Nr. R is the penalty of the manipu-

lated input deviation (i.e., ∆u(t+k) = u(t+k)−u(t+k−1)) within the time horizon

Nr. The control objective (Eq. (3.43)) indicates there should be trade-off between the

tracking error and the input manipulation. For the smooth input dynamics, entries of

Q should be large while those of R should be small. In contrast, for the fast output

responses, entries of Q should be small while those of R should be large. The reference

signal of the carbon capture level is generated identically to Figure 3.15.
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neural-network-based plant model
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linearised plant model
fit percentage compared with data: 33.69%

Figure 3.12: Comparison between observed data and model predictions.

In this case study, when no disturbances are applied, some good performance

of GPC is obtained with the tuning parameters of Nr = 3, Q = 1 · INr×Nr and
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Figure 3.13: Disturbances.

R = 30 · INr×Nr where INr×Nr ∈ RNr×Nr is an identity matrix. Afterwards, the time-

variant disturbances, i.e., the flue gas flow rate and the CO2 mass fraction of the

flue gas (Fig. 3.13), are applied to the controlled nonlinear PCC plant, which can be

periodical ramp changes due to the variations of power generation [14]. Simultane-

ously, Fig. 3.15 shows no matter the disturbances (Figure 3.13) are applied or not,

GPC can achieve some good performances for this tracking problem of carbon capture

levels. However, due to the ramping disturbances applied, there exist some constant

deviations which may not be eliminated. Nevertheless, an underline model should be

identified before the tuning parameters of GPC can be tested online. The model not

only lacks nonlinearities of the controlled plant but is usually obtained with offline

sensitivity or identification tests as shown in Subsection 3.4.1, which makes the tuning

procedure complicated.
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Figure 3.14: Manipulated inputs of GPC.

3.5 Summary

In this chapter the control issue of the MEA-based PCC plant is solved with model-

based control, namely, GPC.

� We have identified a validated nonlinear PCC plant model using the data gener-

ated by a first-principle model. The model is identified with the back-propagation

algorithm, approximately located by model order selection criteria such as AIC,

AICc and BIC, and then searched around the neighbours of the criterion-determined

model orders. The carbon capture plant described by the neural-network-based

model can pass residual analysis and fit well with the data set.

� Subsequently, one advanced model-based controller termed as GPC has been ap-

plied to a identified neural-network-based carbon capture plant described by a

neural-network-based model. GPC is a prevailing method which can be applied

with only measured inputs and outputs as presented. Thus, no extra observers
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Figure 3.15: Controlled outputs of GPC.

are required for states of the carbon capture plant. However, when the distur-

bance dynamics of future are not compensated, due to those ramp changes of

disturbances, there still exists some offset, i.e. a constant deviation of the output

from the reference signal (Figure 3.15).

� For simplicity, the prediciton model of the MEA-based PCC plant in this chapter

is a linear model derived from the neural-network-based plant model (Subsec-

tion 3.4.2). For a real system, it means the prediction model should be identified

with the data from a real carbon capture plant. When the performances of GPC

is unsatisfactory, some extra identification tests may be required to obtain a

better prediction model, which is non-trivial.



Chapter 4

Model-free control of MEA-based

post-combustion carbon capture

process

4.1 Introduction

For the flexible operation of MEA-based PCC processes, recent studies concentrate

on model-based protocols which require underline model parameters of carbon cap-

ture processes for controller design. The main focus is around the optimal operation

utilising some model-based controls such as MPC. Nonetheless, for the design of a

well-performed model-based controller, identification or sensitivity tests are needed

before implementing such model-based controllers. This implies model identification,

order selection and validation processes are necessary, which make it non-trivial for

controller design. When the carbon capture plant is coupled with a power plant [14],

uncertain conditions of the power plant may degrade dynamic performances of the car-

bon capture facilities. For instance, fluctuations of either the flue gas flow rate or the

CO2 mass fraction in the flue gas, dependent on the power plant load conditions, will

change the operating point of the PCC process. These disturbances cause extra mis-

matches between the model and the controlled nonlinear PCC plant, which is classified

78
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as model uncertainties. A large number of sensitivity or identification tests [20, 60]

for different operating points of the controlled plant must be conducted before the

controller can be properly tuned and implemented online. It makes the model-based

controller design a non-trivial issue. In this chapter, a novel application of the MFAC

algorithm is proposed that only uses measured input-output data for carbon capture

processes. Compared with PI control, the stability of the closed-loop system can be

easily guaranteed by increasing a stabilising parameter. By updating the pseudo-

partial derivative vector to estimate a dynamic model of the controlled plant online,

this new protocol is robust to plant uncertainties. Compared with MPC, tuning tests

of the protocol can be conducted online without non-trivial repetitive offline sensi-

tivity or identification tests. Performances of the MFAC protocol are demonstrated

within a neural network carbon capture plant model, identified and validated with

data generated by a first-principle carbon capture model.

This chapter is organised as follows. Firstly, the conventional model-free control

protocol, PI and some preliminaries on MFAC are introduced. Secondly, a control

problem similar to the one defined in Chapter 3 is formulated. Secondly, compared

with the GPC and PI control protocols, MFAC is designed based on an iterative al-

gorithm including online linear model update, control protocol implementation and a

reset rule for model parameters. Thirdly, compared with PI control and GPC, per-

formances of MFAC applied to the neural-network-based carbon capture plant model

are demonstrated. A summary is given in the end.

4.2 Problem formulation

Similar to Section 3.3, we consider the tracking problem of carbon capture level y(t) for

the MEA-based carbon capture plant. The lean MEA flow rate u(t) is the manipulated

input and there exist two disturbance channels, v1(t) and v2(t). These disturbances

may change the operating points of the carbon-capture process and deteriorate the

performances of the controllers. Note that only the robustness to model uncertain-

ties is demonstrated and evaluated in this chapter. Some model-free controllers are

introduced to solve such a problem.
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4.2.1 Simple model-free controller - PI control

PID is a simple model-free controller. A continuous-time PID controller can be repre-

sented by

u(t) = Kpec(t) +Ki

∫ t

0

ec(τ)dτ +Kd
dec(t)

dt
(4.1)

where ec(t) is the controller input. Kp, Ki, and Kd are the proportional, integral, and

derivative gains of the PID control, respectively. The integral and derivative parts can

be approximated with

u(t) ≈ u(t− 1) +
ec(t) + ec(t− 1)

2
Ts (4.2)

and

u(t) ≈ ec(t)− ec(t− 1)

Ts
(4.3)

respectively. These approximations, thus, indicate

u(t)

ec(t)
= Kp +Ki

Ts
2

1 + q−1

1− q−1
+Kd

1− q−1

Ts
(4.4)

which can be further expanded as

u(t) =u(t− 1) +Kp(ec(t)− ec(t− 1)) +Ki
Ts
2

(ec(t) + ec(t− 1))

+Kd
1

Ts
(ec(t)− 2ec(t− 1) + ec(t− 2))

=u(t− 1) + (Kp +
KiTs

2
+
Kd

Ts
)ec(t) + (−Kp +

KiTs
2
− 2Kd

Ts
)ec(t− 1)

+
Kd

Ts
ec(t− 2). (4.5)

Eq. (4.5) is termed as a discrete PID controller. For simplicity, we only consider the

PI control, which means Kd = 0. It is obvious that the derivation of such a control

protocol involves no extra model-based information of a plant. Therefore, PID is

actually a model-free controller. However, it lacks methods for solving nonlinearities

of a plant. Similar to model-based controllers, gain scheduling should be applied to

the plant for different operating points to deal with nonlinearity issues.
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4.2.2 Preliminaries on MFAC

Another set of model-free controllers is called MFAC [30, 31]. Suppose the true MEA-

based PCC plant without disturbance channels for v1 and v2 can be expressed as

y(t+ 1) = f0(y(t), y(t− 1), · · · , y(t− ny), u(t), u(t− 1), · · · , u(t− nu)). (4.6)

By denoting the stacked input vector of the past as

Ũ(t) , (u(t), u(t− 1), · · · , u(t− L+ 1)) (4.7)

where L is the initial time index of the manipulated input u(t) for MFAC, the control

objective can be defined as

Ju , ‖r̄(t+ 1)− y(t+ 1)‖2 + λ̃‖∆Ũ(t)‖2 (4.8)

where λ̃ is a tuning parameter which should be determined by a user. For an optimal

control protocol, the following objective should be minimised

u(t) = arg min
u(t)

Ju (4.9)

to track the reference signal r̄(t) of carbon capture level and ‖ · ‖ is the 2-norm of

a specified vector. The necessary condition for Eq. (4.9) is ∂Ju/∂u(t) = 0. Accord-

ing to [30], two assumptions are needed before the derivation of the MFAC protocol

from Eq. (4.9). The stability of the protocol, however, requires another assump-

tion (Assumption 4.3.1) which will be shown later.

Assumption 4.2.1 The partial derivative of f0 w.r.t. the manipulated input u(t),

u(t− 1), · · · , u(t− L+ 1), are continuous.

Assumption 4.2.2 The plant represented by Eq.(4.6) is generalised Lipschitz, i.e.,

‖∆y(t+ 1)‖ ≤ b̄‖∆Ũ(t)‖ (4.10)
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where b̄ is a positive constant. We show the plant description (Eq. (4.6)) can be

linearised as follows.

∆y(t+ 1) =f0(y(t), y(t− 1), · · · , y(t− ny), u(t), u(t− 1), · · · , u(t− nu))

−f0(y(t− 1), y(t− 2), · · · , y(t− ny − 1), u(t− 1), u(t− 2), · · · , u(t− nu − 1))

= f0(y(t),y(t− 1), · · · , y(t− ny), u(t), u(t− 1), · · · , u(t− nu))

−f0(y(t),y(t− 1), · · · , y(t− ny), u(t− 1), u(t− 1), · · · , u(t− nu))

+f0(y(t),y(t− 1), · · · , y(t− ny), u(t− 1), u(t− 1), · · · , u(t− nu))

−f0(y(t−1), y(t− 2), · · · , y(t− ny − 1), u(t− 1), u(t− 2), · · · , u(t− nu − 1)).

(4.11)

Together with Assumption 4.2.1, the first two terms to the right side of Eq. (4.11)

can be rewritten as

f0(y(t), y(t− 1), · · · , y(t− ny), u(t), u(t− 1), · · · , u(t− nu))

− f0(y(t), y(t− 1), · · · , y(t− ny), u(t− 1), u(t− 1), · · · , u(t− nu))

=
∂f0(y(t), y(t− 1), · · · , y(t− ny), u(t), u(t− 1), · · · , u(t− nu))

∂u(t)
|u(t)=u · (u(t)− u(t− 1))

,
∂f ∗0
∂u(t)

· (u(t)− u(t− 1)) =
∂f ∗0
∂u(t)

·∆u(t) (4.12)

where based on the differential mean theorem [30], there exists some point u in the

interval [u(t), u(t− 1)] making this equality hold. In addition, define

Ψ1(t) , Ψ1(y(t), y(t− 1), · · · , y(t− ny − 1), u(t− 1), u(t− 2), · · · , u(t− nu − 1))

,f0(y(t), y(t− 1), · · · , y(t− ny), u(t− 1), u(t− 1), · · · , u(t− nu))

− f0(y(t− 1), y(t− 2), · · · , y(t− ny − 1), u(t− 1), u(t− 2), · · · , u(t− nu − 1))

(4.13)

which is a simplified representation of the last two terms to the right-side of Eq. (4.11).

Combined with Eq. (4.12) and Eq. (4.13), the plant (Eq.(4.11)) can be represented by

∆y(t+ 1) =
∂f ∗0
∂u(t)

∆u(t) + Ψ1(t). (4.14)

On the ground of Eq. (4.13), we further define

Ψk(t) , Ψk(y(t), y(t− 1), · · · , y(t− ny − 1), u(t− k), u(t− k − 1), · · · , u(t− nu − 1))

,Ψk−1(y(t), y(t− 1), · · · , y(t− ny − 1), u(t− k), u(t− k), · · · , u(t− nu − 1)) (4.15)
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which has continuous partial derivative w.r.t. u(t−k) according to Assumption 4.2.1.

When k = 2, Eq. (4.14) and Eq. (4.15) give

∆y(t+ 1) =
∂f ∗0
∂u(t)

∆u(t) + Ψ1(y(t), y(t− 1), · · · , y(t− ny),

u(t− 1), u(t− 2), · · · , u(t− nu − 1))

=
∂f ∗0
∂u(t)

∆u(t)

+ Ψ1(y(t), y(t− 1), · · · , y(t− ny), u(t− 1), u(t− 2), · · · , u(t− nu − 1))

−Ψ1(y(t), y(t− 1), · · · , y(t− ny), u(t− 2), u(t− 2), · · · , u(t− nu − 1))

+ Ψ1(y(t), y(t− 1), · · · , y(t− ny), u(t− 2), u(t− 2), · · · , u(t− nu − 1))

=
∂f ∗0
∂u(t)

∆u(t) +
∂Ψ∗1

∂u(t− 1)
∆u(t− 1)

+ Ψ1(y(t), y(t− 1), · · · , y(t− ny), u(t− 2), u(t− 2), · · · , u(t− nu − 1))

=
∂f ∗0
∂u(t)

∆u(t) +
∂Ψ∗1

∂u(t− 1)
∆u(t− 1) + Ψ2(t) (4.16)

which infers that for any L

∆y(t+ 1) =
∂f ∗0
∂u(t)

∆u(t) +
∂Ψ∗1

∂u(t− 1)
∆u(t− 1) +

∂Ψ∗2
∂u(t− 2)

∆u(t− 2) + · · ·

+
∂Ψ∗L−1

∂u(t− L+ 1)
∆u(t− L+ 1) + ΨL

=ΨL(t) +
(
∂f∗0
∂u(t)

∂Ψ∗1
∂u(t−1)

∂Ψ∗2
∂u(t−2)

· · · ∂Ψ∗L−1

∂u(t−L+1)

)
·∆Ũ(t). (4.17)

Note that ΨL(t) can be expressed as

ΨL(t) = H̃L(t)∆Ũ(t) (4.18)

where H̃L ∈ R1×L which should exist infinite solutions if ‖∆Ũ(t)‖ 6= 0. Hence, by

defining the PPD vector as

Φ(t) ,H̃(t) +
(
∂f∗0
∂u(t)

∂Ψ∗1
∂u(t−1)

∂Ψ∗2
∂u(t−2)

· · · ∂Ψ∗L−1

∂u(t−L+1)

)
=(φ1(t), φ2(t), · · · , φL(t)) ∈ R1×L (4.19)

Eq. (4.17) can be rewritten as

∆y(t+ 1) = Φ(t)∆Ũ(t) (4.20)

where the nonlinear plant (Eq. (4.6)) behaviours can be estimated through the time-

varying row vector Φ(t) as above. Note that in literature, the linearisation method
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above is termed as compact form dynamic linearisation (CFDL)-MFAC when L = 1,

and termed as partial form dynamic linearisation (PFDL)-MFAC when L > 1.

4.3 Model-free adaptive control

The PCC process is commonly modelled by first-principle strategies such as equilibrium-

based or rate-based approaches [11], which infers that the process involves nonlineari-

ties. Note that the time-variant flue gas flow rate, v1(t) and the mass fraction of CO2

in flue gas, v2(t) may cause variations of the process operating point. Thus, nonlin-

earities will lead to mismatches between the controlled plant and the underline model

of the model-based controllers, such as GPC. The model-free protocol [31] can form

a dynamic linear model online for the controlled nonlinear plant with a PPD vector

Φ(t). No offline model parameters are required when the controller is implemented in

real time. As the process operating point varies, Φ(t) adapts to the changes.

4.3.1 Derivation of MFAC

In this subsection, the control protocol is derived w.r.t. the problem (Eq. (4.9)) de-

scribed above while a projection algorithm is introduced to estimate the aforemen-

tioned PPD vector Φ(t) thereafter.

The control protocol is derived as follows. Combining Eq. (4.8) and Eq. (4.20)
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gives

∂Ju
∂u(t)

=
‖r̄(t+ 1)− y(t+ 1) + y(t)− y(t)‖2 + λ̃‖∆Ũ(t)‖2

∂u(t)

=
‖r̄(t+ 1)−∆y(t+ 1)− y(t)‖2

∂u(t)
+
λ̃∂
∑L

k=1|∆u(t− k + 1)|2

∂u(t)

=
∂Φ(t)∆Ũ(t)

∂u(t)
· ∂‖r̄(t+ 1)− Φ(t)∆Ũ(t)− y(t)‖2

∂Φ(t)∆Ũ(t)
+ 2λ̃∆u(t)

=− 2φ1(t)(r̄(t+ 1)− y(t)−
L∑
k=1

φk(t)∆u(t− k + 1)) + 2λ̃∆u(t)

=− 2φ1(t)(r̄(t+ 1)− y(t)−
L∑
k=2

φk(t)∆u(t− k + 1))

+ 2(λ̃+ |φ1(t)|2)∆u(t). (4.21)

As mentioned before, a necessary condition for the control protocol derivation is

∂Ju/∂u(t) = 0. Therefore,

u(t) =u(t− 1) +
φ1(t)(r̄(t+ 1)− y(t))

λ̃+ |φ1(t)|2

−
φ1(t)

L∑
k=2

φk(t)∆u(t− k + 1)

λ̃+ |φ1(t)|2
. (4.22)

Since the true PPD vector is unknown for MFAC, the PPD vector Φ(t) above is

replaced by an estimate, Φ̂(t) , (φ̂1(t), φ̂2(t), · · · , φ̂L(t)) ∈ R1×L, which infers

u(t) =u(t− 1) +
φ̂1(t)(r̄(t+ 1)− y(t))

λ̃+ |φ̂1(t)|2

−
φ̂1(t)

L∑
k=2

φ̂k(t)∆u(t− k + 1)

λ̃+ |φ̂1(t)|2
. (4.23)

For the real-time estimation of plant model parameters Φ(t), an optimisation prob-

lem is formulated as

JΦ = ‖Φ̂(t)− Φ̂(t− 1)‖2 (4.24)

subject to

∆y(t) = Φ̂(t)∆Ũ(t− 1) (4.25)
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which can be solved by the modified projection algorithm [83] and it is briefly intro-

duced as follows. In light of Eq. (4.24) and Eq. (4.25), the objective function can be

reformulated as

JΦ = |∆y(t)− Φ̂(t)∆Ũ(t− 1)|2 + µ‖Φ̂(t)− Φ̂(t− 1)‖2 (4.26)

where µ ∈ R. Taking the derivative of it w.r.t. ΦT (t) gives

∂JΦ

∂Φ̂T (t)
=
∂Φ̂(t)∆Ũ(t− 1)

∂Φ̂T (t)
· ∂|y(t)− y(t− 1)− Φ̂(t)∆Ũ(t− 1)|2

∂Φ̂(t)∆Ũ(t− 1)

+ 2µ(Φ̂T (t)− Φ̂T (t− 1))

=− 2∆Ũ(t− 1) · (y(t)− y(t− 1)− Φ̂(t)∆Ũ(t− 1))

+ 2µ(Φ̂T (t)− Φ̂T (t− 1)). (4.27)

Letting Eq.(4.27) equal to zero derives

0 =− 2∆Ũ(t− 1)(∆y(t)− Φ̂(t)∆Ũ(t− 1)) + 2µ(Φ̂T (t)− Φ̂T (t− 1))

=− 2∆Ũ(t− 1)(∆y(t)− Φ̂(t− 1)∆Ũ(t− 1) + Φ̂(t− 1)∆Ũ(t− 1)

− Φ̂(t)∆Ũ(t− 1)) + 2µ(Φ̂T (t)− Φ̂T (t− 1))

=− 2∆Ũ(t− 1)(∆y(t)− Φ̂(t− 1)∆Ũ(t− 1))

+ 2(µ+ ∆Ũ(t− 1)∆Ũ
T

(t− 1))(Φ̂T (t)− Φ̂T (t− 1)) (4.28)

which can be further transformed into

Φ̂T (t) =Φ̂T (t− 1) + (µ+ ∆Ũ(t− 1)∆Ũ
T

(t− 1))−1∆Ũ(t− 1)

· (∆y(t)− Φ̂(t− 1)∆Ũ(t− 1)). (4.29)

With the matrix inversion lemma [78], Eq. (4.29) can be written as

Φ̂(t) =Φ̂(t− 1)

+
(∆y(t)− Φ̂(t− 1)∆Ũ(t− 1))∆Ũ

T
(t− 1)

µ+ ‖∆Ũ(t− 1)‖2
. (4.30)

Currently, considering no stability issues, Eq. (4.30) and Eq. (4.23) give the recursive

algorithm for the model update and control protocol implementation, respectively.
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4.3.2 Implementation of MFAC

For both the flexibility and stability of the MFAC protocol, some additional tuning

parameters η, ρ and b̄1 should be included for MFAC. The aforementioned model

update (Eq. (4.30)) is modified as

Φ̂(t) =Φ̂(t− 1)

+
η(∆y(t)− Φ̂(t− 1)∆Ũ(t− 1))∆Ũ

T
(t− 1)

µ+ ‖∆Ũ(t− 1)‖2
(4.31)

a reset rule for the model parameter is introduced by

φ̂1(t) = φ̂1(1), if |φ̂1(t)| < b̄1, or sign(φ̂1(t)) 6= sign(φ̂1(1)) (4.32)

and the control protocol implementation (Eq. (4.23)) is transformed into

u(t) =u(t− 1) +
ρ1φ̂1(t)(r̄(t+ 1)− y(t))

λ̃+ |φ̂1(t)|2

−
φ̂1(t)

L∑
k=2

ρkφ̂k(t)∆u(t− k + 1)

λ̃+ |φ̂1(t)|2
. (4.33)

Eq. (4.31), Eq. (4.32), and Eq. (4.33) form the iterative algorithm of the PFDL-

MFAC protocol [30]. To apply this algorithm, tuning parameters within constraints

(i.e., η ∈ (0, 1), µ > 0, ρ = (ρ1, ρ2, · · · , ρL)T with ρk ∈ (0, 1) for any k, λ̃ > λ̃min > 0,

α > 1, and b > 0) should be determined by the user. η and µ are related to the

adaptive performances of the dynamic linear model for the controlled PCC plant. ρ

and λ̃ are related to the control performances for the plant. For fast responses, η and ρ

should increase while for smooth dynamics, µ and λ̃ should increase. The PPD vector

Φ̂(t) is updated online without using any prior knowledge of the offline model, which

implies the iterative algorithm is model-free. Arbitrary initial conditions of Φ̂(t = 1)

should be specified to set up the iteration.

When L = 1, the above PFDL-MFAC protocol is reduced to the CFDL-MFAC,
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which is presented by Eq. (4.34), Eq. (4.35) and Eq. (4.36).

φ̂1(t) =φ̂1(t− 1)

+
η(∆y(t)− φ̂1(t− 1)∆u(t− 1))∆u(t− 1)

µ+ |∆u(t− 1)|2
(4.34)

φ̂1(t) = φ̂1(1), if |φ̂1(t)| < b̄1, or sign(φ̂1(t)) 6= sign(φ̂1(1)) (4.35)

u(t) =u(t− 1) +
ρ1φ̂1(t)(r̄(t+ 1)− y(t))

λ̃+ |φ̂1(t)|2

−
φ̂1(t)

L∑
k=2

ρkφ̂k(t)∆u(t− k + 1)

λ̃+ |φ̂1(t)|2
.

(4.36)

Compared with PI control, the above iterative method is easy to guarantee sta-

bility. If the closed-loop system is unstable or marginally stable, only the stabilising

parameter λ̃ should increase for the stabilisation while PI control requires stability

analysis such as the Nyquist criterion to determine whether to increase or decrease

tuning parameters. In addition, the Nyquist criterion is a model-based method re-

quiring model parameters. Furthermore, PI control is generally designed around fixed

operating points while MFAC forms an adaptive dynamic linear model using online

model update (Eq. (4.31)), i.e., MFAC already considers model uncertainties and

should have strong robustness.

Compared with GPC requiring a prediction model, MFAC can be easily tuned

online with measured input-output data of the controlled plant. If the underline

model is inaccurate, the performances of GPC will be deteriorated. For the PCC

process which is sensitive to ambient environments and is nonlinear, a large number

of sensitivity or identification tests should be conducted around different operating

points of the controlled plant before the controller can be applied online. MFAC only

uses input-output data of the PCC plant. No offline model parameters are necessary

for the online control implementation. The identified mathematical model of the PCC

process is only used for the initial offline tuning. Afterwards, if the control performance

is unsatisfactory, MFAC can be retuned online [30] without offline models. However,

if the control performance of a model-based controller is poor, the model may be re-

identified offline based on new data generated by the first-principle model, which is

non-trivial. Therefore, the implementation of MFAC is easier.
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4.3.3 Stability of MFAC

We give another assumption required for the stability of the MFAC protocol.

Assumption 4.3.1 The first element of PPD vector φ1(t) > ξ (φ1(t) > ξ) for all k,

where ξ is an arbitrary small positive constant.

The detailed proof of such an MFAC algorithm is shown by Hou et al. [31] based on

Assumption 4.2.1, Assumption 4.2.2, and Assumption 4.3.1. Generally, the proof

of stability includes two steps. First, the boundedness of the PPD vector should be

proved. Second, the convergence of the tacking error and the bounded-input-bounded-

output (BIBO) property of the closed-loop system should be demonstrated.

4.3.4 MFAC for MIMO system

Note that the aforementioned SISO MFAC protocol using PFDL (Eqs. (4.31), (4.32),

and (4.33)) or CFDL (Eqs. (4.34), (4.35), and (4.36)), can be extended to an MIMO

case [30], which implies the aforementioned linearisation (Eq. (4.25)), i.e.,

∆y(t+ 1) = Φ̂(t)∆Ũ(t)

should have

Ũ(t) = (uT (t), uT (t− 1), · · · , uT (t− L+ 1))T ∈ RLm̄ (4.37)

Φ̂(t) = (φ̂1(t), φ̂2(t), · · · , φ̂L(t)) ∈ Rm̄×Lm̄ (4.38)

φ̂k(t) =


φ̂k1,1(t) φ̂k1,2(t) · · · φ̂k1,m̄(t)

φ̂k2,1(t) φ̂k2,2(t) · · · φ̂k1,m̄(t)
...

...
. . .

...

φ̂km̄,1(t) φ̂km̄,2(t) · · · φ̂km̄,m̄(t)

 (4.39)

for u, y ∈ Rm̄ and L ∈ Z+. Thus, the CFDL- or PFDL-MFAC protocol for an MIMO

system is presented as follows.
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MIMO CFDL-MFAC

Φ̂(t) =Φ̂(t− 1)

+
η(∆y(t)− Φ̂T (t− 1)∆u(t− 1))∆uT (t− 1)

µ+ ‖∆u(t− 1)‖2

(4.40)

φ̂1
i,i(t) = φ̂1

i,i(1), if |φ̂1
i,i(t)| < b̄1, or |φ̂1

i,i(t)| > αb̄1,

or sign(φ̂1
i,i(t)) 6= sign(φ̂1

i,i(1))
(4.41)

φ̂1
i,j(t) = φ̂1

i,j(1), if |φ̂1
i,j(t)| > b̄2,

or sign(φ̂1
i,j(t)) 6= sign(φ̂1

i,j(1)), i 6= j
(4.42)

u(t) =u(t− 1) +
ρ1φ̂

T
1 (t)(r̄(t+ 1)− y(t))

λ̃+ ‖φ̂1(t)‖2
. (4.43)

MIMO PFDL-MFAC

Φ̂(t) =Φ̂(t− 1)

+
η(∆y(t)− Φ̂T (t− 1)∆Ũ(t− 1))∆Ũ

T
(t− 1)

µ+ ‖∆Ũ(t− 1)‖2

(4.44)

φ̂1
i,i(t) = φ̂1

i,i(1), if |φ̂1
i,i(t)| < b̄1, or |φ̂1

i,i(t)| > αb̄1,

or sign(φ̂1
i,i(t)) 6= sign(φ̂1

i,i(1))
(4.45)

φ̂1
i,j(t) = φ̂1

i,j(1), if |φ̂1
i,j(t)| > b̄2,

or sign(φ̂1
i,j(t)) 6= sign(φ̂1

i,j(1)), i 6= j
(4.46)

u(t) =u(t− 1) +
ρ1φ̂

T
1 (t)(r̄(t+ 1)− y(t))

λ̃+ ‖φ̂1(t)‖2

−
φ̂T1 (t)

L∑
k=2

ρkφ̂k(t)∆u(t− k + 1)

λ̃+ ‖φ̂1(t)‖2
.

(4.47)
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4.3.5 Numerical example

To show some basic characteristics of MFAC protocol, a numerical example [30] is

given as follows. Consider the plant which can be described by

y1(t+ 1) =
2.5y1(t)y1(t− 1)

1 + |y1(t)|2 + |y2(t− 1)|2 + |y2(t− 2)|2

+ 0.09u1(t)u1(t− 1) + 1.2u1(t) + 1.6u1(t− 2) + 0.5u2(t)

+ 0.7 sin(0.5(y1(t) + y1(t− 1))) · cos(0.5(y1(t) + y1(t− 1)))

(4.48)

y2(t+ 1) =
5y2(t)y2(t− 1)

1 + |y2(t)|2 + |y1(t− 1)|2 + |y2(t− 2)|2

+ u2(t) + 1.1u2(t− 1) + 1.4u2(t− 2) + 0.5u1(t).

(4.49)

The reference signal is set as

r̄1(t+ 1) = 5 sin(t/50) + 2 cos(t/20) (4.50)

r̄2(t+ 1) = 2 sin(t/50) + 5 cos(t/20). (4.51)
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Figure 4.1: Numerical example: Inputs of CFDL-MFAC, PFDL-MFAC and PI control.



CHAPTER 4. MODEL-FREE CONTROL OF PCC PROCESSES 92

5

0

5
y 1 ref 1

CFDL-MFAC
PFDL-MFAC
PI control

0 100 200 300 400 500 600 700 800
time t

30

20

10

0

10

20

y 2 ref 2
CFDL-MFAC
PFDL-MFAC
PI control

Figure 4.2: Numerical example: Outputs of CFDL-MFAC, PFDL-MFAC and PI con-
trol.

The tuning parameters of PI control are Kp = 0.1 and Ki = 0.01. The common

tuning parameters of both CFDL- and PFDL-MFAC are µ = 1, λ̃ = 0.01, η, b̄1 = 0.1,

and b̄2 = 0.1. The initial Φ̂(t = 1) matrices of CFDL- and PFDL-MFAC are

Φ̂(t = 1) =

0.5 0

0 0.5

 (4.52)

and

Φ̂(t = 1) =

1 0 0 0 0 0

0 1 0 0 0 0

 . (4.53)

In this example, the performances of CFDL-MFAC, PFDL-MFAC and PI control

protocols are demonstrated. As shown in Figure 4.1 and Figure 4.2, all these protocols

can track time-varying reference signals. However, since MFAC includes parameterised

estimation of dynamics for the plant, it is generally better than PI control. Moreover,

since PFDL uses more parameters for model estimation than CFDL, the corresponding

performance is the best in this example. The dynamic variations of the online model



CHAPTER 4. MODEL-FREE CONTROL OF PCC PROCESSES 93

0 100 200 300 400 500 600 700 800
time t

0.0

0.2

0.4

0.6

0.8

1.0

1
11
1
12
1
21
1
22

Figure 4.3: Numerical example: Φ̂(t) of CFDL-MFAC.

parameters, i.e., the PPD matrices for CFDL- and PFDL-MFAC (Figures 4.3 and 4.4)

are illustrated as well.

4.4 Simulation results

4.4.1 Comparison between MFAC and PI control

In this section, the performances of CFDL- and PFDL-MFAC are evaluated based on

the previous validated neural-network-based PCC plant model,termed as the controlled

plant in the subsequent sections. PI control results are also given for comparison. The

lean MEA flow rate is the manipulated input while the carbon capture level is the

controlled output. The original controlled plant is supposed to be free of disturbances.

During the tuning process, Kp and Ki (Table 4.1) of PI control [43] are tuned to

ensure tracking performances of the capture level as good as possible. Then, instead
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Figure 4.4: Numerical example: Φ̂(t) of PFDL-MFAC.

of PI control, MFAC can be tuned as discussed in Subsection 4.3.2 and implemented

to achieve similar performances (Figures 4.5 and 4.6) with the designed tuning pa-

rameters (Table 4.1). Although the number of tuning parameters for MFAC is larger

than that for PI control, MFAC is easy to ensure stability [31]. PI control needs extra

stability analysis of the closed-loop system.

Table 4.1: Controller design.

PI CFDL-MFAC PFDL-MFAC
Kp 0.01 µ 0.002 0.002

Ki 0.017 λ̃ 25 40
ρ (1) (0.8, 0.05, 0.001)T

α 200 200
η 0.4 0.4
b 0.1 0.1
L 1 3

Φ̂(1) (3) (3, −5, −2)

Afterwards, the time-variant disturbances, i.e., the flue gas flow rate and the CO2
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Figure 4.5: Manipulated inputs of different controllers with no disturbances applied.

mass fraction of the flue gas (Figure 3.13), are applied to the controlled nonlinear

PCC plant, which can be periodical ramp changes due to the variations of power

generation [14]. Such external disturbances cause time-variant dynamics of the con-

trolled plant. Note that no compensation methods are included in the control protocols

(i.e., MFAC or PI) so that only the robustness of different controllers are compared

when confronting these perturbations. Simultaneously, the reference signal of the

carbon capture level is generated identically to the one of the undisturbed plant (Fig-

ure 4.6). Based on the previous tuning parameters (Table 4.1), the lean-MEA flow

rate (Figure 4.7), the capture level (Figure 4.8), and the capture level deviated from

the references (Figure 4.9) are plotted, where PFDL-MFAC has the smoothest tran-

sient responses of the output, i.e. a smaller carbon capture level deviations than the

PI control and CFDL-MFAC algorithms. PFDL-MFAC (Figure 4.8) is better than

CFDL, since time-variant PPD Φ̂(t) of PFDL with a longer length L = 3 (Table 4.1)

adaptively catches more plant dynamics. CFDL-MFAC with fewer tuning parame-

ters than PFDL-MFAC, however, can be designed more easily for simple plants [31].
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Figure 4.6: Controlled outputs of different controllers with no disturbances applied.

Both CFDL- and PFDL-MFAC can guarantee stability by increasing the stabilising

parameter λ̃. Time-variant PPD vectors Φ̂(t) due to CFDL and PFDL (Figures 4.10

and 4.11) dynamically estimate the controlled neural-network-based PCC plant.

4.4.2 Comparison between PFDL-MFAC and GPC

The tuning parameters of GPC are identical to those specified in Subsection 3.4.2. For

convenience, they are presented as follows: Nr = 3, Q = 1 ·INr×Nr and R = 30 ·INr×Nr
where INr×Nr ∈ RNr×Nr is an identity matrix. PFDL-MFAC as tuned in Table 4.1

can achieve a similar tracking performance as GPC. Nevertheless, a prediction model

should be identified before the tuning parameters of GPC can be tested online. The

model not only lacks nonlinearities of the controlled plant but is usually obtained with

offline sensitivity or identification tests. Both of them make the tuning procedure

more complex than MFAC. The computation time of CFDL-MFAC, PFDL-MFAC,

and GPC are 0.147 ms/sample, 0.189 ms/sample, and 0.194 ms/sample, respectively,
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Figure 4.7: Manipulated inputs of different controllers with disturbances applied.

for the tuning parameters shown in Table 4.1, among which GPC is a little more

time-consuming than the other two MFAC protocols. Nevertheless, the computation

time for all these protocols are significantly less than the sampling time (2.5 s) or the

rise time of the plant dynamics (about 80 s shown in Figure 3.12), which makes the

control protocols feasible for the carbon capture level tracking issue.

4.5 Summary

In this chapter, some model-based and model-free controllers are implemented on a

MEA-based PCC plant model, which shows that PFDL-MFAC is a robust and simple

protocol for the tracking issue of the carbon capture level.

� We have implemented the PI control and the model-free algorithms, namely,

CFDL- or PFDL-MFAC within the validated nonlinear PCC plant model. PFDL-

MFAC has shown the best performance when confronting model uncertainties
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Figure 4.8: Controlled outputs of different controllers with disturbances applied.

caused by time-variant disturbances. CFDL-MFAC, however, can be tuned eas-

ily since it has fewer tuning parameters. Both CFDL- and PFDL-MFAC can

guarantee the stability of the closed-loop system by the stabilising parameter λ̃,

easier than PI control using the model-based Nyquist criterion.

� We have compared PFDL-MFAC with a model-based method called GPC. PFDL-

MFAC can be more flexibly tuned online without model parameters determined

during the offline system identification. GPC, however, must be applied based

on underline models, which is linearised around specified equilibrium points of

the controlled nonlinear plant. Extra time should be taken to ensure the model

performances. When performances of such a model-based controller are unsat-

isfactory, re-identification of underline models may be required, which is non-

trivial. Consequently, PFDL-MFAC can be flexibly designed and implemented

easily online with a simplified offline tuning procedure.

� In this chapter, a novel MFAC protocol [30, 31] is applied to the neural-network-

based MEA-based PCC plant model identified using the validated data generated
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Figure 4.9: Controlled outputs deviated from references of different controllers with
disturbances applied.

by a first-principle model [43]. Compared with PI control using predefined tuning

parameters around fixed operating points, MFAC uses CFDL or PFDL to form

a time-variant PCC model online, inferring that the model adapts to plant op-

erating point changes. Compared with the model-based protocol which requires

non-trivial sensitivity or identification tests to determine a model for offline tun-

ing before online implementation, MFAC has a simpler tuning procedure. The

identified PCC model is only used for the initial offline tuning. Thereafter, the

tuning parameters can be flexibly retuned online with the measured input-output

data of the controlled nonlinear PCC plant. No model parameters identified of-

fline are required online. The model parameters determined by the transfer

operators A(q), B(q), C(q) and D(q), however, are essential for GPC protocols.

They are used to ensure the stability and performances of the closed-loop system,

inferring a complex and repetitive offline tuning procedure. PI control requires

no underline model parameters same as MFAC, but its stability analysis is based

on models. MFAC can easily guarantee stability by a stabilising parameter
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Figure 4.10: PPD vectors of CFDL- and PFDL-MFAC with no disturbances applied.
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Figure 4.11: PPD vectors of CFDL- and PFDL-MFAC with disturbances applied.
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Figure 4.12: Manipulated inputs of MFAC-PFDL and GPC with disturbances applied.
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Figure 4.13: Controlled outputs of MFAC-PFDL and GPC with disturbances applied.



Chapter 5

Reinforcement-learning-based

decision making of MEA-based

post-combustion carbon capture

process under emission trading

system

5.1 Introduction

In previous chapters, we discussed the flexible control issues of an MEA-based PCC

plant integrated with a fossil-fuel power plant. The tracking problem of the carbon

capture level for the plant is solved using model-based (Chapter 3) and model-free

(Chapter 4) controllers. However, from a higher-level perspective, the carbon capture

level should be determined in some optimal route rather than some constant value.

As mentioned in Section 1.2, the carbon capture level should be considered together

with the CO2 procurement through auctions under the emission trading system. It

infers, to achieve optimal operation, the MEA-based PCC plant should make a unified

decision on the carbon capture level and the bid option based on different electricity

102
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and CO2 allowance prices [6, 15, 17, 35, 40]. Although the carbon tax mechanism has

been discussed in the aforementioned literature, the settlement price of the CO2 al-

lowances taking into account the auction mechanism is seldom investigated. Although

there exist some literature talking about CO2 allowance auctions [71] and bidding

strategies [72], the flexible operation of the MEA-based PCC plant integrated with

the fossil-fuel power plant is ignored. The relationship between PCC operation and

allowance bidding is not fully established. Therefore, we tend to achieve the follow-

ing targets. Firstly, the MEA-based PCC plant integrated with a fossil-fuel power

plant should consider a profit-maximised objective with a flexible CO2 capture level.

Secondly, the MEA-based PCC plant should bid CO2 allowances with appropriate

quantities and prices. Note that one allowance is the permit of one metric ton of CO2

emission. The winning CO2 allowances from the allowance auctions will be consumed

based on the CO2 emission of the power plant. Inadequate procurement of CO2 al-

lowances will cause penalties based on the amount of the excessive greenhouse gas

emission.

The above problem can be formulated as the Markov decision process and then

solved with dynamic programming. However, the classic dynamic programming meth-

ods require perfect models and lots of computation resources. The new estimate of

any state value must be achieved based on the previously estimated values of the

whole state set. If the state set is large, both the computation time and memory

usage will be significant. On the other hand, reinforcement learning methods usually

require no models and their updates involve only the visited state-action pairs. These

make reinforcement learning methods much more feasible. Sarsa is a simple on-policy

reinforcement learning method. It can be implemented easily for the carbon capture

decision-making problem above. As an extension of Sarsa, Sarsa(λ) is considered since

it converges faster and can deal with delayed rewards/penalties. Note that there may

exist some off-policy methods (e.g., Q-learning) which can be applied as well. However,

such kinds of methods usually have slower convergence properties and larger variances.

Moreover, even the combination of some simple linear function approximators and the

off-policy learning will cause divergence problems [37]. Thus, we mainly focus on the

Sarsa and Sarsa(λ) learning methods in this thesis.
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5.2 Preliminaries

The operation and bidding problem of the MEA-based PCC plant will be solved under

the reinforcement learning framework [36, 37, 84] whose theory is strongly dependent

on dynamic programming [85, 86]. Therefore, in this section, some basics about dy-

namic programming and reinforcement learning are given for a better understanding

of works in the subsequent sections.

5.2.1 Dynamic Programming

Dynamic programming [85, 86] solves a set of problems where the Markov decision

process (MDP) and agent interact as follows: At time t, the agent can observe (or visit)

a process state St, based on which it takes an action At under a predefined policy π(·|St)

where π(At|St) is the probability of taking action At conditional on state St. A reward

Rt+1 is then received by the agent while a new state St+1 is observed. Recursively, the

interactions between the agent and the environment give rise to a sequence

St, At, Rt+1, St+1, At+1, Rt+2, St+2, At+2, Rt+3, · · · , AT−1, RT , ST (5.1)

with Sk ∈ S, Ak ∈ A, Rk+1 ∈ R for k ∈ {t, t+ 1, · · · , T − 1} where T is the terminal

time. Provided T <∞, such a sequence is termed as an episode. S, S+, A, and R are

time-invariant finite sets for non-terminal states, states including terminals, actions,

and rewards, respectively, for the preceding agent. Accordingly, it can be inferred that

the terminal state ST should satisfy ST ∈ S ∩ S+. In what follows, Sk, Ak, Rk+1 and

ST are random variables w.r.t. the possible values sk ∈ S, ak ∈ A, rk+1 ∈ R, and

sT ∈ S ∩ S+. Additionally, any reward should be bounded by

|rk+1| < b̄r (5.2)

with b̄r > 0 and ∀rk+1 ∈ R. Under the reinforcement learning framework, in this

thesis, we seldom talk about the correlation between Rk+1 and Sk. Thus, for a general

problem, we usually express the joint probability of Rk+1 = r and Sk+1 = s′ given

the current visited state-action pair, (i.e., Sk = s and Ak = a) as p(s′, r|s, a) [37]
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constrained by∑
s′,r

p(s′, r|s, a) ,
∑
s′

∑
r

p(s′, r|s, a) ,
∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1. (5.3)

Given the sequence due to interaction between the agent and the environment, a

discounted return is defined as

Gt ,
T−1∑
k=t

γk−tRk+1 (5.4)

where 0 < γ ≤ 1 is the discount rate. There are two kinds of tasks w.r.t. the above

return function (Eq. (5.4)). One is termed as the episodic task while the other is

termed as continuing task. For an episodic task, there is one additional constraint

applied to the time horizon T , which is T < ∞; for the continuing task, there are no

naturally stop mechanisms, i.e., T =∞, which implies γ should be explicitly less than

1 to make the return bounded. However, for the episodic task, a specific terminal state

sT can be seen as an absorbing state which means:

� Given any action a under state sT , the probability of transiting to sT itself is

unity, i.e., sT = ST+1 = ST+2 = · · · .

� Given any action a under state sT , the rewards are always zeros, i.e., 0 = RT+1 =

RT+2 = · · · .

In addition, for Eq. (5.3), the absorbing state sT implies∑
r∈R

p(sT , r|sT , a) = 1. (5.5)

Thus, an episodic task can be seen as a continuing task as well. A unified notation for

both kinds of tasks can be obtained by letting T =∞. The state-value function vπ(·)

for policy π is defined as the expectation of the return (Eq. (5.4)) over the infinite

time horizon, i.e.,

vπ(St = s) , vπ(s) , Eπ[
∞∑
k=t

γk−tRk+1|St = s], ∀s ∈ S (5.6)
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where vπ(s) is the state value for policy π of state s. For 0 < γ < 1, due to the

boundedness of reward Rk+1 (Eq. (5.2)), it can be obtained that

|vπ(St = s)| =|Eπ[
∞∑
k=t

γk−tRk+1|St = s]|

≤
∞∑
k=t

γk−tb̄r =
b̄r

1− γ
, ∀π. (5.7)

Note that the objective is to maximise the expected return, which is meaningful only

if vπ(s) (Eq. (5.6)) is bounded. Here, it is assured by two constraints: 0 < γ < 1 and

inequality (Eq. (5.2)). Note that if the task is episodic, i.e., T <∞, then we can have

the discount rate γ = 1. A user may have T =∞ or γ = 1 but not both [37]. Subject

to these conditions, it is said vπ(s) is well defined. A policy is γ-optimal if

vπ∗(s) , v∗(s) , sup
π
vπ(s) (5.8)

where v∗(s) is the optimal state value of state s. From Eq. (5.6), it can be derived

that

vπ(s) =Eπ[
∞∑
k=t

γk−tRk+1|St = s]

=
∑
a

π(a|s)Eπ[
∞∑
k=t

γk−tRk+1|St = s, At = a]

=
∑
a

π(a|s)Eπ[Rt + γ
∞∑

k=t+1

γk−t−1Rk+1|St = s, At = a]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)(r + γEπ[
∞∑

k=t+1

γk−t−1Rk+1|St = s, At = a, St+1 = s′])

(Since Rk+1 above is only related to St+1, St+2, ..., we have)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)(r + γEπ[
∞∑

k=t+1

γk−t−1Rk+1|St+1 = s′])

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)(r + γEπ[
∞∑

k=t+1

γkRk+2|St+1 = s′])

(Since Eq. (5.6) holds, we have)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)(r + γvπ(St+1 = s′))

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (5.9)
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from which, together with Eq. (5.8), it can be proved that the optimal state value of

any state s, or v∗(s), should suffice the optimality equation [85, Theorem 2.1],

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]. (5.10)

Furthermore, v∗(s) is the unique bounded solution of the optimality equation (Eq. (5.10))

[85, Proposition 2.3]. It should be noted that though the optimal state value v∗(s) is

unique, there may exist multiple optimal policies. Or precisely speaking, there exist

at least one deterministic and stationary optimal policy.

A method termed as successive approximation can be used as follows to search

an optimal policy: Specify the arbitrary initial guess of v∗(s) through V0(s) for any

non-terminal state s ∈ S and let V0(s) = 0 for those terminal states s ∈ S ∩ S+. The

successive approximations of v∗(s) can be defined as V1(s) and recursively Vn(s), which

are

V1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γV0(s′)] (5.11)

and

Vn(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γVn−1(s′)]. (5.12)

With |S| as the size or cardinality of S, the finite set S can be further expressed as

S , {s̃1, s̃2, · · · , s̃|S|} (5.13)

where {s̃i} is any orderly enumeration of the finite set S. The first-round updates are

implemented by traversing elements in S as follows: A state s = s̃1 is firstly visited

and updated using Eq. (5.11) such that the approximate state value V1(s̃1) is obtained

from V0(s) for s ∈ S. Afterwards, the next state s = s̃2 is visited where the objective-

maximised action (Eq. (5.11)) is taken so as to update the approximate state value

V1(s̃2) from V0(s) for s ∈ S. The second-round updates of V2(s) from V1(s) for all

s ∈ S will start unless the approximate state values V1(s) for all s ∈ S are visited

and updated thoroughly. Generally, the successive approximation (Eq. (5.12)) for the

nth-round starts once the n − 1th round updates to all the states are finished. Such

an update process may last infinite rounds. It can be proved that, given an arbitrary

initial estimate V0(s) of the optimal state values v∗(s) for ∀s ∈ S, Vn(s) → v∗(s) as

n→∞ [85, Proposition 3.1].
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5.2.2 Sarsa TD control

Define the action-value function qπ as

qπ(St = s, At = a) , qπ(s, a) , Eπ[
∞∑
k=t

γk−tRk+1|St = s, At = a] (5.14)

for ∀s ∈ S, ∀a ∈ A where qπ(s, a) is the value for policy π of state-action pair (s, a).

Compared with the state-value function (Eq. (5.6)), it indicates

vπ(s) =
∑
a

π(a|s)qπ(s, a). (5.15)

For the Sarsa algorithm, any action value for the current visited state-action pair can

be estimated by

Qt+1(St, At) = Qt(St, At) + αt(Rt+1 + γQt(St+1, At+1)−Qt(St, At)) (5.16)

where Q(St, At) is the estimate of the action value qπ(St, At), αt is the learning rate at

time t, At ∼ π(·|St), and At+1 ∼ π(·|St+1). A ε-greedy policy π can be used for action

selection at time t, which is as follows.

� With the probability of εt, choose any action from the action set A uniformly

random.

� With the probability of 1− εt, choose the greedy action a = arg max
b
Q(St, b).

Thus, for the current visited state St = s at time t, the probability of taking a specific

action At = a can be represented by

π(a|s) =


1− εt + εt

|A| , for a = arg max
b∈A

Q(s, b)

εt
|A| , for a 6= arg max

b∈A
Q(s, b)

. (5.17)

To ensure convergence, two more constraints should be satisfied for the scheduling

of the learning rate αt and the probability of non-greediness εt. First, a set of the

indicator functions, I·,·, is defined by

Is,St = 1, if s = St

Is,St = 0, if s 6= St

Ia,At = 1, if a = At

Ia,At = 0, if a 6= At

. (5.18)
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On the ground of Eq. (5.18), the learning rate αt should be separately scheduled

for each state-action pair (s, a), which is

αt(s, a) , Is,StIa,Atα̃t(s, a). (5.19)

Therefore, the Sarsa algorithm (Eq. (5.16) can be equivalently written asQt+1(s, a) = Qt(s, a) + αt(s, a)(Rt+1 + γQt(St+1, At+1)−Qt(St, At))

αt(s, a) = Is,StIa,Atα̃t(s, a)

(5.20)

for all s ∈ S and a ∈ A. From Eq. (5.19), it can be derived that αt(s, a) = 0 for

any (s, a) ∈ {(s, a)|s ∈ S, a ∈ A, (s, a) 6= (St, At)}. Thus, at any time t, only the

action value of (s, a) = (St, At) is updated via Eq.(5.20), which implies Eq. (5.20) is

equivalent to Eq. (5.16). Based on Eq. (5.19), for any specific state-action pair (s, a),

{α̃t(s, a)} is a sequence that makes Eq. (5.21) and Eq. (5.22) hold, i.e.,

∞∑
t=0

αt(s, a) =∞ (5.21)

∞∑
t=0

|αt(s, a)|2 <∞ (5.22)

subject to 0 ≤ αt(s, a) < 1.

The non-greedy probability εt should be scheduled independently for each state as

well. From Singh et al. [87], εt(s) is computed as follows

nt(s) = nt−1(s) + Is,St (5.23)

εt(s) =
c

nt(s)
(5.24)

with 0 < c < 1. nt(s) is the number of visits to a specific state s ∈ S till time t.

In terms of above iterations, the Sarsa temporal difference (TD) control with ε-

greedy policy is presented in Table 5.1. Note that though the convergence is theo-

retically ensured by the constraints Eq. (5.21), Eq. (5.22), Eq. (5.23), and Eq. (5.24)

[87], one may still use some other possible scheduling methods of the associated tuning

parameters, εt(s) and αt(s, a), for a real problem. On the one hand, tuning parameters

subject to those constraints may require considerable tuning efforts to obtain satis-

factory results. On the other hand, most real environments to be interacted with by
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Table 5.1: Sarsa TD control with ε-greedy policy.

Schedule step size α and the non-greedy probability ε
Initialise Q(s, a) for (s, a) ∈ S ×A arbitrarily
Initialise Q(s, ·) = 0 for s ∈ S ∩ S+

while true
Initialise S
Select A based on π(·|S) (Eq. (5.17))
do

Take action A, observe new state S ′, and obtain reward R
Select A′ based on π(·|S ′) (Eq. (5.17))
Q(S,A)← Q(S,A) + α(R + γQ(S ′, A′)−Q(S,A))
S ← S ′, A← A′

until S is a terminal state

the agents are non-stationary, which means the optimal policies may vary from time

to time. In this case, a constant learning rate αt = α can naturally put more weights

on the recently observed samples than the past, which is often appreciated to deal

with those non-stationary environmental features [37]. The initialisation condition of

Q(s, a) can be seen as the prior knowledge of the action values (Eq. (5.14) and gives

some biases for the action value estimation. Good initial conditions can encourage

exploration of actions in the action set in case of finding only suboptimal policies [37].

These biases will eventually decrease to zero for some proper step sizes, e.g., constant

step sizes. For any bounded initial conditions, reinforcement learning methods can

make the action values converge to their optimal theoretically. Thus, in this thesis, we

simply set the initial Q(s, a) to be zeros for each state-action pair during initialisation.

5.2.3 Sarsa(λ)

From Kushner et al. [88], if the variable Xt is updated as

Xt+1 = Xt + ᾱt(Ut −Xt) (5.25)

where 0 ≤ ᾱt < 1,
∑∞

t=0 ᾱt =∞,
∑∞

t=0 |ᾱt|2 <∞, and Ut are bounded random variable

with mean Ū , then

Xt → Ū , as t→∞, with probability of 1. (5.26)
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Reinforcement learning algorithms coincide with the idea that designs Ut whose mean

value converges the optimal state v∗(s) or action value q∗(s, a). For the previous

Sarsa algorithm (Eq. (5.20)), Ut should be set separately for each state-action pair

(s, a) ∈ S × A, which is denoted by Ut(s, a). At time t, Eq. (5.19) and Eq. (5.25)

indicate

Xt+1(s, a) = Xt(s, a) + αt(s, a)(Ut(s, a)−Xt(s, a)). (5.27)

Together with Eq. (5.20), Eq. (5.27) implies

Ut(s, a) = Rt+1 + γQt(St+1, At+1) , Gt:t+1 (5.28)

where St+1 and At+1 are random variables w.r.t. the state and action for the next

time step. This is a bootstrapping guess (i.e., the new guess is achieved through some

previous guesses) of qπ(s, a). Scheduling of the learning rate and ε-greedy policy (i.e.,

Eqs. (5.21), (5.22), (5.23), and (5.24)) is needed to make this estimate converge q∗

with the probability of 1. Gt:t+1 is called a 1-step return which updates the estimate

of the expected return of previously visited state-action pair (s, a), i.e., qπ(s, a), after

transiting to the next visited pair (St+1, At+1) stochastically. As an extension, to

update the action value qπ(s, a) of any state-action pair for n-step ahead, the n-step

return is defined as

Gt:t+n , Rt+1 + γ1Rt+2 + · · ·+ γn−1Rt+n + γnQt+n−1(St+n, At+n). (5.29)

On that basis, the λ-return is defined as

Gλ
t , (1− λ)

T−2∑
k=t

λk−tGt:k+1 + λT−t−1Gt. (5.30)

Note that since (1 − λ)
∑T−2

k=t λ
k−t + λT−t−1 = 1, Gλ

t above naturally puts a specific

probability distribution on returns with different lookahead steps.

Forward view of Sarsa(λ)

The λ-return, Gλ
t , is used as the estimate of qπ by the following Sarsa(λ) learning

algorithm. In contrast with the Sarsa algorithm (Eq. (5.20)), the update rule isQt+1(s, a) = Qt(s, a) + αt(s, a)(Gλ
t −Qt(St, At))

αt(s, a) = Is,StIa,Atα̃t(s, a)

. (5.31)
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Since Gλ
t is computed by multi-step lookahead, this rule can be referred to as the

forward view of the Sarsa(λ) algorithm. Define

δλt , Gλ
t −Qt(St, At) (5.32)

δt , Rt+1 + γQt(St+1, At+1)−Qt(St, At). (5.33)

Eq. (5.31) can be simplified as

Qt+1(s, a) = Qt(s, a) + αt(s, a)δλt . (5.34)

Together with Eq. (5.29) and Eq. (5.30), Eq. (5.32) can be rewritten as

δλt ,(1− λ)
T−2∑
k=t

λk−tGt:k+1 + λT−t−1Gt −Qt(St, At)

=(1− λ)λ0(Rt+1 + γ1Qt(St+1, At+1))

+ (1− λ)λ1(Rt+1 + γ1Rt+2 + γ2Qt+1(St+2, At+2))

+ (1− λ)λ2(Rt+1 + γ1Rt+2 + γ2Rt+2 + γ3Qt+3(St+3, At+3))

+ · · ·

+ (1− λ)λT−t−2(Rt+1 + γ1Rt+2 + · · ·+ γT−t−2RT−1 + γT−t−1QT−2(ST−1, AT−1))

+ λT−t−1(Rt+1 + γ1Rt+2 + · · ·+ γT−t−1RT + γT−tQT−1(ST , AT ))

−Qt(St, At)

=(γ0λ0Rt+1 + γ1λ0Qt(St+1, At+1)− γ1λ1Qt(St+1, At+1))

+ (γ1λ1Rt+2 + γ2λ1Qt+1(St+2, At+2)− γ2λ2Qt+1(St+2, At+2))

+ (γ2λ2Rt+3 + γ3λ2Qt+2(St+3, At+3)− γ3λ3Qt+2(St+3, At+3))

+ · · ·

+ (γT−t−2λT−t−2RT−1 + γT−t−1λT−t−2QT−2(ST−1, AT−1)

− γT−t−1λT−t−1QT−2(ST−1, AT−1))

+ (γT−t−1λT−t−1RT + γT−tλT−t−1QT−1(ST , AT ))

−Qt(St, At). (5.35)

There is a causality problem in computing δλt online with Eq. (5.35). Thus, at any

specific time t, we assume

Qt(s, a) = Qt+1(s, a) = · · · = QT−1(s, a) (5.36)
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so as to derive δλt in an offline manner. Combining Eq. (5.35) and Eq. (5.36) gives

δλt =γ0λ0(Rt+1 + γQt(St+1, At+1)−Qt(St, At))

+ γ1λ1(Rt+2 + γQt(St+2, At+2)−Qt(St+1, At+1))

+ γ2λ2(Rt+3 + γQt(St+3, At+3)−Qt(St+2, At+2))

+ · · ·

+ γT−t−1λT−t−1(RT + γQt(ST , AT )−Qt(ST−1, AT−1)). (5.37)

In addition, the following approximation is used in comparison with Eq. (5.33),

Rk+1 + γQt(Sk+1, Ak+1)−Qt(Sk, Ak) ≈ δk (5.38)

for k ∈ {t+ 1, t+ 2, · · · , T − 1}. Eq. (5.37) can be briefly written as

δλt ≈
T−1∑
k=t

(γλ)k−tδk. (5.39)

The total update of any specific state-action pair from time t = 0 to T − 1 in the

forward view is defined as

Q̃f
T (s, a) ,QT (s, a)−Q0(s, a)

=
T−1∑
t=0

αt(s, a)δλt (5.40)

for all s ∈ S and a ∈ A. With the above approximation (Eq. (5.39)), Eq. (5.40) can

be transformed into

Q̃f
T (s, a) ≈

T−1∑
t=0

αt(s, a)
T−1∑
k=t

(γλ)k−tδk

=
T−1∑
t=0

Is,StIa,Atα̃t(s, a)
T−1∑
k=t

(γλ)k−tδk. (5.41)

Provided that α̃t(s, a) = α̃(s, a) for time t ∈ {0, 1, · · · , T − 1}, Eq. (5.41) can be

converted to

Q̃f
T (s, a) ≈ α̃(s, a)

T−1∑
t=0

Is,StIa,At
T−1∑
k=t

(γλ)k−tδk. (5.42)
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Backward view of Sarsa(λ)

For the Sarsa(λ) algorithm in the backward view, the update rule isQt+1(s, a) = Qt(s, a) + α̃t(s, a)δtzt(s, a)

zt(s, a) = γλzt−1(s, a) + Is,StIa,At
(5.43)

where zt(s, a) above is termed as the eligibility trace with z−1(s, a) = 0 for the state-

action pair (s, a). In contrast with Eq. (5.31), this algorithm can be implemented

online without the preceding causality problem. Recursively, the eligibility trace of

any state-action pair can be derived as follows

zt(s, a) =Is,StIa,At + (γλ)1Is,St−1Ia,At−1 + (γλ)2Is,St−2Ia,At−2

+ · · ·+ (γλ)tIs,S0Ia,A0

=
t∑

k=0

(γλ)kIs,St−kIa,At−k . (5.44)

The above representation infers that eligibility traces record the number of histor-

ical visits for each state-action pair with time-related decays. Thus, it is termed

as a backward-view method. With some assumptions, the backward-view algorithm

(Eq. (5.43)) can be seen as the approximation of the forward-view Sarsa(λ) (Eq. (5.31)),

which is presented as follows. The total updates of any specific state-action pair from

time t = 0 to T can be written as

Q̃b
T (s, a) ,QT (s, a)−Q0(s, a)

=
T−1∑
t=0

α̃t(s, a)δtzt(s, a)

=
T−1∑
t=0

α̃t(s, a)δt

t∑
k=0

(γλ)kIs,St−kIa,At−k (5.45)

for all s ∈ S and a ∈ A. With m = t− k, it derives

Q̃b
T (s, a) =

T−1∑
t=0

α̃t(s, a)δt

t∑
m=0

(γλ)t−mIs,SmIa,Am

=
T−1∑
m=0

T−1∑
t=m

(γλ)t−mIs,SmIa,Amα̃t(s, a)δt

=
T−1∑
m=0

Is,SmIa,Am
T−1∑
t=m

(γλ)t−mα̃t(s, a)δt. (5.46)
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For a constant learning rate during time t ∈ {0, 1, · · · , t − 1}, i.e., α̃t(s, a) = α̃(s, a),

Eq. (5.46) can be written as

Q̃b
T (s, a) = α̃(s, a)

T−1∑
m=0

Is,SmIa,Am
T−1∑
t=m

(γλ)t−mδt. (5.47)

Comparing Eq. (5.42) and Eq. (5.47) gives

Q̃b
T (s, a) ≈ Q̃f

T (s, a). (5.48)

It should be noted that if the Sarsa(λ) in the backward view (Eq. (5.43)) is updated

offline, with the assumption that α̃t(s, a) = α̃(s, a), it is exactly same as the Sarsa(λ)

in the forward view, i.e., Q̃b
T (s, a) = Q̃f

T (s, a). Since the backward-view Sarsa(λ) can

be applied online, it is more favourable. By default, without any other statement,

Sarsa(λ) in the following sections means the preceding backward-view Sarsa(λ) learn-

ing algorithm. The online implementation of Sarsa(λ) is shown in Table 5.2.

Table 5.2: Sarsa(λ) control with ε-greedy policy.

Schedule step size α and the non-greedy probability ε
Initialise Q(s, a) for (s, a) ∈ S ×A arbitrarily
Initialise Q(s, ·) = 0 for s ∈ S ∩ S+

while true
Initialise S
Select A based on π(·|S) (Eq. (5.17))
do

Take action A, observe new state S ′, and obtain reward R
Select A′ based on π(·|S ′) (Eq. (5.17))
δ ← R + γQ(S ′, A′)−Q(S,A)
z(S,A)← z(S,A) + 1
for each (s, a) in S ×A
Q(s, a)← Q(s, a) + αδz(s, a)
z(s, a)← γλz(s, a)

S ← S ′, A← A′

until S is a terminal state

5.3 Problem formulation

In this section, the decision-making problem of a carbon capture plant integrated with

a fossil-fuel power plant is formulated. The objective of the plant is to maximise the
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profit considering the flexible carbon capture levels and bid options submitted to the

CO2 allowance auctions. A plant can achieve its emission target by procuring CO2

allowances from auctions, directly reducing the emission through the MEA-based PCC

technology, or both. Following assumptions are made to simplify the problem.

(i) Any MEA-based PCC plant is a price taker of the wholesale electricity market.

Presumed electricity price and power generation profiles are given for all the

plants (Figures 5.1 and 5.2).

(ii) Presumed CO2 allowance reserve prices and scheduled allowance volumes are

common knowledge among all the auction participants (Figures 5.3 and 5.4).

(iii) Any fossil-fuel power plant with carbon capture is retrofitted from a conventional

fossil-fuel power plant without carbon capture. Hard coal and natural gas are

possible power generation technologies.

(iv) There is no downsizing of any power plant facility after the integration of the

carbon capture plant. The power plants can still operate at their nominal power

outputs as before retrofitting when the power demands are high. When power

generation and carbon capture conflict with each other, the power generation

has a higher priority.

(v) The operation of either a power plant or the integrated carbon capture plant is

characterised with some specific constant coefficients, i.e., N , E , Pcc, Qreb, and

Vcc (Tables 5.3 and 5.4).

� The specific non-fuel operation and maintenance (OM) cost (e/MWh) N

is the OM cost (e) per unit of electricity production for a power plant

without carbon capture.

� The specific emission (kgCO2/GJ) E is the CO2 mass flow rate (kgCO2) per

unit of fuel consumption (GJ) in lower heat value (LHV) for a power plant

without carbon capture.

� The specific power consumption (MWh/tCO2) Pcc is the power consump-

tions (MWh) per unit of CO2 capture (tCO2) for a carbon capture plant.
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� The specific reboiler duty (GJ/tCO2) Qreb is the reboiler energy consump-

tions (GJ) per unit of CO2 capture (tCO2) for a carbon capture plant.

� The specific variable OM cost (e/tCO2) Vcc is the OM cost (e) per unit of

CO2 capture (tCO2) for a carbon capture plant.

Table 5.3 and Table 5.4 only give the base operation parameters of power plants

and carbon capture plants separately. The trade-off between power generation and

carbon capture will be introduced in following sections. On that basis, under the CO2

allowance auctions, the operation and bidding problem of a set of competitive carbon

capture plants integrated with fossil-fuel power plants are formulated.

Table 5.3: Specifications of power plants without carbon capture [1, 2].

Technology Parameters Symbol Value
Coal Nominal capacity (MW) PgB 650

Capacity factor (%) [1] ζ 49.29
Efficiency (%) [1] η 45
Non-fuel OM cost (e/MWh) [1] N 7.35
Coal price (e/GJ) [1] f 3.68
Lifetime (years) [1] Lw 40
CO2 in flue gas (kgCO2/s) [2] ṁB 132.63
Specific emission (kgCO2

/GJ) [2] E 91.82
Natural Nominal capacity (MW) PgB 650
gas Capacity factor (%) [1] ζ 21.29

Efficiency (%) [1] η 55
Non-fuel OM cost (e/MWh) [1] N 6.3
Gas price (e/GJ) [1] f 5.88
Lifetime (years) [1] Lw 30
CO2 in flue gas (kgCO2

/s) [2] ṁB 65.93
Specific emission (kgCO2/GJ) [2] E 55.78

*An inflation rate of 5% is applied to those data recorded in [1].

Table 5.4: MEA-based PCC plants parameters for different power plants [3].

Technology Parameters Symbol Value
Coal CO2 in flue gas (kgCO2/s) ṁB 162.7

Annual CO2 emission (×105tCO2
) 39.25

Capture level (%) 90
PCC load (MW) 67.4
Specific load (MWh/tCO2

) Pcc 0.128
MEA regeneration energy (GJ/tCO2

) Qreb 3.70
Penalty coefficient 0.5
Variable OM cost (e/tCO2

) Vcc 3.9
Natural CO2 in flue gas (kgCO2

/s) ṁB 81.07
Gas Annual CO2 emission (×105tCO2

) 19.56
Capture level (%) 90
PCC load (MW) 46.58
Specific load (MWh/tCO2

) Pcc 0.177
MEA regeneration energy (GJ/tCO2

) Qreb 3.95
Penalty coefficient 0.455
Variable OM cost (e/tCO2

) Vcc 2.43
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5.3.1 Economic model of a fossil-fuel power plant with carbon

capture

In this section, the operational cost and profit for a fossil-fuel power plant with carbon

capture for each auction period Ta (which is assumed to be two weeks or 336 hours =

24 hours× 14) are formulated.

The operational cost of a fossil-fuel power plant with carbon capture can be divided

into the non-fuel OM cost for the power plant without carbon capture Np, variable OM

cost of the integrated carbon capture plant Vcc, the fuel cost Fcc, and the allowance

bidding cost B, i.e.,

Ci,t ,Npi,t + Vcci,t + Fi,t +Bi,t

=NiPggi,tTa + Vcci
Pggi,t

ηi
Eiyi,tTa + f

Pggi,t

ηi
Ta + pstqsi,t

=(Ni +
VcciEiyi,t + f

ηi
)TaPggi,t + pstqsi,t (5.49)

where Pgg is the gross power output of the power plant, η is the thermal efficiency on

the basis of the LHV, y is the capture level of CO2 in the flue gas of the power plant,

and f is the fuel price. The last term to the right of Eq. (5.49) is the bidding cost

dependent on the winning bid quantity qs of agent i and the unified settlement price

ps of all the agents. Some more details will be introduced in Subsection 5.3.2.

The gross power output Pgg can be either used for power generation of a power

plant or aborted since some steam should be drawn off from the turbine for carbon

capture. This kind of relationship can be built with

Pggi,t = Pgi,t + Pi,tPggi,t

+ PcciEi
Pggi,t

ηi
yi,t + ψiηiQrebi

Pggi,t

PgBi

ṁBiyi,t (5.50)

where the first and second terms to the right hand side of Eq. (5.50) are the in-house

power load and the net power output, respectively, of the power plant without carbon

capture; the third and fourth terms are the in-house load and the power penalty due to

carbon capture, respectively, of the carbon capture plant. From Eq. (5.50), there exists

some trade-off between the power generation and the energy-intensive carbon capture
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process. The carbon capture terms mean a fraction of the steam (originally used for

power generation) is drawn-off from the IP/LP crossover of a steam turbine [89] for

MEA regeneration of the corresponding carbon capture plant. ψ∈ [0, 1] is the power

penalty coefficient due to carbon capture. ṁB is the base mass flow rate of emitted

CO2 when a power plant operates under its nominal power output. Qreb is the specific

reboiler duty for each unit of CO2 emission. The capture level y is the fraction of

CO2 in the flue gas of a fossil-fuel power plant captured by a PCC plant. Note that

some literature have discussed the optimal operation of an individual PCC plant and

demonstrated that, to reduce the reboiler duty of carbon capture, the main degrees of

freedom are the lean CO2 loading and the carbon capture [17, 51]. Lean CO2 loading

is some variable which can be individually determined by the PCC plant while the

capture level should be determined considering the fossil-fuel power plant operation.

The profit model taking into account the power and carbon capture plant operation

under electricity and CO2 allowance market conditions is formulated as

ri,t+1 ,REi,t − Ci,t

=λEtPgi,tTa − (Ni +
VcciEiyi,t + f

ηi
)Pggi,tTa

− pstqsi,t (5.51)

where the revenue REi,t comes from the electricity supply with the electricity price λE

and the power generation Pg. Note that some variables, i.e., the market electricity

price λEt, the average power generation for one auction period Pgi,t, the settled CO2

allowance price pst, and the winning bid quantity qsi,t, are known until the market

auction window (i.e., auction t) is closed. Thus, the reward is written as ri,t+1 rather

than ri,t.

5.3.2 Model of CO2 allowance auctions

Apart from the constraints due to the operation of power plants with carbon cap-

ture (Eqs. (5.49) and (5.50)), other constraints origin from the auction mechanism of

CO2 allowances and are listed as follows (Eqs. (5.52)). Note that auctions are held

fortnightly (Ta), which is identical to those auctions reported by Intercontinental Ex-

change (ICE) [19]. The detailed auction mechanism (Eq. (5.52)) is as follows. During
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a two-hour bidding window of auction t, each auction participant should submit sealed

bids to the auction platform without seeing the bids of other bidders. After the bid-

ding window is closed to the participants, the platform will check whether any bidder

behaves disorderly (Eqs. (5.55), (5.56) and (5.57)) and allocate the allowances in terms

of a unified price settled according to bid prices. The bidders with higher bid prices

will have higher priorities of procuring allowances. The settlement price is determined

as the bid price of the marginal bidder(s) at which the sum of the bid quantities

of those successful bidders equals or exceeds the total volume of allowances in that

auction. Afterwards, all the successful bidders will be allocated with allowances at

the unified settlement price. The participants with tie bids (i.e., identical bid prices)

will be allocated CO2 allowances with random priorities. This auction mechanism is

represented by

yt =M(pbi,t, qbi,t, pb−i,t, qb−i,t, yi,t, y−i,t, hi,t, h−i,t, v̄a,t, prt) (5.52)

whereM : B×C×K → Y . (pbi,t, pb−i,t, qbi,t, qb−i,t) ∈ B is the submitted bids for all the

plants, i.e., bidders, (yi,t, y−i,t) ∈ C is the carbon capture level of all the bidders, and

(v̄a,t, prt) ∈ K is some common knowledge which is a pair of the total CO2 allowance

volume to be auctioned, v̄at, and the price floor for CO2 allowances, prt at auction t.

Given these information, the auction platform will determine the auction settlement

price, pst and the allowances offered to those successful bidders, qsi,t as above, which

is the auction result, yt , (pst, qs0,t, · · · , qsn−1,t, It)T ∈ Y . (pst, qsi,t)
T is termed as the

allocation of CO2 allowances for agent i. Note that when the bid price of any marginal

plant is less than the reserve price prt, the auction will be cancelled. And the allowance

volume of this auction will be evenly distributed to subsequent ñ auctions (Eqs. (5.53)

and (5.54)). It ∈ {0, 1} is the indicator telling whether the allowances at auction t are

allocated to bidders or distributed to subsequent auctions. The distribution method

of CO2 allowances is given by

ṽak+1 ← ṽak+1 + Itv̄a,t/ñ, for k ∈ {t, t+ 1, · · · , t+ ñ− 1} (5.53)

v̄at+1 = ṽat+1 + vat+1 (5.54)

where vat+1 is the scheduled allowance volume to be auctioned at time t + 1 and

ṽat+1 is the cumulative allowance volume due to historical auction cancellations till

auction t+ 1.
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The auction platform should check the rationality of the behaviours of those bid-

ders. In the event of monopolies, the platform will reject a particular bid for a partic-

ipant when the sum of its bid quantity qbi,t and the allowances in its holding account

hi,t exceeds some holding limit h̄i, i.e.,

I(hi,t + qbi,t ≤ h̄i) =

1, ifhi,t + qbi,t ≤ h̄i

0, otherwise

(5.55)

qbi,t ← qbi,tI(hi,t + qbi,t ≤ h̄i) (5.56)

qsi,t ← qsi,tI(hi,t + qbi,t ≤ h̄i). (5.57)

In addition, adequate CO2 allowances should be surrendered from the holding

account of a bidder (i.e., the fossil-fuel power plant with carbon capture in this thesis)

to cover CO2 emission (Eqs. (5.58), (5.59), (5.60) and (5.61)) represented by

mi,t = (Pggi,t/ηi)E(1− yi,t)Ta (5.58)

hi,t+1 = hi,t + qsi,t −mi,t (5.59)

I(hi,t+1 < 0) =

1, ifhi,t+1 < 0

0, otherwise

(5.60)

ri,t+1 ← ri,t+1 + pahi,t+1I(hi,t+1 < 0). (5.61)

During a specific auction t, for agent i, the CO2 emission is denoted by mi,t and the

winning CO2 allowances is denoted by qsi,t. The CO2 allowances in the holding account

hi,t together with the winning CO2 allowances should be able to cover the CO2 emission

in that auction. When inadequate allowances are surrendered (i.e., hi,t+1 < 0), the

reward calculated with Eq. (5.51) suffers an extra penalty term pahi,t+1 from Eq.(5.61).

pa is the penalty due to non-compliance of allowance surrendering (e/allowance) for

excess CO2 emission.

5.3.3 Objective formulation

The objective function is formulated for each agent i ∈ {0, 1, · · · , n − 1} , I with n

being the number of agents under the reinforcement learning framework. The action
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of agent i is defined as

ai,t , (qbi,t, pbi,t, yi,t) (5.62)

while the joint action of opponents −i is defined as

a−i,t , (qb−i,t, pb−i,t, y−i,t). (5.63)

A simple state of agent i is defined as

si,t , (Pgi,t−1, hi,t, vat, λEt−1, pst−1, prt, κi,t) ∈ Si (5.64)

where κi,t is the relative time index for the finite-time horizon Mi of agent i. For

brevity, we use κ to denote the value of this relative time index for any agent at a

certain time step, which should suffice

κ←

κ+ 1, ifκ ∈ {1, 2, · · · ,Mi}

1, if otherwise

. (5.65)

Based on the above state si,t and ai,t for all i ∈ I at auction t, the transition to the

next state si,t+1 can be fully derived as follows: According to Assumptions (i) and (ii),

the transitions of Pgi,t−1, λEt−1, vat and prt to Pgi,t, λEt, vat+1 and prt+1 can be fully

determined (Figures 5.1, 5.2, 5.3, and 5.4). The next-step pst can be determined by

Eq. (5.52) with the inputs, hi,t, h−i,t, vat, prt, ai,t, and a−i,t. The next-step holding

account allowances hi,t+1 can be derived based on Eq. (5.59). Thus, all the state

entries of si,t+1 can be obtained from si,t and ai,t for all i ∈ I. Note that the state

si,t is constructed with a mixture of discrete and continuous state entries (Eq. (5.64)).

To implement a tabular Sarsa or Sarsa(λ) learning algorithm (Table 5.1 or 5.2), state

aggregation can be used, which partitions the state space Si into a finite set of ni

subsets, i.e.,

partition(Si) , {Si,1,Si,2, · · · ,Si,ni}. (5.66)

By defining S̄i , {1, 2, · · · , ni}, there is a feature function Fsi : Si → S̄i

Fsi(si,t) = s̄, if si,t ∈ Si,s̄ (5.67)
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where index s̄ is the discrete state index whereas S̄i is the finite state index set for

agent i. Note that we only consider some finite discrete action set Ai, which means

the feature function w.r.t. any action can be represented by Fai : Ai → Āi

Fai(ai,t) = ā, if ai,t ∈ Ai,ā (5.68)

with ā ∈ {1, 2, · · · , |Ai|} , Āi. Thus, the estimate of any action value function

qπi,i(s, a) with (s, a) ∈ Si ×Ai can be approximated by

qi,πi(s, a) ≈ Qi(Fsi(s),Fai(a)) = Qi(s̄, ā). (5.69)

In comparison with Eq.(5.14), the action-value function of agent i is defined as

qπi,i(s, a) , Eπ[
∞∑
k=t

γk−tRi,k+1|Si,t = s, Ai,t = a] (5.70)

where s ∈ Si, a ∈ Ai, and i ∈ I. We will consider the expected return of any integrated

carbon capture plant i over a finite-time horizon, which indicates

qπi,i(s, a) = Eπ[

Ti,κ−1∑
k=t

γk−tRi,k+1|Si,t = s, Ai,t = a] (5.71)

where Ti,κ = t + Mi − κ is the terminal time index, Mi is the non-terminal time

horizon of agent i, and κ ∈ {1, 2, · · · ,Mi}. The terminal state set Si ∩ S+
i is any

state s (Eq. (5.64)) whose entry κ /∈ {1, 2, · · · ,Mi}. In this thesis, all the agents has

a unified time horizon, which infers Mi = Mi+1 for ∀i. The modified Sarsa learning

algorithm with state aggregation is presented in Table 5.5. Similar modifications can

be applied to the online Sarsa(λ) algorithm and is presented in Table 5.6.

5.4 Simulation results

5.4.1 Simulation settings

In the following simulation, simple CO2 allowance auctions are held among five car-

bon capture plants integrated with fossil-fuel power plants. The power plants should

fulfil the power generation tasks with a higher priority than carbon capture (Assump-

tion (iv)) but subject to some emission penalties (Eqs. (5.58), (5.59), (5.60) and (5.61)).
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Table 5.5: Sarsa TD control with ε-greedy policy and state aggregation.

Schedule step size αi and the non-greedy probability εi of all i ∈ I
Initialise Qi(s, a) for (s, a) ∈ Si ×Ai arbitrarily of all i ∈ I
Initialise Qi(s, ·) = 0 for s ∈ Si ∩ S+

i of all i ∈ I
while true

Initialise Si of all i ∈ I
Select Ai based on πi(·|Si) (where πi is an ε-greedy policy) of all i ∈ I
do

Take action Ai, observe new state S ′i, and obtain reward Ri of all i ∈ I
Select A′i based on πi(·|S ′i) (where πi is an ε-greedy policy) of all i ∈ I
Qi(Fsi(Si),Fai(Ai))← Qi(Fsi(Si),Fai(Ai))

+αi(Ri + γQi(Fsi(S
′
i),Fai(A

′
i))−Q(Fsi(Si),Fsi(Ai)))

Si ← S ′i, Ai ← A′i of all i ∈ I
until Si is a terminal state

Table 5.6: Sarsa(λ) control with ε-greedy policy and state aggregation.

Schedule step size αi and the non-greedy probability εi of all i ∈ I
Initialise Qi(s, a) for (s, a) ∈ Si ×Ai arbitrarily of all i ∈ I
Initialise Qi(s, ·) = 0 for s ∈ Si ∩ S+

i of all i ∈ I
while true

Initialise Si of all i ∈ I
Select Ai based on πi(·|Si) (where πi is an ε-greedy policy) of all i ∈ I
do

Take action Ai, observe new state S ′i, and obtain reward Ri of all i ∈ I
Select Ai based on πi(·|Si) (where πi is an ε-greedy policy) of all i ∈ I
δi ← Ri + γQi(Fsi(S

′
i),Fai(A

′
i))−Qi(Fsi(Si),Fai(Ai)) of all i ∈ I

zi(Fsi(S),Fai(A))← zi(Fsi(S),Fai(A)) + 1 of all i ∈ I
for each (s, a) in Si ×Ai
Qi(Fsi(s),Fai(a))← Qi(Fsi(s),Fai(a)) + αiδizi(Fsi(s),Fai(a))
zi(Fsi(s),Fai(a))← γλzi(Fsi(s),Fai(a))

Si ← S ′i, Ai ← A′i of all i ∈ I
until Si is a terminal state

For convenience, these plants are indexed by i ∈ I = {0, 1, 2, 3, 4, 5} and use either

coal-fired or natural-gas technology (Tables 5.3 and 5.4) for power generation. The

power-generation technologies together with the power capacities for each plant are

summarised in Table 5.7. Given the power generation, electricity price, scheduled

reserve price and scheduled allowance profiles (Figure 5.1, 5.2, 5.3 and 5.4), any MEA-

based PCC plant integrated with a fossil-fuel power plant (or plant i for short) should

determine its carbon capture level and the bid submitted to the CO2 allowance auction
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during each auction period, which is 14 days, i.e. 14 × 24 = 336 hours. It should be

noted that the power generation in Figure 5.2 is the average power generation over

any auction period, from which we can derive the associated electricity production

(MWh).
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Figure 5.1: The electricity price profile.

To mitigate the curse of dimensions, state aggregation is used which partitions the

state space Si (Eq. (5.64)) into a finite set of subsets (Eq. (5.66)). The state aggregation

for the preceding decision making problem is achieved as follows. Based on the power

generation profiles of each plant (Table (5.8), partitions are applied for each state

entry in Eq. (5.64). For instance, although the power generation can be any value in

[0, 650.0] for plant i with power capacity 650 MW, the agent with Sarsa or Sarsa(λ)

learning algorithm will only refer to the power output as one of three different domains,

i.e., domain 1 (less than 300.3 MW), domain 2 (between 300.3 and 360.1 MW) and

domain 3 (greater than 360.1 MW). These domains for power generations are fixed

based the average power generations and the maximum power output for each power

plant. Generally, the domains are identified based on the possible values which can be
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Figure 5.2: The power generation profile.

taken by each state entry in Eq. (5.64). Further details of the partitions are shown in

Table 5.8 which implies

partion(SPg,i
) = {S1

Pg,i
,S2

Pg,i
,S3

Pg,i
}

partion(Shi) = {S1
hi
,S2

hi
}

partion(Sva) = {S1
va
,S2

va
,S3

va
,S4

va
,S5

va
}

partion(SλE
) = {S1

λE
,S2

λE
,S3

λE
,S4

λE
}

partion(Sps) = {S1
ps
,S2

ps
,S3

ps
}

partion(Spr) = {S1
pr
,S2

pr
,S3

pr
,S4

pr
,S5

pr
}

partion(Sκi) = {S1
κi
}

should be partitions of each state entry where S1
κi

= {1}. Subsequently, we can define

a one-to-one mapping which points (j1, j2, · · · , j7) to s̄ for ∀j1, j2, · · · , j7. Thus, the

states

si,t ∈ Si,s̄ , Sj1Pg,i
× Sj2hi × S

j3
va
× Sj4λE

× Sj5ps
× Sj6pr

× Sj7κi
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Figure 5.3: CO2 allowance reserve price profile.

are grouped as one single state indexed by s̄ through Eq. (5.67) where Si,s̄ is any

subset defined based on partition(Si) (Eq. (5.66)). Then, the Sarsa or Sarsa(λ)

algorithm can be implemented based on the features Fsi(si,t) ∈ S̄i (Tables 5.5 and

5.6) rather than the original states si,t ∈ Si (Tables 5.1 and 5.2). Additionally, the

finite set for the discrete action Ai is given by Table 5.9. In Table 5.10, for ∀i ∈ I,

αi is changed from αstart to αend; εi is varied from εstart to εend. Both αi and εi are

changed every time the state transition happens, which implies we only consider the

unified learning step and the non-greedy probability for all the state-action pair and

the state, respectively. αNs
i and εNs

i are geometric sequences αi,0, αi,1, · · · , αi,Ns−1 and

εi,0, εi,1, · · · , εi,Ns−1, respectively, which implies

αi,t+1 = αi,t exp(
1

Ns − 1
log

αend

αstart

) (5.72)

εi,t+1 = εi,t exp(
1

Ns − 1
log

εend

εstart

) (5.73)

with αi,0 = αstart and εi,0 = εstart. Ns is the number of the learning steps of each

agent. The discount rate is supposed to be γ = 1/(1 + 8%) = 0.926. Besides these

tuning parameters, the initialisation method when a terminal state reaches should be
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Figure 5.4: CO2 allowance volume profile.

specified (Tables 5.5 and 5.6). To visit as many states as possible, random samples

for each scheduled profile should be separately selected. For our case, during any

initialisation, a random sample index is generated which points to a sample pair of

the power generation and the electricity price profiles in Figure 5.1, and Figure 5.2.

Similarly, two more independent sample indexes are generated to select the sample in

the reserve price or allowance profiles in Figure 5.3 and Figure 5.4. In addition, mt

is initialised in terms of Eq. (5.65) while hi,t is initialised uniformly random from the

per-unit domain [0.0, 0.2] for all i ∈ I w.r.t. the bases in Table 5.8.

5.4.2 Training of Sarsa and Sarsa(λ)

For this case study, we consider the learning performances of both Sarsa and Sarsa(λ)

algorithms based on the settings in the previous subsection. The original rewards

observed by each plant during the training process are shown in Figure 5.5 and Fig-

ure 5.6. To demonstrate the performances for each plant i ∈ I, the moving-average



CHAPTER 5. RL-BASED DECISION MAKING OF PCC PROCESSES 129

reward of an agent for every 100 steps defined by

rmavgi,t =
1

100

t∑
k=t−99

ri,k (5.74)

and the average reward defined by

ravgi,t =
1

t

t∑
k=1

ri,k (5.75)

are plotted in Figure 5.7 and Figure 5.8, respectively, from which, it can be found that

the rewards obtained through both learning algorithms gradually increase for each

fossil-fuel power plant with carbon capture. As the learning moves forward, the agents

using either Sarsa or Sarsa(λ) learning algorithm show some for-profit properties. The

average reward differences between the Sarsa and Sarsa(λ) training (Figure 5.9) indi-

cate that the Sarsa(λ) agents learn much more quickly during some initial stage, which

is roughly the first 25000 learning steps. Afterwards, since the online Sarsa(λ) is just

approximately equivalent to the corresponding offline algorithm, the performances of

the Sarsa(λ)-based leaning agents become worse than the Sarsa-based learning agents

gradually. In addition, although the continuous state space Si is partitioned into dis-

crete subsets, the total number of the non-terminal states of each agent in terms of

Table 5.8 is 3× 2× 5× 4× 3× 5× 1 = 1800. Currently, the bidding problem is solved

centrally by one computer which means we should consider the decision-making prob-

lems of all the five power plants with carbon capture (Table 5.7) simultaneously. This

leads to some high computation burden: The computation time of the Sarsa learning

algorithm is about 379 seconds while that of the Sarsa(λ) learning algorithm is about

8347 seconds. Note that for one learning step, the Sarsa(λ) algorithm updates state

values for each state-action pair (s, a) ∈ Si ×Ai of all i ∈ I while the Sarsa algorithm

only updates the visited state-action pair. To reduce the computation burden, during

each state transition, we only update the state-action pairs whose eligibility traces

zt(s, a) is greater than a predefined tolerance which is 10−4.
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Figure 5.5: Rewards of Sarsa during training.

Table 5.7: Power plant settings of auction participants.

Plant ID Technology Power capacity
Plant 0 Hard coal 650 MW
Plant 1 Natural gas 650 MW
Plant 2 Hard coal 325 MW
Plant 3 Hard coal 650 MW
Plant 4 Natural gas 650 MW

5.4.3 Testing of Sarsa and Sarsa(λ)

In this subsection, the test results are demonstrated based on the policies obtained

with Sarsa and Sarsa(λ) in the previous subsection. The electricity price λE, CO2 al-

lowance reserve price pr and scheduled allowance volume va are kept to be 70 e/MWh,

18 e/allowance and 23399 allowances, respectively. The entries of those actions taken

by each Sarsa or Sarsa(λ) agent are shown in Figure 5.10, Figure 5.11 and Figure 5.12

while the observed reward sequences are plotted in Figure 5.13. To compare the per-

formances of different learning agents, average reward sequences are plotted as before



CHAPTER 5. RL-BASED DECISION MAKING OF PCC PROCESSES 131

Figure 5.6: Rewards of Sarsa(λ) during training.

(Figure 5.14). As one can see from the figures, the performances of the Sarsa leaning

algorithm during testing are quite similar to the performances of the Sarsa(λ) learning

algorithm. However, since the Sarsa learning algorithm can be implemented with less

computation time (i.e., 379 seconds as mentioned before), it is more favourable.

5.4.4 Effects of the non-terminal time horizon on Sarsa and

Sarsa(λ)

In the previous cases, we assume that Mi = M = 1 for all i ∈ I as in Table 5.10. In

this subsection, we consider Mi = 3 but keep the other tuning parameters unchanged.

Similar to those previous cases, the moving-average rewards and the average reward

differences are shown in Figure 5.15 and Figure 5.16, respectively. Note that when

Mi > 1, some actions may be profitable but only in the first few steps in an episode.

The reason is that an agent or the plant may resort to its holding account CO2 al-

lowances to cover its CO2 emission. These kinds of actions get no instant penalties.



CHAPTER 5. RL-BASED DECISION MAKING OF PCC PROCESSES 132

Figure 5.7: Moving-average rewards (every 100 steps) of Sarsa and Sarsa(λ) during
training.

And as shown during the initial 50000 learning steps both Sarsa and Sarsa(λ) actually

are misled by such kinds of profits. However, as learning steps move forward, large

penalties will occur to an agent when the allowances in its holding account exhausted.

Similarly to the EU ETS, non-compliance will cause an additional penalty pa of 100

e/allowance for each ton of excess CO2 emission. At this critical penalty point, Sarsa

learning algorithm will only update the action value of the current visited state-action

pair while Sarsa(λ) will update the action values of all the state-action pairs whose

eligibility traces are greater than some predefined tolerance. From Figure 5.16, we

can observe that Sarsa(λ) may initially obtain some lower rewards and deviated away

from the rewards gained by Sarsa. However, when the learning steps move forward,

Sarsa(λ) quickly find their appropriate actions, and finally, even find some policies

with better performances and fewer steps than the Sarsa learning algorithm.
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Figure 5.8: Average rewards of Sarsa and Sarsa(λ) during training.

5.5 Summary

In this chapter, we have formulated some for-profit agents on behalf of the MEA-based

PCC plants which should determine their optimal carbon capture levels during each

CO2 allowance auction. This decision-making issue considers three sets of factors which

include the time-varying power plant operation, the electricity market conditions and

the CO2 allowance market conditions. More specifically, the power generations (Fig-

ure 5.2), the electricity prices (Figure 5.1), allowance reserve prices (Figure 5.3), al-

lowance volumes (Figure 5.4) and the auction mechanism (Eq. (5.52)) are considered

to formulate a profit-maximum objective (Eq. (5.71)).

It is demonstrated that both the Sarsa and Sarsa(λ) learning algorithms can learn

some for-profit policies. On the one hand, the Sarsa learning algorithm has a low

computation burden and it performs better than Sarsa(λ) when there is no delayed

penalties (Figure 5.9). On the other hand, Sarsa(λ) can converge fast with fewer learn-

ing steps than Sarsa and is able to deal with the delayed penalties (Figure 5.16). These
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Figure 5.9: Average reward differences of Sarsa and Sarsa(λ) during training.

imply that if the data can be generated cheaply and there exist no delayed penalties,

Sarsa learning algorithm should be preferred; otherwise, Sarsa(λ) is preferred. Fur-

thermore, when we are facing some time-varying environments, Sarsa(λ) is usually

prevalent due to its fast initialisation characteristics. However, it is also worthwhile

noting that Sarsa(λ) is more computation-intensive than the Sarsa learning algorithm.
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Table 5.8: State settings.

State Base Unit Partitions (per unit) Partitions
Pg0,t−1 650 MW {(−∞, 0.462],

(0.462, 0.554],
(0.554,∞)}

{(−∞, 300.3],
(300.3, 360.1],
(360.1,∞)}

Pg1,t−1 650 MW {(−∞, 0.154],
(0.154, 0.262],
(0.262,∞)}

{(−∞, 100.1],
(100.1, 170.3],
(170.3,∞)}

Pg2,t−1 325 MW {(−∞, 0.462],
(0.462, 0.554],
(0.554,∞)}

{(−∞, 150.2],
(150.2, 180.1],
(180.1,∞)}

Pg3,t−1 650 MW {(−∞, 0.462],
(0.462, 0.540],
(0.540,∞)}

{(−∞, 300.3],
(300.3, 351.0],
(351.0,∞)}

Pg4,t−1 650 MW {(−∞, 0.192],
(0.192, 0.246],
(0.246,∞)}

{(−∞, 124.8],
(124.8, 159.9],
(159.9,∞)}

h0,t−1 395570 allowances {(−∞, 0.2],
(0.2,∞)}

{(−∞, 79114.0],
(79114.0,∞)}

h1,t−1 85155 allowances {(−∞, 0.2],
(0.2,∞)}

{(−∞, 17031.0],
(17031.0,∞)}

h2,t−1 198400 allowances {(−∞, 0.2],
(0.2,∞)}

{(−∞, 39680.0],
(39680.0,∞)}

h3,t−1 395570 allowances {(−∞, 0.2],
(0.2,∞)}

{(−∞, 79114.0],
(79114.0,∞)}

h4,t−1 85155 allowances {(−∞, 0.2],
(0.2,∞)}

{(−∞, 17031.0],
(17031.0,∞)}

vat 234000 allowances {(−∞, 0.075],
(0.075, 0.125],
(0.125, 0.175],
(0.175, 0.225],
(0.225,∞)}

{(−∞, 17550.0],
(17550.0, 29250.0],
(29250.0, 40950.0],
(40950.0, 52650.0],
(52650.0,∞)}

λEt−1 54.9 e/MWh {(−∞, 0.82],
(0.82, 1.0],
(1.0, 1.18],
(1.18,∞)}

{(−∞, 44.9],
(44.9, 54.9],
(54.9, 64.9],
(64.9,∞)}

pst−1 18.0 e/allowance {(−∞, 1.2],
(1.2, 1.6],
(1.6,∞)}

{(−∞, 21.6],
(21.6, 28.8],
(28.8,∞)}

prt 18.0 e/allowance {(−∞, 1.12],
(1.12, 1.24],
(1.24, 1.36],
(1.36, 1.48],
(1.48,∞)}

{(−∞, 20.2],
(20.2, 22.3],
(22.3, 24.5],
(24.5, 26.64],
(26.64,∞)}
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Table 5.9: Action settings.

Action Base Unit Partitions (per unit) Partitions
qb0,t 79114 allowances {{0.1},

{0.5},
{0.9}}

{{8000},
{40000},
{71500}}

qb1,t 17031 allowances {{0.1},
{0.5},
{0.9}}

{{2000},
{9000},
{15500}}

qb2,t 39680 allowances {{0.1},
{0.5},
{0.9}}

{{4000},
{20000},
{36000}}

qb3,t 39680 allowances {{0.1},
{0.5},
{0.9}}

{{8000},
{40000},
{71500}}

qb4,t 17031 allowances {{0.1},
{0.5},
{0.9}}

{{2000},
{9000},
{15500}}

pbi,t
∗ 18.0 e/allowance {{1.0},

{1.4},
{1.8}}

{{18.0},
{25.2},
{32.4}}

yi,t
∗ 1.0 unit-less {{0.0},

{0.3},
{0.5},
{0.7},
{0.9}}

{{0.0},
{0.3},
{0.5},
{0.7},
{0.9}}

*where i ∈ I.

Table 5.10: Base-case Sarsa and Sarsa(λ) tuning parameters of agents.

Sarsa Sarsa(λ)
αstart 0.9 0.9
αend 0.1 0.1
εstart 1.0 1.0
εend 0.01 0.01
λ N/A 0.6
γ 0.926 0.926
M 1 1
Ns 200000 200000
tolerance N/A 10−4
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Figure 5.10: Action entry: Carbon capture levels during testing.



CHAPTER 5. RL-BASED DECISION MAKING OF PCC PROCESSES 138

20

30 Plant 0 (hard coal) pb0, t
 avg CO2 bid price 23.33

20

30
Plant 1 (natural gas) pb1, t
 avg CO2 bid price 23.04

20

30 Plant 2 (hard coal) pb2, t
 avg CO2 bid price 23.87

20

30
Plant 3 (hard coal) pb3, t
 avg CO2 bid price 26.39

0 25 50 75 100 125 150 175 200
auction t

20

30 Plant 4 (natural gas) pb4, t
 avg CO2 bid price 24.70

CO
2 

bi
d 

pr
ice

 (E
ur

o/
al

lo
wa

nc
e)

(a) Sarsa.

20

30 Plant 0 (hard coal) pb0, t
 avg CO2 bid price 24.08

20

30 Plant 1 (natural gas) pb1, t
 avg CO2 bid price 27.00

20

30 Plant 2 (hard coal) pb2, t
 avg CO2 bid price 24.41

20

30 Plant 3 (hard coal) pb3, t
 avg CO2 bid price 22.21

0 25 50 75 100 125 150 175 200
auction t

20

30 Plant 4 (natural gas) pb4, t
 avg CO2 bid price 22.07

CO
2 

bi
d 

pr
ice

 (E
ur

o/
al

lo
wa

nc
e)

(b) Sarsa(λ).

Figure 5.11: Action entry: Bid prices during testing.
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Figure 5.12: Action entry: Bid quantities during testing.
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Figure 5.13: Rewards during testing.
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Figure 5.14: Average rewards during testing.
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Figure 5.15: Moving-average rewards (every 100 steps) of Sarsa and Sarsa(λ) during
training with M = 3.
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Chapter 6

Conclusions

In this thesis, several important issues for the flexible operation of the MEA-based

carbon capture plant integrated with a fossil-fuel power plant have been addressed

within a unified model-free framework.

Since the MEA-based PCC process using the rate-based approach [43] is too com-

plex for the model-based control, data generated by this first-principle model is used

for the identification of a simpler neural-network-based model. The identified model

can fit well with the data set and pass the residual analysis. Moreover, the GPC

protocol has been implemented within this validated plant model (Chapter 2). As

demonstrate in the simulations, GPC is a prevailing method which can be applied

with only measured inputs and outputs data. Nevertheless, some offline model param-

eters such as A(q), B(q) and D(q) in the prediciton model (Eq. (3.40)) are required

for the controller design, which makes the implementation of GPC non-trivial.

To solve the tracking issue of the carbon capture level, PI control, CFDL-MFAC

and PFDL-MFAC protocols have been implemented on the identified plant model

(Chapter 3). It is demonstrated that without external disturbances, both the CFDL-

and PFDL-MFAC can perform similarly to GPC and PI control protocols. Thereafter,

the fluctuations of flue gas flow rate and the mass fraction of CO2 in the flue gas are

introduced to test the robustness of the aforementioned controllers. These fluctua-

tions serve as the external disturbances of the MEA-based PCC plant and degrade
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the performances of the controllers. In a real environment, such disturbances may

be caused by the associated fossil-fuel power plant with time-vary load conditions. It

has been observed that the PFDL-MFAC should have more robust performances than

the PI control and CFDL-MFAC. Furthermore, the PFDL-MFAC can achieve some

dynamic responses similar to the GPC protocol. Nevertheless, the PFDL-MFAC re-

quires no model parameters while the GPC necessitates an offline model for the online

implementation, which implies PFDL-MFAC should be more favourable.

To determine the carbon capture level for the MEA-based PCC plants, Sarsa

and Sarsa(λ) learning algorithms are applied to finding the optimal policies. These

decision-making methods have taken into account the operation of associated fossil-fuel

power plant, variations of the electricity market prices and bidding of CO2 allowance

auctions, which is seldom considered in the previous literature. Then, a unified bid-

ding and operation problem of the MEA-based carbon capture plant is formulated

in order to find the optimised carbon capture levels under the reinforcement learning

framework. The relationship between the operation and bidding are established by

holding accounts of the agents rather than instantly balancing between the allowances

and the CO2 emission. The performances of the two algorithms are compared with

each other, which implies Sarsa should be preferred if the data for learning can be

generated cheaply and there is no delay-delayed penalties. However, in some initial

learning steps, Sarsa(λ) usually learns faster than Sarsa. When data are scarce and

valuable or the environment involves some time-varying or delayed-penalty property,

Sarsa(λ) could learn much faster.

Nevertheless, there still exist some future works of the flexible operation issues on

the solvent-based PCC plants integrated with the fossil-fuel power plants, which are

listed as follows.

� In this thesis, the robustness of MFAC is compared with PI and GPC when dis-

turbances are applied. To deal with those disturbance directly, some disturbance

compensation or rejection methods can be implemented.

� The model-free control protocol in this thesis only solves the carbon capture level

tracking problem of the MEA-based PCC plant since currently, only limited data
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are received from the collaborators [43]. Direct extensions to the MIMO cases

can be done with the MIMO PFDL-MFAC (Eqs. (4.44), (4.45), (4.46) and (4.47))

or the MIMO CFDL-MFAC protocols (Eqs. (4.40), (4.41), (4.42) and (4.43)) if

some more input-output data generated by the first-principle MEA-based PCC

model can be acquired.

� There are some other model-free control protocols which can be possibly imple-

mented for the preceding carbon capture plant, such as the reinforcement-leaning

based linear quadratic regulator [90, 91, 92], which is both model-free and opti-

mal.

� The flexible carbon capture levels are given by tabular learning algorithms (Ta-

bles 5.5 and 5.6) through state aggregation. Function approximators [36] can

be applied which may potentially give more accurate and smooth estimations of

the action value functions. In addition, there exist another set of reinforcement

learning algorithms which introduce parametrisation of policies [37] and enable

the selections of stochastic policies.

� The electricity price is specified as a simple profile (Figures 5.1) whereas it is ac-

tually determined by different electricity market conditions. Further researches

may extend the electricity price in more practical ways. To make Sarsa or

Sarsa(λ) applicable to these situations, some prediction methods such as auto-

regressive moving-average model, neural networks, etc., may be used together

with those learning algorithms.
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