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Adaptive Symptom Monitoring using Hidden
Markov Models — an application in Ecological

Momentary Assessment
William J Hulme, Glen P Martin, Matthew Sperrin, Alexander J Casson, Sandra Bucci, Shôn Lewis, and

Niels Peek

Abstract—Wearable and mobile technology provides
new opportunities to manage health conditions re-
motely and unobtrusively. For example, healthcare
providers can repeatedly sample a person’s condition to
monitor progression of symptoms and intervene if nec-
essary. There is usually a utility-tolerability trade-off
between collecting information at sufficient frequencies
and quantities to be useful, and over-burdening the user
or the underlying technology, particularly when active
input is required from the user. Selecting the next
sampling time adaptively using previous responses, so
that people are only sampled at high frequency when
necessary, can help to manage this trade-off.
We present a novel approach to adaptive sampling

using clustered continuous-time hidden Markov mod-
els. The model predicts, at any given sampling time,
the probability of moving to an ‘alert’ state, and the
next sample time is scheduled when this probability
has exceeded a given threshold. The clusters, each
representing a distinct sub-model, allow heterogeneity
in states and state transitions.
The work is illustrated using longitudinal mental-

health symptom data in 49 people collected using
ClinTouch, a mobile app designed to monitor people
with a diagnosis of schizophrenia. Using these data, we
show how the adaptive sampling scheme behaves under
different model parameters and risk thresholds, and
how the average sampling can be substantially reduced
whilst maintaining a high sampling frequency during
high-risk periods.

Index Terms—mHealth; Ecological Momentary As-
sessment; Ecological Momentary Intervention; Digital
Phenotyping; HiddenMarkovModels; Risk Prediction;
Schizophrenia; Adaptive Sampling.

I. Introduction

THE increasing availability of wearable and mobile
technology provides opportunities to monitor, predict,

and manage long-term health problems in real-time, in
everyday settings, and with minimal disruption. A common
framework for this is Ecological Momentary Assessment
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(EMA), defined as the “repeated sampling of people’s
current thoughts, emotions, behaviour, physiological states,
and context, in their natural environment, typically (but
not necessarily) via electronic wearable devices” [1]. EMA
offers distinct advantages over retrospective interview- or
questionnaire-based assessment methods, as the sampling
occurs in situ and at higher frequency. This increases eco-
logical validity, reduces recall bias, and is often cheaper and
less intrusive. EMA, or Ecological Momentary Intervention
(EMI) as it is called if there is an additional interventional
component [2], is primarily used in psychology with sam-
pling frequency typically ranging from hourly to weekly.
However, EMA has a range of applications and we consider
EMA here to include any mobile assessment tool collecting
physiological, psychological, or behavioural data via either
passive or active monitoring devices. Recent examples
include investigating the relationship between sleep quality
and suicidal ideation [3], pollution and allergies [4], and
the weather and arthritis [5].
To ensure that EMA systems are deployed effectively,

there is a utility-tolerability trade-off between collecting
information with sufficient frequency to be useful, and
over-burdening the user or the underlying technology.
Tolerability may be reduced if the sampling frequency
is too high, for instance due to app-fatigue leading to
disengagement, or by battery limits which prevent the
device being used as frequently as intended. Conversely,
utility may be reduced if the sampling frequency is too
low, as responses are not abundant or timely enough for
appropriate monitoring and care.
In many EMA settings where sampling times are pre-

set or requested at fixed intervals, balancing utility and
tolerability is a crude exercise in choosing the fixed
sampling frequency that represents the best compromise.
By contrast, if sampling times were chosen adaptively in
real-time, with high frequency sampling during “interesting
periods” and low frequency sampling during “uninteresting
periods”, this trade-off might be managed more effectively.
Indeed, the overall sampling frequency could be reduced
while increasing the utility of the collected data as samples
are taken at the most informative and relevant times.
We propose the use of continuous-time Hidden Markov

Models (CTHMMs) as a means to implement a generic
representation of real-time, adaptive sampling in EMA-
type settings. A CTHMM is a type of state-switching
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model where unobserved states are inferred from irregularly-
observed response sequences [6]. In this paper we use the
term “alert state” to denote a state that is of particular
interest, and requires close monitoring or attention. We
fit clustered CTHMMs to describe the underlying state-
switching process and the distribution of observed responses
in each state and use this model to predict in real-time
the probability of visiting a state at any time in future
using the sampled responses so far (or a subset thereof).
The state predictions are used as a basis for selecting the
next sampling time, where the sampling time is sooner
if the probability of visiting an alert state is high. What
constitutes an alert state is context dependent, and requires
expert input. For instance, it could be when a person
is experiencing distressing or fluctuating symptoms, or
is physically active or travelling. It may also differ from
person to person if there are phenotypes of responses and
state-switching patterns. If they exist, these phenotypes
can be exploited to improve the relevancy of the model for
each person, hence our use of clustered CTHMMs where
each cluster represents the distinct set of states through
which individuals of the same phenotypes can move.

Adaptive sampling schemes have been considered pre-
viously for reducing energy consumption in passive mon-
itoring scenarios such as accelerometry data [7], [8] or
geolocation data [9], and this has sometimes included the
use of Markov or hidden Markov chains. For example, [10] a
discrete-time hidden Markov model is used to infer the state
of the user but, unlike in our proposal, the classifier that
determines whether to increase or decrease the sampling
rate (based on reward-inaction learning) is independent
of the HMM. Another example is [8], where the approach
was to use a discrete-time Markov chain to describe user
activities over time. Activities were classified without error
at the sampling times, which were selected to maximise
the probability of correctly classifying the user’s activity
between sampling times, subject to a limited budget (e.g.,
battery life or maximum samples). HMMs have also been
employed with EMA-type data to model psychological
processes retrospectively [11], [12]. However, while many
works have looked at different aspects of mobile sampling
in a dynamic or non-constant way, there are none for EMA-
type settings and the use of CTHMMs for the purposes of
adaptively sampling in real-time has not been considered.
The aim of this paper is to introduce a CTHMM

approach for adaptive sampling in EMA-type systems,
motivated by and demonstrated using multivariate psy-
chotic symptom data collected using the mobile app Clin-
Touch [13]. We investigate how the burden of continuous
active symptom monitoring could be reduced to improve
engagement and allow better harmony with the flow of
everyday life. Finally, we consider a number of potential
extensions to this approach for personalised monitoring
and interventions.

II. CTHMMs and Adaptive Sampling
This section begins with an overview of CTHMMs and

introduces the notation used throughout the paper. It next

considers the use of clustering to account for heterogeneity
between different independent sequences when fitting a
CTHMM. The use of a pre-trained CTHMM to predict the
underlying state for a new response sequence, both at and
beyond the latest sampling time, is described. Finally, the
proposed adaptive sampling scheme is then introduced.

A. Overview of CTHMMs
CTHMMs are a class of state-switching models for

irregularly-observed temporal data, where the distribution
of the (observed) response is conditional on the underlying
(unobserved) state. HMMs are more flexible than standard
Markov models as they allow for latent state membership.
This allows the models to be applied where no simple
state label pre-exists in the data. Transitions between
states follow a continuous-time Markov process, i.e., the
probability of moving to another state is independent of
the past state sequence given the current state. States are
inferred from the observed responses. For a pre-determined
number of states, each assumed to correspond to a given
distribution family, the fitted model identifies the set of
state-specific probability distributions and state transition
intensities that fit to the observed sequence best (usually
with maximum likelihood).

An accessible overview of HMMs is provided in [14], [15]
and an in-depth text provided in [6].
The notation is as follows: A CTHMM describes the

observed response sequence Y (t) and a hidden state
sequence Z(t) evolve according to a transition matrix φ
and a response distribution Fθ. Specifically, we have:
• Response sequence Y (t), which could be
multivariate. If Y (t) is a D-variate response
then Y (t) = [Y 1(t), . . . , Y D(t)]. Here we
assume the Y d(t)s are independent conditional
on the hidden state Z(t), i.e., Pr(Y d(t) ≤
y|Z(t), Y 1(t), . . . , Y d−1(t), Y d+1(t), . . . , Y D(t)) =
Pr(Y d(t) ≤ yd|Z(t)). Joint multivariate distributions
are possible but not considered here.

• Hidden state sequence Z(t) ∈ K, for some finite state
space K with |K| = K. Z(t) is a continuous-time
Markov chain.

• State transition intensity matrix φ = {φkl}, for k, l ∈
K, where φkl = limε→0+ Pr(Z(t+ ε) = l | Z(t) = k)/ε
is the (k, l) entry of φ and represents the instantaneous
risk of Z(t) moving from state k to state l for k 6= l,
and φkk = −

∑
l 6=k φkl.

• Response (or emission) distributions Fθk
for k ∈ K,

where Fθk
(y) = Pr(Y (t) ≤ y|Z(t) = k) is the

distribution function of Y (t) for each state k, and
θk is the set of distribution parameters for state k.

• Initial state occupancy probability vector α =
[α1, . . . , αK ], where αk = Pr(Z(t1) = k).

M = (Fθ, φ, α) defines the CTHMM. For Y (t) ob-
served at sampling times t1, . . . , J , we have a vector (or
matrix in the multivariate case) of observations y1:J =
[y(t1), . . . , y(tJ)]. M is estimated by maximising over
Z, φ, θk, α the joint likelihood of observations y1:J and
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hidden states Z(t) conditional on the response distributions
Fθ and initial state probabilities α.
Model estimation is extended here to include multiple

independent sequences with independent sampling times
over index i, giving tij , Ji, yi(tj), Zi(t), and possibly πi(t1),
for i = 1, . . . , N . Further extensions that are not considered
here include allowing transition intensities and response
densities to depend on (possibly time-varying) covariates
Xi(t), so that φ = φ(Xi(t)) and θ = θ(Xi(t)).

B. Missing values
Since CTHMMs deal with data arriving at irregular

times, missing values are dealt with naturally; if y(tj) is
not available at sampling time tj then y(tj) is removed from
the set of responses y1:J and the index-set {j} contracts
by one. If y(tj) is partially observed (some but not all of
y(tj) is available at tj), then y(tj) still contributes to the
likelihood and can still be used for state prediction, again
with missing values assumed to be missing at random.

However, this does not exploit information in a missing-
not-at-random scenario, which is likely to hold in many
scenarios involving remote monitoring. For instance in
ClinTouch, our motivating example, a person might be
less likely to respond if they are experiencing heightened
delusions. For simplicity, we assume non-response occurs
non-informatively within this study, but revisit how models
might be extended to handle other missingness mechanisms
in the Discussion.

C. Clustering
A one-size-fits-all approach for predicting unobserved

states and future sampling times may be unsuitable
amongst a set of sequences that exhibit significant het-
erogeneity. For instance, psychotic symptoms may have
unpredictable timings, duration, and severity, and can
differ substantially from person to person. It is important
therefore to account for these clinical subtypes, particularly
for prediction problems where population effects are not of
interest, as is the case for individualised adaptive sampling.
The approach taken here is to identify homogeneous

clusters of people, each representing the same phenotype,
for whom a shared model adequately describes yi(tj). This
can be achieved by restricting the transition matrix φ to
be block-diagonal, so that transitions from one state to
another are only permitted between states belonging to
the same block[16], thus forcing the CTHMM to identify
clusters of people with shared response distributions. For
example, a two-cluster, five-state model with two and three
states in each cluster respectively, will have a transition
matrix φ =

[
φ1 0
0 φ2

]
where φ1 is the 2 × 2 transition

matrix for cluster 1 and φ2 is the 3× 3 transition matrix
for cluster 2. Since transitions between clusters are not
possible and the response distributions are independent,
each cluster c can be considered as a CTHMM on its own,
Mc, with its own transition matrix φc = {φclk} and set of
response distributions Fθc = {Fθc

k
} for k, l ∈ 1, . . . ,Kc. As

with states, cluster membership is estimated from the data
rather than prescribed; configurations of cluster numbers
and states per cluster are pre-defined. Note that setting the
number of clusters to the number of independent sequences
is equivalent to having one model per series.
For our application, this approach strikes a pragmatic

balance between plausibility and practicality owing to the
small number of sequences available for clustering and
the short sequence length in our dataset. It also provides
multiple phenotype-specific models on which to assess the
adaptive sampling scheme that is proposed.
It is important to be clear about the distinction be-

tween the role of states and clusters. States partition the
person-specific response sequence Y (t) through time and
correspond to homogeneous clinical statuses, such that
responses observed whilst in the same state arise from the
same distribution. Clusters partition the set of indepen-
dent sequences into distinct sub-models, corresponding to
homogeneous clinical phenotypes, with people in the same
phenotype moving through the same set of states.

D. State prediction
The following section outlines how to use a known

CTHMM M to estimate the underlying state Z(t) for
any time t, including beyond the latest sampling time tJ .
The model M is assumed fixed and we are not learning
more from future data. Here, y1:J can be any response
sequence whose distribution is assumed to be adequately
captured byM (i.e.,M is well-validated).
1) State prediction at a sample time tj : Here we consider

the estimation of the states Z(tj) at each sampling time
tj for j = 1, . . . , J using modelM and data y1:J . Let

p(tj , y1:J) :=
{
Pr(Z(tj) = k | y1:J ,M)

}
k=1:K

,

that is, the probability that Z(tj) is in state k conditional
on y1:J and the modelM. This problem is known as smooth-
ing in the HMM literature. This becomes analytically
intractable when J is large since we need to marginalise over
all possible state sequences, which increases exponentially
with J (the number of permutations for Z(t) at times
t1, . . . , tJ is KJ ). In this case, p(tj , y1:J ) is obtained using
the Baum-Welch, or forward-backward, algorithm (see [17],
[18] for an implementation in discrete-time HMMs and
[19] for an extension in continuous-time). For estimation of
p(tJ , y1:J) (the last sampling time), known as filtering in
the HMM literature, this algorithm reduces to the forward
algorithm.
If required, p can be calculated using less than all

available samples. For example, p(tJ , yj:J ) estimates Z(tJ )
using only samples from tj onwards. This may be useful if
there are storage or retrieval costs for y(t) or if computation
time for the forward-backward algorithm is high. If only a
single sample yj is used, then the problem reduces to a finite
mixture model with p(tj , yj) =

{
fk(yj | θk)∑

l∈1:K
fl(yj | θl)

}
k=1:K

.
where fθk

is the probability density function corresponding
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to Fθk
. φ is not needed here since we are only using infor-

mation at one time-point, tj , and so transition probabilities
become irrelevant.
2) State prediction at time tJ + u: Let pJ = p(tJ , y1:J)

be the vector of state probabilities at time tJ conditional
on responses y1:J , with elements of pJ summing to 1, i.e.,
1TpJ = 1. Consider the estimation of future states beyond
the latest response time. That is, Z(tJ + u) for some
u > 0 using model M and data y1:J . This is a simple
multiplication of pJ with Exp(uφ), where Exp is the matrix
exponential and [Exp(uφ)]kl = Pr(Z(t+ u) = l | Z(t) = k)
is the probability of being in state l in u days time given
that the process is in state k at time t, giving the state
probabilities at time tJ + u given PJ ,

SP (pJ , u) =
{
Pr(Z(tJ + u) = k | pJ ,M)

}
k=1:K

= pT
JExp(uφ).

Since Exp(0φ) is the identity matrix, SP (pJ , 0) = p(tJ).
Now consider the probability that a state k has been

passed through at least once in the period [tJ , tJ +u]. This
is implemented by setting row k of φ to zero, denoted φ0k ,
so that it becomes an absorbing state (i.e., a state that
cannot be exited), giving the passage probabilities at time
tJ + u given pJ ,

PP (pJ , u) =
{ ⋃
v∈[0,u]

Pr(Z(tj + u) = k | pJ ,M)
}
k=1:K

= pT
JExp(uφ0k ).

Again, when u = 0, PP (pJ , 0) = pJ . This can be
generalised to a set of states by setting all rows in φ
corresponding to those states equal to zero. If φ includes
no absorbing states then PP converges to 1.

E. The proposed adaptive samping method
Here we introduce the method to adaptively select the

next sampling time such that the sampling frequency is
high during, or prior to, alert state k̄ being reached, and
low during non-alert states. Recall that the alert state
corresponds to a high-risk or otherwise interesting state
capturing the behaviour of the person under observation.
Because the states are identified in an unsupervised fashion,
expert examination of the model fit is required to determine
which states should become alert states. The next sampling
time is chosen based on the first passage probability
PP (pJ , u) exceeding a pre-defined threshold τ . Thus, the
system will sample with higher frequency during periods
when the person under observation is experiencing, or
anticipated to experience, an alert state (for example as
indicated by unhealthy responses), but with lower frequency
when not in an alert state.

Formally, our next sampling time tJ+1 = tJ + uJ(τ) is
selected such that it is the earliest time where PPk̄(pJ , u)
is estimated to be equal to or greater than τ , for some
pre-specified threshold 0 < τ < 1. That is,

uJ(τ) = min
u

{
u > 0 | PPk̄(pJ , u) ≥ τ

}
= min

u

{
|pT
JExp(uφ0k̄ )1k̄ − τ |

}
.

This second equality is because PPk̄(pJ , u) is non-
decreasing over uJ(τ) > 0, so has a unique solution.
Analytically, this is the solution to pT

JExp(uφ0k̄ )1k̄ = τ
with respect to u but this has no closed-form solution, so
must be solved numerically.
A pre-specified maximum sampling interval can be set

to ensure that samples are not too infrequent, even if
the risk of an alert state k̄ is low. This ensures that
unexpected transitions to alert states are not missed and
that future state estimation is based on sufficiently many
recent samples. Similarly, a minimum sampling interval can
be set to ensure the next sample does not occur too soon
after the current sample if the risk of alert state k̄ is high
(in our ClinTouch example below, requesting responses
every minute is a way to guarantee app-fatigue).

III. An application to Ecological Mommentary
Assessment data

In this section the dataset from our ClinTouch example
is described, followed by the model configurations that
are considered as candidates for our simulations. Finally,
we describe the methods used to assess the properties
of the proposed adaptive sampling scheme in comparison
to a fixed sampling scheme. We consider both simulated
response data where the underlying state sequence is
known and the actual ClinTouch response data where the
underlying state sequence is not known.

A. ClinTouch data
ClinTouch is an EMA-type mobile app designed to

monitor the symptoms of people who experience psychosis
[13], [20]. It collects responses to a short mental health
questionnaire, asking the respondent about the presence
and severity of various pyschological and behavioural
symptoms experienced since the previous response. The
user responds on a touch-screen slider with responses from 1
(healthy, no symptoms) to 7 (unhealthy, intense symptoms),
with questions derived from the Positive and Negative
Syndrome Scale (PANSS) [21]. Prompts for responses are
sent at one of four pseudo-random sampling times per day,
covering a subset of the questions each time.

Response histories are available within the app and are
also uploaded to a central server for remote monitoring by
healthcare professionals. An alert system is used which
informs the care-team if a user has met pre-defined
criteria indicating unhealthy mental status (for instance 3
consecutive days with a high score anxiety).
This paper uses data from the ClinTouch arm of two

trials, CareLoop [ISRCTN88145142] and Actissist [IS-
RCTN34966555], [22]. The CareLoop trial assessed the
safety of ClinTouch-enhanced symptom monitoring com-
pared with routine monitoring in people with schizophrenia
across two sites; one an early-intervention cohort in typ-
ically younger people experiencing their first interaction
with psychotherapeutic services and the other a cohort
of older people with long-term mental health issues. The
single-site Actissist trial compared ClinTouch with the EMI
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Fig. 1. Example ClinTouch user trajectories

app Actissist. In total, 49 ClinTouch users are available
from the ClinTouch arms of the CareLoop (n=38) and
Actissist (n=11) trials. This excludes three ClinTouch users
who were removed due to drop-out within a week.

In both trials, users were instructed to use the app for
12 weeks, though non-response and early drop-out was
common, with 33 of 49 participants (67%) still using the
app in the final week of the 12-week observation period.
The total number of non-missing responses across all users
is 7719 out of a total of 14412 possible responses up to the
last response day for each user, representing an average
response rate of 53.6%.
For simplicity, the collected responses from these trials

have been simplified into symptom severities for four items:
Anxiety, Depression, Hallucinations, and Delusions, with
symptoms kept on the original ordinal scale from 1 to 7. The
simplified responses are equal to the mean value of all core
(non-branching) questions, rounded upwards to the nearest
integer. Responses thus remain on an ordinal scale from 1 to
7 which ensures the methods remain adaptable to individual
ClinTouch responses in future work. More formally, for
each participant we have observed response data of the
form Y = ([Y 1(t1), . . . , Y D(t1)], . . . , [Y 1(tJ ), . . . , Y D(tJ )]),
whereD is the number of items, J is the number of response
times, Y d(tj) ∈ ⊗d = {∅, 1, 2, 3, 4, 5, 6, 7} is the user’s
response at time tj for item d and ∅ indicates either no
question asked or no response (which are indistinguishable
in the dataset provided).
Example response trajectories from two users are pre-

sented in Figure 1.

B. Modelling the data
In summary we fit the model using all subjects. We fit

K-state models with C clusters for a variety of choices of
C and K, using BIC to select an optimal model.
1) Response distributions: We consider two approaches

to modelling the distribution of the response variable Y (t).
The first is to treat the responses as categorical, with

θr = Pr(Y (t) = r), for r = 1, . . . , 7 and
∑
r θr = 1 for

each item. This ignores the ordinality inherent in Y (t) but
is a conceptually simple model and is maximally flexible,
since it is capable of representing all possible response
distributions for the given response-space {1, . . . , 7}.
The second is to treat the response variable as ordinal

using Cumulative Link Models (CLMs) [23] with a latent
Normal response. The advantage of CLMs in this context
is that, rather than estimating 7 − 1 = 6 independent
parameters for each state in each cluster, we can estimate
a set of 6 shared threshold parameters across each cluster
with one additional location parameter per state, which
reduces the parameter space considerably. More details of
this approach are available in the Appendix.
2) Clusters and states: For a K-state model with C

clusters and Kc states in cluster c = 1, . . . , C, with∑
cKc = K, there are

∑
cKc(Kc − 1) parameters to be

estimated for the transition matrix φ. For a 7-category
categorical model, there are 6 parameters for each of
the 4 items to be estimated for each state, giving 24K
parameters for θ. For a 7-category ordinal model, there are
6 parameters for each of the 4 items to be estimated for
each cluster, plus Kc − 1 location parameters per cluster,
giving

∑
c 4(6 + (Kc − 1)) = 20C + 4K. Finally, there are

an additional K − 1 parameters per model to estimate the
initial state probabilities.
We consider between 2 and 3 states per cluster and

between 1 and 3 clusters per model. These constraints give
18 configurations in total, 9 each for the categorical and
ordinal models. Single-state clusters are not considered to
ensure the probability of moving out of or into a state is non-
zero (otherwise there would be no ‘alert’ state, sampling
times would not be adaptive, and the premise of early
detection of unhealthy psychotic events would be lost).
However, such configurations are possible and this is not
a limitation of the method. Models with more states or
clusters are not considered here due to limitations imposed
by the number of independent sequences and responses per
sequence. The total number of parameters to be estimated
for each model is given in Appendix Table I.

C. Model selection and assessment
For convenience, we use the model with the smallest

Bayesian Information Criterion (BIC), a likelihood-based
statistic used to guide model selection amongst a finite
set of non-nested models, to demonstrate the properties
of the adaptive sampling scheme outlined below. Whilst
it is known that the BIC may be unsuitable for HMMs
[24], the interest here is less in selecting an optimal model
for future use than in demonstrating the properties of the
adaptive sampling scheme.
Model diagnostics such as PP-plots and QQ-plots

are not considered here as the model is intended
primarily to illustrate the proposed adaptive sampling
method, rather than for direct clinical description or
prediction purposes. In the results that follow we make the
assumption that the underlying model has been robustly
tested in terms of its performance and goodness-of-fit
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properties. We stress that this is not true in practice
and models should not be used for clinical decision-making.

D. Comparison of fixed versus adaptive sampling
After identifying of the best model via minimum BIC and

identifying the alert states in each cluster (corresponding
to states with a high chance of unhealthy responses), the
adaptive sampling scheme was assessed as follows.
First, the fitted model was used to simulate new re-

sponses under the proposed adaptive sampling scheme. The
scheme chose, for the latest sampling time tj , a new sam-
pling time tj+1 = tj + uj(τ) such that PPk̄(p(tj), uj) = τ ,
for τ ∈ {0, 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2} and p(tj) = p(tj , y1:j). Further,

uj(τ) was modified to ensure responses were not sampled
before 3 hours nor after 3 days after the previous sample,
i.e., uj becomes max(min(uj , 72 hrs), 3 hrs). Finally, if
after this adjustment tj + uj(τ) was out-of-hours (between
21:00 and 08:59) then uj(τ) was increased so that tj+1
occurred at 09:00 the next day, thereby mimicking the
ClinTouch sampling scheme. Note that limτ→0+ uj(τ) = 0,
i.e., there is non-zero probability of being in or moving to
alert state k̄ at any time tj ≥ 0 and so setting τ = 0
will lead to an immediate request for a new sample.
After adjustment for the minimum sampling interval,
τ = 0 is equivalent to a fixed sampling scheme with four
observations per day at 09:00, 12:00, 15:00, and 18:00.

For each τ , 500 replications were generated, each for 100
days. The primary assessment measure is the sampling
frequency for fixed (τ = 0) versus adaptive (τ > 0)
sampling schemes. This is calculated for the whole sampling
period, and separately for periods when in and not in the
alert state. The duration from transition to the alert state
until the next sample, the detection delay, is also calculated.
Second, real responses from the two ClinTouch trials

are used, where all available sampling times are fixed and
known. After calculation of uj for τ ∈ {0, 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2},

the soonest available sample after tj + uj was taken as
the actual sample time. This mimics a scenario where
sampling times are pre-specified, but are only used if the
PPk̄(p(tj), uj) ≥ τ . Again, τ = 0 is equivalent to sampling
at the maximum frequency possible, so will use all available
samples. This scheme is applied for each ClinTouch user
and the sampling frequency used for fixed (τ = 0) versus
adaptive (τ > 0) sampling scheme is compared.

E. Software
All data processing, modelling, and graphs were pro-

duced in the statistical computing software R [25]. CTH-
MMs were fitted using the msm package [15]. Analysis code
and data are available at https://github.com/wjchulme/
CTHMMs-for-adaptive-sampling.

IV. Results
In this section we describe the best-fitting model from

the configurations considered and describe the performance
of the adaptive sampling versus fixed sampling scheme,

Fig. 2. Response distribution for the 2-2-3 model

with respect to average sampling frequency, the alert-state
detection delay, and how this changes with different values
of the alert threshold τ .

A. Chosen model
The BIC for all 18 models (9 each for categorical and

ordinal variants) is provided in Table I. The best model,
according to the minimum BIC, was the 2-2-3 ordinal model
(3 clusters with 2, 2, and 3 states per cluster respectively).
Recall that the states are identified in an unsupervised
fashion and require expert examination to determine their
meaning. To this end, the response distributions for the
2-2-3 model are provided in Figure 2. The states C1S2,
C2S2, and C3S2 were chosen as the alert states as these
corresponded either to the states with the highest chance
of unhealthy symptoms, or for cluster 3, to the state with
intense hallucination symptoms.

B. Adaptive sampling in simulated responses
The 2-2-3 ordinal model was used to simulate new 100-

day response sequences and assess the effect of adaptive
sampling on the sampling frequency and detection delay.
Simulation results are provided in Figures 3 and 4 and
tabulated in Appendix Table II.

The distribution of the delay between entering the alert
state and taking a new sample is given in Figure 4.

As expected, there is a clear inverse relationship between
the alert threshold τ and the sampling frequency per day,
and a positive relationship between τ and the alert state
delay. For clusters 1 and 3, even for a very small alert state
threshold (τ = 1

32 ) the sampling frequency reduced from
4 to around 2.9 and 2.7 samples per day respectively, but
remained high (3.9 samples per day) when in the alert state.
The cost of this is an increase in the alert-state detection
delay. For fixed sampling this delay is 0.12 days (just under
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Fig. 3. Sampling frequency for each tau.

Fig. 4. Distribution of the mean detection delay for different values
of τ , i.e., the duration from entering the alert state until the next
sampling time.

3 hours) but for τ = 1
32 this increases to 0.47 and 0.24 days

(11 and 6 hours) for C1 and C3, respectively. For cluster 2,
though there is little decrease in the delay before sampling
during an alert state (an increase of 0.02 days or half an
hour), there is only a very small reduction in the overall
sampling frequency, even for τ = 1

2 .
The reduction in the sampling frequency is strongly

dependent on the underlying CTHMM and the incoming
data. If the modelled transition rates are high then PP will
be higher for a given response trajectory, since movement
between states is assumed to be more frequent.

Fig. 5. Proportion of available samples used by adaptive sampling.
Each line represents data from one ClinTouch user. A small amount of
random noise is added to the vertical dimension to show overlapping
lines.

C. Adaptive sampling in real responses
While it is not possible to know the underlying states in

real responses, we can approximate how a given CTHMM
would select sample times under different values of the
alert threshold τ . Figure 5 shows how the proportion of
used versus available samples reduces as τ increases, for
each ClinTouch user.
When τ = 0, all available samples are used which is

equivalent to having fixed sampling times. But even at
τ = 1

32 , there are some users who are observed much less
frequently than when samples are fixed. This means that for
those people the risk of an alert state at the next available
sampling time is often predicted to be less than 1

32 and so
the sample is not used. In effect, these are the people who
are almost always in non-alert states and are considered
low risk. Conversely, there are some people who continue
to be observed at maximum frequency even when τ = 1

2 ,
because their risk of being in or moving to an alert state
is persistently high. The average increase in the detection
delay is largest in cluster 1, from 0.3 days when τ = 1

32
to from 1.4 days when τ = 1

2 . In the other clusters, the
average increase in the detection delay does not exceed 0.4
days.

V. Discussion
We have presented a model of intensive longitudinal

monitoring that uses continuous-time hidden Markov
models to capture the underlying state-switching process,
which is then used to adaptively select the next sampling
time according to the predicted risk of being in a pre-
defined alert state.
Unlike passive monitoring systems such as those using

wrist-worn accelerometry or photoplethysmography devices,
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active monitoring systems frequently demand the user’s
time and attention, making them more vulnerable to app-
fatigue, increasing the risk of temporary or permanent dis-
engagement (non-response or drop-out). In the CareLoop
and Actissist trials from which our dataset was derived,
16 of 49 participants (33%) had stopped using the app
before the final week of the 12-week observation period.
Sub-optimal app tolerability may have contributed to these
early drop-outs. On the other hand, too infrequent samples
will not provide sufficient information to monitor or model
the symptom processes under consideration. By adaptively
sampling, it is possible to reduce unnecessary sampling
during low risk periods whilst maintaining or increasing
the sampling frequency during high risk periods.
We show that, in some cases, our proposed adaptive

scheme substantially reduces the sampling frequency com-
pared with a fixed scheme even for very low risk thresholds,
leading to substantial sample savings compared with fixed
sampling times and removing the need for over 75% of
samples in some cases (see Figure 5). We chose 4 samples
per day (every 3 hours in a 12-hour window) as our
maximum sampling frequency as this is the fixed frequency
available in the ClinTouch dataset, but it is possible that
increasing the maximum frequency further will still result
in sample savings overall under an adaptive scheme. The
cost for fewer samples is an increase in the time taken to
observe the user during an alert state, where there may be
an immediate need to intervene. However, the relatively
recent introduction of intensive longitudinal monitoring
systems, if implemented successfully, could represent a
vast sampling improvement on traditional monitoring for
health conditions, where a person may only be seen every
couple of months. Set in this context, we believe that the
potential benefits gained through increased tolerability,
and therefore prolonged engagement, due to reductions
in the average sampling frequency are likely to outweigh
the harms resulting from a delay in identifying an ongoing
alert state.

Our choice of CTHMMs for modelling sequential EMA-
type data was made for a number of reasons. First, they
handle irregular sampling times which are typical in EMA
sequences, for instance due to pseudo-random sampling,
user-initiated responses, connectivity issues. This is also
necessary if the sampling times are adaptively chosen.
Second, they can accommodate multivariate response data,
where there is more than one response variable of interest
that can be used to predict the state sequence. Third, a
suitable CTHMM can predict physiological, psychological,
or behavioural states in real-time, which can be used to
dynamically decide when the next sample should be taken,
and when to intervene if necessary. Finally, they can identify
symptom phenotypes and person-specific traits from his-
torical EMA data, so that heterogeneity between sequences
can be incorporated into state predictions to improve state
prediction for individuals. CTHMMs therefore provide a
unified framework for trait and state identification, and for
risk-aware sampling and intervention times.
Our adaptive sampling approach can be particularly

useful in settings where people are being monitored for the
purpose of delivering the right intervention at the right
time. Our use-case is in relation to psychotic relapse risk
in schizophrenia, but the principles of adaptive sampling
using CTHMMs can be applied more broadly. Further
applications in mental health might include prediction
of suicidal ideation or self-harm. There are potential
applications for home-based, low-frequency monitoring of
chronic diseases; samples may ordinarily be taken weekly
or monthly but are increased during signs of symptom
exacerbation, accelerating detection of disease progression
and increasing sample size for subsequent analyses. Another
use-case is to sample more frequently during periods
where there is a high rate of change or fluctuation of
response values, which could improve the accuracy of offline
interpolation of symptoms between sampling times. In this
case, the response variable would be a transformation of
the raw symptom data that captures symptom volatility
or variation, rather than the symptoms themselves. More
generally, it might be applied in settings such as activity
or location monitoring to ensure more frequent samples
during active or moving states.
EMA systems are deployed for monitoring symptoms

or behaviours in everyday settings and offer improved
ecological validity for research in various domains. The
rich longitudinal datasets generated by EMA monitoring
present many new opportunities for clinical phenotyping.
Phenotyping studies using EMA data exist, though often
involve observation periods that are too short to reasonably
detect or exploit temporal patterns, and so the time dimen-
sion is simplified (e.g., clock-time or morning/evening) or
else ignored completely [26]–[29]. Where longer sequences
of data are available, incorporating temporality through
the use of state transition models may lead to more useful
phenotypes [30], [31]. However, collecting longer sequences
is only possible if the monitoring system is tolerable to the
user for a prolonged period. While the ClinTouch dataset
used in this paper boasts relatively long observation periods
compared with many other EMA phenotyping studies,
we recognise that there are limitations to its usefulness
in identifying clinical phenotypes. We therefore do not
attempt, and indeed advise against, a thorough clinical
interpretation of the phenotypes in the 2-2-3 CTHMM
identified as the best model.

A. Limitations and future work
This work represents the first step in the application of

CTHMMs to model EMA-type for adaptive sampling in
real-time, whose potential has not been fully explored here.
There are a number of limitations, which themselves may
motivate future research.

The models presented here used the method proposed by
Smyth[16] to identify phenotypes of people with a diagnosis
of schizophrenia assumed to be governed by the same
transition and response distributions. However, for people
with sufficiently long histories of EMA-acquired symptom
data it may be possible to develop personalised models
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that are unique to each person. Indeed, such an approach
could be deployed in an EMA framework that dynamically
updates the model with the incoming data, either with
each new sample or in batches, so that sampling times and
alerts are informed by a model that is continually learning,
reducing dependence of the system on a possibly poorly-
suited prior model [32]. Bayesian HMMs are relevant here,
particularly early in the observation process where little
or no data has been collected as there is no dependence
on asymptotic distributions. In practice, however, this is a
difficult approach to implement [33]. Each update requires
some guarantee of model convergence, which is notoriously
difficult for complex Bayesian models in research, let alone
in real-time. There may challenges arising from the label-
switching problem (e.g., states diverging from their prior
healthy/unhealthy labels over time), causing problems in
the interpretation of predicted hidden states [34], [35].
For any models developed with the intention to be

deployed in real EMA settings, it is important to assess the
goodness-of-fit properties to understand if and where the
model may fail to capture the underlying state transition
process adequately. In general, however, model selection
and validation is a challenge for HMMs. The BIC was used
to choose the configuration of the final model, and whilst
likelihood-based information criteria are commonly used
to select from a set of candidate models for HMMs, the
appropriateness of these measures is questionable since the
autocorrelation in the responses is not accounted for. See
[24] and references therein for some attempts to remedy
this in specific modelling scenarios. The chosen model is
therefore selected more for expediency than for satisfying
any theoretically-justified optimality criteria.

Hidden Markov models typically deal with multivariate
data by assuming independence conditionally on the hidden
state, as has been done in this paper. Whilst this may
be reasonable in certain applications, extensions that
permit dependencies between multivariate responses will
provide more flexible, and therefore potentially better-
fitting, models. Since our cumulative link models assume a
latent Normal variable, permitting conditional dependency
between ordinal variables is conceptually straight-forward:
simply discretise the multivariable Normal response [36].
Unfortunately, the likelihood function is difficult to evaluate
[37], particularly when combined with HMMs, and there is
no readily-available software to handle this for the applied
researcher.
We assumed that missingness was non-informative in

our model and illustrative example. However, in remote
monitoring contexts, missing data (data not being recorded
at an expected time) and indeed the observation process
(the rate at which unscheduled data are collected) are likely
to provide information in themselves that can be predictive
of the underlying state [38], [39].

It would also be of interest to incorporate data from other
sources when determining states of interest. This could be
achieved in a Bayesian setting by placing prior distributions
on the hidden states or cluster parameters. Similarly, other
data on the individual patients, such as comorbidity or

demographic information, could also straightforwardly be
incorporated into the model.
In this work, alert states were identified by an expe-

rienced consultant in psychiatry (author SL). However,
validation of the choice of alert states should also be
considered. One way to do this would be to use hard
outcome data: e.g. relapse events in the example presented
in this paper. Alert states should then be states that are
highly predictive of relapse events.
The illustration of the methods developed here used

a small dataset of 49 ClinTouch users observed for a
maximum of 12 weeks, with users asked to answered the
full questionnaire two times per day (over four sampling
times). However, due to non-response the average number
of samples per user was 157.2, which is typically too small
for fitting all but the smallest CTHMMs reliably. This
exceeds the parameter space for many of the CTHMMs
considered in this paper (see Appendix Table I) and so
personalised CTHMMs were not explored.

Whilst this work demonstrates the principle of CTHMMs
for monitoring EMA data in real-time, the adaptive sam-
pling process was not implemented for real, relying instead
on simulations to assess its performance and characteristics.
This approach should therefore be trialed and tested in
other real datasets and settings before being relied upon
for safe monitoring of psychotic symptoms or any other
monitoring setting. There are clear implementation chal-
lenges for the proposed system, and careful failure checks
are required to ensure the system can be implemented
safely and effectively. Perhaps the biggest challenge is that
of non-response due to a lack of app engagement. This
poses a similar practical challenge to medication adherence
from the patient side, and a missing data challenge from
the analysis side.

VI. Conclusion
Maintaining user engagement with potentially inconve-

nient or stressful technology is a persistent issue in research
that demands time and effort on the part of the user.
Safely reducing the sampling frequency has the potential
to improve tolerability of EMA systems and improve the
effectiveness of data collection for real-time monitoring
and research. We have proposed an extension to EMA
systems such that the sampling frequency is increased if
the risk of an alert state is high, as predicted using a
continuous-time hidden Markov model. Extensions that
consider personalised models, updated in real-time, should
be considered in future to improve model reliability and
relevance.

References
[1] S. Shiffman, A. A. Stone, and M. R. Hufford, “Eco-

logical momentary assessment,” Annual Review of Clinical
Psychology, vol. 4, pp. 1–32, 2008.

[2] K. E. Heron and J. M. Smyth, “Ecological momen-
tary interventions: Incorporating mobile technology into
psychosocial and health behaviour treatments,” British
Journal of Health Psychology, vol. 15, no. 1, pp. 1–39, 2010.

Authorized licensed use limited to: University of Manchester. Downloaded on October 26,2020 at 09:53:02 UTC from IEEE Xplore.  Restrictions apply. 



2168-2194 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3031263, IEEE Journal of
Biomedical and Health Informatics

10

[3] D. L. Littlewood, S. D. Kyle, L.-A. Carter, S. Peters,
D. Pratt, and P. Gooding, “Short sleep duration and
poor sleep quality predict next-day suicidal ideation: An
ecological momentary assessment study,” Psychological
Medicine, vol. 49, no. 3, pp. 403–411, Feb. 2019.

[4] M. Vigo, L. Hassan, W. Vance, C. Jay, A. Brass, and
S. Cruickshank, “Britain Breathing: Using the experience
sampling method to collect the seasonal allergy symptoms
of a country,” Journal of the American Medical Informatics
Association, vol. 25, no. 1, pp. 88–92, Jan. 2018.

[5] K. L. Druce, J. McBeth, S. N. van der Veer, D. A.
Selby, B. Vidgen, K. Georgatzis, B. Hellman, R. Lakshmi-
narayana, A. Chowdhury, D. M. Schultz, C. Sanders, J. C.
Sergeant, and W. G. Dixon, “Recruitment and Ongoing
Engagement in a UK Smartphone Study Examining the
Association Between Weather and Pain: Cohort Study,”
JMIR mHealth and uHealth, vol. 5, no. 11, p. e168, Nov.
2017.

[6] I. L. MacDonald and W. Zucchini, Hidden Markov
and Other Models for Discrete- valued Time Series. CRC
Press, 1997.
[7] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra,

and K. Aberer, “Energy-Efficient Continuous Activity
Recognition on Mobile Phones: An Activity-Adaptive
Approach,” in 2012 16th International Symposium on
Wearable Computers, 2012, pp. 17–24.

[8] A. Krause, M. Ihmig, E. Rankin, D. Leong, Smriti
Gupta, D. Siewiorek, A. Smailagic, M. Deisher, and U.
Sengupta, “Trading off prediction accuracy and power con-
sumption for context-aware wearable computing,” in Ninth
IEEE International Symposium on Wearable Computers
(ISWC’05), 2005, pp. 20–26.

[9] J. Paek, J. Kim, and R. Govindan, “Energy-efficient
Rate-adaptive GPS-based Positioning for Smartphones,” in
Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, 2010, pp. 299–314.

[10] K. K. Rachuri, “Smartphones based Social Sensing:
Adaptive Sampling, Sensing and Computation Offloading,”
p. 204.

[11] K. Vansteelandt, F. Rijmen, G. Pieters, M. Probst,
and J. Vanderlinden, “Drive for thinness, affect regulation
and physical activity in eating disorders: A daily life study,”
Behaviour Research and Therapy, vol. 45, no. 8, pp. 1717–
1734, Aug. 2007.

[12] B. Hosenfeld, E. H. Bos, K. J. Wardenaar, H. J.
Conradi, H. L. J. van der Maas, I. Visser, and P. de Jonge,
“Major depressive disorder as a nonlinear dynamic system:
Bimodality in the frequency distribution of depressive
symptoms over time,” BMC Psychiatry, vol. 15, no. 1,
p. 222, Sep. 2015.
[13] P. Whelan, M. Machin, S. Lewis, I. Buchan, C.

Sanders, E. Applegate, C. Stockton, S. Preston, R. A.
Bowen, Z. Ze, C. Roberts, L. Davies, T. Wykes, N. Tarrier,
S. Kapur, and J. Ainsworth, “Mobile early detection and
connected intervention to coproduce better care in severe
mental illness,” Stud Health Technol Inform, vol. 216, pp.
123–126, 2015.

[14] I. Visser, “Seven things to remember about hidden
Markov models: A tutorial on Markovian models for time
series,” Journal of Mathematical Psychology, vol. 55, no. 6,
pp. 403–415, Dec. 2011.
[15] C. Jackson, “Multi-State Models for Panel Data:

The msm Package for R,” Journal of Statistical Software,
vol. 38, no. 1, pp. 1–28, Jan. 2011.

[16] P. Smyth, “Clustering Sequences with Hidden
Markov Models,” in Advances in Neural Information
Processing Systems, 1997, pp. 648–654.

[17] L. E. Baum, T. Petrie, G. Soules, and N. Weiss,
“A Maximization Technique Occurring in the Statistical
Analysis of Probabilistic Functions of Markov Chains,” The
Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–
171, 1970.

[18] L. E. Baum and T. Petrie, “Statistical Inference for
Probabilistic Functions of Finite State Markov Chains,”
The Annals of Mathematical Statistics, vol. 37, no. 6, pp.
1554–1563, Dec. 1966.

[19] A. Bureau, J. P. Hughes, and S. C. Shiboski,
“An S-plus implementation of hidden markov models in
continuous time,” Journal of Computational and Graphical
Statistics, vol. 9, no. 4, pp. 621–632, Jan. 2000.

[20] J. E. Palmier-Claus, J. Ainsworth, M. Machin, C.
Barrowclough, G. Dunn, E. Barkus, A. Rogers, T. Wykes,
S. Kapur, I. Buchan, E. Salter, and S. W. Lewis, “The fea-
sibility and validity of ambulatory self-report of psychotic
symptoms using a smartphone software application,” BMC
Psychiatry, vol. 12, no. 1, p. 172, Oct. 2012.

[21] S. R. Kay, A. Fiszbein, and L. A. Opler, “The Posi-
tive and Negative Syndrome Scale (PANSS) for Schizophre-
nia,” Schizophr Bull, vol. 13, no. 2, pp. 261–276, Jan. 1987.

[22] S. Bucci, C. Barrowclough, J. Ainsworth, M. Machin,
R. Morris, K. Berry, R. Emsley, S. Lewis, D. Edge, I.
Buchan, and G. Haddock, “Actissist: Proof-of-Concept
Trial of a Theory-Driven Digital Intervention for Psychosis,”
Schizophr Bull, vol. 44, no. 5, pp. 1070–1080, Aug. 2018.

[23] A. Agresti, Categorical data analysis, 2nd ed. New
York: Wiley-Interscience, 2002.

[24] R. J. Mackay, “Estimating the order of a hidden
markov model,” Canadian Journal of Statistics, vol. 30, no.
4, pp. 573–589, 2002.

[25] R Core Team, R: A language and environment
for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2018.
[26] C. C. Cushing, A. M. Marker, C. M. Bejarano, C.

J. Crick, and L. P. Huffhines, “Latent Variable Mixture
Modeling of Ecological Momentary Assessment Data: Im-
plications for Screening and Adolescent Mood Profiles,”
Journal of Child and Family Studies, vol. 26, no. 6, pp.
1565–1572, Jun. 2017.

[27] C. Crayen, M. Eid, T. Lischetzke, D. Courvoisier, and
J. Vermunt, “Exploring Dynamics in Mood RegulationMix-
ture Latent Markov Modeling of Ambulatory Assessment
Data,” Psychosomatic Medicine, vol. 74, no. 4, pp. 366–376,
May 2012.
[28] S. A. Wonderlich, R. D. Crosby, S. G. Engel, J.

E. Mitchell, J. Smyth, and R. Miltenberger, “Personality-

Authorized licensed use limited to: University of Manchester. Downloaded on October 26,2020 at 09:53:02 UTC from IEEE Xplore.  Restrictions apply. 



2168-2194 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3031263, IEEE Journal of
Biomedical and Health Informatics

11

Based Clusters in Bulimia Nervosa: Differences in Clinical
Variables and Ecological Momentary Assessment,” Journal
of Personality Disorders, vol. 21, no. 3, pp. 340–357, May
2007.

[29] S. Shiffman, “Conceptualizing Analyses of Ecolog-
ical Momentary Assessment Data,” Nicotine & Tobacco
Research, vol. 16, no. Suppl 2, pp. S76–S87, May 2014.

[30] C. Crayen, M. Eid, T. Lischetzke, and J. K. Vermunt,
“A Continuous-Time Mixture Latent-State-Trait Markov
Model for Experience Sampling Data,” European Journal
of Psychological Assessment, vol. 33, no. 4, pp. 296–311,
Jul. 2017.

[31] T. Asparouhov, E. L. Hamaker, and B. Muthén,
“Dynamic Latent Class Analysis,” Structural Equation
Modeling: A Multidisciplinary Journal, vol. 24, no. 2, pp.
257–269, Mar. 2017.

[32] D. A. Jenkins, M. Sperrin, G. P. Martin, and N. Peek,
“Dynamic models to predict health outcomes: Current
status and methodological challenges,” Diagnostic and
Prognostic Research, vol. 2, no. 1, p. 23, Dec. 2018.

[33] S. de Haan-Rietdijk, P. Kuppens, C. S. Bergeman,
L. B. Sheeber, N. B. Allen, and E. L. Hamaker, “On the
Use of Mixed Markov Models for Intensive Longitudinal
Data,” Multivariate behavioral research, vol. 52, no. 6, pp.
747–767, 2017.

[34] G. Celeux, “Bayesian Inference for Mixture: The
Label Switching Problem,” in COMPSTAT, R. Payne and
P. Green, Eds. Heidelberg: Physica-Verlag HD, 1998, pp.
227–232.

[35] M. Stephens, “Dealing with label switching in
mixture models,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 62, no. 4, pp. 795–
809, Nov. 2000.
[36] I. Visser and M. Speekenbrink, “depmixS4: An R

Package for Hidden Markov Models,” Journal of Statistical
Software, vol. 36, no. 1, pp. 1–21, Aug. 2010.

[37] S. Chib and E. Greenberg, “Analysis of Multivariate
Probit Models,” Biometrika, vol. 85, no. 2, pp. 347–361,
1998.

[38] M. Sperrin, G. P. Martin, R. Sisk, and N. Peek,
“Missing data should be handled differently for prediction
than for description or causal explanation,” Journal of
Clinical Epidemiology, vol. 0, no. 0, Jun. 2020.

[39] E. M. Pullenayegum and L. S. Lim, “Longitudinal
data subject to irregular observation: A review of methods
with a focus on visit processes, assumptions, and study
design:” Statistical Methods in Medical Research, May 2014.

Appendix
A. Likelihood

The likelihood function for each sequence i is

Li = Pr(Y 1
i , . . . , Y

Ji
i )

=
∑

Pr(Y 1
i , . . . , Y

Ji
i | Z

1
i , . . . , Z

Ji
i )Pr(Z1

i , . . . , Z
Ji
i ),

summed over all possible state sequences Z1
i , . . . , Z

Ji
i .

Assuming that the responses are conditionally independent

given the underlying state and that the state sequence is
Markovian, it follows that

Li =
∑
Z1

i

fZ1
i
(Y 1
i )Pr(Z1

i )×
∑
Z2

i

fZ2
i
(Y 2
i )Pr(Z1

i , Z
2
i )

. . .

×
∑
Z

Ji
i

f
Z

Ji
i

(Y Ji
i )Pr(ZJi−1

i , ZJi
i ).

See [15] for more details on how this likelihood is calculated
in the msm package, including details on constrained
parameter spaces necessary to implement the clustering.

B. Ordinal response distribution
We use Cumulative Link Models (CLMs) [23] to model

the distribution of the response variable Y . A CLM
assumes an unobserved response variable y∗ on R (note
this is different to the latent state-space z) with a known
parametric distribution. The observed response y takes
value r if y∗ lies in [θr−1, θr). θr is simply a partition of R,
with θr ≥ θr−1 and θ0 ≡ −∞ and θ7 ≡ ∞. The advantage
of CLMs is that covariate effects can be placed on (a subset
of) the parameters of the continuous latent variable rather
than on the θr, reducing the number of parameters to
estimate and ensuring that changes in covariates effect the
probabilities of r smoothly. For example, if a standard
Normal latent response distribution N(µ, 1) is assumed,
then covariate are modelled to alter the location parameter
µ rather than θr.

We exploit CLMs as follows. Within each cluster, a latent
Normal response distribution is assumed, the thresholds
θr are fixed, and the location parameter µ is dependent on
the current state k. µ is fixed at zero for the first state in
each cluster for identifiability. The dispersion parameter
σ is fixed at one and is not re-estimated across states.
To enforce model identifiability if a contiguous edge set
(e.g., {1}, {7}, or {1, 2}) is not observed (leading to edge
thresholds being unbounded in the likelihood maximisation
procedure), a truncated standard Normal model was used
with truncation at ±4, with the probability density beyond
these limits set to zero. The probability of a random Normal
variable being less than −4 or more than 4 is approximately
1 in 30000, which far exceeds the effective sample-size and
so estimated parameters are sufficient to approximate the
standard Normal model.

C. Tables
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TABLE I
BIC for each model

Model Configuration transition
params

inital state
params

response
distribution
params

Total
params BIC

categorical 2 2 1 48 51 48022
categorical 3 6 2 72 80 47693
categorical 2-2 4 3 96 103 46118
categorical 2-3 8 4 120 132 47667
categorical 3-3 12 5 144 161 50322
categorical 2-2-2 6 5 144 155 49311
categorical 2-2-3 10 6 168 184 51724
categorical 2-3-3 14 7 192 213 54600
categorical 3-3-3 18 8 216 242 52278
ordinal 2 2 1 28 31 47778
ordinal 3 6 2 32 40 46127
ordinal 2-2 4 3 56 63 44739
ordinal 2-3 8 4 60 72 43828
ordinal 3-3 12 5 64 81 43838
ordinal 2-2-2 6 5 84 95 42947
ordinal 2-2-3 10 6 88 104 42555
ordinal 2-3-3 14 7 92 113 43248
ordinal 3-3-3 18 8 96 122 44295

TABLE II
Adaptive sampling performance

τ Mean frequency Mean frequency
in alert state

Mean frequency
not in

alert state
Mean alert state
detection delay

Cluster 1
0 4.0 (4.0, 4.0) 4.0 (4.0, 4.0) 4.0 (4.0, 4.0) 0.1 (0.1, 0.4)
1/32 2.9 (2.4, 3.3) 3.9 (3.9, 4.0) 1.3 (1.2, 1.4) 0.5 (0.2, 0.7)
1/16 2.6 (2.1, 3.1) 3.8 (3.7, 3.9) 0.8 (0.8, 0.9) 0.7 (0.3, 1.1)
1/8 2.3 (1.7, 2.8) 3.5 (3.3, 3.7) 0.5 (0.4, 0.5) 1.4 (0.7, 2.1)
1/4 2.0 (1.5, 2.5) 3.1 (2.8, 3.4) 0.4 (0.4, 0.4) 1.5 (0.8, 2.3)
1/2 1.7 (1.2, 2.1) 2.6 (2.3, 3.0) 0.4 (0.4, 0.4) 1.5 (0.8, 2.3)

Cluster 2
0 4.0 (4.0, 4.0) 4.0 (4.0, 4.0) 4.0 (4.0, 4.1) 0.1 (0.1, 0.4)
1/32 4.0 (4.0, 4.0) 4.0 (4.0, 4.0) 4.0 (3.8, 4.0) 0.2 (0.1, 0.4)
1/16 4.0 (3.9, 4.0) 4.0 (4.0, 4.0) 3.9 (3.5, 4.0) 0.2 (0.1, 0.4)
1/8 3.9 (3.8, 4.0) 4.0 (4.0, 4.0) 3.6 (2.9, 4.0) 0.2 (0.1, 0.5)
1/4 3.8 (3.6, 3.9) 4.0 (3.9, 4.0) 3.0 (2.0, 3.6) 0.3 (0.1, 0.6)
1/2 3.7 (3.4, 3.8) 3.9 (3.8, 4.0) 2.7 (1.4, 3.4) 0.3 (0.1, 0.9)

Cluster 3
0 4.0 (4.0, 4.0) 4.0 (3.9, 4.1) 4.0 (4.0, 4.0) 0.1 (0.1, 0.4)
1/32 2.7 (2.0, 3.5) 3.9 (3.8, 4.0) 2.2 (1.5, 3.4) 0.2 (0.1, 0.6)
1/16 2.3 (1.7, 3.1) 3.8 (3.6, 4.0) 1.7 (1.1, 2.9) 0.4 (0.1, 0.8)
1/8 2.0 (1.5, 2.9) 3.8 (3.4, 4.0) 1.4 (0.9, 2.5) 0.4 (0.1, 1.1)
1/4 1.9 (1.4, 2.8) 3.6 (3.3, 3.9) 1.2 (0.7, 2.6) 0.5 (0.1, 1.5)
1/2 1.8 (1.2, 2.8) 3.6 (3.2, 3.9) 1.1 (0.6, 2.5) 0.5 (0.1, 1.6)

Units are samples per day
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